Licensed Material — Property of iBM
LY24-5203-0
File No. S370-30

IBM Virtual Machine Facility/370:
Remote Spooling Communications

Subsystem Networking
Program Product Logic

Program Number 5748-XP1

Licensed Material - Property of IBM

This edition applies to Version 1 of the Remote Spooling
Communications Subsystem Networking program product (Program
Number 5748-XP1) and to all subsequent versions and
modifications until otherwise indicated in new editions or
Technical Newsletters.

Information in this publication is subject to change. Any
such changes will be published in new editioms or technical
newsletters. Before using this publication in connection
with the operation of IBM systems, consult the latest IBM
System/370 Bibliography of Iniustry Systems and Application
Programs, 5C20-0370, and the Technical Newsletters that amend
that Bibliography, for the editions and Technical Newsletters
that are applicable and current.

The Program Product described in this manual, and all
licensed materials available for it, are provided by IBM
under the terms of the License Agreement for IRM Progranm
Prolucts. Your local IBM office can advise you regarding the
ordering procedures.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

2 form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Programming Publications, Dept. 660, P.O.
Box 6, Endicott, Wew York, 7.S.A., 13760. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the
information you supply.

© Copyright International Pusiness Machines Corporation 1979

Licensed Material - Property of IBM

Preface

This logic manual describes the internal functioning of the Remote
Spooling Communications Subsystem Networking program product. This
manual is for IBM program support representatives, and systenm
programmers and analysts responsible for installation, maintenance, and
nodification of RSCS.

Note:

In this manual the term "RSCS" refers to the
Remote Spooling Communications Subsystem Networking
program product. It does not refer to the Remote
Spooling Communications Subsystem component of
VM/370. Where these two different programs are
discussed together, the difference is made clear.

(o T aum - ey
et o — . - — — — —

This manual assists in isolating RSCS module code. It gives:
e An overview of RSCS operations

e Descriptions of RSCS's user functions with reference to the tasks and
modules that perform them

e A description of each module's main routines and linkages

e Control flow diagrams of inter;routine inter-task relationships
® locations and contents of data areas

e An approach to problem determination

e Appendixes with reference material on MULTI-LFAVING and the RSCS
Preloader utility under CMS.

These sections document the program logic sufficiently to point to the
module listing that the logic manual user needs. Once in a module
listing, the user should readily find the logic he is concerned with,
using module and subroutine headers (prologues) and the comments in the
assembler language statements.

RSCS runs as a virtual machine under the VM/370 Control Program (CP).
In extending the VM/370 spooling system capability to include spooling
to remote stations, RSCS interacts with the CP spooling systen.
Therefore, some of the information in this publication requires a
knowledge of that area of CP.

Related Publicationmns

IBM Virtual Machine Facility/370: Remote Spooling Communication
Subsystem Networking General Information Manual, GH24-5004

IBM Virtual Machine Facility/370: Remote Spoeling Communication
Subsystem Networking Program Referemce and Operations Manual, SH24-500S

Preface

Licensed Material - Property of TRN

IBM virtual Machine Facility/370:
Subsystem Yetworking Reference Sum

ed
L}
o
joa
-
1]
=
]
vl
"
A
]
B8
[
=
I
lnd
e

n

Virtual Machine Pacility/370: System Logic and
1: Control Program (CP), SY20-0886

IPM Data Processing Glossary, GC20-1699

4 IBM VM/370: BSCS Networking Logic

Licensed Material - Property of IBM

SECTION 1: INTRODUCTIOF. o o « ¢ o o o o o
RSCS Overview. . . .

The RSCS Virtual nachlne and the ¥M/370 Control Program (CP)

Remote System Routes and links
Remote Stations and Systems.
Programmable Remote Stations
Nonprogrammable Remote Statioms. . .
Remote Stations Supported by RSCS. .
Remote Systems Supported by RSCS . .
Network Control: RSCS and VM/370 Commands.
RSCS Operator Commands « « ¢ ¢ ¢ o o o &
V4/370 CP and CMS Commands For RSCS. . .
CP Instructions Used by the RSCS Control
RSCS Preparation and Startup . « « « « o
RSCS Preparation « « ¢« ¢« o« ¢ ¢ o ¢ « o &«
Dynamic Directory. « « o« ¢« ¢ ¢ ¢ ¢ o o o

SECTION 2: METHOD OF OPERATION

The RSCS Control Program . « « o« « o o « «
MSUP: The RSCS SUPErViSOL. « ¢ o « « o o«
Task Management. « ¢ o ¢ ¢ o o o o o o o

Dispatching in RSCS. « v o« o o o o o o
Task-to-Task Communications. . « . . &
GIVE/TAKE Synchronous Task-to-Task Conm
Synchronization LockS. « « ¢ « « « o
Posting a Synch Lock . « .« . .

Waiting For GIVE/TAKE Requested Serv1ces' DHT

Asynchronous Interruptions and Exits .

ALERT Asynchronous Task-to-Task Communication

RSCS Task Descriptions
REX Task Module Punctions.
Common Supervisor Routines: DMTCON . .

Communicate with the VM/370 Spool File 5ystem
Manage Telecommunication Line Allocation: DMTLA

Progran
unicati
W

Line Driver Tasks: DMTNPT, DMTSML, DMTVMB,

I/0 Managemant . « o« ¢ o o o o o o
Handling I/0 Requests. . « ¢ «
Active and Pending I/O Queunes.
Starting an I/0 Operation. .
Handling I/0 Interrupts. .
Dequeuing I/0 Fequests . .

Interruption Handling. . . .
Special Message Interrupt

RSCS Spool File Format . .
CP Spool Data Records. .
CP Spool Buffer Linkage.
CP Spool Tag Record. . .
RSCS Tag Record Format .
Non-RSCS Control Records .

Virtual Storage Management .

RSCS Basic Punctions

RSCS Configuration and Stattup
Loader « « o ¢ ¢ o s o o o o
RSCS Initialization.

RSCS System Disk Access. . . .

RSCS File Handling Functions .
Introduction . . . « 4 . . .

tio
.
.
.
.

.ao.‘..o”l'n

H

l.l..l.‘ll.l..lu.l....

1

4 4 8 4 e 8 o & & ¢ % 4 o & e s o & 4 o

¢ ¢ 0 o 8 4 4 % 8 4 0 4 e * & ¢ 0 4 0 4

® e 8 8 8 6 o 8 & 8 0 4 e b o 8 s o 0 e o

DNTV

e« & 0 e e 8 8 & % e 0 ¢ 8 2 e & 02 o s & o

[°]

S 8 & e o s e t & 2 s s & s s 0 s o s s e ¢ KT ¢ 0 6 s Je Ha 2 s e s

A

o..f—'oulonll-

e 6 8 e e 8 8 2 & e e 6 & 8 & ¢ & & & e & 8 & & FJe s 0 e o 2 ° s & s 0 s 8 8 o

agnose

s s e o &
4 & 8 6 & 4 & 6 s o % 3 e & ¢ s

4 o @ 8 ® u & e 4 & & 3 @ e ¢ e

wn
.

P

© 8 & & * s e & % & & ° 8 8 ° 0 2 & 0 8 8 B IS 4 ¥ 0 e 5 8 8 s & s s e s 0
=
2

s & 4 & e 8 & ¢ 6 s s & 8 3 B s st o % s Cye t B 4 0 8 s s 8 2 s 0 3 a2 ¢ 0.
-4

“ & &8 8 © 4 e 8 8 o 4 o 8 s ° & 4 e s o s s o
¢ & 4 & % 4 s & e e 4 s & 8 B e s s s s 8 g & e s

" 8 s e & a2 ® s & & & % o s ° 3 g % 2 & o s }Fe & & o0

Contents

.11
.12
.13
.14
.15
.15
.15
.15
15
.16
- 16
<16
.18
.19
.19
.19

* & 8 & & 4 8 & 4 & ® g e e 4 &

.21
.21
.21
.21
.22
.22
.23
.25
.26
.26
.27
«27
.28
.30

.32
w.32
.32
.32
.3“
.34
.38
.35
.35
.35
.35
.36
.36
.36
.36
«37
<37
.37
<27
37
.38
.39
<40
.40

e o 8 & 0 4 8 e 4 e 2 ° 4 2 % g s T s e s e e o

5

Line Driver PUNCLiONS. ¢ ¢ &« o o o o 2 « o © @« o o o« « o @

Licensed Material - Property

Scenario of RSCS File Handling « ¢« ¢« & ¢« « « « .
Receiving a File from a Local Virtual System
Receiving a File from a Remote System.
Sending a Received File to a Local Virtual System. . . .
Sending a Received File to a Remote Node + . « .«
Command and Message Handling Functions - -
Remote System Command and Message Input to RSCS (Path 1)
Remote Workstation Command Input to RSCS (Path 2). . .
commands for lLocal Execution (Path 3). ¢« « « ¢ ¢ « « « &
Routing Request Element for This Location (Path 4) . . .
Routing Request Element for Another System (Path 5). .
Local Commands Originating from NJI/NJE Systems (Path 5)
Message Request Elements from NJI/NJE Messages (Path 7).
Messages Arising from Command Execution (Path 8)
Line Driver Handling of Command Alert Elements (Path 9).
Forwarding Locally-Generated Messages on Links (Path 10)
Issuing Messages to Local Virtual System Users (Path 11)

Issuing Messages to the Local RSCS Operator's Console (Path 12)

Line-Driver-Issued Messages (Path 13). « .
Local RSCS Operator Command Input (Path 14).
Receiving Messages from Local Virtual System Users (Path
RSCS Accountinge. « o« « o o o « o ¢ o o o o o s o o o s o =

The Link Table . ¢ v & & ¢ @ ¢ 6 ¢ o e o o o o o o o o« =
Link Activation: Loading and Starting R Line Driver Task
Loading the Line Driver, Function Description.
Line Driver Task Initialization, Function Description.
SML Line Driver Function Descriptions. . .
SML PLOCESSOLS « « « « « o o o = o « o =
SMIL Command Processor: 3WRTN1. «
SML Line I/O Manager: COMSUP
SML Function Selector Routine: $START. o«

e o o o e =

s s e & ¢ 8 s e

15)

3

of IBM

.

s 8 s

Block and Deblock SML Teleprocessing Buffers~ $TPPUT and $TPGET
SML File Send (Tramsmit Input Spool File on Link) Function .
SML File Receive (Spool Output File Incoming on Link) Function

POW Line Driver Function Descriptioms. . .
POW PrOCESSOTS « « s = o o s o 1o o o o o o
POW Line I/0O Manager: COMSUP «

POW Function Selector Routine: $START. . .
POW Asynchronous Alert Exit Routine: ASYNEYIT. . .

s o s 8

Block and Deblock POW Teleprocessing Buffers: $TPPUT and $TP

POW Control Record Processor: $CRTN1 « o e

POW File Send (Transmit Input Spool File on L1nk) Function

POW File Receive FunctioN. . ¢ ¢ w o w « « « o o s o o« &
POW Message Handler: MSGPROC . .« « « « « « &
POW Command Handler: CMDPROC . o 2 ¢ o o o o
Typical RSCS to VSE/POWER Line Transmissions
NPT Line Driver Function Descriptioms. .
NPT Line Driver Send Function. . .
NPT Line Driver Receive Function .
VMB Line Driver Function Description
VMB BSC Telecommunication Protocol
BSC Transmission Sequences
DMTVMB Packed Data Block Format. .
VMB Lline Handling.
VMB Data Handling Functions. . . .
VMB Processing Control Functions .
VMB I/0 Management Functions . . . -
VMC Line Driver Function Descriptions. .
CTCGO - Main line Driver Control . . .
GETBLOCK - Input File Formatting . . -
MSGRECV - Command or Message Receipt .
MSGTRANS - Command or Message Transmlttal -

.
« & & 8 s
e s 0 o @

S e 8 & 4 8 o a * e
e @ o e & 8 ¢ 0 o g ¢ 4
e e 8 o @ b 4 o & s @ e @
e & 8 e 8 & o &t & a ¢ s &

e s & 8 2 s e o
.
.

.
s e 8 ® & 8 ¢

PUTBLOCK ¢ ¢ o ¢ ¢ o o = « o o = o o« =
CMDPROC. ¢« ¢ « o « o o « o o o o o o @

@ 6 8 o & e 8 s e 3 * o & & e ¢ s & ¥ o @
.
L]
.
.

4 o o & 4 & 6 ¢ © & 4 e & 8 8 s o 8 s & 0

IBM VM/370: RSCS Networking Logic

s s & 8 s
e s 8 8 3 ¢« o

ouua.-aa-ncl.oilo.ln.qjlacc

.u0

Licensed Material - Property of IBM

AXSALERT « o ¢ o o o ©« o = o = o o o o =
TRTRAN, TRERR, TRTIMOT « « ¢ o o o «
KLOGIT . ¢« o ¢ « o o « o o o o o o o o
NJI Line Driver Function Descriptions. .
NCM Function Selector Routine: $START.
NCM PIOCESSOLS o « o o s o = o o« o o w
NCHM Line I/0 Handler Routine: COMSUP . .
Block and Deblock NCM Teleprocessing Buffer
Network Header Processor: DMTNHD . . . « .
Command and Message Processing
File Header Record Output Processing .
File Header Record Input Processing. .
DMTNJI Initialization Module: DMTNIT . .

.
e & o o

@ o & @

SECTION 3: PROGRAM ORGANIZATION. . . v « « w
Modules and Subroutines. . « « ¢« ¢ « ¢ o o«

Module-to-Module Execution Trausfers (B!IFS)
Control Flow DiagramS. « = « « « o o © o « @

| IR T

SECTION 4: DIRECTORY ¢ ¢ « o o ¢ ¢ o o o ¢ o o

SECTION S5: DATA AREAS.: o ¢ o ¢ o o o ¢ o o o
Data Area AidsS . v ¢ o ¢ ¢ 2 o o o o o o o =
MAINMAP Location . . . ©« e e o 8 v s = =
Queue Element Storage Area and FREEQ Queue
Task Queue LocatioNe o w ¢ o ¢ o « o o « w
I/0 Queue Organization . « « « « o. o « « &«
Asynchronous Interrupt Queue Pointers.
GIVE Element Queve locatiohi o+ . o o «
Link Table Location. . . ¢ % « ¢ o &
ROUTE Table Location . « ¢« « o o o
Switchable Ports (TPORTS) Location .
TAGSLOT Queue Location . « « « o «

Common Routine Vector Table (COMDSECT)
Data Areas and Control Rlocks.
Asynchronous Exit Queue Element: ASYNE .
CMS File Access Work Area. . . c ® = a

COMDSECT Table Contents. . « . « . . .

s * s 0
D % ¢ ¢ o 0o i & o s o o

9]

Que & o o & o

[=7]
L]

FREE Queue Element: FRFEE. . .
GIVE Queue Element: GIVEE.
GIVE Request Table in GIVE/TAKE Requestlng
I/0 Request Queue Element: IOE , &
I/0 Request Table in Requesting Task: IOTAB
Link Table Entry: LINKTABL . .
MLX Records. . . .
MLX Record 1:. ¢« . . « .
MLX Record 2:. « o o o« &
MLX Record 3:. . -
Network Accounting Card For
Port Table . . ¢« ¢ ¢ & « &«
Routing Table Entry. . . .
Spool Page Buffer Format .
Telecommunications Buffer.
SVECTORS: Low Storage Definit
Machine-Defined Low Storage
SVECTORS Table Contents. . .
Tag Queue Data: TAGARER., ¢ « ¢ o o « o o
TAG Queue Element for RSCS Spool Pile. .
TAKE Request Table in GIVE/TAKE Reqnested T
TANKS e ¢ o o« o s o ¢ « o o o o o o o o o =
Unit Record Tank . v w ¢ w ¢ ¢ o @ 4 o @
Task Queue Element: TASKE. v v o« o o o «

¢ o b 0 4 @

L3 e 8 b o T

]

s N0 e & o o s

E

e o . e

.

a

e o & o b @

ons.

n
.

'Q)-h'l'.r"l.l.
.

B 4 0 & o & 4 o & o ¢ @

S

¢ 8 ¢ e e ¢ o 2 T o % o s 8 o s s o o

N e o ¢ & ¢ 8 o & 0 ¢ o o

¢ & 8 Pre o o 8 ¢ 8 e b e o b e

]

-

¢ o & o 8 & o 8 ¥ 4

T e 0 o o 8 4 e 0 ¢ & 0 o e & 8 s o »

¥
¢ e 8 8 8 1Js o o
4]

. 4 e 8

@ o 8 e 8 Qe s & s 0 e

e 4 e &

a

Hes

e & ¢ 8 8 & © 0 8 8 4 s ¢ w o 0

[+)
o
(=1}
o A a2 e s s o

-3

e & 8 & o MJe s & e
(2]

o 8 o 4 tthe 2 o o &
3

“
“
" & o 3

Contents

a & 8 3

.96
.96
.96
.96
.97
.98
.98
.99
.99
.99
.99
100
100

101
101
114

120

130

135
135
135
136
137
138
139
140
141
142
143
144
145
14e
146
147
150
151
151
152
153
154
155
157
157
158
159
160
161
162
163
164
165
165
166
169
170
172
173
173
174

7

Request and Alert Elements

SECTION 62
Problem Determination. . . «
Module Message Directory . . .
Trace Log. . .

APPENDIX A:
HULTI—LEAVING in RSCSO e e o e & o o o
MULTI-LEAVING Philosophy 4+ + « o« « w« &
Character Strings and the SCB.
Transmission Blocks and the RCB. . . .
MULTI-LEAVED Data Streams and the FCS.
Transmission Data Integrity and the BCB
MULTI-LEAVING Control Specification. .

Appendix B: RSCS Preloader Utility

8

Licensed

Task Save Area: TAREA.

Introduction
Request Elements Processed hy DHTREX
Command Request Element. . .
Command /Message Routing Request Ele
Message Request Element.
Restart Terminate Request Element.
Terminate Request Element.
Timer Request Element.
File Request Element . . « « « .
Line Alert Element . « . . <« . «
Command Alert Elements for Commands Pro
Reorder Alert Element. . . . N .o e
ORDER, PURGE, and CLOSE Conuand Alert Elenent.
TRANSFER Command Alert Element
CHANGE Command Alert Flement . . « « o « « o« «
Initialize Acceptor Alert Element. .
Command Alert Elements Processed by Line Drivers
Line Driver Command {STAKT, DRAIN, TREE, #OLD,
Element Format. - o
Line Driver Command (BACKSPAC, FWDSPACE) Alert
FLUSH Command Alert Element.

* v

ent

¢ & 8 & o O ’ o ¢ o & o

® 6 & ¢ 8 o 0 4 o 2 e
e & & o o 8+ 4 & & o 2 B
s 0 & & e 8 o 0t 0 s s

ess

®

(="

o
-

s Q¢ o ® o o o

® @ e e e

® o _ e e

Line Driver Command (COMMAND, MSG, HESSAGE) Alert Bleneht.
NJI Header FOormats . « « o o o o ¢ o o &«

Network Connection Control Records « « « « « « «

Initial Signon Control Record and Response Signon Control Recor

Format. . e ® s e o o n o
Concur/Reset Signon Control Record Format. . .
Add/Subtract Connection Control Record Format.

Network Job Header Record PFormat: NJHDSECT . . .
Network Job Trailer Record Format: NJTDSECT. . «
Network Data Set Header Record Format: NDHDSECT.
Command/Message Header Formats . . « ¢ o o o o« &

. - - e .e & & o e

DIAGNOSTIC AIDS . .

s & g 0
& '. * ®
8 v. ° vn
o o4 3
s & o 0
s @ ‘l
s e 0
[S T)

¢ @

[S T Y

. w w e e

MULTI-LEAVING DESCRIPTION.

¢ ® o =

Block Control Byte (BCB) ¢« o « « .
Punction Control Sequence (FCS).

Record Control Byte (RCB). . . .
Sub-Record Control Byte (SRCB) ..
String Control Byte (SCB). . . .

e & 8 o & ¢ & 0 o 6 0 o o
. vi P e 8 o o b o F o o o
e 8 8 & 8 o & & 4 @ @ o @
e 8 6 o F o o 7 o b o o ¢
e @ 2 e o o & o o o 8 e @
[) ‘o L] l' e & & s & & o

e & & 4
e 8 b o ¥

Under CMS . . .

IBM VM/370: RSCS Networking Logic

¢ Fle o 8 s ¢ ¢ e 8 s e 0 s s 0 e 3 s s

=

|moplaco.c.|-].-.uo-o-no

)

[

L

Q
lmoDIII.A‘!NO‘..O.IA..I.

e ¢ & & 5 & & 5 & 8 3 &

e ® & & & & & a2 e o 2 o

o o o o & & & s o ¢ F e i

a 8 t & o & 8 3 s 8 3 *

o

e o & & 3 8 8 4 s & g &

Material - Property

® 8 ® 3 & 6 a2 & 8 a2 % s 2 6 B 0 s 3 o

mat.

of IBM

175
176
176
177
177
177
178
179
179
180
181
183
184
184
185
187
188
189
190

190
192
194
195
195

195
195
195
196
197
198
200

s & 8 s & o s O;0 8 4o e g

202
202
204
209

21
211
211
212
212
212
213
213
213
215
216
217
218

e 8 o e g e o s o § o o
e s 6 0 o 8 i e 8 & s &

219

Licensed Material - Property of IBM

lllustrations

Figure 1-1 RSCS - Sample Networkeseececooeecovecocosossssccccnnccaanas 12
Figure 1-2 RSCS File Handling.................---.--.......---..... 13
Figure 1-3 Alternate Path FPacilityececcccaccnccceccccccecccecccceeas 14
Figure 1-4 RSCS Commands and Their Functions (Part 1 of 2).ccecece. 17
Figure 1-5 VM/370 DIAGNOSE Instructions Issued by RSCS..ccccceeceea 20

Figure 2-1 Movement of Data During a Typical GIVE/TRKE
Transaction....‘....l...0'....Q.CclQOO...Q..Q...I..'..QQ 2“

Figure 2-2 Input to the DMTWAT Routin@.cecccecccesccccccccccocsccnece 26
FPigure 2-3 RSCS TaSKS.ceeeceewcssancsctsacsnnimoannancacacsncnconscscas 29
Figure 2_u DHTCOH Routines........"......'......l......‘.....Q.QQ. 31
Figure 2-5 I/C Queues and Subqueuesiiccceccccecvens weevesesmesmenas 32
Figure 2-6 RSCS System Disk Formaticceccececccccssecaccncccccccncasas 39
Figure 2-7 RSCS System Disk CharacteristiCS.ceccsccccoscccecccssees U0

Fiqure 2-8 Locating a File on the RSCS System Disk (Part 1 of 2)... 41
Figure 2-9 Scenario of RSCS File Handling FuncCtionS.ececcececcccccosss 43
Figure 2-10 RSCS Command and Message Handling......ccecceccecescceces 50
Figure 2-11 SML Line Driver Data Flow to Remote Stations and
systems.d......'.'...'...Q..Q........0......I.Q.'...'..l 58
Figure 2-12 SHML Function ProCeSSOrS.iccecececccccccnccccancccncncaacacs 59
Figure 2-13 POW Line Driver Data Flow to a VSE/POWER System......... 61U
Figure 2-14 POW FPunction ProCeSSOrSeesescscecccccscecsccocecsccsncacss 65
Fiqure 2-15 Signon ProCcedur@.scccccececccscsccececssccccsccsccscvoacacas 13
Figure 2-16 Initiation of a TransnisSsSioN.iececsescccsccccccccaccnccnes Tl
Figure 2-17 Command TransSmisSsSioNecccecccecseccccacsscssccecccoccasanee Tl
Figure 2-18 Stop ProCedureccccecccccccsccccccctscscnncsncsccccanncancne 15
Figure 2-19 Text in One DirectioNececcecscccececsccsacccccscsccnases 15
Figure 2-20 Text in Both DirectionSi.ccceccccccccecccecccscacccswenaneas 16
Figure 2-21 Protocol for Transmission Error RetrVeceec.ecceeccecccecessa. 84
Figure 2-22 Typical line TransactionScccececscccecccccccocoscecsccces 85
Figure 2-23 NJI Link Data PlOWeeeecswescsocasccsscccacascnscancsncnes 97

Pigure 2-24% NCH FPunction PrOCESSOrSeeccssscctccccccsscaccasccsssacss I8
Figure 3-1 RSCS Modules and Their Subroutines (Part 1 of 13)....... 101
Fiqure 3-2 Module-to-Module Execution Transfers (BALRS)

(Part ‘Of 7)0..........Q.C0.....QOOQ..QQ-..O..D...Q.... 11u
Figure 3-3 Program Organization for the Multitasking

Supervisor HSUPCIOOO0.000‘...00000'0...-----.-.cm--....- 121
Figure 3-4 Program Organization for the REY System Service Task.... 122

Fiqure 3-5 Program Organization for the AXS System Service Task.... 123
Figure 3-6 Program Organization for the SML Line Driver Task....... 128
Figure 3-7 Program Organization for the NPT Line Driver Task....... 125
Figure 3-8 Program Organization for the NJI Line Driver Task....... 126
Figure 3-9 Program Organization for the VMB Line Driver Task.eeeoeoo 127
Figure 3-10 Program Organization for the VMC lLine Driver Task.ee.... 128
Figure 3-11 Program Organization for the POW line Driver Taske....... 129

Figure 5-1 MAINMAP LoCatiONeceseccecccnsscaccscaacecsscsscsascssacseaseacae 135
Figure 5-2 Queue Element Storage Area FREEQ QUeElU€.ccceccscscccsceses 136
Figqure 5-3 Task Queue LoCatiONieececcecccnnaccscncccsacecacancnsacea 137
Fiqure 5-4 I/0 Queue OrganizatioN.ceceecescoccscncorcassccscnssscsses 138
Figure 5-5 Asynchronous Interrupt Queue PointerSeccccceccccesccscce 139
Figure 5-6 GIVE Element Queue LoCAtiONeceecccceceecccccancscscnccnanse 1040
Figute 5-7 Link Table Location.....-...--..--.--..-.....-..-....~.. 1“1
Figure 5-8 Routing Table LoCatiON.ecccececccccccccccccccccccccncoacs 142
Figure 5-9 Switchable Ports Table LocatiONeweccccccccaccccnccncanes 143
Figure 5-10 TAGSLOT Queue Location.....................-.---........ 1““
Fiqure 5-11 Common Routine Vector Table AdAreSS.c.cccccecececccaceesa. 145

Illustrations 9

Licensed Material - Property of IBM

10 IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBM

RSCS is a software package in the IBM Network Job Interface series of
products. Network Job Interface (NJI) is a remote spooling capability
comprising several software packages that provide the support for the
transmission of files (including jobs and job output data) between
processors attached to a telecommunications network. The processors
that are nodes im the netvwork cam be running the same or differemnt
spooling systems, with the common requirement that each runs one of the
NJI or NJE (Network Job Erntry) support packages.

RSCS is a program product that provides NJI support on those nodes i:n
the network that are VM/370 systems. RSCS is a virtual machine
subsystem, operating independently of other virtual machines running
under the VM/370 control program, CP. Using the RSCS command languagde,
the RSCS operator manages his node in the network, and can issue some
commands to other nodes in the network.

Within the network, there can also be both CPUs and terminals that
contain no NJI/NJE support. These do not function as intermediate nodes
- they have subhost status - and can, depending upon their configura-
tions, perform operations such as: submit files (jobs); receive files
(jobs); or both submit files that are jobs and receive their output.

The processor with an RSCS virtual machine is a relay point, in a
network, for data:

e From other virtual machines under its own ¥M/370 system either to
remote processors, or to remote batch stations

e From other nodes to virtual machines on its own processor
e From other nodes to either other nodes or remote batch. stations.

The data relay facility of RSCS is provided by its "store and forward"
functions, which use the VM/370 CP spooling facility to temporarily hold
incoming and outgoing files.

When the data RSCS is transferring is to be forwarded from node to node
in the network to the data's ultimate destination, each forwarding node
must have the store-and-forward and routing capability provided by one

of the NJI or NJE support packages.

When the data that RSCS is transferring is a job to be executed
remotely, and if the job output is to be returned to an interactive user
or to an indirectly connected system or workstation, the destination
systen must have the job entry capability provided by one of the NJI or
NJE support packages.

The output of a routed job executed at a remote non-VM/370 NJI/NJE
system is routed to the real unit record equipment at the submitter's
location unless explicitly overridden by the user. The submitter may
include in his jobstream NJI control statements to route the remotely
executed job output to another destination or destinations.

The output of a routed CMS batch job executed at a remote V1/370 system
can be routed to the job's originator by including appropriate CMS
commands with the job.

See the RSCS Program Reference and Operations Manual (listed im the
Preface) for detailed information about using RSCS.

Section 1: Introduction 11

Licensed Material - Property of IBM

A given RSCS location (or "node") sees only the nodes adjacent to it inm
the network. See Figure 1-1, below. An RSCS "1link" is defined at an
RSCS location as the capacity to comamunicate with a particular remote
location via a direct connection. This includes dialup, leased line,
and channel-to-channel adapter (CTCA) connections.

VM/370 CONNECTED LOCATIONS
VM/370 [Nonprogrammable
Virtual Machines Remote Station
BSC
0Ss/vSs1 =
RSCS
CONTROL PROGRAM Virtual Machine 3770
R Line L4
2 Driver
0S/360 \. S R
_______ Line
HASP Batch -~ - Spoolc SPystem - > S Driver 1N BSC Programmable
Processor ~ > u Remote Station
P Line
e Driver \ System/370
r 1N e, e - =
‘il Lir)e
s Driver \ HASP
L’ [Work Station
cms r Line BSC Program
/ Driver
. Line
/ Driver Programmable
Remote Station
/ System/370
BSC or JES or HASP
BSC CTCA BSC Control Program
Operating as a
{ Remote Batch
System/370 System/370 System/370 Processor
NJI/NJE VM/370 DOS/VSE
Job RSCS VSE/POWER
Networking
Subsystem

Figure 1-1. RSCS - Sample Network

RSCS Overview

Figure 1-2 is an overview of RSCS operations in a simple network. (VNot
all netvwork nodes must be VM/370 RSCS nodes; this figure shows the types
of operations that RSCS supports.) Refer to Figure 1-2 when reading the
following description.

User Archie on the CMS system at VM1 sends a file to user Bob on the CMS
system at VM3. Archie issues the commands:

SP 00D TO RSCS1
TAG DEV 00D VM3 BOB
PUNCH filename filetype

CP spools his virtual punch 00D output to RSCS1. RSCS1 may have any

number of links to the other network nodes, but it has locally-specified
tables that indicate that files for VM3 are to go to VM2. RSCSt

12 IBM VN/370: RSCS Networking Logic

Licensed Material - Property of IBNM

forwards the spool file, including its destination inf

ormat
RSCS2 on VM2 receives the file, spools it to its own userid
forwards it to ¥M3. RSCS3 at VM3 recognizes that the file
own location and spools it to userid Bob.

]
!:
*r
(¥

These functions are explained in more detail in Section 2.

CP-® VM2 - . .® vM3 . - |@
k\ \ [\ I \\
Spod\\ /\ Spool A\I Spool
"4 V \
© o ~—1o \

Figure 1-2. RSCS File Handling

The RSCS Virtual Machine and the VM/370 Control Program (CP)

Like other VM/370 virtual machines, the RSCS virtual machine rums under
the‘control of CP. In extending the VM/370 spooling system capability
to include spooling to remote stations, RSCS interacts with the CP
spooling system. Therefore, some of the information in this publication
requires a knowledge of that area of CP.

The RSCS virtual machine consists of the virtual machine operator's
console, an RSCS system disk, and attached telecommunications lines.
During system initialization, a virtual card reader is defined for the
RSCS virtual machine, but this reader does not exist in the CP directory
entry for the RSCS virtual machine.

Virtual printers, card punches, and readers are defined dynamically by
the program as they are needed. For example, when a file from a remote
station is transmitted to RSCS, a virtual punch is defined to accept the
file. similarly, virtuval readers are defined when RSCS accepts a spool
file to transmit. RSCS virtual storage also dumps onto a virtual
printer when abnormal termination of RSCS occurs.

The minimum virtual storage required to run RSCS is 384K, with typical
requirements falling in the 512K to 1M range.

Section 1: Introduction 13

Licensed Material - Property of IBM

Remote System Routes and Links

At a local installation there are a number of transmission paths to
remote stations. A unique location identifier (locid) is assigned to
each remote station,

For each direct transmission path (nonswitched line) or potential direct
transmission path (switched line) to an adjacent network node, a link
must be defined at the installation. Each such link is given a name
(linkid) that must be the same as the location identifier of the remote
system or station to which the direct transmission path leads.

Every successive node along the route connecting nodes that are
destinations for data must have prespecified routing information. The
routing information at a given node specifies, for each possible
destination locid, the link that this node is to use to forward the data.

The links and routes can be defined (a) permanently, in a CMS file on
the RSCS system disk called RSCS DIRECT; or (b) temporarily, by the RSCS
operator commands DEFINE and ROUTE. Temporary definitions disappear at
the next RSCS IPL.

Links and routes can be temporarily removed with the RSCS operator
commands DELETE and ROUTF. Any permanently defined links and routes
removed by operator commands reappear at the next RSCS IPL.

The alternate path facility of RSCS enables installations to configure
their routes and links so as to bypass unavailable links. Refer to
Figure 1-3 when reading the following description.

Any node (A) may have both a LINK table entry and a ROUTE table entry
for an adjacent node (B). A file that has a final destination of node
B, and is being forwarded by node A, will normally be enqueued on the
node B link, link B. The ROUTE table entry is used when the final
destination of the file at node A is the adjacent node B, but link B to
node B is not available. The ROUTE table entry for node B is an
alternate path that specifies node C via link C. Node A transmits the
file to node C, bypassing the unavailable link. See the RSCS Progranm
Reference and Operations Manual for use of this alternate path facility.

A B

if the direct link from
cp A to B goes down, the cP
alternate path in the
route table is used.

/ L

Spool C ! Z Spool
— \

RSCS < cpP b» RSCS
Link Table: Link Table:
B—-B =
_ Spool Routing Table:

Routing Table: _
— ;;a-i\\\\\ RSCS =
B—-C N~ Link Table: 4

B—»B
Routing Table:

Figure 1-3. Alternate Path Facility

14 IBM V4/370: RSCS Networking Llogic

Licensed Material - Property of IBM

Remote Stations and Systems

Remote stations are configurations of I/0 devices attached to a VM/370
system by binary synchronous communications (BSC) switched or
nonswitched lines. RSCS supports both programmable and nonprogrammable
remote statioms.

PROGRAMMABLE REMOTE STATIONS

Programmable remote stations, such as the IBM System/3 and System/370,
are processing systems with attached BSC adapters. These systems must
be programmed to provide the MULTI-LEAVING line protocol necessary for
their devices to function as remote stations. This programming support
is provided by a remote terminal processor (RTP) program generated
according to HASP workstation protocol and tailored tou the system's
hardware configuration. Certain programmable remote stations like the
System/3 can only be programmed to function as remote terminals.
Others, like the System/360 and System/370, can function either as
remote terminals or as host batch systems using RSCS as a remote job
entry workstation. Both of these types of remote stations are managed
by the spool MULTI-LEAVING (SML) line driver of RSCS.

NONPROGRAMMABLE REMOTE STATIONS

Nonprogrammable remote stations are 1/0 configurations that cannot be
programmed, but are designed to provide the line protocol necessary for
them to function as remote stations. They can receive, read, print,
punch, and send files. An example of a nonprogrammable remote station
is a 3780 Data Transmission Terminal. Nonprogrammable remote stations
are managed by the NPT (Nonprogrammable Terminal) RSCS line driver.

REMOTE STATIONS SUPPORTED BY RSCS

The types of devices supported for all types of remote statioms,
programrmable and nonprogrammable, are listed in the RSCS Proqram
Reference and Operations Manual.

REMOTE SYSTEMS SUPPORTED BY RSCS

The programmable remote systems that RSCS can communicate with are:

Other RSCS systenms

VNET PRPQ systems

HASP Networking PRPQ systens

ASP Networking PRPQ systems

Network Job Entry Facility for JES2
JES3 Component of 0S/VS2

RES Component of 0S/VS1

VSE/POWER systens

Section 1: Introduction 15

Licensed Material - Property of IBNM

Network Control: RSCS and VM/370 Commands

Both RSCS and VM/370 commands are used to control RSCS. RSCS commands
are used by an RSCS operator to control the network; v4/370 CP and CHMS
comnmands are used by virtual machine users who use RSCS.

RSCS OPERATOR COMMANDS

To manipulate the file being transmitted across the network and to
communicate with the various network users, RSCS provides a command
language. Figure 1-4 lists the RSCS commards and the functions they
perform. Detailed descriptions of these commands are in the RSCS
Reference and Operations Manual.

The operator may enter RSCS commands described in Figure 1-4 at the RSCS
virtuval machine comnsole. 1A subset of the RSCS commard language may be
entered by operators of remote stations or remote systenms.

VM/370 CP AND CMS COMMANDS FOR RSCS

The VM/370 CP TAG and SPOOL commands specify a device to be spooled, and
they associate a destination location identifier (locid) with that
device. SPOOL directs the file to the RSCS virtual machine. The CP
CLOSE command or the CMS PRINT or PUNCH commands close the file and
transfer it to the RSCS virtual machine.

Data specified by the CP TAG command controls processing of files
transmitted across the network. When a ¥Y4/370 user creates, on his
virtual machine, a file to be transmitted to a remote station via RSCS,
the CP TAG command must contain information needed by RSCS.

A virtual machine user may use the CP SMSG (Special Message) command to
send messages via RSCS to remote virtual machines or to request status
information about a local or remote RSCS or about a remote VM/370
systen. The text of an SMSG command can be an RSCS MSG command or an
RSCS CMD command; the text of that CMD command can be an RSCS QUERY
command or an RSCS CPQUERY command.

For details on how to use the CP SPOOL, TAG, and SMSG commands, see the
RSCS Reference and Operations Manual.

16 IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBM

Command

Name Punction

* Comment following asterisk prints out on RSCS

operator console, and no function is performed.
(Useful for CMS EXBC files of RSCS commands,
particularly the PROFILE RSCS file.)

BACKSPAC Restarts or repositions in a backward direction
the file currently being transmitted.

CHANGE Alters one or more attributes of a file owned by
RSCS.

CLOSE Deactivates partially processed files on an
inactive link. Discards output (incoming) files.
Reenqueues active input files as inactive files.
CMD Forvards a command line to a remote system for
execution.

cp Executes a command line as a VM/370 Control
Prograr (CP) console functionm.

CPQUERY Requests status information from CP, similar
to a VM/370 CP QUERY command.

DEFINE Temporarily adds a new link definition to the
RSCS link table, or temporarily alters an
existing link definition.

DELETE Temporarily deletes a link definition from the
RSCS link table.

DI SCONN Places RSCS in disconnect mode and optionally
directs RSCS operator console output to another
virtual machine.

DRAIN Quiesces file transfer and deactivates an active
commurication link.

o A - —— s - S — — — S —— D —— — T —— A = . — —— — — — — . - —
e e e e e = e T — - ———— — —— —— " e = oo =]
b ot S e e S e s S . T e e S T G A G G| R . T ey S S ey it it e S S e oo o

Fiqure 1-4. RSCS Commands and Their Functions (Part 1 of 2)

Section 1: Introduction

17

Licensed Material - Property of IBN

~— T 1
| Command | 1
| Name | Function 1
F— 4 !
EXEC	Executes series of RSCS commands contained in the
	specified user-built CHS file (filetype: RSCS).
FLUSH	Discontinues processing the currently active file
	on the specified link.
	f
FORCE	Immediately deactivates an active link, without I
1	quiescing file transfer.
H	
FREE	Resumes transmission on a communication link
	previously in HOLD status. !
	!
PWDSPACE	Repositions in a forward direction the file 1
	currently being transmitted.
HOLD	Suspends file transmission on an active link
	without deactivating the link.]
	_
HT] Flushes out all messages presently awaiting i	
	printing on the RSCS operator comnsole or
	remote station operator comnsole.
{ MSG	Sends a console message line to a local or
	remote operator or user.
I	
ORDER	Reorders files enqueued on a specific link.
I	
PORGE	Removes and discards all or specified inactive
{ files from a link. f	
	i
QUERY } Requests system information for a link, a file,	
	or for the system in general. !
l	
REORDER	Sorts and reorders all files enqueued for all
l	links.
l] I	
ROUTE ! Adds, deletes, or alters amn RSCS routing table [
	entry. i
I	
START] Activates a specified communication link.	
SHUTDOWN {	Issues DRRAIN to all active links.
!	
TRACE	Monitors line activity on a specified link.
TRANSFER	Changes the destination address for specified i
] | files. |
i i T J

Figure 1-4. RSCS Commands and Their Functions (Part 2 of 2)

CP INSTRUCTIONS USED BY THE RSCS CONTROL PROGRAM: DIAGNOSE

When RSCS handles files being transmitted across the network, the RSCS
control program and line driver tasks issue DIAGNOSE instructions to
obtain CP services.

18 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

A DIAGYOSE instruction is used in VYM/370 for communication hetween a

virtual machine and CP. The machine-coded format for the VM/3270 usage
of the DIAGNOSE instruction is:

0 78 11 12 15 16 31

L L L] 1
| 83 ! Rx | Ry | Code
L

Content Explapation

83 DIAGNOSE operation code

Rx User—-specified register number

Ry User-specified register number

Code Hexadecimal value that selects a particular CP function.

Figure 1-5 lists the DIAGNOSE function codes used by RSCS, the functions
of those codes, and the RSCS modules from which they are issued.

RSCS Preparation and Startup

RSCS PREPARATION

The preparations for running RSCS on a VM/370 system are explained in
V¥/370: RSCS KRetworking Program Reference and Operatioms. In summary,
the preparations are:

e Load RSCS modules onto disk.
e If required, perform updates to modules.

e If required, use the Preloader utility (see Appendix B) to combine and
link multiple modules.

e Use the CMS editor to build the directory file (RSCS DIRECT) to v
specify parameters for the RSCS virtual system. These specifications
include installation variables and link and route definitions
describing communication paths to remote locatioms.

e If desired, use the CMS editor to build the PROFILFE RSCS file to
specify installation STARTUP commands.

DYNAMIC DIRECTORY

There is no system generation (requiring assembly) for RSCS.

Each time RSCS is IPLed it dynamically configures itself, referring to
the contents of a file (named RSCS DIRECT) on the RSCS system disk. The
local system programmer builds and updates this file. This file
specifies the RSCS configuration and characteristics desired for this
location. The file can be updated to incorporate new link specifi-
cations, new routing table entries, etc. as desired even during RSCS
operation; the changes become effective on the next RSCS IPL.

During operation, the RSCS operator can enter commands that immediately

nodify some of the RSCS DIRECT-specified characteristics. But these
commands (such as ROUTE, LINK, DEFINE, and DELETE) are in effect only

Section 1: Introduction 19

Licensed Material - Property of IBN

temporarily; when RSCS is re-IPLed, only the RSCS DIRECT statements

remain in effect.

The details of the contents of RSCS DIRECT are in the RSCS Program

Reference and Operations Manual.

DIAGNOSE Code Punction

- —

ssued by Module(s)

Messages to RSCS.

-
|

— {

| 0000 | Gets the userid of the RSCS

I | virtual machine.

| |

| 0008 | Executes a CP command. Results

| | may be returned in a buffer or

1 | sent to the virtual console.

| |

| |

| 000C | Gets the current time and date.

| |

| 1

I |

| |

| |

{ i

| i

{ 0010 | Frees virtual storage page.

| |

! |

| 0014 | Manipulates input spool files.

| |

| |

| |

| |

| |

l i

! |

| 0020 | Performs DASD I/0 without

| | interrupt.

| |

i 0024 | Determines virtual device type

| | information.

| |

| |

| |

| |

| I

| oouc | Generate an RSCS accounting

| | record.

| l

i 005C | Edits RSCS messages.

| |

{ 0068 | CP vehicle for sending Special

! |

L []

DMTIRX

DMTAXM
DMTCHMX
DM TMGX
DMTREX

DNTAXA
DMT NCHM
DMTNPT
DMTSML
DMTVMB
DNTVMC
DMTPOW

DMTASK
DMTCOM

LS

I

t

|

|

|

|

|

|

I

|

|

|

\

|

|

|

i

|

{

l

|

| DMTAXM
| DMTNCM
| DMTNPT
| DMTSML
| DMTVMB
| DMTVMC
| DMTPOW
|

|

|

!

|

|

|

|

i

|

{

l

|

1

|

|

{

l

1

DMTINI

DMTIRX
DMTLAX
DMT NCHM
DMTREX
DMTSML
DMT POW

DMTAXA

DMTMGX

DMTIRX
DMTREX

e o o s D S s M D S M S TR s A R D AR SR S e G D heES NS D MR S e . Gae D TS S e S T — . GRE G — g = o

Figure 1-5. VM/370 DIAGNOSE Instructions Issued by RSCS

20 IBM VM/370: RSCS Networking Llogic

Licensed Material - Property of IBM

Section 2: Method of Operation

The RSCS Control Program

RSCS is a virtual machirne subsystem, with a multitasking supervisor
(MSUP) that manages multiple independent programs called tasks.

The MSUP supervisor is the heart of the RSCS virtual machine. It is a
set of routines and storage areas that coordinate the operation of RSCS.

The tasks are modules or sets of modules that perforr RSCS functioms.
The task modules are executed under control of the MSUP supervisor.

The supervisor provides only those functions that cannot be consisterntly
provided by the tasks themselves; that is, the supervisor provides only
the support needed to control and coordinrate the execution of the tasks.

The two types of RSCS tasks are system service tasks and line driver
tasks. System service tasks provide the system support functions for
the supervisor and for other tasks. Line driver tasks manage the
transmission paths to remote systems and stations, and interact between
the remote stations and the system service tasks and the supervisor.
Rach line driver task manages transmission to and from one remote
station.

The figures in Section 3 show the communication paths between the MSUP

supervisor, system service tasks, line driver tasks, remote stations,
and VM/370 virtual machines.

MSUP: THE RSCS SUPERVISOF

The MSUP supervisor is a set of service routimes that provide functions
for the tasks that run under them. These service routines may be called
by any task. 1In general, they provide four kinds of services:

e Task management

e T/0 management

e Interrupt handling

e Virtual storage management

TASK MANAGEMENT

The task management service routines provide task initiation and
termination, task dispatching, task-to-task communication, and task
synchronization.

Task initiation consists of making a task that has been loaded into
virtual storage available for execution. This includes:

(a) Building a TASKE entry for the task in the task queue pointed
to by the SVECTORS field, TASKQ (X'228') ; and

Section 2: Method of Operation - RSCS Control Progran 21

Licensed Material - Property of IBN

(b) Marking the task dispatchable so that its initialization
routine is entered.

In general, the only task to request task initiation and termination is
the REX system control task, which is described below.

Task dispatching consists of scanning the task queue entries (TASKE) for
tasks that are able to continue executing, and allowing them to execute
one at a time.

The two types of task-to-task communications are (1) the DMTSIG routine
(ALERT) and (2) the DMTGIV and DMTAKE routines (GIVE/TAKE).

The DMTSIG routine allows a task to immediately invoke another task to
pass it information. The interrupted task must have an asynchronous
exit routine defined to handle the interruption. Functionally, DMTSIG
performs a function analogous to an SVC imstruction.

The DMTGIV and DMTAKE routines allow tasks to exchange information
buffers with other tasks. The GIVE/TAKE function provides organized
enqueuing and delivery of requests for services or information from one
task to another. This function is roughly analogous to write-read I/O
operation.

Task synchronization involves making tasks ready or not ready for
execution under control of the dispatcher. When a task requests the
services of another task, the requesting task may suspend its execution
while the request is being processed. The synchronizatior mechanisn
consists of two routines, DMTWAT and DMTPST. DMTWAT causes the
requesting task to temporarily halt execution. DMTPST causes a
temporarily-halted task to resume execution. For more information on
task synchronization refer to the section "Task Synchronization".

A task that requests supervisor service by branching to a supervisor
routine is placed in non-executing mode with a FREEZE SVC, which is
issued by the called supervisor routine.

Dispatching in RSCS

The supervisor returns control to the tasks by means of the dispatcher
(DMTDSP). The dispatcher scans the queue of tasks to be executed (TASKE
in SVECTORS), selects the first dispatchable task element (that is, one
that is not marked nondispatchable by DMTWAT), moves this task element
to the end of the task queue, and restarts its execution. If no task
element is dispatchable, a masked-on wait state PSW is loaded by the
dispatcher.

To suspend its execution, the requesting task calls DMTWAT, which
inspects the synchronization locks PSCS uses to synchronize task
execution. Completion of a service is signalled by means of a synch
lock, which is set (or "posted") by DMTPST.

Task—-to-Task Communications

Sometimes a task requires the services of another task to complete a
function. For example, VMB may require that AXM open a file for input
before VMB processing can continue. RSCS tasks communicate with each
other to request these kinds of services using two methods: ALERT
task-to-task commrunication, and GIVE/TAKE communication.

22 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Both methods use an element, vwhich is a table of information that
describes the nature of the request. In general, these elements are
called "request elements" and "alert elements".

The ALERT mechanism is an asynchronous interrupt that causes the
requested task to examine the request immediately and uninterruptably.
When the requested task processing is complete, control is passed to the
MSUP dispatcher. The requestor task remains dispatchable.

The GIVE/TAKE mechanism allows the requested task to service the request
in the course of normal task dispatching. The requesting task remains
dispatchable unless it requests a WAIT con the GIVE synch lock.

RSCS has a three-level task hierarchy implemented in task programming,
but not checked or controlled by the MSUP supervisor. The hierarchy is:
(a) the REX task is highest, (b) the AXS and LAX tasks are next, and (c)
the line driver tasks are lowest.

This hierarchy is foliowed in task-to-task communicatiomns. 2 task
issues an ALERT to only a lower task. A task issues a GIVE to only a
higher task. A task never communicates directly with a task equal to it
in the hierarchy.

GIVE/TAKE Synchronous Task-to-Task Communication

The GIVE/TAKE method provides ordered enqueuing of requests for
services. Such a request is handled when the servicing task is free to
handle it, rather than upon immediate demand. Figure 2-1 and the
following descriptions explain the GIVE/TAKE task-to-task communication
process.,

REQUEST AND RESPONSE ELEMENTS: Generally, request and response elements
are tables of information that reside in the storage of both the
requesting task and the task providing the service. During task-to-task
communication, these elements are passed from one task to another,
containing either requests for services or responses to requests.

GIVE TABLES: When a task requests a service of another task via
GIVE/TAKE, it builds a GIVE table, a GIVE request buffer, and a GIVE
response buffer in its storage. (The request and response buffers may

be at the same location in storage,)

The GIVE request buffer contains a GIVE request element (a table of
information describing the service requested). After the GIVE request
element is built, the requesting task clears the synch lock in its GIVE
table to zero (in preparation for a call to DMTWAT) and specifies the
address of the GIVE table in a call to DMTGIV.

SUPERVISOR HANDLING OF GIVE REQUESTS: The supervisor routine DMTGIV then
builds and enqueues a supervisor GIVE element containing a pointer to
the GIVE table, so that the request can be forwarded to the receiving
task when that task is ready to accept the request.

TAKING A GIVE REQUEST: When the receiving task is ready to process a
GIVE request, the receiving task prepares a TAKE table in its own
storage. The TAKE table consists of a field to receive the task name of
the requesting task and the addresses and the lengths of a TAKE request
buffer and a TAKE response buffer. FYunctionally, these buffers
complement the GIVE request and response buffers and, like the GIVE
buffers, may be at the same location in storage.

Section 2: Method of Operation - RSCS Control Program 23

Licensed Material - Property of IBM

SVECTORS GIVEE GIVEE GIVEE

GIVEQ

STORAGE OF REQUESTING TASK (Giver)

GIVE

Request

Table

7 GIVE GIVE
Request Response
Buffer Buffer
GIVE Response
Request (if any)
- - - - —— oy Element [=

STORAGE OF RECEIVING TASK ({Taker)

e L L Dbl Lkttt Dbt Lkt P

TAKE

Request

Table

r TAKE TAKE
Request Response
Buffer Buffer
GIVE Response
. Request, (if any)
- - s Element - ="

[]
]
/

Figure 2-1. Movement of Data During a Typical GIVE/TAKE Transaction

After the TAKE table is built, the receiving task specifies the address
of the TAKE table in a call to DMTAKE. The supervisor then moves the
GIVE request buffer (containing the GIVE request element) to the
receiving task's TAKE request buffer.

RFSPONDING TO A GIVE REQUEST: The receiving task performs the requested
service, and may update the GIVE request element and place it in its
TAKE response buffer. This modified GIVE request element contains
information on results of request processing to ke returned to the
requesting task.

When all requested processing is complete, the receiving task again
calls DMTAKE, specifying the address of the TAKE table. The supervisor

24 IBM VM/370: RSCS Networking Logic

\

\----—--—-——--——-_—-—"

licensed Material - Property of IBM

responds by immediately moving the contents of the receiving task's TAKE
reponse buffer to the requesting task's GIVE response buffer, and
posting the synch lock in the requesting task's GIVE table.

MOLTIPLE GIVE REQUESTS FOR THE SAME TASK: If another GIVE request
addressed to the receiving task has been enqueued, it is given to the
receiving task as described above, and dispatched task execution is
resumed. On each call to it, DNTAKE first responds to a previously
accepted GIVE request (if one exists) and then gives another modified
GIVE request element back to the requesting task (if ome exists).

WAITING FOR REQUEST COMPLETION: The requesting task waits for request
completion by specifying the address of the synch lock in its GIVE table
in a call to the WAIT routine (DMTWAT).

The receiving task waits for request availability by calling DMTWAT and
specifying the address of its take request synch lock, which is located
in its Task Save Area. The take request synch lock is cleared to zero
Ly DMTAKE whern no GIVE request address to the calling task remains
enqueued. It is posted by DMTGIV when such a request is enqueued as a
result of DMTGIV processing for another task.

Synchronization Locks

Synchronization locks (or synch locks) are fullwords in task save areas
or control tables (such as TAREA or IOTABLE). Synch locks are also in
control areas in function selector routines.

A synch lock is a location in storage where a task that requests a
service from another task receives notice of the completion of that
service. Task code may contain any number of synch locks, depending on
the number and types of service it needs.

The addressability of each synch lock for posting upon completion of the
requested service depends upon the type of request. For example, the

e Toamle 2o A £l ewnld VTanmadia ia 3

GIVE/TAKE reguest D]n\.h lock is a fixed location. It is in the Task
Save Area, TAREAR, at X'48' bytes from the start of the task. The I/0
synch lock, however, is at the first of the requesting task's I/0 table,
whose address is passed with the requesting task's BALR to the I/0
request handler (see "Handling I/O Requests").

The synch lock must be set to zero before the request for services is
made. Setting the synch lock to zero prepares it for processing by the
request servicer and the WAIT routine.

The requesting task (the caller of DMTWAT) may specify the address of a
single synch lock (as in the case of a GIVE Table or an IOTABLE), or the
address of a list of synch locks, one of which must be posted by DMTPST
before dispatching of the requesting task can resume. Figure 2-2 showvs
the contents of Register 1 on a call to DMTWAT.

Section 2: Method of Operation - RSCS Control Program 25

Licensed Material - Property of IBN

R1 Synch Lock
r L | |
|A(Synch Lock) |———— >} { 000000 |
f 3 | I ——
- OR -
Synch Lock
| R |
R1 —> | 000000 |
r Ll r 1 l _—
|A(List Address) |———>|A (Synch Lock) |— Synch Lock
L . ' | | S —— |
{A (Synch Lock) | > | 000000 |
| | | S —
/ /
/ /
| l
JA (Synch Lock) |—— Synch Lock
| |

| ———
L———>f | 000000 |
| —

Figure 2-2. Input to the DMTWAT Routine

Posting a Synch Lock

When the requested service is complete, the receiving task signals
completion by calling the POST routine (DMTPST), specifying the
requesting task's associated synch lock. The POST routine sets the
high-order byte of the synch lock to nonzero. This is referred to as
"posting™ that synch lock, and indicates that the requested service is
complete.

If the low-order bytes of the synch lock contain an address indicating
that the task issued a WAIT on this synch lock, the POST routine also

marks the requesting task dispatchable in its request element TASKE in
the TASKQ, and sets the last three bytes of the synch lock to zero.

Waiting For GIVE/TAKE Pequested Services: DMTWAT

Before a task can use the results of requested service, it must ensure
that the service has been performed. The requesting task signals that
it is waiting for completion of a service via a call to the supervisor
routine DMTWAT, specifying the synch lock associated with the requested
service.

