
Program Product

Licensed Mateiial - Pn;perty of IBM
L Y24-5203-0
File No. 5370-30

IBM Virtual Machine Facility /370:
Remote Spooling Communications
Subsystem Networking
Logic

Program Number 5748-XP1

--- ---------- - - - -- - - --- - --- - --- ----- - - ---- - - ------- -------- -·-

Licensed "aterial - Property of IBM

This edition applies to Version 1 of the Remote Spooling
Communications Subsystem Networking program product (Program
Number 5748-XP1) and to all subsequent versions and
modifications until otherwise indicated in new editions or
T£chnical Newsletters.

Information in this puHication is subject to change. ll.ny
such changes will be published in new editions or technical
newsletters. Before using this publication in connection
with the operation of IBM systems, consult the latest !~~
syst~L370 JH.Q!,iQg~h.Y of Iniusll:.Y_ ~I.fil.~!!.2. and !E..E!ication
_froqraJ!!§, GC20-0370, an:l the Technical Newsletters that amend
that Bibliography, for the editions and Technical Newsletters
that are applicable and current.

The Program Product described in this manual, and all
licensed materials available for it, are provided by IBM
under the terms of the License Agreement for IP~ Program
Proiu=ts. Your local IB~ off.ice can advise you regarding the
ordering procedures.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers• comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Programming Publications, Dept. r,60, P.O.
Box 6, Endicott, Nev York, U.S.A., 13760. IBM may us? or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation
v~atever. You may, of course, continue to use the
information you supply.

@ Copyright International Business ~achines Corporation 1979

Licensed Material - Property of IBM

Pieface

This logic manual describes the internal functioning of the Remote
Spooling Communications Subsystem Networking program product. ~his
manual is for IBM program support representatives, and system
programmers and analysts responsible for installation, maintenance, and
modification of RSCS.

I
I Note:
I Inthis manual the term "RSCS" refers to the
I Remote Spooling Communications Subsystem Networking
I program product. It does not ref9r to thP R~mote
I Spooling Communications subsystem component of
I VM/370. Where these two different programs are
I discussed together, the difference is made clear.
L

This manual assists in isolating RSCS module code. It gives:

• An overview of RSCS operations

• Descriptions of RSCS's user functions vith reference to the tasks and
modules that perform them

• A description of each module's main routines and linkages

• Control flow diagrams of inter-routine inter-task relationships

• Locations and contents of data areas

• An approach to problem determination

• Appendixes with reference material on MUlTI-LFAVING and the RSCS
Preloader utility under CMS.

These sections document the program logic sufficiently to point to the
module listing that the logic manual user needs. Once in a module
listing, the user should readily find the logic he is ~oncerned with,
using module and subroutine headers (prologues) and the comments in the
assembler language statements.

RSCS runs as a virtual machine under the VM/370 Control Program (CP).
In extending the VM/370 spooling system capability to include spooling
to remote stations, RSCS interacts with the CP spooling system.
Therefore, some of the information in this publication requires a
knowledge of that area of CP.

I.BM Vi£tuai a~chine f~ciiii!Ld1Q: B~!Qi~ Spooling CO!!!J!ill.~icatiOD
~ubs.!§1fil! Net.!orkillil !?~ral I.nfQ£Ution Manual, GH24- 5004

.IBM Vi£tuaJ: !tgcbin.g f~cilli!LJ.70: !!~!Qte 2EQ2J:i!lg fQ!!U!U!!lic~!i,Q!l
~~bs!.§.t~ Net~orkinq Rroq~]~fergn~g ~ng Q~~g!!on§ ~~DY~1, SH24-5005

Preface 3

Licensea ftaterial - 'Property of IPft

IBft Virtual]1~chine I~cil.ll.ILJ70: Rem2te ~EQ2!i!!_g CO!J!Y.!lica!iQll
Subsnte11 Netv2rking ~eff~!!~~ .§!!!1tary ~ard, GX24-5119

!ill~! 1!§giJ!~ PacillliL'.370: ~ystem Logic and Problem Oetermination
Guid~ !OlU!~ 1: Control~~~! (~f), SY20-0886

!Pft Da!,~ Processiu.g Glossary, GC20-1699

4 IBM VM/370: FSCS Networking Logic

Licensed Material - Property of IB~

Contents

SECTION 1: INTRODUCTIO~. • •••••••••••
RSCS Overview. • • • • • • •••••••••••

• 11
.12

The RSCS Virtual Machine and the VM/370 Control Program (CP)
Remote System Routes and Links •

• 13
• 1fJ
.15
.15

Remote Stations and systems. • •
Programmable Remote Stations •
Nonprogrammable Remote Stations. •
Remote Stations Supported by RSCS.
Remote systems supported by RSCS •

Network Control: RSCS and VM/370 Commands ••
RSCS Operator Commands ••••••••••
VM/370-CP and CMS Commands For RSCS ••••

• • • • • 15
• .15
• • 15

• 16
= 'H5
• 16

CP Instructions Used by the RSCS control Program: Diagnose • •
RSCS Preparation and Startup •

• • • 18
• 19

RSCS Preparation ••••••
Dynamic Directory ••••••

SECTION 2: METHOD OP OPERATION •
The RSCS Control Program • • •

MSUP: The RSCS Supervisor ••
Task Management. • • • • • •

Dis patching in RSCS. • • • • •• ,. • • •

• .19
• 19

• 21
• •••••••• 21

• 21
• • 21

Task-to-Task communications. • • • • • •
.22
. 2'
• 23 GIVE/TAKE Synchronous Task-to-Task Communication •

Synchronization Locks ••••••••••••••
Posting a Synch Lock • • • • • • • • • •••••
Waiting For GIVE/TAKE Requested Services: D~TWAT •
Asynchronous Interruptions and Exits ••••••
ALERT Asynchronous Task-to-Task Communication ••

RSCS Task Descriptions • ~ • ~ ~ ~ ~

•••• 25
• 26

• ••••• 26
•• 27

• 27
.. - 28

REX Task Module Functions. • • • • • • • • .• • •••••••• 28
• • • • • • 30 Common Supervisor Routines: DMTCOM • • • • • • •

Communicate vith the VM/370 Spool File System: DMTAlS.
Manage Telecommunication Line Allocation: DMTLAX •

• • 30

Line Driver Tasks: DMTNPT, DMTSML, DMTVMB, DMTVMC, DMTNJI,
• 32

DMTPOW.32
I/O Management • • • • • • • • • • • • • ••• • • • '32

Handling I/O Requests. • • • • • • • • • • 33
Active and Pending I/O Queues ••
Starting an I/O Operation. •
Handling I/O Interrupts.
Dequeuing I/O Bequests ••

Interruption Handling. • • • • • • .• •
Special Message Interruption Handling ••

RSCS Spool File Format • •
CP Spool Data Records •••
CP Spool ~uffer Linkage ••
CP Spool Tag. Record •.••
RSCS Tag Record Format •
Non-RSCS control Records •

Virtual Storage !!anagement
BSCS Basic Functions

RSCS Configuration and Startup
Loader • • • • • • •
RSCS Initiali~ation ••••••

RSCS System Disk Access. • •
RSCS File Handling Functions •

Introduction •••• ~ •.••

• .34
• • 34
• • 34
• .35

• ••• 35
• • • 35

• • • • 35
.36

• • 36
• 36
• 36

• • 37
• ••••• 37
••••• 37
••••• 37

• 37
• 38
.39

• • • • 40
• 40

Contents 5

Licensed Material - Property of IBM

Scenario of R SCS File Handling • • • • • • • • • • • . uo
Receiving a File from a Local Virtua 1 System • • • 44
Receiving a File from a Remote System. • • • .44
Sending a Received File to a Local Virtual System. • .us
Sending a Received File to a Remote Node • • • • • • .46

Command and ftessage Handling Functions • • • • • • • • • 49
Remote System command and r!essage Input to RSCS (Path 1) ••••• 51
Remote Workstation Command Input to RSCS (Path 2) ••••••••• 51
Commands for Local Execution (Path 3}. • • • • • • • • • • • 51
Routing Request Element for This Location (Path 4) • • • • • .51
Routing Request Element for Another System (Path 5). • • • • .52
Local Commands Originating from NJI/NJE Systems (Path 5) ••••• 52
~essage Request Elements from NJI/NJE Messages (Path 7). • •• 52
Messages Arising from Command Execution (Path 8) • • . .5?
Line Driver Handling of Command Alert Elements (Path 9). .52
Forwarding Locally-Generated ~essages on Links (Path 10) .53
Issuing r!essages to Local Virtual System Users (Path 11) .53
Issuing ~essages to the Local RSCS Operator's Console (Path 12) •• 53
Line-Driver-Issued ftessages (Path 13). • • • .54
Local RSCS Operator Command Input (Path 14). • •• 54
Receiving J!IIessages from Local Virtual System Users (Path 15) .54

RS cs Accounting. • • • • • • 54
Line Driver Functions. • • • • • • • • • • • • • • • • 54

The Link Table • • • • • • • • • • • • • • • .54
Link Activation: Loading and Starting A Line Driver Task • • 55

Loading the Line Driver, Function Description. • • • • • .55
Line Driver Task Initialization, Function Description. • • • .56

SftL Line Driver Function Descriptions. .57
SML Processors • • • • • • • • .. • • 58
Sr!L Command Processor: $WRTN 1. • 59
SKL Line I/O ~anager: COMSUP • • • • • • .59
SML Function Selector Routine: $S1'ART. • • • 60
Block and Deblock SML Teleprocessing Buffers: $TPPUT and $TPGET .60
SML File Send (Transmit Input Spool File on Link) Function • • • • 61
SML File Receive (Spool Output File Incoming on Link) Function •• 62

POW Line Driver Function Descriptions. • • • • • • .64
POW Processors ••••••••• ~ • ~ • • • • ~ • .64
POW Line I/O Manager: COM SUP • • • • • • • • • • • 65
POW Function Selector Routine: $START. • •••• 65
POW Asynchronous Alert Exit Routine: ASYNEXIT. • • • • .66
Block and Deblock POW Teleprocessing Buffers: $TPPUT and $TPGET .66
POW Control Record Processor: $CRTN1 • .• • • • • • • • 67
POW File Send (Transmit Input Spool File on Link) Function • .68
POW File Receive Function. • • • ,. . • 69
POW Message Handler: J!IISGPROC • • • • • • • •••••••• 71
POW Command Handler: CMDPROC • • • • • • • • • • • 72
Typical RSCS to VSE/POWER Line Transmissions • • .73

NPT Line Driver Function Descriptions. • .76
NPT Line Driver Send Function. • • • .77
NPT Line Driver Receive Function • • .79

VMB Line Driver Function Description • • •••• 82
VMB BSC Telecommunication Protocol • • • • • • .82
BSC Transmission Sequences • • • • • 82
D!TVMB Packed Data Block Format. .86
V!!B Line Handling. • • • • • • • • 87
Vr!B Data Handling Functions. • • .89
VMB Processing Control Functions • • • • • •• 92
VMB I/O Management Functions • • .93

VMC Line Driver Function Descriptions. .94
CTCGO - Main Line Driver Control • • • • • • • 94
GETBLOCK - Input File Formatting • • • •••••••• 95
MSGRECV - Command or !essage Receipt • • • • • • .95
ftSGTRlNS - Command or Message Transmittal. • • • • • • • • .95
POTBLOCK • • • • • .95
CKDPROC. •••••••• 95

6 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

AXS ALERT • • •
TRTRAN, TRERR, TRTIMOT ••
KLOGIT • • • • • • • • • • • ~ • • •

NJI Line Driver Function Descriptions.
NCM Function Selector Routine: $START.
NCM Processors • • • • • • • • • • • • •
NCM Line I/O Handler Routine: COMSUP ••
Block and Deblock NCM Teleprocessing Buffers: $TPPUT and $TPGET •
Network Header Processor: DMTNHD ••

• 96
.96
• 96
.96
.97
• 98
.98
• 99
.99
.99
.99
100
100

Command and Message Processing • • •
File Header Record Output Processing • •
File Header Record Input Processing~
DMTNJI Initialization Module: DMTNIT - •

SECTION 3: PROGRAM ORGANiiATION •••••••
Modules and Subroutines. • • • • • • • • • •
~odule-to-~odule Execution Transf~rs {B~LRs)

Control Flow Diagrams. • - • • • • • • • • • • •

• 101
101
n4

• 120

SECTION 4: DIRECTORY •••••••••••••••••••••••• 130

SECT ION 5: DATA AREAS. • • •
Data Area Aids •••••

MAINMAP Location - ••
Queue Element Storage Area and FREEQ Queue • •
Task Queue Location. •
I/O Queue Organization ••
Asynchronous Interrupt Queue Pointers.
GIVE Element Queue Location• ••
Link Table Location. • •• ~
ROUTE Table Location • • ••
Switchable Ports (TPORTS) Location
TAGSLOT Queue Location • • • • • • • •

.. .

Common Routine Vector Table (COMDSECT) Address •
Data Areas and Control Blocks •••

Asynchronous Exit Queue Element: ASYNE ••
CMS File Access work Area. •
COMDSECT Table Contents •• , ••••
FREE Queue Element: FREEE ••

. . ..

GIVE Queue Element: GIVEE. ,. • • , ••
GIVE Request Table in GIVE/TAKE Requesting Task •••
I/O Request Queue Element: IOE • • • • • •
I/O Request Table in Requesting Task: IOTlBLE.
Link Table Entry: LINKTABL ••
MLX Records. • •••••••

MLX Record 1: • •
l!L X Record 2: • •
MLX Record 3:. ,. • • • •

Network Accounting card Format
Port Table • • • • • • • • • • • •
Routing Table Entry •••••
Spool Page Buffer Format • •
Telecommunications Buffer ••
SVECTORS: Low Storage Definitions.

Machine-Defined Low Storage.
SVECTORS Table Contents. • • • •

Tag Queue Data: TAGAREA •••
TAG Queue Element for FSCS Spool P'ile.

. .

TAKE Request Table in GIVE/TAKE Requested Task
Tanks ••••••••••••

Unit Record Tank ••••
Task Queue Element: TASKE. •

135
• • • • 135
• • ,. • 135

••••• 136
• • ,. • 1 37

138
• • • • 139
• • • • • 140
• • • • , 41

•••• 142
• •• - • iq3

144
145
146
146
147

• 150
151
151

• 152
153

• •••• 154
155

• 157
157
158

• • • • • 159
• • • • 160

• • • • 161
• 162

163
164
, 65
165
166

• 169
170
172
173
173
174

Contents 7

Licensed ftaterial - Property of IBM

Task Save Area: TAREl. • • • • • • 175
Request and Alert Elements • • • • • • • 176

Introduction • • • • • • • • 176
Request Elements Processed by Dll!TREX • • • • • 177

command Request Element. • • • • .. • • 177
commandf!!essaqe Routing Request Element. • 177
ftessaqe Request Element. • • • • • • • ••••••• 178
Restart Terminate Request Element. • • • • • • 179
Terminate Request Element. • • • • 179
Timer Request Element. • • • • • 180
Pile Request Element • • • • • • • • 181
Line Alert Element • ~ • • • • 183

Command Alert Elements for c 01111ands Processed by DMTA XS. • .• • • • 184
Reorder Alert Element. • • • • • • • • • • • • • • 184
ORDER, PURGE, and CLOSE COllll and Alert Element. • • • • • • • 18 5
TRANSFER Command Alert Element • • • • • • • • 187
CHANGE Command Alert Element • • • • • • • • • • 188
Initialize Acceptor Alert Element. • • • • • • • • • • • 189

Command Alert Elements Processed by Line Drivers •••• 190
Line Driver Command (START, DRAIN, FREE, HOLD, TRACEj Alert

Element Format ••••••••• A ••••••••••••••• 190
Line Driver Command (BACKSPAC, FWDSPACE) Alert Element Format •• 192
FLUSH Command Alert Element •• • • • • • . • • . • • • • • .• • • 193
Line Driver Command (COSKABD, KSG, ftESSAGE) Alert Element •••• 194

NJI Header Formats • 195
Network Connection Control Records •• _ •• · ••••.•••••••• 195

Initial Signon Control Record and Response Signon Control Record
F o rma t. • • .. • .. • • • • • • _ • 14> • _ .. • •

Concur/Reset Signon control Record Format.
Add/Subtract Connection Control Record Format ••

Network Job Header Record Format: HJHDSEcr ••••
Network Job Trailer Record Format: BJTDSECT ••••
Network Data Set Header Record Format: NDHDSECT ••
Command/rtessage Header Formats • • • • • .• • • • •

SECTION 6: DIAGNOSTIC AIDS • .. • •
Problem Determination ••••••
l!odule Message Directory • • • • • • L •
Trace Log. • • .. • _ • "· • • • .• .• .. _.

APPENDIX 1: MULTI-LEAVING DESCRIPTION.. •
!ULTI-LEAVING in RSCS ••••••
!ULTI-LEAVING Philosophy~ •.••• ,. _.t. •

Char act.er St.rings and the SCB. • • . • • •
Transmission Blocks and the RCB. • • • •
eULTI-LEAVED Data Streams and the PCS• •
Transmission Data Int.egrity and the BCB.
l!ULTI-LEAVING Control Specification.

Block Control Byte (BCB) • • _ .• •
Function Control Sequence (FCS).
Record Control Byte (RCB) ,. • • •
Sub-Record Control Byte (SRCB) • • •
String Control Byte (SCB) •••••

. .

. . . .

195
• ••• 195

195
• 196

• .• • • • 197

. .. .

198
• 200

• 202
• 202
• 204
• 209

• 211
• 211
• 211
• 212
• 212
• 212

213
• 213
• 213
• 215

•••• 216
• 217
• 218

Appendix B: RSCS Preloader Utility Under CMS •••••••••••• 219

8 IBM V~/370: RSCS Networking Logic

Licensed Material - Property of IBM

Illustrations

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5

Figure 2-1

Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11

Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21
Figure 2-22
Figure 2-23
'Cl.:~··-- "_"'\II
:r:..L.~l.&L'I:: IC.-IC."9

Figure 3-1
Figure 3-2

Figure 3-3

Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11

RSCS - sample Network •••••••••••••••••••••••••••••••••••
RSCS File Handling ••••••••••••••••••••••••••••••••••••••
Alternate Path Facility ••••••••••••••••••••••••••••••• ~.
RSCS Commands and Their Functions (Part 1 of 2) •••••••••
VM/370 DIAGNOSE Instructions Issued by RSCS •••••••••••••

Movement of Data During a Typical GIVE/TAKE
Transaction •••
Input to the DMTWlT Routine •••••••••••••••••••••••••••••
RSCS Tasks •••••••••••••••••••••• ~··················•••A•
DMTCOM Routines •••
I/C Queues and Subqueues~~---···········-···············
RSCS System Disk Format •••••••••••••••••••••••••••••••••
RSCS system Disk Characteristics ••••••••••••••••••••••••
Locating a File on the RSCS System Disk (Part 1 of 2) •••
scenario of RSCS File Handling Functions ••••••••••••••••
RSCS Command and Message Handling •••••••••••••••••••••••
SML Line Driver Data Flow to Remote Stations and
Systems •••
s ML Function Processors •••••••••••••••••.••••.•••••.•••••••
POW Line Driver Data Flow to a VSE/POWER System ••••.•••••
POW Function Processors •••••••••••••••••••••••••••••••••
Signon Procedure ···\··· •••••••••••••••••••••••
Initiation of a Transmission ••••••••••••••••••••••••••••
Command Transmission ••••••••••••••••••••••••••••••••••••
Stop Proc eel ure ••• "!' •.•••••• ~ 1• .•••••••••.••••••••••

Text in One Direction •••••••••••••••••••••••••••••••••••
Text in Both Directions~ ••••••••••••••••••••••••••••••••
Protocol for Transmission Error Retry ... , •••••••••••••••••
Typical Line Transactions •••••••••••••••••••••••••••••••
NJI Link Data Plow ••.• ~~~ ! •••• ,

NCI! Function n---------C LVVC~QVL~•••••••••••••••••••••••••••••••••

RSCS Modules and Their Subroutines (Part 1 of 13) •••••••
l!odule-to-l!odule Execution Transfers (BALRs)
(Part 1 of 7) •••
Program Organization for the Multitasking
Supervisor !!SUP•••••••••••••••••••••••··········~·······
Program Organization for the REX system Service Task ••••
Proqram Organization for the AXS system Service Task, ••••
Program Organization for the SML Line Driver Task •••••••
Program organization for the NPT Line Driver Task •••••••
Program Organization for the NJI Line Driver Task
Program organization for the VMB Line Driver Task •••••••
Program Organization for the VMC Line Driver Task •••••••
Program Organization for the POW Line Driver Task .•••••.••

MAINKAP Location ••
Queue Element Storage Area FREEQ Queue ••••••••••••••••••
Task Queue Location ••••••••.•.•••••.•.•••.•••••••••••••••••••
I/O Queue Organization ••••••••••••••••••••••••••••••••••
Asynchronous Interrupt Queue Pointers •••••••••••••••••••
GIVE Element Queue Location .• , ••••.••••••••••••••••.••••••••
Link Table Location •••••••••••••••••••••••••••••••••••••
Routing Table Location ••••••••••••••••••••••••••••••••••
Switchable Ports Table Location •••••• , ••.•••••••••••••••••
TAGSLOT Queue Location ••••••••••••••••••••••••••••••••••
Common Routine Vector Table Address •.•••••••• , ••••.••••••••

12
13
14
17
20

24
26
29
31
33
39
40
41
43
50

58
59
64
65
73
74
74
75
75
76
84
85
97
98

101

114

121
122
123
12q
125
126
127
128
129

135
136
137
138
139
no
141
142
143
144
145

Illustrations 9

Licensed ~aterial - Property of IBM

10 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Section 1: !ntrocluction

RSCS is a software package in the IBM Network Job Interface series of
products. Network Job Interface (NJI) is a remote spooling capability
comprising several software packages that provide the support for the
transmission of files (including jobs and job output data) between
processors attached to a telecommunications network. The processors
that are nodes in the network can be running the same or different
spooling systems, with the common requirement that each runs one of the
NJI or NJE (Network Job Entry) support packages.

RSCS is a program product that provides NJI support on those nodes in
the network that are VM/370 systems.. RSCS is a virtual machine
subsystem, operating independently of other virtual machines running
under the V~/370 control program, CP. Using the RSCS command language,
the RSCS operator mana9es his node in the network, and can issue some
commands to other nodes in the network.

Within the network, there can also be both CPUs and terminals that
contain no NJI/NJE support. These do not function as intermediate nodes
- they have subhost status - and can, depending upon their configura­
tions, perform operations such as: submit files (jobs); receive files
(jobs); or both submit files that are jobs and receive their output.

The processor with an RSCS virtual machine is a relay point, in a
network, for data:

• From other virtual machines under its own VM/370 system either to
remote processors, or to remote batch stations

• From other nodes to virtual machines on its own processor

• From other nodes to either other nodes or remote batch stations.

The data relay facility of RSCS is provided by its "store and forward"
functions, which use the VK/370 CP spooling facility to temporarily hold
incoming and outgoing files.

When the data RSCS is transferring is to be forwarded from node to node
in the network to the data's ultimate destination, each forwarding node
must have the store-and-forward and routing capability provided by one
of the NJI or NJE support packages.

When the data that RSCS is transferring is a job to be executed
remotely, and if the job output is to be returned to an interactive user
or to an indirectly connected system or w0rkstation, the destination
system must have the job entry capability provided by one of the NJI or
NJE support packages.

The output of a routed job executed at a remote non-VM/370 NJI/NJE
system is routed to the real unit record equipment at the submitter•s
location unless explicitly overridden by the user. The sub•itter may
include in his jobstream NJI control statements to route the remotely
executed job output to another destination or destinations.

The output of a routed CMS batch job executed at a remote VM/370 system
can be routed to the job's originator by including appropriate CMS
commands vi th the job .•

See the RSCS Program Reference gnd Operation~ Manual (listed in the
Preface) for detailed information about using RSCS.

Section 1: Introduction 11

Licensed ftaterial - Property of IB"

A given RSCS location (or "node") sees only the nodes adjacent to it in
the net work. See Figure 1-1, below. An RSCS "link" is defined at an
RSCS location as the capacity to coamunicate vith a particular remote
location via a direct connection. This includes dialup, leased line,
and channel-to-channel adapter (CTCA) connections.

VM/370
Virtual Machines

OS/VS1

OS/360

HASP Batch
Processor

CMS

SVstem/370

NJl/NJE

Job
Networking
Subsystem

VM/370

CONTROL PROGRAM

CP
Spool System

System/370

VM/370

RSCS

Figure 1-1. RSCS - Sample Network

RSCS Overview

RSCS
Virtual Machine

R Line s Driver c
s

Line
s Driver

u
p Line
e Driver
r
v

Line
Driver

0

System/370

DOS/VSE

VSE/POWER

CONNECTED LOCATIONS

Nonprogrammable
Remote Station

3770

Programmable
Remote Station

System/370

HASP
Work Station
Program

Programmable
Remote Station

System/370

JES or HASP
Control Program
Operating as a
Remote Batch
Processor

Figure 1-2 is an overview of RSCS operations in a simple network. (Not
all network nodes must be VM/370 RSCS nodes; this figure shows the types
of operations that RSCS supports.) Refer to Figure 1-2 when reading the
following description.

User Archie on the CMS system at Vft1 sends a file to user Bob on the CftS
system at VM3. Archie issues the commands:

SP OOD TO RSCS1
TAG DEV OOD VB3 BOB
PUNCH filename filetype

CP spools his virtual punch OOD output to RSCS1. RSCS1 may have any
number of links to the other network nodes, but it has locally-specified
tables that indicate that files for VM3 are to go to VM2. RSCS1

12 IBM VM/370: RSCS Networking Logic

VM1

A

Licensed Material - Property of IBK

forwards the spool file, including its destination information, to '"2.
RSCS2 on VM2 receives the file, spools it to its own userid, and
forwards it to VM3. RSCS3 at VM3 recognizes that the file is for its
ovn location and spools it to userid Bob.

These functions are explained in more detail in Section 2.

VM3

CP

Spool

RSCS3 CMS

B c D E

Figure 1-2. RSCS File Handling

The RSCS Virtual Machine and the VM/370 Control Program (CP)

F

Like other VR/370 virtual machines, the RSCS virtual aachine runs under
the'control of CP. In extending the V!/370 spooling systea capability
to include spooling to reaote stations, RSCS interacts with the CP
spooling systea. Therefore, soae of the information in this publication
requires a knowledge of that area of CP.

The RSCS virtual machine consists of the virtual machine operator's
console, an RSCS system disk, and attached telecommunications lines.
During system initialization, a virtual card reader is defined for the
RSCS virtual machine, but this reader does not exist in the CP directory
entry for the RSCS virtual machine ..

Virtual printers, card punches, and readers are defined dynamically by
the program as they are needed. For example, when a file from a remote
station is transmitted to RSCS, a virtual punch is defined to accept the
file. Similarly, virtual readers are defined when RSCS accepts a spool
file to transmit. RSCS virtual storage also dumps onto a virtual
printer when abnormal termination of RSCS occurs.

The minimum virtual storage required to run RSCS is 3aqK, with typical
requirements falling in the 512K to 1! range.

Section 1: Introduction 13

Licensed Material - Property of IB~

Remote System Routes and Links

At a local installation there are a number of transmission paths to
remote stations. A unique location identifier (locid) is assigned to
each remote station.

For each direct transmission path (nonswitched line) or potential direct
transmission path ~witched line) to an adjacent network node, a link
must be defined at the installation.. Each such link is gi ve-n a name
(linkid) that must be the same as the location identifier of the remote
system or station to which the direct transmission path leads.

Every successive node along the route connecting nodes that are
destinations for data must have prespecified routing information. The
routing information at a given node specifies, for each possible
destination locid, the link that this node is to use to forward the data.

The links and routes can be defined (a) permanently, in a CMS file on
the RSCS system disk called RSCS DIRECT; or (b) temporarily, by the RSCS
operator commands DEFINE and ROUTE. Temporary definitions disappear at
the next RSCS IPL.

Links and routes can be temporarily removed with the RSCS operator
commands DELETE and ROUTE. Any permanently defined links and routes
removed by operator commands reappear at the next RSCS IPL.

The alternate path facility of RSCS enables installations to configure
their routes and links so as to bypass unavailable links. Refer to
Figure 1-3 when reading the following description.

Any node (A) may have both a LINK table entry and a ROUTE table entry
for an adjacent node (B). A file that has a final destination of node
B, and is being forwarded by node A, will normally be enqueued on the
node B link, link B. The ROUTE table entry is used when the final
destination of the file at node A is the adjacent node B, but link B to
node B is not available~ The ROUTE table entry for node B is an
alternate path that specifies node c via link c. Node A transmits the
file to node c, bypassing the unavailable link. See the RSCS Program
Refe~£~ All~ Operations Man~al for use of th.is alternate path facility.

A

CP

Spool

RSCS

B-B

Routing Table:

e-c

c

If the direct link from
A to B goes down, the
alternate path in the
route table is used.

CP

Spool

RSCS
Link Table:

Routing Table:

Figure 1-3. Alternate Path Facility

14 IBM VM/370: RSCS Networking Logic

B

CP

Spool

RSCS
Link Table:

Routing Table:

Licensed Material - Property of IBM

Remote stations are configurations of I/O devices attached to a VM/370
system by binary synchronous communications (BSC) switched or
nonswitched lines. RSCS supports both programmable and nonprogrammable
remote stations ..

PROGRAMMABLE REMOTE STATIONS

Programmable remote stations, such as the IBM system/3 and System/370,
are processing systems with attached BSC adapters. These systems must
be programmed to provide the MULTI-LEAVING line protocol necessary for
their devices to function as remote stations. This programming support
is provided by a remote terminal processor (RTP) program generated
according to HASP workstation protocol and tailored to the system's
hard ware configuration,j, Certain programmable remote stations like the
system/3 can only be programmed to function as remote terminals.
Others, like the System/360 and System/370, can function either as
remote terminals or as host batch systems using RSCS as a remote job
entry workstation. Both of these types of remote stations are managed
by the spool MULTI-LEAVING (SML) line driver of RSCS.

NONPROGRAMMABLE REMOTE STATIONS

Nonprogrammable remote stations are I/O configurations that cannot be
programmed, but are designed to provide the line protocol necessary for
them to function as remote stations. They can receive, read, print,
punch, and send files. An example of a nonprogrammable remote station
is a 3780 Data Transmission Terminal.. Nonprogrammable remote stations
are man aged by the NPT (Nonprogrammable Terminal) RSCS line driver .•

REMOTE STATIONS SUPPORTED BY RSCS

The types of devices supported for all types of remote stations,
programmable and nonprogrammable, are listed in the RSC~ Program
Refe~.n£g §!lg Q~~atiQ!!.§. ManU§!·

REMOTE SYSTEMS SUPPORTED BY RSCS

The programmable remote systems that RSCS can communicate with are:

Other RSCS systems
VNET PRPQ systems
HASP Networking PRPQ systems
ASP Networking PRPQ systems
Network Job Entry Facility for JE52
JES3 Component of OS/VS2
RES Component of OS/VS1
VSE/POWER systems

Section 1: Introduction 15

Licensed Material - Property of IB"

Network Control: RSCS and VM/370 Commands

Both RSCS and VM/370 commands are used to control RSCS. RSCS commands
are used by an RSCS operator to control the network; '"1310 CP and CMS
commands are used by virtual machine users who use RSCS.

RSCS OPERATOR CO~MANDS

To manipulate the file being transmitted across the network and to
communicate with the various network users, RSCS provides a command
language. Figure 1-4 lists the RSCS commands and the functions they
perform. Detailed descriptions of these commands are in the RSCS
Refe~a£~ ~g Q.}?~rati~!!§ Manual.

The operator may enter RSCS commands described in Figure 1-4 at the RSCS
virtual machine console. A subset of the RSCS command language may be
entered by operators of remote stations or remote systems.

VM/370 CP AND CMS COMMANDS FOR RSCS

The VM/370 CP TAG and SPOOL commands specify a device to be spooled, and
they associate a destination location identifier (locid) with that
device. SPOOL directs the file to the RSCS virtual machine. The CP
CLOSE command or the CMS PRINT or PUNCH commands close the file and
transfer it to the RSCS virtual machine.

Data specified by the CP TAG command controls processing of files
transmitted across the network. When a VM/370 user creates, on his
virtual machine, a file to be transmitted to a remote station via RSCS,
the CP TAG command must contain information needed by RSCS.

A virtual machine user may use the CP S"SG (Special Message) command to
send aessages via RSCS to remote virtual machines or to request status
information about a local or remote RSCS or about a remote VM/370
system. The text of an SMSG command can be an RSCS MSG command or an
RSCS CMD command; the text of that CMD command can be an RSCS QUERY
command or an RSCS CPQUERY command.

For details on how to use the CP SPOOL, TAG, and SMSG commands, see the
RS~ Referenc~ ,!!lg Operations ~al.

16 IBM VM/370: RSCS Wetvorking Logic

Licensed Material - Property of IBM

I Command
t Name Function
··~~~~~-+-~~~~~~~~~~~~~~~~~~~~~~~~~~--..

* Comment following asterisk prints out on RSCS
operator console, and no function is performed.
(Useful for CMS EXEC files of RSCS commands,
particularly the PROFILE RSCS file.)

BACKSPAC Restarts or repositions in a backward direction
the file currently being transmitted.

CHANGE Alters one or more attributes of a file owned by
RSCS.

CLOSE Deactivates partially processed files on an
inactive link. Discards output (incoming) files.
Reenqueues active input files as inactive files.

CMD Forwards a command line to a remote system for
execution.

CP Executes a command line as a VM/370 Control
Program (CP) console function.

CPQUERY Requests status information from CP, similar
to a VM/370 CP QUERY command~

DEFINE Temporarily adds a new link definition to the
RSCS link table, or temporarily alters an
existing link definition.

DELETE Temporarily deletes a link definition from the
RSCS link table.

DISCONN Places RSCS in disconnect mode and optionally
directs RSCS operator console output to another
virtual machine.

DRAIN Quiesces file transfer and deactivates an active
communication link.

Figure 1-q. RSCS Commands and Their Functions (Part 1 of 2)

Section 1: Introduction 17

Licensed ftaterial - Property of IBM

Command
Name Function

EXEC Executes series of RSCS commands contained in the
specified user-built CftS file (filetype: RSCS).

FLUSH Discontinues processing the currently active file
on the specified link.

FORCE Immediately deactivates an active link, without
quiescing file transfer.

FREE Resumes transmission on a communication link
previously in HOLD status.

PWDSPACE Repositions in a forward direction the file
currently being transmitted.

HOLD Suspends file transmission on an active link
without deactivating the link.

HT Flushes out all messages presently awaiting
printing on the RSCS operator console or
remote station operator console.

MSG Sends a console message line to a local or
remote operator or user.

ORDER Reorders files enqueued on a specific link.

PURGE Removes and discards all or specified inactive
files from a link.

QUERY Requests system information for a link, a file,
or for the system in general .•

REORDER Sorts and reorders all files enqueued for all
links.

ROUTE Adds, deletes, or alters an RSCS routing table
entry.

START Activates a specified communication link.

SHUTDOWN Issues DRAIN to all active links.

TRACE !onitors line activity on a specified link.

TRANSFER Changes the destination address for specified
files.

Figure 1-4. RSCS Commands and Their Functions (Part 2 of 2)

CP INSTRUCTIONS USED BY THE RSCS CONTROL PROGRAM: DIAGNOSE

When RSCS handles files being transmitted across the network, the RSCS
control program and line driver tasks issue DIAGNOSE instructions to
obtain CP services.

18 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

A DIAGNOSE instruction is used in VM/370 for communication between a
virtual machine and CP. The machine-coded format for the VM/370 usage
of the DIAGNOSE instruction is:

0

83

Rx

1 8 11 12 15 16

Rx Ry Code

Ex p la n~tl21!
DIAGNOSE operation code
User-specified register number
User-specified register number

31

Ry
Code Hexadecimal value that selects a particular CP function.

Figure 1-5 lists the DIAGNOSE function codes used by RSCS, the functions
of those codes, and the RSCS modules from which they are issued.

RSCS Preparation and Startup

RSCS PREPARATION

The preparations for running RSCS on a VM/370 system are explained in
VM/370: RSCS _!!etvorki119. ,Rroqrn ~fe~!!£~ and Operatl:.QlH?• In summary,
the preparations are:

• Load RSCS modules onto disk.

• If required, perform updates to modules.

• If required, use the Preloader utility (see Appendix B) to combine and
link multiple modules.

• Use the CMS editor to build the directory file (RSCS DIRECT) to
specify parameters for the RSCS virtual system. These specifications
include installation variables and link and route definitions
describing comm unic a ti on paths to remote locations .•

• If desired, use the CMS editor to build the PF.OFILE RSCS file to
specify installation STARTUP commands.

DYNAMIC DIRECTORY

There is no system generation (requiring assembly) for RSCS.

Each time RSCS is IPLed it dynamically configures itself, referring to
the contents of a file (named RSCS DIRECT) on the RSCS system disk. The
local system programmer builds and updates this file. This file
specifies the RSCS configuration and characteristics desired for this
location. The file can be updated to incorporate new link specifi­
cations, new routing table entries, etc. as desired even during RSCS
operation; the changes become effective on the next RSCS IPL.

During operation, the RSCS operator can enter commands that immediately
modify some of the RSCS DIRECT-specified characteristics. But these
commands (such as FOUTE, LINK, DEFINE, and DELETE) are in effect only

Section 1: Introduction 19

Licensed Material - Property of IBM

temporarily; when RSCS is re-IPLed, only the RSCS DIFECT statements
remain in effect.

The details of the contents of RSCS DIRECT are in the R~CS Program
,Refe~n~ ~.ng ~rati2ns Manual.

DIAGNOSE Code I Function

0000 Gets the userid of the RSCS
virtual machine.

0008 Executes a CP command. Results
may be returned in a buffer or
sent to the virtual console.

OOOC Gets the current time and date.

0010 Frees virtual storage page.

0014 Manipulates input spool files.

0020 Performs DASO I/O without
interrupt ..

0024 Determines virtual device type
inf orma ti on.

004C Generate an RSCS accounting
record.

005C Edi ts RSCS messages .•

0068 CP vehicle for sending Special
Messages to RSCS ..

I Issued by Module (s) I

Dr!TIRX

DMT AUi
DMTCMX
Dr!TMGX
D!!TREX

DMTAXA
DMTNCM
Dr!TNPT
DMTSML
DMTVMB
DMTVPIC
DMTPOW

DMTASK
DMTCOPI

DMTAXM
DMTNCr!
DMTNPT
DMTSML
D!!TVMB
DMTV!1C
DMTPOW

DMTINI

DMTIRX
DMTLAX
DMTNCM
DMTREX
DMTSML
DMTPOW

DMTAXA

DMTMGX

DMTIRX
DMTREX

Figure 1-5. VM/370 DIAGNOSE Instructions Issued by RSCS

20 IBM Vr!/370: RSCS Networking Logic

Licensed Material - Property of IBM

Section 2: Method of Operation

The RSCS Control Program

RSCS is a virtual machine subsystem, with a multitasking supervisor
(MSUP) that manages multiple independent programs called tasks.

The MSUP supervisor is the heart of the RSCS virtual machine. It is a
set of routines and storage areas that coordinate the operation of RSCS.

The tasks are modules or sets of modules that perforJr RSCS functions.
The task modules are executed under control of the MSUP supervisor.

Tne supervisor provides Ofily those functions that cannot be consistently
provided by the tasks themselves; that is, the supervisor provides only
the support needed to control and coordinate the execution of the tasks.

The two types of RSCS tasks are system service tasks and line driver
tasks. System service tasks provide the system support functions for
the supervisor and for other tasks. Line driver tasks manage the
transmission paths to remote systems and stations, and interact between
tbe remote stations and the system service tasks and the supervisor.
Each line driver task manages transmission to and from one remote
station.

The figures in Section 3 show the communication paths between the MSUP
supervisor, system service tasks, line driver tasks, remote stations,
and VM/370 virtual machines.

MSUP: THE RSCS SUPERVISOP

The MSUP supervisor is a set of service routines that provide functions
for the tasks that run under them. These service routines may be called
by any task. In general, they provide four kinds of services:

• Task management

• I/O management

• Interrupt handling

• Virtual storage management

TASK MANAGEMENT

The task management service routines provide task initiation and
termination, task dispatching, task-to-task communication, and task
synchronization .•

Task initiation consists of making a task that has been loaded into
virtual storage available for execution. This includes:

(a) Building a TASKE entry for the task in the task queue pointed
to by the SVECTORS field, TASKQ (X '228 ') ; and

Section 2: Method of Operation - RSCS Control Program 21

Licensed ftaterial - Property of IBP!

(b) Marking the task dispatchable so that its initialization
routine is entered.

In general, the only task to request task initiation and termination is
the REX system control task, which is described below.

Task dispatching consists of scanning the task queue entries (TASKE) for
tasks that are able to continue executing, and allowing them to execute
one at a time.

The two types of task-to-task communications are (1) the DPITSIG routine
(ALERT) and (2) the DKTGIV and DMTAKE routines (GIVE/TAKE).

The DMTSIG routine allows a task to immediately invoke another task to
pass it information. The interrupted task must have an asynchronous
exit routine defined to handle the interruption. Functionally, DMTSIG
performs a function analogous to an SVC instruction.

The DMTGIV and DMTAKE routines allow tasks to exchange information
buffers with other tasks. The GIVE/TAKE function provides organized
engueuing and delivery of requests for services or information from one
task to another. This function is roughly analogous to write-read I/O
operation.

Task synchronization involves making tasks ready or not ready for
execution under control of the dispatcher. When a task requests the
services of another task, the requesting task may suspend its execution
while the request is being processed. The synchronization mechanism
consists of two routines, DMTWAT and DMTPST.. DPITWAT ca uses the
requesting task to temporarily halt execution. DMTPST causes a
temporarily-halted task to resume execution. For more information on
task synchronization refer to the section "Task Synchronization".

A task that requests supervisor service by branching to a supervisor
routine is placed in non-executing mode vith a FREEZE SVC, which is
issued by the called supervisor routine.

The supervisor returns control to the tasks by means of the dispatcher
(DMTDSP). The dispatcher scans the gueue of tasks to be executed (TASKE
in SVECTORS), selects the first dispatchable task element (that is, one
that is not marked nondispatchable by DPITWAT), moves this task element
to the end of the task queue, and restarts its execution. If no task
element is dispatchable, a masked-on wait state PSW is loaded by the
dispatcher.

To suspend its execution, the requesting task calls DMTWAT, which
inspects the synchroni7ation locks PSCS uses to synchronize task
execution. Completion of a service is signalled by means of a synch
lock, which is set (or "posted") by DMTPST.

Task-tQ-Task Communications

Sometimes a task requires the services of another task to complete a
function. For example, VPIB may require that AXM open a file for input
before VMB processing can continue. RSCS tasks communicate with each
other to request these kinds of services using two methods: ALERT
task-to-task communication, and GIVE/TAKE communication.

22 IBM V~/370: RSCS Networking Logic

Licensed Material - Property of IBM

Both methods use an element; which is a table of information that
describes the nature of the request. In general, these elements are
called "request elements" and "alert elements".

The ALERT mechanism is an asynchronous interrupt that causes the
requested task to examine the request immediately and uninterruptably.
When the requested task processing is complete, control is passed to the
MSUP dispatcher. The requestor task remains dispatchable.

The GIVE/TAKE mechanism allows the requested task to service the request
in the course of normal task dispatching. The requesting task remains
dispatchable unless it requests a WAIT on the GIVE synch lock:

RSCS has a three-level task hierarchy implemented in task programming,
but not checked or controlled by the MSUP supervisor. The hierarchy is:
(a) the REX task is highest, (b) the AXS and LAX tasks are next, and (c)
the line driver tasks are lowest.

This hierarchy is followed in task-to-task communications. A task
issues an ALERT to only a lover task. A task issues a GIVE to only a
higher task. l task never communicates directly with a task equal to it
in the hierarchy.

~IVE/TAKE Synchronous Task-to-T~~~ Communication

The GIVE/TAKE method provides ordered enqueuing of requests for
services. Such a request is handled when the servicing task is free to
handle it, rather than upon immediate demand. Figure 2-1 and the
following descriptions explain the GIVE/TAKE task-to-task communication
process.

REQUEST AND RESPONSE ~LEMENTS: Generally, request and response elements
are tables of information that reside in the storage of both the
requesting task and the task providing the service. During task-to-task
communication, these elements are passed from one task to another,
containing either requests for services or responses to requests.

~IVE !!BLES: When a task requests a service of another task via
GIVE/TAKE, it builds a GIVE table, a GIVE request buffer, and a GIVE
response buffer in its storage~ (The request and response buffers may
be at the same location in storage.)

The GIVE request buffer contains a GIVE request element (a table of
information describing the service requested). l fter the GIVE request
element is built, the requesting task clears the synch lock in its GIVE
table to zero (in preparation for a call to DftTWAT) and specifies the
address of the GIVE table in a call to DftTGIV.

SUPERVI~OR HAN~ OP GIVE REQUESTS: The supervisor routine DMTGIV then
builds and enqueues a supervisor GIVE element containing a pointer to
the GIVE table, so that the request can be forwarded to the receiving
task when that task is ready to accept the request.

TAKING A ~IVE REQUEST: When the receiving task is ready to process a
GIVE request, the receiving task prepares a TAKE table in its own
storage. The TAKE table consists of a field to receive the task name of
the requesting task and the addresses and the lengths of a TAKE request
buffer and a TAKE response buffer. Functionally, these buffers
complement the GIVE request and response buffers and, like the GIVE
buffers, may be at the same location in storage.

Section 2: Method of Operation - RSCS Control Program 23

Licensed Material - Property of IBM

SVECTORS GIVEE

r-1

GIVEQ ~

GIVEE
....

~

STORAGE OF REQUESTING TASK (Giver)

GIVE
Request
Table

'11...
~

z~
7 GIVE

Request
Buffer

~ GIVE ~
Request ,----------- Element

STORAGE OF RECEIVING TASK (Taker)

TAKE
Request
Table

, ________ _

TAKE
Request
Buffer

GIVE
Request.
Element

GIVEE

GIVE
Response
Buffer

Response
(if any)

TAKE
Response
Buffer

Response
(if any)

Figure 2-1. Movement of Data During a Typical GIVE/TAKE Transaction

~-

-- - --

After the TAKE table is built, the receiving task specifies the address
of the TAKE table in a call to DMTAKR. The supervisor then moves the
GIVE request buffer (containing the GIVE request element) to the
receiving task• s TAKE request buffer.

RFSPONDING !Q ! GIVE g~EST: The receiving task performs the requested
service, and may update the GIVE request element and place it in its
TAKE response buffer. This modified GIVE request element contains
information on results of request processing to he returned to the
requesting task.

When all requested processing is complete, the receiving task again
calls DMTAKE, specifying the address of the TAKE table. The supervisor

24 IBM VM/370: RSCS Networking Logic

I ,

Licensed Material - Property of IBM

responds by immediately moving the contents of the receiving task's TAKE
reponse buffer to the requesting task's GIVE response buffer, and
posting the synch lock in the requesting task's GIVE table.

MULTlil& !?IVE ,EEQUESTS FOR THE ~AME TASK: If another GIVE request
addressed to the receiving task has been enqueued, it is given to the
receiving task as described above, and dispatched task execution is
resumed. On each call to it, D~TAKE first responds to a previously
accepted GIVE request (if one exists) and then gives another modified
GIVE request element back to the requesting task (if one exists).

WAITING FOR REOOEST COftPLETION: The reauestina task waits for request
c~;pl~tiOilby-;pecifylng the address of the synch lock in its GIVE table
in a call to the WAIT routine (DMTWAT).

The receiving task waits for request availability by calling DMTWAT and
specifying the address of its take request synch lock, which is located
in its Task Save Area. The take request synch lock is cleared to zero
by DMTAKE when no GIVE request address to the calling task remains
enqueued. It is posted by DMTGIV when such a request is enqueued as a
result of DMTGIV processing for another task.

Synchronization locks (or synch locks) are fullwords in task save areas
or control tables (such as TAREA or IOTABLE). synch locks are also in
control areas in function selector routines.

A synch lock is a location in storage where a task that requests a
service from another task receives notice of the completion of that
service. Task code may contain any number of synch locks, depending on
the number and types of service it needs.

The addressability of each synch lock for posting upon completion of the
requested service depends upon the type of request.. For example, the
GIVE/TAKE request synch lock is a fixed location. It is in the Task
Save Area, TAREA, at X'48' bytes from the start of the task. The I/O
synch lock, however, is at the first of the requesting task's I/O table,
whose address is passed with the requesting task's BALR to the I/O
request handler (see "Handling I/O Requests") ..

The synch lock must be set to zero before the request for services is
made. Setting the synch lock to zero prepares it for processing by the
request servicer and the WAIT routine.

The requesting task (the caller of DMTWAT) may specify the address of a
single synch lock (as in the case of a GIVE Table or an IOTABLE), or the
address of a list of synch locks, one of which must be posted by DMTPST
before dispatching of the requesting task can resume. Figure 2-2 shows
the contents of Register 1 on a call to DMTWAT.

