

Systems

)

File No. S370-39
Order No. GC20-1819- 2

I BM Virtual Machine
Facility /370:
eMS User's Guide

Release 6 PLC 1

Contains general information and examples for
using the Conversational Monitor System (CMS)
component of I BM Virtual Machine Facility/370
(VM/370).

This publication is written for applications
programmers who want to learn how to use
CMS to create and modify data files (including
VSAM data sets) and programs, and to
compile, test, and debug OS or DOS programs
under CMS.

The CMS Editor and EXEC facilities are described
with usage information and examples.

Prerequisite Publications

IBM Virtual Machine Facility/370: Terminal
User's Guide, Order No. GC20-1810
IBM Virtual Machine Facility/370: Introduction,
Order No. GC20-1800

--..- ~ ----- ----- ----- -. _ -- - - ----==-='='= ®

TlIis is a major revision of, and obsoletes, GC20-1819-1 with Technical
Newsletter GN25-0411. This edition applies to Release 6 PtC 1 (Program
Level Change) of IBM Virtual Machine Facility/37C, and to all sutsequent
releases unless otherwise indicated in new editions or Technical
Newsletters.

Technical changes and additions to text and illustrations are indicated
ty a vertical bar to the left of the change~

Changes are periodically made to the information herein; before using
this publication in connection with the operation of IBft systems,
consult the latest !~~ ~l§!~!LJl~ ~i~liQg£!Ehl, Order No. GC20-0001, for
the editions that are aIplicable and current.

Publications are not stocked at the address given below; requests for
copies of IBft publications should be made to your IBft representative cr
to the IBM tranch office serving your locality.

A form for readers' comments is provided at the back of this
pablication. If .the form has been relloved, comments may be addressed to
lEI! Corporaticn, Vft/370 Publications, Dept. D58, Bldg. 706-2, P.O. Box
390, poughkeepsie, New York 12602. IBI! may use or distribute any of the
information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use
the informaticn you supply.

© Copyright International Business Machines Corporation 1976, 1977,
1979

/

(

1\

Pg. of GC20-1819-2 Rev Barch 30, 1979 by Supp. SD23-9024-1 for 5748-118

This publication is intended for the
general CMS user. It contains information
describing the interactive facilities of
CMS, and includes examples shoving you how
to use CftS.

"Part 1. Understanding CMS" contains
sections that describe, in general terms,
the CftS facilities and the CMS and CP
com.ands that you can use to control your
virtual aachine. If you are an experienced
programmer who has used interactive
terminal systems before, you may be able to
refer directly to the VM/JIQ: ~~~ COm!~~g
~D~ A§££g R~!~!~£~ publication to find
specific details about CMS co.mands that
are summarized in this part. Otherwise,
you .ay need to refer to later sections of
this publication to gain a broader
background in using CMS. The topics
discussed in Part 1 are:

• What It Means To Have a CMS Virtual
Machine

• VM/370-CMS Environllents and Bode
Switching

• What You Can Do with VM/370-CMS COllmands

• The CMS File System

• The CMS Editor

• Introduction to the EXEC Processor

• Using Real Printers, Punches, Readers,
and Tapes

"Part 2. Program Development Using CBS"
is primarily for applications progra •• ers
who want to use CMS to develop and test os
and DOS programs under CMS. The topics
discussed in Part 2 are:

• Developing OS programs Under eMS

• Developing DOS Programs Under CMS

• Using Access Method Services and VSAM
Under CMS and CMS/DOS

• How VM/370 Can Help You Debug Your
Progralls

• Using the CMS Batch Facility

• programming for the eMS Environment

"Part
detailed

3. Learning
information

To
on

Use EXEC"
creating

gives
EXEC

Preface

procedures to use with CBS. The topics
discussed in Part 3 are:

• Building EXEC Procedures
• Using EXECs with CBS Co.mands
• Refining Your EXEC Procedures
• Writing Edit Bacros

"Part 4. Learning To Use the HELP
Facility" contains descriptions and
examples of the use of HELP facility format
words in creating HELP description files.

"Appendix A: Summary of CftS Co.mands"
lists the commands available in the CftS
co •• and environment.

"Appendix B: Summary of CP Commands"
lists the CP command privilege classes- and
summarizes the co.mands available in the CP
cOllmand environment.

"Appendix C: Considerations for 3270
Display Terminal Users" discusses aspects
of V!/370 and CftS that are different or
unique when you use a 3270 display
terminal.

"Appendix D: Sample Terminal Sessions"
shows sample terminal sessions for:

• Using the CBS editor and CftS file system
commands

• Using line-number editing with the CftS
editor

• creating, assembling, and executing an
as program in CBS

• Creating, assembling, and executing a
DOS program in CBS/DOS

• Using access method services in CBS

Some of the following terms are used, for
convenience, throughout this publication:

• The term "CBS/DOS" refers to the
functions of CBS that become available
when you issue the command

set dos on

CBS/DOS is a part
system, and is not
Users who do not

of the normal CBS
a separate system.

use CBS/DOS are

Preface iii

I
I

I
I

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

•

•

•

•

•

•

•

•

•

•

iv

sometimes referred to as OS users, since I •
they use the as simulation functions of I
CMS.

"FB-512" refers to the IBM 3310 and 3310
Direct Access Storage Devices.

The term "CMS files" refers exclusivelY
to files that are in the fixed block
format used by CMS file system commands.
VSAM and as data sets and DOS files are
not compatible with the CMS file format,
and cannot be manipulated using CMS file
system cemmands.

The terms "disk" and "virtual disk" are
used interchangeably to indicate disks
that are in your CMS virtual machine
configuration. Where necessary, a
distinction is made between
CMS-formatted disks and disks in as or
DOS format.

"3270" refers to a series of display
devices, namely, the IBM 3215, 3216
Controller Display Station, and 3211 and
3218 Display Stations. A specific
device type is used only when a
distinction is required between device
types.

Information about display terminal
usage also applies to the IBM 3138,
3148, and 3158 Display Consoles when
used in display mode, unless otherwise
noted.

Any inf~rmation pertaining to the IBM
3284 or 3286 Printer also pertains to
the IBM 3287, 3288, and 3289 printers,
unless otherwise noted.

"3330" refers to the IBM 3330 Disk
Storage Models 1, 2, and 11, the IBM
3333 Disk Storage and Control Models 1
and 11, and the IBM 3350 Direct Access
Storage in 3330 compatibility mode.

"2305" refers to the IBM 2305 Fixed Head
Storage, Models 1 and 2.

"3340" refers to the IBM 3340 Direct
Access Storage Facility and the IBM 3344
Direct Access Storage.

"3350" refers to the
Access Storage device
native mode.

IBM 3350 Direct
when used in

Any information pertaining to the IBM
2141 terminal also applies to the IBM
3767 terminal, unless otherwise noted.

370x refers to the
Communications Controllers.

"3310" refers to the IBM
Access Storage Device.

"3310" refers to the IBM
Access Storage Device.