If the high—-order byte of the task's synch lock is nonzero when DMTWAT
inspects it, control is returned directly to the requesting task. TIf
the high-order byte of the synch lock is zero, DMTWAT marks the request-
ing task nondispatchable (in the task's request element, TASKE), stores
the address of the task's request element in the low-order bytes of the
synch lock, and resumes dispatching for other tasks.

Tasks may call DMTWAT specifying multiple synch locks. This is an "OR"
condition; the task wants to rumn if any of the specified synch locks
gets posted. Upon such a call, each synch lock is inspected and, if any
synch lock is posted, task execution resumes inmediately (the wait is

26 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

satisfiedj. If none of the syach locks is posted, the task ecleme
the calling task is marked nondispatchable, its address is stored in
each synch lock, and dispatching is resumed for other tasks.

When any synch lock in the list is posted, the task element is marked
dispatchable. The dispatcher clears the low-order three bytes of each
of the task's synch locks before task execution is resumed.

Asynchronous Interruptions and Exits

Asynchronous interruptions are unpredictable and must be handled as they
occur. The three kinds of asynchronous interrupts are I/0, alert, and
external.

Any RSCS task that has code (called an asynchronous exit routine) to
process asynchronous interrupts of a given type notifies the supervisor,
usually during task initialization, by a branch to the supervisor DMTASY
module. This routine builds an entry in the appropriate asynchronous
interrupt queue that is scanned for "takers" whenever an asynchronous
exit condition arises.

Asynchronous exits are provided for external interruptions, for certain
I/0 interruptions, and for ALERT requests that occur during execution of
another task.

Asynchronous exit routines in RSCS tasks perform limited function, often
enqueuing requests for further processing at a later time by dispatched
tasks. When the asynchronous exit routine completes processing, it
returns control to the supervisor, which then resumes dispatching tasks
via a call to the dispatcher (DMTDSP).

ALERT Asynchronous Task-to-Task Communication

The ALERT method of task-to-task communication allows a task to
immediately invoke a service in another task, bypassing the normal task
selection mechanism.

Initially, a task that services alert requests issues an asynchronous
exit request for alerts. The request specifies the adiress of its
routine, called an asynchronous exit, that will process alerts to this
task. The asynchronous request processor (supervisor module DMTASY)
takes control, and records this information in amn alert asynchronous
exit queue element. The requesting task is made dispatchable to enable
it to continue processing beyond its asynchronous exit request.

When a task requires a certain task's alert service, it issues an alert
request by branching to DMTSIG, specifying the task to be alerted, and
the address of its own alert element, if any, which specifies a request
for processing by the alerted task.

The type of request is described in the ALERT element. The contents of

the alert element depend on the type(s) of alert request defined by the

alerted task. See Section 5 for alert element formats.

The supervisor responds by giving control to the alert asynchronous exit
routine of the specified task and by passing to that task the address of
the requesting task's ALERT element.

The asynchronous exit routine responds immediately and may copy the

Section 2: Method of Operation - RSCS Control Program 27

Licensed Material - Property of IBM

ALERT element into its own storage for further processing. The
asynchronous exit routine then returns control to the supervisor, which
allows the dispatched task to resume execution. The following

summari zes the terms used in the ALERT capability:

The task that will handle ALERT requests via its asynchronous exit
initiates this process with an asynchronous interrupt request.

The request for the services of another task's ALERT exit routine
is called an ALERT request.

RSCS TASK DESCRIPTIONS

As described previously, the MSUP supervisor is a set of routines that
manage RSCS processing. The supervisor is a nucleus that supports the
RSCS tasks. (These tasks are analogous to virtual machines under VM/370
CP, and tasks under 0S/VS systems.)

The RSCS system service tasks perform less generalized common functions
for the system than those functions performed by MSUP. For example, the
AXS system service task coordinates common task access to the ¥M/370

spool file system. Each line driver task manages the communication with
the single remote system or station that its link is defined to provide.

The supervisor gives equal priority to all RSCS tasks, and makes no

distinction between system service tasks and line driver tasks. Figure
2-3 lists the RSCS tasks and the service each perforums.

REX Task Module Functions

CREATE SYSTEM TASKS: DMTCRE The main system service task, REX, is loaded
with the supervisor during RSCS initialization. The REX task, in turn,
creates other tasks required by the system. DMTCRE reads these other
tasks from a CMS disk by means of a CMS read access method, located in
DMTCOM. The task is then started as a new active task under RSCS,

PROCESS COMMANDS: DMTCMX DMICMX receives commands by either GIVE request

elements passed by line driver tasks, or from console-entered commands
(via DMTREX).

28 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

V [¥ A
{ Task | Module | |
| Name | Name | Function |
F } + —
| REX | DMTREX | Handles RSCS operator console I/0; accepts |
{ | | requests for services passed by other systen |
| [| service tasks or line driver tasks; terminates a |
| I } task; handles program check interruptionms. I
| | DMTCRE | lLoads and creates a system service or line driver |
| i | task. |
| | DMTCMX | Interprets RSCS command lines, and either executesj
] i] the commands or forwards command request elements |
{ i | to line drivers for further processing or]
| | | transmittal. 1
| | DMTMGX | Builds a message line, and distributes the I
1 | | constructed message for delivery or forwarding to |
| | | the appropriate recipient (s). |
| | DMTRGX | Handles command and message routing request |
i i i elements. i
| | DMTCOM | Comprises a number of independent re-entrant |
| | | subroutines which may be called by any task. {
L L L /]
T L 1] R
| AXS | DMTAXM | Provides the interface to the VM/370 spool systenm.]|
| | DMTAXA | Provides accounting interface. t
i L 1 1
L L} . T B
| LAX | DMTLAX | Manages communication port allocation. |
F { +— —i
| Line | DMTSML | Manages a telecommunications port for a [
| Driver | | programmable remote station using RTAM. |
i | DMTPOW | Manages a telecommunications port for a |
i { | VSE/POWER systen. {
| | DMINPT | Manages a telecommunications port for a |
| | | nonprogrammable remote station terminal. {
| | DMTVMB | Manages a BSC telecommunications port for a |
| i | V8/370 to VM/370 link. |
1 | DMTVMC | Manages a channel-to-channel VYM/370 to VM/370 |
| | | link. !
| | DMTNJI | Comprises the following three modules; manages a |
i i { BSC telecommunications port for a Vi/370 to i
1 1 | 0S/VS NJI/NJE link. |
| | DMTNCM | Manages the communications adapter for communica- |
1 i | tion with an NJI/NJE subsystem via BSC or CTCA. |
| | DNTNHD | Processes network header records. |
| | DMINIT { Performs DMTNJI initialization. |
| B L 1]

Figure 2-3., RSCS Tasks

The commands *, DEFINE, DELETE, DISCONN, HT, EXEC, ROUTE, CP, CPQUERY,
FORCE, QUERY, SHUTDOWN, and START (for inactive links) are executed by
DMTCMX. ©Executing these commands generally involves referencing and
modifying system status tables (SVECTORS, TTAGQ, TLINKS, etc.).

If the command is not one that DMTCMY executes within its own code,
DMTCMX examines the command line for syntax errors and then passes it to
the appropriate task for execution. To do this, DMTCMX generates a
formatted table called a command alert element to be passed to another
active task for execution via an ALERT asynchronous exit.

The commands CHANGE, CLOSE, ORDER, TRANSFER, REORDER, and PURGE are
executed by DMTAXS; the commands BACKSPAC, CMD, DRAIN, FLUSH, FREE,
FWDSPACE, HOLD, MSG, TRACE, and START (for active links) are executed by
the line driver task for the specified link.

Section 2: Method of Operation - RSCS Control Progranm 29

Licensed Material - Property of IBM

PROCESS MESSAGES: DMTMGKX DMTMGX manages distribution of all RSCS
messages, which may be generated by REX or by any other RSCS task. Each
message to be issued is presented to DMTMGX (via GIVE/TAKE for tasks
other than REX) along with an internal routing code and an internal
severity code.

Messages may be addressed to the local RSCS operator console, to the
local VvM/370 operator, to a local VYM/370 user console, to a remote
station operator, or to any combination of these destinations, by the
routing code. The severity code is defined for each message, and is an
indication of the importance of the message.

Messages for the RSCS local -operator console are enqueued for output on
the RSCS virtual machine console. Messages for the local VM/370 systen
operator and for local virtual machine consoles are issued by executing
a VM/370 CP MSG command (through the DIAGNOSE 8 interface). Messages
for remote RSCS operators are presented to the line drivers for the
associated links by the RSCS MSG alert element interface.

TERMINATE SYSTEM TASKS AND HANDLE PROGRAM CHECKS: DMTREX When a line
driver task requests termination, a TAKE request is passed to DMTREX
specifying that function. DMTREX marks the task as terminated, then
searches for active I/0 associated with the task. If active I/0 is
found, it is terminated. To ensure that system integrity is maintained
during the termination of the I/0, a mechanism (at label QUIESE) handles
situations in which an HIO (Halt I/O instruction) does not take effect
immedia tely.

All RSCS program checks are handled by DMTREX. Program check diagnostic
information is dumped, a message to the operator is issued, and the RSCS
system status is modified, depending on the nature of the program check.
If the program check occurs in a line driver, the line driver execution
is terminated and its link is deactivated. Otherwise, RSCS
automatically shuts down.

ROUTING OF COMMANDS AND MFESSAGES: DMTRGX DMTRGX processes command
routing request elements and message routing request elements. Routing
request elements received from remote systems are passed to DMTRGX by
the receiving line driver. If the routing request element is addressed
to the local location, commands are passed to DMTCMX for processing and
messages are passed to DMTMGX for distribution to recipients.

Common Supervisor Routines: DMTCOM

DMTCOM contains various routines used by RSCS tasks and other supervisor
routines. The address of a vector table, which points to the individual
DMTCOM routines, is located at address X'0280' in storage. These
routines and their functions are descibed in Figure 2-4.

Communicate with the VM/370 Spool File System: DMTAXS

DMTAXS is RSCS's interface to the ¥YM/370 spool system. When a spool
file arrives at the RSCS virtual machine, AXS receives the associated
asynchronous interrupt, reads and interprets the file's VM/370 spool
file block (SFBLOK) and TAG, enqueues the file for transmission as
appropriate, and notifies the appropriate line driver of the new file's
availability. 2AXS provides a GIVE/TAKE request interface to line driver
tasks for spool file data input and output, and defines and detaches
virtual spool I/0 devices as needed. Also, AXS provides an interface to

30 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Vector Table i

supervisor use

f T 1
; Routine Name ; Pointer Name l Function :

1
; GETLINK T GLIRKREQ ; Get Link Table entry ;
: GETROUTE : GROUTREQ : Get Routing Table entry :
: GETPAGE : GPAGEREQ : Get page of virtual storage :
; FREEPAGE : FPAGEREQ : Free page of virtual storage :
i MFI : PM SGREQ i Place entry in message stack ;
: MFO ‘ GMSGREQ : Remove entry from message stack :
: TODEBCD : GTODEBCD : Convert S/370 TOD clock to EBCDIC ‘
: TODS370 : GTGDS37¢ : Convert EBCDIC clock value tc S/370 :
| | | form 1
| | | |
! RCMSOPEN | CMSOPEN | Open a CMS file for input |
: RCMSGET : CHMSGET : Read next record of CMS file :
E GETSUPAG E GPAGESUP : Allocate page of virtual storage for E

|

L N L ’

Figure 2-4. DMTCOM Routines

DMTCMX for second-level command execution support.

AXS mpaintains a queue of a fixed number of virtual storage elements
(called tag slots) that describe files currently owned by the RSCS
virtual machine. To maintain RSCS integrity in a simple way when a very
large number of files is enqueued on the RSCS virtual machine, the
virtual storage tag queue is not extended during executionm.

When a new file arrives at the RSCS virtual machine, its destination
locid is examined, and it is accepted only if there is a matching link
or route linkid for which there is a free tag slot available. If the
file's destination locid is not defined as a linkid, or as am indirect
path through the routing table, the file is returned to the user and the
originating user is notified of the action. If there is no free tag
slot available for a defined linkid, the file is left "pending", and is
accepted when a tag slot becomes free. While a file is pending, it is
not recognized by the RSCS command processors, and cannot be referenced
through RSCS functions.

To prevent links from being totally locked out by an exhausted (and
stagnant) virtual storage tag queue, a minimum number of tag slots is
reserved for each link. This guarantees that a minimum number of files
are accepted for each associated link. The number of reserved slots is
defined during system generation or in the DFFINE command for each link
to be defined in RSCS, The appropriate number of slots to be reserved
for each link depends on the expected file traffic, the link's line
speed, the time the link is to be active, and the desired level of
service to be provided to the link. This number for each link may be
arrived at through actual operational experience in each location.

Section 2: Method of Operation - RSCS Control Program 31

Licensed Material - Property of IBM

Manage Telecommunication Line Allocation: DMTLAX

DMTLAX is responsible for line port resource allocation to line driver
tasks. DMTLAX allocates available switched ports (vhen a link is
activated without a specified line address) through an ALERT request
interface. When a line port is specifically requested (by virtual
address), DMTLAX checks the device for validity as a line port.

Line Driver Tasks: DNTNPT, DMTSML, DMTVMB, DMTVMC, DMTNJI, DMTPOW

As part of the link activation process, REX (module DMTCRE) loads, for
each defined link, a line driver module and starts a line driver task to
service a port to an adjacent node in the netvork.

Note that when RSCS is servicing more than one link with the same line
driver specified, there is a separate copy of the same line driver
module loaded for the different line driver tasks for each port.

The general functions of line driver tasks are:
e Manage I/0 on the BSC telecommunications adapter or CTCA.

e Manage transmission of spool file data via GIVE/TAKE requests to the
AXS task.

e Execute or forward command alert elements received from the REX task.

The precise functional requirements for communications management vary
from line driver to line driver, depending on the type of remote station
the line driver supports.

Each line driver maintairs its link status and line activity (TRACE)
records in the RSCS system status tables.

Six line drivers are provided. DMTNPT supports remote 2770, 2780, 3770
(in 2770 mode), and 3780 terminals. DMTSML supports an RTAM interface
to remote HASP-type and ASP-type systems or workstations. DMTPOW
supports communication with VSE/POWER. DMTVMB is for VYM/370-to-VM/370
communications on BSC lines. DMTVMC is for VM/370-to-VM/370
communications on channel-to-channel adapters. DMTNJI is for
communications from VM/370 to an NJI/NJE subsystem on BSC lines or
channel-to-channel adapters.

I/0 MANAGEMENT

The two kinds of RSCS I/0 operations are: I/0 to spool files and I/0 to
RSCS virtual devices. For I/0 to input spool files, the AXS task and
line driver tasks use CP DIAGNOSE commands. The procedures for I/0 to
RSCS system devices, telecommunication adapters, and output spool
devices are described in this section.

I/0 management for tasks consists of the following functions:

e Queuing requested I/O operations

e Starting I/0 operations

e Handling I/0 interrupts

32 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

e Terminating completed I/0 requests.

Handling I/0 Requests

When a task requires an I/0 operation, it builds an I/0 request table in
its own storage and passes the table's address to the I/0 manager. This
table contains the following information:

e A synchronization lock, where I/O completion is to be posted

s The address of the device on which the I/0 operation is to take place
e The number of sense bytes to be returned, when applicable

e The address of the channel program to be executed.

See Section 5 for the format of the I/0O request table.

The task obtains the IO request entry address from its SVECTORS table
and performs a BALR to it, passing the address of the I/0 table in
register 1.

The BALR is to subroutine DMTIOMRQ in module DMTIOM in the REX task.

Here, the calling task execution is suspended with a FREEZE SVC and the
request is queued, as described in Pigure 2-5.

ACTIVE ACTIVE ACTIVE
SVECTORS 10 ENTRY 10 ENTRY 10 ENTRY
ZV” ,,ZZV' 4,227'
4 /// I0TABLE /;4% I0TABLE /// IOTABLE
7 Z 7

MPXI0Q

INACTIVE INACTIVE
SELioa 10 ENTRY i0 ENTRY

I0EXITQ WL L'
4 llomsus LIOTABLE

INACTIVE
lloTABLE

10 ENTRY
ASYNE ASYNE ASYNE ASYNE

Fiqure 2-5. I/O0 Queues and Subgqueues

Section 2: Method of Operation - RSCS Control Program 33

Licensed Material - Property of IBM

Active and Pending I/0 Queues

The supervisor I/0 queues (MPYIOQ and SELIOQ) include an active queue
and a number of inactive or "pending"™ subqueues. Each element in the
active I/0 queue represents an I/0 operation which is active on a
particular nonshared I/O subchannel. There is only one element in the
active I/0 queue for a given nonshared I/O subchannel, The active I/0
queue is ordered according to ascending numerical I/0 subchannel
address. Chained to each active I/0 queue element there are inactive
elements for any operations waiting to be performed on that same
nonshared I/O subchannel. The queue element chains are dynamic; the I, 0
handler adds, inserts and removes elements as required.

Queuing takes place in the subroutine DMTIOMRQ in module DMTIOM in the
RSCS supervisor.

QUEUING ACTIVE I/O ELEMENTS When the requested I/O operation is for a
presently idle I/O subchannel, an I/O element representing the request
is built and chained into the active I/0 queue (in its I/0 subchannel's
numerical address positiom). The I/O operation is then started by
branching to subroutine IOSTART in module DMTIOM.

QUEU ING PENDING I/O ELEMENTS When the requested I/0 operatiom is for an
I/0 subchannel that presently has an I/0 element enqueued on the active
I/0 queue, the nonshared subchannel is busy (active), and the new I/O
request cannot be started immediately. In this case, an I/0 element
representing the request is built and enqueued on the subchannel's
inactive I/0 subqueue. Then control is passed to the dispatcher module
DMIDSP in the supervisor.

Starting an I/0 Operation

I/0 operations are started by subroutine IOSTART in module DMTIOM in the
RSCS supervisor. It attempts to start the I/0 for a newly enqueued
active queue entry. If it receives a condition code 0, the operation
started successfully, and DMTIOM passes control to the dispatcher module
DMTDSP in the supervisor. If the I/O cannot be successfully started, it
branches to subroutine IODISMIS to terminate the operation with an
error.

Handling I/0 Interrupts

I/0 interrupts are handled by subroutine DMTIOMIN in module DMTIOM in
the RSCS supervisor. It locates the active I/0 queue element of the
device that issued the interrupt, and updates the contents of the
element and the status information in the requestor's I/0 table. If the
interrupting I/0 is still running (status incomplete), it passes control
to the dispatcher module DMTDSP in the supervisor. If the I/0 is
complete, it branches to the IODISMIS subroutine to dequeue the
interrupting device's I/0 request element.

If the DMTIOMIN subroutine finds no active I/0 queue element for the
interrupting device, it scans the I/0O asynchronous exit queue to locate
a request for asynchronous I/0 exit for the interrupting device. If
such a request is found, control is passed to the requestor's exit
routine. Otherwise, the interrupt is ignored, and control is passed to
the dispatcher.

34 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

The subroutine IODISMIS in module DMTIOM in the RSCS supervisor removes
the active I/0 request queue element specified by the routine that
branches to it. It calls the POST routine to signal I/0 completion to
the requesting task. It rechains the remaining I/0 request queue
elements. If there is an inactive I/0 queue for the just-detected
entry's nonshared I/0 subchannel, it makes the first inactive entry
active by chaining it into the active queue, and branches to the IOSTART
subroutine in DMTIONM,

INTERRUPTION HANDLING

Supervisor service routines handle three kinds of interruptions:
external interruptions, SVC interruptions, and I/O interruptions.

In RSCS, supervisor routines use the SVC (SUPERVISOR CALL) to suspend
the execution or dispatching of a task when that supervisor routine
received control. On an SVC interruption in RSCS, DMTSVC is entered.
DMTSVC saves the status of the executing task and passes control to the
calling supervisor routine in supervisor execution mode.

RSCS handles external interruptions from tasks by searching for
asynchronous exit requests supplied by tasks. When a request with a
code matching the external interruption code is found, its asynchronous
exit is taken; otherwise, the external interruption is ignored.

I/0 interruptions are handled by the RSCS I/O manager. When an active
I/0 request causes an I/O0 interruption, the status of the I/0 request is
updated to reflect the new information., Otherwise, a search is made for
an asynchronous exit request for the interrupting device. When one is
found, the asynchronous exit is taken. Otherwise, the interruption is
ignored.

Special Message Interruption Handling

VMCF (Virtual Machine Communications Pacility) external interrupts are
used to pass CP Special Messages to RSCS. When one of these interrupts
occurs, control is passed to DMTREXCF which disables RSCS for other VMCF
interrupts and posts the VMCF synch lock for DMTREX processing. DMTREX
moves the pertinent VMCF header information and Special Message text to
the RSCS defined buffer (REXYREQ). Control is then passed to DMTCMX for
Special Message processing which consists of validity checking the
Special Message text and performing the indicated RSCS command. DMTCHX
then returns control to DMTREX which enables RSCS for VMCF external
interrupts.

RSCS SPOOL FILE FORMAT

RSCS uses the CP spool file facilities of ¥YM/370. The spool file
records are one page (4096-byte) blocks that contain data records and
control records. The data records are punch card or print line images,
and appropriate CCWs. The control records are linkage records and tag
records, and the special headers and trailers on files from non-RSCS to
non-RSCS systens.

Section 2: Method of Operatiom - RSCS Control Progranm 35

Licensed Material - Property of IBM

CP Spool Data Records

Each spool logical record (card or print line) is stored as one CCW that
moves data (READ or WRITE), a TIC to the following CCW, and the full
data record. Space is left at the end of each buffer so that a SENSE
command can be inserted to force concurrent channel end and device end.
For card punch channel programs there is an additional back chain field
that points to the card previously punched so that error recovery for
punch equipment checks can back up one card. The only exception to the
format of READ/WRITE-TIC-Data is in buffers of files directed to the
printer. 1In this case, immediate operation code CCW#s (skips and spaces)
have their suppress data transfer flag (skip) bit set to one, and are
followed by the start of the next record.

CP Spool Buffer Lipkage

In addition to the data and CCWs contained in each 4096-byte spool
buffer, the first two doublewords contain CP-supported forward and
backward links to the next and previous buffers in the file. This
two-way linkage allows the file to be backspaced or restarted from any
point at any time. 1lso, it means that if I/0 errors are encountered
vhile reading one buffer, the file is put in system hold status. If
purged, all buffers except those in error are released. The two-way
chain allows this control of the file while preventing fragmentation by
allowing pages to be assigned and released individually regardless of
their ownership.

CP Spool Tag Record

The first spool buffer of an output spool file contains a special
CP-supported data record called the tag record. This record immediately
follovws the two doublewords containing the forward and backward buffer
linkage pointers. The tag record allows VM/370 users to specify
information to be associated with spool files that they generate. The
information is entered via the CP TAG command, although the tag record
is not considered a spool file data record and is not printed or punched
as part of the spool file. However, the contents may be interrogated
with the CP TAG QUERY operator coamand.

The format of the tag record is a NOP CCW, followed by a TIC to the next
CCW and a 136 byte data field. To differentiate the tag record from an
immediate control CCR (no TIC-data sequence) independently of the
command code, the skip bit (bit 35) in the CCW has the following
convention:

Bit 35 = 0 for KNOP CCW, TIC, data (tag record)
= 1 for control CCW (immediate command)

RSCS Tag Record Format

The tag record is a user information record, and RSCS as a "user"
defines for its own use a special format of data_in the tag records.

Whenever a file that is received on a link and spooled is to be

36 IBM VM/370: RSCS Networkimng Logic

Licensed Material - Property of IBM

processed {(forwarded) by another line driver, RSCS prefaces the tag data
with a three character string, C'S&F', called a store and forward flag,
that identifies to the RSCS file acceptor function a tag written by
RSCS.

A tag with a store and forwvard flag has more information than the tag
vritten by CP when a virtual machine user spools a file to BSCS. (The
CP-written tag contains the operands that the virtual machine user
supplies, in RSCS-specified syntax, for each file spooled to RSCS from a
local virtual machine) .

Non-RSCS Control Records

The basic 0S/NJE tramnsmission unit is a job. RSCS handles each job
transmitted from an NJE system as an individual file. Within the job
are control statements: Jjob header, data set header on each data set in
the job, job trailer. To accommodate these control cards as unit record
data records vithin the CP spooling discipline, RSCS converts them to
NOP records (command code X'03' in their CCWs) while they are within a
vM/370 system, and attaches each job's routing information on a tag.
When forwvarding them on an RSCS-to0-0S link, the line driver removes the
tag and reconstructs the NOP control records as 0OS control statements.

If NJE jobs are punched or printed on real devices within the VN/370
realm, or are read by virtual machine spool readers, the NOP records are
discarded and do not appear as garbage data within the real Jata.

VIRTUAL STORAGE MANAGEMENT

The supervisor virtual storage service routine DMTSTO handles requests
by tasks for main storage. When a task requests main storage, DMTSTO
reserves page(s) of storage for it. Main storage is freed directly by
task prograsms.

DMTQRQ manages requests for free elements of the supervisor status
queue., Supervisor routines call DMTQRQ to reserve and release
supervisor status gqueue elements.

RSCS Basic Functions

This section describes the major functions of RSCS. It is to help you
locate the module that contains the code for an operation withim an RSCS
function. The function descriptions describe the sequence of operations
and the modules and tasks they occur in. The descriptions assume an
understanding of supervisor services such as task dispatching,
task-to-task communication, task synchronization, and I/O management.

RSCS CONFIGURATION AND STARTUP
Loader

The RSCS dynamic loader (DMTCRE) loads text files directly from CHS

Section 2: Method of Operation - Basic Functions 37

Licensed Material - Property of IBM

disks, using the reentrant CMS read access method in REX module DMTCOM.

The loader restricts the program to be loaded to a single CSECT and does
not resolve external references. Multiple module RSCS tasks are merged

into a single CSECT text file prior to loading, using the RSCS preloader
under CHMS.

The three initialization modules are DMTINI, DMTMIN, and DMTIRX. DMTINI
performs IPL disk load write and read operations. DMTMIN is an MSUP
module that performs all initialization functions independent of
particular task level programming. DMTIRX is a REX task module that
performs all initialization related to specific RSCS functions.

Initial loading of RSCS is performed by DMKLDOOE LOADER from the virtual
card reader. When initial loading is complete, control passes to
DMTINI, which functions as a stand-alone routine. The operator is asked
for instructions, and RSCS is normally written in IPlable format to the
system residence disk. On subsequent IPL from disk, DMTINI reads the
disk and reloads RSCS into storage. When DMTINI has completed its
function, control passes to DMTMIN.

DMTMIN begins by initializing its own base register and the fixed
address fields in low storage. It determines the size of virtual
machine storage by referencing each storage key until an addressing
exception occurs, and then DMTMIN copies itself to the last page in
storage. From its new location at the end of storage, DMTMIN builds the
MSUP storage allocation map, MAINMAP, according to storage size,
starting at the beginning of the originally loaded DMTMIN module.
Immedia tely following the end of the storage map, the supervisor queue
is built and chained into a single free element gqueue. The minimum
number of supervisor queue elements is computed as two for each page of
main storage, and is extended through to the end of the last storage
page required for the minimum count. Al1ll of the storage in use by MSUP
at this point is reserved by placing X'FF' in the storage map entry for
each page. Finally, the initial task (REX) is created by dequeuing a
free supervisor queue element, building the initial task element in it,
enqueueing the nev task element as the task queue, and reserving a
single page of storage at X'10000' for the initial task. Task
processing is begun when DMTMIN completes by passing control to the MSUP
dispatcher. The storage used by DMTMIN remains unreserved, and is
noremally used to load the first task dynamically started by DMTIRX

(AXS) .

DMTIRX is entered immediately the first time REX is dispatched by MSUP
as the initial task. Initially, DMTIRX copies itself to the highest
possible page boundary address (e.g., X'E000') before the start of REX
at X*'10000', sets its base registers to the new address, and branches to
label IRXGO in the new copy. The task name 'REX' is placed in the
initial task element, and RSCS-defined task vectors are set in the MSUP
low storage TVECTORS fields. The virtual machine user ID being used is
retrieved from CP by a hypervisor call (DIAGNOSE X'00') and is set in
its field in DMTCOM. VNext, the operator comnsole and system residence
DASD device are identified by a similar hypervisor call (DIAGNOSE
X'24'), and I/O parameters for these devices are initialized. VNext, the
CMS Access Control Areas in DMTREX and DMTCRE are initialized as
follows:

1. If the RSCS system disk is standard CMS 800-byte format, no
special initialization is required and the routine is exited.

2. When the RSCS system disk is in CMS Enhanced Disk format, the
GETSUPAG routine in DMTCOM is called to obtain virtual storage for

38 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

ter use as data buffers. The addresses of the obtained buffers
n

1la h
are set in the CMS Access Control areas and the routine exited.

The RSCS location definition, link tables, default start parameters,
route table, port table, tag slots, and installation variables are
initialized from the RSCS directory by a call to GENVNET. The
installation specification tables and the tag slot gueue are built
beginning at the original starting address of DMTIRX, such that DMTIRX
and DMTINI (which are no longer needed) are overwritten.

on return from GENVNET, the total storage from the beginning of the REX
task to the end of the installation variable tables is computed and
reserved for the RFX task in the MSUP storage map. Next, the operator
console I/0 table in DMTREX is initialized, the comsole and timer
asynchronous interrupt exits are initialized by a call to the ASYNREQ
(DMTASY) entry to MSUP. At this point, RSCS prepares for communicating
with the CP Special Message Facility by issuing a VMCF AUTHORIZE command
and setting bit 31 on in Control Register 0. The AXS and LAX tasks are
ioaded by calls to DMTCRE, virtual storage is obtained for the DIAG 8
response buffer via a call to GETSOUPAG, the initial active link count is
set to zero, the maximum number of startable links is computed and set
based on the virtual storage available, the program check new PSW is set
to enter the program check manager in REX (DMTREXPI), the initial
messages are generated and issued by a call to DMTMGX, and control is
passed to DMTREXIN, At this point, REX executes the PROFILE RSCS
initial command sequence if present and not suppressed by the IPL
parameter keyword 'NOPROF'. Finally, AXS is notified via an alert call
from REX that initialization is complete, queued spool input files are
accepted by AXS, and normal RSCS processing begins.

RSCS SYSTEM DISK ACCESS

The RSCS system disk is a CMS mini disk created, updated, and maintained
by installation personnel working under CMS. The RSCS access method
supports the RSCS system disk as shown in Figure 2-6.

r il L] 1
i | Current CMS Disk Format | Enhanced Disk Format* |
F + } Y 1 4
| Device | | | I |
| Type | Block Size: 800 | 1K 1 2K | 4K |
} t } + ' 4
{f 2314) Yes | Yes | Yes | Yes |
| 3330 | Yes | Yes | Yes | Yes |
| 3340 | Yes | Yes | Yes | Yes |
I 3350 | Yes i Yes | Yes | Yes |
1 3310 | No i Yes | Yes | Yes |
| 3370 | No | Yes | Yes | Yes |
% L J 1 1 1 =
|* This support may be obtained in VM/370 Basic Systems i
| Extensions Program Product, Release 2; it does not |
{ support 800-byte blocks. All of the support for Enhanced |
| Disk Format is new function for RSCS Networking. |
[® []

Figure 2-6. RSCS System Disk Format

Section 2: Method of Operation - Basic Functions 39

Licensed Material - Property of IBM

In the algorithms used to access DASDs in blocksizes other than 800
bytes, the RSCS access method permits one level of indirect addressing
(one level of pointer blocks). This enables the RSCS user who creates
the RSCS system disk under CMS of the VM/370 Basic Systems Extensions
Program Product, Release 2, to have the characteristics shown in Figure
2-1.

r 1) 1 v L
] Block | Maximum Number | Maximum Number | Maximum Size |
| Size | of Files | of Data Blocks | of File |
1 L L L]
T Al] L §)
{ 1K Bytes | 4,096 | 256 | 256K Bytes |
| 2K Bytes | 16,384 1 512 ! 1024K Bytes |
| 4K Bytes | 65,536 | 1024 | 4096K Bytes |
L L A A []

Pigure 2-7. RSCS System Disk Characteristics

The operation of this support within RSCS is transparent to the RSCS
user. This support is neither invoked nor used by the RSCS user. An
installation's options for formatting the RSCS system disk under CMS may
be determined from the preceding table.

To locate a file, given the file name and file type, this support usees
the addressing scheme shown in Pigure 2-8.

RSCS FILE HANDLING FUNCTIONS

Introduction

RSCS file handling is described in the following overview section,
followed by descriptions of the link table, link activation, and the
input and output of files by the line drivers. Note that there is a
description of the MULTI-LEAVING protocol used by several line drivers,
in Appendix A of this publication,

Scenario of RSCS File Handling

This section is a high level description of the file handling that RSCS

provides. The description uses Figure 2-9 to show RSCS systems in three
VM/370 nodes processing a routed file from an originating node, through

an intermediate node, to a destination node.

To fulfill its networking file handling capabilities, RSCS has functions
to:

1. Receive files spooled to it from virtual machine users on the local
VM system vwhere it resides. (See Figure 2-10, path marked with
circled 1.)

2. Receive files from adjacent nodes. (See Pigure 2-10, paths marked
with circled 2.)

3. Analyze and send received files to local virtual users. (See
Figure 2-10, path marked with circled 3.)

40 IBM VM/370: BRSCS Networking Logic

Licensed Material - Property of IBM

3rd BLOCK

r // 1
iCMs=] |BLOCK| |
| or |DOP|SIZE | |
lcus1 | { i
¢ + // !
r—d
{ FIRST FST DATA BLOCK (FSTB)
I r // 1
“>1# oF | | H H |
iPTR |POP| ii FsT ii FST FST |
—>| LEVELS| | H N |
¢ 1 // !

PR S

] —DIRECTORY—> |

r

|

| FILE ENTRY

|

i]

| |

| —— | FPST DATA BLOCK (FSTB)

—_ > ' +"‘" r /,/ L]
| { | | 1 i {
| 4+—>| FN | PT | 1| PFST FST |
| | { | { 11 |

POINTER| +— ¢ / /-]

BLOCK |————roT1f 1
(00000000} | FST DATA BLOCK (PSTB)

f[—1 1 //]
| (I | | I# OF | | I {
| }] “>1 FN | FT |PTR |FOP| || FST FST |
i 1 | | ILEVELS | | 11 |
| | t + // !
l Il r !
| | 11 64 bytes——>] DATA BLOCKS
| 1 r //—
| I 1 —>] i
l (| ——— | ¢ //—
[/] [> . +___,
4 bytes> 1 { r //—
| t >l |
l | ¢ //—
POINTER | +—
BLOCK | ——I | r //—
1000000001 — >} |
| ———I L /7
| |
I {
| |
| {
| I
—
4 bytes>

Figure 2-8. Locating a File on the RSCS System Disk (Part 1 of 2)

Section 2: Method of Operation - Basic Punctions

41

Licensed Material - Property of IBK
The procedure for locating a file is as follows:
1. A check is made to determine whether the disk is in EDF format or

the current format., If the volume label identifier field is
n"CMS=", it is in the current format; if the identifier field is
"CMS1", it is in the Enhanced Disk Format.

If it is in the current format, processing continues as in the
VNET PRPQ.

If it is in the Enhanced Disk Format, the first File Status Tab
Block (FSTB) is referenced by the Directory Origin Pointer (DCP

From the first FST in the PSTB, the number of pointer levels is
obtained. If the number of pointer levels is 0, the current an
only FSTB is searched for the FST containing the given filename
and filetype.

If the number of pointer levels is 1, the File Origin Pointer
(FOP) points to the pointer block. Each entry in the pointer
block points to an FSTB, The end of a partially filled pointer
block is denoted by zeros.

Using the pointer block entries, FSTBs are accessed and scanned
until the required FST containing the given filename and filety
is found.

If the number of pointer levels is 1, the FOP points to a point
block. Each entry in the pointer block points to a data block.
The end of a partially filled pointer block is denoted by zeros

If the number of pointer levels is 0, the FOP points to the one
and only data block for this file.

Using the pointer block entries, the data blocks are accessed
until the file has been read.

le
Y.

d

pe

er

le o o o o o A S D S oy — T R o S el R A SR e e SR e G e G - g — T v

Figure 2-8. Locating a File on the RSCS System Disk (Part 2 of 2)

4.

Analyze and forward files to adjacent nodes. (See Figure 2-10,

paths marked with circled 4.)

In this scenario, the network is very simple: three VM/370 systems
(VM1, VM2, and VM3) each with an RSCS system running, and each with
telecommunication links. Systems VM1 and VM3 each have a user virtu
system, CMS, running. (This is an example only; CMS does not have t
the user machine.) The scenario has six steps, A through F, describ
below.

(A

42

)

User Archie on the CMS virtual system at location VM1 is sendin
file to user Bob on the CMS virtual system at location VM3. To
so, Archie issues the CP commands:

SP O0OD TO RSCS1
TAG DEV OOD VM3 BOB
PUNCH filename filetype

These commands tell CP to spool the virtual punch output from
Archie's job, place the specified tag data on the spool file, a
give the spool file to the local virtual system called RSCS1.
is an instance of the first type of basic RSCS file handling

IBM VM/370: RSCS Wetworking Logic

al
o be
ed

g a
do

nd
This

Licensed Material - Property of IBNM

(€)

(D)

(E)

(F)

. .
function described below,

After CP does this, RSCS1 looks at the tag information on the spool
file. RSCS1 determines that the file is destined for vM3, and, to
determine this location's specifications for forwarding files to
VM3, consults its routing tables and link tables. It transmits the
file on the link to VM2. This is an instance of the fourth type of
basic RSCS file handling function described below.

Oon the VM/370 system VM2, the RSCS2 virtual machine receives the
file and spools it. RSCS2 sees that the destination information in
the file's tag data does not contain this location®s (VH2's) locid,
and tells VM2 CP to give it to RSCS2. (It spools the file to
itself in order to transfer the handling of the file from the RSCS
receiving function to the RSCS sending function.) Then it tells
RSCS1 that the file is successfully received, allowing RSCS1 to
release and effectively erase its copy of the file. This is an
instance of the second type of basic RSCS file handling function.

CP informs RSCS2 of the new spool file's presence. RSCS2 perfornms
the same forwarding function (type 4#) described for RSCS1's
forvarding of the file. In this instance, RSCS2's link table
directs it to send the file on the VM3 link.

At system VM3, the RSCS3 virtual machine receives the file and
spools it. RSCS3 sees that the file's tag data specifies user Bob,
on the CMS system, on the VM3 location (locid) as the destination.
RSCS3 tells VM3 CP to spool the file to virtual machine user Bob.
RSCS3 issues a console message to Bob, informing him of the file.
RSCS3 tells RSCS2 that the file is successfully received,
terminating this transmission and allowing RSCS2 to release the VM2
spool copy of the file,

CP passes the RSCS message and its own notification of the file's
arrival to Bob.

Viviz VM3

CcpP \CD [CcpP

-

e

Spoo|\ A Spool A l Spool

CMs

v !

RSCS 1 CMS RSCS 2 RSCS 3

o

A

' o ~—T \

B c D E

Figure 2-9. Scenario of RSCS File Handling Functions

Section 2: Method of Operation - Basic Functions 43

Licensed Material - Property of IBM

Receiving a File from a Local Virtual Systenm

This is handled by CP in the same way that it does for any other virtual
machine under its control. Spool reader files are queued for input to
virtual machines, and are retained by CP until they are read or purged.
Files are normally read by virtual machine simulated card readers, but a
number of direct hypervisor calls (simulated DIAGNOSE instructions) are
provided by CP to allow virtual machine systems to interrogate and
manipulate and read the input spool file queue.

Receiving a File from a Remote System

———— D .

1. The line driver recognizes the start of an arriving file and issues
a message to notify the RSCS operator.

2. RSCS spools the file to itself (spool file opened for output).

a. The line driver issues a GIVE request to DMTAXS requesting for
a spool file to be opened for output (request code=11). The
"request arrival" synch lock of DMTAXS gets posted.

b. DMTAXS gets dispatched at AXSCYCLE, tests the '"request
arrival" synch lock, finds that is on, and then branches to
AXSACCPT.

c. DMTAKE is called to take the GIVE request.

d. REQXEQ is called to decipher the request code (11). It
determines the address of the appropriate subroutine
(OPENOUT), and branches to it.

e. OPENOUT scans the link's queue of active output tag slots to
determine if the file is already being processed. If so, the
I/0 area (TAKE response buffer) is returned to the line driver
and the appropriate open code ("old file found") is posted
before control is returned to AXSCYCLE.

f. If not so, OPENOUT: (1) calls GETLINK to check if the line
driver has a locally defined link; (2) calls GETSLOT to get a
free tag slot, and (3) calls GPAGEREQ to get a page for a new
I/0 area.

g. The tag information supplied in the GIVE request is moved into
the new tag slot.

h. DEFINE is called to internally define a virtual punch by means
of a call to CP.

i. OPENOUT moves an asterisk to the virtual machine destination
ID field (TAGTOVM field of the tag element) to indicate
spooling the punch to RSCS.

Je OPENOUT calls VSPOOLP to effect a CP SPOOL punch command.

k. OPENOUT initializes the I/0 area (pointed to by register 7) by
building the device I/0 table. The tag element is then placed
at the beginning of the link's active output tag queue.

1. In response to the line driver's GIVE request, OPENOUT returns

the address of a new I/0 area and imserts the appropriate open
post code before returning control to AXSCYCLE.

4y IBM VM/370: RSCS Netvworking Logic

Licensed Material - Property of IBM

3. The line driver gets dispatched and issues subsequent punch
commands as the file is received.

4. When EOF is reached, the line driver closes the virtual punch.

a. The line driver issues a GIVE request to DMTAXS, specifying a
closing of the output file (request code = '12').

b. DMTAXS gets dispatched at AXSCYCLE which eventually calls
CLOSEOUT.

C. CLOSEOUT locates the active output tag slot and dequeunes it
from the active output queune.

d. CLOSEOUT updates the tag element with information obtained
from the line driver's tag prototype.

e. CLOSEQUT determines if the file is destined for this location
or to a remote location. This is done by comparing the
TAGTOLOC field with the LINKID field of the local location's
link table.

f. If the fields are not equal, the file is to be stored and
forwarded. VTAGD is called to assemble the appropriate tag
command text and to issue the CP TAG command. VTAGD inserts
the "S&F" flag into the command text; the command text
contains the following:

S&F TAGTOLOC TAGTOVM TAGPRIOR TAGINLOC TAGINVM TAGINTOD
TAGORGID TAGCNTL

g. VSPOOLP is called to issue CP SPOOL punch OFF to reset the
punch to no-spool mode.

h. VCLOSEO. is called to issue CP CLOSE punch.
i. DETACH is called to issue CP DETACH punch.

j. FPAGEREQ is called to free the file I/0 area's virtual storage
page.

k. FREESLOT is called to free the tag.

1. The close post code is set and control is returned to
AXSCYCLE.

Sending a Received File to a Local Virtual Systenm

Upon receiving a file from a remote node, the line driver enters the
file into its local CP spool system, as described previously. However,
when the line driver closes the spool file, AXS determines that either
the file is to be forwarded to a remote location (in which case the file
remains spooled to RSCS), or the file belongs to a local virtual machine
(in which case the file is spooled to the local virtual machine's
reader). Therefore, the sequence of events is like Steps 1 through 4 of
the preceding paragraph with a difference, starting at Step u-€f, as
follows:

1. The line driver recognizes the start of an arriving file and issues
a message to notify the RSCS comnsole operator.

2. RSCS spools the file to itself (spool file opened for output).

Section 2: Method of Operation - Basic Functions 45

Licensed Material - Property of IBM

The line driver gets dispatched and issues subsequent CP spool
punch commands.

When EOF is reached, the line driver closes the virtual punch.

a. The line driver issues a GIVE request to DMTAXS, specifying a
closing of the output file (request code = '127),

b. DMTAXS gets dispatched at AXSCYCLE which eventually calls
CLOSEQUT.

Ce CLOSEOUT locates the active output tag element and dequeues it
from the active output queue.

d. CLOSEOUT updates the tag element with information obtained
from the line driver's tag prototype.

e. CLOSEOUT determines if the file is destined for this location
or to a remote location. This is dome by comparing the
TAGTOLOC field with the LINKID field of the local location's
link table.

f. If the file is destined for this node (local locid same as
TAGTOLOC field), a further check is made as to wvhether the
file is to go to a local virtual machine or to a remote
workstation.

With the TAGTOVM field as a search argument, GLINKREQ is

called to see if a link with a link ID that matches TAGTOVM is

defined at the location. If so, the file is spooled to RSCS

and enqueued for transmission to the workstation. Otherwise,

the file is spooled to the specified local virtual machine.
The file is punched to the local virtual machine user.

a. CLOSEOUT calls VTAGMSG to put user notification message into
the spooled file's tag area.

b. VSPOOLP is called to point the reader of the virtual machine
(vhose ID is stored in TAGTOVM) to the spooled file.

C. VCLOSEO is called to issue CP CLOSE punch.
d. DETACH is called to issue CP DETACH punch.

e. FPAGEREQ is called to free the file I/0 area's virtual storage
page.

f. FREESLOT is called to free the tag.

ge The close post code is set and control is returned to
AXSCYCLE,

Sending a Received File to a Remote Node

CP notifies RSCS of the spool file on RSCS's virtual reader.

a. A simulated asynchronous device end I/0 interrupt is given to
the lowest virtual device address reader that is both idle and
eligible to read the file, RSCS's device address X'001°'.

b. The I/0 interrupt handler (DMTIOM/IOASYNCH) selects the

IBM VM/370: RSCS Networking Logic

Licensed Material -~ Property of IBM

2'

= = Lo mmersmml ommm dcem oS - ¥ ~
address of the asynchromous €xit routine for RSCS aand passes

control to it (DMTAXM/AXSASYIO).

AXSASYIO calls DMTPST to post the "file arrival" synch lock,
and then returns control to the dispatcher.

When DMTAXS gets dispatched, it executes at AXSCYCLE, which
detects that the "file arrival" synch lock has been posted,
and causes a branch to ACCEPT.

accepts the file.
DMTAXM/ACCEPT internally issues a "CLOSE RDR HOLD" to CP.

ACCEPT calls GSUCCESS to read a spool file block and tag
information. (GSUCCESS uses the VM/370 DIAGNOSE X'14!
instruction, subcode X'FF', to do this). The address of the
spool file block and tag information is returned to the buffer
specified in the DIAGNOSE X'14' instruction.)

ACCEPT calls TAGFPIND and scans the tag queue of every link
defined in the link table to look for a match with the tag
just read.

If there is a match it indicates that the spool file block and
tag just read was already in process. TAGFIND returns to
ACCEPT with condition code 0, and ACCEPT reads the next tag
and spool file block.

If there is no match, the spool file is eligible for
processing; TAGFIND returns to ACCEPT with comndition code 3.
ACCEPT then checks the validity of the data in the tag read.

ACCEPT extracts the destination information from the tag and
calls the module GROUTREQ to determine the link on which to
enqueue the file.

If GROUTREQ fails to find a link that has been defined for the
destination, ACCEPT checks if the file has been marked "S&F"
(store-and-forward) and if it originated from RSCS.

I1f the file has been flagged S&F (previously done when the
file was closed after RSCS received it and spooled it) amnd if
there is no link defined for it: (1) the spool file is purged
from VM/370, (2) AXSM103, which issues a message request to
DMTREX, is called to notify the spool file's originator, and
(3) the next spool file is read from RSCS's reader.

If the file was not flagged "S&F®" (that is, the file
originated locally), ACCEPURG examines the location ID of the
file's originator. If the originating location ID (TAGTOLOC)
is the same as the local LOCID (described by the LINKID field
of the first link table entry in the link table chain), the
file must have originated from VM/370's real card reader if
the file origin userid is equal to the userid of the RSCS
virtual machine. TIn this case the file is purged and a
message issued to the originator.

If the origin location ID is not the local LOCID, the file is
transferred to the originator by intermally issuing the CP
TRANSFER command, and a message is sent to the originator.
If a link is found, GETSLOT is called to get a free tag slot.

If no free tag slot is available: (1) the file is left alone

Section 2: Method of Operation - Basic Functionms 47

48

Licensed Material - Property of IBM

in the spool, (2) the count of the number of pending files is
incremented, (3) AXSM102 is called to issue the "file pending”
message, and (4) the next spool file block and tag is read.

TAGGEN is called to move the contents of the tag and spool
file block into the free tag slot to generate a new tag
element.

TAGPLACE is called to enqueue the tag slot, by transmission
priority and file size, to the tag queue of the link selected
by GROUTREQ.

The LFLAG bits in the link's link table are checked to see if
the link is already processing a file. If so, ACCEPT proceeds
to read the next spool file. If not so, the ALERT bit is
reset and an ALERT is issued to the link's line driver and
control is returned to the dispatcher.

The line driver reads the spool file for transmission to the next

node.

Q.

d.

g.

(Spool file is opened.)

The line driver issues a GIVE request to DMTAXS, requesting to
open a file for input (request code = X'01'), The "request
arrival® synch lock for DMTAXS gets posted.

When DMTAXS gets dispatched, AXSCYCLE finds that its "request
arrival®" synch lock has been posted and thus branches to
AXSACCPT, vhich calls DMTAKE to take the GIVE request. REQXFQ
is then called. REQXEQ deciphers the request code (X'01'),
determines the appropriate processing routine (OPENIN), and
branches to it.

OPENIN searches for active files for the link specified in the
request by scanning its active input tag queue. If such a
file is already in process, that file is returned to the
caller.

OPENILNK finds the link table for the link that sent the open
request. This is done by scanning for a link table that
contains a link ID that matches the requesting link's ID.

Call UNPEND to enqueue as many pending files for the line
driver as possible: (1) Call TAGFIND to search for a pending
file for this link, (2) call TAGGEN to generate a tag slot,
(3) call TAGPLACE to enqueue the new tag slot on the link's
queue, (4) update the pending file count, and (5) issue a
message if a pending file is missing.

Call FPILSELEC to select a file to be read from the link's tag
queue. FILSELEC scans the tag queue, pointed to by LINPUTQ in
the line driver's link table. It dequeues the first tag found
for a file that is not in hold status and that matches the
file class setting in the caller's link table. A message is
issued if the file is missing from CP's spool systen.

Call GPAGEREQ to get a page of storage for the I/0 area. The
address of this storage is stored in the TAGBLOCK field of the
selected tag slot.

Call DEFINE to internally define a virtual reader by means of
a call to CP.

Call VSPOOLR to internally issue the "SPOOL READER CLASS *"
command.

IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBNM

OPENIN issues the DIAGNOSE I'14' command to make the file
described in the tag slot the next in the reader just defined.
Then it opens the file by issuing another DIAGNOSE Y'14¢
command to read the first spool page buffer of the file into
the I/0 area.

OPENIN enqueues the tag slot at the beginning of the active
input tag queue.

As a response to the original oper request by the line driver
to DMTAXS, OPENIN returns to the line driver the address of
the I/0 area (buffer) containing the spool file records. The
line driver reads the rest of the file with successive
DIAGNOSE X'14' calls.

A branch is made to OPENEXIT which inserts the appropriate
open post code before giving control back to AXSCYCLE. The
return from TAKE posts the GIVE table in the line driver
storage.

4. The line driver is dispatched and starts transmitting spool file
records to the remote location. EOF is recognized when a DIAGNOSE
X' 14' returns EOF on the input spool file.

5. The line driver receives positive acknovledgement from the
receiving location after the file is completely transmitted. The
file is purged or held depending upon the close options. (Spool
file is closed.)

Qe

COMMAND

The line driver issues a GIVE request to DMTAXS, requesting
input file closing (request code = X'02'), The "request
arrival" synch lock for DMTAXS gets posted.

DMTAXS gets dispatched at AXSCYCLE and finds that its "request
arrival" synch lock has been posted, and branches to AXSACCPT.

DMTAKE is called to take the GIVE request.

REQXEQ is called to decipher the request code (X'02%),
determines the name of the appropriate subroutine (CLOSIN),
and branches to it.

CLOSIN scans the active input tag queue for the tag of the
file to be closed. When the tag is found, it is removed from
the active input tag queue.

CLOSIN examines the AXSREQ field of the AXS monitor control
area and decides whether the file is to be held or purged from
the spool system. (AXSREQ contains a copy of the line
driver's request element.)

CLOSIN frees the I/0 areas used, sets the appropriate close
post code, and returas control to AXSCYCLE.

AND MESSAGE HANDLING FUNCTIONS

Compmand and message flow within RSCS is handled by a store and forward
mechanism with differences from file store and forwarding. Some
differences are:

e Commands and messages are not stored on spool files, and are lost if
the RSCS node harndling them goes down.

Section 2: Method of Operation - Basic Functions 49

Licensed Material - Property of IBM

e Routed commands and messages are not forwarded if the necessary link
is undefined, inactive, or not connected.

Figure 2-10 shows the steps used in handling RSCS commands and messages.
The circled numbers in the diagram correspond to the following
descriptions.

—(13)
From REX Task N
Remote -l]lT - -—"—-_-—--—_——
NJI/NJE r R
System | '
1 : Line
I v Driver
' »| omTcmx o ! Task
I Locel I A
i i Command)
Llr}s i Processor)
Driver ,l
Task | |
: o]
DMTRGX / I
DMTREX Command !
1 Request and Message 8) 10 |
Handler Routing |
| Processor
| |
|
Line | w |
Task! I DMTMGX — "
| Build and | Virtual
' ;;sue Local | | CPU User
lessages
1 |
] | (R)SCS
perator’s
From Remote L e Jomm s omm e D G GES s TED S @WAn S G EE CEs = - eED G J ConSO'e 1
Work Station
(1a)
_/

®

Summar f Compmupication Used on Each Numbered Path:

1. Routing Request Element (GIVE/TAKE)

2. Command Request Element (GIVE/TAKE)

3. Command Request Element (BALR)

4. Routing Request Element (BALR)

5. CMD/MSG Alert Element (ALERT)

6. Command Request Flement (BALR)

7. Message Request Element (BALR) - remote origin
8. Message Request Flement (BALR) - local origin
9. Command Alert Element (ALERT)
10. Message Alert Element (ALERT)
11. Message to local User (CP MESSAGE command)
12. Message to Local RSCS Operator (SIO)
13. Message Request Element (GIVE/TAKE)
14, RSCS Local Operator Command (SIO)
15. Message from Local User (CP SMSG command)

Figure 2-10. RSCS Command and Message Handling

50 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

i

Command an

Inpuyt to RSCS (Path 1)

3

Remote System essag

©

When a line driver receives a routed command or message from a remote
system, it builds a Routing Request Element and passes it in a GIVE
request to supervisor module DMTGIV, which builds a Give Queue Flement,
posts the DMTREX synch lock (at the end of the task save area), and
marks the REX task dispatchable.

When REX is dispatched and finds its GIVE/TAKF synch lock posted, it

issues a TAKE, examines the request, and because it is a Routing Reguest
Element, passes it to the routing processor module DMTRGX.

Remote Workstation Command Input to RSCS (Path 2)

When a command is from a remote workstation (SMI or NPT), the line
driver builds a Command Pequest Element and passes it in a give request
to supervisor module DMTGIV, which builds a Give Queue Element for it,
posts the DMTREX Give/Take synch lock (at the end of its task save
area), and marks the REX task dispatchable.

When REX is dispatched and finds its Give/Take synch lock posted, it
issues a Take request to supervisor module DMTAKE. The TAKE processor
locates the GIVE Queue Element for this task, and passes the Command
Request Element to the taking task, REX. The task examines the request
and because it is a Command Request Element passes it to the command
executor module DMTCMX.

Commands for Local Execution (Path 3)

DMTREX passes command request elements for local execution to DMTCMX.

These elements may originate from a remote workstation lime driver, a

command sent to RSCS through the Special Message Facility, or built by
DMTREX from a command entered at the RSCS operator console.

Routing Request Element for This Location (Path 4)

DMTREX passes routing request elements from remote NJI/NJE systems to
DMTRGX.