Section 2: Method of Operation - RSCS Control Program 25

R1

I A (Synch Lock)

R1

I A (List Address)

Licensed Material - Property of IBM

Synch Lock

--~~~-->1 I 000000

-- OR --

Synch Lock

--->I I 000000
I

~~~-->IA(Synch Lock) 1-----1 Synch Lock 
1--------1 
IA(Synch Lock) 1---~->I I 000000 
I I 
I I 
I I 
I I 
IA(Synch Lock) 1----, 

I 
Synch Lock 

'----->I I 000000 

Figure 2-2. Input to the D!!TWAT Routine 

When the requested service is complete, the receiving task signals 
completion by calling the POST routine (D~TPST), specifying the 
requesting task's associated synch lock. The POST routine sets the 
high-order byte of the synch lock to nonzero. This is referred to as 
"posting" that synch lock, and indicates that the requested service is 
complete. 

If the low-order bytes of the synch lock contain an address indicating 
that the task issued a WAIT on this synch lock, the POST routine also 
marks the requesting task dispatchable in its request element TASKE in 
the TASKQ, and sets the last three bytes of the synch lock to zero. 

Waitin~ For GIVE/TAKE Feguest~g Services: DMTWAT 

Before a task can use the results of requested service, it must ensure 
that the service has been performed. The requesting task signals that 
it is waiting for completion of a service via a call to the supervisor 
routine D!!TWAT, specifying the synch lock associated with the requested 
service. 

If the high-order byte of the task's synch lock is nonzero when DMTWAT 
inspects it, control is returned directly to the requesting task. If 
the high-order byte of the synch lock is ~ero, DMTWAT marks the request­
ing task nondispatchable (in the task's request element, TASKE), stores 
the address of the task's request element in the low-order bytes of the 
synch lock, and resumes dispatching for other tasks. 

Tasks may call D!!TWAT specifying multiple synch locks. This is an "OR" 
condition; the task wants to run if any of the ~pecified synch locks 
gets posted. Upon such a call, each synch lock is inspected and, if any 
synch lock is posted, task execution resumes immediately (the wait is 

26 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBft 

satisfied;. If none of the synch locks is posted, the task element for 
the calling task is marked nondispatchable, its address is stored in 
each synch lock, and dispatching is resumed for other tasks. 

When any synch lock in the list is posted, the task element is marked 
dispatchable. The dispatcher clears the low-order three bytes of each 
of the task's synch locks before task execution is resumed. 

~chronous Interruptio!l.§. and Exit~ 

Asynchronous interruptions are unpredictable and must be handled as they 
occur. The three kinds of asynchronous interrupts are I/O, alert, and 
external. 

Any RSCS task that has code (called an asynchronous exit routine) to 
process asynchronous interrupts of a given type notifies the supervisor, 
usually during task initialization, by a branch to the supervisor DMTASY 
module.. This routine builds an entry in the appropriate asynchronous 
interrupt queue that is scanned for "takers" whenever an asynchronous 
exit condition arises. 

Asynchronous exits are provided for external interruptions, for certain 
I/O interruptions, and for ALERT requests that occur during execution of 
another task. 

Asynchronous exit routines in RSCS tasks perform limited function, often 
engueuing requests for further processing at a later time by dispatched 
tasks. When the asynchronous exit routine completes processing, it 
returns control to the supervisor, which then resumes dispatching tasks 
via a call to the dispatcher (D~TDSP). 

ALERT Asynchronous Task-to-Task ~!!!.m.uni~ation 

The ALERT method of task-to-task communication allows a task to 
immediately invoke a service in another task, bypassing the normal task 
selection mechanism .• 

Initially, a task that services alert requests issues an asynchronous 
exit reguest for alerts. The reguest specifies the adiress of its 
routine, called an asynchronous exit, that will process alerts to this 
task. The asynchronous request processor (supervisor module D~TASY) 
takes control, and records this information in an alert asynchronous 
exit queue element.. The requesting task is made dispatchab le to enable 
it to continue processing beyond its asynchronous exit request. 

When a task requires a certain task's alert service, it issues an alert 
request by branching to DMTSIG, specifying the task to be alerted, and 
the address of its ovn alert element., if any, which specifies a request 
for processing by the alerted task. 

The type of request is described in the ALERT element. The contents of 
the alert element depend on the type(s) of alert request defined by the 
alerted task. See Section 5 for alert element formats. 

The supervisor responds by giving control to the alert asynchronous exit 
routine of the specified task and by passing to that task the address of 
the requesting task •s ALERT element. 

The asynchronous exit routine responds immediately and may copy the 

Section 2: ftethod of Operation - RSCS Control Program 27 



Licensed ~aterial - Property of IBP! 

ALERT element into its own storage for further processing. The 
asynchronous exit routine then returns control to the supervisor, which 
allows the dispatched task to resume execution. The following 
summarizes the terms used in the ALERT capability: 

The task that will handle ALERT requests via its asynchronous exit 
initiates this process with an asynchronous interrupt request. 

The request for the services of another task's ALERT exit routine 
is called an ALERT request. 

RSCS TASK DESCRIPTIONS 

As described previously, the MSUP supervisor is a set of routines that 
manage RSCS processing,. The supervisor is a nucleus that supports the 
RSCS tasks. (These tasks are analogous to virtual machines under VM/370 
CP, and tasks under OS/VS systems.) 

The RSCS system service tasks perform less generalized common functions 
for the system than those functions performed by MSUP,. For example, the 
lXS system service task coordinates common task access to the VM/370 
spool file system. Each line driver task manages the communication with 
the single remote system or station that its link is defined to provide. 

The supervisor gives equal priority to all FSCS tasks, and makes no 
distinction between system service tasks and line driver tasks. Figure 
2-3 lists the RSCS tasks and the service each performs. 

CREATE SYSTEM TASKS: DMTCRE The main system service task, REX, is loaded 
vith~he-5upervisor during ascs initialization. The REX task, in turn, 
creates other tasks required by the system,. DPITCRE reads these other 
tasks from a CMS disk by aeans of a CMS read access method, located in 
DM'l'COM. The task is then started as a nev active task under RSCS. 

PROCESS COMMANDS: D!!TC!!X DMTCMX receives commands by either GIVE request 
elements-Passed-by line-driver tasks, or from console-entered commands 
(via DMTREX). 

28 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

Task 
Name 

REX 

Module 
Name 

DMTREX 

Dr!TCRE 

Function 

Handles RSCS operator console I/O; accepts 
requests for services passed by other system 
service tasks or line driver tasks; terminates a 
task; handles program check interruptions. 
Loads and creates a system service or line driver 

I 

' I 
I 

' I DMTCMX 
task. 
Interprets RSCS command lines, and either executes! 

AXS 

LAX 

Line 
Driver 

DMTMGX 

DMTRGX 

DMTCOM 

DMTAXM 
DMTAXA 

DMTLAX 

DMTSML 

DMTPOW 

DMTNPT 

DMTVMB 

DMTVMC 

DMTNJI 

DMTNCM 

DMTNHD 
DMTNIT 

the commands or forwards command request elements 
to line drivers 
transmittal. 

for further processing or 

Builds a message line, and distributes the 
constructed message for delivery or forwarding to 
the appropriate recipient(s). 
Handles command and message routing request 
~lemellt:>. 
Comprises a number of independent re-entrant 
subroutines which may be called by any task. 

Provides the interface to the VM/370 spool system.I 
Provides accounting interface. I 

Manages communication port allocation. 

Manages a telecommunications port for a 
programmable remote station using RTAM. 
Manages a telecommunications port for a 
VSE/POWER system. 
Manages a telecommunications port for a 
nonprogrammable remote station terminal. 
Manages a BSC te lee ommunica tions port for a 
VM/370 to VM/370 link. 
Manages a channel-to-channel VM/370 to VM/370 
link. 
comprises the following three modules; manages a 
BSC telecommunications port for a VM/370 to 
OS/VS NJI/NJE link. 
Manages the communications adapter for communica­
tion with an NJI/NJE subsystem via BSC or CTCA .• 
Processes network header records. 
Performs D~TNJI initialization. 

Figure 2-3. RSCS Tasks 

The commands *, DEFINE, DELETE, DISCONN, HT, EXEC, ROUTE, CP, CPQUERY, 
FORCE, QUERY, SHUTDOWN, and START (for inactive links) are executed by 
DMTCMX. Executing these commands generally involves referencing and 
modifying system status tables (SV~CTORS, TTAGQ, TLINKS, etc.). 

If the command is not one that DMTCMX executes within its own code, 
DMTCMX examines the command line for syntax errors and then passes it to 
the appropriate task for execution. To do this, DMTCMX generates a 
formatted table called a command alert element to be passed to another 
active task for execution via an ALERT asynchronous exit. 

The commands CHANGE, CLOSE, ORDER, TRANSFER, REORDER, and PURGE are 
executed by DftTAXS; the commands BACKSPAC, CMD, DRAIN, FLUSH, FREE, 
FWDSPACE, HOLD, MSG, TRACE, and START (for active links) are executed by 
the line driver task for the specified link. 

Section 2: Method of Operation - RSCS Control Program 29 



Licensed Material - Property of IBM 

~ROCES~ MESSA§ES: DMT~GX DMTMGX manages distribution of all RSCS 
messages, which may be generated by REX or by any other RSCS task. Each 
message to be issued is presented to DMTMGX (via GIVE/TAKE for tasks 
other than REX) along with an internal routing code and an internal 
se ve ri t y code • 

Messages may be addressed to the local RSCS operator console, to the 
local VM/370 operator, to a local VM/370 user console, to a remote 
station operator, or to any combination of these destinations, by the 
routing code. The severity code is defined for each message, and is an 
indication of the importance of the message. 

Messages for the RSCS local ~perator console are enqueued for output on 
the RSCS virtual machine console. Messages for the local VM/370 system 
operator and for local virtual machine consoles are issued by executing 
a VM/370 CP MSG command (through the DIAGNOSE 8 interface). Messages 
for remote RSCS operators are presented to the line drivers for the 
associated links by the RSCS MSG alert element interface. 

TERMIN!TE SYSTE~ TASK~ AND HANDLE PROGRlM CHECKS: DMTR!! When a line 
driver task requests termination, a TAKE request is passed to DMTREX 
specifying that function. DMTREX marks the task as terminated, then 
searches for active I/O associated with the task. If active I/O is 
found, it is terminated. To ensure that system integrity is maintained 
during the termination of the I/O, a mechanism (at label QUIESE) handles 
situations in which an HIO (Halt I/O instruction) does not take effect 
immediately. 

All RSCS program checks are handled by DMTREX* Program check diagnostic 
information is dumped, a message to the operator is issued, and the RSCS 
system status is modified, depending on the nature of the program check. 
If the program check occurs in a line driver, the line driver execution 
is terminated and its link is deactivated. Otherwise, RSCS 
automatically shuts down. 

ROUTING OF COMMANDS AN~ ~ESSA~~: DMTRG! DftTRGX processes command 
routing request elements and message routing request elements. Routing 
request elements received from remote systems are passed to DMTRGX by 
the receiving line driver. If the routing request element is addressed 
to the local location, commands are passed to DMTCMX for processing and 
messages are passed to DMTMGX for distribution to recipients. 

DMTCOM contains various routines used by RSCS tasks and other supervisor 
routines. The address of a vector table, which points to the individual 
DMTCOM routines, is located at address X'0280' in storage. These 
routines and their functions are descibed in Figure 2-4. 

DftTAXS is RSCS's interface to the VM/370 spool system. When a spool 
file arrives at the RSCS virtual machine, AXS receives the associated 
asynchronous interrupt, reads and interprets the file's VM/370 spool 
file block (SFBLOK) and TAG, enqueues the file for transmission as 
appropriate, and notifies the appropriate line driver of the new file's 
availability. AXS provides a GIVE/TAKE request interface to line driver 
tasks for spool file data input and output, and defines and detaches 
virtual spool I/O devices as needed. Also, AXS provides an interface to 

30 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

Routine Name 

GET LINK 

GET ROUTE 

GET PAGE 

FREEPAGE 

MFI 

!!FO 

TODEBCD 

TODS370 

RCMSOPEN 

RCMSGET 

GETSUPAG 

Vector Table 
Pointer Name 

GLINKREQ 

GROUTREQ 

GPAGEREQ 

FPAGEREQ 

PMSGREQ 

GP! SGREQ 

GTODEBCD 

GTODS370 

CMS OPEN 

CPISGET 

GPAGESUP 

Figure 2-4. DMTCOM Routines 

Function 

Get Link Table entry 

Get Routing Table entry 

Get page of virtual storage 

Free page of virtual storage 

Place entry in message stack 

Remove entry from message stack 

Convert S/370 TOD clock to EBCDIC 

Convert EBCDIC clock value 
form 

Open a CMS file for input 

Read next record of CMS file 

Allocate page of virtual storage for 
supervisor use 

D!!TCMX for second-level command execution support. 
AXS maintains a queue of a fixed number of virtual storage elements 
(called tag slots) that describe files currently ovned by the RSCS 
virtual machine. To maintain RSCS integrity in a simple way when a very 
large number of files is enqueued on the RSCS virtual machine, the 
virtual storage tag queue is not extended during execution. 

When a new file arrives at the RSCS virtual machine, its destination 
locid is examined, and it is accepted only if there is a matching link 
or route linkid for which there is a free tag slot available. If the 
file's destination locid is not defined as a linkid, or as an indirect 
path through the routing table, the file is returned to the user and the 
originating user is notified of the action. If there is no free tag 
slot available for a defined linkid, the file is left "pending", and is 
accepted when a tag slot becomes free. While a file is pending, it is 
not recognized by the RSCS command processors, and cannot be referenced 
through RSCS functions. 

To prevent links from being totally locked out by an exhausted (and 
stagnant) virtual storage tag queue, a minimum number of tag slots is 
reserved for each link. This guarantees that a minimum number of files 
are accepted for each associated link. The number of reserved slots is 
defined during system generation or in the DFFINE command for each link 
to be defined in RSCS. The appropriate number of slots to be reserved 
for each link depends on the expected file traffic, the link's line 
speed, the tiae the link is to be active, and the desired level of 
service to be provided to the link. This number for each link may be 
arrived at through actual operational experience in each location. 

Section 2: ftethod of Operation - RSCS Control Program 31 



Licensed ftaterial - Property of IB" 

Mana~ Telecommunication Line Allocation: DftTLAX 

DftTLAX is responsible for line port resource allocation to line driver 
tasks. DMTLAX allocates available switched ports (when a link is 
activated without a specified line address) through an ALERT request 
interface. When a line port is specifically requested (by virtual 
address), DMTLAX checks the device for validity as a line port. 

As part of the link activation process, REX (module DMTCRE) loads, for 
each defined link, a line driver module and starts a line driver task to 
service a port to an adjacent node in the network. 

Note that when RSCS is servicing more than one link with the same line 
driver specified, there is a separate copy of the same line driver 
module loaded for the different line driver task§ for each port. 

The general functions of line driver tasks are: 

• Manage I/O on the BSC telecommunications adapter or CTCA. 

• Manage transmission of spool file data via GIVE/TAKE requests to the 
AXS task. 

• Execute or forward command alert elements received from the PRX task. 

The precise functional requirements for communications management vary 
from line driver to line driver, depending on the type of remote station 
the line driver supports. 

Each line driver maintains its link status and line activity (TRACE) 
records in the RSCS system status tables. 

Six line drivers are provided. DKTNPT supports remote 2770, 2780, 3770 
(in 2770 mode), and 3780 terminals. DMTSML supports an RTAM interface 
to remote HASP-type and ASP-type systems or workstations. DftTPOW 
supports communication with VSE/POWER. DMTVMB is for VM/370-to-VM/370 
communications on BSC lines. D~TVMC is for VM/370-to-VM/370 
communications on channel-to-channel adapters. DftTNJI is for 
communications from Vft/370 to an NJI/NJE subsystem on BSC lines or 
channel-to-channel adapters. 

I/O MAN AGE ME NT 

The tvo kinds of RSCS I/O operations are: I/O to spool files and I/O to 
RSCS virtual devices. For I/O to input spool files, the AXS task and 
line driver tasks use CP DIAGNOSE commands. The procedures for I/O to 
RSCS system devices, telecommunication adapters, and output spool 
devices are described in this section. 

I/O management for tasks consists of the following functions: 

• Queuing requested I/O operations 

• Starting I/O operations 

• Handling I/O interrupts 

32 IB~ VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

• Terminating completed I/O requests. 

gandling I/O Requests 

When a task requires an 1/0 operation, it builds an 1/0 request table in 
its own storage and passes the table's address to the I/O manager. This 
table contains the following information: 

• A synchronization lock, where I/O completion is to be posted 

• The address of the dEvice on which the I/O operation is to take place 

• The number of sense bytes to be returned, when applicable 

• The address of the channel program to be executed. 

See Section 5 for the format of the I/O request table. 

The task obtains the I/O request entry address from its SVECTORS table 
and performs a BALR to it, passinq the address of the I/O table in 
register 1. 

The BALR is to subroutine DMTIO~RQ in module DMTIOM in the REX task. 
Here, the callinq task execution is suspended with a FREEZE SVC and the 
request is queued, as described in Figure 2-5. 

SVECTORS 

MPXIOO 

SELIOO 

IOEXITO 

ACTIVE 
10 ENTRY 

ASYNE ASYNE 

'" ~a..1Tnv 
IV Cl'lllnT 

ASYNE 

Figure 2-5. I/O Queues and Subqueues 

ASYNE 

ACnVE 
10 ENTRY 

Section 2: ~ethod of Operation - RSCS Control Program 33 



Licensed Material - Property of IBM 

The supervisor I/O queues (MPXIOQ and SELIOQ) include an active queue 
and a number of inactive or "pending" subqueues. Each element in the 
active I/O queue represents an I/O operation which is active on a 
particular nonshared 1/0 subchannel. There is only one element in the 
active 1/0 queue for a given nonsbared I/O subchannel. The active I/O 
queue is ordered according to ascending numerical I/O subchannel 
address. Chained to each active I/O queue element there are inactive 
elements for any operations waiting to be performed on that same 
nonshared 1/0 subchannel. The queue element chains are dynamic; the 1/0 
handler adds, inserts and removes elements as required. 

Queuing takes place in the subroutine DMTIOMRQ in module DMTIOM in the 
RSCS supervisor. 

QUEUlNQ ACT!!~ 1/0 EL~MENTS When the requested I/O operation is for a 
presently idle I/O subchannel, an I/O element representing the request 
is built and chained into the active I/O queue (in its I/O subchannel•s 
numerical address position). The 1/0 operation is then started by 
branching to subroutine IOSTART in module DMTIOM. 

QOEUIN~ PENDING I/0 ]1EMENTS When the requested 1/0 operation is for an 
I/O subchannel that presently has an I/O element enqueued on the active 
I/O queue, the nonshared subchannel is busy (active) , and the new I/O 
request cannot be started immediately. In this case, an I/O element 
representing the request is built and enqueued on the subchannel's 
inactive I/O subqueue. Then control is passed to the dispatcher module 
DMTDSP in the supervisor. 

I/O operations are started by subroutine IOSTART in module DMTIOM in the 
RSCS supervisor. It attempts to start the I/O for a newly enqueued 
active queue entry.. If it receives a condition code O, the operation 
started successfully, and DMTIOK passes control to the dispatcher module 
DMTDSP in the supervisor. If the 1/0 cannot be successfully started, it 
branches to subroutine IODISMIS to terminate the operation with an 
error. 

I/O interrupts are handled by subroutine DMTIOMIN in module DMTIOM in 
the RSCS supervisor.. It locates the active I/O queue element of the 
device that issued the interrupt, and updates the contents of the 
element and the status information in the reguestor's I/O table. If the 
interrupting I/O is still running (status incomplete), it passes control 
to the dispatcher module DMTDSP in the supervisor. If the I/O is 
complete, it branches to the IODISMIS subroutine to dequeue the 
interrupting device's I/O request element. 

If the DMTIOMIN subroutine finds no active I/O queue element for the 
interrupting device, it scans the I/O asynchronous exit queue to locate 
a request for asynchronous I/O exit for the interrupting device. If 
such a request is found, control is passed to the requestor's exit 
routine. Otherwise, the interrupt is ignored, and control is passed to 
the dispatcher. 

34 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

The subroutine IODISMIS in module DMTIOM in the RSCS supervisor removes 
the active I/O request queue element specified by the routine that 
branches to it. It calls the POST routine to signal I/O completion to 
the requesting task. It rechains the remaining I/O request queue 
elements. If there is an inactive I/O queue for the just-detected 
entry's nonshared I/O subchannel, it makes the first inactive entry 
active by chaining it into the active queue, and branches to the IOSTART 
subroutine in DMTIOM. 

INTERRUPTION HANDLING 

Supervisor service routines handle three kinds of interruptions: 
external interrupt1ons, SVC interruptions, and I/O interruptions. 

In RSCS, supervisor routines use the SVC (SUPERVISOR CALL) to suspend 
the execution or dispatching of a task when that supervisor routine 
received control. On an SVC interruption in RSCS, DMTSVC is entered. 
DMTSVC saves the status of the executing task and passes control to the 
calling supervisor routine in supervisor execution mode. 

RSCS handles external interruptions from tasks by searching for 
asynchronous exit requests supplied by tasks. When a request with a 
code matching the external interruption code is found, its asynchronous 
exit is taken; otherwise, the external interruption is ignored. 

I/O interruptions are handled by the RSCS I/O manager. When an active 
I/O request causes an I/O interruption, the status of the I/O request is 
updated to reflect the new information. Otherwise, a search is made for 
an asynchronous exit request for the interrupting device. When one is 
found, the asynchronous exit is taken.. Otherwise, the interruption is 
ignored. 

VMCF (Virtual Machine Communications Facility) external interrupts are 
used to pass CP Special Messages to RSCS. When one of these interrupts 
occurs, control is passed to DMTREXCF which disables RSCS for other VMCF 
interrupts and posts the VMCF synch lock for DMTREI processing. DMTREX 
moves the pertinent VMCF header information and Special Message text to 
the RSCS defined buffer (REXREQ). Control is then passed to DMTCMX for 
Special Message processing which consists of validity checking the 
Special Message text and performing the indicated RSCS command. DMTCMX 
then returns control to DMTREX which enables RSCS for VMCF external 
interrupts. 

RSCS SPOOL FILE FORMAT 

RSCS uses the CP spool file facilities of VM/370. The spool file 
records are one page (4096-byte) blocks that contain data records and 
control records. The data records are punch card or print line images, 
and appropriate ccws. The control records are linkage records and tag 
records, and the special headers and trailers on files from non-RSCS to 
non-RSCS systems. 

Section 2: Method of Operation - RSCS Control Program 35 



Licensed ftaterial - Property of IBft 

~f Spool Data Records 

Each spool logical record (card or print line) is stored as one ccw that 
moves data (READ or WRITE), a TIC to the following ccw, and the full 
data record. Space is left at the end of each buffer so that a SENSE 
command can be inserted to force concurrent channel end and device end. 
For card punch channel programs there is an additional back chain field 
that points to the card previously punched so that error recovery for 
punch equipment checks can back up one card. The only exception to the 
format of READ/WRITE-TIC-Data is in buffers of files directed to the 
printer. In this case, immediate operation code ccws (skips and spaces) 
have their suppress data transfer flag (skip) bit set to one, and are 
followed by the start of the next record. 

In addition to the data and ccws contained in each 4096-byte spool 
buffer, the first two doublevords contain CP-supported forward and 
backward links to the next and previous buffers in the file. This 
tvo-vay linkage allows the file to be backspaced or restarted from any 
point at any time. Also, it means that if I/O errors are encountered 
while reading one buffer, the file is put in system hold status. If 
purged, all buffers except those in error are released. The two-way 
chain allows this control of the file while preventing fragmentation by 
allowing pages to be assigned and released individually regardless of 
their ownership,. 

The first spool buffer of an output spool file contains a special 
CP-supported data record called the tag record. This record immediately 
follows the two doublewords containing the forward and backward buffer 
linkage pointers. The tag record allows Vft/370 users to specify 
information to be associated with spool files that they generate. The 
information is entered via the CP TAG command, although the tag record 
is not considered a spool file data recora and is not printed or punched 
as part of the spool file. However, the contents may be interrogated 
with the CP TAG QUERY operator coamand. 

The format of the tag record is a NOP ccw, followed by a TIC to the next 
ccw and a 136 byte data field. To differentiate the tag record froa an 
im•ediate control ccw (no TIC-data sequence) independently of the 
command code, the skip bit (bit 35) in the ccw has the following 
convention: 

Bit 35 = 0 
1 

for NOP ccw, TIC, data (tag record) 
for control CCV (immediate command) 

The tag record is a user information record, and RSCS as a "user" 
defines for its own use a special format of data.in the tag records. 

Whenever a file that is received on a link and spooled is to be 

36 IBM VK/370: RSCS Networking Logic 



Licensed !aterial - Property of IB! 

processed (forwarded; by another line driver, RSCS prefaces the tag data 
with a three character string, c•s&F', called a store and forward flag, 
that identifies to the RSCS file acceptor function a tag written by 
RSCS. 

A tag with a store and forward flag has more information than the tag 
written by CP when a virtual machine user spools a file to PSCS. (The 
CP-vritten tag contains the operands that the virtual machine user 
supplies, in RSCS-specified syntax, for each file spooled to RSCS from a 
local virtual machine) • 

Non-RSCS Control Records 

The basic OS/HJE transmission unit is a job. RSCS handles each job 
transmitted from an NJE system as an individual file.. Within the job 
are control statements: job header, data set header on each data set in 
the job, job trailer. To accommodate these control cards as unit record 
data records within the CP spooling discipline, RSCS converts them to 
NOP records (command code X'03 1 in their CCWs) while they are within a 
VM/370 system, and attaches each job's routing information on a tag. 
When forwarding the• on an RSCS-to-os link, the line driver removes the 
tag and reconstructs the NOP control records as OS control statements. 

If NJE jobs are punched or printed on real devices within the V!l!/370 
realm, or are read by virtual machine spool readers, the NOP records are 
discarded and do not appear as garbage data within the real data. 

VIRTUAL STORAGE MANAGE!ENT 

The supervisor virtual storage service routine D~TSTO handles requests 
by tasks for main storage. When a task requests main storage, DMTSTO 
reserves page(s) of storage for it. Main storage is freed directly by 
task programs. 

DMTQRQ manages requests for free elements of the supervisor status 
queue. supervisor routines call DftTQRQ to reserve and release 
supervisor status queue elements .• 

RSCS Basic Functions 

This section describes the major functions of RSCS. It is to help you 
locate the module that contains the code for an operation within an RSCS 
function. The function descriptions describe the sequence of operations 
and the modules and tasks they occur in. The descriptions assume an 
understanding of supervisor services such as task dispatching, 
task-to-task communication, task synchronization, and I/O management. 

RSCS CONFIGURATION AND STARTUP 

The RSCS dynamic loader (DMTCRE) loads text files directly from CMS 

Section 2: Method of Operation - Basic Functions 37 



Licensed Material - Property of IBM 

disks, using the reentrant CMS read access method in REX module DMTCOM. 
The loader restricts the program to be loaded to a single CSECT and does 
not resolve external references. Multiple module RSCS tasks are merged 
into a single CSECT text file prior to loading, using the RSCS preloader 
under c MS. 

The three initialization modules are DMTINI, DMTMIN, and DMTIRX. DMTINI 
performs IPL disk load write and read operations. DMTMIN is an MSUP 
module that performs all initialization functions independent of 
particular task level programming. DMTIRX is a REX task module that 
performs all initialization related to specific RSCS functions. 

Initial loading of RSCS is performed by DftKLDOOE LOADER from the virtual 
card reader. When initial loading is complete, control passes to 
DMTINI, which functions as a stand-alone routine. The operator is asked 
for instructions, and RSCS is normally written in IPLable format to the 
system residence disk. On subsequent IPL from disk, DMTINI reads the 
disk and reloads RSCS into storage. When DMTINI has completed its 
function, control passes to DMT!!IN. 

D!TMIN begins by initializing its own base register and the fixed 
address fields in low storage. It determines the size of virtual 
aachine storage by referencing each storage key until an addressing 
exception occurs, and then DMTMIN copies itself to the last page in 
storage. From its new location at the end of storage, DMTMIN builds the 
!SUP storage allocation map, KAINKAP, according to storage size, 
starting at the beginning of the originally loaded DMT~IN module. 
Immediately following the end of the storage map, the supervisor queue 
is built and chained into a single free element queue. The minimum 
number of supervisor queue elements is computed as two for each page of 
main storage, and is extended through to the end of the last storage 
page required for the minimum count. All of the storage in use by MSUP 
at this point is reserved by placing X'FF' in the storage map entry for 
each page. Finally, the initial task (REX) is created by dequeuing a 
free supervisor queue element, building the initial task element in it, 
enqueueing the new task element as the task queue, and reserving a 
single page of storage at X1 10000' for the initial task. Task 
processing is begun when DKTKIN completes by passing control to the MSUP 
dispatcher. The storage used by DMTMIN remains unreserved, and is 
normally used to load the first task dynamically started by DMTIRX 
(AXS) • 

DMTIRX is entered immediately the first time REX is dispatched by MSUP 
as the initial task.. Initially, DKTIRX copies itself to the highest 
possible page boundary address (e.g., X'E000') before the start of REX 
at I'10000•, sets its base registers to the new address, and branches to 
label IRXGO in the new copy. The task name 'REX' is placed in the 
initial task element, and RSCS-defined task vectors are set in the MSUP 
low storage TVECTORS fields. The virtual machine user ID being used is 
retrieved from CP by a hypervisor call (DIAGNOSE X'00') and is set in 
its field in DMTCOM. Next, the operator console and system residence 
DASD device are identified by a similar hypervisor call (DIAGNOSE 
X'24'), and I/O parameters for these devices are initialized. Next, the 
CMS Access Control Areas in DMTREX and DMTCRE are initialized as 
follows: 

1. If the RSCS system disk is standard CMS 800-byte format, no 
special initialization is required and the routine is exited. 

2. When the RSCS system disk is in CMS Enhanced Disk format, the 
GETSUPAG routine in DMTCOM is called to obtain virtual storage for 

38 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

later use as data buffers. The addresses of the obtained buffers 
are set in the CMS Access Control areas and the routine exited. 

The RSCS location definition, link tables, default start parameters, 
route table, port table, tag slots, and installation variables are 
initialized from the RSCS directory by a call to GENVNET. The 
installation specification tables and the tag slot queue are built 
beginning at the original starting address of DMTIRX, such that DMTIRX 
and DMTINI (which are no longer needed) are ov~rwritten. 

on return from GENVNET, the total storage from the beginning of the REX 
task to the end of the installation variable tables is computed and 
reserved for the REX task in the MSUP storage map. Next, the operator 
console I/O table in DMTREX is initialized, the console and. timer 
asynchronous interrupt exits are initialized by a call to the ASYNREQ 
(DMTASY) entry to MSUP.. At this point, RSCS prepares for communicating 
with the CP Special Message Facility by issuing a VMCF AUTHORIZE command 
and setting bit 31 on in Control Register 0.. The AXS and LAX tasks are 
loaded by calls to DMTCRE, virtual storage is obtained for the DIAG 8 
response buffer via a call to GETSUPAG, the initial active link count is 
set to zero, the maximum number of startable links is computed and set 
based on the virtual storage available, the program check new PSW is set 
to enter the program check manager in REX (DMTREXPI), the initial 
messages are generated and issued by a call to DMTMGX, and control is 
passed to DMTREXIN. At this point, REX executes the PROFIL~ RSCS 
initial command sequence if present and not suppressed by the IPL 
parameter keyword 'NOPROF 1 • Finally, AXS is notified via an alert call 
from REX that initialization is complete, queued spool input files are 
accepted by AXS, and normal RSCS processing begins. 

RSCS SYSTEM DISK ACCESS 

The RSCS system disk is a CMS mini disk created, updated, and maintained 
by installation personnel working under CMS. The RSCS access method 
supports the RSCS system disk as shown in Figure 2-6. 

r 
I Current CMS Disk Format Enhanced Disk Format* 

Device 
Type Block Size: 800 1K 2K 

2314 Yes Yes I Yes 
3330 Yes Yes I Yes 
3340 Yes Yes I Yes 
3350 Yes Yes I Yes 
3310 No Yes I Yes 
3370 No Yes I Yes 

I* This support may be obtained in VM/370 Basic Systems 
I Extensions Program Product, Release 2; it does not 

4K 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

I support 800-byte blocks. All of the support for Enhanced 
I Disk Format is new function for RSCS Networking. 

Figure 2-6. RSCS System Disk Format 

Section 2: Method of Operation - Basic Functions 39 



Licensed !aterial - Property of IBM 

In the algorithms used to access DASDs in blocksizes other than 800 
bytes, the RSCS access method peraits one level of indirect addressing 
(one level of pointer blocks). This enables the RSCS user who creates 
the RSCS system disk under CMS of the VM/370 Basic systems Extensions 
Program Product, Release 2, to have the characteristics shown in Figure 
2-7. 

Block K axi11um Number l!axiaum Number Kaximum Size 
Size of Files of Data Blocks of File 

1K Bytes 4,096 256 256K Bytes 
2K Bytes 16,384 512 1024K ·Bytes 
4K Bytes 6 5, 53 6 1024 4096K Bytes 

Figure 2-7. R SCS System Disk Characteri sties 

The operation of this support within RSCS is transparent to the RSCS 
user. This support is neither invoked nor used by the RSCS user. An 
installation's options for foraatting the RSCS system disk under CKS may 
be determined from the preceding table. 

To locate a file, given the file name and file type, this support usees 
the addressing scheme shown in Figure 2-8. 

RSCS FILE HANDLING FUNCTIONS 

RSCS file handling is described in the following overview section, 
followed by descriptions of the link table, link activation, and the 
input and output of files by the line drivers. Note that there is a 
description of the !ULTI-LElVIIG protocol used by several line drivers, 
in Appendix A of this publication. 

This section is a high level description of the file handling that RSCS 
provides. The description uses Figure 2-9 to show RSCS systems in three 
V!/370 nodes processing a routed file from an originating node, through 
an intermediate node, to a destination node .• 

To fulfill its networking file handling capabilities, RSCS has functions 
to: 

1. Receive files spooled to it from virtual machine users on the local 
VM system where it resides. (See Figure 2-10, path marked with 
circled 11.) 

2. Receive files from adjacent nodes. (See Figure 2-10, paths marked 
vith circled 2.) 

3. Analyze and send received files to local virtual users. (See 
Figure 2-10, path marked with circled 3.) 

40 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

3rd BLOCK 
....--------~-//-----, 
I CftS= I I BLOCK I 
I or I DOPI SIZE I 
I CMS 11 I I 

.----' 

I 
I 
I 

//-.J 

I 
I 

FIRST FST DlT l BLOCK (FSTB) 

L-)f t OF II II 
IPTR U'OPI ii FST ii FST FST 

r-> I LEVELS I II II 
I -·-~--+·-----------------~---//--~-__,, 
I I 

-DIRECTORY-> I 
FILE ENTRY 

I 
----,I ..._ __ > ~ 

----1 I 
+->I 

---1 I 
POINTER +--, 
BLOCK I I 

00000000 I I 
----1 I 

I I I 
----1 '->I 

I I ----· I 
----1 

I 
----1 

I 

4 bytes> ------//-, 
+------->I I 

----1 ..,_ _______ //~ 
POIITEB +1----
BLOCK I -------//-, 

000000001 ---->I I 
-----1 -----------11~ 

I 
-----1 

I 
----1 

I 

4 bytes> 

Figure 2-8. Locating a File on the RSCS System Disk (Part 1 of 2) 

Section 2: Method of Operation - Basic Functions 41 



Licensed "aterial - Property of IBM 

The procedure for locating a file is as follows: 

1. A check is made to determine whether the disk is in EDF format or 
the current format. If the volume label identifier field is 
"C PIS=", it is in the current format; if the identifier field is 
11 CMS1", it is in the Enhanced Disk Format. 

2. If it is in the current format, processing continues as in the 
VNET PRPQ. 

3. If it is in the Enhanced Disk Format, the first File Status Table 
Block (FSTB) is referenced by the Directory Origin Pointer (DCP). 

4. From the first FST in the FSTB, the number of pointer levels is 
obtained. If the number of pointer levels is O, the current and 
only FSTB is searched for the FST containing the given filename 
and filet ype. 

t 5. If the number of pointer levels is 1, the File Origin Pointer 
(FOP) points to the pointer block. Each entry in the pointer 
block points to an FSTB. The end of a partially filled pointer 
block is denoted by zeros. 

6. Using the pointer block entries, FSTBs are accessed and scanned 
until the required FST containing the given filename and filetype 
is found. 

7. If the number of pointer levels is 1, the FOP points to a pointer 
block. Each entry in the pointer block points to a data block. 
The end of a partially filled pointer block is denoted by ~eros. 

8. If the number of pointer levels is O, the FOP points to the one 
and only data block for this file. 

9. Using the pointer block entries, the data blocks are accessed 
until the file has been read. 

Figure 2-8. Locating a File on the RSCS System Disk (Part 2 of 2) 

4.. Analyze and forward files to adjacent nodes. 
paths marked with circled 4.) 

(See Figure 2-10, 

In this scenario, the network is very simple: three VPI/370 systems 
(VM1, VM2, and VM~ each with an RSCS system running, and each with 
telecommunication links. Systems VM1 and VM3 each have a user virtual 
system, CftS, running. (This is an example only; CMS does not have to be 
the user machine.) The scenario has six steps, A through F, described 
below. 

(A) User Archie on the CMS virtual system at location VM1 is sending a 
file to user Eob on the CMS virtual system at location VM3. To do 
so, Archie issues the CP commands: 

SP OOD TO RSCS1 
TAG DEV COD VM3 BOB 
PUNCH filename filetype 

These commands tell CP to spool the virtual punch output from 
Archie's job, place the specified tag data on the spool file, and 
give the spool file to the local virtual system called RSCS1. This 
is an instance of the first type of basic RSCS file handling 

42 IBM VM/370: RSCS Networking Logic 



\ , •• 4 
VIVI I 

A 

Licensed Material - Property of IBK 

function described belov. 

(B} After CP does this, RSCS1 looks at the tag information on the spool 
file. RSCS1 determines that the file is destined for VM3, and, to 
determine this location's specifications for forwarding files to 
VM 3, consults its routing tables and link tables.. It transmits the 
file on the link to VM2. This is an instance of the fourth type of 
basic RSCS file handling function described below .• 

(C) On the VM/37~ system VM2, the RSCS2 virtual machine receives the 
file and spools it. RSCS2 sees that the destination information in 
the file's tag data does not contain this location's (V"2;s; locid, 
and tells VK2 CP to give it to RSCS2. (It spools the file to 
itself in order to transfer the handling of the file from the RSCS 
receiving function to the RSCS sending function .• ) Then it tells 
RSCS1 that the file is successfully received, allowing RSCS1 to 
release and effectively erase its copy of the file.. This is an 
instance of the second type of basic RSCS file handling function. 

(D) CP informs RSCS2 of the new spool file's presence. RSCS2 performs 
the same forwarding function (type 4) described for RSCS1's 
forwarding of the file. In this instance, RSCS2's link table 
directs it to send the file on the VM3 link. 

(E) At system VM3, the RSCS3 virtual machine receives the file and 
spools it. RSCS3 sees that the file's tag data specifies user Bob, 
on the CMS system, on the VK3 location (locid) as the destination. 
RSCS3 tells VM3 CP to spool the file to virtual machine user Bob. 
RSCS3 issues a console message to Bob, informing him of the file. 
RSCS3 tells RSCS2 that the file is successfully received, 
terminating this transmission and allowing RSCS2 to release the VK2 
spool copy of the file. 

(F) CP passes the RSCS message and its own notification of the file's 
arrival to Bob. 

VM2 VM3 

CP 

Spool 

CMS RSCS 2 RSCS3 CMS 

B c D E 

Figure 2-9. Scenario of RSCS File Handling Functions 

F 

Section 2: Method of Operation - Basic Functions 43 



Licensed Material - Property of IBM 

This is handled by CP in the same way that it does for any other virtual 
machine under its control. Spool reader files are queued for input to 
virtual machines, and are retained by CP until they are read or purqed. 
Files are normally read by virtual machine simulated card readers, but a 
nuaber of direct hypervisor calls (simulated DIAGNOSE instructions) are 
provided by CP to allow virtual machine systems to interrogate and 
manipulate and read the input spool file queue. 

1. The line driver recognizes the start of an arriving file and issues 
a message to notify the RSCS operator. 

2. RSCS spools the file to itself (spool file opened for output). 

a. The line driver issues a GIVE request to DftTAXS requesting for 
a spool file to be opened for output (request code=11). The 
"request arrival" synch lock of D!TAXS gets posted. 

b. DMTA.XS gets dispatched at AXSCYCLE, tests the "request 
arrival" synch lock, finds that is on, and then branches to 
AXSACCPT. 

c. DMTAKE is called to take the GIVE request. 

d. REQXEQ is called to decipher the request code (11). It 
determines the address of the appropriate subroutine 
(OPENOUT), and branches to it. 

e. OPENOUT scans the link's queue of active output tag slots to 
determine if the file is already being processed. If so, the 
I/O area (TAKE response buffer) is returned to the line driver 
and the appropriate open code ("old.file found") is posted 
before control is returned to AXSCYCLE. 

f. If not so, OPENOUT: (1) calls GETLINK to check if the line 
driver has a locally defined link; (2) calls GETSLOT to get a 
free tag slot, and (3) calls GPAGEREQ to get a page for a new 
I/O area. 

g. The tag information supplied in the GIVE request is moved into 
the new tag slot. 

h. DEFINE is called to internally define a virtual punch by means 
of a call to CP. 

i. OPENOUT moves an asterisk to the virtual machine destination 
ID field (TAGTOVM field of the tag element) to indicate 
spooling the punch to RSCS. 

j. OPENOUT calls VSPOOLP to effect a CP SPOOL punch command. 

k. OPENOUT initializes the I/O area (pointed to by register 7) by 
building the device I/O table.. The tag element is then placed 
at the beginning of the link's active output tag queue. 

1. In response to the line driver's GIVE request, OPENOUT returns 
the address of a new I/O area and inserts the appropriate open 
post code before returning control to AXSCYCLE. 

44 IBM VK/370: RSCS Networkinq Logic 



Licensed Material - Property of IBM 

3. Tne line driver gets dispatched and issues subsequent punch 
commands as the file is received. 

4. When EOF is reached, the line driver closes the virtual punch. 

a. The line driver issues a GIVE request to DMTAXS, specifying a 
closing of the output file (request code= 1 12 1). 

b. DKTAtS gets dispatched at AXSCYCLE which eventually calls 
CLOSEOUT .. 

c. CLOSEOUT locates the active output tag slot and dequeues it 
from the active output queue. 

d. CLOSEOUT updates the tag element with information obtained 
froa the line driver's tag prototype. 

e. CLOSEOUT determines if the file is destined for this location 
or to a remote location. This is done by comparing the 
TAGTOLOC field with the LINKID field of the local location's 
link table. 

f. If the fields are not equal, the file is to be stored and 
forwarded. VTAGD is called to assemble the appropriate tag 
command text and to issue the CP TAG command. VTAGD inserts 
the "S&F" flag into the command text; the command text 
contains the following: 

S&F TAGTOLOC TAGTOVK TAGPRIOR TAGINLOC TAGINVM TAGINTOD 
TAGORGID TAGCNTL 

g. VSPOOLP is called to issue CP SPOOL punch OFF to reset the 
punch to no-spool mode. 

h. VCLOSEO is called to issue CP CLOSE punch. 

i. DETACH is called to issue CP DETACH punch. 

j. FPlGEREQ is called to free the file I/O area's virtual storage 
page. 

k. FREESLOT is called to free the tag. 

1. The close post code is set and control is returned to 
AISCYCLE. 

Upon receiving a file from a remote node, the line driver enters the 
file into its local CP spool system, as described previously. However, 
when the line driver closes the spool file, AXS determines that either 
the file is to be forwarded to a remote location (in which case the file. 
remains spooled to RSCS), or the file belongs to a local virtual machine 
(in which case the file is spooled to the local virtual machine's 
reader). Therefore, the sequence of events is like Steps 1 through 4 of 
the preceding paragraph with a difference, starting at Step 4-f, as 
follows: 

1. The line driver recognizes the start of an arriving file and issues 
a message to notify the RSCS console operator. 

2. RSCS spools the file to itself (spool file opened for output). 

Section 2: Method of Operation - Basic Functions 45 



Licensed ~aterial - Property of IBM 

3. The line driver gets dispatched and issues subsequent CP spool 
punch commands. 

4. When EOF is reached, the line driver closes the virtual punch. 

a. The line driver issues a GIV~ request to DMTAXS, specifying a 
closing of the output file (request code= 1 12 1 ). 

b. DMTAXS gets dispatched at AXSCYCLE which eventually calls 
CLOSEOUT. 

c. CLOSEOUT locates the active output tag element and dequeues it 
from the active output queue. 

d. CLOSEOUT updates the tag element with information obtained 
from the line driver's tag prototype. 

e. CLOSEOUT determines if the file is destined for this location 
or to a remote location. This is done by comparing the 
T~GTOLOC field with the LINKID field of the local location's 
link table. 

f. If the file is destined for this node (local locid same as 
TAGTOLOC field) , a further check is made as to whether the 
file is to go to a local virtual machine or to a remote 
workstation. 

With the TAGTOVM field as a search argument, GLINKREQ is 
called to see if a link with a link ID that matches TAGTOVM is 
defined at the location. If so, the file is spooled to RSCS 
and enqueued for transmission to the workstation. Otherwise, 
the file is spooled to the specified local virtual machine. 

5. The file is punched to the local virtual machine user. 

a. CLOSEOUT calls VTAGMSG to put user notification message into 
the spooled file's tag area. 

b. VSPOOLP is called to point the reader of the virtual machine 
(whose ID is stored in TAGTOVM) to the spooled file. 

c. VCLOSEO is called to issue CP CLOSE punch. 

d. DETACH is called to issue CP DETACH punch. 

e. FPAGEREQ is called to free the file I/O area's virtual storage 
page. 

f. FREESLOT is called to free the tag. 

g,. The close post code is set and control is returned to 
!XSCYCLE. 

1. CP notifies RSCS of the spool file on RSCS's virtual reader. 

a. A simulated asynchronous device end I/O interrupt is given to 
the lowest virtual device address reader that is both idle and 
eligible to read the file, RSCS's device address x•oo1•. 

b. The I/O interrupt handler (D8TIOM/IOASYNCH) selects the 

46 IBM VK/370: RSCS Networking Logic 



Licensed Material - Property of IB~ 

address of the asynchronous exit routine for RSCS and passes 
control to it (DMTAXM/AXSASYIO). 

c. A XSASYI o calls DMTPST to post the "file arrival" synch lock, 
and then returns control to the dispatcher. 

d. When DMTAIS gets dispatched, it executes at AXSCYCLE, which 
detects that the "file arrival" synch lock has been posted, 
and causes a branch to ACCEPT. 

2. RSCS accepts the file. 

a. DMTAXM/ACCEPT internally issues a "CLOSE RDR HOLD" to CP. 

b. ACCEPT calls GSUCCESS to read a spool file block and tag 
information. (GSUCCESS uses the VM/370 DIAGNOSE x·1~· 
instruction, subcode X'FF', to do this). The address of the 
spool file block and tag information is returned to the buffer 
specified in the DIAGNOSE 1•1q• instruction.) 

c. ACCEPT calls TAGFIND and scans the tag queue of every link 
defined in the link table to look for a match vi th the tag 
just read .• 

If there is a match it indicates that the spool file block and 
tag just read was already in process. TAGFIND returns to 
ACCEPT with condition code O, and ACCEPT reads the next tag 
and spool file block. 

d. If there is no match, the spool file is eligible for 
processing; TAGFIND returns to ACCEPT with condition code 3. 
ACCEPT then checks the validity of the data in the tag read. 

e. ACCEPT extracts the destination information from the tag and 
calls the module GROUTREQ to determine the link on which to 
enqueue the file. 

If GROUTREQ fails to find a link that has been defined for the 
destination, ACCEPT checks if the file has been marked "S&F" 
(store-and-forward) and if it originated from RSCS. 

If the file has been flagged S&F (previously done when the 
file was closed after RSCS received it and spooled it) and if 
there is no link defined for it: (1) the spool file is purged 
from VM/370, (2) AXSM103, which issues a message request to 
DMTREX, is called to notify the spool file's originator, and 
(3) the next spool file is read from RSCS's reader. 

If the file was not flagged "S&F" (that is, the file 
originated locally), ACCEPURG examines the location ID of the 
file's originator. If the originating location ID (TAGTOLOC) 
is the same as the local LOCID (described by the LINKID field 
of the first link table entry in the link table chain), the 
file must have originated from VM/370's real card reader if 
the file origin userid is equal to the userid of the RSCS 
virtual machine. In this case the file is purged and a 
message issued to the originator. 

If the origin location ID is not the local LOCID, the file is 
transferred to the originator by internally issuing the CP 
TRANSFER command, and a message is sent to the originator. 

f. If a link is found, GETSLOT is called to get a free tag slot. 

If no free tag slot is available: (1) the file is left alone 

Section 2: ~ethod of Operation - Basic Functions 47 



Licensed ~aterial - Property of IBM 

in the spool, (2) the count of the number of pending files is 
incremented, (3) lXS !110 2 is called to issue the "file pending" 
message, and (4) the next spool file block and tag is read. 

g. TlGGEN is called to aove the contents of the tag and spool 
file block into the free tag slot to generate a nev tag 
eleaent. 

h. TAGPLACE is called to enqueue the tag slot, by transmission 
priority and file size, to the tag queue of the link selected 
by G ROUTREQ. 

i. The LFLAG bits in the link's link table are checked to see if 
the link is already processing a file. If so, ACCEPT proceeds 
to read the next spool file• If not so, the ALERT bit is 
reset and an ALERT is issued to the link's line driver and 
control is returned to the dispatcher. 

3. The line driver reads the spool file for transmission to the next 
node. (Spool file is opened.) 

a. The line driver issues a GIVE request to DMTAXS, requesting to 
open a file for input "(request code = x• 01 '). The "request 
arrival" synch lock for DMTAXS gets posted. 

b. When DMTAIS gets dispatched, AXSCYCLE finds that its "request 
arrival" synch lock bas been posted and thus branches to 
AXSACCPT, which calls DMTAKE to take the GIVE request. REQXFQ 
is then called. REQXEQ deciphers the request code (X'01'), 
determines the appropriate processing routine (OPENIN), and 
branches to it. 

c. OPENIN searches for active files for the link specified in the 
request by scanning its active input tag queue. If such a 
file is already in process, that file is returned to the 
caller. 

d. OPENILHK finds the link table for the link that sent the open 
request. This is done by scanning for a link table that 
contains a link ID that matches the requesting link's ID. 

e. Call UNPEND to enqueue as many pending files for the line 
driver as possible: (1) Call TAGFIND to search for a pending 
file for this link, (~) call TAGGEN to generate a tag slot, 
(3) call TAGPLlCE to enqueue the new tag slot on the link's 
queue, (4) update the pending file count, and (5) issue a 
message if a pending _file is missing. 

f. call FILSELEC to select a file to be read from the link's tag 
queue. FILSELEC scans the tag queue, pointed to by LINPUTQ in 
the line driver's link table. It dequeues the first tag found 
for a file that is not in hold status and that matches the 
file class setting in the caller's link table. A message is 
issued if the file is missing from CP's spool system. 

g. Call GPAGEREQ to get a page of storage for the I/O area. The 
address of this storage is stored in the TAGBLOCK field of the 
selected tag slot. 

h. Call DEFINE to internally define a virtual reader by means of 
a call to CP. 

i. Call VSPOOLR to internally issue the "SPOOL READER CLASS *" 
command. 

48 IB! V!/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

j. OPENIN issues the DIAGNOSE x•1q• command to make the file 
described in the tag slot the next in the reader just defined. 
Then it opens the file by issuing another DIAGNOSE X'14' 
command to read the first spool page buffer of the file into 
the I/O are a .. 

k. OPENIN enqueues the tag slot at the beginning of the active 
input tag queue. 

1. As a response to the original open request by the line driver 
to DMTAXS, OPENIN returns to the line driver the address of 
the I/O area (buffer; containing the spool file records. The 
line driver reads the rest of the file with successive 
DIAGNOSE X'14' calls. 

m. l branch is made to OPENEXIT which inserts the appropriate 
open post code before giving control back to AXSCYCLE. The 
return from TAKE posts the GIVE table in the line driver 
storage. 

4. The line driver is dispatched and starts transmitting spool file 
records to the remote location... EOF is recognized when a DIAGNOSE 
X1 14' returns EOF on the input spool file. 

5. The line driver receives positive acknowledgement from the 
receiving location after the file is completely transmitted. The 
file is purged or held depending upon the close options. {Spool 
file is closed.) 

a. The line driver issues a GIVE request to DMTAXS, requesting 
input file closing (request code= X'02'). The "request 
arrival" synch lock for DMTAXS gets posted. 

b. D!TAXS gets dispatched at AXSCYCLE and finds that its "request 
arrival" synch lock has been posted, and branches to AXSACCPT. 

c. DKTAKE is called to take the GIVE request. 

d. REQXEQ is called to decipher the request code (X'02'), 
determines the name of the appropriate subroutine (CLOSIN), 
and branches to it. 

e. CLOSIN scans the active input tag queue for the tag of the 
file to be closed. When the tag is found, it is removed from 
the active input tag queue. 

f. CLOSIN examines the AXSREQ field of the AXS monitor control 
area and decides whether the file is to be held or purged from 
the spool system. (AXSREQ contains a copy of the line 
driver's request element. .. ) 

g. CLOSIN frees the I/O areas used, sets the appropriate close 
post code, and returns control to AXSCYCLE. 

COMMAND AND "ESSAGE HANDLING FUNCTIONS 

Command and messaqe flow within RSCS is handled by a store and forward 
mechanism with differences from file store and forwarding. Some 
differences are: 

• Commands and messages are not stored on spool files, and are lost if 
the RSCS node handling them goes down. 

Section 2: ~ethod of Operation - Basic Functions 49 



licensed Material - Property of IBft 

• Routed commands and messages are not forwarded if the necessary link 
is undefined, inactive, or not connected. 

Figure 2-10 shows the steps used in handling RSCS commands and messages. 
The circled numbers in the diagram correspond to the following 
descriptions. 

From 
Remote 
NJl/NJE 
System 

Line 
Driver 
Task 

Line 
Driver 
Task 

REX Task r-- ----------------, 
1 
I 
I 
I 
I 
I 
I 

• I 
I 
I 

DMTREX 
Request 
Handler 

DMTRGX 
Command 
and Message 
Routing 
Processor 

DMTCMX 
Local 
Command 
Processor 

8 

DMTMGX 
Build and 
Issue Local 
Messages 

From Remote 
Work Station 

1. Routing Request Element (GIVE/TAKE) 
2. Command Request Element (GIVE/TAKE) 
3. command Request Element (BALR) 
4. Routing Request Element (BALR) 
5. CMD/ftSG Alert Element (ALERT) 
6. Command Request Element (BlLR) 
7. ftessage Request Element (BALR) - remote origin 
8. Message Request Element (BALR) - local origin 
9. Command Alert Element (ALERT) 

10. Message Alert Element (ALERT) 
11. Message to Local User (CP ftESSAGF command) 
12. ftessage to Local RSCS Operator (SIO) 
13. Message Request Element (GIVE/TAKE) 
14. RSCS Local Operator Command (SIO) 
15. ftessage from Local User (CP SKSG command) 

Figure 2-10. RSCS Command and ~essage Handling 

50 IBM Vlt/370: RSCS Networking Logic 

Line 
Driver 
Task 



Licensed Material - Property of IBM 

When a line driver receives a routed command or message from a remote 
system, it builds a Routing Request Element and passes it in a GIVE 
request to supervisor module DMTGIV, which builds a Give Queue Element, 
posts the DKTREX synch lock (at the end of the task save area), and 
marks the REX task dispatchable. 

When REX is dispatched and finds its GIVE/TAKF synch lock posted, it 
issues a TAKE, examines the request, and because it is a Routing Bequest 
Element, passes it to the routing processor module DMTRGX. 

When a command is from a remote workstation (SMl or NPT) , the line 
driver builds a Command Fequest Element and passes it in a give request 
to supervisor module Dl!TGIV, which builds a Give Queue Element for it, 
posts the DMTREX Give/Take synch lock (at the end of its task save 
area), and marks the REX task dispatchable. 

When REX is dispatched and finds its Give/Take synch lock posted, it 
issues a Take request to supervisor module D~TAKE. The TAKE processor 
locates the GIVE Queue Element for this task, and passes the Command 
Request Element to the taking task, REX. The task examines the request 
and because it is a command Request Element passes it to the command 
executor module DMTCMX. 

Dl!TREX passes command request elements for local execution to Dff~CKX. 
These elements may oriqinate from a remote workstation line driver, a 
command sent to RSCS through the Special "essage Facility, or built by 
DMTREX from a command entered at the RSCS operator console. 

DMTREX passes routing request eleaents from remote NJI/NJE systems to 
DMTBGX. 

If the destination locid in the Routing Request Element contains the 
local location's locid and it is a coaaand request, DKTRGt forwards it 
to command executor processor module DKTC!X. If it is a message for the 
local location's locid and no destination use~id is specified, DKTRGX 
constructs a DftTRGX170 console message and forwards it to the message 
processor module, DftTMGI. But, if it is a message for this locid and 
there is a userid specified in the routing information, the following 
happens: 

a.. If there is a linkid defined matching the specified userid 
(remote workstation), RGX aoves the destination userid into 
the destination locid field and constructs a DftTRGX170 message 
element, which it passes to DftTftGX to issue. 

b. If there is no linkid matching the specified userid, the 
userid aust be for a local virtual machine or the RSCS 

Section 2: Kethod of Operation - Basic Functions 51 



Licensed Material - Property of IBft 

operator. DMTPGX formats a DMTRGX171 message element and 
forwards it to DMTMGX to issue to the local virtual machine 
specified in the destination userid. 

If the destination locid in the Routing Request Element is not the local 
location's locid, D"TRGX calls GROUTREQ in DMTCOM to determine the path 
to the destination locid. If the link is defined, active, and 
connected, RGX passes the element to it with an alert request to the 
link's line driver task. If the link is undefined, inactive, or not 
connected, RGI either (a) for a message type Routinq Request Element, 
discards it, or (b) for a command type Routing Request Element, issues a 
message to the originator via DMTMGX, giving the reason for inability to 
process the command any further. 

DMTREX passes command request elements for local execution to DMTCMX. 
These elements originate from a remote NJI/NJE system. 

D~TRGX passes to DMTMGX message request elements that are constructed 
from message type routing request elements received from remote NJI/NJE 
systems, as described for Path 4~ 

The message routine builds messages, using text supplied in module 
DMTMSG and variables supplied in the message buffer, and forwards them 
to the appropriate recipients. Messages issued as part of 
locally-executed commands go to DMTMGX. 

The contents of each message built at this location are edited into one 
of four formats. Fditing is under control of the EMSG setting in CP. 
The DIAGNOSE command X'5C' invokes this editing. Depending upon the 
EMSG setting, the message is one of: 

Message header and message text 
Message header only 
Message text only 
Neither header nor text 

Line drivers receive alert elements, containing line driver command 
Alert Elements. The two general classes of line driver alert elements 
are: those that specify internal line driver commands that one of the 
line driver's processors executes, and those that specify commands or 

52 IBM V~/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

messages fOr the line driver to transmit on its link. 

The second byte of a line driver command alert element, called the 
Function Code, identifies the element type. All X'Bx' requests are 
forwarding (transmitting) commands containing data for remote locations: 

X'BO' is from a locally-entered or remote workstation-entered CMD 
command; 

X'B1' is from a locally or workstation-entered MSG command; 

I'B2' is an RSCS-issued routed message built by this location's 
DMTMGX module and directed to a remote location. 

When DMTCMX issues an alert (Path 9 in Figure 2-7) for an 
internally-executed line driver function (such as backspace), the 
function code in the line driver command alert element is one of: t•ao• 
through X1 84 1 , X1 90 1 , 1'91', or x1 10•. 

When a line driver is able, it accepts any alert immediately. It posts 
its appropriate synch lock, and stacks all X'B1' and X'B2' requests by 
calling the REX task, module DMTCOM, routine PMSGREQ. All line drivers 
except DMTSML and DMTPOW do the same with X'BO' requests. 

When a line driver is busy (already processing a command), it rejects 
any internal line driver commands. DMTSML and DMTPOW also reject X1 B0' 
requests when they are busy. 

The line driver mainline program sees the synch lock that indicates one 
or more stacked requests, and handles the requests by calling the REX 
task, module DMTCOM, routine GMSGREQ. 

When a locally-originated message, formatted and edited by DMTMGX, is to 
be forwarded to a remote location, DMTMGX passes it to the appropriate 
line driver in a Message Alert Element. 

DMTMGX issues messages to local virtual system users by means of the 
DIAGNOSE X1 08' instruction, which executes a CP MSG command. If the 
user that the message is directed to is not logged on, the message is 
purged. 

DMTMGX issues messages to the local RSCS operator by a BALR to the 
PMSGREQ routine in module DMTCOK, where the message is queued for 
issuing by the DMTREX module's console message routine. 

Section 2: Method of Operation - Basic Functions 53 



Licensed Material - Property of IBM 

When the line driver issues a message as part of executing a request, it 
does so by a GIVE request to DMTREX, passing a Message Request Element. 

A command issued at the RSCS operator's console may be a request for a 
function on the local system or at a remote system, or it may specify a 
message to a local virtual machine user or to a remote operator console 
or virtual machine user. 

The asynchronous interrupt generated by the RSCS console ATTENTION key 
causes control to pass to the console I/O asynchronous exit routine, 
DMTREXCI, in the REX task, module D~TREX. The message or command issued 
by the operator is passed to DMTCMX. 

A command issued by any virtual machine to an RSCS virtual machine must 
be sent through the Special Message Facility. It may be a request for a 
function at a local or remote RSCS system, or it may specify a message 
to a remote virtual machine console1. 

The asynchronous interrupt generated by the Virtual Machine Communica­
tion Facility (VMCF) causes control to be passed to the asynchronous 
VMCF external interrupt routine, DMTREXCF, in the RFX task module 
DMTREX. The message (!SG) or command (CftD) issued by the Special 
Message sender is then passed to DMTCMX for processing. 

R SCS ACCOUNT! NG 

An accounting record is generated by module DftTAXA, when called from 
CLOSEIN or CLOSEOUT in module Df!TAXM, each time an input or output spool 
file is closed. Accounting records are generated for input files only 
if the spool file originated locally. Accounting data is obtained from 
the spool file's tag block~ Time and date information is obtained from 
VM/370 CP through the DIAGNOSE instruction. The DIAGNOSE X'4C' 
instruction is used to punch the assembled accounting record to VM/370. 

Line Driver Functions 

THE LINK TABLE 

A line driver task can only exist for an entry in the link table. 
During RSCS initialization, a link table entry is built for each link 
defined in a LINK statement in the RSCS directory. (The first entry in 
the link table is reserved as a container of the local locid.) The 
parameters in the LINK statement are recorded in its link table entry. 

54 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

During RSCS operation, the RSCS operator can make the following changes 
to the contents of the link table in RSCS storage: 

• Use the DEFINE command to alter any of the parameters in a link table 
entry that is not active (does not have a line driver task running for 
it). 

• Use the DEFINE command to add new link definitions. (There are 
sixteen empty link table entries after RSCS initialization.) 

• Use the DELETE command to remove a link definition, leaving its 
previous link table entry empty. 

The link table has two functions: it contains the parameters of defined 
links, as described above, and when the link has been started, it 
contains, running data for its line driver task.. See Section 5 of this 
manual for details of the Link Table Entry contents. 

LINK ACTIVATION: LOADING AND STARTING A LINE DRIVER TASK 

The objective of line driver task startup is to provide a task to 
perform the operations of one of the links specified in the link table. 
This is done by obtaining the storage required by the line driver 
module, loading the line driver module into that storage, and causing 
its initialization code to execute. The line driver's initialization, 
in turn, configures the line driver to the characteristics specified for 
its link. 

The START command specifies a link to be started, and includes any 
optional parameters to override parameters in the link table entry. 
(The overrides are inplemented only for this activation of the link; 
they do not replace the permanent "default" parameters in the link table 
or in the RSCS DIRECT entry.) 

1. Process the START command in REX module DMTCMX. 

a. DMTCMX validates the command parameters. It builds the link 
table "active" parameter entries, using the parameter default 
values in the link table, unless an override value is 
specified in the START command. 

b. Issue an ALERT to the LAX task to validate the line address 
specified for this link. If it is a switchable port, it must 
have an entry in the switchable port table (built at 
initialization from RSCS DIRECT data set PORT statement 
specifications). It must be a supported device type for the 
line driver to be loaded. If it is a leased line, it must not 
be already in use by another active link. 

c. LAX task completes the ALERT request for line validation by 
passing to DMTCMX a return code that specifies the result of 
the line validation. 

d. When the REX task is next dispatched, DMTCMI evaluates the 
validation return code and executes appropriate routines for 
the conditions in the code.. If validation found the line to 
be satisfactory, DMTCMX calls REX module DMTCRE to create the 

Section 2: Method of Operation - Line Driver Functions 55 



Licensed ftaterial - Property of IBft 

line driver task. 

2. Load the line driver module specified for this link, usinq REX 
module D!!TCBE. 

a. call REX •odule DMTCO~, routine RC!!SGET, to read the first 
text record of the module. on return, locate in that record 
the module's size. 

b. Find in MAINMAP (the byte-map of free and in-use virtual 
storage pages) the location of the number of contiguous free 
storage pages required for the module. 

c. Pass control to the supervisor storage manager module, D!!TSTO, 
to reserve the desired pages in ftlINMAP. 

d. When the REX task is redispatched, DMTC!!X constructs the line 
driver module in the reserved storage with a series of 
requests for the module text records, performed by the RCMSGET 
routine in the Dft'l'COft module in the REX task. 

e. Initiate startup of the line driver as a task by passing 
control to the supervisor module DftTASK, giving the task name 
in register O and the address of the task save area in 
register 1. (The task name default is the first four 
characters of the linkid if there was no override value in the 
START command for the task.) If there is no task by this naae 
already running, DMTASK proceeds to start this one. It builds 
a task queue entry for it, marking it dispatchable. control 
passes to the REX task module Dft'!'CMX, which issues an operator 
messaqe that the link is started, and turns on the ACTIVE and 
CONNECT flags in the line driver task's link table. 

f. When the newly started task's line driver task gets 
dispatched, its initialization code executes. 

Line Driver iask Initialization, Function Description 

A line driver module is loaded and started as a task as part of starting 
a link, as described above .• 

Whenever a task is dispatched, the register contents and the PSW in the 
task's save area are loaded, and control passes to the instruction 
address that vas in the PSW4 

When the line driver task is dispatched after being loaded, the PSW 
assembled in its save area contains the address of its initialization 
routine. Reqister 0 is preinitialized during loading with a count of 
the parameter information, register 1 with the address of the parameter 
information, and register 2 with the task's link table address. 

Every RSCS line driver contains, in its initialization routine code, 
logic for the following, with exceptions as noted: 

a. Save the address of its link table in its own storage. 

b. Copy its linkid into its own storage. 

c. Copy its local RSCS location's locid (contained in the linkid 
field of the first link table entry) into its own storage. 

d. Scan the parameter information, decode the parameters, and 

56 IBM V~/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

configure itself to the link's requirements and 
specifications. 

e. Build the file request element that this link will pass in its 
GIVE request element to lXS when it initiates or terminates 
processing of an input or output file. 

f- Build tag prototype for this task, containing initial constant 
values (such as linkid) for any tag queue entry AXS will build 
for this task's files. 

g. Issue asynchronous exit requests for interrupts (usually alert 
interrupts; that this link should receive through D~T!S!. 

h. Some line drivers need teleprocessing buffers. (The VMB line 
driver contains its own buffer). They call the REX module 
DRTCOM, routine GPlGEREQ to find the required number of pages 
in SlIB!AP and get the storage manager module, DMTSTO, to 
reserve them .. 

In the NJI line driver, the DMTNIT module issues the buffer 
storage requests. 

i. If the link has a BS~ line, disable the BSC adapter, set its 
mode, and enable it. If the link has a channel-to-channel 
adapter, test its status by a SENSE command to determine the 
state of the remote system. 

Sftt LINE DRIVER FUNCTION DESCRIPTIONS 

The SftL line driver (D!n'SRL) provides binary synchronous communication 
(BSC) line protocol for programmable remote stations. DMTSML contains 
four types of routines: 

• Processors (routines) that execute the functions required by the 
processing modes. 

• An input/output routine that accepts and transmits data on the BSC 
line. 

• A function selector routine that dispatches one of the processors when 
a request for services is received. 

• Buffer blocking and deblocking routines. 

Figure 3-6, "Program Organization for the SML Line Driver Task," shows 
the functional relationships among these routines. 

With programmable remote stations, the SML line driver operates as a 
host (HOST mode) or as a remote job entry station (RJE mode). In HOST 
•ode a remote station may submit jobs to V!/370 and receive print and 
punch output fro• Y!/370. In RJE mode, V"/370 may send jobs to a remote 
batch system for processing and receive print and punch output from the 
remote batch system. Figure 2-11 shows the types of data flowing to and 
from RSCS via the S!!L line Driver. 

Section 2: ~ethod of Operation - Line Driver Functions 57 



Licensed Material - Property of IB" 

HOST P!ode: 

VM/370 

RSCS 

SftL Line 
Driver in 
HOST mode 

RJE Mode 

VM/370 

RSCS 

I 
I SftL Line 
I Driver in 
t RJE mode 

< 
I 
I 
I 

Jobs 

I 
I 

PRINT/PUNCH Output I 
~-----------~> 

I 

Jobs I 
~----~------~---> 

I 
I 
I 

I 
I 

PRINT/PUNCH Output I 

REMOTE WORK ST~TION 

I <----------------L-------

Figure 2-11. SML Line Driver Data Flow to Remote Stations and Systems 

The SIU program provides eight "processors," or routines, designed to 
handle the eight functions required to support the processing modes. 
Figure 2-12 is a list of the SML processors, the processing modes they 
support, and a brief statement of their functions. The DMTSML program 
determines its mode of operation by testing a byte, SMLSYS, which is set 
during SML line driver initialization. SMLSYS set to one of the 
follovi ng values: 

x•ao• - RJE mode, HASP 
X'40 1 - RJE mode, ASP 
X1 20 1 - RJE mode, VS1/JES 
x• 10• - HOST mode 

58 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

Processor !!ode 

$CRTN1 Both 

$PRTN1 RJE 

$URTN 1 RJE 

$JRTN1 HOST 

$WRTN1 Both 

$RRTN 1 Both 

C!DPROC Both 

MSGPROC Both 

Function 

Processes MULTI-LEAVING control records: 
permission to transmit, request to 
transmit, and SIGNON control records. 

Processes print file records from remote I 
stations and passes them to the VM/370 spooll 
system. I 

Processes punch file records from remote j 
stations and passes them to the VM/370 spoolt 
system. I 

Processes job file records from the remote 
station and passes them to the VM/370 spool 
system.. 

In HOST mode, passes command request I 
elements via D!!TMGX to DMTCMX. In RJE mode,1 
passes message request ! 
elements to the RSCS operator•s console. t 

Receives records from the VM/370 spool 
system for transmission to remote stations. 

Executes local commands passed by DMTCfH; 
passes messages and commands to remote 
stations. 

Sends messages to remote stations. 

Figure 2-12. Sl!L Function Processors 

When a command is transmitted from a remote station to RSCS, SML 
receives the command and coordinates processing of the command with 
Supervisor routines and the REX task command module DMTCMX. 

The SML command processor, $WRTN1, processes a command request from a 
remote station by passing a command request element to the RFX task 
(module Dl!TCI!X) via a GIVE request. DMTCMX then determines whether the 
command should be executed by DMTCMX, DMTAXS, or the line driver. If 
the command is to be executed by the line driver, it is passed back to 
SML via an alert request. Sl!L routine CMDPROC then executes the 
command. 

The SML line I/O handler routine, CO!!SUP, controls communications on the 
BSC line for SML. This routine receives data from the BSC line and 
passes it to the deblocker routine ($TPGET). COMSUP also sends data 
(which has been blocked by the blocker routine, $TPPUT) to a remote 
station. COI!SUP also acknowledges receipt of data over the line using 
the standard BSC line control characters. 

Section 2: Mettod of Operation - Line Driver Functions 59 



Licensed Material - Property of IBM 

The $START routine is entered when SML is required (by either a remote 
station or a virtual machine) to perform a function. This routine 
selects a function to execute by using a "Commutator Table", a list of 
synch locks, and "Task Control Tables". 

Each processor except MSGPROC and CMDPROC has a TCT (task control table) 
which contains necessary control information. Also, contained within 
the TCT is a branch instruction to the appropriate processor. 

The SML commutator table is a branch table consisting of branch (BC) and 
no-operation (NOP) instructions. The targets of the branch instructions 
are the TCTs for the eight processor routines, COMSUP, and $TPGET, each 
of which performs a specific function. When the service of a routine is 
not required, the commutator table entry for that routine is a NOP 
instruction. When the function of the routine is required, the NOP 
instruction in the commutator table entry for that routine is replaced 
with a Branch instruction, thereby "opening a gate" in the commutator 
table. 

The $START routine cycles throuqh the commutator table, falling through 
any NOP instructions and takinq any branches. control is passed in this 
way to any routine whose gate in the commutator table is open. 

When the routine completes the function requested, it "closes" its gate 
in the commutator table by replacing the Branch instruction with a NOP 
instruction. $START continues cycling through the commutator table, 
taking any open branches. 

Initially after line driver startup, the commuta. tor table branch 
instruction for reading a card, $RCOM1, is not a NOP. This allows the 
line driver to immediately read an available file from CP spool as soon 
as the line driver is started. In this case, processor $RRTN1 gives an 
OPEN request to DMTAXS to start reading a file from CP spool. If there 
is no file to be opened, $RRTN1 "closes" the commutator table gate for 
$RCOM1. 

When the bottom of the commutator table is reached, $START tests a 
series of synch locks to see if any have been posted, signifying a 
reguest for an SML function. If any synch lock is posted, $START opens 
the commutator table gate for the requested routine and goes to the top 
of the commutator table to start cycling through it again .• 

If the bottom of the commutator table is reached and there are no posted 
synch locks, SML discontinues processing by issuing a wait request via a 
call to the Supervisor module DMTWAT, waiting on a list of the synch 
locks. When any of the synch locks is posted, $START receives control, 
opens the appropriate gate, and starts cycling through the commutator. 

Data received over the BSC line is placed in one of four teleprocessing 
(TP) buffers. The size of TP buffers is specified by a START command 
parameter and can be up to 1017 bytes. 

Data contained in TP buffers is deblocked into "tanks," which are unit 
buffers of a specific size used to deblock the larger TP buffers. There 
are 15 tanks; these are allocated as they are needed by processors. The 
size of tanks is determined by MULTI-LEAVING control bytes. 

60 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

When an SML function has been requested, the data must be either blocked 
for transmission (if it is data for a remote station) or deblocked for 
processing (if it has been received from a remote station). 

$TPGET receives data from a BSC line (via the COMSuP routine) and 
allocates tanks to output processors as they are needed. 

$TPPUT receives tanks from input processors, blocks the data in these 
tanks into TP buffers, and gives control to COMSUP to transmit the 
buffers over the line .• 

Assume a file to be sent to a remote node has been spooled to BSCS. The 
events that follow are: 

1. RSCS is informed of the presence of the file. DMTAXS accepts it by 
issuing an alert to the appropriate link's line driver task 
(DMTSML) • 

2. DMTSML's exit routine (ASYNEXIT) posts DMTSML's reader device synch 
lock (RDEVSYNC), and control is returned to the dispatcher. 

3. DMTSML is dispatched and the function selector routine, $START, is 
entered. $START finds that the synch lock RDEVSYNC has been posted 
and opens the gate for card reading ($RC0~1) in the commutator 
table (see description of $START, above). 

4. With the gate opened, $RRTN1 reads the VM/370 spool file, deblocks 
(reconstructs) it into original record sizes, reblocks them into 
tanks for transmission, and gets them transmitted: 

a. $RRTN1 issues a GIVE to DMTA~S, requesting a spool file be 
opened and requesting a virtual reader be defined for the line 
driver itself .. 

b. on successful return from DMTAXS, $RRTN1 extracts tag 
information from the spool file block (SFB) to determine the 
required transmission type (e.g., print or punch), and the 
transmission mode (HOST or RJE). This information is used to 
prepare the transmission record control byte (RCB), 
transmitted with each block of data. 

If the file was not successfully opened, the gate in the 
commutator table is closed and control returns to $START. 

c. $TPOPEN is called, requesting permission to transmit ($TPOPEN 
does this by transmitting a Request Control Record). If 
permission is granted, the message DMTSML146I is issued to 
indicate that the file is being transmitted .• 

d. VMDEBLOK is called. It reads VM/370 spool file blocks or 
pages into page buffers, and issues subsequent reads as 
records in the buffers are used up. The records are deblocked 
according to the CCW information embedded with the data during 
spooling. VftDEBLOK returns to the caller a deblocked record 
that is placed in a 136-byte field (RCTTDTA1) within the tank. 

e. The record given by VMDEBLOK is combined with the proper 
!ULTI-LEAVING transmission control bytes.in preparation for 
transmission. 

Section 2: Method of Operation - Line Driver Functions 61 



Licensed Material - Property of IB" 

f. The record and its transmission control bytes are passed to 
$TPPUT via a call. $TPPUT compresses the record into a "line" 
that complies with the MULTI-LEAVING transmission protocol. 
The compressed line is packed into a teleprocessing buffer. 
When the buffer is filled, it is queued to the $0UTEUF chain 
for processing by COftSUP. 

g. COMSUP initiates the actual I/0 activity to transmit TP 
buffers. CO~SUP dequeues buffers from $0UTBUF for 
transmission and calls DMTIO"RQ to initiate the I/O operation. 
CO~SUP's gate is opened when the adapter synch lock, ADAECB 
gets posted by an I/O interrupt. 

h. The EOF condition is eventually reached as VMDEBLOK reads the 
file from CP spool, in response to requests from $RRTN1 for 
more records to send. As soon as EOF is reached: (1) Message 
DMTSML147I is issued, (2) a GIVE is issued to DMTAXS to close 
and purge the file, (3) $TPPUT is called to transmit a null 
record to inform the receiver of the EOF condition, (4) the 
gate in the commutator table is closed, and (5) control is 
returned to the start of $RRTN1 to process another file. 

This process starts with CO~SUP's gate being opened when its synch lock 
ADAECB gets posted by an adapter asynchronous I/O interrupt. COMSUP 
examines the BSC control characters on the TP buffers received. The 
three kinds of control characters received are: 

1. OLE-ACK, which specifies there is no block transmitted with this 
buffer. 

2. DLE-STX, which specifies start of text. This acknowledges that 
RSCS received a buffer containing data, and that RSCS, in response, 
can send an output buffer. 

3. NAK, which specifies that the buffer sent by RSCS to a remote 
location was not correctly received. 

The control character significant to COMSUP when receiving a file is the 
DLE-STX. Upon receipt of this character from the TP line, COMSUP starts 
the process of receiving a file by chaining the received buffer to the 
input buffer chain, and opening the gate for $TPGET in the commutator 
table. 

The general sequence of events that occur is as follows: 

1. $TPGET is entered; it deblocks received telecommunication buffers 
into tanks, selects the appropriate ·processor, queues the tank to 
the selected processor's TCTTANK queue. $TPGET operates as 
follows: 

a. Get a buffer from the $INBUF queue and look for a matching TCT 
to attach the buffer to by comparing RCBs. 

b. Get a tank to decompress a buffer into. 

c. Decompress the buffer into the tan~. 

d. Chain the tank to the TCTTANK queue for the processor 
selected. 

62 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

e. Open the commutator gate for that processor. 

2. The selected processor is entered when $TPGET returns to the 
coaautator. The processor selected is one of the following: 

$PRTJ.1: This routine processes print files. It dequeues tanks queued to 
itself by COMSUP, obtains an output spool device, and outputs the tanks 
to a virtual printer as follows: 

a. Call SGETTNK to obtain a tank. 

b~ Call DMTlXS to reauest for an output spool file to be opened 
and a printer device defined. 

c. Set up the carriage control using information contained in the 
SRCB. 

d. Call DMTIOMRQ to print a record to the VM/370 spool file. 

e. Call DMTAXS to close the spool file when EOF is reached. 

f. Return to the commutator ($START). 

!URTN1: This routine processes punch files. It dequeues tanks queued to 
itself by COMSUP, obtains an output spool device, and outputs the tank 
to a virtual punch as follows: 

a. Call SGETTNK to obtain a tank. 

b. call DMTlXS, requesting an output spool file be opened and a 
punch device defined. 

c. Call DMTIOMRQ to punch a record to the VM/370 spool file. 

d. Call D!TAXS to close the spool file when EOF is reached. 

e. Return to the commutator ($START). 

SJBTN1: This routine processes job files. It dequeues tanks queued to 
it by COMSUP, obtains an output spool device, and outputs the tank to a 
virtual punch as follows: 

a. Obtain a tank from SGETTNK. 

b. Call DMTAXS to have a spool file o~ned and a punch device 
defined. 

c. Call SUSREXIT to validate the information on the job file's ID 
card and to save any other text information on the ID card. 
This text information represents user commands, which will be 
passed to the REX task for processing. $USREIIT also fills in 
the JCTTOVM field of the processor's TCT. 

d. Call DMTIOMRQ to punch the job file records to the spool file. 

e. Call DMTAXS to close the spool file when EOF is reached. 

f. Return to the commutator ($START). 

Section 2: Method of Operation - Line Driver Functions 63 



Licensed Material - Property of ISM 

POW LINE DRIVER FUNCTION DESCRIPTIONS 

The POW line driver (DMTPOW) provides binary synchronous communication 
(BSC) line protocol for remote VSE/POWER systems. DMTPOW contains four 
types of routines: 

• Processors (routines) that execute the fu~ctions required by the 
processing modes. 

• An input/output routine that accepts and transmits data on the BSC 
line. 

• A function selector routine that dispatches one of the processors when 
a request for services is received. 

• Buffer blocking and deblocking routines~ 

Figure 3-6, "Program Organization for the POW Line Driver Task," shows 
the functional relationships among these routines. 

Figure 2-13 shows data flowing to and from RSCS via the POW Line Driver. 

VM/370 

RSCS 
r 
I 
I 
I POW Line 
I Driver 
I 
I 
I 

Jobs/Commands I 
--------------------------> 
I I 
1 PRINT/PUNCH Output I 
<~-----------------------

' I I Messages I 
< > 

I I 
I 

L-.--------------~~ 

VSE/POWER SYSTEM 

Figure 2-13. POW Line Driver Data Flow to a VSE/POWER System 

ROW Processors 

The POW program provides eight "processors," or routines, designed to 
handle the eight functions required. Figure 2-14 is a list of the POW 
processors and a brief statement of their functions. 

64 IBM Vft/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

Processor 

$CRTN1 

$PRTN1 

$URTN1 

$WRTN1 

$RRTH 1 

$!RTN 1 

CMDPROC 

MSGPROC 

Function 

Processes MULTI-LEAVING control records: 
permission to transmit, request to 
transmit, and SIGNON control records. 

Processes print file records from the 
remote VSE/POWER system and passes them 
to the VM/370 spool. 

Processes punch file records from the 
remote VSE/POWER system and passes them 
to the V tV370 spool. 

Writes received VSE/POWER commands to the 
RSCS operator's console. 

Receives records from the VM/370 spool 
system for transmission to the remote 
VSE/POWER system. 

Writes received VSE/POWER messages to the 
RSCS operator. 

Executes local commands passed by DftTCMX; 
passes commands to the remote VSE/POWER 
system. 

Sends operator and system messages to the 
remote VSE/POWER system. 

Figure 2-14. POW Function Processors 

The POW line I/O handler routine, CORSUP, controls communications on the 
BSC line for POW. This routine receives data from the BSC line and 
passes it to the deblocker routine ($TPGET). COMSUP also sends data 
(which has been blocked by the blocker routine, $TPPUT) to the remote 
system. COMSUP acknowledges receipt of data over the line using the 
standard BSC line control characters-

POW Function ~elector Routine: $STAR! 

The $START routine is entered when POW is required by a remote VSE/POWER 
system to perform a function. This routine selects a function to 
execute by using a "Commutator Table", a list of synch locks, and "Task 
control TablesH. 

Each processor except MSGPROC and CMDPROC has a TCT (task control table) 
which contains necessary control information. Also, contained within 
the TCT is a branch instruction to the appropriate processor. 

The POW commutator table is a branch table consisting of branch (BC) and 
no-operation (NOP) instructions. The targets of the branch instructions 
are the TCTs for the eight processor routines, COMSUP, and $TPGET, each 

Section 2: ftethod of Operation - Line Driver Functions 65 



Licensed Material - Property of IB~ 

of which performs a specific function. When the service of a routine is 
not required, the commutator table entry for that routine is a NOP 
instruction. When the function of the routine is required, the NOP 
instruction in the commutator table entry for that routine is replaced 
vi th a Branch instruction, thereby "opening a gate" in the commutator 
table. 

The $START routine cycles through the commutator table, falling through 
any NOP instructions and taking any branches. control is passed in this 
way to any routine whose gate in the commutator table is open. 

When the routine completes the function requested, it "closes" its gate 
in the commutator table by replacing the Branch instruction with a NOP 
instruction. $START continues cycling through the commutator table, 
taking any open branches. 

When the bottom of the commutator table is reached, $START tests a 
series of synch locks to see if any have been posted, signifying a 
request for a POW function. If any synch lock is posted, $START opens 
the commutator table gate for the requested routine and goes to the top 
of the commutator table to start cycling through it again. 

If the bottom of the commutator table is reached and there are no posted 
synch locks, POW discontinues processing by issuing a wait request via a 
call to the Supervisor module DMTiAT, waiting on a list of the synch 
locks. When any of the synch locks is posted, $START receives control, 
opens the appropriate gate, and starts cycling through the commutator. 

This is an alert exit entered by DMTSIG when a message or command has 
been entered for the POW line driver to process, or, a reader file has 
arrived for transmission to the remote system. It operates as follows: 

1. Test if the alerting task is DKTAXS or DftTREX. 

2. If the alert is from DMTAXS, call DMTPST to post the RDEVSYNC synch 
lock and exit. 

3... If the alert is from DMTREX, determine if it is for a command or 
message. 

4. If it is a command and a previous command is not being processed, 
accept the command, post CMDECB, and exit. Otherwise, indicate to 
DMTREX that the command is refused, and exit. 

5. If it is a message, call MFI in DMTCOM to stack the message for 
later processing, post MSG~CB, and exit~ 

Data received over the BSC line is placed in one of four 512-byte 
teleprocessing {TP) buffers. 

Data contained in TP buffers is deblocked into "tanks," which are unit 
buffers of a specific size used to deblock the larger TP buffers. There 
are 15 tanks; th~se are allocated as they are needed by processors. 

When a POW function has been requested, the data must be either blocked 

66 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

for transmission (if it is data for a remote VSE/POWER systemj, or 
deblocked for processing (if it has been received from a remote 
VSE/POWER system) .. 

$TPGET receives data from a BSC line (via the COMSUP routine) and 
allocates tanks to outfut processors as they are needed. 

$TPPUT receives tanks from input processors, blocks the data in these 
tanks into TP buffers, and gives control to COMSUP to transmit the 
buffers over the line. 

POW Control Record Processor: $CRT!1 

This routine performs the processing required for MULTI-LEAVING control 
records. It functions as follows: 

1. Get a control tank from the queue; if none are available, close the 
$CRTN1 gate in the commutator and exit to the next commutator 
entry. 

2. If a tank is available, remove it from the queue and open the gate 
for $TPGET to get another tank. 

3. Based on the bits contained in the RCB, branch to the appropriate 
sub-processor. The following table lists the routines that can be 
entered. 

r 
I RCB 

80 
90 
AO 
BO 
co 
DO 
EO 
FO 

Routine 

ft CO 
MC1 
MC2 
MC3 
MC4 
MCS 
MC6 
MC7 

Reason for Entry 

Not supported; exit 
Start function request 
Start function permission 
Not supported; exit 
Not supported; exit 
Not supported; exit 
Not supported; exit 
General control record 

MC1 - This sub-processor is entered when VSE/POWER transmits a 
"Request to Initiate Function" record. The function to be 
started is contained in the SRCB. A search is made of all 
the TCTs to find a match on the function code. If none is 
found, exit. If a matching TCT is found, the RCB in the 
received record is changed to X'AO' (Permission Granted) and 
$TPPUT is called to send the record to VSE/PO~ER. 

MC2 - This sub-processor is entered when VSE/POWEF transmits 
"Permission Granted" to a "Request to Initiate Function" from 
RSCS. A search is made of all the TCTs to find a match on 
the function code contained in the SRCB. If none is found, 
exit. If a matching TCT is found, its gate in the commutator 
is opened to allow it to begin processing. 

MC7 - This sub-processor is entered when a general control record 
is received by RSCS. This type of control record contains a 
sub-function code in the SRCB. This code is an 
identification character between A and z (EBCDIC). Only A 
(initial signon) is supported. DMTPOW checks the record for 

"PSIGNONxxx" or "PCOMPLETE". If PSIGNON, $TPPUT is called to 
transmit "PREADYnnn". If PCOMPLETE, message DMTPOW905I is 

Section 2: Method of Operation - Line Driver Functions 67 



Licensed Material - Property of IBft 

issued and a switch is set to indicate signon complete. 
Otherwise, error •essage DMTPOW902E is issued and the line 
driver is deactivated. 

~ Fi!~ ~ (Transmi! Input ~ool File QR Link) Function 

Assume a file to be sent to a remote node has been spooled to RSCS. The 
events that follow are: 

1. RSCS is informed of the presence of the file. DftTAXS accepts it by 
issuing an alert to the appropriate link's line driver task 
(D!TPOW) • 

2. DMTPOi's exit routine (ASYNEIIT) posts DftTPOW's reader device synch 
lock (RDEVSYNC}, and control is returned to the dispatcher. 

3. D!TPOW is dispatched and the function selector routine, $START, is 
entered. $START finds that the synch lock RDEVSYNC has been posted 
and opens the gate for card reading ($RC0!1} in the commutator 
table (see description of $START, above}. 

4. With the gate opened, $RRTN1 reads the Vft/370 spool file, deblocks 
(reconstructs} it into original record sizes, reblocks them into 
tanks for transmission, and gets them transmitted: 

a. $RRTN1 issues a GIVE to DMTAXS, requesting a spool file be 
opened and requesting a virtual reader be defined for the line 
d ri ve r i tse 1 f. 

b. on successful return from DKTAXS, $RRTN1 extracts tag 
information from the spool file block (SFB} to determine the 
spool file type (console, print, or punch). If the file is 
not a punch file, message DMTPOW940E is issued and the file is 
purged. 

If the file was not successfully opened, the gate in the 
commutator table is closed and control returns to $START .• 

c. $TPOPEN is called, requesting permission to transmit ($TPOPEN 
does this by transmitting a Request to Initiate Function 
Record). If permission is granted, the message DMTPOW146I is 
issued to indicate that the file is being transmitted. 

d. VRDEBLOK is called. . It reads VM/370 spool file blocks or 
pages into page buffers, and issues subsequent reads as 
records in the buffers are used up.. The records are deb locked 
according to the ccw information embedded with the data during 
spooling.i. VMDEBLOK returns to the caller a deblocked record 
that is placed in a 136-byte field (RCTTDTA1) within the tank. 

e. The record given by VMDEBLOK is combined with the proper POWER 
MULTI-LEAVING transmission control bytes in preparation for 
transmission. 

f. The record and its transmission control bytes are passed to 
$TPPUT via a cal:l. STPPUT compresses the record into a "line" 
that complies with the POWER MULTI-LEAVING transmission 
protocol.. The compressed line is packed into a teleprocessing 
buffer. When the buffer is filled, it is queued to the 
$OUTBOF chain for processing by COMSUP. 

g. COMSUP initiates the actual I/O activity to transmit TP 

68 IB! VK/370: RSCS Networking Logic 



Licensed ftaterial - Property of IBM 

buffers. CO~SUP dequeues buffers from $OUTBUF for 
transmission and calls DMTIOMRQ to initiate the I/O operation. 
COMSUP's gate is opened when the adapter synch lock, ADAECB 
gets posted by an I/O interrupt. 

h. The EOF condition is eventually reached as VMDEBLOK reads the 
file from CP spool, in response to requests from $RRTN1 for 
more records to send. As soon as EOF is reached: (1) Message 
DMTPow1q71 is issued, (2) a GIVE is issued to DMTAIS to close 
and purge the file, (3) $TPPUT is called 1to transmit a null 
record to inform the receiver of the EOF condition, (q) the 
gate in the commutator table is closed, and (5) control is 
returned to the start of $RRTN1 to process another file. 

POW li!~ Receive Function 

This process starts with COMSUP's gate being opened when its synch lock 
ADAECB gets posted by an adapter asynchronous I/O interrupt. COftSUP 
examines the BSC control characters on the TP buffers received. The 
three kinds of control characters received are: 

1. DLE-ACK, which specifies there is no block transmitted with this 
buffer. 

2. DLE-STX, which specifies start of text. This acknowledges that 
RSCS received a buffer containing data, and that RSCS, in response, 
can send an output buffer. 

3. NAK, which specifies that the buffer sent by RSCS to a remote 
location was not correctly received. 

The control character significant to COMSUP when receiving a file is the 
DLE-STI. Upon receipt of this character from the TP line, COMSUP starts 
the process of receiving a file by chaining the received buffer to the 
input buffer chain, and opening the gate for $TPGET in the commutator 
table. 

The general sequence of events that occur is as follows: 

1.. $TPGET is entered; it deblocks received telecommunication buffers 
into tanks, selects the appropriate processor, queues the tank to 
the selected processor's TCTTANK queue. $TPGET operates as 
follows: 

a. Get a buffer from the $INBUF queue and look for a matching TCT 
to attach the buffer to by comparing RCBs.. 

b. Get a tank to decompress a buffer into. 

c. Decompress the buffer into the tank. 

d. Chain the tank to the TCTTANK queue for the processor 
selected .. 

e. Open the commutator gate for that processor. 

2. The selected processor is entered when $TPGET returns to the 
commutator.. The processor selected is one of the following: 

SPETN1: This routine processes print files. It dequeues tanks queued to 
itself by CO!SUP, obtains an output spool device, and outputs the tanks 
to a virtual printer as follows: 

Section 2: Method of Operation - Line Driver Functions 69 



Licensed PJaterial - Property of !BPI 

a. Call $GETTNK to obtain a tank. 

b. Test for end-of-file. If not EOF, continue processing. If EOF 
exists and the file was previously opened, issue message 
DMTPOW145I and close the file via a call to DMTAXS. 
Otherwise, free the tank (see step g) • 

c. Convert the "CTR" characters into a ccw opcode and remove them 
from the record. If the resultant opcode indicates a special 
VSE/POWER CCW (X'FF' or X'FD'), free the tank. 

Note: "CTR" refers to the VSE/POWER command code that is 
contained in the first two bytes of all data transmitted from 
VSE/POWER to RSCS and in commands and messages sent from RSCS 
to VSE/POWER. The CTR is the expanded hex format (X'OB' 
becomes FOPB) of the CCW opcode that will be used to print the 
data. For commands, CTR is 00. 

d. If the opcode is a NOP (X'03 1 ), this indicates the possibility 
of a VSE/POWER ftLX record in the data. If the record is not 
KLX1, free the tank. Otherwise, close the file via a call to 
DMTAXS (if it was open)• 

Not~: MLX records are internal VSE/POWER control records that 
allow VSE/POWER to send JECL information to another VSE/POWER 
system. These records are contained at the beginning of all 
list and punch files sent from VSE/POWER to RSCS. RSCS 
extracts the class, copy count, and number of records from the 
first of the three ftLX records. These records are transmitted 
with a NOP ccw opcode (X'03 1 ) by VSE/POWER and are not printed 
or punched in the output produced by RSCS. 

e. Extract the output class, number of copies, and number of 
records from the MLX1 record, open the spool file via a call 
to DMTAXS, and issue message DMTPOW144I. 

f. Using the CCW opcode obtained from the "CTR" characters, send 
the output line to the VK/370 spool file via a call to 
D MTI OMRQ .• 

g. Pree the tank - remove the current tank from the queue, open 
the commutator gate for $TPGET, and return to the beginning of 
the processor. 

$0RTN1: This routine processes punch files. It dequeues tanks queued to 
itself by COMSUP, obtains an output spool device, and outputs the tank 
to a virtual punch as follows: 

a. Call $GETTNK to obtain a tank. 

b. Test for end-of-file,1. If ~ot EOF, continue processing.. If EOF 
exists and the file was previously opened, issue message 
DMTPOW145I and close the file via a call to DPITAIS. 
Otherwise, free the tank (see step g). 

c. Convert the "CTR" characters into a ccw opcode and remove them 
from the record .• 

d. If the opcode is a NOP (X'03 1 ), this indicates the possibility 
of a VSE/POWER MLX record in the data. If the record is not 
MLX1, free the tank. Otherwise, close the file via a call to 
DMTAIS (if it was open). 

e. Extract the output class, number of copies, and number of 
records from the KLX1 record, open the spool file via a call 

70 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

f. Send the output line to the Vl'I/370 spool file via a call to 
DMTIOl'IRQ,. 

g. Free the tank - remove the current tank from the queue, open 
the commutator gate for $TPGET, and return to the beginning of 
the processor. 

$WRTN1: This routine writes received VSE/POWER commands to the RSCS 
operator. It functions as follows: 

a. Close the commutator gate for this processor. 

b. Call $GETTNK to obtain a tank. 

c. If no tank is available, return to the commutator. 

d. Remove the "CTR" characters from the incoming record. 

e. Set up a message buffer and issue message DMTPOW944I via a 
call to Dl'ITREX. 

Note: This message will contain the received VSE/POWFR con and. 

f. Remove the current tank from the queue and open the gate for 
$TPGET.~ 

g. Return to the beginning of the routine and try to obtain 
another tank. 

$!RTN1 This routine writes received VSE/POWER messages to the RSCS 
operator. It functions as follows: 

a. Close the commutator gate for this processor. 

b. Call SGETTNK to obtain a tank. 

c. If no tank is available, return to the commutator. 

d. Remove the "CTR" characters from the incoming record. 

e. set up a message buffer and issue message Dl'ITPOW170I via a 
call to DMTREX. 

~: This aessage will contain the received VSE/POWER 
message. 

f. Remove the current tank from the queue and open the gate for 
$TPGET. 

g. Return to the beginning of the routine and try to obtain 
another tank. 

This routine is entered when the MSGECB is posted by the asynchronous 
exit routine, indicating messages are in the MSG queue for this line 
driver. It operates as follows: 

1. Close the commutator gate for MSGPROC. 

Section 2: Method of Operation - Line Driver Functions 71 



Licensed Baterial - Property of IBft 

2. Call MFO in DMTCOM to reaove a message from the queue. If none are 
available, send EOF to VSE/POiER via a call to $TPPUT and return to 
the comautator. 

3. If the message is not froa the system or the RSCS operator, issue 
message DMTPOW531I and return to the beginning of the routine to 
get another aessage. 

4. If the aessage was from the RSCS operator, prefix the message with 
"D MTPOW170I from '1i nkid' "· 

s. Put the message into the console tank and insert "CTR" prefix. 

6. Call $TPOPEN to send a "Request to Initiate Function" transmission 
to VSE/POWER. 

7. Call $PUT to send the actual message, then return to the beginning 
of the routine to get another messsage. 

This routine is called by $START when a wait request completes with the 
posting of the command arrival synchronization lock (CMDECB) following 
the acceptance of a command alert element from DMTREX. The command code 
table (C!DTABLE) is searched for a code matching that of the accepted 
element, and the coamand's processing routine is entered when a match is 
made. If no match is found, message DMTPOW531I is issued, and a return 
is made to the commutator, thus ignoring the command. The command 
processing routines are: 

Routine 

SETSTART 
SET DRAIN 
SETFREE 
SET HOLD 
SETT RACE 
SETC!D 

Command Processed 

START 
DRAIN 
FREE 
HOLD 
TRACE 
C!!D 

These individual command processors issue messages, set flags, and 
modify other line driver status, depending upon the particular command 
and the processing status of the line driver. When processing is 
complete, control is returned to CftDPROC which then returns to the 
c 01111 uta tor. 

If the command specified was CftD, this indicates that DMTPOW must 
forward a command to VSE/POWER for execution. The processing is as 
follows: 

1. Verify that the command was entered by the RSCS operator; if not, 
issue message D!TPOW531I and exit. 

2.. Syntax check the coamand text to ensure that the entered VSE/POWER 
command and its operands are supported for the RSCS-to-VSE/POWER 
connection. If not, message DftTPOW9q1E, 9q2E, or 9q3E is issued 
and an exit is made from the SETCftD routine. 

3. Put the command into the console tank, move in "CTR" and "* .. " 
prefixes. 

72 IBM Vft/370: RSCS Networking Logic 



Licensed Material - Property of IB" 

4. Call $TPOPEN to send a "Request to Initiate Function" transmission 
to VSE/POWER • 

5. Call $POT to send the command. 

6. Call STPPUT to send EOF. 

7. Return control to C"DPROC which then returns to the commutator. 

Typicai RSCS to VSE/RQ!I~ Line Transmissions 

Figures 2-15 to 2-20 show the character sequence used in the following: 

• sign on procedure 
• Initiation of a transmission 
• command transmission 
• stop proced ure 
• Transmission of text in one direction 
• Transmission of text in both directions 

RSCS VSE/POWER 

I I 
I I 
I< ----------------SOH,EHQ (non-trans.)-----------~>I 
I DLE,ENQ (transparent) I 
I I 
I I 
1---------------->DLE,ACKu-----------------------> 
i 
I 
I 
1<-SOH,STX,BCB,FCS,FCS,RCB,SRCB,* •• PSIGNOlrrr[ ,password], 
I RCB,SYB,ETB <--------------
1 
I 
I >SOH,STI,BCB,FCS,FCS,RCB,sRcB,• •• PREADYnnn, 
I RCB,SYH,ET > 
I 
I t 
1<----SOH,STI,BCB,FCS,FCS,RCB,SRCB,* •• PCO!PtETE, I 
I RCB,SYN,ETB< I 
I I 
I I 
I >DLE,ACK >I 
I l I 
IHandshaking I I 
I V I 
L( DtE,ACKO<----------------------------

rrr = global remote identifier generated within the POWER macro. 
nnn = global remote identifier from the Cnnn parameter of RSCS ST&RT 

command. 

Figure 2-15. Signon Procedure 

Section 2: ftethod of Operation - tine Driver Functions 73 



Licensed "aterial - Property of IB" 

RSCS VSE/POWER 

I 
I Request permission to initiate a function: 
I< SOH,STX,BCB,FCS,FCS,RCB,SRCB,SCB, 
I RCB,SYN,ETB<----------------
1 
I 
I 
I 
I 

Grant permission to intiate a function: 
------>SOH,STX,BCB,FCS,FCS,RCB,SRCB,SCB, 

RCB,SYN,ETB----------------> 

I Data block: 
1<-----·~--~SOH,STX,BCB,FCS,FCS,RCB,SRCB,SCB, 

I ctr,ctr,SCB, ••.•• <---------
1 
I End of stream record: 
1<----------SOH,STX,BCB,FCS,FCS,RCB,SRCB,SCB, 
I RCB,SYN,ETt1-----------~ 

I 
L(~-----------DLE,ACKO<~-------------~ 

Figure 2-16. Initiation of a Transmission 

RSCS VSE/POWER 

I I 
I I 
I< Request permission to I 
I initiate a function< I 
I I 
I I 
I >Grant permission to I 
I initiate a function > 
I 
I 
1<----SOH,STX,BCB,FCS,FCS,RCB,SRCB,SCB,ctr,ctr,SCB, 
I * •• command,SCB;RCB,SYN,ETB<-------------
1 
I 
I >DLE,ACKO > 
I 
I 
I 
I< End of stream record<-----------------
1 
I 
I 

Figure 2-17. Command Transmission 

74 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

,. 
I I 

RSCS I VSE/POWER 
I 

I 
I Request permission to initiate a function: 
I< SOH,STX,BCB,FCS,FCS,RCB,SRCB,SCB, 
I RCB,SYN,ETB<----------------------
1 
I Grant permission to initiate a function: 
i >SOH,STX,BCB,FCS,FCS,RCB,SRCB,SCB, i 
I RCB,SYN,ET >I 
I I 
I I 
l<-----SOH,STX,BCB,FCS,FCS,RCB,SRCB,SCB,ctr,ctr,scB, ' 
I * .• PSTOP LINE(,EOJ],SCB,RCB,SYN,ETB< I 
I I 
I I 
I I 
L-..------------------~>DLE,ACK >~ 

Figure 2-18. Stop Procedure 

RSCS 
I 
I 
I 

VSE/POWER 

I I 
I I 
I< Request permission to initiate a function< I 
I I 
1----~->Grant permission to initiate a function >I 
I I 
t< text1< I 
I I 
I >ACK > 
I line error 
I '-1 
I< l----~~-------
1 v 
I > 
I 
1<~------------------------
1 
I > 
I 

' J<~------------------------
1 
I >I 
I I 
I< I 
I I 
----~------------------~>ACK >~ 

Figure 2-19. Text in One Direction 

Section 2: Method of Operation - Line Driver Functions 75 



Licensed ~aterial - Property of IBft 

RSCS 
I 

' I 
VSE/POWER 

I I 
I I 
1<--~~~Request permission to initiate a function<--~----1 
I I 
1------~>Grant permission to initiate a function----~---->I 

' ' 1<------~------~--------~·text1<--------------------------I 
I I 
1-------->Request permission to initiate a function-------->I 
I I 
J<------~Grant permission to initiate a function<----------1 
I I 
1---------------------------->texta------------------------->I 
I I 
1<--------------------------text2<--------------------------I 
I line error a., I 
1---------------------------->textb--------------~1------~>1 
I V I 
1<------~------~------~---NAK<---------------------------1 
I I 
1~-------------------------->textb-------------------------->1 
I I 
l<--------------------------text3<---------------------------I 
I I 
1---------------------------->textc·-------------------------->I 
I I 
L( 

Figure 2-20. Text in Both Directions 

NPT LINE DRIVER FUNCTION DESCRIPTIONS 

The NPT line driver (DftTNPT) provides binary synchronous communication 
(BSC) line protocol for nonprogrammable remote terminals. This allows: 

• Remote users of VM/370 to enter source decks, data, and jobs, on 
cards, into the VM/370 spool system 

• Vft/370 to send spooled output of virtual machine sessions to remote 
card punches and printers 

• Remote stations to transmit card decks to one another 

• Remote stations to send job streams to a CftS Batch virtual machine 
operating under the same Vft/370 and have the output returned to the 
remote station 

• Re•ote stations to submit jobs or co•mands to any node in the network 
and direct the output to any node or remote station in the network. 
The default is return to origin. 

NPT is a line driver task operating under the control of the RSCS 
supervisor. Each NPT task drives one remote nonprogrammable station. 
In other words, each NPT task controls a single point-to-point 
communications line. The task is started by the RSCS operator, 
identified with a destination name, and provided with a leased or 
switched telephone line. The communications line is either identified 

76 IBM Vft/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

by the operator or derived from a table entry within RSCS. The line is 
then activated and the type of remote station and its configuration 
details are obtained from control cards entered at the remote station, 
or from a table entry within RSCS. After this initialization is done, 
the terminal may then be used to submit files via the card reader and 
receive files on the punch and printer. 

The remote station operator can control I/O activity via control cards 
and standard station procedures. The RSCS operator controls the 
operation with commands from his console. The virtual machine user 
retrieves files sent to his virtual machine by using normal virtual card 
reader manageaent programs and directs output to the appropriate station 
using the SPOOL and TAG commands of VK/370. 

NPT operates with variations of the basic BSC protocol for each of the 
stations listed. The protocol is based upon the station identification 
information provided in a SIGNON card read at task initialization time. 

Check the status flags for the GETBLOCK processor: 

BUFEKPTY: is the unpack buffer (BUFUNPK) used to fill the line 
buffer (LINEBUFF) empty? 

HEADFLAG: is there a header record to be inserted into the line 
buffer? 

FILACTIV: is there a file being transmitted now or does one have to 
be obtained from VK/370? 

RDRCMD: are there any commands pending execution? 

EOF: has end-of-file been reached for the file currently being 
processed? 

1~ Get a Spool File Block to Transmit 

Branch to GETFILE. 

Test to see if there is a file to send. If there is a file, 
request AIS to open it for transmission. When the file is obtained 
determine whether it is a print or punch file, initialize data 
counters, buffers, and registers, and write message DKTNPT1q6I, 
indicating that a file is being sent. If there are errors, write 
appropriate messages. 

2. Write Header Record: HEADPREP 

If the header transmission flag is on, a printer header or 
printer/punch separator line is to be inserted into LINEBUFF via a 
branch to HEADPREB. 

HEADPREP tests for the type of file (print or punch) and inserts 
the appropriate line into the unpack buffer (BUFUNPK). On return 
from HEADPREP, the unpack buffer is packed for transmission on the 
BSC line. 

3.. Process Spool File Block for transmission: P!AKEBLOC 

Section 2: Method of Operation - Line Driver Functions 77 



Licensed Material - Property of IBM 

a. At GETLINE, if the BUFEMTPY flag is off, a new record is ready 
to be inserted into the line buffer. Check the maximum byte 
count and record count allowed in LINEBUFF and see if this 
record exceeds the maximum. If this record exceeds the 
maximum counts, the appropriate BSC control characters are 
inserted into LINEBUFF to complete the transmission sequence 
and control is passed back to the caller. 

If the record can be inserted in LINEBUFF, it is moved into 
LINEBUFF along with the appropriate BSC control characters. 
BUFEMTY is then turned on and a new record obtained via a 
branch to GETNEW. 

b. At VMSPOK, initialize counter registers and set FILLED flag on 
in GETFLAGS. If there is already a block to process an entry 
to MAKEBLOC, update the counter registers. 

c. At VMSPCCW, process the spool block record. Move the record 
into BUFUNPK. In the case of an immediate ccw command, only 
the ccw command is moved into BOFUNPK and IMDCMD flag is set 
on. 

d. At MAKERET, after the line has been converted for transmission 
a 0 is set as return code if there is more data to process. 
On end-of-file, a 4 is set as the return code. If there was 
an error during processing, message DMTNPT190E is written. 

4. Transmit Line: NPTGET 

a. At NPTGET, check for messages and try to get a block of data 
to write from VM/370. If there are no messages to process, 
branch to GETBLOCK to get a block of VM/370 data to transmit. 
On return from GETBLOCK with no data to transmit, determine 
whether there are files to read. 

b. At NPTSTART, on return from GETBLOCK with data to transmit, 
initialize the output buffer (LINEBUF) by: 

(1) Testing flags in the GETFLAGS table and Device Block, and 

(2) Moving into the Device Block the BSC control characters 
describing the features of the remote station to which a 
file is to be transmitted. 

Load the EBQPROG channel program into the Device Block and 
branch to LINEIO to execute an I/O operation requesting 
permission to transmit to the Remote Station. Test for the 
line errors resulting from the I/O operation. 

c. At BPTEBQOK, when the response to ENQ is correct, (DLE, ACKO) 
initialize control counters (constants and registers) for 
transmission of the file. EXREPLY contains the expected line 
error checking via BSC line protocol. DCX and INDEVSEL 
contain data control characters for printer and punch devices. 
Kove the TALKPROG channel program into the Device Block. Set 
the return address to the GETVRFY routine. 

d. At NPTTALK, execute a write I/O operation by branching to the 
LINEIO routine. Set the return address to the GETVRFY 
routine. 

e. At NPTEOT, on end of file, move the EOTPROG channel program 
into the Device Block and branch to the LINEIO routine to send 
an end of transmission signal to the remote station. 

78 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

5= Verify Response to Transmission: GETVF.FY 

a. Check the response from the last transmission for: 

EIRE PLY 
Either ACKO or ACK1, in the normal BSC transmission protocol. 

NAK 
Negative acknowledgement. 

EOT 
End cf text - used to specify that the transmission is 
incomplete~ Also, used to notify the receiving station that 
there are errors receiving data at this end of the line. 

ENQ 
Used to request permission to transmit a file. Also, used to 
"balance" the line in recovering from errors. 

b. When the EXREPLY flag specifies that the expected reply has 
been received, the next expected reply is set (lCKO or ACK1) 
and control is returned to NPTGET. 

c. When a NAK is received, the NAK counter (STATNAK) is 
incremented a test is made to see if this is the second NAK by 
checking the NAKREC flag. If this is the first NAK received, 
retransmit the block by branching back to NPTG~T. If this is 
the second NAK, reset the line by sending an EOT and an ENQ. 

d. When an EOT response is received, try to send the block again. 

e. At REPENQ, when an ENQ is received, check for I/O errors, set 
ACK1 as the next response, and branch to NPTGET to continue 
processing. 

ENQ is sent to request permission to transmit or to resume 
transmission of a file after errors on the line or timeouts. 
After multiple ENQ transmission, send EOT to reset the line. 

6. Obtain each subsequent block of this file with DIAGNOSE X'14', 
subcode o. 

7. At GETPURGE, on end-of-file, write message DMTNPT147I, indicating 
that a file has been sent and purge the file via a branch to AXS. 

!EST IQB REQJ!~ST TO TRANSMIT lRQ~ REMOTE ~TATIO!: At NPTGET, monitor the 
BSC line for tasks to perform. 

1. Check for messages and try to get a block from VM/370 to write. If 
there are no messages to process or VM/370 files to transmit, read 
from the BSC line to determine whether a file is being transmitted 
from a remote station. 

2. At NPTINIT, read a line of data. 

Load the READPROG channel program into the device table describing 

Section 2: Method of Operation - Line Driver Functions 79 



Licensed Material - Property of IBM 

the I/O operation and branch to LINEIO to execute the read. If 
there were no flags set in the DEVFLAGS table, there is nothing 
being transmitted on the BSC line. In this case, branch back to 
NPTGET to try to get a VM/370 spool file to transmit. 

3. Test for request permission to transmit. 

When a line of data has been received over the BSC line, check the 
BSC control characters for a request to transmit. If such a 
request (ENQ) is not received, branch back to NPTDINIT to check for 
another operation to perform. 

4. At NDTACKO, send permission to transmit. 

When an ENQ is received, load permission to transmit (ACKO) in the 
REPLY entry in the I/O Counter Table, load the ACKPROG channel 
program in the Device Table for this I/O operation and branch to 
LINEIO to transmit peraission to transmit. on return from the I/O 
operation, check the results via a branch to PUTVRPY. 

VERIFY REA!! QfERATION BSC DATA: 

1. Check for I/O errors on the BSC line: PUTVRFY 

a. At PUTVRFY, check for I/O errors during the last transmission. 
If there are no errors, processing continues at CKBUFF. 

b. At NPTNAK, if there are any errors, check for timeout. If a 
timeout error, send a NlK. If the maximum NAKs allowed are 
sent, reset the line by sending an EOT. If the maximum number 
of timeouts has occurred, close the file via a branch to 
PUTCLOSE in the PUTBLOCK routine. 

2. Check the BSC control characters. 

a. At CKBUPF, check the BSC control characters of the buffer just 
received: STX or DLE STX for the leader and ETB or ETX at end 
of buffer. If all characters are acceptable, branch to 
PUTBLOCK to continue processing. 

b. At NPTTALK, if the leader characters are not STX or DLE STX, 
check for ENQ, EOT, or NAK. If an ENQ is received, send ACKO 
to the remote station. 

If an EOT or a NAK is received, set the EOTREC (EOT received) 
flag and branch to PUTBLOCK. 

c. At REPLY2, if the leader characters are unidentifiable, load 
the "not ready" program, send it, and check for I/O errors and 
an ENQ. If the reply is not ENQ, send an ACKO back across the 
line. 

d. At NPTTALK1, if the reply is ENQ set the return address to 
PUTVRFY and go to LINEIO to write the next line. If there are 
I/0 errors, exit to PUTCLOSE in the PUTBLOCK routine (REPLY3). 

1. Check status of file processing. 

80 IB" V~/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

At PUTBLOCK, determine the status of file processing Dy checking 
for an already active file, end of file, an error in processing, 
and setting the correct response to the received transmission (ACK1 
or ACKO). If a file is active, continue processing, On end of 
file, close the file. If there was an error in processing, resend 
the buffer via a branch to NPTTALK1. 

2. convert a line of data to VM/370 format. 

At TRT1, if a file is being processed, get the address of the line 
buffer and convert the characters to V~/370 format. When a block 
is completely reformatted, get another via a branch to NPTTALK1. 

3. Determine whether the current record is a command. 

At FOUND, check the current record to see if it is a command. If 
the return code from the command processor is zero, branch to 
PUTSKIP to skip printing of the command line. 

4. Validate the userid of an ID card. 

In FOUND, check the current record to determine if it is an ID 
card. If the record is an ID card, validate the card and move the 
VM userid into TAGTOVM, the target virtual machine for the file to 
be processed. 

5. Open a file. 

At PUTOPEN, open the new file for processing by writing message 
DMTNPT144I, informing the operator that a file is being sent. 
Clear the request synchronization lock and request the supervisor 
GIVE request routine to handle the open request. on return from 
the GIVE processor, set the FILEOPEN flag and get the first block 
of data via a branch to NPTTALK1 (via PUTSKIP, where printing of 
the ID card is skipped). 

6. Write a block of data to a VM/370 spool file. 

a. At PUTWRITE, write_a block of data to a VM/370 spool file by 
decompressing the record, if required, loading the PUTPROG 
channel program, and branching to LINEIO to handle the I/O 
operation. 

b. At PUTSKIP, records that need not be written to the file (such 
as commands, ID cards, and blank records) are skipped. 

When a write operation is interrupted by EOT or an alert, 
processing is continued via a branch to PUTCLS4. 

7. Close a file. 

At PUTCLOSE, close the file by writing message DMTNPT145I, 
informing the operator that a file has been received, clearing the 
synchronization lock, setting the close function code in the 
request block, and requesting the !SUP supervisor GIVE request 
handler to close the file. If the file is not open, issue message 
DMTNPT93n .• 

Section 2: Method of Operation - Line Driver Functions 81 



Licensed Material - Property of IBft 

VMB LINE DRIVER FUNCTION DESCRIPTION 

The VMB line driver (DftTVftB) is for transmitting Vft/370 spool files 
between VK/370 systems over BSC lines. DMTVMB communicates with another 
copy of itself using the file address specified on the VM/370 TAG 
comaand (location and userid) to determine the recipient virtual 
machine. DMTVMB supports both print and punch file transmission between 
users operating on two different VM/370 machines or transmission from a 
VM/370 user to a real unit record device on a remote VM/370 machine. 

The VMB Line Driver emFloys a variation of standard BSC protocol similar 
to MULTI-LEAVING; it is transparent, symmetrical, and can sustain 
simultaneous tvo-vay data transfer by interleaving block reception and 
transmission. All data records are compacted by reducing all sequences 
of five or more identical characters into a four-character sequence. 
standard BSC transparency mode is used for data transmission to remove 
restrictions on data content. The protocol is symmetrical, with no 
master/slave relationship between the communicating systems. 

VMB protocol provides a quiesced state when neither system has data to 
transmit to the other.. This provision avoids forcing the CPU cluster to 
an active state (thereby running the system meter) when communication is 
available but not actually active. Communication may be restarted by 
either of the connected systems when data arrives for transmission. 
Contention (simultaneous activation) is not a problem, beca·use data flow 
can commence in both directions as soon as transmission exchange is 
synchronized. 

Bidirectional interleaved half-duplex communication is achieved through 
the use of the block header for acknowledgment or rejection of the 
previously received transmission. The acknowledgment byte flag setting 
in the block header explicitly confirms successful reception and 
processing of the data transmitted by the remote system in the preceding 
line sequence. When a received block cannot be processed because system 
resources have been exhausted, an acknowledgment byte flag setting 
requests retransmission of the block. 

If recoverable I/O errors occur during a block transmission, the 
receiver responds with a negative acknowledgment (NAK), requesting 
complete retransmission of the preceding sequence. Serious line I/O 
errors, negative acknowledgments to negative acknowledgments and long 
duration timeouts (>15 seconds) while waiting for response are condi­
tions that terminate exchange synchronization.. Exchange may then be 
restarted as from the quiesced state by either system with data to 
transmit. 

BSC TRANSMISSION SEQUENCE WITHOUT DATA 

AS TRANSMITTED --> 

SYN, SYN, SYN, SYN, SOH, 00, 00, 00, 00, [ ( j ) ], ETB 

AS RECEIVED --> 

SOB, 00, 00, 00, 00, [ ( j ) ], ETB, 1 

82 IBM VM/370: RSCS Networking Logic 



Licensed ftaterial - Property of IBK 

WITH DATA 

AS TRANSMITTED --> 

SYN, SYN, SYN, SYN, SOH, 00, 00, 00, 00, [ ( ! ) ], ITB, SYN, SYN, 
'V', 'l!', 'R', 'A', ( 1 ), ( ! - FIVE BYTES), ( 2, - TWO BYTES), 
DLE, STX, .§ - PACKED DATA), DLE, E'l'B 

AS RECEIVED --> 

S 0 H, 0 0 , 0 0, 0 0, 0 0, [ ( 1 ) ] , I TB , ( ~ ) , 
'V', 'M', 'R', 'A', ( ~ j, ( ! - FIVE EYTESj, 
DL E, STX, ( .§ - PACKED DAT A), DLE, ETB, ( £ ) 

2, - TWO BYTESj , 

1 Acknowledgment flag, present only when the preceding transmission 
from the remote station included a packed data block. 

X'80' - Preceding block vas successfully received and processed, 
and may be discarded by the sender. 

I 1 A0 1 - Preceding block vas successfully received, but could not be 
processed due to lack of available system resources -
transmission must be retried later. 

l An error index byte that is generated by the BSC telecommunications 
adapter operating in "ITB Kode", to flag data errors detected by 
check sum mismatches. 

1 A one-byte EBCDIC block sequence number, modulo 8 (X'F0'-X'P7'), 
used to detect possible duplicated transmissions so that the 
duplicated data may be discarded. 

! A five-byte EBCDIC data block content descriptor: 

C 1 SYNCH 1 - Null data block - intended to be discarded. (This is 
used on line driver restart so that the initial data 
transmission vill not be erroneously discarded due to a 
spurious block serial number match.) \ 

C'PRINT' - Print image data. 

C'PUNCH' - Card image data. 

C'ftSGHD' - commands, messages, or link control records. 

2 A two-byte formatted packed data count: 

1 x 
I I 

x x 
I I 

x 
I 

x 
I 

x 
I 

I High-Order Count Bits 

x I 1 
I I 

x 
I 

x 
I 

x 
I 

x x 
I I 

x 
I 

Low-Order Count Bits 

x I 
I 

The packed data count is constructed by discarding the high-o~der 
bit of each of the two count bytes and juxtaposing the remaining 
bits into a 14-bit binary count. (The high-order bit of each byte 
is always set to "1" to avoid possible duplication of a BSC control 
character, because only the packed data block itself is transmitted 
in transparency mode.) 

~ One or more packed data records, to a maximum length of 824 bytes. 

Figure 2-21 shows the protocol for transmission error retry and Figure 
2-22 shows typical line transactions. 

Section 2: Method of Operation - Line Driver Functions 83 



Licensed Material - Property of IB~ 

TERfHNUS 1 TERMINUS 2 
--------- ----------

* TIME * 
* I * 
* I * I 
I v I 
I I 
I I 

----> BLOCK 1 ----> RECEIVES BLOCK O.K. 
I I 

' ' DETECTS I I 
ERROR <---- BLOCK 2 <----

I I 
I ' ----> 'NAK' ----> RECEIVES 'NAK' 

' ' RECEIVES <---- BLOCK 2 <---- RESENDS LAST BLOCK 
BLOCK O. K. ' I 

I I 
----> BLOCK 3 ----> 

I I 
I ' I I 
* * 
* * 
* * 

Figure 2-21. Protocol for Transmission Error Retry 

84 IBM VM/370: RSCS Networking Logic 



licensed Material - Property of IBP! 

TERMINUS i TERMINUS 2 

PREPARE - READ TIME PREPARE - READ 
I I I 

(DATA TO I I I 
BE SE NT)--> HDV I I 

I v I 
--->'FNQ' ---> RECEIVES 'ENQ' 

I I 
I I 

RECEIVES <--- 1 DLE,ACK0' <---
'DLE ,ACKO' 

(NO MORE DATA 
TO BE SENT) 

RECEIVES 'EOT' 

I 
! . 

---> IDUMPIY HEADERI 
I I & DATA 
I 
I 

<--- IREPLY HEADERI 
I I (NO DATA) I 
I 
I 