3104/3105

3310 Direct

3310 Direct

IBM VM/370: CMS User's Guide

For a glossary of VM/310 terms, see the
!!!~ Vi!:1Y~! 11~£!!in~ !~£!li1Ul10: GI222~!:I
~~~ ~~2!g£ I~gg!, GC20-1813. 

PREREQUISITE PUBLICATIONS 

If this is the first time you have used a 
computer terminal, you should consult the 
!~Ll1Q Ig£~i~~~ Q2g£~2 2~!g~, GC20-l8l0, 
for information on using your terminal. 

If your terminal is 
Communications Terminal, then 
Q~g£at2£~2 Q~!de, GA18-2000, 
prerequisite. 

a 
!BM 

is 

3161 
~1~1 

a 

The IEM Virtual Machine !~£!!i!IL~lQ: 
In troductlon;---GC2 0-1800;-- contains an 
overviev--of the V8/310 system and its 
components, and lists the programs and 
products that are supported in CMS. 

COREQUISITE PUBLICATIONS 

The IBM !!£!Y~! 11~ch!~~ !~Cil!1YL31Q: ~MS 
£Qm!~n~ ~¥g 112££2 S~!g£~ll£~, GC20-18l8, is 
a compan1on to this user's guide. It 
contains complete format descriptions of 
the CMS commands; EDIT subcommands; EXEC 
control statements, built-in functions, and 
special variables; DEBUG subcommands; and 
CMS assembler language macros that are 
discussed or used in examples in this book. 

IBM !!£!~! 11g£l!ine !gci!!!IL11Q: ~~!~! 
A~22~g~§, GC20-1808, contains the 
responses, error messages, and return codes 
issued by the CMS commands, and EDIT and 
DEBUG subcommands referenced in this 
publication, as well as a complete list of 
the error messages issued by the EXEC 
processor. 

To use CMS, you should be familiar with 
the control program (CP) component of 
V8/310. The CP commands available to 
general users are described in !~11 !i£!Y~! 
!1~£l!i~ !2£il!ilfllQ:~:g ~2n.mlg ~ef~£~!l£~ 
fQ~ ~~!lg£2! Y2~£§' GC20-l820. If you are 
using CMS to develop programs to run under 
other operating systems, see !~A !!£1Y2! 
!1~£!!!!l~ !g£!l!!IfllQ: QE~!:~!!~g ~Ist~m§ in 
~ !!£!Yg! !1ac!!!~~, GC20-1821. 



RELATED VM/370 PUBLICATIONS 

Additional descriptions of various CftS 
functions and commands that are normally 
used by system support personnel are 
described in 

l]~ !!!!Y~l ~g£h!~~ 19£ili~ILJ1~: 

~l§!~~ ~!Bg!g~~~!~§ 2y!g~, GC20-1807 

Q]§!AtO!~§ Qy!g§, GC20-1806 

IPCS CMS commands are described in the 
ll~ !!LJ1~: lnt§!g£~i!~ ~!B~!e~ £B~~!2! 
~Ist§! (IP£E) ~§§!~§ Qyig~, GC20-1823, and 
not in this publication. 

Information describing the CMS coamand 
CPEREP, a command used to generate output 
reports from VM/370's error recording 
records, is contained in the: 

Details on the use of 
operands, required to aake use 
are contained in: 

OS/VS EREP 
of CPEREP, 

There are three publications available 
as ready reference material when you use 
VM/370 and CMS. They are: 

l]~ !!~~y~l ~g£h!~ 19£!!i!IL~l~: 

2Y!£! Gu!g§ !B! ~§~!§, GX20-1926 

~B~~~~g§ (Q§~§!g! ~§~!), GX20-1961. 

If you use the Bemote Spooling 
Coamunications sutsystea, see the lEB 
!!!~yg! ~~!!~ !!~!1!!IL37Q: 1!~!! 
~E22!iDg £gmmYn!£~tiBD§ ~YRsys!~ (RS~a) 
~§§!~2 QY!E~, GC20-1816. 

Asseabler language programmers may find 
information atout the V!/370 asseabler in 
Q~L!~, !Q~!~, A!E !!LJIQ A§§embl~! 
~gngygg~, GC33-4010, and ~~!§ !A~ !BL370 
A§§~!~!~! ~!Bg!~Am~!~§ §y!g~, GC33-4021. 

BELATED PUBLICATIONS FOB VSA~ AND ACCESS 
METHOD SEBVICES USERS 

CMS support of access method services is 
based on DOS/VS access method services. The 
control statements that you can use are 
described in DO~L.!~ AC£!§.§ Be.!1!.2g ~!vi.E~.§ 
y§~!~§ ~yide, GC33-5382. Error .ess~ges 
produced by the access method serV1ces 
program, and return codes and reason codes, 
are listed in RQ~!~ ~§§§age§, GC33-5379. 

For a detailed description of DOS/VS 
VSAB macros and macro parameters, refer to 
the RQ~L!~ ~YE§!~iso! !nd lL~ ~!£!B'§, 
GC33-5373. For information on OS/VS VSAM 
macros, refer to ~~!a !irtu!l ~!.2!!~ 
j££~§§ ~~!hOE (VSAM) 1!.2~!!A~!~§ ~uig!, 
GC26-3818. 

BELATED PUBLICATIONS FOR CMS/DOS OSERS 

The CftS !SERV command invokes the DOS/VS 
ES!BV program, and uses, as input, the 
control statements that you vould use in 
DOS/VS. These control statements are 
described in ~y!de to'!!§ ~CSL!~ A§§~~R!!!, 
GC33-4024. 

Linkage editor control statements, used 
when invoking the DOS/'S linka~e editor 
under CftS/DOS, are described 1n DO~!~ 
~I§!~! ~Bn!!B! ~!!!~~ent§, GC33-5376. 

preface v 



\ 

( 
vi IBK VK/310: eKS User's Guide 



Pg. of GC20-1819-2 Rev 8arch 30, 1979 by Supp. SD23-9024-1 for 5748-118 

RBLATED '8/370 PUBLICATIONS 

Additional descriptions of various C8S 
functions and co.mands that are norDally 
used by system support personnel are 
described in 

!!A Virtual A~£hiD! lA£il!!IL11Q: 

SIS!!! f!2g!~!!!!~§ Gu!g~, GC20-1807 

QE§Iator~ ~uide, GC20-1806 

IPCS eftS comaands are described in the 
1M !U370: .!nt§!A£!!~! ~2~!~! Con!!Q! 
~Iste. (IP~~) ~§!~§ ~uig~, GC20-1823, and 
not in this publication. 

Inforaation describing the CMS command 
CPEREP, a command used to generate output 
reports froa V8/370's error recording 
records, is contained in the: 

Details on the use of 
operands, required to aake use 
are contained in: 

OS/'S EREP 
of CPEREP, 

For information on OS/VS tape label 
processing, discussed with "Label 
Processing in OS Simulation" in this 
publication, refer to: 

There are three publications available 
as ready reference material when you use 
V8/370 and C8S. They are: 

ill !irtual !1~£hine Fa£!!itIfllQ: 

gYi£~ ~!g! fo! Y§!!§, GI20-1926 

CO.lAnds (~~!ra! y§!!), G12o-1961. 

~2.!!ands (Qthy !A!!l 
GX20-1995. 

If you use the Remote Spooling 
Communications Subsystem, see the !~~ 

Ii!!!!! ~~£hi~~ f~£!!!1IL37~: ]~~g1~ 
~E~2li~g ~2mmy~ic~ti2~§ ~Y~§I§i~! (~~£~) 
Y§~~~ ~~~g~, GC20-1816. 

Assembler language programmers may find 
information about the V!/370 assembler in 
Q~L!~, QQ~L!~, !!lg !!Ll1Q !§§~!~!~! 
Lgllg~g~, GC33-4010, and £~L12 ~ll~ !~Ll1Q 
!§§~~~!!! f!QgI~~!~§ ~y!g~, GC33-4021. 

RELATED PUBLICATIONS FOR VSA! AND ACCESS 
8ETHOD SERVICES USERS 

CMS support of access method services is 
based on DOS/VSE and VSE/VSAM. The control 
state.ents that you can use are described 
in Y2!llg !~~L!2!~ ~2~m~nd ~B~ ~~£!2§, 
SC24-5144. Error messages produced by the 
access method services program, and return 
codes and reason codes, are listed in 
QQ~!~! ~~~g!§, GC33-5379. 

For a detailed description of VSE/VSAM 
macros and macro parameters, refer to the 
QQ2L!SE ~~£!Q Y§~~ GuiQ~, GC24-5139. For 
inforDation on OS/VS VSA! macros, refer to 
Q~L!~ !!Iiyal ~iQr~~ !££!§§ ~~iAQ~ (!~!~) 
prQg~A!~~~ Qy!de, GC26-3818. 

RELATED PUBLICATIONS FOR CMS/DOS USERS 

The CMS ESERV command invokes the DOS/VSE 
ESERV program, and uses, as input, the 
control statements that you would use in 
DOS/VSE. These control statements are 
described in §Y!Q! 1Q th! QQ2L!~~ 
!§§~Dble!, GC33-4024. 

Linkage editor control statements, used 
when inVOking the DOS/VSE linkage editor 
under CMS/DOS, are described in ~~~!§~ 
§I§!~ £~B!!~! Statements, GC33-5376. 

For information on DOS/VSE and CMS/DOS 
tape label processing, refer to the 
following publications: 

~Q~!§! TaE~ Labels, GC33-5374 

~OSL!~~ LI~~~, !olum! ~, SY33-8560 

Preface v 



March 30, 1919 

vi IBK YK/310: eMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5148-118 

Contents 

The entries in this Table of Contents are accumulative and reflect the addition of the 
VM/370 Basic System Extensions Program Product, Program Number 5748-118. 

Summary of Amendments. • • xiii 

PART 1. UNDERSTANDING CMS •• • .1 

SECTION 1. WHAT IT MEANS TO HAVE A CMS 
VIRTUAL MACHINE •••••• _ •••••• 3 

How You Communicate With VM/310. • .3 
Getting Commands Into the System •• 5 
Loading CMS in the Virtual Machine: The 
IPt Command •••••••••••••• 6 

Logical Line Editing Symbols ••••••• 6 
How VM/370 Responds to Your Commands •• 8 

Getting Acquainted With CMS ••••••• 10 
Virtual Disks and How They Are Defined. 11 

Permanent Virtual Disks. • • •• 11 
Defining Temporary Virtual Disks ••• 12 
Formatting Virtual Disks ••••••• 12 

Sharing Virtual Disks: Linking ••••• 13 
Identifying Your Disk To CMS: Accessing. 14 

Releasing Virtual Disks •••••••• 14 
Releasing Virtual Disks (21~~=!!~) • 14.1 

SECTION 2. VM/370 ENVIRONMENTS AND MODE 
SWITCHING • • • • • • • 17 

The CP Environment • • • • • • • • 11 
The CMS Environment ••••• 4 • 18 

EDIT, INPUT, and CMS Subset. • 19 
DEBUG. _ • • • • • • • • • • • • 20 
CMS/DOS. • • • • • • • • • • • • • • • 21 

Interrupting Program Execution • • • 21 
Virtual Machine Interruptions. • • 22 
Control Program Interruptions. • • 23 
Address Stops and Breakpoints. • • 23 

SECTION 3. WHAT YOU CAN DO WITH 
VM/370-CMS COMMANDS •••• 

Command Defaults • • • • • • 
Commands to Control Terminal 

Communications. • • • • • • 
Establishing and Terminating 
Communications with VM/370~ 

Controlling Terminal Output •• 
Commands to Control How VM/370 
Processes Input Lines • • • • • 

Commands to Control How VM/310 
Processes Input Lines (5148-IX8). • 

Controlling Keyboard-dependent--
Com munica tions. • • • • • • • • • • 

Commands to Create, Modify, and Move 
Data Files and Programs • • • • • 

Commands that Create Files ••••• 
Commands that Modify Disk Files. 
Commands to Move Files • • • • • 
Commands to Print and Punch Files •• 

Commands to Develop and Test OS and CMS 

• 25 
• 25 

• 25 

• 25 
• 26 

• 28 

28.1 

• 30 

• 31 
• 31 
• 33 
• 33 
• 34 

Progr ams. • • • • • • • • • '. 35 
Commands to Develop and Test DOS 

Programs. • • • • • • • • • • 36 

Commands Used in Debugging Programs. • _ 37 
Commands to Request Information~ • • • • 38 

Commands to Request Information About 
Terminal Characteristics. • _ _ • • • 38 

Commands to Request Inforaation About 
Data Files •••••••••••••• 39 

Commands to Request Information About 
Your Virtual Disks. • • • • • • • • • 40 

Commands to Request Information About 
Your Virtual ftachine. • • • • • 40 

SECTION 4. THE CftS FILE SYSTEM. _ • 43 
CMS File Formats • • • • • • • • ~ _ 43 
How CMS Files Get Their Names. • • • • _ 43 
How CMS Files Get Their Names 
(~1!H!=1!!H· • • '. '. • • • • • • • • • ,. 44 

44 
45 

Duplicating Filenames and Filetypes. • 
What Are Reserved FiletYFes? • • _ 

Filetypes for CftS Commands • • • 
Output Files: TEXT and LISTING • 
Filetypes for Temporary Files. • 
Filetypes for Documentation. _ _ 

Filemode Letters and Numbers • • 
When to Specify Filemode Letters: 
Reading Files • • • • • • • _ • • 

When to Specify File.ode Letters: 
Writing Files • • • _ • 

How Filemode Numbers are Used. • 
Managing Your CftS Disks. 

• 46 
• 48 

50 
50 

• 51 

52 

• 54 
• 54 

56 
CMS File Directories • • • • • • 
CMS Command Search Order • 

• • • ,. 56 
• •• 57 

SECTION 5. THE CftS EDITOR. 
The EDIT Command • • • • • 

Writing a File Onto Disk • 

• • • '. 61 

EDIT Subcommands • • • • • • • _ • 
The Current Line Pointer • • • • • • 
Verification and Search Columns. 
Changing, Deleting, and Adding Lines. 
Describing Data File Characteristics • 

Record Length. • • • • • • 
Record Format. • • • • • • 
Using Special Characters • • 
Setting Truncation Limits. 
Entering a Continuation Character in 

61 
62 
63 
65 
68 

'. 69 
• 73 

73 
• 75 

76 
18 

Column 72 • • • • • • 79 
Serializing Records. • • • • • • • 80 
Line-Number Editing •••••••••• 81 
Renumbering Lines. • • • • _ _ • • 82 

Controlling the Editor • • • • • • 84 
Communicating with CMS and CP. • 84 
Changing File Identifiers. • 85 
Controlling the Editor's Displays~ •• 86 
preserving and Restoring Editor 
Settings. • • • • • • • ••• _ • 86 

preserving and Restoring Editor 
Settings (~1!~=1~~) . . 86.1 

X. Y, =, ? Subcommands •••••••• 87 

Contents vii 



Pg. of GC20~1819-2 Rev March 30, 1979 by Supp •. SD23-9024-1 for 5748-XX8 

What To Do When You Run O~t of Space • 88 
Summary of EDIT Subcommands. • • • • • • 91 

SECTION 6. INTRODUCTION TO THE EXEC 
PROCESSOR • • • • • • • • • • 95 
Creating EXEC Files. • • • 95 
Invoking EXEC Files. • 96 

PROFILE EXECs. • • • • • 97 
Executing Your PROFILE EXEC. • • • • • 98 

CMS EXECs and How To Use Them. • 98 
Modifying CMS EXECs. • • •••• 100 

Summary of the EXEC Language Facilities.100 
Arguments and Variables. • • • • .101 
Assignment Sta temen ts. • • • • .102 
Built-in Functions and Special 
Variables. • • • • • • • .103 

Plow Control in an EXEC. • .103 
Comparing Variable Symbols and 
constants •••••••••••••• 105 

Doing I/O With an EXEC. • .106 
Monitoring EXEC Procedures .107 

Summary of EXEC Control Statements and 
Special Variables • • • • • • • • .109 

SECTION 7. USING REAL PRINTERS, 
PUNCHES, READERS, A~D TAPES • 

CMS Unit Record Device Support •• 
Using the CP Spooling System • • 
Altering Spool Files • • • • • 

.113 

.113 

.113 

.115 
Using Your Card Punch and Card Reader 
~n CMS •••••••••••••••• 116 

Handling Tape Files in CMS ••••••• 118 
Using the CMS TAPE Command •••••• 119 

Tape Labels, in CMS • • •• • • • .121 
Tape Labels in eMS (11~~-!!~). • •• 121 
User Responsibilities (~1~§-!!§) • .122 
Label Processing in OS Simulation 
(~I~§-!!!D. • • • • • • • • • • • • • • 1 22 

Label Processing in CMS/DOS 
(~1~§- .!.!§J.. • • • • • • • • • 

CMS TAESL Macro (5748-XX8) •• 
Tape Label ProcessIng by-CMS 

Commands (~1!.H~.-.!.!§.) • • •• 
LABELDEF Command (~1!§'-.!!§') •• 
End-of-Volume and End-of-Tape 

•• 122.7 
122.10 

122.10 
122.12 

Processing (21!&-.!.!!!> • • • .'. • • 122. 13 
Error Processing (~1!§'-.!.!§'). • 122.14 

The MOVEFILE Command ••••••••• 122 
The MOVEFILE Command (~1.!!~-!!§) •• 122.14 
Tapes Created by OS Utility 
Programs •••••••••••••• ~122 

Tapes Created by OS Utility 
Programs (~1!§-.!!§) ••••••• 122.15 

Specifying Special Tape Handling 
Options • • • • • • • • • • • • 

Using the Remote Spooling 
Communications Subsystem (RSeS) 

.123 

.123 

PART 2. PROGRAM DEVELOPMENT USING CMS •• 125 

SECTION 8. DEVELOPING OS PROGRAMS 
CMS • • • • • • • • • • • • • • • 

Using OS Data Sets in CMS ••••• 
Access Methods Supported by CMS. 

Using the FILEDEF Command. 
Specifying the ddname •••••• 
Specifying the Device Type • • • 
Entering File Identifications. 

viii IBM VM/370: CMS User's Guide 

UNDER 
.127 
.129 
.130 
.131 
.131 
.132 
.132 

Specifying CMS Tape Label processing 
(5748-XX8) ................ 133 
specffyIng Options • • • • • • .• • • • 133 

Creating CMS Files From CS Data sets •• 134 
Creating CMS Files From OS Data Sets 

(5748-XX8). • • •• • ••• 
usI~~-ci~-Libraries. • • • 

'Ihe MACLIB Command • • • • • .• ,. '. 
Using OS Macro Libraries • 

Using OS Macros Under CMS ••••• 
Assembling Programs in CMS • • 
Executing programs • • • • • 

• 134. 1 
.• 136 

• • 137 
• .140 

.141 

.143 

.144 
Executing TEXT Files • • ••• 144 

• • • 145 
.146 
.147 
.149 

'TEXT LIERARIES (TXTLIBS) •••• 
Resolving External References~ • 
Controlling the CMS Loader • 
Creating Program Modules • • • • 
Using EXEC Procedures. • • • • • • • .149 

SECTION 9. DEVELOPING DOS PROGRAMS 
UNDER CMS ••••••••••••••• 151 

The CMS/DOS Environment ••••••••• 151 
DL/I in the CMS/DOS Environment. • .152 
Using DOS Files on DOS Disks •••••• 154 

Reading DOS Files ••••••••••• 154 
Creating CMS Files from DOS Libraries. 155 

Using the ASSGN Command ••••••••• 156 
Using the ASSGN Command (~1!§=.!!§') •• 156.1 

Manipulating Device Assignments. .157 
Virtual Machine Assignments. • • .158 

Using the DLBL Command. • • • • • .159 
Entering File Identifications ••••• 159 

Using DOS Libraries in CMS/DOS .160 
The SSERV Command. • • • • • .161 
The RSERV Command. • ••• _ .162 
The PSERV Command. • .162 
The ESERV Command. • • • • • .163 
The DSERV Command. .163 
Using DOS Core Image Libraries. .164 

Using Macro Libraries. • • • • • • .164 
eMS MACLIBs.. • • • • • .165 
Creating a CMS MACLIB. • • .165 
The MACLIB Command •••••• _ .166 

DOS Assembler Language Macros Supported. 169 
Assembling Source Programs ••••••• 171 
Link-editing Programs in CMS/DOS •••• 172 

Linkage Editor Input ••••••••• 173 
Linkage Editor Output: CMS DOSLIEs •• 174 

Executing programs in CMS/DOS. _ •••• 175 
Executina DOS Phases ••••••••• 175 
Search Oider for Executable Phases •• 176 
Making I/O Device Assignments. • .177 
Specifying a Virtual Partition Size •• 177 
Setting the UPSI Byte. • • • • • .178 
Debugging Programs in CMS/DOS •• _ •• 178 
Using EXEC Procedures in eMS/DOS ••• 179 

SECTION 10. USING ACCESS METHOD 
SERVICES AND VSAM UNDER CMS AND 
CMS/DOS •• • • • • • • • • • • • .181 

Executing VSAM Programs Under CMS ••• 181 
Using the AMSERV Command •••• _ ••• 182 

AMSERV Output Listings •••••••• 183 
Controlling AMSERV Command Listings •• 184 

Manipulating OS and DOS Disks for Use 
with AMSERV •••••••••• _ ••• 185 

Data and Mastercatalog Sharing. .185 
Disk Compatibility •••••••••• 186 



Pg. of GC20-1819-2 Rev March 30, 1979 by SUppa SD23-9024-1 for 5748-XX8 

Using VM/370 Minidisks • • .187 
Using The LISTDS Command .187 
Using Temporary Disks. • • •••• 188 

Defining DOS Input and Output Files ••• 190 
Using VSAM Catalogs •••••••••• 190 
Defining and Allocating Space for 

VSAM files •••••••••••••• 194 
Using Tape Input and Output •••••• 196 

Defining OS Input and Output Files ••• 197 
Allocating Extents on OS Disks and 
Minidisks •••••••••••••• 198 

Using VSAM Catalogs •••••••••• 199 
Defining and Allocating Space for 

VSAM files. • • • • • • .202 
Using Tape Input and Output •••••• 204 

Using AMSERV Under CMS ••••••••• 205 
Using the DEFINE and DELETE Functions.205 
Using the REPRO, IMPORT, and EXPORT 

(or EXPORTRA/IMPORTRA) functions ••• 207 
Writing EXECs for AMSERV and VSAM ••• 209 

SECTION 11. HOW VM/370 CAN HELP YOU 
DEBUG YOUR PROGRAMS • 

Preparing to Debug • • 
When a Program Abends. 

Resuming Execution After a Program 
Check • • • • • • • • • • 

Using DEBUG Subcommands to Monitor 

.211 

.211 

.211 

.212 

Program Execution. • • • • • • • .213 
Using Symbols with DEBUG ••••••• 214 

What To Do When Your Program Loops ••• 216 
Tracing Program Activity •••••••• 216 

Using the CP TRACE Command • • .217 
Using the SVCTRACE command. .219 

Using CP Debugging Commands. • .219 
Debugging with CP After a Program 
Check. • • • • • • • • • • .220 

Program Dumps. • • • • ••••••• 221 
Debugging Modules. • • • • • • •• .221 
Comparison Of CP And CMS Facilities For 
Debugging. • • • • • ••••• ~ .222 

What Your Virtual Machine Storage Looks 
Like. • •• • • • • • • • • .223 

Shared and Nonshared Systems ••••• 223 

SECTION 12. USING THE CMS BATCH 
FACILITY ••••• 

Submitting Jobs to the CMS Batch 
.227 

Facility. • • • • • • • • • • • • .227 
Input to the Batch Machine • • • .227 
How the Batch Facility Works. • .230 

Preparing Jobs for Batch Execution ••• 231 
Restrictions on CP and CMS Commands 
in Batch Jobs •••••••••••• 232 

Batch Facility output ••••••••• 232 
purging, Reordering, and Restarting 
Batch Jobs. • • •••••• 233 

Using EXEC Files for Input to the Batch 
Facility •• _ • • • • • • • .234 

Sample System Procedures for Batch 
Execution _ ••••••• 235 

A Batch EXEC for a Non-CMS User •••• 236 

SECTION 13. PROGRAMMING FOR THE CMS 
ENVIRONMENT • • • • • 

Program Linkage. • • • 
Return Code Handling 
Parameter Lists. • • 

.239 
•• 239 
•• 240 

.240 

Calling a CMS Command from a Program •• 241 
Execut ing Progr am Modu les _ • .242 

The Transient program Area" • _ ••• 243 
eMS Macro Instructions ••••••• ~ .243 

Macros for Disk File Manipulation ••• 244 
CMS Macros for Terminal 

Communi cat ions. • • • • • .250 
CMS Macros for unit Record and Tape 
I/O • • • • • • • • '. • • 

Interruption Handling Macros 
Updating Source Programs Using 

The UPDATE Philosophy ••• 
Update Files • • • • • • • • 
sequencing Ontput Records. • 
Multiple Updates • • • • • 
The VMFASM EXEC Procedure. 

PART 3. LEARNING TO USE EXEC 

.250 
••• 251 

CMS ••• 251 
.252 
.252 

••• 254 
.257 
.262 

• _ 265 

SECTION 14. BUILDING EXEC PROCEDURES _ .267 
What is a Token? • • _ .267 
Variables ••••••••• _ •••••• 268 
Arguments •••• _ • ~ •••••• 272 

Using the &INDEX Special Variable ••• 273 
Checking Arguments. • • • • • • .274 

Execution Paths in an EXEC •• 275 
Labels in an EXEC Procedure. • • .275 
Conditional Execution with the &IP 

Statement • • • •• • .276 
Eranching with the &GOTO Statement •• 277 
Eranching with the &SKIP Statement •• 279 
Using Counters for Loop Control •••• 280 
Loop Control with the BLOOP Statement.280 
Nesting EXEC Procedures •••••••• 282 
Exiting From EXEC Procedures ••• _ .283 

Terminal Communications •••••• __ .284 
Reading CMS Commands and EXEC Control 
statements from the Terminal. _ • _ .285 

Displaying Data at a Terminal ••• _ .286 
Reading from the Console Stack _ _ .289 

Stacking CMS Commands. • • .291 
Stacking Lines for EXEC to Read. .292 
Clearing the Console Stack _ .293 

File Manipulation with EXECs. • •• 294 
Stacking EXEC Files. • • • • • • • • .294 

SECTION 15. USING EXECS WITH CMS 
COMMANDS. • • • • • • • .299 

Monitoring CMS Command Execution •• 299 
Handling Error Returns Prom CMS 

Commands. • • • • • • • • • • • _ .300 
Using the &ERROR Control Statement •• 300 
Using the &RETCODE Special variable •• 301 

Tailoring CMS Commands fer Your Own Use.302 
Creating Your Own Default Filetypes •• 303 

SECTION 16. REFINING YOUR EXEC 
PROCEDURES •••••••• 

Annotating EXEC Procedures • • • • _ 
Error Situations • • • • • 

Writing Error Messages • 
Debugging EXEC Procedures. 

Using CMS Subset • • • • • • • • • 
Summary of EXEC Interpreter Logic. 

• .305 
• ,.305 
• .306 
• .306 
• .308 
• .308 
• .309 

SECTION 17. WRITING EDIT MACROS. • .311 
Creating Edit Macro Files •••• ~ ••• 311 
How Edit Macros Work ••••• _ •••• 311 

Contents ix 



Pg. of GC20-1819-2 Rev March 30, 1979 by SUppa SD23-9024-1 for 5748-XX8 

The Console Stack. • • • • • • • 
Notes on Using EDIT Subcommands. • 

The STACK Subcommand • • • • • • 

.313 

.314 

.317 

.318 

.320 

.320 

.321 

.323 

.324 

An Annotated Edit Macro. • 
User-Written Edit Macros • 

SMACROS. • 
SMARK. • • • 
SPOINT • • 
SCOL • • • 

PART 4. LEARNING TO USE THE HELP 
FACILITY (21~~=!X8) • • • • .324.1 

SECTION 18. HELP FILE NAMING CONVENTIONS 
AND CREATION (2148=!!~) • '. • .324.3 

Naming Conventions (21~8-!!~) ••••• 324.3 
HELP File Creation (.21~8-!!~) ••••• 324.4 

Enclosing Text (.BX Format Word) 
(.21.L!!l=!!~). • • • • • • • • • • .• • 3 24 • 6 

Placing Comments in HELP Files (.CM 
Format Word) (57~~=!X8) • • • • • .324.7 

Conditional Display of Text (.CS 
Format Word) (21!!§'=!!~) • • • • • .324.8 

Use of Format Mode (.FO Format 
W or d) (.21.L!l!=!!l!). • • '. • • • • • • 324 .8 

Indenting Text (.IN and .IL Format 
Words) (21.L!~=!X8) • • • • • • • • .324.8 

Use of Offsets (.OF Format Word) 
(.21.L!!l=!!!!). • • • • • • • • • • • 324. 1 0 

Spacing between Lines of Text (.SP 
Format Word) (57!!~=!X8) • • • • • 324.11 

Translating Output Characters (.TR 
Format Word) (57.L!~=!!~) •• 324.13 

APPENDIXES • • • • • • .325 

APPENDIX A: SUMMARY OF CMS COMMANDS ••• 327 

x IBft Vft/370: CftS User's Guide 

APPENDIX B: SUMMARY OF CP COMMANDS ••• 333 

APPENDIX C: CONSIDERATIONS FOR 3270 
DISPLAY TERMINAL USERS ••••• _ ••• 339 

Entering Commands. • • • • • • • • • • .339 
Setting Program Function Keys. • • .339 
Controlling the Display Screen ••• 340 

Console Output • • • • • .342 
Signaling Interruptions. • • • • •• 343 

Halting Screen Displays •••••••• 344 
Using the CMS Editor with a 3270 •••• 344 

Entering EDIT Subcommands ••••••• 344 
Controlling the Display Screen •••• 346 
The Current Line Pointer ••••••• 347 
Using Program Function Keys. • • .348 
Using the Editor in Line Mode. • .348 
Using Special Characters on a 3270 •• 349 

Using APt with a 3270. • • • • • •• 350 
Error Situations. _ ••••• _ .351 
Leaving the APL Environment. _ • .351 

Using the 3277 Text Feature. • • •• 352 
Error Situations •• _ • • • • •• 352 
Leaving the Text Envircnment ••• 352 

APPENDIX D: SAMPLE TERMINAL SESSIONS •• 353 
Sample Terminal Session Using the 
Editor and CMS File System Commands •• 354 

Sample Terminal Session Using 
Line-Number Editing •••••••••• 362 

Sample Terminal Session For OS 
Programmers. • • • • • • • • • • .365 

Sample Terminal Session for DOS 
Programmmers. • • • • • • • • • • .369 

Sample Terminal Session Using Access 
Method Services. • • •• 375 

INtEX •••••••••••••••••• 383 



) 

Figure 1. 

Figure 2. 

Figure 3. 
Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure 8. 

Figure 9. 

Figure 10. 
Figure 11. 
Figure 12. 

Figure 13. 

Figure 14. 

VM/370 Environments and Mode 
sw itching •••••••••.•••••.••••.••• 24 
Filetypes Used by CMS 
Co.mands •••••••••••••••••••••• 47 
Filetypes Used in CMS/DOS ••••• 50 
How CMS Searches for the 
Command to Execute~ ••• _ ••••••• 59 
Positioning the Current Line 
Pointer •••••• _ •••••••••••••••• 68 
Bumber of Records Handled by 
the Editor •••••• ~ ••••••• _ •• ~ •• 75 
Summary of EDIT Subcommands 
ftacros •••••••••••••••• ~.~ •••• 91 
Su.mary of EXEC Built~In 
Functions •••••••••••••••••••• 103 
Summary of EXEC Control 
State.ents •••••••••••• ~ •••••• 109 
EXEC Special Variables ••••••• 112 
OS Terms and CMS Equivalents.128 
CMS Co •• ands That Recognize 
OS Data Sets and OS Disks •••• 129 
creating CMS Files From OS 
Data Sets ••••• ~_ ••••••••••••• 136 
OS Macros Simulated by CMS ••• 142 

Figure 15. 

Figure 16. 

Figure 17. 
Figure 18. 

Figure 19. 
Figure 20. 

Figure 21. 

Figure 22. 

Figure 23. 

Figure 24. 
Figure 25. 

Figure 26. 

Figure 27. 
Figure 28. 
Figure 29. 

CMS/DOS Commands and CMS 
Commands with Special 
Operands for CMS/DOS •••••••• ~153 
DOS/VS Macros Supported by 
CHS •••••••••••••••••••••••••• 110 
Summary of DEBUG Subcoamands.215 
Comparison of CP and CMS 
Facilities for Debugging ••••• 222 
Siaplified CMS Storage Map ••• 22Q 
Sample C~S Assembler Program 
Entry and Exit Linkage ••••••• 240 
A Sample Listing of a 
Program ~hat Uses CMS Macros.249 
Updating Source Files with the 
UPDATE Command ••••••••••••••• 255 
An Update with a Control 
File •••• ~ •••••••• ~ ••• _~._~._.261 
CMS Command Summary ••• ~ •••••• 328 
CMS Commands for system 
program.ers •••••••••••••••••• 332 
CP privilege Class 
Descriptions ••••••••••••••• ~.333 
CP Command Sumaary •••.•••••••• 334 
3270 Screen Display •••••••••• 343 
How the eMS Editor Formats 
a 3270 Screen •••••••••••••••• 345 

Contents xi 



( 
~ 

( 

xii IBM VM/370 eMS User's Guide 



) 

SUPPRESSION OF PASSWORDS ON THE COMMAND 
LINE 

!§!: Program Feature 

V8/370 supports a system generation 
option that prevents passwords from 
being entered on the same line as LOGON, 
AUTOLOG, and LINK commands. . The 
passwords must be entered so that they 
are not displayed or are masked. This 
support is mentioned where there are 
examples showing the password being 
entered on the same line. 

3218 KODEL 2A DISPLAY STATION 

!§!: Program Feature 

CP and CMS editor support the 3278 Kodel 
2A Display Station. This is a 20-line 
display console. Support is reflected 
in "Appendix C. Considerations for 3270 
Display Terminal Users." 

Sum.ary of Amendments 
for GC20-1819-2 

Vft/370 Release 6 PLC 1 

SPECIAL ftESSAGE FACILITY 

!~!: program Feature 

The special message facility is a method 
of transferring messagEs from a user to 
a specially programmec receiving virtual 
machine for processing. Tbis support is 
reflected in "Section 3. What You Can Dc 
With Vft/370-CftS Commands." 

MISCELLANEOUS 

!~! ~B~ Cb~Bged: Documentation 

Technical and editorial changes have 
been made throughout tbis Fublication. 

summary of Amendments xiii 



DOS/VS RELEASE 34 SUPPORTED 

!~!: Program Feature 

CMS/DOS supports DOS/VS Release 34. 
This sup Fort includes a new operand of 
the SET ccmmand, DOSLBCNT, and a new 
operand of the QUERY command, DOSLBCBT. 
SET DOSLBCNT allows a user to establish 
the number of SYSLST lines per page. 

xiv IB8 V8/370: CftS User's Guide 

Su.mary of Amendments 
for ~C20-1819-1 

as updated by TNL GN25-0411 
V!/370 Release 5 PLe 1 

QUERY DOSLNCBT displays the current 
number of SYSLST lines per page 
established by the SET DOSLBCIT. 

This release also contains support for 
the 3330 !odel 11 and 3350 DASD devices 
as attached devices. DOS/VOS Release 34 
information is contained in "Section 9. 
Developing DOS Programs under C!S." 

I 
\ 

( 



) 

NEW DEVICES SUPPORTED 

!~!: Programming and Documentation 

VM/370 supports the 3270 display 
devices. The "Preface" is updated to 
indicate that information about 
operating 3210 disflay terminals is 
applicable to the the 3215, 3216 
Controller Display Station, 3211, and 
3278 Display Stations. It is also 
applicable to 3138, 3148, and 3158 
Display Ccnsoles when used in display 
mode. Any information pertaining to the 
IBM 3284 or 3286 Printer, also pertains 
to the 3281, 3288, and 3289 Printers. 

The "Preface" is also 
indicate that the 
Communications Controllers 
to as 310x. 

DOCUMENTATION UPDATE 

~~s~g~~: Documentation only 

upda ted to 
3704/3705 

are referred 

"Section 8. Developing OS Programs 
Under CMS" now includes a description of 
the AUXPROC option that allows the 
FILEDEF command to use an auxiliary 
processing routine to receive control 
during I/O processing. 

"Section 10. Using Access Method 
Services and VSAM" has been rewritten to 
include a description of Data and 
Master-catalog Sharing, Disk 
Compatibility, and VSAM Allocation. 

In addition, minor technical and 
editorial corrections have been made. 

1M/370 SUPPORTS OS/VS EREP (IFCEREP1) 

~hsD~~~: Program and Documentation 

The CPEREP command now uses all edit and 
format operands that are available to 
OS/VS EREP. Because of VI1/310s· 
compatibility with OS/VS EREP VM/310 
relies cn existing OS/VS EREP 
documentation. Therefore, VM/310 no 
longer publishes the following: 

Summary of Amendments 
for GC20-1819-1 

V8/370 Release 4 PtC 1 

]n~!IQn~~ntal ~~!~! . ~~£2!~!~g, 
1~!1!~, s~~ !!i~S~D~ (lRE~) R!~g!~m 
12g!£, Order No. SY25-7101 

In order to make use of the CPEREP command, 
both of the following publications are 
required. The first publication provides 
general information on the usage of the 
command and detailed information on ccmmand 
~perands applicable only to VM/310. The 
second publication Frovides detailed 
information on the operands tbat are common 
to both VM/310 and OS/VS. 

Program logic information describing the 
interface between CMS and CS/VS EREP, and 
describing OS/VS EBEP, is contained in: 

The following areas in this publication 
reflect CPEREP documentation changes: 

Preface 
Appendix A 

Summary of Amendments xv 



( 

\ 

( 
xvi IBM VM/3l0: eMS User's Guide 



» 

Part 1. Understanding eMS 

Learning how to use CMS is not an end in itself: you have a specific 
task or tasks to do, and you need to use the computer to perform them. 
CMS has been designed to make these tasks easier, but if you are 
unfamiliar with CMS, then the tasks may seem more difficult. The 
informativn contained in Part 1 of the user's guide is organized to help 
you make tbe acquaintance of CMS quickly, so that it enhances, rather 
than impedes, the performance of your tasks. 

"Section 1. What It Means To Have a CMS Virtual Machine" introduces 
you to VM/310 and its,conversational component, CMS. It should help you 
to get a picture of how you, at a terminal, use and interact with the 
system. 

During a terminal session, commands and requests that 
processed by different parts of the system. How and 
communicate with these different programs, is described 
VM/310 Environments and Mode Switching." 

you enter are 
when you can 

in "Section 2. 

There are almost two hundred commands and subcommands comprising the 
VM/310 language. There are some that you may never need to use; there 
are others that you will use over and over again. "Section 3. What You 
Can bo With VM/310-CMS Commands" contains a sampling of commands in 
various functional areas, to give you a general idea of the kinds of 
things you can do. and the commands available to help you do them. 

Almost every CMS command that you enter results in some kind of 
activity with a direct access storage device (DASD), known in CMS simply 
as a disk, or minidisk. Data and programs a~e stored on disks in what 
are called "files." "Section 4. The eMS File System" introauces you to 
the creation and handling of CMS files. 

~Section 5. The CMS Editor" contains all the basic information you 
need to create and write a disk file directly from your terminal, or to 
correct or modify an existing CMS file. 

Just as important as the CMS editor is another CMS facility, called 
the EXEC processor or interpreter. Using EXEC files, you can execute 
many commands and programs by entering a single command line from your 
terminal, or you can write your own eMS commands. "Section 6. 
Introduction to the EXEC Processor" presents a survey of the basic 
characteristics and functions of EXEC. 

"Section 1. Using Real Printers, Punches, Readers, and Tapes" 
discusses how to use punched cards and tapes in CMS, and how to use your 
virtual printer and punch to get real output. 

Part 1. Understanding CMS 1 



I 
~ 

2 IBM VM/310 eMS User's Guide 



March 30, 1979 

Section 1. What It Means To Have a eMS 
Virtual Machine 

Virtual Machine Facility/370 (VM/370) is a system control program that 
controls "virtual machines." A virtual machine is the functional 
equivalent of a real computer, but where the computer has 'lights, 
buttons, and switches on the real console to control it, you control 
your virtual machine from your terminal, using a command language of 
active verbs and nouns. There are actually three command languages, CP, 
CMS, and RSCS. 

The command languages correspond roughly to the four components of 
VM/370: the Control Program (CP), the Conversational Monitor System 
(CMS), the Remote Spooling Communications Subsystem (RSCS), and the 
Interactive Problem Control System (IPCS). CP controls the resources of 
the real machine; that is, the physical machine in your computer room; 
it also manages the communications among virtual machines, and between a 
virtual machine and the real system. CMS is the conversational 
operating system designed specifically to run under CP; it can simulate 
many of the functions of the OS and DOS operating systems, so that you 
can run many OS and DOS programs in a conversational environment. RSCS 
is a subsystem designed to supervise transmission of files across a 
teleprocessing network controlled by CP. IPCS provides system 
programmers and installation support personnel with problem reporting 
and analysis functions. Its commands execute in the CMS command 
environment. 

Although this publication is concerned primarily with using C8S, it 
also contains examples of CP commands that you, as a C8S user, should be 
familiar with. 

How You Communicate with VM/370 

When you are running your virtual machine under V8/370, each command, or 
request for work, that you enter on your terminal is processed as it is 
entered; usually, you enter one command at a time and commands are 
processed in the order that you enter them. 

You can enter CP commands from either the CP or CMS environment; but 
you cannot enter CMS commands while in the CP environment. The concept 
of "environments" in VM/370 is discussed in "Section 2. VM/370 
Environments and Mode switching." 

After you have typed or keyed in the line you wish to enter, you 
press the Return or Enter key on the keyboard. When you press this key, 
the line you have entered is passed to the command environment you want 
to have process it. If you press this key without entering any data, 
you have entered a "null line." Null lines sometimes have special 
meanings in VM/370. 

If you make a mistake entering a command line, V8/370 tells you what 
your mistake was, and you must re-enter the entire command line. The 
examples in this publication assume that the command lines are correctly 
entered. 

You can enter commands using any combination of uppercase and 
lowercase characters; VM/370 translates your input to ·uppercase. 
Examples in this publication show all user-entered input lines in 
lowercase characters and system responses in uppercase characters. 

Section 1. What it Means to Have a C8S Virtual Machine 3 



March 30, 1979 

You use CP commands to communicate with the control program. CP commands 
control the devices attached to your virtual machine and their 
characteristics. 

For example, if you want to allocate additional disk space ,for a work 
area or if you want to increase the virtual address space assigned to 
your virtual machine, use the CP com~and DEFINE. cp takes care of the 
space allocation for you and then allows your virtual machine to use ~t. 

Or if, for example, you are receiving printed output at your terminal 
and do not want to be interrupted by messages from other VM/370 users, 
yau can use the CP command SET MSG OFF to refuse messages, since it is 
CP that handles communication among virtual machines. 

Using CP commands, you can also send messages to the VM/370 system 
operator and to other users, modify the configuration of devices in your 
virtual machine, and use the virtual machine input/output devices. CP 
commands are available to all virtual machines using VM/370. You can 
invoke these commands when you are in the virtual machine environment 
using CMS (or some other operating system) in your virtual machine. 

The CP commands and command privilege classes are listed in "Appendix 
B: Summary of CP Commands". The CP Commands applicable to the average 
user are discussed in detail in the !!1Ld1.Q £1: £Q!!!!!!gl1£ !!~'!~~1!£~ .!.2!: 
§~~!:g1 !!§~!:§. The rest of the CP commands are discussed in !!1Ld1.Q 
QEgEg12E~§ Qy!gg. However, since many CP commands are used with CftS 
commands, some of the CP commands you will use most frequently are 
discussed in this publication, in the context of their usefulness for a 
CMSapplication. To aid you in distinguishing between CMS commands and 
CP commands, all CP commands used in examples in this publication are 
prefaced with "CPU. 

The CMS command language allows you to create, modify, and debug problem 
or application programs and, in general, to manipulate data files. 

Many as language processors can be executed onder CMS: the assembler, 
VS BASIC, OS FORTRAN IV, OS COBOL, and OS PL/I Optimizing and Checkout 
Compilers. In addition, the DOS/VS COBOL and DOS/VS PL/I Program 
Products are supported. You can find a comprehensive list of language 
processors that can be executed under CMS and relevant publications in 
the !HLdlQ !111!:QgUC!!Q~. CMS executes the assembler and the compilers 
when you invoke them with eMS commands. The ASSEMBLE command is used to 
present examples in this publication; the supported compiler commands 
are described in the appropriate 'DOS and OS program product 
documentation. 

The EDIT command invokes the CMS editor so that you can create and 
modify files. The EXEC facilities allow you to execute procedures 
consisting of CP and CMS commands; they also provide the conditional 
execution capability of a macro language. The DEBUG command gives you 
several program debugging subcommands. 

Other CMS commands allow you to read cards from a virtual card 
reader, punch cards to a virtual card punch, and print records on a 
virtual printer. Many commands are provided to help you manipulate your 
virtual disks and file·s. 

4 IBM VM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

You use the HELP command 
how to use CP commands and 
explanations of CP and CMS 
when a brief explanation 
sufficient, thereby avoiding 
to a manual. 

to display at your terminal information on 
CMS commands_ subcommands, and EXECs, and 
messages. You can issue the HELP command 
of syntax, a parameter, or function is 
interrupting your terminal session to refer 

Section 1. What it Means to Have a CMS Virtual Machine 4.1 



March 30, 1979 

4.2 IBM VM/370CMS User's Guide 



) 

Since you can invoke CP commands from within the CMS virtual machine 
environment, the CP and CMS command languages are, for practical 
purposes, a single, integrated command language for CMS users. 

GETTING COMMANDS INTO THE SYSTEM 

Before you can use CP and CMS, you should know {1} how to operate your 
terminal and {2} your userid (user identification) and password. 

There are many types of terminals you can use as a V8/370 virtual 
console. Before you can conveniently use any of the commands and 
facilities described in this publication, you have to familiarize 
yourself with the terminal you are uS1ng. Generally, you can find 
information about the type of terminal you are using and how to use it 
with VM/370 in the !~L170 Ig£~ingl Q§g£~§ Qyigg. If your terminal is a 
3767, you also need the I~~ 11£1 QEg!g!Q!~§ Qyig~· 

In this publication, examples and usage notes assume that you are 
using a typewriter-style terminal (such as a 2741). If you are using a 
display terminal (such as a 3270), consult "Appendix c: Considerations 
for 3270 Display Terminal Users" for a discussion of special techniques 
that you can use to communicate with VM/370. 

your userid is a symbol that identifies your virtual machine to VM/370 
and allows you to gain access to the VM/37D system. Your password is a 
symbol that functions as a protective device ensuring that only those 
authorized to use your virtual machine can leg on. The userid and 
password are usually defined by the system programmer for your 
installation. 

To establish contact with VM/370, you switch the terminal device on and 
VM/370 responds with some form of the message 

vm/37'0 online 

to let you know that VM/370 is running and that you can use it. If you 
do not receive the "vm/370 online" message, see the !~L]lQ l~£~in~l 
Q§~E~§ Q~ig~ for specific directions. You can now press the Attention 
key (or equivalent) on your terminal and issue the LOGON command to 
identify yourself to the system: 

cp logon smith 

where SMITH represents a userid. The LOGON command 
pressing the Return (or Enter) key. If VM/370 accepts 
responds by asking you for your password: 

ENTER PASSWORD: 

is entered by 
your userid, it 

You then enter your password, which may be hidden, depending on your 
terminal. 

Section 1. What it Means to Have a CMS Virtual Machine 5 



LOADING CMS IN THE VIRTUAL ~ACHINE:THE IPt COMMAND 

You load CMS in your virtual machine using the IPL command: 

cp ipl cms 

where "cms" is assumed to be the saved system name 
installation's CMS. You could also load CMS by referring to 
its virtual device address, such as 190: 

cp ipl 190 

VM/370 responds by displaying a message such as: 

eMS VERSION v.3 - 02/28/76 12:02 

for your 
it using 

to indicate that the IPL command executed successfully and that C~S is 
loaded into your virtual machine. 

Your userid may be set up for an automatic IPL, 
this message, indicating that you are in the CMS 
without having to issue the IPL command. 

so that you receive 
command environment, 

Now you can enter a null line to begin your virtual machine 
operation. 

!2te: If this is the first time you are using a new virtual disk 
assigned to you, you receive the message! 

DMSACC112S DISK'A(191)' DEVICE ERROR 

and you must "format" the disk, that is, prepare it for use with CMS 
files. See "Formatting Virtual Disks" below. 

Logical Line Editing Symbols 

To aid you in entering command or data lines from your terminal, VM/370 
provides a set of logical line editing symbols, which you can use to 
correct mistakes as you enter lines. Each symbol has been assigned a 
default character value. These normally are: 

~I.!!tQ2! 
Logical 
Logical 
Logical 
Logical 

Character 
character delete --j------
line end I 
line delete ¢ 
escape " 

The logical character delete symbol (~) allows you to delete one or more 
of the previous characters entered. The m deletes one character per a 
entered, including the ¢ and I logical editing characters. For example: 

ABC#WW results in AB 
ABCWD results in~ABD 
¢WDEF results in DEF 
ABCmmm deletes the entire string 

6 IBM VM/370 C~S User's Guide 



) 

) 

) 

The logical line end symbol (I) allows you to key in more than one 
command on the same line, and thus minimizes the amount of time you have 
to wait between entering commands. You type the t at the end of each 
logical command line, and follow it with the next logical command line. 
VM/370 stacks the commands and executes them in sequence. For example, 
the entry: 

query bliplquery rdymsglquery search 

is executed in the same way as the entries: 

query blip 
query rdymsg 
query search 

The logical line end symbol also has special significance for the ICP 
function. Beginning any physical line with #CP indicates that you are 
entering a command that is to be processed by CP immediately. If you 
have set a character other than I as your logical line end symbol, you 
should use that character instead of a t. 

1Qg1fs! ~!n~ ~~!~te 
The logical line delete symbol (¢) (or ( for Teletype 1 Model 33/35 
terminals) deletes the entire previous physical line, or the last 
logical line back to (and including) the previous logical line end ('). 
You can use it to cancel a line containing many or serious errors. If a 
• immediately precedes the ¢ sign, only the I sign is deleted, since the 
I indicates the beginning of a new line, and the ¢ cancels the current 
line. For example: 

• Logical Line Delete: 

ABC#DEF¢ deletes the IDEF and results in ABC 
ABCI¢ results in ABC 
ABCIDEF¢iGHI results in ABCIGHI 
ABCIDEF¢GHI results in ABCGHI 

• Physical Line Delete: 

ABC¢ deletes the whole line 

Note that when you cancel a line by using the ¢ logical line delete 
symbol, you do not need to press a carriage return; you can continue 
entering data on the same line. 

The logical escape symbol (") causes VM/370 to consider the next 
character entered to be a data character, even if it is normally one of 
the logical line editing symbols (W, ¢, ", or #). For example: 

ABC"¢D results in ABC¢D 
""ABC"" results in "ABC" 

lTrademark of the Teletype corporation, Skokie, Illinois. 

Section 1. What it Means to Have a CMS Virtual Machine 7 



If you enter a single logical escape symbol (") as the last character 
on a line, or on a line by itself, it is ignored. 

When you enter logical escape 
logical editing characters, the 
For example, the lines: 

AEC""mDEF 
AEC""m~DEF 

both result in the line: 

ABCDEF 

characters in conjunction 
results may be difficult 

with other 
to predict. 

The logical line editing symbols are defined for each virtual machine 
during VM/370 system generation. If your terminal's keyboard lacks any 
of these special characters, your installation can define other special 
characters for logical line editing. You can find out what logical line 
editing symbols. are in effect for your virtual machine by entering the 
command: 

cp query terminal 

The response might be something like: 

LINEND t , LIHEDEL ¢ , CHARDEL m , ESCAPE " 
LINESIZE 130, MASK OFF, APL OFF, ATTN OFF, MODE VM 

You can use the CP TERMINAL command to 
editing characters for your virtual machine. 

cp terminal linend / 

Then, the line: 

input t line / input / t 

would be interpreted: 

input # line 
input 
# 

change the logical line 
For example, if you enter: 

The terminal characteristics listed in the response to the CP QUERY 
TERMINAL command are all controlled by operands of the CP TERMINAL 
command. 

HOW VM/370 RESPONDS TO YOUR COMMANDS 

CP and CMS respond differently to different types of requests. All CMS 
command responses (and all responses to CP commands that are entered 
from the CMS environment) are followed by the CMS ready message. The 
form of the ready message can vary, since it can be changed using the 
SET command. The long form of the ready message is: 

R; T=7.36/19.89 09:26:11 

8 IBM VM/370 CMS User's Guide 

( 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-X18 

If you have issued the command: 

set rdymsg smsg 

the ready message looks like: 

R; 

When you enter a command line incorrectly, you receive an error 
message, describing the error. The ready message contains a return code 
from the command; for example: 

R (00028) ; 

indicates that the return code from the command was 28. 

If you enter a CP or CMS command that requests inforaation about your 
virtual machine, the response should be the information requested. For 
example, if you issue the command: 

cp display g 

CP responds by showing you the contents of your virtual aachine's 
general registers, for example: 

0 = GPR 00000003 00003340 00000710 00000003 
4 = GPR 00000848 C4404040 00000040 00002DFO 
8 = GPR 00000008 000132F8 00002B10 00002230 

12 = GPR 00003238 FFFFFFFD 50013386 00000000 

Similarly, if you issue the CMS command: 

listfile * assemble c 

you might receive the following information: 

JUNK 
MYPROG 

ASSEMBLE C1 
ASSEMBLE C1 

If you enter a CP command to alter your virtual machine configuration 
or the status of your spool files, CP responds by telling you that the 
task is accomplished. The response to: 

cp purge reader all 

might be: 

0004 ~ILES PURGED 

Some CP commands, those that alter some of the characteristics of 
your virtual machine, give you no response at all. If you enter: 

cp spool e class x hold 

you receive no response from CP. 

Certain CMS commands may issue prompting messages, to request you to 
enter more information. The SORT command, which sorts CMS disk files, 
is an example. If you enter: 

sort in file a1 out file a1 

Section 1. What it Means to Have a CMS Virtual Machine 9 



March 30, 1979 

you are prompted with the message: 

DMSSRT604R ENTER SORT FIELDS: 

and you can then specify which fields you wish the input records to be 
sorted on. 

Getting Acquainted with eMS 

If you have just logged on for the first time, and you want to try a few 
eMS commands, enter: 

query disk a 

The response should tell you that 
191; it also provides information 
disk and how much of it is used. 
that indicates the disk may not 
Disks." 

you have an A-disk at virtual address 
such as how much room there is on the 
Again, if you receive an error message 
be formatted, see "Formatting Virtual 

Your A-disk is the disk you use most often in eftS, 
eMS files. Files are collections of data, and may have 
For this exercise, the data is meaningless. Enter: 

to contain your 
many purposes. 

edit junk file 

You should receive the response: 

NEW FILE: 
EDIT: 

which indicates that this file does not already exist on your A-disk. 
Enter: 

input 

You should receive the response: 

INPUT: 

and you can start to create the file, that is, write input records that 
are eventually going to be written onto your A-disk. Enter 5 or 6 data 
lines, such as: 

hickory dickory dock 
the mouse ran up the clock 
the clock struck one 
and down he run 
dickory hickory dock 

Now, enter a null line (one with no data). You should receive the 
message: 

EDIT: 

Enter: 

file 

You should see the message: 

R; T=O.01/0.02 19:31:29 

10 IBM VM/370 eMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

You have just written a CMS file onto your A-disk. If you enter: 

type junk file a 

you should see the following: 

HICKORY DICKORY DOCK 
THE MOUSE RAN UP THE CLOCK 
THE CLOCK STRUCK ONE 
AND DOWN HE RUN 
DICKORY HICKORY DOCK 

The CMS command, TYPE, requested a display of the disk file JUNK FILE, 
on your A-disk. 

To erase the file, enter: 

erase junk file 

NOW, if you re-enter the TYPE command, you should receive the message: 

FILE NOT FOUND 

Most CMS commands create or reference disk files, and are as easy to 
use as the commands shown above. Your CMS disks are among the most 
important features in your VM/370 virtual machine. 

Virtual Disks and How They Are Defined 

Under VM/370, a real direct access storage device (DASD) unit (disk 
pack) or an FB-512 device can be divided into many small areas, called 
minidisks. Minidisks (also called virtual disks because they are not 
equivalent to an entire real disk) are defined in the VM/370 directory, 
as extents on real disks. For CMS applications, you never have to be 
concerned with the extents on your minidisks; when you use C~S-formatted 
minidisks, they are, for practical purposes, functionally the same as 
real disks. Minidisks can also be formatted for use with OS or DOS data 
sets or VSAM files. 

You can have both permanent and temporary disks attached to your 
machine during a terminal session. Permanent disks are defined in the 
VM/370 directory entry for your virtual machine. TemForary disks are 
those you define for your own virtual machine using the CP DEFINE 
command, or those attached to your virtual machine by the system 
operator. 

PERMANENT VIRTUAL DISKS 

The VM/370 directory entry for your userid defines your permanent 
virtual disks. Each disk has associated with it an access mode 
specifying whether you can read and write on the disk or only read from 
it (its read/write status). Virtual disk entries in the VM/370 
directory may look like the following: 

MDISK 190 2314 000 050 CMS190 R 
MDISK 191 3330 010 005 BDISKE W 
MDISK 194 3330 010 020 CMS001 W 
MDISK 195 FB-512 1000 500 FBDISK W 
MDISK 198 3330 050 010 CMS192 W 
MDISK 19E 3330 010 050 CMS19E R 

Section 1. What it Means to Have a CMS Virtual Machine 11 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp_ SD23-9024-1 for 5748-IX8 

The first two fields describe the device, minidisk in this example, 
and the virtual address of the devic~. Virtual addresses (shown above 
as 190, 191, and so on), are the names by which you and VM/370 identify 
the disk. Each device in your virtual machine has an address which may 
or may not correspond to the actual location of the device on the VM/370 
system. 

The third field specifies the device type of your virtual disk. For 
count-key-data devices, the fourth and fifth fields specify the starting 
real cylinder at which your virtual disk logically begins and the number 
of cylinders allocated to your virtual disk, respectively. For FB-512 
devices, the fourth field specifies the starting real block numbers 
where your virtual disk begins, and the fifth field is the number of 
blocks allocated to your virtual disk. The sixth field is the label ef 
the real disk on which the virtual disk is defined and the seventh field 
is a letter specifying the read/write mode of the disk; "R" indicates 
that the disk is a read-only disk, and "W" indicates that you have 
read/write privileges. The MDISK control statement of the Directory 
Service Program is described in the !~LJIQ QE~~!Q£~§ §y!g~. 

DEFINING TEMPORARY VIRTUAL DISKS 

Using the CP DEFINE command, you can attach a temporary disk to your 
virtual machine for the duration of a terminal session. The following 
command allocates a 10-cylinder temporary disk from a 3330 device and 
assigns it a virtual address of 291: 

cp define t3330 as 291 cyl 10 

When you define a minidisk, you can choose any valid address that is not 
already assigned to a device in your virtual machine. Valid addresses 
for minidisks range from 001 through 5FF, for a virtual machine in basic 
control mode. 

FORMATTING VIRTUAL DISKS 

Before you can use any new virtual disk, you must format it. This 
applies to new disks that have been assigned to you and to temporary 
disks that you have allocated with the CP DEFINE command. When yeu 
issue the FORMAT command you must use the virtual address you have 
defined for the disk and assign a CMS mode letter, for example: 

format 291 c 

eMS then prompts you with the following message: 

DMSFOR603R FORMAT WILL ERASE ALL FILES ON DISK 'C(291)'. DO YOU 
WISH TO CONTINUE? (YESINO): 

You respond: 

yes 

CMS then asks you to assign a label for the disk, which may be anything 
you choose. Labels can have a maximum of 6 characters. When the 
message: 

DMSFOR605R ENTER DISK LABEL: 

12 IBM VM/370 CMS User's Guide 



?g. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

is issued, you respond by supplying a disk label. For example, if this 
is a temporary disk, you might enter: 

scrtch 

Section 1. What it Means to Have a eftS Virtual ftachine 12.1 



March 30, 1979 

12.2 IBM VM/370 eMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

CMS then erases all the files on that disk, if any existed, and formats 
the disk for your use. When you enter the label, CMS responds by 
telling you: 

FORMATTING DISK 'C' 

'10' CYLINDERS FORMATTED ON 'C(291)'. 

R; T=0.15/1.60 11:26:03 

The FORMAT command should only be used to format CMS disks, that is, 
disks you are going to use to contain CMS files. If you want to format 
count-key-data disks for OS, DOS, or VSAM applications, the disks should 
be formatted using the IBCDASDI program. 

The FORMAT command allows a choice of physical disk block size as an 
option. See the !~LJ12 ~~~ £om!g~~ gn~ ~g££Q ~~!~£~n£~ for details. To 
format FB-512 disks for as, DOS, or VSAM applications, the disks can be 
formatted using the INTDK stand-alone utility program. See !~LJIQ 
Q~~g!Q£~ ~y!g~ for details. 

Sharing Virtual Disks: Linking 

Since only one user can own a virtual disk, and there are many occasions 
that require users to share data or programs, VM/370 allows you to share 
virtual disks, on either a permanent or temporary basis, by "linking." 

Permanent links can be established for you in your V8/370 directory 
entry. These disks are then a part of your virtual machine 
configuration every time you log on. 

You can also have another user's disk temporarily added to your 
configuration by using the CP LINK command. For eXample, if you have a 
program that uses data that resides on a disk identified in userid 
DATA's configuration as a 194, and you know that the password assigned 
to this disk is GO, you could issue the command: 

cp link to data 194 as 198 r pass= gol 

DATA's 194 disk is then added to your virtual machine configuration at 
virtual address 198. 

The "R" in the command line indicates the access mode; in this case, 
it tells CP that you wish only to read files from this disk. VM/370 
will not allow you to write on it. If you try to issue this command 
when someone is logged on to the userid DATA, you will not be able to 
establish the link. If you want to link to DATA in any event, you can 
reissue the LINK command using the access mode RR: 

cp link data 194 198 rr gol 

The keywords TO, AS, and PASS= are optional; you do not have to specify 
theIR. 

You can also use the CP LINK command to link to your own disks. For 
example, if you log on and discover that another user has access to one 
of your disks, you may be given read-only access, even if it is a 
read/write disk. you can request the other user to detach your disk 

1Note that the password cannot be entered on the command line if the 
password suppression facility was specified at sysgen. 

Section 1. What it Means to Have a CMS Virtual Machine 13 



Pg. of GC20-1819-2 Rev M,arcb 30, 1979 by Supp. SD23-9024-1 for 5748-11,8 

from his virtual machine, and after he has. done so, you can establish 
the link: 

cp link * 191 191 

When you link to your own disks, you can specify the userid as * and you 
do not need to specify the access mode or a password. 

You can find more information about the CP LINK command and CP access 
modes in !~LJIQ ~f £2mmgDQ R~!~f~D£~ f2£ ~~D~£~! ~§~£§. 

Identifying Your Disk to eMS: Accessing 

LINK and DEFINE are CP commands: they tell CP to add DASD devices to 
your virtual machine configuration. CMS must also know about these 
disks, and you must use the ACCESS command to estatlish a filemode 
letter for them: 

access 194 b 

CMS uses filemode letters to manage your files during a terminal 
session. By using the ACCESS command you can control: 

• Whether you can write on a disk or only read from it (its read/write 
status) 

• The library search order for programs executing in your virtual 
machine 

• Which disks are to contain the new files that you create 

If you want to know which disks you currently have access to, issue 
the command: 

query search 

You might see the following display: 

PER191 
DAT194 
CMS190 
CMS19E 

191 A 
198 B 
190 S 
19E Y 

R/W 
R/O 
R/O 
R/O 

The first column indicates the label on the disk (assigned when the disk 
is formatted), and the second column shows the virtual address assigned 
to it. 

The third column contains thefilemode letter. All letters of the 
alphabet are valid file mode letters. 

The fourth column indicates the read/write status of the disk. The 
190 and 19E disks in this example are read-only disks that contain the 
CMS nucleus and disk-resident commands for the CMS system. You will 
probably use your 191 (A) disk as your primary read/write work disk. 

14 IBM VM/370 eMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

RELEASING VIRTUAL DISKS 

When you no longer need a disk during a terminal session, or if you want 
to assign a currently active filemode letter to another disk, use the 
CMS command RELEASE: 

release c 

Then, you can issue the ACCESS command to assign the filemode letter C 
to another disk. 

Section 1. What it Means to Have a CMS virtual Machine 14.1 



March 30, 1919 

14.2 IBM VM/310 eMS User's Guide 



) 

When you no longer need disks in your virtual .achine configuration, 
use the CP command DETACH to disconnect them from your virtual machine: 

cp detach 194 
cp detach 291 

If you are going to release and detach the disk at the same time, you 
can use the DET option of the RELEASE command: 

release 194 (det 

For more information on controlling disks in CMS, see "section 4. The 
CMS File System." 

Section 1. What it Means to Have a CMS Virtual Machine 15 



( 
16 IBM VM/370 eMS User's Guide 



) 

Section 2. VM/370 Environments and Mode 
Switching 

When you are using VM/370, your virtual machine can be in one of two 
possible "environments": the CP, or control program environment, or the 
virtual machine environment, which may be CMS. The CMS environment has 
several subenvironments, sometimes called "modes." Each environment or 
subenvironment accepts particular commands or subcommands, and each 
environment has its own entry and exit paths, responses and error 
messages. If you have a good understanding of how the VM/370 
environments are related, you can learn to change environments quickly 
and use your virtual machine efficiently. 

This section introduces the CP and CMS environments that you use and 
describes: 

• Entry and exit paths 
• Command subsets that are valid as input 

Figure 1, at the end of this section, summarizes the VM/370 command 
environments and lists the commands and terminal paths that allow you to 
go from one environment to another. 

with the exception of input mode in the edit environment, you can 
always determine which environment your virtual machine is in by 
pressing the Return or Enter key on a null line. The responses you 
receive and the environments they indicate, are: 

].§§EQ1!§.§ 
CP 
CMS 
CMS (DOS ON) 
EDIT: 
CMS SUBSET 
DEBUG 

~1!'!!!:Q1!!~1!j: 
CP 
CMS 
CMS/DOS 
Edit 
CMS Subset 
Debug 

The CP Environment 

When you log on to VM/370, your virtual machine is in the CP 
environment. In this environment, you can enter any CP command that is 
valid for your privilege class. This publication assumes that you are a 
general, or class G, user. You can find information about the commands 
that you can use in the Y~L1IQ ~g ~2~~~1!g ~~!~~gy£~ !Q~ 2~1!~~~! Q§.§E§· 

Only CP commands are valid terminal input in the CP environment. You 
can, however, preface a CP command line with the characters "CPU or 
"tcP", followed by one or more blanks, although it is not necessary. 
These functions are described under "The CMS Environment." 

you can enter CP commands from other VM/370 environments. There may 
be times during your terminal session when you want to enter the CP 
environment to issue one or more CP commands. You can do this from any 
other environment by doing either of two things: 

1. Issue the command: 

#cp 

Section 2. VM/370 Environments and Mode switching 17 



2. Use your terminal's Attention key (or equivalent). On a 2141 
terminal, you must normally press the Attention key twice, quickly, 
to enter the CP environment. 

The following message indicates that your virtual machine is in the CP 
environment: 

CP 

After entering whatever CP commands you 
virtual machine to the environment or mode 
the CP command: 

cp begin 

need to use, you return your 
that it came from by using 

which, literally, begins execution of your virtual machine. 

The eMS Environment 

You enter the CMS environment from CP by issuing the IPL command, which 
loads CMS into your virtual storage area. If you are planning to use 
CMS for your entire terminal session, you should not have to IPt again 
unless a program failure forces you into the'CP environment. 

When you issue the IPt command, you can specify either the named 
system CMS at your installation or you can load CMS by specifying the 
virtual address of the disk on which the CMS system resides. For 
example: 

cp ipl ems 

-- or --

cp ipl 190 

When your virtual machine is in the CMS environment, you can issue 
any CMS command and any of the CP commands that are valid for your user 
privilege class. You can also execute many of your own as or DOS 
programs; the ways you can execute programs are discussed in "Section 8. 
Developing as Programs Under CMS" and "Section 9. Developing DOS 
Programs Under CMS." 

You can enter CP commands from CMS in any of the following ways: 

• Using the implied CP function of CMS (See !21~.) 
• With the CP command 
• With the ICP function 

!21~: For the m'ost part, you may enter any CP command directly from 
the CMS environment. This implied CP function is controlled by an 
operand of the CMS SET command, IMPCP. You can determine whether the 
implied CP function is in effect for your virtual machine by entering 
the command: 

query impcp 

If the response is: 

IMPCP = OPF 

you can change it by entering: 

set impcp on 

18 IBM VM/310 CMS User's Guide 

/ 
\ 
''II 

( 



) 

) 

) 

When the implied CP function is set off, you must use either the 
CP command or the ICP function to enter CP commands from the CMS 
environment. CP commands that you execute in EXEC procedures must 
always be prefaced by the CP command, regardless of the implied CP 
setting. An example of using the CP command is: 

cp close punch 

When you issue CP commands from the CMS environment either 
implicitly or with the CP command, you receive, in addition to the CP 
response (if any), the CMS ready message. If you use the tcp 
function, discussed next, you do not receive the ready message. 

You can preface any CP command line with the characters "#CP", 
followed by one or more blanks. When you enter a CP command this 
way, the command is processed by CP immediately; it is as if your 
virtual machine were actually in the CP environment. 

EDIT, INPUT, AND CMS SUBSET 

The CMS editor is a VM/370 facility that allows you to create and 
modify data files that reside on CMS disks. The editor environment, 
more commonly called the edit environment, is entered when you issue 
the CMS command EDIT, specifying the identification of a data file 
you want to create or modify. 

edit myfile assemble 

is an example of how you would enter the edit environment to either 
create a file called MY FILE ASSEMBLE or to make changes to a disk 
file that already exists under that name. 

When you enter the edit environment your virtual machine is 
automatically in edit mode, where you can only issue EDIT subcommands 
or CP commands prefaced by "tcP." EDIT subcommands tell the editor 
what you wish to do with the data you have accessed. After you enter 
the EDIT subcommand: 

input 

data lines that you enter are considered input to the file. To 
return to edit mode, you must enter a null line. 

If you issue the EDIT subcommand: 

cms 

the editor responds: 

CMS SUBSET 

and your virtual machine is in CMS subset mode, where you can issue 
any valid CMS subset command, that is, a CMS command that is allow~1 
in CMS subset mode. These include: 

ACCESS 
CP 
DISK 
ERASE 
EXEC 
HT 

LISTFILE 
PRINT 
PUNCH 
QUERY 
READCARD 

RT 
SET 
STATE 
STATEW 
TYPE 

Section 2. VM/370 Environments and Mode Switching 19 



You can also issue CP commands. To return to edit mode, you use 
the special CMS subset command, RETURN. If you enter the Immediate 
command HX, your editing session is terminated abnormally and your 
virtual machine is returned to the CMS environment. 

When you are finished with an edit session, you retrirn to the CMS 
environment by issuing the FILE subcommand. which indicates that all 
modifications or data insertions that you have m.de should be written 
onto a CMS disk, or by issuing the subcommand QUIT, which tells the 
editor not to save any modifications or insertions made since the 
last time the file was written. 

More detailed information about EDIT subcommands and how to use 
the CMS editor is contained in this publication in "Section 5. The 
CMS Editor" and in the !~LJ.IQ £!12 £Q!!~!!g ~!!g 1!~££2 !!~f~!:~!!£~. 

DEBUG 

CMS DEBUG is a special CMS facility that provides subcommandsto help 
you debug programs at your terminal. Your virtual machine enters the 
debug environment when you issue the CMS command: 

debug 

You may want to enter this command after you have loaded a program 
into storage and before you begin executing it. At this time you can 
set "breakpoints," or address stops, where you wish to halt your 
program's execution so that you can examirieand change the contents 
of general registers and storage areas. When these breakpoints are 
encountered, your vir.tual machine is placed in the debug environment. 
You can also enter the debug environment by issuing the CP EXTERNAL 
command, which causes an external interrupt to your virtual machine. 

Valid DEBUG subcommands that you can enter in. this environment 
are: 

BREAK 
CAW 
CSW 
DEFINE 
DUMP 

GO 
GPR 
HX 
ORIGIN 
PSW 

RETURN 
SET 
STORE 
X 

You can also use the ICP function in the debug environment to enter 
CP commands. 

you leave the debug environment in any of the following ways: 

• If the program you are running completes exe~ution, you are returned 
to the CMS environment. 

• If your virtual machine entered the debug environment after a 
breakpoint was encountered, it" returns to CMS when you issue the 
DEBUG subcommand: 

hx 

To continue the execution of your program, you use ~he DEBUG 
subcommand: 

go 

20 IBM VM/370 CMS User's Guide 

( 



Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5148-X18 

• If your virtual machine is in the debug environment and is not 
executing a program, the DEBUG subcommand: 

return 

returns it to the CMS environment. 

CMS/DOS 

If you are a DOS/VSE user, the CMS/DOS environment provides you with all 
the CMS interactive functions and facilities, as well as special CMS/DOS 
commands which simulate DOS functions. The CMS/DOS environment becomes 
active when you issue the command: 

set dos on 

When your virtual machine is in the CMS/DOS environment you can issue 
any command line that would be valid in the CMS environment, including 
the facilities of EDIT, DEBUG, and EXEC, but excluding CMS commands or 
program modules that load and/or execute programs that use OS macros or 
functions. 

The following commands are provided in CMS/DOS to test and develop 
DOS programs, and to provide access to DOS/VS libraries: 

ASSGN 
DLBL 
DOSLIB 
DOSLKED 
DOSPLI 

DSERV 
ESERV 
FETCH 
FCOBOL 
LISTIO 

OPTION 
PSERV 
RSERV 
SSERV 

Your virtual machine leaves the CMS/DOS environment when you issue the 
command: 

set dos off 

If you reload CMS (with an IPL command) during a terminal session, you 
must also reissue the SET DOS ON command. 

Interrupting Program Execution 

When you are executing a program under CMS or executing a CMS command, 
your virtual machine is not available for you to enter commands. There 
are, however, ways in which you can interrupt a program and halt its 
execution, either temporarily, in which case you can resume its 
execution, or permanently, in which case your virtual machine returns to 
the eMS environment. In both cases, you interrupt execution by creating 
an "attention interruption," which may take two forms: 

• An attention interruption to your virtual machine operating system 
• An attention interruption to the control program 

These situaticns result in what are known as virtual machine (VM) or 
control program (CP) "reads" being presented tc your virtual console. 
On a typewriter terminal, the keyboard unlocks when a read occurs. 

section 2. VM/310 Environments and Mode Switching 21 



March 30, 1979 

Whether you have to press the Attention key once or twice depends on 
the terminal mode setting in effect for your virtual machine. This 
setting is controlled by the CP TERMINAL command: 

cp terminal mode vm 

The setting VM is the default for virtual machines; you do not need to 
specify it. The VM setting indicates that one depression of the 
Attention key sends an interruption to your virtual machine, and that 
two depressions results in an interruption to the control program (CP). 

The £P setting for terminal mode, which is the default for the system 
operator, indicates that one depression of the Attention key results in 
an interruption to the control program (CP)~ If you are using your 
virtual machine to run an operating system other than CMS, you might 
wish to use this setting. Issue the command: 

cp terminal mode cp 

VIRTUAL MACHINE INTERRUPTIONS 

While a command or program is executing, if you press the Attention key 
once on a 2741 (or the Enter key on a 3270), you have created a virtual 
machine interruption. The program halts execution, your terminal will 
accept an input line, and y~u may: 

• Terminate the execution of the program by issuing an Immediate 
command to halt execution: 

hx 

The HX command causes the program to abnormally terminate (abend). 

• Enter a eMS command. The command is stacked in a console buffer and 
is processed by CMS when your program is finished executing and the 
next virtual machine read occurs. For example: 

print abc listing 

After you enter this line, the program resumes execution. 

• If the program is directing output to your terminal and you wish only 
to halt the terminal display, use the Immediate command: 

ht 

The program resumes execution. Terminal output can also be 
suppressed immediately when you enter a command by placing tHT at the 
end of the command line. The logical line end character (I) allows 
the Immediate command HT to be accepted; program execution proceeds 
without typing. 

You can, if you want, cause another interruption and request that 
typing be resumed by entering the RT (resume typing) command: 

rt 

• Enter a null line; your program continues execution. The null line is 
stacked in the console stack and read by CMS as a stacked command 
line. 

22 IBM VM/370 eMS User's Guide 



) 

HX, HT, and RT are three of the CMS Immediate commands. They are 
"immediate" because they are executed as soon as they are entered. 
Unlike other commands, they are not stacked in the console buffer. You 
can only enter an Immediate command following an attention interruption. 

CONTROL PROGRAM INTERRUPTIONS 

You can interrupt a program and enter the CP environment directly by 
pressing the Attention key twice quickly, on a 2741, or pressing the PAl 
key on a 3270. Then, you can enter any CP command. To resume the 
program's execution, issue the CP command: 

cp begin 

If your terminal is operating with the terminal mode set to CP, pressing 
the Attention key once places your virtual machine in the CP 
environment. 

ADDRESS STOPS AND BREAKPOINTS 

A program may also be interrupted 
you specifically set by the CP 
issue the command: 

by an instruction address stop, which 
command ADSTOP. For example, if you 

cp adstop 201ea 

an address stop is set at virtual storage location X'201EA'. When your 
program reaches this address during its execution, it is interrupted and 
your virtual machine is placed in the CP environment, where you can 
issue any CP command, including another ADSTOP command, before resumitig 
your program's execution with the CP command BEGIN. 

Breakpoints, similar to address stops, are set using the 
subcommand BREAK, which you issue in the debug environment 
executing a program. For example, if you issue: 

break 1 201ae 

DEBUG 
before 

Your program's execution is interrupted at this address and your virtual 
machine is placed in the debug environment. You can then enter any 
DEBUG subcommand. To resume program execution, use the DEBUG subcommand 
GO. If you want to halt execution of the program entirely, use the 
DEBUG subcommand HX, which returns your virtual machine to the C~S 
environment. You can find more information about setting address stops 
and breakpoints in "section 11. How VM/370 Can Help You Debug Your 
Programs." 

Section 2. VM/370 Environments and Mode Switching 23 



Any "Class Any" 
CP Command 

Notes: 

Any CMS Command 
Any CMS/DOS Command 
Any CP Command 
Execute any DOS Program 
#CP Command Line 

1 The CP environment may be entered from any other environment either by using 
your terminal's Attention key or equivalent, or by entering the command #CP. 

2 Any CPcommand is any CP command that is valid for your user privilege class. 
Any time that a CP command can be entered, it may be prefaced with #CP. 

3The BEGIN command returns your virtual machine to the environment it was in 
when CP was entered: 

°If you were in edit or input mode, the current line pointer remains unchanged. 

°If you were executing a program, execution resumes at the instruction address 
indicated in the PSW. 

DEBUG EnvironmE!nt 

Figure 1. VM/310 Environments and Mode switching 

24 IBM VM/310 eMS User's Guide 

EDIT Environment 

INPUT MODE 

Any Input Line 
Carrier retu rn on a 

null line 
#CP Command Line 

CMS Subset 

Any CMS Subset Command 
Any CP Command 

~------~RETURN 

'"-------------1 HX 
#CP Command Line 

( 

\ 



) 

Section 3. What You Can Do with 
VM/370-CMS Commands 

This section provides an overview of the CMS and CP command languages, 
and describes the various commands within functional areas, with 
examples. The commands are not presented in their entirety, nor is a 
complete selection of commands represented. 

When you finish reading this section you should have an understanding 
of the kinds of commands available to you, so that when you need to 
perform a particular task using CMS you may have an idea of whether it 
can be done, and know what command to reference for details. For 
complete lists of the CP and CMS commands available, see "Appendix A: 
Summary of CMS Commands" and "Appendix B: Summary of CP Commands." 

Command Defaults 

Many of the characteristics of your CMS virtual machine are already 
established when you log on, but there are commands available so you can 
change them. In the case of many CMS commands, there are implied values 
for operands, so that when you enter a command line without certain 
operands, values are assumed for them. In both of these instances, the 
values set or jmpliedare considered default values. As you learn CP 
and CMS commands, you also should become familiar with the default 
values or settings for each. 

Commands to Control Terminal Communications 

Using VM/370, you control your 
terminal. VM/370 provides a 
cOllmunications. 

virtual machine directly 
set of commands for 

ESTABLISHING AND TERMINATING COMMUNICATIONS WITH VM/370 

from your 
terminal 

To initiate your communication with VM/370, use the CP LOGON command: 

cp logon sam 

optionally, you may enter your password on the same line1 : 

cp logon sam 123456 

When you are sure that your communication line is all right and you have 
difficulty logging on (for example, someone else has logged on under 
your userid), you can use the CP MESSAGE command: 

cp message sam this is sam ••• pls log off 

1Note that the password cannot be entered on the command line if the 
password suppression facility was specified at sysgen. 

Section 3. What You Can Do With VM/370-CMS Commands 25 



Another way to access the VM/370 system is to use the CP command 
DIAL: 

cp dial tsosys 

In this example, TSOSYS is the userid of a virtual machine running a TSO 
system. After this DIAL command is successful, you can use your 
terminal as if you were actually connected to a TSO system, and you can 
begin TSO logon procedures. 

To end your terminal session, use the CP command LOGOFF: 

cp logoff 

If you have used a 
VM/370 computer and 
enter: 

cp logoff hold 

switched (or dial-up) communication path to 
you want the line to remain available, you 

the 
can 

At times, you might be running a long program under one userid and wish 
to use your terminal for some other work. Then, you can disconnect your 
terminal: 

cp disconn 

-- or --

cp disconn hold 

Your virtual machine continues to run, and is logged off the system when 
your program has finished executing. If you want to regain terminal 
control of your virtual machine after disconnecting, log on as you would 
to initiate your terminal session. Your virtual machine is placed in 
the CP environment, and to resume its execution, you use the CP command 
BEGIN. 

You should not disconnect your virtual machine if a program requires 
an operator response, since the console read request cannot be 
satisfied. 

CONTROLLING TERMINAL OUTPUT 

During the course of a terminal session, you can receive many kinds of 
messages from VM/370, from the system operator, from other users, or 
from your own programs. You can decide whether or not you want these 
messages to actually reach you. For example, if you use the command: 

cp set msg off 

no one will be able to send messages to you with the CP MESSAGE command; 
if another virtual machine user tries to send you a message, he receives 
the message: 

userid NOT RECEIVING, MSG OFF 

If your virtual machine handles special messages and you do not want to 
receive special messages at this time, you can issue: 

cp set smsg off 

26 IBM VM/370 CMS User's Guide 



March 30, 1979 

No one will be able to send special messages to you with the CP SMSG 
command; if another virtual machine user attempts to do so, he receives 
a message: 

userid NOT RECEIVING, SMSG OFF 

Similarly, you can use: 

cp set wng off 

to prevent warning messages (which usually come from the system 
operator) from coming to you. You would probably do this, however, only 
in cases where you were typing some output at your terminal and did not 
want the copy ruined. 

VM/370 issues error messages whenever you issue a command incorrectly 
or if a command or program fails. These messages have a long form, 
consisting of the error message code and number, followed by text 
describing the error. If you wish to receive only the text portion of 
messages with severity codes I, E, and W (for informational, error, and 
warning, respectively), you can issue the command: 

cp set emsg text 

If you want to receive only the message code and number (from which you 
can locate an explanation of the error in !~Ll1~ ~y§!~~ !~§§gg~§), you 
specify: 

cp set emsg code 

You can also cancel error messages completely: 

cp set emsg off 

To restore the EMSG setting to its default, which is the message text, 
enter: 

cp set emsg text 

Some CP commands issue informational messages telling you that CP has 
performed a particular function. You can prevent the reception of these 
messages with the command: 

cp set imsg off 

or restore the default by issuing: 

cp set imsg on 

The setting of EMSG applies to eMS commands as well as to CP commands. 

You can also control the format of the CMS ready message. If you 
enter: 

set rdymsg smsg 

you receive only the "R;" or shortened form of the ready message after 
the completion of CMS commands. If you are not receiving error messages 
(as described above) and an error occurs, the return code from the 
command still appears in parentheses following the "R". 

Section 3. What You Can Do With VM/370-CMS Commands 27 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

An additional feature exists for CMS. If you have a typewriter 
terminal with a two-color ribbon, you can s~ecify: 

set redtype on 

so that CMS error messages are typed in red. 

Some commands or messages result in displays of lines that are very 
long. If you want to limit the width of lines that are received at your 
terminal (for example, if you are using terminal paper that is only 
eight inches wide), you can specify: 

cp terminal linesize 80 

so that all lines received at your terminal are formatted to fit within 
an 80-character display. 

You can also control two special characters in VM/370. One is the 
exclamation point (!) t~at types when the Attention key is pressed. If 
you do not want this character to type when you press the Attention key, 
use the command: 

cp terminal attn off 

CMS allows you to specify a "blip" character: this character is typed 
or displayed whenever two seconds of processor time are used by your 
virtual machine. If you enter: 

set blip * 

then, during program 
seconds of CPU time. 

set blip off 

execution, this character 
Y~u can cancel the function: 

or set it to nonprintable characters: 

set blip on 

types for every 

When this 
Selectric 
received. 

command has been entered on a typewriter terminal, 
type ball tilts and rotates whenever a blip character 

two 

the 
is 

Note: Issuance of the STIMER macro for more than two seconds will mask 
of~blips. 

On a display terminal, you can control the intensity of the redisplay 
of user input. If you enter: 

cp terminal hilight on 

the redisplay of user input is highlighted. If you enter: 

cp terminal hilight off 

the redisplay of user input is at normal intensity. 
default. 

28 IBMVM/370 CMS User's Guide 

This is the 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

COMMANDS TO CONTROL HOW VM/370 PROCESSES INPUT LINES 

You can manipulate VM/370's logical line editing function 
own needs. In addition to using the CP TERMINAL command 
default logical line editing symbols, you can issue: 

cp set linedit off 

to suit your 
to change the 

Section 3. What You Can Do With VM/370~CMS Co •• ands 28.1 



March 30, 1919 

28,.2 IBM VM/310 eftS US,er's Guide 



) 

) 

so that none of the symbols are recognized by VM/370 when it interprets 
your input lines~ 

When you are in the CMS environment, there are a number of commands 
that you can use to control how CMS validates a command line. The SET 
command functions IMPCP (implied CP) and IMPEX (implied EXEC) control 
the recognition of CP commands and CMS EXEC procedures. For example, if 
you issue: 

set impcp off • set impex off 

then, when you enter CP commands in CMS or try 
procedures, you must preface the name of the command 
CP (or tcP), or EXEC, respectively. 

to execute EXEC 
or procedure with 

By using the SYNONYM and the SET ABBREV commands, you can control 
what command names, synonyms, or truncations are valid in CMS. For 
example, you could set up a file named MYSYN SYNONYM which contains the 
following records: 

PRINT 
RELEASE 
ACCESS 
DOSLKED 

PRT 
LET GOOF 
GET 
LNKEDT 

1 
5 
1 
3 

The first column specifies an existing CMS command, module, or EXEC 
name; the second column specifies the alternate name, or synonym, you 
want to use; and the. third column is a count field that indicates the 
minimum number of characters of the synonym that can be used to truncate 
the name. Using this file, after you enter the command: 

synonym mysyn 

you can use PRT, LETGOOF, GET, and LNKEDT in place of the corresponding 
CMS command names. Also, if the AEBREV function is in effect, (it is 
the default; you can make sure it is in effect by issuing the command 
SET ABBREV ON), you can truncate any of your synonyms to the minimum 
number of characters specified in the count field of the record (that 
is, you could enter "pH for PRINT, "letgo" for RELEASE, and so on) • 

You can set up EXEC files with the same names as CMS commands, that 
mayor may not perform the same function as the CMS names they 
duplicate. For example, if every time you used the GLOBAL command you 
used the same operands, you could have an EXEC file, named GLOBAL, that 
contained a single record: 

global maclib cmslib os macro 

Then, every time you entered the command name: 

global 

the command GLOBAL MACLIB CMSLIB OSMACRO would execute. 

As another example, suppose you had an EXEC file named 'T', that 
contained the following records: 

&CONTROL OFF 
CP QUERY TIME 

Then, whenever you entered: 

t 

Section 3. What You Can Do with VM/370-CMS Commands 29 



you would receive the CP time-of-day message, and you could no longer 
use the truncation "T" for the CMS command TYPE. In order to see the 
contents of a CMS file displayed at your terminal you would have to 
enter at least "TY" as a truncation. 

CONTROLLING KEYBOARD-DEPENDENT COMMUNICATIONS 

You are dependent on your terminal for communication with VM/370: when 
your virtual machine is waiting for a read either from the control 
program or from your virtual machine operating system, you can not 
receive messages until you press the Return key to enter a command or a 
null line. If you are in a situation where you must wait for a message 
before continuing your work, for example, if you are waiting for a tape 
device to be attached to your virtual machine, you can use the CP 
command SLEEP to lock your keyboard: 

cp sleep 

You must then press the Attention key to get out of sleep and unlock the 
keyboard so you can enter a command. 

If your virtual machine is in the CP environment when you issue the 
SLEEP command, or if you issue the SLEEP command from the CMS 
environment using the tcp function, your virtual machine is in the CP 
environment after you press the Attention key. If your virtual machine 
is in the CMS environment when you enter the SLEEP command (or if you 
enter CP SLEEP), your virtual machine is in the CMS environment when you 
press the Attention key once. 

You can control the effect of pressing the Attention key on your 
terminal with the CP TERMINAL command. If you specify: 

cp terminal mode cp 

then, whenever you press the Attention key, you are in the CP 
environment. 

If you use the default terminal mode setting, which is VM, and then 
you press the Attention key once, you cause a read to your virtual 
machine; if you press the Attention key twice you cause a CP read, and 
you are in the CP environment. 

The effect of pressing the Attention key is also important when you 
are executing a program. At times, you may wish to enter some CP 
commands while your program executes, but you do-not want to interrupt 
the execution of the program. If, before you begin your program you 
issue the command: 

cp set run on 

and then use the Attention key to get to the CP environment While your 
program executes, the program continues executing While you communicate 
with CP. The default setting for the RUN operand of the SET command is 
off; usually, when you press the Attention key (twice) during program 
execution, your program is interrupted. 

SPECIAL CHARACTER SETS: If you are using a Frogramming language or 
enterIng data-that requires you to use characters that are not on your 
keyboard, you can select some characters that you do not use very often 
and establish a translate table with the SET command. For example, if 
your terminal does not have the special characters [and ] (which have 

30 IBM VM/370 CMS User's Guide 

( 



) 

) 

the hexadecimal values AD and BD, respectively), you could issue the 
commands: 

set input %ad 
set input $ bd 

Then, when you are entering data lines at your terminal, whenever you 
enter the characters "%" or "$", they are translated and written into 
your file as fI(fI and "]". When you display these lines, the character 
positions occupied by the special characters appear to be blanks, 
because they are not available on your keyboard. If you want these 
special characters to appear on your terminal in symbolic form, you 
should issue the commands: 

set output ad % 
set output bd $ 

so that when you are displaying lines that contain these characters, 
they will appear translated as % and $ on your terminal. If you are 
going to use the input and output functions together, you must set the 
output character first; if you set the input character first, then you 
are unable to set the output function. 

If you are an APL user and have 
3270 feature and keyboard, you can 
tables with the command: 

cp terminal apl on 

the special APL type font or the APL 
tell VM/370 to use APL translation 

Commands to Create, Modify, and Move Data Files 
and Programs 
The CMS command language proviaes you with many different ways of 
manipulating files. A file, in eMS, is any collection of data; it is 
most often a disk file, but it may also be contained on cards or tape, 
or it may be a printed or punched output file. 

COMMANDS THAT CREATE FILES 

you create files in CMS by several methods; either specifically or by 
default. The EDIT command invokes the CMS editor to allow you to create 
a file directly at your terminal. You must specify a file identifier 
when you are creating a new file: 

edit mother goose 

In this example, the file has an identifier, or fileid, of MOTHER GOOSE. 
The EDIT subcommand INPUT allows you to begin inserting lines of data or 
source code into this file. When you issue the sUbcommands FILE or 
SAVE, the lines that you have entered are written into a CMS disk file. 

Files are created, and sometimes named, by default, with the 
following types of commands: 

• Commands that invoke programming language processors or compilers. 
For example, if you issue the command: 

assemble myfile 

Section 3. What You Can Do With VM/370-CMS Commands 31 



the assembler assembles source statements from an existing CftS file 
named MYFILE ASSEMBLE and produces an output file containing object 
code, as well as a listing. The files that are created are named: 

MYFILE TEXT 
MYFILE LISTING 

• Commands that load CMS files onto a disk from cards or tapes. These 
commands are READCARD, TAPE LOAD, and DISK LOAD. 

• The LISTFILE and LISTIO commands with the EXEC option create files 
named CMS EXEC and $LISTIO EXEC which you can execute as EXEC 
procedures. 

• The TAPPDS and TAPEMAC commands create CMS disk files from OS data 
sets on tape. If the data set is a partitioned data set, the TAPPDS 
command creates individual CMS files from each of the members; the 
TAPEMAC command creates a CMS macro library, called a ftACLIB, from an 
OS macro library. . 

• The MOVEFILE and FILEDEF commands, used together, can copy OS or DOS 
data sets or files into CMS files; they can also copy files from 
cards or tapes. 

• CMS/DOS commands SSERV, ESERV, RSERV, and PSERV copy DOS files from 
source statement, relocatable, and procedure libraries into CftS 
files. 

• Some CMS commands produce maps, or lists of files, data sets, or 
program entry points. For example, if you issue the command: 

tape scan (disk 

a CMS disk file named TAPE MAP is created that contains a list of the 
CMS files that exist on a tape attached to your virtual machine at 
virtual address 181. 

Some commands create new files from files that already exist on your 
virtual disks. The creation may involve a simple copy operation, or it 
may be a combining of many files of one type into a larger file of the 
same or a different type: 

• The COPYFILE command, in its simplest form, copies a file from one 
virtual disk to another: 

copyfile yourprog assemble b myprog assemble a 

• The MACLIB and TXTLIB commands create libraries from MACRO or COpy 
files, or from TEXT (object) files. 

• The SORT command rearranges (in alphameric sequence) the records in a 
file and creates a new file to contain the result. You have to 
specify the name of the new file: 

sort nonseq recs a seq recs a 

• The GENMOD command creates nonrelocatable modules from object modules 
that you have loaded into your virtual storage area. For example, 
the commands: 

load test 
genmod payroll 

create a file named PAYROLL MODULE, which you can then execute as a 
user-written CMS command. 

32 IBM VM/370 CMS User's Guide 

« 



) 

• The DOSLKED command creates or adds members to DOSLIBs, which are 
libraries containing link-edited CMS/DOS program phases. 

• The UPDATE command creates an updated source file and special update 
files when you use it to apply updates to your source programs. 

COMMANDS THAT MODIFY DISK FILES 

You can use the CMS editor to modify existing files on your virtual 
disks. You issue the EDIT command, giving the file identifier: 

edit old file 

CMS editor subcommands allow you to make minor specific changes or 
global changes, which can affect many lines in a file at one time. 

The MACLIB and TXTLIB commands also allow you to modify CMS macro and 
text libraries. You can add, delete, or replace members in these 
libraries using these commands. 

The COPYFILE command has some options that allow you to change a file 
without creating a new output file. For example, if you enter the 
command: 

copyfile my file a (lowcase 

then all of the uppercase characters in the file MY FILE are translated 
to lowercase. 

You can change the file identifier of a file using the RENAME 
command: 

rename test file a1 good file a1 

The ERASE command deletes files from your virtual disks: 

erase temporary file b1 

For additional examples of CMS file system commands, see "Appendix D: 
Sample Terminal Sessions." 

COMMANDS TO MOVE FILES 

You can use CMS commands to transfer a data file from one device or 
medium to another device of the same or of a different type. The types 
of movement and the commands to use are described briefly here and in 
detail in "Section 1. Using Real printers, Punches, Readers, and Tapes." 

If you need to trarisfer files between virtual machines, you can use 
the PUNCH or DISK DUMP commands to punch virtual card image records. 
These are then placed in the virtual card reader of the receiving 
virtual machine. 

Before you use either of these commands, you must indicate the output 
disposition of the files. You do this with the CP SPOOL command: 

cp spool OOd to mickey 

Section 3. What You Can Do ~ith VM/370-CMS Commands 33 



Then, you can use the PUNCH command to punch virtual card images: 

punch acct records 

The file ACCT RECORDS is spooled to the userid MICKEY's virtual card 
reader. If the CMS file you are transferring does not have fixed­
length, SO-character (card image) records, you can use the command: 

disk dump acct records 

The CMS TAPE command allows you to dump CMS files onto tape, or to 
restorQ previously dumped files: 

tape dump archive file 
tape load archive file 

. VM/370 also provides a special utility program, DASD Dump Restore, 
that allows you to dump the entire contents of your virtual disk onto a 
tape and then later restore it to a disk. You might use this program, 
invoked by the DDR command in CMS, to back up your data files before 
using them to test a new program. 

COMMANDS TO PRINT AND PUNCH FILES 

The commands that you use most often to print and punch CMS files are 
the commands PRINT and PUNCH. For example: 

print myprog listing 

prints the contents of the LISTING file on the system printer, and: 

punch myprog assemble 

punches the assembler language source statement file onto cards. You 
can also punch members of MACLIBs and TXTLIBs: 

punch cmslib maclib (member fscb 

Some CMS commands have a PRINT option, so that instead of having some 
kinds of output displayed at your terminal or placed in a disk file, you 
can request to have it printed on the real system printer. For example, 
if you want a list of the contents of a macro library to print, you 
could issue the command: 

maclib map mylib (print 

You can see the contents of a file displayed at your terminal by 
using the TYPE command: 

type week3 report 

You can specify, on the TYPE command, that you want to see only some 
specific records in this file: 

type week3 report a 1 20 

34 IBM VM/370 CMS User's Guide 



March 30,1979 

Commands to Deyelop and Test OS and CMS 
Programs 

Use CMS to prepare programs: you can create them with the CBS editor~ or 
write them cnto your CMS disks using any of the methods discussed above. 
You can also assemble or compile source programs directly from cards, 
tapes, or as data sets. If your source program is in a CMS disk file, 
then during the development process you can use the editor to make 
corrections and updates. 

To compile your programs, use the assembler or any of the language 
processors available at your installation. If your program uses macros 
that are contained in either system or private program libraries, you 
must make these libraries known to CMS by using the GLOBAL command: 

global maclib cmslib asmlib 

In this example, you are using two libraries: the CftS macro library, 
CMSLIB MACLIB, and a private library, named ASMLIB MACLIB. 

The output from the compilers, in relocatable object fora, is stored 
on a CMS disk as a file with the filetype of TEXT. To load TEXT files 
into virtual storage to execute them, use the LOAD comBand: 

load myprog 

The LOAD command performs the linkage editor function in CMS~ If 
MYPROG contains references to external routines, and these routines are 
the names of CMS TEXT files, those TEXT files are automatically included 
in the load. If you receive a message telling you that there is an 
undefined name (which might happen if you have a CSECT name or entry 
point that is not the same as the name of the TEXT file that contains 
it), you can then use the INCLUDE command to load this TEXT file: 

include scanrtn 

When you have loaded the object modules into storage, you can begin 
program execution with the START command: 

start 

If you want to begin execution at a specified entry point, enter: 

start scan1 

where SCAN1 is the name of a control section, entry point, or procedure. 

If you are testing a program that either reads or writes files or 
data sets using as macros, you must use the FILEDEF command to supply a 
file definition to correspond to the ddname you specify in your program. 
The command: 

filedef indd reader 

indicates that the input file is to be read from your virtual card 
reader. A disk file might be defined: 

filedef outdd disk out file a1 

The FILEDEF command in CMS performs the same function as a data 
definition (DD) card in as. 

The commands to load and execute as programs are discussed in 
"Section 8. Developing as Programs Under CMS." 

Section 3. What You Can Do With VM/370-C~S Commands 35 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

The RUN command, which is actually an EXEC procedure, combines many 
of these commands for you, so that if you want to compile, load, and 
execute a single source file, or load and execute a TEXT or MODULE file, 
you can use the RUN command instead of issuing a series of commands. See 
the discussion of the RUN command in Y~Ll1Q ~~~ £2mms~Q ~Q ~s£!~ 
~~!~!~n£~ for a list of the as language processors available. 

Commands to Develop and Test DOS Programs 

CMS simulates many functions of DOS/VSE in the CMS/DOS environment. 
CMS/DOS is not a separate system, but is part of CMS. When you enter the 
command: 

set dos on 

you are in the CMS/DOS environment. If you want to use the libraries on 
the DOS/VSE system residence volume, you should access the disk on which 
it resides and specify the mode letter on the SET DOS ON command line: 

access 132 c 
set dos on c 

Using commands that are available only in the CMS/DOS environment, 
you can assign system and programmer logical units with the ASSGN 
command: 

assgn sys200 reader 

If the device is a disk device, you can set up a data definition with 
the DLBL command: 

assgn sys100 b 
dlbl infile b dsn myinput file (sys100 

You can find out the current logical unit assignments and active file 
definitions with the LISTIO and QUERY DLBL commands, respectively: 

listio a 
query dlbl 

If you are an asseBbler language programmer, you can assemble a 
source file with the ASSEMBLE command: 

assemble myprog 

A CMS file with a filetype of DOSLIB simulates a DOS cor~ image 
library; you can link-edit TEXT files or relocatable modules from a Des 
relocatable library and place the link-edited phase in a DOSLIB using 
the DOSLKED command: 

doslked myprog new lib 

Then, use the GLOBAL command to identify the phase library and issue the 
FETCH command to bring the phase into virtual storage: 

global doslib newlib 
fetch myprog 

The START command begins program execution: 

start 

36 IBM VM/370 CMS User's Guide 



) 

During program development with CMS, you can use DOS/VS system or 
private libraries. You can use files on these libraries or you can copy 
them into CMS files. The DSERV command displays the directories of 
DOS/VS libraries. The command: 

dserv cd 

produces a copy of the directory for the core image library. To copy 
phases from relocatable libraries into CMS TEXT files, you could use the 
RSERV command: 

rserv oldprog 

The SSERV and ESERV commands are available for you to copy files from 
source statement libraries, or copy and de-edit macros from E 
sublibraries. Also, the PSERV command copies procedures from the 
procedure library. 

The CMS/DOS commands are described 
Developing DOS Programs Under CMS." 

in detail in "Section 9. 

Commands Used in Debugging Programs 

When you execute your programs under eMS, you can debug them as they 
execute, by forcing execution to halt at specific instruction addresses. 
You do this by entering the debug environment before you issue the START 
command. You enter the debug environment with the DEBUG command: 

debug 

To specify that execution be stopped at a particular virtual address, 
you can use the BREAK subcommand to set a breakpoint. For example: 

break 1 20adO 

Then, when this virtual address is encountered during the execution of 
the program, the debug environment is entered and you can examine 
registers or specific storage locations, or print a dump of your virtual 
storage. Subcommands that do these things might look like the 
following: 

gpr 0 15 
x 20c12 8 
dump 20000 * 

Instead of using the CMS DEBUG subcommands, you can use the CP ADSTOP 
command to set address stops. For example: 

cp adstop 20adO 

Then, in the CP environment, you can use CP commands to do the same 
things. For example: 

cp display g 
cp display 20c12.8 
cp dump 20000 

Both sets of commands shown in these examples result in displays of (1) 
the contents of your virtual machine's general purpose registers, (2) a 
display of eight bytes of storage beginning at lccation X'20C12' and (3) 
a dump of virtual storage from location X'20000' to the end. 

Section 3. What You Can Do With VM/370-CMS Commands 37 



You can also use the CMS SVCTRACE command and the CP TRACE commands 
to see a record of interruption activity in your virtual machine. 

The DEBUG subcommands and the CMS and CP debugging 
described in more detail in "Section 11. How VM/370 Can 
Your Programs." 

Commands to Request Information 

facilities are 
Help You Debug 

All of the CP and CMS commands discussed in this section have required 
some action on your part: you set your terminal characteristics, 
manipulate disk files, develop, compile, and test programs, and control 
your virtual machine devices and spool files. During a terminal session 
you can change the status of many of your devices and virtual machine 
characteristics, modify the files on your disks and create spool files. 
VM/370 provides many commands to help you find out what is and what is 
not currently defined in your virtual machine. 

COMMANDS TO REQUEST INFORMATION ABOUT TERMINAL CHARACTERISTICS 

You can find out ~he status of your terminal characteristics by using 
the CP command QUERY with the TERMINAL or SET operands. If you issue the 
command: 

cp query terminal 

you can see the settings for all of the functions controlled by the CP 
TERMINAL command, including the current line size and line editing 
symbols. 

Similarly, the command: 

cp query set 

tells you the settings for the functions controlled by the CP SET 
command, such as error message display, and the MSG and WNG flags. 

For most of the functions controlled by the CMS SET command, there 
are corresponding CMS QUERY command operands; to find out a particular 
setting, you must specify the function in the QUERY command. For 
example: 

query input 

lists the current settings in effect for input character translation. 
Other functions that you can query this way are: 

BLIP 
IMPCP 
IMPEX 

INPUT 
OUTPUT 
RDYMSG 

38 IBM VM/370 CMS User's Guide 

REDTYPE 
SYNONYM 



) 

COMMANDS TO REQUEST INFORMATION ABOUT DATA FILES 

Use the LISTFILE command to get information about CMS files. The 
information you can obtain from the LISTFILE command includes: 

• The names of all the files on your A-disk: 

listfile 

• The names of all the files on any other accessed disk: 

list file * * b 

• The names of all files that have the same filename: 

listfile myprog * 
• The names of all files with the same filetype: 

listfile * assemble 

• The record length and format, blocksize, creation date and disk label 
for a particular file: 

listfile records saved a2 (label 

Use the STATE command to find out whether a certain file exists: 

state sales list c 

If you want to know if the file is on a read/write disk, you can use the 
STATEW command. 

To find out what CMS libraries have been made available, you can use 
the commands: 

query doslib 
query maclib 
query txt lib 
query library 

To find out what members are contained in a particular macro or text 
library use the commands: 

maclib map mylib (term 
txt lib map proglib (term 

The MODMAP command displays a load map of a ftODULE file: 

modmap payroll 

To examine load maps created by the LOAD command, use the TYPE 
command: 

type load map as 

The TYPE command can also be used to display the contents of any CftS 
file. To examine large files, you can use the PRINT command to spool a 
copy to the high-speed printer. 

To compare the contents of two files to see if they are identical, 
use the COMPARE command: 

compare labor stat a1 labor stat b1 

Section 3. What You CanDo With VM/370-CMS Commands 39 



Any records in these files that do not match are displayed at your 
terminal. 

If you have OS or DOS disks attached to your virtual machine, you can 
display a list of OS data sets or DOS files by using the LISTDS command; 
for example: 

listds d 

displays a list of the data sets or files on the OS or DOS disk accessed 
as your D-disk. 

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL DISKS 

Use the CP QUERY command to find out: 

• What virtual disks are currently part of your configuration: 

cp query virtual dasd 

• Whether a particular virtual disk address is in use: 

cp query virtual 291 

• What users might be linked to one of your disks: 

cp query links 330 

The CMS QUERY command can tell you about your accessed disks. If you 
enter: 

query disk a 

you can find out the number of files on your A-disk, the amount of space 
that is being used, and its percentage of the total disk space, and the 
read/write status. To get this information for all of your accessed 
disks, issue the command: 

query disk * 

To obtain information about the extents occupied by files on OS and DOS 
disks, enter the command: 

listds * (extent 

If you want to know the current order in which your disks are 
searched for data files or programs, issue the command: 

query search 

You could also use this command to find out what disks you have 
accessed, what filemode letters you have assigned to them, whether they 
are read/write or read-only, and whether they are CMS, OS, or DOS disks. 

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL MACHINE 

If you issue the command: 

cp query virtual 

40 IBM VM/370 CMS User's Guide 

( 



) 

you can find out the status of your virtual machine configuration. You 
can also request specific information; for example, the command: 

cp query storage 

gives you the amount of virtual storage you have available. 

To find out the current spooling characteristics of your printer, 
punch, or reader, issue the commands: 

cp query OOe 
cp query OOd 
cp query OOc 

To see information about all three at once, use: 

cp query ur 

For the status of spool files on any of these devices, issue the 
commands: 

cp query printer 
cp query punch 
cp query reader 

Using these commands, you can request the status of particular spool 
files by referring to the spoolid number; for example: 

cp query printer 4181 

You can also request additional information about the files, including 
file identification and creation time: 

cp query reader all 

If you want to know the total number of spool files associated with 
your virtual machine, you can use the command: 

cp query files 

The response to this message is the same as the message you receive if 
you have spool files when you log on. 

Section 3. What You Can Do With VM/310-CMS Commands 41 



( 
~ 

( 
42 IBM VM/370 eMS User's Guide 



) 

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

Section 4. The eMS File System 

The file is the essential unit of data in the CMS system. CMS disk 
files are unique to the CMS system and cannot be read or written using 
other operating systems. When you create a file in eMS, you name it 
using a file identifier. The file identifier consists of three fields: 

• Filename (fn) 
• Filetype (ft) 
• Filemode (fm) 

When you use CMS commands and programs to modify, update, or 
reference files, you must identify the file by using these fields. Some 
CMS commands require you to enter only the filename, or the filename and 
filetype; others require you to enter the filemode field as well. This 
section contains information about the things you must consider when you 
give your CMS files their identifiers, notes on the file system commands 
that create and modify CMS files, and additional notes on using CMS 
disks. 

eMS File Formats 

The eMS file management routines write eMS files on disk in fixed 
physical blocks, regardless of whether they have fixed- or 
variable-length records. For most of your eMS applications, you never 
need to specify either a logical record length and record format or 
block size when you create a CMS file. 

When you create a file with the CMS editor, the file has certain 
default characteristics, based on its filetype. The special filetypes 
recognized by the editor, and their applications, are discussed under 
"What are Reserved Filetypes?" 

VSAM files written by CMS are in 
written by OS/VS or DOS/VS and are 
systems. You cannot, however, use any 
and write VSAM files, because VSAM 
virtual storage access method. 

the same format as VSAM files 
recognized by those operating 

CMS file system commands to read 
file formats are unique to the 

For a minidisk formatted in 800-byte physical blocks, a single CMS 
file can contain up to 12,848,000 bytes of data grouped into as many as 
65,533 logical records, all of which must be on the same minidisk. If 
the file is a source program, the file size limit may be smaller. The 
maximum number of files per real disk in the 800-byte physical block 
format is 3400 for a 3330, 3333, 3340, or 3350 disk, or 3500 for a 2314 
or 2319. 

For a minidisk formatted in 1024-, 2048-, or 4096-byte logical 
blocks, a single CMS file can contain up to about (2 31 - 132,000) disk 
blocks of data, grouped into as many as 231 -1 logical records, all of 
which must be on the same minidisk. The approximate limits to the 
number of files per disk, expressed in thousands, are: 

Section 4. The CMSFile System 43 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748~XX8 

DISK LOGICAL BLOCK SIZE 
~.!n~!£~ !1~~ lQ~~=.Ql!~ ~Q~'§::Ql!~ ~.Q.2'§=Ql!~ 

2314 21 11 5 
3330-11 149 86 44 
3340 50 26 11 
3350 45 25 13 
3310 55 29 15 
3370 216 114 59 

How eMS Files Get Their Names 

When you create a eMS file, you can give it any filename and filetype 
you wish. The rules for forming filenames and filetypes are: 

• The filename and filetype can each be from one to eight characters. 
• The valid characters are A-Z, 0-9, and $, #, a. 

When you enter a command line into the VM/370 system, VM/370 always 
translates your input line into uppercase characters. So, when you 
specify a file identifier, you can enter it in lowercase. 

Remember that, by default, the t and ~ characters are line editing 
symbols in VM/370; when you use them to identify a file, you must 
precede them with the logical escape symbol ("). 

The third field in the file identifier, the filemode, indicates the 
mode letter (A-Z) currently assigned to the virtual disk on which you 
want the file to reside. When you use theCMS editor to create a file, 
and you do not specify this field, the file you create is written on 
your A-disk, and has a filemode letter of A. 

The filemode letter, for any file, can change during a terminal 
session. For example, when you log on, your virtual disk at address 191 
is accessed as your A-disk, so a file on that disk named SPECIAL EVENTS 
has a file identifier of: 

SPECIAL EVENTS A 

If, however, you later access another disk as your A-disk, and access 
your 191 as your B-disk, then this file has a file identifier of: 

SPECIAL EVENTS B 

DUPLICATING FILENAMES AND FILETYPES 

You can give the same filename to as many files on a given disk as you 
want, as long as you assign them different filetypes. Oryoti can creite 
many files with the same filetype but different filenames. 

For the most part, filenames that you choose for your files have no 
special significance to CMS. If, however, you choose a name that is the 
same as the name of a eMS command, and the file that you assign this 
name to is an executable module or EXEC procedure, then you may 
encounter difficulty if you try to execute the CMS command whose name 
you duplicated. 

44 IBM VM/370 eMS User's Guide 

( 



Pg. of GC20-1819-2 Rev March 30, 197~ by SUppa SD23-9024-1 for 5748-XX8 

For an explanation of how CMS identifies a command name, see "CMS 
Command Search Order" later in this section. 

Many CMS commands allow you to specify one or more of the fields in a 
file identifier as an asterisk (*) or equal sign (=), which identify 
files with similar fileids. 

Some CMS commands that manipulate disk files allow you to enter the 
filename and/or filetype fields as an asterisk (*), indicating that all 
files of the specified filename/filetype are to be modified. These 
commands are: 

COPY FILE 
ERASE 

RENAME 
TAPE DUMP 

For example, if you specify: 

erase * test a 

all files with a filetype of TEST on your A-disk are erased. 

section 4. TheCMS File System 4~.1 



March 30, 1979 

44.2 IBM VM/370 eMS User's Guide 



) 

The LISTFILE command allows you to request similar lists. If you 
specify an asterisk for a filename or filetype, all of the files of that 
filename or filetype are listed. There is an additional feature that you 
can use with the LISTFILE command, to obtain a list of all the files 
that have a filename or filetype that begin with the same character 
string. For example: 

listfile t* assemble 

produces a list of all files on your A-disk whose filenames begin with 
the letter T. The command: 

listfile tr* a* 

produces a list of all files on your A-disk whose filenames begin with 
the letters TR and whose filetypes begin with the letter A. 

The COPIFILE, RENAME, and SORT commands allow you to enter output file 
identifiers as equal signs (=), to indicate that it is the same as the 
corresponding input file identifier. For example: 

copy file myprog assemble b = = a 

copies the file MIPROG ASSEMBLE from your B-disk to your A-disk, and 
uses the same filename and filetype as specified in the input fileid for 
those positions in the output fileid. 

Similarly, if you enter the command: 

rename temp * b perm - -

all files with a filename of TEMP are renamed to have filenames of PERM; 
the existing filetypes of the files remain unchanged. 

What Are Reserved Filetypes? 

For the purposes of most CMS commands, the filetype field is used merely 
as an identifier. Some filetypes, though, have special uses in CMS; 
these are known as "reserved filetypes." 

Nothing prevents you from assigning any of the reserved filetypes to 
files that are not being used for the specific CMS function normally 
associated with that filetype. 

Some reserved filetypes also have special significance to the CMS 
editor. When you use the EDIT command to create a file with a reserved 
filetype, the editor assumes various default characteristics for the 
file, such as record length and format, tab settings, translation to 
uppercase, truncation column, and so on. 

section 4. The CMS File System 45 



FILETYPES FOR CMS COMMANDS 

Reserved filetypes sometimes indicate how the file is used in the CMS 
system: the filetype ASSEMBLE, for example, indicates that the file is 
to be used as input to the assembler; the filetype TEXT indicates that 
the file is in relocatable object form, and so on. Many CMS commands 
assume input files of particular filetypes, and require you to enter 
only tbe filename on the command line. For example, if you enter: 

synonym test 

CMS searches for a file with a filetype of SYNONYM and a filename of 
TEST. A file named TEST that has any other filetype is ignored. 

Some CMS commands create files of particular filetypes, using the 
filename you enter on the command line. The language processors do this 
as well; if you are recompiling a source file, but wish to save previous 
output files, you should rename them before executing the command. 

Figure 2 lists the filetypes used by CMS commands and describes how 
they are used. Figure 3 lists the file types used by CMS/DOS commands. 

In addition to these eMS filetypes, there are special filetypes 
reserved for use by the language processors, which are IBM program 
products. These filetypes, and the commands that use them, are: 

f!lg1IE~§ 
COBOL, SYMDMP, TESTCOB 
FORTRAN, FREEFORT, 

FTnn001, TESTFORT 
PLI, PLIOPT 
VSBASIC, VSBDATA 

£Q~m~llg§ 
COBOL, FeOBOL, TESTCOB 
FORTRAN, FORTGI, FORTH X 

GOFORT, TESTFORT 
DOSPLI, PLIC, PLleR, PLIOPT 
VSBASIC 

For details on how to use these filetypes, consult the appropriate 
program product documentation. 

46 IBM VM/370 eMS User's Guide 

{ 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

Piletype 

AMSERV 

ASM3705 

ASSEMBLE 

AUXxxxx 

CNTRL 

COpy 

DIRECT 

EXEC 

HELPCMS 
HELPCP 
HELPDEBU 
HELPEDIT 
HELPMENU 
HELPMSG 

LISTING 

LKEDIT 

LOADLIB 

MACLIB 

MACRO 

MAP 

Command 

AMSERV 

ASM3705 
GEN 3705 

ASSEMBLE 

UPDATE 

UPDATE 

MAC LIB 

DIRECT 

EXEC 
GEN3705 
LISTFILE 

HELP 

AMSERV 
ASSEMBLE 
ASM3705 

LKED 

LKED 

GLOBAL 
MACLIB 

MACLIB 

INCLUDE 
LOAD 
MACLIB 
TAPE 
TXTLIB 

Comments 

Contains VSAM access method services control 
statements to be executed with the AMSERV 
command. 

Used by system programmers to generate the 
3704/3705 control program. 

Contains source statements for assembler 
language programs. 

Points to files that contain UPDATE control 
statements for multiple updates. 

Lists files that either contain UPDATE control 
statements or point to additional files. 

Can contain COpy control statements and macros 
or copy files to be added to MACLIBs. 

Contains entries for the VM/370 user directory 
file. The system operator controls this file. 

Can contain sequences of CMS or user-written 
commands, with execution control statements. 

Contains descriptive information for CP and 
CMS commands, messages, and menu lists. 

Listings are produced by the assembler and 
the language processors as well as the AMSERV 
command. 

Contains the listing created during the 
generation of the 3704/3705 control program. 

Is a library of 3704/3705 control program 
load modules created during 3704/3705 control 
program generation. 

Library members contain macro definitions or 
copy files; the MACLIB command creates the 
library, and lists, adds, deletes, or replaces 
members. The GLOBAL command identifies which 
macro libraries should be searched during an 
assembly or compilation. 

Contains macro definitions to be added to a 
CMS macro library (MACLIB). 

Maps created by the LOAD and INCLUDE commands 
indicate entry point locations; the MACLIB, 
TXTLIB, and TAPE commands produce MAP files. 

~----------------.------.---------------------------------------------------~ 
Figure 2. Filetypes Used by CMS Commands (Part 1 of 2) 

Section 4. The CMS File System 47 



Filetype 

MODULE 

SYNONYM 

SCRIPTl 

TEXT 

TXTLIB 

UPDATE 

UPDLOG 

UPDTxxxx 

ZAP 

COllmand 

GEHMOn 
LOADKOD 
MODMAP 

SYNONYM 

SCRIPT 

ASSEMBLE 
INCLUDE 
LOAD 
TXTLIB 

GLOBAL 
TXTLIB 

UPDATE 

UPDATE 

UPDATE 

ZAP 

March 30, 1979 

Comments 

MODULE files created by the GEHMOD command are 
nonrelocatable executable programs. 
The LOADMOD commands loads a MODULE file for 
execution; the MODMAP command displays a map 
of entry point locations. 

Contains a table of synonyms for CMS commands 
and user-written EXEC and MODULE files. 

SCRIPT text processor input includes data and 
SCRIPT control words. 

TEXT files contain relocatable object code 
created by the assembler and compilers. The 
LOAD and INCLUDE commands load them into 
storage for execution. The TXTLIB command 
lIanipulates libraries of TEXT files. 

Library members contain relocatable object 
code. The TXTLIB command creates the library, 
and lists or deletes existing members. The 
GLOBAL command identifies TXTLIBs to search. 

Contains UPDATE control statements for single 
updates applied to source programs. 

Contains a record of additions, deletions, or 
changes made with the UPDATE command. 

Contains UPDATE control statements for 
multilevel updates. 

Contains control records for the ZAP command, 
which is used by system support personnel. 

'SCRIPT is an IBM Installed User program (IUP). 

Figure 2. Piletypes Used by CMS Commands (Part 2 of 2) 

OUTPUT PILES: TEXT AND LISTING 

Output files from the assembler and the language processors are 
logically related to the source programs by their filenames. Some of 
these files are permanent and sOlie are temporary. For example, if you 
issue the command: 

assemble myfile 

CMS locates a file named MYPILE with a filetype of ASSEMBLE and the 
systea assembler assembles it. If the file is on your A-disk, then when 
the assembler completes execution, the permanent files you have are: 

MYPILE ASSEMBLE A1 
MYPILE TEXT A1 
MYPILE LISTING 11 

48 IBM VM/370 CMS User's Guide 



r 
Filetype 

COpy 

DOSLIB 

DOSLNK 

ESERV 

EXEC 

LISTING 

MACRO 

MAP 

PROC 

TEXT 

Command 

MACLIB 
SSERV 

DOSLIB 
DOSLNK 
FETCH 
GLOBAL 

DOSLKED 

ESERV 

LISTIO 

ASSEMBLE 
ESERV 

ESERV 
MACLIB 

DOSLIB 
DOSLKED 
DSERV 

PSERV 

ASSEMBLE 
DOSLKED 
RSERV 

-------, 
Comments 

When the SSERV command copies books or macros 
from DOS source statement libraries, the output 
is written to CMS COpy files, which can be added 
to CMS macro libraries with the MACLIB command. 

DOS core image phases are placed in a DOS LIB by 
linkage editor, invoked with the DOSLNK command. 
The GLOBAL command identifies DOSLIBs to be 
searched when the FETCH command is executed. 

Contains linkage editor control statements for 
input to the CMS/DOS linkage editor. 

Contains input control statements for the ESERV 
utility program. 

The LISTIO command with the EXEC option creates 
the $LISTIO EXEC that lists system and 
programmer logical unit assignments. 

Listings contain processor output from the ESERV 
command, and compiler output from the assembler 
and language processors. 

Contains SYSPCH output from the ESERV program, 
suitable for addition to a CMS MACLIB file. 

The DSERV command creates listings of the 
directories of DOS libraries. The DOSLIB command 
with the MAP option produces a list of DOSLIB 
members. The linkage editor map from the DOSLKED 
command is written into a MAP file. 

The PSERV command copies procedures from DOS 
procedure libraries into CMS PROC files. 

Object decks created by the assembler or 
compilers are written into TEXT files. The RSERV 
command creates TEXT files from modules in DOS 
relocatable libraries. TEXT files can also be 
used as input to the linkage editor. 

Figure 3. Filetypes Used in CMS/DOS 

where the TEXT file contains the object code resulting from the 
assembly, and the LISTING file contains the program listing generated by 
the assembly. If any TEXT or LISTING file with the same name previously 
existed, it is erased. The source input file, MYFILE ASSEMBLE Al, is 
neither erased nor changed. 

The characteristics of the TEXT and LISTING files produced by the 
assembler are the same as those created by other processors and programs 
in CMS. 

Because these files are CMS files, you can use the CMS editor to 
examine or modify their contents. If you want a printed copy of a 
LISTING file, you can use the PRIN~ command to print it. If you want to 
examine a TEXT file, you can use the TYPE or PRINT command specifying 
the HEX option. 

Section 4. The CMS File System 49 



Note that if a TEXT file contains control ~hanges for the terminal, 
the edit lines may not be displayed in their true form. Therefore, it 
is suggested you do not use the editor for TEXT files, because the 
results are unpredictable~ Instead, use the TYPE and/or PRINT commands 
with the HEX option to display TEXT decks. Put TEXT decks into a TXTLIB 
and ZAP the TXTLIB to modify the TEXT deck. 

FILETYPES FOR TEMPORARY FILES 

The filetypes of files created by the assembler and language processors 
for use as temporary workfiles are: 

SISUT1 
SYSUT2 
SISUT3 
SYSUT4 

SYS001 
SYS002 
SIS003 

SYS004 
5YS005 
SYS006 

CMS handles all SYSUTX and SYSOOx files as temporary files. 

The CMS AMSERV command, executing VSAM utility functions, uses two 
work files that have filetypes of LDTFDl1 and LDTFDI2. 

Disk space is allocated for temporary files on an as-needed basis. 
They are erased when processing is complete. If a program you are 
executing is terminated before completion, these workfiles may remain on 
your disk. you can erase them. 

The CMSUT1 filetype is used by CMS commands that create files on your 
CMS disks. The CMSUT1 file is used as a workfile and is erased when the 
file is created. When a command fails to complete execution properly, 
the CMSUT1 file may not be erased. The commands, and the filenames they 
assign to files they create, are listed below. 

~2~~gBg 
COPYFILE 
DISK LOAD 
EDIT 
INCLUDE 
LOAD 
MACLIB 
READCARD 
TAPE LOAD 
UPDATE 

~il~n!~~ 
COPYFILE 
DISK 
EDIT 
DMSLDR 
DMSLDR 
DMSLBM 
READCARD 
TAPE 
fn (the filename of the UPDATE file) 

FILETIPES FOR DOCUMENTATION 

There are two CMS reserved filetypes that accept uppercase and lowercase 
input data. These are MEMO and SCRIPT. Iou can use MEMO files to 
document program notes or to write reports. The SCRIPT filetype is used 
by the SCRIPT command, which invokes a text processor that is an IBM 
Installed User Program (IUP). 

50 IBM VM/310 eMS User's Guide 

( 



Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5148-118 