If the destination locid in the Routing Request Element contains the
local location's locid and it is a command request, DMTRGX forwards it
to command executor processor module DMTCMX. If it is a message for the
local location's locid and no destination userid is specified, DMTRGX
constructs a DMTRGX170 console message and forwards it to the message
processor module, DMTMGX. But, if it is a message for this locid and
there is a userid specified in the routing information, the following
happens:

e If there is a linkid defined matching the specified userid
(remote workstation), RGX moves the destination userid into
the destination locid field and comstructs a DMTRGX170 message
element, which it passes to DMTNMGX to issue.

b. If there is no linkid matching the specified userid, the
userid must be for a local virtual machine or the RSCS

Section 2: Method of Operation - Basic Functions 51

Licensed Material - Property of IBNM

operator. DMTRGX formats a DMTRGX171 message element and
forwards it to DMTMGX to issue to the local virtual machine
specified in the destination userid.

Routing Request Element for Another System (Path 5)

If the destination locid in the Routing Request Element is not the local
location's locid, DMTRGX calls GROUTREQ in DMTCOM to determine the path
to the destination locid. If the link is defined, active, and
connected, RGX passes the element to it with an alert request to the
link's line driver task. If the link is undefined, inactive, or not
connected, RGX either (a) for a message type Routing Request Flement,
discards it, or (b) for a command type Routing Request FElement, issues a
message to the originator via DMTMGX, giving the reason for inability to
process the command any further.

Local Commands Originating from NJI/NJE Systems (Path 6)

DMTREX passes command request elements for local execution to DMTCHMY.
These elements originate from a remote NJI/NJE system.

Message Request Elements from NJI/NJE Messages (Path 7)

DMTRGY passes to DMTMGX message request elements that are constructed
from message type routing request elements received from remote NJI/NJE
systems, as described for Path 4.

Messages Arising from Command Executiom (Path 8)

The message routine builds messages, using text supplied in module
DMTMSG and variables supplied in the message buffer, and forwards them
to the appropriate recipients. Messages issued as part of
locally-executed commands go to DMTMGX.

The contents of each message built at this location are edited into omne
of four formats. Fditing is under control of the EMSG setting in CP,.
The DIAGNOSE command X'5C' invokes this editing. Depending upon the
EMSG setting, the message is one of:

Message header and message text
Message header only

Message text only

Neither header nor text

Line Driver Handling of Command Alert Elements (Path 9)

Line drivers receive alert elements, containing line driver Comrand

Alert Elements. The two general classes of line driver alert elements
are: those that specify internal line driver commands that one of the
line driver's processors executes, and those that specify commands or

52 IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBM

The second byte of a line driver command alert element, called the
Function Code, identifies the element type. All X'Bx' requests are
forvarding (transmitting) commands containing data for remote locations:

X'BO' is from a locally-entered or remote workstation-entered CMD
command;

X'B1' is from a locally or workstation-entered MSG command;
X*'B2* is an RSCS-issued rot

outed @m location's
DMTMGX module and directed

ui by this
mote location.

When DMTCMX issues an alert (Path 9 in Figure 2-7) for an
internally-executed line driver function (such as backspace), the
function code in the line driver command alert element is one of: Y'80"
through x'84°, X'90*, X'91*, or X'a0'.

When a line driver is able, it accepts any alert immediately. It posts
its appropriate synch lock, and stacks all X'B1*' and X'B2' requests by
calling the REX task, module DMTCOM, routine PMSGREQ. a1l line drivers
except DMTSML and DMTPOW do the same with X'BO' requests.

When a line driver is busy (already processing a command), it rejects
any internal line driver commands. DMTSML and DMTPOW also reject X'BO?
requests when they are busy.

The line driver mainline program sees the synch lock that indicates one

or more stacked requests, and handles the requests by calling the REX
task, module DMTCOM, routine GMSGREQ,

Forwarding locally-Generated Messages om links (Path 10)

When a locally-originated message, formatted and edited by DMTMGX, is to
be forwarded to a remote location, DMTMGX passes it to the appropriate
line driver in a Message Alert Element.

Issuing Messages to local Virtual System Users (Path 11)

DMTMGX issues messages to local virtual system users by means of the

DIAGNOSE X'08' instruction, which executes a CP MSG command. If the

user that the message is directed to is not logged on, the message is
purged.

I~

ssuing Messages to the Local RSCS Operator's Console (Path 12)

DMTMGX issues messages to the local RSCS operator by a BALR to the
PMSGREQ routine in module DMTCOM, where the message is queued for
issuing by the DMTREX module's console message routine.

Section 2: Method of Operation - Basic Functions 53

Licensed Material - Property of IBM

Line-Driver-Issued Messages (Path 13)

When the line driver issues a message as part of executing a request, it
does so by a GIVE request to DMTREX, passing a Message Request Element.

Local RSCS Qperator Command Input (Path 14)

-+

A command issued at the RSCS operator's console may be a request for a
function on the local system or at a remote system, or it may specify a
message to a local virtual machine user or to a remote operator console
or virtual machine user.

The asynchronous interrupt generated by the RSCS console ATTENTION key
causes control to pass to the console I/0 asynchronous exit routine,
DMTREXCI, in the REX task, module DMTREX. The message or command issued
by the operator is passed to DMTCMX.

Receiving Messages from lLocal Virtual System Users (Path 15)

A command issued by any virtual machine to an RSCS virtual machine must
be sent through the Special Message Facility. It may be a request for a
function at a local or remote RSCS system, or it may specify a message
to a remote virtual machine console.

The asynchronous interrupt generated by the Virtual Machine Communica-
tion Facility (VMCF) causes control to be passed to the asynchronous
VMCF external interrupt routine, DMTREXCF, in the REX task module
DMTREX. The message (MSG) or command (CMD) issued by the Special
Message sender is then passed to DMTCMX for processing.

RSCS ACCOUNTING

An accounting record is generated by module DMTAXA, when called from
CLOSEIN or CLOSEOUT in module DMTAXM, each time an input or output spool
file is closed. Accounting records are generated for input files only
if the spool file originated locally. Accounting data is obtained from
the spool file's tag block. Time and date information is obtained from
VM/370 CP through the DIAGNOSE instruction. The DIAGNOSE X'4C'
instruction is used to punch the assembled accounting record to VM/370.

Line Driver Functions

THE LINK TABLE

A line driver task can only exist for an entry in the link table.
During RSCS initialization, a link table entry is built for each link
defined in a LINK statement in the RSCS directory. (The first entry in
the link table is reserved as a container of the local locid.) The
parameters in the LINK statement are recorded in its link table entry.

54 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

During KSCS operation, th

e T Can mak
to the contents of the link

€
CS storage:

[}

na~a oo
R5CS op
a

o e+
142]

5
t

e Use the DEFINE command to alter any of the parameters in a link table
entry that is not active (does not have a line driver task running for
it).

e Use the DEFINE command to add new link definitions. (There are
sixteen empty link table entries after RSCS initialization.)

e Use the DELETE command to remove a link definition, leaving its
previous link table entry empty.

The link table has two functions: it contains the parameters of defined
links, as described above, and when the link has been started, it
contains. running data for its line driver task. See Section 5 of this
manual for details of the Link Table Entry contents.

LINK ACTIVATION: LOADING AND STARTING A LINE DRIVER TASK

The objective of line driver task startup is to provide a task to
perform the operations of one of the links specified in the link table.
This is done by obtaining the storage required by the line driver
module, loading the line driver module into that storage, and causing
its initialization code to execute. The line driver's initialization,
in turn, confiqures the line driver to the characteristics specified for
its 1link.

The START command specifies a link to be started, and includes any
optional parameters to override parameters in the link table entry.

(The overrides are irplemented only for this activation of the link;
they do not replace the permanent "default" parameters in the link table
or in the RSCS DIRECT entry.)

Loading the Line Driver, Function Description

1. Process the START command in REX module DMTCHMX.

a. DMTCMX validates the command parameters. It builds the link
table "active" parameter entries, using the parameter default
values in the link table, unless an override value is
specified in the START command.

b. Issue an ALERT to the LAX task to validate the line address
specified for this link., If it is a switchable port, it must
have an entry in the switchable port table (built at
initialization from RSCS DIRECT data set PORT statement
specifications). It must be a supported device type for the
line driver to be loaded., If it is a leased line, it must not
be already in use by another active link.

C. LAX task completes the ALERT request for line validation by
passing to DMTCMX a return code that specifies the result of
the line validation.

d. When the REX task is next dispatched, DMTCMX evaluates the
validation return code and executes appropriate routines for
the conditions in the code. If validation found the line to
be satisfactory, DMTCMX calls REX module DMTCRE to create the

Section 2: Method of Operation - Line Driver Functiomns 55

Licensed Material - Property of IBN

line driver task.

2. Load the line driver module specified for this link, using REX
module DMTCRE.

a. Call REX module DMTCOM, routine RCMSGET, to read the first
text record of the module. On returm, locate in that record
the module's size.

b. Pind in MAINMAP (the byte-map of free and in-use virtual
storage pages) the location of the number of contiguous free
storage pages required for the module.

C. Pass control to the supervisor storage manager module, DMTSTO,
to reserve the desired pages in MAINMAP.

d. W#hen the REX task is redispatched, DMTCMX constructs the line
driver module in the reserved storage with a series of
requests for the module text records, performed by the RCMSGET
routine in the DMTCOM module in the REX task.

e. Initiate startup of the line driver as a task by passing
control to the supervisor module DMTASK, giving the task name
in register 0 and the address of the task save area in
register 1. (The task name default is the first four
characters of the 1linkid if there vas no override value in the
START command for the task.) If there is no task by this name
already running, DMTASK proceeds to start this one. It builds
a task queue entry for it, marking it dispatchable. Control
passes to the REX task module DMTCMX, which issues an operator
message that the link is started, and turns on the ACTIVE and
CONNECT flags in the line driver task's link table.

f. When the newly started task's line driver task gets
dispatched, its initialization code executes.

Line Driver Task Initialization, Function Description

A line driver module is loaded and started as a task as part of starting
a link, as described above.

Whenever a task is dispatched, the register contents and the PSW in the
task's save area are loaded, and control passes to the instruction
address that wvas in the PSH.

When the line driver task is dispatched after being loaded, the PSW
assembled in its save area contains the address of its initialization
routine. Register 0 is preinitialized during loading with a count of
the parameter information, register 1 with the address of the parameter
information, and register 2 with the task's link table address.

Every RSCS line driver contains, in its initialization routine code,
logic for the following, with exceptions as noted:

a. Save the address of its link table in its own storage.
b. Copy its linkid into its own storage.

C. Copy its local RSCS location's locid (contained in the linkid
field of the first link table entry) into its own storage.

d. Scan the parameter information, decode the parameters, and

56 IBN VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

€.

nfigure itself to the link's requirements and
cifi

cation

Build the file request element that this link will pass in its
GIVE request element to AXS when it initiates or terminates
processing of an input or output file.

Build tag prototype for this task, containing initial constant
values (such as linkid) for any tag queue entry AXS will build
for this task's files.

Issue asynchronous exit requests for interrupts (usually alert
interrupts) that this link should receive through DMTASY.

Some line drivers need teleprocessing buffers. (The VMB line
driver contains its own buffer). They call the REX module
DMTCOM, routine GPAGEREQ to find the required number of pages
in MAINMAP and get the storage manager module, DMTSTO, to
reserve then.

In the NJI line driver, the DMTNIT module issues the buffer
storage requests,

If the link has a BSC line, disable the BSC adapter, set its
mode, and enable it. If the link has a channel-to-channel
adapter, test its status by a SENSE command to determine the
state of the remote systenm.

SHML LINE DRIVER FUNCTION DESCRIPTIONS

The SML line driver (DMTSML) provides binary synchronous communication
(BSC) line protocol for programmable remote stations. DMTSML contains
four types of routines:

e Processors (routines) that execute the functions required by the
processing modes.

e An input/output routine that accepts and transmits data on the BSC

line.

e A function selector routine that dispatches one of the processors when
a request for services is received.

e Buffer blocking and deblocking routines.

Figure 3-6, "Program Organization for the SML line Driver Task," shows
the functional relationships among these routines.

With programmable remote stations, the SML line driver operates as a
host (HOST mode) or as a remote job entry station (RJE mode). TIn HOST
mode a remote station may submit jobs to ¥Y4/370 and receive print and
punch output from VM/370. In RJE mode, VM/370 may send jobs to a remote
batch system for processing and receive print and punch output from the
remote batch system. Figure 2-11 shows the types of data flowing to and
from RSCS via the SML line Driver.

Section 2: Method of Operation -~ 1Lline Driver Functions 57

Licensed Material - Property of IBM

HOST Mode:

VM /370

) REMOTE WORK STATION

-1

RSCsS

—_— | Jobs

Driver in

<
SML Line 1\

|
HOST mode |

| PRINT/PUNCH Output

AV

RJE Mode

vM/370

REMOTE BATCH SYSTEM

-

RSCS r
r T | Jobs I
1 >
I
|
|

| SML Line
| Driver in
{ RJE mode
I

L

PRINT/PUNCH Output

e A\ o= cnm w-

bt cm - s = w— o

pu s emm S G . S S —

Figure 2-11. SHML lLine Driver Data Flow to Remote Stations and Systems

SML Processors

The SML program provides eight "processors," or routines, designed to
handle the eight functions required to support the processing modes.
Figure 2-12 is a list of the SML processors, the processing modes they
support, and a brief statement of their functions. The DMTSML progranm
determines its mode of operation by testing a byte, SMLSYS, which is set
during SML line driver initialization. SMLSYS set to one of the
following values:

X'80' - RJE mode, HASP
X*'40* - RJE mode, ASP
X*20* - RJE mode, VS1/JES
X'10' - HOST mode

58 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Function

Processor Mode

$CRTN1 Both Processes MULTI-LEAVING control records:
permission to transmit, request to

transmit, and SIGNON control records.

$PRTN1 RJE Processes print file records from remote
stations and passes them to the ¥M/370 spool

systen.

Processes punch file records from remote
stations and passes them to the ¥YM/370 spool
systen.

$URTN 1 RJE

$JRTN1 HOST Processes job file records from the remote
station and passes them to the VM/370 spool

system.

$WRTN1 Both In HOST mode, passes command request
elements via DMTMGX to DMTCMX. In RJE mode,
passes message request

elements to the RSCS operator's console.

$RRTN1 Both Receives records from the VM/370 spool

system for transmission to remote statioms.

CMDPROC Both Executes local commands passed by DMTCMYX;
passes messages and commands to remote

stations.

MSGPROC Both Sends messages to remote stations.

—q-———.-—--———-p———-..———-.n-——-—-...——-_q-—.]
]
e ade i e s e — e — o b . — ke —]

(o epe T e S Gy = Gy et = Y T — g Y - — . —t— oy —
o s e, e e e e - — L, e S e e, e p — ame en e o

Figure 2-12. SML Punction Processors

SML Command Processor: $WRTNT

When a command is transmitted from a remote station to RSCS, SML
receives the command and coordinates processing of the command with
Supervisor routines and the REX task commard module DMTCMX.

The SML command processor, $WRTN1, processes a command request from a
remote station by passing a command request element to the RFX task
(module DMTCMX) via a GIVE request. DMTCMX then determines whether the
command should be executed by DMTCMY, DMTAXS, or the line driver. If
the command is to be executed by the line driver, it is passed back to
SML via an alert request. SML routine CMDPROC then executes the
command.

SHML line I/0 Manager: COMSUP

The SML line I/0O handler routine, COMSUP, controls communications on the
BSC line for SML. This routine receives data from the BSC line and
passes it to the deblocker routine ($TPGET). COMSUP also sends data
(which has been blocked by the blocker routine, $TPPUT) to a remote
station. COMSUP also acknowledges receipt of data over the line using
the standard BSC line control characters.

Section 2: Mettod of Operation - Line Driver Functions 59

Licensed Material - Property of IBM

SML Function Selector Routine: $START

The $START routine is entered when SML is required (by either a remote
station or a virtual machine) to perform a function. This routine
selects a function to execute by using a "Commutator Table", a list of
synch locks, and "Task Control Tables".

Each processor except MSGPROC and CMDPROC has a TCT (task control table)
wvhich contains necessary control information. RAlso, contained within
the TCT is a branch instruction to the appropriate processor,

The SML commutator table is a branch table consisting of branch (BC) and
no-operation (NOP) instructions. The targets of the branch instructiomns
are the TCTs for the eight processor routines, COMSUP, and $TPGET, each
of which performs a specific function. When the service of a routine is
not required, the commutator table entry for that routine is a NOP
instruction. When the function of the routine is required, the NOP
instruction in the commutator table entry for that routine is replaced
with a Branch instruction, thereby "opening a gate™ in the commutator
table.

The $START routine cycles through the commutator table, falling through
any NOP instructions and taking any branches. Control is passed in this
way to any routine whose gate in the commutator table is open.

When the routine completes the function requested, it "closes" its gate
in the commutator table by replacing the Branch instruction with a NOP
instruction. $START continues cycling through the commutator table,
taking any open branches.

Initially after line driver startup, the commutator table branch
instruction for reading a card, $RCOM1, is not a NOP. This allows the
line driver to immediately read an available file from CP spool as soon
as the line driver is started. 1In this case, processor $RRTN1 gives an
OPEN request to DMTAYXS to start reading a file from CP spool. If there
is no file to be opened, $RRTN1 "closes" the commutator table gate for
$RCOM1.

when the bottom of the commutator table is reached, $START tests a
series of synch locks to see if any have been posted, signifying a
request for an SML function. If any synch lock is posted, $START opens
the commutator table gate for the requested routine and goes to the top
of the commutator table to start cycling through it again.

If the bottom of the commutator table is reached and there are no posted
synch locks, SML discontinues processing by issuing a wait request via a
call to the Supervisor module DMTWAT, waiting on a list of the synch
locks. When any of the synch locks is posted, $START receives control,
opens the appropriate gate, and starts cycling through the commutator.

Block and Deblock SML Teleprocessing Buffers: $TPPUT and $TPGET

Data received over the BSC line is placed in one of four teleprocessing
(TP) buffers. The size of TP buffers is specified by a START command
parameter and can be up to 1017 bytes.

Data contained in TP buffers is deblocked into "tanks," which are unit
buffers of a specific size used to deblock the larger TP buffers. There
are 15 tanks; these are allocated as they are needed by processors. The
size of tanks is determined by MULTI-LEAVING control bytes.

60 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

When an SML €function has been requested, the data must be either blocked
for transmission (if it is data for a remote station) or deblocked for
processing (if it has been received from a remote station).

$TPGET receives data from a BSC line (via the COMSUP routine) and
allocates tanks to output processors as they are needed.

$TPPUT receives tanks from input processors, blocks the data in these
tanks into TP buffers, and gives control to COMSUP to tramsmit the
buffers over the line.

SML File Send (Transmit Input Spool File

hi}

Assume a file to be sent to a remote node has been spooled to ESCS. The
events that follow are:

1. RSCS is informed of the presence of the file. DMTAXS accepts it by
issuing an alert to the appropriate link's line driver task
(DMTSHL) .

2. DMTSML's exit routine (ASYNEXIT) posts DMTSML's reader device synch
lock (RDEVSYNC), and control is returned to the dispatcher.

3. DMTSML is dispatched and the function selector routine, $START, is
entered. $START finds that the synch lock RDEVSINC has been posted
and opens the gate for card reading ($RCOM1) in the commutator
table (see description of 3START, above).

4. With the gate opened, $RRTN1 reads the VM/370 spool file, deblocks
(reconstructs) it into original record sizes, reblocks them into
tanks for tramnsmission, and gets them transmitted:

a. $RRTN1 issues a GIVE to DMTAYXS, requesting a spool file be
opened and requesting a virtual reader be defired for the line
driver itself.

b. On successful return from DMTAXS, $RRTN1 extracts tag
information from the spool file block (SFB) to determine the
required transmission type (e.g., print or punch), and the
transmission mode (HOST or RJE). This information is used to
prepare the tramsmission record control byte (RCB),
transmitted with each block of data.

If the file was not successfully opened, the gate in the
commutator table is closed and control returns to $START.

c. $TPOPEN is called, requesting permission to transmit (STPOPEN
does this by transmitting a Request Control Record). If
pernission is granted, the message DMTSML146I is issued to
indicate that the file is being transmitted.

d. VMDEBLOK is called. It reads VM/370 spool file blocks or
pages into page buffers, and issues subsequent reads as
records in the buffers are used up. The records are deblocked
according to the CCW information embedded with the data during
spooling. VMDEBLOK returns to the caller a deblocked record
that is placed in a 136-byte field (RCTTDTA1) within the tank.

e. The record givem by VMDEBLOK is combined with the proper

MULTI-LEAVING transmission control bytes _in preparation for
transmission.

Section 2: Method of Operation - Line Driver Functions 61

Licensed Material - Property of IBM

£. The record and its transmission control bytes are passed to
$TPPUT via a call. $TPPUT compresses the record into a "line"
that complies with the MULTI-LEAVING tramnsmission protocol.
The compressed line is packed into a teleprocessing buffer.
When the buffer is filled, it is queued to the $OUTRUF chain
for processing by COMSUP.

g. COMSUP initiates the actual I/O activity to transmit TP
buffers. COMSUP dequeues buffers from $OUTBUF for
transmission and calls DMTIOMRQ to initiate the I/0O operation.
COMSUP's gate is opened when the adapter synch lock, ADAECB
gets posted by an I/O interrupt.

h. The EOF condition is eventually reached as VMDEBLOK reads the
file from CP spool, in response to requests from $RRTN1 for
more records to send. As soon as EOF is reached: (1) Message
DMTSMLI47I is issued, (2) a GIVE is issued to DMTAXS to close
and purge the file, (3) $TPPUT is called to transmit a null
record to inform the receiver of the EOF condition, (4) the
gate in the commutator table is closed, and (5) control is
returned to the start of $RRTN1 to process another file.

SML File Receive (Spool Output File Incoming on Link) Function

This process starts with COMSUP's gate being opened when its synch lock
ADAECB gets posted by an adapter asynchronous I/O interrupt. COMSUP
examines the BSC control characters on the TP buffers received. The
three kinds of control characters received are:

1. DLE-ACK, which specifies there is no block transmitted with this
buffer.

2. DLE-STX, which specifies start of text. This acknowledges that
RSCS received a buffer containing data, and that RSCS, in response,
can send an output buffer.

3. NAK, which specifies that the buffer sent by RSCS to a remote
location was not correctly received.

The control character significant to COMSUP when receiving a file is the
DLE-STX. Upon receipt of this character from the TP line, COMSUP starts
the process of receiving a file by chaining the received buffer to the
input buffer chain, and opening the gate for $TPGET in the commutator
table.

The general sequence of events that occur is as follows:

1. $TPGET is entered; it deblocks received telecommunication buffers
into tanks, selects the appropriate processor, queues the tank to
the selected processor's TCTTANK queue. $TPGET operates as
follows:

a. Get a buffer from the $INBUFP queue and look for a matching TCT
to attach the buffer to by comparing RCBs.

b. Get a tank to decompress a buffer into.
Ce Decompress the buffer into the tank.

d. Chain the tank to the TCTTANK queue for the processor
selected.

62 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

e. Open the commutator gate for that processor.

2. The selected processor is entered when $TPGET returns to the
commutator. The processor selected is one of the following:

$PRTN1: This routine processes print files. It dequeues tanks queued to
itself by COMSUP, obtains an output spool device, and outputs the tanks
to a virtual printer as follows:

a. Call $GETTNK to obtain a tank.

b. Call DMTAXS to request for an output spool file to be opemned
and a printer device defined.

Cs Set up the carriage control using information contained in the
SRCB.

d. Call DMTIOMRQ to print a record to the VM/370 spool file.
e. Call DMTAXS to close the spool file when EOF is reached.
f. Return to the commutator ($START),

$URTN1: This routine processes punch files. It dequeues tanks queued to

itself by COMSUP, obtaims an output spool device, and outputs the tank
to a virtual punch as follows:

a. Call SGETTNK to obtain a tank.

b. Call DMTAXS, requesting an output spool file be opened and a
punch device defined.

c. Call DMTIOMRQ to punch a record to the VM/370 spool file.
d. Call DMNTAXS to close the spool file when EOF is reached.
e. Return to the commutator ($START).

4. ML~ - 3
$JRTNI: This routine proccesses job files. It degquen

3
it by COMSUP, obtains an output spool device, and
virtual punch as follows:

a. Obtain a tank from $GETTNK.

b. Call DMTAXS to have a spool file opened and a punch device
defined.

c. Call $USREXIT to validate the information on the job file's ID
card and to save any other text informationm on the ID card.
This text information represents user commands, which will be
passed to the REX task for processing. S$USREXIT also fills in
the JCTTOVM field of the processor's TCT.

d. Call DMTIOMRQ to punch the job file records to the spool file.

e. Call DMTAXS to close the spool file when EOF is reached.

£, Return to the commutator ($START).

Section 2: Method of Operation - Line Driver Functions 63

Licensed Material - Property of IBM

POW LINE DRIVER FUNCTION DESCRIPTIONS

The POW line driver (DMTPOW) provides binary synchronous communication
(BSC) line protocol for remote VSE/POWNER systems. DMTPOW contains four
types of routines:

e Processors (routines) that execute the functions required by the
processing modes.

e An input/output routine that accepts and transmits data on the BSC
line.

e A function selector routine that dispatches one of the processors when
a request for services is received.

e Buffer blocking and deblocking routines,

Figure 3-6, "Program Organization for the POW Line Driver Task," shovs
the functional relationships among these routines.

Figure 2-13 shows data flowing to and from RSCS via the PO¥ Line Driver.

vM/370

r) VSE/POWER SYSTEM

| RSCS | r .
I r I | Jobs/Commands | |
|1 > |
11 I 1 | l
| | POW Line ! | PRINT/PUNCH Output | |
] | Driver < |
11 11 | i
bl 11 Messages | i
(| < > i
' L J | ' i
| 1 L]
L 1

Figure 2-13. POW Line Driver Data Flow to a VSE/POWER Systenm

POW Processors

The POW program provides eight "processors," or routines, designed to
handle the eight functions required. PFigure 2-14 is a list of the POW
processors and a brief statement of their functioms.

64 IBM ¥M/370: RSCS Networking Logic

Licensed Material - Property of IBM

Processor Function

$CRTN1 Processes MULTI-LEAVING control records:
permission to transmit, request to

transmit, and SIGNON control records.

$PRTN1 Processes print file records from the
remote VSE/POWER system and passes then

to the VM/370 spool.

$URTN1 Processes punch file records from the

renote VSE}fSEER system and passes thenm
to the V¥/370 spool.

$WRTN1 Writes received VSE/POWER commands to the

RSCS operator's console.

S$RRTN 1 Receives records from the ¥YM/370 spool
systen for transmission to the remote

VSE/POWER system.

$MRTN1 Writes received VSE/POWER messages to the

RSCS operator.

CMDPROC Executes local commands passed by DMTCMX;
passes commands to the remote VSE/POWER

system.

MSGPROC Sends operator and system messages to the

remote VSE/POWER systen.

e e B Rt matat TP ST LTt TP
P__.._.__.L..__--__..--._._......__._-r.___q..__._..__
e . 0 D s, . . ks ——m T ad e o Smn e . —— wh —. S v wha . — v e E—— - — o — ¥

Figure 2-14. POW Function Processors

4
~

I
[
:
L
F

(@]
[
o
)
a
[T
[l
L]
¢

C

<4
th
C3
%]

The POW line I/0 handler routine, COMSUP, controls communications on the
BSC line for POW. This routine receives data from the BSC line and
passes it to the deblocker routine ($TPGET)., COMSUP also sends data
(which has been blocked by the blocker routine, $TPPUT) to the remote
system. COMSUP acknowledges receipt of data over the line using the
standard BSC line control characters.

POW Function Selector Routine: $START

The $START routine is entered when POW is required by a remote VSE/POWER
system to perform a function. This routine selects a function to
execute by using a "Commutator Table", a list of synch locks, and "Task
Control Tables'.

Each processor except MSGPROC and CMDPROC has a TCT (task control table)
which contains necessary control information. Also, contained within
the TCT is a branch instruction to the appropriate processor.

The POW commutator table is a branch table consisting of branch (BC) and

no-operation (NOP) instructions. The targets of the branch instructions
are the TCTs for the eight processor routines, COMSUP, and $TPGET, each

Section 2: Method of Operation - Line Driver Functioms 65

Licensed Material - Property of IBM

of which performs a specific function. When the service of a routine is
not required, the commutator table entry for that routine is a NOP
instruction. When the function of the routine is required, the NOP
instruction in the commutator table entry for that routine is replaced
with a Branch instruction, thereby "opening a gate" in the commutator
table.

The $START routine cycles through the commutator table, falling through
any NOP instructions and taking any branches. Control is passed in this
way to any routine whose gate in the commutator table is open.

When the routine completes the function requested, it "closes" its gate
in the commutator table by replacing the Branch instruction with a NOP
instruction. $START continues cycling through the commutator table,
taking any open branches.

When the bottom of the commutator table is reached, $START tests a
series of synch locks to see if any have been posted, signifying a
request for a POW function. If any synch lock is posted, $START opens
the commutator table gate for the requested routine and goes to the top
of the commutator table to start cycling through it again.

If the bottom of the commutator table is reached and there are no posted
synch locks, POW discontinues processing by issuing a wait request via a
call to the Supervisor module DMTWAT, waiting on a list of the synch
locks. When any of the synch locks is posted, $START receives control,
opens the appropriate gate, and starts cycling through the commutator.

POW Asynchronous Alert Exit Routine: ASYNEXIT

This is an alert exit entered by DMTSIG when a message or command has
been entered for the POW line driver to process, or, a reader file has
arrived for transmission to the remote system. It operates as follows:

1. Test if the alerting task is DMTAXS or DMTREX.

2. If the alert is from DMTAXS, call DMTPST to post the RDEVSYNC synch
lock and exit.

3. If the alert is from DMTREX, determine if it is for a command or
message.

4. If it is a command and a previous command is not being processed,
accept the command, post CMDECB, and exit. Otherwise, indicate to
DMTREX that the command is refused, and exit.

5. If it is a message, call MFI in DMTCOM to stack the message for
later processing, post MSGECB, and exit.

Block and Deblock POW Teleprocessing Buffers: $TPPUT and $TPGET

Data received over the BSC line is placed in one of four 512-byte
teleprocessing (TP) buffers.

Data contained in TP buffers is deblocked into "tanks," which are unit
buffers of a specific size used to deblock the larger TP buffers. There

are 15 tanks; these are allocated as they are needed by processors.

When a POW function has been requested, the data must be either blocked

66 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

for transei

AT LS

deblocked for processing

VSE/POWER s

$TPGET rece
allocates t

VSE/PCWER system), or
ed £

£ a e
been receiv rom a remote

oo = €=
SSa

[#]

n !
I

+
L <

aa

dat
if i

b
i

P
(o]
=
Y]

0

ystenm) .

ives data from a BSC line (via the COMSUP routine) and
anks to outrut processors as they are needed.

$TPPUT receives tanks from input processors, blocks the data in these

tanks into

TP buffers, and gives control to COMSUP to transmit the

buffers over the line.

POW Control

Record Processor: $CRTN1

This routin
records. I

1. Get a
$CRTN1
entry.

2. If a t
for $T

3. Ba sed

e performs the processing required for MULTI-LEAVINRG control
t functions as follows:

control tank from the queue; if none are available, close the
gate in the commutator and exit to the next commutator
ank is available, remove it from the queue and open the gate

PGET to get another tank.

on the bits contained in the RCB, branch to the appropriate

sub-processor. The following table lists the routines that can be

entered.

r L] L] Al
| RCB | Routine | Reason for Entry |
b + —+ 4
| 80 { MCO | Not supported; exit |
| 90 | MC1 | Start function request |
] A0 1 MC2 | Start function permission |
i BO | MC3 | Not supported; exit |
{ co | MCH | Not supported; exit]
I DO | MCS5S | Not supported; exit |
| EO | MC6 | Not supported; exit {
i FO | MC7 | General control record |
L 1 1 J
MC1 - This sub-processor is entered when VSE/POWER transmits a

Mc2 -

MC7 -

S

"Request to Initiate Function" record. The function to be
started is contained in the SRCB. 1A search is made of all
the TCTs to find a match on the function code. If none is
found, exit. If a matching TCT is found, the RCB in the
received record is changed to X'A0' (Permission Granted) and
$TPPUT is called to send the record to VSE/POWER.

This sub-processor is entered when VSE/POWER transmits
"Permission Granted" to a "Request to Initiate Function" from
RSCS. A search is made of all the TCTs to find a match on
the function code contained in the SRCB. If none is found,
exit. If a matching TCT is found, its gate in the commutator
is opened to allow it to begin processing.

This sub-processor is entered when a general control record
is received by RSCS. This type of control record contains a
sub-function code in the SRCB. This code is an
identification character between A and Z (EBCDIC). Only A
(initial signon) is supported. DMTPCW checks the record for
"PSIGNONxxx" or "PCOMPLETE", If PSIGNON, $TPPUT is called to
transmit "PREADYnnn". If PCOMPLETE, message DMTPOWI90S5I is

ection 2: Method of Operation - Line Driver Functions 67

Licensed Material - Property of IBN

issued and a switch is set to indicate signon complete.
Otherwvise, error message DMTPOW902E is issued and the line
driver is deactivated.

POW File Send (Transmit Imput Spool File om Link) Function

Assume a file to be sent to a remote node has been spooled to RSCS. The
events that follow are:

1.

68

RSCS is informed of the presence of the file., DMTAXS accepts it by
issuing an alert to the appropriate link's line driver task
(DMTPOW) .

DMTPOR's exit routine (ASYNEXIT) posts DMTPOW's reader device synch
lock (RDEVSYNC), and control is returned to the dispatcher.

DMTPOW is dispatched and the function selector routine, $START, is
entered. $START finds that the synch lock RDEVSYNC has been posted
and opens the gate for card reading ($RCOM1) in the commutator
table (see description of $START, above).

With the gate opened, $RRTN1 reads the VM/370 spool file, deblocks
(reconstructs) it into original record sizes, reblocks them into
tanks for transmission, and gets them transmitted:

a. $RRTN1 issues a GIVE to DMTAXS, requesting a spool file be
opened and requesting a virtual reader be defined for the line
driver itself.

b. On successful return from DMTAXS, $RRTN1 extracts tag
information from the spool file block (SFB) to determine the
spool file type (console, print, or punch). If the file is
not a punch file, message DMTPOWILOE is issued and the file is
purged.

If the file was not successfully opened, the gate in the
commutator table is closed and control returns to $START.

C. $TPOPEN is called, requesting permission to transmit ($TPOPEN
does this by transmitting a Request to Initiate Function
Record). If permission is granted, the message DMTPOW146I is
issued to indicate that the file is being transmitted.

d. VMDEBLOK is called. It reads VM/370 spool file blocks or
pages into page buffers, and issues subsequent reads as
records in the buffers are used up. The records are deblocked
according to the CCW information embedded with the data during
spooling. VMDEBLOK returns to the caller a deblocked record
that is placed in a 136-byte field (RCTTDTA1) within the tank.

e. The record given by VMDEBLOK is combined with the proper POWER
MULTI-LEAVING transmission control bytes in preparation for
transmission.

f. The record and its transmission control bytes are passed to
$TPPUT via a call. S$TPPUT compresses the record into a "line"
that complies with the POWER MULTI-LEAVING transmission
protocol. The compressed line is packed into a teleprocessing
buffer. When the buffer is filled, it is queued to the
$OUTBUF chain for processing by COMSUP.

g. COMSUP initiates the actual I/O0 activity to transmit TP

IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

buffers, CONMSUP dequecues buffers from $0UTBUF for
transmission and calls DMTIOMRQ to initiate the I/O operation.
COMSUP's gate is opened when the adapter synch lock, ADAECB

gets posted by an I/0 interrupt.

h. The EOF condition is eventually reached as VMDEBLOK reads the
file from CP spool, in response to requests from $RRTN1 for
more records to send. As soon as EOF is reached: (1) Message
DMTPOW147Y is issued, (2) a GIVE is issued to DMTAXS to close
and purge the file, (3) $TPPUT is called to tramsmit a null
record to inform the receiver of the EOF condition, (4) the
gate in the commutator table is closed, and (5) control is
returned to the start of $RRTN1 to process another file.

POR File Receive Function

This process starts with COMSUP's gate being opened when its synch lock
ADAECB gets posted by an adapter asynchronous I/O interrupt. COMSUP
examines the BSC control characters on the TP buffers received. The
three kinds of control characters received are:

1. DLE-ACK, which specifies there is no block transmitted with this
buffer.

2, DLE-STX, which specifies start of text. This acknowledges that
RSCS received a buffer containing data, and that RSCS, in response,
can send an output buffer.

3. NAK, wvhich specifies that the buffer sent by RSCS to a remote
location was not correctly received.

The control character significant to COMSUP when receiving a file is the
DLE-STX. Upon receipt of this character from the TP line, COMSUP starts
the process of receiving a file by chaining the received buffer to the
input buffer chain, and opening the gate for $TPGET in the commutator
table.

The gemneral sequence of events that occur is as follows:

1. $TPGET is entered; it deblocks received telecommunication buffers
into tanks, selects the appropriate processor, queues the tank to
the selected processor's TCTTANK queue. $TPGET operates as
follows:

a. Get a buffer from the $INBUF queue and look for a matching TCT
to attach the buffer to by comparing RCBs.

b, Get a tank to decompress a buffer into.
Ce. Decompress the buffer into the tank.

d. Chain the tank to the TCTTANK queue for the processor
selected.

e. Open the commutator gate for that processor.

2. The selected processor is entered when $TPGET returns to the
commutator. The processor selected is one of the following:

$PRTN1: This routine processes print files, It dequeues tanks queued to

itself by COMSUP, obtaimns an output spool device, and outputs the tanks
to a virtual printer as follows:

Section 2: Method of Operation - Line Driver Functions 69

Licensed Material - Property of IBM

Call $GETTNK to obtain a tank.

Test for end-of-file. If not EOF, continue processing. If EOF
exists and the file was previously opened, issue message
DMTPOW145I and close the file via a call to DMTAXS.

Othervise, free the tank (see step q).

Convert the "CTR"™ characters into a CCW opcode and remove thenm
from the record. If the resultant opcode indicates a special
VSE/POWER CCW (X'FF' or X'FD'), free the tank.

Note: "CTR" refers to the VSE/POWER command code that is
contained in the first two bytes of all data transmitted from
VSE/POWER to RSCS and in commands and messages sent from RSCS
to VSE/POWER. The CTR is the expanded hex format (X'0B'
becomes FOFB) of the CCW opcode that will be used to print the
data. For commands, CTR is 00.

If the opcode is a NOP (X'03'), this indicates the possibility
of a VSE/POWER MLX record in the data. If the record is not
MLX1, free the tank. Otherwise, close the file via a call to
DMTAXS (if it was open).

Note: MLX records are intermal VSE/POWER control records that
allow VSE/PORER to send JECL information to another VSE/POWER
system. These records are contained at the beginning of all
list and punch files sent from VSE/POWER to RSCS. RSCS
extracts the class, copy count, and number of records from the
first of the three MLY records. These records are transmitted
with a NOP CCW opcode (X'03') by VSE/POWER and are not printed
or punched in the output produced by RSCS.

Extract the output class, number of copies, and number of
records from the MLX1 record, open the spool file via a call
to DMTAXS, and issue message DMTPOW144T.

Using the CCW opcode obtained from the "CTR" characters, send
the output line to the V4/370 spool file via a call to
DMTIOMRG.

Free the tank - remove the current tank from the queue, open
the commutator gate for $TPGET, and return to the beginning of
the processor.

$URTN1: This routine processes punch files. It dequeues tanks queued to
itself by COMSUP, obtains an output spool device, and outputs the tank
to a virtual punch as follows:

70

a.

b.

Ce

Call $GETTNK to obtain a tank.

Test for end-of-file. If not EOP, continue processing. If EOF
exists and the file was previously opened, issue message
DMTPOW145I and close the file via a call to DMTAXS.

Otherwise, free the tank (see step g).

Convert the "CTR" characters into a CCW opcode and remove thenm
from the record.

If the opcode is a NOP (X'03'), this indicates the possibility
of a VSE/POWER MLX record in the data. If the record is not
MLX1, free the tank. Otherwise, close the file via a call to
DMTAXS (if it was open).

Extract the output class, number of copies, and number of
records from the MLX1 record, open the spool file via a call

IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

to DMTAXS, and issue message DMTPOW 44T,

f. Send the output line to the VM/370 spool file via a call to
DMTIOMRQ.

ge Free the tank - remove the current tank from the queue, open
the commutator gate for $TPGET, and return to the beginning of
the processor.

$WRTN1: This routine writes received VSE/POWER commands to the RSCS
operator. It functions as follows:

a. Close the commutator gate for this processor.

b. Call $GETTNK to obtain a tank.

C. If no tank is available, return to the commutator.

d. Kemove the ¥®CTE"® characters from the incoming record.

e. Set up a message buffer and issue message DMTPOW94UI via a
call to DMTREX.

Note: This message will contain the received VSE/POWER
command.

f. Remove the current tank from the queue and open the gate for
$TPGET.

g. Return to the beginning of the routine and try to obtain
another tank.

$MRTN1 This routine writes received VSE/POWER messages to the RSCS
operator. It functions as follows:

a. Close the commutator gate for this processor.

b. Call SGETTNK to obtain a tank.

C. If no tank is available, return to the commutator.

d. Remove the "CTR" characters from the incoming record.

e. Set up a message buffer and issue message DMTPOW170I via a
call to DMTREX.

Note: This message will contain the received VSE/POWER
message.

f. Remove the current tank from the queue and open the gate for
$TPGET.

g. Return to the beginning of the routine and try to obtain
another tank.

POW Message Handler: MSGPROC

This routine is entered when the MSGECB is posted by the asynchronous
exit routine, indicating messages are in the MSG queue for this line
driver. It operates as follows:

1. Close the commutator gate for MSGPROC.

Section 2: Method of Operation - Line Driver Functions EA

Licensed Material - Property of IBNM

2. Call MFO in DMTCOM to remove a message from the queue. If none are
available, send EOF to VSE/POWER via a call to $TPPUT and return to
the commutator.

3. If the message is not from the system or the RSCS operator, issue
me ssage DMTPOWS31I and return to the beginning of the routine to
get another message.

4. If the message was from the RSCS operator, prefix the message with
"DMTPOW170I from 'linkid‘'",

S. Put the message into the comnsole tank and insert "CTR" prefix.

6. Call $TPOPEN to send a "Request to Initiate Function" transmission
to VSE/POWER.

7. Call $PUT to send the actual message, then return to the beginning
of the routine to get another messsage.

POW Command Handler: CMDPROC

This routine is called by $START when a wait request completes with the
posting of the command arrival synchronization lock (CMDECB) following
the acceptance of a command alert element from DMTREX. The command code
table (CMDTABLE) is searched for a code matching that of the accepted
element, and the command's processing routine is entered when a match is
made. If no match is found, message DMTPOWS31I is issued, and a return
is made to the commutator, thus ignoring the command. The command
processing routines are:

L h) L J
| Routine | Command Processed |
2 + i
| SETSTART | START 1
| SETDRAIN | DRAIN |
| SETFREE | FREE i
SETHOLD	HOLD
SETTRACE	TRACE
SETCMD	cHMD
L L i |

These individual command processors issue messages, set flags, and
modify other line driver status, depending upon the particular command
and the processing status of the line driver. When processing is
complete, control is returned to CMDPROC which them returns to the
commuta tor.

If the command specified was CMD, this indicates that DMTPOW must
forward a command to VSE/POWER for execution. The processing is as
follows:

1. Verify that the command was entered by the RSCS operator; if not,
issue message DMTPOWS31I and exit.

2. Syntax check the command text to ensure that the entered VSE/POWER
comnmand and its operands are supported for the RSCS-to-VSE/POWER
connection. If not, message DMTPOW941E, 942E, or 943E is issued
and an exit is made from the SETCMD routine.

3. Put the command into the console tank, move in "CTR"™ and "* ., "
prefizes.

72 IBM VYM/370: RSCS Networking Logic

Licensed Material - Property of IBM

4. Call $TPOPEN to send a "Request to Initiate Function" transmission
to VSE/POWER.

5. Call $PUT to send the command.
6. Call $TPPUT to send EOF.

7. Return control to CMDPROC which then returns to the commutator.

Typical RSCS to VSE/POWER Line Tramsmissions

P4 .

Figures 2-15 to 2-20 show the character sequence used in the following:

s Signon procedure
e Initiation of a tramsmission
e Command transmission
e Stop proced ure
e Transmission of text in one direction
e Transmission of text in both directions
L Ll r 1
| | | |
| RSCS 1 i VSE/POWER |
| | 1 |
[] J L]
| i
| |
1< SOH,ENQ (non—tranms.) 21
| DLE,ENQ (transparent) 1
| |
| 1
| >DLE ,ACKO >1
i i
| 1
1 1
|<—SOH,STX,BCB,FCS,FCS,RCB, SRCB, * , ,PSIGNONrrr{ ,password], |
l RCB,SYN, ETB < |
| I
| |
|———>S0H,STX,BCB,FCS,FCS,RCB,SRCB,* .,.PREADYnnn, |
{ RCB,SYN, ETB > |
| |
i !
(RS SOH,sTX,BCB,FCS,FCS,RCB,SRCB,* . ,PCOMPLETE, |
| RCB,SYN, ETB< |
| I
| |
| >DLE ,ACKO >1
1 A |
JHandshaking | |
! v |
« DLE,ACKO< !
rrr = global remote identifier generated within the POWER macro.
nnn = global remote identifier from the Cnnn parameter of RSCS START

command.

Figure 2-15. Signomn Procedure

Section 2: Method of Operation - 1line Driver Functions 73

Licensed Material - Property of IBNM

RSCS VSE/POVWER

.
e s e o
e e — e

|

| Request permission to initiate a function:

I< SOH, STX,BCB,FCS,FCS,RCB,SRCE,SCB,
1 RCB, SYN,ETB<
|

| Grant permission to intiate a function:

i >SOH,STX,BCB, FCS, FCS,RCB,SRCB, SCB,

| RCB,SYN,ETB >

t

| Data block:
1< SOH,STX,BCB, FCS, FCS,RCB, SRCB,SCB,
| ctr,ctr,5CB....¥<

|

| End of stream record:
i< SOH, STX ,BCB,FCS,FCS,RCB,SRCB,SCB,
I RCB,SYN, ETB
|

(B¢ DLE, ACKO<

Figure 2-16. Initiation of a Transmission

RSCS VSE/POWER

N——

< Request permission to
initiate a function<

>6rant permission to
initiate a function

\4

b i o St et S o S g N S - S NS T s —

{————S0H,STX, BCB, FCS, FCS, RCB,SRCB,SCB,ctr, ctr, SCB,
* ,, command,SCB,RCB,SYN,ETB<

>DLE, ACKO

v

< End of stream record<

>DLE, ACKO

\%

Figure 2-17. Command Transmission

74 IBM VM/370: RSCS Networking lLogic

Licensed Material - Property of IBHM

r Ll r]
| | 1 |
! RSCS H 1 VSE/POWER !
| | | |
L ' L 2
l - - -
| Request permission to initiate a function:
i< SOH, STX,BCB,FCS,FCS,RCB,SRCB,SCB,
RCB,SYN, ETB<
Grant permission to initiate a function:
> S0H,STX,BCB,FCS5,FCS,RCB,SRCB,S5CB,
RCB,SYN, ETB >

<

SOH,STX,BCB, FCS,FCS,RCB,SRCB,SCB,ctr,ctr,SCB,
* .. PSTOP LINE[,E0J],SCB,RCB,SYN,ETB<

e o S e S S e - w ——

>DLE,ACKO— >
Figure 2-18. Stop Procedure

LN L} L) L]
1 | { |
| RSCS | | VSE/POWER I
| | 1 |
L] L ']

{ |

I . |

|{—————Request permission to initiate a function< 1

| I

}— >Grant permission to initiate a function >1

i 1

(K¢ - text 1< |

| |

[>ACKO >1

{ line error |

t L, |

1< | text2< i

I v l

| >NAK >3 |

l I

1< text2< |

I |

| >ACKO >

| . i

| - |

i< textn< |

| 1

| >ACKO >1

| !

I< End of stream record< [

| {

>ACKO >3

Figure 2-19. Text in One Direction

Section 2: Method of Operation - Line Driver Functions 75

Licensed Material - Property of IBHNM

r - ~ b
| | ! |
i RSCS I | VSE/POWER |
| | i |
L 4 [J

| |

{ |

1< Request permission to initiate a function< i

| 1

i >Grant permission to initiate a function >1

| |

1< text 1< |

| |

I >Request permission to initiate a function >1

| |

1< Grant permission to initiate a function< |

| |

I >texta > |

| |

1< text2< |

1 line error 4 1

| >texthb | >

i v |

I< NAK< |

| |

i >textb >

| I

I< text3< |

| |

| >textc >1

| 1

« textl< 4

Figure 2-20. Text in Both Directioms

NPT LINE DRIVER FUNCTION DESCRIPTIONS

The NPT line driver (DMTNPT) provides binary synchronous communication
(BSC) line protocol for nonprogrammable remote terminals. This allows:

e Remote users of VM/370 to enter source decks, data, and jobs, on
cards, into the VM/370 spool system

e YM/370 to send spooled output of virtual machine sessions to remote
card punches and printers

¢ Remote stations to transmit card decks to one another

e Remote stations to send job streams to a CHS Batch virtual machine
operating under the same VM/370 and have the output returned to the
remote station

e Remote stations to submit jobs or commands to any node in the network
and direct the output to any node or remote station in the network.
The default is return to origin.

NPT is a line driver task operating under the control of the RSCS
supervisor. Each NPT task drives one remote nonprogrammable station.
In other words, each NPT task controls a single point-to-point
comnunications line. The task is started by the RSCS operator,
identified with a destination name, and provided with a leased or
svitched telephone line. The communications line is either identified

76 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

by the operator or derived from a table entry within RSCS. The line is
then activated and the type of remote station and its configuration
details are obtained from control cards entered at the remote station,
or from a table entry within RSCS. After this initialization is done,
the terminal may then be used to submit files via the card reader and

receive files on the punch and printer.

The remote station operator camn control I/0O activity via control cards
and standard station procedures. The RSCS operator controls the
operation with commands from his console. The virtual machine user
retrieves files senrt to his virtual machine by using normal virtual card

reader management programs and directs output to the appropriate station

using the SPOOL and TAG commands of VM/370.
NPT operates with variations of the basic BSC protocol for each of the

stations listed. The protocol is based upon the station identification
information provided inr a SIGNON card read at task imitialization time.

NPT Line Driver Send Function

Check the status flags for the GETBLOCK processor:

BUFEMPTY: 1is the unpack buffer (BUFUNPK) used to fill the 1line
buffer (LINEBUFF) empty?

HEADFLAG: is there a header record to be inserted into the line
buffer?

FILACTIV: is there a file being transmitted now or does omne have to
be obtained from VM/3707?

RDRCMD: are there any commands pending execution?

EOF: has end-of-file been reached for the file currently being
processed ?

1. Get a Spool File Block to Transmit
Branch to GETFILE.

Test to see if there is a file to send. 1If there is a file,
request AXS to open it for transmission. When the file is obtained
determine whether it is a print or punch file, initialize data
counters, buffers, and registers, and write message DMTNPT 1461,
indicating that a file is being sent. If there are errors, write
appropriate messages.

2. Write Header Record: HEADPREP
If the header transmission flag is on, a printer header or
printer/punch separator line is to be inserted into LINEBUFF via a
branch to HEADPREPR.
HEADPREP tests for the type of file (print or punch) and inserts
the appropriate line into the unpack buffer (BUFUNPK). On return

from HEADPREP, the unpack buffer is packed for transmission on the
BSC line.

3. Process Spool File Block for tramsmission: MAKEBLOC

Section 2: Method of Operation - Line Driver Functions 77

78

Licensed Material - Property of IBM

At GETLINE, if the BUFEMTPY flaqg is off, a new record is ready
to be inserted into the line buffer. Check the maximum bhyte
count and record count allowed in LINEBUFF and see if this
record exceeds the maximum. If this record exceeds the
maximum counts, the appropriate BSC control characters are
inserted into LINEBUFF to complete the transmission sequence
and control is passed back to the caller.

If the record can be inserted in LINEBUFP, it is moved into
LINEBUFF along with the appropriate BSC control characters.
BUFPEMTY is then turned on and a new record obtained via a
branch to GETNEW.

At VMSPOK, initialize counter registers and set FILLED flag on
in GETFLAGS. If there is already a block to process an entry
to MAKEBLOC, update the counter registers.

At VMSPCCW, process the spool block record. Move the record
into BUFUNPK. In the case of an immediate CCW command, only
the CCW command is moved into BOFUNPK and IMDCMD flag is set
on.

At MAKERET, after the line has been converted for transmission
a 0 is set as return code if there is more data to process.

On end-of-file, a 4 is set as the return code. If there was
an error during processing, message DMTNPT190E is written.

Transmit line: NPTGET

a.

At NPTGET, check for messages and try to get a block of data
to write from VM/370., If there are no messages to process,
branch to GETBLOCK to get a block of ¥YM/370 data to transmit.
Oon return from GETBLOCK with no data to transmit, determine
whether there are files to read.

At NPTSTART, on return from GETBLOCK with data to transmit,
initialize the output buffer (LINEBUF) by:

(1) Testing flags in the GETFLAGS table and Device Block, and

(2) MOving into the Device Block the BSC control characters
describing the features of the remote station to which a
file is to be transmitted.

Load the ENQPROG channel program into the Device Block and
branch to LINEIO to execute an I/0O operation requesting
permission to transmit to the Remote Station. Test for the
line errors resulting from the I/O operation.

At NPTENQOK, when the response to ENQ is correct, (DLE, ACKO)
initialize control counters (constants and registers) for
transmission of the file. EXREPLY contains the expected line
error checking via BSC line protocol. DCX and INDEVSEL
contain data control characters for printer and punch devices.
Move the TALKPROG channel program into the Device Block. Set
the return address to the GETVRFY routine.

At NPTTALK, execute a write I/O operation by branching to the
LINEIO routine. Set the return address to the GETVRFY
routine.

At NPTEOT, on end of file, move the EOTPROG channel progranm
into the Device Block and branch to the LINEIO routine to send
an end of tramsmission signal to the remote station.

IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

wn
"

Verify Response to Transmission: GETVRFY

a.

Check the response from the last transmission for:

EXREPLY
Either ACKO0 or ACK1, in the normal BSC transmission protocol.

NAK
Negative acknowledgement.

EOQT
End of text - used to specify that the tramsmiss

ssi
incomplete. Also, used to notify the receiving station that
there are errors receiving data at this end of the line.

.
on is

ENQ
Used to request permission to tramsmit a file. Also, used to
"hbalance" the line in recovering from errors.

When the EXRFPLY flag specifies that the expected reply has
been received, the next expected reply is set (ACKO or ACK1)
and control is returned to NPTGET.

When a NAK is received, the NAK counter (STATNAK) is
incremented a test is made to see if this is the second NAK by
checking the NAKREC flag. If this is the first NAK received,
retransmit the block by branching back to NPTGET. If this is
the second NAK, reset the line by sending an EOT and an ENQ.

When an EOT response is received, try to send the block again.

At REPENQ, when an ENQ is received, check for I/0 errors, set
ACK1 as the next response, and branch to NPTGET to continue
processing.

ENQ is sent to request permission to transmit or to resume
transmission of a file after errors on the line or timeouts.
After multiple ENQ transmission, send EOT to reset the line.

Obtain each subsequent block of this file with DIAGNOSE X'14¢,
subcode 0.

At GETPURGE, on end-of-file, write message DMTNPT147I, indicating
that a file has been sent and purge the file via a branch to AXS.

NPT Line Driver Receive Function

TEST FOR REQUEST TO TRANSMIT FROM REMOTE STATION: At NPTGET, monitor the
BSC line for tasks to perform.

1.

Check for messages and try to get a block from VM/370 to write. If
there are no messages to process or VM/370 files to transmit, read

from the BSC line to determine whether a file is being transmitted

from a remote station.

At NPTINIT, read a line of data.

Load the READPROG channel program into the device table describing

Section 2:; Method of Operation - Line Driver Functions 79

Licensed Material - Property of IBM

the I/0 operation and branch to LINEIO to execute the read. If
there were no flags set in the DEVFLAGS table, there is nothing
being transmitted on the BSC line. 1In this case, branch back to
NPTGET to try to get a VM/370 spool file to transmit.

3. Test for request permission to transmit.

When a line of data has been received over the BSC line, check the
BSC control characters for a request to transmit. If such a
request (ENQ) is not received, branch back to NPTDINIT to check for
another operation to perforn.