~~~) IDUJ.l!r!Y HEADERI 

I I & DATA I
I
I
I

<--- IREPLY HEADERI
I I & DATA I
I
I

---> IREPLY HEADERI
I I & DATA ' I
I

<--- IR EPL Y HEADER I
I I & DATA I
I

--> ' I
---> IREPLY HEADERI

I I (NO DATA) ' I

' <--- IDtJMftY HEADERI
I I & DATA I
I
I

---> IREPLY HEADERI
I I (NO DAT A) I
I
I

<---
I

PREPARE-READ

*
*
*

Figure 2-22. Typical Line Transactions

' !
--->

I

' I
<---

I
I
I

--->
I

' I <--(DATA TO BE SENT
I ARRIVES)

<---

' I

' --->

I
I

' <---

I
I

' I
--->

' I

' <---

I
I <-- (NO PIORE DATA

1 TO BE SENT)
--->

I
I

' 1 EOT 1 <---

' PREPARE-FEAD

*
*
*

Section 2: Method of Operation - Line Driver Functions 85

Licensed Material - Property of IBM

DMTVMB scans the output data and builds packed formatted blocks which
are actually transmitted on the telecommunications lines. The data are
packed by compressing all occurrences of five or more identical
characters in a record into a coded field which adds only four bytes to
the packed record. When the data blocks are received by the remote RSCS
system, the records are correspondingly unpacked by DMTVMB before being
entered as output in the VM/370 spool system.