Filemode Letters and Numbers 

The filemode field of a CMS file identifier has two characters: the 
filemode letter and the filemode number. The filemode letter is 
established by the ACCESS command and specifies the virtual disk on 
which a file resides: A through Z. The filemode number is a number from 
o to 5, which you can assign to the file when you create it or rename 
it; if you do not specify it, the value defaults to 1. How you access 
your disks and what filemode letters you give them with the ACCESS 
command depends on how you want to use the files that are on them. 

For most of the reading and writing you do of files, you use your 
A-disk, which is also known as your primary disk. This is a read/write 
disk. You may access other disks in your configuration, or access 
linked-to disks, in read-only or read/write status, depending on whether 
you have a read-only or read/write link. 

When you load CMS (with the IPt command), your virtual disk at 
address 191 is accessed for you as your A-disk. Your virtual disk at 
address 190 (the system disk) is accessed as your S-disk; and the disk 
at 19E is accessed as an extension of your S-disk, with a mode letter of 
Y. In addition, if you have a disk defined at address 192, it is 
accessed for you as your D-disk. If the 192 disk has not been 
formatted, CMS will do it automatically and label the minidisk 'SCRTCH'. 

If ACCESS is the first command issued after an IPL of the CMS system, 
only the A-disk is not automatically defined. Another ACCESS command 
must be issued to define the A-disk. 

The actual letters you assign to any other disks (and you may 
reassign the letters A, D, and Y), is arbitrary; but it does determine 
the CMS search order, which is the order in which CMS searches your 
disks when it is looking for a file. The order of search (when all disks 
are being searched) is alphabetical: A through Z. If you have duplicate 
file identifiers on different disks, you should check your disk search 
order before issuing commands against that filename to be sure that you 
will get the file you want. You can find out the current search order 
for your virtual disks by issuing the command: 

query search 

You can also access disks as logical extensions of other disks, for 
example: 

access 235 b/a 

The "/A" indicates that the B-disk is to be a read-only extension of the 
A-disk, and the A-disk is considered the "parent" of the B-disk. A disk 
may have many extensions, but only one level of extension is allowed. 

If you have a disk accessed as an extension of another disk, the 
extension disk is automatically read-only, and you cannot write on it. 
You might access a disk as its own extension, therefore, to protect the 
files on it, so that you do not accidentally write on it. For example: 

access 235 bib 

Section 4. The CftS File Systea 51 



March 30, 1979 

Another use of extensions is to extend the CMS search order. If you 
issue a command requesting to read a file, for example: 

type alpha plan 

CMS searches your A-disk for the file named ALPHA PLAN and if it does 
not find it, searches any extensions that your A-disk may have. If you 
have a file named ALPHA PLAN on your B-disk but have not accessed it as 
an extension of your A-disk, CMS will not find the file, and you will 
have to reenter the command: 

type alpha plan b 

Additionally, if you issue a CMS command that reads and writes a 
file, and the file to be read is on an extension of a read/write disk, 
the output file is written to the parent read/write disk. The EDIT 
command is a 'good example of this type of command. If you have a file 
named FINAL LIST on a B-disk extension of a read/write A~disk, and if 
you invoke the editor to modify the file with the command: 

edit final list 

after you have made modifications to the file, the changed file is 
written onto your A-disk. The file on the B-disk remains unchanged~ 

When you access a disk as a read-only extension, it remains an extension 
of the parent disk as long as both disks are still accessed. If either 
disk is released, the relationship of parent disk/extension is 
terminated. 

If the parent disk is released, the extension remains accessed and 
you may still read files on it. If you access anothe~ disk at the mode 
letter of the original parent disk, the parent/extension relationship 
remains in effect. 

If you release a read~only extension and access another disk with the 
same mode letter, it is not an extension of the original parent disk 
unless you access it as such. For example, if you enter: 

access 198 cia 
release c 
access 199 c 

the C-disk at virtual address 199 is not an extension of your A-disk. 

WBEN TO SPECIFY FILEMODE LETTERS: READING FILES 

When you request CMS to access a file, you have to identify it so that 
CMS can locate it for you. The commands that expect files of particular 
filetypes (reserved filetypes) allow you to enter only the filename of 
the file when you issue the command. When you execute any of th~se 
commands or execute a MODULE or EXEC file, CMS searches all of your 
accessed disks (using the standard search order) to locate the file. 
The CMS commands that perform this type of search are: 

AMSERV 
ASSEMBLE 
DOSLIB 
EXEC 

GLOBAL 
LOAD 
LOADMOD 
MACLIB 

52 IBM VM/370 CMS User's Guide 

MODMAP 
RUN 
TXTLIB 



) 

) 

Some CMS commands 
identify a file. You 
specify the filemode, 
when it looks for the 
disk you specify and 
commands you use this 

EDIT 
ERASE 
FILEDEF 
PRINT 

require you to enter the filename and filetype to 
may specify the filemode letter; if you do not 
CMS searches only your A-disk and its extensions 
file. If you do specify a filemode letter, the 

its extensions are searched for the file. The 
way are: 

PUNCH 
STATE 
SYNONYM 

TAPE DUMP 
TYPE 
UPDATE 

There are two CMS commands that do not search extensions of disks 
when looking for files. They are: 

DISK DUMP 
LISTFILE 

You must explicitly enter the filemode if you want to use these commands 
to list or dump files that are on extensions. 

For some CMS commands, if you specify the file.ode of a file as an 
asterisk, it indicates that you either do not know or do not care what 
disk the file is on and you want CMS to locate it for you. For example, 
if you enter: 

listfile myfile test * 
the LISTFILE command responds by listing all files on your accessed 
disks named MYFILE TEST. When you specify an asterisk for the file.ode 
of the COPYFILE~ ERASE, or RENAME commands, CMS locates all copies of 
the specified file. For example: 

rename temp sort * good sort = 

renames all "files named TEMP SORT to GOOD SORT on all of your accessed 
read/write disks. An equal sign (=) is valid in output fileids for the 
RENAME and COPYFILE commands. 

For some commands, when you specify an asterisk for the filemode of a 
file, CMS stops searching as soon as it finds the first copy of the 
file. For example: 

type m1file assemble * 
If there are files named MYFILE ASSEMBLE on your A-disk and C-disk, then 
only the copy on your A-disk is displayed. The commands that perform 
this type of search are: 

COMPARE 
DISK DUMP 
EDIT 
FILEDEF 

PRINT 
PUNCH 
RUN 
SORT 

STATE 
SYNONYM 
TAPE DUMP 
TYPE 

For the COMPARE, COPYFILE, RENAME, and SORT commands, you must always 
specify afilemode letter, even if it is specified as an asterisk. 

Section 4. The CMS File System 53 



WHEN TO SPECIFY FILEMODE LETTERS: WRITING FILES 

When you issue a CMS command that writes a file onto one of your virtual 
disks, and you specify the output filemode, CMS writes the file onto 
that disk. The commands that require you to specify the output filemode 
are: 

COPYFILE 
RENAME 
SORT 

The commands that allow you to specify the output filemode, but do 
not require it, are: 

FILEDEF 
GENMOD 
READCARD 

TAPE LOAD 
TAPPDS 
UPDATE 

When you do not specify the filemode on these commands, CMS writes the 
output files onto your A-disk. 

Some CMS commands that create files always write them onto your 
A-disk. The LOAD and INCLUDE commands write a file named LOAD MAP AS. 
The LISTFILE command creates a file named CMS EXEC, on your A-disk. The 
CMS/DOS commands DSERV, ESERV, SSERV, PSERV, and RSERV also write files 
onto your A-disk. 

Other commands that do not allow you to specify the filemode, write 
output files either: 

• To the disk from which the input file was read, or 
• To your A-disk, if the file was read from a read-only disk 

These commands are: 

AMSERV 
MACLIB 
TXTLIB 
UPDATE 

The SORT command also functions this way if you specify the output 
filemode as an asterisk (*). 

In addition, many of the language processors, when creating work 
files and permanent files, write onto the first read/write disk in your 
search order, if they cannot write on the source file's disk or its 
parent. 

HOW FILEMODE NUMBERS ARE USED 

Whenever you specify a file mode letter to reference a file, you can also 
specify a filemode number. Since a filemode number for most of your 
files is 1, you do not need to specify it. The filemode numbers 0, 2, 
3, 4, and 5 are discussed below. Filemode numbers 6 through 9 are 
reserved for IBM use. 

!!le~2g~ 
private. 
to your 
requests 
of 0 are 

0: A filemode number of 0 assigned to a file makes that file 
No other user may access it unless they have read/write access 
disk. If someone links to your disk in read-only mode and 
a list of all the files on your disk, the files with a filemode 
not listed. 

54 IBM VM/370 CMS User's Guide 

( 



) 

March 30, 1979 

File.ode 2: Filemode 2 is essentially the same, for the purposes of 
readIng-and writing files, as filemode 1. Usually a file.ode of 2 is 
assigned to files that are shared by users who link to a common disk, 
like the system disk. Since you can access a disk and specify which 
files on that disk you want to access, files with a file.ode of 2 
provide a convenient subset of all files on a disk. For exa~ple, if you 
issue the command: 

access 489 e/a * * e2 

you can only read files with a filemode of 2 on the disk at virtual 
address 489. 

Filemode 3: Files with a filemode of 3 are erased after they are read. 
If-You-create a file with a filemode of 3 and then request that it be 
printed, the file is printed, and then erased. You can use this file.ode 
if you write a program or EXEC procedure that creates files that you do 
not want to maintain copies of on your virtual disks. You can create the 
file, print it, and not have to worry about erasing it later. 

The language processors and some CMS commands create work files and 
give these work files a filemode of 3. 

Note: A filemode of 3 should not be used with EXECs. Depending on what 
commands are issued within it, an EXEC with a filemode of 3 may be 
erased before it completes execution. 

!ile~2g~~: Files with a filemode of 4 are in OS simulated data set 
format. These files are created by OS macros in progr~.s running in 
CMS. You specify that a file created by a program 1S to have OS 
simulated data set format by specifying a filemode of 4 when you issue 
the FILEDEF command for the output file. If you do not specify a 
filemode of 4, the output file is created in CftS format. 

You can find more details about OS simulated data sets in "section 8. 
Developing OS Programs Under CMS." 

!~te: There are no filemode numbers reserved for DOS or VSAM data sets, 
since CMS does not simulate these file organizations. 

Filemode 5: This filemode number is the same, for purposes of reading 
ana-wrIting, as filemode 1. You can assign a filemode of 5 to files that 
you want to maintain as logical groups, so that you can manipulate thea 
in groups. For example, you can reserve the filemode of 5 for all files 
that you are retaining for a certain period of time; then, when you want 
to erase them, you could issue the command: 

erase * * as 

You can assign filemode numbers when you use the following commands: 

COPYFILE: You can assign a filemode number when you create a new file 
wIth-the COPYFILE command. To change only the filemode number of an 
existing file, you must use the REPLACE option. For exaaple: 

copyfile test module al = = a2 (replace 

changes the fil~m?de number of the file TEST MODULE A frOB 1 to 2. 

section 4. The CMS File system 55 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

~~IT: You can assign a filemode number when you create a file with the 
CMS editor. To change thefilemode number of an existing file, use the 
RENAME or COPYFILE commands, or use the FMODE subcommand when you are in 
the edit environment. 

~1~1, f!1!Q!f: When you assign file definitions to disk files for 
programs or CMS command functions, you can specify a filemode number. 

§~!~QQ: You can specify a filemode number on the GENMeD command line. 
To change the filemode number of an existing MODULE file, use the RENA~E 
or COPYFILE commands. 

READCARD: You can assign a filemode number ~hen you specify a file 
IdentIfIer on the READCARD command line or on a READ control card. 

RENAME: Wh~n you specify the fileids on the RENAME command, you can 
specIfy the filemode numbers for the input and/or output files. 

~QRT: You can specify filemode numbers for the input and/or output 
fileids on the SORT command line. 

Managing Your CMS Disks 

The number of files you can write on a CMS disk depends on both the size 
of the disk and the size of the files that it contains. You can find 
out how much space is being used on a disk by using the QUERY DISK 
command. For example, to see how much space is on your A-disk, you would 
enter: 

query disk a 

The response maybe something like this: 

LABEL CUll M STAT eYL TYPE BLKSIZE 
~YDISK 191 A R/W 5 3330 1024 

FILES ELKS USED-(%) ELKS LEFT ELK TOTAL 
171 1221-92 107 1328 

When a disk is becoming full, you should erase whatever files you no 
longer need. Or dump to tape files that you need to keep but do not need 
to keep active on disk. 

When you are executing a command or program that writes a file to 
disk, and the disk becomes full in the process, you receive an error 
message, and you have to try to clear some space on the disk before you 
can attempt to execute the command or program again. To avoid the 
delays that such situations cause, you should try to maintain an 
awareness of the usage of your disks. If you cannot erase any more 
files from your disks, you should contact installation support personnel 
about obtaining additional read/write CMS disk space. 

CMS File Directories 

Each CMS disk has a master file directory that contains entries for each 
of the CMS files on the disk. When you access a disk, information frem 
the master file directory is brought into virtual storage and written 
into a user file directory. The user file directory has an entry for 
each file that you may access. If you have accessed a disk specifying 
only particular files, then the user file directory contains entries 
only for those files. 

56 IBM VM/370 eMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5148-118 

If you have read/write access to a disk, then each time you write the 
file onto disk the user file directory and master file directory are 
updated to reflect the current status of the disk. If you have read-only 
access to a disk, then you cannot update the master file directory or 
user file directory. If you access a read-only disk while another user 
is writing files onto it, you may need to periodically reissue the 
ACCESS command for the disk, to obtain a fresh copy of the master file 
directory. 

!Q~: You should never attempt to write on a disk at the saae time as 
another user. 

The user file directory remains in virtual storage until you issue 
the RELEASE command specifying the mode letter or virtual address of the 
disk. If you detach a virtual disk (with the CP DETACH command) without 
releasing it, CMS does not know that the disk is no longer part of your 
virtual machine. When you attempt to read or write a file on the disk 
CftS assumes that the disk is still active (because the user file 
directory is still in storage) and encounters an error when it tries to 
read or write the file. 

A similar situation occurs if you detach a disk and then add a new 
disk to your virtual machine using the same virtual address as the disk 
you detached. For example, if you enter the following sequence of 
commands: 

cp link user1 191 195 rr rpass l 

access 195 d 
cp detach 195 
cp link user2 193 195 rr rpass2 1 

1istfi1e * * d 

the LISTFILE command produces a list of the files on OSER1's 191 disk; 
if you attempt to read one of these files, you receive an error message. 
You must issue the ACCESS command to obtain a copy of the master file 
directory for USER2's 193 disk. 

The entries in the master file directory are sorted a1phamerica11y by 
filename and fi1etype, to facilitate the CftS search for particular 
files. When you are updating disk files, the entries in the user file 
directory and master file directory tend to become unsorted as files are 
created, updated, and erased. When you use the RELEASE co •• and to 
release a read/write disk, the entries are sorted and the master file 
directory is rewritten. If you or any other user subsequently access 
the disk, the file search may be aore efficient. 

CMS Command Search Order 

When you enter a command line in the CftS environment, CftS has to locate 
the command to execute. If you have EXEC or MODOLE files on any of your 
accessed disks, CMS treats them as commands; also, they are known as 
user-written commands. 

As soon as the command name is found. the search stops and the 
command is executed. The search order is: 

1. EXEC file on any currently accessed disk. CftS uses the standard 
search order (1 through Z.) 

IBote that the password cannot be entered on the command line if the 
password suppression facility was specified at sysgen. 

Section 4. The CftS File Systea 51 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23~9024-1 for 5748-XX8 

2. Valid abbreviation or truncation for an . EXEC file on any currently 
accessed disk, according to current SYNONYM file definitions in 
effect. . 

3. A command that has already been loaded into the transient area. 
The transient area commands are: 

ACCESS 
ASSGN 
COMPARE 
DISK 
DLBL 
FILEDEF 
GENDIRT 
GLOBAL 

HELP 
LISTFILE 
MODMAP 
OPTION 
PRINT 
PUNCH 
QUERY 
READCARD 

RELEASE 
RENAME 
SET 
SVCTRACE 
SYNONYM 
TAPE 
TYPE 

4. A nucleus-resident command. The nucleus-resident CMS commands are: 

CP 
DEBUG 
ERASE 
FETCH 

GENMOD 
INCLUDE 
LOAD 
LOADMOD 

START 
STATE 
STATEW 

5. Command module on any currently accessed disk. (All the remaining 
CMS commands are disk resident and execute in the user area.) 

6. Valid abbreviation or truncation for nucleus-resident or transient 
area command module. 

7. Valid abbreviation or truncation for disk-resident command. 

For example, if you create a command module that has the same name as 
a CMS nucleus-resident command, your command module cannot be executed, 
since CMS locates the nucleus-resident command first, and executes it. 
When a user-written command has the same name as a CMS command module 
abbreviation, certain error messages may indicate the CMS command name, 
rather than the program name. 

Figure 4 shows more details of the command search order. 

58 IBM VM/370 eMS User's Guide 



) 

CMS 
EXEC 

SEARCH 

L 
CMS 

MODULE 
SEARCH 

CP 
SEARCH 

b 

Figure 4. 

KEY IN A 
COMMAND NAME 

ISSUE 
AN ERROR 
MESSAGE 

YES 

YES 

YES 

YES 

YES 

How CMS Searches for the Command to Execute 

EXECUTE 
THE FILE 
AND RETURN 
CONTROL TO 
CMS. 

EXPAND THE 
NAME TOTHE 
FULL REAL 
NAME, EXECUTE 
IT, AND RETURN 
CONTROL TO CMS. 

EXECUTE THE 
FILE AND 
RETURN CONTROL 
TO CMS. 

EXPAND THE 
NAME TO THE FULL 
REAL NAME, EXECUTE 
IT, AND RETURN 
CONTROL TO CMS. 

EXECUTE THE 
COMMAND 
AND RETURN 
CONTROL TO 
CMS. 

Section 4. The CMS File system 59 



( 
60 IBM V!/370 eMS User's Guide 



) 

Section 5. The eMS Editor 

In CMS usage, the term edit is used in a variety of ways, all of which 
refer, ultimately, to the functions of the CMS editor, which is invoked 
when you issue the EDIT command. 

To edit a file means to make changes, additions, or deletions to a 
CMS file that is on a disk, and to make these changes interactively: you 
instruct the editor to make a change, the editor does it, and then you 
request another change. 

You can edit a file that does not exist; when you do so, you create 
the file online, and can modify it as you enter it. 

To file a file means to write a file you are editing back onto a 
disk, incorporating any changes you made during the editing session. 
When you issue the FILE subcommand to write a file, you are no longer in 
the environment of the CMS editor, but are returned to the CMS 
environment. You can, however, write a file to disk and then continue 
editing it, by using the SAVE subcommand. 

An editing session is the period of time during which a file is in 
your virtual storage area, from the moment you issue the EDIT command 
and the editor responds EDIT: until you issue the FILE or QUIT 
subcommands to return to the CMS command environment. 

The EDIT Command 

When you issue the EDIT command you must specify the filename and 
filetype of the file you want to edit. If you issue: 

edit test file 

CMS searches your A-disk and its extensions for a file with the 
identification TEST FILE. If the file is not found, CMS assumes that you 
want to create the file and issues the message: 

NEW FILE: 
EDIT: 

to inform you that the file does not already exist. 

If the file exists on a disk other than your A-disk and its 
extensions, or if you want to create a file to write on a read/write 
disk other than your A-disk, you must specify the filemode of the file: 

edit test file b 

In this example, your B-disk and its extensions are searched for the 
file TEST FILE. 

After you issue the EDIT command, you are in edit mode, or the 
environment of the CMS editor. If you have specified the filename and 
filetype of a file that already exists, you can now use EDIT subcommands 
to make changes or corrections to lines in that file. If you want to 

Section 5. The CMS Editor 61 



add records to the file, as you would if you are creating a new file, 
issue the EDIT subcommand: 

input 

to enter input mode. Every line that you enter is considered a data line 
to be written into the disk file. For most filetipes, the editor 
translates all of your input data to uppercase characte~s, regardless of 
how you enter it. For example, if you create a file and enter input 
mode as follows: . 

edit myfile test 
NEW FILE: 
EDIT: 
input 
INPUT: 
This is a file I am 
learning to create with the CMS editor~ 

the lines are written into the file as: 

THIS IS A FILE I AM 
LEARNING TO CREATE WITH THE CMS EDITOR. 

You can use the VM/370 logical line editing symbols to modify data 
lines as you enter them. 

To return to edit mode to modify a £ile or to terminate the edit 
session, you must press the Return key on a null line. If you have just 
entered a data line, for example, and your terminal's typing element or 
cursor is positioned at the last character you entered, you must press 
the Return key once to enter the data line, and a second time to enter a 
null line. 

You may also use the logical line end symbol to enter a null line; 
for example: 

last line of input. 
# 

Both of these lines cause you to return to edit mode from input mode. 

If you do not enter a null line, but enter an EDIT subcommand or CftS 
command, the command line is written into your file as input. The only 
exception to this is a line that begins with the characters tcP. These 
characters indicate that the command is to be passed immediately to CP 
for processing. 

WRITING A FILE ONTO DISK 

A file you create and the modifications that you make to 
edit session are not automatically written to a disk file. 
results, you can do the following: 

it during an 
To save the 

• Periodically issue the subcommand: 

save 

to write onto disk the contents of the file 
issue the subcommand. Periodically issuing 
protects your data against a system failure; 
changes you make are not lost. 

62 IBM VM/370 CMS User's Guide 

as it exists when you 
this EDIT subcommand 
you can be sure that ( 



) 

) 

• At the beginning of the edit session, issue the AUTOSAVE subcommand, 
with a number: 

autosave 10 

Then, for every tenth change or addition to the file, the editor 
issues an automatic save request, which writes the file onto disk. 

• At the end of the edit session, issue the subcommand: 

file 

This subcommand terminates the edit session, writes the file onto 
disk, replacing a previous file by that name (if one existed), and 
returns you to the CMS environment. You can return to the edit 
environment by issuing the EDIT command, specifying a different file 
or the same file. 

The editor decides which disk to write the file onto according to the 
following hierarchy: \ 

• If you specify a filemode on the FILE or SAVE subcommand line, the 
file is written onto the specified disk. 

• If the current filemode of the file is the mode of a read/write disk, 
the file is written onto that disk. (If you have not specified a 
filemode letter, it defaults to your A-disk.) 

• If the filemode is the mode of a read-only extension of a read/write 
disk, the file is written onto the read/write parent disk. 

• If the filemode is the mode of a read-only disk that is not an 
extension of a read/write disk, the editor cannot write the file and 
issues an error message. 

See "Changing File Identifiers" for information on how you can tell 
the editor what disk to use when writing a file. 

If you are editing a file and decide, after making several changes, 
that you do not wish to save the changes, you can use the subcommand: 

quit 

No changes that you made since you last used the SAVE subcommand (or the 
editor last issued an automatic save for you) are retained. If you have 
just begun an edit session, and have made no changes at all to a file, 
and for some reason you do not want to edit it at all (for example, you 
misspelled the name, or want to change a CMS setting before editing the 
file), you can use the QUIT subcommand instead of the FILE subcommand to 
terminate the edit session and return to CMS. 

A file must have at least one line of data in order to be written. 

EDIT SUBCOMMANDS 

While you are in the edit environment, you can issue any EDIT subcommand 
or macro. An edit macro is an EXEC file that contains a sequence of EDIT 
subcommands that execute as a unit. You can create your own EDIT 
subcommands with the CMS EXEC facility. EDIT subcommands provide a 
varietyaf functions. You can: . 

• position the current line pointer at a particular line, or record, in 
a file. 

Section 5. The CMS Editor 63 



• Control which columns of a file are displayed or searched during an 
editing session. 

• Modify data lines. 

• Describe the characteristics that a file and its individual records 
will have. 

• Automatically write and update sequence numbers for fixed-length 
records. 

• Edit files by line number. 

• Control the editing session. 

Like CMS commands, EDIT subcommands have a subcommand name and some have 
operands. In most cases, a subcommand name (or its truncation) can be 
separated from its operands by one or more blanks, or no blanks. Por 
example, the subcommand lines: 

type 5 
ty 5 
tS 

are equivalent. 

Several subcommands also use delimiters, which enclose a character 
string that you want the editor to operate on. For example, the CHANGE 
subcommand can be entered: 

change/apple/pearl 

The dia10nal (/) delimits the character strings APPLE and PEAR. Por the 
subcommands CHANGE, LOCATE, and DSTRING, the first nonblank character 
following the subcommand name (or its truncation) is considered the 
delimiter. No blank is required following the subcommand name. In the 
subcommand: 

locate $vm/$ 

the dollar sign ($) is the delimiter. You cannot use a / in this case, 
since the diagonal is part of the character string you want to locate. 

When you enter these subcommands, you may omit the final delimiter; 
for example: 

dstring/csect 

You must enter the final delimiter, however, when you specify a global 
change with the CHANGE subcommand. 

Por the FIND and OVERLAY subcommands, additional blanks following the 
subcommand names are interpreted as arguments. The subcommand: 

find Pudding 

requests the editor to locate the line that has" Pudding" in columns 1 
through 9. Initial blanks are considered part of the character string. 

64 IBM VM/370 CMS User's Guide 

( 



-
Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5748-X18 

An asterisk, when used with an EDIT 
of the file" or "to the record length." 

delete* 

subcommand, may mean "to the end 
For example: 

deletes all of the lines in a file, beginning with the current line. 

verify * 

indicates that the editor should display the entire length of records. 

When you make an error entering an EDIT subcommand, the editor displays 
the message: 

?EDIT: line ••• 

where line ••• is the line, as you entered it, that the editor does not 
understand. 

The Current Line Pointer 

When you begin an editing session, a file is copied into virtual 
storage; in the case of a new file, virtual storage is acquired for the 
file you are creating. In either case, you can picture the file as a 
series of records, or· lines; these lines are available to you, one at a 
time, for you to modify or delete. You can also insert new lines or 
records following any line that is already in the file. 

The line that you are currently editing is pointed to by the current 
line pointer. On a display terminal, this line is highlighted. What 
you do during an editing session is: 

• position the current line pointer to access the line you want to 
edit. 

• Edit the line: change character strings in it, delete it or insert 
new records following it. 

• position the line pointer at the next line you want to edit. 

When you are editing a file and you issue an EDIT subcommand that 
either changes the position of the line pointer or that changes a line, 
the current line or the changed line (or lines) is displayed. You can 
also display the current line by using the TYPE subcommand: 

type 

If you want to examine more than one line in your file, you can use the 
TYPE subcommand with a numeric parameter. If you enter: 

type 10 

the current line and the nine lines that follow it are displayed; the 
line pointer then stays positioned at the last line that was displayed. 

You can move the line pointer up or down in your file. "Up" indicates 
a location toward the beginning. of the file (the first record) ;."down" 

Section 5. The CMS Editor 65 



ftarch 30, 1979 

indicates a location toward the end of the file (the last record). You 
use the EDIT subcomaands UP and DOWN to move the line pointer up or down 
one or more lines. For example: 

up 5 

moves the current line pointer to a line five lines closer to the 
beginning of the file, and: 

down 

moves the pointer to point at the next sequential record in the file. 

You can also request that 
beginning, or top of the file, 
When you issue the subcommand: 

top 

you receive the message: 

TOF: 

the line 
or at the 

pointer be placed at the 
end, or bottom of the file. 

and the line pointer is positioned at a null line that is always at the 
top of the file. This null line exists only during your editing session; 
it is not filed on disk when you end the editing session. 

When you issue the subcommand: 

bottom 

the current line pointer is positioned at the last record in the file. 
If you now enter input mode, all lines that you enter are appended to 
the end of the file. 

If the current line pointer is at the bottom of the file and you 
issue the DOWN subcommand, you receive the message: 

EOF: 

and the current- line pointer is positioned at the end of file, following 
the last record. 

When you are adding records to your file, the current line pointer is 
always pOinting at the line you last entered. When you delete a line 
from a file, the line pointer moves down to point to the next line down 
in the file. 

Going from edit mode to input mode does not change the current line 
pointer. If you are creating a new file and, every 30 lines or so, you 
move the current line pointer to make corrections to the lines th~t you 
have entered, you must issue the BOTTOft subcommand to begin entering 
more lines at the end of the file. 

The current line pointer is also moved as the result of the· LOCATE 
and FIND subcommands. You use the FIND subcommand to get to a line when 
you know the characters at the beginning of the line. For example, if 
you want to change the line: 

BAXTER J.F. 065941 ACCNTNT 

you could first locate it by using the subcommand: 

find baxter 

66 IBft Vft/370 CftS User's Guide 



) 

If you do not know the first characters on a line, you can issue the 
LOCATE subcommand: 

locate laccntntl 

Both of these subcommands work only in a top-to-bottom direction: you 
cannot use them to position the line pointer above the current line. If 
you use the FIND or LOCATE subcommands and the target (the character 
string you seek) is not found, the editor displays a message, and 
positions the line pointer at the end of the file. Subsequently, if you 
reissue the subcommand, the editor starts searching at the top of the 
file. 

In a situation like that above, or in a case where you are 
repetitively entering the same LOCATE or FIND subcommand (if, for 
example, there are many occurrences of the same character string, but 
you seek a particular occurrence) you can use the = (REUSE) subcommand. 
To use the example above, you are looking for a line that contains the 
string ONCE UPON A TIME, but you do not know that it is above the 
current line. When you issue the subcommand: 

locate lonce upon a time/ 

the editor does not locate the line, and responds: 

NOT FOUND 
EOF: 

If you enter: 

= 

the editor searches again for the same string, beginning this time at 
the top of the file, and locates the line: 

"ONCE UPON A TIME" IS A COMMON 

This may still not be the line you are looking for. You can, again, 
enter: 

= 

The LOCATE subcommand is executed again. 
locate the line: 

A STORY THAT STARTED ONCE UPON A TIME 

This time, the editor might 

Figure 5 illustrates a simple CMS file, and indicates how the current 
line pointer would be positioned following a sequence of EDIT 
subcommands. 

11NE=!Q~~~~ ~~lI1NG: Some fixed-length files are suitable for editing by 
referencing line numbers instead of character strings. The EDIT 
subcommands that allow you to change the line pointer position by line 
number are discussed under "Line-Number Editing." 

Section 5. The CMS Editor 61 



EDIT PPRINT EXEC 
CLP 
---) TOF: 

o (null line) 
1 &CONTROL OFF 
2 &P = 
3 &IF .&1 EQ • &EXIT 100 
4 &FN = &1 
5 &IF &1 EQ ? &GOTO -TELL 
6 &NFB = &CONCAT $ &1 
7 &IF .&2 EQ • &EXIT 200 
8 &FT = &2 
9 &FM = &3 

10 &IF .&3 NE • &SKIP 2 
11 &FM = A 
12 &SKIP 3 
13 &IF &3 NE ( &SKIP 2 
14 &FM = A 
15 &P = ( 
16 &CONTROL ALL 
17 COpy &FN &FT &FM &NFN &FT A ( UNPACK 
18 PRINT &HFN &FT A &P &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14 
19 ERASE &NFN &FT A 
20 &EXIT 
21 -TELL &TIPE THIS EXEC PRINTS A LISTING FROM PACKED FORMAT 

EOF: 

The line numbers represented are symbolic: they are not an actual 
part of the file, but are used below to indicate at which line the 
current line pointer is positioned after execution of the EDIT 
subcommand indicated. 

Subcommand 

DOWN 5 
UP 
LOCATE JUNP/ 
TYPE 3 
BOTTOM 
DOWN 
FIND -
TOP 
CHANGE /EQ/EQ/ 
DELETE 2 
INPUT * 

6 

CLP position 
---) 0 
---) 5 
---) 4 
---) 17 
---) 19 
---) 21 
---) EOF: 
---) 21 
---) 0 
---) 5 
---) 7 (lines numbered 5 and 6 are deleted) 
---) the line just entered (between 7 and 8) 

Figure 5. Positioning the Current Line Pointer 

Verification and Search Columns 

There are two EDIT subcommands you can use to control what you and the 
editor "see" in a file. The VERIFY subcommand controls what you see 
displayed; the ZONE subcommand controls what columns the editor 
searches. Normally, when you edit a file, every request that you make 
of the editor results in the display of one or more lines at your 
terminal. If you do not want to see the lines, you can specify: 

verify off 

68 IBM VM/370 CMS User's Guide 

( 



) 

) 

Alternatively, if you want to see only particular columns in a file, you 
can specify the columns you wish to have displayed: 

verify 1 30 

Some filetypes have default values set for verification, which 
usually include those columns in the file that contain text or data, and 
exclude columns that contain sequence numbers. If a verification column 
is less than the record length, you can specify: 

verify * 
to indicate that you want to see all columns displayed. 

In conjunction with the VERIFY subcommand, you can use the ZONE 
subcommand to tell the editor within which columns it can search or 
modify data. When you issue the subcommand: 

zone 20 30 

The editor ignores all text in columns 1-19 and 31 to the end of the 
record when it searches lines for LOCATE, CHANGE, ALTER, and FIND 
subcommands. You cannot unintentionally modify data outside of these 
fields; you must change the zones in order to operate on any other data. 

The zone setting also controls the truncation column for records when 
you are using the CHANGE subcommand; for more details, see "Setting 
Truncation Limits." 

Changing, Deleting, and Adding Lines 

You can change character strings in individual lines of data with the 
CHANGE subcommand. A character string may be any length, or it may be a 
null string. Any of the characters on your terminal keyboard, including 
blanks, are valid characters. The following example shows a simple data 
line and the cumulative effect of CHANGE subcommands. 

ABC ABC ABC 
is the initial data line. 

CHANGE IABC/XYZI 
changes the first occurrence of the character string "ABC" to the 
string "XYZ". 

XYZ ABC ABC 

CHANGE IABCI/ 
deletes the character string "ABC" and concatenates the characters 
on each side of it. 

XYZ ABC 

CHANGE IIABC/ 
inserts the string "ABC" at the beginning of the line. 

ABCXYZ ABC 

CHANGE /XYZ /XYZ/ 
deletes one blank character following "XYZ". 

ABCXYZ ABC 

Section 5. The CMS Editor 69 



CHANGE /C/C / 
adds a blank following the first occurrence of the character "Cu. 

ABC XYZ ABC 
is the final line. 

THE ALTER SUBCOMMAND: You can use the ALTER subcommand to change a 
siiigle--character;--the ALTER subcommand allows you to specify a 
hexadecimal value so that you can include characters in your files for 
which there are no keyboard equivalents. Once in your file, these 
characters appear during editing as nonprintable blanks. For example, 
if you input the line: 

IF A = BTHEN 

in edit mode and then issue the subcommand: 

alter = 8e 

the line is displayed: 

IF A B THEN 

If you subsequently print the file containing this line on a printer 
equipped to handle special characters, the line appears as: 

IF A ~ B THEN 

since X'8C' is the hexadecimal value of the special character ~. 

Either or both of the operands on the ALTER 
hexadecimal or character values. To change the 
character, for example <, you could issue either: 

alter 8c ae 

-- or 

alter 8c < 

subcommand can be 
X'8C' to another 

!~~ Q!~~1!! ~Q~~OM~!!~: The OVERLAY subcommand allows you to replace 
characters in a line by spacing the terminal's typing element or cursor 
to a particular character position to make character-for-character 
replacements, or overlays. For example, given the line: 

ABCDEF 

the subcommand: 

overlay xyz 

results in the line: 

XYZDEF 

A blank entered on an OVERLAY line indicates that the corresponding 
character is not to be changed; to replace a character with a blank, use 
an underscore character (_). Given the above line, XYZDEF, the 
subcommand: 

overlay 3 

results in: 

DE3 (The "D" is preceded by blanks in columns 1, 2, and 3.) 

70 IBM VM/370 CMS User's Guide 

( 



) 

) 

You can make global or repetitive changes with the CHANGE and ALTER 
subcommands. On these subcommand lines, you can include operands that ~ 
indicate: 

• The number of lines to be searched for a character or character 
string. An asterisk (*) indicates that all lines, from the current 
line to the end of the file, are to be searched. 

• Whether only the first occurrence or all occurrences on each line are 
to be modified. An asterisk (*) indicates all occurrences. If you do 
not specify an asterisk, only the first occurrence on any line is 
changed. 

For example, if you are creating a file that uses the (.) special 
character (X'lF') and you do not want to use the ALTER subcommand each 
time you need to enter the., you could use the character ~ as a 
substitute each time you need to enter a e. When you are finished 
entering input, move the current line pointer to the top of the file, 
and issue the global ALTER subcommand: 

toplalter ~ af * * 
All occurrences of the character ~ are changed to X'AF'. 
line pointer is positioned at the end of the file. 

The current 

When you use a global CHANGE subcommand, you must be sure to use the 
final delimiter On the subcommand line. For examFle: 

change /hannible/hannibal/ 5 

This subcommand changes the first occurrence of the string "HANNIBLE" on 
the current line and the four lines immediately following it. 

You can also make global changes with the OVERLAY subcommand, by 
issuing a REPEAT subcommand just prior to the OVERLAY subcommand. Use 
the REPEAT subcommand to indicate how many lines you want to be 
affected. For example, if you are editing a file containing the three 
lines: 

A 
B 
C 

with the current line pointer at line "A", issuing the subcommands: 

repeat 3 
overlay 

results in: 

A 
B 
C 

The current line pointer is now positioned at the line beginning with 
the character "Cu. 

Section 5. The CMS Editor 71 



You delete lines from a file with the DELETE subcommand; to delete more 
than one line, specify the number of lines: 

delete 6 

or, if you want to delete all the lines from the current line to the end 
of the file, use an asterisk (*): 

delete * 
If you want to delete an undetermined number of lines, up to a 

particular character string, you can use the DSTRING subcommand: 

dstring /weather/ 

When this subcommand is entered, all the lines from and including the 
current line down to and including the line just above the line 
containing the character string "WEATHER" are deleted. The current line 
pointer is positioned at the line that has "WEATHER" on it. 

If you want to replace a line with another line, you can use the 
REPLACE subcommand: 

replace ******* 

The current line is deleted and the line "*******" is inserted in its 
place. The current line pointer is not moved. 

To replace an existing line with many new lines, you can issue the 
REPLACE subcommand with no new data line: 

replace 

The editor deletes the current line and enters input mode. 

You can insert a single line of data between existing lines using the 
INPUT subcommand followed by the line of data you want inserted. For 
example: 

input * this subroutine is for testing only 

inserts a single line following the current line. If you want to insert 
many lines, you can issue the INPUT subcommand to enter input mode. 

You can also add new lines to a file by using the GETFILE subcommand. 
This allows you to copy lines from other files to include in the file 
you are editing or creating. For example: 

getfile single items c 

inserts all the lines in the file SINGLE ITEMS C immediately following 
the current line pointer. The line pointer is positioned at the last 
line that was read in. 

72 IBM VM/370 CMS User's Guide 

( 



) 

You could also specify: 

getfile double items c 10 25 

to copy 25 lines, beginning with the tenth line, from the file DOUBLE 
ITEMS C. 

The $MOVE and $DUP EDIT macros provide two additional ways of adding 
lines into a file in a particular position. The $MOVE macro moves lines 
from one place in a file to another, and deletes them from their former 
position. For example, if you want to move 10 lines, beginning with the 
current line, to follow a line 9 lines above the current line, you can 
enter: 

$move 10 ~p 8 

The $OUP macro duplicates the current line a specified number of 
times, and inserts the new lines immediately following the current line. 
For example: 

$dup 3 

creates 3 copies of the current line, and leaves the current line 
pointer positioned at the last copy. 

Describing Data File Characteristics 

When you issue the EDIT command to create a new file, the editor checks 
the filetype. If it is one of the reserved filetypes, the editor may 
assign particular attributes to it, which can simplify the editing 
process for you. The default attributes assigned to most filetypes are 
as follows: 

• Fixed-length, 80-character records 

• All alphabetic characters are translated to uppercase, regardless of 
how they are entered 

• Input lines are truncated in column 80 

• Tab settings are in columns 1, 6, 11, 16, 21, ••• 51, 61, and so on, 
and the tab characters are expanded to blanks 

• Records are not serialized 

The filetypes for some CMS commands and for the language processors 
deviate from these default values. Some of the attributes assigned to 
files and how you can adjust them to suit your needs are discussed 
below. 

RECORD LENGTH 

You can specify the logical record length of a file you are creating on 
the EDIT command line: 

edit new file (lrecl 130 

Section 5. The CMS Editor 13 



If you do not specify a record length, the editor assumes the 
following defaults: 

• For editing old files, the existing record length is used. 
• For creating new files, the following default values are in effect: 

l!l~~YE~ 
EXEC 
FREEFORT 
LISTING 
SCRIPT 
VSBDATA 
All others 

R~£Q£g 1~ng~h 
SO characters 
Sl characters 

121 characters 
132 characters 
132 characters 

SO 

Format 
VarIable 
Variable 
Variable 
Variable 
Variable 
Fixed 

If you edit a variable-length file and the existing record length is 
less than the default for the filetype, the record length is taken from 
the default value. 

When you use the LRECL option of the EDIT command you can override 
these default record lengths; you can also change the record lengths of 
existing files to make them larger, but not smaller. 

If you try to override the record length of an existing file and make 
it smaller, the editor displays an error message, and you must issue the 
EDIT command again with a larger record length. For example, suppose 
you have on your B-disk a file named MYFILE FREEFORT, which was created 
with the default record length of Sl. If you try to edit that file by 
issuing: 

edit myfile freefort b (lrecl 72 

the editor displays the message: 

GIVE A LARGER RECORD LENGTH. 

You must then issue the EDIT command again and either 
of 81 or more, or allow it to default to the current 
the file. 

specify a length 
record length of 

You can use the COPYFILE command to increase or decrease the record 
length of a file before you edit it. For example, if you have 
fixed-length, 132-character records in a file, and you want to truncate 
all the records at column 80 and create a file with SO-character 
records, you could issue the command: 

copyfile extra funds a (lrecl 80 

The largest record you can edit with the editor is 160 characters. A 
file with record length up to 160 bytes (for example, a listing file 
created by a DOS program) can be displayed and edited. 

The largest record you can create with the CMS editor, however, is 
130 characters using a 3270 display terminal and 134 characters using a 
typewriter terminal such as. a 2741 or 1050. If you enter more than 130 
characters on a 3270, the record is truncated to 130 characters when you 
press the Enter key. Note that as the line is truncated to 130 
characters, the CMS editor will not know the actual line length entered, 
and will not issue the "TRUNCATED" messgae. If you type more than 134 
characters on a line using a typewriter terminal,' CP generates an 
attention interruption to your virtual machine and the input line is 
lost when you press the Return key. 

74 IBM VM/370 CMS User's Guide 

( 



) 

) 

For most purposes, you will not need to create records longer than 
130 characters. If it is necessary, however, you can expand a record 
that you have entered. You do this by issuing the CHANGE subcommand 
with operands, to add more characters to the record (for example, by 
changing a 1-character string to a 31-character string). 

You cannot create a record that is longer than the record length of 
the file. For example, if the file you are editing has a default record 
length of 80, or if you specified LRECL 80 when you created the file~ 
the editor truncates all records to 80 characters. 

There is a relationship between the record length of a file and the 
maximum number of records it can contain. Figure 6 shows the 
approximate number of records, rounded to the nearest hundred, that the 
editor can handle in a virtual machine with different amounts of virtual 
storage. 

----, 
Virtual Machine Size I 

Record I 
Length 320K 512K 768K 11024K I 

I 
80 Characters 1700 3800 6800 9800 I 

I 
120 Characters 1100 2600 4700 6800 I 

I 
132 Characters 1100 2400 4300 6200 I 

I 
160 Characters 900 2000 3600 5100 I 

----J 

Figure 6. Number of Records Handled by the Editor 

RECORD FORMAT 

with the CMS editor, you can create either fixed- or variable-length 
files. Except for the filetypes EXEC, LISTING, FREEFORT, SCRIPT, and 
VSBDATA, all the files you create have fixed-length records, by default. 
You can change the format of a file at any time during an editing 
session by using the RECFM subcommand: 

recfm v 

This changes the record format to variable-length. This does not change 
the record length; in order to add new records with a greater length, 
you must write the file onto disk and then reissue the EDIT command 
using the LRECL option. 

The COPYFILE command also has an RECFM option, so that you can change 
the record format of a file without editing it. The command: 

copyfile * requests a1 (recfm v trunc 

changes the record formats of all the files with a filetype of REQUESTS 
on your A-disk to variable-length. The TRUNe option specifies that you 
want trailing blanks removed from each of the records. When you are 
editing a file with variable-length records, trailing blanks are 
truncated when you write the file onto disk with the FILE or SAVE 
subcommand. (In VSBDATA files, however, blanks are not truncated.) 

Section 5. The CMS Editor 75 



USING SPECIAL CHARACTERS 

The IMAGE and CASE subcoamands control how data, once entered on an 
input line, is going to be represented in a file. The specific 
characters affected, and the subcommands that control their 
rep~esentation, are: 

• Alphabetic characters: CASE subcommand 
• Tab characters (X'05'): IMAGE subcommand (ON and OFF operands) 
• Backspaces (X'16'): IMAGE subcommand (CANON operand) 

If you are using a terminal that has only uppercase characters, you do 
not need to use the CASE sUbcommand; all of the alphabetic characters 
you enter are uppercase. On terminals equipped with both uppercase and 
lowercase letters, all lowercase alphabetic characters are converted to 
uppercase in your file, regardless of how you enter them. If you are 
creating a file and you want it to contain both uppercase and lowercase 
letters you can use the subcommand: 

case m 

The "M" stands for "mixed." This attribute is not stored with the file 
on disk. If you create a new file, and you issue the CASE M subcommand, 
all the lowercase characters you enter remain in lowercase. If you 
subsequently file the file and later edit it again, you must issue the 
CASE M subcommand again to locate or enter lowercase data. 

There are two reserved filetypes for which uppercase and lowercase is 
the default. These are SCRIPT and MEMO, both of which are text or 
document-oriented filetypes. For most programming applications, you do 
not need to use lowercase letters. 

Logical tab settings indicate the column positions where fields within a 
record begin. These logical tab settings do not necessarily correspond 
to the physical tab settings on a typewriter terminal. What happens 
when you press the Tab key on a typewriter terminal depends on whether 
the image setting is on or off. The default for all filetypes except 
SCRIPT is IMAGE ON. you can change the default by issuing the 
subcommand: 

image off 

If the image setting is on, when you press the Tab key the editor 
replaces the tab characters with blanks, starting at the co·lumn where 
you pressed the Tab key, and ending at the last column before the next 
logical tab setting. The next character entered after the tab becomes 
the first character of the next field. For example, if you enter: 

tabset 1 15 

and then enter a line that begins with a tab 
character following the tab is written into 
regardless of the tah stop o~ your terminal. 

76 IBM VM/370 CMS User's Guide 

character, the first data 
the file in column 15, 

( 



) 

) 

If the image setting is off, the tab character, X'05', is inserted in 
the record, just as any other data character is inserted. No blanks are 
inserted. 

If you want to insert a tab character (X'05') into a record and the 
image setting is on, you can do one of the following: 

1. Set IMAGE OFF before you enter or edit the record, and then use the 
Tab key as a character key. 

2. Enter some other character at the appropriate place in the record, 
and then use the ALTER subcommand to alter that character to a 
X'05'. 

~~TT!!§ !!~~: When you create a file, 
effect, so that you do not need to set 
language processors correspond to the 
If you want to change them, or if 
nonreserved filetype, you may want to 
subcommand, for example: . 

tabset 1 12 20 28 72 

there are logical tab settings in 
them. The default values for the 
columns used by those processors. 
you are creating a file with a 
set thea yourself. Use the TABSET 

Then, regardless of what physical tab stops are in effect for your 
terminal, when you press the Tab key with image setting ON, the data you 
enter is spaced to the appropriate columns. 

The default tab settings used by the editor follow. 

!.!le!y~~ ~~!g~!t_!~Q_~~!!!Bg§ 
ASSEMBLE, MACRO, 1, 10, 16, 31, 36, 41, 46, 69, 72, 80, 

UPDATE, UPDTxxxx, 
ASM3705 

AMSERV 2, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 61, 71, 80 

FORTRAN 1, 7, 10, 15, 20, 25, 30, 80 

FREEFORT 9, 15, 18, 23, 28, 33, 38, 81 

BASIC, VSBASIC 7, 10, 15, 20, 25, 30, 80 

PLIOPT, PLI 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37, 43, 49, 55, 
79, 80 

COBOL 1, 8, 12, 20, 28, 36, 44, 68, 72, 80 

All Others 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 61, 71, 81, 
91, 101, 111, 121, 131 

!gl~: When you are specifying tab settings for files, the first ~ab 
setting you specify should be the column in which you want your data to 
begin. The editor will not allow you to place data in a column preceding 
this one. For example, if you issue: 

tabset 5 10 15 20 

and then enter an input line: 

input This is a line 

Columns 1, 2, 3, and 4 contain blanks; text begins in· column 5. 

Section 5. The CMS Editor 77 



For most of your applications, you do not need to underscore or 
overstrike characters or character strings. If you are using a 
typewriter terminal and are typing files that use backspaces and 
underscores, you should use either the IMAGE OFF or IMAGE CANON 
subcommands so that the editor handles the backspaces properly. IMAGE 
CANON is the default value for SCRIPT files. 

CANON means that regardless of how the characters are keyed in 
(characters, backspaces, underscores), the editor orders, or canonizes, 
the characters in the file as: character-backspace-underscore, 
character-backspace-underscore, and so on. If, for example, you want an 
input line to look like: 

You could enter it as: 

ABC, 3 backspaces, 3 underscores 

- or -

3 underscores, 3 backspaces, ABC 

A typewriter types out the line in the following order: 

A backspace, underscore 
B backspace, underscore 
C backspace, underscore, which results in: 
!~£ 

If you need to modify a line that has backspaces, and you do not want 
to rekey all of the characters, backspaces, and overstrike characters in 
a CHANGE or REPLACE subcommand, you can use the ALTER subcommand to 
alter all of the backspaces to some other character and use a global 
CHANGE command. For example, the following sequences shows how to 
delete all of the backspace characters on a line: 

AAAAA 
alter 16 + 1 * 

+A_+A_+A_+A_+A 
change /_+// 1 * 
AAAAA 

This technique may also be useful on a display terminal. 

SETTING TRUNCATION LIMITS 

Every CMS file that you edit has a truncation column setting: this 
column represents the last character position in a record into which you 
can ~nter data. When you try to input a record that is longer than the 
truncation column, the record is truncated, and the editor sends you a 
message telling you that it has been truncated. 

You Gan change the truncation column setting with the TRUNC 
subcommand. For example, if you are creating a file with a record length 
of 80 and wish to insert some records that do not extend beyond column 
20, you could issue the subcommand: 

trunc 20 

78 IBM VM/310 CMS User's Guide 

( 



) 

Then, when you enter data lines, any line that is longer than 20 
characters is truncated and the editor sends you a message. If you are 
entering data in input mode, your virtual machine remains in input mode. 

When you use the CHANGE subcommand to modify records, the column at 
which truncation occurs is determined by the current zone setting. If 
you change a character string in a line to a longer string, and the 
resultant line extends beyond the current end zone, you receive the 
message: 

TRUNCATED. 

If you need to create a line longer than the current end zone setting, 
use the ZONE subcommand to increase the setting. The subcommand: 

zone 1 * 
extends the zone to the record length of the file. If the end zone 
already equals the record length, you have to write the file onto disk 
and reissue the EDIT subcommand specifying a longer record length. 

For most filetypes, the truncation and end'zone columns are the same 
as the record length. For some filetypes, however, data is truncated 
short of the record length. The default truncation and end zone columns 
are: 

!il~lI.E~ 
ASSEMBLE, MACRO 

UPDATE, 
UPDTxxxx 

AMSERV, COBOL, 
DIRECT, FORTRAN 
PLI, PLIOPT 

Column 
--~r1--

72 

All other filetypes are truncated at their record length. 

You can, when creating files for your own uses, set truncation 
columns so that data does not extend beyond particular columns. 

ENTERING A CONTINUATION CHARACTER IN COLUMN 72 

When you are using the editor to enter source records for an assembler 
language program and you need to enter a continuation character in 
column 72, or whenever you want to enter data outside a particular 
truncation setting, you can use the following technique. Note that this 
technique will not work if CANON is specified on the IMAGE subcommand. 

1. Change the truncation setting to 72, so that the editor does not 
truncate the continuation character: 

trunc 72 

2. Use the TABSET subcommand to set the left margin at column 72: 

ta-b-s-et 72 

3. Use the OVERLlY subcommand to overlay an asterisk in column 72: 

overlay * 
Since the left margin is set at 72, the OVERLlY subcommand line 
results in the character * being placed in column 72. 

Section 5. The CMS Editor' 79 



4. Restore the editor truncation and tab settings: 

trunc 71 
tabset 1 10 16 31 36 41 51 61 71 81 

Note: If you issue the PRESERVE subcommand before you change the 
truncation and tab settings, then after you enter the OVERLAY 
subcommand, you can restore them with the RESTORE subcommand. See 
"Preserving and Restoring Editor Settings." 

Use the $MARK Ig!~ ~g£E~: Another way to insert a continuation character 
Is-t6-use-the $MARK edit macro. You can find out if the $MARK edit macro 
is available on your system by entering, in the CMS or CMS subset 
environment: 

listfile $mark exec * 
If it is not available on your system, you can create the $MARK edit 
macro for your own use. See "Section 17. Writing Edit Macros" in "Part 
3. Learriing to Use EXEC." 

If you have the $MARK macro, then when you need to enter a 
continuation character, you can enter a null line to get into edit mode, 
issue the command: 

$mark 

and then return to input mode to continue entering text. 

SERIALIZING RECORDS 

Some CMS files that you create are automatically serialized for you. 
This means that columns 73 to 80 of each record contain an identifier in 
the form: 

cccxxxxx 

where ccc are the first three characters of the filename and xxxxx is a 
sequence number. Sequence numbers begin at 00010 and are incremented by 
10. 

The filetypes that are automatically serialized in columns 73 to 80 
are: 

ASSEMBLE 
DIRECT 
MACRO 

FORTRAN 
COBOL 
PLI 

PLIOPT 
UPDATE 
UPDTxxxx 

You can serialize any file that has fixed-length, 80-character 
records by using the SERIAL subcom~and: 

serial on 

The SERIAL subccmmand can also be used to: 

• Assign a particular three-character identifier: 

serial abc 

80 IBM VM/370 CMS User's Guide 

( 



) 

• Specify that all eight bytes of the sequence field be used to contain 
numbers: 

serial all 

• Specify a sequence increment other than 10: 

serial on 100 

-- or --

serial ccc 100 

• Indicate that no sequence numbers are to be assigned to new records 
being inserted: 

serial off 

When you create a file or edit a file with sequence numbers, the 
sequence numbers are not written or updated until you issue a FILE or 
SAVE subcommand. Because the end verification columns for the filetypes 
that are automatically serialized are the same as their truncation 
columns, you do not see the serial numbers unless you specify: 

verify * 
-- or --

verify 80 

Although the serial numbers are not displayed while you edit the file, 
they do appear on your output listings or printer files. 

If you are editing files with the following filetypes: 

BASIC 
VSBASIC 
FREEFORT 

the sequence numbers are on the left. For BASIC and VSBASIC files, 
columns 1-5 are used; numbers are blank-padded to the left. For 
FREEFORT files, the sequence numbers use columns l-S, and are 
zero-padded to the left. To edit these files, you should use line-number 
editing, which is discussed next. 

LINE-NUMBER EDITING 

To edit a file by line numbers means that when you are adding new lines 
to a file or referencing lines that you wish to change, you refer to 
them by their line, or sequence numbers, rather than by character 
strings. You can use right line-number editing only on files with 
fixed-length, SO-character records. 

If you want to edit by line numbers, issue the subcommand: 

linemode right 

-- or --

linemode left 

Section 5. The eMS Editor 81 



where "right" indicates that the sequence numbers are on the right, in 
columns 76-80, and "left" indicates you want sequence numbers on the 
left in columns 1-5. LINEMODE LEFT is the default for BASIC, VSBASIC, 
and FREEFORT files. You do not have to specify it. You must· specify 
LINEMODE for files with other filetypes. 

If you specify LINEMODE RIGHT to use line-number editing on a 
typewriter terminal, the line numbers are displayed on the left, as a 
conve~ience, while you edit the file. 

When you are using line-number editing in input mode, you are 
prompted to enter lines; the line numbers are in increments of 10. For 
example,.when you are creating a new file, you are prompted for the 
first 11ne number as'follows: 

10 

On a typewriter terminal, you enter your input line following the 10. 
When you press the carriage return, you are prompted again: 

20 

and you continue entering lines in this manner until you enter a null 
line. 

Yo~ can change the prompting increment to a larger or smaller number 
with the PROMPT subcommand: 

prompt 100 

When you are in edit mode you can locate a line by giving its line 
number: 

7'00 

This is the nnnnn subcommand. In line-number editing, you use it instead 
of the INPUT subcommand to insert a single line of t~xt. For example: 

905 x = a * b 

inseris the text line "X = A * B" in the proper sequence in the file. 
If you use "nnnnn text" specifyin~ the number of a line that already 
exist~, that line is replaced; the current line pointer is mbved to 
point to it. 

The EDIT subcommands that you normally us~ for context editing, such 
as CHANGE, ALTER, LOCATE, UP, DOWN, and so forth, can also be used when 
you are line-number editing; their ope~ation does not change. 

RENUM~IRING LINES 

When you are using line-number editing, the editor uses the prompting 
increment set by the PROMPT subcommand. However, when you begin adding 
lines Of data between existing lines, the editor uses an algorithm to 
s~lect ~ line number between the current line number and the next line 
number. If a prompting number cannot be generated becaus~ the current 
line number and the next line number differ only by one, the editor 
displays the message: 

RENUMBER LINES 

and you must resequence the line numbers in the file before you can 
continue line-number editing. 

82 I·Bli VM/370 CMS User's Guide 

( 



) 

) 

You can resequence the line nu.bers in one of three ways: 

1. If you are a VSBASIC or FREEFORT user, you may use the RERUM 
subcommand: 

renum 

This subcommand resolves 
renumbered. 

all references to lines that are 

2. If you are using right-handed line-number editing, you must: 

a. Turn off line-number editing: 

linemode off 

b. If you want to change the three-character identifier or specify 
eight-character sequence numbers, issue the SERIAL subcommand, 
for example: 

serial all 

If you want to use the default serialization setting, you do not 
need to issue the SERIAL subcommand. 

c. Issue the SAVE subcommand: 

save 

d. Reissue the 
editing: 

LINE MODE subcommand and continue line-number 

linemode right 

3. If you are using left-handed ~ine-number editing for a filetype 
other than VSBlSIC or FREEFORT, you must manually change individual 
line numbers using EDIT subcommands. In order to modify the line 
numbers, you must change the zone setting and the tab setting: 

zone 1 * 
tabset 1 6 

so that you can place data in columns 1 through 6. 

When you are using right-handed line-number editing, and a FILE, 
SAVE, or automatic save request is issued, the editor does not 
resequence the serial numbers, but displays the message: 

RESERIALIZATION SUPPRESSED 

so that the lines numbers that are currently saved on disk match the 
line numbers in the file. You must cancel line-number editing (using the 
LINEMODE OFF subcommand) before you can issue a FILE or SAVE subcommand 
if you want to update the sequence numbers. 

Section 5. The CMS Editor 83 



Controlling the Editor 

There; are a number of EDIT subcommands that you can use to maximize the 
use of the editor in CMS. A few techniques are suggested here; as you 
becomecmore familiar with VM/370 and C!S you will develop additional 
techniques for your own applications. 

COMMUNICATING WITH CMS AND CP 

Often during a terminal session, you may need to issue a CMS command or 
a CP command. You can issue certain CMS commands and most CP commands 
without terminating the edit session. The EDIT subcommand CMS places 
your virtual machine in the CMS subset mode of the editor, where you can 
issue CMS commands that do not modify your virtual storage. Remember 
that the editor is using your virtual storage; if you overlay it with 
any other command or program, you will not be able to finish your 
editing. 

One occasion when you may want to enter CMS subset is when you want 
to issue a GET FILE subcommand for a file on one of your virtual disks 
and you have not accessed the disk. You can enter: 

cms 

The editor responds: 

CMS SUBSET 

Then you can enter: 

access 193 b/a 
return 
get setup script b 

The special CMS SUBSET command RETURN returns your virtual machine to 
edit mode. 

You can enter CP commands from CMS subset, or you can issue them 
directly from edit mode or input mode with the ICP function. Fer 
example, if you are inputting lines into a file and another user sends 
yeu a me~sage, you can reply without leaving input mode: 

#cp m oph i will call you later 

If you enter tcp without specifying a command line, you receive the 
message: 

CP 

which indicates that your virtual machine is in the CP command 
enviranment, and you can issue CP cammands. You would nat, hawever, 
want to issue any CP command that would modify your virtual storage er 
alter the status of the disk on which you ~ant to. write the file. 

To return to edit or input mode from CP, use the CP cammand, BEGIN. 
If you are working at a display terminal and the screen image does net 
reappear, enter the TYPE command to. cause the editor to redisplay the 
screen:. ' 

84 l'BM VM/370 CMS User's Guide 

c 



March 30, 1919 

CHANGING FILE IDENTIFIERS 

There are several methods you can use to change a file identifier before 
writing the file onto disk. You can use the FNAHE and FMODE subcommands 
to change the filename or filemode, or you can issue a FILE or SAVE 
subcommand specifying a new file identifier~ 

For example, if you want to create several cOfies of a file while you 
are using the editor, you can issue a series of FNAME subcommands, 
followed by SAVE subcommands, as follows: 

edit test file 
EDIT: 

fn test11save 

fn test21save 

fn test3ifile 

Or, you could issue the SAVE and FILE subcommands as follows: 

edit test file 

save test1 

save test2 

file test3 

In both of the preceding examples, when the FILE subcommand is executed, 
there are files named TEST FILE, TEST1 FILE, TESi2 FILE, and TEST3 FILE. 
The original TEST FILE is unchanged. 

To change the filemode letter of a disk, use the FMODE subcommand. 
You can do this in cases where you have begun editing a file that is on 
a read-only disk, and want to write it. Since you cannot write a file 
onto a read-only disk, you can issue the FMODE subcommand to change the 
mode before filing it: 

fmode a 
file 

Or, you can use the FILE (or SAVE) subcommand specifying a complete file 
identifier: 

file test file a 

You should remember, however, that when you write a file onto disk, 
it replaces any existing file that has the same identifier. The editor 
does not issue any warning or informational messages. If you are 
changing a file identifier while you are editing the file, you must be 

Section 5. The CMS Editor 85 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

careful that you do not unintentionally overlay 
verify the existence of a file, you can enter ces 
STATE or LISTFILE commands. 

CONTROLLING THE EDITOR'S DISPLAYS 

existing files. To 
subset and issue the 

When you are using a typewriter terminal, you may not always want to see 
the editor verify the results of each of your subcommands. Particularly 
when you are making global changes, you may not want to see each line 
displayed as it is changed. You can issue the VERIFY suhcommand with 
the OFF operand to instruct the editor not to display anything unless 
specifically requested. After you issue: 

verify off 

lines that are normally displayed as a result of a subcommand that moves 
the current line pointer (UP, DOWN, TOP, BOTTOM, and so forth), or that 
changes a line (CHANGE, ALTER, and so forth), are not displayed. If the 
current line pointer moves to the end of the file, however, the editor 
always displays the EOF: message. 

If you are editing with verification off, then you must be 
particularly careful to stay aware of the position of your current line 
pointer. You can display the current line at any time using the TYPE 
subcommand: 

type 

~~Dg g~g ~h~~! ~~!g~ ~~§§ag~§: When you enter an invalid subcommand 
while you are using the editor, the editor normally responds with the 
error message: 

?EDIT: line ••• 

displaying the line that it did not recognize. If you prefer, you can 
issue the SHORT subcommand so that instead of receiving the long form of 
the error, you receive the short form, which is: 

When you issue an invalid edit macro request (any line that begins with 
a $), you receive the message: 

To resume receiving the long form of the error message, use the LONG 
subcommand: 

long 

LONG and SHORT control the display of the error message regardless of 
whether you are editing with verification on or off~ 

On a display terminal, all EDIT messages that are displayed at the 
top of the screen, including error messages and '?EDIT:' messages, are 
highlighted. 

86 IBM VM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-IX8 

PRESERVING AND RESTORING EDITOR SETTINGS 

The PRESERVE and RESTORE subcommands are used together; the PRESERVE 
subcommand saves the settings of the EDIT subcommands that control the 
file format, message and verification display, and file identifier. If 
you are editing a file and you want to temporarily change some of these 
settings, issue the PRESERVE subcommand to save their current status. 
When you have finished your temForary edit project, issue the RESTORE 
subcommand to restore the settings. 

Section 5. The eMS Editor 86.1 



March 30, 1979 

86.2 IBM VM/370 eMS User's Guide 



) 

For example, if you are editing a SCRIPT file and want to change the 
image setting to create a particular format, you can enter: 

preserve 
image on 
tabset 1 15 40 60 72 
zone 1 72 
trunc 72 

When you have finished entering data using these settings, you can issue 
the subcommand: 

restore 

to restore the default settings for SCRIPT filetypes. 

x, I, =, ? SUBCOMMANDS 

The X, I, =, and 1 subcomaands all perform very simple 
can help you to extend the language of the CMS editor. 
to manipulate, reuse, or interrogate EDIT subcommands. 

functions that 
They allow you 

If you have an editing project in 
subcommand a number of times, you 
subcommands, as follows: 

which you have to execute the same 
can assign it to the X or Y 

x locate /insert here/ 
y getfile insert file c 

Each time that you enter the X subcoamand: 

x 

the command line LOCATE IINSERT HERE/ is executed, and every time you 
enter the Y subcommand: 

y 

the GETFILE subcommand is executed. 

When you specify a number following an X or I subcommand, the 
subcommand assigned to X or Y is executed the specified number of times; 
for example: 

x locate laal 
x 10 

the LOCATE subcommand line is executed 10 times before you can enter 
another EDIT subcommand. 

Another method of re-executing a particular subcommand is to use the 
= (REUSE) subcommand. For example, if you enter: 

locate lardl 
AARDVARK 
======= 

the LOCATE subcommand is re-executed seven times. 

What the = (REUSE) subcommand actually does is to stack the 
subcommand in the console stack. Since CMS, and the editor, read from 
the console stack before reading from the terminal, the lines .in the 

Section 5. The CMS Editor 81 



stack execute before a read request is presented to the terminal. When 
you enter multiple equal signs, the subcommand is stacked once for each 
equal sign you enter. 

You can also stack an additional EDIT subcommand following an equal 
sign. The subcommand line is also stacked, but it is stacked LIFO 
(last-in, first-out) so that it executes before the stacked subcommand. 
For example, if you enter: 

delete 
= next 

a DELETE subcommand is executed, then a DELETE subcommand is stacked, 
and a NEXT subcommand is stacked in front of it. Then the stacked lines 
are read in and executed. The above sequence has the same effect as if 
you enter: 

delete 
next 
delete 

In addition to stacking the last 
find out what it was, using the? 
enter: 

next 10 
? 

the editor displays: 

NEXT 10 

subcommand executed, you can also 
subcommand. For example, if you 

since the subcommand line NEXT 10 
you enter an = subcommand, it is 
subcommand. 

was the last subcommand entered, if 
executed again. You cannot stack a ? 

!Qte: The ? subcommand, 
subcommand into the user 
re-entering it. 

on a display terminal, 
input are~, where you 

WHAT TO DO WHEN YOU RUN OUT OF SPACE 

copies the 
may modify 

last EDIT 
it before 

There are two situations that may prevent you from continuing an edit 
session or from writing a file onto disk. You should be aware of these 
situations, know how to avoid them, and how to recover from them, should 
they occur. 

When you issue the EDIT command to edit a file, the editor copies the 
file into virtual storage. If it is a large file, or you have made many 
additions to it, the editor may run ont of storage space. If it does, it 
issues the message: 

AVAILABLE STORAGE IS NOW FULL 

When this happens, you cannot make any changes or additions to the file 
unless you first delete some lines. If you attempt to add a line, the 
editor issues the message: 

NO ROOM 

If you were entering data in input mode, your virtual machine is 
returned to edit mode, and you may receive the message: 

88 IBM VM/370 CMS User's Guide 

( 



) 

o 

STACKED LINES CLEARED 

which indicates that any a~ditional lines you entered are cleared and 
will not be processed. 

You should use the FILE subcommand to write the file onto disk. If 
you want to continue editing, you should see that the editor has more 
storage space to work with. To do this, you can find out how large your 
virtual machine is and then inctease its size. To find out the size, 
issue the CP QUERY command: 

cp query virtual storage 

If the response is: 

STORAGE = 256K 

You might want to redefine your storage to 512K. Use the CP command 
DEFINE, as follows: 

cp define storage 512k 

This command resets your virtual machine, and you must issue the CP IPL 
command to reload the CMS system before you can continue editing. 

If a file is very large, the editor may not have enough space to 
allow you to edit it using the EDIT command. The message: 

DMSEDI132S FILE 'fn ft £m' TOO LARGE 

indicates that you must obtain more storage space before you can edit 
the file. If this is the case, or if you are editing large files, you 
should" redefine your storage before beginning the terminal session. If 
this happens consistently, you should see your installation support 
personnel about having the directory entry for your userid updated so 
that you have a large storage size to begin with. 

If the file you are editing is too large, and the data it contains does 
not have to be in one file, you can split the file into smaller files, 
so that it is easier to work with. Two of the methods you can use to do 
this are described below. 

~2~ 1h~ ~QR!~!1~ Command: You can use the COpy FILE command to copy 
portions of a file Into-s~parate files, and then delete the copied lines 
from the original file. For example, if you have a file named TEST FILE 
that has 1000 records, and you want to split it into four files, you 
could enter: 

copyfile test file a test1 file a (from 1 for 250 
copy file test file a test2 file a (from 251 for 250 
copyfile test file a test3 file a (from 501 for 250 
copy file test file a test4 file a (from 751 for 250 

When these COPYFILE commands are complete, you have four files 
containing the information from the original TEST FILE, which you can 
erase: 

erase test file 

Q2~ 1h~ Ed!12f: If you use the editor to create smaller files, you can 
edit them as you copy them, that is, if you have other changes that you 

Section 5. The CMS Editor 89 



want to make to the data. To copy files 
GETFILE subcommand. Using the file TEST 
enter: 

edit test1 file 
get file test file a 1 250 

file 
edit test2 file 
~~tfile test file a 251 250 

with the editor, you use the 
FILE as an example, you might 

Again, you could erase the original TEST FILE when you are through with 
your edit session. 

When you enter a FILE or SAVE subcommand or when an automatic save 
request is issued, the editor writes a copy of the file you are editing 
onto disk, and names it EDIT CMSUT1. If this causes the disk to become 
full, you receive the message: 

DMSBWR170S DISK 'mode (cuu) , IS FULL 

The edi'tor erases the workfile, and issues the message: 

SET NEW FILEMODE, OR ENTER CMS SUBSET AND CLEAR SOME SPACE 

The original file (as last written onto disk) remains unchanged. You 
can tis~ the CMS subcommand to enter CMS subset, and erase any files that 
you do not need. You can use the LISTFILE command to list the files on 
the disk, then the ERASE command to erase the unwanted files. 

If you cannot erase any of the files on the disk, there are several 
alternate recovery paths you can take: 

1. If you have another read/write disk accessed, you can use the FMODE 
subcommand to change the filemode of the file, so that when you 
file it, it is written to the other disk. If you have a read/write 
disk that is not accessed, you can access it in CMS subset. After 
filing the file on the second disk, erase the original copy, and 
then use the COPYFILE command to transfer the file back to its 
original disk. 

2. If you do not have any other read/write disk in your virtual 
machine, you may be able to transfer some of your files to another 
user, using the PUNCH or DISK DUMP commands in CMS subset. When the 
files have been read onto the other user's disk, you can erase them 
from your disk. Then, return to edit mode and issue the FILE 
subcommand. 

3. In CMS subset, erase the original disk file (if it existed), then 
return to edit mode and file the copy that you are editing. You 
should not use this method unless absolutely necessary, since any 
unexpected problems may result in the loss of both the disk file 
and the copy. 

After you use the FILE subcommand to write the file onto disk, you 
should continue erasing any files you no longer need. 

90 l~~ VM/370 CMS User's Guide 

( 



) 

) 

Summary of EDIT Subcommands 

The EDIT subcommands, and their formats, are shown in Figure 7. Refer to 
the !!1L.lIQ ~!t~~g.!!1!!~!!g ~!!g ~~£!:.Q !!~!~!:!H!£~ for complete details. 

Subcommand Format Function 

ALter char1 char2 

r , 
AUTOsave In I 

IOFFI 
L .J 

r , 
BAckward I nl 

I 11 
L .J 

Bottom 

r , 
CASE 1 M I 

I U I 
L .J 

r , 
I n r , I 
I * I G I I 
I 1 I * I I 
L L .J .J 

IScans the next n records of 
Ithe file, alterIng the speci­
Ified character, either once in 
leach line or for all occur­
Irences in the line. 

IAutomatically saves the file 
Ion disk after the indicated 
Inumber of lines have been 
I processed • 

IPoints the current line 
Ipointer to a line above the 
Iline currently pointed to. 
I 

IMakes the last line of the 
Ifile the current line. 

IIndicates whether translation 
Ito uppercase is to be done, or 
Idisplays the current status. 
I 

r 
Change [/string~/string2[1 In 

r " I Changes string 1 to string2 for 
IGII ]]]I!! records or to EOF, either 

CMS 

r , 
DELete 1 n I 

1 * I 
I 1 1 
L .J 

r , 
DOwn I n 1 

I 1 I 
L .J 

DString I[string [I]] 

FILE [fn [ft [fm]]] 

11 
L 

1*11 Ifor the first occurrence in 
L .J.J I each line or for all 

I occurrences. 

IEnters CMS subset command 
Imode. 

IDeletes n lines or to the end 
lof the file (*). 
I 
I 
1 

IPoints to the nth line from 
Ithe current line. 
I 
I 

IDeletes all lines from the 
Icurrent line down to the line 
Icontaining the indicated 
Istring. 

ISaves the file being edited on 
Idisk or changes its identi­
Ifiers. Returns to CMS. 

Figure 7. Summary of EDIT Subcommands and Macros (Part 1 of 4) 

Section 5. The CMS Editor 91 



--------------------------------------------------, 
Subcommand Format Function I 

~--~~----------------------------------------------------------------------I 
Find I line] 

FMode [fm] 

FName [fn] 

r , 
FOrward I n I 

I 1 I 
L ~ 

r 
Getfile fn I ft 

I 
L 

r , 
IMAG'E ION I 

IOPF I 
ICANONI 
L .J 

Inpu,t [line] 

r , 
LINEmode ILEFT I 

IRIGHTI 
IOPF I 
L ~ 

r 
I fm 
I 
L 

[Locate]/[string [I]] 

LONG 

r , 
Next I n I 

I 1 I 
L .J 

Over-lay [line] 

PREserve 

r , 
PROMPT In I 

11QI 
L .J 

r r , , 
I m I n I I 
I 1 I * I I -
L L ~ ~ 

, , 
I I 
I I 
~ .J 

ISearches the file for the I 
Igiven line. I 

----------------------1 
IResets or displays the I 
Ifilemode. I 

IResets or displays the 
Ifilename. 

ISwitches the 3270 terminal 
Ibetween display mode and line 
Imode. (3270 only) 

IPoints to the nth line after 
Ithe current line. 
I 
I 

IInserts a portion or all of 
Ithe specified file after the 
Icurrent line. 
I 

IExpands text into line images 
lor displays current settings. 
I 
I 
I 

IInserts a line in the file or 
lenters input mode. 

ISets or displays current 
Isetting of line-number 
lediting. 
I 
I 

IScans file from next line for 
Ifirst occurrence of 'string'. 

IEnters long error message 
Imode. 

IRoints to the nth line down 
Ifrom the current line. 
I 
I 

IReplaces all or part of the 
Icurrent line. 

ISaves current mode settings. 

ISets or displays line number 
lincrement. Initial setting is 
110. 
I 

Figure 7. Summary of EDIT Subcommands and Macros (Part 2 of 4) 

92 IBM VM/370 CMS User's Guide 

( 



) 

) 

r 
Subcommand Format 

QUIT 

r , 
RECfm I F I 

I V I 
L .J 

r r " RENum Istrtno I incrno II 
11Q 1§!f!!tQ II 
L L 

r , 
REPEAT I n I 

I * I 
I 1 I 
L .J 

Replace [line] 

REStore 

RETURN 

[ subcommand] 

SAVE [fn eft [fm]]] 

r , 

{
SCroll } 1 n I 
S[ croll ]U[ p] 1* I 

11 1 
L .J 

SERial { OFF r , J ON liner, 
ALL I 10 I 
seq L .J 

SHORT 

r , 
STACK I n I 

I 1 I 
101 
Isubcommandl 
L .J 

.J.J 

Function 

ITerminates edit session with 
Ino updates incorporated since 
Ilast save request. 

ISets or displays record format 
Ifor subsequent files. 
I 
I 

IRecomputes line numbers for 
IVSBASIC and FREEFORT source 
Ifiles. 
I 

I Executes the following OVE:a .. LAY 
Isubcommand n times. 
I 
I 
I 

IReplaces the current line or 
Ideletes the current line and 
lenters input mode. 

,Restores editor settings to 
Ivalues last preserved. 

IReturns to edit environment 
Ifrom CMS subset. 

.~ 

IStacks (LIFO) the last EDIT 
Isubcommand that does not start 
Iwith REUSE or the question 
Imark (1) and then execute~ any 
Igiven EDIT subcommand. 

ISaves the file on disk and 
Istays in edit environment_ 

IDisplays a number of screens 
lof data above or below the 
Icurrent line (3270 only) • 
I 
I 

ITurns serialization on or off 
lin columns 73 through 80. 
I 
I 

IEnters short error message 
Imode. 

IStacks data lines or EDIT 
Isubcommands in the console 
linput stack. 
I 
I 
I 

Figure 7. Summary of EDIT Subcommands and Macros (Part 3 of 4) 

Section 5. The CMS Edit<rit' 93 



Subcommand Format 

TABSet n1 [n2 ••• nn] 

TOP 

.. , 
TRUNC I n I 

I * I 
L .J 

.. .. , , 
Type I m I n I I 

I 1 I * I I 
I * I I I 
L L .J .J 

.. , 
Up I n I 

I 1 I 
L .J 

.. , 
Verify ION I 

IOFFI 
L .J 

.. , 
{~} Isubcommandl 

I n I 
I 1 I 
L .J 

.. .. , , 
Zone I m I n I I 

I 1 I * I I 
I * I I I 
L L .J .J 

? 

.... , , 
Iistartcollendcoll 
II 1 I * I 
LL 

{ 
nnnnn } [text] 
nnnnnnnn 

.. , 
$DUP I n I 

I 1 I 
L .J 

$MOVE n { ~~w: m } 
TO label 

Function 

ISets logical tab stops. 

Iftoves the current line pointer 
Ito the null line at the top 
lof the file. ' 

ISets or 'displays the coluan of 
Itruncation. An asterisk (*) 
lindicates the logical record 
Ilength. 

IDisplays ! lines beginning 
Iwith the current line. Each 
Iline may be truncated to ~ 
I characters. 
I 

Iftoves the current line pointer 
Itoward the top of the file. 
I 
I 

ISets, displays, or resets 
Iverification. An asterisk (*) 
lindicates the logical record 
Ilength. 

IAssigns to X or Y the given 
IEDITsubcommand or executes 
Ithe previously assigned 
Isubcommand ~ times. 
I 

ISets or displays the columns 
Ibetween which editing is to 
Itake place. 
I 
I 

IDisplays the last EDIT 
Isubcommand, except = or 1. 

ILocates the line specified by 
Ithe given line number and 
linserts text, if given. 

IDuplicates the current line ~ 
Itimes. $DUP is an edit macro. 
I 
I 

Iftoves UF n lines or down ~ 
Ilines. $ftOVE is an edit macro. 
I 

Figure 7. Summary of EDIT Subcommands and ftacros (Part 4 of 4) 

94 IBft Vft/370 CftS User's Guide 

( 



) 

) 

Section 6. Introduction to the EXEC Proce·ssor 

-". ' 

An EXEC is a CMS file that contains executable statements. The 
statements may be CMS or CP commands or EXEC control statements. The 
execution can be conditionally controlled with additional EXEC 
statements, or it may contain no EXEC statements at all. In its simplest 
form, an EXEC file may contain only one record, have no variable~~ and 
expect no arguments to be passed to it. In its .ost complex for., it can 
contain thousands of records and may resemble a program written in a 
high-level programming language. As a CMS user, you should '-1recolle 
familiar with the EXEC processor and use it often to tailor CMS co •• ands 
to your own needs, as well as to create your own commands. 

The following is an example of a simple EXEC procedure that aight be 
naaed RDLINKS EXEC: 

CP LINK DEWEY 191.291 RR DEWEY 
CP LINK LIBRARY 192 292 RR DEWEY 
ACCESS 291 BIA 
ACC 292 CIA 

When you enter: 

rdlinks 

each command line contained in the file RDLINKS EXEC is executed. 

You could also create an EXEC procedure that functions rike a 
cataloged procedure, and set it up to receive an argument, so that it 
executes somewhat differently each time you invoke it. For eXaaple, a 
file named ASM EXEC ·contains the following: 

ASSEMBLE &1 
PRINT &1 LISTING 
LOAD &1 
START 

If you invoke the EXEC specifying the name of an assembler lan9uage 
source file, such as: 

asm myprog 

the procedure executes as follows: 

ASSEMBLE MYPROG 
PRINT MYPROG LISTING 
LOAD MYPROG 
START 

The variable &1 in the EXEC file is substituted with the argument you 
enter when you execute the EXEC. As many as 30 arguments can be passed 
to an EXEC in this manner; the variables thus set range from &1 through 
&30·. 

CREATING EXEC FILES 

EXEC files can be created with the CMS editor, by punching cards, or by 
using CMS commands or programs. When you create a file with the editor, 

Section 6. Introduction to the EXEC Processor 95 



records are, by default, variable-length with a logical record length of 
80 characters. EXEC can process variable-length files of up to 130 
characters. To create a variable-length EXEC file larger than 80 
characters, use the LRECL option of the EDIT co.mand: 

edit new exec a (lrecl 130 

To convert a variable-length file to a fixed-length file, you can 
edit the EXEC file and issue the subcommand: 

recfm f 

Or, you can use the COPYFILE command: 

copy file old exec a (recfm f 

If you use fixed-length EXEC files, you should be aware that the EXEC 
interpreter only processes the first 72 characters of each record in a 
fixed-length file, regardless of the record length. You can, however, 
enter command or data lines that are longer than than 72 characters to 
be processed by using the &BEGSTACK, &BEGTYPE, &BEGPUNCH, and &BEGEMSG 
control statements preceding the line(s) you want to be processed. If 
you specify &BEGPUNCH ALL, EXEC processes lines up to.80 characters 
long; if you specify &BEGTYPE ALL, &BEGSTACK ALL, or &EEGEMSG ILL, EXEC 
processes line~ up to 130 characters. 

In variable-length EXEC files, there are no such restrictions; lines 
up to 130 characters are processed in their entirety. 

Two CMS commands create EXEC files. One is LISTFILE, which can be 
invoked with the EXEC option; it creates a file named CMS EXEC. The uses 
of CMS EXEC files are discussed under the heading "CMS EXECs and How To 
Use Them~" The CMS/DOS command LISTIO creates an EXEC file named 
$LISTIO EXEC, which creates records for each of the system and 
programmer logical unit assignments. The LISTIO command and the $LISTIO 
EXEC are described in "Section 9. Developing DOS programs Under CMS." 

INVOKING EXEC FILES 

EXEC procedures are invoked when you 
file. You can precede the filename on 
command, EXEC. For example: 

exec test type list 

enter the filename of 
the command line with 

the EXEC 
the CMS 

where TEST is the filename of the EXEC file and TYPE and LIST are 
arguments (&1, &2, and so on) you are passing to the EXEC. For example, 
an EXEC named PREPEDIT would be executed when you entered either: 

prepedit newfile replace 

-- or --

exec prepedit newfile replace 

You must precede the EXEC filename with the EXEC command when: 

• You invoke an EXEC from within another EXEC. 
• You invoke an EXEC from a program. 
• You have the: implied EXEC function set off for your virtual machine. 

96 IBM VM/370 CMS User's Guide 

( 



March 30, 1979 

The implied EXEC function is controlled by the SET coamand. If you 
issue the command: 

set impex off 

then you must use the EXEC command to invoke an EXEC procedure. The 
default setting is ON; you almost never need to change it. 

There is one EXEC file that you never have to specifically invoke. 
This is a PROFILE EXEC, which is automatically executed after JOu load 
CMS, when your A-disk is accessed. PROFILE EXECs are discussed next. 

PROFILE EXECs 

A PROFILE EXEC must have a filename of PROFILE. It can contain the CP 
and CMS commands you normally issue at the start of every terminal 
session. For example: 

• Commands that describe your terminal characteristics, such as: 

CP SET LINEDIT ON 
SET BLIP * 
SET RDYMSG SMSG 
SYNONYM MYSYM 

• Commands that spool your printer and punch for particular classes or 
characteristics: 

CP SPOOL E CLASS S HOLD 

• Commands to initialize macro and text libraries that you coaaonly 
use: 

GLOBAL MACLIB OSMACRO CMSLIB 
GLOBAL TXTLIB PRIVLIB 

• Commands to access disks that are 
configuration: 

ACCESS 196 B 

a permanent part of your 

A PROFILE EXEC file that contains all of these commands aight look 
like this: 

&CONTROL OFF 
CP SET LINEDIT ON 
CP SPOOL E CLASS S HOLD 
SET RDYMSG SMSG 
SET BLIP * 
SYNONYM MYSYN 
GLOBAL MACLIB OSMACRO CMSLIB 
GLOBAL TXTLIB PRIVLIB 
ACCESS 196 B 

&CONTROL OFF is an EXEC control 
and CMS command lines are not to 
they execute. 

statement that specifies that the CP 
be displayed on your terminal before 

A PROFILE EXEC can be as simple or as complex as you require. Is an 
EXEC file, it can contain any valid EXEC control stateaents or CBS 
commands. The only thing that makes it special is its filenaae, 

Section 6. Introduction to the EXEC Processor 97 



Pg. of GC20-1819-2 Rev March 30, 1979 by supp. SD23-9024-1 for 5748-118 

PROFILE, .which causes it to be executed the first time you press the 
Return key after loading CMS. 

EXECUTING YOUR PROFILE EXEC 

Usually, the first thing you do after loading CMS is to type a C5S 
command. When you pr~ss the Return key to enter this command or if you 
enter·a null line, CMS searches your A-disk for a file with a filename 
of PROFILE and a filetype of EXEC. If such a file exists, it is 
executed before the first CMS command you enter is executed. Because 
you do not do anything special to cause your PROFILE EXEC to execute, 
you can say that it executes "automatically." 

You can prevent your PROFILE EXEC from executing automaticallY by 
entering: 

access (noprof) 

as the first CMS command after you IPL CMS. You can enter: 

profile 

at any time during a CMS session to execute the PROFILE EXEC, if you had 
accessed your A-disk without it, or if you had made changes to it and 
wanted to execute it, or if you had changed yeur virtual machine and 
wanted to restore its original characteristics. 

CMS EXECs and How to Use Them 

A file named CMS EXEC is created when you use the EXEC option of the 
LISTFILE command; for example: 

listfile pr* document a (exec 

The usual display that results from this LISTFILE command is a list of 
all the files on your A-disk with a filetype of DOCUMENT that have 
filenames beginning with the characters "PR". eMS, however, creates a 
CMS EXEC file that contains a record for each file that would be listed. 
The records are in the format: 

&1 &2 filename filetype filemode 

Column 1 is blank. NoW, if you have ~he following files on your A-disk: 

The 

PRFILEl DOCUMENT 
PRFILE2 DOCUMENT 
PRFILE3 DOCUMENT 
PRFILE4 DOCUMENT 

CMS EXEC file would contain 

&1 &2 PRFILEl DOCUMENT A1 
&1 &2 PRFILE2 DOCUMENT Al 
&1 &2 PRFILE3 DOCUMENT A1 
&1 &2 'PRFILE4 DOCUMENT A1 

98 IBM VM/370 CMS User's Guide 

the records: 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-X18 

In the preceding lines, &1 and &2 are variables that can receive values 
from arguments you pass to the EXEC when you execute it. For example, 
if you execute this CMS EXEC by issuing: 

cms disk dump 

the EXEC interpreter substitutes, on each line, the variable &1 with the 
DISK and the variable &2 with DUMP and executes the commands: 

DISK DUMP PRFILE1 DOCUMENT A1 
DISK DUMP PRFILE2 DOCUMENT A1 
DISK DUMP PRFILE3 DOCUMENT A1 
DISK DUMP PRFILE4 DOCUMENT A1 

You can use this technique to transfer a number of files to another 
user. You should remember to spool your punch with the CONT option 
before you execute the EXEC, so that all of the files are transferred as 
a single spool file; for example: 

cp spool d cant library 

Then, after executing the EXEC file, close the punch: 

cp spool d nocont close 

If you pass only one argument to your CMS EXEC file, the variable &2 
is set to a null string. For example: 

cms erase 

executes as: 

ERASE PRFILE1 
ERASE PRFILE2 
ERASE PRFILE3 
ERASE PRFILE4 

DOCUMENT A1 
DOCUMENT A1 
DOCUMENT A1 
DOCUMENT A1 

You could also use a CMS EXEC to obtain a listing of files on a 
virtual disk. If you want, you can use one of the other LISTFILE command 
options with the EXEC option to get more information about the files 
listed. For example: 

listfile * * a (exec date 

produces a CMS EXEC that contains, in addition to the 
filetype, and filemode of each file listed, the file format 
and date information. You can then use the PRINT command to 
printed copy: 

print cms exec 

filename, 
and size, 
obtain a 

Before printing this file, you may want to use the SORT command to 
sort the list into alphabetic order by filename, by filetype, or both; 
for example: 

sort cms exec a cmssort exec a 

When you are prompted to enter sort fields, you can enter: 

1 25 

The file CMSSORT EXEC that is created contains a completely alphabetical 
list. 

Section 6. Introduction to the EXEC Processor 99 



March 30, 1979 

MODIFYING eMS EXECS 

A CMS EXEC is like any other CMS file; you can edit it, erase it, rename 
it, or change it. If you have created it to catalog a particular group 
of files, you might want to rename it; each time you use the LISTFILE 
com.and with the EXEC option a CMS EXEC is created, and any old CMS EXEC 
is erased. To rename it, you can use the CMS RENAME command, or, if you 
are editing it, you can rename it when you file it: 

edit cms exec 
input &control off 
file prfile exec 

You might also want to edit a CMS EXEC to provide it with more 
numeric variables; for example: 

edit cms exec 
input &control off 
input cp spool printer class s cont 
change lal/al &3 &4 &5 &6/ * 

input cp spool printer nocont 
input cp close printer 
file prfile exec 
prfile print % (cc 

When this EXEC is executed, the variable &1 is substituted with PRINT, 
the variable &2 is set to a null string (the special character % 
indicates that you are not passing an argument to it), and &3 and &4 are 
set to the PRINT command option (CC, so that the files in the EXEC print 
with carriage control. The CP commands that are inserted ensure that 
the files print as a single spool file, and not individually. 

Summary of the EXEC Language Facilities 

The EXEC processor, or interpreter, recognizes keywords that 'begin with 
the special character ampersand (&). Keywords may indicate: 

• Control statements 
• Built-in functions 
• Special variables 
• Arguments 

You may also define your own variables in an EXEC file; the EXEC 
interpreter can process t~em as long as they begin with an ampersand. 
The following pages briefly discuss the kinds of things you can do with 
an EXEC, introduce you to the control statements, built-in functions, 
and special variables, and give some examples of how to use the EXEC 
processor. If you want more information on writing EXEC procedures, see 
"Part 3. Learning To Use EXEC." For specific information on the format 
and usage rules for any EXEC statement or variable, consult the !~LJ1~ 
~~2 ~Q~~gD~ gD~ ~g£EQ R~!~E~D£~· 

In general the following rules apply to entering lines into an EXEC 
procedure: 

1. Most input lines (with a few exceptions) are scanned during 
execution of the EXEC. Every word on a line is padded or truncated 

100 IBM VM/370 CMS User's Guide 



) 

) 

to fit into an eight-character ntoken~" 
enter the EXEC control statement: 

&type today is wednesday 

So, for example, if you 

when this EXEC is executed, the line is disflayed at your terminal: 

TODAY IS WEDNESDA 

The lines that are not tokenized are those that begin with an * 
(and are considered comments), and those that follow an &BEGEftSG, 
&BEGPUNCB, &BEGSTACK, or &BEGTYPE control statement, up to an &END 
statement. 

2. You can enter input lines beginning in any column. The only time 
that you must enter an EXEC line beginning in column 1 is when you 
are using the &END control statement to terminate a series of lines 
being punched, stacked, or typed. 

ARGUMENTS AND VARIABLES 

Most EXEC processing is contingent on the value of variable expressions. 
A variable expression in an EXEC is a symbol that begins with an 
ampersand (&)'. When the EXEC interpreter processes a line and 
encounters a variable symbol, it substitutes the variable with a 
predefined value, if the symbol has been defined. Symbols can be 
defined in three ways: (1) when passed as arguments to the EXEC, (2) by 
assignment statements, (3) interactively, as a result of a &READ ARGS or 
&READ VARS control statement. 

You can pass arguments to EXEC files when you invoke them. Each 
argument you enter is assigned a variable name: the first argument is 
&1, the second is &2, the third 1S &3, and so on. You can assign values 
for up to 30 variables this way. For example, if an EXEC is invoked: 

scan alpha 2 notype print 

the variable &1 has a value of ALPHA, the variable &2 has a value of 2, 
&3 is NOTYPE and &4 is PRINT. These values remain in effect until you 
change them. 

You can test the arguments passed in several ways.,The special 
variable &INDEX contains the number of arguments received. Using the 
example SCAN ALPHA 2 NOTYPE PRINT, the statement: 

&IF &INDEX EQ 4 &GOTO -SET 

would be true, since four arguments were entered, so a branch to the 
label -SET is taken. 

You can change the values of arguments or assign values using the 
&IBGS control statement. For example: 

&IF &INDEX EQ 0 &ARGS ABC 

assigns the values A, B, and C to the variables &1, &2, and &3 when the 
EXEC is invoked without any arguments. 

Use the &READ IRGS control statement to enter arguments 
interactively. For example, if your EXEC file contains the line: 

&READ ARGS 

Section 6. Introduction to the EXEC Processor 101 



when this line is executed, the EXEC issues a read to your virtual 
machine so that you can enter up to 30 arguments, to be assigned to the 
variables Sl, &2, and so on~ 

ASSIGNMENT STATEMENTS 

User-defined variable names begin with an ampersand (&) and contain up 
to seven additional characters,. These variables can contain numeric or 
alphameric data. You define and initialize EXEC variables in assignment 
statements. In an assignment statement, the first data item starts with 
an ampersand (S) and the second data item is an equal sign (=). The 
value of the expression on the right side of the equal sign is assigned 
to the variable named on the left of the equal sign. For example: 

&A = 35 

is an assignment statement that assigns the numeric value 35 to the 
variable symbol &A. A subsequent assignment statement might be: 

&B = &A + 10 

After this assignment statement executes, the value of SB would be 35 
plus 10, or 45. 

You can use the &READ control statement to assign variable names 
interactively. For example, when the statement: 

&READ VARS SNAKE &AGE 

is executed, the EXEC issues a read to your virtual machine, and you can 
enter a line of data. The first two words, or tokens, you enter are 
assigned to the variable symbols &NAME and &AGE, respectively. 

Bgte: The data item immediately following the target of an assignment 
statement must be an equal sign (=) and not an EXEC variable that has 
the value of an equal sign~ Conversely, if an equal sign is to be the 
first data item following an EXEC control ~ord, then it must be 
specified as an EXEC variable that has the value of an equal sign and 
not as an equal sign; otherwise, the statement is interpreted as an 
assignment statement and the control word is thereafter treated as a 
variable. 

If you use a variable name that has not been defined, the variable 
symbol is set to a null string by the EXEC processor when the statement 
is executed. For example, if you have entered only two arguments on the 
EXEC command line, then the statement: 

&IF &3 EQ CONT &ERROR &CONTINUE 

is interpreted: 

&IF EQ CONT &ERROR SCONTINUE 

&HRROR and &CONTIIUE are recognized by EXEC as control statements. 
Since &3 is undefined, however, it 1S replaced by blanks and the 
resulting line produces an error during EXEC processing. You can 
prevent the error, and allow for null arguments or variables, by 

102 IBM VM/370 eMS User's Guide 

( 



) 

concatenating some other character with the variable. A period is used 
most frequently: 

SIF .S3 EQ .CONT SERROR SCONTINOE 

If S3 is undefined when this line is scanned, the result is: 

SIF • EO .CONT SERROR SCONTINUE 

which is a valid control statement line. 

BUILT-IN FUBCTIONS lND SPECIAL VARIABLES 

The EXEC built-in functions are similar to those 
languages. You can use the EXEC built-in functions to 
symbols in an EXEC procedure. 

Figure 8 sumaarizes the built-in functions. It 
variable SA, the values resulting in a variable SB 
function is used to assign its value. Notice that all 
functions are used on the right-hand side of assignment 
the SLITERAL built-in function can be used in control 
example: 

STYPE SLITER1L Sl 

Function Usage Examt:1e 

&A = 123 
SCONCAT Concatenates tokens into a 

of higher-level 
define variable 

shows, given the 
when a built-in 
of the built-in 

statements. Only 
statements; for 

I 
&B 1 

I 
I 
I 

single token. / &B = &CONCAT &1 55 123551 
SDATATYPE Assigns the data type (NOft 1 

or CHAR) to the variable. &B :: SDATATYPE &A NU! I 
&LENGTH Assigns the length of a I 

token to a variable. &B :: &LENGTB &A 3 I 
SLITER1L Prohibits substitution of a I 

variable symbol. SB = &LITERAL &A &A I 
&SUBSTR Extracts a character string 1 

from a token. SB = SSUBSTR Sl 2 2 23 1 

Figure 8. Sumaary of EXEC Built-in Functions 

FLOW CONTROL IN IN EXEC 

An EXEC is processed line by line: if a statement is encountered that 
passes control to another line in the procedure, execution continues 
there and each line is, again, executed sequentially. You can pass 
control with an &GOTO control statement: 

SGOTO -BEGIN 

where -BEGIN is a label. All labels in EXEC files must begin with a 
hyphen, and must be the first token on a line. For example: 

-LOOP 

Section 6. Introduction to the EXEC Processor 103 



A label may have control statements or commands following it; for 
example: 

-HERE &CONTINUE 

which indicates that the processing is to continue with the next line, 
or: 

-END &EXIT 

The &EXIT control statement indicates that the EXEC processor should 
terminate execution of the EXEC and return contrel to CftS. You can also 
specify a return code on the &EXIT control statement: 

&EXIT 6 

results in a "(00006)" following the "R" in the CMS ready message. If 
you invoke a CMS command from the EXEC, you can specify that the return 
code from the CftS command be used: 

&EXIT &RETCODE 

Since the &RETCODE special variable is set after each CMS command that 
is executed, you can test it after any command to decide whether you 
want execution to end. For example, you could use the &IP control 
statement to test it: 

&IF &RETCODE HE 0 &EXIT &RETCODE 

"&EXIT &RETCODE" places the value of the CftS return code in the CftS 
ready message. You could place a line similar to the above following 
each of your CftS command lines, or you could use the &ERROR control 
statement, that will cause an exit as soon as an error is encountered: 

&ERROR &EXIT &RETCODE 

or you could use the &ERROR control statement to transfer control to 
some other part of your EXEC: 

&ERROR &GOTO -CHECK 

-CHECK 

Another way to transfer control to another line is to use the &S~IP 
control statement: 

&SKIP 10 

transfers control to a line that is 10 lines below the &SKIP line. You 
can transfer control above the current line as well: 

&IF &X HE &Y &SKIP -3 

Transferring control with SSKIP is faster, when an EXEC is executing, 
than it is ~ith &GOTO, but modifying your EXEC files becomes more 
difficult, particularly when you add or delete many lines. 

104 IBM VM/370 CftS User's Guide 

( 



) 

) 

You can use combinations of SIP, SGOTO, and SSKIP to set up loops in 
an EXEC. Por example: 

SX = 1 
SIF SX = 4 &GOTO -ENDPRT 
PRINT PILESX TEST A 
SX = SX + 1 
SSKIP -3 
-ENDPRT 

or, you can use the &LOOP control statement: 

SX = 1 
SLOOP 2 SX > 3 
PRINT PILE&X TEST 
SX = SX + 1 
-ENDPRT 

In both of these examples, a loop is established to print the files 
FILE1 TEST, FILE2 TEST, and PILE3 TEST.. SX is initialized with a value 
of 1 and then incremented within the loop. The loop executes until the 
value of SX is greater than 3. As soon as this condition is met, control 
is passed to the label -ENDPRT. 

COMPARING VARIABLE SYMBOLS AND CONSTANTS 

In an EXEC, you can test whether a certain condition is true, and then 
perform some function based on the decision. Some examples have already 
appeared in this section, such as: 

SLOOP 3 SX EQ SY 

In this example, the value of the variable SX is tested for an equal 
comparison with the value of the variable SY. The loop is executed until 
the condition (SX equal to SY) is true. 

The logical comparisons you can make are: 

Condition ~!l~!.Q!l!£ 2I!12~! equiI---- EQ = 
not equal NE ... = 
greater than GT > 
less than LT < 
greater than 

or equal to GE >= 
less than or 

equal to LE <= 

When you are testing a condition in an EXEC file, you can use either the 
mnemonic or the symbol to represent the condition: 

SIF SA LT SB SGOTO -NEXT 

is the same as: 

SIP &A < SB SGOTO -NEXT 

section 6. Introduction to the EXEC Processor 105 



DOING I/O WITH AN EXEC 

You can communicate with your terminal using the STYPE and SREAD control 
statements. Use STYPE to display a line at your terminal: 

STYPE ASMBLNG Sl ASSEMBLE 

When this line is processed, if the variable Sl has a value of PROG1, 
the line is displayed as: 

ASMBLNG PROGl ASSEMBLE 

Use the SREAD control statement when you want to be able to enter 
data, variables, or control statements into your EXEC file while it is 
executing. If you use it with an STYPE statement, for exa~ple: 

STYPE DO YOU WANT TO CONTINUE ? 
SREAD VARS SANS 

you could test the variable SANS in your EXEC to find out how processing 
is to continue. 

The SBEGTYPE control statement can be followed by a sequence of lines 
you want to be displayed at the terminal. For example, if you want to 
display ten lines of data, instead of using ten STYPE control 
statements, you could use: 

SBEGTYPE 
linel 
line2 

linel0 
SEND 

The SEND control state.ent indicates the end of the lines to be typed. 
You can also use the SBEGTYPE control statement when you want to type a 
line that contains a word with more than eight characters in it; for 
example: 

SBEGTYPE 
TODAY IS WEDNESDAY 
SEND 

The EXEC interpreter, however, does not perform substitutions on lines 
entered this way_ The lines: 

SA = DOG 
SBEGTYPE 
MY SA IS NAMED FIDDLEFADDLE 
SEND 

result in the display: 

MY SA IS NAMED FIDDLEFADDLE 

You must use the STYPE statement when you want to display variable data; 
you must use the SBEGTYPE control statement to display words with more 
than eight characters. 

To type null or blank lines at your terminal (to make output 
readable, for example), you can use the SSPACE control statement: 

SSPACE 5 

106 IBM VM/370 CMS User's Guide 

( 



) 

) 

You can punch lines of tokens into your virtual card punch with the 
&PUNCH control statement: 

&PUNCH &NAME &TOTAL 

When you want to punch more than one line of data, or a line that 
contains a word of more than eight characters in it, you should use the 
&EEGPUNCH control statement preceding the lines you want to punch, and 
follow them with an &END statement~ The EXEC processor does not 
interpret these lines, however, so any variable symbols you enter on 
these lines are not substituted. 

When you punch lines from an EXEC procedure what you 
doing is creating a file in your virtual card punch. To 
file for processing, you must close the punch: 

cp close punch 

are actually 
release the 

The destination of the file depends on how you have spooled your punch. 
If you have spooled it to yourself, the file is placed in your virtual 
card reader, and you can read it onto a virtual disk using the READCARD 
command. 

The EXEC control statements &STACK and &BEGSTACK allow you to stack 
lines in your terminal console, to be executed as soon as a read occurs 
in your virtual machine. Stacking is useful when you use commands that 
require responses, for example, the SORT command: 

&STACK 1 20 
SORT INFILE FILE A OUTFILE FILE A 

-

When the SORT command is executed, a prompting message is issued, the 
virtual machine read occurs, and the response that you have stacked is 
read. If you do not stack a response to this command, your EXEC does 
not continue processing until you enter the response from your terminal. 

In the above example of the SORT command, you can suppress the 
prompting message by issuing the &STACK HT command immediately before 
the SORT command. Restore normal terminal operations by placing an 
&STACK RT command after the SORT command. 

Stacking is useful in creating edit macros or in editing files from 
EXEC procedures. 

MONITORING EXEC PROCEDURES 

Two EXEC control statements, &CONTROL and &TIME, centrol how much 
information is displayed at your terminal while your EXEC file is 
executing. This display is called an execution summary. 

Since you do not usually receive a C8S ready message after the 
execution of each CMS command in an EXEC, you do not receive the timing 

Section 6. Introduction to the EXEC Processor 107 



information that is provided with the ready message. If you want this 
timing information to appear, you can specify: 

STIME ON 

or you can type the CPU times at particular places by using: 

STIME TYPE 

The SCONTROL control statement allows you to specify whether certain 
lines or types of information are displayed during execution. By 
default, CP and CMS commands are displayed before they are executed. If 
you do not wish to see them displayed, you can sFecify: 

SCONTROL OFF 

You might find it useful, when you are debugging your EXECs, to use: 

SCONTROL ALL 

When you use this fora, all EXEC statements, as well as all CP and CMS 
commands, are displayed and you can see the variable substitutions being 
performed and the branches being taken in a procedure. 

108 IBM VM/370 CMS User's Guide 

( 



) 

) 

Summary of EXEC Control Statements and Special 
Variables 
Figures 9 and 10 summarize 
variables. 

EXEC control statements and special 

, 
Control Statement Function I 

~------------------------------------------------~--------------------I 
&variable 

= ~i::::~oJ 
{X' xxxxxx) 

IAssigns a value to the symbol 
Ispecified by &variable; the 
lequal sign must be preceded 
land followed by a blank. 

I 
I 
I 
I 

------------------------------------------~------------------~----I 
&ARGS [arg1 [arg2 ••• [arg30]]] IRedefines the variable symbolsl 

1&1, &2~ •• with the values of I 
l'arg1', 'arg2', ••• , and re- I 
Isets the variable &INDEX. I 

--------------------------------------------------------------------1 , SBEGEMSG [ALL] 
line1 
line2 

SEND 

SBEGPUNCH [ ALL] 
line1 
line2 

SEND 

r , 
&BEGSTACK 111lQI 
line1 ILIFOI 
line2 L .J 

SEND 

&BEGTYPE [ALL] 
line1 
line2 

r , 
IALLI 
L .J 

IDisplaysthe following 
las CMS error messages, 
Iscanning them. 
I 
I 
I 

lines I 
without 

IPunches the following lines 
lin the virtual card punch, 
Iwithout scanning them. 
I 
I 
I 

IStacks the following lines 
lin the console input buffer, 
Iwithout scanning them. 
I 
I 
I 
I 

IDisplays the following lines 
lat the console, without 
Iscanning them. 
I 
I 

&END I 

SCONTINUE IProvides a branch address for 
ISERROR, SGOTO, and other con­
Iditional branching statements. 

Figure 9. Summary of EXEC Control Statements (Part 1 of 3) 

Section 6. Introduction to the EXEC Processor 109 



r 
I Control Statement Punction 
I--~--------------------------------------------------------------------
I &CONTROL 
I r ,r ,r ,r , 

1 0 PP 1 111~~ I I TIM E I I P A£! I 
IERRORI INOMSGI I !QI!11! 1 INOPACKI 
I £11~ I L .I L .I L .. 

IALL I 
L .I 

&EMSG mmmnnns [tok1 [ ••• tokn]] 

&END 

r , 
SERROR I executable-statement I 

I!£Q!!!!UE I 
L .I 

r , 
&EIIT I return-code I 

I ~ I 
L .I 

&GOTO {TOP } 
linenumber 
-label 

&HEI {ON} 
{OPI} 

= 
< 
<= 
> 
>= 

{ 
tok2 } executable-
&$ statement 
&* 

&LOOP { n } { m } 
-label condition 

ISets, until further notice, 
Ithe characteristics of the 
lexecution summary of the EXEC, 
Iwhich is displayed at the 
Iconsole. 
I 
I 

IDisplays a line of tokens 
las a CMS error message. 

ITerminates a series of lines 
Ifollowing an SEEGEMSG, 
'SBEGPUNCB, &BEGSTACK, or 
ISBEGTYPE control statement. 

IExecutes the specified 
Istatement whenever a. CMS 
Icommand returns a nonzero 
Ireturn code. 

IExits fro. the EIEC file with 
Ithe given return code. 
I 
I 

ITransfers control to the top 
lof the EIEC file, to the given 
Iline, or to the line starting 
Iwith the given label. 

ITurns on or off hexadecimal 
I conversion. 

Executes the specified 
statement if the condition is 
satisfied. 

ILoops through the following ~ 
Ilines, or down to (and includ-I 
ling) the line at label, for I 
1m times, or until the I 
Icondition is satisfied. I 

--------------------------------------------------------------------1 &PUNCH [tok1 [ ••• tokn]] IPunches the specified tokens I 
Ito your virtual card punch. I 

J 

Figure 9. Summary of EIEC Control Statements (Part 2 of 3) 

110 IBM YM/370 CMS User's Guide 

( 



) 

) 

Control Statement 

r , 
&READ In I 

11 I 
IARGS I 
IVARS [ &var1 ( ••• &var11])1 
L .J 

r , 
&SKIP I n I 

I 1 I 
L .J 

r , 
&SPACE I n I 

I 1 I 
L .J 

r , r , 
&STACK II!IQI Itok1 ( ... tokn] I 

ILIFOI IHT I 
L .J IRT I 

L .J 

r , 
&TII! ION , 

IQII I 
,RESETI 
ITYPE I 
L .J 

&TYPE [ tok 1 ( ••• tokn ] ] 

Function 

IReads lines from the terminal 
lor from the console stack. 
IARGS assigns the tokens read 
Ito the variables &1, &2 ••• 
IVARS assigns the tokens read 
Ito the specified variable 
Isymbols. 

ITransfers control forward or 
Ibackward a specified number 
lof lines. 
I 

IDisplays blank lines at the 
Iterminal. 
I 
I 

IStacks a line in the terminal 
linput stack. 
I 
I 
I 

IDisplays timing information 
Ifollowing the execution of 
ICMS commands. 
I 
I 
I 

IDisplays a line at the 
Iterminal. 

Figure 9. Su •• ary of EXEC Control Statements (Part 3 of 3) 

Section 6. Introduction to the EXEC Processor 111 



I 

Variable 

&n 

&* 
&$ 

&DISKx 

&DISK* 

&DISK? 

&DOS 

&EXEC 

&GLOBAL 

&GLOBALn 

&INDEX 

&LINENUM 

&READFLAG 

&RETCODE 

&TYPEFLAG 

I &0 

Usage Set By 

Arguments passed to an EXEC are assigned to User 
the variables &1 through &30~ 

Test whether all (&*) or any (&$) of the EXEC 
arguments passed to EXEC have a particular 
value. 

Indicates whether the disk access at mode 'x' User 
is a CMS OS, or DOS disk, or not accessed 
(CMS, OS, DOS, or NA). 

Contains the mode letter of the first read/write User 
disk in the CMS search order, or NONE if no 
read/write disk is accessed. 

Contains the mode letter of the read/write disk User 
with the most available space or NONE, if no 
read/write disk is accessed. 

Indicates whether or not the CMS/DOS environment User 
is active (ON or OFF). 

Contains the filename of the EXEC file currently I EXEC 
being executed. 

Bas a value ranging from 1 to 19, to indicate EXEC 
the recursion (nesting) level of the EXEC that 
is currently executing. 

The variables &GLOBAL1 through &GLOBAL9 can 
contain integral numeric values, and can be 
passed among different recursion levels. If 
not explicitly set, the variable will have a 
value of 1,. 

Contains the number of arguments passed to 
the EXEC on the command line or the number of 
arguments entered as a result of an &ARGS or 
&READ ARGS control statement. 

Contains the current line number in the EXEC. 

Indicates whether (STACK) or not (CONSOLE) 
there are lines stacked in the terminal input 
buffer (console stack). 

Contains the return code from the most recently 
executed CMS command. 

Indicates whether (RT) or not (BT) output is 
being displayed at the console. 

Contains the name of the EXEC file. 

User 

EXEC 

EXEC 

EXEC 

CftS 

EXEC 

User 
1-----------------------------------------------------------------------
I!!U: 
IUser: 
IJ;XEC: 
I~MS: 
I 
I 

Variables are assigned values by EXEC but you may modify them. 
You may not modify these variables. 
You may assign a value to this variable but it is reset at the 
completion of each CMS command. 

Figure 10. EXEC ~pecial Variables 

112 IBMVM/370 CMS User's Guide 

"1 

( 



) 

Section 7. Using Real Printers, Punches, 
Readers, and Tapes 

eMS Unit Record Device Support 

CMS supports one virtual card reader at address OOC, one virtual card 
punch at address OOD, and one virtual printer at address OOE. When you 
invoke a CMS command or execute a program that uses one of these unit 
record devices, the device must be attached at the virtual address 
indicated. 

USING THE CP SPOOLING SYSTEM 

Any output that you direct to your virtual card Frinter or punch, or any 
output you receive through your card reader, is controlled by the 
spooling facilities of the control program (CP). Each output unit is 
known to CP as a spool file, and is queued for processing with the spool 
files of other users on the VM/370 system. Ultimately, a spooled 
printer file or a spooled punch file may be released to a real printer 
or card punch for printing or punching. 

The final disposition of a unit record spool file depends on the 
spooling characteristics of your virtual unit record devices, which you 
can alter with the CP command SPOOL. To find out the current 
characteristics of your unit record devices you can issue the command: 

cp query ur 

You might see, as a response to this, the display: 

RDR 
PUN 

PRT 

OOC 
OOD 
OOD 
OOE 
OOE 

CL A NOCONT 
CL A NOCONT 
FOR CMSGDE 
CL A CONT 
FOR CMSGDE 

NOHOLD EOF 
NOHOLD COpy 01 
DIST 13SCRIPT 

HOLD COpy 01 
DIST 13SCRIPT 

READY 
REAtY 

READY 

Some of these characteristics, and the ways you can modify them, are 
discussed below. When you use the SPOOL command to control a virtual 
unit record device, you do not change the status of spool files that 
already exist, but rather set the characteristics for subsequent output. 
For information on modifying existing spool files, see "Altering Spool 
Files," below. 

£1AS~ (CL): Spool files, in the CP spool file queue, are grouped 
according to class, and all files of a particular class may be processed 
together, or directed to the same real output device. The default 
values for your virtual machine are set in your VM/370 directory entry, 
and are probably the standard classe$ for your installation. 

You may need, however, to change the class of a device if you want a 
particular type of output, or some special handling for a spool file. 
For example, if you are printing an output file that requires special 
forms, and your installation expects that output to be spooled class Y, 
issue the command: 

cp spool printer class y 

Section 7. Using Real printers, Punches, Readers, and Tapes 113 



All subsequent printed output directed to yeur printer at virtual 
address OOE (all CMS output) is processed as class Y. 

~QLD: If you place a HOLD on your printer or punch, any files that you 
print or punch are not released to the control program's spooling queue 
until you specifically alter the hold status. By placing your output 
spool files in a hold status, you can select which files you print or 
punch, and you can purge duplicate or unwanted files. To place printer 
~nd punch output files in a hold status issue the commands: 

cp spool printer hold 
cp spool punch hold 

B~te: When you issue a SPOOL command for a unit record device, you can 
refer to it by its virtual address, as well as by its generic device 
typ~ (for example, CP SPOOL E HOLD)~ 

When you have placed a hold st~tus on printer or punch files and you 
produce an output file for one of these devices, CP sends you a message 
to remind you that you have placed the file in a hold: 

PRT PILE xxxx POR'userid COpy xx HOLD 

If, however, you have issued the command: 

cp set msg off 

then you do not receive the message. 

When you place a r.eader file in a hold status, then the file remains 
in the card reader until you remove the hold ,status and read it, or you 
purge it. 

COPY: If you want multiple copies of a spool file, you should use the 
COpy operand of the SPOOL command: 

cp spool printer copy 10 

If you enter this command, then all subsequent printer files that you 
produce are each printed 10 times, until you cha~ge the COpy attribute 
of your printer. 

POR: You can spool printed or punched output 'under another userid's name 
Ei-using the POR operand of the SPOOL command. For example, if you 
enter: 

cp spool printer for charlie 

Then, all subsequent printer files that you produce have, on the output 
separator page, the userid CHARLIE and the distribution code for that 
user. The spool file is then under the control of that user, and you 
cannot alter it further. 

~QNT, !Q~Q!I: You can print or punch many spool files, but have them 
print or punch as one continuous spool file if you use the CONT operand 
on the SPOOL command. Por example, if you issue the following sequence 
of commands: 

cp spool punch cont to brown 
punch asm1 assemble 
punch asm2 assemble 
punch asm3 assemble 
cp spool punch nocont 
cp close punch 

114 IBM VM/370 CMS User's Guide 

( 



) 

) 

Then, the three files ASK1 ASSEMBLE, ASM2 ASSEMELE, and ASM3 ASSEMBLE, 
are punched to user BROWN as a single spool file. When user BROWN reads 
this file onto a disk, however, CMS creates separate disk files. 

~g: When you spool your printer or punch to another userid, all output 
from that device is transferred to the virtual card reader of the userid 
you specify. When you are punching a CMS disk file, as in the example 
above, you should use the TO operand of the SPOOL command to specify the 
destination of the punch file. 

You can also use this operand to place outFut in your own virtual 
card reader by using the * operand: 

cp spool printer to * 
After you enter this command, subsequent printed output is placed in 
your virtual card reader. You might use this technique as an alternative 
way of preventing a printer file from printing, or, if you choose to 
read the file onto disk from your reader, of creating a disk file fro. 
printer output. 

Similarly, if you are creating punched output in a program and you 
want to examine the output during testing, you could enter: 

cp spool punch to * 
so that you do not punch any real cards or transfer a virtual punch file 
to another user. 

ALTERING SPOOL FILES 

After you have requested that VM/310 print or punch a file, or after you 
have received a file in your virtual card reader and before the file is 
actually printed, punched, or read, you can alter some of its 
characteristics, change its destination, or delete it altogether. 

Every spool file in the VM/310 system has a unique four-digit number 
from 0 to 9900 assigned to it, called a spoolid. You can use the spoolid 
of a file to identify it when you want to do something to it. You can 
also change a group of files, by specifying that all files of a 
particular class be altered in some way, or you can manipulate all of 
your spool files for a certain device at the same time. 

The CP commands that allow you to manipulate spool files are CHANGE, 
ORDER, PURGE, and TRANSFER. In addition, you can use the CP QUERY 
command to list the status and characteristics of spool files associated 
with your userid. 

When you use .ny of these commands to reference spool files of a 
particular device, you have the choice of referring to the files by 
class or by spoolid. You can also specify ALL. For example, if you 
enter the command: 

cp query printer all 

you might see the display: 

ORIGINID FILE CLASS RECDS CPY HOLD DATE TIM! NAME 
SCARLET 0211 D PRT 000140 01 USER 01/09 10:25:23 TARA 
SCARLET 0245 A PRT 000026 01 NONE 01/09 10:25:41 CMSLIB 

TYPE DIST 
FILE BIN015 
MACLTB BIN015 

Section 1. Using Real Printers, Punches, Readers, and Tapes 115 



until any of these files are processed, or in the case of files in the 
hold status, until they are released, you can change the spool file name 
and spool file type (this information appears on the first page or first 
card of output), the distribution code, the number of copies, the class, 
or the hold status, using the CP CHANGE command. For example: 

cp change printer all nohold 

changes all printer files that are in a hold status to a nohold status. 
The CP CHANGE command can also change the spooling class, distribution 
code, and so on. 

If you d~cide that you do not w~nt to print a particular printer 
file, you can delete it with the CP PURGE command: 

cp purge printer 7615 

After you have punched a file to some other user, you cannot change 
its characteristics or delete it unless you restore it to your own 
virtual reader. You can do this with the TRANSFER command: 

cp transfer all from usera 

This command returns to your virtual card reader all punch files that 
you spooled to USERA's virtual card reader. 

You can determine, for your reader or printer files, in what order 
they should be read or printed. If you issue the command: 

cp order printer 8195 6547 

Then, the file with spoolid of 8195 is printed before the file with a 
spoo1id of 6547. 

The CP spooling system is very flexible, and can be a useful tool, if 
you understand and use it properly. The !~LJ1Q ~g ~Q!!g~g R~!g£~~£~ !Q£ 
~~~~~g! Q2~~2 contains complete format and operand descriptions for the 
CP commands you can use to modify spool files.