4. At NDTACKO, send permission to transmit.

When an ENQ is received, load permission to transmit (ACK0) in the
REPLY entry in the I/0 Counter Table, load the ACKPROG channel
program in the Device Table for this I/0 operation and branch to
LINEIO to transmit permission to transmit. On return from the I/0
operation, check the results via a branch to PUTVRFY.

VERIFY READ OPERATION BSC DATA:

1. Check for I/O errors on the BSC line: PUTVRFY

a. At PUTVRFY, check for I/0 errors during the last transmission.
If there are no errors, processing continues at CKBUFF.

b. At NPTNAK, if there are any errors, check for timeout. If a
timeout error, send a NAK, If the maximum NAKs allowed are
sent, reset the line by sending an EOT. If the maximum number
of timeouts has occurred, close the file via a branch to
PUTCLOSE in the PUTBLOCK routine.

2. Check the BSC control characters.

a. At CKBOFF, check the BSC control characters of the buffer just
received: STX or DLE STX for the leader and ETB or ETX at end
of buffer. If all characters are acceptable, branch to
PUTBLOCK to continue processing.

b. At NPTTALK, if the leader characters are not STX or DLE STX,
check for ENQ, EOT, or NAK. If an ENQ is received, send ACKO
to the remote station.

If an EOT or a NAK is received, set the EOTREC (EOT received)
flag and branch to PUTBLOCK.

Ce. At REPLY2, if the leader characters are unidentifiable, load
the "not ready" program, send it, and check for I/0 errors and
an ENQ. If the reply is not ENQ, send an ACKO back across the
line.

d. At NPTTALK1, if the reply is ENQ set the return address to

PUTVRFY and go to LINEIO to write the next line. If there are
I/0 errors, exit to PUTCLOSE in the PUTBLOCK routine (REPLY3).

WRITE BLOCK OF DATA TO VM/370 SPOOL FILE:

1. Check status of file processing.

80 IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBM

At PUTBLOCK, determine the status of file processing by checking
for an already active file, end of file, an error in processing,
and setting the correct response to the received tranmsmission (ACK1
or ACKO0). If a file is active, continue processing. On end of
file, close the file. If there was an error in processing, resend
the buffer via a branch to NPTTALK1.

Convert a line of data to VM/370 format.

At TRT1, if a file is being processed, get the address of the line
buffer and convert the characters to VM/370 format. When a block
is completely reformatted, get another via a branch to NPTTALK1.

Determine whether the current record is a command.

At FOUND, check the current record to see if it is a command. If
the return code from the command processor is zero, branch to
PUTSKIP to skip printing of the command 1line.

Validate the userid of an ID card.

In FOUND, check the current record to determine if it is an ID
card. If the record is an ID card, validate the card and move the
VM userid into TAGTOVM, the target virtual machine for the file to
be processed.

Open a file.

At PUTOPEN, open the new file for processing by writing message
DMTNPT 144X, informing the operator that a file is being sent.
Clear the request synchronization lock and request the supervisor
GIVE request routine to handle the open request. On return from
the GIVE processor, set the FILEOPEN flag and get the first block
of data via a branch to NPTTALK1 (via PUTSKIP, where printing of
the ID card is skipped).

Write a block of data to a VM/370 spool file.

a. At PUTWRITE, write .a block of data to a VM/370 spool file by
decompressing the record, if required, loading the PUTPROG
channel program, and branching to LINEYO to handle the I/0O
operation.

b. At PUTSKIP, records that need not be written to the file (such
as commands, ID cards, and blank records) are skipped.

When a write operation is interrupted by EOT or an alert,
processing is continued via a branch to PUTCLSY4.

Close a file.

At PUTCLOSE, close the file by writing message DMTNPT145I,
informing the operator that a file has been received, clearing the
synchronization lock, setting the close function code in the
request block, and requesting the MSUP Supervisor GIVE request
handler to close the file. If the file is not open, issue message
DMTNPT934E.

Section 2: Method of Operation - Line Driver Punctions 81

Licensed Material - Property of IBM

VMB LINE DRIVER FUNCTION DESCRIPTION

The VYMB line driver (DMTVMB) is for transmitting VM/370 spool files
between VM/370 systems over BSC lines. DMTVMB communicates with another
copy of itself using the file address specified on the VM/370 TAG
command (location and userid) to determine the recipient virtual
machine. DMTVMB supports both print and punch file transmission between
users operating on two different VM/370 machines or transmission from a
VM/370 user to a real unit record device on a remote VM/370 machine.

The VMB Lline Driver emfploys a variation of standard BSC protocol similar
to MULTI-LEAVING; it is transparent, symmetrical, and can sustain
simultaneous two-way data transfer by interleaving block reception and
transmission. All data records are compacted by reducing all sequences
of five or more identical characters into a four-character segquence.
Standard BSC transparency mode is used for data transmission to remove
restrictions on data content. The protocol is symmetrical, with no
master/slave relationship between the communicating systens.

VMB BSC Telecommunication Protocol

VMB protocol provides a quiesced state when neither system has data to
transmit to the other. This provision avoids forcing the CPU cluster to
an active state (thereby running the system meter) when communication is
available but not actually active, Communication may be restarted by
either of the connected systems when data arrives for transmission.
Contention (simultaneous activation) is not a problem, because data flow
can commence in both directions as soon as transmission exchange is
synchronized.

Bidirectional interleaved half-duplex communication is achieved through
the use of the block header for acknowledgment or rejection of the
previously received transmission. The acknowledgment byte flag setting
in the block header explicitly confirms successful reception and
processing of the data transmitted by the remote system in the preceding
line sequence. When a received block cannot be processed because systenm
resources have been exhausted, an acknowledgment byte flag setting
requests retransmission of the block.

If recoverable I/0 errors occur during a block transmission, the
receiver responds with a negative acknowledgment (NAK), requesting
complete retransmission of the preceding sequence. Serious line I/0
errors, negative acknowledgments to negative acknowledgments and long
duration timeouts (>15 seconds) while waiting for response are condi-
tions that terminate exchange synchronization. Exchange may then be
restarted as from the quiesced state by either system with data to
transmit.

BSC Transmission Sequences

BSC TRANSMISSION SEQUENCE WITHOUT DATA
AS TRANSMITTED -->

SYN, SYN, SYN, SYN, SOH, 00, 00, 00, 00, [(1)], ETB
AS RECEIVED -->

SoH, 00, 00, 00, 00, [(1)], ETB, (2)

82 IBM VM/370: RSCS Networking Llogic

Licensed Material - Property of IBM

AS TRANSMITTED -->

SYN, SYN, SYN, SYN, SOH, 00, 00, 00, 00, [(1)], ITB, SYN, SYN,
'yr, 'Mr, 'RY, 'AY, (3), (4 - FIVE BYTES), (5 - TWO BYTES),
DLE, STX, (6 - PACKED DATA), DLE, FETB

AS RECEIVED -->

SO®, 00, 00, 00, 00, [(1)], ITB, (2),
'yi, YHY, RY, 'A', (3), (4 - ?;vE BYTES), (5

DLE, STX, (6 - PACKED DATA), DLE, ETB, (2)

n
|
+3
E
(@]
o

Explanation of Underlined Digits in Above Sequences

1 Acknowledgment flag, present only when the preceding transmission
from the remote station included a packed data block.

X' 80' - Preceding block was successfully received and processed,
and may be discarded by the sender.

X'A0' - Preceding block was successfully received, but could not be
processed due to lack of available system resources -
transmission must be retried later.

2 An error index byte that is generated by the BSC telecommunications
adapter operating in "ITB Mode", to flag data errors detected by
check sum mismatches.

3 A one-byte EBCDIC block sequence number, modulo 8 (X'FO'-X'F7°'),
used to detect possible duplicated tramnsmissions so that the
duplicated data may be discarded.

L A five-byte EBCDIC data block content descriptor:

C'SYINCH' - Null data block - intended to be discarded. (This is

used on line driver restart so that the initial data
transmission will not be erroneously discarded due to a
spurious block serial number match.) |

C'PRINT' - Print image data.

C'PUNCH' - Card image data.

C'MSGHD' - Commands, messages, or link control records.

5 A tvo-byte formatted packed data count:

}]1 X ¥ X X ¥ X ¥YJ1 X X X X X X X|
[(R R I D [I T D R |
| High-Order Count Bits | Low-Order Count Bits |
The packed data count is constructed by discarding the high-order
bit of each of the two count bytes and juxtaposing the remaining
bits into a 14-bit binary count. (The high-order bit of each byte
is always set to "1" to avoid possible duplication of a BSC control
character, because only the packed data block itself is transmitted
in transparency mode.)

6 One or more packed data records, to a maximum length of 824 bytes.

Figure 2-21 shows the protocol for transmission error retry and Figqure
2-22 shows typical line tramsactions.

Section 2: Method of Operation - Line Driver Functions 83

Licensed Material - Property of IBN

TERMINUS 1 TERMINUS 2
* TIME *
* | *
* | *
1
l v I
! |
l r 1 1
——==> 1 BLOCK 1 1 -—--> RECEIVES BLOCK O.K.
| L] |
! |
DETECTS | r v |
ERROR <==== | BLOCK 2] (===
| L J |
| |
——==> 'NAK? ---=> RECEIVES 'NAK'
! r 2] |
RECEIVES <{-~--- | BLOCK 2 1 <---— RESENDS LAST RLOCK
BLOCK O.K. | L 4 |
| r Y |
----> | ERLOCK 3 | —-——=>
[l J

R
R p———

Fiqure 2-21. Protocol for Transmission Error Retry

84 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBX

TERMINUS 1 TERHINUS 2
PREPARE - READ TIME PREPARE - READ
! H |
(DATA TO | | i
BE SENT)--> HDV | I
| v I
—-=>1ENQ" ---> RECEIVES 'ENQ'
| i
| |
RECEIVES Y- *DLE,ACKO' <---
'DLE,ACKO" 1 '
! r : i
-—=> {DUMMY HEADER| -—=>
I | & DATA | i
I L d |
1 r 1 |
<~-- IREPLY HEADER| <---
[| (NO DATA) | l
I !) |
l r 1 |
-—=> {DUMMY HEADER| -—
0 | € DATA | |
I L 4 |
! | <--(DATA TO BE SENT
|] . | ARRIVES)
=== |REPLY HEADER] ===
| | & DATA] i
| L ! I
| r 1 {
-— |REPLY HEADER| -—
\ | & DATA | |
| L —! |
| r] !
<——= |REPLY HEADER| <=
I | & DATA | i
I t o I
(NO MORE DATA --> | 1
TO BE SFNT) i - " |
---> |REPLY HEADER| -—>
! { (NO DATA) i 1
| t . |
1 r v |
<——= |DUMMY HEADER] <-—-
| | & DATA | !
i L) | <-- (NO MORE DATA
| r — 1 TO BE SENT)
---> |REPLY HEADER| -—->
| | (NO DATA) | |
} — d |
| |
RECEIVES 'EOT' <= 'EOT! <-—-
| i
PREPARE-READ PREPARE-READ
% *
* *
* *

Figure 2-22. Typical line Transactions

Section 2:

Method of Operation -

Line Driver Functions

85

Licensed Material - Property of IBM

DMTVMB Packed Data Block Format

DMTVMB scans the output data and builds packed formatted blocks which
are actually transmitted on the telecommunications lines. The data are
packed by compressing all occurrences of five or more identical
characters in a record into a coded field which adds only four bytes to
the packed record. When the data blocks are received by the remote RSCS
systemn, the records are correspondingly unpacked by DMTVMB before being
entered as output in the VM/370 spool system.

Transmission data blocks are of variable length, depending on content,
up to a maximum length of 824 bytes. Each block contains a variable
integral number of packed records of variable length, each of which
corresponds to a single unpacked record. There are no partial records
in a block; if a packed record will not fit at the end of a block
without extending the block beyond the 824-byte limit, the block is
terminated and the record is placed at the start of the next block.

The packed data record format is:

| | 1 > > 1
A. | CM | DL | DATA < < |
l ! | > > '
+0 +1 +2 +N
Where:
CM -- a System/370 Channel Command Word (CCW) command code used to
output the record by the originating virtual machine.
DL -- number of bytes (in hexadecimal) in the packed DATA field.
DATA -- data comprising a single record in mixed packed and segment

format as shown below.

The DATA field format is:

(| > > 1 i l | | > > |
| SL | SEG., < < DATA | FF | CH | RF | SL | ..< < .. |
I 1 > 2 | I ! | | > 2 |
+2 +3 +M +M+T1 +M+2 +M4+3 M40 +N
Where:
SL -- a one-byte hexadecimal count equal to one less
than the length of the segment data, SEG. DATA.
SEG., -- a string of data to appear unmodified in the
DATA unpacked record.

FP -- a flag (X'FF') which indicates the start of a
packed segment.

CH -- a data character to be replicated a number of
times in the unpacked record.

RF -- a hexadecimal count equal to two less than the

the total number of characters, all "CH", to
appear in the unpacked record.

86 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

| | |
B. | CM | DL |
1 |
+0 +1 +2
Where:
CM -- a System/370 immediate (non-data moving) control command
code, for a print or punch output device.
DL -- a data count of X'00', which implies that the CM command is
of the immediate control type.
I
C. | FL |
| |
+0 +1
Where:
FL -- a flag byte which has one of the two following values:
X'FF!' -- end of data block; more data blocks exist
for the file.
X'EF' -- end of data block and end of file; no more

data blocks exist for the file.

VMB line Handling

A.

VMRENABLE - This routine is entered after VMB initialization has
completed, and each time the telecommunication line drops
(signalling "intervention required") during VMB processing. It
issues message DMTVMB141I to notify the operator that the line
should be connected in case manual intervention is required (such
as when a dialable port is in use), and starts execution of the
line enabling sequence.

This enabling sequence comprises three command chained CCW's:
DISABLE, SET MODE, and ENABLE.

The DISABLE command disconnects any previous dial port connection,
and places the telecommunication adapter in the disabled state.

The SET MODE command places the telecommunication adapter in ITB
mode, such that on subsequent read operations an incoming ITB BSC
control character will be recognized, the following two BCC
characters will be interpreted, and an EIB character reflecting
presence or absence of errors will be entered into the read buffer.

The ENABLE command completes, placing the telecommunication adapter
in the enabled state, when the port's modem signals "data set
ready". For a dialable port, this occurs when the dial connection
completes; and for a leased line, "data set ready" is signalled
vhenever the line and modem equipment are functional.

When this enabling sequence completes, control is passed to

VMRSTART to verify link identifiers and passwords, and normal
processing begins.

Section 2: Method of Operation - Line Driver Functions 87

D.

88

Licensed Material - Property of IBN

VMRGET - This routine is entered when ¥YMB is in the gquiesced
communication state, and data may be available for transmission to
the remote system. The hold and drain statuses are checked, and a
call is made to GETBLOCK to prepare a data block for transmsission.
If communication is allowed and a data block is ready, control is
passed to VMRSTART to initiate the exchange. Otherwise, the read
initial sequence (command chained PREPARE and READ commands) is
started, and communication remains quiesced.

The PREPARE command completes only when halted by the AXSALERT
routine, or when the remote system initiates a transmission. 1In
the former case, VMRGET is reentered from the beginning. 1In the
latter case, a DLE-ACKO sequence is written to the remote systenm;
if signon has already occurred, control is passed to VMRVERFY (in
the VMRGO routine) to begin processing incoming data. Otherwvise,
signon blocks are exchanged and verified before any data transfer
is allowed to occur.

VMRSTART - This routine is entered upon successful completion of
the line enabling process, and each time communication is to be
reactivated from a quiesced state. The block exchange channel
program is initialized, and an attempt is made to exchange the
initial ENQ, DLE-ACKO, and signon sequences. When successful,
control is passed to VMRCHARG (in the VMRGO routine) to initiate
data exchange. If no response is received from the remote system
for the duration of the ENQ retry sequence, control is passed to
VMRDINIT (in the VMRGET routine) and communication remains
quiescent.

VMRGO - This routine comprises the central control logic for normal
VMB transmission-reception activity. At VMRGO, a transmission has
been received from the remote system. If a NAK has been received,
the preceding tramsmission is repeated. Otherwise, the received
sequence is checked for validity, and a NAK is transmitted (at
VMRNAK) if it is invalid. If a signon block is received, it is
verified by a call to PASSCHEK, and a signon block is returned by a
call to PASSSEND., If a data block is received, it is processed by
a call to PUTBLOCK. The GETBLOCK routine is called to prepare a
data block for transmission to the remote system, if any such data
is available. If no data block is available for transmission, and
no data block was received on the last transmission from the remote
system, an EOT is transmitted at VMREOT and control is passed to
VMRGET to quiesce communication.

The main telecommunication channel program is executed at label
VMRTALK. This channel program comprises several data chained write
CCWs, command chained to a read CCW., It is built mainly by
GETBLOCK, and its structure can include TICs, depending upon the
presence of an acknowledgement byte and data block in the
transmission to be made. When the exchange is successful, the
transmission will have been written to the remote system, the
response will have been read into the line input buffer (LINEBUFF),
and control is passed back to VMRGO for another exchange cycle.

LINEIO - This routine is called to perform all I/0 operations on
the telecommunication port. The I/0 request is executed as set in
the line I/0 table (LINE) by a call to XECUTE, and call is made to
KLOGIT to log the results. If the I/0O is successful, return is
immediately made to the caller. If a serious error occurs, control
is passed to VMRBADIO, which issues an error message and
deactivates the line driver. When contention is detected, a read
is executed, an error is flagged, and control is returned to the
caller. If "intervention required" is detected, message 143 is
issued and control is passed to VMRGET if no response is read. If
an error is detected that can be corrected on retry, an error is

IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

flagged, and control is returned to the caller.

TRTRAN, TRERR, TRTIMOT - The trace sum routines are called by the
various line management routines to count the accumulated number of
successful transmissions, line errors, and timeouts, respectively.
These counts are constantly maintained in the line driver's link
table, where they may be interrogated by an RSCS operator "QUERY
linkid SUM" command. When sum tracing is active, message 149 is
issued each time any of the counts reaches a threshold value, and
all counts are reset to zero.

KLOGIT - This routine is entered after every line I/0 transaction.
When log trace is set on by a "TRACE linkid LOG"™ command a print
output file is opened by a call to AXS, and each subsequent I/0
execution is formatted and recorded in the print file. The print
file is scheduled for printer processing when the file is closed by
a call to AXS from the command processor on execution of a "TRACE
linkid NOLOG"™ command.

VMB Data Handling Functions

A.

GETBLOCK - This routine is called by tke line management routines
to prepare data blocks for transmission to the remote system. The
data blocks may be initial null pad (SYNCH) blocks, CMD/MSG element
(MSGHD) blocks, or spool data blocks.

Upon entry, control is passed to GETPAD if the block to be
constructed is the first to be transmitted following initialization
or line connection. 1Im this case, a null data block is constructed
with a SYNCH header, and control is passed to GETSETUP.

If no SYNCH block is to be generated, a call is made to MSGTRANS if
at least one CMD or MSG element is gueued for transmission. When
the MSGHD block has been built by MSGTRANS, control is passed to
GETSETUP.

If none of the above conditions exist, an attempt is made to build
a spool data block. If no input spool file is open, control is

passed to GETFILE. Otherwise, a call is made to MAKEBLOK to build
a spool data block. If an end-of-file condition on the input spool
file is encountered, message DMTVMB147I is issued, the old file is
purged, and control is passed to GETFILE. When a spool data block
is successfully built by MAKEBLOK, control is passed to GETGOT.

At GETFILE, the drain and hold request status are tested. If drain
is set, no block is built and control is returned to the caller.

If hold is requested, message DMTVMB611I is issued, the link is
placed in hold status, and control is returned to the caller with
no block built. If an input spool file is potentially available, a
call is made to RXSGET to attempt to open an input file. If
successful, control is passed to GETGOT; otherwise, control is
returned to the caller with no block built.

At GETGOT, a spool data block has been built and is ready for
transmission in GFTBUFF. Pending commands are tested for validity
and applicability, and rejected with diagnostic messages if
invalid. Vvalid pending commands are executed with confirmation
messages. If a new file has been opened, messages DMTVMB146I or
DMTVMB 148 are issued, as appropriate, and control is passed to
GETSETUP.

At GETSETUP, the generated block length is determined and is stored

Section 2: Method of Operation - Line Driver Functiomns 89

90

Licensed Material - Property of IBM

in the block write CCW (WRITDATA) and in the block header. The
block serial number is generated and stored in the block header,
and control is returned to the calling line management routine.

PUTBLOCK — This routine is called by the line management routines
to process data blocks received from the remote system. Data
blocks with serial numbers matching the previously-received serial
number are discarded.

The received data block is processed by decompressing each record
at PUTNEXT, and passing control to PUTOUT for individual record
processing. When processing has been completed for a record,
control is returned to PUTNEXT, which decompresses the next record
in the block and passes control to PUTOUT. When no records remain
in the block, control is passed to PUTDONE, which checks for
end-of-file on spool data output. If end-of-file is detected,
message DMTVMBIU4EI is issued, the file is closed by a request to
AXS, and all output file status is reset. PFinally, control is
returned to the calling line management routine.

At PUTOUT, the record to be processed is tested to determine if it
is a link command element or a CMD/MSG element. For a RESTART link
command element, a flag is set to cause GETBLOCK to restart its
active input spool file from the beginning when such a file is
present, and the next record is processed. For a PURGE link
command element, the active output file (if any) is closed and
purged by a call to AXS. PFor a TAGB control record, the active
output spool file (if any) is closed and purged by a request to
AXS, the new output tag status is updated and reset according to
the contents of the tag record, and the next record is processed.
For a CMD or MSG element, MSGRECV is called to pass the element to
REX for further processing, and the next record is processed. 1ll
other records are interpreted as spool output records, and control
is passed to PUTOPEN.

At PUTOPEN, an output spool file is opened by a request to AXS and
message DMTVMBI4U4I is issued if no output file was already open and
if the link is not in drain status., If the link is in drain status
and an input file is still being processed, a WABT response is set
for transmission to the remote system. If the link is im drain
status and no other file is being processed, control is passed to
VMREOT to terminate communication and line driver processing.
Control is passed to PUTWRITE when a spool output file is open.

At PUTWRITE, the decompressed record is written into the output
spool file using the CCW command code supplied with the recorad.

NOP records (command code X'03') are executed as normal writes,
because they may represent transparent control information which is
to be embedded in the spool file and preserved. If the write
operation is successful, the next record is processed. Otherwise,
a diagnostic message is issued and line driver processing is
terminated by a call to VMRTILT.

MSGRECV - This routine is called by PUTBLOCK to process CMD and MSG
elements as they are received. Each such record is given to REX as
a request. REX, in turn, executes commands and issues messages
contained in elements addressed to the local location, and forwards
other elements to line drivers for transmission to remote systems.
When the request has been accepted by REX, control is returned to
the caller.

MSG - This routine is called throughout VMR, normally from within

IBM VM/370: RSCS Networking Logic

licensed Material - Property of IBM

I.

the expansion of the MSG macro, to format and issue message
requests to REX. On each call, a message request element is built
using the message number and substitution parameters supplied by
the caller. The request element is passed to REX, which builds and
distributes the requested message. When REX has completed

processing the request, control is returned to the caller.

AXSGET - This routine is called by GETBLOCK to prepare an input
spool file for reading and transmission. It starts by issuing an
OPEN INPUT request to AXS. If no input spool file is available,
RXS returns an error iamdication and control is immediately returned
to the caller, reflecting the error. If a file is successfully
opened, the new input file status is set, a transmission block is
built by a call to MAKEBLOK, and control is returned to the caller
indicating successful completion.

AXSPURGE - This routine is called by GETBLOCK to terminate
processing of an active input spool file. The file may be deleted
or saved (reenqueued) for future processing, depending on the
request set by the caller. A CLOSE request is built and passed to
AXS for execution. When complete, VMB's active input spool file
status is reset, and control is returned to the caller.

MSGTRANS - This routine is called by the line management routines
to build a data block, containing CMD and MSG elements, for
transmission. GMSGREQ in DMTCOM is called repeatedly to dequeue
and retrieve elements stacked by AXSALERT. Each record retrieved
is formatted into a NOP data record, compressed by a call to PACK,
and entered into the data block buffer (GETBUFF). When no more
elements are available, or when the 824-byte data block length
limit is reached, the block is terminated, and is returned to the
caller with a MSGHD header code. When no elements are available,
an error indication is returned to the caller.

MAKEBLOK - This routine is called by the line management routine to
build a data block, containing spool data records, for
transmission. Page buffer spool data blocks are read from the open
input spool file by a hypervisor call (DIAGNOSE X'14', subcode 0)
to CP. Each spool page buffer is decomposed record by record.

Each record is compressed by a call to PACK, and entered into the
data block buffer (GETBUFF). When a data block has reached the
824-byte length limit, or when the spool data input has been
exhausted, the block is terminated and control is returned to the
caller. When input data records remain on completion of data block
construction, the records and deblocking pointers are saved. The
next call to MAKEBLOK resumes with the next sequential record.

PACK - This routire is called by MSGTRANS and MAKEBLOK to compress
a line of data into the VMB packed data format (see DMTVMB Packed
Data Block Format). A single line of data is accepted as input,
along with its character count. The line is searched for sequences
of five or more identical characters by a compare logical character
instruction specifying overlapping one-byte offset fields, each
four characters long. When such a sequence is located, the
previous segment data string (if any) is entered into the caller's
output buffer, and the packed sequence is entered with its length
and replicated data character. If more input characters remain,
the search for identical characters and the construction of the
output string continues as described above. When the end of the
input string is reached, the output buffer is completed with the

Section 2: Method of Operation - Line Driver Functions 91

-
X

B‘

92

o
o

Licensed Material - Property of IBM

final data segment or packed sequence, the packed output string
count is stored in the first byte of the output buffer, and control
is returned to the caller.

rocessing Control Functions

SVMRINIT - This routine is executed only when a VMB line driver is
initially started. The start parameter string is inspected for
validity, and, if valid, the link passwords are set as specified.
Othervise, a diagnostic message is issued and the passwords are
left unspecified. The link table address, the device address of
the line in use, and the link ID are located and saved for future
use. The prototype tag blocks to be used in OPEN OUTPUT requests
to AXS are initialized to their default values. ASYNREQ in MSUP is
called to specify AXSALERT as the line driver task's entry point
for alert calls from other tasks (REY alerts line drivers for
command and CMD/MSG element transfer, and AXS alerts line drivers
for notification of file availability). A RESTART link command
element is stacked for transmission to the remote system, to cause
the remote system to terminate active output file processing and
restart active input file processing. Finally, a flag is set to
force transmission of an initial pad (SYNCH) block, SVMRINIT's
storage page is released, and processing is begun at VMRENABL.

CMDPROC - This routine is called by XECUTE when a wait request
completes with the posting of the command arrival synchronization
lock (CMDECB), following the acceptance of a command alert element
from REX. The command code table (CMDTABLE) is searched for a code
ma tching that of the accepted element, and the command's processing
routine is entered when a match is made. If no match is found, the
command is ignored. The command processing routines are:

L 1 1
| ROUTINE | COMMAND IT PROCESSES |
L L J
L B T L]
SETSTART	START command
SETDRAIN	DRAIN command
SETPREE	FREE command
SETHOLD	HOLD command [}
SETTRACE	TRACE command
] SETBACK	BACKSPAC command
SETFWD	FWDSPACE command
SETFLUSH	FLUSE command
L A]

These individual command processors normally issue messages, set
flags, and modify other line driver status, depending upon the
particular command and the processing status of the line driver.
In addition, the SETTRACE routine requests open and close spool
output from AXS for line activity log initiation and termination.
When processing is complete, control is returned to the caller.

AXSALERT -~ This rcutine is entered asynchronously in masked-off
supervisor state from the MSUP ALERT processor (DMTSIG) on an alert
call from another task. If the alerting task is AXS, the call is a
notification that an input file has become available for the line
driver's link. 1In this case, "file available" status is set, line
I/0 is terminated by an HDV command when read initial (PREPARE
command) is active, and control is returned to MSUP.

IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

If the alerting task is REY, the element ccde being presented is

QLiCiTily &S LU [VACIATLT LOUE DTLuy pLt H d A4S

inspected. PFor CMD and MSG elements, control is passed to AXSMENQ
which calls PMSGREQ in DMTCOM to stack the element for future
transmission to the remote system. Otherwise, REX is assumed to be
presenting an operator command element. If an operator command is
already in progress, the request is rejected and an error
indication is returned to REX via MSUP on return. If no command is
already in progress, the command element is moved to VMB's command
element buffer (CMDRESP), the line I/0 is halted if read initial
(PREPARE command) is active, the active command presence is
flagged, and control is returned to MSUP with a normal completion

mada Fawrw DDV
LUUT LUL DUAe

If the alerting task is other than AXS or REX (which should not
happen), the alert call is ignored and control is returned to MSUP.

D. VMRTILT - This routine is entered from various locations in
VMB, and its function is to terminate line driver processing.
If the reason for termination is a fatal I/0 error, entry is
made at VMRBADIO. In this case, IOERRPRT is called to issue a
diagnostic I/0 error and the device in error is marked
"inoperative" before termination processing.

At VMRTILT, line I/0 logging is terminated if active, and any
active line I/0 is halted by an HDV instruction. If the line
port remains operative, a DISABLE operation is executed to
reset the port and disconnect (hang up) dialable telephone
data sets, Finally, a task termination request is issued to
REX, and VMB enters a permanent wait state until it is deleted
from the system as a result of a call to NSUP, which is made
by REX during its processing of the terminate request.

VMB I/0 Management Functions

B.

XECUTE - This routine is called throughout VMB to execute I/0
channel programs for all I/0 devices. The I/O table is prepared
for execution by the caller, including the address of the channel
program and the device on which it is to be executed, and the
address of the I/0 table is passed to XECUTE in register 13.

XECUTE begins by clearing the synchronization lock in the caller's
I/0 table and calling IOREQ in MSUP, specifying the I/O table, to
schedule and execute the requested I/0. The address of the I/0
table synchronization lock is stored in a wait list that also
includes the command arrival synchronization lock, and WAITREQ in
MSUP is called to suspend line driver task dispatching until the
I/0 completes, or until a command alert element is delivered. When
a command alert element arrives, it is processed by a call to
CMDPROC, and the wait request is repeated if the I/O request has
not completed. When the I/0 manager in MSUP signals completion by
posting the synchronization lock in the I/0 table, control is
returned to the caller.

JOERRPRT - This routine is called from throughout VMB whenever the
standard I/0 error message 70 is to be issued. The caller passes
the address of the I/0 table containing the ending I/0 error
information to IOERRPRT in register 13. The device address, ending
CSW, SIO condition code, and ending CCW are extracted from the
caller's I/0 table, converted to EBCDIC, and placed in the message
request element. The message routing code is set to the vM/370 and

Section 2: Method of Operation - Line Driver Functions 93

Licensed Material - Property of IBNM

RSCS operator consoles, the MSG routine is called to issue the
messagde request, and control is returned to the caller.

VMC LINE DRIVER PUNCTION DESCRIPTIONS

The VMC line driver (DMIVMC) is for transmitting VM/370 spool files
between VM/370 systems over channel-to-channel adapters (CTCAs). DMTVMC
passes VM/370 UK spool page buffers to another copy of itself, using a
specially designed protocol to optimize utilization of the CTCA without
creating heavy I/0 activity. The 4K block is read from the VM/370 spool
system, transmitted across the CTCA, and then written into the receiving
machine's spool system with minimal SIO execution. 1Like DMTVMB, DMTVMC
requires no special operating instructions, and supports the full RSCS
command language except for BACKSPAC, HOLD IMMED, and FWDSPACE count.

TCG

Main Line Driver Control

This routine is responsible for the main DMTVMC line driver control of
the channel-to-channel adapter (CTCA). CTCGO is entered from CTCINIT
after line driver initialization is complete. 1A wait is issued on a
list of four synch locks until there is work to be domne. The synch
locks are:

1. RDYRDY - This synch lock is posted by the asynchronous exit
AXSALERT in DMTVMC whenever an alert notification is given from the
AXS task indicating than an input file is ready to be transmitted.

2. MSGECB - This synch lock is posted by the asynchronous exit
AXSALERT in DMTVMC whenever a command or message to be transmitted
across the CTCA has been entered into the link's message stack.

3. CMDECB - This synch lock is posted by the asynchronous.exit
AXSALERT in DMTVMC whenever a command to be executed by the line
driver locally is placed in the CMDRESP buffer after an alert from
DMTCHNX.

4. ATTNLOCK - This synch lock is posted by the asynchronous exit
CTCATTN whenever an attention interrupt is received on the CTCA.
This indicates that the other side of the CTCA is requesting that
communications be established.

When one or more of these synch locks is posted, I/0 activity on the
CTCA is initiated to transmit or receive data. Calls are made to
MSGTRANS and GETBLOCK to block data for transmission and to MSGRECV and
PUTBLOCK to process received data blocks. When there is no more work to
do, a wait on the synch lock list is again issued.

Calls are made to IINEIO to initiate an I/O operation on the CTCA. When
an I/0 request for a read or a write is made to DMTIOM, a timer request
is made to DMTREX to post the TIMELOCK synch lock 15 seconds later. A
wait is then issued on both the device synch lock and the time synch
lock. If the other end does not complete the I/O operation before the
time interval of 15 seconds expires, the I/0 operation is terminated
through an HDV instruction to the CTCA. This operation is done to
prevent the read/write operation from inhibiting read channel activity
if the remote system has gone down.

9y IBM VM/370: RSCS Networking Logic

licensed Material - Property of IBM

This routine is entered from the main processing routine in DMTVMC
(CTCGO) whenever the File Available synch lock is posted, or after an
input file has been processed. 1A call is made, if required, to AXSGET
to obtain a new spool file to be transmitted. If a new file is not
obtained, return is made to CTCGO. If a new file is obtained, message
DMTVMC146I is issued, and return is made to CTCGO with a full block
indicated. Successive calls to GETBLOCK will return 4K spool page
buffers to be transmitted until an end of file condition. When
end-of-file occurs on the imput spool device, an end-of-file record is
returned to be transmitted, to close the output spool file on the
receiving systen.

NSGRECV - Command or Message Receipt

This routine is entered from CTCGO when a block that contains a command
or message is received. This record is converted into a routing request
element and passed through GIVE/TAKE to DMTRGX for processing.

MSGTRANS - Command or Message Transmittal

This routine is entered from CTCGO when the MSGQUED flag and the MSGECB
synch lock have been posted by the asynchronous exit, AXSALERT. The
message or command is placed in a message transmission buffer for
transmission across the CTCA. The MSGQUED flag is not reset, indicating
that there are more messages or commands to be transmitted. When a
non-zero return code is obtained from the call to GMSGREG, the MSGQUED
flag is reset and control is returned to CTCGO.

PUTBLOCK

This routine is entered by CTCGO whenever a spool data block is received
across the CTCA. When a tag record is encountered, a new spool output
device is obtained via a GIVE/TAKE call to DMTAXS. If a file was
previously open, a restart is assumed, and the file is closed and
purged. If the file being received is destined for the local location,
a header line indicating the file origin is placed in the output spool
file. Each successive data block has the format of a VM/370 84K spool
page buffer. This buffer is relocated in the same manner as performed
by module DMKRSP in CP. Once the data has been relocated, one virtual
SIO is issued to write the entire buffer into the VM/370 spool systemn.
When an end-of-file record is received, the output spool file is closed
via a GIVE/TAKE call to DMTAXS.

CMDPROC

(See CMDPROC under VMB Processing Control Functioms.)

Section 2: Method of Operation - 1line Driver Functions 95

Licensed Material -~ Property of IBM

AXSALERT

(See AXSALERT under VMB Processing Control Functions.)

TRTRAN, TRERR, TRTIMOT

The trace sum routines are called by the various line management
routines to count the accumulated number of successful transmissions,
line errors, and timeouts, respectively. These counts are constantly
maintained in the line driver's link table, where they may be interro-
gated by a "QUEFRY linkid SUM" command. VWhen sum tracing is active,
message DMTxxx149I is issued each time any of the counts reaches a
threshold value, and all counts are reset to zero.

RKLOGIT

This routine is entered after every line I/0 transaction. When log
trace is set on by a "TRACE linkid LOG" command, a print output file is
opened by a call to AXS, and each subsequent I/O execution is formatted
and recorded in the print file. The print file is scheduled for printer
processing when the file is closed by a call to AXS from the command
processor on execution of a "™TRACE linkid NOLOG" command.

NJI LINE DRIVER FUNCTION DESCRIPTIONS

The NJI line driver (DMTNJI) communicates with non VM/370 NJI or NJE
systems. The line driver comnsists of three preloaded modules (see
Preloader, Appendix B):

DMTNCM - acts as main control of DMTNJI, manages the communications
adapter and interfaces to the VM/370 spool system through the
DMTAXS taske.

DMTNHD - processes NJI/NJE header records for jobs, output, commands,
Arm A mame —~~

-~
aycss e

DMTNIT - handles line driver initialization. This module verifies
parameters, obtains storage for teleprocessing buffers and unit
record tanks, and constructs the initial SIGNON record. The
storage for this module is freed upon return to DMTNCHM.

DMTNJI conforms to the protocol defined by the Network Job Entry
facility for JES2. This protocol is an extension to the remote job
entry protocol used by the DMTSML line driver.

This protocol extends the definition of MULTI-LEAVING for symmetrical
comnunication between host systems. For morz information, refer to
Appendix A. The data flow diagram for DMTSML is extended for DMTNJI
(Figure 2-23).

The NJI line driver supports communication over bsc lines with
MULTI-LEAVING and over channel-to-channel adapters.

96 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBHM

VR/370 0S/VSs

§ 1 | h)
i RSCS i | HASP/ASP/JES2 |
| mm——— | i m———— 1
I I 11 11
1 | NJI Line < > NJI/NJE | |
| | Driver i1 Jobs 1 1 11
i1 (| Output | (I
[(| Commands i1 11
| Y4————— | Messages | Y—rrrroro——— |
| ! | |
L] L)

Figure 2-23. NJI Link Data Flow

The DMTNCM module comprises the following basic rontines:

e A function selector that dispatches one of the processors or other
routines in NCM when a request for services is received.

e Processors, that execute the main functions required by the network
inter face.

e An input/output routine that accepts and transmits data on the
communication adapter.

e Buffer blocking and deblocking routines.

NCM Function Selectdr Routime: $START

The $START routine is entered when NCM is required (by either a remote
system or a virtual machine) to perform a function. This routine
selects a function to execute by using a commutator table, a list of
synch locks, and task control tables.

The NCM commutator table is a branch table consisting of unconditional
branch and no-operation instructions. The targets of the branch
instructions are the seven processor routines, the I/0 handling routine,
and the buffer handling routines. When the service of a routine is not
required, the commutator table entry for that routine is made a NOP
instruction. When the function of the routine is required, the NOP
instruction in the commutator table entry for that routine is replaced
with an unconditional Branch instruction, thereby opening a gate in the
commnutator table.

The $START routine cycles through the commutator table, falling through
any NOP instructions and taking any branches. Control is passed in this
vay to any routine whose gate in the commutator table is open.

When the routine completes the function requested, it closes that
function's gate in the commutator table by replacing the unconditional
branch instruction with a NOP instruction. $START continues cycling
through the commutator table taking any open branches.

When the bottom of the commutator table is reached, $START tests a
series of synch locks to see if any have been posted, signifying a
request for an NCM function. If any synch lock is posted, $START opens
the commutator table gate for the requested processor and goes to the
top of the commutator table to start cycling through it again.

Section 2: Method of Operation - Line Driver Functions 97

Licensed Material - Property of IBM

If the bottom of the commutator table is reached and there are no posted
synch locks, NCM discontinues processing by issuing a wait request via a
call to the supervisor module DMTWAT, waiting on a list of the synch
locks. When any of the synch locks is posted, $START receives control,
opens the appropriate gate, and starts cycling through the commutator
table.

Each processor performs a specific function necessary for network job
entry. Figure 2-24 summarizes the processors in DMTNCH.

Each processor has a task control table (TCT) associated with it that
defines data required by the processor. Within the TCT is a branch
instruction to the appropriate processor. The commutator addresses
these TCT branch instructions instead of branching directly to the
processors.

r T - —
| PROCESSOR | FUNCTION 1
L 'l 1
L] L L}
$CRTN1	Processes the following WULTI-LEAVING control records:
	Permission To Transmit
	Request To Transmit
I	Negative Open
	Signon Control Records 1
Il Il 4	
— T M	
$PRTN1	Processes output files from a remote system. Interfaces
	with DMTNHD to process network header records.
L '} J	
r L B	
$URTN1	Processes job files from a remote system. Interfaces
1	with DMTNHD to process network header records.
L 1 1	
1 ¥	
$WRTN1	Processes commands and messages from a remote systen.
{	Interfaces with DMTNHD to process network header records.
L 1 I	
L 3 L A	
$RRTN1	Prepares records read from the VM/370 spool system for
i	tramnsmission. Interfaces with DMTNHD to build network
	header records. {
F + —	
CMDPROC	Executes local commands passed by DMTCHMX.
L L 4	
L] Ll Bl	
MSGPROC	Prepares commands and messages for transmission. [
1 | Interfaces with DMTNHD to build network header. 1
L 1 J

Figqure 2-24, NCM Function Processors

NCM Line I/0 Handler Routine: COMSUP

COMSUP controls all I/0 activity on the communications adapter for the
NJI line driver. It handles both BSC line and channel-to-channel
conmunication. This routine receives data from the adapter and passes
the data to the deblocker routine ($TPGET). COMSUP sends data (which
has been blocked by the blocker routine, $TPPUT) to a remote systenm.
COMSUP also acknowledges receipt of data over a BSC line using the
standard BSC control characters.

98 IBM VM/370: RSCS Networking Llogic

Licensed Material - Property of IBM

siock HCE Teleprocessing Buffers: 3TPPUT and $TPGET

It
e
&
[E2d
{3
=+
[

Data received over the communications adapter is placed in a
teleprocessing (TP) buffer. The size of TP buffers is specified by a
START command parameter and can be up to 1017 bytes.

Data contained in TP buffers is deblocked into tanks, which are unit
buffers of a specific size used to deblock the larger TP buffers. There
are 15 tanks; these are allocated as they are needed by processors. The
size of tanks is determined by MULTI-LEAVING control bytes.

When an NCM function has been requested, the data must bhe either blockegd
for transmission (if it is data for a remote system) or deblocked for
processing (if it has been received from a remote system).

$TPGET receives data from a communications adapter (via the COMSUP
routine) and allocates tanks to output processors as they are needed.

$TPPUT receives tanks from input processors, blocks the data in these

tanks into TP buffers, ard gives control to COMSUP to transmit the
buffers over the adapter.

Network Header Processor: DMTNHD

DMTNHD contains routines to process or construct the various network
header and trailer records used by the NJI/NJE protocol. The network
header records are read bty another non V4/370 NJI system that uses thenm
to reconstruct information about the files sent from RSCS. There are
two major types of network header records: job headers and data set
headers. DSECTs describing these header and trailer records are shown
in Section 5. Other NJE/NJI systems also make use of the same mapping
shown in these DSECTs. The header and trailer routines in DMTNHD are
entered from the processors in DMTNCM whenever network header or trailer
processing is required.

Command and Message Processing

Two routines are used to process network commands and messages.

DMTNHDMI is entered from $WRTN1 to interpret the header record whenever
a command or message is received from a remote system. From the
information in this header record a routing request element is built and
then passed by DMTNCM to DMTRGX for processing. If a global network
command is recognized, it is translated into the appropriate RSCS
command, if the command destination specifies the local RSCS.

DMTNHDMO is entered whenever a network command or message to be
transmitted is processed by MSGPROC in DMTNCM. The network header is
constructed from information contained in the routing alert element.

File Header Record Output Processing

Entry point DMTNHDHO is entered from $PRTN1 and $URTN1 each time a
network header record is received by the output or job file processors
in DMTNCM. A subroutine is then entered when a valid NJI/NJE header
record is found.

Section 2: Method of Operation - 11ine Driver Functions 29

Licensed Material - Property of IBM

Routine HOJOB is entered when a job header record is found. The header
record is saved for later processing, various default fields are created
in the output log slot, and message DMTNHD917I is issued.

HODATSET is entered each time a data set header is encountered. The
fields in the default tag slot are updated from the fields in the data
set header record. The logical output device table is then searched via
a call to DVASSIGN. This routine will assign this data set to a device
for processing, by comparing the attributes of the new data set with
ones already existing. If an open data set is not found, a new device
is obtained via a call to OPENADEV. This routine obtains, through a
call to DMTAXS, a new spool device. Once a new device is obtained,
routine HDROUT is called to output the job header as a segmented NOP
spool record.

When the job trailer record is encountered, subroutine HOJOBTRL is

entered. All open data sets are closed after the job trailer record is
written to the spool systen.

Routines DMTNHDJH, DMTNHDDH, and DMTNHDJT are entered from processor
$RRTN1 in DMTNCM when a file to be entered into the NJI line driver does
not already contain NJI/NJE header records. DMTNHDJH and DMTNHDJT
create the job header and trailer records from the information in the
input tag slot. The data set header creation routine DMTNHDDH creates
the data set header record from the input tag slot along with data from
calls to the TAGSCAN routine to scan the user's tag data record for
NJI/NJE parameters. Because non V4/370 systems generally distingush
between job files and output files, RSCS must make a distinction between
such files before they are sent to another NJI/NJE system. The terminal
user specifies whether he wants his files to be JOB files or output
files in the tag record before he sends them to RSCS to be sent to
another system. DMTNHD then scans this tag record to determine the type
of file to be sent and obtains other information about the file that it
puts in the NJI/NJE header records.

DMTNJI Initialization Module: DMINIT
This module is entered from DMTNCM during line driver initialization.
It performs the following functions:

1. Scans the supplied parameter string and create a network SIGNON
record from the information obtained from the scan.

2. Sets task alert asynchronous exit.

3. Obtains storage and builds the teleprocessing buffer queue and unit
record tank queue.

When control is returned to DMTNCM, the page containing DMTWIT is freed
via a call to FPAGEREQ in DMTCOM.

100 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

o~ AT

Section 3: Program Organization

Modules and Subroutines

Figure 3-1 lists the functions of all RSCS subroutines in order by
module nanme.

*
Module | Entry Pt

Name | /Routine
y -

Function

L]
|
|
]
DMTAKE DMTAKEEP Contains the supervisor service that supplies |
task programs with the receiver interface to !
GIVE requests issued by other tasks. 1 single |
call causes DMTAKE to first respond to the |
previously supplied GIVE request and then |
supply a new GIVE request to the task for its {
processing. |
1
|
|
!
1
1

A service routine that creates new tasks and
deletes existing tasks executed by the MSUP
dispatcher. The entry to DMTASK is via a BALR
instruction from task programming. Any entry
into DMTASK causes the calling task's execution
to be suspended through the freeze SVC function.|
|
A supervisor service module that starts and ends|
asynchronous exit requests for task progranms.
This routine handles asynchronous exit requests
for asynchronous exit requests for I/0
interruptions, and alert exit requests.

DM TASK DMTASKEP

DMTASY DMTASYEP

DMTAXAAC NOP entry -- No accounting record is cut when a

file is accepted.
DMTAXASE Cuts a send accounting record when all copies of
an input file have been sent.

DMTAXAPU NOP entry -- No accounting record is cut when a
file is purged by purge command.

DMTAXARE
file is written to the spool systen.
DMTAXATA NOP entry -- user tag priority of a file is left
unchanged.

Controls the interface of the line drivers to
the V4/370 spool file system, enqueues files for
transmission, and processes commands that
manipulate spool files.

Start of asynchronous exit routine; signals
arrival of a request for asynchronous exit.
Initializes the AXS task.

Looks for work to do by examining the synch
locks associated with the AXS task.

DMTAXM DMTAXMEP
AXSASYIO

AXSINIT
AXSCYCLE

|

|

F

| {
| |
| |
| I
| |
{ |
| |
| |
{ |
| |
! |
| |
| |
{ !
1 |
| |
| I
| |
l |
1 |
| 1
| DMTAXA |
| |
| (
I 1
I |
| I
| l
| I
i I
| |
I {
| |
| |
| |
| |
[|
| |
| |
| |
{ l
! |
| l
| |
| |
L 1

i
I
|
|
|
!
1
|
1
|
|
{
|
{
Cuts a receive accounting record when an output |
1
|
|
|
|
|
|
f
|
1
|
|
|
{
N]

Figure 3-1. RSCS Modules and Their Subroutines (Part 1 of 13)

Section 3: Program Organization - Modules and Subroutines 101

Licensed Material - Property of IBM

r A T .|
i Module | Entry Pt | 1
| Name | /Routine | Function |
t —+ t —
{ | REQXEQ | Scans the request table for a match and branchesi|
| } | to the appropriate subroutine, depending on the |
] | | request code. |
| | CMDPROC | Executes AXS commands from the command buffer i
] 1 | passed on by an alert exit from DMTREX. |
1 | OPENIN | Starts spool file processing. i
| | CLOSEOUT | Ends processing for output files. |
t | CLOSIW | Terminate spool file processing. i
| | MSG | Sets the MSG request element. The MSG request |
{ 1 | element is passed via GIVE/TAKE to the message |
| | | manager, DMTMGX. The code associated with |
| | | entry points in this module format the MSG |
1 | | element variable areas in various ways and |
i I | exit finally to MSG. |
| | HEXGET |} Converts and validates a hex string. |
| | DECGET. | Converts and validates a decimal string. |
1 | DECPUT | Converts a hex fullword to decimal and generates|
| | | an EBCDIC representation of it, suppresses |
1 | | leading zeros to a minimum count, which is 1
| | | optionally supplied by the caller. |
1 | TODS370 | Converts EBCDIC to the System/370 TOD value. i
1 | TODEBCD | Converts System/370 TOD to EBCDIC date and time, |
1 | GSUCCESS | Gets inactive successor spool file. |
| | ACCEPT | Inspects newly arrived files.]
| | UNPEND | Brings in a link's pending tags. |
| { GETROUTE | Gets a routing table entry. |
1 | GETLINK | Gets link table entry. |
i | GETSLOT | Gets a free tag queue element. |
] | FREESLOT | Returns a tag queue element. l
1 | TAGGEN | Builds a file tag from hypervisor information. |
I | TAGPLACE | Sets a file tag into a link queue immediately |
1 i | before the first tag of numerically higher]
i | | priority (lower processing priority). |
i | REORDER | Reorders file queue after Systenm |
| | | reconfiguration. |
| | FILSELEC | Selects a file to be read from a link queue. 1
| | TAGFIND | Locates a file with spoolid matching the one |
| | { supplied by the caller, within the internal i
| i | file tag queues. |
i | TAGCLOSE | Dequeues an active file tag, closes and 1
| | | re—-enqueues input files, closes and purges |
1 i | output files. |
| | DEFINE | Gets a virtual spool device. |
| | DETACH | Undefines a virtual spool device. |
{ | VCHANGE | Changes VM/370 file attributes. i
i { VCLOSE | Issues the VM/370 CLOSE command for a device. 1
| | VPURGE | Purges an inactive reader file from the VM/370 |
I I | spool. . |
i | VIRANSFR | Transfers an incorrectly addressed file back to |
| | | its original user. |
i | VSPOOL | Sets VM/370 virtual spool device optioms. i
1] VTAGD | Sets a YM/370 tag for a virtual spool device. |
{ | VTAGMSG | Sets a ¥M/370 tag for a virtual spool device |
1 1] spooled to a user. |
| | VTAGF | Sets a YM/370 tag for an inactive spool file. |
1 A i]

Figure 3-1.

102 IBM

RSCS Modules and Their Subroutines (Part 2 of 13)

VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

¥ L T 1
| Module | Entry Pt | !
| Name { /Routine | Function {
t —+ + 4
| DSTCMX | DMTCMXEP | This module is part of the REX system control |
i i | task; it is called in several places in DMTREX, |
| | | (the main REX control routine). DMTCMX accepts |
| | | an EBCDIC string and executes the RSCS command |
| | | that the string represents. 1
{ | CMXHIT | Calls the necessary individual command i
1 | | processing routine. i
| | CHXALERT | Passes a command element to another task via |
i i i the alert task-to-task communications interface. |
| | CMXREORD | To pass to DMTAXS a REORD alert element. |
{ | CMXULOOP | Check for looping responses to user. |
1 | KEYWDGET | Decodes the next keyword on the input command |
I i | line, 1
H { LTABGET | Pinds the link table entry implied by the first |
| | | keyword in the command line described by the }
| i | calling routine's register parameters. 1
	RTABGET	Find the root table entry implied by the first
I	keyword in the command line described by the	
		calling routine's register parameters.
	HEXGET	Converts and validates a hex string.
[DECPUT	Converts a hex fullword to decimal and generates
		an EBCDIC representation of it. It suppresses
i		leading zeros to a minimum count, which is
{	optionally supplied by the calling routine.]	
{ FILGET	Locates a file, within the internal file tag	
I] queues with a spoolid matching that supplied by		
		the calling routine.
	TODEBCD	Converts System/370 TOD to EBCDIC date and time.
	PARMGET	Scans an EBCDIC line and frames the next 1
	{ parameter on the line.	
	FINDTAGQ	Finds a file tag with the same destination as i
[} i { the ROUTDEST in the routing table.		
{ DMTCOM	DMTCOHMEP	Contains various reentrant routines used by RSCS]
		tasks,
	GETLINK	Scans the link table chain and returns a link
i		table address.
]	GETROUTE	Scans the link table chain and the routing table}
	1 chain to select the next link for transmission.	
	GETPAGE	Gets a free page of virtual storage.
1	FREEPAGE	Returns a page of virtual storage. I
	MFI	Stacks message elements in a LIFO stack for [
1	later processing. If no room is available in	
i	{ the current page, a new page is fetched if I	
		at least five free pages remain. If five free
		pages are not remaining, an error condition is
		returned. All tasks except REX are allowed only]
1		three pages of storage to stack messages.
[MFO	Unstacks message elements from the message gqueuel
{	for this task. If none are queued, an error 1	
[}	{ condition is returned.	
i	TODEBCD	Converts System/370 TOD to EBCDIC date and time.
	TODS370	Converts EBCDIC to System/370 TOD.
i	RCMSOPEN	Initializes reading of a CMS file.
i	RCMSGET	Gets the next CMS file iten.
	GETSUPAG	Allocates a page of virtual storage for super-
] i | visor use. |
L A A]

Fiqure 3-1.

Section 3:

RSCS Modules and Their Subroutines (Part 3 of 13)

Program Organization - Modules and Subroutines 103

Llicensed Material - Property of IBM

Module
Name

Entry Pt
/Routine

Function

DMTCRE

DMTDSP

DMTEXT

DNTGIV

DMTINI

DMTIOM

DMTIRX

Po i e e o B SOy o ARS ML v B o T GE S fEan S umm S GEES G o — — " Gm — . - M— ——— o . o S S p oo S S ——— . — — S WS S T — - nan ™
L—_—“‘“——————-—"-—————-———-———_——‘-‘-————-——-————-—————-———"—-———-—-————ﬂb—-"

DMTCREEP

DMTIDSPEP

DMTEXTEP

DMTGIVEP

DMTINI

DMTIOMEP

DMTIRXEP

GENVNET
GETPARM

PARMGET

DECPUT

i
|
1
i
|
|
|
{
l
|
|
!
1
|
|
|
|
|
|
|
|
(
!
(
|
1
|
l
|
l
1
|
{
|
1
|
1
|
|
|
1
{
|
|
|
|
|
I
|
!
{
|
|
(
|
|
|
|
|
|

Creates nevw tasks under MSUP LOAD + QRQ.

This module is the MSUP dispatcher; it is
entered when an exit occurs from supervisor
functions that were entered following an inter-
ruption or that issued the freeze SVC function.
DMTDSP must be entered with all PSW masks off
(except for the machine check mask).

This modnle is the MSUP external interruption
handler; it receives control directly on an
external interrupt and saves the status of the
executing task if one was interrupted.

This is a supervisor service routine that
enqueues GIVE requests from tasks to be
delivered to other tasks by DMTAKE.

Receives control after initial loading of RSCS,
and performs general initialization functions
common to all parts of RSCS.

DMTINYI writes a copy of the initial load to
DASD, according to operator instructions, when
RSCS is initial program loaded from the
generation IPL deck. VWhen IPL disk writing is
complete, a masked off wait state PSW is loaded.

Following IPL from BSCS system residence DASD,
DMTINI finishes reading the saved RSCS load.

When IPL disk reading or writing is complete,
DMTINI passes control to DMTMIN.