Transmission data blocks are of variable length, depending on content,
up to a maximum length of 824 bytes. Each block contains a variable
integral number of packed records of variable length, each of which
corresponds to a single unpacked record. There are no partial records
in a block; if a packed record vill not fit at the end of a block
without extending the block beyond the 824-byte limit, the block is
terminated and the record is placed at the start of the next block.

The packed data record format is:

I I I > >
A. I CM I DL I DATA < < I

l ___ l __ I _____ > _> ____ I
+O +1 +2 +N

Where:

CM

DL

DATA

a System/370 Channel Command Word (CCW) command code used to
output the record by the originating virtual machine.

number of bytes (in hexadecimal) in the packed DATA field.

data comprising a single record in mixed packed and segment
format as shown below.

The DATA field format is:

I I > > I I I I I > > I
I SL I SEG. < < DA TA I FF I CH I RF I SL I •• < < • • I
l __ r_ ___ > L ____ 1 __ 1 __ 1 __ 1__1 __ > _>_I

+2 +3 +M +M+1 +ft+2 +M+3 +M+4 +N

Where:

SL

SEG.
DATA

FF

a one-byte hexadecimal count equal to one less
than the length of the segment data, SEG. DATA.

a string of data to appear unmodified in the
unpacked record.

a flag (X'FF') which indicates the start of a
packed segment.

CH -- a data character to be replicated a number of
times in the unpacked record.

RP -- a hexadecimal count equal to two less than the
the total number of characters, all "CH", to
appear in the unpacked record.

86 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

I I
B. I Cfll I DL i

1 ___ 1 __ 1
+O + 1 + 2

Where:

CM a System/370 immediate (non-data moving) control command
code, for a print or punch output device.

DL -- a data count of x•oo•, which implies that the CM command is
of the immediate control type:

I I
c. I FL I

I ___ ,
+O +1

Where:

FL a flag byte which has one of the two following values:

X' FF'

X1 EF 1

end of data block; more data blocks exist
for the file.
end of data block and end of file; no more
data blocks exist for the file.

A. VMRENABLE - This routine is entered after VMB initialization has
completed, and each time the telecommunication line drops
(signalling "intervention required") during VMB processing. It
issues message DMTVMB141I to notify the operator that the line
should be connected in case manual intervention is required (such
as when a dialable port is in use), and starts execution of the
line enabling sequence.

This enabling sequence comprises three command chained ccw•s:
DISABLE, SET MODE, and ENABLE.

The DISABLE command disconnects any previous dial port connection,
and places the telecommunication adapter in the disabled state.

The SET MODE command places the telecommunication adapter in ITB
mode, such that on subsequent read operations an incoming ITB BSC
control character will be recognize·d, the following two BCC
characters will be interpreted, and an EIB character reflecting
presence or absence of errors will be entered into the read buffer.

The ENABLE command completes, placing the telecommunication adapter
in the enabled state, when the port's modem signals "data set
ready". For a dialable port, this occurs when the dial connection
completes; and for a leased line, "data set ready" is signalled
whenever the line and modem equipment are functional.

When this enabling sequence completes, control is passed to
VMRSTART to verify link identifiers and passwords, and normal
processing begins.

Section 2: Method of Operation - Line Driver Functions 87

Licensed Material - Property of IBM

B. VMRGET - This routine is entered when VMB is in the quiesced
communication state, and data may be available for transmission to
the remote system. The hold and drain statuses are checked, and a
call is made to GETBLOCK to prepare a data block for transmsission.
If communication is allowed and a data block is ready, control is
passed to VMRSTART to initiate the exchange. Otherwise, the read
initial sequence (command chained PREPARE and READ commands) is
started, and communication remains quiesced.

The PREPARE command completes only when halted by the AXSALERT
routine, or when the remote system initiates a transmission. In
the former case, VMRGET is reentered from the beginning. In the
latter case, a DLE-ACKO sequence is written to the remote system;
if signon has already occurred, control is passed to VMRVERFY (in
the VMRGO routine) to begin processing incoming data. Otherwise,
signon blocks are exchanged and verified before any data transfer
is allowed to occur.

c. VMRSTART - This routine is entered upon successful completion of
the line enabling process, and each time communication is to be
reactivated from a quiesced state. The block exchange channel
program is initialized, and an attempt is made to exchange the
initial ENQ, DLE-ACKO, and signon sequences. When successful,
control is passed to VMRCHARG (in the VMRGO routine) to initiate
data exchange. If no response is received from the remote system
for the duration of the ENQ retry sequence, control is passed to
VMRDINIT (in the VMRGET routine) and communication remains
quiescent.

D. VMRGO - This routine comprises the central control logic for normal
VMB transmission-reception activity. At VMRGO, a transmission has
been received from the remote system. If a NAK has ·been received,
the preceding transmission is repeated. Otherwise, the received
sequence is checked for validity, and a NAK is transmitted (at
VMRNAK) if it is invalid. If a signon block is received, it is
verified by a call to PASSCHEK, and a signon block is returned by a
call to PASSSEND. If a data block is received, it is processed by
a call to PUTBLOCK._ The GETBLOCK routine is called to prepare a
data block for transmission to the remote system, if any such data
is available. If no data block is available for transmission, and
no data block was received on the last transmission from the remote
system, an EOT is transmitted at VMREOT and control is passed to
VftRGET to quiesce communication.

The main telecommunication channel program is executed at label
V!RTALK. This channel program comprises several data chained write
ccws, command chained to a read ccw. It is built mainly by
GETBLOCK, and its structure can include TICs, depending upon the
presence of an acknowledgement byte and data block in the
transmission to be made. When the exchange is successful, the
transmission will have been written to the remote system, the
response will have been read into the line input buffer (LINEBUFF),
and control is passed back to VMRGO for another exchange cycle.

E. LINEIO - This routine is called to perform all I/O operations on
the telecommunication port. The I/O request is executed as set in
the line I/O table (LINE) by a call to XECUTE, and call is made to
KLOGIT to log the results. If the I/O is successful, return is
immediately made to the caller. If a serious error occurs, control
is passed to VftRBADIO, which issues an error message and
deactivates the line driver. When contention is detected, a read
is executed, an error is flagged, and control is returned to the
caller. If "intervention required" is detected, message 143 is
issued and control is passed to VMRGFI' if no response is read. If
an error is detected that can be corrected on retry, an error is

88 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

flagged, and control is returned to the caller.

F. TRTRAN, TRERR, TRTIMOT - The trace sum routines are called by the
various line management routines to count the accumulated number of
successful transmissions, line errors, and timeouts, respectively.
These counts are constantly maintained in the line driver's link
table, where they may be interrogated by an RSCS operator "QUERY
linkid SUft" command. When sum tracing is active, message 149 is
issued each time any of the counts reaches a threshold value, and
a 11 counts are reset to zero.

G. KLOGIT - This routine is entered after every line I/O transaction.
When log trace is set on by a "TRACE linkid LOG" command a print
output file is opened by a call to !XS, and each subsequent I/O
execution is formatted and recorded in the print file. The print
file is scheduled for printer processing when the file is closed by
a call to 115 from the command processor on execution of a "TRACE
linkid NOLOG" command.

A. GETBLOCK - This routine is called by the line management routines
to prepare data blocks for transmission to the remote system. The
data blocks may be initial null pad (SYNCH) blocks, CMD/MSG element
(MSGHD) blocks, or spool data blocks.

Upon entry, control is passed to GETPAD if the block to be
constructed is the first to be transmitted following initialization
or line connection. In this case, a null data block is constructed
vith a SYNCH header, and control is passed to GETSETUP.

If no SYNCH block is to be generated, a call is made to MSGTRANS if
at least one CMD or MSG element is queued for transmission. When
the MSGHD block has been built by MSGTRANS, control is passed to
GETSETUP.

If none of the above conditions exist, an attempt is made to build
a spool data block. If no input spool file is open, control is
passed to GETFILE. Otherwise, a call is made to MAKEBLOK to build
a spool data block. If an end-of-file condition on the input spool
file is encountered, message D8TVMB147I is issued, the old file is
purged, and control is passed to GETPllE,. When a spool data block
is successfully built by MAKEBLOK, control is passed to GETGOT.

At GETPILE, the drain and hold request status are tested. If drain
is set, no block is built and control is returned to the caller.
If hold is requested, message DMTVMB611I is issued, the link is
placed in hold status, and control is returned to the caller with
no block built. If an input spool file is potentially available, a
call is made to AXSGET to attempt to open an input file. If
successful, control is passed to GETGOT; otherwise, control is
returned to the caller with no block built.

At GETGOT, a spool data block has been built and is ready for
transmission in GFTBUPF. Pending commands are tested for validity
and applicability, and rejected with diagnostic messages if
invalid. Valid pending commands are executed with confirmation
messages. If a new file has been opened, messages DMTV~B146I or
DMTVMB1qa1 are issued, as appropriate, and control is passed to
GETSETUP.

At GETSETUP, the generated block length is determined and is stored

Section 2: Method of Operation - Line Driver Functions 89

Licensed Material - Property of IBM

in the block write ccw (WRITDATA) and in the block header. The
block serial number is generated and stored in the block header,
and control is returned to the calling line management routine.

B. PUTBLOCK - This routine is called by the line management routines
to process data blocks received from the remote system. Data
blocks with serial numbers matching the previously-received serial
number are discarded.

The received data block is processed by decompressing each record
at PUTNEXT, and passing control to PUTOUT for individual record
processing.. When processing has been completed for a record,
control is returned to PUTNEXT, which decompresses the next record
in the block and passes control to PUTOUT. When no records remain
in the block, control is passed to PUTDONR, which checks for
end-of-file on spool data output. If end-of-file is detected,
message DMTVMB145I is issued, the file is closed by a request to
AXS, and all output file status is reset.. Finally, control is
returned to the calling line management routine.

At PUTOUT, the record to be processed is tested to determine if it
is a link command element or a CKD/MSG element. For a RESTART link
command element, a flag is set to cause GETBLOCK to restart its
active input spool file from the beginning when such a file is
present, and the next record is processed. For a PURGE link
command element, the active output file (if any) is closed and
purged by a call to AXS. For a TAGB control record, the active
output spool file (if any) is closed and purged by a request to
AXS, the new output tag status is updated and reset according to
the contents of the tag record, and the next record is processed.
For a CMD or MSG element, MSGRECV is called to pass the element to
REX for further processing, and the next record is processed. All
other records are interpreted as spool output records, and control
is passed to PUTOPEN.

At PUTOPEN, an output spool file is opened by a request to AXS and
message DMTVMB144I is issued if no output file was already open and
if the link is not in drain status. If the link is in drain status
and an input file is still being processed, a WABT response is set
for transmission to the remote system. If the link is in drain
status and no other file is being processed, control is passed to
VMREOT to terminate communication and line driver processing.
Control is passed to PUTWRITE when a spool output file is open.

At PUTWRITE, the decompressed record is written into the output
spool file using the ccw command code supplied with the record.
NOP records (command code X'03') are executed as normal writes,
because they may represent transparent control information which is
to be embedded in the spool file and preserved. If the write
operation is successful, the next record is processed. Otherwise,
a diagnostic message is issued and line driver processing is
terminated by a call to VMRTILT.

c. MSGRECV - This routine is called by PUTBLOCK to process CMD and ~SG
elements as they are received. Each such record is given to REX as
a request. REX, in turn, executes commands and issues messages
contained in elements addressed to the local location, and forwards
other elements to line drivers for transmission to remote systems.
When the request has been accepted by REX, control is returned to
the caller.

D. MSG - This routine is called throughout VMB, normally from within

90 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

the expansion of the MSG macro; to format and issue message
requests to REX. On each call, a message request element is built
using the message number and substitution parameters supplied hy
the caller. The request element is passed to REX, which builds and
distributes the requested message. When REX has completed
processing the request, control is returned to the caller.

E. AXSGET - This routine is called by GETBLOCK to prepare an input
spool file for reading and transmission. It starts by issuing an
OPEN INPUT request to AXS. If no input spool file is available,
AXS returns an error indication and control is immediately returned
to the caller, reflecting the error. If a file is successfully
opened, the new input file status is set, a transmission block is
built by a call to MAKEBLOK, and control is returned to the caller
indicating successful completion.

F. AXSPURGE - This routine is called by GETBLOCK to t~Lmiual~
processing of an active input spool file. The file may be deleted
or saved (reenqueued) for future processing, depending on the
request set by the caller. A CLOSE request is built and passed to
AXS for execution. When complete, VMB's active input spool file
status is reset, and control is returned to the caller.

G. MSGTRlNS - This routine is called by the line management routines
to build a data block, containing CMD and MSG elements, for
transmission. GMSGREQ in DMTCOM is called repeatedly to dequeue
and retrieve elements stacked by AXSALERT. Each record retrieved
is formatted into a NOP data record, compressed by a call to PACK,
and entered into the data block buffer (GETBUFF). When no more
elements are available, or when the 824-byte data block length
limit is reached, the block is terminated, and is returned to the
caller with a !SGHD header code. When no elements are available,
an error indication is returned to the caller.

H. !AKEBLOK - This routine is called by the line management routine to
build a data block, containing spool data records, for
transmission. Page buffer spool data blocks are read from the open
input spool file by a hypervisor call (DIAGNOSE X1 14', subcode O)
to CP. Each spool page buffer is decomposed record by record.
Each record is compressed by a call to PACK, and entered into the
data block buffer (GETBUFF). When a data block has reached the
824-byte length limit, or when the spool data input has been
exhausted, the block is terminated and control is returned to the
caller. When input data records remain on completion of data block
construction, the records and deblocking pointers are saved. The
next call to ElKEBLOK resumes with the next sequential record.

I. PACK - This routine is called by MSGTRANS and MAKEBLOK to compress
a line of data into the VMB packed data format (see DMTVftB Packed
Data Block Format). A single line of data is accepted as inputr
along with its character count. The line is searched for sequences
of five or more identical characters by a compare logical character
instruction specifying overlapping one-byte offset fields, each
four characters long. When such a sequence is located, the
previous segment data string (if any) is entered into the caller's
output buffer, and the packed sequence is entered with its length
and replicated data character. If more input characters remain,
the search for identical characters and the construction of the
output string continues as described above. When the end of the
input string is reached, the output buffer is completed with the

Section 2: ftethod of Operation - Line Driver Functions 91

Licensed Material - Property of IBM

final data segment or packed sequence, the packed output string
count is stored in the first byte of the output buffer, and control
is returned to the caller.

A. SVMRINIT - This routine is executed only when a VMB line driver is
initially started. The start parameter string is inspected for
validity, and, if valid, the link passwords are set as specified.
Otherwise, a diagnostic message is issued and the passwords are
left unspecified. The link table address, the device address of
the line in use, and the link ID are located and saved for future
use. The prototype tag blocks to be used in OPEN OUTPUT requests
to AXS are initialized to their default values. ASYNREQ in ~SUP is
called to specify AXSALERT as the line driver task's entry point
for alert calls from other tasks (REY alerts line drivers for
command and CMD/MSG element transfer, and AXS alerts line drivers
for notification of file availability). A RESTART link command
element is stacked for transmission to the remote system, to cause
the remote system to terminate active output file processing and
restart active input file processing. Finally, a flag is set to
force transmission of an initial pad (SYNCH) block, SVMRINIT's
storage page is released, and processing is begun at VMRENABL.

B. CMDPROC - This routine is called by XFCUTE when a wait request
completes with the posting of the command arrival synchronization
lock (CMDECB), following the acceptance of a command alert element
from REX. The command code table (CMDTABLE) is searched for a code
matching that of the accepted element, and the command's processing
routine is entered when a match is made. If no match is found, the
command is ignored. The command processing routines are:

ROUTINE

SET START
SET DRAIN
SETFREE
SETHOLD
SETT RACE
SETBACK
SETFWD
SETFLUSH

COMMAND IT PROCESSES

START command
DRAIN command
FREE command
HOLD command
TRACE command
BACKSPAC command
FWDS PACE command
FLUSH command

These individual command processors normally issue messages, set
flags, and modify other line driver status, depending upon the
particular command and the processing status of the line driver.
In addition, the SETTRACE routine requests open and close spool
output from AXS for line activity log initiation and termination.
When processing is complete, control is returned to the caller.

c. AXSALERT - This rcutine is entered asynchronously in masked-off
supervisor state from the MSOP ALERT processor (DMTSIG) on an alert
call from another task. If the alerting task is AXS, the call is a
notification that an input file has become available for the line
driver •s link. In this case, "file available" status is set, line
I/O is terminated by an HDV command when read initial (PREPARE
command) is active, and control is returned to MSUP.

92 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

If the alerting task is REX, the element code being presented is
inspected. For CftD and MSG elements, control is passed to AXSMENQ
which calls PMSGREQ in DMTCO~ to stack the element for future
transmission to the remote system. Otherwise, REX is assumed to be
presenting an operator command element.. If an operator command is
already in progress, the request is rejected and an error
indication is returned to REX via MSUP on return. If no command is
already in progress, the command element is moved to VMB's command
element buff er (CMDRESP), the line I/O is halted if read initial
(PREPARE command) is active, the active command presence is
flagged, and con~rol is returned to MSUP with a normal completion
code for REX.

If the alerting task is other than AXS or REX (which should not
happen), the alert call is ignored and control is returned to MSUP.

D. V~RTILT - This routine is entered from various locations in
VMB, and its function is to terminate line driver processing.
If the reason for termination is a fatal I/O error, entry is
made at VMRBADIO. In this case, IOERRPRT is called to issue a
diagnostic I/O error and the device in error is marked
"inoperative" before termination processing.

At VMRTILT, line I/O logging is terminated if active, and any
active line I/O is halted by an HDV instruction. If the line
port remains operative, a DISABLE operation is executed to
reset the port and disconnect (hang up) dialable telephone
data sets. Finally, a task termination request is issued to
REI, and VMB enters a permanent wait state until it is deleted
from the system as a result of a call to ~SUP, which is made
by REX during its processing of the terminate request.

~ I/O Management Functions

A. XECUTE - Th1s routine is called throughout V~B to execute I/O
channel programs for all I/O devices. The I/O table is prepared
for execution by the caller, including the address of the channel
program and the device on which it is to be executed, and the
address of the I/O table is passed to IECUTE in register 13.

XECUTE begins by clearing the synchronization lock in the caller's
I/O table and calling IOREQ in MSUP, specifying the I/O table, to
schedule and execute the requested I/O. The address of the I/O
table synchronization lock is stored in a wait list that also
includes the command arrival synchronization lock, and WAITREQ in
MSUP is called to suspend line driver task dispatching until the
I/O completes, or until a command alert element is delivered. When
a command alert element arrives, it is processed by a call to
C!DPROC, and the vait request is repeated if the I/O request has
not completed. When the I/O manager in MSUP signals completion by
posting the synchronization lock in the I/O table, control is
returned to the caller.

B. IOERRPRT - This routine is called from throughout VMB whenever the
standard I/O error message 70 is to be issued. The caller passes
the address of the I/O table containing the ending I/O error
information to IOERRPRT in register 13. The device address, ending
CSW, SIO condition code, and ending CCW are extracted from the
caller's I/O table, converted to EBCDIC, and placed in the message
request element. The message routing code is set to the VM/370 and

Section 2: Method of Operation - Line Driver Functions 93

Licensed Material - Property of IBM

RSCS operator consoles, the ~SG routine is called to issue the
message request, and control is returned to the caller.

VMC LINE DRIVER FUNCTION DESCRIPTIONS

The VMC line driver (DMTVMC) is for transmitting VM/370 spool files
between VM/370 systems over channel-to-channel adapters (C~CAs) • DMTV"C
passes VK/370 4K spool page buffers to another copy of itself, using a
specially designed protocol to optimize utilization of the CTCA without
creating heavy I/O activity. The 4K block is read from the VM/370 spool
system, transmitted across the CTCA, and then written into the receiving
machine's spool system with minimal SIO execution. Like DMTVMB, DMTVMC
requires no special operating instructions, and supports the full RSCS
command language except for BACKSPAC, HOLD IMMED, and FWDSPAC~ count.

This routine is responsible for the main DMTVMC line driver control of
the channel-to-channel adapter (CTCA) • CTCGO is entered from CTCINIT
after line driver initialization is complete. A wait is issued on a
list of four synch locks until there is work to be done. The synch
locks are:

1. RDYRDY - This synch lock is posted by the asynchronous exit
AXSALERT in DMTVMC whenever an alert notification is given from the
AXS task indicating than an input file is ready to be transmitted.

2. MSGECB - This synch lock is posted by the asynchronous exit
AXSALERT in DMTVMC whenever a command or message to be transmitted
across the CTCA has been entered into the link's message stack.

3. CMDECB - This synch lock is posted by the asynchronous.exit
AXSALERT in DMTVMC whenever a command to be executed by the line
driver locally is placed in the CMDRESP buffer after an alert from
DMTC!U.

4. ATTNLOCK - This synch lock is posted by the asynchronous exit
CTCATTN whenever an attention interrupt is received on the CTCA.
This indicates that the other side of the CTCA is requesting that
communications be established.

When one or more of these synch locks is posted, I/O activity on the
CTCA is initiated to transmit or receive data. Calls are made to
MSGTRANS and GETBLOCK to block data for transmission and to ~SGRECV and
PUTBLOCK to process received data blocks. When there is no more work to
do, a wait on the synch lock list is again issued.

Calls are made to IINEIO to initiate an I/O operation on the CTCA. When
an I/O request for a read or a write is made to DMTIOM, a timer request
is made to D~TREX to post the TIMELOCK synch lock 15 seconds later. A
wait is then issued on both the device synch lock and the time synch
lock. If the other end does not complete the I/O operation before the
time interval of 15 seconds expires, the I/O operation is terminated
through an HDV instruction to the CTCA. This operation is done to
prevent the read/write operation from inhibiting read channel activity
if the remote system has gone down.

94 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

This routine is entered from the main processing routine in DMTVMC
(CTCGO) whenever the File Available synch lock is posted, or after an
input file has been processed. A call is made, if required, to AXSGET
to obtain a new spool file to be transmitted. If a new file is not
obtained, return is made to CTCGO. If a new file is obtained, message
DMTVMC146I is issued, and return is made to CTCGO with a full block
indicated. Successive calls to GETBLOCK will return 4K spool page
buffers to be transmitted until an end of file condition. When
end-of-file occurs on the input spool device, an end~of-file record is
returned to be transmitted, to close the output spool file on the
receiving system.

This routine is entered from CTCGO when a block that contains a command
or message is received. This record is converted into a routing request
element and passed through GIVE/TAKE to DKTRGX for processing.

This routine is entered from CTCGO when the MSGQUED flag and the MSGECB
synch lock have been posted by the asynchronous exit, lXSALERT. The
message or command is placed in a message transmission buffer for
transmission across the CTCA. The MSGQUED flag is not reset, indicating
that there are more messages or commands to be transmitted. When a
non-zero return code is obtained from the call to GKSGREG, the MSGQUED
flag is reset and control is returned to CTCGO .•

PUTBLOCK

This routine is entered by CTCGO whenever a spool data block is received
across the CTCA. When a tag record is encountered, a new spool output
device is obtained via a GIVE/TAKE call to DMTAXS. If a file was
previously open, a restart is assumed, and the file is closed and
purged. If the file being received is destined for the local location,
a header line indicating the file origin is placed in the output spool
file. Each successive data block has the format of a VM/370 4K spool
page buffer. This buffer is relocated in the same manner as performed
by module DMKRSP in CP. Once the data has been relocated, one virtual
SIO is issued to write the entire buffer into the VM/370 spool system.
When an end-of-file record is received, the output spool file is closed
via a GIVE/TAKE call to DMTAXS.

(See CMDPROC under VMB Processing Control Functions.)

Section 2: Method of Operation - Line Driver ~unctions 95

Licensed fllaterial - Property of IBM

AXSALERT

(See AXSALERT under VMB Processing Control Functions.)

The trace sum routines are called by the various line management
routines to count the accumulated number of successful transmissions,
line errors, and timeouts, respectively. These counts are constantly
maintained in the line driver's link table, where they may be interro­
gated by a "QUERY linkid SUM" command. ~hen sum tracing is active,
message DMTxxx149I is issued each time any of the counts reaches a
threshold value, and all counts are reset to zero.

This routine is entered after every line I/O transaction. When log
trace is set on by a "TRACE linkid LOG" command, a print output file is
opened by a call to AXS, and each subsequent I/O execution is formatted
and recorded in the print file. The print file is scheduled for printer
processing when the file is closed by a call to AXS from the command
processor on execution of a "TRACE linkid NOLOG" command.

NJI LINE DRIVER FUNCTION DESCRIPTIONS

The NJI line driver (DMTNJI) communicates with non VM/370 NJI or NJE
systems. The line driver consists of three preloaded modules (see
Preloader, Appendix B):

DMTNC~ - acts as main control of DMTNJI, manages the communications
adapter and interfaces to the VM/370 spool system through the
DMTAXS task ..

DMTNHD - processes NJI/NJE header records for jobs, output, commands,
-""a'PlAI _.,.....,.. ____ _

u.uu. mcwwa.~-cw •

DMTNIT - handles line driver initialization~ This module verifies
parameters, obtains storage for teleprocessing buffers and unit
record tanks, and constructs the initial SIGNON record. The
storage for this module is freed upon return to DMTNCM.

DMTNJI conforms to the protocol defined by the Network Job Entry
facility for JES2. This protocol is an extension to the remote job
entry protocol used by the DMTSML line driver.

This protocol extends the definition of MULTI-LEAVING for symmetrical
communication between host systems. For mor~ information, refer to
Appendix A. The data flow diagram for DftTS~L is extended for DMTNJI
(Figure 2-23).

The NJI line driver supports communication over bsc lines with
MULTI-LEAVING and over channel-to-channel adapters.

96 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

V M/370 OS/VS

I RSCS HASP/ASP/JES2
Ir-~-=~......._

I I I I
I I NJI Line <~~~~~~~~~~~~-> NJI/NJE
I I Driver I Jobs I
I I I output I
I I I Commands I
I Messages --~~-~--.J

I

Figure 2-23. NJI Link Data Flow

The DMTNCM module comprises the following basi~ r-011tines~

• A function selector that dispatches one of the processors or other
routines in NCM when a request for services is received.

• Processors, that execute the main functions required by the network
interface.

• An input/output routine that accepts and transmits data on the
communication adapter.

• Buffer blocking and deblocking routines.

The $START routine is entered when NCM is required (by either a remote
system or a virtual machine) to perform a function. This routine
selects a function to execute by using a commutator table, a list of
synch locks, and task control tables.

The NCM commutator table is a branch table consisting of unconditional
branch and no-operation instructions. The targets of the branch
instructions are the seven processor routines, the I/O handling routine,
and the buffer handling routines. When the service of a routine is not
required, the commutator table entry for that routine is made a NOP
instruction. When the function of the routine is required, the NOP
instruction in the commutator table entry for that routine is replaced
with an unconditional Branch instruction, thereby opening a gate in the
commutator table.

The $START routine cycles through the commutator table, falling through
any NOP instructions and taking any branches;.. control is passed in this
way to any routine whose gate in the commutator table is open.

When the routine completes the function requested, it closes that
function's gate in the commutator table by replacing the unconditional
branch instruction with a NOP instruction. $START continues cycling
through the commutator table taking any open branches.

When the bottom of the commutator table is reached, $START tests a
series of synch locks to see if any have been posted, signifying a
request for an NC~ function. If any synch lock is posted, $START opens
the commutator table gate for the requested processor and goes to the
top of the commutator table to start cycling through it again.

Section 2: Method of Operation - Line Driver Functions 97

Licensed Material - Property of IBM

If the bottom of the commutator table is reached and there are no posted
synch locks, NCM discontinues processing by issuing a wait request via a
call to the supervisor module DMTWAT, waiting on a list of the synch
locks. When any of the synch locks is posted, $START receives control,
opens the appropriate gate, and starts cycling through the commutator
table.

!!CM Processor§

Each processor performs a specific function necessary for network job
entry. Figure 2-24 summarizes the processors in DMTNCM.

Each processor has a task control table (TCT) associated with it that
defines data required by the processor. Within the TCT is a branch
instruction to the appropriate processor. The commutator addresses
these TCT branch instructions instead of branching directly to the
processors.

PROCESSOR

$CRTN1

FUNCTION

Processes the following ~ULTI-LEAVING control records:
Permission To Transmit
Request To Transmit
Negative Open
Signon Control Records

$PRTN1 Processes output files from a remote system. Interfaces
with DMTNHD to process network header records.

$URTN1 Processes job files from a remote system. Interfaces
with DMTNHD to process network header records.

$WRTN1 Processes commands and messages from a remote system. I
Interfaces with DMTNHD to process network header records.I

$RRTN1 Prepares records read from the VM/370 spool system for
transmission. Interfaces with DMTNHD to build network
header records.

CMDPROC Executes local commands passed by DMTCMX.

MSGPROC Prepares commands and messages for transmission.
Interfaces with DMTNHD to build network header.

Figure 2-24. NCM Function Processors

COMSUP controls all I/O activity on the communications adapter for the
NJI line driver,. It handles both BSC line and channel-to-channel
communication. This routine receives data from the adapter and passes
the data to the deblocker routine ($TPGET). COMSUP sends data (which
has been blocked by the blocker routine, $TPPUT) to a remote system.
COMSUP also acknowledges receipt of data over a BSC line using the
standard BSC control characters.

98 IBM V~/370: RSCS Networking Logic

Licensed Material - Property of IB~

Data received over the communications adapter is placed in a
teleprocessing (TP) buffer. The size of TP buffers is specified by a
S~ART command parameter and can be up to 1017 bytes.

Data contained in TP buffers is deblocked into tanks, which are unit
buffers of a specific size used to deblock the larger TP buffers. There
are 15 tanks; these are allocated as they are needed by processors. The
size of tanks is determined by MULTI-LEAVING control bytes.

When an NCK function has been requested. the da~a must ·be either blocked
for transmission (if it is data for a r~mote system) or deblocked for
processing (if it has been received from a remote system).

$TPGET receives data from a communications adapter (via the COMSUP
routine) and allocates tanks to output processors as they are needed.

$TPPUT receives tanks from input processors, blocks the data in these
tanks into TP buffers, and gives control to COMSUP to transmit the
buffers over the adapter ..

DMTNHD contains routines to process or construct the various network
header and trailer records used by the NJI/NJE protocol. The network
header records are read by another non VM/370 NJI system that uses them
to reconstruct information about the files sent from RSCS. There are
two major types of network header records: job headers and data set
headers. DSECTs describing these header and trailer records are shown
in Section 5. Other NJE/NJI systems also make use of the same mapping
shown in these DSECTs. The header and trailer routines in D~TNHD are
entered from the processors in DMTNCM whenever network header or trailer
processing is required.

Two routines are used to process network commands and messages.
DMTNHDMI is entered from $WRTN1 to interpret the header record whenever
a command or message is received from a remote system. From the
information in this header record a routing request element is built and
then passed by DMTNCM to DMTRGX for processing. If a global network
command is recognized, it is translated into the appropriate RSCS
command, if the command destination specifies the local RSCS.

DMTNHDMO is entered whenever a network command or message to be
transmitted is processed by MSGPROC in DMTNCM. The network header is
constructed from information contained in the routing alert element.

Entry point D~TNHDHO is entered from $PRTN1 and $URTN1 each time a
network header record is received by the output or job file processors
in DMTNC~. A subroutine is then entered when a valid NJI/NJE header
record is found.

Section 2: Method of Operation - Line Driver Functions 99

Licensed Material - Property of IBM

Routine HOJOB is entered when a job header record is found. The header
record is saved for later processing, various d€fault fields are created
in the output log slot, and message DMTNHD917I is issued.

HODATSET is entered each time a data set header is encountered. The
fields in the default tag slot are updated from the fields in the data
set header record. The logical output device table is then searched via
a call to DVASSIGN. This routine will assign this data set to a device
for processing, by comparing the attributes of the new data set with
ones already existing. If an open data set is not found, a new device
is obtained via a call to OPENADEV. This routine obtains, through a
call to DMTAXS, a new spool device. Once a new device is obtained,
routine HDROUT is called to output the job header as a segmented NOP
spool record.

When the job trailer record is encountered, subroutine HOJOBTRL is
entered. All open data sets are closed after the job trailer record is
written to the spool system.

Routines DMTNHDJH, DMTNHDDH, and DMTNHDJT are entered from processor
$RRTN1 in DMTNCft when a file to be entered into the NJI line driver does
not already contain NJI/NJE header records. DMTNHDJH and DMTNHDJT
create the job header and trailer records from the information in the
input tag slot. The data set header creation routine DMTNHDDH creates
the data set header record from the input tag slot along with data from
calls to the TAGSCAN routine to scan the user's tag data record for
NJI/NJE parameters. Because non VM/370 systems generally distingush
between job files and output files, RSCS must make a distinction between
such files before they are sent to another NJI/NJE system. The terminal
user specifies whether he wants his files to be JOB files or output
files in the tag record before he sends them to RSCS to be sent to
another system. DMTNHD then scans this tag record to determine the type
of file to be sent and obtains other information about the file that it
puts in the NJI/NJE header records.

DBTNJI Initialization ftodule: JlllTNIT

This module is entered from DMTNCM during line driver initialization.
It performs the following functions:

1. Scans the supplied parameter string and create a network SIGNON
record from the information obtained from the scan,.

2. Sets task alert asynchronous exit.

3. Obtains storage and builds the teleprocessing buffer queue and unit
record tank queue.

When control is returned to DMTNC~, the page containing D~TNIT is freed
via a call to FPAGEREQ in DMTCOM.

100 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Section 3: Program Organization

Modules and Subroutines

Figure 3-1 lists the functions of all RSCS subroutines in order by
module name.

Module
Name

D!!TAK E

D!! TASK

Dl!TASY

DMTAIA

DMTAXft

En try Pt
/Routine

DMTAKEEP

DMTASKEP

DMTASYEP

DMTAXAAC

DMTAXASE

DrtTAXAPU

DMTAXARE

DMTAXATA

D!ITAX!IEP

USASYIO

AX SIN IT
AXSCYCLE

Function

Contains the supervisor service that supplies
task programs with the rPcPiver interface to
GIVE requests issued by other tasks. A single
call causes Dl!TAKE to first r~spond to the
previously supplied GIVE request and then
supply a new GIVE request to the task for its
processing.

A service routine that creates new tasks and
deletes existing tasks executed by the l!SUP
dispatcher. The entry to DMTASK is via a BALR
instruction from task programming. Any entry
into DMTASK causes the calling task's execution
to be suspended through the freeze SVC function.

A supervisor service module that starts and endsl
asynchronous exit requests for task programs. I
This routine handles asynchronous exit requests I
for asynchronous exit requests for I/O I
interruptions, and alert exit requests. I

I
vhen a NOP entry -- No accounting record is cut

file is accepted. I
I

Cuts a send accounting record when all copies of I
an input file have been sent. I

I
NOP entry -- No accounting record is cut when a I
file is purged by purge command. I

I
Cuts a receive accounting record when an output I
file is written to the spool system. I

I
NOP entry -- user tag priority of a file is leftl
unchanged. I

I
Controls the interface of the line drivers to I
the VM/370 spool file system, enqueues files forl
transmission, and processes commands that I
manipulate spool files• I
Start of asynchronous exit routine; signals I
arrival of a request for asynchronous exit. I
Initializes the AXS task. I
Looks for work to do by examining the synch I
locks associated with the AXS task. I

Figure 3-1. RSCS Modules and Their Subroutines (Part 1 of 13)

Section 3: Program Organization - Modules and Subroutines 101

I Module
I Name ,.
' I
I
I
I
I
I
I
I
1

En try Pt
/Routine

REQXEQ

Cr!DPROC

OPENIN
CLOSEOUT
CLOSIN
PISG

HEXGET
DECGET.
DECPUT

TODS370
TO DEB CD
GSUCCESS
ACCEPT
UN PEND
GETROUTE
GETLINK
GETS LOT
FREESLOT
TAGGEN
TAGPLACE

REORDER

FILSELEC
TAG FIND

TAGCLOSE

DEFINE
DETACH
VCHANGE
VCLOSE
VP URGE

VTRANSFR

VS POOL
VTAGD
VTAG!! SG

VTAGF

Licensed Material - Property of IBM

Function

Scans the request table for a match and branches
to the appropriate subroutine, depending on the
request code.
Executes AXS commands from the command buffer
passed on by an alert exit from DMTREX.
Starts spool file processing.
Ends processing for output files.
Terminate spool file processing.
Sets the MSG request element. The ~SG request
element is passed via GIVR/TA~E to the message
manager, DMTMGX. The code associated with
entry points in this module format the r!SG
element variable areas in various ways and
exit finally to MSG.
Converts and validates a hex string.
converts and validates a decimal string.
Converts a hex fullword to decimal and generates
an EBCDIC representation of it, suppresses
leading zeros to a minimum count, which is
optionally supplied by the caller.
Converts EBCDIC to the System/370 TOD value.
Converts System/370 TOD to EBCDIC date and time.
Gets inactive successor spool file.
Inspects newly arrived files.
Brings in a link's pending tags.
Gets a routing table entry.
Gets link table entry.
Gets a free tag queue element.
Returns a tag queue element.
Builds a file tag from hypervisor information.
Sets a file tag into a link queue immediately
before the first tag of numerically higher
priority (lower processing priority).
Reorders file queue after System
reconfiguration.
Selects a file to be read from a link queue.
Locates a file with spoolid matching the one
supplied by the caller, within the internal
file tag queues.
Dequeues an active file tag, closes and
re-enqueues input files, closes and purges
output files.
Gets a virtual spool device.
Undef ines a virtual spool device.
Changes VM/370 file attributes.
Issues the VM/370 CLOSE command for a device.
Purges an inactive reader file from the VK/370
spool.
Transfers an incorrectly addressed file back to
its original user.
Sets VM/370 virtual spool device options.
Sets a VM/370 tag for a virtual spool device.
Sets a VM/370 tag for a virtual spool device
spooled to a user.
Sets a VM/370 tag for an inactive spool file.

Figure 3-1. RSCS ftodules and Their Subroutines (Part 2 of 13)

102 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

Module
Name

En try Pt
/Routine Function

I
I

t1--~~~~-+-~~~~~+-~~~~~~~~~~~~~~~~~~~~~~~~~~i

DMTCMX

numl""n u
UDJ.'-VO

DMTCKXEP

CMXHIT

CU ALERT

CUREORD
CM XU LOOP
KEYWDGET

LTABGET

RTABGET

HEX GET
DECPUT

FIL GET

TODEBCD
PlRMGET

FINDTAGQ

GETLINK

GETROUTE

GETPAGE
FBEEPAGE
MFI

l!FO

TO DE BCD
TODS370
RCMSOPEN
RC MSG ET
GET SUP AG

This module is part of the REX system control
task; it is called in several places in DMTREX,
(the main REX control routine). DMTCMX accepts
an EBCDIC string and executes the RSCS command
that the string represents.
Calls the necessary individual command
processing routine.
Passes a command element to another task via
the alert task-to-task communications interface.
To pass to DMTAXS a REORD alert element.
Check for looping responses to user.
Decodes the next keyword on the input command
line,
Finds the link table enlLy implied by the first
keyword in the command line described by the
calling routine's register parameters.
Find the root table entry implied by the first
keyword in the command line described by the
calling routine's register parameters.
Converts and validates a hex string.
Converts a hex fullword to decimal and generates
an EBCDIC representation of it. It suppresses
leading zeros to a minimum count, which is
optionally supplied by the calling routine.
Locates a file, within the internal file tag
queues with a spoolid matching that supplied by
the calling routine.
Converts System/370 TOD to EBCDIC date and time.
Scans an EBCDIC line and frames the next
parameter on the line.
Finds a file tag with the same destination as
the ROOTDEST in the routing table.

Contains various reentrant routines used by RSCS
tasks~
Scans the link table chain and returns a link
table address~
Scans the link table chain and the routing table

1 chain to select the next link for transmission.
Gets a free page of virtual storage.
Returns a page of virtual storage.
Stacks message elements in a LIFO stack for
later processing. If no room is available in
the current page, a new page is fetched if
at least five free pages remain. If five free
pages are not remaining, an error condition is
returned. All tasks except REX are allowed only
three pages of storage to stack messages.
Unstacks message elements from the message queue
for this task~ If none are queued, an error
condition is returned. ' Converts system/370 TOD to EBCDIC date and
Converts EBCDIC to System/370 TOD.
Initializes reading of a c~s file.

time. t

Gets the next CMS file item.
Allocates a page of virtual storage for super-
visor use.

I
I
I
I
I

Figure 3-1. RSCS Modules and Their Subroutines (Part 3 of 13)

Section 3: Program Organization - Modules and Subroutines 103

Module
Name

DMTCRE

DMTDSP

DMTEXT

DMTGIV

DMTINI

DKTIOM

DMTIRX

Entry Pt
/Routine

DMTCREEP

DMTDSPEP

licensed Material - Property of IB~

Function

Creates new tasks under MSUP LOAD + QRQ.

This module is the MSUP dispatcher; it is
entered when an exit occurs from supervisor
functions that were entered following an inter­
ruption or that issued the freeze SVC function.
DMTDSP must be entered with all PSW masks off
(except for the machine check mask) •

DMTEXTFP I This modnle is the MSUP external interruption
handler; it receives control directly on an
external interrupt and saves the status of the
executing task if one was interrupted.

DKTGIVEP

DMTINI

DMTIOMEP

DMTIRXEP

GENVNET
GET PARM

PARMGET

DECPUT

This is a supervisor service routine that
enqueues GIVE requests from tasks to be
delivered to other tasks by DMTAKE.

Receives control after initial loading of RSCS,
and performs general initialization functions
common to all parts of RSCS~

DMTINI writes a copy of the initial load to
DASD, according to operator instructions, when
RSCS is initial program loaded from the
generation IPL deck. When IPL disk writing is
complete, a masked off wait state PSW is loaded.

Following IPL from FSCS system residence DASD,
DMTINI finishes reading the saved RSCS load.

When IPL disk reading or writing is complete,
DMTINI passes control to DMTMIN.

This module contains both the MSUP I/O interrupt
handler and the task I/O service routine. The
I/O service provided by DMTIOM to the task
programs includes sequential subchannel
scheduling, channel program execution, auto­
matic sense execution on unit check when
requested, return of all pertinent information
regarding the execution of the channel program,
and notification via a POST upon completion of
the channel program.