USING YOUR CARD PUNCH AND CARD READER IN CMS

The CMS READCARD command reads cards from your virtual card reader at
address OOC. Cards can be placed in the reader in 9ne of two ways:

• By reading real punched cards into the system card reader. A CP ID
card tells the CP spooling system which virtual card reader is to
receive the card images.

• By transferring a file from another virtual machine. Cards are
transferred as a result of a virtual punch or printer being spooled
with the TO operand, or as a result of the TRANSFER command. Virtual
card images are created with the CMS PUNCH command, or from user
programs or EXEC procedures.

If you have a deck of punched cards that you want read into your virtual
machine card reader, you should punch, preceding the deck, a CP ID card:

ID HAPPY

116 IBM VM/370 CMS User's Guide

(

If you plan to use the READCARD command to read this file onto a CMS
disk, you can also punch a READ control card that specifies the filename
and fi1etype you want to have assigned to the file:

:READ PROG6 ASSEMBLE

Then, to read this file onto your CMS A-disk, you can enter the command:

readcard *
If a file named PROG6 ASSEMBLE already exists, it is reF1aced.

If you do not punch a READ control card, you can specify a filename
and fi1etype on the READCARD command:

readcard prog6 assemble

If this spool file contained a BEAD control card, the card is not read,
but remains in the file; if you edit the file, you can use the DELETE
subcommand to delete it.

If a file does not have a READ control card, and if you do not
specify a filename and fi1etype-when you read the file, CMS names the
file READCARD CMSUT1.

If you are reading many files into the real system card reader, and
you want to read the. in as separate spool files (or you want to spool
them to different userids), you must separate the cards and read the
decks onto disk individually. The CP system, after reading an ID card,
continues reading until it reaches a physical end of file.

When you use the CMS PUNCH command to punch a spool file, a READ control
card is punched to precede the deck, so that it can be read with the
READCARD command. If you do not wish to punch a READ control card (also
referred to as a header card), you can use the MOHEADER option on the
PUNCH command:

punch prog8 assemble * (noheader

You should use the NOHEADER option whenever you punch a file that is not
going to be read by the READCABD command.

The PUNCH co •• and can only punch records of up to .80 characters in
length. If you need to punch or to transfer to another user a file that
has records greater than 80 characters in length, you can use the DISK
DUMP command:

disk dump prog9 data

If your virtual card punch has been spooled to another user, that user
can read this file using the DISK LOAD command:

disk load

Unlike the READCARD command, DISK LOAD does not allow you to specify a
file identification for a file you are reading; the filename and
fi1etype are always the same as those specified by the DISK DUMP command
that created the spool file.

A card file created by the DISK DUMP co.mand Gan only be read onto
disk by the DISK LOAD command.

Section 7. Using Real Printers, Punches, Readers, and Tapes 117

You can use the MOVEFILE command, in
command, to place a file in your virtual
from your card reader to another device.

cp spool punch to *
filedef punch punch
filedef input disk coffee exec a1
movefile input punch

conjunction with the FILEDEF
card reader, or to copy a file
For example:

the file COFFEE EXEC A1 is punched to your virtual card punch (in
card-image format) and spooled to your own virtual reader.

Apart from
one or two
using your
punch one
command to

the procedures shown above, that transfer whole files with
commands, there are other methods you can use to create files
virtual card punch. From a program or an EXEC file, you can
line at a time to your virtual punch. Then use the CLOSE
close the spool file:

cp close punch

Depending on how the punch was spooled (the TO setting), the virtual
punch file is either punched or transferred to a virtual card reader.

R..QNC.!!l!~ ~!1!12~ ~INQ UQ ~!~.ROS: If you write an OS, DOS, or ces program
that produces punched card output, you should make an appropriate file
definition. If you are an OS user, you should nse the FILEDEF command
to define the punch as .an output data device; if you are a DOS user, you
must use the AS5GN command. If you are using the CMS PUNCHC macro, the
punch is assigned for you. The spooling characteristics of your virtual
punch control the destination of the punched output,.

R..QNC.!!l!Q ~!1!12~ ~.RQ~ AI ~!!~: The EXEC facilities provide two control
statements for punching cards: &PUNCH, which punches a single line to
the virtual card punch, and &BEGPUNCH, which precedes a number of lines
to be punched. You can also, in an EXEC, use the commands PUNCH and
DI5K DUMP to punch CMS files.

Handling Tape Files in eMS

There are a variety of tape functions that you can perform in ces, and a
number of commands that you can use to control tape operations or to
read or write tape files. One of the advantages of placing files on
tapes is portability: it is a convenient method of transferring data
from one real computing system to another. In CMS, you can use tapes
created under other operating systems. There are also two ces commands,
TAPE and DDR, that create tape files in formats unique to CMS, that you
can use to back up minidisks or to archive or transfer CMS files.

Under VM/370, virtual addresses 181 through 184 are usually reserved
for tape devices. In most cases, you can refer to these tapes in CMS by
using the symbolic names TAP1 through TAP4. In any event, before you
can use a tape, you must have it mounted and attached to your virtual

118 IBM VM/370 CMS User's Guide

(

)

machine by the system operator. When the tape is attached, you receive
a message. For example, if the operator attaches a tape to your virtual
machine at virtual address 181, you receive the message:

TAPE 181 ATTACHED

The various types of tape files, and the commands and programs you
can use to read or write them are:

TAPE Command: The CMS TAPE command creates taFe files from CMS disk
1Iles:--They are in a special format, and should only be read by the CftS
TAPE LOAD command. For examples of TAPE command operands and options,
see "Using the CMS TAPE Command."

TAPPDS Command: The TAPPDS command creates CKS disk files from OS or DOS
sequentIal-tape files, or from OS partitioned data sets.

TAPEMAC Command:
iaero-librarIes
program.

The TAPEMAC com.and creates CMS KACLIB files from OS
that were unloaded onto tape with the lEHKOVE utility

MOVEFILE Command: The MOVEFlLE command can copy a sequential tape file
onto-aIsk--or-i-disk file onto tape. or, it can move files from your
card reader to tape or from tape to your card punch.

y§~ g~Qg~g!§: You can write programs that read or write sequential tape
files using OS, DOS, or CMS macros.

!~~~§§ ~~!A~g ~~~vi£~§: Tapes created by the EXPORT function of access
method services can be read only using the access method services IMPORT
function. Both the IMPORT and EXPORT functions can be accomplished in
CMS using the AMSERV command. The access method services REPRO funCtion
can also be used to copy sequential tape files.

~~B PrQg~~!: The DDR program, invoked with the CMS command DDR, dumps
the contents of a virtual disk onto tape, and should be used to restore
such files to disk.

USING THE CMS TAPE COMMAND

The CMS TAPE command provides a variety of tape handling functions. It
allows you to selectively dump or load CMS files to and from tapes, as
well as to position, rewind, and scan the contents of tapes. You can
use the TAPE command to save the contents of CMS disk files, or to

,transfer them from one VM/370 system to another. The following example
shows how to create a CMS tape with three tape files on it, each
containing one or more CMS files, and then shews how you, or another
user, might use the tape at a later time.

The example is in the form of a terminal session and shows, in the
"Terminal Display" column, the commands and responses you might see.
System messages and responses are in uppercase, and user-entered
commands are in lowercase. The "Comments" column provides explanations
of the commands and responses.

Section 7. Using Real printers, Punches, Readers, and Tapes 119

!~~!~~l ~!§Bl~Y
TAPE 181 ATTACHED

list file * assemble a (exec
R;
cms tape dump
TAPE DUMP PROG1 ASSEMBLE A1
DUMPING •••••
PROG1 ASSEMBLE A1
TAPE DUMP PROG2 ASSEMBLE A1
DUMPING •••••
PROG2 ASSEMBLE A1
TAPE DUMP PROG3 ASSEMBLE A1

TAPE DUMP PROG9 ASSEMBLE A1
DUMPING •••••
PROG9 ASSEMBLE A1
R;
tape wtm
R;
tape dump mylib maclib a
DUMPING •••••
MYLIB MACLIB A1
R;
tape dump clRslib maclib *
DUMPING •••••
CMSLIB MACLIB S2
R;
tape wtm
R;
tape dump mylib txtlib a
DUMPING •••••
MYLIB TXTLIB A1
R;
tape wtll 2
R;
tape rew
R;
tape scan (eof 4
SCANNING •.•••
PROG1 ASSEMBLE A1
PROG2 ASSEMBLE A1
PROG3 ASSEMBLE A1
PROG4 ASSEMBLE A1
PROGS ASSEMBLE A1
PROG6 ASSEMBLE A1
PROG7 ASSE!BLE A1
PROG8 ASSEMBLE A1
PROG9 ASSEMBLE A1
END-OF-FILE OR END-OF-TAPE
MYLIB MACLIB A1
CMSLIB MACLIB S2
END-OF-FILE OR END-OF-TAPE
MYLIB TXTLIB A1
END-OF-FILE OR END-OF-TAPE
END-OF-FILE OR END-OF-TAPE
R;
Icp det 181
TAPE 181 DETACHED

COllments
Message-indicates that the tape is

attached,.
Prepare to dump all ASSEMBLE files

by using the LISTFILE command EXEC
option; then execute the CMS EXEC
using TAPE and DUMP as arguments~

The TAPE command responds' to each
TAPE DUMP by printing the file
identification of the file being
dumped.

The last file, PROG9 ASSEMBLE, is
dumped.

The TAPE command writes a tape mark
to indicate an end of file.

Two macro libraries are dUllped,
by specifying the file identifiers.

Another tape mark is written.

A TEXT library is dumped.

Two tape marks are written to
indicate the end of the tape.

The tape is rewound.

The tape is scanned to verify
that all of the files are on it.

Tape mark indication.

Two tape marks indicate the end
of tbe tape .•

The CP DETACH command rewinds
and detaches the tape.

(

March 30, 1979

* * The tape created above is going to be read.

* *********
TAPE 181 ATTACHED

tape load prog4 assemble
LOADING •••••
PROG4 ASSEMBLE A1
R;

tape scan
SCANNING ••••
PROGS ASSEMBLE A1
PROG6 ASSEMBLE A1
PROG7 ASSEMBLE A1
PROG8 ASSEMBLE A1
END-OF-FILE OR END-OF-TAPE
R;
tape scan
SCANNING ••••
MILIB MACLIB A1
CMSLIB MACLIB S2
END-OF-FILE OR END-OF-TAPE
R;
tape bsf 2
R;

tape fsf
R;
tape load (eof 2
LOADING •••••
MILIB MACLIB A1
CMSLIB MACLIB A2
END-OF-FILE OR END-OF-TAPE
MILIB TITLIB 11
END-OF-FILE OR END-OF-TAPE
R;
Icp detach 181
TAPE 181 DETACHED

Tape Labels in eMS

Message indicating the tape is
attached.

One file is to be read onto disk.
The TAPE command displays the

name of the file loaded. Any
existing file with the same
filename and fi1etype is erased.

The remainder of the first tape
file is scanned.

Indication of end of first tape file.

The second tape file is scanned.

The tape is backed up and
postioned in front of the
last tape file.

The tape is forward spaced past
the tape mark.

The next two tape files are
going to be read.

The tape is detached.

Support in the eMS component of VM/370 to process labelled tapes
includes the following features:

• Checks IBM standard labels on input

• Writes IBM standard labels on output

• Allows you to specify routines to process standard user labels during
DOS and OS macro simulation under CMS

• Allows you to specify exits for processing tapes with nonstandard
labels during execution of CMS macro simulations and some CMS tape
operation commands

Section 7. Using Real Printers, Punches, Readers, and Tapes 121

March 30, 1979

CMS processes all tape labels; CP does not process tape labels.

CMS tape label processing does not include:

• Label processing for tapes that are read backwards

• processing of multivolume files on tapes

• Support for ANSI tapes or ASCII labels

• Label processing for any functions of the CMS TAPE command except the
two functions DVOL1 and VVOLl that' process VOLl labels

USER RESPONSIBILITIES

You must initiate all your own tape label processing. To specify that
you have a labelled tape, use the FILEDEF command for an OS simulaticn
program, or Jse a DOS DTFMT macro for a CMS/DOS program. You can also
use the TAPESL macro to process standard HDRl and EOFl labels and the
CMS TAPE co"mmand to write and display standard VOLl labels. You can
provide IBM;,'standard label description details with the LABELDEF command
for all t~pes of label processing. After label processing has been
requested,/it occurs automatically and there is no interaction between
you and cMs unless an error occurs. See the "Error processing" section
later in this publication for a discussion of error processing.

LABEL PROCESSING IN OS SIMULATION

If you are running an OS simulation program and using OPEN and CLOSE
macros, you specify the type of label processing you want in a FILEDEF
command for a g~ven file. Detailed information about the FILEDEF
command is found in the !~JIQ ~~~ ~Q~~~g ~ng !~~£Q ~~!~£~~~~. You may
specify that you want standard label processing (with SL) or nonstandard
label processing (wi th NSL). If you choose 'nonstandard label
processing, you must already have written a routine to process
nonstandard labels. The name of this routine must be specified by the
filename in the NSL parameter on FILEDEF. An example of nonstandard
label processing is given in the section "NSL Processing". To be sure
that the tape you are using contains no IBM labels, you may specify no
label processing (NL) in the FILEDEF command. When NL is specified, C!S
does not open files on a tape containing a VOLl label as its first
record. You also can specify bypass tape label processing (BLP) on a
FILEDEF command. BLP tells CMS to bypass tape label processing for a
file, anc instead, to position the tape at a particular file before
processing the data records in the file. If you specify LABOFF for a
FILEDEF tape file, label processing is turned off and there is no tape
positioning or label checking.

LABOFF is the default, so you do not receive any processing or tape
positioning for a tape file unless you specifically request it. If you
specify BLP, NL, SL, or SUL processing but omit a positional parameter.
the position defaults to 1 and the tape is positioned at the first file.
Examples of NL, BLP, and LABOFF processing are given in the sections "No
Label (NL) Processing", "Bypass Label (BL~ processing"~ and "Label Off
(LABOFF) processing".

122 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5148-118

For IBM standard labels, you specify, SL or SUL, and optional positional
and VOLID parameters. On a FILEDEF command, SUL means standard user
labels. Everything you do for SL files, you must also do for SUL files.
The positional parameter for standard label files works the same way it
does in OS/VS. If you specify:

filedef filex tap1 sl 2

the tape is spaced to what is physically the fourth file on the tape
before processing begins. The reason for this spacing is that a
standard labelled tape has one header file, one data file, and one
trailer file for each data file. If you leave off the positional
parameter:

filedef filey tap3 suI

you get the first file on the tape.

The optional VaLID parameter on the FILEDEF command allows you to
specify the volume serial number in the VaLl label of a tape in case you
want only the VOL1 label checked on the tape. If you want to specify
other fields in IBM standard labels, you must also provide a LABELDEF
statement for the tape file. The LABELDEF statement allows you to
assign values to all fields in a standard HERl or EOF1 label. A
complete description of how the LABELDEF command works may be found in
the "LABELDEF Command" section later in this publication.

The followihg command defines filez as a standard labelled tape file
on a tape with a VOL1 label and a volume serial number of DEPT78:

filedef filez tap1 51 volid dept78

If you also wish to specify a data set identifier for filez, you must
furnish a LABELDEF command for filez as well as the FILEDEF command.
Data set name may not be specified on the FILEDEF command. The LABELDEF
statement below assigns a data set name of payroll to filez.

labeldef filez fid payroll

You can also specify file sequence number, volume sequence number,
expiration date and other fields on a LABELDEF command. However, if yeu
are using as simulation macros (OPEN, CLOSE, READ, WRITE~ GET, PUT,
etc.) to process your tape file, the only LABELDEF parameter that has
meaning for input files is fid (data set identifier). This is the only
field that is checked on input by as simulation. The other LABELDEF
fields are used to specify values to be written in output labels. They
are also used by other types of tape label processing (CMS/DOS and CMS)
to check input labels. If no LABELDEF command has been supplied fer
output files, default values are used to write out labels (see the
section on the LABELDEF command for the default values).

After you have set up your descriptive information for a standard
labelled tape file in FILEDEF and LABELDEF statements, you run a regular
as simulation program under CMS. During prog~am execution, HDRl and
HDR2 labels are written or checked at OPEN time. EOF1 and EOF2 labels
are written or checked at CLOSE time. To have EOP labels processed, yeu
must issue a CLOSE macro. The VOL1 label on a tape is checked whenever
a file on that tape is opened if the user has specified a VOLID
parameter on his FILEDEF statement or LABELDEF statement for the file.
If the volid is specified on both LABELDEF and FILEDEF, the more recent
specification is used. If no valid is specified, it is not checked.
After checking the volid, the tape is positioned and the HDR label is

Section 7. Using Real printers, Punches, Readers, and Tapes 122.1

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. St23-9024-1 for 5748-XX8

processed. For processing multifile volumes, you may wish to use t.he
LEAVE option on the FILEDEF command. This option prevents a tape from
being rewound and positioned before each tape file is processed. The
LEAVE option does not exist on an OS DD statement.

For input files, HDR2 and EOF2 labels are skipped. There is no merge
of information from a HDR2 label with information in the DCB as there is
under an OS/VS operating system. Output HDR2/EOF2 records are written
from information in the DCB and the CMSCB (FCBSEeT). Note that the tape
density and TRTCH fields in HDR2/EOF2 records are taken from what the
user specifies in his FILEDEF command for the tape file. They may not
correspond to the actual density and TRTCH fields used to write the
tape.

TO process standard user labels in OS simulation, you must do the
following:

1.. Specify the file as SUL in a FILEDEF command.

2. Provide a routine to process the user standard labels in your
program.

3. Put the address of the user label routine in the DCB EXIT list of
the DCB for the file. See the IBM publication Q2L!~1 Q~l~

!g~gg~~~~l ~~!!£g§ 2y!£g or Q~L!~~ ~!~]~1~ ~~~~~~~~1 2~£!1£~§
Guide, for instructions on how to establish a DCB EXIT list, and
the-exact linkage for communication between user label routines and
the operating system. This exact linkage should be used under CMS
with the following exceptions:

a. There is no support for code x'06' EOV EXIT routine.

b. For input labels, return codes 8 and 12 from the user routine
are not supporteg. If an input return code is not 0, it is
treated as if it were 4.

4. Note that your standard user label routines do not perform any
input/output. They set up an output label for writing, but the CMS
tape label processing routines actually write out the label. For
input, the CMS label processing routines read in your user standard
label but then give control to your routine to check the label.

You should specify NL in the FILEDEF command when you expect a tape does
not contain any IBM standard tape labels~ eMS reads your tape at the
time a file is opened and does not open the file if the tape contains a
VOL1 label as its first record. If the tape does not contain a VOL1
label, a file is opened and the tape is positioned by using the position
parameter (n). For example, if you specify:

filedef fileg tap1 n1 2

fileg is not opened if the tape on tap1 (181) has a VOL1 label. If the
tape does not have a VOLl label, fileg is opened and the tape is
positioned at the second file. If you do not specify a position
parameter, the tape is positioned at the first file, (that is, the load
point).

122.2 IBM VM/370 CMS User's Guide

)

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. 5D23-9024-1 for 5748-118

You should specify BLP in the FILEDEF command to bypass tape label
processing. CMS does not check your tape for an IBM standard tape
label. It uses the position parameter you specified to position the
tape during open processing. If you do not specify a position
parameter, the default is 1. For example:

filedef fileabc tape1 blp 4

positions the tape at the fourth file when it opens fileabc. Because
CMS does not know whether files on the tape are label files or data
files, the tape is positioned at what is physically the fourth file,
regardless of file content. Any label files on the tape are included in
counting files.

You should specify LABOFF in the FILEDEF command if you want no
positioning or label processing to occur during open processing. The
position parameter is not valid for LABOFF~ If you specify LABOFF, and
your tape is positioned at record.6 in the third file before you issue
an OPEN macro, the tape is positioned at exactly the same record after
open processing (record 6 in the third file). The following FILED!F
command does not move tape2 (182) before processing the data in fileb:

filedef fileb tap2 lab off

In order to process nonstandard labels, you must write your own routine
to read, write, and check the labels. If you have such a routine as a
CMS TEXT or MODULE file, you put the filename of the routine after the
NSL keyword parameter in the FILEDEF command for the file. The filenaae
must be the name of the first CSECT in the program. It is to this point
that control is transferred when the NSL routine gets control. If you
do not have a TEXT or MODULE file with the NSL filename you specify, you
get an error message. The OPEN and CLOSE routines will load your module
if it is not already in storage and will pass control to it at the tiae
they are oFening or closing the file. Your routines will then be
responsible for processing the tape labels. Nonstandard label routines
must do the actual reading and writing of tape labels as well as
checking and setting up the label. This is one of several ways
nonstandard label processing is different from standard user label
processing. Because the CMS label processing routines do not know the
size or format of your nonstandard labels, they cannot read or write the
labels.

If you use a MODULE file for an NSL routine, it is important that you
create the MODULE file so that it starts at an address that will not
allow it to overlay the program or command you are executing at the time
the NSL routine is invoked. The reason for this restriction is that the
NSL routine is dynamically loaded while your program is executing. For
the TAPEMAC and TAPPDS commands, starting the NSL routine at an address
above X'21000' prevents such an overlay. If the NSL routine is invoked
from your own program which is running in the user area, you must
determine how big your program is and where the NSL MODULE file should
be located to prevent overlay. Note that you do not have to specify a

Section 7. Using Real Printers, Punches l Readers, and Tapes 122.3

Pg. of GC20~1819-2Rev March 30# 1979 by Supp. SD23-9024-1 for 5748-XX8

starting address for NSL routines that are TEXT files. The CMS loader
loads such files for you at an address that does not cause an overlay.

Although any user may write his own NSL routine, it is expected that
a system programmer will usually write such routines and then other
programmers in the installation will use them. Before writing an NSL
routine, read the Introduction to CMS, Interrupt Handling, and CMS
Functional Information sections in Part 3 of the !~Ll1~ ay§l~~
g!gg!~~ID~!§ ~yig~. In order to ensure proper communication with the CMS
system routines, you must use the linkage described below when you write
nonstandard label routines.

When an NSL tape label processing routine gets control, register 1
points to a 16-byte parameter list with the following format:

r 1

byte 0 I Type Caller Tape Mode- Reserved I
I call id Set Byte I

I I
byte 4 I TAPID I

I I -, ID parameter
byte 8 I FCBSECT address I I for

I ~ I TAPEMAC and
byte 12 I DCB address I I TAPPDS

-J

The Type call field is a code telling the type of label processing
being done:

x·OO'
x'04 1

x'08'
x'OC'
x'10'

is OPEN input
is OPEN output
is CLOSE input
is CLOSE output
is End of Tape output

The Caller id is a one-byte code which is one of the following:

x'80'
x'20'

Call byOS simulation
Call by CMS TAPEMAC or TAPPDS commands

Tape modeset byte is used to communicate with the CMS tape I/O
routines. It is a one byte hexadecimal code that depends on the type of
tape (7 or 9 track), tape density, etc. For further information on the
Mode Set, see the TAPE command description in the !~Lll~ £~~ £g~~~~g
~BgA~fI2 Rg!gIgB£~. (You probably will pass this byte to the CMS tape
controlling module to read and write your tape labels and will never
need. to know what its codes mean.)

FCBSECT address is the address of the CMSCB (FCBSECT) for the tape
file you a~e· processing.

DCB address is the address of the DCB for the tape file you are
processing.

Note that for the TAPEMAC and TAPPDS commands, the same interface is
used, except that instead of the FCBSECT and ICB address fields, the
eight character identifier specified in the ID=identifier field in the
command is, pa~sed. This identifier enables you to identify which file
you are precessing since the TAPEMAC and TAPPIS commatlds do not work
with CMSCBs or DCBs.

122.4 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

Control is passed to your NSL routine by a BALR ·14,15 instruction so
register 15 contains the address of your routine when you receive
control. Register 14 contains the address you should return to when you
are finished processing the nonstandard labels. You can return with a
BR 14 instruction. When you receive control, register 13 points to a
save area in which to store the callers register. The save area linkage
is standard OS/VS linkage. You receive control with a PSi key of X'E'
which allows you to modify only user storage. When you are finished
processing, place a code in register 15 to the CMS label processing
routine that called your routine. Place the value 0 (zero) in register
15 if there have been no errors and you want processing to continue
normally and the data set to be opened. If you return a nonzero value
in register 15, a message is issued to your terminal and the data set is
not opened.

If you write the following FILEDEF statement:

filedef tapf1 tap1 nsl readlab

and have a program called READLAB as a MODULE or TEXT file, your program
will receive control when the data set called tapf1 is opened. When
your program gets control, register 1 contains the address of the
parameter list described above. Using the data in this parameter list,
you are able to read or write your own tape header labels. When the
same data set is closed, your program again receives control and you can
read or write your qwn trailer labels. Your program can test whether it
is getting control for OPEN or CLOSE by examining the type call byte in
the parameter list passed to you. If the type call byte is x'10', your
NSL routine is being invoked While you are writing an output data set
and you have reached the reflective mark that indicates end of tape.
You may wish to do special processing in this case. See the "End of
Tape" and "End of Volume" section in this publication for further
information on end of tape processing.

There are a few minor differences in the way CMS os simulation processes
tapes and the way OS/VS processes them. These differences are listed
below.

• If you are using as/vs and you do not specify any label parameter on
your JCL statement, the default is SL or standard labels. When you
use as simulation under CMS and do not specify any label information
on a FILEDEF statement, the default is LABOFF.. LABOFF turns off
label processing and nothing is done to position the tape or process
labels. Thus, if you specify no label information on FILEDEF, the
system will process your tape files exactly the same way they are
processed on a CMS system that has no tape label processing
facilities.

• You must specify CLOSE to process all trailer labels. No automatic
CLOSE occurs at end of data or after reading a tape mark. There is
no EOV monitor to process labels before a data set is closed. If an
input tape is positioned at an EOF1 or EOV1 record when CLOSE is
issued, the label is processed. If a tape file is closed before all
data records are read, the trailer label is not processed. Output
tapes have EOF records written only at CLOSE time.

• There is no deferred label processing under OS simulation in CMS.

Section 7. Using Real printers, Punches, Readers, and Tapes 122.5

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SB23-9024-1 for 5748-XX8

• When the user has not specified a block count routine in his DCB EXIT
list und~r OS/VS,the program abends when a block count error occurs.
Under CMS, this condition produces a message that asks whether or not
to abend the operation.

• Certain fields in HDR1 and EOF1 labels default to values different
from those under OS/VS. These values can always be specified in a
LABELDEF command if the user does not like the default values. For
example, the default for data set name in an output label under as
simulation is DDNAME and not DSNAME. The default data set sequence
number is always one even when the data set is not the first data set
on the tape. The default volume sequence number is always one. Read
the section on the L!BELDEF command ~n this manual to learn what the
default values are under CMS. You can find what default values are
in OS/VS by reading the IBM publication Q~!~ 1~~ 1s£~1§. Note that
you can always get exactly what you want written on a tape label by
explicitly specifying the field on a LABELDEP command. For example,
you can specify DSNAME as FID on such a command and have it written
in the label instead of DDNAME.

• Default volids (when you do not specify a volid in a
PILEDEF statement) in output HDR1 and EOF1 records under
CMS001 and will not be the actual volume serial in the
already cn the tape. It is recommended that you always
volid in FILEDEP or LABELDEF to be sure the information
correct.

LABELDEP or
CMS will be
VOL1 record
specify the
written is

• Expiration date specification is always done in absolute form rather
than by retention period. You must always use the form yyddd where
lY is the year (0-9~ and ddd the day (0-366). CMS does not handle
expiration dates specified by retention periods.

• When CMS reads a HDR1 label and finds an unexpired file, it always
issues a message allowing you to enter 'IGNORE' or 'ERROR'. 'ERROR'
prevents opening the file but 'IGNORE' lets you ignore the error and
write over the unexpired file.

• The NSL routine linkage is quite d~ferent under CMS
(See the section "NSL Processing" fdr details.)

I

than in OS/VS.

• Volume serial number verification occurs every time a file on a tape
is opened under OS simulation unless the PILEDEF LEAVE option is used
for multifile tapes.

• Existing VOL1 labels are not automatically rewritten for density
incompatibility in CMS as they are in OS/VS.

• HDR2 records are skipped for input under CMS for os simulation. They
are not checked and information in them is not merged with DCB
information. HDR2 records are written (with information obtained
from the DCB) on output.

• Blank tapes used for output in CMS cause the tape to run off the reel
if you define the tape file as SL or NL. The tape label processing
routines try to read an existing VOL1 or HDR1 label before writing on
the tape. Therefore, you should always use the CMS TAPE command to
write at least one tape mark (for NL tapes) or a VOL1 label (for SL
or SUL tapes) before using the tape to write an output data set.

• If you specify a position parameter that is too big (that is, there
are not that many files on the tape), the tape will run off the reel
in CMS.

122.6 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

• There are no user exits for user standard labels for EOV label
processing in CMS.

• CMS does not support user return codes of 8 and 12 for input
user labels. If the return code from a user routine is
after input label processing, CMS treats it as if the return
4. (See the IBM publication Q~L!~l ~~1~ ~~n~g~~~n1 ~~£~~£~2
Q~L!~~ H!~ Q~1~ ~~ngg~m~n1 ~~~!!£~2 Q~!£~ for details).

standard
not zero
code was
§Y1£~ or

• No count is kept of user standard labels read or bypassed in CMS~ If
more than eight such labels exist, the fact is not detected.

• User label processing routines do not receive control under CMS when
an abend or a permanent I/O error occurs.

• If a CMS output tape is not positioned at a HDR1 label or a tape mark
when label processing begins, error message 422 is issued. Under
OS/VS such conditions cause an abend.

• TCLOSE with the REREAD option causes a tape to be rewound under CMS
and then forward spaced one file if the tape has standard labels.
Under OS/VS, the tape is backspaced four files and forward spaced ODe
file. REREAD for unlabelled tapes in CMS always causes a rewind.

For further information on OS/VS tape label processing, refer to the
following IBM publications: Q~L!~l Q~1~ ~gn~g~!~n1 ~~£!1£~2 §y!g~,
Q~L!~l ~!~ Q~1~ H~ngg~m~n1 ~~!!i£~2 Q~iQ~,

and Q~LVS I~E~ 1ab~1§.

For details on end-of-tape/end-of-volume processing under CMS, see
the "End-of-Volume" and "End-of-Tape Processing" section later in this
publication.

LABEL PROCESSING IN CMS/DOS

You specify the type of label processing you want in CMS/DOS on a DTFMT
macro in exactly the same way you specify it when you want to run your
program under DOS/VSE. See the !~Ll1Q ~I§1~~ g£Qg£~~me£~2 §y1de for
details on CMS support for the DTFMT macro.

Labelled tapes are only supported if you use the DTFMT macro. There
is no support for labelled tapes in , CMS/DOS for any other type. If yeu
try to read labelled tapes with a DTFCP or DTFDI macro, input standard
IBM header labels are skipped, but no other input labels are processed.
Output tapes with standard labels have these labels overwritten with a
tape mark. All tape work files are treated as output unlabelled files
in CMS/DOS although they are defined by a DTFMT. Tapes used for such
files have a tape mark written as the first record when the file is
opened.

You define an unlabelled tape with the DTFftT parameter FILABL=NO. The
tape file is processed as having no labels.

You define a nonstandard labelled tape with the DTFMT parameter
FILABL=NSTD. You also must provide a routine to process your
nonstandard labels in the LABADDR=parameter of the DTFMT. Tape
processing in CMS for these files is the same as it is under DOS/VSE.

Section 7. U$in9 Real Printers, Punches, Readers, and Tapes 122.7

Pg. of GC20~1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

You define a standard label tape with the DTF~T parameter FILABL=STD.
You also must supply a LABELDEF command to specify label descripticn
information. This command replaces the DOS/VSE TLBL card and is
required for standard label processing under eMS/DOS. The LABELDEF
command is discussed in detail in the "LABELDEF Command" section later
in this publication.

In order to connect the LABELDEF command for a file with the DTFftT
for the same file, you must use the same name to label your DTFMT as you
use for a filename in your LABELDEF command. If you code a DTFMT macro
in your program as:

liT1 DTFMT ••• FILABL=STD

you must then supply the following type of LABELtEF command:

labeldef mtl fid yourfile fseq •••

You can put any description parameters you want on your LABELDEP
command but the filename for it must be mt1 if you coded MT1 as the
label on the DTFMT.

After you have set up your DTFMT and LABELDEF, you execute your
CMS/DOS program. HDR1 labels are checked or written when an OPEN macro
is issued. EOFl labels are checked or written when a CLOSE macro is
issued. A VOL1 label volume serial number is checked only if the tape
is positioned at load point when the label processing hegins and if you
have specified a VOLID parameter on a LABELDEF statement for the file.
Note, if NOREWIND is not specified in the DTFftT macro for the file, the
tape is rewound so it is positioned at load point for label processing.

If you want to process user standard labels as well as standard
labels in CMS/DOS, you specify FILAaL=STD and also supply a LABADER
parameter in the DTFMT for the file~ Control is then transferred to
your label processing routines after standard labels are processed. The
linkage to user standard label routines is exactly the same as in
DOS/VSE.

There are minor differences in the way tapes are processed by CMS/DOS
and the way they are processed by DOS/VSE. These differences are:

I • The tape error messages are CMS error messages and not DOS/VSE error
I aessages. In some cases DOS/VSE allows the system operator to reply

NEWTAP to an error message. The system then waits for the operator
to mount a new tape and continues processing with this new tape.
Such a reply is never possible under CMS/DOS. In CMS/DOS I you
usually can reply IGNORE to ignore a tape label error condition or
CANCEL to cancel a job. NEWTAP is never allowed. In a few cases,
CMS/DOS allows an IGNORE reply where DOS/VSE does not.

• You must specify CLOSE to process all trailer labels. No automatic
CLOSE occurs at end of data or after reading a tape mark. If an
input tape is positioned at an EOF1 or EOV1 record when CLOSE is
issued, the label is processed. If a tape file is closed before all
data records are read, the trailer label is not processed. Output

122.8 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

tapes have EOF records written only at CLOSE time. For nonstandard
labelled tapes, your own routines do not receive control on input
when a tape mark is read. You must issue a CLOSE macro in your
EOFADDR routine in order to have the trailer labels processed.

• Certain fields in HDRl and EOF1 labels default to values different
from those in DOS/VSE. For example, the default volume serial number
written in a HDRl label is CMS001 and not the actual volume serial
number (volid) in the VaLl label already on the tape. The default
file sequence and volume sequence numbers are always one even when
the file is not the first file on the tape. You should read the
section on the LABELDEF command in this publication to learn what the
default values are in CMS/DOS. You also can read the IBM publication
QQEL!~~ !gR§ ~g~§l§ to find what the default values are for DOS/VSE.
If you do not like the default values, you can always specify the
exact values you want in label fields in a LAEELDEF command.

• Expiration date specification is always done in absolute form rather
than by retention period. You must always use the form yyddd where
yy is the year (0-99) and the ddd the day (0-366). CMS does not
handle expiration dates specified by retention periods.

• VOL1 labels written in the wrong density are not rewritten
automatically by CMS/DOS as they are by DOS/VSE.

• Blank taFes should not be used for tape files specified as FILABL=STD
in CMS/DOS; they will run off the reel. Use the CMS TAPE command to
write a VOLl label or a tape mark on a blank tape before using it fer
a STD file.

I • Not all tape movement and label checking that occurs in DOS/VSE
I occurs under CMS. For example, when opening an output file, a

DOS/VSE system expects the tape to be positioned at a HDRl label or a
tape mark. It then backspaces the tape to read the last EOFl label
on the tape. If it does not find the label it expects, it issues an
error message. This check is not performed by CMS/DOS. If the tape
is not positioned at a HDR1 label or a tape mark when output open
processing begins, error message 422 is issued.

• After an EOVl label is written (see "End-of-Tape/End-of-Volume
Processing" later in this publication), the tape is always rewound
and unloaded under CMS/DOS. DOS/VSE lets a DTFMT parameter control
whether or not the tape is rewound.

• User label processing routines do not receive control when an I/O
error occurs under CMS/DOS.

• Control is not passed to user standard label routines in CMS/DOS when
EOT has been sensed on output and an EOVl label has been written by
the system routines.

• Work -tapes are not checked for an expiration date when they contain
standard labels under CMS/DOS. If a tape is to be opened as a work
tape, CMS/DOS tests to see if it contains a VOLl label. If it does,
a dummy HDRl label and a tape mark are immediately written on the
tape after the VOLl label. If the tape does not contain a VOLl
label, a tape mark is written at the beginning of the tape. DOS/VSE
checks expiration dates on previously labelled tapes used as work
tapes and gives the operator a chance to reject the tapes if the
expiration date has not expired.

Section 7. Using Real Printers, Punches, Readers, and Tapes 122.9

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118

For further information on DOS/VSE and CftS/DOS tape label processing,
refer to the following IBM publications:

DOS/VSE Tape Labels
DOS/VSE Macro User's Guide
DOS/VSE LIOCS Vol 2

CMS TAPESL MACRO

The TAPESL macro is provided for use in CMS programs that do not use OS
and DOS simulation features. You can use the CftS T1PESL macro to
process IBM standard HDR1 and EOFl labels without using DOS or as OPEN
and CLOSE macros. You will probably use TAPESL with the RDT1PE, WRTAPE,
and TAPECTL macros.

TAPESL processes only HDR1 and EOF1 labels. It does not perform any
functions of opening a tape file other than label checking or writing.
The TAPESL macro generates linkage to the CMS tape label processing
routine that actually processes the label. The macro generates a block
of data (32 bytes long) in order to communicate with the tape label
processing routines. TAPESL is used both to check and to write tape
labels. A LABELDEF command must be issued prior to running the program
that contains this macro. The LABID parameter of the TAPESL macro is
used to specify the name of the LABELDEF to be used. For example, if
you use the macro:

TAPESL HOUT,181,LABID=GOODLAB

in your assembly language program, you must supply a LABELDEF command
for GOODLAB:

labedef goodlab fid file10 fseq 4 exdte 78235

The tape must be positioned correctly (at the label to be checked or at
the place where the label is to be written), before you issue the macro.
TAPECTL may be used to position the tape. TAPESL reads or writes only
one tape record unless you specify SPACE=YES for input. Then it spaces
the tape to beyond the tape mark that ends the label file. T1PESL reads
and checks a tape VOL1 label provided the tape is positioned at load
point and the user has specified a volid in his LABELDEF command.

TAPE LABEL PROCESSING BY CMS COMMANDS

There are three types of CMS commands that do some type of tape label
processing. They are:

• TAPEMAC and TAPPDS commands
• TAPE command
• MOVEFILE command

TAPEMAC and TAPPDS have operands where you can indicate the type of
label processing you want. The tape must be positioned properly (at the
data file or label file you wan~ before you issue the command~ The
TAPE command may be used for positioning. A separate LABELDEF command

122.10 IBM VM/370 eMS User's Guide

Pg. of GC20-l819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

is required for these commands if IBM standard latel checking is
desired. If S1 label type is specified without a labdefid, standard
header labels are displayed on the terminal but not checked by the CMS
label processing routines. The command:

tapemac macfile S1 (tap2

displays any standard labels that exist on your terminal while the
series of commands:

labeldef mac lab fid macro volseq 2 crdte 77102

tapemac macfile sl mac lab (tap2

invokes the CMS tape label processing routines. These routines check to
see that your tape has a HDRl label that has a file identifier of macro,
a volume sequence number 2, and a creation date of 77102. VOLl labels
are not checked during' label processing by TAPEMAC and TAPPDS unless the
tape is positioned at load point and you have specified a volid on your
lABE1DEF command~ The DVOLl function of the TAPE command can be used
for volume verification before positioning the tape if the user does not
want to start at the first file. These commands process only HDRl
labels; they skip HDR2, UHL, and all trailer labels without processing
them.

To process nonstandard tape labels with TAPE MAC and TAPPDS, you use
the same interface described in the section "NSL Processing under OS
Simulation." The only difference is that instead of putting the CMSCB
and DCB addresses in the parameter list, the ID parameter you placed in
the command line is passed to your NSl routine.

tappds pdsfile cmsutl * nsl superck id XYZ12345

passes the EBCDIC identifier XYZ12345 to your nonstandard label checking
routine called SUPERCK. This identifier may be up to eight characters
long and is left justified in bytes 8-15 of the parameter list. You can
use the identifier to inform your NSL routine of what file you are
processing.

Use the DVOll function of the CMSTAPE command to display the VOLl label
of a tape on your terminal. You may use this command to ensure the
system operator has mounted the correct tape before you begin processing
the tape. If the tape does not have a VOLl label and you issue the
CMSTAPE command, you are informed that the VOLl label is missing. Do
not use TAPE DVOLl if you have a blank tape. If TAPE DVOLl is issued
and a blank tape is used, CMS will search the entire tape to find the
label record; since the tape is void of any records, the tape will run
off the end of the reel.

Use the WVOLl function on the TAPE command to write a VOLl label on a
tape. You can specify a one- to six-character volume serial number
(volid) through this command and also a one- to eight-character owner
field_

You can use the MOVEFILE command to move labelled tape files if these
files are defined as lahelled by the FILEDEF command. The MOVEFILE
command supports only SL, NS1, B1P, NL, and LABOFF processing. SUL
files are processed as S1 files and no user exits are taken.

Section 7. Using Real Printers, Punches, Readers, and Tapes 122.11

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

You can also use the MOVEFILE command to display tape labels on your
terminal if you want to see what these l~bels leok like. The following
sequence displays the VOL1 and first HDRl labels on tap4 if the tape bas
standard labels:

filedef in tap4

filedef out term

tape rew (tap4

move in out

LABELDEF COMMAND

The LABELDEF command is used to specify the exact data you want written
in certain fields of a HDR1 or EOFl tape label for output. It can also
be used to specify fields in the same labels that you want checked en
input. If you do not explicitly specify a field for output, a default
value is used. If you do not explicitly specify a field for input, the
field is not checked. For example:

labe1def abc fid master vo1seq 1 exdte 77364

used for input tells CMS to check the file identifier volume sequence
number and expiration date in an input HDR1 label. No other fields in
the label are checked. The same specification used for output causes
the HDR1 label to have MASTER written in the file identifier field, 1
written in the volume sequence number field and 77364 written in the
expiration date field. Default values are written in the HDR1 fields
that are not specified.

Default values for HDR1 labels are as follows:

FID

VOLID

VOLSEQ

FSEQ

GENN

GENV

CRDTE

EXDTE

SEC

for OS simulation, the DDNAME (Specified on FILEDEF)
for CMS/DOS, the DTFMT symbolic name
for CMS TAPESL macro, the LABELDEF id (LABID=labe1defid)
parameter

CMSOOl

0001

0001

blanks

blanks

current date that label is written

current date that label is written

o

The filename on the LABELDEF command is used to connect your label
definition to a file defined elsewhere. This is why you specify
different data for file name depending on the type of tape label
processing you are doing. Filename is DDNAME for OS simulation, DTFMT
symbolic name for CMS/DOS and labeldefid for TAPESL.

I
The LABELDEF command takes the place of the DOS/VSE TLBL statement

for CMS/DOS.

122.12 IBM VM/370 eMS User's Guiqe

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

END-OF-VOLUME AND END-OF-TAPE PROCESSING

There is no true end-of-volume support available with CMS tape label
processing. FEOV instructions are not supported under OS simulation and
there is no automatic volume switching. Multivolume files are not
supported. The follcwing features exist to aid the IBM standard label
tape user when he reaches end-of-tape on output or an EOV label in
input. These are the only ways in which CMS sUFPorts EOV processing.

• Input - When a CLOSE macro is issued or when a TAPESL macro processes
an input trailer label, a message is issued if
EOV1 label instead of an EOF1 label. The
processed exactly as if it were an EOF1 label.
the operator mount a new tape and reopen a
continue processing the data.

the label read is an
EOV1 label is then

You must request that
file if you want to

• Output - Under CMS/DOS and OS simulation processing only (that is,
the processing does not occur for TAPESL or CMS commands), the
following limited EOV processing occurs:

a. If you specify that you have an IBM standard label tape file, a
single tape mark is written to end your data. This occurs when
end-of-tape is sensed on output while you are using regular access
method macros to write the file. The tape mark is written
immediately after the record that caused the EOT to be sensed.
Following this tape mark, CMS writes an EOV1 label and a single tape
mark. It then rewinds and unloads your tape. A message is issued
telling you that an EOV1 label was written. If you specified
nonstandard labels instead of writing the EOV1 label, an exit to the
nonstandard label routine you specified for the file is taken after
the end-of-data tape mark is written. For BLP or NL files, only the
ending tape mark is written.

b. CMS/DOS jobs are always canceled after an EOT condition is
detected on output. In order to continue processing the tape, you
must have a new tape mounted, run the same job over again or run a
new job and reopen the file.

c. OS simulation programs that use QSAM ar contain a BSAM CHECK
macro cause an abend when EOT is detected, with code 001 after an
error message. A BSAM program that does not use a CHECK macro has no
way of detecting the EOT condition. Such a Frogram continues to try
to write on the tape after it is rewound and unloaded. The program
enters a wait state rather than continue running to a normal or
abnormal completion. Therefore, you should always include a BSIM
CHECK macro after the WRITE if you expect your program to reach
end-of-tape. OS simulation users are also responsible for completing
processing on a new tape with the same or a new job after an EOT is
detected.

d. If you are a CMS/DOS user you always get the automatic output
end-of-tape processing described above. However, if you are an OS
simulation user and do not want CMS to do any special end-of-tape
processing, you can suppress it by using the NOEOV option on your
FILEDEF command for the file. If you enter:

fi1edef dd1 tap3 s1 (noeov

no tape marks or EOV1 labels are written when EOT is sensed on
output. Your tape is not rewound and unloaded. However, the program
causes an abend if you use QS1M or include a BS1M CHECK macro after
your WRITE macro. Without a CHECK macro, a BSAM program runs the
tape off the reel when EOT is sensed and NOEO~ is specified.

Section 7. Using Real Printers, Punches, Readers, and Tapes 122.13

Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5748-118

ERROR PROCESSING

When the standard label processing routines find errors or discrepancies
on tape labels, they send a message to the CMS terminal user who is
processing the tape. After an error message is issued, the user can ask
the system operator to mount a new tape, use the CMS TAPE command to
position the tape at a different file, or respecify his label
description information. If you are a terminal user and want another
tape mounted, you send the system operator a message telling him what
tape to mount.

Some errors cause program termination and others do not. The effect
of tape label processing errors depends on both the type of error and
the type of program (that is, CMS/DOS, OS simulation, CMS command, etc.)
that invokes the label processing. The following are general guidelines
on error handling:

• Messages identifying the error are always issued.

• Under OS simulation, tape label errors result in open errors. These
errors prevent a tape file from being opened. They do not
necessarily end a job. Errors in trailer labels (except block count
errors) have no effect on processing.

• In CMS/DOS, the terminal user is generally given two choices: ignore
the error or cancel the job. The new-tape option is not allowed.

• The CMS commands TAPEMAC and TAPPDS terminates with a non-zero return
code after a tape label error.

• Certain error situations such as unexpired files and block count
errors for OS simulation allow the user to ignore the error and do
not cause open errors. In these cases, the user enters his decision
at the terminal after he is notified of the error.

• Errors that occur during the loading of an NSL routine cause an abend
(code 155 or 15A). A block count abend gives an error code of 500.

In all cases, after an error has been detected and diagnosed, you
aust decide what to do. you may wish to have a new tape mounted and
then re-execute the command or you may want to respecify your LABELDEF
description if it was incorrect. You can also use the TAPE command to
space the tape to a new file if it was positioned incorrectly.

THE MOVEFILE COMMAND

The MOVEFILE command can copy sequential tape files into disk files, or
sequential disk files onto tape. It can be particularly useful when you
need to copy a file from a tape and you do not know the format of the
tape.

To use the MOVEFILE command, you must first define the input and
output files using the FILEDEF command. For example, to copy a file from
a tape attached to your virtual machine at virtual address 181 to a CMS
disk, you would enter:

filedef input tapl
filedef output disk tape file a
movefile input output

122.14 IBM VM/310 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5748-118

This sequence of co •• ands creates a file naaed TAPE FILE Al. Then use
CMS commands to aanipulate and examine the contents of the file.

MOVEFILE can also be used to display tape labels and/or'.ove labelled
tape files. See "Tape Labels in CMS" for details.

TAPES CREATED BY OS UTILITY PROGRAMS

The CMS command TAPPDS can read OS partitioned and sequential data sets
from tapes created by the IEBPTPCH, IEBUPDT!, and IEHMOVE utility
programs. When you use the TAPPDS command~ the OS data set is copied
into a CMS disk file, or in the case of partitioned data sets, into
.ultiple disk files.

l~BP!f£~: Sequential or partitioned data sets created by IEBPTPCB must
be unblocked for CMS to read them. If you have a tape created by this
utility, each member (if the data set is partitioned) is preceded with a
card that contains "MEMBER=membernaae". If you read this tape with the
command:

tappds *
then, CMS creates a disk file fro. each member, using the aeabername for
the filename and assigning a filetype of CMSUT1. If you want to assign a
particular filetype, for example TEST, you could enter the coamand as
follows:

tappds * test

If the file you are reading is a sequential data set, you should use the
NOPDS option of the TAPPDS co •• and:

tappds test file (nopds

The above command reads a sequential data set and assigns it a file
identifier of TEST FILE. If you do not specify a filename or filetype,
the default file identifier is TAPPDS CftSUT1.

l~BUf~!~: Tapes in control file format created by the IEBUPDTE utility
program can be read by CMS. Data sets may be blocked or unblocked, and
may be either sequential or partitioned. Since files created by
IEBUPDTE contain ./ADD control cards to signal the addition of me.bers
to partitioned data sets, you must use the COL1 option of the TAPPDS
command. Also, you must indicate to CftS that the tape was created by
IEBUPDTE. For example, to read a partitioned data set, you vould enter
the command:

tappds * test (update co11

Section 1. Using Real Printers, Punches, Readers, and Tapes 122.15

March 30, 1979

122.16 IBM 'M/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-X18

The CMS disk files created are always in unblocked, 80-character format.

IEHMOVE: OS unloaded partitioned data sets on tapes created by the
llHMOii utility program can be read either by the TAPPDS command or by
the TAPEMAC command. The TAPPDS command creates an individual CMS file
from each member of the PDS.

If the PDS is a macro library, you can use the TAPEMAC command to
copy it into a CMS MACLIB. A MACLIB, a CMS macro library, has a special
format and can usually be created only by using the CMS MACLIB command.
If you use the TAPPDS command, you have to use the MACLIB command to
create the macro library fro. individual files containing macro
definitions.

SPECIFYING SPECIAL TAPE HANDLING OPTIONS

For most of the tape handling that you do in CMS, you do not have to be
concerned with the density or recording format of the magnetic tapes
that you use. There are, however, some instances when it may be
important and there are command options that you can use with the TAPE
command MODESET operand and with ASSGN and FILEDEF command options.

The specific situations and the command options you should use are
listed below.

• If you are reading or writing a 7-track tape and the density of the
tape is either 200 or 556 bpi, you must specify DEN 200 or DEN 556.

• If you are reading or writing a 7-track tape with a density of 800
bpi, you must specify 1TRACK.

• If you are reading or writing a 7-track tape without using the data
convert feature, you must use the TRTCH option.

• If you are writing a tape using a 9-track dual density tape drive
with the 9TRACK option specified, and you want the density to be 800
(on an 800/1600 drive) or 6250 (on a 1600/6250 drive), then you must
specify DEN 800 or DEN 6250.

I • If you are writing a tape, the default tape block size is 4096 bytes
I plus a 5-byte header. This format is not compatible with previous
I VM/310 systems. Therefore, if you want to write a tape compatible
I with previous VM/370 systems, you must use the 'BLK 800' option of
I the TAPE command. The TAPE command is described in detail in !~Ll1Q
I ~~~ ~g~~~~B g~B ~g£!g R~f~£~~£~·

Using the Remote Spooling Communications
Subsystem (RSCS)

If your VM/370 installation is on a Remote Spooling Communications
Subsystem (RSCS) network, you can send printer, punch, or reader spool
files to users at remote locations. To send a spool file, you must know
the userid of the virtual machine at your location that is running RSCS
and the location identification (locid) of the remote location. If you
are sending a spool file to a particular user at the remote location,
you should also know that userid of the user.

The CP commands that you can use to transmit files across the network
are TAG and SPOOL. The TAG command allows you to specify the locid and
userid that are to receive a spool file, or, in the case of tagging a

Section 1. Using Real Printers, Punches, Readers, and Tapes 123

March 30, 1979

printer or punch, of any spool files produced by that device. With the
SPOOL command, you spool your virtual device to the RSCS virtual
machine. You can also use the TRANSFER command to transfer files frcm
your own virtual card reader.