This module contains both the MSUP I/O interrupt
handler and the task I/0 service routine. The
I/0 service provided by DMTIOM to the task
programs includes sequential subchannel
scheduling, channel program execution, auto-
matic sense execution on unit check when
requested, return of all pertinent information
regarding the execution of the channel progranm,
and notification via a POST upon completion of
the channel program.

This module performs all non-¥SUP oriented
RSCS initialization.

Builds RSCS system tables from directory.
Locates next parameter on input record, and
performs preliminary validity checking.

Scans a character string left to,right, and
frames the first parameter (a substring of
non-delimiters enclosed by delimiters or
string boundaries on the left and right).
Converts a hex fullword to decimal and generates
an EBCDIC representation of it. It suppresses
leading zeros to a minimum count, which is
optionally supplied by the calling routine.

he = e - . o —— — — " —— = A o —— oy — o o S o —— e —" ——— o —— — — — S s o ot ot b o o o]

Figure 3-1.

104 IBM

RSCS Modules and Their Subroutines (Part 4 of 13)

VM/370: RSCS Networking logic

Licensed Material - Property cf IBY

Module
Name

Entry Pt

/Routine Function

Validates and converts EBCDIC hexadecimal
input numbers to binary.

Validates and converts EBCDIC decimal input
numbers to binary.

Sequentially reads the directory file

(RSCS DIRECT) and returns a data line or error
condition to the caller.

Generates a numbered operator message by
editing the message according to CP EHNSG
setting, calling CONW to write the message

on the comnsole, and returning to the caller.
Writes a line to the RSCS operator console and
provides console support until normal DMTREX
console manager hegins nrocessing.

Stacks a message for later output.

EBCHEX
EBCDEC

DIRECT

TYPE

CONW

MSG

This routine is the line allocation task for
ESCS. Most of this routine functions as an
asynchronous exit being alerted by DMTREX.

DMTLAX DMTLAXEP

DMTMGX DMTMGXEP Takes a message request buffer and builds the
message from the information in that buffer and
the message definition found in DMTMSG.

DMTMIN DMTMINEP Performs basic MSUP initialization operatiomns,
deletes itself, and issues the first call to the
MSUP dispatcher to begin normal operations.
DMTMSG DMTMSGEP Contains a list of error messages to be used
externally by DMTMGX. This module contains no
executable code.

DMTNCHM

DMTNCMEP This line driver communicates with NJI/NJE

systems on BSC lines or channel-to-channel
adapters.

Initializes various parameters needed by
DMTNCM., Saves its link table address,
initializes output tags, and calls DMTNIT to
complete initialization.

Performs the enable sequence on the
communications line, analyzes the response
received, and when correct, writes the

"line connected" message.

This is the alert exit entered by DMTSIG. Two
tasks may alert this line driver: DMTREX when a
command has been entered for the DMTNCM line
driver to process, or DMTAXS to asynchronously
notify DMTNCM a file has arrived for
transmission.

This is the supervisor routine for DMTNCM. The
commutator will cycle looking for a routine to
enter until all commutator entries are closed;
then it will wait on a synch lock list to be
posted.

Dequeues a tank from its tank queue and
performs the action requested by the control
record in the dequeued tank.

NCMINIT

ISIO

ASYNEXIT

$START

$CRTN1

e e e e e e e e e e e - e -~ . - — ——— " = — o~ = = - — 2= o n bt — o]
b i o G s G R D . D o) —— T o — D ——— —— R 0 g S S G SN G o - — e GU — G e . — — — T — — — —— —— S (o o —— v —— gl w— —

L]
|
|
i
|
|
!
|
|
|
I
|
i
|
|
|
|
!
|
|
|
i
|
|
|
|
|
i
|
{
|
|
i
|
|
|
|
i
|
|
|
|
|
|
l
|
1
|
|
|
|
|
|
|
|
(
|
|
|
|
l
L

Figure 3-1. RSCS Modules and Their Subroutines (Part 5 of 13)

Section 3: Program Organization - Modules and Subroutines 105

Licensed Material - Property of IBM

Module
Name

Entry Pt

/Routine Function

S$PRINY Dequeues a tank from its tank queue, obtains

a new output spool device if needed from DMTAXS,
and outputs the tank to a virtual printer.
Dequeues a tank from its tank queue, obtains

a new output spool device if needed from DMTAXS,
and outputs the tank to a virtual punch.

Inputs files from the VM/370 spool systen,
deblocks them into individual records, and
issues a call to $PUT to block the record into a
transmission buffer.

This routine is the interface to DMTAXS for
getting files to tramnsmit, and it purges those
files when transmission is complete.

Deblocks records from the VM/370 page spool
buffers., It returns the deblocked record

in the RCTTDATA buffer.

Processes received commands and messages

and calls DMTNHD for processing. The records
are dequeued from the console TCT.

Executes commands passed to it in the

CMDRESP buffer after an alert from DMTREX
indicating a command has been entered.

This routine is entered when the MSGECB is
posted by this task's asynchronous exit,
indicating messages are queued for this task.
These messages are unstacked from the message
queue by repeated calls to GMSGREQ and

queued for transmission.

Prepares and sends requests to the specialized
task REX, in order to write messages on the
operator's console.

Takes a line and packs it into a telecommunica-
tion buffer. When a buffer is filled, it is
queued onto $0UTBUF for processing by COMSUP.
Deblocks received telecommunications buffers
into tanks and queues the tank onto the
appropriate processor's TCTTANK queue.

Performs all I/0 on the communications line.

It dequeues TP buffers from $OUTBUF for
transmission and queues received TP buffers
onto the SINBUF queue for deblocking by $TPGET.
Analyzes all errors on the communication line
and takes corrective action depending on the
type of error.

SURTN1

$RRTN1

AXSGET

VMDEBLOK

SWRTN1

CMDPROC

MSGPROC

MSG

$TPPUT

$TPGET

COMSOP

CERROR

DMTNHD DMTNHDMI
DMTNHDNMO
DMTNHDHO
DVASSIGN

OPENADEV

Edits network messages.

Network command processor.

Network output header processor.

Assigns a data set header to an output device.
Opens a spool output device with
characteristics defined in the output tag.
Outputs NJE header record in 80-byte segments
into the VM/370 spool systen.

Builds a job header record from multiple
segments.

Job header creation routine.

Network data set header creation routine.
Network job trailer header creation routine.

HDROUT
HDRBUILD
DMTRHDJH

DMTNHDDH
DMTNHDJT

-————‘-——-_—_-—_———-—_-—l———_—————_——_—-———_——_——————-—————*—q-——-
e e o e e T — T — ———— T e S S T - — W= T e TR G T S T e e S, S e e e o
p_.—.————_—_—-———_—-—;—-———..—.——.——_——_——_.——_—-.-——_—_.——...-—_————-—-——._—.-—-_.I
e o R — — —— —— — " —— . . ——— g G - S — o S —— — " — T i —— - — D o — ——— o — —— - — " s s s b s

Figure 3-1. RSCS Modules and Their Subroutines (Part 6 of 13)

106 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

—
Entry Pt |
/Routine | Function

Module
Name

TAGSCAN
MSG

Scans user tag data for NJE forms keyvords.
Prepares and sends requests to REX for
issuance of messages.

Input line scanning subroutine.

Validates and converts EBCDIC hexadecimal
input numbers to binary.

Validates and converts EBCDIC decimal input
numbers to binary.

PARMGET
EBCHEX

EBCDEC

This module is the initialization module for
the DMTNJI line driver. PYrom the parameters
passed to it at line driver initializatiom, it
builds buffers and constructs initial SIGNON
records.

Initializes the various parameters needed

by DMTNIT., Saves its link table address,
initilizes output tags, and constructs the
SIGNON card from information on the PARM field
of the START command.

Builds TP and unit buffer for the DMTNJI line
driver.

Scans a character string left to right, and
frames the first parameter (a substring of
non-delimiters enclosed by delimiters or string
boundaries on the left and right.)

Validates and converts EBCDIC hexadecimal input
numbers to binary.

Validates and converts EBCDIC decimal input
numbers to binary.

Prepares and sends requests to REX for
issuance of messages.

DMTNIT DMTNITEP

NITINIT

IBLDBUFS

PARMGET

EBCHEX
EBCDEC

MSG

DMTNPT DMTNPTEP This module is the line driver that supports
1

the 2770, 2780, 3770, and 3780 compatible
nonprogrammable terminals.

Maintains a cyclic control of the DMTNPT task
on both sending and receiving operations.

Sends the BSC end-of-transmission character
(EOT) on the line to the remote terminal.
Initializes the line output buffer with the
correct BSC character set, depending on the
type of output file and features available at
the terminal.

Requests the supervisor to execute I/0
operations., After starting the I/O operationms,
XYECUTE waits for either a command to be entered
or the completion of the requested I/O
operation.

Executes (by calling XECUTE) I/O operations on
thke BSC line and checks the results. LINEIO
then flags any errors and normally returns to
the caller.

Prepares the line output buffer to be
transmitted to the remote terminal.

Analyzes the response obtained from each buffer
transmission and takes the appropriate action.
Deblocks received TP buffers and writes the
deblocked record to the ¥M/370 spool systenm.

NPTGET
SENDEOT

BUFFINIT

XECUTE

LINEIO

GETBLOCK
GETVRFY

PUTBLOCK

(o e o v G et wm m— G et R SR ham Emn T e BES me Gmm han R S R tems e T e G S N e e SRR m G WD Mms e WS Gmm e S G S e S i A G e G A Sn an GPR ame S)
,.__....__.._—.._—__.____._.___.__.___._._—______.__—..._—_—__.—_.—,____._._-..—._——_—._-\-_.—4
fn mon e cmn e D Gom . — —— — S A G S — . — S wwe GEE G S e G G — A — D - G R i S G . D v m— e ——

e o e G g CEE TP ey c . G . GER WS D S D e D P e SEm D M N D R ——— — D A comn D S — e e D G e (D G N —— — — o — D e o Sl w— . ol

Figure 3-1. RSCS Modules and Their Subroutines (Part 7 of 13)

Section 3: Program Organization - Modules and Subroutines 107

Licensed Material - Property of IBM

-t

the action requested by the control record in
the dequeued tank.

r] il

{ Module | Entry Pt | \
| Name | /Routine | Function |
[L ¥l }
| 8 Ll L] Rl
i | PUTVRPY | Verifies the content of each received TP buffer, |
| | | and constructs an appropriate reply if the 1
|] | buffer is in error. |
{ | COMMANDS | Passes commands received from the remote card |
1 | | reader to the RSCS command processor. [}
| | CADPROC | Executes commands passed to it in the CMDRESP I
| | | buffer after an alert from DMTREX indicates 1
| i | that a command has been entered. 1
| | MSGPROC | Unstacks messages from the task message queue |
| | | and transmits them to the remote terminal |
i | | printer. |
1 | MSG | Prepares and sends requests to the specialized |
| | | task REX to write console messages. |
| | HEADPREP | Provides, record by record, the separator and |
| i { header for print files and the header card for |
| 1 | punch files. |
| | MAKEBLOC | Saves the caller's registers for a call to 1
		VMSB2CP; upon return from VMSB2CP, it sets the
		return code and retuins to the original caller.
	VMSB2CP	Deblocks the VM/370 spool page buffers into an
i i	unpacked buffer (PACKBLK). i	
	AXSGET	Requests AXS to open, close, and delete the
i	spool files that the NPT task is processing. I	
	TODEBCD	Converts System/370 TOD to EBCDIC date and time.{
1	PARMGET	Scans character strings to find delimiters. i
I	NPTINIT	Initialization routine for NPT.
	NPTLINK	NPT sign-on routine.
	NPTERROR	Writes the terminal I/0 error message and
		terminates the task. i
	NPTTERM	Terminates the NPT task. [
DMTPOW	DMTPOWEP	Functions as a remote VSE/POWER system using
1]	the VSE/POWER MULTI-LEAVING transmission	
I i	protocol.	
L]	POWINIT	This routine initializes the various parameters
		needed by DMTPOW. It saves the link table
		address and initialized output tags. 1
	IsIo	Performs the enable sequence on the i
i	communications line and analyzes the response	
		received; if the response is correct, it i
1		writes the "line connected" message.
	ASYNEXIT	This is the alert exit entered by DMTSIG. Two
i i	tasks may alert this line driver:	
i	e DMTREX - When a command has been entered	
1]	for processing by the DMTPOW line driver. 1	
i i	e DMTAXS - When DMTAXS must asynchronously {	
i i	notify DMTPOW that a file has arrived for	
I i transmission.		
1	$START	This is the supervisor routine for DMTPOW. The
		commutator cycles while looking for a routine to]
{		enter until all commutator entriés are closed.
1 [It then waits for a synch lock 1list to be]	
		posted.
	$CRTN1	Dequeues tanks from its tank queue and performs
	{ i	
I | | i
L A L]

Figure 3-1.

108 IBM

RSCS Modules and Their Subroutines (Part 8 of 13)

VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Module
Name

-

Entry Pt
/Routine

Function

-—-—————_—_1-—————_———-—_——-——-_————_——.———_—_———-F—
o e e . A A —— Tt —— —— — T T T o i T o o= e o

$PRTN1

SURTN1

$RRTM

AXSGET

VMDEBLOK

$WRTN1
$MRTN1

CMDPROC

MSGPROC

MSG

PARMGET
$TPPUT

$TPGET

comMsup

CERROR

e . — . - S S A . — . Goan S man w— D an . . D . — —— — g EE D ey —— — o s i mme = o}

Al
|
|
4
Dequeues tanks from its tank queue, obtains a {
new output spool device, if needed, from DMTAXS,|
and sends the tank to a virtual printer. |
Dequeues tanks from its tank queue, obtains a §
new output spool device, if needed, from DMTAXS,]
and sends the tank to a virtual punch. |
Reads files from the VM/370 spool file system, |
deblocks the files into 132-byte records, and i
issues a call to $TPPUT (via $PUT) to block the |
record into a transmission buffer. |
This routine is the interface to DMTAXS; it gets}|
files ready to transmit and purges those files |
when transmission is complete. |
This is the deblock routine for the VM/370 page |
spool buffers., It returns the deblocked record |
in the RCTTDTA1 buffer. {
This routine writes received VSE/POWER commands |
to the RSCS operator, |
This routine writes received VSE/POWER messages |
to the RSCS operator. {
Executes commands passed to it in the CMDRESP |
buffer after an alert from DMTREX indicating |
that a command was entered. |
Entered when the MSGECB is posted by this task's|
asynchronous exit indicating messages are in the|
message queue for this task. These messages arel
unstacked from the message queue by repeated 1
calls to GMSGREQ and gueued for transmission. i
Prepares and sends message requests to REX. |
Scans lines and tests for delimiters. |
Takes a line and packs it into a telecommunica- |
tion buffer. When the buffer is filled, it is |
queued onto $OUTBU¥ for processing by COMSUP, |
Deblocks received telecommunications buffers |
into tanks and queues the tank onto the |
appropriate processor's TCTTANK queue. I
Processes all I/0 on the communications line. |
It dequeues buffers from $OUTBUF for transmis- |
sion and queues received buffers onto the i
$INBUF queue for deblocking by $TPGET. !
Analyzes all errors on the communications line |
and takes corrective action depending on the |
type of error. {

i

Figure 3-1.

RSCS Modules and Their Subroutines (Part 9 of 13)

Section 3: Program Organization - Modules and Subroutines 109

Licensed Material - Property of IBNM

task.

T Al T 1
{ Module | Entry Pt | i
| Name | /Routine | Function 1
L i 'y 1
v L] T L}
{ DMTPRE | DMTPREEP | RSCS preloader utility program (see Appendix B |
]] | for details). I
| | 1 |
{ DMTPST | DMTPSTEP | This service routine may be called from anywhere|
i I | in RSCS. DMTPST signals the completion of an |
| | | event by posting the event's associated synch {
1 | | lock. This routine is entirely reentrant and |
1 | { does not change the state of the running PSW. |
| | | !
| DMTQRQ | DMTOQRQEP | Manages the MSOP supervisor status gueue for i
| i | other MSUP functions. DMTQRQ is for use |
i } | within the supervisor and must be entered with |
		all PSW masks off (except machine check).
i		
DMTREX	DMTREXEP	This routine is the controlling supervisor task;
]	DMTREX, DMTCMX, DMTMGX, DMTSYS, DMTCOM, DMTMSG,	
		and DMTCRE make up the REX supervisor task.
	DMTREXIN	Performs the initialization for the DMTREX task.
1	REXCYCLE	Monitors a list of synch locks when looking for
i I	work for DMTREX to perform.	
	REXPCHEX	Processes program checks.
i	REXITERM	Entered when RSCS initialization fails. 1Issues
1		the initialization failure message, dumps the 1
l	contents of main storage, types any remaining 1	
i	messages, and loads a disabled wait state PSW.	
	REQYXEQ	Scans the function table and calls either
1 i	DMTCMX or DMTMGX as appropriate. 1	
i	INTCMD	Internal command processor. [
{ { DEACT	Deactivates the link table entry.	
i	DMTREXEC	Process exec file content.
	DMTREXTR	Executes the terminate function for the FORCE 1
[{	command. ’	
i	MSG	Prepares message requests and calls DMTMGX.
{ TIMERSET	Supports timer alert requests.	
]	TERMINAT	Terminates a specified task.
	QUIESCE	Executes as task code for a task in the process
I		of termination. Looks for any outstanding I/O
		for the terminating task. If any outstanding
i { I/0 is found, issues HIO and waits for comple-		
{ { tion; upon completion it terminates the task.		
[
DMTRGX	DMTRGXEP	Handles the command and message routing request
i] elements.	
1] RGXCMD	Interfaces a CMD routing request element with	
		DMTCMX. i
I RGXMSG	Writes message DMTxxx170I or DMTxxx171I from	
i	message routing request element. 1	
]	RGXNTHRE	Processes CMD/MSG routing request element for
i		store-and-forwvard.
	RGXDOIT	Message routing interface. }
	RGXMSGER	Processes non-zero return code from DMTMGX. i
I		
DMTSIG	DMTSIGEP	Performs a task alert exit for a requesting
f i i |
L L i J

Figure 3-1.

110 IBAM

RSCS Modules and Their Subroutines (Part 10 of 13)

VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Module
Name

Entry Pt
/Routine

Function

DMTSML

[G G . D Gis S S SN mmm S S WD S ERE s U e s D G o T S D Gewn G N —— ——— A S e G S Mo W - e - — am w— G e —)

e e e e T . — T — —— —— ——— — T — ——— " — T " — o — = g S — o —— = a— =]

DMTSMLEP

SMLINIT

ISIO

$START

$CRTN1

$PRTN1

$URTN1

$JRTN1

$USREXIT

$RRTN1

AXSGET

VMDEBLOK

HEADPREP

TODEBCD
$WRTN1

S pan — —— — — ——— —— — N . S ———— — — T —— o —— - . D . S —— S mmn e T S — . . w—

Functions as an RJE workstatiom into a remote
system using the MULTI-LEAVING transmission
protocol. It can also function as a host to a
remote programmable workstation supporting a
System/370, System/3, Model 20, 1130, 2922, or
other compatible workstation systenms.
Initializes various parameters for DMTSML.
Saves the link table address, initializes
output tags, constructs the SIGNON card
from the operand field of the START command.
Performs the enable sequence on the
communications line and analyzes the response
received; if the response is correct, it
writes the "line connected" message.
This is the alert exit entered by DMTSIGZ. Tw
tasks may alert this line driver:
e DMTREX - When a command has been entered
for processing by the DMTSML line driver.
e DMTAXS - When DMTAXS must asynchronously
notify DMTSML that a file bhas arrived for
transmission.
This is the supervisor routine for DMTSML. The
commutator cycles while looking for a routine to
enter until all commutator entries are closed.
It then waits for a synch lock list to be
posted.
Dequeues tanks from its tank gqueue and perforams
the action requested by the control record in
the dequeued tank.
Dequeues tanks from its tank queue, obtains a
new output spool device, if needed, from DMTAXS,
and sends the tank to a virtual printer.
Dequeues tanks from its tank queue, obtains a
new output spool device, if needed, from DMTAXS,

anAdA aands +$ha $anlk +2A a wirdnal nunsh
QiU OTuGS T4T Taun LU Q4 viituda puilide

Dequeues tanks from its tank queue, obtains a
new output spool device, if needed, from DMTAXS,
and sends the tank to a virtuwal punch.

Validates the ID card in the front of decks read
in from a remote card reader.

Reads files from the VM/370 spool file systen,
deblocks the files into 132-byte records, and
issues a call to $TPPUT (via $POT) to block the |
record into a tramsmission buffer. |
This routine is the interface to DMTAXS; it gets|
files ready to tramnsmit and purges those files |
when transmission is complete. |
This is the deblock routine for the VM/370 page |
spool buffers. It returns the deblocked record |
in the RCTTDTA1 buffer.

Provides, one record after the other, the
separator and header for print files and the
header card for punch files.

Converts System/370 TOD to EBCDIC date and time.|
In RJE mode, writes received messages to the |
RSCS operator. In HOST mode, passes commands tol
DMTREX. These commands or messages are dequeued|

from console TCT. |
i

(o]

—— D R - . T v T S S —— . ——— S S —— S 0 o S S S . " M o T g - — o S e o o]

Figure 3-1.

RSCS Modules and Their Subroutines (Part 11 of 13)

Section 3: Program Organization - Modules and Subroutines 1M

Licensed Material - Property of IBM

transmission.

r T v M
| Module | Entry Pt | |
| Nanme | /Routine | Function |
L 4 1 1
¥ T L] A}
| | CMDPROC | Executes commands passed to it in the CMDRESP i
f	buffer after an alert from DMTREX indicating	
i	that a command was entered.	
	MSGPROC	Entered vhen the MSGECB is posted by this task's
		asynchronous exit indicating messages are in the]
i	{ message queue for this task. These messages arel	
{	unstacked from the message queue by repeated	
		calls to GMSGREQ and queued for transmission.
1	MSG	Prepares and sends message requests to REX. i
I { PARMGET	Scans lines and tests for delimiters. I	
	$TPPUT	Takes a line and packs it into a telecommunica-
		tion buffer. When the buffer is filled, it is
I	queued onto $OUTBUF for processing by COMSUP. i	
1	$TPGET 1 Deblocks received telecommunications buffers	
{		into tanks and queues the tank onto the
{	appropriate processor's TCTTANK queue.	
]	COMSUP	Processes all I/0 on the communications line.
i	It dequeues buffers from $0UTBUF for transmis-	
[sion and queues received buffers onto the [
{		$INBUF queue for deblocking by $TPGET.
]	CERROR ! Analyzes all errors on the communications line	
		and takes corrective action depending on the [
		type of error.
I		
DMTSTO	DMTSTOEP	Reserves pages of free storage by calling 1
[task programs that free storage pages by]	
i	! clearing the associated map byte to zero i	
I I	in the main storage map.	
DMTSVC	DMTSVCEP	This module is the MSUP interrupt handler; it
{ i	receives control directly when an SVC [
1		interrupt occurs.
		l
DMTVEC	DMTVECEP	Describes the fixed address storage utilization {
		for MsuUp, beginning at main storage address
		X*200', System/370 architecture defines the
		£first 512 bytes of main storage, and MSUP uses
		this area as defined. This area is not]
] !	assembled in the DMTVEC module to facilitate i	
i	initial system loading. This area is	
l i	initialized by DMTINI at IPL. 1	
1 1		
DMTVMB	XECUTE	Performs I/0 on the supplied I/O block. 1
1	LINEIO	Performs I/0 and analysis. .
	GETBLOCK	Processes input files for transmission.
i	PUTBLOCK	Processes received data buffer outputting to 1
		spool systen.
	MSGRECV	Process received comrands and messages. 1
	MSG	Prepares and sends message requests to REX.
i	CMDPROC	Executes commands passed to it in the
i	CMDRESP buffer after an alert from DMTREX 1	
i { indicates that a command has been entered.		
	SVMRINIT	Initializes line driver. 1
	AXSGET	Provides interface to AXS for input files. 1
§f TODEBCD	Converts System/370 TOD to EBCDIC date and time.	
	VMRTILT	Terminates line driver task.
	MSGTRANS	Unstacks MSG and command element and blocks for
l	1	
1 A L I]

Figure 3-1.

112 IBM

RSCS Modules and Their Subroutines (Part 12 of 13)

VM/370: RSCS Networking logic

Licensed Material - Property of IBM

instruction. It provides event synchronization
by suspending a task's execution until some
specified event is signalled complete by another
process in the systen.

T u v H
| Module | Entry Pt | 1
| Name | /Routine | Function 1
L [N [1
v Ll L i
I | VMSB2CP | Deblocks VM/370 4K spool page buffer. 1
| | PACK | Packs a line into transmission buffer format. 1
| DMTVMC | CTCGO | This line driver supports the use of a channel- |
l 1 | to-channel adapter between two processors {
i | XECUTE | running VM/370. This routine requests the |
| i | supervisor to execute I/0O operations. After]
i | | initiating the I/0 operation, the routine waits |
| ! ! for either a command to be entered or the I
i { | completion of the requested I/0O operation. |
|] LINEIO | Executes (calling XECUTE) I/O operations on the |
| | | VMC and checks the final state, consequently]
i | | setting the IOERR flag in the DEVFLAG byte. !
| | GETBLOCK | Processes input files from the ¥M/370 spool |
| | | file systen.]
i i MSGTRANS | Builds message buffer for transmissiom. i
	PUTBLOCK	Relocates received spool block records, and
]	sends them to the VM/370 spool systen.	
	MSGRECV	Processes received commands and messages.
	CMDPROC	Executes commands passed to it in the CMDRESP 1
]		buffer after an alert from DMTREX indicating {
		that a command has been entered.)]
	MSG	Prepares and sends requests to the specialized
i] task REX, to write messages on the operator's		
		console.]
	MAKEBLOC	Sets up for a call to VMSB2CP.
	AXSGET	Passes requests to R¥S to open, close, and i
I	delete the spool files that the VMC task is 1	
		processing. {
	TODEBCD	Converts System/370 TOD to EBCDIC date and time.
	PARMGET	line scanning subroutine.
	CONVBLK	Converts a spool page buffer from real reader tol
		virtual unit record output format.
	CTCINIT	VMC initialization routine. [
	CTCERROR	Writes the terminal I/0 error message and calls
		CICTERH. i
	CICTERE	Terminates the VMC task. {
DMTWAT	DMTWATEP	Called directly from task programs by a BALR 1
		i
(1	
	f	
L A [l]

Figure 3-1. RSCS Modules and Their Subroutines (Part 13 of 13)

Section 3: Program Organization - Modules and Subroutines 113

Licensed Material - Property of IBM

Module-to-Module Execution Transfers (BALRs)

Fiqure 3-2 lists the code locations at which control is passed from one
RSCS routine to another via a BALR instruction.

time.

r T B 1
| BRSCS |BALR to | At | 1
|Hodule| Module | Llabel | Comments 1
1 1 i 1
r Ll ¥ L
|DHTAKE| DMTDSP { TAKEXIT | Resumes dispatching; processing of a TAKE |
| I | | request is complete. |
| | DMTPST | TAKEMUTE | Signals a task that it must process a]
| | | | TAKE request. |
| | DMTQRQ | TAKEMUTE | Prees a GIVE element,. |
1 | | | |
|DMTASK | DMTDSP | TAEXIT | Resumes dispatching; processing of a task |
1 | | | request has completed. |
	DMTPST	TAGPURGE	Signals the termination of a task.
	DMTQRQ	TAFREEOK	Frees a terminated task element.
{ DMTQRQ	TAGPURGE	Frees a terminated GIVE element.	
	DMTQRQ	TAMAKE	Gets a queue element for a new task.
	DMTQRQ { TAQPTEST	Frees requested elements for a terminated	
i			task. f
	DMTQRQ	TASQTEST	Frees an I/0 element associated with a
]		task being purged.	
[DMTASY	DMTDSP	ASEXIT	Resumes dispatching; processing of an]
	{	asynchronous exit request has completed.	
]	DMTQRQ	ASQEND	Gets a free queue element; frees a
i	i	terminated queue element. 1	
1	DMTQRQ	ASQGOT	Gets a free queue element; frees a
i		terminated queue element.	
I 1 ! 1			
IDMTAXM	DMTAKE	AXSACCPT	Takes a request for DMTAXS services from
{			another task.
	DATASY	AXSIGSET	Requests an asynchronous exit for task
			asynchrononous alerts.
]	DMTASY	AXSIGSET	Requests an asynchronous exit for reader
	§	X*001*. 1	
		I	
	DMTAXA	DMTAXAAC	Execute the accept account record routine.
		DMTAXASE	Execute the send account record routine.
		DMTAXAPU	Execute the purge account record routine.
[!	DMTAXARE	Execute the receive account record i	
	[routine.	
		DMTAXATA	Execute the tag priority change routine.
I		1	
	DATCOM	GETLINK	Gets a link table entry.
	DMTCOM	OPENIRTY	Gets a page of main storage.
	DMTCOM	CPENCLNK	Gets a page of main storage.
	DNTCOM	TODEBCD	Converts System/370 TOD to EBRCDIC date and]
		l	

L J 1] L

Figure 3-2. Module-to-Module Execution Transfers (BALRs) (Part 1 of 7)

114 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

task.

r L L] L] t
{ RSCS |BALR to | At] 1
jModule| Module | 1label i Comments i
1 — ' L [] . [
L L] Ll L] T]
| | DMTGIV | MSGDO | Gives a message element to DMTMGX for {
1 { | | processing. |
| | DMTPST | AXSALRT1 | Signals acceptance of a command to 1
| | | | process. !
{ | DMTPST | AXSASYIO | Signals arrival of a request for an |
| | | | asynchronous exit. 1
| | DMTSIG | ACCEFIND | Alerts a line driver task that a newly |
| | | | arrived file has been accepted. I
! { DMTSIG | CHANDONE | Alerts a line driver task. |
| | DMTWAT | RXSCYCLE | Waits for a request for DMTAXS services, |
i | DMTWAT { MSGDO | Waits until processing by DMTGIV has i
| | | | completed. |
| | | | I
| DMTCMX| DMTCOM t QYOLINK | PFinds a link table entry. |
| | | | f
| | DAITCOM | TODEBCD | Converts a System/370 TOD to EBCDIC date |
i | | { and time. |
| | DMTCRE | STALNGOT | Creates a line driver task, as specified |
| | | {f in the START command. |
] | DMTMGX | CMXDOIT | Writes a message resulting from command 1
	!	processing.	
	DMTMGX	CMXM001	Writes a message showing the number of
			free pages in storage.
	DMTMGX	CMXMOO3B	Writes a message showing the conmand now
			being executed by RSCS.
	DMTMGX	DISCHARG	Writes a message resulting from DISCONN
i {		command processing.	
	DMTMGX	QYM654	Writes a message resulting from QUERY
] i i	command processing.		
	DMTMGX	QYM655	Writes a message resulting from QUERY 1
I			command processing.
	DMTMGX	QYSYMSG	Writes a message resulting from command
	1	processing.	
1	DMTREXY	DISCONN	DIAGNOSE instruction entry to CP console
	1	function. . 1	
	DMTREX	DISCHARG	DIAGNOSE instruction entry to CP console
			function.
	DMTSIG	CMXALRDY	Alerts a task for command processing.
{	DMTSIG	STAGREAT	Alerts DMTLAX to validate a line address
			used in a START command.
l			1
	DMTMGXY	SENDIT	Sends a line of CPQUERY response data back]
			to the issuer.

|DMTCOM{ DMTDSP | MFIXIT | Requests dispatching of a task for which aj
| | | | message has been stacked for transmission.|
{ | DMTDSP | MFOXIT | Requests dispatching of a task for which al
| | | | message has been unstacked for |
l | 1 | transmission. |
| | DMTSTO | GETPTRY | Requests main storage allocation. |
| | DMTIOM | CFILDOYIO | Requests the I/0 manager to read one DASD |
i | | | block from a file on a CMS-type systenm |
| { | | disk. |
I | DMTSTO | CRETRYIT | Requests main storage for the creation of |
I | | | a task. l
| | DMTWAT | CFILDOIO | Waits for a read I/O request to complete. |
{ | | | : |
| DMTCRE| DMTASK | CREQTASK | Requests the supervisor to start a new |
! ! '. !

Figure 3-2. Module-to-Module Execution Transfers (BALR

n

) (pPart 2 of 7)

Section 3: Program Crganization - Execution Transfers (BALRS) 115

Licensed Material - Propertv of IBM

L) RN] 1
{ RSCS |BALR to | At | |
|Modu1e| Module | Label 1 Comments i
L 1 L 1
¥ L Lf 1
|DHTEXT| DMTDSP | EXTGO | Resumes dispatching; processing of an |
I | | | external interruption is complete. |
| 1 t 1 |
DMTGIV	DMTDSP	GIVEXIT	Resumes dispatching; processing of a GIVE
]	request is complete.	
	DMTPST	GIVESNIF	Signals a task to begin processing a GIVE
			request.
	DMTQRQ	GIVESCAN	Gets a free queue element.
1 [1	t		
DMTINI	DMTDSP	INIQDONE	Dispatches the first task.
]	DMTQRQ	INIQDONE	Initializes the queue of free elements.
	i		
[DMTIOM] DMTDSP	IODISPCH	Resumes dispatching; processing of an I/0	
1	1	request is complete. [
	DMTPST	IONORMAL	Signals completion of an I/O event. }
	DMTPST	IOPUNT	Signals an error on a request for a queue
			elenment.
	DMTQRQ	DMTIOMRQ	Gets an element for amn I/0O request.
	DMTQRQ	IODISMIS	Frees an element used for a SENSE request.
	DMTQRQ	IONORMAL	Frees an element used in an I/0 request.,
	DMTQRQ	IOUNITCK	Gets an element for a SENSE request. [
{DMTIRX	DMTCRE		Initiate AXS ard LAX tasks.
	DMTASY] Initializes an asynchronous exit address.	
{	DATCOM	IRXBIK	Obtains storage for supervisor use as
{			buffer space.
I	DMTCOM	DIRECT	Open 'RSCS DIRECT!' 1
{	DMTCOM	DIRREAD	Read 'RSCS DIRFCT'
i	l	I	
DMTLAX	DMTASY	LAXINIT	Sets up an asynchronous exit for DMTLAX.
i	DMTHAT	LAXHANG	Terminates DMTLAX.
		I {	
DMTMIN			Initializes MSUP after DMTINI loads it.
		I	
DMTMGX	DMTCOM	MGXBUILT	Gets a link table entry. 1
	DMTCOM	MGXTCLOC	Stacks a message. !
	DMTREX	MGXNOPR	Writes a message to a local VN/370 userid.
	DMTREX	MGXNOVM	Writes a message to the VM/370 operator.
	DMTSIG	MGXBUILT	Alerts an originating task that a message
			has been handled. 1
1			1
DMTNPT	DMTASY	NPTNCPAS	Sets up an asynchronous interrupt for
I	{	DMTNPT.	
	DMTCOM	AXSMENQ	Enqueues a message on the message stack
l		for processing by DMTMGX.	
	DMTCOM	MSG2780	Unstacks a message for transmission to a
]			remote station.
	DMTCOM	NPTNOPAS	Gets a page of storage for use as DMTNPT
i			buffers.
	DMTCOM	TODEBCD	Converts System/370 TOD to EBCDIC date i
i		and time.	
	DMTGIV	AXSGET	Requests DMTAXS to open a file.
	DMTGIV	AXSPURGE	Requests DMTAXS to purge a file.
	DMTGIV	COMMANDS	Passes a command element to DMTREX for
i		processing by DMTCHMX.	
	DMTGIV	KLOGIT	Requests DMTAXS to open the log trace filel
	i	for output. !	
L 1 i L |

Figure 3-2. Module-to-Module Execution Transfers (BALRs) (Part 3 of 7)

116 IBM VM/370: RSCS Networking Logic

Licensed Material - Property

of IBNM

.
RSCS |BALR to

¥ A] ¥ L]
| | At { {
|Module} Module | lLabel ! Comments]
L L L L]
L B LB L] 1 hJ
i | DMTGIV | LINEDROP | Requests DMTAXS to close a file. |
| | DMTGIV | LOGCLOSE | Requests DMTAXS to close the log trace 1
| i | | file for output. 1
1 | DMTGIV | MSG1 | Passes a message element to DMTMGX for |
| 1 l | processing. |
| { DMTGIV | PUTCLS1 | Requests DMTAXS to close a file for i
{ i ({ output. |
i | DATGIV | PUTOPEN | Requests DMTAXS to open a file for output.|
| | DMTGIV | TASKILL | Requests DMTREX to terminate the |
] | 1 | requesting NPT line driver. |
|] DMTIOM | LOGCONT1 | Requests an I/0 operation for the LOG i
] routine.	
	DMTIOM	LOGPRINT	Prints a LOG message.
	DMTIOM	XECUTE	Requests an I/0 operation (general usage
i		by LDMTNPT). i	
	DMTPST	AXSALRT1	Signals that DMTNPT accepted a command.
	DMTWAT	AXSGET	Waits for a request to open a file to
			complete processing. 1
i	DMTWAT	AXSPURGE	Waits for a request to purge a file to i
	f	complete processing.	
	DMTWAT	COMMANDS	Waits for DMTCMX to process a command.]
1	DMTWAT	KLOGIT	Waits for completion of a request to open
			the log trace file for processing.
	DMTWAT	LINEDROP	Waits for a request to close a file to
1 1	complete processing.		
	DMTWAT	LOGCLOSE	Waits for a request to close the log tracel
			file when processing is complete. 1
	DMTWAT	LOGCCNT1	Waits for an I/C operation to complete 1
i {	logging processing.		
	DMTWAT	MSG1	Waits for message processing to complete.
i	DMTWAT	PUTCLS1	Waits for a request to close a file to
i		complete processing.	
	DMTWAT	PUTOPEN	Waits for completion of a request to open
			a file for processing.
	DMTWAT	TASKILL [Waits for task termination processing to	
			complete.
	DMTWAT	XECQWAIT	Waits for an I/0 operation to complete.
			{
DMTPOW	DMTASY	SETNOBUF	Sets up an asynchronous exit for DMTPOW.
	DMTCOM	ASYNENQ	Stacks a message to be transmitted by
]			DMTPOW. i
	DMTCOM	BUFSDONE	Gets a page of storage for DMTPOW I/O
	1	tasks. 1	
	DMTCOM	IBLDRBUFS	Gets a page of storage for DMTPOW TP
]			buffers.
	DMTCOM	MSGPROC1T1	Unstacks a message for transmission to a
	i	remote station.	
	DMTGIV	AXS	Requests services of DMTAXS for the POW i
i		line driver task. 1	
	DMTGIV	AXSGET	Requests DMTAXS to give a file for
1 i	transmission.]		
	DMTGIV	AXSPURGE { Requests DMTAXS to purge a file.	
	DMTGIV	EOJ	Requests termination of the POW line
			driver task. }
I | DMTGIV | MSG1 | Gives a message to DMTMGX for processing. |
[L L L J

Figqure 3-2.

Section 3: Program Organization - Execution Transfers (BALRS)

Module-to-Module Execution Transfers (BALRs) (Part U4 of 7)

117

Licensed Material - Property of IBM

T L] L Ll 1
| RSCS |BALR to | At | |

Module | Llabel 1 Comments 1
} t + + i
| | DMTIOM | I27XXI0 (| Performs the initial I/O operation for thel
i | 1 | POW line driver task. |
| | DMTIOM | LOGPRINT | Requests an I/0 operation (logs an I/0 |
| | [} | operation). 1
| | DMTIOM | PCONT4 | Requests an I/0 operation for the printer.|
| | DMTIOM | RSIO | Requests a start I/O0 for the adapter. {
I | DMTIOM | UCONT2 | Requests an I/0 operation for the punch. |
{ DMTWAT	ALLCHK	Waits for the DMTPOW synch lock to be	
!		posted (waits for a request to process).	
	DMTWAT	AXS	Waits for completion of an event by
!			DMTAXS.
{ DMTWAT	AXSGET	Waits for DMTAXS to GIVE a file for	
i i i	transmission. i		
	DMTWAT	AXSPURGE	Waits for DMTAXS to purge a file. \
] { DMTWAT	DEOJCONT	Wait for HDV.	
]	DMTRAT	DEOJGO	Wait for disable of adapter.]
1	DMTWAT	EOJ	Terminates the POW lime driver task by
			issuing a terminal WAIT request.
]	DMTWAT	LOGPRINT	Waits for I/O logging to complete.
	DMTWAT	MSG1	Waits until GIVE to DMTMGX is conmplete.
i DMTWAT §{ RISIO1	Waits for initial SI0O for the DMTPOW		
1			line driver to complete.
			I
	DMTAKE	REXACCPT	Accepts a request to process a ¥M/370
i i [}	file.		
	DMTASK	QUIESE	Requests task termination. H
i	DMTASK	TERTKILL	Requests task termination.
	DMTASY	REXICGOT	Initializes an asynchronous exit.
	DMTCMX		Pass the Special Message to the Command {
			Processor.]
1	DMTCOM	REXFLUSE	Requests DMTMGX to write any queued
			messages.
	DMTCOM	REXOUTRY	Removes a message for the message stack
		{ and writes it to the console. 1	
i	DMTCRE	REXICGOT	Creates the tasks DMTAXS and DMTLAX.
	DMTDSP	REXDQUIT	Terminates dispatching due to program
			check.
1	DMTDSP { REXHEXIT	Resumes dispatching after program check i	
			processing. {
	DMTIOM	REXCONON	Requests an I/0 operation (console write).}
	DMTIOM	REXFCONF	Requests an I/0 operation (console write).}
	DMTIOM	REXQUERY	Requests an I/0 operation (console read).
i	DMTMGX	MSG	Passes a message element to DMTMGX for
1	I	processing.	
	DMTMGX	TERMSET	Writes a task terminated message. 1
{ DMTPST	REXASYN	Signals a console attention.	
	DMTPST	REXHALT	Signals that DMTREX is undispatchable due
			to program check.
	DMTWAT	QUIESE	Waits for a task to terminate.
	DMTWAT	QUICK	Waits for task I/0 to terminate.
	DMTWAT	REXSWAIT	Waits for a console write to complete.
	DMTWAT	REXWAIT	Waits for completion of an event.
L A 1 A]

Figure 3-2.

Module-to-Module Execution Transfers (BALRs) (Part 5 of 7)

IBM VM/370: RSCS Networking Logic

output file.

Licensed Material - Property of IBM

T H . L] 1
{ RSCS |BALR to | At | |
| Module| Module | label 1 Comments |
. + + + 1
| DMTRGX]| | | Process command and message routing f
| | | | request elements. 1
|DMTSIG| DMTDSP | ALSCAN | Resumes dispatching; processing of an !
I | | ALNOGO | alerted task has completed. 1
{ | | | |
| DMTSML| DMTASY | SETNCBUF | Sets up an asynchronous exit for DMTSML. |
i | DMTCOM | ASYNENQ | Stacks a message to be transmitted by 1
! ! I | DMTSML. !
i | DMTCOM | BUFSDONE | Gets a page of storage for DMTSML I/O |
| | | i tasks. : i
	DMTCOM	IBLDBUFS	Gets a page of storage for DMTSML TP
I	{ buffers.		
	DMTCOM	MSGPROC1	Unstacks a message for transmission to a
			remote station. {
i i DMTCOM	TODEDCD	Converts Systen,/370 TOD tc ERCDIC date !	
			and timew
	DMTGIV	AXS	Requests services of DMTAXS for the SML
] { ! line driver task.			
1		KLOGIT	Requests DMTAXS to open a log trace output]
	l	file.	
		LOGCLOSE	Requests DMTRAXS to close the log trace
			output file.
1	DMTGIV	AXSGET	Requests DMTAYS to give a file for i
1		transmission. 1	
	DMTGIV	AXSPURGE	Requests DMTAXS to purge a file.
{ { DMTGIV	EOJ	Requests termination of the SML line \l	
			driver task.
{ I			
i	DMTGIV	MSG1	Gives a message to DMTMGX for processing.
	DATGIV	WGET1A	Requests that a message be written to the
i			RSCS console; pass a command to DMTREX.
	DMTIOM	I27XXI0	Performs the initial I/0 operation for the]
l		SML line driver task. 1	
	DMTIOM	JOUT1	Requests an I/0O operation; sets up job i
i i i i processing comntrols. !			
	DMTIOM	PCONT?2	Requests an I/O operation (sets up printer
		PLINE	controls.
	DMTIOM	RSIO	Requests a start I/0 for the adapter.
	DMTIOM	UOUT2	Requests an I/O operation (sets up punch
i		controls).	
i	DMTIOM	WRLOG1	Requests an I/0 operation (logs an I/O i
			operation).
	DMTPST	ASYNRET	Posts the reader synch lock. \
{	DMTWAT	ALLCHK	Waits for the DMTSML synch lock to be
	{	posted (waits for a request to process).	
	DMTWAT	AXS	Waits for completion of an event by
	l	DMTAXS.	
	DMTWAT	AXSGET	Waits for DMTAXS to GIVE a file for {
			transmission.
	DMTWAT	AXSPURGE	Waits for DMTAXS to purge a file.
	DMTWAT	EOJ	Terminates the SML line driver task by
i		issuing a terminal WAIT request.	
]	KLOGIT	Waits for DMTAXS to open a log trace	
I		output file.]	
		LOGCLOSE	Waits for DMTAXS to close a log trace i
! ! ! ! !

Figure 3-2. Module-to-Module Execution Transfers (BALRs) (Part 6 of 7)

Section 3: Program Organization - Execution Transfers (BALRS) 119

Licensed Material - Property of IBM

f Ll T B 1
| RSCS |BALR to | At] 1
{Module| Module | Label I Comments 1
L i 1 1 1
2 T T T 1
| | DMTWAT { MSG1 | Waits until GIVE to DMTMGX is complete. |
|] DMTWAT | RISIO1 | Waits for initial SIO for the DMTSHML |
1 | | | line driver to complete. |
| | DMTWAT | WGET1A | Waits until message processing has f
1 | | | completed. 1
i | DMTWAT | WRLOG1 | Waits for I/O0 logging to complete. |
| I I | I
| DMTSTO| DMTDSP | MAINDONE | Resumes dispatching; a request for a |
| | | | page of storage has been processed. |
t | | | 1
| DMTWAT | DMTDSP | WAITGO | Resumes dispatching; processing of a |
[| | | WAIT request has completed. |
[1 i 1 N J

Figure 3-2. Module-to-Module Execution Transfers (BALRs) (Part 7 of 7)

Control Flow Diagrams

Figures 3-3 through 3-11 illustrate the flow of control through the
routines that make up the folllowing parts of RSCS:
e Multitasking supervisor MSUP

e REX system service task

e AXS system service task

e SML line driver task

e NPT line driver task

e NJI line driver task

e VMB line driver task

e VMC line driver task

e POW line driver task

120 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBH

External
{Console)
Interrupt

DMTEXT

Process an
External
Interrupt

DMTIOMIN

Process an
1/O Interrupt

1/O Interrupt

DMTSTO

Reserve
Main
Storage

DMTWAT

Suspend
Dispatching
for an
Executing Task

DMTIOMRQ

Request 1/O
Service; Calls
DMTQRQ and
DMTPST

DMTSIG

DMTDSP

Resume
Execution of
a Task; Enter
a System

WAIT

Figure

WAIT State

Asynchronously
ALERT Another
Task; Calls
DMTPST

DMTAKE
Accept and
Respond to
GIVE Requests;
Calls DMTQRQ

DMTASK
Initiate,
Terminate and
Query Tasks;
Calls DMTQRQ

DMTASY
Initiate and
Terminate
Asynchranous
Exits; Calls
DMTQRQ

DMTGIV

Present GIVE
Requests;

Calls DMTQRQ
and DMTPST

Supervisor routines
entered from tasks
by BALR

FREEZE statement
in supervisor routines

entered from task

DMTSVC

Suspend
Execution
of a Task

All Task Level
Programs

Asynchronous
Exit Routine

3-3. Program Organization for the Multitasking Supervisor MSUP

Section 3: Program Organization - Control Flow Diagrams 121

AXS Task

DMTAXS

VM/370
Spool
System

1

VM/370
Virtual
Machine

REX Task

Licensed

Material - Property of IBM

DMTCRE

Create System
Service and
Line Driver
Tasks

DMTMGX

Process M

DMTRGX

DMTREX

e Build Requested
Message and
Distribute to
Recipents

DMTCMX

Process Commands:
® Execute DMTCMX

Process Routed
CMD/MSG:

® Pass for Local
Execution

e Alert next
Transmission
Link

® Handle all REX
Requests

¢ Handle Program
Check Interrupts

® Handle Console
1/0

® Terminate System
Service and Line
Driver Tasks

Line Driver
Tasks

-

BSC
Line

M

BSC

Commands
® Pass Command
\ Elements to
VM/370 AXSand Line
Virtual - Drivers for
Machine Execution
RSCS
Console
Supervisor Routines
Figure 3-4. Program Organization for the REX System Service Task

122

IBM VM/370: RSCS Networking Logic

Line

Licensed Material -~ Property of IBM

VM/370
Virtual Machine

’\

VM/370

VM/370
Spool File
System

Virtual Machine

Figure

3-5.

AXS Task (Module DMTAXM)

CMDPROC

Execute File
Control RSCS
Operator
Commands

OPENIN
CLOSEIN
QPENOUT
CLOSEOUT

Input and
Spool Files

Open and Close

ACCEPT

Accept Files
from VM/370
Spool System

AXSCYCLE

ACCEPT:

Purge
Command
Elements

® Requests to
Open and
Close VM/370

Bl Cilas
opGT TS

®Qrder, Change

BSC
Line

]

BSC

Line Driver
REX Task Tasks
{oMTREX | {omTsmL]
{omTemx]| | | {omTVMmE)

Supervisor Routines

Program Organization for the AXS System Service Task

Section 3: Program Organization - Control Flow Diagranms

7 Line

123

VM/370

Virtual Machine

$START

Licensed Material - Property of IBM

Control Execution
by Means of the
Commutator Table
and Task Control
Table

$PRTN1

DMTREX

DMTCMX

DMTMGX

DMTAXM

VM/370

Spool System

B

Virtual Machine [**

RJE:

Process Print File
Records and Send
them to VM/370

SURTN1

JE:
Process Punch File
Records and Send
them to VM/370

$JRTN1

$TPGET

COMSUP

HOST:

Process Job File
Records and Send
them to VM/370

Receive Date
from BSC Line
Via COMSUP:
Allocate Tanksto
Input Processors

Control Commu-

nications on the

BSC Line Send

i=and Receive:

® Transmission
Acknowl-
edgement

$CRTN1

Scan RSCS Control
Records and Per-
form Control
Functions

$SWRTN1

RIJE:

Send Messages to
RSCS Operator's
Console

HOST:

Pass Commands to
DMTCMX

$RRTN1

Receive Records
from VM/370
Spool System and
Transmit them
Via $TPPUT

® Data Streams

BSC

Z Line

$TPPUT

CMDPROC

Execute Local
Commands Passed
by DMTCMX; Pass
Commands to
Remote Stations

Receive Tanks
from Output
Processors for
Transmission.
Send Buffers
to BSC Line
Via COMSUP

MSGPROC

Passes Messages to
Remote Stations

|

Supervisor Routines

Fiqure 3-6.

124

IBM VM/370: RSCS Networking Logic

Program Organization for the SML line Driver Task

Virtual Machine

Licensed Material - Property of IBM

VM/370

VM/370
Virtual Machine

Figure 3-7.

COMMANDS
Process a
Command
Received
Over the
BSC Line
PUTBLOCK PUTVRFY NPTGET LINEIO
Obtain Data Check for:
gjﬂgfhé‘;‘: Buffers from ® A Command Read Data
the BSC Line: the BSC Line to Process and Write BSC
DMTREX Write Data = 2o Verity * A File to Dataon [~ Z Line
to VM/370 the BSC Transmit the BSC
ontro . ine
! DMTCMX I Spool System Characters ¢ Qezge to
| DMTMGX | MAKEBLOC GETBLOCK GETVRFY
DMTAXM Build a Control
Sfe:): tgl;ﬁkm Buffer for the Characters
the VM/370 * Appropriaie Afier Writing
Spool System Hardware a Block of
Device Data to the
BSC Line
VM/370
Spool System
Supervisor Routines
Program Organization for the NPT Line Driver Task
Section 3: Program Organization - Control Flow Diagrams 125

$START

Controi Execution
by Means of the

Commutator Table
and Task Control

Licensed Material - Property of IBM

$PRTN1

Process Output
File Records and
Send them to
VM/370

Tables

DMTNHD $URTN1 $TPGET

COMSUP

Receive Data
from BSC Line
via COMSUP,
Alocate Tanks
to Input Proces-
sors

Process Job File
Records and Send
them to VM/370

Y=l

$CRTN1

Scan RSCS Control
Records and Per-
form Control
Functions

DMTRGX

DMTREX

$SWRTN1

Pass Routing
Request Elements
to DMTRGX

DMTCMX

DMTMGX

DMTAXM

$RRTN1

Receive Records
from VM/370

VM/370

Control Commu-

nications on the

Adapter.

Sendand Receive]

® Transmission
Acknowl-
edgement

® Data Streams

Spool System Spool System and

Transmit them $TPPUT

Via $TPPUT Receive Tanks
from Output
Processors for
Transmission,
Send Buffers
to Adapter
Via COMSUP

MSGPROC
Pass CMD/MSGs to

VM/370
Virtual Machine

Remote Systems

\

VM/370
Vitrual Machine

CMDPROC

Executes Local
Commands
Processed by
DMTCMX

Commu-
nications
Adapter

[Supervisor Routines

Figure 3-8.

126 IBM VM/370: RSCS Networking Logic

Program Organization for the NJI Line Driver Task

Licensed Material - Property of IBN

PACK

MAKEBLOC

Comprass
Data
Strings

Build Packed
Spool Data
Blocks for
Transmission

VMRGET
GETBLOCK VMRGO
[
Main VMB
Process Logical Driver
Data Bilocks M
to be Control BSC

Transmitted

VM/370

VM/370
Virtual Machine

Vivi/370
Virtual Ma

Figure 3-9.

DMTAXS

DMTREX

Spool System

MSGTRANS

Build CMD
and MSG
Element Data
Blocks for
Transmission

AXSGET

Open Input
Spool Files for
Transmission

MSGRECV

Process CMD
and MSG

Blocks
Received

Line and VMB
Processing

LINEIO

Basic BSC
Line 1/O
Executor

Cxecite all

1/0 Operations,
Wait for
Completion

CMDPROC I

Element Data h Data Blocks

PUTBLOCK
Execute RSCS
Process QOperator
Commands for
Received VMB Line

Driver's Link

XECUTE

Supervisor Routines

Program Organization for the VMB Line Driver Task

Section 3: Program Organization - Control Flow Diagrams

BSC

7 Line
y Aiiiaa

127

Licensed Material - Property of IBM

MSGRECV

Process a
Command or
Message
Received

Over the
CTCA
PUTBLOCK CTCGO LINEIO
— _ Deblock the Check for:
Buffer from e A Command
DMTRGX the CTCA: to Process Read Data
Write Data oA File to g:‘:avi';‘te CTCA
DMTREX to VM/370 Transmit
. System. Read
DMTCMX
MAKEBLOC GETBLOCK

DMTMGX

Get a Block ;
DMTAXM of Data from gz;lfirafor
tsiz;.:x\)/lM/370 Transmittal MSGTRANS

System

Build
Message
Buffer for
Transmittal

VM/370
Spoo! System

VM/370
Virtual Machine

Supervisor Routines

VM/370
Virtual Machine

Figure 3-10. Program Organization for the VMC lLine Driver Task

128 IBM VM/370: RSCS Networking Logic

licensed Material - Property of IBM

$START

$PRTN1

Control Execution
bv Means of the
Commutator Table
and Task Control
Tables

Process Print

Eila Danards
i€ ReTTTGS

and Send them

VM/370

Virtual Machine

to VM/370
SURTN1
Process Punch
File Records
and Send them
to VM/370
$WRTN1 $TPGET COMSUP
Send commands Receive Data Control Commu-
to RSCS Operator from BSC Line nications on the
Console Via COMSUP: BSC Line Send
Allocate Tanks to and Receive:
Input Processors ® Transmission
Acknowl-
edgement

$CRTN1

DMTREX
DMTCMX
DMTMGX
DMTAXM

Scan RSCS
Control
Records and
Perform
Control
Functions

$MRTN1

B

Virtual Machine

A

Send Messages to
RSCS Operator’s
Console

$RRTN1

Receive Records
from VM/370
Spool System and
Transmit them
Via $TPPUT

CMDPROC

Execute Local
Commands
Passed by
DMTCMX; Pass
Commands to
Remote Systems

MSGPROC

Passes Messages to
Remote Systems

® Data Streams

$PPUT1

Receive Tanks
from Output
Processors for
Transmission.
Send Buffers
to BSC Line
Via COMSUP

BSC

Supervisor Routines

Figure 3-11.