This module performs all non-MSUP oriented
RSCS initialization.
Builds RSCS system tables from directory.
Locates next parameter on input record, and
performs preliminary validity checking.
Scans a character string left to,right, and
frames the first parameter (a substring of
non-delimiters enclosed by delimiters or
string boundaries on 'the left and right). I
Converts a hex fullword to decimal and generates!
an EBCDIC representation of it. It suppresses I
leading zeros to a minimum count, which is I
optionally supplied by the calling routine. I

~~~~~~~~~~~~~J 

Figure 3-1. RSCS Modules and Their Subroutines (Part ~ of 13) 

104 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

r-­
Module 

Name 

DMTLAX 

DMTMG X 

DMTMIN 

DMTMSG 

DMTNCM 

-,-·~~~----~~~--~~~~--~--~~--------~~--------. 

En try Pt I 
/Routine I 

EBCHEX 

EBCDEC 

DIRECT 

TYPE 

CONW 

MSG 

DMTLAXEP 

DMTMGXEP 

DMTMINEP 

DMTPJSGEP 

DMTNCMEP 

NCMINIT 

ISIO 

ASYNEXIT 

$START 

$CRTN 1 

Function 

Validates and converts EBCDIC hexadecimal 
input numbers to binary. 
Validates and converts EBCDIC decimal input 
numbers to binary. 
Sequentially reads the directory file 
(RSCS DIRECT) and returns a data line or error 
condition to the caller. 
Generates a numbered operator message by 
editing the message according to CP E~SG 
setting, calling CONW to write the message 
on the console, and returning to the caller. 
Writes a line to the RSCS operator console and 
provides console support until normal DMTREX 
~on~ole m~nager begins processing~ 
Stacks a message for later output. 

This routine is the line allocation task for 
t<~L::i. Most of this routine functions as an 
asynchronous exit being alerted by DMTREX. 

Takes a message request buffer and builds the 
message from the information in that buffer and 
the message definition found in DMTMSG. 

Performs basic MSUP initialization operations, 
deletes itself, and issues the first call to the 
MSUP dispatcher to begin normal operations~ 

Contains a list of error messages to be used 
externally by DMTMGX.. This module contains no 
executable code. 

This line driver communicates with NJI/NJE 
cvc+omc nn R~r i;noc nr r~2nno1-~n-r~2nn~1 
-~----- -- --- ----- -· ------- ~- ----uc-adapters ... 
Initializes various parameters needed by 
DMTNCM. Saves its link table address, 
initializes output tags, and calls DKTNIT to 
complete initialization. 
Performs the enable sequence on the 
communications line, analyzes the response 
received, and when correct, writes the 
"line connected" message~ 
This is the alert exit entered by DKTSIG. Tvo 
tasks may alert this line driver: D~TREX when a 
command has been entered for the DMTNCM line 
driver to process, or DMTAXS to asynchronously 
notify DKTNCM a file has arrived for 
transmission. 
This is the supervisor routine for DftTNCM. The 
commutator will cycle looking for a routine to 
enter until all commutator entries are closed; 
then it will wait on a synch lock list to be 
posted. 
Dequeues a tank from its tank queue and 
performs the action requested by the control 
record in the dequeued tank. 

Figure 3-1. RSCS Modules and Their Subroutines (Part 5 of 13) 

Section 3: Program Organization - Modules and Subroutines 105 



Module 
Name 

DMTNHD 

En try Pt 
/Routine 

$PRIN1 

$URTN1 

$RRTN 1 

AISGET 

VMDEBI.OK 

$WRTN1 

CMDPROC 

KSGPROC 

MSG 

$TPPUT 

$TPGET 

COM SUP 

CERROR 

DMTNHDMI 
DKTNHDl!O 
DMTNHDHO 
DVASSIGN 
OPENADEV 

HD ROUT 

HDRBUILD 

DMTNHDJH 
DMTNHDDH 
DMTNHDJT 

Licensed Material - Property of IB" 

Function 

Dequeues a tank from its tank queue, obtains 
a new output spool device if needed from D"TAXS, 
and outputs the tank to a virtual printer. 
Dequeues a tank from its tank queue, obtains 
a new output spool device if needed from DMTAXS, 
and outputs the tank to a virtual punch. 
Inputs files from the VM/370 spool system, 
deblocks them into individual records, and 
issues a call to $PUT to block the record into a 
transmission buffer. 
This routine is the interface to DMTA~S for 
getting files to transmit, and it purges those 
files when transmission is complete. 
Deblocks records from the VM/370 page spool 
buffers. It returns the deblocked record 
in the RCTTDATA buffer. 
Processes received commands and messages 
and calls DMTNHD for processing. The records 
are dequeued from the console TCT. 
Executes commands passed to it in the 
CMDRESP buffer after an alert from DMTREX 
indicating a command has been entered. 
This routine is entered when the MSGECB is 
posted by this task's asynchronous exit, 
indicating messages are queued for this task. 
These_messages are unstacked from the message 
queue by repeated calls to GMSGREQ and 
queued for transmission. 
Prepares and sends requests to the specialized 
task REX, in order to write messages on the 
operator's console. 
T~kes a line and packs it into a telecommunica­
tion buffer. When a buffer is filled, it is 
queued onto $OUTBUF for processing by COKSUP. 
Deblocks received telecommunications buffers 
into tanks and queues the tank onto the 
appropriate processor's TCTTANK queue. 
Performs all I/O on the communications line. 
It dequeues TP buffers from SOUTBUF for 
transmission and queues received TP buffers 
onto the SINBUF queue for deblocking by $TPGET. 
Analyzes all errors on the communication line 
and takes corrective action depending on the 
type of error. 

Edits network messages. 
Network command processor. 
Network output header processor. 
Assigns a data set header to an output device. 
Opens a spool output device with 
characteristics defined in the output taq. 
outputs NJE header record in 80-byte segments 
into the VK/370 spool system. 
Builds a job header record from multiple 
segments. 
Job header creation routine. 
Network data set header creation routine. 
Network job trailer header creation routine. 

Figure 3-1. RSCS Modules and Their Subroutines (Part 6 of 13) 

106 IBM VK/370: RSCS Networking Logic 



Licensed Material - Property of IB~ 

Module Entry Pt 
Name jRoutine 

TAGSCAN 
r!SG 

PAR MG ET 
EBCBEX 

EBCDEC 

DMTNIT Dl!TNITEP 

NI TI NIT 

IBLDBUFS 

PAR MG ET 

EBCBEX 

EBCDEC 

l!SG 

DK TN PT Dl!TNPTEP 

NPTGET 

SENDEOT 

BUFFINIT 

XECUTE 

LINEIO 

GETBLOCK 

GETVRFY 

PUT BLOCK 

Function 

Scans user tag data for NJE forms keywords. 
Prepares and sends requests to REX for 
issuance of messages. 
Input line scanning subroutine. 
Validates and converts EBCDIC hexadecimal 
input numbers to binary. 
Validates and converts EBCDIC decimal input 
numbers to binary,. 

This module is the initialization module for 
the DMTNJI line driver. From the parameters 
passed to it at line driver initialization, it 
builds buffers and constructs initial SIGNON 
rPcords. 
Initializes the various parameters needed 
by DKTNIT. Saves its link table address, 
initilizes output tags, and constructs the 
SIGNON card from information on the PARM field 
of the START command. 
Builds TP and unit buffer for the DMTNJI line 
driver. 
Scans a character string left to right, and 
frames the first parameter (a substring of 
non-delimiters enclosed by delimiters or string 
boundaries on the left and right.) 
Validates and converts EBCDIC hexadecimal input 
numbers to binary. 
Validates and converts EBCDIC decimal input 
numbers to binary. 
Prepares and sends requests to REX for 
issuance of messages. 

This module is the line driver that supports 
the 2770. 2780. 3770. and 3780 compatible 
nonprogrammable terminals. 
Maintains a cyclic control of the DMTNPT task 
on both sending and receiving operations. 
Sends the BSC end-of-transmission character 
(EOT) on the line to the remote terminal. 
Initializes the line output buffer with the 
correct BSC character set, depending on the 
type of output file and features available at 
the terminal, .. 
Requests the supervisor to execute I/O 
operations. After starting the I/O operations, 
XECUTE waits for either a command to be entered 
or the completion of the requested I/O 
operation. 
Executes (by calling XECUTE) I/O operations on 
the BSC line and checks the results. LINEIO 
then flags any errors and normally returns to 
the caller. 
Prepares the line output buffer to be 
transmitted to the remote terminal. 
Analyzes the response obtained from each buffer 
transmission and takes the appropriate action. 
Deblocks received TP buffers and writes the 
deblocked record to the V"/370 spool system. 

Figure 3-1. RSCS Modules and Their Subroutines (Part 7 of 13) 

Section 3: Program Organization - Modules and Subroutines 107 



r 
I !odule Entry Pt 
I Mame /Routine 

' PUTVRFY 

CO!U!ANDS 

C!!DPROC 

KSGPROC 

I!SG 

HEADPREP 

!UKEBLOC 

VKSB2CP 

AXSGET 

TODEBCD 
PARK GET 
NPTINIT 
HPTLINK 
NPTERROR 

HPTTER!! 

D!!TPOW DMTPOWEP 

PO WI NIT 

ISIO 

ASYNEXIT 

$START 

$CRTN1 

Licensed Material - Property of IBM 

Function 

Verifies the content of each received TP buffer, I 
and constructs an appropriate reply if the I 
buffer is in error. 1 
Passes commands received from the remote card I 
reader to the RSCS command processor. I 
Executes commands passed to it in the CMDRESP 
buffer after an alert from DMTREX indicates 
that a command has been entered. 
Unstacks messages from the task message queue 
and transmits them to the remote terminal 
printer. 
Prepares and sends requests to the specialized 
task REX to write console messages. 
Provides, record by record, the separator and 
header for print files and the header card for 
punch files. 
Saves the.caller's registers for a call to 
VKSB2CP; upon return from VMSB2CP, it sets the 
return code and retutns to the original caller. 
Deblocks the VK/370 spool page buffers into an 
unpacked buffer (PACKBLK) • 
Requests AXS to open, close, and delete the 
spool files that the NPT task is processing. 
Converts system/370 TOD to EBCDIC date and time. 
Scans character strings to find delimiters. 
Initialization routine for NPT. 
NPT sign- on routine. 
Writes the terminal I/O error message and 
terminates the task. 
Terminates the NPT task. 

Functions as a remote VSE/POWER system using 
the VSE/POWER MULTI-LEAVING transmission 
protocol. 
This routine initializes the various parameters 
needed by DMTPOW. It saves the link table 
address and initialized output tags. 
Performs the enable sequence on the 
communications line and analyzes the response 
received; if the response is correct, it 
writes the "line connected" message. 
This is the alert exit entered by DMTSIG. Two 
tasks may alert this line driver: 

• DMTREX - When a command has been entered 
for processing by the DMTPOW line driver. 

• DKTAXS - When DMTAXS must asynchronously 
notify DMTPOW that a file has arrived for 
transmission. 

This is the supervisor routine for DMTPOW. The 
commutator cycles while looking for a routine to 
enter until all commutator entries are closed. 
It then waits for a synch lock list to be 
po~ted. 
Dequeues tanks from its tank queue and performs 
the action requested by the control record in 
the dequeued tank. 

Figure 3-1. RSCS Modules and Their Subroutines (Part 8 of 13) 

108 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

r 
I Module 
I Name 
I 

Entry Pt 
/Routine 

$PRTN 1 

$URTN1 

SRBTN1 

!XSGET 

VMDEBLOK 

$WRTN 1 

$PIRTN1 

C!!DPROC 

MSGPROC 

!!SG 
PARPIGET 
$TPPUT 

$TPGET 

CO MS UP 

CERROR 

Function 

Dequeues tanks from its_ tank queue, obtains a 
new output spool device, if needed, from DMTAXS, 
and sends the tank to a virtual printer. 
Dequeues tanks from its tank queue, obtains a 
new output spool device, if needed, from DMTAXS, 
and sends the tank to a virtual punch. 
Reads files from the VM/370 spool file system, 
deblocks the files into i 32-byte records, and 
issues a call to $TPPUT (via $PUT) to block the 
record into a transmission buffer. 
This routine is the interface to DPITAXS; it gets 
files ready to transmit and purges those files 
when transmission is complete. 
This is the deblock routine for the VM/370 page 
spool buffers. It returns the deblocked record 
in the RCTTDTA1 buffer .. 
This routine writes received VSE/POWER commands 
to the RSCS operator. 
This routine writes received VSE/POWER messages 
to the R scs opera tor. 
Executes commands passed to it in the CMDRESP 
buffer after an alert from DPITREX indicating 
that a command was entered. 
Entered when the MSGECB is posted by this task's 
asynchronous exit indicating messages are in the 
message queue for this task. These messages are 
unstacked from the message queue by repeated 
calls to GMSGREQ and queued for transmission. 
Prepares and sends message requests to R~X. 
Scans lines and tests for delimiters. 
Takes a line and packs it into a telecommunica­
tion buffer. When the buffer is filled, it is 
queued onto $0UTBUF for processing by COMSUP. 
Deblocks received telecommunications buffers 
into tanks and queues the tank onto the 
appropriate processor's TCTTANK queue. 
Processes all I/O on the communications line. 
It dequeues buffers from $OUTBUF for transmis­
sion and queues received buffers onto the 
$INBUF queue for deblocking by $TPGET. 
Analyzes all errors on the communications line 
and takes corrective action depending on the 
type of error .• 

Figure 3-1. RSCS ftodules and Their Subroutines (Part 9 of 13) 

Section 3: Program Organization - Modules and Subroutines 109 



Module 
Name 

DMTPRE 

DMTPST 

DMTQRQ 

DMTREX 

DMTRGX 

DMTSIG 

En try Pt 
/Routine 

DMTPREF.P 

DMTPSTEP 

Df1 TQRQEP 

DMTREXEP 

DMTREXIN 
REXCYCLE 

REX PC HEX 
REXITERM 

REQXEQ 

INTCMD 
DEA CT 
DMTREXEC 
DMTREXTR 

MSG 
TIMERSET 
TERMINAT 
QUIESCE 

DMTRGXEP 

RGXCMD 

RGXMSG 

RGXNTHRE 

RGXDOIT 
RGXMSGER 

DK TSIGEP 

Licensed Material - Property of IBM 

Function 

RSCS preloader utility program (see Appendix B 
for details} • 

This service routine may be called from anywhere 
in RSCS. DMTPST signals the completion of an 
event by posting the event's associated synch 
lock. This routine is entirely reentrant and 
does not change the state of the running PSW. 

Manages the MSUP supervisor status queue for 
other MSUP functions. DMTQRQ is for use 
within the supervisor and must be entered with 
all PSW masks off (except machine check). 

This routine is the controlling supervisor task; 
DMTREX, DMTCMX, DMTMGX, DMTSYS, DMTCOM, DMTMSG, 
and DMTCRE make up the REX supervisor task. 
Performs the initialization for the DMTREX task. 
Monitors a list of synch locks when looking for 
work for DMTREX to perform. 
Processes program checks. 
Entered when RSCS initialization fails. Issues 
the initialization failure message, dumps the 
contents of main storage, types any remaining 
messages, and loads a disabled wait state PSW. 
Scans the function table and calls either 
DMTCMX or DMTMGX as appropriate. 
Internal command processor. 
Deactivates the link table entry. 
Process exec file content. 
Executes the terminate function for the FORCE 
command .• 
Prepare3 message requests and calls DMTMGX. 
Supports timer alert requests. 
Terminates a specified task. 
Executes as task code for a task in the process 
of termination~ Looks for any outstanding I/O 
for the terminating task. If any outstanding 
I/O is found, issues HIO and waits for comple­
tion; upon completion it terminates the task. 

Handles the command and message routing request 
elements. 
Interfaces a CKD routing request element with 
DMTCMX. 
Writes message DMTxxx170I or DMTxxx171I from 
message routing request element. 
Processes C~D/MSG routing request element for 
store-and-forward. 
Message routing interface. 
Processes non-zero return code from DMTMGX. 

Performs a task alert exit for a requesting 
task. 

Figure 3-1. RSCS Modules ~nd Their Subroutines (Part 10 of 13) 

110 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

r·~~~~~..--~~~~--,r-~~~~~~~~~~~~~~~~~~~~~~~~~-. 

I Module 
I Name 

DMTSML 

Entry Pt 
/Routine 

DMTSftLEP 

SMLINI'l' 

ISIO 

ASYNE!!T 

$START 

$CRTN 1 

$PRTN1 

$URTN1 

$JRTN1 

$USREXIT 

$RRTN1 

AXSGET 

VMDEBLOK 

HEADPREP 

TODEBCD 
$WRTN1 

Function 

Functions as an RJE workstation into a remote 
system using the MULTI-LEAVING transmission 
protocol. It can also function as a host to a 
remote programmable workstation supporting a 
system/370, System/3, Model 20, 1130, 2922, or 
other compatible workstation systems. 
Initializes various parameters for D~TSML. 
Saves the link table address, initializes 
output tags, constructs the SIGNON card 
from the operand field of the START command. 
Performs the enable sequence on the 
communications line and analyzes the response 
received; if the response is correct, it 
writes the "line connected" message. 
This is the alert exit entered by D~TS!G. Two 
tasks may alert this line driver: 

• DMTREX - When a command has been entered 
for processing by the DMTSML line driver. 

• DMTAXS - When DMTAIS must asynchronously 
notify DMTSML that a file has arrived for 
transmission. 

This is the supervisor routine for DMTSML. The 
commutator cycles while looking for a routine to 
enter until all commutator entries are closed. 
It then waits for a synch lock list to be 
posted. 
Dequeues tanks from its tank queue and performs 
the action requested by the control record in 
the dequeued tank. 
Dequeues tanks from its tank queue, obtains a 
new output spool device, if needed, from DMTAXS, 
and sends the tank to a virtual printer. 
Dequeues tanks from its tank queue, obtains a 
'new output spool device, if needed, from DMTAXS, 
-~~ ~~-~~ ·~- ·--~ ·- - -~-·"-1 ~"-~~ uu~ ~~"~~ ~~~ ~QUA ~v ~ -~~~u~~ ~UU~U• 

Dequeues tanks from its tank queue, obtains a f 
new output spool device, if needed, from DMT~XS, 
and sends the tank to a virtual punch. 
Validates the ID card in the front of decks read 
in from a remote card reader. 
Reads files from the VM/370 spool file system, 
deblocks the files into 132-byte records, and 
issues a call to $TPPUT (via $PUT) to block the 
record into a transmission buffer. 
This routine is the interface to DMTAXS; it gets 
files ready to transmit and purges those files 
when transmission is complete. 
This is the deblock routine for the V"/370 page 
spool buffers* It returns the deblocked record 
in the RCTTDTA1 buffer. 
Provides, one record after the other, the 
separator and header for print files and the 
header card for punch files. 1 
Converts system/370 TOD to EBCDIC date and time.I 
In RJE mode, writes received messages to the I 
RSCS operator. In HOST mode, passes commands tol 
DMTREX. These commands or messages are dequeued! 
from console TCT. 1 

Figure 3-1. RSCS Modules and Their Subroutines (Part 11 of 13) 

Section 3: Program Organization - Modules and Subroutines 111 



Module 
Name 

DMTSTO 

DMTSVC 

DMTVEC 

DftTVft B 

En try Pt 
/Routine 

CMDPROC 

MSGPROC 

ftSG 
PARMGET 
$TPPUT 

$TPGET 

COMSUP 

CERROR 

DMTSTOEP 

DMTSVCEP 

DMTVECEP 

XECUTE 
LINEIO 
GET BLOCK 
PUT BLOCK 

MSGRECV 
MSG 
CMDPROC 

SVMRINIT 
AXSGET 
TODEBCD 
VMRTILT 
MSGTRANS 

Licensed Material - Property of IBM 

Function 

Executes commands passed to it in the CMDRESP 
buffer after an alert from DMTREX indicating 
that a command was entered. 
Entered when the MSGECB is posted by this task'sl 
asynchronous exit indicating messages are in thet 
message queue for this task. These messages are 
unstacked from the message queue by repeated 
calls to GMSGREQ and queued for transmission. 
Prepares and sends message requests to REX. 
Scans lines and tests for delimiters. 
Takes a line and packs it into a telecommunica­
tion buffer. When the buffer is filled, it is 
queued onto $OUTBUF for processing by COMSUP. 

' Deblocks received telecommunications buffers 
into tanks and queues the tank onto the 
appropriate processor's TCTTANK queue. 
Processes all I/O on the communications line. 
It dequeues buffers from $OUTBUF for transmis­
sion and queues received buffers onto the 
$INBUF queue for deblocking by $TPGET. 
Analyzes all errors on the communications line 
and takes corrective action depending on the 
type of error. 

Reserves pages of free storage by calling 
task programs that free storage pages by 
clearing the associated map byte to zero 
in the main storage map.. 
This module is the MSUP interrupt handler; it 
receives control directly when an SVC 
interrupt occurs. 

Describes the fixed address storage utilization 
for MSUP, beginning at main storage address 
x•200•. System/370 architecture defines the 
first 512 bytes of main storage, and MSUP uses 
this area as defined. This area is not 
assembled in the D~TVEC module to facilitate 
initial system loading. This area is 
initialized by DMTINI at IPL. 

Performs I/O on the supplied I/O block. 
Performs I/O and analysis. 
Processes input files for transmission. 
Processes received data buffer outputting to 
spool system .• 
Process received commands and messages. 
Prepares and sends message requests to REX. 
Executes commands passed to it in the 
C~DRESP buff er after an alert from DMTREX 
indicates that a command has been entered. 
Initializes line driver. 
Provides interface to AXS for input files. 
Converts system/370 TOD to EBCDIC date and time. 
Terminates line driver task. 
Unstacks MSG and command element and blocks for 
transmission. 

Figure 3-1. RSCS Modules and Their Subroutines (Part 12 of 13) 

112 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

Module 
Name 

D!!TVMC 

DMTWAT 

Entry Pt 
/Routine 

VMSB2CP 
PACK 
CTCGO 

XECUTE 

LINEIO 

GETBLOCK 

l!ISGTUNS 
PUT BLOCK 

SSGRECV 
CMDPROC 

MSG 

PIA KEBLOC 
AXSGET 

TO DE BCD 
PAR MG ET 
CONVBLK 

CTCINIT 
CTCERROR 

CTCTER! 

Dl!TWATEP 

Function 

Deblocks VM/370 qK spool page buffer. 
Packs a line into transmission buffer format. 
This line driver supports the use of a channel­
to-channel adapter between two processors 
running VM/370. This routine requests the 
supervisor to execute I/O operations. After 
initiating the I/O operation, the routine waits 
fer either a command to be entered or the 
completion of the requested I/O operation. 
Executes (calling XECUTE) I/O operations on the 
VMC and checks the final state, consequently 
setting the IOERR flag in the DEVFLAG byte. 
Processes input files from the VM/370 spool 
file system. 
Euil1ls iii~ssag~ buffer fo:L tra nswission. 
Relocates received spool block records, and 
sends them to the VM/370 spool system. 
Processes received commands and messages. 
Executes commands passed to it in the CMDRESP 
buffer after an alert from DPITREX indicating 
that a command has been entered. 
Prepares and sends requests to the specialized 
task REX, to write messages on the operator's 
console. 
Sets up for a call to VMSB2CP. 
Passes requests to AXS to open, close, and 
delete the spool files that the VMC task is 
processing. 
Converts system/370 TOD to EBCDIC date and time. 
Line scanning subroutine. 
Converts a spool page buffer from real reader to 
virtual unit record output format. 
VPIC initi~lization routine. 
Writes the terminal I/O error message and calls 
CTCTERa. 
Terminates the VMC task. 

Called directly from task programs by a BALR 
instruction. It provides event synchronization 
by suspending a task's execution until some 
specified event is signalled complete by another 
process in the system. 

Figure 3-1. RSCS ~odules and Their Subroutines (Part 13 of 13) 

Section 3: Program Organization - Modules and Subroutines 113 



Licensed Material - Property of IBM 

Module-to-Module Execution Transfers (BALRs) 

Figure 3-2 lists the code locations at which control is passed from one 
RSCS routine to another via a BA LR instr uctioil. 

--~~~~~~~--~~~~~--~~~~~~~~~~~~~~~~~~~~~~~., 

I I RSCS I BALR to 
I Module I Module 

At 
Label Comments I 

I-
I DMTAKE DMTDSP 

I 
I 
I 
I 
I 

DMTPST 

DMTQRQ 

I DMT ASK DMTDSP 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

DMTPST 
DMTQRQ 
DKTQRQ 
DMTQRQ 
DMTQRQ 

DMTQRQ 

IDMTASY DMTDSP 

I 
I 
I 
I 
I 
I 

DMTQRQ 

DMTQRQ 

I DMTAXM Dl.'!T AKE 
I 

DMTASY 

DMTASY 

DMTAXA 

DMTCOM 
DMTCOM 
DMTCOM 
DMTCOM 

TAK EXIT 

TAKEPlUTE 

TAK EMUTE 

TA EXIT 

TAGPURGE 
TAFREEOK 
TAGPURGE 
TAMA KE 
TAQPTEST 

1ASQ'IEST 

ASEXIT 

A SQ END 

ASQGOT 

AXSACCPT 

AXSIGSET 

AXSIGSET 

DMTA XAAC 
DMTAXASE 
DMTA XAPU 
DMTAXARE 

DMTA XA TA 

GETLINK 
OPENIRTY 
CPENCLNK 
TO DE BCD 

Resumes dispatching; processing of a TAKE 
request is complete. 
Signals a task that it must process a 
TAKE request. 
Frees a GIVE element. 

Resumes dispatching; processing of a task 
request has completed. 
Signals the termination of a task. 
Frees a terminated task element. 
Frees a terminated GIVE element~ 
Gets a queue element for a new task. 
Frees requested elements for a terminated 
task. 
Frees an I/O element associated with a 
task being purged. 

Resumes dispatching; processing of an 
asynchronous exit request has completed. 
Gets a free queue element; frees a 
terminated queue element. 
Gets a free queue element; frees a 
terminated queue element. 

Takes a request for DMTAIS services from 
another task. 
Requests an asynchronous exit for task 
asynchrononous alerts. 
Requests an asynchronous exit for reader 
x•oo1•. 

Execute the accept account record routine. 
Execute the send account record routine. 
Execute the purge account record routine. 
Execute the receive account record 
routine. 
Execute the tag priority change routine. 

Gets a link table entry. 
Gets a page of main storage. 
Gets a page of main storage. 
Conv·erts System/370 TOD to EBCDIC date and 
time. 

Figure 3-2. Plod ule-to-Module Execution Transfers (BALR s) (Part 1 of 7) 

114 IBM VK/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

I RSCS I BlLR to 
i Module i Module 
I I 

DMTGIV 

DMTPST 

DMTPST 

DMTSIG 

DMTSIG 
DMTWAT 
DMTWAT 

DMTCMX DMTCOM 

DMTCOM 

DMTCRE 

DMTMGX 

DMTMGX 

DMTMGX 

DMTMGX 

DftTI1GX 

DKTMGX 

DMTMGX 

DMTREX 

DMTREX 

DMTSIG 
DMTSIG 

DMTMGX 

DMTCOM DMTDSP 

DMTDSP 

DMTSTO 
DMTIOM 

DMTSTO 

DMTWAT 

DMTCR E DMTAS K 

At 
Label 

MSG DO 

AXSALRT 1 

AXSASYIO 

ACCEFIND 

CHANDONE 
AXSCYCLE 
MSG DO 

QYOLINK 

TODEBCD 

STALNGOT 

CI!XDOIT 

CPIXM 001 

CPIX PI003B 

DISCHARG 

QY!! 6 54 

QYM 655 

QYSYMSG 

DIS CONN 

DISCHARG 

C!!XALRDY 
STACFEAT 

SENDIT 

MFIXIT 

MFOXIT 

GETPTRY 
CFILDOIO 

CRETRYIT 

CFILDOIO 

CREQTASK 

Comments i 
~~~~~~~~~~~~i 

Gives a message element to DMTMGX for
processing.
Signals acceptance of a command to
process.
Signals arrival of a request for an
asynchronous exit.
Alerts a line driver task that a newly
arrived file has been accepted.
Alerts a line driver task.
Waits for a request for DMTAXS services.
Waits until processing by DMTGIV has
completed .•

Finds a link table entry.

Converts a System/370 TOD to EBCDIC date
and time.
Creates a line driver task, as specified
in the START command.
Writes a message resulting from command
processing .•
Writes a message showing the number of
free pages in storage.
Writes a message showing the command now
being executed by RSCS.
Writes a message resulting from DISCONN
command processing.
Writes a message resulting from QUERY
command processing.
Writes a message resulting from QUERY
command processing.
Writes a message resulting from command
processing.
DIAGNOSE instruction entry to CP console
function.
DIAGNOSE instruction entry to CP console
function-.
Alerts a task for command processing.
Alerts DKTLAX to validate a line address
used in a START command.

Sends a line of CPQUERY response data backl
to the issuer. I
Requests dispatching of a task for which al
message has been stacked for transmission.I
Requests dispatching of a task for which a
message has been unstacked for
transmission.
Requests main storage allocation.
Requests the I/O manager to read one DASD
block from a file on a CMS-type system
disk.
Requests main storage for the creation of
a task.
Waits for a read I/O request to complete.

Requests the supervisor to start a new
task.

Figure 3-2. Module-to-Piodule Execution Transfers (BALRs} (Part 2 of 7)

Section 3: Program organization - Execution Transfers (BALRS) 115

I RSCS IBALR to
I Module I Module
I I

DMT EXT DMTDS P

DMTGIV

DMTINI

DMTDSP

DMTPST

DMTQRQ

DMTDSP
DMTQRQ

I DMTIO M
I

DMTDSP

I

' I
I
I
I
I
I
DMTIRX

DMTLAX

DMTMIN

DMTPST
DMTPST

DMTQRQ
D.MTQRQ
Dl!TQRQ
DMTQRQ

DMTCRE
DMTASY
D.MTCOM

DMTCOM
DMTCOM

DMTASY
DMTWAT

DMTMGX D.MTCOM
DMTCOM
DMTREX
DMTREX
DMTSIG

DMTNPT DMTASY

DMTCOM

DMTCOM

DMTCOM

DMTCOM

DMTGIV
DMTGIV
DMTGIV

DMTGIV

At
Label

EXT GO

GIVEXIT

GIVESNIF

GIVESCAN

INI QOONE
INIQDONE

IODISPCH

IONORMAL
IOPUm'

DMTIOMRQ
IODISMIS
IONORMAL
IOUNITCK

IRXBLK

DIRECT
DIRREAD

LAXINIT
LAXHANG

MGXBUILT
MGXTOLOC
MGXNOPR
MGXNOVI!!
MGXBUILT

NPTNOPAS

AISMENQ

MSG2780

NPTNOPAS

TODEBCD

AXSGET
AXSPURGE
COMMANDS

KLOGIT

Licensed Material - Property of IBM

Comments

Resumes dispatching; processing of an
external interruption is complete.

Resumes dispatching; processing of a GIVE
request is complete.
Signals a task to begin processing a GIVE
request.
Gets a free queue element.

Dispatches the first task.
Initializes the queue of free elements.

Resumes dispatching; processing of an I/O
request is complete.
Signals completion of an I/O event.
Signals an error on a request for a queue
element.
Gets an element for an I/O request.
Frees an element used for a SENSE request.
Frees an element used in an I/O request.
Gets an element for a SENSE request.

Initiate AXS and LAX tasks.
Initializes an asynchronous exit address~
Obtains storage for supervisor use as
buffer space.
Open 'RSCS DIRECT'
Read 'RSCS DIRFCT'

Sets up an asynchronous exit for DMTLAX.
Terminates DMTLAX.

Initializes MSUP after DMTINI loads it.

Gets a link table entry.
Stacks a message.
Writes a message to a local VM/370 userid.
Writes a message to the VM/370 operator.
Alerts an originating task that a message
has been handled.

Sets up an asynchronous interrupt for
DMTNPT.
Enqueues a message on the message stack
for processing by DMTMGX.
Unstacks a message for transmission to a
remote station .•
Gets a page of storage for use as DMTNPT
buffers.
Converts System/370 TOD to EBCDIC date
and time.
Requests DMTAXS to open a file.
Requests DMTAXS to purge a file.
Passes a command element to DMTREX for
processing by DMTCftX.
Requests DftTAXS to open the log trace filel
for output. t

Figure 3-2. Module-to-Module Execution Transfers (BALRs) (Part 3 of 7)

116 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

.-
1 RSCS I BALR to
I Module I !'!odule
I I

DMTGIV
DMTGIV

DMTGIV

D!!TGIV

DnTGIV
DMTGIV

DMTIOM

D!!TIOM
DMTIOM

DMTPST
DMTWAT

DMTWAT

DllTWAT
DMTWAT

DMTWAT

DKTWAT

DMTWAT

DMTWAT
DMTWAT

DMTUT

DMTWAT

DMTWAT

DMTPOW DMTASY
DMTCOM

DMTCO!!

DMTCOM

DMTCOM

DMTGIV

DKTGIV

DMTGIV
DMTGIV

DMTGIV

At
Label

LINEDROP
LOGCLOSE

MSG1

PUTCLS1

'ftftm,... T\T-t'-'t
.t'U.1V.t'.C.1'4

TASKILL

LOGCONT 1

LOG PRINT
XECUTE

AXSALRT1
AXS Gfil'

AXSPURGE

COMMANDS
KLOGIT

LINEDROP

LOGCLOSE

LOGCCNT 1

!!SG 1
PUTCLS 1

PUT OPEN

TA SKILL

XECQWAIT

SETNOBUF
ASYNENQ

BUFSOONE

IBLDEUFS

MSGPROC1

AXS

AXSGET

A XS PURGE
EOJ

MSG 1

comments

Requests DMTAXS to close a file.
Requests DMTAXS to close the log trace
file for output.
Passes a message element to DMTMGX for
processing.
Requests DMTAXS to close a file for
output.
Requests D~TAXS to open a file for output.
Requests DMTREX to terminate the
requesting NPT line driver.
Requests an I/O operation for the LOG
routine.
Prints a LOG message.
Requests an I/O operation (general usage
by IJl'tT NPT).
Signals that DMTNPT accepted a command.
Waits for a request to open a file to
complete processing.
Waits for a request to purge a file to
complete processing.
Waits for DMTC!!X to process a command.
Waits for completion of a request to open
the log trace file for processing.
Waits for a request to close a file to
complete processing.
Waits for a request to close the log trace
file when processing is complete.
Waits for an I/O operation to complete
logging processing.
waits for message processing to complete.
Wai ts for a request to close a file to
complete processing.
Waits for completion of a request to open
a file for processing.
Waits for task termination processing to
complete,.
Waits for an I/O operation to complete.

Sets up an asynchronous exit for DMTPOW.
Stacks a message to be transmitted by
DMTPOW•
Gets a page of storage for DMTPOW I/O
tasks.
Gets a page of storage for DMTPOW TP
buffers.
Unstacks a message for transmission to a
remote station .•
Requests servi~es of DMTAXS for the POW
line driver task.
Requests DMTAXS to give a file for
transmission.
Requests DMTAXS to purge a file.
Requests termination of the POW line
driver task.
Gives a message to DMTMGX for processing.

Figure 3-2. Module-to-Module Execution Transfers (BALRs) (Part LJ of 7)

Sect ion 3: Program Organization - Execution Transfers (BALRS) 117

I RSCS I BlLR to
I Module I Module

DMTIOM

DMTIOM

DMTIOM
DMTIOM
DMTIOM
DMTWAT

DMTWAT

DMTWA T

DMTWAT
DMTWAT
DMTWAT
DMTWlT

DMTWAT
DMTWAT
DMTWAT

DMTREX DMT AKE

DKTAS K
DMTASK
DMTASY
DMTCltX

DMTCOM

DMTCOM

DMTCRE
DMTDSP

DMTDSP

DMTIOM
DMTIOM
DMTIOM
DMTMGX

DMTMGX
Dl!TPST
DMTPST

DMTWAT
DMTWAT
DMTWlT
DMTWAT

At
Label

I27XXIO

LOGPFINT

PCONT4
RSIO
UCONT2
ALLCHK

AXS

A XS GET

AXSPURGE
DEOJa>NT
DEOJGO
EOJ

LOGPIUNT
PISG1
RISI01

REXACCPT

QUI ESE
TERTKILL
REXICGOT

REXPLUSH

REXOUTRY

REXICGOT
REXDQUIT

REXHEXIT

REXCONON
REXPa>NF
REXQUERY
MSG

TERM SET
REXASYN
REX HALT

QUIESE
QUICK
RE XS WAIT
REX WAIT

Licensed Material - Property of IBM

Comments

Performs the initial I/O operation for the
POW line driver task.
Requests an I/O operation (logs an I/O
opera ti on).
Requests an I/O operation for the printer.
Requests a start I/O for t be adapter.
Requests an I/O operation for the punch.
Waits for the DMTPOW synch lock to be
posted (waits for a request to process).
Waits for completion of an event by
DMT AXS.
Waits for DMTAXS to GIVE a file for
transmission.
Waits for DMTAXS to purge a file.
Wait for HDV.
Wait for disable of adapter.
Terminates the POW line driver task by
issuing a terminal WAIT re quest.
Waits for I/O logging to complete.
Waits until GIVE to DMTMGX is complete.
Waits for initial SIO for the DMTPOW
line driver to complete.

Accepts a request to process a VM/370
file.
Requests task termination.
Requests task termination.
Initializes an asynchronous exit.
Pass the Special Message to the Command
Processor.
Requests DMTMGX to write any queued
messages.
Removes a message for the message stack
and writes it to the console.
Creates the tasks DMTAXS and DMTLAX.
Terminates dispatching due to program
check.
Resumes dispatching after program check
processing.
Requests an I/O operation (console write).
Requests an I/O operation (console write).
Requests an I/O operation (console read).
Passes a message element to DMTMGX for
processing.
Writes a task terminated message.
Signals a console attention.
Signals that DMTREX is undispatchable due
to program check,.
Waits for a task to terminate.
Waits for task I/O to terminate.
Waits for a console write to complete.
Waits for completion of an event.

Figure 3-2. rtodule-to-Module Execution Transfers (BALRs) (Part 5 of 7)

118 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

1 RSCS IBALR to
I Module I Module

At
Label Comments

I

' ..-~~~----~---+~~~~---+-----------~----------~----~----~~--~----~
DMTRGXI

I
DHTSIG I DMTDSP

I
I

DMTSML DMTASY
DMTCOM

DMTCOP.I

DMTCOM

DMTCO M

DMTCOM

DMTGIV

DMTGIV

DMTGIV
DMTGIV

DMTGIV
DMTGIV

DMTIOM

DMTIOM

DMTIOP.1

DMTIOM
DMTIOM

DMTIOM

DMTPST
DMTWAT

DMTWAT

DMTWAT

DMTWAT
DMTWAT

AI.SCAN
ALNOGO

SETNCBUF
ASYNENQ

BUFSDONE

IBLDBUFS

MSGPROC1

TO DE BCD

AXS

KLOGIT

LOGCLOSE

AXSGET

AXSPURGE
EOJ

MSG1
WGET1A

I27XXIO

JOUT1

PCONT2
PLINE
RSIO
UOUT2

WRLOG1

ASYNRET
ALLCHK

AXS

A XS GET

AXSPURGE
EOJ

KLOGIT

LOGCLOSE

Process command and message routing
request elements.
Resumes dispatching; processing of an
alerted task has completed.

Sets up an asynchronous exit for DMTSML.
Stacks a message to be transmitted by
D!1TS!1L..
Gets a page of storage for DMTSML I/O
tasks.
Gets a page of storage for DMTSML TP
buffers.
Unstacks a message for transmission to a
remote station..
Convarts System/370 TOD to EBCDIC date
and time.
Requests services of DMTAXS for the SML
line driver task.
Requests DMTAXS to open a log trace output
file.
Requests DMTAXS to close the log trace
output file.
Requests DMTAXS to give a file for
transmission.
Requests DMTAXS to purge a file.
Requests termination of the S~L line \
driver task.

Gives a message to DMTMGX for processing.
Requests that a message be written to the
RSCS console; pass a command to DMTREX.
Performs the initial I/O operation for the
SML line driver task.
Requests an I/O operation; sets up job
processing controls.
Requests an I/O operation (sets up printer
controls ..
Requests a start I/O for the adapter.
Requests an I/C operation (sets up punch
controls).
Requests an I/O operation (logs an I/O
operation) •
Posts the reader synch lock.
Waits for the DMTSML synch lock to be
posted (waits for a request to process).
Waits for completion of an event by
D?1T AXS ...
Waits for DMTAXS to GIVE a file for
transmission.
Waits for DMTAXS to purge a file.
Terminates the SML line driver task by
issuing a terminal WAIT request.
Waits for DMTAXS to open a log trace
output file.
Waits for DMTAXS to close a log trace
output file.

Figure 3-2. ~odule-to-?1odule Execution Transfers (BALRs) (Part 6 of 7)

Section 3: Program Organization - Execution Transfers (BALRS) 119

Licensed Material - Property of IBM

I RSCS IBALR to At
I Module I Module Label Comments
I I

DMTWAT MSG1 I Waits until GIVE to DMTMGX is complete.
DMTWA T RISI01 I Waits for initial SIO for the D!TS !!L

' line driver to complete.
DMTWAT WGET1A I Waits until message processing has

I completed.
DHTWAT WRLOG1 I Waits for I/O logging to complete.

I
DMTSTO DMTDSP MAINDONE I Resumes dispatching; a request for a

I page of storage has been processed.
I

DMTWAT DMTDSP WAITGO I Resumes dispatching; processing of a
I WAIT request has completed.

Figure 3-2. Module-to-Module Execution Transfers (BALRs) (Part 7 of 7)

Control Flow Diagrams

Figures 3-3 through 3-11 illustrate the flow of control through the
routines that make up the folllowing parts of RSCS:

• Multi tasking supervisor MSUP

• REX system service task

• AXS system service task

• SML line driver task

• NPT line driver task

• NJI line driver task

• VMB line driver task

• VMC line driver task

• POW line driver task

120 IBM VM/370: RSCS Networking Logic

Licensed Material - Property of IBM

External
(Console)
Interrupt

~
DMTEXT

Process an
External
Interrupt

DMTIOMIN

Process an
1/0 Interrupt

~
1/0 Interrupt

......
WAIT

l
r-----------..

1
--- Supervisor routines

entered from tasks
DMTSTO by BALR

' '
Reserve i...

Main ~

Storage

DMTWAT

Suspend
i...

Dispatching ...
for an
Executing Task

DMTAKE

Accept and i...
Respond to ...
GIVE Requests;
Calls DMTQRQ

DMTASK

Initiate,_
Terminate and r--
Query Tasks;
Calls DMTQRQ

DMTASY

Initiate and
Terminate
Asynchronous-
Exits; Calls
DMTQRQ

DMTGIV

Present GIVE i...

Requests; ...
Calls DMTQRQ
and DMTPST

-- ----------
DMTIOMRQ

Request 1/0 .._
Service; Calls r--
DMTOROand
DMTPST

~«,--- ------ - --- vO

DMTSIG
o<?-

{' ~~ ~«,-..... Asynchronously
~

9.~ vO ALERT Another
I'"

e;,v *-
~ ~ Task; Calls ,(,,_ '?'Cj

DMTDSP
DMTPST

Resume
Execution of
a Task; Enter z ... Asynchronous

a System Exit Routine

WAIT State

/ I I
~

FREEZE statement
!!"? ~~pe:o-v!!ar !"a~t!r?e!
entered from task

..
DMTSVC

Suspend
Execution
of a Task

0

v-
All Task Level
Programs

-o

Figure 3-3. Program organization for the Multitasking Supervisor MSUP

Section 3: Program Organization - Control Flow Diagrams 121

Licensed ~aterial - Property of IB~

AXS Task

DMTAXS

VM/370
Spool

System

REX Task

DMTCRE

Create System
Service and
Line Driver
Tasks

DMTMGX

Process Messages:

• Build Requested
Message and
Distribute to
Recipents

DMTCMX

Process Commands:

• Execute DMTCMX
Commands

•Pass Command
Elements to
AXS and Line
Drivers for
Execution

DMTRGX

Process Routed
CMD/MSG:

• Pass for Local
Execution

•Alert next
Transmission
Link

Supervisor Routines

DMTREX

• Handle all REX
Requests

• Handle Program
Check Interrupts

• Handle Console
1/0

• Terminate System
Service and Line
Driver Tasks

Figure 3-4. Program Organization for the REX System Service Task

122 IBM VM/370: RSCS Networking Logic

Line Driver
Tasks

Line

Licensed Material - Property of IBM

AXS Task (Module DMTAXM)

I 1::~,:~,CFilo
Control RSCS
Operator
Commands

OPEN IN
CLOSE IN
OPENOUT
CLOSEOUT

Open and Close
Input and
Spool Files

ACCEPT

Accept Files
from VM/370
Spool System

ACCEPT:

•Order, Change
Purge
Command
Elements

•Requests to
Open and I
~~~,~~:;10 I 

Supervisor Routines 

Line Driver 
REX Task Tasks 

loMTRExl DMTSML 

loMTCMxl 

Figure 3-5. Program Organization for the AXS System Service Task 

BSC 
Line 

Section 3: Program Organization - control Flow Diagrams 123 



Licensed Material - Property of IB~ 

$START $PRTN1 

Control Execution RJE: 
by Means of the Process Print File 
Commutator Table 

~ 
Records and Send 

~ and Task Control them to VM/370 ~ 
Table 

$URTN1 

RJE: 
Process Punch File 
Records and Send 

~ them to VM/370 <I ~ 

$JRTN1 $TPGET COMSUP 

HOST: Receive Date Control Commu-
Process Job File from BSC Line nications on the 
Records and Send Via COMSUP: 

~ 
BSC Line Send BSC 

~ them to VM/370 
:..._ 

Allocate Tanks to and Receive: ~ ,. 
Input Processors • Transmission 

Acknowl-
edgement 

• Data Streams 

$CRTN1 ~~ 
Scan RSCS Control 
Records and Per-
form Control ... ~ Functions 

DMTREX I 
DMTCMX I I..&. .... 

I ~ 
$WRTN1 

DMTMGX RJE: 

I Send Messages to 
DMTAXM RSCS Operator's .... Console ...... 

H· HOST: 
Pass Commands to 
DMTCMX 

H· 

~ .....-1 
$RRTN1 

Receive Records 
VM/370 from VM/370 

Spool System 
~ 

Spool System and 
$TPPUT t- Transmit them ~ 

Via $TPPUT Receive Tanks 
~~ ~~ I I from Output -- ~ 

Processors for 

~ 
Transmission. 

CMDPROC Send Buffers 

Execute Local 
to BSC Line 

e Via COMSUP 
Commands Passed 

~ ~ 
by DMTCMX; Pass 
Commands to ~ 
Remote Stations 

e 

MSGPROC 

Passes Messages to 
Remote Stations 

~ ii--

Supervisor Routines 

Figure 3-6. Program organization for the SML Line Driver Task 

124 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

DMTREX 

DMTCMX 

DMTMGX 

DMTAXM 

VM/370 
Spool System 

PUTBLOCK 

Deblock the 
Buffer from 
the BSC Line; 
Write Data I to Vivi/370 I 
Spool System 

MAKEBLOC 

Get a Block 
of Data from 
the VM/370 
Spool System 

COMMANDS 

Process a 
Command 
Received 
Over the 
SSC Line 

PUTVRFY 

Obtain Data 
Buffers from 
the BSC Line 
and Verify 
the BSC I Control 
Characters 

GETBLOCK 

Build a 
Buffer for the 
Apµrupriait: 
Hardware 
Device 

NPTGET 

Check for: 
•A Command 

to Process 
•A File to 

Transmit 
•A File to 

Read 

Check BSC 
Control 
Characters 

Ill. L· tAI !..._!_ -
Ml Lt=I VYI 11.111!::1 

a Block of 
Data to the 
BSC Line 

Supervisor Routines 

LINEIO 

Read Data 
and Write 
Data on 
the BSC 
Line 

Figure 3-7. Program Organization for the NPT Line Driver Task 

BSC 

Section 3: Program Organization - control Flow Diagrams 125 



Licensed Material - Property of IB~ 

$START 

Control Execution 
by Means of the 
Commutator Table 
and Task Control 
Tables 

I 
I 

I DMTNHD .. - " 

I 

DMTRGX 

DMTREX 

DMTCMX 

DMTMGX 

DMTAXM 

VM/370 
Spool System 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

$PRTN1 

Process Output 
File Records and 
Send them to 
VM/370 

$URTN1 

Process Job File 
Records and Send 
them to VM/370 

$TPGET 

Receive Data 
from BSC line 
via COMSUP, 

.......... Allocate Tanks 
to Input Proces­
sors 

$CRTN1 

Scan RSCS Control 
Records and Per­
form Control 
Functions 

I $WRTN1 

Pass Rout;ng 
Request Elements 
to DMTRGX 

$RRTN1 

Receive Records 
from VM/370 
Spool System and 
Transmit them 
Via $TPPUT 

MSGPROC 

Pass CMD/MSGs to 
Remote Systems 

CMDPROC 

Executes Local 
Commands 

$TPPUT 

Receive Tanks 
from Output 
Processors for 
Transmission, 
Send Buffers 
to Adapter 
Via COMSUP 

.. -••Processed by 
DMTCMX 

Supervisor Routines 

COM SUP 

Control Commu­
nications on the 
Adapter. 
Send and Receive· 
•Transmission 

Acknowl­
edgement 

• Data Streams 

Figure 3-8. Program Organization for the NJI Line Driver Task 

126 IBM VM/370: RSCS Networking Logic 

Commu­
nications 
Adapter 



Licensed Material - Property of IBflI 

VMRGET 
PACK MAKEBLOC GETBLOCK VMRGO 

I Main VMB I 
Compress Build Packed Process Logical Driver 

Data Spool Data Data Blocks I Control BSC I Strings Blocks for to be 
Transmission Transmitted Line and VMB 

Processing 

MSGTRANS LINEIO 

Build CMD 
and MSG Basic BSC BSC 
Element Data Line !/O Line 
Blocks for Executor 
Transmission 

AXSGET XECUTE 

~-~----.6.- -·· 
Open Input '-1\.0\..UL'I::::; Qll 

DMTAXS Spool Files for 1/0 Operations, 

Transmission Wait for 
Completion 

DMTREX 

MSGRECV PUTBLOCK CMDPROC 

Process CMD Execute RSCS 
and MSG Process Operator 
Element Data Data Blocks Commands for 

VM/370 
Blocks Received VMB Line 

Spool System 
Received Driver's Link 

~ 
Supervisor Routines 

Virtual Machine 

Figure 3-9. Program Organization for the VMB Line Driver Task 

Section 3: Program Organization - Control Plow Diagrams 127 



DMTRGX 

DMTREX 

DMTCMX 

DMTMGX 

DMTAXM 

VM/370 
Spool System 

Licensed Material - Property of IB" 

MSGRECV 

Process a 
Command or 
Message .. •••••••ml Received 
Over the 
CTCA 

PUTBLOCK CTCGO LINEIO 

Deblock the 
Buffer from 
the CTCA; 
Write Data 
to VM/370 
Spool 
System. 

Check for: 
•A Command 

to Process Read Data 
and Write 

---~Data on •••••••••••A File to 
Transmit 

MAKEBLOC 

Get a Block 
of Data from 
the VM/370 
Spool 
System 

GETBLOCK 

Build a 
Buffer for 
Transmittal 

•A File to 
Read 

Build 
Message 
Buffer for 

••••••••••••••••••Transmittal 

Supervisor Routines 

the CTCA 

Figure 3-10. Program Organization for the VMC I,ine Driver Task 

128 IBM VM/370: RSCS Networking Logic 

CTCA 



Licensed Material - Property of IB~ 
$START $PRTN1 

Control Execution Process Print 
bv Means of the File RecoidS 
Commutator Table and Send them 

~ and Task Control ..-! to VM/370 
Tables 

I I 
$URTN1 

Process Punch 
File Records 
and Send them 

4~ ii- to VM/370 

I I 
$WRTN1 _lTPGET COMSUP 

Send commands Receive Data Control Commu-
to RSCS Operator from BSC Line nications on the 
Console Via COMSUP: 

~ 
BSC Line Send 

~ ~ ~ Al!ocate Ta?1ks to and Receive: ne 
Input Processors • Transmission 

Acknowl-
edgement 

•Data Streams 
$CRTN1 4 ~ 

Scan RSCS 
Control 
Records and 

~ ~ Perform 
Control 

DMTREX Functions 

DMTCMX 
i.... 
....-

~ 
$MRTN1 

DMTMGX Send Messages to 
RSCS Operator's 

DMTAXM Console 
~ ~ .. ~ 

0 
$RRTN1 ,,, 

~ 
""""' Receive Records 

VM/370 from VM/370 
Spool System 

~ 
Spool System and 

~ $PPUT1 ~ Transmit them 
"- ~ Via $TPPUT Receive Tanks 

~ ~~ from Output 

~ 
Processors for 

~ 
... Transmission. 

CMDPROC Send Buffers 

Execute Local to BSC Line 
e 

Commands o\/ia COMSUP 

~ ~ 
Passed by 

~ DMTCMX; Pass .... 
Commands to 

e Remote Systems 

MSGPROC 

Passes Messages to 
Remote Systems 

~ 

Supervisor Routines 

Figure 3-11. Program Organization for the POW Line Driver Task 

Section 3: Program Organization - Control Flow Diagrams 129 



Licensed Material - Property of IBM 

Section 4: Directory 

!!~ .l.Y.E~ Q.Qjg£!_ Ref Qll .f~~ j!ef !~ Fig J=.1 

ACCEPT Routine DMT AIM yes 
ASYNEXIT Routine DMTNCPI yes 
ASYNEXIT Routine DMTPOW yes 
A SYN EXIT Routine DMTSl'lL yes 
AXSALERT Routine DPITVMB 92 
AXSALERT Routine Dr!TVl'!C 96 
AXSASYIO Routine DftTA Xft yes 
AXSCYCLE Routine DMTAXM yes 
AXSGET Routine D!!TNCM yes 
AXSGET Routine DMTNPT yes 
AXSGET Routine DMTPOW yes 
AXSGET Routine DMTSML yes 
AXSGET Routine DMTVMB 91 yes 
AXSGET Routine DMTVl'1C yes 
AXSPURGE Routine Dl'ITVPIB 91 
A XSINIT Routine DPIT AXPI yes 
BUFFIN IT Routine DftTNPT yes 
CERROR Routine DMTNCM yes 
CERROR Routine DMTPOW yes 
CERROR Routine Dl'!TSPIL yes 
CLOSEOUT Routine DMTAU! yes 
CLOSIN Routine DMT AXM yes 
C!!DPROC Routine DPITA XPI yes 
CMDPROC Routine DMTNCM yes 
CPIDPROC Routine DMTNPT yes 
CMDPROC Routine DMTPOW 65, 72 yes 
CMDPROC Routine DPITSML 59 yes 
CMDPROC Routine DMTVMB 92 yes 
CMDPROC Routine DMTVMC 95 yes 
CMXHIT Routine DMTCU yes 
CMXULOOP Routine Dfl!TCJ.llX yes 
CMXREORD Routine DMTCMX yes 
COMMANDS Routine DMTNPT yes 
COMSUP Routine DPITNCM yes 
COMSUP Routine DMTPOW 65 yes 
COMSUP Routine Dl!!TSML 59 yes 
CONVBLK Routine DMTV!C yes 
CONW Routine DMTIRX yes 
CTCERROR Routine DPITVMC yes 
CTCGO Routine DMTVMC 94 yes 
CTCINIT Routine DMTVMC yes 
CTCTERM Routine DMTVMC yes 
DEACT Routine DMTREX yes 
DECGET Routine DPJTA Xft yes 
DECPUT Routine DKTAXM yes 
DECPUT Routine DKTCMX yes 
DECPUT Routine Dl'ITIRX yes 
DEFINE Routine DMTA Xft yes 
DETACH Routine DM'i'AXM yes 
DIRECT Routine DMTIRX yes 
DMTAKE Object,CSECT DMTAKE yes 
DMTAKEFP EP DftTAKE yes 
DPITASK Object,CSECT DMTASK yes 
D MTASKE P EP DMTASK yes 
DMTASY Object,CSECT DMTASY yes 
DMTASYEP EP DPITASY yes 
DMTAXA Object DMTA XA 29 yes 

130 IBM Vl'I I 3 7 0 : RS CS Networking Logic 



Licensed Material - Property of IBM 

Name !~ Q!?j~£! Ref .Q!! ~~~ Ref in Fig J-1 
DMTAXAAC Routine DMTA XA yes 
DPITAXAPU Routine DMTAXA yes 
DMTAXARE Routine Dl'JTA XA yes 
DMTAX!TA Routine Dl'JTAXA yes 
DMTAXM 0 bject,CSECT DMTA XM yes 
DMTAXMEP EP DMTAXM yes 
DMTAXS Object DMTAXS 30 
DMTCMX Object,CSFCT Df!TCIU 28, 29 yes 
DMTCMXEP EP DMTCMX yes 
DMTCOM Object, cs ECT DMTCO!ll 29 yes 
DMTCOMEP EP DMTCOM yes 
nvll'("''D'I:' 
~1.L.&."-'.&.\J..I Object,CSECT DMTCRE 28, 37 yes 
DMTCREEP EP DMTCRE yes 
DMTDSP Object,CS FCT DMTDSP 22 yes 
DMTDSPEP EP DMTDSP yes 
DMTEXT Object,CSECT DMTEXT yes 
DMTEYT'F.P EP D?!TEXT yE:s 
DMTGIV Object, cs ECT DMTGIV yes 
DMTGIVEP EP D!!TGIV yes 
DMTINI Object,CSECT DPITIII 38 yes 
DMTIOM 0 bject,CSFCT DMTIOM yes 
DMTIOMEP EP DMTIOM yes 
DMTIOMIN Routine DMTIOPI 34 yes 
DPITIOMRQ Routine D!!TIOPI 33, 34 yes 
DMTIRX Object,CSECT DMTIRX 38 yes 
DMTIRXEP EP DMTIRX yes 
DMTLAX Object,CSECT DMTLAX 29 yes 
DP.ITLAXEP EP DMTLAX yes 
DftTMGX Object,CSECT DMTMGX 29, 30 yes 
DMTMGXEP EP DMTMGX yes 
DMT.MIN Object,CSECT DMTMIN 38 yes 
DMTMINEP EP DMTMIN yes 
DMTMSG Object,CSECT D!!TMSG yes 
DMTftSGEP EP DPI TPI SG yes 
DftTNCM Object,CSECT DMTNCM 29 yes 
DftTNCMEP EP DMTNCM yes 
D~TNHD nh..;,,,.,..+ re 1:'1""1 n•mttnft 29 yes ...,Al J""""' "', ..... w ""'""' .... .1.11."l.l. l.'lllll 

DMTNHDDH Routine DMTNHD yes 
DMTNHDHO Routine DKTNHD yes 
DMTNHDJH Routine DMTNHD yes 
D!!TNHDJT Routine D!IITNHD yes 
DPITNHD!! I Routine DMTNHD yes 
DMTNHDMO Routine DMTNHD yes 
DMTN IT Object,CSECT D!TNIT 29 yes 
DMTNITEP EP DKTNIT yes 
DftTNJI Object DMTNJI 29 
DMTNPT Object,CSECT DMTNPT 29 yes 
Dl!TNPTEP EP Dl!!TNPT yes 
DMTPOW Object,CSFCT DMTPOW 29 yes 
DMTPOWEP EP Dl!TPOW yes 
DftTPRE Object,CSFCT DPITPRE yes 
DMTPREFP EP DMTPRE yes 
DMTPST Object, cs ECT DPITPST 22 yes 
DMTPSTEP EP DMTPST yes 
DMTQRQ Object, cs ECT DMTQRQ 37 yes 
DftTQRQEP EP DMTQRQ yes 
DMTREX Object,CSECT Dl!!TREX 29, 30 yes 
DMTREXEP EP DMTREX yes 
DMTREXEC Routine DMTREX yes 
Dl!TREXTR Routine D!!TREX yes 
DMTREXIN Routine Dl!!TREX 39 yes 
Df!TREXPI Routine DMTREX 39 yes 
DMTRGX Object,CSECT Dl!TR GX 29, 30 yes 
DPITRGXEP EP DMTRGX yes 

Section 4: Directory 131 



Licensed f'lateria 1 - Property of IBl'I 

.!!~ !~ Obj~~.! Re~ on R~g~ R_ef i!!. Fig 3-1 
DMTSIG Object,CSECT DMTSIG yes 
D PJTSIGE P EP D!llTS IG yes 
DMTSftL Object,CSECT DMTSML 29 yes 
D!ITSMLFP EP Dr1TSML yes 
Dl'ITSTO Object,CSECT DMTSTO 37 yes 
DMTSTOEP EP D!1TSTO yes 
DMTSVC Object,CSECT Dl'ITSVC yes 
DMTSVCEP EP DJlllTSVC yes 
DMTVEC Object,CSECT DMTVEC yes 
DMTVECEP EP Dl'ITVEC yes 
DMTVME Object,CSECT DK TV KB 29 yes 
DMTVMC Object, cs ECT Dr!TVMC 29 yes 
DMTWAT Object,CSECT Dl'ITWAT 22, ..,,. 

L.0 yes 
DMTWATEP EP D!'ITWAT yes 
DVASSIGN Routine DMTNHD yes 
EBCDEC Routine Dl'!TIRX yes 
EBCDEC Routine DM TNHD yes 
EBCDEC Routine Dl'ITNIT yes 
EBCHEX Routine Dl'ITIRX yes 
EBCHEX Routine DriTNHD yes 
EBCHEX Routine DriTNIT yes 
FI LG ET Routine DMTCfl!X 7es 
FILS EL EC Routine DKTAUI yes 
FREEPAGE Routine DMTCOM yes 
FREESLOT Routine Dl'ITA XM yes 
GENVNET Routine DMTIRX 39 yes 
GETBLOCK Routine DMTNPT yes 
GETBJ.OCK Routine Dl'ITVPIB 89 yes 
GETBLOCK Routine DMTVMC 95 yes 
GE Tl.INK Routine Dl!TAU! yes 
GETLINK Routine DMTCOM yes 
GETPAGE Routine Dl1TCOM yes 
GETPARM Routine DMTIRX yes 
GETROUTE Routine Dl'ITAUI yes 
GETROUTE Routine DMTCOf'I yes 
GETS LOT Routine DMTAUI yes 
GETSUPAG Routine Df!ITCOM yes 
GETVRFY Routine D!1T~PT 79 yes 
GSUCCESS Routine DMTAUI yes 
HDRBUILD Routine DMTN HD yes 
HD ROUT Routine DMTNHD yes 
HEAD PREP Routine DMTNPT 77 yes 
HEADPREP Routine DMTSML yes 
HEXGET Routine D!1T AXM yes 
HEXGET Routine DMTCMX yes 
IBLDBUFS Routine DMTNIT yes 
INTCMD Routine DMTREX yes 
IOERRPRT Routine D~TVMB 93 
ISIO Routine DMTNCM yes 
ISIO Routine D.,TPO~ yes 
ISIO Routine DMTSML yes 
KEYWDGFT Routine DMTC11X yes 
LINEIO Routine DMTNPT yes 
LINE IO Routine :::>~TVMB yes 
LINE IO Routine DMTVMC yes 
LTABGET Routine D~TCf'lX yes 
MAKEBLOC Routine 'DMTNPT 77 yes 
MAKE BLOC Routine Dl!TVMB 91 yes 
MAKE BLOC Routine DMTVMC yes 
MFI Routine DMTCOM yes 
MFO Routine DMTCOM yes 
MSG Routine D ti'!'A XM yes 
MSG Routine DM:T IRX yes 
MSG Routine DMTNCM yes 

132 IBM VPl/37 0: RSCS Ne·tworking Logic 



Licensed Material - Property of IBM 

Name !I.~ QQj~£! Ref .Q!! g~~ Ref i!! Fig 3-1 
MSG Routine DMTNHD VQC 

J.~~ 

MSG Routine DMTNI'I' yes 
MSG Routine DMTNPT yes 
MSG Routine DMTPOW yes 
MSG Routine DMTREX yes 
MSG Routine DMTSML yes 
MSG Routine DMTVMB 90 ves 
MSG Routine DMTVMC yes 
MSGPROC Routine DMTNCM yes 
MSGPBOC Routine D~TMPT yes 
MSGPROC Routine DMTPOW 65, 71 yes 
MSGPROC Routine DMTSML 59 yes 
PISGRECV Routine Dl!'ITV !1 B 90 yes 
MSGRECV Routine DMTVMC 95 yes 
MSGTRANS Routine DMTVMB 91 yes 
MSGTRANS Routine DMTVMC 95 yes 
NC MI NIT Routine DMTNCl'i yes 
NITINIT Routine DMTNIT yes 
NPTEBROR Routine DPITNPT yes 
NPTGET Routine DMTNPT 78 yes 
NPTINIT Routine DMTNPT 79 yes 
NPTLINK Routine DMTNPT yes 
NPTTERM Routine Dl1TNPT yes 
OPENADEV Routine DMTNHD yes 
OPE NIN Routine DMT AXM yes 
PACK Routine DMTVMB 91 yes 
PARMGET Routine DMTCMX yes 
PARM GET Routine DMTIRX yes 
PARMGET Routine DMTNHD yes 
PAR!GET Routine DMTNIT yes 
PARMGET Routine DMTNPT yes 
PARM GET Routine DMTPOW Y'2S 

PARM GET Routine DMTSML yes 
PARM GET Routine DMTVMC yes 
POWINIT Routine DMTPOW yes 
PUT BLOCK Routine DMTNPT yes 
nnmn T "'~ wr r U.LUJ,,V\... I\ Routiue DliiTVMB 90 yes 
POTBLOCK Routine DMTVMC 95 yes 
PUTVRFY Routine DMTNPT 80 yes 
QUIESCE Routine DMTREX yes 
RC MG ET Routine DMTCOM yes 
RC MO PEN Routine DMTCOr! yes 
REORDER Routine DMTAXr! yes 
REQXEQ Routine DMTA XM yes 
REQXEQ Routine DMTREX yes 
REXCYCLE Routine DMTREX yes 
FEXITERM Routine Dri!TREX yes 
REXPCHEX Routine DMTREX yes 
RGXCrm Routine DMTRGX yes 
RGXDOIT Routine Dl'JTRGX yes 
RGXMSG Routine DMTR GX yes 
RGI!!SGER Routine DMTRGX yes 
RGXNTHRE Routine DMTRGX yes 
RTABGET Routine Dr!TCMX yes 
SENDEOT Routine DMTNPT yes 
SPILINIT Routine DMTSML yes 
SVMRINI T Routine DMTVMB 92 yes 
TAGCLOSE Routine DMTA XM yes 
TAGFIND Routine DMTAUI yes 
TAGGEN Routine DMTA XM yes 
TAGPLACE Routine DMT AXM yes 
T AGSCAN Routine DMTNHD yes 
TERMINAT Routine DMTREX yes 
TIMERS ET Routine DMTREX yes 

section 4: Directory 133 



Licensed Platerial - Property of IBM 

M~ II..l!~ Object Ref .Q!! .f~g_ Ref !.!!. f.is 1=-1 
TO DE BCD Routine DMTA XM yes 
TODEBCD Routine DMTCMX yes 
TODEBCD Routine DMTCOl'l yes 
TODEBCD Routine DMTNPT yes 
TO DE BCD Routine DMTSML yes 
TODEBCD Routine Dl'!TVMB yes 
TODEBCD Routine DMTV!C yes 
TODS 370 Routine DMT AXM yes 
TODS370 Routine Dl!TCOM yes 
TYPE Routine DMTIRX yes 
UNPEND Routine DMTA XM yes 
VCHANGE Routine DMTAXM yes 
VCLOSE Routine DMTA XM yes 
VMDEBLOK Routine Df!TNCll! yes 
VMDEBLOK Routine D!!TPOW yes 
VPIDEBLOK Routine DMTSML yes 
VMRTILT Routine DMTVMB 93 yes 
VMSB2CP Routine DKTNPT yes 
VMSB2CP Routine DMTVMB yes 
VP URGE Routine DMTAU! yes 
VS POOL Routine DMTAXM yes 
VTAGD Routine DKT AXM yes 
VTAGF Routine DfllTA XM yes 
VTAGKSG Routine DKTAXM yes 
VTRANSFR Routine DMTAXM yes 
XECUTE Routine DMTNPT yes 
XECUTE Routine DMTVMB 93 yes 
XECUTE Routine D!TVMC yes 
$CRTN 1 Routine DMTNCM yes 
$CRTN1 Routine DKTPOW 65 yes 
$CRTN1 Routine Dl'ITSl'IL 59 yes 
$JRTN1 Routine DMTSML 59, 63 yes 
$MRTN1 Routine DMTPOW 65, 71 yes 
$PRTN1 Routine DMTNCPI yes 
$PRTN1 Routine DllJTPOW 65, 69 yes 
$PRTN1 Routine DMTSML 59, 63 yes 
$RRTN1 Routine DMTNCf! yes 
$RRTN1 Routine DMTPOW 65, 68 yes 
$RRTN1 Routine Dl'ITSML 59, 61 yes 
$START Routine DMTNCM yes 
$START Routine DKTPOW 65 yes 
$START Routine DMTSML 60 yes 
$TPGET Routine DMTNCM yes 
$TPGET Routine D!TPOW 66 yes 
$TPGET Routine DKTSML 60, 62 yes 
$TPPUT Routine DK TN CM yes 
$TPPUT Routine DMTPOW 66 yes 
$TPPUT Routine DKTSML 60 yes 
$URTN1 Routine DMTNCM yes 
$URTN1 Routine DflJTPOW 65, 70 yes 
$URTN1 Routine DMTSML 59, 63 yes 
$USREXIT Routine D[llTSPIL yes 
$WRTN1 Routine DKTNCM yes 
$WRTN1 Routine DMTPOW 65, 71 yes 
$WRTN1 Routine DKTSML 59 yes 

134 IBM VM/370: RSCS Networking Logic 



licensed Material - Property of IBM 

Section 5: Data Areas 

Data Area Aids 

This section begins with a set of graphics to help with using some of 
the pointers in SVECTORS. Details of the data in the various tables, 
blocks, and queue entries are described later in this section. 

PIAIIMlP LOCATION 

SVECTORS 
TABtE 

X1 214 1 IUINPilP 
I 

<--Address of main storage map 

(RSCS virtual storage page byte 

' r~~~~~~~~~~~~~~ 
I 
I 
I 
I 

Figure 5-1. MAINPIAP Location 

..L-1....,-• 
1..a.u.a.~ I 

The main storage map pointed to by MAINPIAP (Figure 5-1) has a byte for 
each page (4K) of virtual storage of the virtual machine occupied by 
RSCS. When a page is in use (allocated to or occupied by RSCS 
processor), its PIAINPIAP byte contains the taskid (from the task element) 
of the task that is using the storage page. (This value is X'FF' if it 
is an !SUP page .• ) Every unused (available) storage page has a !UINPIAP 
byte value of x•oo•. 

Section 5: Data Areas - Aids 135 



Licensed Material - Property of IBM 

QUEUE ELEMENT STORAGE AREA AND FREEQ QUEUE 

x • 21 c• 

X'220' 

x '224' 

SVECTORS 
TABLE 

QUEUE 

QUEUE ND 

FREEQ 

1--+--
I I 

I 
I 

<--Address of first of storage reserved for 
queue elements 

<--Address of end of storage reserved for 
queue elements 

<--Address of top of free queue 

(first element) 

L------->---------
1 
I address of next 
I 
1--------
1 

element-, 
I 
I 
I (next 

element) I 
L-)r-----

1 
I address 
I 
I-
I 

Figure 5-2. Queue Element Storage Area and FREFQ Queue 

The DftTQRQ module obtains and frees 16-byte queue elements upon request 
from an RSCS task that either requires an element for, or is finished 
with an element in, a queue that the task maintains. 

Because of the dynamic nature of queue element management, any given 
queue's elements are not restricted to a certain contiguous and 
sequential set of elements within the queue element storage area; 
individual elements that comprise a given queue may be anywhere within 
the storage area. To support this, each queue has a "top-of-queue" 
element, pointed to by an SVECTORS entry (Figure 5-2). This element has 
a pointer to the nex~ element in the queue, and the chaining (pointer to 
address of next) coitinues through the remaining elements of that queue, 
scattered throughout the queue storage area. 

The FREEQ queue is the set of unassigned queue elements at a given point 
in time. 

Note that this discipline applies only to gy~§ pointed to in SVECTORS, 
and not to tabl!.§, etc. 

136 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

1ASK QUEUE LOCATION 

SVECTORS 
TABLE 

I 
-----1 

I 
X'228' TASKQ I <--Address of first task queue element (TASKE) 

I I 
1--+--i 
! ! ! 

I 
I (first TA SKE) 

' ----~~->...-------------~~---- (next TASKE) 

' I address of next TASKE ---~->..----~~-------
1 I 
I I address of next TASKE 
I I 
I l----~------

1 I 
I address of task system save area 

r-----+ 
I 
I 
I 

' I 
I 
I (task in RSCS storage) 
I 
v 

PSW REGS AVE 

Figure 5-3. Task Queue Location 

GIVE/TAKE SYNCH LOCK 

There is a task queue element for every active (started) task. This 
queue (Figure 5-3) is used by the RSCS MSUP dispatcher to start eligible 
tasks. 

Section 5: Data Areas - Aids 137 



Licensed Material - Property of IBft 

I/O QUEUE ORGANIZATION 

x•22c• 

1 1 230 1 

SVECTORS 
TABLE 

KPXIOQ 

SELIOQ 
I 

I 
I 

' I 

<--Address of multiplexor channel I/O queue 
(points to same type structure as 
shown for selector channel) 

<--Address of selector channel I/O queue 

(selector channel queue) 
(first active entry - lowest subchannel 
address with uncompleted request) 

L->--~~~~----~--------------~ 

' I address of next entry 
--~~t-

I 
I 
I 
I 
I 
I 
I 
I 
I 
v 

I 

i --------~~~~~~~~--~--~ 
I 
I 
I 
I 
I 

address of requesting task's I/O table 

address (if any) of waiting (inactive) 
I/O queue entry for this subchannel 

(second selector queue entry) 
(next lowest subchannel active) 

I 

I address of next queue entry 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
1------------------~ 
I 

' I 
I 

I (next waiting (inactive) entry 
V for this subchannel) 

address of next entry in waiting queue 

address of requesting task's I/O table 

Figure 5-4. I/O Queue organization 

Each I/O queue (Figure 5-4) contains only entries that are in use. lll 
unused entries are in the PREEQ. Requests for I/O queue additions and 
deletions, performed by DMTQRQ in MSUP come from the IODISMIS subroutine 
in the DMTIOM module in MSUP. 

138 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IB~ 

!SYNCHRONOUS INTERRUPT QUEUE POINTERS 

X1 234 1 

X1 238 1 

X1 23C' 

SVECTORS 
TABLE 

IOEXITQ 

EXTQ 

ALERTQ 
i 

I 
I 

·I 
I 

<--Address of I/O asynchronous ·interrupt queue 

<--Address of external asynchronous interrupt queue 

<--Address of alert asynchronous interrupt queue 

(first entry in alert queue) 

L--~~~~>--~~~~~~~~~~~-

1 
I address of next queue entry 
I 
1~~~~~~~--

1 

Figure 5-5. Asynchronous Interrupt Queue Pointers 

Tasks that have exit routines to process certain types of asynchronous 
interrupts must build asynchronous interrupt queue entries for their 
exit routines beforehand, by asynchronous exit requests to DnTASi. The 
queue entry that DMTASY builds for each request reflects the type of 
exit condition specified in the request• 

When any asynchronous interrupt condition occurs, the asynchronous 
interrupt handler scans the appropriate queue (Figure 5-5) to see which 
task (if any) has specified an exit routine to receive control 
immediately upon occurence of an asynchronous interrupt condition of 
this type. 

A task's !LQ exit routine is entered when its queue entry reflects the 
device address that has just generated an asynchronous interrupt. 

A task's ~~nal exit routine is entered when its queue entry reflects 
the bit setting of the external interrupt that just occurred. 

A task's alert exit routine is entered when it is the task that has just 
been specified in another task's alert request call to the DMTSIG 
routine in MSUP~ 

For the contents of the fields in the asynchronous exit queue elements, 
see "Asynchronous Exit Queue Elements." 

Section 5: Data Areas - Aids 139 



Licensed Material - Property of IBM 

GIVE ELEMENT QUEUE LOCATION 

x '240' 

SVECTORS 
TABLE 

I 
-----1 

I 
GIVEQ I <--Address of first GIVE queue element 

I I _____ , 
I I 
I 
I 
I (top of GIVE queue) 
v 

I 
(second) 

I address of next give queue element ---->----------
I 
1------------~-------~-~ 
I 
I 
I 
I address of requesting task's GIVE table 

.-+-
I 1-------~-------
I I 
I I name of receiving task 
I I 
I 1~~~~~~~~~~~~-
I I 
I 

' I address of ••• 
I 
1-----
1 

I 
I 
v 

(GIVE table in requesting task's storage area) 

.--~------------------~--------------

' I 
' I 

Figure 5-6. GIVE Element Queue Location 

When the requesting task issues a GIVE request, the MSUP DMTGIV module 
builds a give element in the GIVE queue (Figure 5-6), posts the 
GIVE/TAKE synch lock in the requested task, and makes the requested 
task's TASKE entry dispatchable by a call to DMTPST. 

140 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IB~ 

LINK TABLE LOCATION 

x' 270 1 

,---

SVECTORS 
TABLE 

I 
-----1 

I 
TVECTOROI <--Address of link table TLINKS, containing header, 

followed by consecutive LINKTABL entries I I 
j---+--i 
I I I 

1 
I (number of currently active link table entries) 
I I 
I (initialization (maximum allowed I 
I-defined)-, concurrent links) f 
v I I I 
.-------V V V--, 

I 
0 TOTAL LINKS MAX LINKS CURRENT LINKS I 

I 

8 I LINKID (contains locid of this node) 
1~---~~--~~------~ 

I 
1---~-----~· 

58 I LINKID (contains linkid of first link) 
1----
/ 
1----

LINPUTQ LOUTPUTQ -------~> (see LINPUTQ) 
I 
I 
I 

AB I LINKID (contains next link's linkid) 
I 
I 
I 

(queue of input tag elements, representing spool files 
to be transmitted, for this link) 

---~---~>-----------------

' -------> 
1--------------
1 

Figure 5-7. Link Table Location 

There is an eight-byte information block just ahead of the first link 
table entry. The first entry itself is a special purpose entry, 
initialized with the V~/370 system locid, for reference by RSCS. 

The LINKID field at the first of each LINKTABL block (Figure 5-7) 
identifies the link by the LOCID name of the adjacent node specified in 
the LINK statement in the dynamic directory, RSCS DIRECT, or specified 
by an operator DEFINE command. Each block contains data about one link 
(one port's line driver task). 

Section 5: Data Areas - Aids 141 



Licensed ftaterial - Property of IB~ 

ROUTE TABLE LOCATION 

x. 27 4. 

SVECTORS 
TABLE 

' -----1 
I 

TVECTOR11 <--Address of route table (TROUTE) 
I I _____ , 

0 

10 

18 

20 

I I 
I 
I (Route entries. Spool files at this node vith a 
I destination of locid ROUTDEST1 are forwarded on 
I link ROUTNEXT14) 
v 

ROUTDEST1 ROUTNEXT1 

ROUTDEST2 ROUTNEXT2 

ROUTDEST3 ROUTNEXT3 

Figure 5-8. ROUTE Table Location 

The route table entries (Figure 5-8) contain the routing information 
submitted in ROUTE statements in the dynamic directory (RSCS DIRECT) or 
specified by an RSCS operator ROUTE command. 

142 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IB~ 

SWITCHABLE PORTS (TPORTS) LOCATION 

SVECTORS 
TABLE 

I 
-----1 

I 
x. 278. TVECTOR21 <--Address of switchable port list, TPORTS 

I I 
---+--I 

i 
I 

I 

I (TPORTS) 
v 

Figure 5-9. Switchable Ports (TPORTS) Location 

The switchable port list (Figure 5-9) contains the information submitted 
in the RSCS dynamic directory (RSCS DIRECT) in PORT statements, or 
specified by the RSCS operator PORT command .• 

Section 5: Data Areas - Aids 143 



TAGSLOT QUEUE LOCATION 

SVECTORS 
TABLE 

I _____ , 
I 

Licensed Material - Property of IBM 

X'27C' TVECTOR31 <~Address of TAGAREA queue, TT~GQ entries, 
I I I defined in TAG-FILE TAG DSECT 
1--+--I 
I I I 

' I I (TAG AREA) 
v 

TA GA PREE 
I 

I 

' I 
I 
v 

TAG NEXT 
I 

I 

' I 
' I 
v 

Figure 5-10. TAGSLOT Queue Location 

TAGAREA is a queue (Figure 5-1~ of free (availabl~ tagslot element~ 
When they are in use, they are enqueued on the LINKTABLE of the link 
responsible for the spool file whose information is contained in the 
tag slot. 

144 IB! VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

COMMON ROUTINE VECTOR ~ABLE (COMDSECT) ADDRESS 

x. 280. 

SVECTORS 
TABLE 

I 
-----1 

' TVECTOR q I 
I I 

--~--1 

I 
I 

I 

<--Address, TCOM, of common routine vector 
table, COMDSECT 

I (COMDSECT) 
v 

Figure 5-11. Common Routine Vector Table (COMDSECT) Address 

Section 5: Data Areas - Aids 145 



Licensed Material - Property of IBM 

Data Areas and Control Blocks 

This section describes in detail the primary data areas and control 
blocks used by RSCS. Offsets are shown in hexadecimal notation at the 
right of each diagram. Following each diagram is a table that presents 
the hexadecimal offset, name, type, and description of each field. 

ASYNCHRONOUS EXIT QUEUE ELEMENT: ASYNE 

ASYNE defines symbolic addresses for elements on an asynchronous exit 
queue. An asynchronous exit queue element contains information by which 
a task requests that it handle asynchronous interrupts. 

IOEXITQ, EXTQ, and ALERTQ in SVECTORS are the heads of three 
asynchronous exit queues... Each of these queues comprises supervisor 
elements defined by the ASYNE DSECT. IOEXITQ points to requests for I/O 
exits, EXTQ points to requests for external exit requests, and ALERTQ 
points to requests for ALERT exits. 

0 A SYNNEIT 

4 A SYN TASK 

8 A SYNEII T 

c ASYNCODE l//ASYNSPAR///I ASYNID 

0 ASYNNEXT DS 1F Address of the next asynchronous 
interrupt exit request element 

4 ASYNTASK DS 1F Address of task element describing 
the task that requested the 
asynchronous interrupt 

8 ASYNEXIT DS 1F Address of the requested asynchronous 
exit routine 

c lSYNCODE DS AL2 Address of the device for which 
asynchronous I/O interrupts are 
requested or interrupt bit code 

E ASYNSPAR DS 1X Reserved for IBM use 
F ASYNID DS 1X 1-byte ID of the task owning the 

asynchronous exit routine 

146 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

c~s FILE ACCESS WORK !BEA 

CMSACCES DSECT 

When entering either of the read only CMS file access routines (CMSOPEN 
and CMSGBT, pointed to in COMDSECT), R13 must point to a work area of 
this format. 

OPENFILE DC 

STATABI.E DC 
FILENAME DC 
FILETYPE DC 
FILEDATE DC 
FILEWNUM DC 
FILERNUM DC 
FILEMODE DC 
FILEINUM DC 
FILELINK DC 
FILEFORM DC 

FILEFLAG DC 
FILEILEN DC 
FILESIZE DC 
FILEYEAR DC 

STATLEN EQU 

FSTFOP DS 
FSTADBC DS 
FSTAIC DS 
FSTNLVL DS 
FSTPTRSZ DS 
FSTADATI DS 

DS 
FSTDSIZE EQU 

or•o•,CL8' •,cLS'TEXT' File name for OPEN request 

OF'O' 
ac• • 
ac• • 
F'O' 
H '0' 
H'O' 
2C' ' 
ii' 0' 
H '0' 
c• ' 

x• oo• 
F '0' 
H' 0' 
2C 1 

' 

*-STATABLE 

F 
F 
F 
IL1 
XL1 
CL6 
F 
(*-STAT ABLE) 

c"s file status table 
Cl!S filename 
CMS filename 
Creation date - decimal mmddhhmm 
Write item number 
Read item number 
CMS filemode 
Number of it~ms in entire file 
CMS block number of first chain link 
File format: 

C'F' for fixed; C'V' for variable 
File flags - always zero? 
(Maximum) length of file data items 
Number of 800-byte blocks in file 
Year of file creation (last two digits 

in EBCDIC) 
Length of CMS file status table 

Alt. file origin pointer 
Alt. number of data blocks 
Alt. item count 
Number of pointer block levels 
Length of a pointer element 
Alt- date and time (yymmddhhmmss) 
Reserved 
File status table size in bytes 

* ens Disk Access Control Area 

DASD DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

OF' 0' 
F'O' 
112 (0) 
AL 1 (24) 
x•oo• 
A (0) 
2F '0 1 

24x • oo• 

CMS DASD I/O request table 
synch lock 
DASD device address (set by INIT) 
Sense information required for DASD 
Device type code (set by !NIT) 
Address of disk read channel program 
Return SIO condition code and end csw 
Return sense information on unit check 

* The values below are set by DMTINI according to the type and 
* format of the RSCS system disk: 

PERCYL 
PERTRACK 
OVERNUM 
DASDSECS 
DISK CLAS 

DC 
DC 
DC 
DC 
DC 
DS 

DISKBSZE DS 
DS 

* 
DASDREAD CCW 
DA SETS EC CCW 
DASEARCH CCW 

ccw 

F' 0 1 

F 1 0' 
F'O' 
2ox•oo• 
x' 00 1 

3X 
F 
F 

CMS records per cylinder 
CMS records per track or pair 
Record number of overlapper 
Record number - sector table 
System disk class 
Reserved 
System disk blocksize 
Reserved 

X1 07',BBCCHHR,CC+SILI,6 Seek (bbcchhr) 
I '03', SECTOB,CC+ SILI, 1 
X1 31',BBCCHHR+2,CC+SILI,5 
X1 08 1 ,DASEARCH,X'00 1 ,1 

NOP or set sector 
Search ID equal (cchhr) 
Back to search if unequal 

Section 5: Data Areas - Data Areas and Control Blocks 147 



DARDDATA CCi 
BBCCHHR DC 
SECTOR DC 

X1 86 1 ,0,SILI,800 
0F'0',7X'00 1 

X' 00 1 

Licensed Material - Property of IBM 

Read data multi-track 
DASD address for reference 
Sector number of record above 

* Channel Program for Fixed Block Architecture Devices 

CFBAREAD DC 
FBACCWD2 CCW 

ccw 
F'BACCWX 2 CCW 
FBAD2A DS 

DS 
DS 
DS 

FBAD2ALB DS 

FBAL2A 

FBAL2ANB 
FBAL2ABO 
VOLCCWS 

VOLCCW1 

NEXTLINK 
LINK END 
LINKLIST 
EDFOVBU F 

DS 
DS 
DS 
DS 
DS 
DS 
ccw 
ccw 
CCW 
ccw 

DC 
DC 
DC 
DS 
EQU 

DC 
NEXTBLOK DC 
BLOKEND DC 
BLOKLIST DS 

DC 
NEXTITE!! DC 
ITEMEND DC 
FILCHBUF DS 

CFILSAVE DS 
COPNSAVE DS 
CGETSAVE DS 

ENXTITEM DS 
MVLEN DS 
NXTRECPT DS 
DABLKCNT DS 

APTRBLK DS 
AEDFBUF DS 

DS 
ADTIDENT DS 
ADTID DS 
ADTVER DS 
ADTDBSIZ DS 
ADTDOP DS 
ADTCYL DS 
ADTMCYL DS 

OD'O' 
X'63 1 ,FBAD2A,CC+SILI,16 
X'43 1 ,FBAL2A,CC+SILI,8 
X' 4 2' , 0, SIL I, 8 0 

Define extent 
Define extent 
Define extent 

X'40' 
x•oooooo• 
F '0' 
F'O' 
F 1 1 1 

OF 
1'06' 
x •oo • 
H' 1 1 

F '1 ' 
OD 
x•o1 1 ,o,cc+s111,6 
X'31',0,CC+SILI,5 
x•os•,*-8,o,o 
x I 06 1 , o, SILI, 80 

on•o• 
A (0) 
A (LINKLIST+80) 
BOC 
LINKLIST 

OD' 0' 
A (0) 
A (BLOKLIST+12 0) 
800C 

OD' 0' 
A (0) 
A (PILCHBUF+BOO) 
BOOC 

BF 
9F 
9F 

F' 0 1 

F '0' 
F'O' 
F 1 0' 

A 
A 

OF 
Ct4 
CL6 
CL2 
F 
F 
F 
F 

Mask (Inhibit Write) 
Reserved 
Extent offset 
First block offset 
Last block off set 

Locate list 
Opera ti on (Read) 
Aux byte 
Number of blocks 
Block offset 

Address of pointer to next chain link 
End of chain link list 
List of CMS chain link block numbers 
This 80-byte area is used for an 

overflow buffer when the system disk 
is EDF format 

Address of pointer to next data block 
End of current data block list 
List of CMS file data block numbers 

Address of next (unread) data item 
End of FILCH data buffer 
Buffer for CMS block FILCH routine 

Save area for CMS FILCH routine 
Save area FOR CMS OPEN routine 
Save area FOF CMS GET routine 

Absolute value of next (unread) data item 
Move length when record spans two blocks 
Address of next record in buffer 
Number of blocks processed 

Address of EDF pointer block 
Address of EDF data block 

Allign 
Volume/label identifier 
Volume start / volume identifier 
Version level 
Disk block size 
Disk origin pointer 
Number of formatted cylinders on disk 
Maximum number of formatted cylinders 

148 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBK 

ADTNUM 
lDTUSED 
ADTFSTSZ 
ADTNFST 
ADTCRED 

ADTLABSZ 
ADTDKFOR 
ADTDVTYP 

DS 
DS 
DS 
DS 
DS 
DS 
EQU 
DS 
F 

F 
F 
F 
F 
CL6 
Ct30 
*-ADTIDENT 
F 

on disk 
Disk size in blocks 
Number of disk blocks in use 
Size of file status table 
Number of file status tables per block 
Disk creation date (yymmddhhmmss) 
Reserved 
Length of label 

CMSACCL EQU ((*-C~SACCES)+?)/8 Number of double words in c~s Access 
area 

Section 5: Data Areas - Data Areas and Control Blocks 149 



Licensed Material - Property of IBM 

COMDSECT TABLE CONTENTS 

The COMDSECT table contains pointers to common supervisor routines. 

0 

4 

8 

c 

10 

14 

18 

1C 

20 

24 

28 

r---

0 
4 
8 
c 

10 
14 
18 
1C 
20 
24 
28 

GLINKREQ DS 1A 
GROUTREQ DS 1A 
GPAGEREQ DS 11 
FPAGEREQ DS 1A 
PMSGREQ DS 1 A 
Gl! SGREQ D S 1A 
GTODEBCD DS 1 A 
GTODS370 DS 1A 
CMSOPEN DS 1 A 
CKSGET DS 1A 
GPAGESUP DS 1 A 

GLINKREQ 

GROUTREQ 

GPAGEREQ 

FPAGEREQ 

Pi'!SGREQ 

G!llSGREQ 

GTODEBCD 

GTODS370 

Cr!SOPEN 

CMS GET 

GPAGESUP 

Get link table entry routine 
Get routing table entry routine 
Get page of main storage 
Free page of main storage 
Put message element into message stack 
Remove message element from message stack 
Convert S/370 TOD* to EBCDIC TOD 
Convert EBCDIC TOD to S/370 TOD 
Open CMS file** 
Read next record of CMS file** 
Allocate a page of virtual storage for 

supervisor use 

* Time-Of-Day 
** See CMS File Access Work Area 

150 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

FREE QUEUE ELE~ENT: FREEE 

FREEE defines an element in the chain of elements that comprise the free 
element queue. 

FREEQ in SVECTORS points to the chain of free elements, each of which is 
defined by the FREEE DSECT. 

0 
4 
F 

0 

4 

8 

c 

FREENEXT DS 
FREESPAR DS 
FREEID DS 

1F 
CL11 
1X 

GIVE QUEUE ELEMENT: GIVEE 

FREENEXT 

FREESPAR 

FREEID 

Address of next element in free queue 
Spare field 
Standard taskid offset 
cx•oo• denotes free element) 

GIVEE defines symbolic addresses for items used in processing a GIVE 
request. 

GIVEQ in SVECTORS points to the queue of GIVE elements used in task-to­
task communications. 

The GIVEADDR field of this DSECT is the address of a GIVE request table, 
which, in turn, contains addresses of buffers for elements describing 
requests and responses to requests. These tables are described below; 
the elements that fill the buffers are described in "Request Elements". 

o. I GIVENEXT 
I 

4 I GIVEADDR 
I 

8 I GIVENAME 
I 

c I GIVE SPAR GIVENID GIVERID 

0 GIVEN EXT DS 1F Address of next GIVE element 
4 GIVE AD DR DS 1F Address of GIVE request table in 

sending task's storage 
8 GIVE NAME DS CL4 Task name of receiving task 
c GIVESPAR DS AL2 Unused 
E GIVENID DS 1X 1-byte ID or receiving task after TAKE 
F GIVERID DS 1X 1-byte ID or sending task 

Section 5: Data Areas - Data Areas and Control Blocks 151 



Licensed Material - Property of IBM 

GIVE REQUEST TABLE IN GIVF/TAKE REQUESTING TASK 

The format of a GIVE Request Table is: 

0 I synch lock 
I 

4 I task name or !(GIVE Element) 
I 

8 I A(GIVE Request Buffer) 
I 

c I A(GIVE Response Buffer) 

When a task requests the services of another task via a GIVE request, 
the second field of the table above contains the task name of the task 
to which the task is to be sent. When DMTGIV builds a GIVE element for 
the request, it overlays this task name with the address of the GIVE 
element. 

The task performing the requested service builds a table called the TAK~ 
request table, which corresponds to the GIVE request table. 

152 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

I/O REQUEST QUEUE ELEnE'riT; IOE 

IOE defines symbolic addresses of elements and other information 
associated with an I/O operation requested by a task. 

MPIIOQ and SELIOQ in SVECTORS point to queues of I/O elements for the 
multiplexer and selector channels, respectively .• 

The IOTABLEA field points to the address of an I/O table defined by 
IOTABLE, which is described in this section. 

0 
4 

0 

4 

8 

c 

IONE IT 
IOSUBQ 

IOSTAT 

IOADDR 

DS 1F 
DS 1F 

EQU * 

IO NEXT 

IOSUBQ 

IOTABLEA 

IOSBCHAN IOID 

Address of next active I/O element 
Address of next inactive I/O element 
for a given subchannel 
Status flags for current I/O operation 
(First byte of IOTABLEA) 

Bi ts defined in IOSTA! 

8 
c 

E 

F 

SENSING EQU x•ao• Flag set to 1 while automatic 
sense is active 

CHANDONE EQU I'40' Flag set to 1 when subchannel terminates 

IOTABLEl DS 
IOADDR DS 

IOSBCHAlf DS 

IOID DS 

1F 
112 

1X 

Address of I/O request table in task storage 
Address (cuu) of the device requesting 
current I/O operation 
Subchannel address; 1-byte; 
assigned by PISUP 
ID of task associated with this 
I/O operation; 1-byte; assigned by PISUP 

Section 5: Data Areas - Data Areas and Control Blocks 153 



Licensed Material - Property of IBM 

I/0 REQUEST TABLE IN REQUESTING TASK: IOTABLE 

The I/O request table contains data used in processing an I/O request. 
The first five fields are filled in by the task to convey information 
about the I/O request to the supervisor. The last three fields are 
filled in by the supervisor to convey status information about the I/O 
operation to the task. 

0 
4 

6 
7 

8 

c 

14 

0 I IO SYNCH 
I 

4 I DEVCUU SENSREQ DEVCODE 
I 

8 I 
I 

c I 
I 

10 I 
I 

14 I END SENSE 

IOSYNCH DS 1F 
DE VCUU DS Al2 

SE NSREQ DS AL 1 
DEVCODE DS AL1 

PROGADDR DS 1F 

SI OCOND EQU * 
ENDCSW DS 2F 

ENDSENSE DS AL1 

TYPPUN 
TY PP RT 

EQU X'80' 
EQU X' 40' 

PROGADDR 

ENDCSW 

synchronization lock for I/O operation 
Address (cuu) of device associated with this 
I/O opera ti on 
Number of sense bytes requestea on unit check 
1-byte VM/370 device type code (not used by 
I/O manager) 
Address of channel program for the I/O 
operation 

1-byte SIO condition code return information 

Ending CSW with composite status return 
inf or ma ti on 
Requested return sense information on unit 
check csw status 

VM/370 type code for the punch 
VM/370 type code for the printer 

154 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

LINK TABLE ENTRY: LINKTABL 

LINKTABL describes the status of a single link in the network; 
collectively, all the links defined for the system are referred to as 
the link table. 

The first link table entry has the locid of this RSCS node in the linkid 
field. Normal link definitions start in the second link table entry. 

0 
8 
c 

10 
18 
20 
22 
24 
28 
29 
2A 
2B 
2C 

r 
0 I LIN KID 

4 

8 LDEFTNME 

c LACTTNME 

10 LDEFDRVR 

14 

18 LACTDRVR 

1C 

20 LDEFLINE LACTLINE 

24 LDRVRVAR 

28 LDEFCLS1 LDEFCLS2 LDEFCLS3 LDEFCLS4 

2C LACTCLS1 LACTCLS2 LACTCLS3 LACTCLS4 

30 LTI!EZON LSPARE LFLAG 

34 LTI!!ER 

38 LINPUTQ 

3C LOUTPUTQ 

40 LWORKQ 

44 LRESERVD LPENDING 

48 

4C 

LINK ID 
LDEFTNME 
LACTTNME 
LDEFDRVR 
LACTDRVR 
LDEFLINE 
LACTLINE 
LDRVRVAR 
LDEFCLS1 
LDEFCLS2 
LDEFCLS3 
LDEFCLS4 
LACTCLS1 

LTAKEN 

LERRCNT 

DS CL8 
DS CL4 
OS CL4 
DS CL8 
DS CL8 
DS 2X 
OS 2X 
DS 1F 
DS CL1 
DS CL1 
DS CL1 
DS CL1 
DS CL 1 

EBCDIC linkid 
Default task name 
Active task name 
Default driver id 
Active driver id 

LTRNSCNT 

LTOCNT 

Default virtual line address 
Active virtual line address 
Line driver variable information 
Default spool file class 1 
Default spool file class 2 
Default spool file class 3 
Default spool file class 4 
Active spool file class 1 

Section 5: Data Areas - Data Areas and Control Blocks 155 



2D 
2E 
2F 
30 
31 
32 

34 
38 
3C 
40 
44 
46 
48 
4A 
4C 
4E 

LACTCLS2 DS 
LACTCLS3 DS 
LACTCLS4 DS 
lTI riJ"gZON DS 
LSPARE DS 
LFLAG DS 

CL1 
CL 1 
CL 1 
1X 
1X 
2X 

Licensed Material - Property of IB~ 

Active spool file class 2 
Active spool file class 3 
Active spool file class 4 
Time zone displacement west from G~T 
Spare byte 
Link table status flag bytes 

Bi ts defined in LFL AG 

LACTIVE EQU 
LALE RT EQU 
lHOLD EQU 
LDRAIN EQU 
LCONNECT EQU 
LTIMERON EQU 
LHALT EQU 

LTil'IER DS 
LINPUTQ DS 
LOUTPUTQ DS 
LWORKQ DS 
LRESERVD DS 
LPENDING DS 
LTAKEN DS 
LTRNSCNT DS 
LERRCNT DS 
LTOCNT DS 
LINKLEN EQU 

x•so• 
x• qo• 
x•20 1 

x• 1 o• 
x•oa• 
X' 02 1 

X IQ 1 I 

Link active (line driver task loaded) 
AXS ALERT exit set 
Link hold set 
Link drain in progress 
Link connected 
Timer ALERT request outstanding 
Link to be forced inactive 

1F Active task timer value 
1F Input file tag queue address 
1F Output file tag queue address 
1F General string stack address 
1H count of tag elements reserved 
1H Count of unaccepted tags 
ax Count of tag slots in use 
1H Link transaction count 
1H Error count 
1H Timeout count 
*-LINKTABL Length of link table entry 

An 8-byte header precedes the first entry in the link table (that is, 
the first link defined by the LINKTABL DSECT). The TLINKS field 
(TVECTORO) in SVECTORS points to this header: 

0 q 

Total links max 
links 

6 

current 
links 

total links is the total number of link table entries generated 
during RSCS initialization. 

max links is the maximum number of concurrently active links 
allowable. 

current links is the number of links active in RSCS at a given time. 

156 IBft Vft/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

HLX RECORDS 

The PILX records are created by VSE/POWERa These three records describe 
various characteristics of the output file. 

ftLX Rec2rd 1: 

0 
l'ILX1 HDR 

8 
MLX1HDR (CONT.) PILX1 JNME 

10 
f!LX 1JPIE (CONT.) , MLX1USER 

18 
MLX1 USER 

20 
MLX1USER , JNUPI 

28 
JNUM (CONT} I QID PI1X1DTYP 

30 
JCL I JPR , MXL1RNUM 

38 
MLX1RNUl'I (CONT.) MLX1JSF , 

40 
MLX1COP 

48 

0 MLX 1HDR DS CL 12 MLX RECORD 1 HEADER: * .U MLX Q1= 
c MLX1JNME DS CL8 JOB NAfl!E 

14 DS CL 1 ,DELUJITER 
15 MLX1USER DS CL16 USER INFOFMATION 
25 DS CL 1 ,DELIMITER 
26 MLX1JNUM DS XL4 JOB NUMBER 
2A DS CL 1 ,DELIMITER 
2B MLX1QID DS c QUEUE RECCRD ID 
2C DS CL 1 ,DELIMITER 
2D MLX1DTYP DS XL2 DEVICE TYPE OR LINE ID 
2F DS CL 1 ,DELIMITER 
30 PILX1JCL DS CL1 JOB CLASS 
31 DS CL 1 ,DELHHTER 
32 PILX1JPR DS CL1 JOB PRIORITY 
33 DS CL 1 , DELIMITER 
34 MLX1RNUM DS XLS RECORD COUNT 
3C DS CL 1 ,DELIMITEP 
3D MLX1JSF DS XL2 JOB SUFFIX NUMBER 
3F DS CL 1 ,DELIMITER 
40 MLX1COP DS XL2 NUMBER OF COPIES 

MLX 1LEN EQU *-MLX1REC LENGTH OF MLX RECORD , 

Section 5: Data Areas - Data Areas and Control Blocks 157 



Licensed Material - Property of IBM 

0 r-------~--------------------------------------, 
I MLX2HDR I 

8 1~---------------------------------------------1 
I MLX2HDR (CONT .. ) I MXL 2PNUM I 

10 1-----------------------------------------------1 
I I I DSP I I I MLX2SEP I I I MLX2CTAB I 

18 1-----------------------------------------------1 
I MLI2CT AB I I I MLX 2FOID I 

20 1-----------------------------~----------------1 
' rnx2FOID (CONT) I , ' MLX 2CGRP ' 

28 1-----------------------------------------------1 
I MLI2CGRP (CONT~) I 

30 1-----------------------------------------------1 
I t1LX2CGRP (CONT.) I , I MLX2PST I • I 

38 1-----------------------------------------------1 
I MLX2 OP!' I , I MLX2RID I I 

40 L-------~--------------------------------------J 

0 MLX2HDR DS CL12 MLX RECORD 2 HEADER: * $$ MLX Q2= 
c MLI2PNUM DS XL4 NUl'IBER OF PAGES 

10 DS CL 1 ,DELIMITER 
11 MLX2DSP DS CL1 DISPOSITION 
12 DS CL 1 ,DELIMITER 
13 MLX2SEP DS IL2 NUMBER OF SEPARATORS 
15 DS CL1 ,DELI!UTER 
16 MLX2CTAB OS CL4 COMPACTION TABLE NUIE 
1A DS CL 1 ,DELIMITER 
1B MLX2FOID DS XL8 FORMS OVERLAY ID - 3800 
23 DS CL 1 ,DELIMITER 
24 MLX2CGBP OS XL16 COPY GROUPS - 3800 
34 DS CL 1 ,DELIMITER 
35 MLX2PST OS XL2 PAPER STATUS - 3800 
37 DS CL 1 ,DELI!HTER 
38 PILX20PT DS XL2 OPTION BYTE - 3800 
40 DS CL 1 ,DELIMITER 
41 MLX2RID DS XL2 ORIGIN REMOTE ID FOR LIST/PUNCH 
42 MLX2LEN EQU *-MLX2REC LENGTH OF MLX RECORD 2 

158 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IB~ 

MLX Re£ord ]: 

0 
MLX 3HDR 

8 
MLX3HDR (CONT.) MLX 3CNUM 

10 
MLX3CNUM (CONT.) , flILX3FMID 

18 

20 

0 MLX3HDR DS CL12 MLX RECORD 3 HEADER: * $$ MLX Q3= 
c KLX 3CNUK DS XLS LINE OR CARD COUNT 

13 DS CL1 I DELifHTER 
14 KLX 3FKID DS CLlJ FORMS IDENTIFIER 

MLX3LEN EQO it-MLX3 BEC LENGTH OF MLX RECORD 3 

Section 5: Data Areas - Data Areas and Control Blocks 159 



Licensed l'Iaterial - Property of IBM 

NETWORK ACCOONTING CARD FORMAT 

0 
8 

10 
1C 
1E 
20 
28 
39 
31 
32 
34 
38 
40 
48 
4D 
4E 

0 
4 

8 
c 

10 
14 
18 

1C 

20 
24 

28 
2C 

30 

ACNTOID 

ACNTCLAS 

(Local Network userid) 

ACNTUSER 

ACNTDATE 

ACNTID 

ACNTILOC 

ACNTDEST 

ACNTINDV //////////// 

34 ACNTRECS 

38 ACNTTOVPI 
3C 

40 / / / / / / / / / / / / / / / / / / / / / / / / / / 
44 / / / / / / / / / / / / / / / / / / / / / / / / / / 

48 ACNTSYS 

4C ACNTCODE (Record ID) 

DS CL8 1-8 Local network USERID fixed by CP 
ACNTUSER DS Cl.8 9-16 Originating location USERID 
ACNTDATA DS CL 12 17-28 Date and time of record ( !U!DDYYHHMPISS) 
ACNTOID DS CL2 29-30 Origin spool file ID 
ACNTID DS CL2 31-31 Local spool file ID 
ACNTILOC DS CL8 33-40 Originating location ID 
ACNTDEST DS CL8 41-:48 Destination location ID 
ACNTCLAS DS CL1 49 Class 
ACNTINDV DS CL 1 50 Origin device type ( '8 N'=PUN/' 4N' =PRT) 

DS CL2 51-52 Filler 
ACNTRECS DS CL4 53-56 Number of records in file 
ACNTTOV!'! DS CL8 57-64 Destination location USERID 

DS CL8 65-72 Filler 
ACNTSYS DS CL5 73-77 system ID (Serial + l! odel) 
ACNTCODE DS CL 1 78 Transmission code (01=SEND/02=RECV) 

DS CL2 79-80 Record identifier ('CO') fixed by CP 

160 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IB~ 

BUILT BY: 

FUNCTION: 

DESCRIPTION: 

0 

4 

8 

c 

10 

Dl'JTIRX at RSCS initialization 

Record allocation status of switchable line ports 
available to RSCS 

The first doublevord of the table is reserved for control 
information. Each following halfword contains the 
virtual device address of a line port which may be 
dialed, and which is available to RSCS. 

Number of Line Port Entries 
in Table 

Virtual Line Address Virtual Line Address 

Virtual Line Address Virtual Line Address 

Virtual Line Address Virtual Line Address 

OPERATIONAL NOTES: The line port entries are marked "in use" by setting 
the high-order four bits of such entries to 1s. 

Section 5: Data Areas - Data Areas and control Blocks 161 



ROUTING TABLE ENTRY 

0 

8 

0 ROUTDEST DS CL8 
8 ROUTNEXT DS CL8 

Licensed "aterial - Property of IB" 

ROUT DEST I 
I 
1 
I 

ROUTNEXT I 
I 

' 
Final destination ID 
LINKID for inderect routing 

The routing table contains routing information as submitted either in 
the operator ROUTE commands or in the RSCS DIRECT ROUTE entries. The 
SVECTORS field TVECTOR1 contains TROUTF, the address of the ROUTE table. 

162 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

SPOOL PAGE BUFFER FOR~AT 

I 0 
I 
I VM/370 Spool Control Information 
I 8 
I 
I , 
i iO NOP CCW I 
I 
I I TAG Record 
I 18 TIC CCW I (in First 

One > Page Buffer 
Page I of Each 

(4096 20 I Spool -rile) 
Bytes) I TAG Data: 136 (X'88 1 ) Bytes /I 

I I 
' .J 

I AB I I 
I I 

, 
/ 

I I Subsequent Spool File Records I 
v I I 

J X'FFF' 

When an output file is first spooled to RSCS from a virtual machine user 
on the same VM/370 system, the tag data is set according to the user 
specification in the TAG command to CP,. 

When an RSCS line driver task receives a file on its link, it spools it 
(to itself) in an output file that has additional RSCS-specific tag data 
in the tag record. This RSCS-built tag data includes a store-and­
forvard (' S&P') flag. 

Section 5: Data Areas - Data Areas and Control Blocks 1~1 



Licensed Material - Property of IBM 

TELECOMMUNICATIONS EUFFEB 

Q 
0 
4 
6 

7 
9 
l 
c 

0 I B UFCHAIN 
I 

4 I BUFCOUNT BUFSTAT 
I 

8 I BUFBCB BUFFCS 
I 

c I B UFDATA 
I 
I 
I 

BUFDSECT DSECT 
BUFBEGIN DS OF Beginning of the buffer 
BUFCHAIN DC A (0) Buff er chain field 
BUFCOUNT DS 1H count of bytes to transmit 
BUFSTAT DS 1C Buffer status byte 

~its ~~fined in BUFSTAT 
BUFFAKE EQU 1'01' Dummy buffer indicator 
BUFRESP EQU x•o2• Response only in buffer 

BUFSTART 

BUFNAK EQU X'04' NAK response (negative acknowledgement) 

B UFTEXT EQU 
BUFUCHEK EQU 

BUFSTART DS 
BUFBCB DS 
BUFFCS DS 
BUFDATA DS 

x. 08' 
x • 1 o• 

Cl2 
1C 
CL2 
OF 

being sent 
Buffer contains text information 
Unit check expected 

Transmission control bytes 
Block control byte 
Function control sequence 
Data portion of buffer 

164 IBM VK/370: RSCS Networking Logic 

I 

' I 
I 
I 

' I 
I 
I 

' 



Licensed Material - Property of IBM 

SVECTORS: LOW STORAGE DEFINITIONS 

SVECTORS defines low storage for the RSCS virtual machine. 
It includes two types of storage: machine-defined and RSCS-defined. 

The SVECTORS machine-defined lcv storage defines machine status 
data referenced during program execution and required by System/370 
architecture. 

r-
0 IPLPSW 40 ! csw 
4 44 ' I I 
8 IPLCCW1 48 l _____ CAW ______ f 
c 4C i (unused) ' I I 

10 IPLCCW2 50 I TIMER I 
14 54 (unused) 

18 OlDEXT 58 NEW EXT 
1C SC 

20 OLD SVC 60 NEW SVC 
24 64 

28 OlDPROG 68 NEWPPOG 
2C 6C 

30 OLD!UCH 70 NEW MACH 
34 74 

38 OLD IO 78 NEW IO 
3C 7C 

0 IP LP SW DS D X1 00040000 1 V (DMTIN I) 
8 IPLCCW1 DS D 

10 IPLCCW2 DS D 

18 OLDEXT DS D External interrupt old PSW 
20 OLD SVC DS D Supervisor call old PSW 
28 OLDPROG DS D Program check old PSW 
30 OLDUCH DS D Machine check old PSW 
38 OLDIO DS D Input/output old PSW 

40 csw DS D Channel status word 
48 CAW DS D Channel address word 

4C DS F Unused 
5.0 TIMER DS F 4X 1 FF 1 

54 DS F Unused 

58 NEWEXT DS D X1 00040000' V (DMTEXT) 
60 NEWSVC DS D ! 1 00040000 1 V (Dr-ITSVC) 
68 NEWPROG DS D X1 00040000' V (REXOUCH) 
70 NEW MACH DS D x•ooo20000• A (OLDMACH) 
78 NEW IO DS D X1 00040000' V (D MTI 0 l'II N) 

Section 5: Data Ar~a~ - n~~~ ?> ri:>~ ~ ~ nrl rrH1+rnl 'Ql,.,. ..... 1.-c- 1.i::c 



Licensed ~aterial - Property of IBPI 

RSCS program storage begins vith the SVECTORS table at hex location 200 
in supervisor module DPJTVEC. The SVECTORS table contains pointers to 
modules that comprise the supervisor, to supervisor control queues, and 
to queues of requests for supervisor services. 

200 NEWPSW 

208 SS AVE 

210 ACTIVE MAIN MAP 

218 MAINSIZE QUEUE 

220 QUEUE ND FREEQ 

228 TASKQ PIPXIOQ 

230 SELIOQ IOEXITQ 

238 EXTQ ALERTQ 

240 GIVEQ QREQ 

248 DISPATCH W AITREQ 

250 POSTREQ IOREQ 

258 TlSKREQ MlINREQ 

260 ASYNREQ ALERTREQ 

268 GIVEREQ TAKEREQ 

270 TVECTORO TVECTOR1 

278 TVECTOR2 TVECTOR3 

280 TVECTOF4 TVECTOR5 

288 TVECTOE6 TVECTOR7 

290 
Reserved 

210 
I COPYRIGHT ST!!T I 
I ' I I 

2E8 I Reserved I 
I I 

2FO I I 
I SYSTEft PATCH AREA I 

368 I I 

166 IBM Vft/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

200 
208 

210 

214 

218 

2iC 

220 

224 

228 

22C 

230 

234 

238 

23C 

240 

244 

248 
24C 
250 
254 
258 

25C 

260 

264 

268 

26C 

270 
274 
278 
27C 
280 
284 
288 
28C 

NEWPSlf 
SSAVE 

ACTIVE 

MAIN!UP 

MAINSIZE 

QUEUE 

QUEUE ND 

FREEQ 

TlSKQ 

MPIIOQ 

SELIOQ 

IOEXITQ 

EXTQ 

lLERTQ 

GIVEQ 

QREQ 

DISPATCH 
WAITREQ 
POSTREQ 
IOREQ 
TASKREQ 

MAINREQ 

ASYNREQ 

ALERTREQ 

GIVEREQ 

TAKEREQ 

ORG 
DC 
DC 

DC 
DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 
DC 
DC 
DC 
DC 

DC 

DC 

DC 

DC 

DC 

TVECTORO DC 
TVECTOR1 DC 
TVECTOR2 DC 
TVECTOR3 DC 
TVECTOR4 DC 
TVECTOR5 DC 
TVECTOR6 DC 
TVECTOR7 DC 

SVECTORS+I' 200• 
D' 0' 
2F' 0' 

I' 00' 
AL3 (0) 

A (0) 

F'O' 

A (0) 

A (0) 

l (0) 

l (0) 

A (0) 

A (0) 

A (0) 

A(O) 

A (0) 

A (0) 

V (DMTQRQ) 

V (DMTDSP) 
V(DMTWAT) 
V (DMTPST) 
V(DMTIOMRQ) 
V (DMTASK) 

V (D!ft'STO) 

V (DMTASY) 

A (DMTSIG) 

V (DMTGIV) 

V (D!ft'AKE) 

A ( 0) 
A (0) 
A (0) 
A (0) 
A (0) 
A (0) 
A (0) 
A(O) 

TL INKS 
TROUTE 
TPORTS 
TTAGQ 
TCOM 

EQU TV ECTOR 0 
EQU TVECTOR1 
EQO TVECTOR2 
EQU 'l'VECTOR3 
EQU TVECTORll 

Leave room for macnine extensions 
Dispatched PSW for last dispatcher 
General-purpose low storage save 
area 
ID of currently active task 
Address of task element for last 
dispatchee 
Address of start of main storage 
allocation map 
Total number of pages in main 
storage 
Address of start of supervisor 
queue 
Address of end of last supervisor 
queue element 
Address of start of free elememt 
queue 
Address of start of task eleaemt 
queue 
Address of start of multiplexer 
I/O queue 
Address of start of selector I/O 
queue 
Address of start of asynchronous 
I/O request element queue 
Address of start of external 
request element queue 
Address of start of task 
asynchronous request element queue 
Address of start of GIVE request 
element queue 
Supervisor queue allocation 
request entry address 
Task dispatcher entry address 
Wait request entry address 
Post request entry address 
I/O request entry address 