The CP commands TAG, SPOOL, and TRANSFER are discussed in detail in
the publication !~JIQ ~f ~Qmm!ng RgtgE~n£g tQE §~ngE!! Y§gE§·

124 IB" VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev ftarch 30, 1979 by Supp. SD23-9024-1 for 5748-118

Part 2. Program Development Using eMS

You can use CMS to write, develop, update, and test:

• as programs to execute either in the CftS environment (using os
simulation) or in an as virtual machine

• DOS programs to execute in either the CftS/DOS environment or in a DOS
virtual machine

• CftS programs to execute in the CftS environment

The as and DOS simulation capabilities of CftS allow you to develop OS
and DOS programs interactively in a time-sharing environment. When your
programs are thoroughly tested, you can execute them in an as or Des
virtual machine under the control of V8/370.

"Section 8. Developing as Programs Under CftS" is for programmers who
use as. It describes procedures and techniques for using CftS co.mands
that simulate as functions.

"Section 9. Developing DOS Programs Under CftS" is for programmers who
use DOS. It describes procedures and techniques for using CftS/DO~
co.mands to simulate DOS/VSE functions.

If you use VSAft and access method services in either a DOS or an OS
environment, "Section 10. Using Access Method Services and VSlft in CBS
and CftS/DOS" provides usage information for you. It describes how to
use CftS to manipulate VSAft disks and data sets.

You can use the interactive facilities of CP and CftS to test and
debug programs directly at your terminal. "Section 11. How Vft/370 Can
Help You Debug Your Programs" shows examples of commands and debugging
techniques.

The CftS batch facility is a CftS
to another machine for execution.
to a CftS batch virtual machine is
CftS Batch Facility."

feature that allows you to send jobs
How to prepare and send job streaas
described in "Section 12. Using the

As you learn to use CftS, you may want to write programs for CBS
applications. "Section 13. Programming for the CftS Environment"
contains information for assembler language programmers: linkage
conventions, programming notes, and macro instructions you can use in
CftS programs.

Part 2. Program Development Using CftS 125

March 30, 1979

126 IBM VM/370 CMSUser's Guide

March 30, 1919

Section 8. Developing OS Programs under
eMS

CMS simulates many of the functions of the Operating System (OS),
allowing you to compile, execute and debug OS programs interactively.
For the most part, you do not need to be concerned with the eMS OS
simulation routines~ they are built into the CMS system. Before you can
compile and execute as programs in CMS, however, you must be acquainted
with the following:

• as macros that CMS can simulate
• Using as data sets in CMS
• How to use the FILEDEF command
• creating CMS files from as data sets
• Using CMS and as macro libraries
• Assembling programs in CMS
• Executing Frograms

These topics are discussed below. Additional information for as VSAE
users is in "Section 10. Using Access Method Services and VSAM Under C~S
and CMS/DOS."

For a practice terminal session using the commands and techniques
presented in Section 8, see "Appendix D: Sample Terminal Sessions."

The CMS system uses many as terms, but there are a number of as
functions that CMS performs somewhat differently. To help you become
familiar with the some of the CMS equivalents (where they do exist) for
as terms and functions, see Figure 11. It lists some commonly-used os
terms and discusses how CMS handles the functions they imply.

section 8. Developing as programs Under CMS 121

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 574S-XXS

OS Tera/Function

Cataloged procedure

Data set

Data Definition (DD)
card

Data Set Control
Block (DSCB)

EXEC card

Job Control Language
(JCL)

Link-editing

Load .odule

Object module

Partitioned data set

STEPCAT,JOBCAT

STEPLIB, JOBLIB

Utility program

Volume Table of
Contents (VTOC)

CMS Equivalent

EXEC files can execute command sequences
similar to cataloged procedures, and provide
for conditional execution based on return
codes from previous steps.

Data sets are called files in CMS; CMS files
are always sequential but CMS simulates OS
partitioned data sets. CftS reads and writes
VSAft data sets.

The FILEDEF commandallcws you to perform the
functions of the DD statement to specify
device types and output file dispositions.

Information about a CMS disk file is contained
in a file status table (FST).

To execute a program in CMS you specify only
the name of the progiam if it is an EXEC,
ftODULE file, or CMS command. To execute TEXT
files, use the LOAD and START commands.

CMS and user-written commands perform the
functions of JCL.

The CMS LOAD command loads object decks (TEXT
files) into virtual storage, and resolves
external references; the GENMOn command
creates absolute nonrelocatable modules.

CMS ftODULE files (resulting from the LOAD and
GENMOD commands) are nonrelocatable.

Language compiler output is placed in CftS
files with a filetype of TEXT.

CMS ftACLIBs and TXTLIBs are the only CMS files
that resemble partitioned data sets.

'SAM catalogs can be assigned for jobs or job
steps in CMS by using the special ddnames
IJSYSCT and IJSYSUC when identifying catalogs.

The GLOBAL command establishes macro and text
libraries; you can indirectly provide job
libraries by accessing and releasing CMS disks
that contain the files and programs you need.

Functions similar to those performed by the OS
utility programs are provided by CMS commands.

The list of files on a eMS disk is contained
in a file directory for SOO-byte format CMS
disks, or in the file directory for CMS disks
with a 1024-, 2048-, or 4096-byte block format

Figure 11. OS Terms and CMS Equivalents

128 IBM 'M/370 CMS User's Guide

)

)

Using OS Data Sets In eMS

You can have as disks defined in your virtual machine configuration;
they may be either entire disks or minidisks: their size and extent
depends on their VM/370 directory entries. You can use partitioned and
sequential data sets on as disks in CMS. If you want, you can create
CMS files from your os data sets. If you have data sets on os disks,
you can read them from programs you execute in CMS, but you cannot
update them. The CMS commands that recognize os data sets on os disks
are listed in Figure 12.

Command operation

ACCESS Makes the os disk containing the data set available
to your eMS virtual machine.

ASSEMBLE Assembles an as source program under CMS.

DDR Copies an entire as disk to tape.

DLBL Defines as data sets for use with access method services
and VSAM files for program input/output.

FILEDEF Defines the OS data set for use under CMS by associating
an as ddname with an OS data set name. Once defined,

GLOBAL

the data set can be used by an as program running under
CMS and can be manipulated by the other commands that
support as functions.

Makes macro libraries available to the assembler. You can
prepare an as macro library for reference by the GLOBAL
command by issuing a FILEDEF command for the data set and
giving the data set a filetype of MACLIB.

LISTDS Lists information describing as data sets residing on
as disks.

MOVEFILE Moves data records from one device to another device. Each
device is specified by a ddname, which must have been
defined via FILEDEF. You can use the MOVEFILE command to
create CMS files from as data sets.

QUERY Lists (1) the files that have been defined with the
FILEDEF and DLBL commands (QUERY FILFDEF, QUERY DLBL), or
(2) the status of as disks attached to your virtual machinel
(QUERY DISK, QUERY SEARCH). I

I
RELEASE Releases an OS disk you have accessed (via ACCESS) from I

your CMS virtual machine. I
I

STATE verifies the existence of an as data set on a disk. I
Before 'STATE can verify the existence of the data set, I
you must have defined it (via FILEDEF). I

Figure 12. CMS Commands That Recognize as Data Sets and as Disks

Section 8. Developing as Programs Under eftS 129

ACCESS METHODS SUPPORTED BY CMS

as access methods are supported, to varying extents, by CMS. Under eMS,
you can execute programs that use the as data management macros that are
supplied for the access methods listed below.

eMS Support for OS eMS Support for Real
Simulated Data Sets as Data Sets on as

Access Method on eMS Disks Disks

BDAM Yes No
BPAM Yes Yes (read only)
BSAM Yes Yes (read only)
QSAM Yes Yes (read only)
VSAM No Yes

L--J

~~AM, ~2A~, g~£ QSA~: You can execute programs in eMS that read records
from as data sets using the BPAM, BSAM, or QSAM access methods,. You
cannot, however, write or update as data sets that reside on as disks.

BDAM: CMS can neither read nor write as data sets on as disks using the
BDAM access method.

VSAM Files: eMS can read and write VSAM files on as disks. For
Information on using VSAM under eMS, see "section 10. Using ,Access
Method Services and VSAM Under eMS and eMS/DOS."

If you want to test programs in eMS that create or modify as data sets,
you can write "aS simulated data sets." These are eMS files that are
maintained on eMS disks, but in as format rather than in CMS for.at.
Since they are eMS files, you can edit, rename, copy, or manipulate them
just as you would any other eMS file. Since they are in OS-simulated
format, files with variable-blocked records may contain block and record
descriptor words so that the access methods can manipulate them
properly.

The files that you create from as programs do not necessarily have to
be as simulated data sets. You can create eMS files. The format of an
output file depends on how you specify the filemode number when you
issue the FILEDEF command to identify the file to eMS. If you specify
the filemode number as 4, CMS creates a file that is in as simulated
data set format on a eMS disk.

eMS can read and write as simulated data sets using the BDAM, BPAe,
BSAM, and QSAM access methods.

When an input or output error occurs, do not depend on as sense
bytes. An error code is supplied by eMS in the EeB in place of the
sense bytes. These error codes differ for various types of devices and
their meaning can be found in the !~~ !ALJIQ 2I§!g~ ~~§22g~2' under DMS
message 120S.

130 IBM VM/370 eMS User's Guide

March 30, 1979

The following restrictions apply when you read as data sets from os
disks under CMS:

• Read-password-protected data sets are not read.

• BDAM and ISAM data sets are not read.

• Multivolume data sets are read as single-volume data sets.
End-of-volume is treated as end-of-file and there is no end-of-volume
switching.

• Keys in data sets with keys are ignored; only the data is read.

• User labels in user-labeled data sets are bypassed (except for user
standard labels on tapes). See "Tape Labels in CMS" for details.

• Results may be unpredictable if two DCBs access the same data set at
the same time.

Using the FILEDEF Command

Whenever you execute an as program under CMS that has
output files, or you need to read an as data set onto a
must first identify the files to CMS with the PILEDEF
FILEDEF command in CMS performs the same functions
definition (DD) card in os job control language (JCL): it
input and output files.

When you enter the PILEDEF command, you specify:

• The ddname

• The device type

• A file identification, if the device type is DISK

input and/or
CMS disk, you
command. The
as the data
describes the

• Type of label on your tape file, if taFe label processing is
specified

• Options (if necessary)

Some guidelines for entering these specifications follow.

SPECIPYING THE DDNAME

If the FILEDEP command is issued for a program input or output file,
then the ddname must be the same as the ddna.e or file na.e specified
for the file in the source program. For example, you have an assembler
language source program that contains the line:

INFILE DCB DDNAME=INPUTDD,MACRF=GL,DSORG=PS,RECPft=P,LRECL=80

Par a particular execution of this program, you want to use as your
input file a CMS file on your A-disk that is named MYINPUT FILE, then,
you must issue a FILEDEF for this file before executing the prograa:

Section 8. Developing as programs Under CftS 131

~

March 30, 1979

filedef inputdd disk myinput file a1

If the input file you want to use is on an OS disk accessed as your
C-disk, and it has a data set name of PAYROLL. RECORDS. AUGUST, then your
FILEDEF command might be:

filedef inputdd c1 dsn payroll records august

SPECIFYING THE DEVICE TYPE

For input files, the device type you enter on the FILEDEF command
indicates the device from which you want records read. It can be DISK,
TERMINAL, READER (for input from real cards or virtual cards), or TAPn
(for tape). Using the above example, if your input file is to be read
from four virtual card reader, the FILEDEF command might be as follows:

filedef inputdd reader

or, if you were reading from a tape attached to your virtual machine at
virtual address 181 (TAP1):

filedef inputdd tap1

For output files, the device you specify can be DISK, PRINTER, PUNCH,
TAPn (tape), or TERMINAL.

If you do not want any real I/O performed during the execution of a
program for a disk input or output file, you can specify the device type
as DUMMY:

filedef inputdd dummy

ENTERING FILE IDENTIFICATIONS

If you are using a CMS disk file for your input or output, you specify:

filedef ddname disk filename filetype filemode

Note that if * is used for the filemode of an output file, unpredictable
results may occur.

The filemode field is optional; if you do not specify it, your A-disk is
assumed. If you want an output file to be constructed in OS simulated
data set format, you must specify the filemode number as 4. For
example, a program contains a DCB for an output file with a ddname of
OUTPUTDD, and you are using it to create a CMS file named DAILY OUTPUT
on your B-disk:

filedef outputdd disk daily output b4

If your input file is an OS data set on an OS disk, you can identify
it in several ways:

• If the data set name has only two
HEALTH~RECORDS, you can specify:

filedef inputdd disk health records b1

132 IBM VM/370 CMS User's Guide

qualifiers, for example

Pg. of GC20-1819-2 Rev ftarch 30, 1979 by Supp. SD23-902Q-1 for 57Qa-IJa

• If it has .ore than two qualifiers, you can use the DSI keyword and
enter:

filedef inputdd b1 dsn health records august 197Q

Or you can request a proapt for a coaplete data set naae:

filedef inputdd b1 dsn ?
ENTER DATA SET NAftE:
health.records.august.1974

Section 8. Developing OS prograas Under CBS 132.1

March 30, 1979

132.2 IBM VM/370 eMS User's Guide

March 30, 1979

!2!~: When you enter a data set name using the DSN keyword, either
with or without a request for prompting, you should omit the device
type specification of DISK, unless you want to assign a CftS file
identifier, as in the example below.

• You can also relate an as data set name to a CMS file identifier:

filedef inputdd disk ossim file c1 dsn monthly records

Then you can refer to the OS data set MONTHLY.RECORDS by using the
CMS file identifier, OSSIM FILE:

state ossim file c

When you do not issue a FILEDEF command for a program input or output
file, or if you enter only the ddname and device type on the FILEDEF
coamand, such as:

filedef oscar disk

then CMS issues a default file definition, as follows:

FILEDEF ddname DISK FILE ddname A1

where ddname is the ddname you assigned in the DDNAftE operand of the DCB
macro in your program or on the FILEDEF command. For example, if you
assign a ddname of OSCAR to an output file and do not issue a FILEDEF
command before you execute the program, then the CftS file FILE OSCAR A1
is created when you execute the program.

SPECIFYING CftS TAPE LABEL PROCESSING

You can use the label operands on the FILEDEF command to indicate that
CMS tape label processing is not desired (this is the default). If CftS
tape label processing is desired you can use the label operands on the
FILEDEF command to indicate the types of labels on your tape. See "Tape
Labels in CMS" for a description of CMS tape label processing.

SPECIFYING OPTIONS

The FILEDEF command has many options; those mentioned below are a
sampling only. For complete descriptions of all the options of the
FILEDEF command, see the !~L1IQ ~~~ ~Q!!g~£ g~£ ~g££Q ~~fe£~~£~.

~1Q£!, ~Hj~1, HjCF~, ~~Q~Q: If you are using the FILEDEF command to
relate a data control block (DCB) in a program to an input or output
file, you may need to supply some of the file format information, such
as the record length and block size, on the FILEDEF command line. For
example, if you have coded a DCB macro for an output file as follows:

OUTFILE DCB DDNAME=OUT,MACRF=PM,DSORG=PS

then, when you are issuing a FILEDEF for this ddname, you must specify
the format of the file. To create an output file on disk, blocked in OS
simulated data set format, you could issue:

filedef out disk my output file a4 (recfm fb lrecl 80 block 1600

Section 8. Developing OS programs Under CMS 133

March 30, 1979

To punch the output file onto cards, you would issue:

filedef out punch (lrecl 80 recfm f

You must supply file format information on the FILEDEF command line
whenever it is not supplied on the DCB macro, except for existing disk
files.

f]B~: Usually, when you execute one of the language processors, all
existing file definitions are cleared. If the development of a program
requires you to recompile and re-execute it frequently, you might want
to use the PERM option when you issue file definitions for your input
and output files. For example:

cp spool punch to *
filedef indd disk test file a1 (lrecl 80 perm
filedef outdd punch (lrecl 80 perm

In this example, since you spooled your virtual punch to your own
virtual card reader, output files are placed in your virtual reader. You
can either read or delete them.

All file definitions issued with the PERM option stay in effect until
you log off, specifically clear those definitions, or redefine them:

filedef indd clear
filedef outdd tap1 (lrecl 80

In the above example, the definition for INDD is cleared; OUTDD is
redefined as a tape file.

When you issue the command:

filedef * clear

all file definitions are cleared, except those you enter with the PERM
option.

When a program abends, or when you issue the HX Immediate command,
all file definitions are cleared, including those entered with the PERM
option.

121SP J!QJ2: When you issue a FILEDEF command for an output file and assign
it a CMS file identifier that is identical to that of an existing CMS
file, then when anything is written to that ddname the existing file is
replaced by the new output file. If you want, instead, to have new
records added to the bottom of the existing file, you can use the DISP
MOD option:

filedef outdd disk; new update a1 (disp mod

1!]MB]~: If the file you want to read is a member of an as partitioned
data set (or a CMS MACLIB or TXTLIB), you can use the MEMBER option to
specify the membername; for example:

filedef test c dsn sys1 maclib (member test

defines the member TEST from the as macro library SYS1.MACLIB.

!!!U~Q~: This option allows an auxiliary processing routine to receive
control during I/O operating. It is valid only when FILEDEF is executed
by an internal program call and cannot be entered on a terminal command.
For details on how to use this option of the FILEDEF command, see the
!1!LJIQ ~Y§!~! f!2g!~!!~!~§ ~~!g~.

134 IBM VM/370 eMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-X18

Creating CMS Files From as Data Sets

If you have data sets on as disks, or on tapes or cards, you can copy
thea into CMS files so that you can edit, modify, or manipulate them
with CMS commands. The CMS MOVEFILE command copies as (or eMS) files
from one device to another. You can move data sets from any valid input
device to any valid output device.

Section 8. Developing as Programs Under eMS 134.1

March 30, 1919

134.2 IBM VM/370 eMS User's Guide

)

)

Before using the MOVEFILE command, you must define the input and
output data sets or files and assign them ddnames using the FILEDEF
command. If you use the ddnames INMOVE and OUTMOVE, then you do not
need to specify the ddnames when you issue the MOVEFILE co.mand. For
example, the following sequence of commands copies a CMS disk file into
your virtual card punch:

filedef inmove disk disk in file a1
filedef outmove punch
movefile

The result of these commands is effectively the same as if you had
issued the com.and:

punch diskin file (noheader

The example does, however, illustrate the basic relationship between the
FILEDEF and MOVEFILE commands. In addition to the MOVEFILE command, if
the OS input data set is on tape or cards, you can use the TAPPDS or
READCARD command to create CMS files. These are also discussed below.

~QR!l!~ ~]2Y]!1!A1 DATA SETS FROM DISK: The MOVEFILE command copies a
sequential OS disk data set-froi-a--read-only os disk into an integral
CMS file on a CMS read/write disk. You use FILEDEF commands to identify
the input file disk mode and data set name:

filedef inmove c1 dsn sales manual

the CMS output file's disk location and fileid:

filedef outmove disk sales manual a1

and then you issue the MOVEFILE command:

movefile

~QR!!!~ ~Ai1!I!Q!ED Q!!A ~!!~ I~Q~ QI~~: The MOVEFILE command can copy
partitioned data sets (PDS) into CMS disk files, and create separate CMS
files for each member of the data set. You can have the entire data set
copied, or you can copy only a selected member. For example, if you
have a partitioned data set named ASSEMBLE. SOURCE whose members are
individual assembler language source files, your input file definition
might be:

filedef inmove c1 dsn assemble source

To create individual CMS ASSEMBLE files, you would issue the output file
definition as:

filedef outmove disk qprint assemble a1

Then use the PDS option of the MOVEFILE command:

movefile (pds

When the eMS files are created, the filetype on the output file
definition is used for the filetype and the member names are used
instead of the CMS filename you specified.

If you want to copy only a single member, you can use the MEMBER
option of the FILEDEF command:

filedef inmove disk assemble source c (member qprint

Section 8. Developing OS programs Under CMS 135

and omit the PDS option on the MOVEFILE command:

movefile

Figure 13 summarizes the various ways that you can create CMS files
from OS data sets.

Input File: An OS seguential data set named: COMPUTE. TEST. RECORDS

Source CMS Command Examples CMS Output File
--

Disk:
OS RIO
C-disk

Tape:
181

Cards

filedef indd c1 dsn compute test records
filedef outdd disk compute records a1
movefile indd outdd

filedef inmove tap1 (lrecl 80
filedef outmove disk test records a1
movefile

tappds newtest compute (nopds

filedef cardin reader
filedef diskout disk compute cards a1
lIIovefile cardin diskout

readcard compute test

Input file: OS partitioned data set named: TES~.CISES
Members named: SIMPLE, COMPLEX, MIXED

Source

Disk:
OS R/O
C-disk

Tape:
182

CMS Command Examples

filedef infile disk test cases c1
filedef out file disk new testcase a1
movefile infile outfile (pds

filedef in c1 dsn test cases (member simple
filedef run disk
lDovefile in run

tappds * testrun (tap2

,COMPUTE RECORDS A1

TEST RECORDS A1

NEWTEST COMPUTE A1

COMPUTE CARDS 11

COMPUTE TEST 11

CMS Output File(s)

SIMPLE TESTCISE 11
COMPLEX TESTCISE 11
MIXED TESTCISE

FILE RUN 11

SIMPLE TESTRUN 11
COMPLEX TESTRUN A1
MIXED TESTRUN 11

Figure 13. Creating CMS Files From OS Data Sets

Using eMS Libraries

CMS provides two types of libraries to aid in OS program development:

• Macro litraries contain macro definitions and/or copy files

• Text, or program libraries contain relocatable object programs
(compiler output)

These CMS libraries are like OS partitioned data sets; each has a
directory and members. Since they are not like other CMS files, you
create, update, and use them differently than you do other CMS files.
Although these library files are similar in function to OS partitioned
data sets, OS macros should not be used to update them. Macro libraries
are discussed below; text libraries are discussed under "TEXT Libraries
(TXTLIBs)" later in this section.

A CMS macro library has a filetype of MACLIB. You can create a MACLIB
from files with filetypes of MACRO or COPY. A MACRO file may contain
macro definitions; COpy files contain predefined source statements.

136 IBM VM/370 CMS User's Guide

(

)

When you want to assemble or compile a source program that uses macro
or copy definitions, you must ensure that the library containing the
code is identified before you invoke the compiler. Otherwise, the
library is not searched. You identify libraries to be searched using the
GLOBAL command. For example, if you have two MACLIBs that contain your
private macros and copy files whose names are TESTMIC MACLIB and
TESTCOPY MACLIB, you would issue the command:

global maclib test mac testcopy

The libraries you specify on a GLOBAL command line are searched in the
order you specify them. A GLOBAL command remains in effect for the
remainder of your terminal session, until you issue another GLOBAL
MACLIB command or re-IPL CMS. To find out what macro libraries are
currently available for searching, issue the command:

query maclib

You can reset the libraries or the search order by reissuing the GLOBAL
command.

THE MACLIB COMMAND

The MACLIB command performs a variety of functions. You use it to:

• Create the MACLIB (GEN function)
• Add, delete, or replace members (ADD, DEL, and REP functions)
• Compress the MACLIB (COMP function)
• List the contents of the MAC LIB (MAP function)

Eescriptions of these MACLIB command functions follow.

~~B XYD£1i2D: The GEN (generate) function creates a CMS macro library
from input files specified on the command line. The input files must
have filetypes of either MACRO or COPY. For example:

maclib gen osmac access time put regequ

creates a macro library with the file identifier OSMAC MACLIB A1 from
macros existing in the files with the file identifiers:

ACCESS { MACRO}, TIME { MACRO}, PUT { MACRO}, and REGEQU {MACRO}
COpy COpy COpy COpy

If a file named OSMAC MACLIB A1 already exists, it is erased.

Assume that the files ACCESS MACRO, TIME COPY, PUT MACRO, and REGEQO
COpy exist and contain macros in the following form:

ACCESS MACRO TIME COPY POT MACRO REGEQO COpy
------------ --------- --------- -----------

GET *COPY TTIMER PUT XREG
TTIMER

PUT *COPY STIMER YREG
STIMER

Section 8. Developing as Programs Onder CMS 137

The resulting file, OSMAC MACLIB Al, contains the members:

GET
PUT
TTIMER

STIMER
PUT
REGEQU

The PUT macro, which appears twice in the input to the command, also
appears twice in the output~ The MACLIB command does not check for
duplicate macro names. If, at a later time, the PUT macro is requested
from OSMAC MACLIB, the first PUT macro encountered in the directory is
used.

When COpy files are added to MACLIBs, the name of the library member
is taken from the name of the COpy file, or from the *COPY statement, as
in the file TIME COpy, above. Note that although the file REGEQU COpy
contained two macros, they were both included in the MACLIB with the
name REGEQU. When the input file is a MACRO file, the member name(s) are
taken from macro prototype statements in the MACRO file.

A~~ 1YD£!!QD: The ADD function appends new members to an existing macro
library. For example, assume that OSMAC MACLIB 11 exists as created in
the example in the explanation of the GEN function and the file DCB COpy
exists as follows:

*COPY DCB
DCB macro definition

*COPY DCBD
DCBD macro definition

If you issue the command:

maclib add osmac dcb

the resulting OSMAC MACLIB Al contains the members:

GET
PUT
TTIMER
STIMER

PUT
REGEQU
DCB
DCBD

~~E 1YD£!!QD: The REP (replace) function deletes the directory entry for
the macro definition in the files specified. It then appends new macro
definitions to the macro library and creates new directory entries. For
example, assume that a macro library MYMAC MICLIE contains the members
A, B, and C, and that the following command is entered:

maclib rep mymac a c

The files represented by file identifiers A MACRO and C MACRO each have
one macro definition. After execution of the command, MYMAC MACLIB
contains members with the same names as before, but the contents of 1
and C are different.

~~1 1YD£!!QD: The DEL (delete) function removes the specified macro name
from the macro library directory and compresses the directory so there
are no unused entries. The macro definition still occupies space in the
library, but since no directory entry exists it cannot be accessed or
retrieved. If you attempt to delete a macro for which two macro
definitions exist in the macro library, only the first one encountered
is deleted. For example:

maclib del osmac get put ttimer dcb

138 IBM VM/370 CMS User's Guide

(

March 30, 1979

deletes macro names GET, PUT, TTIMER, and DCB from the directory of the
macro library named OSMAC MACLIB. Assume that OSMAC exists as in the ADD
function example. After the above command, OSMAC MACLIB contains the
following members:

STIMER
PUT
REGEQU
DCBD

COMP Function: Execution of a MACLIB command with the DEL or REP
functionS--can leave unused space within a macro library. The COMP
(compress) function removes any macros that do not have directory
entries. This function uses a temporary file named MACLIB CMSUT1. For
example, the command:

maclib camp mymac

compresses the library MYMAC MACLIB.

MAP Function: The MAP function creates a list containing the name of
each-macro--in the directory, the size of the macro, and its position
within the macro library. If you want to display a list of the members
of a MACLIB at the terminal, enter the command:

maclib map mylib (term

The default option, DISK, creates a file on your A-disk, which
filetype of MAP and a filename corresponding to the filename
MACLIB. If you specify the PRINT option, the list is spooled
virtual printer.

!~te: TERM and PRINT options will erase the old MAP file.

has a
of the

to your

The following CMS commands have MEMBER options, which allow you to
reference individual members of a MACLIB:

• PRINT (to print a member)
• PUNCH (to punch a member)
• TYPE (to display a member)
• FILEDEF (to establish a file definition for a member)

You can use the CMS editor to create MACRO and COpy
use the MACLIB command to place the files in a library.
in a library, you can erase the original files.

files and then
Once they are

To extract a member from a macro library, you can use either the
PUNCH or the MOVEFILE command. If you use the PUNCH command you can
spool your virtual card punch to your own virtual reader:

cp spool punch to *
Then punch the member:

punch testmac maclib (member get noheader

and read it back onto disk:

readcard get macro

Section 8. Developing OS Programs Under CMS 139

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. S1::23-9024-1 for 5748-XX8

In the above example, the member was punched with the NOHEADER option of
the PUNCH coamand,so that a name could be assigned on the READCARD
co •• and line. If a header card had been created for the file, it wou1d
have indicated the filename and filetype as GET MEMBER.

If you use the MOVEFILE command, you must issue a file definition fer
the input member name and the output macro or copy name before entering
the MOVEFILE command:

filedef inmove disk testcopy maclib (member enter
filedef outmove disk enter copy a
movefile

This example copies the member ENTER from the macro library TESTCOPY
MACLIB into a CMS file named ENTER COpy~

When you use the PUNCH or MOVEFILE commands to extract members froa
CMS MACLIBs, each member is followed by a II record, which is a MACLIB
delimiter. You can edit the file and use the DELETE subcommand to
delete the II record.

If you wish to move th~ coaplete MACLIB to another file, use the
COpy FILE command.

The macro libraries that are on the .system disk contain CMS and OS
assembler language macros that you may want to use in your programs:

• CMSLIB MACLIB contains the CMS macros.

I • DMSB20 MACLIB contains the CMS macros for VM/370 Basic System
Extensions (Program No. 5748-XX8).

• OSMACRO MACLIB contains the OS macros that CMS supports or simulates
or those that require no CMS support.

• OSMACR01 MACLIB contains" the macros CMS does not support or simulate.
(You can assemble programs in CMS that contain these macros, but you
must execute them in an OS virtual machine.)

• TSOMAC MACLIB contains TSO macros.

• DOSMACRO MACLIB contains macros used in CMS/DOS.

To obtain a list of the macros in any of these libraries, use the MAP
function of the MACLIB command.

USING OS MACRO LIBRARIES

If you want to assemble source programs that contain macro statements
that are defined in macro libraries on your OS disks, you can use the
FILEDEF command to identify them to CMS so that you can name them when
you issue the GLOBAL command. For example, the commands:

filedef cmslib disk temp maclib c dsn test asm macros
global maclib temp

allow you to access the macro library TEST.ASM.~ACROS on the OS disk
accessed as your C-disk.

140 IBM VM/370 CMS User's Guide"

)

Assembling Programs in eMS
To assemble assembler language source programs into object module
for.at, you can use the ASSEMBLE command, and sFecify assembler options
on the command line; for example:

assemble .myfile (print

assembles a source program named MIFILE ASSEMBLE and directs the output
listing to the printer. All of the ASSEMBLE command options are listed
in the !~LJ1Q £~~ £Q!~~~~ ~~~ ~~£EQ ~~f~E~!£~·

When you invoke the ASSEMBLE command specifying a file with the
filetype of ASSEMBLE, CMS searches all of your accessed disks, using the
standard search order, until it locates the sFecified file. When the
assembler creates its output listing and text deck, it creates files
with filetypes of LISTING and TEXT, and writes them onto disk according
to the following priorities:

1. If the source file is on a read/write disk, the TEXT and LISTING
files are written onto that disk.

2. If the source file is on a read-only extension of a read/write
disk, the TEXT and LISTING files are written onto the parent disk.

3. If the source file is on any other read-only disk, the TEXT and
LISTING files are written onto the A-disk.

In all of the above cases, the TEXT and LISTING files have a filename
that is the same as the input ASSEMBLE file.

The input and output files used by the assembler are assigned by
FILEDEF commands that CMS issues internally when the assembler is
invoked. If you issue a FILEDEF command using one of the assembler
ddna.es before you issue the ASSEMBLE command, you can override the
default file definitions.

The ddname for the source input file (SISIN) is ASSEMBLE.
enter:

filedef assemble reader
assemble sample

If you

then the assembler reads your input file from your card reader, and
assigns the filename SAMPLE to the output TEXT and LISTING files.

Iou could assemble a source file directly from an as disk by
entering:

filedef assemble disk myfile assemble b4 dsn os source file
assemble myfile

In this example, the CMS file identifier MIFILE ASSEMBLE is assigned to
the data set as. SOURCE. FILE and then assembled.

LISTING and TEXT are the ddnames assigned to the SYSPRINT and SISLIN
output of the assembler. Iou might assign file definitions to override
these defaults as follows:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
assemble source

In this example, output from the assembly of the file, SOURCE ASSEMBLE,
is written to the files, ASSEMBLE LISTFILE and ASSEMBLE TEXTFILE.

Section 8. Developing as Programs Under CMS 143

The ddnames PUNCH and CMSLIB are used for SYSPUNCH and SYSLIB data
sets. PUNCH output is produced when you use the DECK option of the
ASSEMBLE command. The default file definition for CMSLIB is the macro
library CMSLIB MACLIB, but you must still issue the GLOBAL command if
you want to use it.

Executing Programs

After you have assembled or compiled a source program you can execute
the TEXT files that were produced by the assembly or compilation. You
may not, however, be able to execute all your OS programs directly in
CHS. There are a number of execution-time restrictions placed on your
virtual machine by VM/370. You cannot execute a program that uses:

• Multitasking
• More than one partition
• Teleprocessing
• ISAM macros to read or write files

The above is only a partial list, representing those restrictions with
which you might be concerned. For a complete list of restrictions, see
the !~LJ1Q El~n~i~g ~ng ~I§!~! Q~n~!g!!Qn Qy!g~.

EXECUTING TEXT FILES

TEXT files, in CMS, are relocatable, and can be executed simply by
loading them into virtual storage with the LOAD command and using the
START command to begin execution. For example, if you have assembled a
source program named CREATE, you have a file named CREATE TEXT. You can
issue the command:

load create

which loads the relocatable object file into storage, and then, to
execute it, you can issue the START command:

start

In the case of a simple program, as in the above example, you can
load and begin execution with a single command line, using the START
option of the LOAD command:

load create (start

When you issue the START command or LOAD command with the START
option, control is passed to the first entry point in your program. If
you have more than one' entry point and you want to begin execution at an
entry point other than the first, you can specify the alternate entry
point or CSECT name on the START command:

start create2

When you issue the LOAD command specifying the filename of a TEXT file,
CMS searches all of your accessed disks for the specified file.

If your pro~ram expects a parameter list to be passed (via register
1), you can specify the arguments on the START command line. If. you
en~er arguments, then you must specify the entry point:

start * name1

144 IBM VM/370 CMS User's Guide

(

)

When you specify the entry point as an asterisk (*) it indicates that
you want to use the default entry point~

You can issue the FILEDEF command to define input and output files any
time before you begin program execution. You can issue all your file
definitions before loading any TEIT files, or issue them during the
loading process. You can find out what file definitions are currently
in effect by issuing the FILEDEF command with no operands:

filedef

You can also use the FILEDEF operand of the QUERY command.

TEIT LIBRARIES (TITLIBS)

You may want to keep your TEIT files in text libraries, that have a
filetype of TITLIB. Like MACLIBs, TITLIBs have a directory and members.
TITLIBs are created and modified by the TITLIB command, which has
functions similar to the MACLIB command:

• The GEN function creates the TITLIB.
• The ADD function adds members to the TITLIB.
• The DEL function deletes members and compresses the TITLIB.
• The MAP function lists members.

There is no REP function; you must use a DEL followed by an ADD to
replace an existing member. The CMS commands that recognize MACLIBs as
special filetypes also recognize TITLIBs, and allow you to display,
print, or punch,TITLIB members.

The TITLIB command reads the object files as it writes them into the
library, and creates a directory entry for each entry point or CSECT
name. If you have a TEIT file named MYPROG, which has a single routine
named BEGIN, and create the TITLIB named TESTLIB as follows:

txt lib gen test lib myprog

TESTLIB contains no entry for the name MYPROG; you must specify the
membername,BEGIN to reference this TITLIB member.

When you want to load members of TITLIBs into storage to execute them
(just as you execute TEIT files), you must issue the GLOBAL command to
identify the TITLIB:

global txt lib test lib
load begin (start

'When you specify more than one TITLIB on the GLOBAL command line, the
order of search is established for the TITLIBs. However, if the AUTO
option is in effect (it is the default), CMS searches for TEIT files
before searching active TITLIBs.

When the TITLIB command processes a TEIT file, it writes an LDT
(loader terminate) card at the end of the TEIT file, so that when a load
request is issued for a TITLIB member, loading terminates at the end of
the member. If you add OS linkage editor control statements to the TEIT
file (using the CMS editor) before you issue the TITLIB command to add
the file to a TITLIB, the control statements are processed as follows:

section 8. Developing OS programs Under CMS 145

!!~: A NAME statement causes the TXTLIB command to create the directory
entry for the member using the specified name. Thereafter, when you want
to load that member into storage or delete it from the TXTLIB you must
refer to it by the name specified on the NAME statement.

~!TR!: If you use an ENTRY statement, the entry point you specify is
validated and checked for a duplicate. If the entry point name is valid
and there are no duplicates in the TEXT file, the entry name is written
in the LDT card. otherwise, an error message' is issued. When this
member is loaded, execution begins at the entry point specified. (See
the following "Determining Program Entry Points.")

!1I!~: An entry is created in the directory for the ALIAS name you
specify. A maximum of 16 alias names can be used in a single text deck.
You may load the single member and execute it by referring to the alias
name, but you cannot use the alias name as the object of v-type address
constant (VCON), because the address of the member cannot be resolved.

~~TS~J: Information you specify on the SETSSI card is written in bytes
26 through 33 of the LDT card.

All other OS linkage editor control statements are ignored by the
TXTLIB command and written into the TXTLIB member. When you attempt to
load the member, the CMS loader flags these cards as invalid.

RESOLVING EXTERNAL REFERENCES

There is no real linkage editor in CMS; the link-edit function, that of
locating external references and loading additional object modules into
storage, is performed by the CMS loader. The CMS loader loads files
into storage as a result of a LOAD or INCLUDE command, or when you issue
a dynamic load request from a program (using the OS macros LOAD, LINK,
or XCTL).

When a file is loaded, the loader checks for unresolved
if there are any, the loader searches your disks for TEXT
filenames that match the external entry name. When it finds
loads the TEXT file into storage. If a TEXT file is not
loader searches any available TXTLIBs for members that match;
is found, it loads the member.

references;
files with

a match, it
found, the
if a match

If there are still unresolved references, for example, if you load a
program that calls routines PRINT and ANALYZE but the loader cannot
locate them, you receive the message:

THE FOLLOWING NAMES ARE UNDEFINED:
PRINT
ANALYZE

You can issue the INCLUDE command to load additional TEXT files or
TXTLIB members into storage so the loader can resolve any remaining
references. For eXample, if you did not identify the TXTLIB that
contains the routines you want to call, you may enter the GLOBAL command
followed by the INCLUDE command:

global txt lib newlib
include print analyze (start

This situation might also occur if you have TEXT files with filenames
that are different from the CSECT names; you must explicitly issue LOAD
and INCLUDE commands for these files.

146 IBM VM/370 CMS User's Guide

(

)

At execution time, if there are still any unresolved references,
their addresses are all set to 0 by the loader, so any attempt to
address them in a program may result in a program check.

The INCLUDE command has the same format and option list (with one
exception) as the LOAD command. The main difference is that when you
issue the INCLUDE command the loader tables are not reset; if you issue
two LOAD commands in succession, the second LeAD command cancels the
effect of the first, and the pointers to the files loaded are lost.

Conversely, the INCLUDE command, which you must issue when you want
to load additional files into storage, should not be used unless you
have just issued a LOAD command. You may sFecify as many INCLUDE
commands as necessary following a LOAD command to load files into
storage.

CONTROLLING THE CMS LOADER

The LOAD and INCLUDE commands allow you to specify a number of options.
You can:

• Change the entry point to which control is to be passed when
execution begins (RESET option).

• Specify the location in virtual storage at Which you want the files
to be loaded (ORIGIN option).

• Control how CMS resolves references and handles duplicate CSECT names
(AUTO, LIB, and DUP options).

• Clear storage to binary zeros before loading files (CLEAR option).

When the LOAD and INCLUDE commands execute, they produce a load map,
indicating the entry points loaded and their virtual storage locations.
You may find this load map useful in debugging your programs. If you do
not specify the NOMAP option, the load map is written onto your A-disk,
in a file named LOAD MAP AS. Each time you issue the LOAD command, the
old file LOAD MAP is erased and the new load map replaces it. If you do
not want to produce a load map, specify the NOMAP option.

You can
discussion
~~fe!~~£~.