Program Organization for the POW Line Driver Task

Section 3: Program Organization - Control Flow Diagrams

129

Section 4: Directory

Name

ACCEPT
ASYNEXIT
ASYNEXIT
ASYNEXIT
AXSALERT
AXSALERT
AXSASYIO
AXSCYCLE
AXSGET
AXSGET
AXSGET
AXSGET
AXSGET
AXSGET
AXSPURGE
AXSINIT
BUFFINIT
CERROR
CERROR
CERROR
CLOSEOUT
CLOSIN
CMDPROC
CMDPROC
CMDPROC
CMDPROC
CMDPROC
CMDPROC
CMDPROC
CMXHIT
CMXULoOP
CMXREORD
COMMANDS
COMSUP
COMSUP
COMSUP
CONVBLK
CONW
CTCERROR
CICGO
CTCINIT
CTCT ERM
DEACT
DECGET
DECPUT
DECPUT
DECPUT
DEFINE
DETACH
DIRECT
DMTAKE
DMTAKEEP
DMTASK
DMTASKEP
DMTASY
DMTASYEP
DMTAXA

130 IBM VM/370: RSCS Networking logic

Iype

Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object

Licensed Material - Property of IBM

DMT AXM
DMTNCHM
DMTPOW
DMTSML
DHMTVMB
DMTVNMC
DMTA XM
DMT AXM
DMTNCH
DMTNPT
DMTPOW
DMTSML
DMTVMB
DMTVMC
DMTVMB
DMTAXM
DMTNPT
DMTNCHM
DMNTPOW
DMTSHL
DMTAXM
DMT AXM
DMTA XM
DMTNCHM
DMTNPT
DMT POW
DMTSML
DMTVMB
DMTVMC
DMTCMX
DMTCHX
DMTCHMX
DMTNPT
DMTNCH
DMTPOW
DNTSML
DMTVMC
DMTIRX
DNTVHMC
DMTVMC
DMTVMC
DMTVMC
DMTREX
DMTA XM
DMTAXM
DMTCHMX
DMTIRX
DMTA XM
DMTA XM
DMTIRX
DMTAKE
DMTAKE
DMTASK
DMTASK
DMTASY
DMTASY
DMTAXA

92
96

91
91

65
59

94

29

yes
yes
yes
yes
yes
yes
yes
vYes

yes
yes
yes
yes
yes
yes
yes
yes
yes
yves
yes
yes
yes
yes
yes
yes
ves
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

Licensed Material - Property of IBHM

Name
DMTAXAAC
DMTA XAPU
DMTAXARE
DMTAYATA
DMTAXM
DMTA XMEP
DMTAXS
DMTIC MX
DMTCMX EP
D MTC OM
DMTCOMEP
DMTCRE
DMTCREEP
DMTDSP
DMTDSPEP
D MTE XT
DMTEXT FP
DMTGIV
DMTGIVEP
DMTINI
DMTIOM
DMTIOMEP
DMTIOMIN
DMTIOMRQ
DMTIRX
DMTIRXEP
DMTLAX
DMTLAXEP
DMTM GX
DMTMGXEP
DMTM IN
DMTMINEP
DMTMSG
DMTMSGEP
DMTNCH
DMTNCMEP
DMTNHD
DMTNHDDH
DMTNHDHO
DMTN HDJ H
DMTNHDJT
DMTNHDM I
DMTNHDMO
DMTN IT
DMTNITEP
DMTNJI
DMTNPT
DMTNPTEP
DMTPOW
DMTPOW EP
DMTPRE
DMTPREFEP
DMTPST
DMTPSTEP
DMTQRQ
DMTQRQEP
DMTREX
DMTREXEP
DMTREXEC
DMTREXTR
DMTREXIN
DMTREXPI
DMTRGX
DMTRGX EP

Type
Routine
Routine
Routine
Routine
Object,CSECT
EP

Object
Object,CSFECT
EP
Object,CSECT
EP

Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
Object,CSECT
EP

Routine
Routine
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Obiject,CSECT
Routine
Routine
Routine
Routire
Routine
Routine
Object,CSECT
EP

Object
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP

Routine
Routine
Routine
Routine
object,CSECT
EP

Object
DMTAXA
DMTAXA
DMTA XA
DMTAX2A
DMTAXM
DMT AXM
DMTAXS
DMNTCNX
DMTCHMX
DMTCOM
DMTCOM
DMTCRE
DMTCRE
DMTDSP
DMTDSP
DMT EXT
DMTEXT
DMTGIV
DMTGIV
DMTINI
DMTIOM
DMTIONM
DMTION
DAT IOM
DMTIRX
DMTIRX
DMTLAX
DMTLAX
DMTMGX
DNTMGX
DMTMIN
DMTMIN
DMTNSG
DMTMSG
DMTNCH
DMTNCH

MM DON
DHTRHD

DMTNHD
DMTNHD
DMTNHD
DMTNHD
DMTNHD
DMTNHD
DMTNIT
DMTNIT
DMTNJI
DMTNPT
DMTNPT
DNT POV
DMTPOW
DMTPRE
DMTPRE
DMTPST
DMTPST
DMTQRQ
DMTQRQ
DMTREX
DNTREX
DMTR EX
DMTREX
DNTREX
DMTREX
DNTR GX
DMTRGX

ool
]
la}
o]
=]

(]

la

1®

28, 29

38

34
33, 34
29
29, 30
38

N
O

29

29
29

29

22
37

29, 30

39
39
29, 30

Section 4:

Ref in F
yes
yes
yes
yes
yes
yes

e

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

Directory

q 3-1

131

Name
DMTSIG
DMTSIGEP
DMTSHML
DMTSMLFP
DMTSTO
DMTSTOEP
DMTSVC
DMTSVCEP
DMTV EC
DMTVECEP
DMTV MR
DMTVMC
DMTWAT
DMTWATEP
DVASSIGN
EBCDEC
EBCDEC
EFBCDEC
EBCHEX
EBCHEX
EBCHEX
FILGET
FILSELEC
FREEPAGE
FREESLOT
GENVNET
GETBLOCK
GETBLOCK
GETBLOCK
GETLINK
GETL INK
GETPAGE
GETPARM
GETROUTE
GETROUTE
GETSLOT
GETSUPAG
GETVRFY
GSUCCESS
HDRBUILD
HDROUT
HEADPREP
HEADPREP
HEXGET
HEXGET
IBLDBUFS
INTCMD
IOERRPRT
ISI0
ISIO
ISI0
KEYWDGET
LINEIO
LINEIO
LINEIO
LTABGET
MAKEBLOC
MAKEBLOC
MAKEBLOC
MFI

MFO

MSG

MSG

MSG

132 IBM VM/370: RSCS Networking Logic

Type
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
EP
Object,CSECT
Object,CSECT
Object,CSECT
EP

Routine
Routine
Routine
Routine
Routire
Routine
Routine
Routine
Routine
Routine

Rout ine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine

Rout ine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine

Licensed Material - Property of IBHM

Object
DMTSIG
DMTSIG
DMTSML
DNTSHML
DMTSTO
DMTSTO
DMTSVC
DMTSVC
DMTVEC
DMTV EC
DMTVMB
DMTVMC
DMTWAT
DMTWAT
DMTNHD
DMT IRX
DMTNHD
DMTNIT
DMTIRX
DMT N HD
DMTNIT
DMTCMX
DMTA XM
DMTCOM
DMTA XM
DMTIRY
DNTNPT
DMTVMB
DMTVNC
DMTAXM
DMTCOM
DMTCOM
DMTIRX
DMT AXM
DMTCOM
DMTAXM
DMTCOM
DMTNPT
DMTA XM
DMTNHD
DMTNHD
DMTNPT
DMTSHL
DMT AXM
DMTCMX
DATNIT
DMTREYX
DMTVMB
DMTNCH
DMTPOW
DMTSML
DMT CMX
DMTNPT
DUTVNB
DMTVNC
DMT CHX
DMTNPT
DMTVMB
DMTVMC
DMTCOM
DMTCOM
DMTA XM
DMT IRX
DMTNCH

29

22, 26

89
95

79

77

77
91

yes
yes
yes
yes
yes
yes
yes
ves
yes
yes
yes
ves
yes
ves
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
ves
yes
yes
yes

yes
ves
yes
ves
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

Licensed Material - Property of IBHM

MSG

MSG

MSG

MSG

MSG

MSG
MSGPROC
MSGPROC
MSGPROC
MSGPROCT
MSGRECY
MSGRECV
MSGTRANS
MSGT RANS
NCMINIT
NITINIT
NPTERROR
NPTGET
NPTINIT
NPTLINK
NPTTERM
OPENADEYV
OPENIN
PACK
PARMGET
PARMGET
PARMGET
PARMGET
PARMGET
PARMGET
PARMGET
PARMGET
POWINIT
PUTBLOCK

NRTDTAN @
ruibuven

PUTBLOCK
PUTVRFY
QUIESCE
RCMGET
RCMOPEN
REORDER
REQX FQ
REQXEQ
REXCYCLE
REXITERM
REXPCHEX
RGXCMD
RGXDOIT
RGXMSG
RGYMSGER
RGXNTHRE
RTABGET
SENDEOT
SMLINIT
SVMRINIT
TAGCLOSE
TAGFIND
TAGGEN
TAGPLACE
TAGSCAN
TERMINAT
TIMERSET

Type

Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routire
Routine
Routine
Routine
Routine
Routine
Routine
Routine

Object
DMTNHD
DMTNIT
DMTNPT
DNTPOW
DMTREX
DMTSML
DMTVMB
DMTVMC
DMTNCH
DMTNPT
DMTPOW
DMTSML
DMTVMB
DHTVMC
DMTVMB
DMTVMC
DMTNCH
DMTNIT
DMTNPT
DMTNPT
DMTNPT
DMTNPT
DMNTNPT
DMTNHD
DMTAXM
DMTVMB
DMTCHMX
DMTIRX
DMTNHD
DMTNIT
DMTNPT
DMTPOW
DMTSHL
DMTVMC
DMTPOW
DMTNPT
DHTVHB
DMTVMC
DMTNPT
DMTREX
DMTCOM
DMTCOM
DMTAXM
DMTA XM
DMTREX
DMTREX
DMTREX
DMTREX
DMTRGX
DMTRGX
DMTRGX
DMTRGX
DMTRGX
DMTCHMX
DMTNPT
DMTSNL
DMTVMB
DMTA XM
DMTAXM
DMTA XM
DMTAXM
DMTNHD
DMTREX
DMTREX

ef on Page

78
79

91

90

80

92

Section 4:

yes
yes
yes
yes
yes
yes
yes
yes
yes
ves
ves
yes
yes
yes
ves
ves
yes
yes
yes
yes
ves
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
ves
yes
yes
yes
yes
yes
ves
ves

Directory

133

Name
TODEBCD
TODEBCD
TODEBCD
TODEBCD
TODEBCD
TODEBCD
TODEBCD
TODS 370
TODS 370
TYPE
UNPEND
VCHANGE
VCLOSE
VMDEBLOK
VMDEBLOK
VMDEBLOK
VMRTILT
VMSB2CP
VMSB2CP
VPURGE
VSPOOL
VTAGD
VTAGF
VTAGMSG
VTRANSFR
XECUTE
XECUTE
XECUTE
$CRTHN1
$CRTN1
$CRTN1
$IRTN1
$MRTN1
$PRTN1
$PRTN1
$PRTN1
$RRTN1
$RRTN1
$RRTN1
$START
$ START
$START
$TPGET
$TPGET
$TPGET
$TPPUT
$TPPUT
$TPPUT
$URTN1
$URTN1
$URT N1
$USREXIT
$WRTN1
$WRTN1
$WRTN1

134 IBM VM/370: RSCS Networking Logic

Type

Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine

Licensed Material - Property of IBM

Obiject
DMTA XM
DMTCHMX
DMTCONM
DMTNPT
DMTSML
DMTVME
DMTVMC
DMTAXM
DMTCOM
DMTIRX
DMTA XN
DMTAXM
DMTA XM
DMTNCHM
DMTPOW
DMTSML
DMTVMB
DMTNPT
DMTVMB
DMTAXM
DMTA XM
DMT AXM
DMTA XM
DMT AXM
DMTA XM
DMTNPT
DMTVMB
DMTVMC
DMTNCHM
DMTPOW
DATSML
DMTSML
DMT POW
DMTNCH
DMNTPOW
DMTSHML
DMTNCH
DMTPOW
DMTSML
DMTHNCH
DMNTPOW
DMTSHML
DMTNCH
DMTPOW
DMTSHL
DMTNCM
DNTPOW
DMTSML
DMTNCM
DMTPOW
DMTSML
DMTSHML
DMTNCHM
DMTPOW
DMTSML

kef on Page

93

71

69
63

68
61

62

70
63

A

yes

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
ves
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

i

n

Fi

ig 3-1

Licensed Material - Property of IBM

Section 5: Data Areas

Data Area Aids

This section begins with a set of graphics to help with using some of
the pointers in SVECTORS. Details of the data in the various tables,
blocks, and queue entries are described later in this section.

MAINMAP LOCATION

SVECTORS
TABLE

| l
| |
| A
X'214' | MAINMAP | <--Address of main storage map
| i
e L
| [

- -y o] - — —— - —

Figure 5-1. MAINMAP location

The main storage map pointed to by MAINMAP (Figure 5-1) has a byte for
each page (U4K) of virtual storage of the virtual machine occupied by
RSCS. When a page is in use (allocated to or occupied by RSCS
processor), its MAINMAP byte contains the taskid (from the task element)
of the task that is using the storage page. (This value is X'FF' if it
is an MSUP page.) Every unused (available) storage page has a MAINMAP
byte value of X'00°'.

Section 5: Data Areas - Aids 135

Licensed Material - Property of IBM

QUFUE ELEMENT STORAGE AREA AND FREEQ QUEUE

SYECTORS
TABLE
| i
I I
| |
x'21¢C? { QUEUE | <--Address of first of storage reserved for
| | queue elements
| l
1 I
X1220° | QUEUERD | <--Address of end of storage reserved for
| | queue elements
i i
I |
X224t | FPREEQ | <--Address of top of free queue
| |
I—4—1
I | |
| (first element)
|
L >ﬁ
|
| address of next element—
| {
1 !
| | (next
| element)
—>
address

o

Fiqure 5-2. Queue Element Storage Area and FREFQ Queue

The DMTQRQ module obtains and frees 16-byte queue elements upon request
from an RSCS task that either reguires an element for, or is finished
with an element in, a queue that the task maintains.

Because of the dynamic nature of queue element management, any given
queue's elements are not restricted to a certain contiguous and
sequential set of elements within the gueue element storage area;
individual elements that comprise a given queue may be anywhere within
the storage area. To support this, each queue has a "top-of-queue"
element, pointed to by an SVECTORS entry (Figure 5-2). This elerment has
a pointer to the next element in the queue, and the chaining (pointer to
address of next) coftinues through the remaining elements of that queue,
scattered throughout the queue storage area.

The FREEQ queue is the set of unassigned queue elements at a given point
in time.

Note that this discipline applies only to gqueues pointed to in SVECTORS,
and not to tables, etc.

136 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

SVECTORS
TABLE

|

|

|
Xv228' | TASKQ <--Address of first task gueue element (TASKE)

|

|

H

__.+_
]
|
| (first TASKE)
|
t >y (next TASKE)
|
| address of next TASKE >
| |
| | address of next TASKE
/ !
| |
| {
| address of task system save area
—y
| |
| |
|
|
/
|
| {task in RSCS storage)
|
v
r
| (1
] PSW I REGSAVE | GIVE/TAKE SYNCH LOCK
|
|
|

Figure 5-3. Task Queue location

There is a task queue element for every active (started) task. This
queue (Figure 5-3) is used by the RSCS MSUP dispatcher to start eligible
tasks.

Section 5: Data Areas - 1ids 137

Licensed Material - Property of IBM

I/0 QUEUE ORGANIZATION

SVECTORS
TABLE
| |
| |
1 l
X*'22C* | MPXIOQ | <--Address of multiplexor channel I/0O queue
I | (points to same type structure as
| | shown for selector channel)
| |
X*230* | SELIOQ | <--Address of selector channel 1I/0 queue
| | {
|—————I
(| |
| | | (selector channel queue)
1] (Eirst active entry - lowest subchannel
{ address with uncompleted request)
address of next entry

address of requesting task's I/0 table

address (if any) of waiting (inactive)
I/0 queue entry for this subchannel

|
I

(second selector queue entry)
(next lowest subchannel active)

address of next queue entry

-ty € o — o o————

(next waiting (inactive) entry
for this subchannel)

address of next entry in waiting queue

address of requesting task's I/0 table

——] - -

Figure 5-4. I/O Queue Organization

Fach I/0 queue (Figure 5-4) contains only entries that are in use. All
unused entries are in the FREEQ. Requests for I/0 queue additions and
deletions, performed by DMTQRQ in MSUP come from the IODISMIS subroutine
in the DMTIOM module in MSUP.

138 IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBM

SVECTORS
TABLE
t 1
i |
| |
X'234* | IOEXITQ | <--Address of I/0 asynchronous interrupt queue
I
A
| |) B
X*238' | EXTQ | <--RAddress of external asynchronous interrupt queue
| |
| |
| |
X*23C'* | ALERTQ | <--Address of alert asynchronous interrupt queue
i i
| |
i |

(first entry in alert queue)

address of next queue entry

——— - ——

Figure 5-5. Asynchronous Interrupt Queue Pointers

Tasks that have exit routines to process certain types of asynchronous
interrupts must build asynchronous interrupt queue entries for their
exit routines beforehand, by asynchronous exit requests to DMNTAS5Y. The
gqueue entry that DMTASY builds for each request reflects the type of
exit condition specified in the request.

When any asynchronous interrupt condition occurs, the asynchronous
interrupt handler scans the appropriate queue (Figure 5-5) to see which
task (if any) has specified an exit routine to receive control
immediately upon occurence of an asynchronous interrupt condition of
this type.

A task's I/0 exit routine is entered when its queue entry reflects the
device address that has just generated an asynchronous interrupt.

A task's external exit routine is entered when its queue entry reflects
the bit setting of the external interrupt that just occurred.

A task's alert exit routine is entered when it is the task that has just
been specified in another task's alert request call to the DNMTSIG
routine in MSUP.

For the contents of the fields in the asynchronous exit queue elements,
see "Asynchronous Exit Queue Elements."

Section 5: Data Areas - Aids 139

Licensed Material - Property of IBM

GIVE ELEMENT QUEUE LOCATION

SVECTORS
TABLE
(t
| |
| l
x12uQ¢ I GIVEQ] <--Address cf first GIVE queue element
l | |
|—t—-1
1 [|
|
{
| (top of GIVE queue)
v
r (second)
{
| address of next give queue element >
| |
| | address of ...
| |
/ |
{ [
| address of requesting task's GIVE table
—+
I
b
I | name of receiving task
[
[
[
/
|
| (GIVE table in requesting task's storage area)
\J
]
|
[
1
|

Figure 5-6. GIVE Element Queue Location

When the requesting task issues a GIVE request, the MSUP DMTGIV module
builds a give element in the GIVE queue (Figure 5-6), posts the
GIVE/TAKE synch lock in the requested task, and makes the requested
task's TASKE entry dispatchable by a call to DMTPST.

140 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of 1IBM

LINK TABLE LOCATION

SVECTORS
TABLE

|
(
|
TVECTORO|{ <--Address of link table TLINKS, containing header,
I
i
|

X'270°"
l followed by consecutive LINKTABL entries
___+—_

l
!
] (number of currently active link table entries)
| !
| (initialization | (maximum allowed i
j-defined)— | concurrent links) 1
v 1 ! 1
f vV v V—1
| I | |

0 | TOTAL 1INKS | MAX LINKS | CURRENT LINKS |
| I I l
r

8 | LINKID (contains locid of this node)
i
/
1

58 | LINKRID (contains linkid of first 1link)
‘ S
/
|

————————— LINPUTQ | LOUTPUTQ > (see LINPUTQ)

' -
/
|

A8 | LINKID (contains next link's linkid)
|
|
/

(queue of input tag elements, representing spool files
to be transmitted, for this link)

———) W] e S e g O — po S — =

—— s =

Figure 5-7. Link Table Location

There is an eight-byte information block just ahead of the first link
table entry. The first entry itself is a special purpose entry,
initialized with the V¥/270 system locid, for reference by RSCS.

The LINKID field at the first of each LINKTABL block (Figure 5-7)
identifies the link by the LOCID name of the adjacent node specified in
the LINK statement in the dynamic directory, RSCS DIRECT, or specified
by an operator DEFINE command. Each block contains data about one link
(one port's line driver task).

Section S5: Data Areas - Aids 141

Licensed Material - Property of IBM

ROUTE TABLE LOCATION

SVECTORS
TABLE

X274
{
—_—

{
I
|
TVECTOR1| <--Address of route table (TROUTE)
|
|
|

(Route entries. Spool files at this node with a
destination of locid ROUTDEST1 are forwarded on
link ROUTNEXT1.)

(
I
|
(
|
v
0 r 1
1 | |
| ROUTDEST1 | ROUTNEXT1 |
| | |
10 | !
| | I
| ROUTDEST2 { ROUTNEXT2 |
| | |
18 | f
{ i |
| ROUTDEST3 | ROUTNEXT3 |
l I |
20 | {
| I

Figure 5-8. ROUTE Table Location

The route table entries (Figure 5-8) contain the routing information
submitted in ROUTE statements in the dynamic directory (RSCS DIRECT) or
specified by an RSCS operator ROUTE command.

142 IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBM

SWITCHABLE PORTS (TPORTS) LOCATION

SVECTORS
TABLE
| {
l |
| |
X'278' | TVECTOR2| <--Address of switchable port list, TPORTS
| | l
|l—t—
| | |
i
l
{ (TPORTS)
v
L
{
|
|
l

Figure 5-9. Switchable Ports (TPORTS) Location

The switchable port list (Figure 5-9) contains the information submitted
in the RSCS dynamic directory (RSCS DIRECT) in PORT statements, or
specified by the RSCS operator PORT command.

Section 5: Data Areas - Aids 143

Licensed Material - Property of IBM

TAGSLOT QUEUE LOCATION

SVECTORS
TABLE
|]
| |
| |
X*27C* | TVECTOR3| <—Address of TAGAREA queue, TTAGD entries,
1 I | defined in TAG-FILE TAG DSECT
|l——+—1
| { |
|
I
| (TAGARER)
v
T
|
] TAGAFREE
I 1
| 4
I I
|
I
|
v
TAGNEXT

|
i
1
|
|
|
!
|
v

L]

|

|

|
Figure 5-10. TAGSLOT Queue Location

TAGAREA is a queue (Fiqure 5-10) of free (available) tagslot elements.
When they are in use, they are enqueued on the LINKTABLE of the link
responsible for the spool file whose information is contained in the
tagslot.

14y IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBNM
COMMON ROUTINE VECTIOR TABLE (COMDSECT) ADDRESS

SVECTORS
TABLE

| |
| |
| {
X'280°¢ | TVECTOR4| <--Address, TCOM, of common routine vector
| | table; COMDSECT

| I

| |

(COMDSECT)

Figure 5-11. Common Routine Vector Table (COMDSECT) Address

Section 5: Data Areas - Aids 145

Licensed Material - Property of IBM

Data Areas and Control Blocks

This section describes in detail the primary data areas and control
blocks used by RSCS. Offsets are shown ir hexadecimal notation at the
right of each diagram. Following each diagram is a table that presents
the hexadecimal offset, rame, type, and description of each field.

ASYNCHRONOUS EXIT QUEUE ELEMENT: ASYNE

ASYNE defines symbolic addresses for elements on an asynchronous exit
queue. An asynchronous exit queue element contains information by which
a task requests that it handle asynchronous interrupts.

IOEXITQ, EXTQ, and ALERTQ in SVECTORS are the heads of three
asynchronous exit queues. PRach of these queues comprises supervisor
elements defined by the ASYNE DSECT. IOEXITQ points to requests for I/0
exits, EXTQ points to requests for external exit requests, and ALERTQ
points to requests for ALFRT exits.

Lo 1
0| ASYNNEXT |
{ |
4 | ASYNTASK |
1 1
8 | ASYNEXIT i
| |
C | ASYNCODE |//ASINSPAR///] ASYINID 1
L 3
0 ASYNNEXT DS AIF Address of the next asynchronous
interrupt exit request element
4 ASYNTASK DS 1F Address of task element describing
the task that requested the
asynchronous interrupt
8 ASYNEXIT DS 1F Address of the requested asynchronous
exit routine
C ASYNCODE DS AL2 Address of the device for which
asynchronous I/0 interrupts are
requested or interrupt bit code
E ASYRSPAR DS 1X Reserved for IBM use
F ASYNID DS 11X 1-byte ID of the task owning the

asynchronous exit routine

146 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

CMSACCES DSECT

When entering either of the read only CMS file access routines (CMSOPEN
and CMSGET, pointed to in COMDSECT), R13 must point to a work area of
this format.

OPENFILE DC OF*0*,CL8* ',CLB'TEXT{ Pile name for OPEN request

STATABLE DC OF'0? CMS file status table
FILENAME DC sc' ¢ cns filename
FILETYPE DC 8Cce ¢ CMS filename
FILEDATE DC FrO Creation date - decimal mmddhhmm
FILEWNUM DC H'O? frite item number
FILERNUM DC H'O" Read item number
FILEMODE DC 2Ct ¢ CMs filemode
FILEINUM DC HTO? Number of items in entire file
FILELINK DC H'O? CMS block number of first chain link
FILEFORM DC ctY ¢ File format:
C'*P' for fixed; C'V' for variable
FILEFLAG DC X100 File flags - always zero?
FILEILEN DC F'o? (Maximum) length of file data items
FILESIZE DC H'O* Number of 800-byte blocks in file
FILEYEAR DC 2Ce ¢ Year of file creation (last two digits
in EBCDIC)
STATLEN EQU *-STATABLE Length of CMS file status table
FSTFOP DS F Alt. file origin pointer
FSTADBC DS F Alt. number of data blocks
FSTAIC DS F Alt:. item count
FSTNLVL DS XL1 Number of pointer block levels
FSTPTRSZ DS L1 Length of a pointer element
FSTADATI DS CL6 Alt. date and time (yymmddhhmmss)
DS F Reserved
FSTDSIZE EQU (*STATABLE) File status table size in bytes

* CH isk Access Control Area

DASD DC OF*' 0! CMS DASD I/0 request table
DC F'0°? Synch lock
DC AL2 (0) DASD device address (set by INIT)
DC AL1(2%) Sense information required for DASD
DC X*00" Device type code (set by INIT)
DC A (0) Address of disk read channel progranm
DC 2F'0? Return SIO condition code and end CSW
DC 2u4x' 00 Return sense information on unit check

* The values below are set by DMTINI according to the type and
* format of the RSCS system disk:

PERCYL DC F'O! CMS records per cylinder
PERTRACK DC F'0° CMS records per track or pair
OVERNOM DC Frot Record number of overlapper
DASDSECS DC 20x'00° Record number - sector table
DISKCLAS DC Xtoo0!* System disk class

DS 3% Reserved
DISKBSZE DS F System disk blocksize

DS F Reserved

*
DASDREAD CCW X'07',BBCCHHR,CC+SILI,6 Seek (bbcchhr)

DASETSEC CCW X'03',SECTOR,CC+SILI,1 NOP or set sector
DASEARCH CCW X'31',BBCCHHR+2,CC+SILY,S5 Search ID equal (cchhr)
CCd X'08',DASEARCH,X'00',1 Back to search if unequal

Section 5: Data Areas - Data Areas and Control Blocks 147

DARDDATA
BBCCHHR
SECTOR

CCW
DC
DC

X'86',0,SILI, 800

OF'0',7X'00"
X'oo0°'

Licensed Material - Property of IBNM

Read data multi-track
DASD address for reference
Sector number of record above

* Channel Program for Fixed Block Architecture Devices

CFBAREAD DC
FBACCWD2 CCW
CCw
FBACCWX 2 CCW
FBAD2A DS
DS
DS
DS
FBAD2ALB DS
DS
FBAL2A Ds
DS
FBAL2ANB DS
FBAL2ABO DS
VOLCCWS DS
CCw
CCW
CCW
VOLCCW1 CCW
DC
NEXTLINK DC
LINKEND DC
LINKLIST DS
EDFOVBUF EQU
DC
NEXTBLOK DC
BLOKEND DC
BLOKLIST DS
DC
NEXTITENM DC
ITEMEND DC
FILCHBUF DS
CFILSAVE DS
COPNSAVE DS
CGETSAVE DS
ENXTITEM DS
MVLIEN DS
NXTRECPT DS
DABLKCNT DS
APTRBLK DS
AEDFBUF DS
DS
ADTIDENT DS
ADTID DS
ADTVER DS
ADTDBSIZ DS
ADTDOP DS
ADTC YL Ds
ADTMCYL DS
148

op*o"*

X'63',FBAD2A,CC+SILI,16
X'43*,FBAL2A,CC+SILI,8

X'42',0,SILI, 80
X'40"

X' 000000"

F'0°

FrQ

F'1¢

or
X'06°
X'o"
HY 1!
Fr1¢
oD

X'07+,0,CC+sILI,6

Define extent
Define extent

Define extent

Mask (Inhibit Write)
Reserved

Extent offset

First block offset
Last block offset

Locate list
Operation (Read)
Aux byte

Number of blocks
Block offset

X'31',0,CC+SILI,S

X'08+,*-8,0,0
x'06',0,SILI,80

0D*'0*

A (0)

A (LINKLIST+80)
80C

LINKLIST

0D'0 "

A (0)

A (BLOKLIST+120)
800C

0D* 0!

A (0)

A (FILCHBUF+800)
800C

8F
9F
9F

PO
F'O*
F'O°'
F'O°

A
A

OF

CL4
CL6
CL2

Lo e]

Address of pointer to next chain link

End of chain link list

List of CMS chain link block numbers

This 80-byte area is used for an
overflow buffer when the system disk
is EDF format

Address of pointer to next data block
BEnd of current data block list
List of CMS file data block numbers

Address of next (unread) data iten
End of FILCH data buffer
Buffer for CMS block FILCH routine

FILCH routine
OPEN routine
GET routine

Save area for CMS
Save area FOR CMS
Save area FOR CMS

Absolute value of next (unread) data item
Move length when record spans two blocks
Address of next record in buffer

Number of blocks processed

Address of EDF pointer block
Address of EDF data block

Allign

Volume/label identifier

Volume start / volume identifier
Version level

Disk block size

Disk origin pointer

Number of formatted cylinders on disk
Maximum number of formatted cylinders

IBM VM/370: RSCS FNetworking Logic

Licensed

ADTNUM
ADTUSED

ADTFSTS?Z

ADTNFST

A

ADTLABS?Z
ADTDKFOR
ADTDVTYP

DTCRED

MSACCL

Material - Property of IBM

DS
DS
DS
DS
DS

EQU

Section 5: Data Areas - Data Areas and Control Blocks 149

on disk
F Disk size in blocks
F Number of disk blocks in use
F Size of file status table
P Number of file status tables per block
CL6 Disk creation date (yymmddhhmmss)
C130 Reserved
*-~ADTIDENT Length of label
F
{(*-CMSACCES) +7) /8 Number of double words in CMS Access
area

COMDSECT TABLE CONTENTS

Licensed Material - Property of IBM

The COMDSECT table contains pointers to common supervisor routines.

150

10
14
18
1c
20
24
28

8 1

| GLINKREQ |

| |

| GROUTREQ i

| |

| GPAGEREQ !

| |

i FPAGEREQ |

| |

| PMSGREQ |

| |

| GMSGREQ |

I I

| GTODEBCD !

I |

| GTODS370 |

I |

| CMSOPEN |

| 1

! CMSGET 1

| |

1 GPAGESUP l

L 3

0 GLINKREQ DS 1A Get link table entry routine

4 GROUTREQ DS 1A Get routing table entry routine
8 GPAGEREQ DS 1A Get page of main storage

C FPAGEREQ DS 1A Free page of main storage
10 PMSGREQ DS 1A Put message element into message stack
14 GM SGREQ DS 1A Remove message element from message stack
18 GTODEBCD DS 1A Convert S/370 TOD* to EBCDIC TOD
1c GTODS370 DS 1A Convert EBCDIC TOD to S/370 TOD
20 CMSOPEN DS 1A Open CMS file**
24 CMSGET DS 1A Read next record of CMS file**
28 GPAGESUP DS 1A Allocate a page of virtual storage for

supervisor use

* Time-Of-Day
*% See CMS File Access Work Area

IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBM

FREE

FREEE defines an element in the chain of elements that comprise the free

element queue.

FREEQ in SVECTORS points to the chain of free elements, each of which is
defined by the FREEE DSECT.

r L
(VN FREENEXT |
i I
L2 | FREESPAR |
| |
8 | |
{ r 1
c i | FREEID |
L J
0 FREENEXT DS 1F Address of next element in free gqueune
4 FREESPAR DS CL11 Spare field
F FREEID Ds 11X Standard taskid offset

(X'00' denotes free element)

GIVE QUEUE ELEMENT: GIVEE

GIVEE defines symbolic addresses for items used in processing a GIVE
request.

GIVEQ in SVECTORS points to the queue of GIVE elements used in task-to-
task communications.

The GIVEADDR field of this DSECT is the address of a GIVE request table,
which, in turn, contains addresses of buffers for elements describing
requests and responses to requests. These tables are described below;
the elements that fill the buffers are described in "Request Elements".

T B
0.1 GIVENEXT I
| |
4 | GIVEADDR |
| I
8 | GIVENAME |
| |
C i GIVESPAR | GIVENID | GIVERID |
L]
0 GIVENEXT DS 1F Address of next GIVE element
4 GIVEADDR DS 1F Address of GIVE request table in
sending task's storage
8 GIVENAME DS CL4 Task name of receiving task
C GIVESPAR DS AL2 Unused
E GIVENID Ds 1x 1-byte ID or receiving task after TAKE
F GIVERID DS 1X 1-byte ID or sending task

Section 5: Data Areas - Data Areas and Control Blocks 151

Licensed Material - Property of IBM

GIVE REQUEST TABLE IN GIVF/TAKE REQUESTING TASK

The format of a GIVE Request Table is:

0 T' synch lock }
4 ‘ task name or A(GIVE Element) :
8 = A{GIVE Request Buffer) :
C ! A (GIVE Response Buffer) ;

When a task requests the services of another task via a GIVE request,
the second field of the table above contains the task name of the task
to which the task is to be sent. When DMTGIV builds a GIVE element for
the request, it overlays this task name with the address of the GIVE
element.

The task performing the requested service builds a table called the TAKE
request table, which corresponds to the GIVE request table.

152 IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBM

I/0 REQUEST QUEUE ELER

IOE defines symbolic addresses of elements and other information
associated with an I/0 operation requested by a task.

MPXIOQ and SELIOQ in SVECTORS point to queues of I/0 elements for the
multiplexer and selector channels, respectively.

The IOTABLEA field points to the address of an I/0 table defined by
JOTABLE, which is described in this section.

L] 1
01 IONEXT |
| {
4 | IOSUBQ |
i |
8 | IOTABLEA |
{ I
(o | IOADDR | IOSBCHAN ! JOTID |
['
0 IONEXT DS 1F Address of next active I/0 element
4 I0SUBQ DS 1F Address of next inactive I/0 element
for a given subchannel
IOSTAT EQU * Status flags for current I/0 operation

(First byte of IOTABLEA)

Bits defined in IOSTAT

SENSING EQU X'80' Flag set to 1 while automatic
sense is active
CHANDONE EQU X'40' Flag set to 1 when subchannel terminates

8 IOTABLEA DS 1F Address of I/0 request table in task storage
C IOADDR DS AL2 Address (cuu) of the device requesting
current I/0 operation
E IOSBCHAN DS 1X Subchannel address; 1-byte;
assigned by MSUP
F I0ID DS X ID of task associated with this

I/0 operation; 1-byte; assigned by MSUP

Section 5: Data Areas - Data Areas and Control Blocks 153

Licensed Material - Property of IBM

I/0 REQUEST TABLE IN REQUESTING TASK: TOTABLE

The I/0 request table contains data used in processing an I/O request.
The first five fields are filled in by the task to convey information
about the I/0 request to the supervisor. The last three fields are

filled in by the supervisor to convey status information about the I/0

operation to the task.

r]
0 | IOSYNCH |
| |
4 | DEVCUU | SENSREQ | DEVCODE |
| |
8 | PROGADDR |
| |
c 1 ENDCSW I
| {
10 | |
l J
14 | ENDSENSE
L

0 JOSYNCH Ds
4 DEVCUU DS
6 SENSREQ DS
7 DEVCODE DS
8 PROGADDR DS

SIOCOND EQU
C ENDCSW DS

14 ENDSENSE DS

TYPPUN EQU x'80°
TYPPRT EQU X*'40°

1F
AL2

AL1
AL1

1F

*

2F

ALl

Synchronization lock for I/0 operation
Address (cuu) of device associated with this
I/0 operation

Number of sense bytes requested on unit check
1-byte VM/370 device type code (not used by
I/0 manager)

Address of channel program for the I/0
operation

1-byte SIO condition code return information

Fnding CSW with composite status return
informa tion

Requested return sense information on unit
check CSW status

VM/370 type code for the punch
VM/370 type code for the printer

154 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

LINK TABLE ENTRY:

LINKTABL describes the status of a single link in the netwvork;
collectively, all the links defined for the system are referred to as

the link table.

LINKTABL

The first link table entry has the locid of this RSCS node in the linkid

field.

Normal link definitions start in the second link table entry.

r 1
0 | LINKID I
! !
4 | !
} i
8 | LDEFTNME |
i I
c | LACTTNME]
I |
10 | LDEFDRVR l
| |
14 j i
| |
18 | LACTDRVR |
| |
1C | !
| {
20 } LDEFLINE 1 LACTLINE [}
| |
24 | LDRVRVAR |
t I
28 | LDEFCLS1 | LDEFCLS2 | LDEFCLS3 I LDEFCLSY4 |
i 1
2C | LACTCLS1 | LACTCLS2 | LACTCLS3 | LACTCLSY |
{ |
30 | LTIMEZON | LSPARE | LFLAG i
| |
24 1 LTIMER 1
| |
38 | LINPUTQ 1
i |
3C | LOUTPUTQ]
| 1
uo | LWORKQ I
| |
44 4 LRESERVD | LPENDING]
| |
48 | LTAKEN | LTRNSCNT i
| |
4c | LERRCNT | LTOCNT |
[J
LINKID DS CL8 EBCDIC 1linkid
LDEFTNME DS CLY Default task name
LACTTNME DS CLY Active task name
LDEFDRVR DS Cl8 Default driver id
LACTDRVYR DS CL8 Active driver id
LDEFLINE DS 2X Default virtual line address
LACTLINE DS 2X Active virtual line address
LDRVRVAR DS 1F Line driver variable information
LDEFCLS1 DS CL1 Default spool file class 1
LDEFC1LS2 DS CL1 Default spool file class 2
LDEFCLS3 DS CcL1 Default spool file class 3
LDEFCLS4 DS CL1 Default spool file class 4
LACTCLS? DS CL1 Active spool file class 1

Section 5:

Data Areas ~ Data Areas and Control Blocks

155

Licensed Material - Property of IBM

2D LACTCLS2 DS CL1 Active spool file class 2

2E LACTCLS3 DS CL1 Active spool file class 3

2F LACTCLSY4 DS CL1 Active spool file class 4

30 ILTIMEZON DS 1X Time zone displacement west from GMT
31 LSPARE DS 1X Spare byte

32 LFLAG DS 2X Link table status flag bytes

Bits defined in LFLAG

LACTIVE EQU X'80' Link active (line driver task loaded)

LALERT EQU X'40' AXS ALERT exit set
LHOLD EQU X'20' Link hold set
LDRAIN EQU X*'10' Link drain in progress

LCONNECT EQU X'08' Link conmnected
LTIMERON EQU X'02' Timer ALERT request outstanding

LHALT EQU X'01' Link to be forced inactive
34 LTINER DS 1F Active task timer value
38 LINPUTQ DS 1F Input file tag queue address
3C LOUTPUTQ DS 1F Output file tag queue address
40 LWORKQ DS 1F General string stack address
44 LRESERVD DS 1H Count of tag elements reserved
46 LPENDING DS 1H Count of unaccepted tags
48 LTAKEN DS 8x Count of tag slots in use
4a LTRNSCNT DS 1H Link transaction count
uc LERRCNT DS 1H Error Count
4E LTOCNT DS 1H Timeout count

LINKLEN EQU *-LINKTABL Length of link table entry

An 8-byte header precedes the first entry in the link table (that is,
the first link defined by the LINKTABL DSECT). The TLINKS field
(TVECTORO) in SVECTORS points to this header:

0 4 6
s 1
| Total links i max | current |
| i links] links i
L J
vhere:
total links is the total number of link table entries generated
during RSCS initialization.
max links is the maximum number of concurrently active links

allowable.

current links is the number of links active in RSCS at a given time.

156 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

HLX

The MLX records are created by VSE/POWER.

ECORDS

2]

These three

various characteristics of the output file.

MLX Record 1:

o - +
| MLX1HDR i
8 { t
I MLX1HDR (CONT.) | MLX1JNNE |
10 | 1
] MLX1JME (CONT.) ! ., | MLX1USER [
18 | {
| MLX1USER |
20 (| {
] MLX1USER | ., | JnNOM |
28 | {
{ JNOM(CONT)! , | QID | , | MLYIDTYP | !
30 l I
facr | , 1JPR | , | MXL1RNOM i
38 | |
| MLX1RNUM (CONT.) { ., | MLX1ISF | , |
40 | {
| MLX1COP | i
u8 L]
MLX1HDR DS CL12 MLX RECORD 1 HEADER: *
MLX1JNME DS c18 JOB NAME
DS cL1 ,DELIMITER
MLX1USER DS CL16 USER INFORMATION
DS CL1 ,DELINITER
MLX1JNUM DS XL4 JOB NUMBER
DS cL1 ,DELIMITER
MLX1QID DS c QUEUE RECCRD ID
DS CL1 ,DELIMITER
MLX1DTYP DS XL2 DEVICE TYPE OR LINE ID
DS cL1 ,DELIMITER
MLX1JCL DS cL1 JOB CLASS
DS CL1 ,DELIMITER
MLX1JPR DS cL1 JOB PRIORITY
DS cL1 ,DELIMITER
MLX1RNUM DS XL8 RECORD COUNT
DS CL1 ,DELIMITEF
MLX1JSF DS X12 JOB SUFFIX NUMBER
DS cL1 ,DELINITER
MLX1COP DS XL2 NUMBER OF COPIES
MLX1LEN EQU *-MLX1REC LENGTH OF MLX RECORD 1

Section 5: Data Areas

- Data Areas and Control Blocks

$$ MLX Q1=

records describe

157

Licensed Material - Property of IBM

0 et et g}
| MLX 2HDR I
8 | e e e e e |
i MLX2HDR (CONT.) | MXL 2PNUM i
10 e e e e e
| , | DSP} , | MLX2SEP | , | MLX2CTAB |
18 == e e e !
| MLX2CTAB | , | MLX 2FOID |
20 |ememmmmmme e e |
| MLX2FOID (CONT) | , | MLX 2CGRP |
28 | e l
| MLX2CGRP (CONT.) |
K I R e |
| MLX2CGRP (CONT.) ! , | MLX2PST | , |
38 | ——————— e -—=
| MLX20PT | , | MLX2RID | |
llo L - -———— - - o e e]
0 MLX2HDR DS cL12 MLX RECORD 2 HEADER: * $$ MLX Q2=
C MLX2PNUM DS XL4 NUMBER OF PAGES
10 DS cL1 +DELINITER
11 MLX2DSP DS CL1 DISPOSITION
12 DS CL1 ,DELINMITER
13 MLX2SEP DS XL2 NUMBER OF SEPARATORS
15 DS CL1 ,DELIMITER
16 MLX2CTAB DS cL4 COMPACTION TABLE NAME
12 DS CL1 ,DELIMITER
1B MLX2FOID DS X18 FORMS OVERLAY ID - 3800
23 DS cL1 ,DELIMITER
24 MLX2CGRP DS XL16 COPY GROUPS - 3800
34 DS cL1 ,DELIMITER
35 MLX2PST DS XL2 PAPER STATUS - 3800
37 DS CL1 ,DELINITER
38 MLX20PT DS X12 OPTION BYTE - 3800
40 DS cL1 DELIMITER
41 MLX2RID DS XL2 ORIGIN REMOTE ID FOR LIST/PUNCH
42 MLX2LEN EQU *-MLX2REC LENGTH OF MLX RECORD 2

158 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

MLX Record 3:

0 r 1
| MLX3HDR {
8 (i
| MLX3HDR (CONT.) | MLYX3CNUM |
10 | i
i MLX3CNUM (CONT.) I+ 1 MLX3FMID |
18 | |
| | |
20 t J
0 MLX3HDR DS CL12 MLX RECORD 3 HEADER: * $$ MLX Q3=
C MLX3CNUM DS XL8 LINE OR CARD COUNT
13 DS CL1 + DELIMITER
14 MLX3FMID DS CLg FORMS IDENTIFIER
MLX3LEN EQU *-MLY3 REC LENGTH OF MLX RECORD 3

Section 5: Data Areas - Data Areas and Control Blocks 159

Licensed Material - Property of IBNM

NETWORK ACCOUNTING CARD FORMAT

160

| 1

0 | (Local Network Userid) |

4 | !

I I

8 | ACNTUSER |

C 1 i

| |

10 | ACNTDATE [

14 !

18 | |

| |

1C | ACNTOID | ACNTID |

1 1

20 | ACNTILOC |

24 | !

| |

28 | ACNTDEST [

2C | 1

| i

30 | ACNTCLAS | ACNTINDY |\ [/ // /7 /7 /7 /777777 1}

l - |

34 | ACNTRECS t

{ I

38 | ACNTTOVM I

3C | !

I i

boV /77777 7/ /7 /77 /7777777777777 7)

s v /777777 /7777777777777 77/ :
|

48 | ACNTSYS |

I |

4c | | ACNTCODE | (Record ID) 1

L |

DS CL8 1-8 Local network USERID fixed by CP

ACNTUSER DS C18 9-16 originating location USERID

ACNTDATA DS CL12 17-28 Date and time of record (MMDDYYHHMMSS)
ACNTOID DS CL2 29-30 origin spool file ID
ACNTID DS CL2 31-31 Local spool file ID

ACNTILOC DS CL8 33-40 Originating location ID

ACNTDEST DS CL8 41-48 Destination location ID

ACNTCLAS DS CL1 49 Class

ACNTINDVY DS CL1 50 origin device type ('S8N'=PUN/'4N'=PRT)
DS CL2 51-52 Filler

ACNTRECS DS CL4 53-56 Number of records in file

ACNTTOVM DS C18 57-64 Destination location USERID
DS CL8 65-72 Filler

ACNTSYS DS CLS 73-77 System ID (Serial + Model)

ACNTCODE DS CL1 78 Transmission code (01=SEND/02=RECV)
DS CL2 79-80 Record identifier ('C0') fixed by CP

IBM VM/370; RSCS Networking Logic

Licensed Material - Property of IBM

nARM mMmMa2nDT
rvnis JHDI.IE

BUILT BY: DMTIRXY at RSCS initialization

FUNCTION: Record allocation status of switchable line ports
available to RSCsS

DESCRIPTION: The first doubleword of the table is reserved for control
information. ©Each following halfword contains the
virtual device address of a line port which may be
dialed, and which is available to RSCS.

r L
01 Number of Line Port Entries !
] in Table 1

| |

4 t
! |

| - |

8 | Virtual Line Address I Virtual Line Address |
| i i

| |

(ol | Virtual lLine Address | Virtual line Address |
| | !

| |
10 | | |
| 1

| Virtual Line Address 1 Virtual line Address 1

{ !

L J

OPERATIONAL NOTES: The line port entries are marked "in use" by setting
the high~order four bits of such entries to 1s.

Section 5: Data Areas - Data Areas and Control Blocks 161

Licensed Material - Property of IBM

ROUTING TABLE ENTRY

L] L

01 ROUTDEST |

| l

t !

| i

8 | ROUTNEXT |

I |

1 |

[1]

0 ROUTDEST DS CI18 Final destination ID
8 ROUTNEXT DS CL8 LINKID for inderect routing

The routing table contains routing information as submitted either in
the operator ROUTE commands or in the RSCS DIRECT ROUTE entries. The
SVECTORS field TVECTOR1 contains TROUTE, the address of the ROUTE table.

162 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

SPOOL PAGE BUFFER FORMAT

¥ 1

| 0 l |

| l |

| | YM/370 Spool Control Information |

| 8 | t

| i |

| | (IR

i i0 | NOP CCW 11

! ! !

| |] ¥ TAG Record

l 18 | TIC CCW ! 1 (in First

One | | > Page Buffer
Page | | I of Each

(4096 20 | 1 | Spool File)
Bytes) / TAG Data: 136 (X'88') Bytes /1

l] | 4

1 A8 | I

| | /

1 / Subsequent Spool File Records |

v 1 ! XIFFFI

¥hen an output file is first spooled to RSCS from a virtual machine user
on the same VM/370 system, the tag data is set according to the user
specification in the TAG command to CP.

When an RSCS line driver task receives a file on its link, it spools it
(to itself) in an output file that has additional RSCS-specific tag data
in the tag record. This RSCS-built tag data includes a store-and-
forward ('s&P') flagqg.

Section 5: Data Areas - Data Areas and Control Blocks 163

Licensed Material - Property of IBM

TELECOMMUNICATIONS BUFFER

— B |
0 | BUFCHAIN l
| |
4 | BUFCOUNT | BUFSTAT | BUFSTART |
| |
8 | | BUFBCB | BUFFCS |
| |
c | BUFDATA |
| |
/ /
| f
L

BUFDSECT DSECT

Q BUFBEGIN DS OF Beginning of the buffer
0 BUFCHAIN DC A (0) Buffer chain field
4 BUFCOUNT DS 1H Count of bytes to transmit
6 BUFSTAT DS 1C Buffer status byte
Bits defined in BUFSTAT
BUFFAKE EQU X'01' Dummy buffer indicator
BUFRESP EQU X*'02' Response only in buffer
BUFNAK EQU X'04' NAK response (negative acknovwledgement)
being sent
B UOFTEXT EQU X*08' Buffer contains text information
BUFUCHEK EQU X'10' Unit check expected
7 BUFSTART DS CL2 Transmission control bytes
9 BUFBCB DS 1C Block control byte
A BUFFCS DS CL2 Function control sequence
C BUFDATA DS OF Data portion of buffer

164 IBM VM/370: RSCS Retworking Logic

Licensed Material - Property of IBM

SVECTORS:

LOW STORAGE DEFINITIONS

SVECTORS defines low storage for the RSCS virtual machine.
It includes two types of storage: machine-defined and RSCS-defined.

Machine-Defined Low Storage

The SVECTORS machine-defined low storage defines machine status
data referenced during program execution and required by System/370
architecture.
r al | 1
0 i IPLPSW I 40 1| CSW H
4| | 44 1
| i i |
8 | IPLCCH1 | 48 | CAW |
C | i 4C j {unused) |
| | l 1
10 | IPLCCW2 | 50 TIMER |
14 i St (unused) |
| | | |
18 | OLDEXT | 58 | NEWEXT |
1C | | 5C | i
l | ! |
20 | OLDSVC | 60 | NEWSVC i
24 | f 64 |
(| 1 I
28 | OIDPROG | 68 | NEWPFROG |
2C | | 6C | I
I | | !
30 | OLDMACH | 70 | NEWMACH |
34 ! 74 | |
! ! ! - - i
38 | OLDIO | 78 | NEWIO |
3C | | 7c | |
L J i g
0 IPLPSW Ds D X'00040000° V(DMTINT)
8 IPLCCW1 DS D
10 IPLCCW2 DS D
18 OLDEXT DS D External interrupt old PSW
20 OLDSVC DS D Supervisor call old PSW
28 OLDPROG DS D Program check old PSW
30 OLDMACH DS D Machine check old PSW
38 OLDIO DS D Input/output old PSW
40 o1 DS D Channel status word
48 CAW DS D Channel address word
4c DS F Unused
50 TIMER DS F 4X'FF!
54 DS F Unused
58 NEWEXT DS D X'00040000°" V (DMTEXT)
60 NEWSVC DS D X'00040000° V(DMTSVC)
68 NEWPROG DS D X'00040000° V (REXOUCH)
70 NEWMACH DS D X'00020000° A(OLDMACH)
78 NERIOQ DS D X'00040000°" V(DMTIONMIN)
Section 5: Data Areas - Data Area=s and Cantral Riacke

1€

Licensed Material - Property of IBM

SVECTORS Table Contents

RSCS program storage begins with the SVECTORS table at hex location 200
in supervisor module DMIVEC. The SVECTORS table contains pointers to
modules that comprise the supervisor, to supervisor control gqueues, and
to queues of requests for supervisor services.

) 1
200 | NEWPSW |
i |
208 | SSAVE |
| |
210 | ACTIVE i MAINMAP l
| |
218 | MAINSIZE | QUEUE |
| 1
220 | QUEUEND | FREEQ |
| |
228 | TASKQ | MPXIOQ |
| |
230 | SELICQ | IOEX ITQ |
| [
238 | EXTQ | ALERTQ i
| |
240 | GIVEQ | QREQ !
| |
248 | DISPATCH i WAITREQ |
| |
250 | POSTREQ | IOREQ |
| 1
258 | TASKREQ | MAINREQ |
| 1
260 | ASYNREQ I ALERTREQ |
1 l
268 | GIVEREQ | TAKEREQ |
| !
270 | TVECTORO l TVECTOR1 1
| |
278 | TVECTOR2 | TVECTOR3 |
| |
280 | TVECTCRY | TVECTORS |
| !
288 | TVECTOR6 | TVECTOR7 |
| !
290 1
| Reserved 1
| |
| !
220 | 1
/ COPYRIGHT STMT /
1 |
| r l
2E8 | | Reserved |
| |
2F0 | |
/ SYSTEM PATCH AREA /
368 | |
[} [

166 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

ORG SVECTORS+#X%200°' Leave room for machine extensions

200 NEWPSW DC p*o? Dispatched PSW for last dispatcher

208 SSAVE DC 2F' Q' General-purpose low storage save
area

210 ACTIVE DC X' 00°' ID of currently active task

DC AL3(0) Address of task element for last

dispatchee

214 MAINMAP DC A(0) Address of start of main storage
allocation map

218 MAINSIZE DC F'0? Total number of pages in main
storage

21C QUEUE DC A(0) Address of start of supervisor
quene

220 QUEUEND DC A (0) Address of end of last supervisor
queue element

224 FREEQ DC A(0) Address of start of free elemenmt
queue

228 TASKQ nC A(0) Address of start of task elememt
que ue

22C MPXIOQ nC A(0) Address of start of multiplexer
I/0 queue

230 SELIOQ pC A (0) Address of start of selector I/0
queue

234 IOEXITQ DC A (0) Address of start of asynchronous
I/0 request element queue

238 EXTQ DC A(0) Address of start of extermnal
request element queue

23C ALERTQ DC A(O) Address of start of task
asynchronous request element gqueue

240 GIVEQ DC aA(0) Address of start of GIVE request
element queue

244 QREQ DC V (DMTQRQ) Supervisor queue allocation
request entry address

2u8 DISPATCH DC V (DNTDSP) Task dispatcher entry address

24C WAITREQ DC V(DMTWAT) Wait request entry address

250 POSTREQ DC V (DMTPST) Post request entry address

254 IOREQ DC V(DMTIOMRQ) I/0 request entry address

258 TASKREQ DC V (DMTASK) Task management request entry
address

25C MAINREQ DC V (DMTSTO) Main allocation request entry
address

260 ASYNREQ ncC V(DMTASY) Asynchronous interrupt request
entry address

264 ALERTREQ DC A (DMTSIG) Task asynchronous signal request
A (ALERT) entry address

268 GIVEREQ DC V(DNTGIV) Task request GIVE request
entry address

26C TAKEREQ DC V (DMTAKE) Task request TAKE regquest

entry address

270 TVECTORO DC A(0) Task defined field
274 TVECTOR1 DC A(0) Task defined field
278 TVECTOR2 DC A(0) Task defined field
27¢C TVECTOR3 DC A(0) Task defined field
280 TVECTOR4 DC A(0) Task defined field
284 TVECTORS DC A(0) Task defined field
288 TVECTOR6 DC 2 (0) Task defined field
28C TVECTOR7 DC A(0) Task defined field
TLINKS EQU TVECTORO Link table address
TROUTE EQU TVECTOR1 Route table address
TPORTS EQU TVECTOR2 Switchable port table address
TTAGQ EQU TVECTOR3 Tag slot queue
TCOM EQU TVECTORY Common routine chain

Section 5: Tata Areas - Data Areas and Control Blocks 167

Licensed Material - Property of IBNM

TVMID EQU TVECTORS Pointer to local host virtual
machine user id
290 DS 4r
210 COPYRITE EQU * Copyright statement

DC C'5748-XP1 COPYRIGHT IBM CORP 1979 °

DC C'LICENSED MATERIAL-PROGRAM PROPERTY OF IBM'
CSTMTEND EQU *

2EA DC cLé* Reser ved
2F0 SYSPATCH DS 128X ** System Patch Area **

168 IBM ¥M/370: RSCS Networking Logic

Licensed Material - Property of IBM

TAG QUEUE DATA: TAGAREA

TAGAREA in DMTAXS module contains data about the disposition of the tag

queue element pointers and other tag control information.

to by TTAGQ in SVECTORS.