Task management request entry 
address 
Main allocation request entry 
address 
Asynchronous interrupt request 
entry address 
Task asynchronous signal request 
A(ALERT) entry address 
Task request GIVE request 
entry address 
Task request TAKE request 
entry address 

Task defined field 
Task defined field 
Task defined field 
Task defined field 
Task defined field 
Task defined field 
Task defined field 
Task defined field 

Link table address 
Route table address 
Switchable port table address 
Tag slot queue 
Common routine chain 

Section 5: Data Areas - Data Areas and control Blocks 167 



290 
210 

2EA 
2FO 

Licensed Material - Property of IBM 

TV MID EQU TVECTORS Pointer to local host virtual 
machine user id 

DS 
COPYRITE EQU 

DC 
DC 

CST!TEND EQU 
DC 

SYSPATCB DS 

4F 
* Copyright statement 
C1 5748-XP1 COPYRIGHT IB" CORP 1979 ' 
C'LICENSED MATERIAL-PROGRAM PROPERTY OF IBM' 
* 
CL6' ' 
128X 

Reserved 
** System Patch Area ** 

168 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

TAG QUEUE DATA: TAGAREA 

TAGAREA in Dl!_TAXS module contains data about the disposition of the tag 
queue element pointers and other tag control information. It is pointed 
to by TTAGQ in SVECTORS. 

0 T!G!P'REE 

4 TAGACIN 

8 TAGACOUT 

c TAGAGOT TAGAHOLD 

0 TAGAFREE DC A (0) Address of queue of free TAG slots 
(or elements) 

4 TAGACIN DC A(O) Pointer to queue of active input TAGS 
8 TAGACOUT DC A (0) Pointer to queue of active output 

TA Gs 
c TAGAGOT DC H' 0' Number free slots left 
E TAGAHOLD DC H'O' Number slots to be held 

section 5: Data Areas - Data Areas and Control Blocks 169 



Licensed ftaterial - Property of IBM 

TAG QUEUE ELE~ENT FOR FSCS SPOOL FILE 

TAG describes a file enqueued for processing by FSCS. Part of the data 
in this area is built from tag data specified via the CP TAG command and 
inserted by CP into the spool file block (SFB) at the start of the spool 
file. RSCS reads the SFB and copies the appropriate data into the tag 
slot that it constructs for this file.. Each tag slot entry in use is 
enqueued on the input (for transmission) or output (while receiving) 
queue of the line driver task responsible for the file. 

0 I TAG NEXT 
I 

4 I TAG BLOCK 
I 

8 I TAGINLOC 

' c I 
I 

10 I TAG LINK 
I 

14 I 

18 TAGINTOD 

1C 

20 TAGINVK 

2q 

28 TAGRECNK 

2C TAGEECLN TAGINDEV TlGCLASS 
I 

30 I TAG ID TlGCOPY 
I 

34 I TAGFLlG TAGFLAG2 TAGORGID 
I 

38 I TAGNAKE 
I I 
I I 

44 I TAG TYPE I 
I I 

50 TAGDIST 

54 

58 TAGTOLOC 

5C 

60 TAGTOVK 

6LJ 

68 TAGPRIOE TA GD EV 

6C TAGCNTRL 

70 TAGREC!.T TAGSPARE 

170 IBM VK/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

0 
4 
8 

10 
18 
20 
28 
2C 
2E 
2F 
30 
32 
34 
35 
36 
38 
44 
50 
58 
60 
68 
6A 
6C 
70 
74 

TAGNEXT DS 
TAGBLOCK DS 
TAGINLOC DS 
TAGLINK DS 
TAGINTOD DS 
TAGINVJI! DS 
TAGRECNM DS 
TAGRECLN DS 
TAGINDEV DS 
TAGCLASS Jl5 
TAG ID DS 
TAGCOPY DS 
TAGFLAG DS 
TAGFLAG2 DS 
TAGORGID DS 
TAGNAME DS 
TAG TYPE DS 
TAGDIST DS 
TAGTOLOC DS 
TAGTOVl! DS 
TAGPRIOR DS 
TAGDEV DS 
TAGCNTRL DS 
TAGRECLT DS 
TAGSPARE DS 

1F 
iF 
CL8 
CL8 
CL8 
CL8 
1F 
1H 
1X 
CL1 
1H 
1H 
11 
ix 
1H 
CL12 
CL12 
CL8 
CL8 
CL8 
Cl2 
2X 
CL4 
1F 
1F 

Address of next active queue entry 
Address of associated I/O area 
Originating location 
Next location for transmission 
Time of file origin 
Originating virtual machine 
Number of records in file 
Maximum file data record length 
Device code of originating device 
File output class 
current VM/370 Spool ID 
Nuaber of copies required 
VK/370 SFBLOK control flags (SFBFLAG) 
V"/370 SFBLOJ control flags (SFBFLAG} 
VM/370 Spool ID at origin location 
Filename 
Filetype 
File distribution code 
Destination location ID 
Destination virtual machine ID 
Transmission priority 
Active file's virtual device address 
Network Control record format 
Number of records left in file 
Spare Fullword 

TAGLEN EQU *-TAGNEXT Length (in bytes) of the file TAG 

Section 5: Data Areas - Data Areas and Control Blocks 171 



Licensed Material - Property of IB" 

TAKE REQUEST TABLE IN GIVE/TAKE REQUESTED TASK 

The format of a TAKE request table is: 

O Task name of GIVE requester 

4 A(TAKE Feguest Buff~r) 

8 A(TAKE Response Buffer) 

172 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

TANKS 

.Yn.it Record ±_ank 

0 I TANKCHN 
I 

4 I TANKRCB TANKSRCB TANKCNT 
I 

8 I TANt<:DATA 
i i 
I I 
I ' DO 

TANKDSEC DSECT 
0 TANKCHN DC A ( 0) Beginning of the buffer 
4 TANKRCB DS 1C Tank record control byte 
5 TANKSRCB DS 1C Tank sub-record control byte 
6 TANKCNT DS 1H Count of data bytes in tank 
8 TANKD!TA DS CL200 Data area in the tank 

DO TANKE ND DS OF Force next to word boundary 

Section 5: Data Areas - Data Areas and Control Blocks 173 



Licensed Material - Property of IB!! 

TASK QUEUE ELEMENT: TASKE 

Each task queue element contains status information pertaining to one 
active task. 

The TASKQ field of SVECTORS points to this queue. 

0 

4 

8 

c 
E 

F 

0 

4 

8 

c TA SK SPAR 

TASKNEXT DS 

TASKSAVE DS 

TASKN!ME DS 

TASK SP AR DS 
TASKSTAT DS 

1F 

1F 

CL4 

AL2 
1X 

WAITING EQU X'80' 

LOCKLIST EQU X'40 1 

LIMBO EQU 1 1 01' 

TASKID DS 

TASKNEXT 

TASK SA VE 

TASKNAME 

TASKSTAT TASHD 

Address of the next element 
on the task element queue 
Address of this task's Task 
Save Area (TAREA) 
Task name specified by the 
task; 4 bytes long 
Unused 
Status flaas associated with 
the task ~ 

Flag set to 1 when task is 
nondispatchable 
Flag set to 1 while task is 
waiting for the synch 
lock list 
Flag set to 1 when a task is 
being terminated 

Number ID for the task; 1 
byte is assigned by 
supervisor when task is 
made active 

174 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

TASK SAVE AREA: TABEA 

The task save area comprises the first 78 bytes of the storage area 
defined in each task's storage. 

0 TPSW 
4 

8 TGREGO 

c TGREG1 

10 TGREG2 

14 TGREG3 

18 TGREG4 

1C TGREGS 

20 TGREG6 

24 TGREG7 

28 TGREG8 

2C TGREG9 

30 TGREG10 

34 TGREG11 

38 TGREP12 

3C TGREG13 

40 TGREG14 

44 TGREG15 

48 TREQLOCK 

0 TPSW DS 1D PSi with which a temporarily interrupted task 
resumes execution 

8 TGREGO DS 1F save area for general register 0 
c TGREG1 DS 1F Save area for general register 1 

10 TGREG2 DS 1F Save area for general register 2 
14 TGREG3 DS 1F Save area for general register 3 
18 TGREG4 DS 1F Save area for general register 4 
1C TGREG5 DS 1F Save area for general register 5 
20 TGREG6 DS 1F Save area for general register 6 
24 TGREG7 DS 1F Save area for general register 7 
28 TGREG8 DS 1F Save area for general register 8 
2C TGREG9 DS 1F Save area for general register 9 
30 TGREG10 DS 1F Save area for general register 10 
34 TGREG11 DS 1F Save area for general register 11 
38 TGREG12 DS 1F Save area for general register 12 
3C TGREG13 DS 1F save area for general register 13 
40 TGREG14 DS 1F Save area for general register 14 
44 TGREG 15 DS 1F Save area for general register 15 
48 TREQLOCK DS 1F Synchronization lock used to signal 

whether or not a task has information 

Section 5: Data Areas - Data Areas and Control Blocks 175 



Licensed ftaterial - Property of IBft 

Request and Alert Elements 

INTRODUCTION 

The following pages provide information on the format and use of RSCS 
request and alert elements. These elements are used in task-to-task 
comm uni cation. 

The information provided includes: 

• The name of the module that builds the element 

• The function performed by the element 

• A brief description of the element's usage 

• The format of the element 

• Operational notes to assist in understanding how the element is used 

The elements are grouped in this section as follows: 

• Request Elements Processed by DKTREX 

• Command Alert Elements for Commands Processed by DMTAXS 

• command Alert Elements for Commands Processed by Line Drivers 

The function code, in byte 2 of each element, tells the alerted task the 
kind of alert request. The meaning of the remainder of the element is 
defined for that function code for that task. 

176 IBM Vft/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

REQUEST ELEMENTS PROCESSED BY DMTREX 

BUILT BY: DMTNPT, DMTSML 

FUNCTION: Execute an RSCS operator command 

DESCRIPTION: This request element is passed by a line driver via 
GIVE/TAKE to the REX task in response to a command entry 
at a remote station. 

0 

q 

Length 
(n-1) 

Function 
Code: I'OO' 

RSCS Operator 
command Line Text 

Unused 

OPERATIONAL NOTES: 
No response text is returned. Command responses are 
distributed via a call to DMTMGX. 

Command/Message Routin~ Requesi ~~nt 

BUILT BY: D!!TVPIB, DMTVMC, DMTNJI 

FUNCTION: Process a command or message received by a line driver. 

DESCRIPTION: This request element is passed by a line driver via 
GIVE/TAKF to the REX task, to process to a command or 
message being received by the line driver from a remote 
system. 

+O 
I 
I 
I 

IFunctionl ICMD x•so• 
Length ICode: I Unused fMSG X'B1' 

I x' 01' I I +4 , ______________________________________ _ 

I destination locid 
+121----~--------------------------------

1 destination VY'UD 
+201------------------------------------~ 

I origin locid 
+281---------------------------------------

1 origin VMID 
+361--------------------------------------, CP!D/MSG text 

OPERATIONAL NOTES: 
No response text is returned. 

Section 5: Data Areas - Request and Alert Elements 177 



Licensed Material - Property of IBM 

BUILT BY: DMTREX, DMTCMX, DMTAXS, DMTNPT, DMTSML, DMTPOW, DMTNJI, 
Df!TVMB, DMTVMC 

FUNCTION: Issue an RSCS message 

DESCRIPTION: This request element is passed via GIVE/T!KE to the REX 
task, to specify the construction and distribution of an 
RSCS message (by DMTMGX). 

0 

4 

c 

14 

18 

1C 

Length 
(n-1) 

Function 
code: X' 02' 

Routing 
Code 

Receiver locid 

Receiver userid 

Issuing Module Code 

Binary Message Number Unused 

8-byte Variable Substitution 
Values for Message Text 

Severity 
Code 

Action 
Code 

OPERATIONAL NOTES: 
The routing code and severity code from the message 
definition (in DKTKSG) are used when not supplied in the 
message request element. If the message is not defined in 
DMTMSG, it is constructed using the specifications in the 
message request element, and the "variable substitution 
values" become the message text, unmodified. 

Routing codes: 

x•ao• Local RSCS console 
X1 40' Remote addressee 
X1 20' Local user 
X1 10 1 Local VM/370 operator 

No response text is returned. 

178 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

BUILT BY: DP!TSPIL, DMTNJI, DftTPOW 

FUNCTION: To terminate a line driver task specifying a command to be 
executed after line driver deactivation. 

DESCRIPTION: This request element is passed via GIVE/TAKE to the REX 
task to terminate the line driver task and execute the 
specified command. 

0 
Function 

n-1 Code: 
X' FO' 

4 

command line 

n 

OPERATIONAL NOTES: 
There are no error conditions for the restart terminate 
function, so no response is made. However, line driver 
tasks must issue a WAIT request following a call to GIVE 
for terminate because REI may not execute the request 
immediately. 

BUILT BY: DMTNPT, DftTSftL, DftTVftB, DMTVMC, DPITNJI, DMTPOW 

FUNCTION: Terminate line driver task. 

DESCRIPTION: This request element is passed via GIVE/TAKE to the REX 
task, to terminate line driver operation in response to a 
DRAIN command. 

0 Length 
(1) 

Function I 
Code: lC' O 3' I 

L--...-.~~~~~~~~~~~~~~~~~~~~~~~~.~~~~ 

OPERATIONAL NOTES: 
There are no error conditions for the terminate function, 
so no response is made. However, line driver tasks must 
issue a WAIT request following a call to GIVE for 
terminate, because REX may not execute the request 
immediately. 

Section 5: Data Areas - Request and Alert Elements 179 



Licensed Material - Property of IB! 

Timer Reguest Element 

BUILT BY: D!TVMC, DMTSML, DMTPOW, DMTNJI 

FUNCTION: To set a task internal timer. 

+O 
Function I 

Length Code: I 
1 1 07' I'04' I 

+4 I 

+8 

Timer interval in timer unitsl 
(high order bit must = 0) I 

OPERATIONAL NOTES: 
The use and meaning of the fields are described below: 

Response Post Codes: 

x•ao• - normal 
X'81' - active timer interval replaced 
X'84' - request format invalid 

TIMER INTERVAL: Request field specifying, in timer units, 
the timer value to be set. one unit = 1/300 of a second. 

180 IBM V!/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

!ile R~guest Element 

BUILT BY: DMTNPT, DMTSML, DMTPOW, DMTVMB, DMTVMC, DMTNJI 

FUNCTION: Initiates or terminates processing of an input or output 
file. 

DESCRIPTION: This request element is passed via GIVE/TAKE to the AXS 
task by line drivers to effect local spool file access 
during communications with a remote station. 

0 

4 

8 

c 

Length 
(X 1 13 1 ) 

I Function Code: I 
I x. 01 • I x' 02' , I 
I x•11 •, x• 12• I 

Unused 

TAG Address 

I/O Area Address 

Linkid 

Modifiers 

OPERATIONAL NOTES: 
The use and meaning of the various fields depends on the 
requested function, as described below. Certain fields 
may be updated during request processing. The (updated) 
file request element is returned to the requestor as a 
GIVE response,. 

Function Code: X1 01' 

Modifiers: Unused. 

Tag Address: Response field which points to the opened 
file's active tag. 

I/O Area Address: Response field which points to a virtual 
page buffer containing the opened file's first VM/370 
spool data buffer. 

Linkid: Request field which specifies the requesting line 
driver's linkid. 

Response Post Codes: 
x•oa• Terminal system error 
X'04 1 No file available 
X1 02 1 Undefined linkid 
1•01• Previously open file returned 

Section 5: Data Areas - Request and Alert Elements 181 



Licensed Material - Property of IBM 

Function Code: X'11' 

Modifiers: X'80': Do not return possible previously opened file 
X'20': Save output file on abnormal termination 

Tag Address: Request field which points to a prototype 
file TAG for the output file, constructed by the calling 
line driver .• 

I/O Area Address: Response field which points to a virtual 
page buffer containing an I/O table, a write ccw, and a 
buffer for processing the output file. 

Linkid: Request field which specifies the requesting line 
driver's linkid. 

Response Post Codes: 
X'04' Error, file not opened 
X102' Undefined linkid 
X'01' Previously open file returned 

Function Code: X1 02 1 

Modifiers: 
X'80' Do not purge copy or file 
X1 40' Purge all copies, and purge file 
X'20' Re-enqueue file for further processing. 

Tag Address: Request field which points to the file's 
active TAG in DMTSYS, as supplied by open input. 

I/O Area Address: Unused 

Linkid: Unused. 

Response Post Codes: 
X'04' Tag not found, close failed 

Function Code: X1 12' 

Modifiers: X'40' Purge output file. 

Tag Address: Request field which points to a prototype 
file TAG for the output file, constructed by the calling 
line driver. This tag is used to update the parameters to 
be set for the output file. 

I/O Area Address: Request field which points to the file's 
I/O area, as supplied by open output. 

Linkid: Unused. 

Response Post Codes: 
X'04'/I/O area not found, close failed 

182 IBK VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

1ine !!ert Element 

BUILT BY: DMTCMX 

FUNCTION: Request line port allocation 

DESCRIPTION: This alert element is passed to the LAX task (DMTLAX) to 
verify and reserve line ports for links being activated in 
response to a START command. 

0 

8 

Length 
(I 'OF') 

Function I Response 
Code: X'01'1 Code 

Line Address 

link id 

Unused 

Unused 

OPERATIONAL NOTES: 
The use and meaning of the fields are described below. 
Certain fields are updated during processing. 

Response Codes: 
x•oa• Specified line address not attached (CC=3) 
X'04 1 Specified line address not valid RSCS port 

device type 
x102• Line not available 

Line Address: Request field specifying requested line 
address. Zero specification implies request for 
allocation of a switchable line from the port table. If 
successful, the port's line address is returned in this 
field as a response. 

Linkid: Response field specifying the ID of the link which 
has reserved the particular requested line address (with 
response code X'02'). 

Section 5: Data Areas - Request and Alert Elements 183 



Licensed Material - Property of IBM 

COMMAND ALERT ELEMENTS FOR COMMANDS PROCESSED BY DMTAXS 

BUILT BY: DMT01X, I:MTREX 

FUNCTION: Execute a file queue reorder. 

,..-~~~~~~~~~~~~~~-~~~~~~~~, 

I Lenqth Function Response Modifiers I 
I X ' 0 3 ' X ' 0 1 ' code I 
'-~~~~~~~~~~~~~~~~.~~~~~~J 

OPERATIONAL NO!ES: 

Response Codes: 
x•oo• Element accepted for processing 
X'10' Element rejected, busy 

Modifiers: Unused 

184 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

BUILT BY: D MTCMX 

FUNCTION: Execute an AXS command 

DESCRIPTION: This alert element is passed to the AXS task (DMTAXS) to 
request second-level processing of an ORDER, PURGE, or 
CLOSE command. 

0 

4 

c 

104 

18 

Function I Response I Length 
(n-1) code: x•10•,x•11•, 

x•12• 
I Code I Modifiers 
I I 

spoolid count 
(n-X 1 17 1 )/2 

spool id 

locid 

VMID 

spoolid 

spoolid 

OPERATIONAL NOTES: 
The linkid field specifies the affected link and the 
command origin locid. VMID specifies the command origin 
userid. The spoolid fields are binary halfwords; they 
specify the files enqueued on the specified link which are 
to be reordered or purged. The spoolid count field is a 
binary halfword; it specifies the total number of spoolid 
fields present. The meanings of the other fields are: 

Function Code: X'10' 

Response Codes: 
x•oo• Element accepted for processing 
X'10' Element rejected, busy 

Modifiers: 
x•so• Response messages go to local FSCS operator 
x•oo• Response messages go to specified link/V~ID. 

Section 5: Data Areas - Request and Alert Elements 185 



Licensed Material - Property of IBP.I 

Function Code: X'11 1 

Response Codes: 
x•oo• Element accepted for processing 
X'10' Element rejected, busy 

Modifiers: 
X'80' Response messages go to local RSCS operator 
X1 40' Purge all files enqueued on the specified link 
x•oo• Purge only specified files; response messages go 

to specified link/userid 

Function Code: X'12' 

Response Co des : 
x•oo• Element accepted for processing 
x•10• Element rejected, busy 

P.lodifiers: 
X'80' Response messages go to local RSCS operator 
X'40' CLOSE both input and output files on the specified link 
I'20' CLOSE input files on the specified link 
X1 10' CLOSE output files on the specified link 
x•oo• CLOSE only specified spoolids. Response messages 

go to specified link/userid. 

186 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

BUILT BY: DMTCMX 

FUNCTION: Execute an AIS command. 

DESCRIPTION: This alert element is passed by a DMTCMX call to ALERTREQ 
to the AXS task (DMTAXS) to request second-level 
processing of the TRANSFER command. 

0 

4 

c 

14 

1C 

24 

n 

Length 
(n-1) 

Function I Response 
Code X'13' I Code 

Modifiers 

spoolid count 
(n-X'27 1 ) /2 

spool id 

linkid 

VlHD 

new locid 

new VMID 

spool id 

spool id 

OPERATIONAL NOTES: 
The linkid field specifies the affected link and command 
origin locid. V!ID specifies the command origin userid. 
NEW LOCID and NEW V~ID are the new destination location 
and user IDs for the specified spoolids. The spoolid 
fields are binary halfwords and specify the files enqueued 
on the specified link which are to be transferred. The 
SPOOLID COUNT field is a binary halfword and specifies the 
total number of spoolid fields present. The meanings of 
the other fields are: 

Function Code: X'13' 

Response Codes: 
x•oo• Element accepted for processing 
I'10 1 Element rejected, busy 

l'!odifiers: 
x•eo• Response messages go to local RSCS operator 
x•oo• Response messages go to specified link/VMID 

Section 5: Data Areas - Request and Alert Elements 187 



Licensed Material - Property of IB~ 

BUILT BY: Dl!TCIH 

FUNCTION: Execute AXS command 

DESCRIPTION: This alert element is passed by a DMTCMX alert to the AXS 
task (DMTAXS), to request second-level processing of a 
CHANGE command. 

0 Length 
(X' 3B ') 

4 

14 spool id 

18 HOLD 

1C 

24 

Function 
Code: x I 2 0 1 

I Response 
I Code 

linkid 

V lllJID 

priority 

CLASS COPY 

Distribution Code 

filename/filetype, dsname 

ftodifiers 

OPERATIONAL NOTES: 
The linkid field specifies both the link on which the 
object inactive file is enqueued and the command origin 
locid. VMID specifies the command origin userid. The 
spoolid field is a binary halfword and specifies the 
object file's Vf!/370 RSCS identifier. 

The following fields are specified only when the 
corresponding file attribute is to be changed. If the 
field is not specified, it is set to all 1 bits 
(X' FF ••• I). 

• Priority halfword binary priority 0-99 
• HOLD X17F 1 - set hold status 

X' 3F' - reset hold status ( NOHOLD) 
• CLASS 1-byte EBCDIC class, A-Z, 0-9 
• COPY halfword binary copy count, 1-99 
• Distribution code 8-byte EBCDIC spool file 

distribution code 
• Filename/filetype, dsname, 24-byte EBCDIC spool file 

filename or filetype or dsname 

188 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

Function Code: X'20' 

Response Codes: 
x•oo• Element accepted for processing 
X'10' Element rejected, busy 

Modifiers: 
x•ao• Response messages go to local RSCS operator 
x•oo• Eesponse messages go to specified link 

Initialize !££eptor Alert Element 

BUILT BY: DftTREX 

FUNCTION: To inform the AXS Task that file acceptance may begin. 

DESCRIPTION: Before profile execution, DftTAXS does not accept any files 
into its internal tag slot queue. After profile execu­
tion, DMTREX alerts DMTAXS vith an initialize acceptor 
alert element of the following format, that file 
acceptance is to begin: 

+O 

+4 

Lenqthl X1 FF 1 

x•o3• I 
x•oo• x•oo• 

Section 5: Data Areas - Request and Alert Elements 189 



Licensed Material - Property of IBM 

COMMAND ALERT ELEMENTS PROCESSED BY LINE DRIVERS 

1!~ Driver Co~nd (STAFT, DRAIN, !]EE, HOL], TRAQ) Alert ~lemen,! 
Format 

BUILT BY: D~TCMX 

FUNCTION: Execute a line driver command 

DESCRIPTION: This alert element is passed by a DMTCMX alert request to 
a line driver task (DMTNPT, DMTVMB, DMTVMC, DMTPOW, 
DMTNJI, DMTSML) to request second-level processing of a 
START, DEAIN, FREE, HOLD, or TRACE command. 

0 

4 

c 

14 

Length 
(I'13 1 ) 

Function I 
code: x•ao,x•a1•,1 Response 
X'82',X'83',X'84' I Code 

locid 

VMID 

I 
I 
I Modifiers 

OPERATIONAL NOTES: 
The locid/VMID specifies the location/userid to· receive 
response messages. The meanings of the other fields are: 

Function code: x•ao• 

Response Codes: 
x•oo• Element accepted for processing 
x•10• Element rejected, busy 

Modifiers: 
X'80' Start updated classes 
x•oo• Reset DRAIN status 

Function Code: X'81' 

Response Codes: 
x•oo• Element accepted for processing 
X'10' Element rejected, busy 

Modifiers: Unused 

190 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

fREE Comman~ 

Function Code: X'82' 

Response Codes: 
X'00' Element accepted for processing 
X'10' Element rejected, busy 

Modifiers: Unused 

Function Code: X'83' 

Response Codes: 
x•oo• Element accepted for processing 
X'10' Element rejected, busy 

Modifiers: 
X'80' BOLD Immediate 
X'00' BOLD after file processing 

Function Code: X'84' 

Response Codes: 
X'00' Element accepted for processing 
X'10' Element rejected, busy 

Plodifiers: 
X'80' Start sum reporting 
X'40' Stop sum reporting 
X1 20 1 Start line logging 
X'10' Stop line logging 

section 5: Data Areas - Request and Alert Elements 191 



Licensed Mat er ia 1 - Property of IB Pl 

BUILT BY: DMTCMX 

FUNCTION: Execute a line driver command 

DESCRIPTION: This alert element is passed by a DMTCPIX alert request to 
a line second-level driver task (DMTNPT, DPITSPIL) to 
request second-level processing of a BACKSPAC or FWDSPACE 
command. 

0 

4 

c 

14 

Length 
(I' 17 ' ) 

Function Response I 
Code: X'90',X'91' Code I Modifiers 

locid 

VP.IID 

Count 

OPERATIONAL NOTES: 
The locid/VMID specifies the location/userid to receive 
response messages. The count field is a binary fullword, 
and specifies the number of units to be back spaced or 
forward spaced. The meanings of the other fields are: 

Function Code: X'90' 

Response Codes: 
x•oo• Element accepted for processing 
x•10• Element rejected, busy 

Modifiers: 
x•so• Backspace count 
X' 00' Backspace file (restart) 

Function Code: X'91' 

Response Codes: 
x•oo• Element accepted for processing 
X'10' Element rejected, busy 

Modifiers: Unused 

192 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

BUILT BY: DftTCMX 

FUNCTION: Execute a line driver comaand 

DESCRIPTION: This alert element is passed by a DMTCMX alert request to 
a line driver task (DMTNPT, DftTSML) to request second­
level processing of a FLUSH command • 

0 

q 

c 

1q 

.-------~~~~~~~~~~~~~~~~~~~~~~~~~~~-

Len qt h 
(X' 15' ) 

Function 
Code: I' AO' 

Spoolid 

locid 

V!!ID 

Response 
Code Modifiers 

OPERATIONAL NOTES: 
The locid/VMID specifies the location/userid to receive 
response messages. The spoolid field is a binary 
halfword, and specifies the VM/370 RSCS identifier of the 
active file to be flushed. The meanings of the other 
fields are: 

Function Code: X'AO' 

Response Codes: 
x•oo• Eleaent accepted for processing 
1•10• Element rejected, busy 

!!odifiers: 
x•so• Flush all copies, purge file 
x•qo• Flush hold, keep file, do not decrement copy count 
x•oo• Flush, decrement copy count, purge file if no copy 

count remains 

Section 5: Data Areas - Request and Alert Elements 193 



Licensed Material - Property of IBft 

BUILT BY: D MTCMX, DMTM GX 

FUNCTION: Execute a line driver command 

DESCRIPTION: This alert element is passed by either a DMTCMX or DKTMGX 
alert request to a line driver task (DMTNPT, DMTPOW, 
DMTSeL) to forward messages, and to request second-level 
processing of a Cl'!D command. 

0 Length 
(n-1) 

4 

12 

20 

28 

36 

Function 
Cod e : X ' BO ' , X ' B 1 ' 

X'B2' 

destination locid 

Response I 
Code I Modifiers 

I 

destination VM/370 ID 

origin locid 

origin VM/370 ID 

CMD/M SG text 

OPERATIONAL NOTES: 
The locid specifies the location to receive the message or 
command text. Meanings of other fields are: 

Function Code: X'BO' 

Response Codes: x•oo• Element accepted for processing 
X'10' Element rejected, busy 

Modifiers: Unused 

Function Code: X'B1' 

Response Codes: x•oo• Element accepted for processing 
x•10• Element rejected, busy 

Modifiers: Unused. 

System-Generated ~~~ges 

Function Code: X'B2' 

Response Codes: x•oo• Element accepted for processing 
x•ao• Element rejected, busy 

Modifiers: One-byte binary RSCS severity code 

194 IBM VK/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

NJI Header Formats 

NETWORK CONNECTION CCNTROL RECORDS 

NCCRCB 
NCCSRCB 
NCCISRCB 
NCCRSRCB 
NCCIDL 
NCCINODE 
NCCIQUAL 
NCC.I.t:V NT 
NCCIREST 
NCCIBFSZ 
NCCILPAS 
NCCINPAS 
NCCIFLG 
NCCIFLGM 
NCCIL 
NCCIEND 

NCCRCB 
NCCSNB 
NCCESRCB 
NCCCSRCB 
NCCCDL 
NCCCEVNT 
NCCCREST 
NCCEREST 
NCCCL 
NCCCEND 

DC 
DC 
EQU 
EQU 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
EQU 
EQTJ 
DC 

DC 
DC 
EQU 
EQU 
DC 
DC 
DC 
DC 
EQU 
DC 

Add/Subtract 

NCCRCB DC 
NCCSRCB DC 
NCCASRCB EQU 
NCCSSRCB EQU 
NCCADL DC 
NCCANODA DC 
NCCAQULA DC 
NCCANODB DC 
NCCAQULB DC 
NCCAEVNT DC 
NCCAREST DC 
NCCAL EQU 
NCCAEND DC 

X'FO' 
X IQ I 

c• 1 • 
C'J' 
AL 1 (NCC IL) 
CL8 1 

' 

x•o• 
l''L4 1 0 1 

HL2 10' 
HL 2' 0 1 

CLB I I 

CL8 1 
' 

X IQ I 

B'10000000 1 

*-NCCRCB 
x• o• 

X' FO' 
X IQ I 

C'K' 
C'L' 
AL 1 (NCCCL) 
FLLP 0 I 
OHL2 1 0' 
HL2 1 0 1 

*-NCCRCE 
x• o• 

General record control byte 
Sub-record control byte 
Initial SIGNON character 
Response SIGNON character 
Length of logical record 
Node identification 
Qualifier if shared spool 
Event sequence number 
Partial node to node resistance 
Kaximum transmission block size 
Line password 
Node password 
Feature flags 
Kultiple trunk (response) 

End RCB 

General record control byte 
Sub-record control byte 
Reset SIGNON character 
Concur SIGNON character 
Length of logical record 
Event sequence number 
Total node to node resistance 
Partial node to node resistance 

End RCB 

£2™ction Control Record Format 

X' FO' General record control byte 
x•o• Sub-record control byte 
C' PI' Add connection character 
C'N' Subtract connection character 
AL 1 (NCCAL) Length of logical record 
CLB' I Lover node identification 
x•o• Qualifier if shared spool 
CL8 1 • Higher node identification 
x •o • Qualifier if shared spool 
FL4' 01 Event sequence number 
HL2 1 0' Node to node resistance (total) 
*-NCCRCB 
x •o • End RCB 

Section 5: Data Areas - NJI Header Formats 195 



Licensed Material - Property of IBM 

NETWORK JOB HEADER RECORD PORPIAT: NJHDSECT 

* 
NJHLEN 
NJHFLAGS 
NJHSEQ 
NJHLBCI 

* 
NJHG 
NJHGLEN 
NJHGFLGS 
NJBGTYPE 
NJHGMOD 
NJHG$MOD 

NJHGJID 
NJHGJCLS 
NJHGMCLS 
NJHGFLG1 
NJHGPRIO 
NJHGORGQ 
NJHGJCPY 
NJHGLRCT 

NJHGACCT 
NJHGJNUI 
NJEGUSID 
NJHGPASS 
NJHGNPAS 
NJHGETS 
NJHGORGN 
NJHGORGN 
NJHG IEQN 
NJHGIEQU 
NJHGPRTN 
NJHGPRTR 
NJHGPUNN 
NJHGPUNR 
NJBGFORPI 
NJHGICRD 
NJBGETI!! 
NJHGELIN 
NJHGECRD 
NJHGPRGN 
NJHGROOM 
NJHGDEPT 
NJHGBLDG 
NJHGNREC 
NJBGEND 
NJHGLLEN 

Block Control Information 

DC A 12 ( NJHLLEN) 
Dc x•oo• 
DC BL.1 '0' ,AL. 7 (0) 
EQU *-NJBDSECT 

General Section 

DS 
DC 
DS 
DC 
DC 
EQU 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
OS 
OS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
OS 
EQtJ 

OF 
AL2 (NJHGLLEN) 
OBL2 
!L 1 (NTYPGER) 
AL 1 (NJBG$MOD) 
B' 00000000' 

y (0) 
C' A' 
C'A' 
B '00000000' 
AL 1 (0) 
AI.1 ( 0) 
ll 1 (0) 
AL 1 ( 0) 
XL3'00' 
CL8 1 ' 

CL8' ' 
CL8' ' 
CL8 
CL8 
FL8' 0 1 

CL8' ' 
CL8 1 1 

CL8 1 
' 

CL8 1 
' 

CL8' ' 
CL8' ' 
CL8' ' 
CL8' ' 
CL8 1 

' 

F 10' 
F' 0 1 

F '0' 
F 1 0 1 

CL20 1 1 

CL8 1 ' 

CL8' ' 
CL8 1 

' 

F'O' 
OF 
*-NJHG 

Length of entire block 
Flags 
Transmission sequence indicator 
Length of block control information 

Start of general section 
Length of general section 
Section type flags 

ID for general section 
r!odifier 
Value of modifier 

Job identifier 
Job class 
ftessage class 
Flags 
Selection priority 
Origin node system qualifier 
Job copy count 

Job line count 
Reserved 

Networking account number 
Job name 
User ID (TSO, VPI/370) 
Password 
Nev password 
Entry time/date stamp 
Origin node name 
origin remote name 
Execution node name 
Execution user ID (VM/370) 
Default print node name 
Default print remote name 
Default punch node name 
Default punch remote name 
Job forms 
Input card count 
Estimated execution time 
Estimated output lines 
Estimated output cards 
Programmer's name 
Programmer's room number 
Programmer"s department number 
Programmer's building number 
Record count on output 
End of general section 
Length of general section 

196 IBM Vft/370: RSCS Networking Logic 



Licensed ftaterial - Property of IBft 

* 
NJH2 
NJH2LEN 
NJB2FLGS 
NJB2TYPE 
NJH2MOD 
NJH2$MOD 

NJB2FLG1 

'Wl,-9'T""\•,.,. ... 
'-'"n~ A\..\.. T 

NJH2END 
NJH2LLEN 

NJHLLEN 

* 
NJHU 
NJHULEN 
NJHUFLGS 
NJHUTYPE 

* 
* NJHU!OD 
NJHU$MOD 

NJHUCODE 
* 
* 
NJHUEND 
NJHULLEN 

* 
NTYPGEN 
NTYPSUB 
NTYPASP 
NTYPHASP 
NTYPJES 1 
NTYPJES2 
NTYPJES3 
NTYPPOWR 
NTYPVNET 

JES2 Subsystem Section 

DS OF 
DC AL2(NJH2LLEN) 
DS 0BL2 
DC AL 1 (NTYPJES 2) 
DC AL 1 (NJH2 $MOD) 
EQU B' 00000000' 

oc s•oooooooo• 
DC XL3' 00' 
DC CL4' 1 

DS OF 
EQU *-NJH2 

E QU *-N JHDS Ecr 

start of JES2 section 
Length of JES2 section 
Section type flags 

ID for JES2 section 
Modifier 
Valud of modifier 

Flags 
Reserved 
originator•s JES2 account number 
End of JES2 section 
Length of JES2 section 

Length of entire block 

Recommended Format for a User Section 

DS OF 
DC AL2 (NJHU LLFN) 
DS OBL2 
DC AL1 (NTYPUSER) 

DC AL 1 (NJHU$ft0D) 
EQU B 1 00000000' 

DC CL4' ' 

DS OP 
EQU *-NJHJ 

Section Type Flags 

EQU B' 00 000 0 00 1 

EQU B 1 10000000 1 

EQU B' 10000001 1 

EQU B 1 10000010' 
EQU B1 10000011' 
EQU B '10000100 1 

EQU B' 10000101' 
EQU B 1 10000110' 
EQ tJ B ' 1 0 0 0 0 111 ' 

Start of user section 
Length of user section 
Section type flags 

ID for user section --
Bi ts 0-1 must be B'11' 
Bits 2-7 can be anything 

!!odifier --
Mod value can be anything 

SHARE/GUIDE installation code 
Place user information fields 

between 1 NJHUCODE' & 'NJHUEND 1 

End of user section 
Length of user section 

General section 
subsystem section 
A SP subsystem section 
HASP subsystem section 
JES/RES subsystem section 
JES2 subsystem section 
JES3 subsystem section 
VSE/POWER .subsystem sect ion 
VM/370 subsystem section 

NTYPUSER EQU B1 11000000' User sect ion 

* General Section, NJHGFLG1 

NJHGF1PR EQU B1 10000000' Do not recompute priority 

NETWORK JOB TRAILER RECORD FORMAT: NJTDSECT 

* 
NJTLEN 
NJTFLAGS 
NJTS~Q 

NJTLBCI 

Block Control Information 

DC AL2 (NJTLLEN) 
Dc x•oo• 
DC BL.3 '0' ,AL. 7 (0) 
EQU *-NJTDSECT 

Length of entire block 
Jl'lags 
Transmission sequence indicator 
Length of block control information 

Section 5: Data Areas - NJI Header Formats 197 



* 

BJTG 
NJTGLER 
NJTGFLGS 
NJTGTYPB 
IJTGl!OD 
NJTGS!IOD 

NJTGFLG 1 
NJTGXCLS 

NJTGSTRT 
NJTGSTOP 
NJTGACPtJ 
NJ'l'GlLI I 
NJTGACRD 
NJTGEXCP 
IJTGIIPB 
IJTGlXPR 
IJTGIOPR 
IJTGAOPR 
IJTGEBD 
IJTGLLEI 
IJTLLEN 

* 
NJTU 
IJTULEN 
NJTUFLGS 
NJ'rUTYPE 
• 
* NJTU!IOD 
NJTU$ftOD 

IJTUCODE 

* 
* IJTUEID 
IJTULLEN 

Licensed Material - Property of IBM 

General Section 

DS OF Start of general section 
DC lL 2 (NJTGLLEB) Length of general section 
DS 0BL2 Section type flags 
DC AL 1 (NTYPGEN) ID for general section 
DC AL 1 ( NJTGSMOD) rtodifier 
EQU B' ooooooco• Value of modifier 

DC B•oooooooo• Flags 
DC C' A' Actual execution class 
DC XL2' 0' Reserved 
DC FL8'0' Execution start time/date 
DC FL8 1 0' Execution stop time/date 
DC F'O' Actual CPU time 
DC F 10' Actual output lines 
DC F' 0 1 Actual output cards 
DC F'O' Excp count 
DC AL 1 (0) Initial XEO selection priority 
DC 1L1 (0) Actual XEO selection priority 
DC U.1 (0) Initial output selection priority 
DC AL 1 ( 0) Actual output selection priority 
DS OF End of general section 
EQtJ *-NJ'l'G Length of general section 
EQU *-NJ'l'DSECT Lenqth of entire block 

Recoaaended Format for a User Section 

DS OP 
DC lL2 (NJTOLLEN) 
DS 0BL2 
DC U.1 (NTYPUSER) 

DC AL 1 (NJTU$ft0D) 
EQU a•oooooooo • 

DC CLIJ' ' 

DS OF 
EQU *-NJTU 

Start of user section 
Length of user section 
section type flags 

ID for user section --
Bi ts 0-1 must be B1 11' 
Bits 2-7 can by anything 

ftodifier --
Mod value can be anything 

SHARE/GUIDE installation code 
Place user inforaation fields 

between 'NJ'l'UCODE' & 'NJTUEND' 
End of user section 
Lenqth of user section 

NETWORK DATA SET HEADER RECORD FORMAT: NDHDSEC'l' 

* Block Control Information 

IDBLEll DC AL2 (IDBLLEI) Length of entire block 
IDHPLlGS DC x•oo• Flags 
NDBSEQ DC BL. 11 01 , AL. 7 ( ()) Transmission sequence indicator 
HDHLBCI EQU *-IDHDSECT Length of block control information 

* General Section 

NDBG DS OF Start of general section 
IDHGLBH DC AL2 (NDHGLI.EN) Length of general section 
IDBGFLGS DS 0BL2 Section type flags 
BDHGTYPE DC AL 1 (ITYPGEI) ID for general section 
IDBGl!OD DC AL 1 (NDHG$!0D) ftodifier 
NDBG$ftOD EQU B '00000000' Value of modifier 

NDHGNODE DC CL8' ' Destination node name 

198 IBM V!/370: RSCS Networking Logic 



Licensed !aterial - Property of IBM 

NDHGRMT 
NDHGPROC 
NDHGSTEP 
NDHGDD 
NDHGDSNO 
NDHGSEC 
NDHGCLAS 
NDHGNREC 
NDBGFLG 1 
NDHGRCFP.I 
NDHGLREC 
NDHGDSCT 
NDHGPCBI 

NDHGFORM 
NDBGPCB 
NDHGOCS 
NDHGIWTR 
ND HG END 
NDBGLLEN 

* 

NDHV 
NDHV!.EN 
NDHVFLGS 
NDBVTYPE 
NDHVMOD 
NDBV $BOD 

NDHVPLG 1 
NDHVCLAS 
NDHVIDEV 

NDHVDIST 
NDHVFNAM 
NDHVFTYP 
NDHVPRIO 
NDHVEND 
NDHVLLEN 

NDHLLEN 

* 
NDHA 
NDHALEN 
NDBAFLGS 
NDHATYPE 
NDHU!OD 
NDHA$1!0D 

NDHAPLG 1 
NDHlFLCT 
NDHATREP 

NDHATAB1 
NDHATAB2 
NDH1T1B3 
NDHlTAB4 
NDHAFLSH 
NDHl!!ODF 
NDHACPYG 
NDHAEND 
NDBALL EN 

DC CLB' • Destination remote name 
DC CL8 1 • Proc invocation name 
DC CL8 1 • Step name 
DC CLB' • DD name 
DC H' 01 Data set number 
DC AL1 (0) Security level 
DC C'A' output class 
DC F 10' Record count 
DC 8 1 00000000 1 Flags 
DC B 1 00000000 1 Record format 
DC H'O' Rax logical record length 
DC AL1(1) Data set copy count 
DC AL 1 (0) 3211 !'CB index 
DC XL2 1 00 1 Reserved 
DC CLB' • Forms ID 
DC CL8 1 • PCB ID 
DC CL8' • OCS ID 
DC CL8' • :External vri ter ID 
DS OF End of general section 
EQO *-NDHG Length of general section 

RSCS Subsystem Section 

DS OF 
DC AL2 (NDHVLLEN) 
DS OBL2 
DC AL 1 (NTYPVNET) 
DC At 1 (NDHV SMOD) 
EQU B' 00000000 1 

DC 8 1 00000000 1 

DC C1 1 1 

Dc x• oo• 
DC XL1 •oo. 
DC CL8 1 1 

DC C.L12 1 ' 

DC CL 12 1 1 

DC AL2 (0) 
DS OP 
EQO *-NDHV 

EQU *-NDHDSEt'T 

Start of RSCS section 
Length of RSCS section 
Section type flags 

ID for RSCS section 
l!odifier 
Value of modifier 

Flaqs 
VK/370 spool file class 
Vft/370 origin device type 
Reserved 
VK/370 distribution code 
VK/370 file name 
VK/370 file type 
VK/370 transmission priorty 
End of RSCS section 
Length of RSCS section 

Length of entire block 

3800 Printer Characteristics General Section (Optional) 

DS OP 
DC Y (NDHALLFI) 
DS OBL2 
DC AL 1 (N'rYPGEN) 
DC AL 1 (NDHUBOD) 
EQU B 1 10000000' 

DC B'00000000 1 

DC AL 1 ( 0) 
oc x•oo• 
DC I' 00 1 

DC CL8. I 

DC CL8' 1 

DC CL8 I I 

DC CL8 I I 

nc eta• • 
DC CLB. I 

DC XLS' oo• 
DS OF 
EQU *-NDHA 

Start of 3800 char section 
Length of 3800 char section 
Flags and modifier 

ID for general section 
!!odifier 
Value of modifier (3800 char) 

Flaqs 
Flash count 
Table reference character 
Reserved 
Translate table 1 
Translate table 2 
Translate table 3 
Translate table 4 
Flash cartridge ID 
Copy modification ID 
Copy groups 
End of 3800 char section 
Length of 3800 char section 

Section 5: Data Areas - NJI Header Por•ats 199 



Licensed Material - Property of IBft 

* 3800 Characteristics General Section, NDHAFLG1 

NDHAF1J EQU B'10000000 1 

NDHAF1BR EQU B'01000000 1 

1 0PTCD=J' specified 
'BURST=YES' specified 

* 
NDHC 
NDHCLEN 
NDHCP'LGS 
NDHCTYPE 
NDHCMOD 
NDHC$ft0D 

NDHCFLG 1 
NDHCRCFM 
NDHCLREC 
NDHCEND 
NDHCLL EN 

* 
NDHU 
NDHULEN 
NDHUFLGS 
NDHUTYPE 
* 
* NDHUMOD 
NDBU $MOD 

NDHUCODE 
* 
* NDHUEND 
NDHULLEN 

* 
NDHGF1SP 
NDHGF1HD 
NDHGF1LG 

Record Characteristics Change General Section 

DS OF 
DC AL 2 (NDHCLLEN) 
DS OBL2 
DC AL 1 (NTYPGEN) 
DC AL1 (NDHC$MOD) 
EQU B1 01000000 1 

DC B•oooooooo• 
DC s•oooooooo• 
DC AL2 ( 0) 
DS OF 
EQU *-NDHC 

Start of char change general section 
Length of char change general section 
Section type flags 

ID for general section 
Modifier 
Value of modifier (char change) 

Flags 
Record format 
Maximum logical record length 
End of char change general section 
Length of char change general section 

Recommended Format for a User Section 

DS OF 
DC AL2(NDHULLEN) 
DS OBL2 
DC AL 1 (NTYP USER) 

DC AL1 (NDHUSMOD) 
EQU B' 00000000 1 

DC CL4 1 1 

DS OF 
EQU *-NDHU 

Start of user section 
Length of user section 
Section type flags 

ID for user section --
Bi ts 0-1 must be B'11' 
Bits 2-7 can be anything 

Modifier --
Mod value can be anything 

SHARE/GUIDE installation code 
Place user information fields 

between 'NDHUCODE' & 'NDHUEND' 
End of user section 
Length of user section 

General Section, NDHGFLG1 

EQU B' 10000000' 
EQU B' 01000000' 
EQU B'00100000' 

Spin data set 
Hold data set at destination 
Job log indicator 

COMMAND/MESSAGE HEADER FORMATS 

NMRDSECT 
NMRFLAG 
NMRLEVEL 
NftRPRIO 
NMRTYPE 
NMRML 
NMRTO 
NMRTONOD 
NMRTOQUL 
NMROUT 
NMRFM 
N!!RFMNOD 
N!!RF MQUL 
NMRMSG 
NMRL 
N!!R 

DSECT 
DC X 1 0 1 

DC ox• o• 
oc x•o• 
DC x•o• 
DC x• o• 
DC OCL9' ' 
DC CL8' I 

DC X 1 0 1 

DC XL8 1 0 1 

DC OCL9. I 

DC CL8 1 1 

DC X '0 1 

DC CL 1321 1 

EQU *-NM RDS Ecr 
EQU NMRDSECT,NMRL 

Flag byte 
Importance level (high 4 bi ts) 
Output priority (low 4 bits) 
Type byte 
Length of message 
To node 
To node name 
To node qualifier 
Local output informaton 
From node 
From node name 
From node qualifier 
Message 

Alias for NMRDSECT with length 

200 IBM Vft/370: RSCS Networking Logic 



Licensed "aterial - Property of IBM 

* 

NflIRFNORM 
NPIRFRTE 
N!RFOP 
NMRFFLG 
NPIRFJID 
NMRFORGN 
NMBFJNAM 
Nl!RFD 
NMRFR 

* 

NMRUC! 
Nl!RUCMA 
Nl!IRLINET 

* 

N!RDESC 
NPJRBOUT 
N!RDO!!IID 

* 

NMRR!T 

* 

N!RUSER 

* 
N!RFLAGC 
lU!RFLAGi 
NRPJFLAGT 
NMRFLAGU 
Nl!RFLAGR 
N!!RFLAGJ 
Nl!RFLAGD 
l!!RFLAGS 

* 
Nl!BTYPEX 
N!RTYPEP 

* 
lf MRPOPD 
NMRFOPC 
NMRFOPA 
N!RFOPH 
N!!RFOPR 

* 

Formatted command Definitions 

ORG NMRMSG 
DC OXL20'0' Formatted area for normal command 
DC 01136 •o • Formatted area for route command 
DC x•o• Op code 
DC x•o• Flags or op code modifier 
DC XL2' 0' Initia 1 job number 
DC CL8' ' Origin node name 
DC CL8' ' Job name 
DC CL8' • Destination for route command 
DC CL8' ' Remote if not implied by NMRFD 

NMROUT Format for UC!UD Messages 

ORG HR OUT 
DC x•o• MCS console ID 
DC x •o • MCS console area 
DC XL 2' 0' Line type for flILWTO 

NMROUT Format for Logical Routed fllessa ges 

ORG Nl!ROUT 
DC IL 2' 0' MCS descriptor codes 
DC IL2 '0' MCS console routings 
DC XLLI' 0' !CS DO! ID 

NMROUT Format for Remote Messages 

ORG Nl'!ROUT 
DC CL8' ' Remote name 'rnnn 

DMROUT for TSO User !!lessages 

ORG NflIROUT 
DC CL8' ' 

NMRPLAG Definitions 

EQU B1 10000000 1 

EQO B'01000000' 
EQU B1 00100000' 
EQU B' 00010000 1 

EQU s•oooo1000• 
EQO B'00000100 1 

EQU B '00000010' 
EQU B' 00000001 1 

NMRTYPE Definitions 

EQU B1 11110000' 
EQU 2 

B!!RFOP Definitions 

EQU 1 
EQU 2 
EQU 3 
EQU 4 
EQU 5 

RMRFFLG Definitions 

TSO user ID 

NMRMSG contains a command 
N!ROUT has JES2 remote number 
NftROUT has TSO user ID 
RMROUT has UCMID information 
Console is only remote authorized 
Console not job authorized 
Console not device authorized 
Console not system authorized 

Reserved bits 
Formatted command in nmr11sg 

Display job coamand 
cancel job comaand 
Release job coa11and 
Hold job coamand 
Route job command 

N!RFFLGO EQU x•ao• 
NftRFFLGD EQU X1 40' 

Cancel or route output 
Cancel execution with dump 

Section 5: Data Areas - NJI Header Formats 201 



Licensed Material - Property of IBM 

Section 6: Diagnostic Aids 

Problem Determination 

The complexity and physically dispersed nature of data telecommunication 
systems can lead to difficulty in diagnosing malfunctions. Because aany 
different problems with the various system components can present 
external symptoms which appear identical at the operator and user level, 
it is important to collect as much physical documentation pertaining to 
the malfunction as possible. Such documentation may include virtual 
storage dumps of the RSCS virtual machine, the RSCS operator console 
hard copy output, a log trace of the line I/O activity, and copies of 
files received in error. 

In the event of a definite program error that can be detected by the CPU 
or channel hardware (e.g., program checks), or by the RSCS system 
itself, a virtual storage dump is automatically taken by means of a CP 
DUMP command executed by a DIAGNOSE X' 08' instruction. In this case, 
the RSCS operator console output normally includes a terminal diagnostic 
error message, as well as information concerning the activity leading up 
to the error. Any available console output containing such information 
should be retrieved and attached to the virtual storage dump. 

In many cases, minor malfunctions detectable by users, operators, and 
system programmers do not result in automatic virtual storage dumps. 
These malfunctions usually leave some evidence in RSCS virtual storage 
following their occurrence, and a dump of RSCS virtual storage can be 
useful if taken quickly after the malfunction occurs, before subsequent 
processing obscures the evidence~ When a malfunction is detected, RSCS 
processing should be suspended by using the RSCS virtual machine console 
to place the virtual machine in CP console function mode (normally, by 
use of the ATTENTION key). Having entered CP console function mode, the 
following CP command should be entered: 

DUMP 0- * (comment describing symptom~ 

When CP has confirmed DUMP command completion, the following two CP 
commands should be entered: 

CLOSE E 
BEGIN 

The CLOSE command causes the storage dump print file to be queued for 
real printer output, and the BEGIN command causes RSCS to resume 
processing from where it was suspended. The character string to the 
right of the asterisk is printed as entered at the start of the dump 
listing; it should identify reason for taking the storage dump. All 
console listings (including the DU~P command) and other documentation 
should be retrieved and attached to the dump, and any further 
description of the problem should be written on the dump listing or 
attached to it. 

Suspected telecommunication problems should be documented by means of 
the RSCS TRACE command, using both the LOG and SUM keywords. A line 
activity log trace should be activated during the occurrence of the 
malfunction if possible. This presents no problem if the malfunction is 
constant or reproduceable at will, but intermittent or unpredictable 
malfunctions can sometimes be difficult to "catch". Line activity 
logging is initiated by the RSCS command: 

202 IB! VM/370: RSCS Networking Logic 



Licensed Material - Property of IB~ 

TRACE 'linkid' LOG 

and is terminated by the RSCS command: 

TRACE 'linkid' NOLOG 

The log trace is automatically scheduled for real printer output on 
termination of logging, which should be done several seconds or minutes 
after the malfunction has occurred. (Avoid allowing log trace to remain 
active for long periods, since this can generate a very large printer 
spool file which may exhaust VM/370 system spooling space.) The log 
trace printed output should be retrieved, annotated with any descriptive 
comments, and attached to pertinent console output showing the trace 
commands and to a virtual storage dump taken immediately following the 
malfunction, as described above~ (A virtual storaqe dump may be taken 
while log trace is active without any conflict.) 

If it is suspected that spool files are being altered in transmission 
(resulting in partial files, missing or duplicated records), copies of 
the original and altered files should be retrieved if possible. When a 
CMS DISK DUMP file cannot be loaded by a CMS DISK LOAD command due to 
file format errors, a C!S READCARD command should be issued to obtain an 
exact copy of the altered file. Other documentation of the problem 
(console output listings, line log trace, and virtual storage dump) 
should be obtained as described above, if possible .• 

The documentation of a malfunction should be analyzed to diagnose the 
problem and identify the malfunctioning system component, if possible. 
There is no standard procedure for this kind of analysis. In general, 
systea documentation and program listings can be used to determine 
normal system behavior which should appear in the log traces, dumps, 
etc. Any deviations or intermittent behavior would be suspect, and 
should be investigated.. Often such discoveries sufficiently specify a 
particular malfunction to allow identification of a responsible routine 
or component which can be easily analyzed and tested in detail. 

For example, suppose the diagnostic information indicates apparently 
normal communication, with a very high transmission exchange rate as 
indicated by the TRACE linkid SUM command, and no file data transfer. 
Analysis of a storage dump and log trace could show that a single 
CMD/MSG element is being repeatedly exchanged on the link. This 
suggests that a loop exists in the network routing structure in the 
user-defined RSCS directories at the network locations. In other words, 
the CMD/MSG element aay be addressed to a location that each side of the 
link has accidentally routed to the other, This frequent source of 
trouble can be corrected by identifying the erroneously routed location 
ID from the storage dump or log trace, and issuing a ROUTE locid OFF 
command on either side of the link. 

When problems are determined, any diagnosis along with the problem 
documentation and proposed correction (if any) should be forwarded to 
the people responsible for maintenance of the component suspected to be 
in error. It is most important to include a complete description of the 
configuration of the system in use, including specific hardware types 
and models, particular software systems, modification levels, and any 
local modifications in use. 

To analyze a problem documented in an RSCS storage dump, you need to 
determine the status of the RSCS system tasks at the time of the dump. 
Lay out the dump with a visible marker such as a colored felt pen. 

The locations of the tasks, modules, save areas, queues, tables and 
indicators all start with the pointers in the SVECTORS table beginning 
at storage location X'200', and in the common areas addressed by the 
TVECTORS in SVECTORS. 

Section 6: Diagnostic Aids - Problem Determination 203 



Licensed Material - Property of IBM 

The Data Area Aids diagrams (in Section 5 of this manual) help you use 
the SVECTORS and other system control data. Use these diagrams, source 
listings, and the data area and control block detailed descriptions 
(also in Section 5 of this manual) to determine such things as active 
I/O, inactive I/O, tasks awaiting dispatching, tasks that have issued 
waits on synch locks, etc~ 

When a line driver task is executing and a dump condition occurs (for 
example, due to a program check) the name of the line driver is at the 
top of the dump. 

The SVECTORS ACTIVE field, one byte at address X'210', contains the id 
of the currently active task, If the value in this field is x•oo•, the 
dispatcher has found no task in the task table that is ready to run, and 
the supervisor is either executing or waiting (according to current PSW 
wait bit) for an interrupt. The address at location X'211'-X'213' 
points to the task element of the last task to be dispatched before the 
dump was taken. 

If a dump is automatically taken by RSCS, the active register contents 
at the tiae of error are stored, beginning with register O, at location 
I' 100BO'. 

The value in register 14 (at location X'10040') in this save area is 
usually the address that the most recently active task exited from (BALR 
14, 15). 

Module Message Directory 

The following list identifies the module code where the decisions are 
made to issue RSCS messages, 

Message 
Source I Number 
l!odUl!l~-

DMTAXl! 101! 
Dl!TA XM102I 
DMTAXM 103E 
DftTAXM104I 
Dl!TAXB105I 
DMTA XM106I 

DMTAU!107I 
Dl!TAXB108E 
DMTA XM109I 

D!!TA XM111I 
DMTAXM500I 
Dl!Tl I M501 E 
DMTAXM502E 
DMTAXM520I 
DMTAXM521I 
DMTAXM522I 
DMTAXM523I 
Dl!TA XM5211E 

Generated 
.ll_1abel 

TAGPEND 
ACCEPEND 
ACCEPUR2 
CLOOSCN2 
CLOIPGE1 
FILSTRY 
OPENPOOF 
UNPECHEK 
OPENRDER 
REORD (ER) 
REFllCON 
CLOSCA N1 
CLO FINIS 
CLOSE 
CLOFCHEK 
CHANGE 
CHAN HO 
CHANNOH 
CHANSCAN 
CHANGE 
ORDECHEK 
PtJRGCHEK 
TRANCHEK 

204 IBM VM/370: RSCS Networking Logic 

Message 
Sourcel Number 
Module I ID 

D!!TA XM525E 

DMTAXM526E 

DMTAXM640I 
DPITAXM645I 

DMTCMX001I 
DMTC MX003I 
DMTCMX004I 
D!!TCMX005I 
DMTCMX170I 

DMTCMX 171! 
D!!TCMX201 E 

DMTC MX202E 

Generated 
at Label 

CHANGE 
CLOFCHEK 
ORDECHEK 
PURGCHEK 
TRANCHEK 
CHANGE 
CLOFCHEK 
ORDECHEK 
PURGCHEK 
TRANCHEK 
PURGDONE 
TRANDONE 

CMXFINXT 
CMXM003 
CMXM003 
CMXPIOO 3tJ 
!! SGl.!170 
MSGLENOK 
MSGM170 
CPIXLGOT 
CMXMISS 
A1TOCHK 



Licensed Material - Property of IBM 

Message nessage 
Source INumber Generated Source I Number Generated 
8odJlle I J;D at Lab§.L Module l ID - ~1 Label 

l 1TRANLK RO LINE 
DEFLKIEW ROTA SK 
DEFNOLIK ROTYPE 
QYOLIIK D!!TCPIX 20 6E CHACLASS 
QYCKROUT CHACO PY 
QYINICTV CHADIST 

DMTCMX203E A1FUGOT CHANA!!E 
A1FSTOW CHAPRIOR 
CHALK GOT LO HOLD 
'FLUlSClN LO TRACE 
L2FLKGOT L1PLKGOT 
QYOPILE QUERY 
QYOFIULL RO CLASS 

DMTCMX204E A1TOCHK ROCLPIULT 
A 1INPUT RO KEEP 
l 10UTPUT ROZONE 
l 1TR1MIS RO LINE 
CHALKG01'1 ROTASK 
CHALKGT1 ROTYPE 
CHlBTERft DftTC!!X 20 B"E A1TOCHK 
CHlSCAI CPQOSERS 
CKRIGE DISCONN 
CUft204 ftSGLNKGO 
CP PISGNOUSR 
CPQIND DMTCMX209E CMXHIT 
CPQUERY DM'l'CMX 21 OE C~D 

CPQLOG CMDNOLOC 
CPQft204 MSG 
CPQllftES ftSGNOLOC 
CPQUSEES Dft'l'CIU 300I CMXALRDY 
EXEC D!!'l'CMX301E CMIALRDY 
PLUPJORE DMTCPJX 30 2E A1TRAULK 
FORERR !!SGNOLNK 
HT DMTCPJX303E CKD 
LOFOUL CMX!303 
LO HOLD FORCE 
LOTRACE LOPLKGOT 
L1TEB! L1PLKGOT 
QYBOUGO L2PLKGOT 
QYBOU!IS !!SG 
QYTOOl!CH D!TC!X301J E C!!IlLBDY 
QYOFILE D!!TCMX310E CMDNOLNK 
QYOLINK QYNOTROO 
QYOSYST! MSGNOLNK 
ROPORftlT D!ITCMX320E CMD 
BE ORDER KSG 
BO SCAB DMTC!!XSIJOI DEPDO 
ROUTCOtrr DMTCMI541I DEPDO 
SHUTDOD DMTC!!X542E DEFINE 
STlLKGOT DEFM542 

DMTC!X205E A 1TOCHK D!TC!!X543E DEP!1543 
CHlCLASS DEFNEXT 
CHACO PY DEFIOLNK 
CH AHOLD DMTC!U544E DEF DO 
CHABOHOL DBF!544 
CHlPRIOR Dl!TCKXSSOI DELDELET 
PLUKEYWD D!TCMX551E DELETE 
LOTKEYWD DMTCMX552E DELETE 
ROCLASS D!!TC KI560I DISCHARG 
RO KEEP DKTCKX561E DISCONN 
ROZOBE Dl!TCMX625I QYOSY625 

Section 6: Diagnostic Aids - ftodule Message Directory 205 



Licensed Material - Property of IBPI 

Message Message 
SourcelNumber Generated Source I Number Generated 
n.od ul ~1-!.!L_ at Label Module I ID - gt Label 

DMTCPII626I QYOSYNIN STAPl751 
DMTCMI627I QYOSYPLF 
DMTCMX630I CMXM630 DMTINI410I WR DONE 

ROUTGOT DftTINI411R IPLDISK 
DMTCMX631I CPIXM631 DMTINI412R RDORWRT 

ROUOFF DMTI NI413R NUCCYLN 
DMTCMI632E ClUPI632 DMTINI481E HEXERR 

ROUSET DMTI NI482E DECERR1 
DPITCMX633E ClUPI633 DECLO OP 

ROUSET DECPACK 
DMTCMI634I QYOSYNBT DP!TINI483E RDORWRT 
DMTCMI636I QYROUG01 IPLZERO 

QYOSYROU D!!TINI48 QE BADIPLD 
DMTCMI637I CPIXM637 DMTINI485E NUCCYLN 

QYROU!US D!!TINI498S WR ERROR 
ROOOFF DMTI NI499T RD ERROR 

DMTCl!!X651I QYINACTV 
DI!TCMI652I QYM652 D!!TIRXOOOI IRXGOTTN 

QY1SNOD DMTIRX400I IRXGOTTN 
DMTCMX653I QYM653 DPJTIRX449I GENTA GS 
DMTCMX654I QY1QUGO DMTIRX450E GEN GOOD 
DMTCMX655I QY 1QUEOE GENNOTS 
DMTC l1X656I QY1ACTVE GENPARPI 
DMTCMX660I QY2STAT GENPSCAN 

QYM660 DMTIRX451E GENLINK 
DMTCMX661I QYM661 GENPARft 
DMTCMX662I QY2RSS GENPORT 