find details
of the LOAD

about these, and
command in !~L11~

other options
~~~ £Qmmg~g 

under the 
gDg Ag£!Q 

In addition to the options provided with the LOAD and INCLUDE commands 
that assist you in controlling the execution of TEXT files, you can also 
use loader control statements. These can be inserted in TEXT files, 
using the CMS editor. The loader control statements allow you to: 

• Set the location counter to specify the addres~ at which the next 
TEXT file is to be loaded (SLC statement). 

Section 8. Developing OS Programs Under CMS 147 



• Modify instructions and constants in a 
length of the TEXT file to accomodate 
Include Control Section statements) • 

• Change the entry point (ENTRY statement). 

TEXT file, and change the 
modifications (Replace and 

• Nullify an external reference so that it dces not receive control 
when it is called, and you do not receive an error message when it is 
encountered (LIBRARY statement). 

These statements are also described under the LOAD command in VML37.Q ~11~ 
£.QU.§!!,g ,g1!,g !1.§£!:.Q !!~!~!:~.n£~,. 

When you load a single TEXT file or a TXTLIB membe~ into storage for 
execution, the default entry point is the first CSECT name in the object 
file loaded. You can specify a different entry point at which to start 
execution either on the LOAD (or INCLUDE) command line with the RESET 
option: 

load myprog (reset beta 

where BETA is the alternate entry point of your program, or you can 
specify the entry point on the START command line: 

start beta 

When you load multiple TEXT files (either explicitly or implicitly, 
by allowing the loader to resolve external references), you also have 
the option of specifying the entry point on the LOAD, INCLUDE, or START 
command lines. 

If you do not specifically name an entry point, the loader determines 
the entry point for you, according to the following hierarchy: 

1. An entry point specified on the START command 

2. Th~ last entry specified with the RESET option on a LOAD or INCLUDE 
command 

3. The name on the last ENTRY statement that was read 

4. The name on the last LDT statement that contained an entry name 
that was read 

5. The name on the first assembler- or compiler-produced END statement 
that was read 

6. The first byte of the first control section loaded 

For example, if you load a series of TEXT files that contain no 
control statements, and do not specify an entry point on the LOAD, 
INCLUDE, or START commands, execution begins with the first file that 
you loaded. If you want to control the execution of program subroutines, 
you should be aware of this hierarchy when you lead programs or when you 
place them in TXTLIBs. 

148 IBM VM/370 CMS User's Guide 

( 



) 

An area of particular concern is when you issue a dynamic load (with 
the OS LINK, LOAD, or ICTL macros) from a program, and you call members 
of CMS TITLIBs. The CMS loader determines the entry point of the called 
program and returns the entry point to your program. If a TITLIB member 
that you load has a VCON to another TITLIB member, the LDT card from the 
second member may be the last LDT card read by the loader. If this LDT 
card specifies the name of the second member, then CMS may return that 
entry point address to your program, rather than the address of the 
first member. 

CREATING PROGRAM MODULES 

When your programs are debugged and tested, you can use the LOAD and 
INCLUDE commands, in conjunction with the GENMOD command, to create 
program modules. A module is a nonrelocatable file whose external 
references have been resolved. In CMS, these files must have a filetype 
of MODULE. 

To create a program module, load the TEIT files or TITLIB members 
into storage and issue the GENMOD command: 

load create analyze print 
genmod process 

In this example, PROCESS is the filename you are assigning the 
module; it will have a filetype of MODULE. You could use any name; if 
you use the name of an existing MODULE file, the old one is replaced. 

To execute the program composed of the source files CREATE, ANALYZE, 
and PRINT, enter: 

process 

If PROCESS requires input and/or output files, you will have to define 
these files before PROCESS can execute properly; if PROCESS expects 
arguments passed to it, you can enter them following the MODULE name; 
for example: 

process test1 

For more information on creating program modules, see "Section 13. 
Programming for the CMS Environment." 

USING EIEC PROCEDURES 

During your program development and testing cycle, you may want to 
create EIEC procedures to contain sequen~es of CftS commands that you 
execute frequently. For example, if you need a number of MACLIBs, 
TITLIBs, and file definitions to execute a particular program, you might 
have an EIEC procedure as follows: 

Section 8. Developing OS programs Under CMS 149 



&CONTROL ERROR TIME 
&ERROR SEXIT &RETCODE 
GLOBAL MACLIB TESTLIB OSMACRO OSMACR01 
ASSEMBLE TESTA 
PRINT TESTA LISTING 
GLOBAL TXTLIB TESTLIB PROGLIB 
ACCESS 200 E 
&BEGSTACK 
OS.TEST3.STREAM.BETA 
&END 
FILEDEF INDD1 E DSN ? 
FILEDEF INDD2 READER 
FILEDEF OUTFILE DISK TEST DATA A1 
LOAD TESTA (START 
&IF &RETCODE = 100 &GOTO -RET100 
&IF &RETCODE = 200 &GOTO -RET200 
&EXIT &RETCODE 
-RET100 &CONTINUE 

-RET200 &CONTINUE 

The &CONTROL and &ERROR control statements in the EXEC procedure 
ensure that if an error occurs during any part of the EXEC, the 
remainder of the EXEC does not execute, and the execution summary of the 
EXEC indicates the command that caused the error. 

Note that for the FILEDEF command entered with the DSN ? operand, 
you must stack the response before issuing the FILEDEF command. In this 
example, since the OS data set name has more than eight characters, you 
must use the &BEGSTACK control statement to stack it. If you use the 
&STACK control statement, the EXEC processor truncates all words to 
eight characters. 

When your program is finished executing, the EXEC special variable 
&RETCODE indicates the contents of general register 15 at the time the 
program exited. You can use this value to perform additional steps in 
your EXEC procedure. Additional steps are indicated in the preceding 
example by ellipses. 

For detailed information on creating EXEC procedures, see "Part 3. 
Learning to Use EXEC." 

150 IBM VM/310 CMS User's Guide 

c 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

Section 9. Developing DOS Programs underCMS 

You can use CMS to create, compile, execute and debug DOS programs 
written in assembler, COBOL, or PL/I programming languages. CMS 
simulates many functions of the Disk Operating System '(DOS/VSE) so that 
you can use the interactive facilities of VM/370 to develop your 
programs, and then execute the~ in a DOS virtual machine. 

This section tells you 
describes the CMS commands 
files and CMS/DOS commands 
DOS/VSE: 

• The CMS/DOS environment 

how to use the CMS/DOS environment. It 
you can use to manipulate DOS disks and DOS 

you can use to simulate the functions of 

• Using DOS files on DOS disks 
• Using the ASSGN command 
• Using the DLBL command 
• Using DOS libraries in CMS/DOS 
• Using macro libraries 
• DOS assembler languag~ macros sUFPorted 
• Assembling source programs 
• Link-editing programs in CMS/DOS 
• Executing programs in CMS/DOS 

For a practice terminal session using the commands and techniques 
presented in this section, see "Appendix D: Sample Terminal Sessions." 

eMS/DOS is neither CMS nor is it DOS; it is a composite, and its 
vocabulary contains both CMS and DOS terms. CMS/DOS performs many of 
the same functions as DOS, but where, under DOS, a function is initiated 
by a control card, in eMS it is initiated by a command. Many CMS/DOS 
commands, therefore, have the same names as the DOS control statement 
that '~erforms the same function. In' those cases where the control 
statement you would use in DOS and the command you use in eMS are 
different, the differences are explained. For the most part, whenever a 
term that is familiar to you as a DOS ter~ is used, it has the same 
meaning to CMS/DOS, unless otherwise indicated. 

The eMS/DOS Environment 

After you have loaded CMS into your virtual machine you can enter the 
CMS/DOS environment by issuing: 

set dos on 

If you want to access a DOS system residence volume during your eMS/DOS 
terminal session, you should link to and access the disk that contains 
the DOS SYSRES before you issue the SET command. For example, if you 
share the system residence volume with other users and it is in your 
directory at virtual address 390, you .ould issue the command: 

access 390 g 

and then issue the SET command as follows: 

Section 9. Developing DOS Programs Under eMS 151 



Pg. of GC20-1819-2 Rev ftarch 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

set dos on g 

to indicate that the SYSRES is located on your G-disk. If you are going 
to use the CftS/DOS librarian facilities to access any of the libraries 
on the system residence volume, you must enter the CftS/DOS environment 
this way. 

If you are usingCftS exclusively for DOS applications, you .could put 
the ACCESS and SET DOS ON commands in your PROPILE EXEC. 

If you are going to use access method services functions in CftS/DOS, 
or execute functions that read or write VSAM data sets, you must use the 
YSAft option of the SET DOS ON command: 

set dos on g (vsam 

When you are using CftS/DOS, you can use your virtual machine just as 
you would if you were in the eMS environment; but you cannot execute any 
CftS commands or program modules that load and/or use OS macros. The 
SCRIPT command, for example, uses OS macros, and is therefore invalid in 
the CftS/DOS environment. 

You have, however, in addition to the CP and CftS commands available, 
a series of commands that simulate DOS/VSE functions. Except for the 
DLBL and DOSLIB commands, these commands or oFerands should only be 
issued in the CftSjDOS environment. 

The CMS/DOS commands are summarized in Figure 15. 

DL/I in the eMS/DOS Environment 

Batch DL/I programs can be 
environment. This includes all 
Assembler language. 

written and tested in the 
programs written in COBOL, 

CMS/DOS 
PL/I, and 

Data base description generation and program specification block 
generation can also be executed. However, the aFplication control block 
generation must be submitted to a DOS/VSE virtual machine for execution. 
The data tase recovery and reorganization utilities must also be 
executed in a DOS/VSE virtual machine. 

This support provides the ability to: 

• Interactively code DL/I control blocks and application programs that 
contain imbedded DL/I calls. 

• Store and maintain macros used to generate DL/I control blocks, and 
programs created under CMS, in the CMS library. Production libraries 
are thus isolated from the test environment. 

• Modify and compile programs using the CMS/DOS text manipulation and 
EXEC facilities. 

• Link-edit and execute batch DL/I programs either interactively or in 
CMSBATCH. Online DL/I application programs requiring access to 
CICS/YS must be submitted to a DOS/VSE virtual machine fer 
link-editing, cataloging, and execution. 

The following restrictions apply: 

• All the existing guidelines and restrictions that apply to VSAft data 
set creation, maintenance, and aFplication program use apply to DL/I 
data sets. 

152 IBM VM/370 CftS User's Guide 



Command 

ASSGB 

DLBL 

DOSLIB 

DOSLKED 

DSERV 

DOSPLI 

ESERV 

FCOBOL 

FETCH 

GLOBAL 

LISTIO 

OPTION 

QUERY 

PSERV 

RSERV 

SET 

SSERV 

March 30, 1979 

Function 

Relates system and programmer logical units to physical 
devices. 

Relates a program ddname (filename) to a real disk file 
so you can perform input/output operations on it. 

Lists or deletes phases from a eftS/DOS phase library, or 
compresses the library. 

Link-edits CMS TEXT files or DOS phases from system or 
private relocatable libraries. 

Displays the directories of DOS libraries. 

An EXEC procedure that invokes the DOS/VS PL/I compiler. 

An EXEC procedure that invokes the ESERV utility functions 
on edited assembler language macros. 

An EXEC procedure that invokes the DOS/VS COBOL co.piler. 

Loads executable phases from a DOSLIE or DOS library into 
storage for execution, and optionally starts execution. 

When you want DOSLIBs searched for executable phases or 
macro libraries searched for macro definitions, you must 
identify them with the GLOBAL command. 

Displays the current assignments of system and programmer 
logical units, and optionally creates an EXEC file to 
contain the information. 

Sets or changes the options in effect for the DOS/VS 
COBOL compiler. 

Use QUERY command operands to list current DLBL defintions 
(QUERY DLBL), to determine whether or not you are in 
the CMS/DOS environment (QUERY DOS), the setting of the 
UPSI byte (QUERY UPSI), the DOSLIBs identified by GLOBAL 
commands (QUERY DOSLIB or QUERY LIBRARY), the current 
number of lines per page (QUERY DOSLNCNT), which options 
are in effect for the COBOL compiler (QUERY OPTION). or to 
find out whether you have set a virtual partition size 
(QUERY DOSPART). 

Creates CMS files with a filetype of PROC from the DOS/VS 
procedure library, or displays, prints or punches 
procedures. 

Copies a relocatable module from a DOS library and places 
it in a CMS file with a filetype of TEXT, or displays, 
prints, or punches modules. 

The SET command has operands that allow you to enter or 
leave the CMS/DOS environment (SET DOS ON or SET DOS OFF), 
to set the number of SYSLST lines per page (SET DOSLBCNT). 
to set the UPSI byte (SET UPSI). and to set a virtual 
partition size (SET DOSPART) • 

Creates CMS COPY files from books on DOS source statement 
libraries. 

Figure 15. CMS/DOS Commands and CMS Commands with Special Operands for 
CMS/DOS 

Section 9. Developing DOS Programs Under CMS 153 



Pg. of GC20-1819-2 Rev March 30, 1979 bySupp. SD23-9024-1 for 5748-XX8 

• The CMS/DOS restriction on writing to sequential files applies to 
SHSAM and HSAM. 

• To assemble a DBD or PSB under CMS/DOS, you must first copy the 
DBDGEN and PSBGEN macros from the DOS/VSE source statement library to 
a CMS MACLIB. 

For more information about using DL/I in the eMS/DOS environment, see 
~1Ll ~Q~L!~ §~~~£g1!g~ Infg£~g!!g~· 

Using DOS Files on DOS Disks 

You can have DOS disks attached to your virtual machine by a directory 
entry or you can link to a DOS disk with the LINK command. You can use 
the ACCESS command to assign a mode letter to the disk: 

access 155 b 

and the RELEASE command to release it: 

release b 

Except for VSAM disks, you cannot write on DOS disks, or update DOS 
files on them. You can, however, execute programs and CMS/DOS commands 
that read-from these files, and you can use the LISTDS command to 
display the file-ids of files on a DOS disk; for example: 

listds b 

You can also verify the existence of a particular file. For example, if 
the file-id is NEW.TEST.DATA you can enter: 

listds new test data b 

You can use this form only if the file-id has one- to eight-character 
qualifiers separated by periods. If the file-id of the DOS file you 
want to verify contains embedded blanks, for example NEW.TEST DATA, then 
you have to enter the LISTDS commands with a question mark: 

listds ? b 

CMS responds: 

ENTER DATA SET NAME: 

and you can enter the exact file-id: 

new.test data 

If the data set exists, you receive a response: 

FM DATA SET NAME 
B NEW. TEST DATA 

READING DOS FILES 

Under CMS/DOS, you can execute programs that read DOS sequential (SAM) 
files; you can also execute programs that read and write VSAM files. 
You cannot, however, execute programs to read direct (DAM) or ihdexed 
sequential (ISAM) DOS files. 

154 IBM VM/370 CMS User's Guide 



March 30, 1979 

Complete information on using CMS to access and manipulate VSAM files 
is described in "Section 10. Using Access Method Services and VSAM In 
CMS and CMS/DOS." The discussion below lists the restrictions placed on 
reading SAM files. 

CMS cannot read DOS files that: 

• Have the input security indicator on. 

• Contain more than 16 user labels and/or data extents. (If the file 

• 

has user labels, they occupy the first extent; therefore the file 
must contain no more than 15 data extents.) 

Are multivolume files. 
files. End of volume 
end-of-volume switching. 

Multivolume files are read as single-volume 
is treated as end of file. There is no 

• Have user labels. User labels in user-labeled files are bypassed. 

CMS does net support duplicate volume labels; you cannot access more 
than one volume with the same six-character label while you are using 
CMS/DOS. 

CREATING CMS FILES FROM DOS LIBRARIES 

You can create CMS files from existing DOS files on DOS disks. C~S 
simulates the DOS librarian functions DSERV, RSERV, SSERV, ESERV, and 
PSERV with commands of the same names; you can use these CMS/DOS 
commands to create CMS files from relocatable, source statement, or 
procedure libraries located either on the DOS system residence volume or 
in private libraries. The functions are fully described later in this 
section. 

If you want to create CMS files from DOS files that are not cataloged in 
libraries or from DOS files on tape, you can use the MOVEFILE command. 
The MOVEFILE command allows you to copy a file from one device to 
another device of the same or a different type. Before issuing the 
MOVEFILE command, the input and the output files must be described to 
CMS with the FILEDEF command. 

The MOVEFILE and FILEDEF commands are described and examples are 
given of how to use thea in "Section 8. Developing OS Program Under 
CMS." The procedures are the same for copying DOS files as for OS data 
sets. You must, however, keep the following in mind: 

• Since DOS files on DOS disks do not contain ELKSIZE, RECFM, or LRECL 
options, these options must be specified via the FILEDEF command; 
otherwise, defaults of BLOCKSIZE=32760 and RECFM=U are assigned. 
LREeL is not used for RECFM=U files. 

• If a DOS file-id does not follow OS naming conventions (that is, one­
to eight-byte qualifiers with each qualifier separated by a period; 

Section 9. Developing DOS Programs Under CMS 155 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

up to 44 
operand of 

, file-ide 

characters including periods), 
FILEDEF and the 1 operand of 

you must use the DSN 1 
LISTDS to enter the Des 

You can create individual CMS files for DOS modules from a DOS 
library distribution tape or DOS SYSIN tape. Use the VMFDOS command. 
The VMFDOS command can create a CMS file for each DOS module that 
exists, and the CMS filename corresponds to the DOS module name. You 
can restore individual modules, groups of modules, or the entire 
module set. 

For DOS library distribution tapes, the 1MFDOS command restores 
modules from either system or private (relocatable and/or source 
statement) libraries. The created CMS files have a filetype of 
'TEXT' if they are from a relocatable library. They have a filetype 
of 'MACRO' if they are from a source statement library. 

For DOS SYSIN tapes, modules containing a period as the second 
character (for example, 'A.') of a DOS 'CATALx' control statement 
have a filetype of 'MACRO'. All other files have a filetype of 
'TEXT'. 

The VMFDOS command is described in the !~LJ1~ g!~nning gng ~y§!~~ 
2~~~~g!i~D ~Yide. 

If you have DOS files or source programs on cards, you can create eMS 
files directly by having these cards read into the real system card 
reader. You direct the cards to your virtual machine by punching a 
CP ID card in this format: 

ID HARMONY 

and placing this card in front of your card deck. When the cards 
appear in your virtual card reader, you can read them onto your eMS 
A-disk with the READCARD command: 

readcard dataproc assemble 

You can use the editor to remove any DOS control cards that may be 
included in the deck. 

See "Tape Labels in eMS" for a description of eMS tape labe~ 
processing for CMS/DOS tape files. The sup~ort for tape labels is 
only for files defined by a DTFMT macro. If you do not use this 
macro, eMS bypasses IBM standard labels on input tapes and writes a 
tape mark over any existing labels on an output tape. The eMS 
LABELDEF command is equivalent in eMS/DOS to the DOS/VM TLBL control 
statement when standard tape label processing is used. 

156 IBM VM/370 eMS User's Guide 



Pg. of GC20-1819-2 Rev ftarch 30, 1919 by Supp. SD23-9024-1 for 5148-118 

Using the ASSGN Command 

The 15SGN and DLBL commands perform the same functions for CftS/DOS as 
the 155GN and DLBL control statements in D05/VSE. You use the 155GB 
command to designate an I/O device for a system or programmer logical 
unit (5YSxxx) and, if the device is a disk device, you can use the 
DLBL command to establish a real file identification for a symbolic 
filename in a program. The DLBL command is described under nusing 
the DLBL Command." 

In addition to using the 155GN command to relate real I/O devices 
with symbolic units, you must use it in CftS/DOS to: 

• 1ssign SY5IN or 5Y5IPT for the input source file for a language 
compiler when you use the D05PLI or FCOBOL com.ands. 

• Identify the disk, by mode letter, on which a private core image, 
re1ocatab1e, or source statement library resides. 

5ection 9. Developing 005 Programs Under Cft5 156.1 



March 30, 1979 

156.2 IBM VM/370 CMSpser's Guide 



) 

• Assign SYSIN or SYSIPT to the CMS disk on which an ESERV file, 
containing control statements .for the ESERV program, resides. 

When you enter the ASSGN command, you must supply the logical unit 
and the device; for example: 

assgn sys100 printer 

assigns the logical unit SYS100 to the printer. When you want to make 
an assignment to a disk device, you must specify the mode letter at 
which the disk is accessed. The command: 

assgn sys010 b 

assigns the logical unit SyS010 to your B-disk. 

The system logical units you can assign and the valid device types 
you can assign to them in CMS/DOS follow. 

~!SIfI, ~!~~Q~, ~!~I!: These units can be assigned to disk (mode), TAPE, 
or READER. If you make an assignment to SYSIN, both SYSRDR and SYSIPT 
are also assigned the same device. 

~!SL~I: The system logical unit for listings can be assigned to disk 
(mode), PRINTER, or TAPE. 

~!~1Q~: Terminal or operator output or messages can be assigned to 
PRINTER or TERMINAL •. eMS/DOS always assigns SYSLOG to TERMINAL by 
default, so you never have to make this assignment except when you want 
to alter it. 

~!SPf~: Punched output, for example text decks, can be assigned to 
PUNCH, disk (mode), or TAPE. 

~!SC1~, ~!~~1~, SY~~1~: The system logical· units SYSCLB, SYSRLB, and 
SYSSLB can be assigned to private core image, relocatable, and source 
statement libraries, respectively. The only valid assignments for these 
units is to disk (mode). If you want to reference private libraries 
with the DSERV, ESERV, FETCH, SSERV, or RSERV commands, you must assign 
SYSCLB, SYSRLB, or SYSSLB to the disks on which the libraries reside. 

You can assign programmer logical units SYSOOO through SYS241 with the 
ASSGN command. This deviates from DOS/VS, where the number of 
programmer logical uni~s varies according to the number of partitions. 

MANIPULATING DEVICE ASSIGNMENTS 

Besides assigning I/O devices, the ASSGN command can also negate a 
previous assignment: 

assgn syspch ua 

or specify that, for a given device, no real I/O operation is to be 
performed during the execution of a program: 

assgn sys009 ign 

Section 9. Developing DOS Programs Under CMS 157 



When you release a disk from your virtual machine, any assignments made 
to that disk are unassigned. 

You can find. out the current assignments for system and programmer 
logical units with the LISTIO command, which lists all the system or 
programmer logical units, even those that are unassigned: 

listio 

To list only currently assigned units, enter: 

listio a 

To find out the current assignment of one specific unit, for example 
SYS100, enter: 

listio sys100 

With the EXEC option of the LISTIO command, you can create a disk 
file containing the list of assignments. The $LISTIO EXEC that is 
created contains two EXEC numeric variables, &1 and &2, for each unit 
listed. For example, if you entered the command: 

listio sys081 (exec 

then the file $LISTIO EXEC may contain the record: 

&1 &2 SYS081 PRINTER 

When you use the STAT option, LISTIO lists, for disk devices, whether 
the disk is read-only or read/write; for example: 

listio sys100 
SYS100 B R/i 

indicates that SYS100 is assigned to the B-disk, which is a read/write 
disk. 

You can cancel all current assignments by leaving the CMS/DOS 
environment and then re-entering it: 

set dos off 
set dos on 

VIRTUAL MACHINE ASSIGNMENTS 

When you assign a physical device type to a system or programmer logical 
unit, CMS relates the device to your virtual machine configuration; you 
receive an (error message if you try to assign a logical unit to a device 
not in your configuration. For example, if you are using the ASSGN 
command to assign a logical unit to a disk file, you must specify the 
access mode letter of the disk. If the disk is not accessed, the ASSGN 
command fails. 

For another example, if you issue: 

assgn syspch punch 

the punch specified is your own virtual machine card punch. The. actual 
destination of punched output then depends on the spooling 
characteristics of the punch; if it is spooled to another user or to *, 
then no real cards are punched, but virtual card images are placed in 

158 IBM VM/370 CMS User's Guide 

( 



) 

the virtual reader of the destination userid, which may be another 
virtual machine or your own. 

eMS supports only one reader, one punch, and one printer; you cannot 
make any assignments for multiple output devices in CftS/DOS. When you 
make an assignment for a logical unit that has already been assigned, it 
replaces the current assignment. 

Using the DLBL Command 

Use the DLBL command to supply eMS/DOS with specific file identification 
information for a disk file that is going to be used for input or 
output. For any DLBL command you issue, you must previously have issued 
an 1SSGN command for the disk, specifying a system or programmer logical 
unit. The basic relationship is: 

assgn SYSxxx mode 
dlbl filename mode DSN 1 (SYSxxx 

Both the SYSxxx and the mode values must match on the 1SSGN and DLBL 
commands; the disk on which the file resides must be accessed at mode. 

The filename on the DLBL command line, called a ddname in CMS/DOS, 
corresponds to the symbolic name for a file in a program. If you want to 
reference a private DOS library, you must use one of the following 
ddnames: 

2.Y§l~! 
~2g.!.£g! !!.!!.!1 
SYSCLB 
SYSRLB 
SYSSLB 

~i.!~.!!~!g 
IJSYSCL 
IJSYSRL 
IJSYSSL 

ENTERING FILE IDENTIFICATIONS 

When you issue the DLBL command you must identify the file, by file-id 
(for a DOS file) or by file identifier (for a eMS file). The keywords 
DSN and eftS indicate whether it is a DOS file or a eMS file, 
respectively. 

If the file is a DOS file residing on a DOS disk, you can enter the 
DLBL command in one of two ways. For examFle, for a file named 
TEST.INPUT you could enter either: 

assgn·sys101 d 
dlbl infile d dsn test input (sys101 

-- or 

assgn sys101 d 
dlbl infile d dsn 1 (sys101 
ENTER DATA SET NAME: 
test. input 

For any DOS file with a file-id that contains embedded blanks or 
hyphens, you must use the "DSN 1" form. 

Section 9. Developing DOS Programs Under CMS 159 



When you issue a DLBL command for a CMS file, you enter the filename 
and filetype following the keyword CMS: 

assgn sys102 a 
dlbl outfile a cms new output (sys102 

In this example, if SYS102 is defined as an output file for a program, 
the output is written to your CMS A-disk in a file named NEW OUTPUT. 

You can, for convenience, use a CMS defauit file identifier. If you 
enter: ' 

dlbl out file a cms (sys102 

then the output filetype defaults to that of the ddname and the filename 
to FILE. So, this output file is named FILE OUTFILE. 

You can clear a DLBL definition for a file by using the CLEAR operand of 
the DLBL command: 

dlbl out file clear 

To clear all existing definitions# except those entered wit~ the PEBK 
'option, you can enter: 

dlbl * clear 

This co~mand is issued by the assembler and the language processors when 
they complete execution. Definitions entered with the PERM option must 
be individually cleared. 

Whenever you use the HI Immediate command to halt the execution of a 
program, the DLBL definitions in' effect are cleared, including those 
entered with the PERM option. 

You can find out what definitions are currently in effect by issuing 
the DLBL command with no operands: 

dlbl 

or, you can use the QUERY command with the DLBL operand. 

Using DOS Libraries in eMS/DOS 

CMS/DOS provides you with the capability of using various types of files 
from DOS system or private libraries. You can copy, punch, display at 
the terminal, or print: 

• Books from system or pri va te sour,ce statement libraries using the 
SSERV command 

• Relocatable modules from system' or private relocatable libraries 
using the RSERV command 

• Procedures from the system procedure library using the PSERV command 

160 IBM VM/370 CMS User's Guide 

( 



ftarch 30, 1979 

You can also: 

• Copy and de-edit macros from system and private E sublibraries using 
the ESERV command 

• Access the directories of system or private libraries using the DSERV 
command 

• Link-edit relocatable modules from system or private relocatable 
libraries with the DOSLKED command 

• Read core image phases from system or private core image libraries 
into storage for execution using the FETCH command 

THE SSERV COMMAND 

If you have cataloged source programs or copy files on the system source 
statement library and you want to use CMS to modify and test them, you 
can copy them into CftS files using the SSERV command. For example, 
suppose you want to copy a book named PROCESS from the A sublibrary on 
the system residence volume. The DOS system residence is in your 
virtual machine configuration at virtual address 350, and you have 
accessed it as your F-disk. First, to indicate to CftS/DOS that the 
system residence is on your F-disk, you enter: 

set dos on f 

then you can enter the SSERV command, specifying the sublibrary 
identification and the book name: 

sserv a process 

This creates, from the A sublibrary, a file named PROCESS COpy and 
places it on your A-disk. If the book contained assembler language 
source statements you would want the filetype to be ASSEftBLE, so you may 
enter: 

sserv a process assemble 

If you want to copy a book from a private source statement library, 
you must first use the ASSGN and DLBL commands to make the library known 
to CftS/DOS. For example, to obtain a copy file from a private library 
on a DOS disk accessed as your D-disk, enter: 

assgn sysslb d 
dlbl ijsyssl d dsn 1 (sysslb 
ENTER DATA SET NAME: 
program. test library 

NOV, when you enter the SSERV command: 

sserv t setup copy 

the book named SETUP in the T sublibrary of PROGRAft.TEST LIBRARY is 
copied into a CMS file named SETUP COPY. If SETUP is not found in the 
private library, then CMS searches the system library, if it is 
available. 

Section 9. Developing DOS Programs Under CftS 161 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp,. SD23-9024-1 for 5748-XX8 

THE R5ERV COMMAND 

In CMS/DOS, to manipulate relocatable modules that have been cataloged 
either on the system or a private relocatable library you must first 
copy them into CMS files with the RSERV command. You can link-edit 
.odules directly from DOS relocatable libraries, but if you ~ant to add 
or modify linkage editor control statements for a module, you must place 
the control statements ina CMS file. 

If you are copying a relocatable module from the system relocatable 
library, then you should make sure that you have indicated the system 
residence disk when you entered the CMS/DOS environment: 

set dos on f 

then you can issue the RSERV command specifying the name of the 
relocatable module you want to copy: 

rserv rtna 

The ~xecution of this command results in the creation of a CMS file 
named RTNA TEXT on your A-disk. 

If you want to copy a relocatable module from a private relocatable 
library, you must first use the AS5GN and DLBL commands to make the 
private library known to CMS/DOS: 

assgn sysrlb d 
dlbl ijsysrl d dsn reloc lib (sysrlb 

Then, issue the RSERV command for a specific module in that library: 

rserv testrtna 

to create the CMS file TESTRTNA TEXT from the module named TESTRTNA. If 
the module TESTRTNA is not found in RELOC.LIB, eMS searches the system 
library, if it is available. 

THE PSERV COMMAND 

If you want to copy DOS cataloged procedures intoCMS files to use. for 
example, in preparing job streams for a DOS/VS virtual machine, you can 
use the PSERV command: 

pserv prep job 

This command creates a CMS file on your A-disk; the file is named 
PREPJOB PROC. To copy a procedure from the procedure library you must 
have entered the CMS/DOS environment specifying a disk mode for the 
system residence volume. 

You cannot execute DOS/VSprocedures directly from the eMS/DOS 
environment~ However, if you modify a procedure, you can punch it to a 
virtual machine that is running a DOS/VSE system. and execute" it there. 

162 IBM VM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by SUppa SD23-9024-1 for 5748-XX8 

THE ESERV COMMAND 

The CMS/DOS ESERV command is actually an EXEC procedure that calls the 
DOS/VSE ESERV utility program. To use the ESERV program, you first must 
use the CMS Editor to create a file with a filetype of ESERV that 
contains the ESERV control statements you want to execute. For example, 
if you want to write a de-edited copy of the macro DTFCD onto your 
A-disk, you might create a file named DTFCD ESERV, with the record: 

PUNCH E.DTFCD 

As when you submit ESERV jobs in DOS/VSE, column 1 must be blank. 

Then, you must assign SYSIN to the device on which the ESERV source 
file resides, usually your A-disk: 

assgn sysin a 

Then you can enter the ESERV command specifying the filename of the 
ESERV file: 

eserv dtfcd 

No other ASSGN commands are required; the CMS/DOS ESERV EXEC makes 
default assignments for SYSPCH and SYSLST to disk. 

To copy and de-edit macros from a private E sublibrary, issue the 
ASSGN and DLBL commands to identify the library. For example, to 
identify a source statement library named TEST.MACROS on the DOS disk 
accessed as the C-disk, enter: 

assgn sysslb c 
dlbl ijsyssl c dsn test macros (sysslb 

The SYSLST output is contained in a CMS file with the same filename 
as the ESERV file and a filetype of LISTING; you must examine the 
LISTING file to see if the ESERV program executed successfully. You can 
either edit it (using the CMS editor), or display its contents with the 
TYPE command: 

type dtfcd listing 

The SYSPCH output is contained in a file with the same name as the 
ESERV file and a filetype of MACRO. If you want to punch ESERV output 
to your virtual card punch, make an assignment of SYSPCH to PUNCH. 

When you use the PUNCH or DSPCH ESERV control statements, CATAL.S, 
END, or /* records may be inserted in the output file. When you use the 
MACLIB command to add the MACRO file to a CMS macro library, these 
statements are ignored. 

See "Using Macro Libraries" for information on 
manipulating CMS macro libraries. 

THE DSERV COMMAND 

creating and 

You can use the DSERV command to examine the contents of system or 
private libraries. If you do not specify any options with it, the DSERV 
co •• and creates a disk file, named DSERV MAP, on your A-disk. You can 
use the PRINT or TERM options to specify that the directory list is 
either to be printed on your spooled printer or displayed at your 
terminal. You can also use the SORT option to create a list in 
collating sequence. 

Section 9. Developing DOS Programs Under eMS 163 



Pg,. of GC20-1819-2 Rev March 30.,1919 by Supp. SD23-9024.-1 for 5148-118 

In order to examine a system directory, you must have 
CMS/DOS environment specifying the ~ode letter of the 
residence: 

set dos on f 

entered the 
DOS system 

If you want to examine the directory of a private source statement, 
core image, or relocatable library you must issue the ASSGN and DLEL 
commands establishing SYSSLB, SYSCLB, or SYSRLB before using the DSEBV 
cOJllmand. 

For example, to display at your terminal an alphameric list of 
procedures cataloged on the system procedure library, you would issue: 

dserv pd (sort term 

If the directory you are exam1n1ng is for a core image library, you 
can specify a particular phase name to ascertain the existence of the 
phase: 

dserv cd phase $$bopen (term 

To list the directory of a private source statement library, you 
would first issue the ASSGN and DLBL commands: 

assgn sysslb b 
dlbl ijsyssl b dsn test source (sysslb 

then enter the DSERV command: 

dserv sd 

The CMS file, DSEBV MAP A, that is created in this example contains the 
directory of the private source statement library TEST.SOURCE. 

USING DOS CORE IMAGE LIBRARIES 

You can load core image phases from DOS core image libraries into 
virtual storage and execute them under CMS/DOS. Since CMS cannot write 
directly to DOS disks, linkage editor output under CMS/DOS is placed in 
a special CMS file called a DOSLIB. When you execute the FETCH command 
in CMS/DOS you can load phases from either system or private DOS core 
image libraries as well as from CMS DOSLIBs. More information on using 
the FETCH command is contained under "Executing programs in CMS/DOS~" 

Using Macros Libraries 

DOS/VS macro libraries cannot be accessed directly by the VM/310 
assembler. If you want to assemble DOS programs in CMS/DOS that use DOS 
macro or copy files that are on the system or a private macro library 
you must first create a eMS macro library (MACLIE) containing the macros 
you wish to use. Since the process of creating a CMS MACLIB from the 
DOS system source statement library (E sublibrary) can be very 
time-consuming, you should check with your installation's system 
programmer to see if it has already been done, and to verify the 
filename of the m~cro library, so that you can use it in CMS/DOS. 

!gte: The DOS/VSE PL/I and DOS/VSE COBOL compilers executing in CMS/DOS 
cannot read macro or cOFY files from CMS MACLIBs. 

164/ IBM VM/310 CMS User's Guide 



) 

) 

If you want to extract DOS system macros te modify them for your 
private use, or if you want to use macros from a private library in CftS, 
you must use the procedure outlined below to create the MACLIB files. 

CMS MACLIBS 

A CMS macro library has a filetype of MACLIB. You can create a MACLIB 
from files with filetypes of MACRO or COPY. A MACRO file may contain 
macro definitions; COpy files contain predefined source statements. 

When you want to assemble a source program that uses macro or copy 
definitions, you must ensure that the library containing the code is 
identified before you invoke the assembler. Otherwise, the library is 
not searched. You identify libraries to be searched using the GLOBAL 
command. For example, if you have two MACLIBs that contain your private 
macros and copy files whose names are TESTMAC ftACLIB and TESTCOPY 
MACLIB, you would issue the command: 

global maclib test mac testcopy 

The libraries you specify on a GLOBAL command line are searched in the 
order you specify them. A GLOBAL command remains in effect for the 
remainder of your terminal session, or until you IPL CMS. To find out 
what macro libraries are currently available fer searching, issue the' 
command: 

query maclib 

You can reset the libraries or the search order by reissuing the GLOBAL 
command. 

CREATING A CMS MACLIB 

To create a CMS macro library, each macro or copy file you want included 
in the MACLIB must first be contained in a eftS file with a filetype of 
COpy or MACRO. If you are creating a CMS MACLIB file from a DOS library 
you must use the SSERV command to copy a file from any source statement 
library other than an E sublibrary, or use the ESERV command to copy and 
de-edie-a macro from an E sublibrary. The SSERV command uses a default 
filetype of COPY; the ESERV command uses a default filetype of MACRO. 

The f~llowing example shows how to copy macros 
and shows how to create and use the CMS ftACLIB 
macros. 

from various sources 
that contains these 

1. Enter the CMS/DOS environment with the DOS system residence on a 
disk accessed as mode C: 

set dos on c 

2. Copy the macro book named ~PEN from the A sublibrary of the system 
source statement library: 

sserv a open 

Section 9. Developing DOS Programs Under CMS 165 



3. Establish a private source statement library: 

access 351 d 
assgn sysslb d 
dlbl ijsyssl d dsn ? (sysslb 
test source. lib 

4. Issue the SSERV command for a macro in the M sublibrary of TEST 
SOURCE.LIB: 

sserv II releas 

5. create an ESERV file to copy from the E sublibrary: 

edit contrl eserv 
NEW FILE 
EDIT: 
input punch contrl 
file 

6. Execute the ESERV command: 

assgn sysin a 
eserv contrl 

7. create a CMS macro library named MYDOSMAC fro~ the files just 
created, which are named OPEN COpy, RELEAS COPY, and CONTRL MACRO: 

8. 

maclib gen mydosmac open releas contrl 

To use these macros in an 
indicate that this MACLIB is 
file: 

global maclib mydosmac 

assembler language program, you must 
accessible before assembling a source 

THE MACLIB COMMAND 

The MACLIB command performs a variety of functions. You use it to: 

• Create the MACLIB (GEN function) 
• Add, delete, or replace members (ADD, DEL, and REP functions) 
• Compress the MACLIB (CaMP function) 
• List the contents of the MAC LIB (MAP function) 

Descriptions of these MACLIB command func~ions follow. 

§~! !Y~£l!Q~: The GEN (generate) function creates a CMS macro library 
from input files specified on the command line. The input files must 
have filetypes of either MACRO or COPY. For example: 

maclib gen mymac get pdump put regequ 

creates a macro library with the file identifier MYMAC MACLIB A1 from 
macros existing in the files with the file identifiers: 

GET { MACRO },PDUMP, {MACRO}, PUT { MACRO },and REGEQU { I1ACRO} 
COpy COpy COpy . COpy 

If a file named MYMAC MACLIB A1 already exists, it is erased. 

166 IBM VM/370 CMS User's Guide 

( 



) 

) 

Assume that the files GET MACRO, PDUMP COPY, PUT MACRO, and REGEQU 
COPY exist and contain macros in the following form: 

GET MACRO PDUMP COpy PUT MACRO REGEQU COpy 
--------- ---------- --------- -----------

GET *COpy PDUMP PUT XREG 
PDUMP 

WAIT *COPY WAIT YREG 
WAIT 

The resulting file, MYMAC MACLIB A1, contains the members: 

GET . 
WAIT 
PDUMP 

WAIT 
PUT 
REGEQU 

The WAIT macro, which 
appears twice in the 
duplicate macro names. 
from MYMAC MACLIB, the 
used. 

appears twice in the input to the command, also 
output. The MACLIB command does not cbeck for 
If, at a later time, the WAIT macro is requested 
first WAIT macro encountered in the directory is 

When COpy files are added to MACLIBs, the name of the library member 
is taken from the name of the COpy file, or from the *COPY statement, as 
in the file PDUMP COPY, above. Note that although the file REGEQU COpy 
contained two macros, they were both included in the MACLIB with the 
naae REGEQU. When the input file is a MACRO fil~, the member name is 
taken fro. the macro prototype statement in the MACRO file. 

A~~ IYA£~i2A: The ADD function appends new members to an existing macro 
library. For example, assume that MYMAC MACLIB A1 exists as created in 
the example in the explanation of the GEN function and the file DTFDI 
COpy exists as follows: 

*COPY DTFDI 
DTFDI macro definition 

*COPY DIMOD 
DIMOD macro definition 

If you issue the command: 

aaclib add mymac dtfdi 

the resulting MYMAC MAC LIB A1 contains the members: 

GET 
WAIT 
PDUMP 
WAIT 

PUT 
REGEQU 
DTFDI 
DIMOD 

~]~ IYA£~i2~: The REP (replace) function deletes the directory entry for 
the macro definition in the files specified. It then appends new macro 
definitions to the macro library and creates new directory entries. For 
example, assume that a macro library TESTKAC MACLIB contains the members 
A, B, and C, and that the following command is entered: 

maclib rep testaac a c 

The files represented by file identifiers A MACRO and C MACRO each have 
one macro definition. After execution of the command, TEST MAC MACLIB 
contains members with the same names as before, but the content~ of A 
and C are different. 

Section 9. Developing DOS Programs Under CMS· 167 



J2~1 l.!Ul£:tiQ!!: The DEL (delete) function removes the specified macro name 
from the macro library d~rectory and compresses the directory so there 
are no unused entries. The macro definition still occupies space in the 
library, but since no directory entry exists, it cannot be accessed or 
retrieved. If you attempt to delete a macro for which two macro 
definitions exist in the macro library, only the first one encountered 
is deleted. For example: 

maclib del mymac get put wait dtfdi 

deletes macro names GET, PUT, WAIT, and DTFDI from the directory of the 
macro library named MYMAC MACLIB. Assume that MYMIC exists as in the IDD 
function example. After the above command, MYMIC MICtIB contains the 
following members: 

PDUMP 
WAIT 
REGEQU 
DIMOD 

COMP Function: Execution of a MICLIB command with the DEL or REP 
functions--can leave unused space within a macro library. The CaMP 
(compress) function removes any macros that do not have directory 
entries. This function uses a temporary file named MICLIB CMSUT1. For 
example, the command: 

maclib comp mymac 

compresses the library MIMAC MACLIB. 

MAP Function: The MIP function creates a list containing the name of 
each-iacro--in the directory, the size of the macro, and its position 
within the macro library. If you want to display a list of the members 
of a MAeLIB at the terminal, enter the command: 

maclib map mymac (term 

The default option, DISK, creates a file on your A-disk which has a 
filetype of MAP and a filename equal to the filename of the MACLIB. If 
you specify the PRINT option, then a copy of the map file is spooled to 
your virtual printer as well as being written onto disk. 

The following CMS commands supply a MEMBER option, which allows you to 
reference individual members of a MACtIB: 

• PRINT (to print a member) 
• PUNCH (to punch a member) 
• TYPE (to display a member) 
• FILEDEF (to establish a file definition for a member) 

Iou can use the CMS editor to create the MACRO and COpy files and 
then use the MACLIB command to place them in a library. Once they are 
in a library, you can erase the original files. 

ToWextract a member from a macro library, you can use either the 
PUNCH or the MOVBFILE command. If you use the PUNCH command you can 
spool your virtual card punch to your own virtual reader: 

cp spool punch to * 

168 IB~ VM/370 CMS User's Guide 

i 
\~ 

( 



Pg~ of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5148-118 

Then punch the member: 

punch test mac maclib (member get noheader 

and read it back onto disk: 

readcard get macro 

In the above example, the member was punched with the NOHEADER option of 
the PUNCH command, so that a name could be assigned on the RE1DCABD 
command line. If a header had been created for the file, it would have 
indicated the filename and filetype as GET MEMBER. 

If you use the MOVEFILE command, you must issue a file definition for 
the input member name and the output macro or copy file before entering 
the MOVEFILE command: 

filedef inmove disk testcopy maclib (member enter 
filedef outmove disk enter copy a 
movefile 

This example copies the member ENTER from the macro library TESTCOPY 
MACLIB A into a CMS file named ENTER COPY. 

When you use the PUNCH or MOVEFILE commands to extract members fro. 
CMS MACLIBs, each member is followed by a II record, which is a MAetIB 
delimiter. You can edit the file and use the DELETE subcommand to 
delete the II record. 

If you wish to move the complete MACtIB to another file, use the 
COPYFILE command. 

The macro libraries that are on the systea disk contain CMS, DOS, and OS 
assembler language macros. The MACLIBs are: 

• CKSLIB MACLIB, which contains the CMS macros. 

I • DKSB20 MACLIB contains the CMS macros for VM/310 Basic Syste. 
Extensions (Program No. 5148-118). 

• DOS MACRO MACLIB, which contains DOS/VS macros that CMS/DOS routines 
use. 

• OSMACRO MACLIB, OSMACR01 MACLIB, and TSOMAC MACtIB, which are used by 
as programmers. 

DOS Assembler Language Macros Supported 

Figure 16 lists the DOS/VSE assembler language macros supported by 
CMS/DOS. You can assemble source programs that contain these macros 
under CMS/DOS, provided that you have the macros available in either 
your own or a shared CMS macro library,. The macros whose functions are 
described in the "Function" column with the term "no-op" are supported 
for assembly only; when you execute programs that contain these m~cros, 
the DOS/VSE functions are not performed~ To accomFlish the ·macro 
function you must execute the program in a DOS/VSE virtual machine. 

Section 9. Developing DOS Programs Under CMS 169 



Pg.;. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5748-XX8 

Ma£!:Q 
CALL 
CANCEL 
CDLOAD 
CHECK 
CLOSEt 

CLOSER 
CNTRL 
COMRG 

DEO 
DEOB 
DTFxXl 
DUMP 
ENQ 
ENOB 
EOJ 
ERET 
EXCP 
EXIT PC 
EXIT AB 
FCEPGOUT 
FETCH 

FREEVIS 
GENL 
GET 
GETVIS 
GETIME 
JDUMP 
LOAD 
!!VCOM 
NOTE 
OPEN/ 

OPENR 
PAGE IN 
PDUMP 
PFIX 
PFREE 
POINTR 
POINTS 
POINTi 
POST 
PRTOV 
PUT 
PUTR 
READ 
RELEASE 
RELPAG 
RELSE 
RETURN 
RUNMODE 
SECTVAL 
SEiZE 
SETIME' 
SETPFA 

~!£ 

06 
65 

33 

41 
9 

42 
2 

14 

00 
17 
95 
86 
01 
02 
62 

61 
34 

04 
05 

87 

67 
68 

40 

64 
85 

66 
75 
22 
10/24 
71 

Function 
Pass-control to another program 
Terminate processing 
Load a VSAM phase 
Verify completion of a read or write operation 
Deactivate a data file 

Control a physical device 
Return address of background partition 

communication region 
no-op 
Release a resource 
Establish file definitions 
Dump storage and registers and terminate processing 
no-op 
Protect a resource 
Terminate processing normally 
Provide an error routine 
Execute a channel program 
Return from program check routine 
Return from abnormal termination routine 
no-op 
Load and pass control to a phase 
Load and pass control to a logical transient 
Release user free storage 
Generate a phase directory list 
Access a sequential file 
Obtain user free storage 
Get the time of day 
Dump storage and registers and terminate processing 
Read a phase into storage 
Modify bytes in the partition communication region 
Manage data set access 
Activate a data file 

no-op 
Dump storage and registers and continue processing 
no-op 
no-op 
Position a file for reading 
Reposition a file to its beginning 
Position a file for writing 
Post the event control block 
Control printer overflow 
Write to a ~equential file 
Communicate with the system operator 
Access a sequential file 
Release a system resource 
no-op 
Skip to begin reading next blcck 
Return control to calling program 
Check if program is running real or virtual 
Obtain a sector number 
no-op 
no-op 
no-op 

tThe declarative macros supported are: 
DTFCN, DTFCD, DTFPR, DTFDI, DTFMT, DTFSD, DTFCP, and DTFSL 

Figure 16. DOS/VSE Macros Supported by CMS (Part 1 of 2) 

170 IBM VM/370 CMS User's Guide· 



Pg. of GC20-1819-2 Rev March 30,1979 by Supp. SD23-9024-1 for 5748-XI8 

!t~££2 
STIlT AB 

PC 
IT 
OC 

TRACK FREE 
TRACK HOLD 
TRUNC 
TTIMER 
USE 
WAIT 
WRITE 
xxMODl 

~!~ 
37 
16 
20 
18 
36 
35 

52 
63 
07 

Function 
ProvIde-or terminate linkage to abnormal ending 

routine 
no-op 
no-op 
no-op 
no-op 
Skip to begin writing next block 
Return a 0 in Register 0 (effectively a noop) 
Reserve a systen resource 
Wait for the completion of I/C 
Write to a sequential file 
Create Logical IOCS routine inline 

lThe DOS logic modules supported are: 
CDMOD, PRMOD, DIMOD, MTMOD, SDMODxx, and CPMOD 

Figure 16. DOS/VSE Macros Supported by CMS (Part 2 of 2) 

Assembling Source Programs 

If you are a DOSjVSE assembler language programmer using CMS/DOS, you 
should be aware that the assembler used is the VM/370 assembler, not the 
DOS/VSE assembler. The major difference is that the VM/370 assembler, 
invoked by the ASSEMBLE command, is designed for interactive use, so 
that when you assemble a program, error messages are displayed at your 
terminal when compilation is comFleted, and you do not have to wait for 
a printed listing to see the results. You can correct your Source file 
and reassemble it immediately. When your program assembles without 
errors, you can print the listing. 

To specify options to be used during the assembly, you enter them on 
the ASSEMBLE command line. So, for example, if you do not want the 
output LISTING file placed on disk, you can direct it to the printer: 

assemble myfile (print 

All of the ASSEMBLE command options are listed in Y~L37Q £~~ £om~£ ~~g 
~!!g~ !!.~!~£~1l£~. 

When you invoke the ASSEMBLE command specifying a file with a 
filetype of ASSEMBLE, CMS' searches all of your accessed disks, using the 
standard search order, until it locates the file. When the assembler 
creates the output LISTING and TEXT files, it writes them onto disk 
according to the following priorities: 

1. If the source file is on a read/write disk,' the TEXT and LISTING 
files are written onto the same disk. 

2~ If the source file is on a read-only disk that is an extension of a 
read/write disk, the TEXT and LISTING files are written onto the 
parent disk. 

3. If the source is on any other read-only disk, the TEXT and LISTING 
files are written onto the A-disk. 

In all of the above cases, the filenames assigned to the TEXT and 
LISTING files are the same as the filename of the input file. 

The output files used by the assembler are defined via FILEDEF 
commands issued by CMS when it calls the assembler. If you issue a 

Section 9. Developing DOS programs Under CMS 111 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-IX8 

FILEDEF command using one of the assembler ddnames before you issue the 
ASSEMBLE command, you can override the default file definitions. 

The ddname for the source input file is ASSEM~LE. If you enter: 

filedef assemble reader 
assemble sample 

then the asiembler reads your input file from your card reader, and 
assigns the filename SAMPLE to the output TEXT and LISTING files~ You 
can use this method to assemble programs directly from DOS sequential 
files on DOS disks. For example, to assemble a source file named 
DOSPROG from a DOS disk accessed as a C-disk, you could enter: 

filedef assemble c dsn dosprog (recfm f lrecl 80 
assemble dosprog 

Again, the name you assign on the ASSEMBLE command may be anything; the 
assembler uses this name to assign filenames to the TEXT and LISTING 
output files. 

LISTING and TEXT are the ddnames assigned to the SYSLST and SYSPCH 
output of the assembler. You might issue file definitions to override 
these defaults as follows: 

filedef listing disk assemble listfile a 
filedef text disk assemble textfile a 
assemble source 

When these commands are executed, the output from the assembly. of the 
file SOURCE ASSEMBLE is written to the disk files ASSEMBLE LISTFILE and 
ASSEMBLE TEXTFILE. 

Link-editing Programs In eMS/DOS 

When the assembler or one of the language compilers executes, the object 
module produced is written to a CMS disk in a file with a filetype of 
TEXT. The filename is always the same as that of the input source file. 
These TEXT files (sometimes referred to as decks, although they are not 
real card decks) can be used as input to the linkage editor or can be 
the target of an INCLUDE linkage editor control statement. 

You can invoke the CMS/DOS linkage editor with the DOSLKED command, 
for example: 

doslked test testlib 

where TEST is the filename of either a DOSLNK or TEXT file (that is, a 
file with a filetype of either DOSLNK or TEXT) or the name of a 
relocatable module in a system or private relocatable,library. TESTLIB 
indicates the name of the output file which, in CMS/DOS, is a phase 
library with a filetype of DOSLIB. 

When you issue the DOSLKED command, CMS first searches for. a file 
with the specified name and a filetype of DOSLNK. If none are found, it 
searches the private relocatablelibrary, if you have assigned one (you 
must issue an ASSGN command for SYSRLB and use the ddname IJSSYRL in a 
DLBL state,ent). If the module is still not found, CMS searches all of 
your accessed disks for a file with the specified name and a fil~type of 
TEXT~ Last, eMS searches the system relocatable library, if it is 
available (you must enter the CMS/DOS environment specifying the mode 
letter of the DOS/VSE system residence if you want to acces·s the system 
libraries) '. 

172 IBM VM/370 CMS User's Guide 



) 

LINKAGE EDITOR INPUT 

You can place the linkage editor control statements ACTION, PHASE, 
INCLUDE, and ENTRY in a CMS file with a filetype of DOSLNK. When you 
use the INCLUDE statement, you may specify the filename of a CMS TEXT 
file or the name of a module in a DOS relocatable library: 

INCLUDE XYZ 

or you may use the INCLUDE. control statement to indicate that the object 
code follows: 

INCLUDE 
(CMS TEXT file) 

A typical DOSLNK file, named 
following: 

ACTION REL 
PHASE PROGMAIN,S 
INCLUDE SUBA 
PHASE PROGA,* 
INCLUDE SUBB 

When you issue the command: 

doslked control 

CONTROL DOSLNK, might contain the 

the linkage editor searches the following for the object files SUBA and 
SUBB: 

• A DOS private relocatable library, provided you have issued the ASSGN 
and DLBL commands to identify it: 

assgn sysrlb d 
dlbl ijsysrl d dsn ? (sysrlb 

• Your CMS disks for files with filenames SUBA and SUBB and a filetype 
of TEXT 

• The system relocatable library located on the DOS system residence 
volume (if it is available) 

When you want to link-edit individual CMS TEXT files, you can insert 
linkage editor control statements in the file using the CMS editor and 
then issue the DOSLKED command: 

edit rtnb text 
EDIT: 
input include rtnc 
file 
doslked rtnb mydoslib 

When the above DOSLKED command is executed, the CMS file RTNB TEXT is 
used as linkage editor input, as long as there is no file named RTNB 
DOSLNK. The ACTION statement, however, is not recognized in TEXT files. 

You can also link-ed1t relocatable modules directly from a DOS system 
or private relocatable library, provided that you have identified the 
library. If you do this, however, you cannot provide control statements 
for the linkage editor. 

Section 9. Developing DOS programs Under CMS lJ3 



To link-edit a relocatable module from a DOS private library and add 
linkage editor control statements to it, you could use this procedure: 

1. Identify the library and use the RSERV command to copy the 
relocatable module into a CMS TEXT file. In this example, the 

-module RTNC is to be copied from the library OBJ.MODS: 

assgn sysrlb e 
dlbl ijsysrl e dsn obj mods (sysrlb 
rserv rtnc 

2. create a DOSLNK file, insert the linkage editor control statements, 
and copy the TEXT file created in step 1 into it using the GBTPILE 
subcommand: 

edit rtnc doslnk 
input action reI 
get file rtnc text a 
file 

3. Invoke the linkage editor with the DOSLKED command: 

doslked rtnc mydoslib 

Alternatively, you could create a DOSLNK file with the following 
records: 

ACTION REL 
INCLUDE RTNC 

and link-edit the module directly from the relocatable library. If you 
do not need a copy of the module on a CMS disk, you might want to ~se 
this method to conserve disk space. 

When the linkage editor is reading modules, it may encounter a blank 
card at the end of a file, or a * (comment) card at the beginning of a 
file. In either case, it issues a warning message indicating an invalid 
card, but continues to complete the link-edit. 

LINKAGE EDITOR OUTPUT: CMS DOSLIBS 

The CMS/DOS linkage editor always places the link-edited executable 
phase in a CMS library with a filetype of DOSLIB. You should specify 
the filename of the DOS LIB when you enter the DOSLKED command: 

doslked progO templib 

where PROGO is the relocatable module you are link-editing and TEMPLIB 
is the filename of the DOSLIB. 

If you do not specify the name of a nOSLIB, the output is placed in a 
DOSLIB that has the same name as the DOSLNK or TEXT file being 
link-edited. In the above example, a CMS DOSLIB is created named 
TEMPLIB nOSLIB, or, if the file TEMPLIB DOSLIB already exists, the phas~ 
PROGO is added to it. 

nOSLIBs can contain relocatable core image phases suitable for 
execution in CMS/DOS. Before you can access phases in it, you must 
identify ~t to CMS with the GLOBAL command: 

global doslib templibpermlib 

174, IBM VM/310 CMS User's Guide 



) 

When CMS is searching for executable phases, it searches all nOSLlBs 
specified on the last GLOBAL nOSLIB command line. If you have named a 
number of DOSLIBs, or if any particular DOSLIB is very large, the time 
required for CMS to fetch and execute the phase increases. You should 
use separate DOSLIBs for executable phases, whenever possible, and then 
specify only the DOSLlBs you need on the GLOBAL command. 

When you link-edit a module into a DOSLIB that already contains a 
phase with the same name, the directory entry is updated to point to the 
new phase. However, the space that was occupied by the old phase is not 
reclaimed. You should periodically issue the command: 

doslib comp lib name 

where libname is the filename of the DOSLIB, to compress the nOSLIB and 
delete unused space. 

The DOSLKED command also produces a linkage editor map, which it writes 
into a CMS file with a filename that is that of the name specified on 
the DOSLKED command line and a filetype of MAP. The filemode is always 
A5. If you do not want a linkage editor map, use the NOMAP option on 
the ACTION statement in a DOSLNK file. 

Executing Programs in eMS/DOS 

After you have assembled or compiled a source program and link-edited 
the TEXT files, you can execute the phases in yeur CMS virtual machine. 
You may not, 'however~ be able to execute all your DOS programs directly 
in CMS. There are a number of execution-time restrictions placed on your 
virtual machine by VM/370. you cannot execute a Frogram that uses: 

• Multitasking 
• More than one partition 
• Teleprocessing 
• ISAM macros to read or write files 

I • CMS module files created by DOS programs 

The above is only a partial list, representing those restrictions with 
which you might be concerned. For a complete list of restrictions, see 
the !~Ll1Q E!g~~i»g g~g ~I2!~! §~~~!g!!Q~ §y!g~. 

EXECUTING DOS PHASES 

You can load executable phases into your CMS virtual machine using the 
FETCH command. Phases must be link-edited before you load them; they 
must have been link-edited with ACTION REL. When you issue the FETCH 
command, you specify the name of the phase to be loaded: 

fetch myprog 

Then you can begin executing the program by issuing the START command: 

start 

Section 9j Developing DOS Programs Under C~S 175 



orr you can fetch a phase and begin executing it on a single command 
line: 

fetch prog2 (start 

When you use the FETCH command without the START option, CMS issues a 
.essage telling you at what virtual storage address the phase is loaded: 

PHASE PROG2 ENTRY POINT AT LOCATION 020000 

Location X'20000' is the starting address of the user program area for 
CMS; relocatable phases are always loaded starting at this address 
unless you specify a different address using the ORIGIN option of the 
FETCH command: . 

fetch prog3 (origin 22000 
start 

The program PROG3 executes beginning at location 22000 in the CMS user 
program area. 

SEARCH ORDER FOR EXECUTABLE PHASES 

When you execute the FETCH command, CMS searches for the phase name you 
specify in the following places: 

1. In a DOS/VS private core image library on a DOS disk. If you have 
a private library you want searched for phases, you must identify 
it using the ASSGN and DLBL commands, using the logical unit 
SYSCLB: 

2. 

assgn sysclb d 
dlbl ijsyscl d dsn ? (sysclb 

In CMS DOSLIBs on CMS 
phases, you must use 
CMS/DOS: 

disks. If you want 
the GLOBAL command 

global doslib templib mylib 

DOSLIBs searched 
to identify them 

You can specify up to eight DOSLIBs on the GLOBAL command line. 

for 
to 

3. On the DOS system residence core image library. If you want the 
system core image library searched you must have entered the 
CMS/DOS environment specifying the mode letter of the system 
residence: 

set dos on z 

When you want to fetch a core image phase that has copies in both the 
core image library and a DOSLIB, and you want to fetch the copy from the 
CMS DOSLIB, you can bypass the core image library by entering the 
command: 

assgn sysclb ua 

When you need to use the core image library, enter: 

assgn sysclb c 

where C is the mode letter of the system residence volume. You do. not 
need to reissue the DLBL command to identify the library. 

116 IBM VM/370 CMS ·User's Guide 

/ 

\ 

« 



Pg~ of GC20-1819-2 Rev ~arch 30, 1919 by Supp. SD23-9024-1 for 5148-XX8 

~AKING I/O DEVICE ASSIGN~ENTS 

If you are executing a program that performs I/C, you can use the ASSGN 
coamand to relate a system or programmer logical unit to a real I/O 
device. As in DOS/VSE, device type assignment in CMS/DOS is dependent 
on device specifications in the program~ 

assgn syslst printer 
assgn sys052 reader 

In this example, your program is going to read input data from your 
virtual card. reader; the output print file is directed to your virtual 
printer. If you want to reassign these units to different devices, you 
must be sure that the files have been defined as device independent. 

If you assign a logical unit to a disk, you should identify the file 
by using the DLBL command. On the DLBL command, you must always relate 
the DLBL to the system or programmer logical unit previously specified 
in an ASSGN command: 

assgn sys015 b 
dlbl myf1le b dsn ? (sys015 

When you enter tpe DLBL command with the? operand you are prompted to 
enter the DOS file-ide 

You must issue all of the ASSGN and DLBL commands necessary for your 
program's I/O before you issue the FETCH command to load the program 
phase and begin executing. 

SPECIFYING A VIRTUAL PARTITION SIZE 

For most of the programs that you execute in CMS, you do not need to 
specify how large a partition you want those Frograms to execute in. 
When you issue the START command or use the START option on the FETCH 
command, CMS calculates how much storage is available in your virtual 
machine and sets a partition size. eMS calculates how much storage is 
available in the following manner: 

FREELOWE - (MAINHIGH + (4096 * FRERESPG) 

where: 

FREELOWE equals the low extent of allocated storage obtained from the 
top of virtual storage downwards via the DMSFREE system 
request. 

MAINHIGH equals the high extent of allocated storage obtained from the 
.low virtual storage .upwards via the GETMAIN user reque~t for 
storage. 

FRERESPG equals the amount of storage to be reserved for subsequent 
system requests, in pages. 

In some inst~nces, you may want to control the partition size: 

• For performance considerations 

• Because the default may not leave enough free storage to satisfy the 
GET VIS commands issued by the DOS program or the access methed 
services function being executed. 

Section 9. Developing DOS Programs Under CMS ~11 



March 30, 1979 

You can set the, partition size with the DOSPART operand of the SET 
command. For example, after you enter the command: 

set dospart 300k 

all programs that you subsequently execute during this session will 
execute in a 300K partition~ In this way you can: 

• Set a smaller partition size for programs that run better in smaller 
partitions. 

• S~t a smaller partition size to leave more free storage. If the 
reduction of the DOS partition does not free enough storage for the 
GETVIScommands, a larger virtual machine must be defined. 

If you enter: 

set dospart off 

the CMS calculates a partition size when you execute a prograa. This is 
the default setting. 

Bote that the eMS partition, unlike the DOS partition, is used only for 
the loading and executing of programs invoked by the FETCH or LOAD 
commands. Areas allocated by GETVIS will be assigned addresses outside 
the partition but within the user's virtual machine~ 

SETTING THE UPSI BYTE 

If your program uses the user program switch indicator (UPSIl byte, you 
can set it by using the UPSI operand of the CMS SET command~ The UPSI 
byte is initially binary zeros~ To set it to 1s, enter 

set upsi 11111111 

To reset it to zeros, enter: 

set upsi off 

Any value you set remains in effect for the duration of your terminal 
session, unless you reload CMS (with the IPL command) '. 

DEBUGGIHG PROG~AMS IN CMS/DOS 

You can debug your DOS programs in CMS/DOS using the facilities of CP 
and C~S. By executing'your programs interactively, you can more quickly 
determine the cause of an error or program abend, correct it, and 
attempt to execute a program again~ 

The CP and eMS debugging facilities are described in "Section 11. Bow 
VM/370 Can Help You Debug Your Programs~" Additional information for 
assembl,er language programmers is in "Section 13. Programlling for the 
CMS Environment." 

178 IBM VM/370 CMS User's Guide 



) 

USING EXEC PROCEDURES IN CMS/DOS 

During your program development and testing cycle, you may want to 
create EXEC procedures to contain sequences of CMS commands that you 
execute frequently. For example, if you need a number of MACLlBs, 
DOSLlBs, and DLBL definitions to execute a particular program, you might 
have an EXEC procedure as follows: 

SCONT~OL ERROR TIME 
SERRO$ SEXIT SRETCODE 
GLOBAL MACLIB TESTLIB DOSMAC 
ASSEMBLE TESTA 
PRINT TESTA LISTING 
DOSLKED TESTA TESTLIB 
GLOBAL DOSLIB TESTLIB PROGLIB 
ACCESS 200 E 
ASSGN SYS010 E 
SBEGSTACK 
DOS.TEST3.STREAM.BETA 
SEND 
DLBL DISK1 E DSN ? (SYS010 
ASSGN SYS011 PUNCH 
CP SPOOL PUNCH TO * 
ASSGN SYS012 A 
DLBL OUTFILE A CMS TEST DATA (SYS012 
FETCH TESTA (START 
SIF SRETCODE = 100 &GOTO -RET100 
SIF SRETCODE = 200 &GOTO -RET200 
SEXIT SRETCODE 
-RET100 &CONTlNUE 

-RET200 &CONTINUE 

The SCONTROL and SERROR control statements in the EXEC procedure 
ensure that if an error occurs during any Fart of the EXEC, the 
remainder of the EXEC does not execute, and the execution summary of the 
EXEC indicates the command that caused the error. 

Note that for the DLBL command entered with the DSN ? operand, you 
must stack the response before issuing the DLBL command. In this 
example, since the DOS file-id has more than eight characters, you must 
use the SBEGSTACK control statement to stack it. If you use the SSTACK 
control statement, the EXEC processor truncates all words to eight 
characters. 

When your program is finished 
&RETCODE indicates the contents of 
program exited. You can use this 
your EXEC procedure. Additional 
example by ellipses. 

executing, the EXEC special variable 
general register 15 at the time your 
value to perform additional steps in 

steps are indicated in the preceding 

For detailed information on creating EXEC procedures, see "Part 3. 
Learning To Use EXEC." 

Section 9. Developing DOS Programs Under CMS 179 



180 IBM VM/370 eMS User's Guide 

( 

'~ 

( 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

Section 10. Using Access Method Services 
and VSAM under CMS and CMS/DOS 

This section describes how you can use CftS to create and manipulate VSA! 
catalogs, data spaces, and files on as and DOS disks using access method 
services. The CftS support is based on DOS/VSE and VSE/VSAM; this .eans 
that if you are an as VSAft user and plan to use CftS to manipulate VSAM 
files you are restricted to those functions of access method services 
that are available under the access method services portion of VSE/VSA!. 
The control statements you can use are descrited in the publication 
Q§ing !~Al!~!~ £~~~g~g§ g~g ~g£!~§. 

You can use CftS to: 

• Execute the access method services utility programs for VSll! and 51! 
data sets on as and DOS disks and minidisks. CI!S can both read and 
write VSAft files using access method services. 

• Compile and execute programs that read and write VSAI! files from DOS 
programs written in the COBOL or PL/I programming languages. 

• Compile and execute programs that read and write VSAI! files fro. OS 
programs written in the vs BASIC, COBOL, or PL/I programming 
languages. 

• Assemble assembler language source programs under CBS that use VSAI! 
macros. You must create your own macro library from as or DOS macro 
libraries. 

VSAM files written under CMS are wholly compatible for reading and 
writing under as and DOS systems. None of the CMS commands normally used 
to manipulate CMS files are applicable to VSAM files, however. This 
includes such commands as PRINT, TYPE, EDIT, COPYFILE, and so on. 

This section provides information on using the CftS 
with which you can execute access method services. The 
divided as follows: 

A!SEDV command 
discussion is 

• "Using the AftSERV command" contains general information. 

• "Manipulating as and DOS Disks for Use with AftSERV" describes how to 
use CMS commands with as and DOS disks. 

• "Defining DOS Input and output Files" is for CMS/DOS users only. 

• "Defining as Input and output Files" is for as users only. 

• "Using AMSEDV Under CMS" includes notes and examples showing how to 
perform various access method services functions in Cfts. 

EXECUTING VSAM PROGRAMS UNDER eMS 

The commands that are used to define input and output data sets for 
access method services (DLBL) and for CftS/DOS users (ASSGN) are also 
used to identify YSAft input qnd output files for program execution. 
Information on executing programs under eMS that manipulate VSAft files 
is contained in the program product documentation for the language 
processors. These publications are listed in the !AL~l~ !n~!QgY£!iQ~. 

Section 10. Using Access Method Services and VSAM 181 



March 30, 1979 

Restrictions on the use of access method services and VSA" under CMS 
for as and DOS users are listed inY~LJ1Q ~~~ ~Q!!gn~ gn~ ~~£!~ 
Reference, which also contains complete CMS and eMS/DOS command formats, 
operand-descriptions, and responses for each of the commands described 
here. 

When you are going to execute VSAM programs in eMS or C"S/DOS, you 
should remember to issue the DLBL command to id€ntify the master 
catalog, as well as any other program input or output file you need to 
define. 

Using the AMSERV Command 

In CMS, you execute access method services utility programs with the 
A~SERV command, which has the basic format: 

amserv filename 

"filename" is the name of a CMS file that contains the control 
statements for access method services. 

!Qte: Throughout the remainder of this section the term "AMSERV" is used 
to refer to both the CMS A"SERV command and the OS/VS or DOS/VS access 
method services, except where a distinction is being made between CMS 
and access method services. 

You create an AMSERV file with the CMS editor using a filetype of 
A"SERV and any filename you want; for example: 

edit mastcat amserv 
NEW FILE: 
EDIT: 
input 

The editor recognizes the filetype of AMSERV and so automatically sets 
the margins for your input lines at columns 2 and 72. The sample AMSEBV 
file being created in the example above, MASTCAT AMSEBV, might contain 
the following control statements: 

DEFINE MASTERCATALOG (NAME (MYCAT) -
VOLUME (123456) CYL(2) -
FILE (IJSYSCT) ) 

Note that the syntax of the control statements must conform to the rules 
for access method services, including continuation characters and 
parentheses. The only difference is that th~ A"SERV fiie does not 
contain a "/*" for a termination indicator. 

Before you can execute the DEFINE control statement in this AMSEBV 
example, you must define the output file, using the ddname IJSYSCT. You 
can do this using the DLBL command~ Since the exact form required in 
the DLBL command varies according to whether you are an as or a DOS 
user, separate discussions of the DLBL command are provided later in 
this section. All of the following examples assume that any disk data 
set or file that you are referencing with an AMSEBV command will have 
been aefined by a DLBL command. 

When you execute the AMSERV command" the AMSERV control statement 
file can be on any accessed CMS disk; you do not need to specify the 
filemode and, if you are aDOS user~ you do not need to assign SYSIPT. 
The task of locating the file and passing it to access method services 
is performed by C~S. 

182 IBM VM/370 CMS User's Guide 



) 

AMSERV OUTPUT LISTINGS 

When the AMSERV command is finished processing, you receive the CMS 
ready message, and if there was an error, the return code (from register 
15) is displayed following the "R". For example: 

R (00008) ; 

or, if you are receiving the long form of the ready message, it appears: 

R(00008); T=0.01/0.11 10:50:23 

If you receive a ready message with an error return code, you should 
examine the output listing from AMSERV to determine the cause of the 
error. 

AMSERV output listings are written in CMS files with a filetype of 
LISTING; by default, the filename is the same as that of the input 
AMSERV file. For example, if you have executed: 

amserv mastcat 

and the CMS ready message indicates an error return code, you should 
examine the file MASTCAT LISTING: 

edit mastcat listing 
EDIT: 
locate /idc/I= 

Issuing the LOCATE subcommand twice to find 
will position you in the LISTING file at 
services message. 

the character string IDC 
the first access method 

The publication ~Q2L!~ ~~22Sg~2 lists and explains all of the 
messages generated by access method services together with the 
associated reason codes. 

Instead of editing the file, you could also use the TYPE command to 
display the contents of the entire file, so that you would be able to 
examine the input control statements as well as any error messages: 

type mastcat listing 

If you need to make changes to control statements before executing 
the AMSERV command again, use the CMS editor to modify the AMSERV input 
file. 

If you execute the same AMSERV file a number of times, each execution 
results in a new LISTING file, which replaces any previous listing file 
with the same filename. 

When you use AMSERV to print a VSAM file, or to list catalog or recovery 
area contents using the PRINT, LISTCAT, or LISTCRA control statements, 
the output is written in a listing file on a CMS read/write disk, and 
not spooled to the printer unless you use the PRINT option of the AMSERV 
command: 

amserv listcat (print 

Sectio~ 10. Using Access Method Services and VSAM 183 



If you want to save the output, you should issue the AftSERV command 
without the PRINT option and then use the CftS PRINT command to print the 
LISTING file. 

CONTROLLING AftSBRV COMBAND LISTINGS 

The final disposition of the listing, as a printer or disk file, depends 
on how you enter the AMSERV command. If you enter the AMSERV command 
with no options, you get a CMS file with a filetype of LISTING and a 
filename equal to that of the AMSERV input file. This LISTING file is 
usually written on your A-disk, but if your A-disk is full or not 
accessed, it is written on any other read/write CMS disk you have 
accessed. 

If there is not enough room on your A-disk or any other disk, the 
AMSBRV command issues . an error message saying that it cannot write the 
LISTING file. If this happens, the LISTING file created may be 
incomplete and you may not be able to tell whether or not access method 
services actually completed successfully. In this case, after you have 
cleared some space on a read/write disk, you may have to execute an 
AMSERV PRINT or LISTCAT function to verify the completion of the prior 
job. 

LISTING files take up considerable disk space, so you should erase 
them as soon as you no longer need them. 

If you do not want AMSERV to create a disk file from the listing, you 
can execute the AMSERV command with the PRINT option: 

amserv myfile (print 

The listing is spooled to your virtual printer, and no disk file is 
created. You might want to use this option if you are executing a PRINT 
or LISTCAT control statement and expect a very large output listing that 
you know cannot be contained on any of your disks. 

You can also control the filename of the output listing file by 
specifying a second name on the AMSERV command line: 

amserv listcat listcat1 

In this example, the input file is LISTCAT AMSERV and the output listing 
is placed in a file named LISTCAT1 LISTING. A subsequent execution of 
this same AMSERV file: 

amserv listcat,listcat2 

creates a second listing file, LISTCAT2 LISTING, so that the listing 
created from the first execution is not erased. 

184 IBM VM/370 CMS User's Guide 



March 30, 1979 

Manipulating OS and DOS Disks for Use with 
AMSERV 

To use CMS VSAM and AMSERV, you can have OS or DOS disks in your virtual 
machine configuration. They can be assigned in your directory entry, or 
you can link to them using the CP LINK command. You must have read/write 
access to them in order to execute any AMSERV function or VSAM program 
that requires opening the file for output or update. 

Before you can use an OS or DOS disk you must access it with the CMS 
ACCESS command: 

access 200 d 

The response from the ACCESS command indicates that the disk is in OS or 
DOS format: 

D(200) R/W - OS 

-- or --

D(200) R/W - DOS 

You can write on these disks only through AMSERV or through the 
execution of a program writing VSAM data sets. Once an OS disk is used 
with AMSERV or VSAM, CMS considers it a DOS disk, so regardless of 
whether you are an OS user, when you access or request information about 
a VSAM disk, CMS indicates that it is a DOS disk. You can still use the 
disk in an OS or DOS system for VSAM data set processing. Although the 
format is not changed, the "disk is still subject to any 
incompatibilities that can currently exist between OS and DOS disks. 

DATA AND MASTERCATALOG SHARING 

There are two meanings of "sharing" that must be defined clearly with 
respect to the CMS support of VSAM. The first is that of the 
SHAREOPTION parameter found in the DEFINE (and ALTER) command for access 
method services. 

The SHAREOPTION keyword enables the VSAM user to define bow a 
component will be shared across pattitions (users). Since CMS is a 
single-partition, single-user system and there is no data set sbaring 
capability in the control program (CP), the built-in data sharing in 
VSAM is of no value under CMS. However. if the VSAM user specifies 
SHAREOPTION three fewer lines of code will be executed and. therefore. 
that option is recommended. 

The ar.a of sharing mos~ familar to CMS users is that of disk 
(minidisk) read-sharing provided by CP. For the VSAM user under eMS, it 
is still possible to share disks in read-o~ly mode in order to 
read-share VSAM components. However, there 1S a restriction with 
respect to the VSAM master catalog. That is, only one virtual machine 
may have the disk containing the master catalog in write status. This 
is necessary even if only read functions are being performed during the 
session. This is due to the master catalog updating read statistics'at 
close time and, when necessary, writing a new control record in the 
catalog at open time. Under the OS/VS and DOS/VS systems (rea1) this is 
not a consideration because the master catalog is always on a system 
pack and, therefore, always in write status by that system and by the 
VSAM routines. The virtual machines (OS or DOS) cannot share the VSAM 
cat.log since each thinks it is a "real" system and has control of the 
VSAM master catalog. 

Section 10. Using Access Method Services and VSAM 185 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

Under CMS, it is possible to have the master catalog disk read-only. 
A bit in the ACB indicates to VSE/VSAM that it is running under CMS. If. 
this bit is on, VSAM will not write to the master catalog for either of 
the two cases described above. This allows one or more CftS virtual 
machines to share the~SAM maste~ catalog. This assume~ either no other 
virtua1 machine has the master catalog disk in write status or only one 
virtual machine (DOS, OS, or CMS) has it. 

Multiple CMS users may have the VSAM master catalog disk in read-only 
status but only one virtual machine may have the same in write status. 
with respect to dataset sharing, there is only read-sharing for the CftS 
user. 

DISK COMPATIBILITY 

Since the CMS VSAM support writes VSAM datasets to DOS disks, the 
question of disk compatibility is not one between CMS and DOS nor 
between CMS or OS but rather between DOS and as disks. In other words, 
because CMS actually uses VSE/VSAM for processing VSAM datasets, all 
disks used by CMS VSAM are DOS disks. For this reason, we need only 
discuss how DOS and as disks are compatible and, because they are 
compatible, we can conclude, that CMS and as are also compatible. 

In the format-4 DSCB"there is a bit in the VTOC Indicators (byte 59, 
bit 0) defined by OS/VS to indicate (when OFF) that a.£ormat-5 label is 
included in the VTOC. This bit is always On under DOS/VSE because Des 
does not maintain the format-5 label. This technique allows OS/VS to 
realize when the format-5 is invalid and that it must recompute free 
space and rewrite the format-5 so that device integrity is maintained. 

Thus, if a disk originally was used (allocated) under OS/VS and, 
subsequently, with DOS/VSE, further allocation could occur under DOS/VSE 
but with the format-5 ignored and, therefore, no longer valid. If the 
disk was then used under OS/VS and still further allocation performed, 
OS/VS would recognize the fact that the format-5 was not valid 
(contamination bit turned ON by DOS/VSE) and would rewrite the format-5, 
turning the bit OFF. 

This shows that DOS and as disks are compatible in that they are 
portabl~between the two systems, but one of the systems (OS/VS) must 
perform some extra processing (rewriting format-5) prior to using the 
disk if it intends to reallocate using the,format-5. 

DOS and OS disks containing VSAM datasets are no exception to this. 
OS and DOS disks containing VSAM datasets that are used (~llocated) 
under CMS are portable among all three systems. Since CMS uses VSE/VSAM 
code, all disks used under CMS to process VSAM datasets become DOS/VSE 
disks in that the contamination bit is turned ON as it is when using 
DOS/VSE. 

The term "minidisk" may be interchanged with ihe word "disk" in the 
above explanation if we ,a~e dealing with "virtual" DgS/VSE an~ OS/VS 
systems. ~owever, real systems are not aware of, and do not support, 
minidisks. , 

It is necessary to distinguish between two types of allocation under 
VSAM. The first refers to actual space allocation on the disk, and the 
second is that within the dataset itself. 

Space for VSAM componepts must be allocated cn the DASD device using 
the DEFINE commands. The only component for which the user is able to 

186 IBMVM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev Karch 30, 1979 by Supp. SD23-902Q-1 for 5748-118 

allocate space is for the .aster catalog, a data space, and a UBIQUE 
cluster. In defining the actual DASD space for components, there are 
parameters for the DEFINE SPACE command which allows the user to include 
a "secondary allocation" specification. These parameters (CYLIBDERS, 
RECORDS, TRACKS) have this secondary facility only as a syntactic 
compatibility with the OS/VS access method services commands. That is, 
DOS/VSE (and, therefore, CKS) does not perform secondary space 
allocation on a DASD. 

The facility does exist under DOS/VSE (and CftS) to extend data or 
index components through already allocated data space, catalog extents, 
or UNIQUE cluster extents. Thus, the CYLINDERS, TRACKS, and RECORDS 
parameters of the DEFINE commands for alternate indexes, clusters, and 
catalogs do not dynamically allocate DASD space but only extend a 
component through existing space. 

USING V8/370 MINIDISKS 

If you have a VM/370 minidisk in your virtual machine configuration, you 
can use it to contain VSAM files. Before you can use it, it aust be 
formatted with the IBCDASDI program or other appropriate· operating 
system utility program. When you request that a disk be added to your 
virtual machine configuration for use with VSAM files under CMS, you 
should indicate that it be formatted for use with as or DOS. Or you can 
format it yourself using the IBCDASDI program. A brief example of how to 
do this is given under the following "Using Temporary Disks." The 
IECDASDI control statements are fully described in the !~L11~ ~~~at2~~§ 
§~id~. 

l!21~: If you are an as user, you should be careful about allocating 
space for VSAM on minidisks. Once you have used CMS AMSERV to allocate 
VSAM data space on a minidisk, you should not attempt to allocate 
additional space on that minidisk using an OS/VS system. as does not 
recognize minidisks, and would attempt to format the entire disk pack 
and thus erase any data on it. To allocate additional space for VSAM, 
you should use CMS again. If you use the IBCDASDI program to format the 
disk, and use the CYLNO parameter, the entire disk is flagged as full, 
so that as cannot allocate additional space. Kinidisk space allocation 
is fully described in the !!Ll1Q f!g~~i~g ~~g ~I§!~ §~~~~!io~ §~!g~. 

USING THE LISTDS COMMAND 

For as or DOS disks or minidisks, you can use the LISTDS command to 
determine the extents of free space available for use by VSAft. You can 
also determine what space is already in use. You can use this 
information to supply the extent information when you define VSAM files. 

The options used with VSAM disks are: 

• EXTENT, to find out what extents are in use, and 
• FREE, to find out what extents are available. 

For example, if you have an as disk accessed as a G-disk, and you enter: 

listds g (extent 

Section 10. Using Access Method Services and VSAM 187 



March 30, 1979 

The response might look like: 

EXT"ENT INFORMATION FOR 'VTOe' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) 
OOO.VTOC 09900 1881 0991S 1899 

TRACKS i 

19 

EXTENT:INFORMATION FOR 'PRIVAT.CORE.IMAGE.LIE' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 000 01 1 049 18 949 949 

EXTENT INFORMATION FOR 'SYSTEM.WORK.FILE~NO.6' ON 'G' DISK~ 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 050 00 950 051 18 987 38 

You could also determine the extent for a particular data set: 

listds ? * (extent 
DMSLDS220R ENTER DATA SET NAME: 
system recorder file 

EXTENT INFORMATION FOR 'SYSTEM RECORDER FILI' ON 'F' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 102 00 1938 102 18 1956 19 
002 DATA 010 06 206 010 08 208 3 

LISTDS searches all minidisks accessed until it locates the specified 
data set. In this example, the data set occupies two separate extents on 
disk F. If the data set 1S a multivolume data set, extents on all 
accessed volumes are located and displayed. 

If you want to find the free extents on a particular disk, enter: 

listds g (free 
FREESPACE EXTENTS 
CYL-HD(RELTRK) TO 
052 00 988 
054 02 1028 
08101 1540 

FOR 'G' DISK: 
CYL-HD (RELTRK) 
052 01 989 
080 00 1520 
098 18 1880 

TRACKS 
2 

493 
341 

You can use this information when you allocate space for VSAM files. If 
you enter: 

listds * (free 

CMS lists all the free space available on all of your accessed disks. 

USING TEMPORARY DISKS 

When you need extra space on a temporary basis for use with CMS VSAM and 
AMSERV, you can use the CP DEFINE command to define a temporary minidisk 
and then use the IBCDASDI program to format it. Once formatted and 
accessed, it is available to your virtual >machine for the duration of 
your terminal session or until you detach it using the CP DETACH 
command. Remember that anything placed on a temporary disk is lost, so 
that you should copy output that you want to keep onto permanent disks 
hefore you log off. 

f88 IBM VM/310 CMS User's- Guide 



March 30, 1979 

The example below shows a control statement file and an EXEC procedure 
that, together, can be used to format a minidisk with the IBCDASDI 
program. For a complete description of the control statements used, 
refer to the !~L~70 Q~~!g!2~~§ ~y!~g. 

The input control statements for the IBCDASDI programs should be 
placed in a CMS file, so that they can be punched to your virtual card 
reader. For this example, suppose the statements are in a CMS file named 
TEMP IBCDASDI: 

DASD198 JOB 
MSG 
DADEF 
VLD 
VTOCD 
END 

TODEV=1052,TOADDR=009 
TODEV=3330,TOADDR=198,VOLID=SCRATCH,CYLNO=10 
NEiVOLID=123456 
STRTADR=185,EXTENT=5 

Now consider the CMS file named TEMPDISK EXEC: 

&ERROR &EXIT 100 
CP DEFINE T3330 198 10 
CP CLOSE C 
CP PURGE READER ALL 
ACC 190 Z/Z IPL * 
CP SPOOL PUNCH CONT TO * 
PUNCH IPL IBCDASDI Z (NOH) 
PUNCH TEMP IBCDASDI * (NOB) 
CP SPOOL PUNCH NOCONT 
CP CLOSE PUNCH 
CP IPL OOC 

You execute this procedure by entering the filename of the EXEC: 

tempdisk 

When the final line of this EXEC is executed, the IBCDASDI program is in 
control. You must then signal an attention interruption using the 
Attention or Enter key, and you receive the message: 

IBC105A DEFINE INPUT DEVICE 

You should enter: 

input=2540,OOc 

to indicate that the control statements should be read from your card 