(=]

It is pointed

TAGAFREE ;
1
TAGACIN i
|
TAGACOUT |
|
TAGAGOT { TAGAHOLD |
]
TAGAFREE DC A (0) Address of queue of free TAG slots
(or elements)
TAGACIN DC A (0) Pointer to queue of active input TAGs
TAGACCUT DC 1A(0) Pointer to queue of active output
TAGs
TAGAGOT DC H'0! Number free slots left
TAGAHOLD DC H'0! Number slots to be held

Section 5:

Data Areas - Data Areas and Control Blocks

169

Licensed Material - Property of IBM

TAG QUEUE ELEMENT FOR RSCS SPOOL FILE

TAG describes a file enqueued for processing by RSCS. Part of the data
in this area is built from tag data specified via the CP TAG command and
inserted by CP into the spool file block (SFB) at the start of the spool
file. RSCS reads the SFB and copies the appropriate data into the tag
slot that it constructs for this file. FEach tag slot entry in use is
enqueued on the input (for transmission) or output (while receiving)
queue of the line driver task responsible for the file.

r Rl

0 i TAGNEXT |
l !
4| TAGBLOCK I
| |

8 1 TAGINLOC |
| |

c 1 |
| |

10 | TAGLINK 1
| 1

14 | |
| 1

18 | TAGINTOD |
| |

1C | |
| 1

20 | TAGINVM |
i l

24 | |
| |

28 | TAGRECNNM |
| |

2C | TAGRECLN | TAGINDEV | TAGCLASS |
1 |

30 1 TAGID i TAGCOPY f
1 {

34 | TAGFLAG | TAGFLAG2 | TAGORGID 1
| |

38 | TAGNAME |
/ /

| |

uy | TAGTYPE |
/ /

| 1

50 | TAGDIST |
i 1

54 | 1
| |

58 | TAGTOLOC |
i |

5¢C | |
| |

60 | TAGTOVM |
l |

64 | |
| |

68 | TAGPRIOR 1 TAGDEV l
| 1

6C | TAGCRTRL |
| (

70 | TAGRECLT { TAGSPARE |
t)

170 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

TAGN EXT
TAGBLOCK
TAGINLOC
TAGLINK
TAGINTOD
TAGINVM
TAGRECNM
TAGRECLN
TAGINDEV
TAGCLASS
TAGID
TAGCOPY
TAGFLAG
TAGFLAG2
TAGORGID
TAGNAME
TAGTYPE
TAGDIST
TAGTOLOC
TAGTOVM
TAGPRIOR
TAGDEV
TAGCNTRL
TAGRECLT
TAGSPARE

TAGLEN

Section 5:

Ds
DS
DS
DS
DS
DS
DS
DS
DS
DS
Ds
DS
DS
DS
DS
DS
DS
DS
DS
Ds
DS
DS
Ds
Ds
DS

EQU *-TAGNEXT

Address of next active queue entry
Rddress of associated I/0 area
originating location

Next location for transmission

Time of file origin

Ooriginating virtuval machine

Number of records in file

Maximum file data record length
Device code of originating device
File output class

Current ¥M/370 Spool ID

Number of copies required

VM/370 SFBLOK control flags (SFBFLAG)
VM /370 SPBLOK control flags (SFBFLAG)
VM/370 Spool ID at origin location
Filename

Filetype

File distribution code

Destination location ID

Destination virtual machine ID
Transmission priority

Active file's virtual device address
Network Control record format
Number of records left ir file

Spare Fullword

Data Areas - Data Areas and Control Blocks

Length (in bytes) of the file TAG

171

Licensed Material - Property of IBNM

TAKE REQUEST TABLE IN GIVE/TAKE REQUESTED TASK

The format of a TAKE request table is:

f 1
0 Task name of GIVE requestor |
| i
4 A (TAKE Request Buffer) |
{ |
8 | A(TAKE Response Buffer)]
[l J

172 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

TANK S

Onit Record Tank

(=4

oSown&FEO

| 1

0 | TANKCHN i
| |

4 | TANKRCB | TANKSRCB | TANKCNT |
| I

8 | TANKDATA |
i i

/ /

| f

Do L J

TANKDSEC DSECT
T ANKCHN DC
TANKRCB DS
TANKSRCB DS
TANKCNT DS
TANKDATA DS
TANKEND DS

Section 5:

2(0)
1C
(o
1H
C1L200
OF

Data Areas - Data Areas and Control Blocks

Beginning of the buffer
Tank record control byte
Tank sub-record control byte
Count of data bytes in tank
Data area in the tank

Force next to word boundary

173

Licensed Material - Property of IBM

TASK QUEUE ELEMENT: TASKE

Fach task queue element contains status information pertaining to one
active task.

The TASKQ field of SVECTCRS points to this queue.

r 1
01 TASKNEXT 1
1 |
4 | TASKSAVE i
I |
8 | TASKNAME |
i |
C | TA SKSPAR { TASKSTAT | TASKID |
—]
0 TASKNEXT DS 1F Address of the next element
on the task element queue
4 TASKSAVE DS 1¥F Address of this task's Task
Save Area (TARER)
8 TASKNAME DS CLY Task name specified by the
task; 4 bytes long
C TASKSPAR DS AL2 Onused
E TASKSTAT DS 1X Status flags associated with
the task
Bits defined in TASKSTAT
WAITING EQU X'80°' Flag set to 1 when task is
nondispatchable
LOCKLIST EQU X'40! Flag set to 1 while task is
waiting for the synch
lock list
LIMBO EQU X'01* Flag set to 1 when a task is

being terminated

F TASKID DS 1¥ Number ID for the task; 1
byte is assigned by
supervisor when task is
made active

174 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

TASK

The task save area comprises the first 78 bytes of the storage area

SAVE AREA: TAREA

defined in each task's storage.

r 1
01 TPSW |
4 1
1 |
8 | TGREGO 1
1 {
c 1 TGREG1 I
| (
10 | TGREG2 1
| l
14 | TGREG3 1
I |
18 | TGREGU |
! |
1C | TGREGS |
{ |
20 | TGREG6 i
| |
24 | TGREG? l
| |
28 | TGREGS |
{ |
2C | TGREGY 1
1 |
30 | TGREG10 i
| 1
34 | TGREG 11 |
{ l
38 | TGREF12 1
| |
3c | TGREG13 l
l 1
40 | TGREG14 {
| |
44 | TGREG15 l
{ |
us8 | TREQLOCK {
L [
TPSW DS 1D PSW with which a temporarily interrupted task
resumes execution
TGREGO DS 1F Save area for gemeral register 0
TGREG1 DS 1F Save area for general register 1
TGREG2 DS 1F Save area for general register 2
TGREG3 DS {F Save area for general register 3
TGREGU DS 1F Save area for general register 4
T GREG5 DS 1F Save area for general register 5
TGREG6 DS 1F Save area for general register 6
TGREG7 DS 1F Save area for general register 7
TGREGS DS 1F Save area for general register 8
TGREGY DS 1F Save area for general register 9
TGREG10 DS 1F Save area for general register 10
TGREG11 DS 1F Save area for general register 11
TGREG12 DS 1F Save area for general register 12
TGREG13 DS 1F Save area for general register 13
TGREG14 DS 1F sSave area for general register 1%
TGREG 15 DS 1F Save area for general register 15
TREQLOCK DS 1F Synchronization lock used to signal

Section

N

whether or not a task has information

Data Areas - Data Areas and Control Blocks

175

Licensed Material - Property of IBM

Request and Alert Elements

INTRODUCTION

The following pages provide information on the format and use of RSCS
request and alert elements. These elements are used in task-to-task
communication.

The information provided includes:

e The name of the module that builds the element

e The function performed by the element

A brief description of the element's usage

The format of the element

Operational notes to assist in understanding how the element is used

The elements are grouped in this section as follows:

e Request Elements Processed by DMTREX

e Command Alert Elements for Commands Processed by DMTAXS

e Command Alert Elements for Commands Processed by Line Drivers

The function code, in byte 2 of each element, tells the alerted task the

kind of alert request. The meaning of the remainder of the element is
defined for that function code for that task.

176 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

BUILT BY: DMTNPT, DMTSML

FUNCTION: Execute an RSCS operator command

DESCRIPTION: This request element is passed by a line dr
GIVE/TAKE to the REX task imn response to a
at a remote station.

iver via
command entry

Length | Function | Onused
(n-1) | Code: X'00°" |

RSCS Operator
Command Line Text

- e . e cE Gmme T e e T e)

e o —

OPERATIONAL NOTES:
No response text is returned. Command responses are
distributed via a call to DMTMGX.

Command /Messaqe Routing Request Element

BUILT BY: DMNTVMB, DMTVMC, DMTNJI
FUNCTION: Process a command or message received by a line driver.
DESCRIPTION: This request element is passed by a line driver via

GIVE/TAKF to the REX task, to process to a command or
message being received by the line driver from a remote

system.
+0 r -
i |Function| JCMD X'50' |
| Length {Code:] Onused [|MSG X'B1' |
l I X'01* | l f
+4 | |
| destination locid {
+12] I
| destination ¥MID |
+20] |
{ origin locid 1
+28] |
| origin VMID |
+36] i
| CMD/MSG text |
1 !]

OPERATIONAL NOTES:
No response text is returned.

Section 5: Data Areas - Request and Alert Elements 177

Licensed Material - Property of IBM

BUILT BY: DMTREX, DMTCMX, DMTAXS, DMTNPT, DMTSML, DMTPOW, DMTNJI,
DNTVMB, DMTVMC

FUNCTION: Issue an RSCS message
DESCRIPTION: This request element is passed via GIVE/TAKE to the REX

task, to specify the construction and distribution of an
RSCS message (by DMTMGX).

8-byte Variable Substitution
Values for Message Text

) 1

0 | Length | Function | Routing | Severity 1
f (n-1) | Code: X'02' | Code | Code |

i |

4 | |
] Receiver locid !

| !

| |

(ol | |
i Receiver userid |

i |

| |

14 Issuing Module Code i Action]
| 1 Code 1

| i

18 | Binary Message Number | Unused i
| l |

| |

1C | l
[J

OPERATIONAL NOTES:)
The routing code and severity code from the message
definition (in DMTMSG) are used when not supplied in the
message request element. If the message is not defimned in
DMTMSG, it is constructed using the specifications in the
message request element, and the "variable substitution
values"™ become the message text, unmodified.

Routing codes:
X'80' Local RSCS console
X'40' Remote addressee
X'20' Local user
X'10' Local VM/370 operator

No response text is returned.

178 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Restart Terminate Request Element

BUILT BY:

FUNCTION:

DESCRIPTION:

D¥TSML, DMINJI, DMTPOW

To terminate a line driver task specifying a command to be
executed after line driver deactivation.

This request element is passed via GIVE/TAKE to the REX
task to terminate the line driver task and execute the
specified command.

n-1

| Function | i
| Code: | |
| X*FO!] |

&~

command line

OPERATIONAL NOTES:

There are no error conditions for the restart terminate
function, so no response is made. However, line driver
tasks must issue a WAIT request following a call to GIVE
for terminate because REX may not execute the request
immediately.

Terminate Request Element

BUILT BY: DMTNPT, DMTSML, DMTVMB, DMTVMC, DMTNJI, DMTPOW

FUNCTION: Terminate line driver task.

DESCRIPTION: This request element is passed via GIVE/TAKE to the REX
task, to terminate line driver operation in response to a
DRAIN command.

0 | Length | Function i
|
i

(1) | Code: X'03'"|

. o — o

OPERATIONAL NOTES:

There are no error conditions for the terminate function,
So no response is made. However, line driver tasks must
issue a WAIT request following a call to GIVE for
terminate, because REX may not execute the request
immediately.

Section 5: Data Areas - Request and Alert Elements 179

Licensed Material - Property of IBNM

Timer Request Element

Timer interval in timer units
(high order bit must = 0) |

BUILT BY: DMTVMC, DMTSML, DMTPOW, DMNTNJI
FUNCTION: To set a task internal timer.
+0 \
| | Function | i
| Length | Code: i i
| X'07' | xX04r' | {
+4 [
i I
I
L

OPERATIONAL NOTES:
The use and meaning of the fields are described below:

Response Post Codes:
X'80' - normal

X'81' - active timer interval replaced
X'84*' - request format invalid

TIMER INTERVAL: Request field specifying, in timer units,
the timer value to be set. One unit = 1/300 of a second.

180 IBM VB/370: BRSCS Networking Logic

Licensed Material - Property of IBM

File Request Element

BUILT BY: DMT NPT, DMTSML, DMTPOW, DMTVMB, DMTVMC, DMTNJI
FUNCTION: Initiates or terminates processing of an input or output
file.

DESCRIPTION: This request element is passed via GIVE/TAKE to the AXS
task by line drivers to effect local spool file access
during communications with a remote station.

Linkid

r L)
0 | Length ([Function Code:| Unused | Modifiers |
I (X'13%) | X'01*, X'02°,]| [} 1
|] X*11r, x*12v | |]
| |
4 I
| TAG Address !
| |
i — i
8 |]
t I/0 Area Address i
| |
I |
(O | I
| f
| |
t J

OPERATIONAL NOTES:
The use and meaning of the various fields depends on the
requested function, as described below. Certain fields
may be updated during request processing. The (updated)
file request element is returned to the requestor as a
GIVE response.
Open Input

Function Code: X'01'
Modifiers: Unused.

Tag Address: Response field which points to the opened
- file's active tag.

I/0 Area Address: Response field which points to a virtual
page buffer containing the opened file's first VM/370
spool data buffer.

Linkid: Request field which specifies the requesting line
driver's linkid.

Response Post Codes:
X' 08' Terminal system error
X'04' ¥o file available
X*02' Undefined 1linkid
X'01*' Previously open file returned

Section 5: Data Areas - Request and Alert Elements 181

Licensed Material - Property of IBM

Open Output
Function Code: X'11°?

Modifiers: X'80': Do not return possible previously opened file
X*'20': Save output file on abnormal termination

Tag Address: Request field which points to a prototype
file TAG for the output file, constructed by the calling
line driver.

I/0 Area Address: Response field which points to a virtual
page buffer containing an I/O table, a write CCW, and a
buffer for processing the output file.

Linkid: Request field which specifies the requesting line
driver's linkid.

Response Post Codes:
X*04* Error, file not opened
X'02' Undefined linkid
X*01' Previously open file returned
Close Input
Function Code: X'02°
Modifiers:
X' 80' Do not purge copy or file
X'40*' Purge all copies, and purge file
X'20' Re-enqueue file for further processing.

Tag Address: Request field which points to the file's
active TAG in DMTSYS, as supplied by open input.

I/0 Area Address: Unused
Linkid: Unused.

Response Post Codes:
X'04" Tag not found, close failed

Close Qutput
Function Code: X'12'

Modifiers: X'40' Purge output file.

Tag Address: Request field which points to a prototype
file TAG for the output file, constructed by the calling
line driver. This tag is used to update the parameters to
be set for the output file.

I/0 Area Address: Request field which points to the file's
I/0 area, as supplied by open output.

Linkid: Unused.

Response Post Codes:
X'04'/I/0 area not found, close failed

182 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Line Alert Element

BUILT BY: DMTCHMX
FONCTION: Request line port allocation
DESCRIPTION: This alert element is passed to the LAX task (DMTLAX) to
verify and reserve line ports for links being activated in
response to a START command.
L L]
0 | Length | Function | Response | Unused |
| (X'OF') | Code: X'01'| Code I |
1 i
4 line Address | OUnused 1
1 1 1
l I
8 i |
| linkid |
[|
L]

OPERATIONAL NOTES:

The use and meaning of the fields are described below.
Certain fields are updated during processing.

Response Codes:
X'08' Specified line address not attached (CC=3)
X'04' sSpecified line address not valid RSCS port
device type
X'02' Line not available

Line Address: Request field specifying requested line
address. 7Zero specification implies request for
allocation of a switchable line from the port table. If
successful, the port's line address is returned in this
field as a response.

Linkid: Response field specifying the ID of the link which

has reserved the particular requested line address (with
response code X'02°').

Section 5: Data Areas - Request and Alert Elements 183

Licensed Material - Property of IBM

COMMAND ALERT ELEMENTS FOR COMMANDS PROCESSED BY DMTAXS

Reorder Alert Element

BUILT BY: DMTCMX, [MTREX

FUNCTION: Execute a file queue reorder.
L 4 1
| Length | Function | Response | Modifiers |
| X'03* | X'01¢ | Code i |
[

J

OPERATIONAL NOTES:
Response Codes:
X'00' Element accepted for processing
X'10' Flement rejected, busy

Modifiers: Unused

184 IBM VM/370: RSCS Networking Logic

Licensed Material — Property of IBM

ORDER. PURGE, and CLOSE Command Alert Element

BUILT BY: DMTCHMX
FUNCTION: Execute an AXS command
DESCRIPTION: This alert element is passed to the AXS task (DMTAXS) to

request second-level processing of an ORDER, PURGE, or
CLOSE command.

PR g

spoolid i spoolid

r L

0 | length | Function | Response | |
i (n-1) | Code: X'10',X'11', | Code | Modifiers |

| I X*12¢ l | |

| 1
44 !
1 locid |

| |

| |

c i i
o VMID .

| {
104 | spoolid count | spoolid i
I (=-x*'17')/2 i |

1 |

18 | 1
l |

1 I

L J

OPERATIONAL NOTES:
The linkid field specifies the affected link and the
command origin locid. VMID specifies the command origin
userid. The spoolid fields are binary halfwords; they
specify the files enqueued on the specified link which are
to be reordered or purged. The spoolid count field is a
binary halfword; it specifies the total number of spoolid
fields present. The meanings of the other fields are:

ORDER Command

Function Code: X'10¢

Response Codes:
X'00' Element accepted for processing
X'"10' Element rejected, busy

Modifiers:

X'80' Response messages go to local RSCS operator
X'00' Response messages go to specified link/VMID.

Section 5: Data Areas - Request and Alert Elements 185

Licensed Material - Property of IBM

PURGE Command

Function Code: X'117°?

Response Codes:
X'00' Element accepted for processing
X'10' Element rejected, busy

Modifiers:
X'80' Response messages go to local RSCS operator
X'40' Purge all files enqueued on the specified link
X'00' Purge only specified files; response messages go
to specified link/userid

Function Code: X'12!'

Response Codes:
X' 00' Element accepted for processing
X'10' Flement rejected, busy

Modifiers:
X'80' Response messages go to local RSCS operator
X*'40' CLOSE both input and output files on the specified link
X'20' CLOSE input files on the specified 1link
X'10' CLOSE output files on the specified link
X'00' CLOSE only specified spoolids. Response messages
go to specified link/userid.

186 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

TRANSFER Command Alert Element

BUILT BY: DMTCMX

FUNCTION: Execute an AXS command.

DESCRIPTION: This alert element is passed by a DMTCMX call to ALERTREQ
to the AXS task (DMTAXS) to request second-level
processing of the TRANSFER command.

0 r 1
| Length | Function | Response | Modifiers |
| (n-1) | Code X'13* | Code i |

4 | !
| linkid i

C i |
| YMID |

1 |
i nev locid 1
1c | |
| new VMID |
24 I
| spoolid count I spoolid |
| (n-X'27%) /2 ! |
| i
| l l
! l

n | spoolid | spoolid]

1]

OPERATIONAL NOTES:

The linkid field specifies the affected link and command
origin locid. VMID specifies the commard origin userid.
NEW 1OCID and NEW VMID are the new destination location
and user IDs for the specified spoolids. The spoolid
fields are binary halfwords and specify the files enqueued
on the specified link which are to be transferred. The
SPOOLID COUNT field is a binary halfword and specifies the
total number of spoolid fields present. The meanings of
the other fields are:

Function Code: X'13!

Response Codes:
X' 00' Flement accepted for processing
X'10' Element rejected, busy

Modifiers:

X'80' Response messages go to local RSCS operator
X'00' Response messages dgo to specified 1link/VMID

Section S: Data Areas - Request and Alert Elements 187

CHANGE Command Alert Element
BUILT BY: DMTCHMX
FUNCTION: Execute AXS command
DESCRIPTION: This alert element is passed by a DMTCMX alert to the AXS
task (DMTAXS), to request second-level processing of a
CHANGE command.
r
0 { Length | Function | Response |
] (X*'3BY) | Code: X'20! | Code | Modifiers
|
| linkid
4
i VMID
I
14 | spoolid | priority
|
18 | HCLD { CLASS { COPY
I
1c |
|
| Distribution Code
I
|
|
24 |
L

Licensed Material - Property of IBM

filename/filetype, dsnanme

OPERATIONAL NOTES:
The linkid field specifies both the link on which the
object inactive file is enqueued and the command origin

188

locid.

VMID specifies the command origin userid. The

spoolid field is a binary halfword and specifies the

object file's VM/370 RSCS identifier,

The following fields are specified only when the
corresponding file attribute is to be changed.
field is not specified, it is set to all 1 bits
(X'FF...').

e Priority halfword binary priority 0-99
e HOLD X'7F*' - set hold status
X'3F' - reset hold status (NOHOLD)
e CLASS 1-byte EBCDIC class, A-Z, 0-9
COPY halfword binary copy count, 1-99
e Distribution code 8-byte EBCDIC spool file
distribution code

e Filename/filetype, dsname, 24-byte EBCDIC spool file

filename or filetype or dsname

IBM VM/370: RSCS Networking Logic

If the

Licensed Material - Property of IBM

CHANGE Command
Function Code: X'20!
Response Codes:
X'00' Element accepted for processing
X' 10' Element rejected, busy
Modifiers:

X'80' Response messages go to local RSCS operator
X'00' Response messages go to specified link

Initialize Acceptor Alert Element

BOILT BY: DMTREX

FUNCTION: To inform the AXS Task that file acceptance may begin.

DESCRIPTION: Before profile execution, DMTAXS does not accept any files
into its internal tag slot gqueue. After profile execu-
tion, DMTREX alerts DMTAXS with an initialize acceptor
alert element of the following format, that file
acceptance is to begin:

+0

Length| X'FF' | X'00' | X'00°
X'03"' | | |

g -
e e

+4

Section 5: Data Areas - Request and Alert Elements 189

Licensed Material - Property of IBN

COMMAND ALERT ELEMENTS PROCESSED BY LINE DRIVERS

Line Driver Command (START, DRAIN, FREE, HOLD, TRACF) Alert Element

Format
BUILT BY: DMTCHMX
FUNCTION: Execute a line driver command
DESCRIPTION: This alert element is passed by a DMTCMX alert request to
2 line driver task (DMTNPT, DMTVMRB, DMTVMC, DMTPOW,
DMTNJI, DMTSML) to request second-level processing of a
START, DRAIN, FREE, HOLD, or TRACE command.
r L)
01 { Function 1 | |
] Length | Code: X'80,X'81',] Response i |
| (X'13') | X'82',X'83',X'84'| Code | Modifiers |
1 |
4 i I
1 |
| locid |
| |
l |
c | 1
| VMID |
14 1

OPERATIONAL NOTES:

The locid/VMID specifies the location/userid to receive
response messages. The meanings of the other fields are:

7]

TART Command

Function Code: X'80'

Response Codes:
X'00' Element accepted for processing
X'10' Flement rejected, busy

Modifiers:
X'80¢* sStart updated classes
X' 00' Reset DRAIN status

(=]

RAIN Command

Function Code: X'81°!

Response Codes:
X' 00' Element accepted for processing
X*'10' Element rejected, busy

Modifiers: Unused

190 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

]

EE Command

Function Code: X'82¢

Response Codes:
X'00' Flement accepted for processing
X'10' Element rejected, busy

Modifiers: Unused

HOL

(=]
)
[&]
=]
£3
]
9
(27

Function Code: X'83!

Response Codes:
X'00' Element accepted for processing
X'10' Element rejected, busy

Modifiers:
X'80' HOLD Immediate
X'00' HOLD after file processing

TRACE Command

Function Code: X'84°¢

Response Codes:
X'00' Element accepted for processing
X'10* Element rejected, busy

Modifiers:
X'80*' Start sum reporting
X'40* sStop sum reporting
X'20* start line logging
X'10' Stop line logging

Section S: Data Areas - Request and Alert Elements

191

Licensed Material - Property of IBM

Line Driver Command (BACKSPAC, FWDSPACE) Alert Element Format

BUILT BY: DMTCHMX
FUNCTION: Execute a line driver command
DESCRIPTION: This alert element is passed by a DMTCMX alert request to
a line second-level driver task (DMTNPT, DMTSML) to
request second-level processing of a BACKSPAC or FWDSPACE
command.
L] A
0 | Length | Function | Response | [
| (X*17') | Code: X'90°',X'91" | Code | Modifiers |
l |
4 | !
l !
| locid |
c 1 |
| VMID I
| |
14 | i
| Count |
{ |
L]

OPERATIONAL NOTES:

The locid/VMID specifies the location/userid to receive
response messages., The count field is a binary fullword,
and specifies the number of urits to be back spaced or
forward spaced. The meanings of the other fields are:

_———————=

Function Code: X'90!

Response Codes:
X'00' Element accepted for processing
X'10' Element rejected, busy

Modifiers:

X'80' BRackspace count
X'00' Backspace file (restart)

FYDSPACE Command

Function Code: X'91!

Response Codes:
X'00' Flement accepted for processing
X'10' Element rejected, busy

Modifiers: Unused

192 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

BUILT BY: DMTCMX
FUNCTION: Execute a line driver command
DESCRIPTION: This alert element is passed by a DMTCMX alert request to
a line driver task (DMTNPT, DMTSML) to request second-
level processing of a FLUSH command.
¢ 1
0 | Length | Function | Response | |
| (X*15') | Code: X'AO"] Code | Modifiers |
| |
4 |
{ |
| locid |
C | I
o VMID . .
1 '
14 |
| Spoolid
{
[

b e S

OPERATIONAL NOTES:

The locid/VMID specifies the location/userid to receive
response messages. The spoolid field is a binary
halfword, and specifies the VM/370 RSCS identifier of the
active file to be flushed. The meanings of the other
fields are:

FLUSH Command

Function Code: X'AQ?

Response Codes:
X'00' Element accepted for processing
X'10' Flement rejected, busy

Modifiers:
X'80*' Flush all copies, purge file
X'40' Flush hold, keep file, do not decrement copy count
X'00' Flush, decrement copy count, purge file if no copy
count remains

Section 5: Data Areas - Request and Alert Elements 193

Licensed Material - Property of IBHN

Line Driver Command (COMMAND, MSG, MESSAGE) Alert Element

BUILT BY: DMTCMX, DMTMGX
FUNCTION: Execute a line driver command

DESCRIPTION: This alert element is passed by either a DMTCMX or DMTMGX
alert request to a line driver task (DMTNPT, DMTPOW,
DMTSML) to forward messages, and to request second-level
processing of a CMD command.

CMD/MSG text

i il
0 | Length | Function | Response | |
| (n-1) | Code: X'BO',X'B1' | Code | Modifiers |

| i X'B2°' l | |

I |
4 |
| destination locid i

| 1

12) |
| destination VM/370 ID |

| |

20 | |
i origin locid |

| |

28 | |
1 origin VM/370 ID |

(I
36 | |
I |
L I]

OPERATIONAL NOTES:
The locid specifies the location to receive the message or
conmand text. Meanings of other fields are:

D Command

2]

Function Code: X'BO!

Response Codes: X'00' Element accepted for processing
X*'10' Element rejected, busy

Modifiers: Unused
MSG Command
Function Code: X'B1!

Response Codes: X'00*' Element accepted for processing
X'10' Flement rejected, busy

Modifiers: Unused.
System-Generated Messages
Function Code: X'B2!

Response Codes: X'00' Element accepted for processing
X'80' Element rejected, busy

Modifiers: One-byte binary RSCS severity code

194 IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBM

NETWORK CONNECTION CCNTROL RECORDS

Initial Signon Control Record and Response Signon Control Record Format

we T~

General record control byte
Sub-record control byte
Initial SIGNON character
Response SIGNON character
Length of logical record

Node identification

Qualifier if shared spool
Event sequence number

Partial node to node resistance
Maximum transmission block size
Line password

Node password

Feature flags

Multiple trunk (response)

End RCB

Signon Control Record Format

NCCRCB oC X*'Fo°
NCCSRCB DC X!
NCCISRCB EQU C*1!
NCCRSRCB EQU C*'J°*
NCCIDL DC AL1(NCCIL)
NCCINODE DC Cl1L8' *
NCCIQUAL DC X'0!
NCCLEVNT DC FLY¥Q?
NCCIREST DC HL2'0?
NCCIBFSZ DC HL2'0!
NCCILPAS DC cCl8' *
NCCINPAS DC CL8* !
NCCIFLG DC X'
NCCIFLGM EQU B'10000000*
NCCIL EQU *-NCCRCB
NCCIEND pDC X'0Q!
Concur/Reset

NCCRCB DC X'FO!
NCCSNB DC X'0!
NCCESRCB EQU C'K?!
NCCCSRCB EQU C'L!¢
NCCCDL DC AL1(NCCCL)
NCCCEVNT DC FL4*0Q?
NCCCREST DC OHL2'0!
NCCEREST DC HL2'0!
NCCCL EQU *-NCCRCE
NCCCEND DC X'Q¢

General record control byte
Sub-record control byte

Reset SIGNON character

Concur SIGNON character

Length of logical record

Event sequence number

Total node to node resistance
Partial node to node resistance

End RCB

Add/Subtract Connection Control Record Format

NCCRCB
NCCSRCB
NCCASRCB
NCCSSRCB
NCCADL
NCCANODA
NCCAQULA
NCCANODB
NCCAQULB
NCCAEVNT
NCCAREST
NCCAL
NCCAEND

DC
DC
EQU
EQU
DC
hle
DC
DC
DC
DC
DC
EQU
DC

X'FO!
X'
cme
C'N?

AL 1 (NCCAL)
CL8"
X'o!
cLgt v
X'
FL4' O
HL20°
*-NCCRCB
X'o"

General record control byte
Sub-record control byte

Add connection character
Subtract connection character
Length of logical record
Lower node identification
Qualifier if shared spool
Higher node identification
Qualifier if shared spool
Event sequence number

Node to node resistance (total)

End RCB

Section 5: Data Areas - NJI Header Formats

195

Licensed Material - Property of IBM

NETWORK JOB HEADER RECORD FORMAT: NJHDSECT

* Block Control Information
NJHLEN DC AL2(NJHLLEN) Length of entire block
NJHFLAGS DC X'00°! Flags
NJHSEQ DC BL.1'0',AL.7(0) Transmission sequence indicator
NJHLBCI EQU *-NJHDSECT Length of block control information
* General Section
NJHG DS OF Start of general section
NJHGLEN DC AL2(NJHGLLEN) Length of general section
NJHGFLGS DS 0BL2 Section type flags
NJHGTYPE DC AL1(NTYPGEN) ID for general section
NJHG MOD DC AL1 (NJHG$MOD) Modifier
NJHG$MOD EQU B'00000000° vValue of modifier
NJHGJID DC Y (0) Job identifier
NJHGJCLS DC C'A! Job class
NJHGMCLS DC C'A!? Message class
NJHGFLG1 DC B*'00000000° Flags
NJHGPRIO DC AL1(0) Selection priority
NJHGORGQ DC AL1{0) origin node system qualifier
NJHGJCPY DC AL1(0) Job copy count
NJHGLRCT DC AL1(0) Job line count

DC XL3'00°? Reserved
NJHGACCT DC cCL8' ! Wetworking account number
NJHGJNAM DC Cl18°* ! Job name :
NJEGUSID DC CLS8' ! User ID (TS0, WVmM/370)
NJHGPASS DS CL8 Passwvord
NJHGNPAS DS C18 New password
NJHGETS DC FL8'0* Entry time/date stamp

NJHGORGN DC C18°
NJHGORGN DC CLS8!
NJHGXEQN DC C18!
NJHGXEQU DC CL8!
NJHGPRTN DC CL8'
NJHGPRTR DC CI18!
NJHGPUNN DC CLS'
NJHGPUNR DC CI8°*

Oorigin node name

Oorigin remote name
Execution node name
Execution user ID (VM/370)
Default print node name
Default print remote name
Default punch node name
Default punch remote name

- . P w e g e

NJHGFORM DC CL8! Job forms

NJHGICRD DC F'0" Input card count

NJHGETIM DC F'0Q! Estimated execution time
NJHGELIN DC F'0° Estimated output lines
NJHGECRD DC F*'Q! Estimated output cards
NJHGPRGN DC CL20°* ! Programmer's name

NJHGROOM DC CL8' ! Programmer's room number
NJHGDEPT DC C18°* ! Programmer"s department number
NJHGBLDG DC <CL8' ¢ Programmer's building number
NJHGNREC DC F'0? Record count on output
NJHGEND DS OF End of general section
NJHGLLEN EQU *-NJHG Length of general section

196 IBM VM/370: RSCS Networking Llogic

Licensed Material - Property of IBM

* JBES2 Subsystem Sectiom
NJH2 DS OQF Start of JES2 section
NJH2LEN DC AL2(NJH2LLEN) Length of JES2 section
NJH2F1LGS DS O0BL2 Section type flags
NJH2TYPE DC AL1(NTYPJES2) ID for JES2 section
NJH2MOD DC AL1 (NJH2$MOD) Modifier
NJH2$MOD EQU B'00000000°* Valud of modifier
NJH2FLGY1 DC B'00000000°" Flags

DC XL3'00" Reserved
WJH2ACCT DC CL4¢® ¢ originator's JES2 account number
NJH2END DS OF End of JES2 section
NJH2LLEN EQU #*-NJH2 Length of JES2 section
NJHLLEN EQU *-NJHDS ECT Length of entire block
* Recommended Format for a User Section
NJHU DS OF Start of user section
NJHULEN DC Al2 (NJHULLEN) Length of user section
NJHOUFLGS DS OBL2 Section type flags
NJHUTYPE DC AL1 (NTYPUSER) ID for user section --
* Bits 0-1 must be B'11?
* Bits 2-7 can be anything
NJHUMOD DC AL1(NJHUS$MOD) Modifier -—-
NJHG$SMOD EQU B*00000000° Mod value can be anything
NJHUCODE DC CL4* ! SHARE/GUIDE installation code
* Place user information fields
* between 'NJHUCODE' & '*NJHUEND?
NJHUEND DS OF End of user section
NJHULLEN EQU *-~-NJHJ Length of user section
* Section Type Flags
NTYPGEN EQU B* 00000000 General section
NTYPSUB EQU B*10000000°* Subsystem section
NTYPASP EQU B*10000001" ASP subsystem section
NTYPHASP EQU B'10000010°* HASP subsystem section
RTYPJES1 EQU B' 10000011 JES/RES subsystem section
NTYPJES2 EQU B'10000100° JES2 subsystem section
NTYPJES3 EQU B'10000101° JES3 subsystem section
NTYPPOWR EQU B'10000110°* VSE/POWER subsystem section
NTYPVNET EQU B*10000111° vM/370 subsystem section
NTYPUSER EQU B'11000000°* User section
* General Section, NJHGFLG1
NJHGF1PR EQU B'10000000° Do not recompute priority

NETWORK JOB TRAILER RECORD FORMAT:

NJTDSECT

* Block Control Information

NJTLEN DC AL2 (NJTLLEN) Length of entire block

NJTFLAGS DC X'00°¢ Flags

NJTSEQ DC BL.3'0',AL.7(0) Transmission sequence indicator
NJTLBCI EQU *-NJTDSECT Length of block control information

Section 5: Data Areas - NJI Header Formats 197

*

KJTIG
NJTGLER
NJTGFLGS
RJTGTYPE
NJIGMOD
NJTGS$MOD

NJTGFLG 1
NJTG XCLS

NJTGSTRT
NJIGSTOP
NJTGACPU
NJTIGALIN
NJTGACRD
NJIGEXCP
NJTGIXPR
NJTGAXPR
NJTGIOPR
NJTGAOPR
NJTGEND

NJTGLLEN
RJTLLEN

*

NJTU
NJTULEN
RJTUFLGS
NJTUTYPE
*

*

NJTUNOD
NJTUSMOD

NJTUCODE
*

*
NJTUEND
NJTULLEN

General Section

DS
DC
DS

DS

OF

AL2 (NJTGLLEN)
0BL2
AL1(NTYPGEN)
AL1 (NJTGS$MOD)
B'000000C0"

B'00000000"
Crar
XL2'0"
FL8'0¢
F18'0'
F'O!
F10?
F'0O!
F'0!
AL1(0)
AL1(0)
AL1 (0)
AL1(0)
oF

EQU *-NJTG

EQU

*~-NJTDS ECT

Licensed Material - Property of IBM

Start of general section
Length of general section
Section type flags

ID for general section

Modifier

Value of modifier

Flags

Actual execution class

Reserved

Execution start time/date
Execution stop time/date

Actual CPU time

Actual output lines

Actual output cards

Excp count

Initial XEQ selection priority
Actual XEQ selection priority
Initial output selection priority
Actual output selection priority
End of general section

Length of general section

Length of entire block

Recommended Format for a User Section

DS
EQU

oF

AL2 (NJTOLLEN)
0BL2

AL1 (NTYPUSER)

AL1(NJTUSMOD)
B'00000000 *
cLyr

OF
*-NJTU

Start of user section
Length of user section
Section type flags
ID for user section --
Bits 0-1 must be B'11!
Bits 2-7 can by anything
Modifier --
Mod value can be anything

SHARE/GUIDE installation code

Place user information fields
between 'NJTUCODE' & *NJTUEND!

End of user section

Length of user section

NETWORK DATA SET HEADER RECORD FORMAT: NDHDSECT

*

NDHLEN
NDHFLAGS
NDHSEQ
NDHLBCI

*

NDHG

NDHGLEN
NDHGFLGS
NDHGTYPE
NDHGMOD
NDHG $MOD

NDHGNODE

198

Block Control Information

AL2 (NDELLEN)
X100

BL.1'0' ,AL.7(0)

*-NDHDSECT

General Section

OF
AL2 (NDHGLLEK)
0BL 2

AL1 (NTYPGEN)
AL1(NDHGSMOD)
B 100000000 *

ci8* ¢

Length of entire block

Flags

Transmission sequence indicator
Length of block control information

Start of general section
Length of general section
Section type flags

ID for general section

Modifier

Value of modifier

Destination node name

IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

NDHGRMT
NDHGPROC
NDHGSTEP
NDHGDD
NDHGDSNO
NDHGSEC
NDHGCLAS
NDHGNREC
NDHGFLG 1
NDHGRCF M
NDHGLREC
NDHGDSCT
NDHGFCBI

NDHGFORM
NDHGFCB
NDHGUCS
NDHGXWTR
NDHGEND
NDHGLLEN

* -
NDHV
NDHVLEN
NDHVFLGS
NDHVTYPE
NDHVMOD
NDHV $MOD

NDHVFLG 1

NDHVCLAS

NDHVIDEV

NDHVDIST
NDHVFNAM
NDHVFTYP
NDHVPRIO
NDHVEND

NDHVLLEN

NDHLLEN

*

NDHA
NDHALEN
NDHAFLGS
NDHATYPE
NDHAMOD
NDHA $MOD

NDHAFLG 1
NDHAFLCT
NDHATREP

NDHATAB1
NDHATAB2
NDHATAB3
NDHATABY
NDHAFLSH
NDHAMODPF
NDHACPYG
NDHAEND

NDHALL EN

EQU

cLge ¢
cl8"
cLst ¢
ci8 ¢
H'O'

AL1 (0)

cral

F'0!

B* 00000000
B'00000000*
HYO'

AL1 (1)

AL1 (0)
XL2700°
ci8! ¢

cLg! ¢

c18' ¢

CL8" +

OF

*-§DHG

Destination remote name
Proc invocation name
Step name

DD name

Data set number
Security level
Output class
Record count
Flags

Record format

Hax logical record lemgth
Data set copy count

3211 PCB index

Reserved

Forms ID

FCB ID

Ucs ID

External writer 1D

End of general section
Length of gemeral section

RSCS Subsystem Section

DS
DC
DS
DC
DC
EQU

DC
DC
DC
DC
DC

EQU

EQU

3800 pPrinter Characteristics General Section (Optiomnal)

DS
DC
DS
DC
DC
EQU

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DS
EQU

oF

AL2 (NDHVLLEN)
0BL2
AL1(NTYPVNET)
AL1 (NDHVS$HMOD)
B* 00000000°

B'00000000°*
crar

X100°
XL1'00°
cL8t ¢
CL12¢ ¢
CL12¢ ¢

AL2 (0)

OF

*~NDRV

*-NDHDS ECT

OF

Y (NDEALLEN)
OBL2

AL1 (NTYPGEN)
AL1(NDHASMOD)
B*'10000000°*

B'00000000°"
AL1(0)
X100
X' 00"
c18*
cL8"
cL8"
ci8"*
cLs!
cL8* ¢
XL8' 00"
OF
*~NDHA

Start of RSCS section
Length of RSCS section
Section type flags

ID for RSCS section

Modifier

Value of modifier

Plags

VYM/370 spool file class
VM/370 origin device type
Reserved

VM/370 distribution code
VM/370 file name

VM/370 file type

VM/370 transmission priorty
End of RSCS section

Length of RSCS section

Length of entire block

Start of 3800 char section
Length of 3800 char section
Flags and modifier

ID for general section

Modifier

Value of modifier (3800 char)

Flags

Flash count

Table reference character
Reserved
Translate table
Translate table
Translate table
Translate table
Flash cartridge ID

Copy modification ID

Copy groups

End of 3800 char section
Length of 3800 char sectiomn

SWN -

Section 5: Data Areas - NJI Header Pormats

199

Licensed Material - Property of IBM

* 3800 Characteristics General Section, NDHAFLG1

NDHAF1J EQU B'10000000°* 'OPTCD=J' specified

NDHAF1BR EQU B'01000000" 'BURST=YES' specified

* Record Characteristics Change General Section

NDHC DS OF Start of char change general section
NDHCLEN DC AL2(NDHCLLEN) Length of char change general section
NDHCFLGS DS OBIL2 Section type flags

NDHCTYPE DC AL1(NTYPGEN) ID for general section

NDHC MOD DC AL1 (NDHC$MOD) Modifier

NDHC$MOD EQU B'01000000°' Value of modifier (char change)
NDHCFLG1 DC B'00000000°* Flags

NDHCRC¥FM DC B'00000000°" Record format

NDHCLREC DC AL2(0) Maximum logical record length
NDHCEND DS OF End of char change general section
NDHCLLEN EQU *-NDHC Length of char change general section
* Recommended Format for a User Section

NDHU DS OF Start of user section

NDHULEN DC AL2(NDHULLEN) Length of user section

NDHUFLGS DS O0OBL2 Section type flags

NDHUTYPE DC AL1(NTYPUSER) ID for user section --

* Bits 0-1 must be B'11¢

* Bits 2-7 can be anything
NDHUMOD DC AL1 (NDHU$MOD) Modifier --

NDHU $MOD EQU B'00000000" Mod value can be anything
NDHUCODE DC CLuv ¢ SHARE/GUIDE installation code

* Place user information fields

* between 'NDHUCODE' & 'NDHUEND'
NDHUEND DS OF End of user section

NDHULLEN EQU *-NDHU Length of user section

* General Section, NDHGFLG1

NDHGF1SP EQU B*10000000° Spin data set

NDHGF1HD EQU B'(01000000°* Hold data set at destination
NDHGF1LG EQU B'00100000° Job log indicator

COMMAND/MESSAGE HEADER FORMATS

NMRDSECT DSECT

NMRFLAG DC X'0! Flag byte

NMRLEVEL DC 0X'Q¢ Importance level (high 4 bits)
NMRPRIO DC x'0° Output priority (low 4 bits)
NMRTYPE DC X'0! Type byte

NMRML DC X*'0° Length of message

NMRTO DC 0OCl9t* ¢ To node

NMRTONOD DC CL8' ¢ To node name

NMRTOQUL DC X'0°?! To node qualifier

NMROUT DC XL8'(Q! Local output informaton

NMRF M DC O0CL9* ¢ From node

NMRFMNOD DC CLS8' ! From node name

NMRFMQUL DC X'0°! From node qualifier

NMRMSG DC CL132* ! Message

NMRL EQU *-NMRDSECT

NMR EQU NMRDSECT,NMRL Alias for NMRDSECT with length

200 IBM VM/370: RSCS Networking Logic

Licensed

NMRFNORM
NWMRFRTE
NMRFOP
NMRFFLG
NMRFJID
NMRFORGN
NMRFJNAM
NMRFD
NMRFR

*

NMRUCHM
NMROUCMA
NMRLINET

*

NMRDESC
NMRROUT
NMRDOMID

*

NMRRMT

NMERUSER

*

NMRFLAGC
NMRFLAGW
NRMFLAGT
NMRFLAGU
NMRFLAGR
NMRFLAGJ
NMRFLAGD
NMRFLAGS

*

NMRTYPEX
NMRTYPEF

*

NMRFOPD
NHRFOPC
NMRFOPA
NMRFOPH
NMRF OPR

*

NMRFFLGO
NMRFPLGD

Material - Property of IBM

Formatted Command Definitions

ORG NMRMSG

DC OXL20'0¢ Pormatted area for normal command
DC 0X1L36°'0°* Formatted area for route command
DC X'0¢ Op code

DC X*'0°* Flags or op code modifier

DC XL2'0¢ Initial job number

DC C18°* ! origin node name

DC CL8' ! Job name

DC cClL8' ¢ Destination for route command

DC CL8' ! Remote if not implied by NMRFD

NMROUT Format for UCMID Messages

ORG NMROUT

DC X'0¢ MCS console ID

DC X! MCS console area

DC XL2'0" Line type for MLWTO

NMROUT Pormat for Logical Routed Messages

ORG NMROUT

DC XL2'0¢ MCS descriptor codes
DC XL2'0° MCS console routings
DC XL4'0* MCS DOM ID

NMROUT Format for Remote Messages

ORG NNROUT
DC CL8' ! Remote name 'rnnn '
DMROUT for TSO User Messages

ORG NMROUT

DC cCL8!' ! TSO user ID

NMRFLAG Definitions

EQU B'10000000°* NMRMSG contains a command

EQU B'01000000* F¥MROUT has JES2 remote number

EQU B'00100000°* NMROUT has TSO user ID

EQU B*00010000° NMROUT has UCMID information

EQU B'00001000°* Console is only remote authorized
EQU B'00000100" Console not job authorized

EQU B'00000010°* Console not device authorized

EQU B*00000001* Console not system authorized

NMRTYPE Definitions

Reserved bits
Formatted command in nmrmsg

EQU B'11110000°*
EQU 2

NMRFOP Definitiomns

EQU 1 Display job command
EQU 2 Cancel job command
EQU 3 Release job command
EQU 4 Hold job command
EQU 5 Route job command

NMRFPLG Definitions

EQU X*80°"
EQU x'aoQ"

Cancel or route output
Cancel execution with dump

Section 5: Data Areas - NJI Header Formats

201

Licensed Material - Property of IBM

Section 6: Diagnostic Aids

Problem Determination

The complexity and physically dispersed nature of data telecommunication
systems can lead to difficulty in diagnosing malfunctions. Because many
different problems with the various system components can present
external symptoms which appear identical at the operator and user level,
it is important to collect as much physical documentation pertaining to
the malfunction as possible. Such documentation may include virtual
storage dumps of the RSCS virtual machine, the RSCS operator console
hard copy output, a log trace of the line I/0 activity, and copies of
files received in error.

In the event of a definite program error that can be detected by the CPU
or channel hardware (e.g., program checks), or by the RSCS systen
itself, a virtual storage dump is automatically taken by means of a CP
DUMP command executed by a DIAGNOSE X'08' imnstruction. In this case,
the RSCS operator console output normally includes a terminal diagnostic
error message, as well as information concerning the activity leading up
to the error. Any available console output containing such information
should ke retrieved and attached to the virtual storage dump.

In many cases, minor malfunctions detectable by users, operators, and
system programmers do not result in automatic virtual storage dumps.
These malfunctions usually leave some evidence in RSCS virtual storage
following their occurrence, and a dump of RSCS virtual storage can be
useful if taken quickly after the malfunction occurs, before subsequent
processing obscures the evidence, When a malfunction is detected, RSCS
processing should be suspended by using the RSCS virtual machine console
to place the virtual machine in CP console function mode (normally, by
use of the ATTENTION key). Having entered CP console function mode, the
following CP command should be entered:

DUMP 0- * (comment describing symptoms)

When CP has confirmed DUMP command completion, the following two CP
commands should be entered:

CLOSE E
BEGIN

The CLOSE command causes the storage dump print file to be queued for
real printer output, and the BEGIN command causes RSCS to resume
processing from where it was suspended. The character string to the
right of the asterisk is printed as entered at the start of the dump
listing; it should identify reason for taking the storage dump. All
console listings (including the DUMP command) and other documentation
should be retrieved and attached to the dump, and any further
description of the problem should be written on the dump listing or
attached to it.

Suspected telecommunication problems should be documented by means of
the RSCS TRACE command, using both the LOG and SUM keywords. 1R line
activity log trace should be activated during the occurrence of the
malfunction if possible. This presents no problem if the malfunction is
constant or reproduceable at will, but intermittent or unpredictable
malfunctions can sometimes be difficult to "catch". Line activity
logging is initiated by the RSCS command:

202 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

TRACE 'linkid' 106

and is terminated by the RSCS command:
TRACE 'linkid*' NOlOG

The log trace is automatically scheduled for real printer output on
termination of logging, which should be done several seconds or minutes
after the malfunction has occurred., (Avoid allowing log trace to remain
active for long periods, since this can generate a very large printer
spool file which may exhaust ¥M/370 system spooling space.) The log
trace printed output should be retrieved, annotated with any descriptive
comments, and attached to pertinent console output showing the trace
commands and to a virtual storage dump taken immediately following the
malfunction, as described above, (A virtual storage dump may be taken
while log trace is active without any conflict.)

If it is suspected that spool files are being altered in transmission
(resulting in partial files, missing or duplicated records), copies of
the original and altered files should be retrieved if possible. When a
CMS DISK DUMP file cannot be loaded by a CMS DISK LOAD command due to
file format errors, a CHS READCARD command should be issued to obtain an
exact copy of the altered file., Other documentation of the problem
(console output listings, line log trace, and virtual storage dump)
should be obtained as described above, if possible.

The documentation of a malfunction should be analyzed to diagnose the
problem and identify the malfunctioning system component, if possible.
There is no standard procedure for this kind of analysis. In general,
system documentation and program listings can be used to deteramine
normal system behavior which should appear in the log traces, dumps,
etc, Any deviations or intermittent behavior would be suspect, and
should be investigated. Often such discoveries sufficiently specify a
particular malfunction to allow identification of a responsible routine
or component which can be easily analyzed and tested in detail.

For example, suppose the diagnostic information indicates apparently
normal communication, with a very high transmission exchange rate as
indicated by the TRACE linkid SUM command, and no file data transfer.
Analysis of a storage dump and log trace could show that a single
CMD/MSG element is being repeatedly exchanged on the link. This
suggests that a loop exists in the network routing structure in the
user-defined RSCS directories at the network locations. In other wvords,
the CMD/MSG element may be addressed to a location that each side of the
link has accidentally routed to the other, This frequent source of
trouble can be corrected by identifying the erroneously routed location
ID from the storage dump or log trace, and issuing a ROUTE locid OFF
command on either side of the link.

When problems are determined, any diagnosis along with the problem
documentation and proposed correction (if any) should be forwarded to
the people responsible for maintenance of the component suspected to be
in error. It is most important to include a complete description of the
configuration of the system in use, including specific hardware types
and models, particular software systems, modification levels, and any
local modifications in use.

To analyze a problem documented. in an RSCS storage dump, you need to
determine the status of the RSCS system tasks at the time of the dump.
Lay out the dump with a visible marker such as a colored felt pen.

The locations of the tasks, modules, save areas, queues, tables and
indicators all start with the pointers in the SVECTORS table beginning
at storage location X'200', and in the common areas addressed by the
TVECTORS in SVECTORS.

Section 6: Diagnostic Aids -~ Problem Determination 203

Licensed Material - Property of IBM

The Data Area Aids diagrams (in Section 5 of this manual) help you use
the SVECTORS and other system control data. Use these diagrams, source
listings, and the data area and control block detailed descriptions
(also in Section 5 of this manual) to determine such things as active
I/0, inactive I/0, tasks awaiting dispatching, tasks that have issued
waits on synch locks, etc.

¥hen a line driver task is executing and a dump condition occurs (for
example, due to a program check) the name of the line driver is at the
top of the dump.

The SVECTORS ACTIVE field, ome byte at address X'210', contains the id
of the currently active task, If the value in this field is X'00', the
dispatcher has found no task in the task table that is ready to run, and
the supervisor is either executing or waiting (according to current PSW
wait bit) for an interrupt. The address at location X'211'-X*'213!
points to the task element of the last task to be dispatched before the
dump was taken.

If a dump is automatically taken by RSCS, the active register contents
at the time of error are stored, beginning with register 0, at location
X'100B0°'.

The value in register 14 (at location X'10040') in this save area is

usually the address that the most recently active task exited from (BALR
14, 15) .