QYM662 GEN ROUTE 
DMTCM X663I QYM663 GENSPPIF 
D!ITCMX664E QY2RSS GENTA GS 

QYM664 DMTIRXll52E GEN LOCAL 
QY2STAT DMTI RXfJ53E GENPARPI 
QY2VNOB DftTIRX454E GENTA GS 

DMTCMX665I QY 1AM 665 DPITI RI455 E GENROUTE 
DftTCMX670I QYSYCON DMTIRX456E GENLINK 
D!!TCM X 6 711 QYPI671 D!!TIRX457E GENPORT 
D!!TC MX672I QYM672 DPITIRX458E GENPARP! 
DMTCMX673I QYM673 GEBROUTE 
DMTCMX674I QYOSQNXT DMTIRXq61E GENLOClL 

QY1PI674 GENROUTE 
DMTCMX675E EXECPROC DMTIRX 46 2E GENLINK 

EXEC!! 675 GENPARPI 
DMTCMX676E EXECPROC GENROUTE 

EXECPI676 DPITI RX46 3E GElfLINK 
Dl1TCMX677E EXECPROC DMTIRX464E GENLPTRY 

EXECPI 6 76 GEN PORT 
DMTCMX678E EXEC DPITIRX465E GENLOCAL 

EXECM678 GEBUTRY 
DMTCMX700I STAL NG OT DPITIRX466E GENLTTRY 
D!ITCMI701E STACREAT Dl!TIRX467E GENLCTRY 
DMTCMX702E ST ACRE AT DMTIRX 468E GENLKTRY 
DKTC!!IX703E STACREAT DMTIRX469E GEBTAGS 
DMTCMI70QE STACREAT DMTIRU90T IRXDISCO 
DftTCl!X705E STACRERR DMTIRX491T I RX DISCO 
DMTCMX706E ST ACRE RR GEN FINIS 
D!ITCMX707E STACRERR Dl!TI RXfJ9 2T IRXGOTTN 
DMTCMX708E ST ACF ERR DPITIRX 49 3T IRXGOTTN 
DMTCMX709E STACRERR DMTIRX49qT GENFINIS 
DMTCMX710E STA!UXER DPITIRX 49 5T IRXPI495 
DMTC!!X750E STANOTCL 
DMTC ft X751I CPIXALRDY D!!TNC!!108E VMSPGET 

206 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBPI 

Message Message 
Source1Nu11.ber Generated Source I Number Generated 
!!odulel~- at Label Piodul~l__I!L._ at Label 

D!!TNC M141I ISIO D!!TNPT 571E SETDRER1 
DMTNCM142I RISl02 D f!TNPT 5801 GET!'LUSH 

SIGNCTCG DMTNPT581E SETPLUSH 
DMTNC1'143I EOJ GETPLSHE 
DMTNCPJ146l RLOC1 DMTNPT590l SET PREE 
DMTNC P1147I RD FOP DPITNPT591E SETPRER1 
DMTNCM190E VKSP1 D!!TNPT600I GDGODNE 
DKTNC Pl511E SBKPWDN DMTNPT610I SETHOLD 
DMTNCM531I SETPWD GETPILE 
DPJTNCPJ570I SETDRAIN DPITNPT611I SETHLDUI 
DMTNCM571E SETDRER1 GET PILE 
D!TNCM580l RDORJEC'r D!!TNPT612E SETHLDE1 

RDRJECT DPITNPT750E SETSTRT1 
SETFLSHG D!TNPT752l SET START 

DMTNCM581E SETPLERR DMTNPT801I SETTR3 
DMTNC M590I SETFREE DftTNPT802l LOGCLOSE 
DMTNC!591E SETPRER1 Dl!TNPT803l SETTR2 
DMTNCM610I SET HOLD D!!TNPT810E SETTR 810 
DMTNC!611I ALLHLD DMTNPT811E SETTR811 

SETHLDIM DPITNPT812E SETTR812 
DMTNCM612E SETHLDE1 DftTNPT813E SETTR813 
D!TNCM750E SETSTRT1 DMTNPT902E CONFCK1 
D!!TNC !!7521 SETSTART DMTNPT903E SPA SSE 
DMTNC1!801I SETTR3 DMTNPT904E SGNERR 
DMTNCM802I LOGCLOSE DPITNPT905l NPTGETX 
D!!TNCll803I SETTR2 DMTNPT907E ENDSCAN 
DMTNCM810E SETTR810 DPITNPT934E PUTCLOSE 
DMTNCM811E SETTR 811 DKTNPT936E GETGOT1 
DMTNCM812E SETTR812 
DMTNCl!813E SETTR813 DKTPOW070E IOERRPR1 
DMTNCM905l PIC70K Df!TPOW108E VPISPGET 
DMTNCll914E PIC7A911$ DMTPOW141I ISIO 
DMTNCM915E PIC7 A915 DMTPOW1Ll2l SIGNOK 
D!!TNC!!916E KC7A916 DMTPOW143I EOJ 

DPITPOW1Ll4I PO PEN 
DMTNHD1fl4l OPENSCLP DPITPOW1ti4I UOPEN 
DMTNHD145l HOJOBTLP DPITPOW145I PC LOSE 
DMTNHD910E TAG SN ERR DJ!IITPOW145l UCLOSE 
DMTNHD917I HOJOBGO DPITPOW146I RLOC1 

DMTPOW1L17I RDEOF 
DMTNIT204E lNTSNERR DPITPOW170I MRTCONT2 
DMTNIT708E ISTORERR DMTPOW190E VPlSP1 
DMTNIT911E lBOFFERR DMTPOW531I CPlDNSUP 
DMTNIT912E IRESTERR DMTPOW531I PlSGlGN 
DMTNlT913E lNTPASER DMTPOW570l SETDRAIN 

DMTPOW571E SETDRER1 
DMTNPT070E IOERRPR1 DMTPOW590I SETFREE 
DMTNPT108E VMSGET DMTPOW591E SETFRER1 
DMTNPT141I NPTEINIT DMTPOW610l SET HOLD 
DllTNPT142I NPTElNIT DMTPOW611I ALLHLD 
DMTNPT143l LINEDIS2 DMTPOW612E SETHLDE1 

LINEDROP DMTPOW750E SETSTRT1 
DPITNPT1LILII PUT OPEN DPITPOW752I SET START 
D!TNPT145l PUTCL 51 DMTPOW801I SETTR3 
DMTNPT146l GETGOT2 DMTPOW 80 21 LOGCLOSE 
DMTNPT 1471 GETPURGE DMTPOW803I SETTR2 
DMTNPT149l TRPRT DMTPOW810E SETTR810 
DMTNPT190E VMSP1 DMTPOW811E SETTR811 
DftTNPT510I GTBKMSG DMTPOW812E SFTTR812 
DMTNPT511E SBKPWDN DPITPOW813E SETTR813 
DMTNPT570I SETDRAIN DMTPOW90 2E MC7ERR 

Section 6: Diagnostic Aids - Module Message Directory 207 



Licensed Material - Property of IBM 

Message Message 
Source I Number Generated Source1Number Generated 
ft od ul~l_!] __ at Label Modul~l._!Q __ at label 

DMTPOW903E MC7 SETHLDIM 
DMTPOW905I MC7B DMTSML612E SETHLDE1 
DMTPOW908E POWIERR3 DrITSML 750E SETSTRT1 
DMTPOW913E POWIERR1 DMTSML 7521 SETSTART 
DMTPOW940E RR EJECT DMTSML801I SETTR3 
DMTPOW941E PCMDERR1 DMTSr'JL802I LOGCLOSE 
DMTPOW942E PC!!DERR2 DMTSML803I S ETTR2 
DMTPOW943E PC!!DERF3 DMTSML810E SETTR810 
DMTPOW944I WGET2 DMTS ML811E SETTR811 
DMTPOW945I DEOJ DMTSML812E SETTR 812 
Dl!TPOW946E POWIERR2 DMTS!!L813E S ETTR813 

DMTS!'JL901E SMLIERR1 
DMTREXOOOI REXICGOT TCTR 
DMTREX002I TERLHIT DMTSML902E MC7ERR 
DMTREX080E TERLHIT DMTS!!L903E MC7A 
DMTREX090T REI PT ERM DftTSML905I MC7B 
DP.ITREX091T REXITERM DftTSU906E SMLIERR2 
DMTREX679I EXEC MSG TCTR 

DMTSML934E JCLOSE 
DMTRGX170I RGI MSG DMTSML935E READCON 
DMTRGX171I RGXMSG 
DMTRGX300I RGXNTHR1 DMTVI!B141I VMRENAUT 
DMTRGX301E RGXNTHR1 DMTVMB142I VMREN10 
DMTRGX302E RGXNTHR1 DMTVMB143I LINEDROP 
DMTRGX303E RGXNTHR1 VMRQUIT 
DMTRGX304E RGXNTHR1 DMTVMB144I PUTOPEN1 
Dl!TRGX320E RGXNTHR1 DMTVMB145I PUT DONE 
DMTRGX330E RGXMSGER DMTVMB146I GETGOTR 
DMTRGX331E RGXMSGER DMTVMB14 7I GETFDEOF 
DMTRG X332E RGXMSGER DM~VIIJB 1481 GETGOT1 

DPITVMB510I GET BK FIL 
DMTSML070E IOERRPRT DMTVMB511E SBKFWDN 
DftTSML 108E VMSPGET DMTVMB570I SETDRAIN 
DMTSML141I ISIO DMTVMB571E SETDRER1 
DMTSML1fl2I SIGN OK DMTVI!B580I GET FLUSH 
DMTSML143I EOJ RRESET 
DMTS!!L 1114! JOUTPUT D MTV MB581 E GETFLSHE 

PC ONT DMTVMB590I SETFREE 
UOUTPUT DMTVMB591E SETFRER1 

DMTS ML 145I JCLOSE1 DMTVMB610I SETHOLD 
PCLOSE D!!TVMB611I GETFILE 
UCLOSE SETHLDIM 

DMTSML146I RLOC1 DMTVMB612E SETHLDE1 
DMTS!!L 1471 RDEOF DMTVMB750E SETSTRT1 
DMTSML 1491 TRPRT DMTV!!B752I SETSTART 
DMTSML170I WGET2 DMTVMB581E SETFLUSH 
DMTSML190E VMSP1 DMTVMB801I SETTR3 
DMTSML510I RDBKMSG DMTVMB802I LOGCLOSE 
DMTSML511E SBKFWDN DMTVMB803I SETTR2 
DMTSML530I SETCMD DMTUB810E SETTR810 
DMTSML570I SETDRAIN DMTVMB811 E SETTR811 

$USRNPUN DMTVMB812E SETTR812 
DMTSML571E SETDRER1 DMTVMB813E SETTR813 
DMTSML580I RDFLUSH DMTVMB905I PASSM905 
DMTSML581E SETFLUSH DMTVMB914E PASSM914 

RDFLSHER DMTVMB918E PASSM918 
DMTSML590I SETFREE DMTVMB919E PASSM919 
DMTSML591E SETPRER1 
DMTSML600I RDGODNE Dl!TVMC108E MAKEBLOC 
DMTSML610I SETHOLD DMTVMC141I CTCEINIT 
DMTSML611I ALLHLD VMCEINIT 

208 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IB!! 

Message Piessage 
Source I Number Generated SourcetNumber Generated 
Mod ul~l ID at Label j1odu!~l_ID __ gt Label_ 

DMTVMC142I CTCWHAT DMTVaC61 OI SETHOLD 
RESPCHK DMTV KC611I SETHLDIM 

DMTVMC143I LIHDIS2 DMTVMC612E SETHLDE1 
DMTVMC144I PUTNHEAD DMTVMC750E SETSTRT1 
DMTVMC145I PUTCLOSE DMTVI1C752I SETSTART 
DMTVM C146 I GETGOT DMTV!!C801I SETTR3 
DKTVMC147I GETCONT DKTVMC802I LOGCLOSE 
DMTVMC511E SBKFWDN DMTVMC803I SETTR2 
DHTVHC570I SETDR1 DMTVl'!C810E SETTR810 
D!!TVKC571E SETDRER1 D!!THIC811 E SETTR811 
DI1TVKC581E SETFLUSH DMTVKC812E SETTR812 
DMTVMC590I SETFREE DMTVMC813E SETTR813 
DMTVMC591E SETFRER1 

Trace Log 

Each line driver builds and executes channel programs to control its BSC 
telecommunication adapter.. In the event of a malfunction, an analysis 
of these I/O transactions can often provide a quick problem diagnosis. 
RSCS will generate a printed sequential log of each channel program 
executed by a line driver during an interval con trolled by the "TRACE 
linkid LOG" and "TRACE linkid NOLOG" RSCS operator commands. 

Each I/O channel program log consists of one or more printed lines.. The 
•composite' CSW (an ORing of all CSWs presented for the I/O device 
during execution of the channel program) appears in columns 44-57 on the 
first line of each transaction entry.. If the "unit check" CSW status 
bit is set on, the telecommunication adapter sense byte appears in 
columns 59-60 to the right of the composite CSW. (The sense data are 
always zero when the unit check CSW status bit is zero.) The first ccw 
in the channel program for the I/O transaction appears in columns 63-78, 
to the right of the composite csw and sense byte, if present. If a 
command chaining or data chaining bit is set on in a ccw, the following 
printed log line describes the next CCW in the transact.ion• s channel 
program. In this case, the csw and sense byte fields are blank unless a 
TIC ccw follows the preceding ccw. When a TIC is encountered in the 
channel program, the character string c•<-----TIC' appears in columns 
44-53 of the log line, and the CClf which is the object of the TIC 
appears in the line• s normal ccw field. 

Each line of the log must contain a non-TIC ccw. Columns 1-42 of each 
line contain the read or write buffer addressed by the ccw appearing on 
the line. For an ending ccw, the buffer is truncated according to the 
CCW count, decremented by the CSW residual count when the ending ccw is 
a READ. For non-ending ccws, the entire buffer is logged according to 
the ccw count. When the buffer is too large to fit within the printed 
log buffer field, the first 14 and last 6 bytes of the buffer appear, 
separated by a double dash. When the CSW residual count indicates that 
no data were read by an ending READ CCW, a double dash appears in the 
first two columns of the data buffer log entry. The contents of the 
RSCS log record are as follows: 

1-42 The data buffer described by the ccw to the right, truncated 
according to the CCW count, the CCW residual count and space 
constrain ts. 

Section 6: Diagnostic Aids - Trace Log 209 



Licensed Material - Property of IBM 

44-57 Bytes 1-7 of the composite ending csw, on the first line of a 
transaction log. 

59-60 The sense byte, if any. 

63-78 A CCi included in the line transaction channel program. 

81-120 The graphic EBCDIC representation of the first 40 bytes of the 
data buffer (DMTPOi line driver only). 

The fields of the record are &eparated by blanks. The following are 
samples of read and write log records for NPT: 

2D 0797EOOC000003 
1070 0798280C0001AC 
1002E2C9C7D5D6D5404040E3C5E2-404040404003 
1061 0798280D0001FF 
37 

0797EOOE000004 
0797EOOE000004 

First 14 bytes ILast 6 bytesl csw 
I I 

----------------------~-----------------1 
TP Buffer I 

01 
01 

f Sensef 
IByte I 
I I 
I I 

02079BF820000004 
0107987A60000002 
02079BF820000200 
0107987A60000002 
02079BF820000200 
02079BF820000004 
02079BF820000004 

CCi 

Note: The dashes in record positions 1 and 2 indicate that there was no 
data transfer for that I/O transaction. 

210 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

Appendix A: MUL Tl-LEAVING Description 

"MULTI-LEAVING" is the name of a computer-to-computer communication 
protocol developed for use by the HASP system and used by RSCS. 
MULTI-LEAVING can be defined as the fully synchronized, 
pseudo-simultaneous, bidirectional transmission of a variable number of 
data streams between tvo or more computers using Binary Synchronous 
communications (BSC) facilities. 

MUL Tl-LEAVING in RSCS 

This appendix contains an overview of a comprehensive MULTI-LEAVING 
communications system (as is used in HASP/ASP). The Vft/370 support for 
programmable BSC workstations is consistent with the MULTI-LEAVING 
design, but it does not use certain features provided in MULTI-LEAVING: 

• The transmission of record types other than print, punch, input, 
console, and control is not supported. 

• The only general control record type used is the terminal sign-on 
control. 

• Only SCB count units of 1 are used. 

• Column binary cards are not supported. 

In addition, the support provided for the MULTI-LEAVING based protocol 
used by VSE/POWER differs from that provided for HASP-type systems in 
the following areas: 

• A Request-to-Initiate Function transmission is reqlrl;.red before all 
data transmissions. 

• No SCB fields are present in the General Control Record type records. 

• carriage control information is not carried in the SRCB. 

MUL Tl-LEAVING Philosophy 

The basic element for MULTI-LEAVING transmission is the character 
string. one or more character strings are formed from the smallest 
external element of transmission, the physical record. These physical 
records are input to MULTI-LEAVING and aay be any of the classic record 
types (card imaqesw printed lines, tape records, etc.) • For efficiency 
in transmission, each data record is reduced to a series of character 
strings of two basic types: 

1. A variable-length nonidentical series of characters 

2. A variable number of identical characters 

Appendix A: MULTI-LEAVING Description 211 



Licensed Material - Property of IBM 

Character Strings and the SCB 

An eight-bit control field, termed a String Control Byte (SCB), precedes 
each character string to identify the type and length of the string. 
Thus, a string as in 1 above is represented by an SCB followed by the 
nonduplicate characters. l string of consecutive, duplicate, nonblank 
characters (as in 2 above) can be represented by an SCB and a single 
character; the SCB indicates th.e duplication count, and the character 
following it is the one to be duplicated. In the case of an all-blank 
character string, only an SCB is required to indicate both the type and 
the number of blank characters. 

A data record to be transmitted is segmented into the optimum number of 
character strings (to take full advantage of the identical character 
compression) by the transmitting program. A special SCB is used to 
indicate the grouping of character strings in the original physical 
record. The receiving program can then reconstruct the original record 
for processing. 

Transmission Blocks and the RCB 

To allow multiple physical records of various types to be grouped 
together in a single transmission block, an additional eight-bit control 
field precedes the group of character strings representing the original 
physical record, This field, the Record Control Byte (RCB), identifies 
the general type and function of the physical record (input stream, 
print stream, data set, etc.). A particular RCB type has been 
designated to allow the passage of control information between the 
various systems.. Also, to provide for simultaneous transmission of 
similar functions (that is, multiple input streams, et=.), a stream 
identification code is included in the RCB. 

A second eight-bit control field, the Sub-Record Control Byte (SRCB), is 
also included immediately following the RCB. This field is used to 
supply additional information concerning the record to the receiving 
program. For example, in the transmission of data to be printed, the 
SRCB can be used for carriage control information. 

MUL Tl-LEAVED Data Streams and the FCS 

For actual MULTI-LEAVING transmission, a variable number of records may 
be combined into a variable block size, as indicated previously (that 
is, RCB, SRCB, SCB1, SCB2, ••• , SCBn, RCB, SRCB, SCB1, ••• , etc.). 
MULTI-LEAVING provides for two (or more) computers to exchange 
transmission blocks, containing multiple data streams as described 
above, in an interleaved fashion. To allow optimum use of this 
capability, however, a system must have the capability to control the 
flow of a particular data stream while continuing normal transmission of 
all others. This requirement becomes obvious if one considers the case 
of the simultaneous transmission of two data streams to a system for 
immediate transcription to physical I/O devices of different speeds 
(such as two print streams). 

To meter the flow of individual data streams, a Function Control 
Sequence (FCS) is added to each transmission block. The FCS is a 
sequence of bits, each of which represents a particular transmission 
stream. The receiver of several data streams can temporarily stop the 
transmission of a particular stream by setting the corresponding FCS bit 

212 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

off in the next transmission to the sender of that streame The stream 
can later be resumed by setting the bit on. 

Transmission Data Integrity and the BCB 

Finally, for error detection and correction purposes, a Block control 
Byte (BCB) is added as the first character of each block transmitted. 
The BCB, in additional to control information, contains a module 16 
blCJCk sequence count. This count is maintained and verified by both the 
sending and receiving systems to control lost or duplicated transmission 
blocks. 

In addition to the normal binary synchronous text control characters 
(STX, ETB, etc.) BUI.TI-LEAVING uses two of the BSC control characters, 
ACKO and NAK. ACKO is used as a "filler" by all systems to maintain 
communications when data is not available for ti:-a.usmission. NA K is used 
as the only negative response and indicates that the previous 
transmission was not successfully received .. 

A typical MULTI-LEAVING transmission block looks like this: 

DLE 
STX 
BCB 
FCS 
FCS 
RCB 
SRCB 
SCB 
DATA 
SCB 
DATA 
SCB 
RCB 
SRCB 
SCB 
DATA 
SCB 
RCB 
DLE 
ETB 

BSC Leader (SOH if no transparency feature) 
BSC Start-of-Text 
Block Control Byte 
Function Control Sequence 
Function Control Sequence 
Record Control Byte for record 1 
Sub-Record Control Byte for record 1 
String control Byte for record 1 
Character String 
String control Byte for record 1 
Character String 
Terminating SCB for record 1 
RCB for record 2 
SRCB for record 2 
SCB for record 2 
Character String 
Terminating SCB for record 2 
Transaission Block terminator 
BSC Leader (SYN if no transparency feature) 
BSC Ending Sequence 

MUL Tl-LEAVING Control Specification 

This section describes the bit-by-bit definitions of the various 
ftULTI-LEAVING control fields and includes notes concerning their use. 

BLOCK CONTROL BYTE (BCB) 

Binary Meaning 

r ••• Reserved (must be 1) 

.xxx Control information as follows: 
.000 - Normal block 
.001 •••• - Bypass sequence count validation 

Appendix A: ~ULTI-LEAVING Description 213 



Licensed Material - Property of IBM 

.010 cccc - Reset expected block sequence count 
to "cccc" 

.011 - Reserved for future use 

.100 - Reserved for future use 
.101 - Not used 
.110 - Not used 
.111 - Reserved for future use 

•••• cccc ftodule 16 block sequence count 

214 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IB~ 

FUNCTION CONTROL SFQU!NCE 

r • • • r ••• . ... 
• o •• 
• 1 •• 

•• rr •• rr 

• 1 •• 

1 ••• 

···~ .1 .• ···~ ~-·· 

•••• •• 1 • •••••••• 

••••••• 1 •••••••• 

• • • • • • • • • • • • 1 • •• 

• • • • • • • • • • • • • 1 • • 

• • • • • • • • • • • • • • 1. 

• • • • • • • • • • • • • •• 1 

Reserved (must be 1 ••••••• 1 ••••••• ) 

Normal state 
Suspend all stream transmission (WAIT-A-BIT) 

Reserved for future use 

Remote console stream identifier 

Function stream identifier for: 
RJE input stream number 1 
RJE print stream number 1 
NJI/NJE job transmission stream number 1 

Function stream identifier for: 
RJE input stream number 2 
RJE print stream number 2 
RJE punch stream number 7 
NJI/NJE job transmission stream number 2 
NJI/NJE SYSOUT transmission stream number 7 

Function stream identifier for: 
RJE input stream number 3 
RJE print stream number 3 
RJE punch stream number 6 
NJI/NJE job transmission stream number 3 
NJI/NJE SYSOUT transmission stream number 6 

Function stream identifier for: 
RJE input stream number 4 
RJE print stream number 4 
RJE punch stream number 5 
NJI/NJE job transmission stream number 4 
NJI/NJE SYSOUT transmission stream number 5 

Function stream identifier for: 
RJE input stream number 5 
RJE print stream number 5 
RJE punch stream number 4 
NJI/NJE job transmission stream number 5 
NJI/NJE SYSOUT transmission stream number 4 

Function stream identifier for: 
RJE input stream number 6 
RJE print stream number 6 
RJE punch stream number 3 
NJI/NJE job transmission stream number 6 
NJI/NJE SYSOUT transmission stream number 3 

Function stream identifier for: 
RJE input stream number 1 
RJE print stream number 7 
RJE punch stream number 2 
NJIJNJE job transmission stream number 7 
NJI/NJE SYSOUT transmission stream number 2 

Function stream identifier for: 
RJE punch stream number 1 
NJIJNJE SYSOUT transmission stream number 2 

Appendix A: MULTI-LEAVING Description 215 



Licensed ftaterial - Property of IBft 

RECORD CONTROL BYTE (RCB) 

0000 0000 

iiii iiii 

1001 0000 

1010 0000 

1100 0000 

1101 0000 

1110 0000 

1111 0000 

1001 0001 

1iii 0001 

1001 0010 

1iii 0010 

1iii 0011 

1iii 0100 

1iii 01 01 

1iii 0110 

1iii 0111 

1iii 1000 

1iii 1001 

1001 1010 

1iii 1010 

1001 1011 

1iii 1011 

1iii 1100 

1iii 1101 

1iii 1110 

1iii 1111 

Hex !leaning 

00 End-of-block 

01-8F Reserved for future use 

90 Request to initiate function 
(SRCB=RCB of function) 

AO Permission to initiate function 
(SRCB=RCB of function) 

CO Acknowledqe of transaission complete 
(SRCB=RCB of function) 

DO Not used 

EO BCB sequence error 

FO General control record 

91 RJE console messaqe 

A1-F1 Reserved for future use 

92 RJE operator coamand 

A2-F2 Reserved for future use 

93-F3 RJE input record 

94-F4 RJE print record 

95-PS RJE punch record 

96-F6 Data set record 

97-F7 Terminal message routing request 

98-F8 NJI/NJE input record 

99-F9 NJI/NJE SYSOUT record 

9A NJI/NJE operator command/message 

AA-FA Reserved for future use 

9B Reserved 

AB-PB Reserved for future use 

9C-PC Reserved for future use 

9D-PD Not used 

9E-PE Not used 

9P- FF Not used 

* i denotes a position whose value (1 or 0) depends on the 
hexadecimal value within the range in the column labelled "Hex." 

216 IBft Vft/370: RSCS Networking Logic 



Licensed Material - Property of IB~ 

SUB-RECORD CONTROL BYTE (SRCB) 

00 

90 

AO 

BO 

co 

EO 

FO 

91 

92 

93-F3 

95-FS 

96-P6 

97-F7 

98-F8 

SRCB 

None 

RCB of function to be initiated 

RCB of function to be initiated 

RCB of function to be cancelled 

RCB of function which is complete 

Expected count (received count is in BCB) 

An identification character as follows: 
A = Initial RJE SIGN-ON 
B = Final RJE SIGN-OPP 
c = Print initialization record 
D = Punch initialization record 
E = Input initialization record 
F = Data set transmission initialization 
G = System configuration status 
H = Diagnostic control record 
I = Initial network SIGN-ON 
J = Response to initial network SIGN-ON 
K = Reset network SIGN-ON 
L = Accept (concurrence) network SIGN-ON 
M = Add network connection 
N = Delete network connection 

o-R = Beserved for future use 
s-z = Unused 

1000 0000 (1 1 80 1 ) 

0000 0000 (1 1 00 1 ) if VSE/POWER EOP record 

1000 0000 (X 1 80 1 ) 

1110 1001 (X 1 E9 1 ) if VSE/POWER PSTOP LINE 
0000 0000 (1 1 00 1 ) if VSE/POiER EOF record 

1000 0000 (X 1 80 1 ) 

1000 0001 (1 1 81 1 ) if VSE/POWER 
0000 0000 (X'00 1 ) if VSE/POWER EOF record 

carriage control information as follows: 

command 

1010 OOnn - Space immediately "nn" spaces (not used) 
1011 cccc - Skip immediately to channel "cccc" (not used) 
1000 OOnn - Space "nn" lines after print 
1000 1100 - Load printer PCB image 
1001 cccc - Skip to channel "cccc" after print 
1000 0000 - Print and suppress space 

1000 0001 (1 181 1 ) if VSE/POWER 
0000 0000 (1 1 00 1 ) if VSE/POWER EOF record 

1000 1111 (X 1 8F 1 ) 

0000 0000 (X 1 00') if VSE/POWER EOF record 

Undefined 

Undefined 

NJI/NJE input control information as follows: 
1000 0000 - Normal input record 
1100 0000 - Job header 

Appendix A: !ULTI-LEAVING Description 217 



99-F9 

9A 

9B 

Licensed ftaterial - Property of IBM 

1110 0000 - Data set header 
1101 0000 - Job trailer 
1111 0000 - Data set trailer (not used) 

HJI/NJE SYSOUT control infor•ation as follows: 
10cc 0000 - Carriage control type as follows: 

1000 0000 - Bo carriage control 
1001 000 - Machine carriage control 
1010 0000 - ASA carriage control 
1011 0000 - Reserved for future use 

11cc 0000 - Control record as follows: 
1100 0000 - Job header 
1110 0000 - Data set header 
1101 0000 - Job trailer 
1111 0000 - Data set trailer (not used) 

1000 ssOO - Spanned record control as follows: 
1000 0000 - Normal record (not spanned) 
1000 1000 - First segaent of spanned record 
1000 0100 - ftiddle segment of spanned record 
1000 1100 - Last segment of spanned record 

1000 0000 (X 1 80') 

1000 0000 (1 1 80 1 ) 

STRING CONTROL BYTE (S CB) 

Binary 

0000 0000 

100b bbbb 

101d dddd 

11cc cccc 

End-of-record 
At first SCB, this also indicates end-of-file 

"bbbbb" blanks are to be inserted 

The single character following this SCB is to be 
duplicated "ddddd" times 

The "cccccc" characters following this SCB are to be 
inserted 

218 IBft VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

Appendix B: RSCS Preioader Utiiity Under CMS 

The preloader (part of RSCS Networking) is a utility program that runs 
under CMS. It collects text files and reformats them into a single text 
file that can be dynamically loaded by the RSCS loader. It resolves 
external references and performs preliminary relocation of address 
constants. Its function is similar to that of a linkage editor, but its 
output is in standard text file format and does not include multiple 
CSECTs. 

Line drivers and other programs to be loaded as RSCS tasks may be 
developed as multiple separate assembly modules which externally 
reference one another; the assembled text files may be merged into a 
single RSCS loadable text file by the preloa.der under CMS. The 
preloader is invoked as an ordinary CMS utility routine: 

PRELOAD loadlist [control] 

'loadlist' specifies the filename of an EXEC file which must reside on 
the caller's A-disk. Each record of this file contains the filename, 
and optional filetype, of a text (object) file to be used as preloader 
input. •control' specifies the filename of a CNTRL file which must also 
reside on the caller's A-disk if it is specified. The format and 
interpretation of this file are the same as for the VM/370 VMFLOAD 
utility. If a load list entry includes a filetype, that filetype is 
used to identify the input file. Otherwise, if a control file is 
specified, input file identifiers are constructed using the filename 
from the load list entry and a filetype of the form 'TXT •••• • The 
highest control level identifier for which a file can be located on the 
caller's accessed disks is used, If no filetype is included in a load 
list entry and no control file is specified, a default filetype of TEXT 
is used. Input files are located by a scan of all the caller's disks in 
their access order .• 

Note: PRELOAD is not to be used to generate the RSCS nucleus. 

The preloader output consists of two files, one with a filetype of TEXT, 
the other of filetype ~AP, both with the same filename as that specified 
for the input load list. If either of these files already exists on the 
caller's A-disk, the old file is replaced by the new output file .• 

The output TEXT file is the merged and linked copy of the input files. 
The first CSECT or private code section in the input becomes the 
composite (single) output section; its length is the sum of all input 
section lengths (rounded up to doubleword multiples between sections for 
proper section alignment) • For the output ESD, subsequent CSECTs are 
made into entries (RLDs), and subsequent private code sections are 
disregarded. External references are included in the output ESD only if 
they remain unresolved. 

Input TIT records of non-zero length are relocated and written to the 
output file. The output RLD is a translated and relocated collection of 
all input RLD records.. The output END card does not specify any entry 
point, section length, or other code. No sorting is done by the 
preloader. In general, each output ESD, TXT, and RLD entry appears in 
the same order as the input entry from which it vas translated. 

ADCON and VCON fields are relocated within their TXT records. ORG 
statements that cause relocatable constant fields to overlay or to be 
overlaid may cause results that differ from results obtained with a 
loader that completes TXT data loading prior to relocating ADCONs and 

Appendix B: RSCS Preloader Utility Under C~S 219 



Licensed Material - Property of IB f! 

VCONs. 

The output MAP file is a printable record of the preloader processing, 
similar to a load map. The first line of the map specifies the output 
text file name, its residence volume label and virtual device address, 
and the date and time of file creation. The next section of the map is 
a listing of the control file used, if one was specified. The remainder 
of the map consists of a sequence of input file sections, one for each 
input file in processing order. 

The first line of a map input section specifies the input file's 
filename, filetype, filemode, residence volume label and virtual device 
address, and the file creation date and time. (If the input file was 
located on a disk accessed as a read-only A-disk extension, the file­
mode, volume label, and virtual device address of the A-disk are 
listed.) If the input file data contains invalid records, the preloader 
writes them in the map sequentially following the input file identifica­
tion line. ?he VM/370 VMFASH utility enters such "invalid" records in 
text files to specify the updates and macro libraries used in assembly. 
Following these records, the input file's ESD is listed, including 
control sections and entries with their relocated addresses, duplicate 
external symbols, and unresolved external references, if any. The first 
control section in the input specifies the output control section name; 
the output section length is included on this ESD map entry. 

The preloader does not actually load its input modules into storage 
before generating its output section, but rather interprets, transla·tes, 
and relocates its input text files on a two-pass record by record basis. 
This approach requires that for each TXT record of a particular .input 
control section, each ELD entry (one for each ADCON and VCON) which lies 
within that control section must be scanned to determine if it lies 
within the TXT record data. As a result, the preloader processing time 
has a component proportional to both the total number of TXT records and 
the total number of RLD entries for each input control section. Roughly 
stated, this means that when a particular input control section grows 
sufficiently large, the time required to process it becomes proportional 
not to the input control section size, but to the squar~ of that size. 
This effect is significant when a large text file previously generated 
by the preloader is used as preloader input. In this case, much more 
CPU time may be required to reprocess the preloader output than was 
required to generate it in the first place, because several smaller 
control sections have been merged into a single large control section. 
This kind of program behavior can be expected, and does not indicate a 
malfunction. 

INTERNALS 

The preloader begins by reserving a large block of virtual free storage 
using D!SFREE. This block is used to build a list of control filetypes; 
a table of input file names, the Input File Table (IFT); a composite 
External Symbol Table (EST); chains of elements reflecting RLD entries; 
and a chain of elements reflecting relocatable constant fields which 
span a boundary between TIT records,. MAINTOP internally allocates 
storage from the top of the storage block for table entries. MAINBOT 
internally allocates storage from the bottom of the block for chain 
elements. 

INICNTRL reads and interprets the specified control file, and stacks a 
list of default filetypes at the bottom of storage for use in locating 
input files. IFTBOILD builds the IFT by reading the specified input 
load list file, and where no filetype is specified, attempting to locate 
the appropriate input file using filetypes from the control list in 

220 IBM VK/370: RSCS Networking Logic 



Licensed Material - Property of IBK 

repeated calls to the CMS STATE function. When the IFT is completely 
built, the control list storage is released for reuse. The IFT is used 
by INGET, the input read routine, to define the input sequence. A call 
to INGET returns the next sequential record from the input and the 
address of the active IFT entry, automatically switching files on 
end-of-file. 

ESTBUILD calls INGET to read input records, passing control to DOESD 
when an ESD record is read, and to DORLD when an RLD record is read. 
Both DOESD and DORLD return control to ESTBUILD upon completion of 
record processing. When ESTBUILD encounters an END card, the remaining 
file input is flushed, and processing continues with the next file. All 
other input records are ignored. When the end of the last input file is 
reached, ESTBUILD passes control to GENERATE. 

DOESD adds an entry to the EST for each ESD record entry encountered. 
When DOFSD generates a new EST entry, a complete scan of the existing 
table is made for matching name entries.. When matches are found, 
external references are resolved, synonyms are chained (for PRs and 
CMs) , or duplicate name definitions are flagged as error conditions, 
depending on the types and statuses of the two entries. A common 
routine, SELECTYP, is used to decode ESD types. SELECTYP accepts an EST 
entry as input, and returns control at a fixed four-byte multiple 
displacement for each EST type group (SD-PC; LD; ER-WX; PR-CM; invalid). 

DORLD builds an RLD chain element for each RLD record entry encountered. 
The SD or PC EST entry for the section in which the referenced 
relocatable constant is positioned is located, and the new RLD element 
is entered at the end of its position ID chain. The EST entry to vhich 
the RLD element is relative is siailarly located, and the nev RLD 
element is also entered at the end of its relative ID chain. 

GENERATE scans sequentially through the EST, processing each entry. The 
total output section length is accumulated from SD and PC entry lengths, 
and output addresses for SD, PC, and LD entries are set to their 
cumulative displacements. The output ESD IDs are generated and set for 
unresolved ER and WI entries. (The first SD or PC entry encountered is 
marked as the •pri•e• section entry, and its output ESD ID is generated 
and set as well .• ) For each LD entry, the SD or PC entry for the section 
in which the LD is positioned is located, the LD entry is chained to it, 
and the LD's relocated address is generated and set using the section's 
position relocation constant. For each uncompiled PR or CM entry, an 
output ESD ID is generated and set, the maximum length (and, for PRs, 
the maximum alignment) is established and set, synonym relative ID RLD 
chains are merged, and each entry on the synonym chain is marked 
"compiled". The cumulative output section length is saved for use as 
the prime (output) control section length. 

RELOCATE sequentially scans through the EST, and for each resolved entry 
the position ID and relative ID RLD chains are relocated by adjusting 
each position ID element's constant address field, and storing the 
relative relocation constant in each relative ID element. For each 
unresolved EST entry (all uncompiled PRs and CMs, and unresolved ERs and 
WXs) , the output ESD ID of the EST entry is stored in each RLD element 
of its relative ID chain, and each such RLD element is flagged as 
unresolved. 

ESDWRITE starts the output text file generation. An interim file with 
the output filename and a filetype of PRELOAD is used for output 
generation. If such a file already exists it is erased, and the new 
output text file is built. The EST is sequentially scanned, and output 
ESD records are built and written using the EST information. The prime 
section entry is completed by setting its length to the cumulative 
output section length and its address to its displacement (zero), and it 
is entered in the output as an SD or PC. Other SDs are transformed to 

Appendix B: RSCS Preloader Utility Under CMS 221 



Licensed Material - Property of IB" 

LDs for output, and other PCs are ignored. LDs are simply entered as 
LDs in the output. Unresolved ERs and WXs and uncompiled PRs and CMs 
are included in the output, and other EST entries are ignored. When 
output generation is complete, if a file already exists with the output 
filename and a filetype of TEXT, it is erased, and the output PRELOAD 
file is renamed to a filetype of TEXT. 

TXTWRITE rereads the entire input sequence from the beginning. When the 
first record of an input file is read (at TXTGET), MAPFILE is called to 
generate and write a map file line describing the input file. When a 
record which does not begin with X'02' is encountered, the record is 
written unmodified to the map file, and is otherwise ignored. When a 
TIT record vith non-zero data count is read prior to the first END 
record for a particular file, it is translated, relocated, and written 
to the output as described below. All other input records (e.g .• , ESD, 
RLD, SLC) are ignored. When an input end-of-file is read, TXTWRITE 
calls MAPEOF, which formats the file's EST entry and writes it to the 
map file. If MlPEOF encounters duplicate external symbols or unresolved 
external references, they are included in the ESD map with the 
appropriate descriptive note, and a preloader status flag is set 
reflecting the presence of a duplicate or unresolved external symbol. 

For each valid TXT record, the EST entry for the section in which the 
TXT data is positioned is located. The TIT record's position address is 
relocated using its section's position relocation constant, and its 
position ID is set to the prime section's output ESD ID. The section's 
position ID RLD element chain is then scanned for elements specifying 
relocatable constants within the TXT record's data. Each constant field 
entirely within the TXT record's data is relocated with the RLD 
element's relocation constant, provided that the RLD element is not 
marked "unresolved". 

If a relocatable constant field lies only partially within the TXT 
record's data, the output TXT record is adjusted to exclude the overlap 
field, and a call is made to TXTFIX. This routine records the partial 
field data in an •overlap element• on a chain in storage, along with the 
address of its associated RLD element. When a previously chained 
overlap element specifying the same RLD element is encountered, the new 
overlap data is merged with the old, and the overlap element is marked 
for output. When the end of the RLD element chain is reached, a test is 
made to see if an overlap element is ready for output. If so, a new TXT 
record is generated containing only the relocated constant field which 
spanned TIT records, and is written to the output file. The relocated 
(and, perhaps adjusted) TIT record is then written to the output file. 

RLDWRITE sequentially scans the entire EST for SD and PC sections. For 
each such entry, the position ID RLD chain is scanned, and each RLD 
entry on the chain is used to generate an output RLD record entry. Each 
RLD position ID is set to the prime section's output ESD ID. For 
resolved RLD entries, the relative ID is set to the same and the flag is 
set to address type, and for unresolved entries the output ESD ID 
contained in the RlD chain element is used as the relative ID. For CXD 
entries, the relative ID is set to zero. The RLD address field has been 
relocated by RELOCATE and is used as is. 

ENDWRITE writes a simple END record to output. FINIS performs final 
output file processing (already described), releases the main storage 
block using DMSFRET, issues a diagnostic message if duplicate or 
un:cesolved external symbols were encountered, and returns control to 
CMS. 

222 IBM VM/370: RSCS Networking Logic 



Licensed Material - Property of IBM 

Index 

accounting 54 
alert elements 176 
ALERT interrupt 23 
alternate path facility 14 
asynchronous 

exit 27, 66 
queue element (l SYNE) 1 IJ6 

interrupt 27 
queue pointers 139 

l~S svstem service task 29 
control flow diagram 123 

BALRs 114 
batch job, CMS 11 
batch systems, host 15 
block control byte (BCB) 213 
blocking teleprocessing buffers 

NCI! 99 
POW 66 
SML 60 

CHANGE command alert element 188 
character strings 212 
CLOSE command alert element 185 
CMS 

batch job 11 
commands 16 
file, access work area 147 

COMDSECT table contents 150 
command alert elements 

for commands processed by DMTlIS 184 
CHANGE 188 
CLOSE 185 
initialize acceptor 189 
ORDER 185 
PURGE 185 
recorder alert elements 184 
TRANSFER 187 

processed by line drivers 190 
command 

CMS 16 
CP 16 
handling Q9 
header formats 200 
input 

from local RSCS operator 54 
remote system 51 
remote workstation 51 

line driver alert elements 52 
local 

execution 51 
from NJE/NJI systems 52 

operator 16 
processing 28, 99 
processor 

NJI 98 
POW 72 

SML 59 
VMB 92 
VMC 95 

request element 51, 177 
routing 30 
routing request element 177 

common routine vector table (COl!DSFCT) 
address 1Q5 

communicating with the VM/370 spool file 
system 30 

communication between host systems 96 
configuration 37 
control 

blocks 1Q6 
flow diagrams 120 

AIS system service task 123 
multitasking supervisor 121 
NJI line driver task 126 
NPT line driver task 125 
POW line driver task 129 
REI system service task 122 
SML line driver task 124 
VMB line driver task 127 
VMC line driver task 128 

network 16 
program 

RSCS 21 
VPl/370 13 

records 35 
non-FSCS 37 

CP commands 16 
create system tasks 28 
CTR 70 

data area aids 135 
data areas 135, 146 
data block format, packed 86 
data flow 

NJI 97 
POW 64 
Sl!L 58 

data handling, VMB 89 
data records 35, 36 
data relay facility 11 
deblocking teleprocessing buffers 

NCM 99 
POW 66 
SML 60 

dequeuing I/O requests 35 
DIAGNOSE 18, 19 
diagnostic aids 202 
directory, dynamic 19 
directory, module 130 
disk format, system 39 
dispatching 22 
Dl!TAKE 130 
DK TASK 130 
DMTASY 130 

Index 223 



DMTAXA 130 
DMTAXft 131 
DM'l'CfU 131 
DMTCOM 131 
DMTCRE 131 
DMTDSP 131 
D MTEtT 131 
DMTGIV 131 
DMTINI 131 
DftTIOM 131 
DMTIRX 131 
DMTLAX 131 
DMTMGX 131 
DMTMIN 131 
DMTMSG 131 
DMTNCM 131 
DMTNHD 131 
DMTNHD917I 100 
DMTNIT 131 
DP.ITNJI 131 
DMTNPT 131 
DMTNPT144I 
DMTNPT145I 
DMTNPT146I 
DMTNPT147I 
DMTNPT 190E 
DMTNPT9 34E 
DMTPOW 131 
DMTPOW 1441 
DMTPOW1451 
DMTPOW 1461 
DMTPOW147I 
DMTPOW 170I 
DMTPOW531I 
DMTPOW902E 

81 
81 
77 
79 
78 
81 

70, 71 
70 
68 
69 
71, 72 
72 
68 

D PITPOW9 OSI 
DMTPOW940E 
DMTPOW92'1E 
DMTPOW9 42E 
DMTPOW943E 
DMTPOW944I 
DMTPRE 131 
DMTPST 131 
DMTQRQ 131 
DftTREX 131 
DMTRGX 131 
DMTRGX170 51 
DMTRGX171 52 
DPJTSIG 132 
DMTSML 132 
DftTSML 1461 61 
D r!TSML 1471 62 
DMTSTO 132 
DMTSVC 132 
DMTVEC 132 
DMTVMB 132 
DMTVMB1411 
DMTVMB 1441 
DftTVMB1451 
DMTVMB146I 
DftTVMB1471 
DMTVMB 1481 
DMTVMB611I 
DMTVMC 132 
DMTWAT 132 

67 
68 
72 
72 
72 
71 

87 
90 
90 
89 
89 
89 
89 

224 IBM VM/370: RSCS Networking Logic 

Licensed ~aterial - Property of IBM 

DMTxxx 149I 96 
dynamic 

directory 19 
loader 37 

exits, asynchronous 27, 66 
external interrupt 35 

file 
handling 13, 40 
receiving 44 
request element 181 

FREE queue element (P'REEE) 151 
FREEQ queue 136 
function control sequence (FCS) 212. 215 

GIVE/TAKE 
task-to-task communication 23 
transaction 24 
waiting for requested services 26 

GIVE 
element queue, location 140 
queue element 51, 151 
request 23 
request buffer 23 
request table in GIVE/TAKE requesting 
task 152 

response buffer 23 
table 23 

header record processing 99 
hierarchy task 23 
host batch systems 15 

I/O 
elements, queing 34 
interrupt 35 

handling 34 
management 32 
manager 35 
operation 32 

starting 34 
queue 33, 34 

organization 138 
request table, in requesting task 

(I OTABI.E) 154 
request 

dequeuing 35 
handling 33 
queue element (IOE) 153 

synch lock 25 
initialization ~8 

line driver task 56 
NJI 100 

initialize acceptor alert element 189 
input commands 

from local RSCS operator 54 
from remote station 51 
from remote system 51 



Licensed Material - Property of IBM 

interrupt 
ALERT 23 
asynchronous 27 
external 35 
handling 35 
I/O 34, 35 
special message 35 
SVC 35 

issuing messaqes 
to local users 53 
to the RSCS operator's console 53 

LAX task 29 
line alert element 183 
line allocation, managing 32 
line driver 

command alert element 52 
BACKSPAC, FWDSPACE 192 
COMMAND, MSG, MESSAGE 194 
DRAIN, FRFE, HOLD, START, TRACE 190 
FLUSH 193 

functions 54 
loading 55 
messages, issuing 54 
NJI 96 
NPT 76 
POW 64 
SML 57 
task 32 

descriptions 29 
initialization 56 
purpose 21 

VMB 82 
VMC 94 

line handlinq, VMB 87 
line protocol 

MULTI-LEAVING 15 
line transactions, VMB 85 
line transmissions, RSCS to VSE/POWER 73 

commands 74 
initiation of 74 
signon procedure 73 
stop procedure 75 
text in both directions 76 
text in one direction 75 

link 12, 14 
activation 55 
remote system 14 
table 14, 54 

entry (LINKTABl) 155 
location 141 

linkid (link identifier) 14 
loader 37 
loading the line driver 55 
local execution commands 51 
locating a file on the system disk 41, 42 
locid (location identifier) 14 

machine-defined low storage 165 
MAINMAP 38 

location 135 

map, storage 38 
message 

directory 204 
during command execution 52 
forwarding on links 53 
handling 49 
header formats 200 
input, remote system 51 
issuing to local RSCS operator's console 

53 
issuing to local users 53 
line driver issued 54 
processing 30, 99 
receiving from local users 54 
request element 178 

from NJE/NJI messages 52 
routinq 30 

request element 177 
MLX records 70, 157 
module directory 130 
module functions 101 
!SUP (multitasking supervisor) 21 

control flow diagraa 121 
MULTI-LEAVED data streams 212 
MULTI-LEAVING 211 

control specification 213 
line protocol 15 

NC! 
function processors 98 
function selector 97 
I/O handler 98 
teleprocessing buffers 99 

network 
accounting card format 160 
connection, control records 195 
control 16 
data set header record format (NDHDSECT) 

198 
header processor 99 
job header record format (NJHDSECT) 196 
job trailer record format (NJTDSECT) 

197 
sample 12 

NJE (network job entry) 11 
NJI (network job interface) 11 

data flow 97 
header formats 195 
initialization 100 
line driver 96 

control flow diagram 126, 127 
NC!! 98, 99 

node 12 
nondispatchable task 26 
nonprogrammable 

NPT 

remote stations 14 
remote terminals 76 

file receive 79 
file send 77 
line driver 76 

control flow diagram 125 

Index 225 



operator commands 16 
ORDER command alert element 185 
overview 12 

packed data block format 86 
port table 161 
posting a synch lock 26 
POW 

command processor 72 
control record processor 67 
function selector 65 
line driver 6 4 

control flow diagram 129 
line I/O manager 65 
message handler 72 
processors 64 
receiving files 69 
sending files 68 
teleprocessing buffers 66 

preloader utility 219 
preparation 19 
problem determination 20 2 
processor, command 

NJI 98 
POW 72 
S.ML 59 
VMB 92 
VMC 95 

program check manager 39 
program checks, handling 30 
program organization 101 
programmable remote stations 15, 57 
PURGE command alert element 185 

queue element storage area 136 

receiving 
a file from a local virtual systea 44 
a file from a remote system 44 
messages from local users 54 

record control byte (RCB) 212, 216 
records 

control 35 
non-RSCS 37 

data 35 
header, processing 99 
spool tag 36 

remote 
stations 

nonprogrammable 15 
programmable 15, 57 
supported by RSCS 15 

system 
command and message input 51 
links 14 
routes 14 
supported by PSCS 15 

terminals 
nonprograamable 76 
programmable 15, 57 

workstation, command input 51 
reorder alert element 184 

226 IBM VM/370: RSCS Networking Logic 

Licensed Material - Property of IBM 

request elements 23, 176 
processed by D~TFEI 177 

command request element 177 
command/message routing request 
element 177 

file request element 181 
line alert element 183 
message request element 178 
restart terminate request element 

179 
terminate request element 179 
timer request element 180 

routing 51, 52 
response elements 23 
restart terminate request element 179 
REX system service task 29 

control flow diagram 122 
route table 14 

entry 162 
location 142 

routes 14 
routing 

commands 30 
information 14 
messages 30 
request element 51, 52 

RSCS 
control program 20 
DIRECT 14, 19 
tag record format 36 

RTP (remote terminal processor) 15 

sample network 12 
sending a received file 

Sl'IL 

to a local virtual system 45 
to a remote node 46 

command processor 59 
function selector 60 
line driver 57 

control flow diagram 124 
line I/O manager 59 
processors 58 
receiving files 62 
sending files 61 
teleprocessing buffers 60 

special message interruption 35 
spool 

buffer, linkage 36 
file 35 
page buffer format 163 
tag record 36 

starting an I/O operation 34 
startup 37 
stations 

nonprogrammable remote 15 
programmable remote 15 
remote 

supported by RSCS 15 
storage map 38 
store and forward 49 

flag 37 
string control byte (SCB) 212, 218 
sub-record control byte (SRCB) 217 



Licensed Material - Property of IBM 

subroutine functions 101 
supervisor routines, common 30 
SVC interrupt 35 
SVECTORS 135 

low storage definitions 165 
table, contents 166 

switchable ports (TPORTS) location 143 
synch lock 25 

multiple 26 
posting 26 

synchronization, task 22 
system 

disk 14 
format 39 
locating a file 41, 42 

re!!!.otei supported by FSCS 15 
task 

table 

creating 28 
terminating 30 

link 14, 54 
entry (LINKTABL) 155 
location 141 

route 14 
entry 162 
location 142 

Tag queue data (TAGAR EA) 169 
TAG queue element for RSCS spool file 170 
TAGSLOT queue location 144 
TAKE request table in GIVE/TAKE requested 

task 172 
tanks 173 
task-to-task communication 22 

ALERT method 27 
GIVE/TAKE 23 

task 21 
creating 28 
descriptions 28 

AXS 29 
LAX 29 
line driver 29, 32 
REI 29 

dispatching 22 
hierarchy 23 
initialization: line driver 56 
initiation 21 
line driver 32 
management 21 
nondispa tchable 26 
queue element (TASK~ 174 
queue location 137 
save area (TAREA) 175 
synchronization 22 
system service 21 
system, terminating 30 

TCT (task control table) 60, 65 
telecommunications buffer 164 

teleprocessing buffers 
NCM 99 
POW 66 
SML 60 

terminal 
nonprogrammable remote 15 
programmable remote 15, 57 

terminate request element 179 
terminating system tasks 30 
timer request element 180 
TRACE 

command 20 2 
log 209 

TRANSFFR command alert element 187 
transmission 

blocks 212 
data integrity 213 
error retry, VMB 84 
sequences, V~B 82 

transmitting VM/370 spool files between 
VM/370 systems 

via bsc lines 82 
via CTCAs 94 

virtual machine 13 
virtual storage 

management 37 
minimum required 13 

VM/370 spool file system, communicating 
with 30 

VM/370 spool file, transmitting between 
Vfl!/370 systems 

V!!B 

VMC 

via bsc lines 82 
via CTCAs 94 

control processing 92 
data handling 89 
I/O management 93 
line driver 82 
line handling 87 
line transactions 85 
protocol 82 
transmission error retry 84 
transmission sequences 82 

command receipt 95 
command transmittal 95 
control 94 
input file formatting 95 
line driver 9 4 

control flow diagram 128 
message receipt 95 
message transmittal 95 
receiving a spool data block 95 
trace sum routines 96 

VMCF (Virtual ~achine Communications 
Facility) 35 

VSE/POWER 64 

Index 227 



Licensed Material - Property of IBM 
L Y24-5203-0 

----------... _ ..... _ 
- - -------------~ - · -® 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N. V. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N. V., U.S. A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N. V., U.S. A. 10601 

:D 
CJ) 
(') 
CJ) 

z 
CD 

i" 
0 ... 
~ 
:J 

<C 

l 
o 
<C c;· -:!1 
a> 
z 
0 

CJ) 
w 
-...i 
0 
I 
w 
0 -
""C 
:::!. 
:J -CD c. 
:J 

c 
CJ) 

)> 

' -< 
I\) 

~ 
I 

01 
I\) 

0 
w 
I 

0 



Licensed Material-Property of IBM 

IBM Virtual ~.fachine Facility/370: Remote Spooling 
Communications Subsystem Networking Logic 
Order No. L Y24-5203-0 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. This form may be used to communicate 
your views about this publication. They will be sent to the author's department for 
whatever review and action, if any, is deemed appropriate. Comments may be written 
in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation whatever. You may, of course, continue 
to use the information you supply. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Pi ease direct any requests for copies of pubiicaiions, or for assistance in using 
your IB..\1 system, to your IB .. 'A,! representative or to the /Rlt! branch office serving your 
locality. 

• 

• 

Does the publication meet your needs? 

Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

D 

D 
D 
D 
D 
D 

D 
D 
n 
L-...1 

No 

D 

D 
D 
D 
D 
D 

As an instructor in class? 

As a student in class? 

As a reference manual? 

D 
D 
D 

If you would like a reply, please supply your name and address on the reverse side of this 
form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

COMMENT 
FORM 



Licensed Material - Property of IBM 
L Y24-5203-0 

Reader's Comment Form 

Fold and tape Please Do Not Staple Fold and Tape 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

International Business Machines Corporation 
Department G60 
P. 0. Box 6 
Endicott, New York 13760 

First Class 
Permit 10 
Endicott 
New York 

.................................................................................................................................................................................................. .1 
Fold Fold 

If you would like a reply, please print: 

Your.Name----------------------------------------------------------------------------
Company .Name ---------------------------------------- Department _____ ___ 

Street Address ---------------------
City ________________________ _ 

-~- ~ ---.- ---
State------------- Zip Code-----~­

IBM Branch Office serving you --------------------- --- --~ ----- - - ----- ----- --_ _..... - . -
® 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N. Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U.S. A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N. Y ., U. S. A. 10601 

I 

-J1 
co 
z 
0 

en 
w 
""" 0 
I w 

0 -
""O 
~­
:::> -CD 
c. 
:::> 

c 
en 
)> 

r 
-< 
I\) 

~ 
I 

01 
I\) 

0 w 
I 

0 