reader, which is a virtual 2540 device at virtual address OCC. 

When the IBCDASDI program is finished, your virtual machine is in the 
CP environment and must reload CMS (with the IPL command) to b~~in 
virtual machine execution. You can then access the temporary disk: 

acc 198 c 

and CMS responds: 

C(198) R/i - OS 

Section 10. Using Access Method Services and VSAM 189 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748~XX8 

Defining DOS Input and Output Files 

Note: lhis information is for VSE/VSAM users. OS/VS VSAM ~sers should 
refer to the section "Defining OS Input and Outpu't Files." 

You must use the DLBL command to define VSAM inp~t and output files for 
both the AMSERV command and for program execution. The operands 
required on the DLBL command are: 

dlbl ddname fi1emode DSN datasetname (options SYSxxx 

where "ddname" corresponds to the FILE parametei in the AMSERV file and 
"datasetname" corresponds to the entry name or filename of the VSA~ 
file. 

There are several options you can use when issuing the DLBL command 
to define VSAM input and output files. These are: 

• VSAM, which you must use to indicate that the file is a VSAM file. 

Note: You do not have to use the 
VSAM file if you are using any 
since they imply that the file 
ddnames (filenames) IJSYSCT and 
being defined is a VSAM file. 

VSAM option to identify a file as a 
of the other options listed here, 
is a VSAM file. In addition, the 

IJSYSUC also indicate that the,file 

• EXTENT, which you must use when you are defining a catalog or a VSAM 
data space; you are prompted to enter the volume information. This 
option effectively provides the function of the EXTENT card in 
DOS/VS. 

• MULT, which you must use in order to access a multivolume VSAM file; 
you are prompted to enter the extent information. 

• CAT, which you can use to identify a catalog which contains the entry 
for the VSAM file you are defining. 

• BUFSP, which you can use to specify the size of the buffers VSAM 
should use during program execution. 

Options are entered following the open parenthesis on the DLBL command 
line, with the SYSxxx: 

assgn sys003 e 
d1bl file1 b1 dsn workfile (extent cat cat2 sys003 

Additional examples using some of these options are shown below. 

USING VSAM CATALOGS 

While you are developing and testing your VSAM Frograms in CMS, you may 
find it convenient to create and use your own master catalog, which may 
be on a CMS minidisk. VSAM catalogs, like any other c1uster# can be 
shared read-only among several users. 

You name the VSAM master catalog for your terminal session using the 
logical unit SYSCAT in the ASSGN command and the ddname IJSYSCT for the 
CLBL command. For example, if your VSAM master catalog is located on a 
COS disk you have accessed as a C-disk, you would enter: 

190 IBM VM/370 CMS User's Guide 



) 

) 

assgn syscat c 
dlbl ijsysct c dsn mastcat (syscat 

Note: When you use the ddname IJSYSCT you do not need to specify the 
iSAM option on the DLBL command. 

You must identify the master catalog at the start of every terminal 
session. If you are always using the same master catalog, you might 
include the ASSGN and DLBL commands in an EXEC procedure or in your 
PROFILE EXEC. You could also include the commands necessary to access 
the DOS system residence volume and enter the CMSIDOS environment: 

ACCESS 350 Z 
SET DOS ON Z (VSAM 
ACCESS 555 C 
ASSGN SYSCAT C 
DLBL IJSYSCT C DSN MASTCAT (SYSCAT PERM 

you should use the PERM option so that you do not have to reset the 
master catalog assignment after clearing previous DLBL definitions. 

You must use the VSAM option on the SET DOS ON command line if you 
want to use any access method services function or access VSAM files. 

The sample ASSGN and DLBL commands used in the above EXEC are almost 
identical with those you issue to define a master catalog using AMSERV. 
The only difference is that you must enter the EXTENT option so that you 
can list the data spaces that this master catalog is to control. 

As an example, suppose that you have a 30-cylinder 3330 minidisk 
assigned to you to use for testing your VSAM programs under CMS. 
Assuming that the minidisk is in your directory at address 333, you 
should first acce~s it: 

access 333 d 
D(333) RIW - OS 

If you formatted the minidisk yourself, you know what its label is. If 
not, you can find out what the label is by using the CMS command: 

query search 

The response might be: 

USR191 
DOS333 
SYS190 
SYS19E 

191 A 
333 C 
190 S 
19E liS 

RIW 
R/i - as 
RIO 
RIO 

Use the label DOS333 in the VOLUMES parameter in the MASTC1T AMSERV 
file: 

DEFINE MASTERCATALOG -
(NAME (MASTCAT) ~ 

VOLUME (DOS333) -
CYL (4) -
FILE (IJS1SCT) 

NOW, to find out what extents on the minidisk you can allocate for VSAM, 
use the LISTDS command with the EXTENT option: 

Section 10. Using Access Method Services and VSAM 191 



listds d (free 

The response from LISTDS might look like this: 

FREESPACE INFORMATION FOR ID' DISK: 
CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 01 1 000 09 9 9 
000 11 11 029 18 569 560 

From this response, you can see that the volume table of contents (VTOC) 
is located on the first cylinder, so you can allocate cylinders 1 
through 29 for VSAM: 

assgn syscat c 
dlbl ijsysct c dsn mastcat (syscat perm extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
19 551 

(null line) 

After entering the extents, in tracks, g1v1ng the relative track number 
of the first track to be allocated followed by the number of tracks, you 
must enter a null line to complete the command. A null line is required 
because, when you enter multiple extents, entries may be placed on more 
than one line. If you do not enter a null line, the next line you enter 
causes an error, and you must re-enter all of the extent information. 

Note that, as in DOS/VS, the extents must be on cylinder boundaries, and 
you cannot allocate cylinder O. 

Now you can issue the AMSERV command: 

amserv mastcat 

A ready message with no return code indicates that the master catalog is 
defined. You do not need to reissue the ASSGN and DLEL commands in order 
to use the master catalog for additional AMSERV functions. 

You can use the AMSERV command to define private catalogs and spaces for 
them, also. The procedures for determining what space you can allocate 
are the same as those outlined in the example of defining a master 
catalog. 

For a user catalog, you may use any programmer logical unit, and any 
ddname: 

access 199 e 
listds e (free 

assgn sys001 e 
dlbl cat1 e dsn private cat1 (sys001 extent perm 

amserv usercat 

192 IEM VM/370 CMS User's Guide 

( 



) 

The file USERCAT AMSERV might contain the following: 

DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
FILE (IJSYSUC)-
CYL (4) -
VOLUME (DOSVS2) -
CATALOG (MASTCAT) 

After this AMSERV command has completed successfully you can use the 
catalog PRIVATE.CAT1. When you issue a DLBL command to identify a 
cluster or data set cataloged in this catalog, you must identify the 
catalog using the CAT option on the DLBL command for the file: 

assgn sys100 c 
dlbl file2 e dsn 1 (sys100 cat cat1 

Or, you can define this catalog as a job catalog. 

If you want to set up a user catalog as a job catalog so that it will be 
searched during all subsequent jobs, you can define the catalog using 
the special ddname IJSYSUC. For example: 

assgn sys101 c 
dlbl ijsysuc c dsn private cat1 (sys101 perm 

If you defined a user catalog (IJSYSUC) for a terminal session and 
you use the AMSERV command to access a VSAM file, the user catalog takes 
precedence over the master catalog. This means that for files that 
already exist, only the user catalog is searched. When you define a 
cluster, it is cataloged in the user catalog, rather than in the master 
catalog, unless you use the CAT option to override it. 

If you want to use additional catalogs during a terminal session, you 
first define them just as you would any other VSAM file: 

assgn sys010 f 
dlbl mycat2 f dsn private cat2 (sys010 vsam 

Then, when you enter the DLBL command for the VSAM file that is 
cataloged in PRIVATE.CAT2 use the CAT option to refer to the ddname of 
the catalog: 

assgn sys011 f 
dlbl input f dsn input file (sys011 cat mycat2 

If you want to stop using a job catalog defined as IJSYSUC, you can 
clear it using the CLEAR option of the DLBL command: 

dlbl ijsysuc clear 

Then, the master catalog becomes the job catalog for files not defined 
with the CAT option. 

Section 10. using Access Method S~rvices and VSAM 193 



When you define passwords for VSAM catalogs in CftS, or when you use CMS 
to access VSAM catalogs that have passwords associated with them, you 
must supply the password from your terminal when the AMSERV command 
executes. The message that you receive to prompt you for the password 
is the same message you receive when you execute access method services: 

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOE AMSERV FILE catalog 

When you enter the proper password, AMSERV continues execution. 

DEFINING AND ALLOCATING SPACE FOR VSAM FILES 

You can use CMS AMSERV to allocate additional data spaces for VSAM. To 
use the DEFINE SPACE control statement, you must have defined the 
catalog that is to control the space, and you must have the volume or 
volumes on which the space is to be allocated mounted and accessed. 

For example, suppose you have a DOS-formatted 3330 disk attached to 
your virtual machine at virtual address 255. After accessing the disk 
and determining the free space on it, you could create a file named 
SPACE AMSERV: 

DEFINE SPACE -
(FILE (FILE1) -
TRACKS (1900) -
VOLUME (123456) -
CATALOG (PRIVATE~CAT2 CAT2) ) 

To execute this AMSERY file, define PRIYATE.CAT2 as a user catalog using 
the ddname CAT2, and then define the ddname for the FILE parameter: 

access 255 c 
assgn sysOl0 c 
dlbl cat2 c dsn private cat2 (sysOl0 vsam 
assgn sysOl1 c 
dlbl file1 c (extent sysOl1 cat cat2 

Note that you do not need to enter a data set name to define the space. 
When CMS prompts you for the extents of the space you can enter the 
extent specifications: 

DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
190 1900 

When you define space for VSAM, you should be sure that the VOLUMES 
parameter and the space allocation parameter (whether CYLINDER, TRACKS, 
or RECORDS) in the AMSERV file agrees with the information you provide 
in the DLBL command. All data extents must begin and end on cylinder 
boundaries. Any additional space you provide in the extent information 
that is beyond what you specified in the AMSERV file is claimed by VSAM. 

194 IBM VM/370 CMS User's Guide 



March 30, 1979 

When you are specifying extents for a master catalog, data space, or 
unique file, you can specify up to 16 extents on a volume for a 
particular space. When prompted by CMS to enter the extents, you aust 
separate different extents by commas or place them on different lines. 
To specify a range of extents in the above example, you can enter: 

dlbl file1 c (extent sys011 
190 190, 570 190, 1900 1520 

(null line) 

or --

dlbl file1 c (extent sys011 
190 190 
570 190 
1900 1520 

(null line) 

Again, the first number entered for each extent represents the relative 
track for the beginning of the extent and the second number indicates 
the number of tracks. 

You can define spaces that span up to nine volumes for VSAM files; all 
of the volumes must be accessed and assigned when you issue the DLBL 
command to define or identify the data space. 

You should remember, though, that if you are using AMSEBV and you do 
not use the PBINT option, you must have a read/write CMS disk so that 
AMSERV can write the output LISTING file. 

If you are defining a new multivolume data space or unique cluster, 
you must specify the extents on each volume that the data is to. occupy 
(starting track and number of tracks), followed by the disk mode letter 
at which the disk is accessed and the programmer logical unit to which 
the disk is assigned: 

access 135 b 
access 136 c 
access 137 d 
assgn sys001 b 
assgn sys002 c 
assgn sys003 d 
dlbl newfile b (extent sys001 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60 b sys001, 400 80 b sys001, 60 40 d sys003 
2000 100 c sys002 

(null line) 

If you specify more than one extent on the same line, the extents must 
be separated by commas; if you enter a comma at the ena of a line, it is 
ignored. Different extents for the same volume must be entered 
consecutively. 

Note that in the preceding example, the extent informationi~ for 
2314 disks; and that these extents are also on cylinder boundaries. 

When you enter multivolume extents you can use a default m~de. For 
example: 

Section 10. Using Access Method Se~vices and VSAM. 195 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-IX8 

dlbl newfile b (extent sys001 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60, 400 80, 60 40 d sys003, 
2000 100 c sys002 

(null line) 

Any extents you enter without specifying a mode letter and SYSxxx value 
default to the mode and SYSxxx on the DLBL command line, in this case, 
the B-disk, SYS001. 

If you make any errors issuing the DLEL command or extent 
information, you must re-enter the entire command sequence. 

IDENTIFYING EXISTING !g~~!!Q~gA~ ~!~~~: When you issue a DLBL command to IdentIfy-an existing multivolume VSAM file, you must use the MULT option 
of the DLBL command: 

dlbl old b1 dsn ? (sys002 mult 
DMSDLB220R ENTER DATA SET BAME: 
dostest.file 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
c sys004, d sys003 
e sys007 

(null line) 

When you enter the DLBL command you should specify the mode letter and 
logical unit for the first volume on the command line. When you enter 
the MULT option you are prompted to enter additional specifications for 
the remaining extents. In the preceding example, the data set has 
extents on disks accessed as B~, C-, D-, and E-disks. 

USING TAPE INPUT AND OUTPUT 

If you are using AMSERV for a function that requires tape input and/or 
output, you must have the tape(s) attached to your virtual machine. The 
valid addresses for tapes are 181, 182, 183, and 184. When referring to 
tapes, you can also refer to them using their CMS symtolic names TAP1, 
TAP2, TAP3, and TAP4. 

For AMSERV functions that use tape input/output, the TLBL control 
statement is simulated by building a dummy DLBL containing a 
user-supplied ddname (filename). CMS does not read tape labels and does 
not recognize tape data set names. 

When you invoke the AMSERV command, you must use the TAPIN or TAPOUT 
option to specify the tape device being used: 

amserv export (tapout 181 

In this example, the output from the AMSERV control statements in a file 
riamed EXPORT goes to a tape at virtual address 181. CMS prompts you to 
enter the ddname: 

DMSAMS367R ENTER TAPE OUTPUT DDNAMES: 

After you enter the ddname specified on the FILE parameter in the AMSERV 
file and press the carriage return, the AMSERV command executes. 

AMSERV opens all tape files as standard labe~led tapes (FILAB=STD on 
the DTFMT .acro). Therefore, tou need a LABELDEF command for any tape 
file used for input or output with AMSERV. The LABELDEF command is the 
CMS/DOS equivalent of the DOS/VSE TLB control stat'ement. The LABELDEF 
command is used to specify information in VOLl and RDR1 labels on the 

196 IBM VM/370 CffS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5148-118 

tape. See the description of the LABELDEF command in section 1 for more 
information on this command. 

You should use the same name for the filename on your LABELDEP 
command as you do for the ddname you enter in reply to message 
DMSAMS361R (the ddname specified on the FILE ~arameter in the AMSEBV 
file). However, the LABELDEF command must be issued tefore the AMSEBV 
command. The following sequence of commands might be used when you have 
tape output: 

assgn sys005 tap1 
tape rew (181 
assgn syscat e 
assgn sys006 e 
labeldef catout fid catfile volid amserv 
dlbl ijsysct e dsn mastcat (syscat vsam 
dlbl catin e dsn file (sys006 vsam 
amserv repro (tapout 181 

DMSAMS361R ENTER TAPE OUTPUT DDNAMES 

catout 

Note that if you do not care what is written in a tape output label 
or do not want input labels checked, you can specify a LABELDEF with no 
parameters other than filename. The command: 

labeldef intape 

used for an input tape with ddname INTAPE causes the standard labels cn 
the tape to be skipped without any checking. A similar statement for 
output writes tape labels with default values (see the description of 
the LABELDEP command in section 1). 

If you try to use a tape that does not already contain 
for an AMSERV tape file, you will receive an error message. 
is used for output, this message is followed by another 
informs you that you have a choice of continuing by writing 
on the previously unlabelled tape or rejecting this tape. 
files must already contain standard VOL1 and HDR1 labels to 
by AMSERV. 

a VOLl label 
If the tape 

message that 
a VOL1 label 

Input tape 
be processed 

Section 10. Using Access Method Services and VSAM 196.1 



March 30, 1979 

196.2 IBM VM/370 eMS User's Guide 



Pg. of GC20-l8l9-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

When you create a tape in CMS using AMSERV, CMS writes a tape mark 
preceding each output file that it writes. When this same tape is read 
using AMSERV under CMS, HDR1 and VaLl labels are checked using the 
LABELDEFcommand you provide~ If you read this tape in a real DOS/VS 
system, you should use a TLBL card instead of the LABELDEF command. 

Similarly, when you create a tape under a DOS/VS system using access 
method services, if the tape is created with sta~dard labels, CMS AMSERV 
has no difficulty reading it. 

The only time you should worry about positioning a tape created by 
AMSERV is when you want to read the tape using a method other than 
AMSERV, for example, the MOVEFILE command. Then, you must forward space 
the tape past the label, using the CMS TAPE command before you can read 
it. 

Defining OS Input and Output Files 

!!gte: This information is for OS/VS .VSAM users only. VSE/VSAM users 
should r~fer to "Defining DOS Input and output Files" for information on 
defining files for use with VSAM. 

If you. are going ,to use access method services to manipulate VSAM or SAM 
files or you are going .to e~ecute VSAM programs under eMS, you must use 
the DLBL command to define the input and output files. The basic format 
of the DLBL command is: 

DLBL ddname file mode DSN datasetname (options 

where ddname corresponds to the FILE parameter in the AMSERV file and 
datasetname corresponds to the entry name of the VSAM file, that is, the 
name specified in the NAME parameter of an access method services 
control statement. 

If you are using a CMS file for AMSERV input or output, use the CMS 
operand and enter CMS file identifiers as follows: 

dlbl mine a cms out file1 (vsam 

The maximum length allowed for ddnames under CMS VSAM is seven 
characters. This means that if you have assigned eight-character ddnames 
(or filename$) to files in your programs, only the first seven 
characters of each ddname are used. So, ~f a program refers· to the 
ddname OUTPUTDD, you should issue the DLBL command for a ddname of 
OUTPUTD. Since you can encounter problems with a program that contains 
ddnames with the same first seven characters, you should recompile those 
programs using seven-character ddnames. 

There are several options you can use when iSSUing the DLBL command 
to define VSAM input and output files. These are: 

• VSAM, which you must use to indicate that the file is a VSAM file. 

Note: you do not have to use the 
VSAM file if you are using any 
si~ce~hey imply that the file 
ddnames (filenames) IJSYSCT and 
being defined is a VSAM file. 

VSAM option to identify a file as a 
of the other options listed here, 
is a VSAM file. In ~ddition, the 

IJSYSUC also indicate that the file 

Section 10. Using Access Method Services and VSAM 197 



March 30, 1979 

• EXTENT, which you must use when you are defining a catalog or a VS~ft 
data space; you are prompted to enter the volume information. 

• MULT, which you must use in order to access amultivolu.e VSAM file; 
you are prompted to enter the extent information. 

• CAT, which you can use to identify a catalog which contains the entry 
for the VSAft file you are defining. 

• BUFSP, which you can use to specify the size of the buffers VSAM 
should use during program execution. 

ALLOCATING EXTENTS ON as DISKS AND ftINIDISKS 

When you use access method services to manipulate VSAM files under as, 
you do not have to worry about allocating the real cylinders and tracks 
to contain the files. When you use CMS AftSERV, however, you are 
responsible for indicating which cylinders and tracks should contain 
particular VSAM spaces when you use the DEFINE control state merit to 
define space. 

Extents for VSAM data spaces can be defined, in AMSERV files, in 
terms of cylinders, tracks, or records. Extent information you supply to 
CftS when executing AMSERV must always be in terms of tracks. When you 
define data spaces or unique clusters, the extent information (number of 
cylinders, tracks, or records) in the AMSERV file must match the extents 
you supply when you issue the DLBL command to define the file. When you 
supply extent information for the master catalog, any extents you enter 
in excess of those required for the catalog are claimed by the catalog 
and used as data space. 

CMS does not make secondary space allocation for VSA8 data spaces. 
If you execute an AMSERV file that specifies a secondary space 
allocation, CMS ignores the parameter. 

When you use the DLBL command to define VSAM data space, you must use 
the EXTENT option, which indicates to CMS that you are going to enter 
data extents. For example, if you enter: 

dlbl space b (extent 

CMS prompts you to enter the extents: 

DMSDLB331R ENTER EXTENT SPECIFICATIONS: 

When you enter the extents, you specify the relative track number of the 
first track of the extent, followed by the number of tracks. For 
example, if you are allocating an entire 2314 disk, you would enter: 

20 3980 
(null line) 

You can never write on cylinder 0, track 0; and, since VSA~ data 
spaces must be allocated on cylinder boundaries, you should never 
allocate cylinder O. Cylinder 0 is often used for the volume table of 
contents (VTOC) as well, so it is always best to begin defining space 
with cylinder 1. 

The list below shows the DASD devices supported by CMS 
number of cylinders on each that can be allocated for VSAM 
the number of tracks per cylinder: 

198 IBM tM/370 CMS User's ~uide 

VSAM~ the 
space, and 



; 

) 

Disk ~I!!~g~!§ I!~£!§L£I!iBg~! 
2314/2319 200 20 
3330 Model 1 404 19 
3330 Model 11 808 19 
3340 Model 35 348 12 
3340 Model 70 696 12 
3350 555 30 

You can determine which disk extents on an as disk or minidisk are 
available for allocation by using the LISTDS command with the FREE 
option, which also indicates the relative track numbers, as well as 
actual cylinder and head numbers. 

USING VSAM CATALOGS 

While you are developing and testing your VSAM programs in CMS, you may 
find it convenient to create and use your own master catalog, which may 
be on a CMS minidisk. VSAM catalogs, like any other cluster, can be 
shared read-only among several users. 

You name the VSAM master catalog for your terminal session using the 
ddname IJSYSCT for the DLBL command. For example, if your VSAM master 
catalog is located on an OS disk you have accessed as a C-disk, you 
would enter: 

dlbl ijsysct c dsn master catalog (perm 

You must define the master catalog at the start of every terminal 
session. If you are always using the same master catalog, you might 
include the DLBL command you need to define it in your PROFILE EXEC: 

ACCESS 555 C 
DLBL IJSYSCT C DSN MASTCAT (PERM 

You should use the PERM option so that you do not have to reset the 
master catalog assignment after clearing previous DLBL definitions. The 
command: 

dlbl * clear 

clears all file definitions except those entered with the PERM option. 

The sample DLBL command used in the preceding example is almost 
identical with the one you would issue to define a master catalog using 
AMSERV. The only difference is that you must enter the EXTENT option so 
that you can list the data spaces that this master catalog is to 
control. 

As an example, suppose that you have a 30-cylinder 3330 minidisk 
assigned to you to use for testing your VSAM programs under CMS. 
Assuming that the minidisk is in your directory at address 333, you 
should first access it: 

access 333 d 
D(333) R/W - OS 

Section 10. Using Access Method Services and VSAM 199 



If you formatted the minidisk yourself, you know what label you assigned 
it; if not, you can find out the label assigned to the disk by issuing 
the CMS command: 

query search 

The response might be: 

USR191 
VSAM03 
SYS109 
SYS19E 

191 A 
333 C 
190 S 
19E Y/S 

RIll 
RIll - OS 
RIO 
RIO 

Use the volume label VSAM03 in the MASTCAT AMSERV file: 

DEFINE MASTERCATALOG -
(NAME (MASTCAT)­
VOLUME (VSAM03) -
CYL (4) -
FILE (IJSYSCT) 

To find out what extents on this minidisk you can allocate for VSAM, use 
the LISTDS command with the FREE option: 

listds d (free 

The response from LISTDS might look like this: 

FREESPACE INFORMATION FOR 'D' DISK: 
CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 01 1 000 09 9 9 
000 11 11 029 18 569 560 

From this response, you can see that the VTOC is located on the first 
cylinder, so you can allocate cylinders 1 through 29 for 'SAM: 

dlbl ijsysct c dsn mastcat (perm extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
19 551 

(null line) 

After entering the extents, in tracks, g1v1ng the relative track number 
of the first track to be allocated followed by the number of tracks, you 
must enter a null line to complete the command. (A null line is required 
because, when you enter multiple extents, entries may te placed on more 
than one line.) 

Now you can issue the AMSER' command: 

amserv mastcat 

A Ready message with no return code indicates that the master catalog is 
defined. You do not need to reissue the DLBL command in order to 
identify the master ?atalog for additional AMSERV functions. 

You can use the AMSERV command to define private catalogs and spaces for 
them. The procedures for determining what space you can allocate are the 
same as those outlined in the example of defining a master catalog. 

To define a user catalog, you can assign any ddname you want: 

200 IBM VM/370 CMS User's Guide 

( 



) 

access 199 e 
listds e (free 

dlbl cat1 e dsn private cat1 (extent 

amserv usercat 

The file USERCAT AMSERV might contain the following: 

DEFINt USERCATALOG -
(NAME (PRIVATE.CAT1) -
FILE (CAT1)-
CYL (4) -
VOLUME (OSVSAM) -
CATALOG (MASTCAT) 

After this AMSERV command has completed successfully you can use the 
catalog PRIVATE.CAT1. When you define a file cataloged in it, you 
identify it using the CAT option on the DLBL command: 

dlbl file2 c dsn ? (cat cat1 

or, you can define it as a job catalog. 

During a terminal session, you may be referencing the same private 
catalog many times. If this is the case, you can identify a job catalog 
by using the ddname IJSYSUC. Then, that catalog is searched during all 
subsequent jobs, unless you override it using the CAT option when you 
use the DLBL command to define a file. 

If you defined a user catalog (IJSYSUC) for a terminal session and 
you use the AMSERV command to access a VSAM file, the user catalog takes 
precedence over the master catalog. This means that for files that 
already exist, the job catalog is searched. When you define a cluster, 
it is cataloged in the job catalog, rather than in the master catalog, 
unless you use the CAT option to override it. CMS never searches more 
than one VSAM catalog. 

You should use the CAT option to name a catalog when the AMSERV file 
you are executing references, with the CATALOG parameter, a catalog that 
is not defined either as the master catalog or as a user catalog. 

If you want to use additional catalogs during a terminal session, you 
first define them just as you would any other VSAM file: 

dlbl mycat2 f dsn private cat2 (vsam 

Then, when you enter the DLBL command for the VSAM file that is 
cataloged in PRIVATE.CAT2 use the CAT option to refer to the ddname of 
the catalog: 

dlbl input f dsn input file (cat mycat2 

If you want to stop using a job catalog defined with the ddname IJSYSUC, 
you can clear it using the CLEAR option of the DLBL command: 

Section 10. Using Access Method Services and VSAM 201 



dlbl ijsysuc clear 

or, you can assign the ddname IJSYSUC to some other catalog. 
clear the ddname for IJSYSUC, then the master catalog becomes 
catalog. 

If you 
the job 

When you define passwords for VSAM catalogs in CMS, or when you use CMS 
to access VSAM catalogs that have passwords associated with them, you 
must supply the password from your terminal when the AMSERV command 
executes. The message that you receive to prompt you for the password 
is the same message you receive when you execute access method services: 

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOE AMSERV FILE catalog 

When you enter the proper password, AMSERV continues execution. 

DEFINING AND ALLOCATING SPACE FOR VSAM FILES 

You can use CMS AMSERV to allocate additional data spaces for VSAM. To 
use the DEFINE SPACE control statement, you must have defined either the 
master catalog or a user catalog which will control the space, and you 
must have the volume or volumes on which the space is to be allocated 
mounted and accessed. 

For example, suppose you have an OS 3330 disk attached to your 
virtual machine at virtual address 255. After accessing the disk and 
determining the free space on it, you could create a file named SPACE 
AMSERV: 

DEFINE SPACE -
(FILE (FILE1) -
TRACKS (1900) -
VOLUME (123456) -
CATALOG (PRIVATE.CAT2 CAT2) ) 

To execute this AMSERV file, you must define PRIVATE.CAT2 using the 
ddname CAT2, and then define the ddname for the file: 

access 255 c 
dlbl cat2 c dsn private cat2 (vsam 
dlbl file1 c (extent cat cat2 

You do not need to enter a data 
prompts you for the extents of 
specifications: 

set name to define the space. When CMS 
the space, you can enter the extent 

DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
190 1900 

When you define space for VSAM, you should be sure that the VOLUMES 
parameter and the space allocation parameter (whether CYLINDER, TRACKS, 
or RECORDS) in the AMSERV file agree with the track information you 
provide in the DLBL command. 

202 IBM VM/370 CMS User's Guide 



March 30, 1979 

When you are specifying extents for a master catalog, data space, or 
unique file, you can specify up to 16 extents on a volume for a 
particular space. When prompted by eMS for the extents, you must 
separate the different extents by com.as, or place them on different 
lines. To specify a range of extents in the'above example, you could 
enter: 

dlbl file1 c (extent 
190 190, 510 190, 1900 1520 

(null line) 

or --

dlbl file1 c (extent 
190 190 
510 190 
1900 1520 

(null line) 

Again, the first number entered for each extent represents the relative 
track for the beginning of the extent and the second number indicates 
the number of tracks. 

You can define spaces that span up to nine volumes for VSAM files; all 
of the volumes must be accessed and assigned when you issue the DLBL 
command to define or identify the data ,space. 

You should remember, though, that if you are using AMSERV and you do 
not use the PRINT option, you must have a read/write CMS disk so that 
AMSERV can write the output LISTING file. 

If you are defining a new multivolume data space or unique cluster, 
you must specify the extents on each volume that the data is to occupy 
{starting track and number of tracks), followed by the disk mode letter 
at which the disk is assigned: 

access 135 b 
access 136 c 
access 131 d 
dlbl newfile b (extent 
DMSDLB331R~NTER EXTENT SPECIFICATIONS: 
100 60 b, 400 80 b, 60 40 d , 
2000 100 c 

(null line) 

If you enter more than one extent on the same line, the extents must be 
separated by commas; if you enter a comma at the end of a line, it is 
ignored. Different extents for the same volume must be entered 
consecutively. Note that in this example, the extent information is for 
2314 disks and that these extents are also on cylinder toundaries. 

When you enter multi90lume extents, you do not have to enter a mode 
letter for those extents on the disk identified in the DLBL com~and. 
For the extents on disk B in the abov~ eXample, you could enter: 

Section 10. Using Access Methoa Services and VSAM 203 



March 30, 1919 

dlbl new file b (extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 400 80, 60, 60 40 d 
2000 100c 

(null line) 

If you make any errors iss~ing the DLBL command or extent 
information, you must re--enter the entire cpmmand sequence. 

IDENTIFYING EXISTING MULTIVOLUME lI~~2: When you issue a DLBL command to 
IdentIfy-an exIsting mUltIvolume VSAM file, you must use the MULT option 
of the DLBL command sequence: 

dlbl old bl dsn ? (mult 
DMSDLB220R ENTER DATASET NAME: 
vsamtest.file 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
c, d 
e 

(null line) 

When you enter the DLBL command you should specify the mode letter for 
the first disk volume on the command line. When you enter the MULT 
option you are prompted to enter additional specifications for the 
remaining extents. In the above example, the data set has extents on 
disks accessed as B-, C-, D-, and E-disks. 

USING TAPE INPUT AND OUTPUT 

If you are using AMSERV for a function that requires tape input and/or 
output, you must have the tape(s) attached to your virtual machine. The 
valid addresses for tapes are 181, 182, 183, and 184. When referring to 
tapes, you can also refer to them using their CES symtolic names TAP1, 
TAP2, TAP3, and TAP4. 

When you use AMSERV to create or read a tape, you supply the ddname 
for the tape device interactively, after you issue the AMSERV command. 
You must also supply a LABELDEF command for tape label checking before 
you issue the AMSERV command. To indicate to AMSERV that you are using 
tape for input or output, you must use the TAPIN or TAPOUT option to 
specify the tape device being used: 

labeldef tapedd fid filename ••• 
amserv export (tapout 181 

In this example, the 
virtual address 181. 

output from an EXPORT function is 
CMS prompts you to enter the ddname: 

DMSAMS361R ENTER TAPE OUTPUT DDNAMES: 

to a tape at 

After you enter the ddname (TAPEDD in this example) for the tape file, 
AMSERV begins execution. 

AMSERV in CMS. treats all, tape files as having standard labels. The 
LABELDEF. command is required because the CMS/DOS routine that performs 
the tape open needs la,bel information for standard labelled tapes. See 
the description of the LABELDEF command in Section 1 for further 
information. The filename you specify~n the LABELDEF command should be 
the same one you use to reply to the access method service message that 
requested you to supply the tape's ddnames.. However, the LABELDEF 
command must be issued before the AMSERV command. If you only want the 
tape labels skipped, but not checked, enter a LABELDEF with no 
parameters other than filename. 

204 IBM VM/310 eMS ~User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for S74S-XXS 

Tapes used for input aust always 
EOP1 labels or they are rejected by 
need to contain VOL1 labels because 
volume serial number and have the 
However, blank tapes should not be 
routine tries to read the tape. 

contain standard VOL1, DDR1, and 
CftS A!SERV. Output tapes do not 
the user is proapted to enter a 
VOL1 label written if he wants. 
used for output because the open 

When you create a tape file using AMSERV under CftS, CMS writes a label 
file preceding each output data file. When CftS AMSERV is used to read 
this same file, it checks the HDR1 and VOL1 labels using the LABELDEF 
coaaand you provide before it reads the data file. If you want to read 
the tape on a real OS/VS system, however, you must use the LABEL=SL as a 
paraaeter on the data definition (DD) card for the tape. 

Section 10. Using Access Method Services and VSAft 204.1 



March 30, 1979 

204.2 IBM VM/370 CMS User's Guide 



March 30, 1979 

If you are creating a tape under OS/VS access method services to be 
read by CMS AMSERV, you must be sure to create the tape using standard 
labels so that CMS can read it properly. CMS will not be able to read a 
tape created with LABEL=(,NL) on the DD card. 

For CMS to read this tape for any other purpose (for example, to use 
the MOVEFILE command to copy it), you must remember to forward space the 
file past the label file before beginning to read it. 

Using AMSERV under eMS 

This section provides examples of AMSERV functions executed under CMS. 
The examples are applicable to both the CMS (OS) and CMS/DOS 
environments. You should be familiar with the material presented in 
either "Defining DOS Input and output Files" or "Defining OS Input and 
Output Files," depending on whether you are a DOS or an OS user, 
respectively. For the examples shown below, command lines and options 
that are required only for CMS/DOS users are shaded. OS users should 
ignore these shaded entries. 

A CMS format variable file cannot be used directly as input to AMSERV 
functions as a variable (V) or variable blocked (VB) file because the 
standard variable CMS record does not contain the BL and RL headers 
needed by the variable record modules. If these headers are not included 
in the record, errors will result. 

All files placed on the CMS disk by AMSERV viII show a RECFM of V, 
even if the true format is fixed (F), fixed blocked (FB), undefined (U), 
variable or variable blocked. The programmer must know the true format 
of the file he is trying to use with the AMSERV command and access it 
properly or errors will result. 

A CMS standard variable-format file can be accessed as RECFM=U to use 
the file as follows: 

AMSERV AMREPUV 

The file AMREPUS AMSERV contains the following 2 cards: 

REPRO INFILE (INPUT ENV(RECFM(U),BLKSZ(800),PDEV(3330») 
OUTFILE (OUTPUT ENV(RECFM(V),BLKSZ(800),RECSZ(84),PDEV(3330») 

The input file can be any CMS file with LRBCL 800 or less. The 
output file will be a true variable file that can be used with AMSERV. 

USING THE.DEFINE AND DELETE FUNCTIONS 

When you use the DEFINE and DELETE control statements of AMSERV, you do 
not need to specify the DSN parameter on the DLBL command: 

If the above commands are ~xecuted prior to an AMSERV command to define 
a master catalog, the DEFINE will be successful as long as you have 
assigned a data set name using the NAME parameter in the AMSERV file. 
The same is true when you define clusters, or vhen you use the DELETE 
function to delete a cluster, space, or catalog. 

Section 10. Using Access Method Services and VSAM 205 



March 30, 1979 

When you do not specify a data set name, AaSHRV obtains the name fro. 
the AMSERV file. In the case of defining or deleting space. no data set 
name is needed; the FILE parameter corresponding to the ddname is all 
that is necessary, and AMSERV assigns a default data se~ name to the 
space. 

When you define. space on a minidisk using AaSHRV, CI!S does not check 
the extents you specify to see whether they are greater than the number 
of cylinders available. As long as the starting cylinder is a valid 
cylinder number and the extents you specify are on cylinder boundaries, 
the DEFINE function completes successfully. However, you receive an 
error message when you use an AMSERV function that tries to use this 
space. 

To define a cluster for VSAM space that has already been allocated, you 
n~ed (1) an AMSERV file containing the control statements necessary for 
defining the cluster, and (2) the master catalog (and, perhaps, user 
catalog) volume, which will point to the cluster. The volume on Which 
the cluster is to reside does not have to be online when you define a 
suballocated cluster. 

For example, the file CLUSTER A"SERV .contains the following: 

DEFINE CLUSTER ( NAME (BOOK. LIST) -
VOLUMES (123456) -
TRACKS (40) -
F.ILE (BOOK) -
KEYS (14,0) RECORDSIZE (120,132) )­

DATA (NAME (BOOK.LIST.DATA) ) -
INDEX (NAME (BOOK. LIST. INDEX) ) 

To execute this file, you would need to enter the following command 
sequence (assuming that the master catalog, on volume 123456, is in your 
virtual machine at address 310): 

access 310 b 
"1;.'II[[~~Jm,:tm.l~ 
dlbl ijsysct b (perm III •• 
amserv cluster 

Note that to define a suballocated cluster, you do not need to provide a 
DLBL command to define it to AMSERV. 

For a unique cluster (one defined with the UNIQUE attribute), you must 
define the space for the cluster at the same time you define its na.e 
and attributes; thus" the volume or volulles on which the cluster is to 
reside must be mounted and accessed when you execute the AMSERV command. 
You must supply extent information for the cluster's data and index 
portions separately. 

T.o execute an AMS"ERV file named UNIQUEwhic.h contains the following 
(the ellipses indicate that the AMSERV file, is not complete): 

206 IBM VM/370 CMS User's Guide 



) 

) 

DEFINE CLUSTER -
(NAME (PAYROLL) ) -

DATA ( FILE (UDATA) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (40) -
.~. ) -

INDEX ( FILE (UINDEX) ) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (10) -. .. ) 

the command sequence should be: 

access 350 c 

dlbl udata c (extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
800 800 c 
dlbl uind tent 
600 200 c 
amserv unique 

When you use AMSERV to delete a VSAM cluster, the volume containing the 
cluster does not have to be accessed unless the volume also contains the 
catalog in which the cluster is defined. In the case of data spaces and 
user catalogs or the .aster catalog, however, the volume(s) must be 
mounted and accessed in order to delete the space. 

When you delete a cluster or a catalog, you do not need to use the 
DLBL command, except to define the master catalog; AMSBRV can obtain the 
necessary file information from the AMSERV file. In the case of data 
spaces, you must supply a ddna.e (filename) with the DLBL command, but 
you do not need to use the DSN parameter. 

You should be particularly careful when you are using temporary disks 
with AMSERV, that you have not cataloged a temporary data space or 
cluster in a permanent catalog. You will not be able to delete the space 
or cluster from the catalog. 

USING THE REPRO, IMPORT, AND EXPORT (OR EXPORTRA/IMPORTRA) FUNCTIONS 

You can manipulate VSAM files in CMS with the REPRO, IMPORT, and EXPORT 
functions of AMSERV. You can create VSAM files from sequential tape or 
disk files (on OS, DOS, or CMS disks) using the REPRO function. Using 
REPRO, you can also copy VSAM files into CMS disk files or onto tapes. 
For the IMPORT/EXPORT process, you have the option (for smaller files) 
of exporting VSAM files to CMS disks, as well as to tapes. 

You cannot, however, use the EXPORT function to write files onto OS 
or DOS disks. Nor can you use the REPRO function to copy ISAM (indexed 
sequential) files into VSAM data sets, since CMS cannot read ISAM files. 

When creating a VSAM file from a non~VSAM disk file, the device track 
size must be the maximumBLOCKSIZE in the INFILE statement. AMSERV 
expects a DOS or OS file as input and will not open a disk f~le when the 

Section 10. Using Access Method Services and VSAM 207 



BLOCKSIZE specified is greater than the track capacity of the disk 
device being used. 

You cannot use the ERASE or PURGE options of the EXPORT command if 
you are exporting a VSAM file from a read-only disk. The export 
operation succeeds, but the listing indicates an error code 184, meaning 
that the erase function could not be performed. 

You should not use an EXPORT DISCONNECT function from a CMS minidisk 
and try to perform an IMPORT CONNECT function for that data set onto an 
OS system~ OS incorrectly rebuilds the data set control block (DSCB) 
that indicates how much space is available. 

The AMSERV file below gives an example of using the REPRO function to 
copy a eMS sequential file into a VSAM file. The CMS input file must be 
sorted in alphameric sequence before it can be copied into the VSAM 
file, which is a keyed sequential data set (KStS). The VSAM cluster, 
NAME.LIST, is defined in an AMSERV file named PAYROLL: 

DEFINE CLUSTER ( NAME (NAME.LIST ) -
VOLUMES (CMSDEV) -
TRACKS (20) -
FILE (BOOK) -
KEYS (14,0) -
RECORDSIZE (120,132) ) -

DATA (NAME (NAME.LIST.DATA) ) -
INDEX (NAME (NAME.LIST.INDEX ) ) 

To sort the ~MS file, create the cluster 
use the following commands: 

sort name list a name sort a 
DMSSRT604R ENTER SORT FIELDS: 
1 14 
access 135 c 

(perm 

name sort 

and copy the eMS file into it, 

name list vsam 

The file REPRO AMSERV contains: 

REPRO INFILE ( SORT 
ENV (RECORDFORMAT (F) -

BLOCKSIZE (80) -
PDEV (3330) ) ) -

OUTFILE (NAME) 

When you use the REPRO, IMPORT, or EXPORT functions with tape files, 
you must remember to use the TAPIN and TAPOUT options of the AMSERV 
command. These options perform two functions: they allow you to specify 
the device address of the tape, and they notify AMSERV to prompt you to 
enter a ddname. 

In the example below, a VSAM file is being exported to a tape. The 
file, TEXPORT AMSERV, contains: 

EXPORT NAME.~IST­

INlILE (NAME) -
~UTFILE (TAPE ENV (PDEV (2400) ) ) 

208 IBM VM/370 CMS User's Guide 

( 



March 30, 1979 

To execute this AMSERV, you enter the commands as follows: 

vsam 
labeldef tape f~d tapf volid dept10 exdte 79040 
amserv texport (tapout 181 
DMSAMS367R ENTER TAPE OUTPUT DDNAMES: 
tape 

The fid, volid, and exdte parameters on LAB!LDEF are only examples; 
you can substitute any value you want for them on your tape label. 

WRITING EXECS FOR AMSERV AND VSAM 

You may find it convenient to use EXEC procedures for most of your 
AMSERV functions, as well as setting up input and output files for 
program execution, and executing your VSAM programs. If, for exaaple, a 
particular AMSERV function requires several disks and a nuaber of DLEL 
statements, you can place all of the required commands in an EXEC file. 
For example, if the file below is named SETUP EXEC: 

ACCESS 135 B 
ACCESS 136 C 
ACCESS 137 D 
ACCESS 300 G 
l'''llil •• _~if.. 
DLBL IJSYSCT G (PERM 111111 
f .... 111Ial.~4. 
DLBL FILE1 B DSN FIRST FILE (VSAMjllllllll~ 
D11.; •• _tlr 
DLBL FILE2 C DSN SECOND FILE (VSAMIIIIII 

DLBL FILE D DSN THIRD FILE (V SAM ;lllllil,: 
AMSERV MULTFILE 

to invoke this sequence of commands, all you have to enter is the name 
of the EXEC: 

setup 

If you place, at the beginning of the EXEC file, the EXEC control 
statement: 

&ERROR &EXIT &RETCODE 

then, you can be sure that the AMSERV command does not execute unless 
all of the prior commands completed successfully. 

For those AMSERV functions that issue response messages, you can use 
the &STACK EXEC control statement. For example: 

&ERROR &EXIT &RETCODE 
ACCESS 305 D 

BL TPUT D (VSAM 
LABELDEF TAPE FID FILE1 
&ERROR &CONTINUE 
&STACK TAPE 
AMSERV TIMPORT (TAPIN 181 
&IF &RETCODE NE 0 TYPE TIMPORT LISTING 
TAPE REW 
&EXIT 0 

Section 10. Using Access Method Services and VSAM 209 



March 30, 1979 

When the AMSERV command in the EXEC is executed~ the request for the 
tape ddname is satisfied immediately, by the response stacked with the 
&STACK statement. 

If you are executjng a command that accepts multiple response lines, 
you have to stack a null line as follows: 

&STACK C . D 
&STACK 

. DLBL M.ULTFILE B 

l!Qte: You can use the&BEGSTACK control statement to stack a series of 
responses in an EXEC, but you must use &STACK to stack a null line. 

210 IBM VM/370 eMS user'.~Guide 



) 

) 

Section 11. How VM/370 Can Help You Debug 
Your Programs 

Debugging is a critical part of the program development process. When 
you encounter problems executing application programs or when you want 
to test new lines of code, you can use a variety of CP and CftS debugging 
commands and techniques to examine your program while it is executing. 

You can interrupt the execution of a program to examine and change 
your general registers, storage areas, or control words such as the 
program status word (PSW), and then continue execution. Also, you can 
trace the execution of a program closely, so you can see where branches 
are being taken and when supervisor calls or I/O interruptions occur. 

In many cases, you may never need to look at a dump of a program to 
identify a problem. 

Preparing to Debug 

Before beginning to debug a program, you should have a current program 
listing for reference. When you use VM/370 to debug a program, you can 
monitor program execution, instruction by instruction, so you must have 
an accurate list of instruction addresses and addresses of program 
storage areas. You can obtain a listing of your program by using the 
PRINT command to print the LISTING file created by the assembler or 
compiler. To determine the virtual storage locations of program entry 
points, use the LOAD MAP file created by the LOAD and INCLUDE commands. 
If you are a CftS/DOS user, use the linkage editor map produced by the 
DOSLKED command. 

If the program that you are debugging creates printed or punched 
output and you will be executing the program repeatedly, you may not 
wish all of the output printed or punched. You should place your 
printer or punch in a hold status, so that any files spooled to these 
devices are not released until you specifically request it: 

cp spool printer hold 
cp spool punch hold 

When you are finished debugging you can use the CP QUERY command to see 
what files are being held and then you can select which files you may 
want to purge or release. 

When a Program Abends 

The most common problem you might encounter is an abnormal termination 
resulting from a program interruption. When a program running in a CftS 
virtual machine abnormally terminates (abends), you receive, at your 
terminal, the message: 

DMSITP141T exception EXCEPTION OCCURRED AT address IN ROUTINE name 

and your virtual machine is returned to the CftS environment. Prom the 
message you can determine the type of exception (program check, 
operation, specification, and so on), and, often, the instruction 
address in your program at which the error occurred. 

Section 11. How VM/370 Can Help You bebug Your Programs 211 



sometimes this is enough information for you to correct the error in 
your source program, recompile it and attempt to execute it again. 

ihen this information does not immediately identify the problem in 
your program, you can begin debugging procedures using V!/370. To 
access your program's storage areas and registers you can enter the 
command: 

debug 

immediately after rece~v~ng the abend message. This command places your 
virtual machine in the debug environment. 

To check the contents of general registers 0 through 15, issue the 
DEBUG subcommand: 

gpr 0 15 

If you want to look at only one register, enter: 

gpr 3 

You might also wish to check the program status word (PSi). Use the PSi 
subcommand: 

psw 

You can examine storage areas in your program using the X sUbcommand: 

X 201AC 20 

In this example, the sUbcommand requests a display of 20 bytes, 
beginning at location 201AC in your program. User programs executed in 
CMS are always loaded beginning at location X'20000' unless you specify 
a different address on the LOAD or FETCH com.and. To identify the 
virtual address of any instruction in a program, you only need to add 
20000 to the hexadecimal instruction address. 

RESUMING EXECUTION AFTER A PROGRAM CHECK 

On occasion, you will be able to determine the cause of a program check 
and continue the execution of your program. There are DEBUG subcommands 
you can use to alter your program while it is in storage and resume 
execution. 

If, for example, the error occurred because you had forgotten to 
initialize a register to contain a zero, you could use the DEBUG 
subcommand SET to place a zero in the register, and then resume 
execution with the GO subcommand. You can use the GO subcommand to 
specify the instruction address at which you want execution to begin: 

set gpr 11 0000 
go 200BO 

An alternate method of specifying a starting address at which execution 
is to resume is by using the SET subcommand to change the last word of 
the PSi: 

set psw 0 000200BO 
go 

212 IBM VM/370 CMS User's Guide 

{ 



) 

If your program executes successfully, you can then make the 
necessary changes to your source file, recompile, and continue testing. 

Using DEBUG Subcommands to Monitor Program 
Execution 
The preceding examples did not represent a wide range of the 
possibilities for DEBUG subcommands. Nor do they represent the only way 
to approach program debugging. Some additional DEBUG subcommands are 
illustrated below. For complete details in using these subcommands, 
refer to the !~L170 ~~~ ~Q~~~Bg gBg ~~££2 ~~!~f~Bf~· 

When you prepare to debug a program with known problems, or when you 
are beginning to debug a program for the first time, you might want to 
stop program execution at various instructions and examine the 
registers, constants, buffers, and so on. To temporarily stop program 
execution, use the BREAK subcommand to set breakpoints. You should set 
breakpoints after you load the program into storage, but before you 
begin executing it. You can set up to 16 breakpoints at one time. For 
each breakpoint, you assign a value (id), and an instruction address: 

load myprog 
debug 
break 0 20BCO 
break 1 20C10 
break 2 20DOO 

Then, you can return to CMS and begin execution: 

return 
start 

When the first breakpoint in this example is encountered, you receive 
the messages: 

DEBUG ENTERED. 
BREAKPOINT 0 AT 20BCO 

Then, in the debug environment, use the subcommands GPR, CSW, CAW, PSi, 
and X to display registers, control words, or storage locations. 

you can resume program execution with the GO subcommand: 

go 

If, at any time, you decide that you do not want to finish executing 
your program, but want to return to the CMS environment immediately, you 
must use the HX subcommand: 

hx 

,There are three subcommands you can use to exit from the debug 
environment: 

1. RETURN, to return to the CMS environment when DEBUG is entered with 
the DEBUG command 

2. GO, to resume program execution when it has been interrupted by a 
breakpoint 

3. HX, to halt program execution entirely and return to the CMS 
environment 

Section 11. How VM/370 Can Help You Debug Your Programs 213 



If you try to leave the debug environment with t~e wrong subcommand you 
receive the message: 

INCORRECT DEBUG EXIT 

and you have to enter the proper subcommand~ 

USING SYMBOLS WITH DEBUG 

To simplify the process of debugging in theCMS debug environment, you 
can use the ORIGIN and DEFINE subcommands. The ORIGIN command allows 
you to set an instruction location to serve as the base for all the 
addresses you specify. For exa.~le, if you specify: 

origin 20000 

then, to refer to your virtual storage location 201BC, you only need to 
enter: 

x lbc 

By setting the DEBUG origin at your program's base address, you can 
refer to locations in your program by the virtual storage numbers in the 
listing, rather than having to compute the actual virtual storage 
address each time. The current DEBUG origin stays in effect until you 
set it to a different value or until you reload CMS (with the IPL 
command). 

You can use the DEFINE subcommand to assign symbolic names to storage 
locations so that you can reference those locations by symbol, rather 
than by storage address. For example, suppose that during a DEBUG 
session you will repeatedly be examining three particular storage 
locations labeled in your program NAME1, NAftE2, and NAME3. They ar~ at 
locations 20EFO, 20EFA, and 20F04. Enter: 

load nameprog 
debug 
origin 20000 
define namel 
define name2 
define name3 
break 1 
return 
start 

a04 

EFO 10 
EFA 10 
F04 10 

When the specified breakpoint is encountered, you can examine these 
storage areas by entering: 

x name1 
x name2 
x name3 

You can also refer to these symbols by name when you use the STORE 
subcommand: 

store name2 c4c5c3c5c1e4e5d6c9d9 

The names you specify do not have to be the same as the 
program; you can define any name up to eight characters. 

Figure 17 summarizes the DEBUG subcommands. 

214 IBM Vft/370 CMS User's Guide 

labels in the 

( 



) 

) 

Subcommand Format 

BReak id {SY.bOI} 
hexloc 

CAW 

CSW 

r , 
DEFine symbol hexloc Ibytecountl 

I ~ I 
L ..J 

Function 

IStops prograa execution at the 
Ispecified breakpoint. 

IDisplays the contents of the 
Ichannel address word. 

IDisplays the contents of the 
Ichannel status word. 

IAssigns a symbolic name to the 
Ivirtual storage address. 
I 
I 

r r , , IDumps the contents of specified 
DUap Isymbol1 Isyabol21 [ident] I Ivirtual storage locations to the 

Ihexloc1 Ihexloc21 I Ivirtual spooled printer. 
I .Q I * I I I 
L L 1l..J ..J I 

r , 
GO Isymboll 

Ihexlocl 
L ..J 

GPR reg1 [reg2] 

HI 

r , 
ORigin Isymboll 

Ihexlocl 
I .Q I 
L ..J 

PSi 

RETurn 

SET {CAi bexinfo } 
CSi hexinfo [hexinfo] 
PSi hex info [hexinfo] 
GPR reg hexinfo [hexinfo] 

STore {symbol} hexinfo [hexinfo] 
{hexloc} 

r , 
I symbol I n I 

1!~1!g!l!1 
L ..J 

r , 
hexloc I n I 

I ~ I 
L ..J 

IReturns control to your program 
land starts execution at the 
Ispecified location. 
I 

IDisplays the contents of the 
Ispecified general registers. 

IHalts execution and returns to 
Ithe CftS command environment. 

ISpecifies the base address to be 
ladded to locations specified in 
lother DEBUG subcommands. 
I 
I 

IDisplays. the contents of the old 
Iprogram status word. 

IExits from debug environment to 
Ithe CftS command environment. 

IChanges the contents of specified 
Icontrol words or registers. 
I 
I 

Istores up to 12 bytes of informa­
Ition starting at the specified 
Ivirtual storage location. 

IExamines virtual storage 
Ilocations. 
I 
I 
I 
I 
I 
I 

Figure 17. Summary of DEBUG Subcommands 

Section 11. How Vft/370 Can Help You Debug Your Programs 215 



What To Do When Your Program Loops 

If, when your program is executing, it seems to be in a loop, you should 
first verify that it is looping, and then interrupt its execution and 
either (1) halt it entirely and return to the CftS environment or (2) 
resume its execution at an address outside of the loop. 

The first indication of a program loop may be either what seems to be 
an unreasonably long processing time, or, if you have a blip character 
defined, an inordinately large number of blips. 

You can verify a loop by checking the PSi frequently. If the last 
word repeatedly contains the same address, it is a fairly good 
indication that your program is in a loop. You can check the PSW by 
using the Attention key to enter the CP environment. You are notified 
by the message: 

CP 

that your virtual machine is in the CP environment. You can then use 
the CP command DISPLAY to examine the PSW: 

cp display psw 

and then enter the command BEGIN to resume program execution: 

cp begin 

If you are checking for a loop, you might enter both commands on the 
same line using the logical line end: 

cp d plb 

When you have determined that your program is in a loop, you can halt 
execution using the CMS Immediate command HI. To enter this command, 
you must press the Attention key once to interrupt program execution, 
then enter: 

hx 

If you want your program to continue executing at an address past the 
loop, you can use the CP command BEGIN to specify the address at which 
you want to continue execution: 

cp begin 20cdO 

Or, you could use the CP command STORE to change the instruction address 
in the PSW before entering the BEGIN command: 

cp store psw 0 20cdOIbegin 

Tracing Program Activity 

When your program is in a loop, or when you have a program that takes an 
unexpected branch, you might need to trace the execution closely to 
determine at what instruction the program goes astray. There are two 
commands you can use to do this. The SVCTRACE command is a CMS command 
which traces all SVCs (supervisor calls) in your program. The TRACE 
command is a CP command which allows you to trace different kinds of 
information, including supervisor call instructions. 

216 IBM VM/370 CMS User's Guide 

( 



) 

) 

USING THE CP TRACE COKKAND 

You can trace the following kinds of activity in a program using the CP 
TRACE command: 

• Instructions 
• Branches 
• Interrupts (including program, external, I/O and SVC interrupts) 
• I/O and channel activity 

When the TRACE command executes, it traces all your virtual machine's 
activity; when your program issues a supervisor call, or calls any CftS 
routine, the TRACE continues. 

You can make most efficient use of the TRACE command by starting the 
trace at a specific instruction location. You should set an address 
stop for the location. For example, if you are going to execute a 
program and you want to trace all of the branches made, you would enter 
the following sequence of commands to begin executing the program and 
start the trace: 

load progress 
cp adstop 20004 
start 
ADSTOP AT 20004 
cp trace branch 
cp begin 

NOW, whenever your program executes a branch instruction, you receive 
information at the terminal that might look like this: 

02001E BALR 05E6 ==) 020092 

This line indicates that the instruction at address 2001E resulted in a 
branch to the address 020092. When this information is displayed, your 
virtual machine is placed in the CP environment, and you must use the 
BEGIN command to continue execution: 

cp begin 

When you locate the branch that caused the problem in your program, you 
should terminate tracing activity by entering: 

cp trace end 

and then you can use CP commands to continue debugging or you can use 
the EXTERNAL command to cause an external interruption that places your 
virtual machine in the debug environment: 

cp external 

You receive the message: 

DEBUG ENTERED. 
EXTERNAL INTERRUPT 

And you can use the DEBUG subcommands to investigate the status of your 
program. 

Section 11. How Vft/370 Can Help You Debug Your Programs 217 



There are several things you can do to control the amount of information 
you receive when you are using the TRACE command, and how it is 
received. For example, if you do not want program execution to halt 
every time a trace output message is issued, you can use the RUN option: 

cp trace svc run 

Then, you can halt execution by pressing the Attention key when the 
interruption you are waiting for occurs. You should use this option if 
you do not want to halt execution at all, but merely want to watch what 
is happening in your program. 

Similarly, if you do not require your trace output immediately, you 
can specify that it be directed to the printer, so that your terminal 
does not receive any information at all: 

cp trace inst printer 

When you direct trace output to a 
with any printed program output. 
from other printed output, use the 
printer at a virtual address lower 
example: 

cp define printer 006 

printer, the trace output is mixed in 
If you want trace output separated 

CP DEFINE command to define a second 
than that of your printer at OOE. For 

Then, trace output will be in a separate spool file. C8S printed output 
always goes to the printer at address OOE. 

When you finish tracing, use the CP CLOSE command to close the 
virtual printer file: 

cp close e 

-- or --

cp close 006 

If you want trace output at the printer and at the terminal, you can use 
the BOTH option: 

cp trace all both 

If you are debugging a program that does a lot of I/O, or that issues 
many SVCs, and you are tracing instructions or branches, you might not 
wish to have tracing in effect when the supervisor or I/O routine has 
control. When you notice that addresses being traced are not in your 
program, you can enter: 

cp trace end 

and then set an address stop at the location in your program that 
receives control when the supervisor or I/O routine has completed: 

cp adstop 20688 
begin 4( 

218 IBM VM/370 CMS User's Guide 



) 

Then, when this address is encountered, you can re-enter the CP TBACE 
command. 

USING THE SVCTBACB COftMAND 

If your program issues many SVCs, you may not get all of the information 
you need using the CP TBACE command. The SVCTBACE command is a CBS 
command, which provides more detailed information about all SVCs in your 
program, including register contents before and after the SVC, the name 
of the called routine, and the location from which it was called, and 
the contents of the parameter list passed to the SVC. 

The SVCTBACB command has only two operands, ON and OFF, to begin and 
end tracing. SVCTRACB information can be directed only to the printer, 
so you do not receive trace information at the terainal. 

Since the SVCTRACB command can only be entered frail the CBS 
environment, you must use the I.mediate commands SO (suspend tracing) or 
HO (halt tracing) if you want tracing to stop while a prograa is 
executing. Use the Immediate command RO to resume tracing. 

Since the CMS system is "SVC-driven", this debugging technique can be 
useful, especially, when you are debugging eftS programs. For more 
inforaation on writing programs to execute in CftS, see "Section 13. 
Programming for the CMS Environment." 

Using CP Debugging Commands 

In addition to the CftS debugging facilities, there are CP commands that 
you can use to debug your programs. These commands are: 

• DISPLAY, which you can use to examine virtual storage, registers, or 
control words, like the PSW 

• ADSTOP, which you can use to set an instruction a~dress stop in your 
program 

• STORB, which you can use to change the contents of a storage 
location, register, or control word 

When you use the display command, you can request an EECDIC translation 
of the display by prefacing the location you want displayed with a "T": 

cp display t20000.10 

This command requests a display of X'10' (16) bytes beginning at 
location X'20000'. The display is formatted four words to a line, with 
EECDIC translation at the left, much as you would see it in a dump. 

You can 
registers. 

also use the DISPLAY command 
For example, the commands: 

cp display g 
cp display gl 
cp display g2-5 

to examine the general 

result in displays of all the general registers, of general register 1, 
and of a range of registers 2 through 5. 

Section 11. How VM/370 Can Help You Debug Your programs 219 



The DISPLAY command also displays the PSi, CAW, and CSW: 

cp display psw 
cp display caw 
cp display csw 

With the STORE command, you can change the contents of registers, 
storage areas, or the PSW. 

As you can see, the CMS DEBUG subcommands and the CP commands ADSTOP, 
DISPLAY, and STORE, have many duplicate functions. The environment you 
choose to work in, CP or debug, is a matter of personal preference. The 
differences are summarized in Figure 18. What you should be aware of, 
however, is that you should never attempt to use a combination of CP 
commands and DEBUG subcommands when you are debugging a program. Since 
DEBUG itself is a program, when it is running (that is, when you are in 
the debug environment), the registers that CP recognizes as your virtual 
machine's registers are actually the registers being used by DEBUG. 
DEBUG saves your program's registers and PSW and keeps them in a special 
save area. Therefore, if you enter the DEBUG and CP commands to display 
registers, you will see that the register contents are different: 

gpr 0 15 
tcp d g 

DEBUGGING WITH CP AFTER A PROGRAM CHECK 

When a program that is executing under CMS abends because of a program 
check, the DEBUG routine is in control and saves your program's 
registers, so that if you want to begin debugging, you must use the 
DEBUG command to enter the debug environment. 

You can prevent DEBUG from gaining 
interruption occurs by turning on the wait 
(location X'68' in low storage): 

cp store 68 00020000 

control when a 
bit in the program 

program 
new PSW 

You should do this before you begin executing your program. Then, if a 
program check occurs during execution, when CP tries to load the progra. 
new PSW, the wait bit forces CP into a disabled wait state and you 
receive the message: 

DMKDSP450W CP ENTERED; DISABLED WAIT PSW 

All of your program's registers and storage areas remain exactly as they 
were when program interruption occurred. The PSW that was in effect 
when your program was interrupted is in the program old PSW, at location 
X'28'. Use the DISPLAY command to examine its contents: 

cp display 28.8 

The program new PSW, or the PSW you see if you enter the command DISPLAY 
PSW, contains the address of the DEBUG routine. 

If, after using CP to examine your registers and storage areas, you 
can recover from the problem, you must use the STORE command to restore 
the PSW, specifying the address of the instruction just before the one 
indicated at location X'28',. For example, if the instruction address in 
your program is X'566' enter: 

220 IBM VM/310 CMS User's Guide 

I 
~ ,\ 

( 



) 

cp store psw 0 20566 
cp begin 

In this example, setting the first word of the PSi to 0 turns the wait 
bit off, so that execution can resume. 

Program Dumps 

When a program you execute under eMS abnormally terminates, you do not 
automatically receive a program dump. If, after attempting to use CMS 
and CP to debug interactively, you still have not discovered the 
problem, you may want to obtain a dump. You might also want to obtain a 
dump if you find that you are displaying large amounts of information, 
which is not practical on a terminal. 

Depending on whether you are using CMS DEBUG or CP to do your 
debugging, you can use the DUMP command to specify storage locations you 
want printed. The formats of the DUMP command (CP) and the DUMP 
subcommand (DEBUG) are a little different. See !~Ll1~ £~~ £2!~~~g ~~g 
Macro Reference for a discussion of the DEBUG subcommand, DUMP; see 
!~LJ1~-~g ~giii~g R~!~~~~£~ !~ Q~~~~~1 Q2~§ for a discussion of the CP 
DUMP command. 

In either event, you can selectively dump portions of your virtual 
storage, your entire virtual storage area, or portions of real storage. 
For example, in the debug environment, to dump the virtual storage space 
that contains your program, you would enter: 

dump 20000 20810 

The second value depends upon the size of your program. 

From the CP environment, enter: 

cp dump t20000-20810 

The CP DUMP command allows you to request EBCDIC translation 
hexadecimal dump. The dump produced by the DEfUG subcommand 
provide EBCDIC translation. 

Debugging Modules 

with the 
does not 

You can debug nonrelocatable MODULE files (created with the GENMOD 
command) in the same way you can debug object modules (TEXT files). 

To load the MODULE into storage, use the LOADMOD command: 

loadmod mymod 
cp adstop 201CO 
start 

If you make any changes to the module while it is in your virtual 
storage area and then issue the GENMOD command, the changes are a 
permanent part of the executable module: 

loadmod mymod 
cp store 201CO 0002 
genmod mymod 

To debug MODULE files in this manner, you must have a listing of. the 
program as it existed when the module was created. 

Section ~1. How VM/310 Can Help You Debug Your Programs 221 



Comparison of CP and CMS Facilities for Debugging 

If you are debugging problems while running CftS, you can choose the CP or CMS debugging 
tools. R~fer to Figure 18 for a comparison of the CP and C!S debugging tools. 

, 
Function CP ces I 

-------------------------------------------------------------------------------------1 
Setting 
address 
stops. 

Can set only one address stop at a time. Can set up to 16 address stoFsl 
at a time. I 

I 
----------------------------------------------------------------------------------1 
rumping 
contents I 
of storagel 
to the I 
Frinter. I 

I 
I , 

Displaying' 
the con- , 
tents of I 
storage , 
and , 
control I 
registers I 
at the , 
terminal. , 

Storing 
informa­
tion. 

Tracing 
informa­
tion. 

The dump is printed in hexadecimal format 
with EBCDIC translation. The storage ad­
dress of the first byte of each line is 
identified at the left. 

The display is typed in hexadecimal format 
with EBCDIC translation. The CP command I 
disFlays storage keys, floating-point regi-I 
sters and control registers. I 

The amount of information stored by the CP 
command is limited only by the length of 
the input line. The information can be 
full word aligned when stored. CP stores 
data in floating-point and control regis­
ters, as well as in general registers. CP 
stores data in the PSW, but not in the CAW 
cr CSW. However, data can be stored in the 
CSW or CAW by specifying the hardware ad­
dress in the STORE command. 

CP traces: 
• All interruptions, instructions, and 

branches 
• SVC interruptions 
• I/O interruptions 
• program interruptions 
• External interruptions 
• privileged instructions 
• All user I/O operations 
• Virtual and real CCi's 
• All instructions 

The CP trace is interactive. You can stop 
it and display other fields. 

I 
I 
I , 
I 

The dump is Frinted in hexa- 1 
decimal format. The storage 1 
address of the first byte of I 
each line is identified at the 
left. The contents of general 
and floating-po~nt registers 
are printed at the beginning 
of the dump. 

The display is tYFed in hexa­
decimal format. Tbe C!S com­
mands do ~! display storage 
keys, floating-Foint registers 
or control registers as the CP 
command does. 

The CMS command stores up to 
12 bytes of informatien. CftS 
stores data in the general 
registers tut net in the 
floating-point er control reg­
isters~ CftS stores data in the 
PSi, CAi, and CSW. 

CMS traces all SVC interruF­
tions. CMS displays the 
contents of general and 
floating-point registers 
before and after a routine is 
called. The parameter list is 
recorded before a 
routine is called. 

'Figu~e 18. Comparison of CP and CMS Facilities for Debugging 

222 IBM VM/370 eMS User's Guide 

( 



~I 

March 30, 1979 

What Your Virtual Machine Storage Looks Like 

Figure 19 illustrates a simplified CMS storage map. The portion of 
storage that is of most concern to you is the user program area, since 
that is where your programs are loaded and executed. 1he user program 
area and some of the other areas of storage shown in the figure are 
discussed below in general terms. 

When you issue a LOAD command (for OS or CMS programs) or a FETCH 
command (for DOS programs), and you do not specify the ORIGIN option, 
the first, or only, program you load is loaded at location X'20000', the 
beginning of the user program area. 

The upper limit, or maximum size, of the user program area is 
determined by the storage size of your virtual machine. You can find 
out how large your virtual machine is by using the CP QUERY command: 

cp query virtual storage 

If you need to increase the size of your virtual machine, then you 
must use the CP command DEFINE. For example: 

cp define storage 1024k 

increases the size of your virtual machine to 1024K bytes. If you are 
in the CMS environment when you enter this command, you receive a 
message like: 

STORAGE = 01024K 
DMKDSP450W CP ENTERED; DISABLED WAIT PSi '00020000 00000000' 

and you must reload CMS with the IPL command before you can continue. 

You might need to redefine your virtual machine to a larger size if 
you execute a program that issues many requests for free storage, with 
the OS GETMAIN or DOS/iS GETVIS macros. CMS allocates this storage fro. 
the user program area. 

At the top of the user program area are the loader tables, that are 
used by the CMS loader to point to programs that have have been loaded. 
You can increase the size of this area with the CMS SET LDRTBLS command. 
If you use the SET LDRTBLS command, you should issue it immediately 
after you IPL CMS. 

The transient program area is used for loading and executing 
disk-resident CMS MODULE files that have been created using the ORIGIN 
TRANS option of the LOAD command, followed by the GENMOD cOllmand. For 
aore information on CMS MODULE files and the transient area, see 
"Executing Program Modules" in "Section 13. Programming for the C!S 
Environment." 

~HARED AND NONSHARED SYSTEMS 

The areas in storage labeled in Figure 19 as the C!S nucleus and the 
ncss are system programs that are loaded by various types of requests. 
When you enter the command: 

cp ipl ems 

Section ~1. How iM/370 Can Help You Debug Your Programs 223 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

~-------------------, 
I I 
I I 
I I 
I DCSS I 
I I 
I I 
I I 

Loader Tables 

User Program Area 

CMS Nucleus 

Transient program Area 

Free storage used by 
CMS routines 

Low-storage 
CMS routines 

System Control Blocks, 
Pointers, Flags 

Figure 19~ Simplified CMS Storage Map 

"1 X'n' 
(where n = your 
virtual machine 
storage size) 

X'20000' 

X'10000' 

X'EOOO' 

X'8000' 

X'40CO' 

X'O' 

the area shown 
is known to CP 
the CMS system 
using CMS, you 
command to load 
same system, CP 

as the CMS nucleus is loaded with the CMS system, which 
by its saved name, CMS~ This saved system is a copy of 

that is available for many users to share. When you are 
share it with other users who have also issued the IPL 

the saved CMS system. By having many userS share the 
can manage system resources more efficiently. 

Under some circumstances, you may need to lead the eMS system into 
your virtual machine by entering the IPL command as follo~s: 

cp ipl 190 

This IPL command loads the CMS system bj r~ferring to its virtu~l 
address, which in most installations is 190. The copy of CMS you load 
this way is ncnshared; it is your own copy, but it is the same system, 
functionally, as the sa ved system CMS. . 

Some of the CP and CMS debugging commands do not allow you to trace 
or store information that is contained in shared areas of your virtual 
machine. For example, if you have entered the command: 

cp trace inst 

224 IBM VM/370 CMS User's Guide 



) 

to trace instructions in your virtual machine, some of the instructions 
may be located in the CMS nucleus. If you have ~ shared copy of CMS, you 
receive a message like: 

DMKATS181E SHARED SYSTEM CMS REPLACED WI!E NONSEARED COpy 

and CP loads a copy of CMS for you that you. do not share with other 
users. 

]i§f~~!igy~y§ §~!~g 2~g!~~!§ (~~~~) 

Some CMS routines and programs are stored on disks and loaded into 
storage as needed. These segments include the CMS editor, EXEC 
processor, and OS simulation routines; CMS/DOS; VSAM; and access method 
services. Beyond the end of your virtual machine address space is an 
area of storage into which these segments are loaded when you need them. 
Since this area is not contiguous with your virtual storage, the 
segments that are loaded in this area are called discontiguous saved 
segments. 

These segments are loaded only when you need them, and are released 
fro. the end of your virtual machine when you are through using them. 
Like the CMS system, they are saved systems and can be shared by many 
users. For example, whenever you issue the lIlT com~and' the segment 
named CMSSEG is loaded; when you enter the EtIT subcommands FILE or 
QUIT, the saved system CMSSEG is released. The other segments are named 
CMSDOS (forCMS/DOS), CMSVSAM (for VSAM interfaces), and CMSAMS (fer 
access method services interfaces). These names are the defaults; they 
can be changed by the installation. 

You can specifically request a nonshared copy of a segment ty loading 
the named sy~tem by volume rather than by name. If you do not do this 
before altering a shared segment (unless with the AISTOP, TRACE, or 
STORE CP commands), CP issues the message DMKVMA456W and places you in 
console function mode. 

In addition, for the CMSSEG segment only, you can indicate an 
alternate segment to be loaded on the IPL command. The format of the 
IPL command to support this is: 

IPL { cuu } PARM SEG=segmentname 
systemname 

SEG=segmentname 
indicates the name of the saved segment to be loaded whenever the 
CMS editor, EXEC processor, or OS simulation routines are needed. 
Eight characters must be entered for segmentname; either assign an 
eight-character segment name when you code the NAMESYS macro fer 
your installation, or be sure that the operator enters trailing 
blanks if segmentname is less than eight characters long. 

The CMS batch facility loads whatever segment is specified 
first IPL command issued for the batch virtual machine. Thus, 
first IPL command for a CMS batch facility machine is: 

IPL CMS PARM SEG=CMSSEG02 

on the 
if the 

all subsequent IPL commands issued by the eMS batch facility will 
specify the same segment name (CMSSEG02). 

For additional information on 
segments, and CMS virtual storage, 
.§yid~. 

saved systems, discontiguous saved 
see the !~L~lQ §I§!~! E~gg!g~~~~~§ 

Section 11. How VM/370 Can Help You £ebug Your programs 225 



( 
226 IBM VM/370 eMS User's Guide 



) 

) 

Section 12. Using the eMS Batch Facility 

The CMS batch facility provides a way of submitting jobs for batch 
processing in CMS. You can use the CMS batch facility when: 

• You have a job (like an assembly or execution) that takes a lot of 
time, and you want to be able to use your terminal for other work 
while the time-consuming job is being run. 

• You do not have access to a terminal. 

The CMS batch facility is really a virtual machine, generated and 
controlled by the system operator, who logs on VM/370 using the batch 
userid and invoking the CMSBATCH command. All jobs sutmitted for batch 
processing are spooled to the userid of this virtual machine, which 
executes the jobs sequentially. To use the CMS batch facility at your 
location, you must ask the syste. operator what the userid of the batch 
virtual machine is. 

Submitting Jobs to the eMS Batch Facility 

Under a real os or DOS system, jobs submitted in batch mode are 
controlled by JCL specifications. Batch jobs submitted to the CMS batch 
facility are controlled by the control cards /JOB, /SET, and /*, and by 
CMS commands. 

Any application or development program written in a language 
supported by VM/370 may be executed on the batch facility virtual 
machine. However, there ~re restrictions on programs using certain CP 
and CMS commands, as described later in this section. 

INPUT TO THE BATCH MACHINE 

Input records must be in card-image format, and may be punched on real 
cards, placed in a CMS file with fixed-length, SO-character records, or 
punched to your virtual card punch. These jobs are sent to the batch 
virtual machine in one of two w~ys: 

• By reading the real punched card input into the system card reader 

• By spooling your virtual card punch to the virtual reader of the 
batch virtual machine 

When you submit a real card deck to the batch machine, the first card 
in the deck must be a CP ID card. The ID card takes the form: 

r 
lID userid 

where ID must begin in card column one and be separated from userid (the 
batch facility virtual machine userid) by one or more blanks. 

Section 12. Using the eMS Batch Facility 227 



For example, if your installation's batch virtual machine has a 
userid of BATCH1, you punch the card: 

ID BATCH1 

and place it in front of your deck. 

When you are going to submit a job using your virtual card punch, you 
must first be sure that your punch is spooled to the virtual reader of 
the batch virtual machine: 

cp spool punch to batch1 

Virtual card input can be spooled to the batch machine in several ways. 
You may create a CMS file that contains the input control cards and use 
the CMS PUNCH command to punch the virtual cards: 

punch batch jcl (noheader 

When you punch a file this way, you must use the NOHEADER option of the 
PUNCH command, since the CMS batch facility cannot interpret the header 
card that is usually produced by the PUNCH command. As it does with 
cards in an invalid format, the batch virtual machine would flush the 
header card. 

You can use an EXEC procedure to submit input to the batch machine. 
From an EXEC, you can punch one line at a time into your virtual punch, 
uS1ng the &PUNCH and &BEGPUNCH EXEC control statements. When you do 
this, you must remember to use the CP CLOSE comm~nd to release the spool 
punch file when you are finished: 

CP CLOSE PUNCH 

If you are using the EXEC to punch individual lines and entire CMS files 
to be read by the batch virtual machine as one continuous job stream, 
you must remember to spool your punch accordingly: 

CP SPOOL PUNCH CONT 
&PUNCH /JOB BOSWELL 999888 
PUNCH BATCH JCL * (NOHEADER 
CP SPOOL PUNCH NOCONT 
CP CLOSE PUNCH 

A /JOB card must precede each job to be executed under the batch 
facility. It identifies your userid to the batch virtual machine and 
provides accounting information for the system. It takes the form: 

/JOB userid accntnum [jobname] [comments] 

228 IBM VM/370 CMS User's Guide 

( 



) 

) 

userid is your user identification, or the userid under which you 
want the job submitted. This parameter controls: (1) The 
userid charged by the CP accounting routines for the system 
resources used during a job. (2) The name and distribution 
code that appear on any spooled printer or punch output. (3) 
The userid to whom status messages are sent while the batch 
machine is executing the job. 

Note that items 1 and 2 are correct only if the directory for 
the userid involved contains the accounting option. 

accntnum is your account number. This account number appears in the 
accounting data generated at the end of your job. It 
overrides the account number in the CP directory entry for the 
userid specified for this job. 

jobname is an optional parameter that specifies the name of the job 
being run. If you specify a jobname, it appears as the CP 
spool file identification in the filetype field. The filename 
field always contains CMSBATCH. See "Batch Facility Output" 
below. 

comments may be any additional information you want to provide. 

The 1* card indicates the end of a job to the batch facility. It 
takes the form: 

1* 
J 

The batch facility treats all 1* cards after the first as null cards. 
Therefore, if you want to ensure against the previous job not having a 
1* end-of-job indicator, you should precede your IJOB card with a 1* 
card. 

The 1* card is also treated as an end-of-file indicator when a file 
is being read from the input stream. This is a special technique used in 
submitting source or data files through the card reader and is discussed 
under "A Batch EXEC for Non-CMS Users." 

The ISET card sets limits on a system's time, printing, and punching 
resources during the execution of a job. It takes the form: 

ISET [TIME seconds] [PRINT lines] [PUNCH cards] 

seconds 

lines 

is a decimal value that specifies the maximum number of 
seconds of virtual CPU time a job can use. 

is a decimal value that specifies the maximum number of lines 
a job can print. 

Section 12. Using the eMS Batch Facility 229 



cards is a decimal number that specifies the maximum number of cards 
a job can punch. 

The default values for the batch facility are set at 32,767 seconds, 
printed lines, and punched cards per job. Any new limits defined using 
the /SET card must be less than these maximum settings. The system 
resources can be set at lesser values than the default values by an 
installation's system programmer; be sure you know the maximum 
installation values for batch resource limits before you use the /SET 
card. 

A /SET card can appear anywhere in the job following the /JOB card. 
The new limits defined by the /SET card apply only to the part of the 
job that follows the /SET card. 

A job can contain up to three /SET cards (one for each operand); a 
/SET card cannot be entered more than once for the same operand. 

Only use /SET cards for the operands whose values you want to change 
from the default; the default values are reset between jobs. A/SET 
card for an operand overrides its default but does not reset the other 
operands. 

HOW THE BATCH FACILITY WORKS 

The CMS batch facility, once initialized, runs continuously. When it 
begins executing a job, it sends a message to the userid of the user 
submitting the job. If you are logged on when the batch machine begins 
executing a job that you sent it, you receive the message: 

MSG FROM BATCHID: JOB 'yourjob' STARTED 

When the batch machine finishes processing a job, it sends the message: 

MSG FROM BATCHID: JOB 'yourjob' ENDED 

where yourjob is the jobname you specified on the /JOB card. Before it 
reads the next job from its card reader, the batch virtual machine: 

• Closes all spooling devices and releases spool files 
• Resets any spooling devices identified by the CP TAG command 
• Detaches any disk devices that were accessed 
• Punches accounting information to the system 
• Reloads CMS 

All of this "housekeeping" is done by the CMS batch facility so that 
each job that is executed is unaffected by any previous jobs. 

If a job that you sent to the batch virtual machine terminates 
abnormally (abends), the batch machine sends you a message: 

MSG FROM BATCHID: JOB 'yourjob' ABEND 

and spools a CP storage dump of your virtual machine to the printer. 
The remainder of your job is flushed. 

Whenever the batch virtual machine has read and executed all of the 
jobs in its card reader, it waits for more input. 

230 IBM VM/370 CMS User's Guide 

( 



) 

) 

Preparing Jobs for Batch Execution 

When you want to submit a job to the CMS batch facility for execution, 
you should provide the same CMS and CP commands you would use to prepare 
to execute the same job in your own virtual machine. 

You must provide the batch virtual machine with read access to any 
disk input files that are required for the job. You do this by supplying 
the LINK and ACCESS command lines necessary. The batch virtual machine 
has an A-disk (195), so you can enter commands to access your disks as 
read-only extensions. For example, if you wanted the batch machine to 
execute a program module named LONDON on your 291 disk, your input file 
might contain the following: 

IJOB FISH 012345 
CP LINK BOSWELL 291 291 RR SECRET 
ACCESS 291 BIA 
LONDON 

Similarly, if you are using the 
program using input and output 
definitions: 

CP LINK ARDEN 391 391 RR FOREST 
ACCESS 391 BIA 

batch virtual machine to 
files, you must supply 

FILEDEF INFILE DISK VITAL STAT B 
FILEDEF OUTFILE PUNCH 
CP SPOOL PUNCH TO BOSWELL 
LONDON 

execute a 
the file 

If you expect printed or punched output from your job, you may need 
to include the spooling commands necessary to control the output. In 
the above example, the batch machine's punch is spooled to userid 
BOSWELL's virtual reader. 

Any output printer files produced by your job are spooled by the 
batch virtual machine to the printer. These files are spooled under your 
userid and with the distribution code associated with your userid, 
provided the userid's directory has the accounting option set. You can 
change the characteristics of these output files with the CP SPOOL 
command: 

CP SPOOL E CLASS T 

If you want output to appear under a name other than your userid, use 
the FOR operand of the SPOOL command: 

CP SPOOL E FOR JONSON 

Output punch files are spooled, by default, to the real system card 
punch (under your userid), unless you issue a SPOOL command in the batch 
job to control the virtual card punch of the batch virtual machine. 

Section 12. Using the eMS Batch Facility 231 



RESTRICTIONS ON CP AND CMS COMMANDS IN BATCH JOBS 

The batch facility permits the use of many CP and most CMS commands. 
The following CP commands can be used to control the batch virtual 
machine: 

CHANGEl 
CLOSEl 
DETACH2 
DUMP 
DISPLAY 
LINK3 

Notes: 

MSG 
QUERY 
REWIND 
SMSG 
SPOOLl 
STORE 
TAG 

-l-.--These commands may not be used to affect the virtual card reader. 

2. You can not use this command to detach any spooling devices or the 
system or 1PL disks. 

3. The LINK command must be entered on one line in the format: 

CP LINK userid vaddr vaddr mode password 

None of the LINK command keywords (AS, PASS, TO) are accepted. If 
the disk has no password associated with it, you must enter the 
password as ALL. A maximum of ten links may be in effect at any 
one time. 

All CP commands in a batch job must be prefaced with the "CP" 
command. 

Since the batch virtual machine reads input from its card reader, you 
cannot use the following commands or operands that affect the card 
reader: 

ASSGN SYSxxx READER (CMS/DOS only) 
DISK LOAD 
FILEDEF READER 
READCARD 

The RDCARD macro cannot be used by jobs that run under the CMS batch 
machine. 

Invalid SET command operands are: 

BLIP 
EMSG 
IMPCP 
INPUT 

OUTPUT 
REDTYPE 
RELPAGE 
PROTECT 

All the other operands of the SET command can be used in a job executing 
in the batch virtual machine. 

BATCH FACILITY OUTPUT 

Any files that 
are spooled to 
have spooled it 
files are under 
logged on, you 

you request to have printed during your job's execution 
the real system printer under your userid, unless you 

otherwise. Once released for processing, these output 
the control of the CP spooling facilities; if you are 

can control the disposition of these files before they 

232 IBM VM/370 CMS User's Guide 

( 



) 

are printed with the CLOSE, PURGE, ORDER, and CHANGE commands. See the 