Module Message Directory

The following list identifies the module code where the decisions are
made to issue RSCS messages,

Message Message
Source |[Number Generated Source| Number Generated
Modulel ID _ at label_ Modulej ID at_Label
DMTAXM101I TAGPEND DMTAXMS525E CHANGE
DMTA XM102I ACCEPEND CLOFCHEK
DMTAXN103E ACCEPUR2 ORDECHEK
DMTAXNI04UI CLOOSCN2 PURGCHEK
DMTAXM 105 CLOIPGE1 TRANCHEK
DMTAXM106I PILSTRY DMTAXMS26E CHANGE
OPENPOOF CLOFCHEK
DMTAXNMI107I UNPECHEK ORDECHEK
DMTAXM108E OPENRDER PURGCHEK
DMTAXM109I REORD (ER) TRANCHEK
REFILCON DMTAXM640I PURGDONE
DMTAXM1I11I CLOSCAN1 DMTAYM645T TRANDONE
DMTAXM500X CLOFINIS
DMTAXMS01E CLOSE DMTCMXO001I CMXFINXT
DMTAXMS02E CLOFCHEK DMTCMX003X CMXM003
DMTAXM5201 CHANGE DMTCMXO004I CMXMO003
DMTAXM521I CHANHO DMTCMXO0051 CMXMO0030
DMTAXNM522I CHANNOH DMTCMX 1701 MSGM170
DMTAXM5231 CHANSCAN MSGLENOK
DMTAXMS524E CHANGE DMTCMX 171X MSGM170
ORDECHEK DMTCMX201E CMXLGOT
PURGCHEK CMXMISS
TRANCHEK DMTCMX202E A1TOCHK

204 IBK VM/370: RSCS Networking Logic

Licensed Material -~ Property of IBM

Hessage Hessage
Source {Number Generated Source| Number Generated
Modylel ID at Label Module|_ ID at_lLabel

A1TTRANLK ROLINE
DEFLKNEW ROTASK
DEFNOLNK ROTYPE
QYOLINK DMTCMX206E CHACLASS
QYCKROUT CHACOPY
QYINACTV CHADIST

DMTCMX203E A 1FLKGOT CHANANME
A1FSTOW CHAPRIOR
CHALKGOT LOHOLD
FLUASCAN LOTRACE
L 2FLKGOT L1PLKGOT
QYOPILE QUERY
QYOFNULL ROCLASS

DMTCMX204E A1TOCHK ROCLMULT
A1INPOT ROKEEP
A10UTPUT ROZONE
A1TRAMIS ROLINE
CHALKGOT1 ROTASK
CHALKGT1 ROTYPE
CHAXNTERM DMTCMX208E A 1TOCHK
CHASCAN CPQUSERS
CKRNGE DISCONN
CHXN204 MSGLNKGO
CP MSGNOUSR
CPQIND DMTCMX209E CMXHIT
CPQUERY DMTCMX 210E CMD
CPQLOG CMDNOLOC
CPQN204 MSG
CPQNAMES MSGROLOC
CPQUSERS DHMTCMX 300X CMXALRDY
EXEC DMTCMX301E CMXALRDY
FLUMORE DMTCMX 30 2E A 1TRAULK
FORERR MSGNOLRNK
HT DMTCMX 303E CMD
LOFOUL CMXM303
LOHOLD FORCE
LOTRACE LOFLKGOT
L1TERM L1FLKGOT
QYROUGO L2FPLKGOT
QYROU BIS MSG
QYTOOMCH DMTCHMX30UE CMXALRDY
QYOFILE DMTCMX310E CMDNOLRNK
QYOLINK QY NOT ROU
QYOSYSTM MSGNOLNK
ROFORMAT DMTCMX320E CMD
REORDER MSG
ROSCAN DMTC MX540I DEFDO
ROUTCONT DMTCMXS4 1Y DEFDO
SHUTDO WN DMTCMXSU42E DEFINE
STALKGOT DEFM542

DMTCMX205E A 1TOCHK DMTCMXS4U3E DEFNS543
CHACLASS DEFNEXT
CHACOPY DEFNOLNK
CHAHOLD DMTCMXSULE DEFDO
CHANOHOL DEFMS44
CHAPRIOR DMTCMX550T DELDELET
FLUKEYWD DMTCMXSS1E DELETE
LOTKEYWD DMTCMXS552E DELETE
ROCLASS DMTCHMX560I DISCHARG
ROKEEP DMTCMX56 1E DISCONN
ROZONE DMTCMX625I QY0SY625

Section 6: Diagnostic Aids - Module Message Directory 205

Licensed Material - Property of IBN

Message Message
Source |Number Generated Source |Number Generated
Module] ID _ at label Module| ID at Label
DMTCMX6261 QYOSYNIN STANT751
DMTCMX6271 QYOSYPLF
DMTCMX630I CMXM630 DMTINIU10I WRDONE
ROUTGOT DMTINIU11R IPLDISK
DMTCMX631I CMXM631 DMTINIHI2R RDORWRT
ROUOFF DMTINI413R NUCCYLN
DMTCMX632E CHMXM632 DMTINIUS1E HEXERR
ROUSET DMTI NI482E DECERR1
DMTCMX633E CMXM633 DECLOOP
ROUSET DECPACK
DMTCMX634I QYOSYNRT DMTINIUS3E RDORWRT
DMTCMX636I QYROUGO1 IPLZERO
QYOSYROU DMTINIUBLE BADIPLD
DMTCMX6371I CMXM637 DMTINIA48SE NUCCYLN
QYROUMIS DMTINIH498S WRERROR
ROUOFF DMTINIY99T RDERROR
DMTCMX651I QYINACTV
DMTCMX6521I QYM652 DMTIRX000I IRXGOTTN
QY1SKOD DMTIRX400I IRXGOTTN
DMTCMX6531I QYM653 DMTIRX449I GENTAGS
DMTCMX654I QY1QUGO DMTIRXU450E GENGOOD
DMTCMX655I QY1QUEUE GENRNOTS
DMTCMX656I QY1ACTVE GENPARM
DMTCMX660I QY2STAT GENPSCAN
QYNM660 DMTIRXUS1E GENLINK
DMTCMX661I QYM661 GENPARM
DMTCMX6621 QY2RSS GENPORT
QIN662 GENROUTE
DMTCMX6631 O0YM663 GENSPHNF
DMTCMX664E QY2RSS GENTAGS
QY M66 UL DMTIRXUS2E GENLOCAL
QY2STAT DMTIRXU53E GENPARN
QY2VNOH DMTIRXA45LE GENTAGS
DMTCMX665I QY1AM665 DNTIRX4S5SE GENROUTE
DMTCMX6701 QYSYCON DMTIRXU456E GENLINK
DMTCMX6711 QYM671 DMTIRXUS57E GENPORT
DMTCMX672I QYM672 DMTIRXU58E GENPARM
DMTCMX6731 QYM673 GENROUTE
DMTCMX6741 QYOSQNXT DMTIRXU61E GENLOCAL
QYMM6T74 GENROUTE
DMTCMX675E EXECPROC DMTIRXU62E GENLINK
EXECM675 GENPARM
DMTCMX676E EXECPROC GENROUTE
EXECN676 DMTIRXU63E GENLINK
DMTCMX677E EXECPROC DMTIRKUGUE GERLPTRY
EXECN 676 GENPORT
DMTCMX678E EXEC DMTIRXUGSE GENLOCAL
EXECM678 GENLZTRY
DMTCMX700I STALNGOT DMTIRXU66E GENLTTRY
DMTCMX701E STACREAT DMTIRX46TE GENLCTRY
DMTCMX702E STACRERT DMTIRX 468E GENLKTRY
DMTCMX703E STACREAT DMTIRX469E GENTAGS
DMTCMX704E STACREAT DMTIRXU4SOT IRXDISCO
DMTCMXT70SE STACRERR DMTIRX491T IRXDISCO
DMTCMXT706E STACRERR GENFINIS
DMTCMXT707E STACRERR DMTIRX492T IRXGOTTN
DMTCMX708E STACRERR DMTIRX 49 3T IRXGOTTN
DMTCMX709E STACRERR DMTIRX4OUT GENFINIS
DMTCMX710E STAMAXER DMTIRXG95T TRXMU495
DMTCMX750E STANOTCL
DMTCMX751I CMXALRDY DMTNCHM 108E VMSPGET

206 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBNM

Message

Source | Number
Modulej ID_ _

DMTNC M141I
DMTNCM 1421

DMTNCM143T
DMTNCM 1461
DMTNCM147I
DMTNCM190E
DMATNCM511E
DMTNCM5311
DMTNCM570I
DMTNCM571E
DMTNC M580I

DMTNCM581E
DMTNC M5901
DMTNCM59 1E
DMTNCM610I
DMTNCM611I

DMTNCM6 12E
DMTNCM750E
DMTNCM7521
DMTNCM801I
DMTNCM8021
DMTNCHM803I
DMTNCMB810E
DMTNCMB811E
DMTNCM812E
DMTNCN813E
DMTNCM905I
DMTNCM9 14E
DMTNCM915E
DMTNCMI16R

DMTNHDI44T
DMTNHD145T
DMTNHDS10E
DMTNHD917I

DMTNIT204E
DMTNIT708E
DMTNITI911E
DMTNIT912E
DMTNIT913E

DMTNPTO70E
DMTNPT 108E
DMTNPTI41I
DMTNPT 1421
DMTNPT143I

DMTNPTI144T
DMTNPT 1451
DMTNPT1461I
DMTNPT 1471
DMTNPTIU49I
DMTNPT190E
DMTNPTS510I
DMTNPTS11E
DMTNPTS570I

Section 6:

Generated

at_label

IS51I0
RISIO2
SIGNCTCG
EOQJ
RLOCHY
RDEOF
yMspe1
SBEKFWDN
SETFWD
SETDRAIN
SETDRER1
RDORJECT
RDRJECT
SETFLSHG
SETFLERR
SETFREE
SETFRER1
SETHOLD
ALLHLD
SETHLDIM
SETHLDE1
SETSTRT1
SETSTART
SETTR3
LOGCLOSE
SETTR2
SETTR810
SETTR 811
SETTR812
SETTR813
MC70K
MC7A914
MC7RA915
MC7A916

OPENSCLP
HOJOBTLP
TAGSNERR
HOJCBGOC

INTSNERR
ISTORERR
IBUFFERR
IRESTERR
INTPASER

IOERRPR1
VMSGET
NPTEINIT
NPTEINIT
LINEDIS2
LINEDROP
PUTOPEN
POTCLS1
GETGOT2
GETPURGE
TRPRT
VMSP1
GTBRKMSG
SBKFWDN
SETDRAIN

Message

Source|Number
Module] ID

Generated
at _label

DMTNPT571E
DHMTNPT580I
DMTNPTS581E

DMTNPT590I
DMTNPTS59 1E
DMTRPT600I
DMTNPT610I

DMTNPT611I

DMNTNPT612E
DMTNPT750E
DATNPT752I
DMTNPTB01I
DMTNPT802I
DMTNPT803I
DMTNPT810E
DMTRPT811E
DMTNPT812E
DMTNPT813E
DMTNPTI02E
DMTNPT903E
DMNTRPTI0UE
DMTNPT905I
DMTNPTY07E
DMTNPTO34E
DMTNPTI36E

DMTPOWO70E
DMTPOW 108E
DMTPOW141X
DMTPOW 1421
DMTPOWTU3Y
DMTPOW 1441
DMTPOW14UY
DMTPOW 1451
DMTPOW1I45I
DMTPOW 1461
DMTPOWTU4TI
DMTPOW 1701
DMTPOW190E
DMTPOWS531X
DMTPOWS531I
DMTPOWS570I
DMTPOWS71E
DMTPOW590I
DMTPOWS591E
DMTPOW6 101
DMTPOW611I
DMTPOW612E
DMTPOW750E
DMTPOWT752T
DMTPOW801X
DMTPOWS802I
DMTPOWS803X
DMTPOWS10E
DMTPOWS11E
DMTPOWB12E
DMTPOW813E
DMTPOW90 2E

SETDRER1
GETFLUSH
SETFLUSH
GETFLSHE
SETFREE
SETFRER?1
GDGODNE
SETHOLD

GETFILE
SETHLDIM
GETFILE
SETHLDE1
SETSTRT1
SETSTART
SETTR3

LOGCLOSE
SETTR2

SETTR810
SETTR8 11
SETTR812
SETTR813
CONFCK1

SPASSE

SGNERR

NPTGETX

ENDSCAN
PUTCLOSE
GETGOT1

IOERRPR1
VMSPGET
ISTO
SIGNOK
EOJ
POPEN
UOPEN
PCLOSE
UCLOSE
RLOCY
RDEOF
MRTCONT2
VMSP1
CMDNSTUP
MSGIGN
SETDRAIN
SETDRER1
SETFREE
SETFRER1
SETHOLD
ALLHLD
SETHLDE1
SETSTRT1
SETSTART
SETTR3
LOGCLOSE
SETTR2
SETTR810
SETTR8 11
SPTTR812
SETTR813
MCT7ERR

Diagnostic Aids - Module Message Directory

207

Licensed Material - Property of IBNM

Message Message
Source | Number Generated Source| Number Generated
Module]| ID at Label Module]l ID at label
DMTPOW903E MC7 SETHLDINM
DMTPOW905I MC78 DMTSML612E SETHLDE1
DMTPOW908E POWIERR3 DMTSML750E SETSTRT1
DMTPOWI13E POWIERR1 DMTSML 7521 SETSTART
DMTPOW94O0E RREJECT DMTSMLS801I SETTR3
DMTPOWIL1E PCMDERR1 DMTSML802I LOGCLOSE
DMTPOWOU2E PCMDERR2 DMTSML803I SETTR2
DMTPOWI43®E PCMDERR3 DMTSMLS810E SETTR810
DMTPOWIULT WGET2 DMTSML811E SETTR8 11
DMTPOWI4US5T DEOJ DMTSML812E SETTR812
DMTPOWIU6EE POWIERR2 DMTSML813E SETTR813
DMTSML901E SMLIERR1
DMTREX000I REXICGOT TCTR
DMTRE X002I TERLHIT DMTSML90 2E MC7ERR
DMTREXO080E TERLHIT DMTSML903E MC71
DMTRE X090T REXPTERM DMTSML905I MC7B
DMTREX091T REXITERNM DMTSMILI06E SMLIERR2
DMTREX679I EXECMSG TCTR
DMTSMLI34E JCLOSE
DMTRG X170I RGXMSG DMTSML935E READCON
DMTRGX 1711 RGXMSG
DMTRG X300I RGXNTHR1 DMTVMB 1411 VMRENAUT
DMTRGX301E RGXNTHR1 DMTVMB142I VMREN10
DMTRGX302E RGXNTHR1 DMTVMBI143I LINEDROP
DMTRGX303E RGXNTHR1 VMRQUIT
DMTRG X304E RGXNTHR1 DMTVMB144T PUTOPEN1
DMTRGX320E RGXNTHR1 DMTVMB145I PUTDONE
DMTRGX330E RGXMSGER DMTVMB1461 GETGOTR
DMTRGX331E RGXMSGER DMTVMB147I GETFDEOF
DMTRG X332E RGXMSGER DNTVMB 1481 GETGOT1
DMTVMB510I GETBKFIL
DMTSMLO70E IOERRPERT DMTVMBS511E SBEKFWDN
DMTSML108E VMSPGET DMTVMB5701 SETDRAIN
DMTSML141I IsIo DMTVMBS57 1E SETDRER1
DMTSML 1421 SIGNOK DMTVMB580I GETFLUSH
DMTSMLI43I E0Jd RRESET
DMTSML 1441 JOUTPUT DMTVMBS81E GETFLSHE
PCONT DMTVMB590I SETFREE
UouUTPUT DMTVMBS91E SETFRER1
DMTSMLI145I JCLOSE1 DMTVMB6101 SETHOLD
PCLOSE DMTVMB6111 GETFILE
UCLOSE SETHLDIM
DMTSML 1461 RLOC1 DMTVMB612E SETHLDE1
DMTSMLI47I RDEOF DMTVMBT750E SETSTRT1
DMTSML 1491 TRPRT DMTVMB7521 SETSTART
DMTSML1701 WGET2 DMTVMBS58 1E SETFLUSH
DMTSML190E VMSP1 DMTVMB8O1I SETTR3
DMTSM1510I RDBKMS G DMTVMB802X LOGCLOSE
DMTSMLS11E SBKFWDN DMTVMB803I SETTR2
DMTSML530I SETCMD DMTVMBS810E SETTR810
DMTSMLS70I SETDRAIN DMTVMBS11E SETTR811
$USRNPUN DMTVMBS812E SETTR812
DMTSML571E SETDRER1 DMTVMB813E SETTR813
DMTSMLS80I RDFLUSH DMTVMBI05I PASSM905
DMTSMLS581E SETFLUSH DMTVMBI14E PASSM914
RDFLSHER DMTVMB918E PASSMI918
DMTSM1590I SETFREE DMTVMB919E PASSM919
DMTSMLS91E SETPRER1
DMTSM1600I RDGODNE DMTVMC108E MAKEBLOC
DMTSML610X SETHOLD DMTVMCI41I CTCEINIT
DMTSML611I ALLHLD VMCEINIT

208 IBM VM/370: RSCS Networking logic

Licensed Material - Property of IBM

Message Message
Source |Number Generated Source|{Number Generated
Module] ID at_label Module] _ID at_label
DMTVMC142I CTCWHAT DMTVMC610I SETHOLD
RESPCHK DMTVMC611I SETHLDIM

DMTVMC143T LINEDIS2 DMTVMC6 12E SETHLDE1
DMTVMC144T PUTNHEAD DMTVMC750E SETSTRT1
DMTVMC145I PUTCLOSE DMTVMC7521I SETSTART
DMTVMC1L46T GETGOT DMTVMC801I SETTR3
DMTVMCI47I GETCONT DMTVMC802I LOGCLOSE
DMTVMCS11E SBKFWDN DMTVYMNC803I SETTR2
DNTVMCST0X SETDR1 DMTVMCS10E SETTR810
DMTVMCST71E SETDRER1 DMTVMC811E SETTR811
DMTVMCS81E SETFLUSH DMTVMCB812E SETTR812
DMTVYMCS590I SETFREE DMTVMC813E SETTR813

DMTVMCS591E SETFRER1

Trace Log

Each line driver builds and executes channel programs to control its BSC
telecommunication adapter. In the event of a malfunction, an analysis
of these I/0 transactions can often provide a quick problem diagnosis.
RSCS will generate a printed sequential log of each channel program
executed by a line driver during an interval controlled by the "TRACE
linkid LOG" and "TRACE linkid NOLOG"™ RSCS operator comnmands.

Each I/0 channel program log consists of one or more printed lines. The
‘composite! CSW (an ORing of all CSWs presented for the I/0 device
during execution of the channel program) appears in columns 44-57 on the
first line of each tramsaction entry. If the "unit check" CSW status
bit is set on, the telecommunication adapter sense byte appears in
columns 59-60 to the right of the composite CSW. (The sense data are
alwvays zero when the unit check CSW status bit is zero.) The first CCW
in the channel program for the I/0 tramnsaction appears in columns 63-78,
to the right of the composite CSW and sense byte, if present. 1If a
command chaining or data chaining bit is set on in a CCW, the following
printed log line describes the next CCW in the tramsaction's channel
program, In this case, the CSW and sense byte fields are blank unless a
TIC CCW follows the preceding CCW, When a TIC is encountered in the
channel program, the character string C'<-----TIC' appears in columns
44-53 of the log line, and the CCW which is the object of the TIC
appears in the line's normal CCW field.

Each line of the log must contain a non~-TIC CCW. Columns 1-42 of each
lipe contain the read or write buffer addressed by the CCW appearing on
the line. For an ending CCW, the buffer is truncated according to the
CCW count, decremented by the CSW residual count when the ending CCW is
a READ. For non-ending CCWs, the entire buffer is logged according to
the CCW count. When the buffer is too large to fit within the printed
log buffer field, the first 14 and last 6 bytes of the buffer appear,
separated by a double dash., When the CSW residual count indicates that
no data were read by an ending READ CCW, a double dash appears in the
first two columns of the data buffer log entry. The contents of the
RSCS log record are as follows:

1-42 The data buffer described by the CCW to the right, truncated

according to the CCW count, the CCW residual count and space
constraints.

Section 6: Diagnostic Rids - Trace Log 209

Licensed Material - Property of IBM

44-57 Bytes 1-7 of the composite ending CSW, on the first line of a
transaction log.

59-60 The sense byte, if any.
63-78 A CCW included in the line transaction channel program.

81-120 The graphic EBCDIC representation of the first 40 bytes of the
data buffer (DMTPOW line driver only).

The fields of the record are separated by blanks. The following are
samples of read and write log records for NPT:

2D 0797£00C000003 02079BF820000004
1070 0798280C0001AC 0107987260000002
1002E2C9C7D5D6 D54 0404 0E3C SE2-404 0404 04003 02079BF820000200
1061 0798280D0001FF 0107987460000002
37 02079BF820000200

- 0797E00E000004 01 02079BF820000004
- 0797E00E000004 01 02079BF820000004

First 14 bytes [Last 6 bytes| CSW | Sensel CCW
I I IByte |

-- | | {
TP Buffer I | i

Note: The dashes in record positions 1 and 2 indicate that there was no
data transfer for that I/0 tramnsaction.

210 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Appendix A: MULTI-LEAVING Description

" MJLTI-LEAVING" is the name of a computer-to-computer communication
protocol developed for use by the HASP system and used by RSCS.
MULTI-LEAVING can be defined as the fully synchronized,
pseudo-simultaneous, bidirectional transmission of a variable number of
data streams between two or more computers using Binary Synchronous
Communications (BSC) facilities.

MULTI-LEAVING in RSCS

This appendix contains an overview of a comprehensive MULTI-LEAVING
communications system (as is used in HASP/ASP). The VM/370 support for
programmable BSC workstations is consistent with the MULTI-LEAVING
design, but it does not use certain features provided in MULTI-LEAVING:

e The transmission of record types other than print, punch, input,
console, and control is not supported.

e The only general control record type used is the terminal sign-omn
control.

e Only SCB count units of 1 are used.
e Column binary cards are not supported,

In addition, the support provided for the MULTI-LEAVING based protocol
used by VSE/POWER differs from that provided for HASP-type systems in
the following areas:

o Request-to-Initiate Function transmission is required before all
ta

A
da transmissions.
e No SCB fields are present in the General Control Record type records.

e Carriage control information is not carried in the SRCB.

MULTI-LEAVING Philosophy

The basic element for MULTI-LEAVING transmission is the character
string. One or more character strings are formed from the smallest
external element of tramsmission, the physical record. These physical
records are input to MULTI-LEAVING and may be any of the classic record
types (card images, printed lines, tape records, etc.). For efficiency
in transmission, each data record is reduced to a series of character
strings of two basic types:

1. A variable-length nonidentical series of characters

2. A variable number of identical characters

Appendix A: MULTI-LEAVING Description 21

Licensed Material - Property of IBN

Character Strings and the SCB

An eight-bit control field, termed a String Control Byte (SCB), precedes
each character string to identify the type and length of the string.
Thus, a string as in 1 above is represented by an SCB followed by the
nonduplicate characters. A string of consecutive, duplicate, nonblank
characters (as in 2 above) can be represented by an SCB and a single
character; the SCB indicates the duplication count, and the character
following it is the one to be duplicated. In the case of an all-blank
character string, only an SCB is required to indicate both the type and
the number of blank characters.,

A data record to be transmitted is segmented into the optimum number of
character strings (to take full advantage of the identical character
compression) by the transmitting program. A special SCB is used to
indicate the grouping of character strings in the original physical
record. The receiving program can then reconstruct the original record
for processing.

Transmission Blocks and the RCB

To allow multiple physical records of various types to be grouped
together in a single transmission block, an additional eight-bit control
field precedes the group of character strings representing the original
physical record., This field, the Record Control Byte (RCB), identifies
the general type and function of the physical record (input streanm,
print stream, data set, etc.). A particular RCB type has been
designated to allow the passage of control information between the
various systems. Also, to provide for simultameous transmission of
similar functions (that is, multiple input streams, etc.), a streanm
identification code is included in the RCB,

A second eight-bit control field, the Sub-Record Control Byte (SRCB), is
also included immediately following the RCB, This field is used to
supply additional information concerning the record to the receiving
program. For example, in the transmission of data to be printed, the
SRCB can be used for carriage control information.

MULTI-LEAVED Data Streams and the FCS

For actual MULTI-LEAVING transmission, a variable number of records may
be combined into a variable block size, as indicated previously (that
is, RCB, SRCB, SCB1, SCB2, ..., SCBn, RCB, SRCB, SCB1, ..., etc.).
MULTI-LEAVING provides for two (or more) computers to exchange
transmission blocks, containing multiple data streams as described
above, in an interleaved fashion. To allow optimum use of this
capability, however, a system must have the capability to control the
flow of a particular data stream while continuing normal transmission of
all others. This requirement becomes obvious if one considers the case
of the simultaneous transmission of two data streams to a system for
immediate transcription to physical I/0 devices of different speeds
(such as two print streams).

To meter the flow of individual data streams, a Function Control
Sequence (FCS) is added to each transmission block. The FCS is a
sequence of bits, each of which represents a particular transmission
stream. The receiver of several data streams can temporarily stop the
transmission of a particular stream by setting the corresponding FCS bit

212 IBM VM/370: RSCS Networking Llogic

Licensed Material - Property of IBM

. .
+ransmission to

cff transmission

in the next the r
can later be resumed by setting the bit on.

e

Transmission Data Integrity and the BCB

Finally, for error detection and correction purposes, a Block Control
Byte (BCB) is added as the first character of each block transmitted.
The BCB, in additional to control information, contains a module 16
block sequence count. This count is maintained and verified by both
sending and receiving systems to control lost or duplicated transmiss
blocks.

he
he

t
ion

In addition to the normal binary synchronous text control characters
(STX, ETB, etc,) MULTI-LEAVING uses two of the BSC control characters,
ACKO and NAK. ACKQ is used as a "filler" by all systems to maintain
comnunications when data is not available for trassmission. KARK is use
as the only negative response and indicates that the previous
transmission was not successfully received.

A typical MULTI-LEAVING transmission block looks like this:

DLE BSC Leader (SOH if no transparency feature)
STX BSC Start-of-Text

BCB Block Control Byte

FCS Function Control Sequence

FCS Function Control Seguence

RCB Record Control Byte for record 1

SRCB Sub-Record Control Byte for record 1

SCB String Control Byte for record 1

DATA Character String

SCB String Control Byte for record 1

DATA Character String

SCB Terminating SCB for record 1

RCB RCB for record 2

SRCB SRCB for record 2

SCB SCB for record 2

DATA Character String

SCB Terminating SCB for record 2

RCB Transmission Block terminator

DLE BSC Leader (SYN if no transparency feature)
ETB BSC Ending Sequence

MULTI-LEAVING Control Specification

This section describes the bit-by-bit definitions of the various
MULTI-LEAVING control fields and includes notes concerning their use.

BLOCK CONTROL BYTE (BCB)

Binary Meaning
Toee ocsoe Reserved (must be 1)
«XXX ceae Control information as follows:
.000 - Normal block
.001 - Bypass sequence count validation

Appendix A: MULTI-LEAVING Description 213

Licensed Material - Property of IBHM

«010 cccc - Reset expected block sequence count
to "cccc"

.011 - Reserved for future use

<100 — Reserved for future use

«101 - Not used

«110 - Not used

.111 - Reserved for future use

ssees CCCC Module 16 block sequence count

214 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Cesoeo

.o..
. 1..

eI

e se

ceoee

1...

«1.a

..1.

eeat

Leeoe

e LT

o

LI X0

LICI I)

cewsw

LR RN

so e

1;0.

.1..

eele

0401

Meaning
Reserved (must be T.ee ccee Toee eoes)

Normal state
Suspend all stream transmission (WAIT-A-BIT)

Reserved for future use
Remote console stream identifier

Function stream identifier for:
RJE input stream number 1
RJE print stream number 1
NJI/NJE job transmission stream number 1

Function stream identifier for:
RJE input stream number 2
RJE print stream number 2
RJE punch stream number 7
NJI/NJE job transmission stream number 2
NJI/NJE SYSOUT transmission stream number 7

Function stream identifier for:
RJE input stream number 3
RJE print stream number 3
RJE punch stream number 6
NJI/NJE job transmission stream number 3
NJI/NJE SYSOUT transmission stream number 6

Function stream identifier for:
RJE input stream number 4
RJE print stream number &
RJE punch stream number 5
NJI/NJE job transmission stream number 4
NJI/NJE SYSOUT transmission stream number 5

Function stream identifier for:
RJE input strear number S
RJE print stream number 5
RJE punch stream number 4 .
NJI/NJE Jjob transmission stream number 5
NJI/NJE SYSOUT transmission stream number 4§

Function stream identifier for:
RJE input stream number 6
RJE print stream number 6
RJE punch stream number 3
NJI/NJE job transmission stream number 6
NJI/NJE SYSOUT transmission stream number 3

Function stream identifier for:
RJE input stream number 7
RJE print stream number 7
RJE punch stream number 2
NJI/NJE job transmission stream number 7
NJI/NJE SYSOUT transmission stream number 2

Function stream identifier for:

RJE punch stream number 1
NJI/NJE SYSOUT transmission stream number 2

Appendix A: MULTI-LEAVING Description 215

Licensed Material - Property of IBM

RECORD CONTROL BYTE (RCB)

Bipary * Hex Meaning

0000 0000 00 End-of-block

iiii iiid 01-8F Reserved for future use

1001 0000 90 Request to initiate function
(SRCB=RCB of function)

1010 0000 AO Permission to initiate function
(SRCB=RCB of function)

1100 0000 Cco Acknowledge of transmission complete
(SRCB=RCB of function)

1101 0000 DO Not used

1110 0000 EO BCB sequence error

1111 0000 FO General control record

1001 0001 91 RJE console message

1iii 0001 A1-F1 Reserved for future use

1001 0010 92 RJE operator command

1iii 0010 A2-F2 Reserved for future use

1iii o0M 93-F3 RJE input record

1iii 0100 94-F4 RJE print record

1iii 0101 95-F5 RJE punch record

1iii 0110 96-F6 Data set record

1iii 0111 97-F7 Terminal message routing request

1iii 1000 98-F8 NJI/NJE input record

1iii 1001 99-F9 NJI/NJE SYSOUT record

1001 1010 9A NJI/NJE operator command/message

1iii 1010 AA-FA Reserved for future use

1001 1011 9B Reserved

1iii 1011 AB-FB Reserved for future use

1iii 1100 9C-FC Reserved for future use

1iii 1101 9D-FD Not used

1iii 1110 9E-FE Not used

1iii 1111 9F-FF Not used

* i denotes a position whose value (1 or 0) depends on the
hexadecimal value within the range in the column labelled "Hex."

216 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

91

92

93-F3

94-F4

95-F5

96-F6
97-F7

98-F8

None

RCB of function to be initiated

RCB of function to be initiated

RCB of function to be cancelled

RCB of function which is complete
Expected count (received count is in BCB)

An identification character as follows:
Initial RJE SIGN-ON

Final RJE SIGN-OFF

Print initialization record

Punch initialization record

Input initialization record

Data set transmission initialization
System configuration status
Diagnostic control record

Initial network SIGN-OW

Response to initial network SIGN-ON
Reset network SIGN-ON

Accept (concurrence) network SIGN-ON
Add network connection

Delete network conmection

Reserved for future use

Unused

X RUHTIQARMEO O W

o-
S-Z

1000 0000 (x'80")
0000 0000 (X'00') if VSE/POWER EOF record

1000 0000 (x*80")
1110 1001 (X'E9') if VSE/POWER PSTOP LINE command
0000 0000 (X'00') if VSE/POWER EOF record

1000 0000 (x*80°')
1000 0001 (x*81') if VSE/POWER
0000 0000 (x*00') if VSE/POWER EOF record

carriage control information as follows:

1010 00nn - Space immediately "nn" spaces (not used)

1011 cccc - Skip immediately to channel "cccc®™ (not used)

1000 00nn - Space "nn" lines after print
1000 1100 - Load printer FCB image
1001 cccc - Skip to channel "cccc" after print
1000 0000 - Print and suppress space
1000 0001 (x'81*) if VSE/POWER
0000 0000 (x'00*) if VSE/POWER EOF record

1000 1111 (X'8F")
0000 0000 (X'00') if VSE/POWER EOF record

Undefined
Undefined
NJI/NJE input control information as follows:

1000 0000 -~ Normal input record
1100 0000 - Job header

Appendix A: MULTI-LEAVING Description

217

Licensed Material - Property of IBM

1110 0000 - Data set header
1101 0000 - Job trailer
1111 0000 - Data set trailer (not used)

99-F9 NJI/NJE SYSOUT control information as follows:
10cc 0000 - Carriage control type as follows:
1000 0000 - No carriage control
1001 000 - machine carriage control
1010 0000 - ASA carriage control
1011 0000 - Reserved for future use
11cc 0000 - Control record as follows:
1100 0000 - Job header
1110 0000 - Data set header
1101 0000 - Job trailer
1111 0000 - Data set trailer (not used)
1000 ss00 - Spanned record control as follows:
1000 0000 - Normal record (mot spanned)
1000 1000 - First segment of spanned record
1000 0100 - Middle segment of spanned record
1000 1100 - Last segment of spanned record

92 1000 0000 (X'80")
9B 1000 0000 (X'80%)

STRING CONTROL BYTE (SCB)

Binary Meaping

0000 0000 End-of-record
At first SCB, this also indicates end-of-file

100b bbbb "bbbbb" blanks are to be inserted

101d dddd The single character following this SCB is to be
duplicated "dddddn" times

11cc ccce The "cccccc" characters following this SCB are to be
inserted

218 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Appendix B: RSCS Preioader Utiiity Under CMS

The preloader (part of RSCS Networking) is a utility program that runs
under CMS. It collects text files and reformats them into a single text
file that can be dynamically loaded by the RSCS loader. It resolves
external references and performs preliminary relocation of address
constants. Its function is similar to that of a linkage editor, but its
output is in standard text file format and does not include multiple
CSECTs.

Line drivers and other programs to be loaded as RSCS tasks may be
developed as multiple separate assembly modules which externally
reference one another; the assembled text files may be merged into a
single RSCS loadable text file by the preloader under CMS. The
preloader is invoked as an ordinary CMS utility routine:

PRELOAD 1loadlist [control]

'loadlist' specifies the filename of an EXEC file which must reside on
the caller's A-disk. Each record of this file contains the filenane,
and optional filetype, of a text (object) file to be used as preloader
input. ‘'control' specifies the filename of a CNTRL file which must also
reside on the caller's A-disk if it is specified. The format and
interpretation of this file are the same as for the VM/370 VMFLOAD
utility. If a load list entry includes a filetype, that filetype is
used to identify the input file. Otherwise, if a control file is
specified, input file identifiers are constructed using the filenane
from the load list entry and a filetype of the form 'TXT....' The
highest control level identifier for which a file can be located on the
caller's accessed disks is used, If no filetype is included in a load
list entry and no control file is specified, a default filetype of TEXT
is used. Imnput files are located by a scan of all the caller's disks in
their access order.

Note: PRELOAD is not to be used to generate the RSCS nucleus.

The preloader output consists of two files, one with a filetype of TEXT,
the other of filetype MAP, both with the same filename as that specified
for the input load list. If either of these files already exists on the
caller's A-disk, the old file is replaced by the new output file.

The output TEXT file is the merged and linked copy of the input files.
The first CSECT or private code section in the input becomes the
composite (single) output section; its length is the sum of all imput
section lengths (rounded up to doubleword multiples between sections for
proper section alignment) . For the output ESD, subsequent CSECTs are
made into entries (RLDs), and subsequent private code sections are
disregarded. External references are included in the output ESD only if
they remain unresolved.

Input TXT records of non-zero length are relocated and written to the
output file. The output RLD is a translated and relocated collection of
all input RLD records. The output END card does not specify any entry
point, section length, or other code. No sorting is done by the
preloader. In general, each output ESD, TXT, and RLD entry appears in
the same order as the input emntry from which it was translated.

ADCON and VCON fields are relocated within their TXT records. ORG
statements that cause relocatable constant fields to overlay or to be
overlaid may cause results that differ from results obtained with a
loader that completes TXT data loading prior to relccating ADCONs and

Appendix B: RSCS Preloader Utility Under CMS 219

Licensed Material - Property of IBHN

VCONs.

The output MAP file is a printable record of the preloader processing,
similar to a load map. The first line of the map specifies the output
text file name, its residence volume label and virtual device address,
and the date and time of file creation. The next section of the map is
a listing of the control file used, if one was specified. The remainder
of the map consists of a sequence of input file sections, one for each
input file in processing order,

The first line of a map input section specifies the input file's
filename, filetype, filemode, residence volume label and virtual device
address, and the file creation date and time. (If the input file was
located on a disk accessed as a read-only A-disk extension, the file-
mode, volume label, and virtual device address of the A-disk are
listed.) If the input file data contains invalid records, the preloader
writes them in the map sequentially following the input file identifica-
tion line. The VM/370 VMFASM utility enters such "invalid" records in
text files to specify the updates and macro libraries used in assembly.
Following these records, the input file's ESD is listed, including
control sections and entries with their relocated addresses, duplicate
external symbols, and unresolved external references, if any. The first
control section in the input specifies the output control section nanme;
the output section length is included on this ESD map entry.

The preloader does not actually load its input modules into storage
before generating its output section, but rather interprets, translates,
and relocates its input text files on a two-pass record by record basis.
This approach requires that for each TXT record of a particular input
control section, each RLD entry (one for each ADCON and VCON) which lies
within that control section must be scanned to determine if it lies
within the TXT record data. As a result, the preloader processing time
has a component proportional to both the total number of TXT records and
the total number of RLD entries for each input control section. Roughly
stated, this means that when a particular input control section grows
sufficiently large, the time required to process it becomes proportional
not to the input control section size, but to the square of that size.
This effect is significant when a large text file previously generated
by the preloader is used as preloader input. In this case, much more
CPU time may be required to reprocess the preloader output than was
required to generate it in the first place, because several smaller
control sections have been merged into a single large control section.
This kind of program behavior can be expected, and does not indicate a
malfunction.

INTERNALS

The preloader begins by reserving a large block of virtual free storage
using DMSFREE. This block is used to build a list of control filetypes;
a table of input file names, the Input File Table (IFT); a composite
External Symbol Table (EST); chains of elements reflecting RLD entries;
and a chain of elements reflecting relocatable constant fields which
span a boundary between TXT records. MAINTOP internally allocates
storage from the top of the storage block for table entries. MAINBOT
internally allocates storage from the bottom of the block for chain
elements.

INICNTRL reads and interprets the specified control file, and stacks a
list of default filetypes at the bottom of storage for use in locating
input files. IFTBUILD builds the IFT by reading the specified input
load list file, and where no filetype is specified, attempting to locate
the appropriate input file using filetypes from the control list in

220 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBNM

repeated calls to the CMS STATE function. When the IFT is completely
built, the control list storage is released for reuse. The IFT is used
by INGET, the input read routine, to defime the input sequence. 1A call
to INGET returns the next sequential record from the input and the
address of the active IFT entry, automatically switching files on
end-of-file.

ESTBUILD calls INGET to read input records, passing control to DOESD
wvhen an ESD record is read, and to DORLD when an RLD record is read.
Both DOESD and DORLD return control to ESTBUILD upon completion of
record processing. When ESTBUILD encounters an END card, the remaining
file input is flushed, and processing continues with the next file. 1ll
other input records are ignored. When the end of the last input file is
reached, ESTBUILD passes control to GENERATE,

DOESD adds an entry to the EST for each ESD record entry encountered.
When DOESD generates a new EST entry, a complete scan of the existing
table is made for matching name entries. When matches are fcund,
external references are resolved, synonyms are chaired (for PRs and

CHs) , or duplicate name definitions are flagged as error conditions,
depending on the types and statuses of the two entries. A common
routine, SELECTYP, is used to decode ESD types. SELECTYP accepts an EST
entry as input, and returns control at a fixed four-byte multiple
displacement for each EST type group (SD-PC; LD; ER-WX; PR-CM; invalid).

DORLD builds an RLD chain element for each RLD record entry encountered.
The SD or PC EST entry for the section in which the referenced
relocatable constant is positioned is located, and the new RLD element
is entered at the end of its position ID chain. The EST entry to which
the RLD element is relative is similarly located, and the new RLD
element is also entered at the end of its relative ID chain.

GENERATE scans sequentially through the EST, processing each entry. The
total output section length is accumulated from SD and PC entry lengths,
and output addresses for SD, PC, and LD entries are set to their
cumulative displacements. The output ESD IDs are generated and set for
unresolved ER and WX entries, (The first SD or PC entry encountered is
marked as the ‘prime’ section entry, and its output ESD ID is generated
and set as well.) For each LD entry, the SD or PC entry for the section
in which the LD is positioned is located, the LD entry is chained to it,
and the 1D's relocated address is generated and set using the section's
position relocation comstant. For each uncompiled PR or CM entry, an
output ESD ID is generated and set, the maximum length (and, for PRs,
the maximum alignment) is established and set, synonym relative ID RLD
chains are merged, and each entry on the synonym chain is marked
"compiled". The cumulative output section length is saved for use as
the prime (output) control section length.

RELOCATE sequentially scams through the EST, and for each resolved entry
the position ID and relative ID RLD chains are relocated by adjusting
each position ID element's constant address field, and storing the
relative relocation constant in each relative ID element. For each
unresolved EST entry (all uncompiled PRs and CMs, and unresolved ERs and
WXs), the output ESD ID of the EST entry is stored in each RLD element
of its relative ID chain, and each such RLD element is flagged as
unresolved.

ESDWRITE starts the output text file generation. 2An interim file with
the output filename and a filetype of PRELOAD is used for output
generation. If such a file already exists it is erased, and the new
output text file is built. The EST is sequentially scanned, and output
ESD records are built and written using the EST information. The prime
section entry is completed by setting its length to the cumulative
output section length and its address to its displacement (zero), and it
is entered in the output as an SD or PC. Other SDs are transformed to

Appendix B: RSCS Preloader Utility Under CMS 221

Licensed Material - Property of IBM

LDs for output, and other PCs are ignored. LDs are simply entered as
LDs in the output. Unresolved ERs and WXs and uncompiled PRs and CHMs
are included in the output, and other EST entries are ignored. When
output generation is complete, if a file already exists with the output
filename and a filetype of TEXT, it is erased, and the output PRELOAD
file is renamed to a filetype of TEXT.

TXTRRITE rereads the entire input sequence from the beginning. When the
first record of an input file is read (at TXTGET), MAPFILE is called to
generate and write a map file line describing the input file. When a
record which does not begin with X'02' is encountered, the record is
written unmodified to the map file, and is otherwise ignored. When a
TXT record with non-zero data count is read prior to the first END
record for a particular file, it is translated, relocated, and written
to the output as described below. All other input records (e.g., ESD,
RLD, SLC) are ignored. When an input end-of-file is read, TXTWRITE
calls MAPEOF, which formats the file's EST entry and writes it to the
map file. If MAPEOF encounters duplicate external symbols or unresolved
external references, they are included in the ESD map with the
appropriate descriptive note, and a preloader status flag is set
reflecting the presence of a duplicate or unresolved external symbol.

For each valid TXT record, the EST entry for the section in which the
TXT data is positioned is located. The TXT record's position address is
relocated using its section's position relocation comnstant, and its
position ID is set to the prime section’s output ESD ID. The section's
position ID RLD element chain is then scanned for elements specifying
relocatable constants within the TXT record's data. Each constant field
entirely within the TXT record's data is relocated with the RLD
element's relocation constant, provided that the RLD element is not
marked "unresolved®.

If a relocatable constant field lies only partially within the TXT
record's data, the output TXT record is adjusted to exclude the overlap
field, and a call is made to TXTFIX. This routine records the partial
field data in an 'overlap element' on a chain in storage, along with the
address of its associated RLD element. W®hen a previously chained
overlap element specifying the same RLD element is encountered, the new
overlap data is merged with the old, and the overlap element is marked
for output. When the end of the RLD element chain is reached, a test is
made to see if an overlap element is ready for output. If so, a new TXT
record is generated containing only the relocated constant field which
spanned TXT records, and is written to the output file. The relocated
(and, perhaps adjusted) TXT record is then written to the output file.

RLDWRITE sequentially scans the entire EST for SD and PC sections. For
each such entry, the position ID RLD chain is scanned, and each RLD
entry on the chain is used to generate an output RLD record entry. Each
RLD position ID is set to the prime section's output ESD ID. For
resolved RLD entries, the relative ID is set to the same and the flag is
set to address type, and for unresolved entries the output ESD ID
contained in the RLD chain element is used as the relative ID. For CXD
entries, the relative ID is set to zero. The RLD address field has been
relocated by RELOCATE and is used as is.

ENDWRITE writes a simple END record to output. FINIS performs final
output file processing (already described), releases the main storage
block using DMSPRET, issues a diagnostic message if duplicate or
unresol ved external symbols vwere encountered, and returns control to
CHMS.

222 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Index

accounting 54
alert elements 176
ALERT interrupt 23
alternate path facility 14
asynchronous
exit 27, 66
queue element (ASYNE) 146
interrupt 27
queue pointers 139
AYS system service task 29
control flow diagram 123

BALRs 114
batch job, CMs 11
batch systems, host 15
block control byte (BCB) 213
blocking teleprocessing buffers
NCM 99
POW 66
SML 60

CHANGE command alert element 188
character strings 212
CLOSE command alert element 185
CHMS
batch job 11
commands 16
file, access work area 1
COHDSECT table contemnts 150
command alert elements
for commands processed by DMTAXS
CHANGE 188
CLOSE 185
initialize acceptor 189
ORDER 185
PURGE 185
recorder alert elements 184§
TRANSFER 187
processed by line drivers 190
command
CHMS 16
CP 16
handling 49
header formats 200
input
from local RSCS operator 54
remote system 51
remote workstation 51
line driver alert elements 52
local
execution 51
from NJE/NJI systems 52
operator 16
processing 28, 99

47

processor
NJI 98
POW 72

184

SML 59
VMB 92
vMCc 95

request element 51, 177
routing 3¢
routing request element 177

common routine vector table (COMDSECT)

address 145

communicating with the VM/370 spool file

systen 30

conmunication between host systems 96

configuration 37
control
blocks 146
flow diagrams 120
AXS system service task 123
multitasking supervisor 121
NJI line driver task 126
NPT line driver task 125
POW line driver task 129
REX system service task 122
SML line driver task 124
VMB line driver task 127
VMC line driver task 128
network 16
progranm
RSCS 21
yM/370 13
records 35
non-RSCS 37
CP compands 16
create system tasks 28
CTR 70

data area aids 135

data areas 135, 146

data block format, packed 86
data flow

NJI 97
POV 64
SML 58

data handling, VMB 89
data records 35, 36
data relay facility 11
deblocking teleprocessing buffers
NCM 99
POW 66
SML 60
dequeuing I/0 requests 35
DIAGNOSE 18, 19
diagnostic aids 202
directory, dynamic 19
directory, module 130
disk format, system 39
dispatching 22
DMTAKE 130
DMTASK 130
DMTASY 130

Index

223

Licensed Material - Property of IBN

DMTAXA 130 DMTxxx 149 96

DMTAXM 131 dynamic

DMTCHX 131 directory 19

DMTCOM 131 loader 37

DMTCRE 131

DMTDSP 131

DMTEXT 131 exits, asynchronous 27, 66
DMTGIV 131 external interrupt 35

DMTINI 131

DMTIOM 131

DMTIRX 131 file

DMTLAX 131 handling 13, 40

DMTMGX 131 receiving 44

DMTMIN 131 request element 181

DMTMSG 131 FREE queue element (FREEE) 151
DMTNCH 131 FREEQ queue 136

DMTNHD 131 function control sequence (FCS) 212, 215
DMTNHD917I 100

DMTNIT 131

DMTNJI 131 GIVE/TAKE

DMTNPT 131 task-to-task communication 23
DMTNPT144T 81 transaction 24

DMTNPT 1451 81 waiting for requested services 26
DMTNPT 1461 77 GIVE

DMTNPT147I 79 element queue, location 140
DMTNPT190E 78 queue element 51, 151
DMTNPTI934E 81 request 23

DMTPOW 131 request buffer 23

DMTPOW 1441 70, 71 request table in GIVE/TAKE requesting
DMTPOWN1U5I 70 task 152

DMTPOW 1461 68 response buffer 23
DMTPOW147I 69 table 23

DMTPOW170I 71, 72

DMTPORS31I 72

DMTPOW902E 68 header record processing 99
DMTPOWI05I 67 hierarchy task 23

DMTPOW940E 68 host batch systems 15
DMTPOWIUIE 72

DMTPOW9U2E 72

DMTPOWIU3E 72 I/0

DMTPONO44T 71 elements, queing 34

DMTPRE 131 interrupt 35

DMTPST 131 handling 34

DMTQRQ 131 management 32

DMTREX 131 manager 35

DMTRGX 131 operation 32

DMTRGX 170 51 starting 34

DMTRGX171 52 queue 33, 34

DMTSIG 132 organization 138

DMTSML 132 request table, in requesting task
DMTSML146I 61 (IOTABLE) 154

DMTSML147I 62 request

DMTSTO 132 dequeuing 35

DMTSVC 132 handling 33

DMTVEC 132 queue element (IOE) 153
DMTVMB 132 synch lock 25

DMTVMB1411I 87 initialization 38

DMTVMB144T 90 line driver task 56
DMTVMB145I 90 NJI 100

DMTVMB1U46Y 89 initialize acceptor alert element 189
DMTVMB147I 89 input commands

DMTVMB148I 89 from local RSCS operator 54
DMTVMB611I 89 from remote station 51
DMTVMC 132 from remote system 51
DMTWAT 132

224 IBM YM/370: RSCS Networking Logic

Licensed Material - Property of IBN

interrupt
ALERT 23
asynchronous 27
external 35
handling 35

1/0 34, 35
special message 35
svCc 35

issuing messages
to local users 53
to the RSCS operator's comsole 53

LAX task 29
line alert element 183
line allocation, managing 32
line driver
command alert element 52
BACKSPAC, PWDSPACE 192
COMMAND, MSG, MESSAGE 194
DRAIN, PRFE, HOLD, START, TRACE 190
FLUSH 193
functions 54
loading 55
messages, issuing 54
NJI 96
NPT 76
POW 64
SML 57
task 32
descriptions 29
initialization 56
purpose 21
VMB 82
VMC 94
line handling, VMB 87
1

ine protocol

MULTI-LEAVING 15
line transactions, VYMB 85
line transmissions, RSCS to VSE/POWER 73

commands 74

initiation of 74

signon procedure 73

stop procedure 75

text in both directioms 76

text in one direction 75
link 12, 14

activation 55

remote system 14

table 14, 54

entry (LINKTABL) 155
location 141

linkid (link identifier) 14
loader 37
loading the line driver 55
local execution commands 51
locating a file on the system disk
locid (location identifier) 14

41, u2

machine-defined low storage 165
MAINMAP 38
location 135

map, storage 38
message
directory 204
during command execution 52
forwvarding on links 53
handling 49
header formats 200
input, remote system 51
issuing to local RSCS operator's console
53
issuing to local users 53
line driver issued 54
processing 30, 99
receiving from local users 54
request element 178
from NJE/NJI messages 52
routing 30
request element 177
MLX records 70, 157
module directory 130
module functions 101
MSUP (multitasking supervisor) 21
control flow diagram 121
MULTI-LEAVED data streams 212
MULTI-LEAVING 211
control specification 213
line protocol 15

NCH
function processors 98
function selector 97
I/0 handler 98
teleprocessing buffers 99
ne twork
accounting card format 160
connection, control records 195
control 16
data set header record format (NDHDSECT)
198
header processor 99
job header record format (NJHDSECT) 196
job trailer record format (NJTDSECT)
197
sample 12
NJE (network job entry) 11
NJI (network job interface) 11
data flow 97
header formats 195
initialization 100
line driver 96

control flow diagram 126, 127
NCM 98, 99
node 12
nondispatchable task 26
nonprogrammable

remote stations 4
remote terminals 76
NPT
file receive 79
file send 77
line driver 76
control flow diagram 125

Index 225

operator commands 16
ORDER command alert element 185
overview 12

packed data block format 86
port table 161 :
posting a synch lock 26
POW
command processor 72
control record processor 67
function selector 65
line driver 604
control flow diagram 129
line I/0 manager 65
message handler 72
processors 64
receiving files 69
sending files 68
teleprocessing buffers 66
preloader utility 219
preparation 19
problem determination 202
processor, command

NJI 98
POW 72
SML 59
VMB 92
vMC 95

program check manager 39

program checks, handling 30

program organization 101
programmable remote stations 15, 57
PURGE command alert element 185

gueue element storage area 136

receiving
a file from a local virtual system 44
a file from a remote system U4
messages from local users 54
record control byte (RCB) 212, 216
records
control 35
non-RSCS 37
data 35
header, processing 99
spool tag 36
remote
stations
nonprogrammable 15
prograamable 15, 57
supported by RSCS 15

systen
command and message input 51
links 14

routes 14
supported by RSCS 15
terminals
nonprograamable 76
programmable 15, 57
workstation, command input 51
reorder alert element 184

226 IBM VM/370: RSCS Networkimng Logic

Licensed Material - Property of IBM

request elements 23, 176
processed by DMTREX 177
command request element 177
command/message routing request
element 177
file request element 181
line alert element 183
message request element 178
restart terminate request element
179
terminate request element 179
timer request element 180
routing 51, 52
response elements 23
restart terminate request element 179
REX system service task 29
control flow diagram 122
route table 14
entry 162
location 142
routes 18
routing
commands 30
information 14
messages 30
request element 51, 52
RSCS
control program 20
DIRECT 14, 19
tag record format 36
RTP (remote terminal processor) 15

sample network 12
sending a received file
to a local virtual system 45
to a remote node 46
SHML
command processor 59
function selector 60
line driver 57
control flow diagram 124
line I/0 manager 59
processors 58
receiving files 62
sending files 61
teleprocessing buffers 60
special message interruption 35
spool
buffer, linkage 36
file 35
page buffer format 163
tag record 36
starting an I/0 operation 34
startup 37
stations
nonprogrammable remote 15
programmable remote 15
remote
supported by RSCS 15
storage map 38
store and forward 49
flag 37
string control byte (SCB) 212, 218
sub-record control byte (SRCB) 217

Licensed Material - Property of IBM

subroutine functions 101
supervisor routines, common 30
SVC interrupt 35
SVECTORS 135
low storage definitions 165
table, contents 166
switchable ports (TPORTS) location 143
synch lock 25
zultiple 26
posting 26
synchronization, task 22
system
disk 14
format 39
locating a file 41, 42
remote, supported hy RSCS 15
task
creating 28
terminating 30

table
link 14, 54
entry (LINKTABL) 155
location 141
route 14
entry 162
location 142
Tag queue data (TAGARER) 169
TAG queue element for RSCS spool file 170
TAGSLOT queue location 144
TAKE request table in GIVE/TAKE requested
task 172
tanks 173
task-to-task communication 22
ALERT method 27
GIVE/TAKE 23
task 21
creating 28
descriptions 28

AXS 29
LAX 29
line driver 29, 32
REX 29

dispatching 22
hierarchy 23
initialization: line driver 56
initiation 21
line driver 32
management 21
nondispatchable 26
queue element (TASKE) 174
gqueue location 137
save area (TAREA) 175
synchronization 22
system service 21
systemr, terminating 30
TCT (task control table) 60, 65
telecommunications buffer 164

teleprocessing buffers

NCM 99

POW 66

SML 60
terminal

nonprogrammable remote 15

programmable remote 15, 57
terminate request element 179
terrinating system tasks 30
timer request element 180
TRACE

command 202

log 209
TRANSFFPR command alert element 187
transmission

blocks 212

data integrity 213

error retry, VMB 84

sequences, VMB 82
transmitting VM/370 spool files between
VM/370 systenms

via bsc lines 82

via CTCAs 94

virtual machine 13
virtual storage
management 37
minimum required 13
VM/370 spool file system, communicating
with 30
V4/370 spool file, transmitting between
V®/370 systens
via bsc lines 82
via CTCAs 94
V4B

data handling 89
I/0 management 93
line driver 82
line handling 87
line transactions 85
protocol 82
transmission error retry 84
transerission sequences 82
VMC
command receipt 95
command transmittal 95
control 94
input file formatting 95
line driver 94
control flow diagram 128
message receipt 95
message transmittal 95
receiving a spool data block 95
trace sum routines 96
VMCF (virtual Machine Communications
Facility) 35
VSE/POWER 64

Index 227

Licensed Materiat — Property of IBM
LY24-5203-0

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. Y. 10604

I1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. S. A. 10591

I1BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N. Y., U. S. A. 10601

0-£02S-¥ZA1 'V'S'N ul pajuilld (0€-0LES "ON 8li4) 21607 bunjiomiaN SOSH 0LE/WA W8I

Licensed Material—Property of IBM

TDRAA Yietnal AL M 15 .
IBM Virtual Machine Facility/370: Remote Spooling

Communications Subsystem Networking Logic
Order No. LY24-5203-0

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate
your views about this publication. They will be sent to the author’s department for
whatever review and action, if any, is deemed appropriate. Comments may be written

in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your
locality.

Yes No
. Does the publication meet your needs? O O
° Did you find the material:
Easy to read and understand? O |
Organized for convenient use? O O
Complete? Od (|
Well illustrated? O O
Written for your technical level? Od O
L4 What is your occupation?
L4 How do you use this publication:
As an introduction to the subject? | As an instructor in class? O
For advanced knowledge of the subject? O As a student in class? Od
To learn about operating procedures? O As a reference manual? O

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this
form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

READER’S
COMMENT
FORM

Licensed Material — Property of IBM

LY24-5203-0

Reader’s Comment Form

Fold and tape

...

Please Do Not Staple Folid and Tape

Business Reply Mail
No postage stamp necessary if mailed in the US.A,

Postage will be paid by:

International Business Machines Corporation
Department G60

P.O.Box 6

Endicott, New York 13760

First Class
Permit 10
Endicott

New York

...

Fold Fold
If you would like a reply, please print:
Your Name
Company Name Department
Street Address
City
State Zip Code
— IBM Branch Office serving you

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. Y. 10604

IBM World Trade Americas/Far East Corporation

Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. S. A. 10591

1BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N. Y., U. S. A. 10601

PUIT) BUO|Y P04 4O IND = = — o= = — -

0-£025-¥2A1 'V'S'N ul pajuud (0€-0L€S "ON 9Jid) 21607 BUDMC\W\IGN SOSH :0LE/NA WAl