following section "Purging, Reordering, and Restarting Batch Jobs." 

Output files produced by the batch virtual machine are identifiable 
by the filename CMSBATCH in the CP spool file name field. The spool file 
type field contains the filetype JOB, unless you specified a jobname on 
the /JOB card. This applies to both printer and Funch output files. 

In addition to your regular printed output, the CMS batch facility 
spools a console sheet that contains a record of all the lines read in, 
and the responses, error messages, and return codes that resulted from 
command or program execution. This file is identified by a spool file 
name of BATCH and a spool file type of CONSOLE. 

PURGING, REORDERING, AND RESTARTING BATCH JOBS 

When required, you can control the execution of batch virtual machine 
jobs by purging, reordering, and restarting them; by the same token, 
because all the closed printer files are queued for system output under 
the submitting userid, you can change, purge, or reorder these files 
prior to processing on the system printer. 

To purge a job executing under the batch monitor, follow the 
procedure below: 

1. Signal attention and enter the virtual machine environment. 

2. Enter the HX (halt execution) Immediate command. 

3. Disconnect the virtual machine using the CP DISCONN command. 

The HX command causes the batch facility to abnormally terminate. 
This provides the user with an error message and a CP dump of the batch 
facility virtual machine. The batch monitor then loads itself again and 
starts the next job (if any). 

To purge an individual input spool file that is not yet executing, 
issue the CP PURGE command: 

PURGE READER spoolid 

In the format above, spoolid is the spool file number of the job to 
be purged from the batch virtual machine's job queue. For example, the 
statement: 

PURGE READER 123 

would purge 123 from the batch virtual machine's job queue. 

To reorder individual spool files in the batch facility's job queue, 
use the CP ORDER ~ommand: 

ORDER READER spoolid 1 spoolid2 .••• 

In this format, spoolid1 and spoolid2 are the assigned spool file 
identifications of the jobs to be reordered. 

You can determine which jobs are in the queue by using the CP QUERY 
command: 

QUERY READER ALL 

section 12. Using the CMS Batch Facility 233 



This QUERY command lists the filenames and filetypes of all the jobs 
in the batch virtual machine's job queue. You can then reorder them, 
using the ORDER command. 

Using EXEC Files for Input to the Batch Facility 

There are a variety of ways that EXEC procedures can help facilitate the 
submission of jobs to the CMS batch facility. You can prepare an EXEC 
file that contains all of the CMS commands you want to execute, and then 
pass the name of the EXEC to the batch virtual machine. For example, 
consider the files COpy JCL and COPYF EXEC: 

COpy JCL: /JOB CARBON 999999 
EXEC COPYF 
/* 

COPYF EXEC: COPYFILE FIRST FILE A SECOND = = 
COPYFILE THIRD FILE A FOURTH = = 

Then, if you enter the commands: 

cp spool punch to cmsbatch 
punch copy jcl * (noheader 

the commands in the EXEC file are executed by the batch virtual machine. 

You could also use an EXEC to punch 
machine. Using the same commands as in 
have an EXEC named BATCOPY: 

CP SPOOL PUNCH TO BATCH3 
&PUNCH /JOB CARBON 999999 

input to the batch virtual 
the example above, you might 

&PUNCH COPYFILE FIRST FILE A SECOND = = 
&PUNCH COPYFILE THIRD FILE A FOURTH = = 
&PUNCH /* 
CP CLOSE PUNCH 

Then, when you enter the EXEC name: 

batcopy 

the input lines are punched to the batch virtual machine. 

The examples above are very simple; you probably would not go to the 
trouble of sending such a job to the batch virtual machine for 
processing. The examples do, however, illustrate the two basic ways 
that you can use EXEC procedures with the batch facility: 

1. Invoking an EXEC procedure from a batch virtual machine 

2. Using an EXEC procedure to create a job stream for the batch 
virtual machine 

In either case, the EXECs that you use may be very simple or very 
complicated. In the first instance, an EXEC might contain many steps, 
with control statements to conditionally control execution, errcr 
routines, and so on. 

In the second instance, you might have an EXEC that is versatile so 
that it can be invoked with different arguments so as to satisfy more 
than one situation. For example, if you want to create a simple EXEC to 

234 IBM VM/370 CMS User's Guide 

( 



) 

send jobs to the batch virtual machine to te assembled, it migbt 
ccntain: 

CP SPOOL PUNCH TO BATCH3 CONT 
&PUNCH /JOB ARIEL 888888 
&PUNCH CP LINK ARIEL 191 391 RR LINKPASS 
&PUNCH ACCESS 391 B/A 
&PUNCH ASSEMBLE &1 (PRINT 
&PUNCH CP SPOOL PUNCH TO ARIEL 
&PUNCH PUNCH &1 TEXT A (NOHEADER 
&PUNCH /* 
CP.SPOOL PUNCH NOCONT CLOSE 

If this file were named BATCHASM EXEC, then whenever you wanted the C!S 
tatch facility to assemble a source file for you, you would enter: 

batchasm filename 

and the batch virtual machine would assemble the source file, print tbe 
listing, and send you a copy of the resulting TEXT file. 

SAMPLE SYSTEM PROCEDURES FOR BATCH EXECUTION 

To extend the abcve examFle a little further, suppose you wanted to 
process source files in languages other than the assembler language. Yeu 
want, also, fcr any user to be able to use this EXEC. You might have a 
separate EXEC file for each language, and an EXEC to control the 
submission of the job. This example shows the controlling EXEC file 
EATCH and the ASSEMBLE EXEC. 

~!~£] ~!~£: 

* THIS EXEC SUBMITS ASSEMBLIES/COMPILATIONS TO CMS EATCH 

* * - PUNCH BATCH JOB CARD; 
* - CALL APPROPRIATE LANGUAGE EXEC (&3) TO PUNCH ~XECUTABLE COMMANDS 

* &CONTROL ERROR 
&IF &INDEX GT 2 &SKIP 2 
&TYPE CORRECT FORM IS: BATCH USERID FNAME F~YPE (LANGUAGE) 
&EXIT 100 
&ERROR &GOTO -ERR1 
CP SPOOL D CONT TO BATCHCMS 
&PUNCH /JOB &1 1111 &2 
&PUNCH CP LINK &1 191 291 RR SECRET 
&PUNCH ACCESS 291 B/A 
EXEC &3 &2 &1 
&PUNCH /* 
CP SPOOL D IOCONT 
CP CLOSE D 
CP SPOOL DOFF 
&EIIT 
-ERR1 &EXIT 100 

Secticn 12. Using the CMS Batch Facility 235 



!~~!;!!1!1!; !;!!;~: 

* CORRECT FORM IS: ASSEMBLE FNAME USERID 

* * PUNCH COMMANDS TO: 
* - INVOKE CMS ASSEMBLER 
* - RETURN TEXT DECK TO CALLER 

* &CONTROL ERROR 
&ERROR &GOTO -ERR2 
&PUNCH GLOBAL MACLIB UPLIB CMSLIB OS MACRO 
&PUNCH CP MSG &2 ASMBLING ' &1 ' 
&PUNCH ASSEMBLE &1 (PRINT NOTERM) 
&PUNCH CP MSG &2 ASSEMBLY DONE 
&PUNCH CP SPOOL D TO &2 NOCONT 
&PUNCH PUNCH &1 TEXT A1 (NOHEADER) 
&BEGPUNCH 
CP CLOSE D 
CP SPOOL DOFF 
RELEASE 291 
CP DETACH 291 
&END 
&EXrT 
-ERR2 &EXIT 102 

If the above EXEC procedure is invoked with the line: 

batch fay payroll assemble 

the BATCHCMS virtual machine's card reader should contain the following 
statements (in the same general form as a FIFO console stack): 

/JOB FAY 1111 PAYROLL 
CP LINK FAY 191 291 RR SECRET 
ACCESS 291 B/B 
GLOBAL MACLIB UPLIB CMSLIB OS MACRO 
CP MSG FAY ASMBLING ' PAYROLL ' 
ASSEMBLE PAYROLL (PRINT NOTERM) 
CP MSG FAY ASSEMBLY DONE 
CP SPOOL D TO FAY NOCONT 
PUNCH PAYROLL TEXT A1 (NOHEADER) 
CP CLOSE D 
CP SPOOL DOFF 
RELEASE 291 
CP DETACH 291 
/* 

When the batch facility executes this job, the commands are executed as 
you see them: if you are logged on, you receive, in addition to the 
normal messages that the batch facility issues, those messages that are 
included in the EXEC. 

A BATCH EXEC FOR A NON-CMS USER 

Many installations run the CMS batch facility for non-CMS users to 
submit particular types of jobs. Usually, a series of EXEC files are 
stored on the system disk so that each user only needs include a card to 

236 IBM VM/370 CMS User's Guide 

( 



) 

invoke the EXEC, which executes the correct CMS commands to process data 
included with the job stream. 

For example, if a non-CMS user wanted to 
files, the following BATFORT EXEC file could 
disk: 

&CONTROL OFF 

compile FORTRAN source 
be stored on the system 

FILEDEF INMOVE TERM (RECFM F BLOCK 80 LRECL 80 
FILEDEF OUTMOVE DISK &1 FORTRAN A1 (RECFM F LRECL 80 BLOCK 80 
MOVEFILE IN OUT 
GLOBAL TXTLIB FORTRAN 
FORTGI & 1 (PRINT) 
&FORTRET = &RETCODE 
&IF &RETCODE NE 0 &GOTO -EXIT 
PUNCH &1 TEXT A1 (NOHEADER) 
-EXIT &EXIT &FORTRET 

To use this EXEC, a non-CMS user might place the following real card 
deck in the system card reader: 

ID CMSBATCH 
IJOB JOEUSER 1234 JOB10 
BATFORT JOEFORT 

source file 

1* (end-of-file indicator) 
1* (end-of-job indicator) 

When the batch virtual machine executes this job, it begins reading 
the EXEC procedure from disk, and executes one line at a time. When it 
encounters the MOVEFILE command, it begins reading the source file from 
its card reader (the batch facility interprets a terminal read as a 
request to read from the card reader). It continues reading until it 
reaches the end-of-file indicator (the 1* card), and then resumes 
processing the EXEC on the next line following the MOVE FILE command 
line. 

Additional functions may be added to this EXEC procedure, or others 
may be written and stored on the system disk to provide, for example, a 
compile, load, and execute facility. These EXEC procedures would allcw 
an installation to accommodate the non-CMS users and maintain common 
user procedures. 

Section 12. Using the CMS Batch Facility 237 



c 
238 IBM VM/370 eMS User's Guide 



) 

) 

Section 13. Programming for the eMS 
Environment 

This section contains information for assembler language programmers who 
may occasionally need to write programs to be used in the CMS 
environment. The conventions described here apply only to CMS virtual 
machines; you can not execute these programs under any other operating 
systems. 

Program Linkage 

Program linkages, in CMS, are generally made by means of a supervisor 
call instruction, SVC 202. The SVC handling routine takes care of 
program linkage for you. The registers used and their contents are 
discussed in the following paragraphs. 

~~g!§!~£ 1: Points to a parameter list of successive doublewords. The 
first entry in the list is the name of the called routine or program, 
and any successive doublewords may contain arguments passed to the 
program. Parameter lists are discussed under "Parameter Lists." 

~~g!§!~£ lJ: Contains the address of a 24-fullword save area, which you 
can use to save your caller's registers. This save area is provided to 
satisfy standard OS and DOS linkage conventions; you do not need to use 
it in CMS, since the SVC routines save the registers. 

~~g!§!~£ 1~: Contains the return address of the SVC handling routines. 
You must return control to this address when you exit from your program. 

The CMS routines that get control by way of register 14 close files, 
update your disk file directory, and calculate and type the time used in 
program execution. These values appear in the CMS ready message, which 
is displayed at your terminal when your program finishes execution: 

R;T=n.nn/x.xx hh:mm:ss 

where n.nn is the CMS CPU time (in seconds) and x.xx is the combined CP 
and CMS CPU time. hh:mm:ss is the time of day in hours, minutes, and 
seconds. 

~~g!§!~£ 1~: Contains your program's entry point address. You can use 
this address to establish immediate addressability in your program. You 
should not use it as a base address, however, since all CMS SVCs use it 
for communication with your programs. 

Figure 20 shows a sample CMS assembler language program entry and exit. 

Section 13. programming for the CMS Environment 239 



PROGRAM CSECT 

SAVRET 

USING PROGRAM,12 
LR 12,15 
ST 14,SAVRET 

L 
LA 
BR 
DS 

14,SAVRET 
15,0 
14 
F 

ESTABLISH ADDRESSABILITY 

SAVE RETURN AnrRESS IN R14 

LOAD RETURN ADDRESS 
SET RETURN CODE IN R15 
GO 
SAVE AREA 

Figure 20. Sample eMS Assembler program Entry and Exit Linkage 

RETURN CODE HANDLING 

Register 15, in addition to its role in entry linkage, is also used in 
CMS as a r~turn code register. All of the CMS internal routines pass a 
completion code by way of register 15, and the SVC routines that receive 
control when any program completes execution examine register 15. 

If register 15 contains a nonzero value, this value is placed in the 
CMS readj message, following the "R": 

a(nnnnn);T=n.nn/x.xx hh:mm:ss 

When you are executing programs in CMS, it is good practice, if your 
programs do not use register 15 as a return code register, to place a 
zero in it before transferring control back to CMS. Otherwise, the ready 
message may display meaningless data. 

PARAMETER LISTS 

When you execute a program from your terminal, a CMS scan routine sets 
up a parameter list based on your command input line. The parameter list 
is dophleword-aligned, with parameters occupying successive doublewords. 
The scan routine recognizes blanks and parentheses as argument 
delimiters; parentheses are placed, in the parameter list, in separate 
doublewords. 

For ~xample, if you have a CMS MODULE file named TESTPROG, and you 
call it with the command line: 

testprog(file2) 

The scan routine sets up the parameter list: 

CMNDLIST DS 
DC 
DC 
DC 
DC 
pC 

OD 
CL8'TESTPROG' 
CL8' (' 
CL8'FILE2' 
CL8 .) , 
8X'FF' 

The last doubleword is made up of all 1s, to act as a delimiter. 

If you enter any argument longer than .eight characters, 
truncated and only the first eight characters appear in the 
However, no error condition results. 

240 laM VM/370 CMS User's Guide 

it is 
list. 

( 



) 

The scan routine that sets up this parameter list places the address of 
the list in register 1 and then calls the SVc handling routine. The SVC 
routine gives control to the program named in the first doubleword of 
the parameter 1ist. 

When your program receives control, it can examine the parameter list 
passed to it by way of register 1. 

You can use this technique, also, to call CMS commands from your 
programs. 

When you use the LOAD and RUN commands to execute 
you can pass an argument list to the p~ogralB on the 
example, if you enter: 

load myprog 
start * runl proga 

a program in CMS, 
command line~ Por 

the arguments *, RUN1, and PROGA are placed in a parameter list of 
doublewords and register 1 contains the address of this list when your 
program receives control. If you want to use the RUN command to perform 
the load and start functions, you could enter: 

run myprog (run1 proga 

The parenthesis indicates the beginning of the argument list. 

To detect the absence of a parameter list that occurs when the LOAD 
command START option is used, your program may test the doubleword 
pointed to by register 1 for a delimiter made up of l's in all of the 
bit positions. 

Calling a CMS Command from a Program 

You can call a CMS command from a program by setting up a parameter 
list, like that shown above, and then issuing an SVC 202. The parameter 
list you set up must have doublewords that contain the parameters or 
arguments you would enter if you were entering the command from the 
terminal. Por example: 

PUNCHER DS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

OD 
CLS'PUNCH' 
CLS'NAME' 
CLS'TYPE' 
CLS'*' 
CLS' (. 
CLS'NOH' 
SX'FP' 

In your program, when you want to execute this command, you should load 
the address of the list into register 1, and issue the supervisor call 
instruction (SVC) as follows: 

LA 1,PUNCHER 
SVC 202 
DC AL4 (ERROR) 

Section 13. Programming for the CMS Environment 241 



When you issue 
the four bytes 
(register 15) 
call, control 
control would 

an SVC 202, you must supply an error return address in 
immediately after the SVC instruction. If the return code 
contains a nonzero value after returning from the SVC 
passes to the address specified. In the above example, 

go to the instruction at the label ERROR. 

If you want to ignore errors, you can use the sequence: 

LA 1,PUNCHER 
SVC 202 
DC AL4 (*+4) 

If you do not specify an error address, control is returned to the next 
instruction after a normal return, but if there was an error executing 
the CMS command, your program terminates execution. 

If you want to execute a CP command or an EXEC procedure from a 
program, you must use the CP and EXEC commands; for example: 

SPOOL 

EXEC 

DS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

OD 
CL8'CP' 
CL8'SPOOL' 
CL8'PRINTER' 
CL8'CLASS' 
CL8'S' 
8X'FF' 
CL8'EXEC' 
CL8'PFSET' 
8X'FF' 

It is not possible to enter a parameter that is longer than eight 
characters this way. 

As an alternative, you can use the CMS LINEDIT 
command from a program. Specify DISP=CPCOMM on the 
for example: 

macro to call a CP 
macro instruction; 

LINEDIT TEXT='SPOOL E CLASS S',DISP=CPCOMM,DOT=HO 

On return from the execution of the LIHEDIT macro instruction, register 
15 contains the return code from the CP command. 

The LINEDIT macro is described in !~Ll1Q ~~~ £Q~~s~Q s~~ ~~£!~ 
~~fe!~~£~. 

Another way to execute a CP command from a program 
DIAGNOSE x'08' instruction. For additional information 
!~Ll1Q ~I§!~~ E!Qgf~!!~!~§ §y!g~. 

Executing Program Modules 

is to use the 
on this, see 

MODULE files, in CMS, are nonrelocatable programs. Using the GEHMOD 
command, you can create a module from any program that uses OS or CMS 
macros. When you create a module, it is generated at the virtual 
storage address at which it is loaded, for example: 

load myprog 
genmod testit 

The CMS disk file, TESTIT MODULE A, that is created as a result of this 
GEHMOD command, always begins execution at location X'20000', the 
beginning of the user program area. 

242 IBM VM/370 CMS User's Guide 

/ , 

( 



March 30, 1979 

If you want to call your own program modu~es using SVC 202 
instructions, you must be careful not to execute a module that uses the 
saae area of storage that your program occupies. If you want to call a 
module that executes at location X'20000'. you can load the calling 
program at a higher location; for example: 

load myprog (origin 30000 

As long as the MODULE file called by MYPROG is no longer than X'10000' 
bytes, it will not overlay your program. 

Many CMS disk-resident command modules also execute in the user 
program area; if you call these commands from a program, you should load 
your program at a higher location. 

THE TRANSIENT PROGRAM AREA 

To avoid overlaying programs executing in the user program area, you can 
generate program modules to run in the CftS transient area, which is a 
two-page area of storage that is reserved for the execution of prograas 
that are called for execution frequently. ftany CMS co •• ands run in this 
area, which is located at X'EOOO'. programs that execute in this area 
run disabled. 

To generate a module to run in the transient area; use 
TRANS option when you load the TEXT file into storage, then 
GENMOD command: 

load myprog (origin trans 
genmod setup (str 

the ORIGIN 
issue the 

!Qte: If a program running in the user area calls a transient routine in 
which a module was generated using the GENMOD command with the STR 
option, the user area storage pointers will be reset. This reset 
condition could cause errors upon return to the original program (for 
example, when OS GETMAIN/FREEMAIN macros are issued in the user 
program). 

The two restrictions placed on command modules executing in the 
transient area are: 

1. They may have a maximum size of 8192 bytes. since that is the size 
of the transient area. This size includes any free storage acquired 
by GETMAIN macros. 

2. They ~ust be serially reusable. When a program is called by an SVC 
202, if it has already been loaded into the transient area. it is 
not reloaded. 

The CMS 'commands that execute in the transient area are: ACCESS, 
ASSGB, COMPARE, DISK, DLBL, FILEDEF, GENDIRT. GLOBAL, LISTFILE. MODMAP. 
OPTioN, PRINT, PUNCH, QUERY, READCARD, RELEASE, RENAME, SET, SVCTRACE. 
SYNONYM, TAPE, and TYPE. 

eMS Macro Instructions 

There are a number of assembler language macros distributed with the CMS 
system that you can use when you are writing programs to execute in the 
CMS environment. They are in the macro library CMSLIB MACLIB, which is 

Section 13. Programming for the CMS En.ironment 243 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23~9024-1 for 5748-118 

normally located on the system disk. To allow for proper macro 
expansion in a system supporting VM/370 Basic System Extensions (program 
NO. 5748-118), DMSB20 MACLIB must be used in addition to CMSLIB MACtIE. 
There are macros to manipulate CMS disk files, to handle terminal 
communications, to manipulate unit record and tape input/output, and to 
trap interruptions. These macros are discussed in general terms here; 
for complete format descriptions, see !~L170 ~~~ ~Qmm~~g ~n~ ~~£!Q 
!l~fe!~1!£~. 

MACROS FOR DISK FILE MANIPULATION 

Disk files are described in CMS by means of a file system control block 
(FSCB). The CMS macro instructions that manipulate disk files use FSCBs 
to identify and describe the files. When you want to manipulate aCeS 
file, you can refer to the file either by its file identifier, 
specifying 'filename filetype filemode' in quotation marks, or you can 
refer to the FSCB for the file, specifying FSCB=fscb,.where fscb is the 
label on an FSCB macro. 

To establish an FSCB for a file, you can use the FSCB macro 
instruction specifying a file identifier; for example: 

INFILE FSCB 'INPUT TEST All 

You can also provide, on the FSCB macro instruction, descriptive 
information to be used by the input and output macros. If you do not 
code an FSCB macro instruction for a file, an FSCB is created inline 
(following the macro instruction) when you code an FSREAD, FSWRITE, or 
FSOPEN macro instruction. 

The format of an FSCB is listed below, followed by a description of 
each of the fields. 

1912~1 
FSCBCOMM DC 
FSCBFN DC 
FSCBFT DC 
FSCBFM DC 
FSCBITNO DC 
FSCBBUFF DC 
FSCBSIZE DC 
FSCBFV DC 
FSCBFLG EQU 
FSCBNOIT DC 
FSCBNORD DC 
FSCBAITN DC 
FSCBANIT DC 
FSCBWPTR DC 
FSCBRPTR DC 

CL8' , 
CL8' , 
CL8' , 
CL2' , 
H'O' 
A'O' 
P'O' 
CL2'P' 
PSCBFV+l 
H'l' 
AL4 (0) 
AL4 (0) 
AL4 (1) 
AL4 (0) 
AL4 (0) 

Q~§£!:!.E!!Q1! 
File system cqmmand 
Filename 
Filetype 
Filemode 
Relative record number (RECNO) 
Address of buffer (BUFPER) 
Number of bytes to read or write (BSIZE) 
Record format - F or V (RECFM) 
Flag byte 
Number of records to read or write (NOREe) 
Number of bytes actually read 
Extended FSCB relative record .. number 
Extended FSCB relative number of records 
Extended FSCB relative write pointer 
Extended FSCB re1ative read pointer 

The fields FSCBAITN, FSCBANIT, FSCBWPTR, and FSCERPTR are only generated 
in the FSCB when the extended format FSCB is requested (FORM=E is coded 
on the FSCB macro instruction). In this case, the fields .FSCBITNO and 
FSCBNOIT are reserved fields. Extended format FSCB~ must be used to 
manipulate files larger than· 65, 533 items. 

The labels shown above are not generated by the FSCB macro; to reference 
fields within the FSCB by thes~ labels, you must use the FSCBD macro 
instruction to generate a DSECT. 

244 IBM VM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

X~~~~Q!~: When the FSCBFN, FSCBFT, and FSCBFM fields are filled in, yeu 
can fill in the FSCBCOMM field with the name of a CMS command and use 
the FSCB as a parameter list for an SVC 202 instruction. (You must 
place a delimiter to mark the end of the command line.) 

X~~~l!, l~£~l!, FS~~I~: The filename, filetype and filemode fields 
identify the CMS file to be read or written. You can code the fileid cn 
a macro line in the format 'filename filetype filemode' or you can use 
register notation. If you use register notation, the register that you 
specify must point to an 18-byte field in the format: 

FILEID DC 
DC 
DC 

CLS'filename' 
CLS'filetype' 
CL2'fm' 

Section 13. Programming for the CMS Environment 244.1 



March 30, 1979 

2qq.2 lBft Yft/370 CftS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5148-118 

The fileid must be specified either in the FSCE for a file or on the 
lSREAD, lSWRITE, PSOPEN, or PSERASE macro instruction you use that 
references the file. 

PSCBITNO: For anPSCB without the POBM=E option, the record or ite. 
Dimber-Indicates the relative record number of the next record to be 
read or written; it can be changed with the RECNO option. The default 
value for this field is O. When you are reading files, a 0 indicates 
that records are to be read sequentially, beginning with the first 
record in the file~ When you are writing files, a 0 indicates that 
records are to be written sequentially, beginning at the first record 
following the end of the file, if the file already ex~sts, or with 
record 1, if it is a new file. 

lor an lSCB generated with the 
contains the record or item number. 

PORM=E option, the PSCBAITN field 
The PSCBITNO field is reserved. 

Whenever you read discontiguous files in CMS (that is, files with 
missing records), the input buffer will be filled with the appropriate 
number of bytes. Be aware that the flag byte in the PSCB may not 
reflect whether the input buffer contains generated data items fro~ 
RDBUl. 

lSCBBUlP: The buffer address, specified in the fUFlER option, indicates 
the-Yabel of the buffer from which the record is to be written or into 
which the record is to be read. You should always supply a buffer large 
enough to accommodate the longest record you expect to read or write. 
This field must be specified, either in the lSCB, or on the PSREAD or 
lSWRITE macro instruction. 

lSCBSlZE: This field indicates the number of bytes that are read or 
wrItteii-with each read or write operation. The default value is o. If 
the buffer that you use represents the full length of the records you 
are going to be reading or writing, you can use the BSIZE option to set 
this field equal to your buffer length; when you are writing 
variable-length records, use the BSlZE operand to indicate the length of 
each record you write. This field must be specified. 

FSCBFV: This two-character field indicates the record format (RECFM) of 
the-iIle. The default value is F (fixed). 

1:.§CB1:1Q: The flag byte is X'20' indicating an extended FSCB generated 
when the FORM=E option is coded on the FSCB macro instruction. 

1:~~~!Q1I: For an FSCB without the FORM=E option, this field contains the 
number of whole records that are to be read or written in each read or 
write operation. You can use the NOREC option with the BSIZE option to 
block and deblock records. The default value is 1. 

For an PSCB generated with the PORM=E option, the FSCBANIT 
contains the number of whole records to be read or written. 
FSCBNOlT field is reserved. 

field 
The 

1:~~~!Q!Q: Following a read operation, this field contains the number of 
bytes that were actually read, so that if you are reading a 
variable-length file, you can determine the size of the last record 
read. The FSREAD macro instruction places the information from this 
field into register O. 

FSCBAlTN: The alternate record or item number indicates the relative 
record-iiumber of the next record to be read or written in an extended 
lSCB format. See "the description of the FSCBITNO field for the usage of 
this field. 

Section 13. Programming for the CMS Environment 245 



Pg. of GC20-1819-2 Rev'March 30, 1919 by Supp. SD23-9024-,1 for 5148-118 

F,SCBANIT: This field contains the alternate number of whole records in 
ineitended FSCB forllat. See the description of the FSCBNOIT~ field for 
the usage of this field. 

F.5CBWPTR: The FSPOINT macro instruction uses this field to conta"in the 
alternate write pointer for an extended FSCB during a POINT operation. 

FSCBRPT:R: The FSPOIIT macro instruction uses this field to contain the 
alternate read pointer for anextended"FSCBd'uringa POINT operation. 

!!§ing !.h~ I~~~ 

The following example shOWS how you lIight code an FSCB macro instruction 
to define various file and buffer charaQteristics, and then use the sa.e 
FSCB to refer to different files: 

COMMON 
SHARE 

FSREAD 'INPUT FILE A1',FSCB=COMMON,FOR!~E 
FSWRITE 'OUTPUT FILE A1',~SCB=CO!MON,FOBM=E 

FSCB BUFFER=SHARE,RECFM=V,BSIZE=200,FOR!=E 
DS CL200 

In the above example, the fi1eid specifications on the FSREID and 
FSWRITE macro instructions modify the FSCB at the label COMMON each tiae 
a r~ad or write operation is performed. You can also modify an FSCB 
directly by referring to fields by a displacement off the beginning of 
the FSCB; for example: 

MVC FSCB+S,=CLS'NEWNAME' 

moves the nalle NEWNAME into the filename field of the FSCB at the label 
FSCBFN. 

As an alternative, you can use the FSCBD 'macro instruction to 
generate a DSECT and refer to the labels in the DSECT to modify the 
FSCB1 for example: 

LA R5,INFSCB 
USING FSCBD,R5 

MVC FSCBFN,NEWNAME 

INFSCB FSCB 'INPUT TEST Al'~FOR!=E 
NEWNAME DC CLS'OUTPUT' 

FSCBD 

In the above example, the MVC instruction places the filename OUTPUT 
into the FSCBFN (filename) field of the FSCB.The next time this FSC! is 
referenced~ the file OUTPUT TEST is the file that is manipulated. 

CMSdisk files are sequential files; when you use CMS macros to read and 
write these files, yoti can access them sequentially with the FSREID and 
FSWRITE macros. However, you may also refer to records in a CMS file by 
their relative record numbers, so you can, in effect, access records 
using a direct access method. 

246 IBM VM/310'CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-X18 

If you know which record you want to read or write, you can specify 
the RECNO option on the FSCB macro instruction, or on the FSOPEB, 
FSREAD, or FSWRITE macro instructions. When you use the RECNO option on 
the FSCB macro instruction, you must specify it as a self-defining term; 
for the FSOPEN, FSREAD, or FSWRITE macro instructions, you may specify 
either a self-defining term, as: 

WRITE FSWRITE FSCB=WFSCB,RECNO=10,FORM=E 

or using register notation, as follows: 

WRITE FSWRITE FSCB=WFSCB,RECNO=(5) ,FORM=! 

where register 5 contains the record number of the record to be read. 

When you want to access files sequentially, the FSCBITNO field of the 
FSCB must be 0 for an FSCB without the FORK=E option; for an extended 
FSCB, the FSCBAITN field must be O. This is the default value. When you 
are reading files with the FSREAD macro instruction, reading begins with 
record number 1. When you are writing records to an eXisting file with 
the FSWRITE macro, writing begins following the last record in the file. 

To begin reading or writing files sequentially beginning at a 
specific record number, you must specify the RECNO option twice: once to 
specify the relative record number at which you want to begin reading, 
and a second time to specify RECNO=O so that reading or writing will 
continue sequentially beginning after the record just read or written. 

Section 13. programming for the CMS Environment 246.1 



March 30, 1919 

246.2 IBM 'M/310 eMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5148-118 

You can specify the RECNO option on the PSREAD or PSWRITE .acro 
instruction, or you may change the FSCBITNO or PSCBAITN field in the 
FSCB for the file, as necessary for the FSCB for •• 

For example, to read the first record and then the 50th record of a 
file, you could code the following: 

READ1 

READ50 

RFSCB 
WFSCB 
COMMON 

FSREAD FSCB=RFSCB,FORM=E 
FSWRITE PSCB=WPSCB,FORM=E 
LA 5,RFSCB 
USING FSCBD,5 
MYC FSCBAITN,=F'50' 
FSREAD FSCB=RFSCB,FORM=E 
FSWRITE FSCB=WFSCB,FORM=E 

FSCB 'IHPUT FILE A1',BUFFER=COMKOH,BSIZE=120,FORft=E 
FSCB 'OUTPUT FILE A1',BUFFER=COftMOR,BSIZE=120,FORK=E 
DS CL120 

FSCBD 

In this example, the statements at the label READ1 write record 1 fro. 
the file INPUT FILE A1 to the file OUTPUT FIL! A1. Then, using the 
DSECT generated by the FSCBD macro, the FSCEAlTH field is changed 
because an extended FSCB is being used and record 50 is read fro. the 
input file and written into the output file. 

jl!~l!~ !!~ !BI!I!2 !!!!!~~E-~1!2!B !l~Q~~: When you read or write 
variable-length records, you must specify RECF!=Y either in the PSCB for 
the file or on the FSWRITE or FSREAD macro instruction. The read/write 
buffer should be large enough to acco •• odate the largest record you are 
going to read or write. 

To write variable-length records, use the BSIZE= option on the 
FSWRITE macro instruction to indicate the record length for each record 
you write. When you read variable-length records, register 0 contains, 
on return fro. PSREAD, the length of the record read. 

The following example shows how you 
variable-length file: 

could read and write a 

READ FSREAD 'DATA CHECK A1',BUFPER=SHAR!,BSlZE=130,ERBOB=OUT, 
FORM=E 

FSWRITE 'COpy DATA A1',BUFFER=SHAR!,BSIZE=(O),POB!=E 
B READ 

You can specify the ERROR= operand with the FSBEAD or FSWBlTE .acro 
instruction, so that an error handling routine receives control in case 
of an error. In CMS, when an end of file occurs during a read request, 
it is treated as an error condition. The return code is always 12. If 
you specify an error handling routine on the FSREAD mac~o instruction, 
then the first thing this routine can do is check for a 12 in register 
15. 

Your error handling routine may also check for other types of errors. 
See the .acro description in YMLJ1~ ~A~ £2!!~B~ ~n~ !~~£2 !ef~~B~~ for 
details on the possible errors and the associated return codes. 

Section 13. progra •• ing for the CBS Environ.ent 241 



Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. sn23-9024-1 for 5748-118 

Usually, CMS opens a file whenever an FSHEAD or FSWRITE macro 
instruction is issued for the file. When control returns to CMS from a 
calling program, all open files are closed by CMS, so you do not have to 
close files at the end of a program. 

For a minidisk in 1K-, 2K-, or 4K-byte block format, a file may be 
open for concurrent read and write operations, and an FSCLOSE need not 
te issued when switching from reading to w~iting, or vice versa. For 
example: 

LA 3,2 
READ FSREAD FSCB=UPDATE,RECNO=(3},ERROH=READERR,FOHM=E 

FSWRITE FSCB=UPDATE,RECNO=(3},ERROR=WRITERR,FORM=E 
LA 3, 1 (3) 
BREAD 

UPDATE FSCB 'UPDATE FILE A1',BUFFER=BUF1,BSIZE=80,FORM=E 

However, if you want to read and write records from the same file on 
an 800-byte block format minidisk, you must issue an FSCLOSE macro 
instruction to close the file whenever you switch from reading to 
writing. For example: 

READ 

UPDATE 

LA 3,2 
FSREAD FSCB=UPDATE,RECNO=(3},ERROR=READERR 
FSCLOSE FSCB=UPDATE 

FSWRITE FSCB=UPDATE,RECNO=(3),ERROB=WRITERR 
FSCLOSE FSCB=UPDATE 
LA 3,1 (3) 
B READ 

FSCB 'UPDATE FILE A1',BUFFER=BUF1,BSIZE=80 

To execute a loop to read, update, and rewrite records, you must read 
a record, close the file, write a record, close the file, and so on. 
Since closing a file repositions the read pointer to the beginning of 
the file and the write pointer at the end of the file, you must specify 
the relative record number (RECNO) for each read and write operation. In 
the above example, register 3 is used to contain the relative record 
number. It is initialized to begin reading with the second record in 
the file and is increased by one following each write operation. 

When you use an EIEC to execute a program to read or write a file, 
the file is not closed by CMS until the EXEC completes execution. 
Therefore, if you read or wiite the same file more than once during the 
EXEC procedure, you must use an FSCLOSE macro instruction to close the 
file after using it in each program, or use the FSOPENmacro instruction 
to open it before each use. Otherwise, the read or write pointer is 
positioned as it was when the previous program completed execution. 

248 IBMVM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-X18 

~!]AI!!~ !~! X!1~~: When you want to begin writing a new file using C!S 
data management macros, there are two ways to ensure that the file you 
want to create does not already exist. One way is to issue the FSST1TE 
macro instruction to verify the existence of the file. 

A second way to ensure that a file does not already exist is to issue 
an FSERASE macro instruction to erase the file. If the file does not 
exist, register 15 returns with a code of 28. If the file does exist, it 
is erased. 

Figure 21 illustrates a samIle program using CMS data management 
macros. 

Section 13. Programming for the CMS Environment 248.1 



ftarch 30, 1979 

248.2 lBft 'ft/370 efts User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5148-XX8 

LINE SOURCE STATE!ENT 

BEGII CSECT 1 
PRIIT 10GEI 
USIIG *,12 ESTABLISH ADDRESSABILITY 
LR 12,15 
ST 14,SAYE 
LA 2,8(,1) R2=ADDR OF INPUT FILEID II PLIST 2 
LA 3,32(,1) R3=ADDR OF OUTPUT FILElt II PLIST 

* DETER!INE IF INPUT F~LE EXISTS 
FSST1TE (2),EBBOR=ERR1,FOR!=E 

* * READ A RECORD FRO! INPUT FILE AND WRITE ON OUTPUT FILE 
RD FSREAD (2),EBBOR=EOF,BUFFER=BUFF1,BSIZE=80,FOR!=E 3 

FSWRITE (3),ERROR=EBR2,BUFFER=BUFF1,BSIZE=80,FOB!=E 
B RD LOOP BACK FOR NEXT RECOBD 

* 
• COME HERE IF ERROR BEADING INPUT FILE 
EOF C 15,=F'12' EID OF FILE ? 4 

BNE ERR3 ERBOR IF NOT 
LA 15,0 ALL O.K. - ZERO OUT R15 
B EXIT GO EXIT 

• IF INPUT FILE DOES lOT EXIST 
EBR1 WRTER! 'FILE NOT FOUID',EDIT=YES 

B EXIT 
• 
• IF ERROR WRITIIG FILE 
ERR2 LB 10,15 SAVE BET CODE II REG 10 5 

LINEDIT TEXT='EBROR CODE •••• IN WBITING FILE',SUB=(DEC, (10)) 
B EXIT 

• IF READING ERROR WAS NOT NOR!AL END OF FILE 
ERB3 LR 10,15 SAVE RET CODE IN REG 10 5 

• 
EXIT 

* BUFF1 
SlYE 

Notes: 

LINEDIT TEXT='ERBOR CODE •••• IN BEADING FILE',SUB=(DEC, (10)l 

L 
BR 

DS 
DS 
END 

14,SAVE 
14 

CL80 
F 

LOAD RETURN ADDRESS 
RETURN TO CALLER 

-'1'-The prograll might be invoked with a parameter list in the format 
prognaae INPUT FILE A1 OUTPUT FILE A1. This line is placed in a 
parameter list by C!S routines and addressed by register 1 
(see ~ote 2). 

2 The parameter list is a series of doublewords, each containing 
one of the words entered on the command line. Thus, 8 bytes 
past register 1 is the beginning of the input fileid; 24 bytes 
beyond that is the beginning of the secondfileid. 

3 The FSBEAD and FSWRITE macros cause the files to be opened; no 
open macro is necessary. C!S routines close all open files when 
a program completes execution. 

4 The return code in register 15 is tested for the value 12. 
which indicates an end-of-file condition. If it is the end of 
the file, the prograll exits; otherwise, it writes an error 
message. 

5 The dots in the LINEDIT lIacro are substituted, during execution, 
with the decillal value in register 10. 

figure 21. A Sa.pIe Listing of a Program that Uses CMS ~acros 

Section 13. Programming for the C!S Environment 249 



March 30, 1979 

CMS MACROS FOR TERMINAL COMMUNICATIONS 

Tbere are four CMS macros you can use to write 'interactive, 
terminal-oriented programs. They are RDTERM, WRT!RM~: LINEDIT, and WAITT. 
RDTERM and WRTERM only require' a read/write buffer for sending and 
rece1v1ng lines from the terminal. The third, LINEDIT, has a 
substitution and translation capability.' . 

When you use the WRTERM macio ~b write'~line to your terminal yeu 
can specify the actual text line in the macro in'structicn, for· example : 

DISPLAY WRTERM 'GOOD MORNING' 

You can also specify the meSsage text by referrin~ to a bhffer that 
contains the message. 

The RDTERM macro accepts a line from the terminal and reads it into a 
buffer you specify. You could use the RDTERM andWRTERM macros together, 
as follows: 

WRITE 
READ 

REWRITE 

BUFFER 

WRTERM 'ENTER LINE' 
RDTERM BUFFER 
LR 3,0 
WRTERM BUFFER, (3) 

DS CL130 

In this example, the WRTERM macro results in a prompting message. Then 
the RDTERM macro accepts a line from the terminal and places it in the 
buffer BUFFER. The length of the line read, co~tained in register 0 cn 
return from the RDTERM macro, is saved in register 3. When you specify 
a buffer address on the WRTERM macro instruction, you must specify the 
length of the line to be written. Here, register notation is used to 
indicate that the length is contained in register 3. 

The LINEDIT macro converts decimal and hexadecimal data into EBCDIC, 
and places the converted value into a specified field in an output line. 
There are list and execute forms of the macro instruction, which you can 
use in writing reentrant code. Another option allows you tb write-lines 
to the offline printer. The LINEDIT macro is described, withexa~ples, 
in !~L1IQ £~.§ £.Q!.!~1!g ~1!g ~~£!:.Q !!~t~!:~1!£~. Figure 21 shows how you 
might use the LINEDIT macro to conVert and display CffS return codes~ 

The WAITT (wait terminal) macro instruction can hel'p you to 
synchronize input and output to the terminal. If~ you are executing a 
program that reads and writes to the terminal frequerrtly,' you may want 
to issue a WAITTmacrb instruction to halt e~ecution of the program 
until all terminal I/O has completed. 

CMS MACROS FOR UNIT RECORD AN~ TAPE I/b 

CMS provides macros to simplify reading and punching cards (RDCARD and 
PUNCHC), ana creating printer files (PRrNTL). ~hen you use either the 
PUNCHC or PRINTL macros to write or punch output'files while a program 
is e%ecuting, you should remember to issue a CLOSE command for y"our 
virtual prin~ter or punch when' you are finished. You Can do this either 
after your program returns control to CMS, by entering: 

250 IBM VM/370 CMS Userts Guide 



) 

) 

cp close e 

-- or --

cp close d 

or, you can set up a parameter list with the command line CP CLOSE E or 
CP CLOSE D and issue an SVC 202. 

The tape control macros, RDTAPE, WRTAPE and TAPECTL, can read and 
write CMS files from tape, or control the positioning of a tape. 

INTERRUPTION HANDLING MACROS 

You can set up routines in your programs to handle interruptions caused 
by I/O devices, by SVCs, or by external interruptions using the BNDINT, 
BNDSVC, or HNDEXT macro instructions. 

with the HNDINT macro instruction, you can specify addresses that are 
to receive control when an interruption occurs for a specified device. 
If the WAIT option is used for a device specified in the BNDINT macro 
instruction, then the interruption handling routine specified for the 
device does not receive control until after the WAITD macro instruction 
is issued for the device. 

You can use the BNDSVC macro instruction to trap supervisor call 
instructions of particular numbers, if, for example, you want to perform 
some additional function before passing c~ntrol or you do not want any 
SVCs of the specified number to be executed. 

The CP EXTERNAL command simulates external interruptions in your 
virtual machine; if you want to be able to pass control to a particular 
internal routine in the event of an external interruption, you can use 
the BNDEXT macro instruction. 

Updating Source Programs Using eMS 

As you test and modify programs, you may want to keep backup copies of 
the source programs. Then you can always return to a certain level of a 
program in case you have an error. CMS provides several approaches to 
the problem of program backup: the method you choose depends on the 
complexity of your project, the changes you want to make, and the size 
of your programs. 

The simplest method is to .ake a copy of the current source file 
under a new name. You can do this using either the COPYFILE command or 
the CMS editor. If you use the COPYFILE command, your command line 
might be: 

copy file account assemble a oldacct assemble a 

Then, you can use the editor to modify ACCOUNT ASSEMBLE; the file 
OLDACCT ASSEMBLE contains your original source file. 

You can make a copy of your source file using the CMS editor 
directly. For example, if you issue: 

edit account assemble 
EDIT: 
fname newacct 

Section 13. Programming for the CMS Environment 251 



then any subsequent changes you make to the file ACCOUNT ASSEMBLE are 
written into the file NEWACCT ASSEMBLE. When you issue a FILE or SAVE 
subcommand, your source file remains intact. 

After your changes to the source program have been tested you can 
replace the source file with your new copy. 

THE UPDATE PHILOSOPHY 

While the procedures outlined above for modifying programs are suitable 
for many applications, they may not be adequate in a situation where 
several programmers are applying changes to the same source code. These 
procedures also have the draWback of not providing you with a record of 
what has been changed. After using the editor, you do not have a record 
of the lines that have been deleted, added, replaced, and so on, unless 
you manually add comments to the code, insert special characters in the 
serialization column, or use some technique that records program 
activity. 

The UPDATE command provides a way for you to modify a source program 
without affecting the original, and it produces an update log, 
indicating the changes that have been made. Moreover, it also has the 
capability of combining multiple updates at one time, so that changes 
made by different programmers or changes made at different times can be 
combined into a single output file. 

The UPDATE command is a basic element of the entire V8/370 updating 
scheme and is used by system programmers who maintain VM/370 at your 
installation. Although the input filetypes used by the UPDATE command 
default to ASSEMBLE file characteristics, the UPDATE command is not 
limited to assembler language programs, nor is it limited to system 
programming applications. You can use it to modify and update any 
fixed-length, SO-character file that does not have data in columns 72 
through 80. 

UPDATE FILES 

A simple update involves two input files: 

• The source file, which is the program you want to update 

• An update file, containing control statements that describe the 
changes you want to make 

The control statement file usually has a filetype of UPDATE. For 
convenience, you can give it the same filename as your source file. For 
example, if you want to update the file SAMPLE ASSEMBLE, you would 
create a file named SAMPLE UPDATE. 

To apply the changes in the update file, you issue the command: 

update sample 

The default values used by the UPDATE command are filetypes of ASSEMBLE 
and UPDATE for the source and update files, respectively. If you are 
updating a COBOL source program named READY COEOL with an update file 
named UPDATE READY, you would issue the command: 

update ready cobol a update ready a 

252 IBM VM/370 CMS User's Guide 

( 



) 

) 

After an UPDATE command completes processing, the input files are not 
changed; two new files are created. One of them contains the updated 
source file, with a filename that is the same as the original source 
file but preceded by a dollar sign ($). Another file, containing a 
record of updates is also created; it has a filename that is the same as 
the source file and a filetype of UPDLOG. For example: 

~2Y~£~ !!!~§ 
SAMPLE ASSEMBLE 
SAMPLE UPDATE 

READY COBOL 
UPDATE READY 

QytEY! !!!~§ 
$SAMPLE ASSEMBLE 
SAMPLE UPDLOG 

$READY COBOL 
READY UPDLOG 

NoW, you can assemble or compile the new source file created by the 
UPDATE command. 

The control statements used by the UPDATE command are similar to those 
used by the OS IEBUPDTE utility program or the DOS MAINT program UPDATE 
function. 

Each UPDATE statement must have the characters./ in columns one and 
two, followed by' one or more blanks. The statements are described 
below, with examples. 

~~2Q~!£~ Stgt~~~~t: This statement tells the UPDATE command that you 
want to number or renumber the records in a file. Sequence numbers are 
written in columns 73 through 80. For example, the statement: 

./ S 1000 

indicates that you want sequence numbering to be done, in increments of 
1000, with the first statement numbered 1000. The SEQUENCE statement is 
convenient if you want to apply updates to a file that does not already 
have sequence numbers. In this case, you may want to use the REP 
(replace) option of the UPDATE command, so that instead of creating a 
new file ($filename), the original source file is replaced: 

update sample (rep 

INSERT Statement: This statement precedes new records that you want to 
ada-to -a-source file. The INSERT statement tells the UPDATE command 
where to add the new records. For example, the lines: 

./ I 
TEST2 

1600 
TM 
BNO 

HOLIDAY,X'02' 
VACATION 

HOLIDAY? 
NOPE ••• VACATION 

result in the two lines of code being inserted into the output file 
following the statement numbered 00001600. The inserted lines are 
flagged with asterisks in columns 73 through 80. The INSERT statement 
also allows you to request that new statements be sequenced; see 
"Sequencing Output Records." 

DELETE Statement: This statement tells the UPDATE command which records 
yoU-want-to-delete from the source file. If your UPDATE file contains: 

./ D 2500 

Section 13. Programming for the CMS Environment 253 



then only the record 00002500 is deleted. If the file contains 

./ D 2500 2aOO 

then all the statements from 2500 through 2aOO are deleted from the 
source file. 

REPLACE Statement: The REPLACE statement allows you to replace one or 
iore-records-In-the source file. It precedes the new records you want 
to add. It is a combination of the DELETE and INSERT statements. Por 
example, the lines 

./ R 3aOOO 3a500 
PLIST DS OD 

DC CLa'TYPE' 
DC CLa" 
DC CLa'PILE' 
DC CLa'A1' 
DC ax'pp' 

replace existing statements numbered 3aOOO through 3a500 with the new 
lines of code. As with the INSERT statement, new lines are not 
automatically resequenced. 

~gftft~!I ~~~!~~~~!: Use this statement when you want to place comments in 
the update log file. For example, the line: 

./ * Changes by John J. Programmer 

is not processed by the UPDATE command when it creates the new source 
file, but it is written into the update log file. 

SEQUENCING OUTPUT RECORDS ~ 

The UPDATE command expects source files to have sequence numbers in 
columns 73 through ?O. If you use the SERIAL subcommand of the CftS 
editor to sequence your files, the sequence numbers are usually written 
in columns 76 through ao; columns 73 through 75 contain a 
three-character identifier which is usually the first three characters 
of the filename. If you want an eight-character sequence number, you 
must use the subcommand: 

serial all 

prior to issuing a PILE or SAVE subcommand when you are editing the 
file. Or, you can create an UPDATE file with the single record: 

./ S 

and issue the UPDATE command to sequence the file. 

If you use the UPDATE command with a file that has been sequenced 
using the CMS editor's default values, you must use the NosEQa option. 
Otherwise, the UPDATE command cannot process your input file. The 
command: 

update sample (noseqa 

tells UPDATE to use only columns 76 through ao when it looks for 
sequence numbers. 

Figure 22 shows the four files involved in ~ simple update, and their 
contents. 

254 IBft VM/370 CftS User's Guide 

(~ 

( 



) 

) 

The Source File, SA"PLE ASSE"BLE 

SA"PLE 

NAME 
AGE 
SAVRET 

CSECT 
USING SAMPLE,R12 
LR R12,R15 
ST R14,SAVRET 
LINEDIT TEXT='PLEASE ENTER YOUR NAME' 
RDTERM NA"E 
LINEDIT TEXT='PLEASE ENTER YOUR AGE' 
RDTERM AGE 
LINEDIT TEXT='HI, •••••••••• , YOU JUST TOLD "E YOU ARE 

SUB=(CHAR1,Nl"E,CHARA,AGE} ,RENT=NO 
L R14,SAVRET 
BR R14 
EJECT 
DC CL 130' , 
DC CL 130' , 
DC F'O' 
REGEQU 
END 

00000100 
00000200 
00000300 
00000400 
00000500 
00000600 
00000700 
00000800 

••••• ',x00000900 
00001000 
00001100 
00001200 
00001300 
00001400 
00001500 
00001600 
00001700 
00001800 L-----___________________________________________________________________________________ ~ 

The Update File, SAMPLE UPDATE 

.j * REVISION BY DLC 

.j R 500 
LINEDIT TEXT='WHAT"S YOUR NAME?',DOT=NO 

.j R 700 1000 
LINEDIT TEXT='HI, •••••••••• , ENTER THE DOCNIME', 

SUB=(CHARA,NAME} 
RDTERM NAME 
MVC DOCFN,NAME 
LA 1,PLIST 
SVC 202 
DC AL4 (ERROR) 

RETURN EQU * 
.j I 1200 
ERROR EQU * 

WRTERM 'FILE NOT FOUND' 
B RETURN 

.j D 1500 

.j I 1600 
PLIST DS OD 

DOCFN 
DC 
DC 
DC 
DC 
DC 

CL8'TYPE' 
CL8' , 
CL8'FILE' 
CL8' A l' 
8X'FF' 

Figure 22. Updating Source Files with the UPDATE Command (Part 1 of 2) 

SI"00010 
SA"00020 
SI"00030 
51"00040 

xSl"00050 
SI"00060 
S1M00070 
SI"00080 
S1M00090 
SI"00100 
SA"00110 
SA"00120 
SA"00130 
SA"00140 
51"00150 
SAM00160 
5AM00170 
51M00180 
S1M00190 
SAM00200 
S1M00210 
SAM00220 
S1M00230 
S1M00240 

Section 13. Programming for the CftS Environment 255 



The Update Log File, SAMPLE UPDLOG 
, 

UPDATING 'SAMPLE ASSEMBLE A1' WITH 'SAMPLE 
./ * REVISION BY DLC 

UPDATE Al' UPDATE LOG -- PAGE 11 
I 
1 

000005001 
./ R 500 

DELETING ••• 
INSERTING ••• 

./ R 700 1000 
DELETING ••• 

INSERTING ••• 

RETURN 
./ I 1200 

INSERTING... ERROR 

./ D 1500 
DELETING... AGE 

./ I 1600 
INSERTING... PLIST 

DOCFN 

LINEDIT TEIT='PLEASE ENTER YOUR NAME' 
LINEDIT TEIT='WHAT"S YOUR NAME?',DOT=NO 

LINEDIT TEIT='PLEASE ENTER YOUR AGE' 
RDTERM AGE 
LINEDIT TEIT='HI, ~ ••••••••• , YOU JUST TOLD ME YOU 

SUB=(CHARA,NAME,CHARA,AGE),RENT=NO 
LINEDIT TEIT='HI, •••••••••• , ENTER THE DOCNAME', 

SUB=(CHARA,NAME) 
RDTERM NAME 
MVC DOCFN,NAME 
LA 1,PLIST 
SVC 202 
DC AL4 (ERROR) 
EQU * 

EQU * 
WRTERM 'FILE NOT FOUND' 
B RETURN 

DC 

DS 
DC 
DC 
DC 
DC 
DC 

CL 130' , 

OD 
CLS'TYPE' 
CLS' , 
CLS'FILE' 
CLS' A l' 
SX'FF' 

The Updated Output File, SSAMPLE ASSEMBLE 
r--

SAMPLE CSECT 
USING SAMPLE,R12 
LR R12,R15 
ST R14,SAVRET 
LINEDIT TEIT='WHAT"S YOUR NAHE?',DOT=NO 
RDTERM NAME 
LINEDIT TEXT='HI, ......... ' .. ENTER THE DOCNAME', 

SUB=(CHARA,NAME) 
RDTERM NAME 
HVC DOCFN,NAME 
LA 1,PLIST 
SVC 202 
DC AL4 (ERROR) 

RETURN EQU * 
L R14,SAVRET 
BR R14 

ERROR EQU * 
WRTERM 'FILE NOT FOUND' 
B RETURN 
EJECT 

NAME DC CL130' , 
SAVRET DC F'O' 
PLIST DS OD 

DC CLS'TYPE' 
DOCFN DC CLS' , 

DC CLS'FILE' 
DC CLS'A1' 
DC SX'FF' 
REGEQU 
END 

Figure 22. Updating Source Files with the UPDATE Command (Part 2 of 2) 

256 IBM VM/370 eMS User's Guide 

ARE 

********1 
I 

000007001 
OOOOOSOOI 

••••• ',x000009001 
000010001 

x********1 
****.**** 1 
********1 
********1 
********1 
********1 
********1 
********1 

1 
********1 
******** 
******** 

00001500 

******** 
******** 
******** 
******** 
******** 
******** 

00000100 
00000200 
00000300 
00000400 
******** 
00000600 

x******** 
******** 
******** 
******** 
******** 
******** 
******** 
******** 
00001100 
00001200 
******** 
******** 
******** 
00001300 
00001400 
00001600 
******** 
********1 
********1 
********1 
********1 
********1 
000017001 
00001S001 

r1 
~ 

( 



) 

) 

The INSERT and REPLACE statements allow you to control the numbering 
increment of records that you add to a source file. Notice, in Figure 
22, that inserted records have the character string '********' in 
columns 73 through 80. If you want sequence numbers on the inserted 
records, you must do two things: 

1. Use the INC option on the UPDATE command line. If you use the CTL 
option, you do not have to specify the INC option. The CTL option 
is described below, under "Multiple Updates." 

2. Include a dollar sign ($) on the INSERT or REPLACE statement, 
optionally followed by operands indicating how the records should 
be sequenced. 

For example, to sequence the records added in Figure 22, the control 
statements would appear as: 

./ R 500 $ 

./ R 700 1000 $ 

./ I 1200 $ 

./ I 1600 $ 

and you would issue the UPDATE command: 

update sample (inc 

The upDATE command sequences inserted records by increments of 10. 
If you want to control the numbering, for eXample, if you need to insert 
more than 10 statements between two existing statements, you can specify 
an alternate sequencing scheme: 

./ I 1800 $ 1805 5 

Records introduced following this INSERT statement are numbered 
00001805, 00001810, 00001815, and so on. (If the NOSEQ8 option is in 
effect, then the records would be XIX01805, XXX01810, and so on, where 
XXX is the three-character identifier used in columns 73 through 75.) 

MULTIPLE UPDATES 

If you have several UPDATE files to apply to the same source, you may 
apply them in a series of UPDAtE commands. For example, if you have 
updates named FICA UPDTUP1, FICA UPDTUP2, and FICA UPDTUP3 to apply to 
the source file FICA PLIOPT, you could do the {allowing: 

1. Update the source file with TEST1 UPDATE: 

update fica pliopt a fica updtupl 

2. Update the source file produced by the above command with the TEST2 
UPDATE: 

update $fica pliopt a fica updtup2 

3. Update the new source file with TEST3: 

update $$fica pliopt a fica updtup3 

section 13. Programming for the CMS Environment 257 



This final UPDATE command produces the file $$$FICA PLIOPT, which is now 
the fully updated source file. This method is cumbersome, however, 
particularly if you have many updates to apply and they must be applied 
in a particular order. Therefore, the UPDATE command provides a 
multilevel update scheme, which you can use to apply many updates at one 
time, in a specified order. 

To apply multilevel updates, you must have-a control file, which by 
convention has a filetype of CNTRL and a filename that is the same as 
the source input file. Therefore, to apply the three update files to 
FICA PLIOPT, you should create a file named FICA CNTRL. 

A control file is actually a list: it does not contain any actual update 
control statements (INSERT, DELETE, and so on), but rather it indicates 
what update files should be applied, and in what order. In the case of 
a multilevel update, all the update files must have the same filename as 
the source file. Therefore, only the t!lg!~£g§ need be specified in the 
control file to uniquely identify the update file. In fact, if all your 
update files have filetypes beginning with the characters UPDT, you need 
only specify the unique part of the filetype. The control file for FICA 
PLIOPT, named FICA CNTRL, may typically look like the following: 

TEXT MACS PLILIB 
FICA3 UP3 
FICA2 UP2 
FICAl UPl 

The first record in the control file must be a MACS record. The 
second field in this record must be "MACS," and it may be followed by up 
to eight macro library names. Every record in the control file must 
have an "update level identifier;" in this example, the update level 
identifiers are TEXT on the MACS record, FICAl for the UPl record, and 
so on. The update level identifier may have a maximum of five 
characters. 

The UPDATE command only uses the MACS 
identifier under special circumstances. 
under "VMFASM EXEC Procedure." For now, 
these things must be in a control file in 
to execute properly.-

record and the update level 
These ar~ described later, 
you only need to know that 

order for the UPDATE command 

To update FICA PLIOPT, then, you would issue the UPDATE command as 
follows: 

update fica pliopt (ctl 

When you use the CTL option, and you do not specify the name of a 
control file, the UPDATE command looks for a control file with the 
filetype of CNTRL and a filename that is the same as the source file. 
From the control file, it reads the filetypes of the updates to be 
applied. In this example, it searches for the file FICA UPDTUP1 and if 
found, applies the updates; then UPDATE searches for FICA UPDTUP2, and 
applies those updates, if any. Last it searches for FICA UPDTUP3, and 
applies those updates. 

Notice that the updates are applied from the bottom of the control 
file, toward the top. This becomes important when an update is 
dependent on a previous update. For example, if you add some lines to a 
file in FICA UPDTUP1,then modify one of those lines in FICA UPDTUP2, it 
is important that UPDTUP1 was applied first. 

258 IBM VM/370 eMS User's Guide 

( 



, 

l1TEj!1!~ !!!§ Q! ~f~£!!!!!~ ~Q1I!1~!~& Qf~lI~ !1~~~: The example above, 
showing FICA CNTRL and UPDTxxxx files, illustrates a naming scheme using 
the UPDATE command defaults. You can override the default filetypes for 
the control file's filename and filetype, as well as filetypes for the 
update files. 

If you name a control file GROUPA CNTRL, for example, you can specify 
the name of the control file on the UPDATE command line: 

update fica pliopt a groupa cntrl (ctl 

Similarly, if your update files have unique filetypes, you must 
specify the entire filetype in the control file. If your updates to 
FICA PLIOPT are named FICA TEST1, FICA TEST2, and FICA TEST3, your 
control file may look like the following: 

TEXT MACS PLILIB 
"FICA3 TEST3 
FICA2 TEST2 
FICA1 TEST1 

Regardless of the filetypes you choose, however, the filenames must 
always be the same as the filename of the input source file. 

The two levels of update processing shown so far may be adequate fer 
your applications. There is, however, an additional level, or step, in 
the update structure that the VM/370 procedures use and which you may 
want to use also. 

These techniques may be useful when you have more than one set of 
updates to apply to a source program. For example, you may have two 
groups of programmers who are working on different sets of cbanges for 
the same source file. Each group may create several update files, and 
have a unique control file. When you combine these changes, you could 
create one control file, or yOu can use what are known as auxiliary 
control files. 

The updating structure for auxiliary control files is based on 
conventions for assigning filenames and filety~es. If a control file 
contains an entry that begins with the characters 'AUX', the UPDATE 
command assumes that the file 'fn AUXnnnn' contains a list of filetypes, 
not UPDATE control statements. For example, if,the file SAMPLE ASSEMBLE 
is being updated with a control file that contains the record: 

TEST1 AUXLIST 

then SAMPLE AUXLIST does not contain UPDATE control statements; it 
contains entries indicating the fi!~1I£~§ of the update files, all ef 
which must have the same filename, SAMPLE. 

Let's expand the example to see 
the source file, SAMPLE ASSEMBLE. 
entries: 

TEXT MACS 
3676 AUXLIST 

how this structure works. We have 
The file SAMPLE CNTRL contains the 

Section 13. Programming for the CMS Environment 259 



The file, SAMPLE AUXLIST may look like the following: 

TEST1 
FIXLOOP 
BYPASS 

The files: 

SAMPLE TESTl 
SAMPLE FIXLOOP 
SAMPLE BYPASS 

all contain UPDATE control statements (INSERT, DELETE, and so on) that 
are to be applied to the file SAMPLE ASSEMBLE. As with control file 
processing, the updates are applied from the bottom of the AUX file, so 
that the updates in SAMPLE BYPASS are applied first, then the updates in 
SAMPLE FIXLOOP, and so on. For an illustration of a set of update 
files, see Figure 23. 

Since the updating scheme uses only filetypes to uniquely identify 
update files, it is possible to use the same control file to update 
different source input files. For example, using the control file 
REPORT CNTRL shown in Figure 23, you issue the command: 

update fica pliopt a report cntrl (ctl 

The UPDATE command begins searching for updates to apply to FICA PLIOPT, 
based on the entries in REPORT CNTRL: it searches for FICA AUXLIST, 
which may contain entries pointing to update files; then it searches for 
FICA UPDTREP1, and so on. 

As long as all updates and auxiliary files associated with a source 
file have the same filename as the source file, the updates are uniquely 
identifiable, so the same control file can be used to update various 
source files. VM/370 takes advantage of this capability in its own 
updating procedures. By maintaining strict naming conventions, updates 
to various CP and CMS modules are easily controlled and identified. 

A control file may point to many AUX files in addition to many UPDT 
files. You can modify a control file when you want to control which 
updates are applied to a program, or you may have several control files, 
and specify the name of the control file you want to use on the UPDATE 
command line. There is a lot of flexibility in the UPDATE command 
processing; you can implement procedures and conventions for your 
individual applications. 

PREFERRED LEVEL UPDATING: There may exist more than one version of an 
update;-each-ipplIcable--to different versions of the same module. For 
example, you may need one version of an update for an unmodified base 
source module, and another version of that update if that module has 
been mOdified by a program product. The AUX file that will be used to 
update a particular mOdule must then be selected based on whether or not 
a program product modifies that module. The AUX files listing the 
updates applicable to modules modified by a program product are called 
"preferred AUX files" because they must be used if they exist rather 
than the mutually exclusive updates applicable to unmodified modules. 
Using this preferred AUX file concept, every module in a component can 
be assembled using the one CNTRL file applicable to a user's 
configuration. 

A single AUX file entry in a CNTRL file can specify more than one 
filetype. The first filetype indicates a file that UPDATE uses only on 
one condition: the files that the second and subsequent filetypes 
indicate do not exist. If they do exist, this AUX file entry is ignored 
and no updating is done. The files that the second and subsequent 

260 IBM VM/370 CMS User's Guide 

( 



) 

filetypes indicate are perferred because, if they exist, UPDATE does net 
use the file that the first filetype indicates. Usually, the preferred 
files appear later in the CNTRL file in a format that causes them to be 
used for updating. 

UPDATE scans each CNTRL file entry until a preferred filetype is 
found, until there are no more filetypes on the entry, or until a 
comment is found. (A character string that is less than four or more 
than eight characters is assumed to be a comment.) 

REPORT 
UPDTPROC 

update report assemble a (etl 

REPORT 
AUXLlST 

REPORT 
FIXIN 

REPORT 
CNTRL 

TEXT MACS 
UP2 UPDTPROC 
LIST AUXLlST 
UPl UPDTREPl 
TEXT AUXFIX 

REPORT 
FIXOUT 

UPDATING 'REPORT ASSEMBLE Al' WITH 'REPORT RTNA Al'. 
UPDATING WITH 'REPORT RTNB Al'. 
UPDATING WITH 'REPORT UPDTREPl Al'. 
UPDATING WITH 'REPORT FIXOUT Al'. 
UPDATING WITH 'REPORT FIXIN Al'. 
UPDATING WITH 'REPORT UPDTPROC Al'. 
R; 

Figure 23. An Update with a Control File 

REPORT 
RTNA 

REPORT 
AUXFIX 

REPORT 
RTNB 

Section 13. Programming for the CMS Environment 261 



THE VMFASM EXEC PROCEDURE 

If you are an assembler language programmer and you are using the UPDATE 
command to update source programs you may want to use the VftFASM EXEC 
procedure. VftFASM is a Vft/310 update procedure; it invokes the UPDATE 
command and then uses the ASSEftBLE command to assemble the updated 
source file. 

If you are not an assembler language programmer, you may wish to 
create an EXEC similar to VftFASM that, instead of calling the assembler, 
calls one of the language compilers to compile an updated source file. 

When you use VMFASft, you specify the source filename, the filename of 
the control file, and optionally, parameters for the assembler. (The 
control file for VftFASM must have a filetype of eNTRL). For example, if 
you use the file GENERAL eNTRL to update SAMPLE ASSEMBLE, you enter the 
command line: 

vmfasm sample general 

The VMFASft EXEC uses the MACS card and the update level identifiers 
in the control file. It reads the ftACS card to determine which macro 
libraries (ftACLIBs) should be searched by the assembler. Then VMFASM 
issues the GLOBAL MACLIB command specifying the ftACLIBs you name on the 
MACS card. 

The update level identifier is used by VMFASM to name the output text 
file produced by the assembly. If the update level identifier of the 
most recent update file (the last one located and applied) is anything 
other than TEXT, the update level identifier is prefixed with the 
characters TXT to form the filetype. For example, if the file GENERAL 
CNTRL contains the records: 

TEXT MACS CMSLIB MILIB OSMACRO 
UP2 FIX2 
UPl FIXl 
TEXT AUXLIST 

and it is used to update the file SAMPLE ASSEMBLE, then: 

• If the file SAMPLE UPDTFIX2 is found and the updates applied, VftFASM 
names the output text deck SAMPLE TXTUP2. 

• If the file SAMPLE UPDTFIXl is found and the updates applied but no 
SAMPLE UPDTFIX2 is found, the text deck is named SAMPLE TXTUP1. 

• If the file SAMPLE AUXLIST is found but no SAMPLE UPDTFIXl or SAMPLE 
UPDTFIX2 files are found, the text deck is named SAMPLE TEXT. 

• If no files are found, the update level identifier on the MACS card 
is used and the text deck is named SAMPLE TEXT. 

Since the UPDATE command works from the bottom 
toward the top, it is logical that the text filename 
identifier of the last update applied. 

of a control file 
be taken from the 

The VMFASft EXEC does not produce an updated source file, but leaves 
the original source intact. VMFASft produces two output files: a printed 
output listing that shows update activity; and the text file, which 
contains the update log as well as the actual object code. If you use 
the CftS LOAD command to load a text file produced by VftFASft, records 
from the update log are flagged as invalid, but the LOAD operation is 
not impaired. 

262 IBft VM/310 CftS User's Guide 

( 



) 

!~~ ~!! OP!lQB: If you are interested in writing your own EXEC procedure 
to invoke the UPDATE command, you may wish to use the STK option. The 
STK (stack) option is valid only with the CTL option, and is meaningful 
only when the UPDATE co.mand is invoked within an EXEC procedure. 

When the STK option is specified, UPDATE stacks the following data 
lines in the console stack: 

first line: * update level identifier 
second line: * library list from MACS record 

The update level identifier is the identifier of the most recent update 
that was found and applied. 

Por example, an EXEC file that invokes the UPDATE command and then 
the ASSEMBLE command may contain the lines: 

UPDATE &1 ASSEMBLE * &2 CNTRL * (STK CTL 
&READ VARS &STAR &TX 
&READ VARS &STAR &LIB1 &LIB2 &LIB3 &LIB4 &LIB5 &LIB6 &LIB7 &LIB8 
GLOBAL MACLIB &LIB1 &LIB2 &LIB3 &LIB4 &LIES &LIB6 &LIB7 &LIB8 
&IF &TX NE TEXT PILEDEP TEXT DISK &1 TXT&TX 11 
ASSEMBLE &1 &3 &4 &5 &6 &7 &8 &9 
ERASE $&1 ASSEMBLE 

If this EXEC is named UPASM EXEC and is invoked with the line: 

upasm fica fica (print noxref 

and the file PICA CNTRL contains: 

MAC MACS CMSLIB OSMACRO MYTEST 
PIX1 UPDTFIX 
LIST AUXLIST 

then the EXEC' executes the following commands: 

UPDATE FICA ASSEMBLE * FICA CNTRL * (STK CTL 
GLOBAL MACLIB CMSLIE OSMACRO MYTEST 
FILEDEF TEXT DISK FICA TXTFIX1 A1 
ASSEMBLE FICA (PRINT BOX REF 
ERASE $FICA ASSEMBLE 

The above example assumes that the update file FICA UPDTFIX was found 
and applied. 

Section 13. programming for the CMS Environment 263 



( 
264 IBM VM/370 eMS User's Guide 



) 

Part 3. Learning to Use EXEC 

In previous sections, the CMS EXEC facilities were described in general 
terms to acquaint you with the expressions used in EXEC files and the 
basic way that EXECs function. Also, examples of EXEC procedures have 
appeared throughout this publication. You should be familiar at least 
with the material in "Introduction to the EXEC Processor" before you 
attempt to use the information in Part 3. 

"Section 14. Building EXEC Procedures" describes the EXEC facilities 
in detail, with examples of techniques you may find useful as you learn 
about EXEC and develop your own EXEC procedures. 

Special considerations for using CMS commands in EXECs and modifying 
CMS command functions using EXEC procedures are described in "section 
15. Using EXECs With CMS Commands." 

"Section 16. Refining Your EXEC Procedures" lists several techniques 
you can use to make your EXEC files easier to use and provides some 
hints on debugging EXEC procedures. 

If you are a frequent user of the CMS editor, then you may be 
interested in "Section 17. writing Edit Macros," which describes how to 
create your own EDIT subcommands using EXEC procedures. 

Part 3. Learning to Use EXEC 265 



( 
266 IBM VM/370 eMS User's Guide 



). 

) 

Section 14. Building EXEC Procedures 

This section discusses various techniques that you can use when you 
write EXEC procedures. The examFles are intended only as suggestions: 
you should not feel that they represent either the only way or the best 
way to achieve a particular result. Many combinations and variations of 
control statements are possible; in most cases, there are many ways to 
do the same thing. 

This section is called "Building EXEC procedures" because you will 
often find that once you have created an EXEC procedure and begun to use 
it, you continually think of new applications or new uses for it. Using 
the CMS editor, you may quickly build the additions and make the 
necessary changes. You are encouraged to develop EXEC procedures to help 
you in all the phases of your CMS work. 

What Is a Token? 

An executable statement is any line in an EXEC file that is processed by 
the EXEC interpreter, including: 

• CMS command lines 
• EXEC control statements 
• Assignment statements 
• Null lines 

Executable statements may appear by themselves on a line or as the 
object of another executable statement, for example in an &IF or &LOOP 
control statement. If you want to execute CP commands or other EXEC 
procedures in an EXEC, you mu~t use the CP and EXEC commands, 
respectively. CP commands are passed directly to CP for processing. 

All executable statements in an EXEC are scan~ed by the CMS scan 
routine. This routine converts each word (words are delimited by blanks 
and parentheses) into an eight-character quantity called a token. If a 
word contains more than eight characters, it is truncated on the right. 
If it contains fewer than eight characters, it is padded with blanks. 
When a parenthesis appears on the line, it is treated both as a 
delimiter and as a token. For example, the line: 

&TYPE WHAT IS YOUR PREFERENCE (REDIBLUE)? 

scans as follows: 

&TYPE WHAT IS YOUR PREFEREN ( REDIBLUE) ? 

After a line has been scanned, each token is scanned for ampersands 
and substitutions are performed on any variable symbols in the tokens 
before the statement is executed. After elimination of any null 
variables, the statement may contain a maximum of 32 tokens. 

Nonexecutable statements are lines that are not processed by the EXEC 
interpreter, that is, comment lines (those that begin with an *), and 
data lines following an &BEGEMSG, &BEGPUNCH, &BEGSTACK, or &BEGTYPE 
control statement. Since these lines are not scanned, words are not 
truncated, and tokens are neither formed nor substituted. 

Since all executable statements in an EXEC are scanned, and the data 
items are treated as tokens, the term "token" is used throughout this 

Section 14. Building EXEC Procedures 267 



section to describe data items before and after scanning. 
CMS Command and Macro !~!~~~~£~, which contains the 
descrIptIons of--the-iiic control statements, uses this 
well. Therefore, as you create your EXEC procedures, you 
the items that you enter on an EXEC statement as tokens, 
how they are used by the EXEC interpreter. 

Variables 

The VftLl1.Q 
formats and 

convention as 
may think of 

since that is 

To make the best use of the CMS EXEC facilities, you should have an 
understanding of how the EXEC interpreter performs substitutions on 
variable symbols contained in tokens. Some examples follow. For each 
example, the input lines are shown as they would appear in an EXEC file 
and as they would appear after being interpreted and executed by EXEC. 
Notes concerning substitution follow each example. 

~lMP1! ~Q~~~!~Q~!Q!: Most of the EXEC examples in this publication 
contain variable symbols that result in one-far-one substitution. Most 
of your variables, too, will have a similar relationship. 

Lines 
&i-;-123 
&TIPE &X 

!!!~~ ~YQ~!i!Y!i2~ 
&X = 123 
&TIPE 123 

The EXEC interpreter accepts the variable symbol &X and assigns it the 
value 123. In the second statement, &X is substituted with this value, 
and the control statement &TIPE is recognized and executed. 

Lines 
SY-;-456 
&z = &y 

After Substitution Sy-;-456----------
&Z = 456 

The symbol &1 is assigned a value of 456. In the second statement, the 
symbol &1 is substituted with this value, and this value is assigned to 
&z. 

SUBSCRIPTS FOR VARIABLES: Since each token is scanned more than once for 
ampersands,-you-can-sIiulate subscripts by using two variable values in 
the same token. 

Lines 
S1'-;-ALPHA 
&2 = BETA 
&INDEX1 = 1 
&TIPE &&INDEI1 
&INDEI1 = 2 
&TIPE &&INDEI1 

After Substitution 
S'-;-ALPHi--------
&2 = BETA 
&INDEI1 = 1 
&TIPE ALPHA 
&INDEI1 = 2 
&TIPE BETA 

In the statement &TIPE &&INDEI1, the token &INDEI1 is scanned the first 
time, and the value &INDEI1 is substituted with the value 1. The token 
now contains &1, which is substituted with the value ALPHA on a second 
scan. When the value of &INDEI1 is changed to 2, the value of &&INDEI1 
also changes. 

1i!!~§ 
&1 = 2 
&1&1 = 5 
&1 = 1 
&1&1 = 2 
&1 = &1&1 + &X&I&I 

!t!~~ ~YQ§!i!yti~!! 
&1 = 2 
&X2 = 5 
&1 = 1 
&11 = 2 
&1 = 2 + 5 

268 IBM VM/370 CMS User's Guide 



) 

In the statement &1&1 = 5, analysis of the first token 
substitution of the symbol &1 with the value of 2. The 
assigned a value of 5. 

results in the 
symbol &12 is 

The value of &1 is changed to 1, and the symbol &X1 is assigned a 
value of 2. 

In the last statement, &1 = &1&1 + &1&1&1, the value of &1 in the 
token &1&1 is replaced with 1, then the symbol &X1 is substituted with 
its value, which is 2. The token &1&1&1 is substituted after each of 
three scans: &1 is replaced with the value 1, to yield the token &1&X1. 
The symbol &11 has the value of 2, so the token is reduced to &X2, which 
has a value of 5. 

COMPOUND VARIABLE 2I~~Q12: Variable symbols may also be combined with 
character-strIngs. 

1i1!~ 
&X = BEE 
&TYPE HONEY&I 
&TYPE ABUMBLE&X 

!!!~! 2Y~2!i!ytiQ1! 
&1 = BEE 
&TYPE HONEYBEE 
&TYPE ABUMBLE 

In the above example, the first symbol encountered in the scan of 
HONEY&I is &X, which is substituted with the value &BEE. In the second 
&TYPE statement, the I is truncated when the line is scanned; the symbol 
& is an undefined symbol and is therefore set to blanks. 

1J:J!~2 
&1 = HONEY 
&Y = BEE 
&TYPE &I&Y 

!!!~! 2Y~2!itytiQ1! 
&1 = HONEY 
&Y = BEE 
&TYPE 

In the above example, after the symbol &Y is substituted with the value 
BEE, the token contains the symbol &IBEE, which is an undefined symbol, 
so the symbol is discarded. 

Lines 
&123= ABCDE 
&1 = 12345678 
&TYPE ABLE&&I 

After Substitution &123-=-iBCDE------
&1 = 12345678 
&TYPE ABLEABCD 

In this example, the substitution of &X in the token ABLE&&X results in 
the character string ABLE&12345678, which is truncated to eight 
characters, or ABLE&123. The scan continues, and &123 is substituted 
with the appropriate value, to result in !BCDE. The token is again 
truncated to eight characters. 

SUBSTITUTING 1II~RA1 !!1Q~2: You might want an ampersand to appear in a 
token:---Yoll can use the &LITERAL built-in function to suppress the 
substitution of variable symbols in a token. 

1i1!~2 
&9 = HELLO 
&A = &LITERAL &9 
STYPE SA 

After Substitution &9-;-HELLO--------
&A = &LITERAL &9 
STYPE &9 

Because the value of SA was defined as a literal &9, no substitution is 
performed. 

1J:1!~2 
&TYPE = QUERY 
&TYPE BLIP 

!!!~! 2Y~2!i!ytiQ1! 
STYPE = QUERY 
QUERY BLIP 

In the above example, even though &TYPE is an EIEC keyword, it is 
assigned the value of QUERY, and substitution is performed when it 

Section 14. Building EIEC Procedures 269 



appears on an input line. In this example, when it 
its value, the result is a command line which is 
processing. 

is substituted with 
passed to CMS for 

li~ 
SCONTROL = FIRST 
SLITERAL SCONTROL ALL 

!!!~! 2YR§!i!Y!i~D 
SCONTROL = FIRST 
SCONTROL ALL 

In this example, SCONTROL is assigned a value as a variable symbol, but 
when it is preceded by the built-in function SLITERAL, the substitution 
is not performed, so EXEC processes it as a control statement. 

~~!!~~£!~!1 !!~ ~I£!!!~ ~Q!!!B2!QB~: Iou can perform hexadecimal to 
decimal and decimal to hexadecimal conversions in an EXEC if you use the 
control statement SHEX ON. To convert hexadecimal to decimal, you must 
use an assignment statement, prefacing the hexadecimal value you want to 
convert with the characters X' and assigning the value to a variable 
sy.bol. 

When 'HEX ON' is in effect, the following additional rules and 
restrictions apply to tokens on EXEC control statements: 

1. Any token, variable argument, 
token with the string X' as the 
referrred to as an X' token) 
characters being either: 

or combination which results in a 
first two characters (this will be 

must also result in the next six 

(a) A valid decimal number, if the token is part 
control which is not an assignment statement, 
hexadcimal number, if the token is part of an 
statement which is an assignment statement. 

of an EXEC 
or a valid 

EXEC control 

(b) The numbers mentioned in item 1a may be positive (no sign), or 
negative, (prefixed with a minus sign (-220 or -FE». The 
negative hexadecimal number is the absolute hexadecimal number 
prefixed with a minus sign (-F is a hexadecimal minus F, not a 
minus~ 

(c) These numbers may 
substituted from a 
X'SX). 

be explicit (in the orginal token), or 
variable or an argument (for example, 

(d) The rules for token length apply with 'SHEX ON'. 

(e) The range of decimal numbers that may be contained in an X' 
token is -99999 to 999999. The range of hexadecimal numbers 
that may be contained in an X' token is -FFFFF to FFFFFF. The 
ahove range of numbers may be extended by placing the number 
to be converted in a variable or an argument and substituting 
at conversion time. If this is done, the conversion is 
accomplished using the variable or the argument as the number 
source. The range for decimal numbers is -9999999 to 99999999, 
the range for hexadecimal numbers is 5F5EOFF to -98967F. 

These examples illustrate this feature: 

SI = X'FFFFFF 
STIPE X'SI 
SI = 5F5EOFF 
SX = X'SI 

SI = 16777215 
STIPE FFFFFF 
SI = SF5EOFF 
SX = 99999999 

(f) The notation X'-SX should not be used, because this will cause 
unwanted truncations and conversion errors. 

270 IBM VM/370 CMS User's Guide 

/ 
\1 

( 



) 

) 

If these restrictions are violated, a conversion error or 
inconsistant conversion will result. 

These statements are not valid if "HEX ON' is in effect: 

SHEX ON 
SX = X'50 CAUSES CONVERSION ERROR - See Item 1a above 

This sequence results in a conversion error 
contain a decimal number after the X', so 
violates item 1a above. 

because SX does not 
the STIPE statement 

SHEX ON 
SX = SLITERAL X'ABC 
SI = SX 
STIPE SX 

SX = X'ABC LEGAL STATEMENT 
XI = 2748 LEGAL STATEMENT 
CAU~ES CONVERSION ERROR 

2. An X' token cannot appear on an EXEC statement other than an 
assignment statement (for example, STIPE,SIF). 

3. If an X' token appears on an assignment 
decimal converS10n 1S performed before 
statement E1 in the HEX EXEC Example. 

statement, hexadecimal to 
the token is used. See 

4. The largest hexadecimal value that will be converted to decimal is 
5F5EOFF, if the number is in a variable or an argument. If 
explicitly defined, only the leftmost six digits will be used. See 
statement E2 of HEX EXEC Example. 

5. A decimal number contained in a variable or an argument and 
referenced as such on an X' token (for example, X'SX) will not be 
truncated before it is converted to a hexadecimal number. Decimal 
numbers 0 through 99999999 may be converted to hexadecimal if they 
are first placed in a variable or an argument. 

Note that the hexadecimal number typed is seven digits long. 

Example: 

SHEX ON 
SX = 99999999 
STIPE X'SX 

SX = 99999999 
STIPE 5F5EOFF 

The following illustrates conversions with 'SHEX ON' in effect: 

~!~£ £gD!~gl ~!g!~!~D!§ 
SCONTROL ALL 

-E1 SHEI ON 
SNUM = X'FFFFFF 
STIPE HEX'SNUM = DEC SNUM 

-E2 SIF 1'16777215 = X'SNUM SGOTO -E3 

&TIPE SLITERAL X'16777215 
NE SLITERAL X'SNUM 

&TIPE X'16777215 NE I'&NUM 
-E3 &NUM = X'10 

&1 = SNUM + X'B 
&TIPE SI X'SI 

-E4 SI = X'NUM 
SZ = SCONCAT SLITERAL X'1 X'SNUM 
SHEX OFF 
&TIPE SI SZ 
SHEX ON 
&TIPE SI SZ 

&NUM = 16777215 
&TIPE HEX FFFFFF 

= DEC 16777215 
&IF 28F5C = FFFFFF 

SGOTO -E3 
&TIPE 1'167772 NE X'SNUM 

STIPE 28F5C BE FFFFFF 
SlUM = 16 
&Y = 16 + 11 
STIPE 27 1B 
SI = 22 
SZ = SCONCAT 1'1 22 
SHEX OFF 
STIPE 22 X'122 
SHEX ON 
&TIPE 22 7A 

Section 14. Building EXEC Procedures 211 



To suppress hexadecimal conversion during an EXEC procedure after 
having used it, you can use the EXEC control statement: 

&HEX OFF 

so you can use tokens containing the characters X' without the EXEC 
processor converting them to hexadecimal. 

Arguments 

An argument in an EXEC procedure is one of the special variable symbols 
&1 through &30 that are assigned values when the EXEC is invoked. For 
example, if the EXEC named LINKS is invoked with the line: 

links viola ariel oberon 

the tokens VIOLA~ ARIEL, and OBERON are arguments and are assigned to 
the variable symbols &1, &2, and &3, respectively. 

You can pass as many as 30 arguments to an EXEC procedure; thus the 
variable symbols you can set range from &1 to &30. These variables are 
collectively referred to as the special variable &n. Once these symbols 
are d~fined, they can be used and manipulated in the same manner as any 
other variable in an EXEC. They can be tested, displayed, changed, and, 
if they contain numeric quantities, used arithmetically. 

&IF &2 EO PRINT &GOTO -PR 
&TIPE &1 IS AN INVALID ARGUMENT 
&1 = 2 
&CT = &1 + 100 

The above exa.ples illustrate some explicit methods of manipulating the 
&n variables. They can also be implicitly defined or redefined by two 
EXEC control statements: &ARGS and &READ ARGS. 

An &ARGS control statement redefines all of the special &n variables. 
The statement: 

&ARGS ABC 

assigns the value of A, B, and C to the variables &1, &2, and &3 and 
sets the remaining variables, &4 through &30, to blanks. 

Iou can also redefine arguments interactively by using the &READ ARGS 
control statement. When EXEC processes this statement, a read request is 
presented to your terminal, and the tokens you enter are assigned to the 
&n variables. for example, the lines: 

STIPE ENTER FILE NAME AND TYPE: 
&READ ARGS 
STATE &1 &2 * 

request you to enter 
arguments &1 and &2. 
blanks. 

two tokens, and then treat these tokens as the 
The remaining variables &3 through &30 are set to 

If you want to redefine specific &n variables, and leave the values 
of others intact, you can either redefine the individual variables in 
separate assignment statements, or use the variable symbol in the &ARGS 
or &R~AD ARGS statement. For example, the statement: . 

&ARGS CONT &2 &3 RETURN &5 &6 &7 &8 &9 &10 

272 IBM V8/370 CMS User's Guide 

( 



) 

assigns new values to the variables Sl and &4, but does not change the 
existing values for the remaining symbols through S10. 

If you need to set an argument or &n special variable to blanks, 
either on an EXEC command line or in an SARGS or &READ ARGS control 
statement, you can use a percent sign (I) in its place. Por example, the 
lines: 

SARGS SET QUERY 1 TYPE 
STYPE Sl S2 S3 S4 

result in the display: 

SET QUERY TYPE 

The symbol S3 has a value of blanks, and as a null token, is discarded 
from the line. 

USING THE SINDEX SPECIAL VARIABLE 

The EXEC special variable, SINDEX, initially contains a numeric value 
corresponding to the number of arguments defined when the EXEC was 
invoked. The value of SIND EX is reset whenever an SARGS or &READ IRGS 
control statement is executed. 

SINDEX can be useful in many circumstances. If you create an EXEC 
that may expect any number of arguments, and you are going to perform 
the same operation for each, you might set a counter and use the value 
of &INDEX to test it. Por example, an EXEC named PRINTX accepts 
arguments that are the filenames of ASSEMBLE files: 

SCT = 1 
SLOOP 2 SCT > SIND EX 
PRINT SSCT ASSEMBLE 
SCT = SCT + 1 

In the preceding example, the token SCT is substituted with Sl, S2, and 
so on until all of the arguments entered on the PRINTX line are used. 

You can also use SINDEX to test the number of arguments entered. If 
you design an EXEC to expect at least two arguments, the procedure might 
contain the statements: 

SIP SINDEX LT 2 SGOTO -ERRl 

-ERRl STYPE INVALID COMMAND LINE 
SEXIT 1 

In this example, if the EXEC is invoked with one or no arguments, an 
error message is displayed and the EXEC terminates processing with a 
return code of 1. 

As another example, suppose you wanted to supply an EXEC with default 
arguments, which might or might not be overridden. If the EXEC is 
invoked with no arguments, the default values are in effect; if it is 
invoked with arguments, the arguments replace the default values: 

Section 14. Building EXEC procedures 273 



&DISP = PRINT 
&COUNT = 2 
&IF &INDEX GT 2 &EXIT 1 
&IF &INDEX EQ 0 &GOTO -GO 
&COUNT = &1 
&IF &INDEX = 2 &DISP = &2 
-GO 

Default values are supplied for the variables·&DISP and &COUNT. Then, 
&INDEX is tested, and the variables are reset if any arguments were 
entered. 

CHECKING ARGUMENTS 

There are a number of tests that you can perform on arguments passed to 
an EXEC. In some cases, you may want to test for the length of a 
specific argument or to test whether an argument is character data or 
numeric data. To perform these tests, you can use the EXEC built-in 
functions &LENGTH and &DATATYPE. 

To use either &LENGTH or &DATATYPE, you must first assign a variable 
to receive the result of the function, and then test the variable. For 
example, to test whether an entered argument is five characters long, 
you could use the statements: 

&LIMIT = &LENGTH &1 
&IF &LIMIT GT 5 &EXIT &LIMIT 

When these statements are executed, if the first argument (&1) is 
greater than five characters, the exit is taken, and the return code 
indicates the length of &1. 

If you wish to check whether a number was entered for an argument, 
use the &DATATYPE function: 

&STRING = &DATATYPE &2 
&IF &STRING ~= NUM &GOTO -ERR4 

In this example, the second argument expected by the EXEC must be a 
numeric quantity. If it is not, a branch is taken to an error exit 
routine. 

Often, you may create an EXEC that tests for specific arguments and 
then takes various paths, depending on the argument. For example: 

&IF &2 = PRINT &GOTO -PR 
&IF &2 = TYPE &GOTO -TY 
&IF &2 = ERASE &GOTO -ER 
&EXIT 

In this EXEC, if the value of &2 is not PRINT, TYPE, or ERASE, or was 
not entered, the EXEC terminates processing. 

There are two special EXEC keywords that you may use to test arguments 
passed in an EXEC. They are &* and &$, which can be used only in an &IF 
or an &LOOP control statement. They test the entire range of numeric 
variables &1 through &30~ as follows: 

274 IBM VM/370 CMS User's Guide 

( 



) 

) 

~!: The special token &$ is interpreted as "any of the variables &1, &2, 
••• , &30." That is, if the value of anyone of the numeric variables 
satisfies the established condition, then the &IF statement is 
considered to be true. The statement is false only when none of the 
variables fulfills the specified requirements. 

As an example, suppose you want to make sure that 
value is passed to the EXEC. You can check to see 
arguments satisfy this condition, as follows: 

some particular 
if any of the 

&IF &$ EQ PRINT &SKIP 2 
&TYPE PARM LIST MUST INCLUDE PRINT 
&EXIT 

In this example, the path to the &TYPE state.ent is taken only when none 
of the arguments passed to the EXEC procedure equal the character string 
PRINT. 

§!: The special token &* is interpreted as "all of the variables &1, &2, 
••• , &30." That is, if the value of each of the numeric variables 
satisfies the established condition, then the &IF statement is 
considered to be true. The statement is false when at least one of the 
variables fails to meet the specified requirements. 

Use &* to test for the absence of an argument as follows: 

&IF &* NE ASSEMBLE &EXIT 3 

In this example, if an EXEC is invoked, and none of the arguments equals 
ASSEMBLE, the EXEC terminates with a return code of 3. 

The tokens &* and &$ are set by arguments entered when an EXEC is 
invoked and reset when you issue an &ARGS or &READ ARGS control 
statement. If either &* or &$ is null because no arguments are entered, 
the &IF statement is considered a null statement, and no error occurs. 

Execution Paths in an EXEC 

You have already seen examples of the 
control statements. A more detailed 
statements and additional techniques for 
an EXEC procedure follow. 

LABELS IN AN EXEC PROCEDURE 

&IF, &GOTO, &SKIP, and &LOOP 
discussion on each of these 
controlling execution paths in 

In many instances, an execution control statement in an EXEC procedure 
causes a branch to a particular statement that is identified by a label. 
The rules and conventions for creating syntactically correct EXEC labels 
are: 

• A label must begin with a hyphen (dash) and must have at least one 
additional character following the hyphen. 

• Up to seven additional alphameric characters may follow the hyphen 
(with no intervening blanks). However, the sequence: 

&GOTO -PROBABLY 

-PROBABLY 

Section 14. Building EXEC Procedures 275 



executes successfully, because when each statement is scanned, the 
token -PROBABLY is truncated to the same eight-character token, 
-PROBABL. 

• A label name may be the object of an &GOTO or &LOOP control 
statement. 

• A label that is branched to must be the first token on a line. It 
may stand by itself, with no other tokens on the line, or it may 
precede an executable CMS command or EXEC control statement. 

The following are examples of the correct use of labels: 

&GOTO -LAB1 
-LAB1 
-LAB2 &CONTINUE 
-CHECK &IF &INDEX EQ 0 SGOTO -EXIT 
&IF SINDEX LT 5 &SKIP 
-EXIT SEXIT 4 
&TYPE &LITERAL SINDEX VALUE IS SINDEX 

CONDITIONAL EXECUTION WITH THE &IF STATEMENT 

The main tool available to you for controlling conditional execution in 
an EXEC procedure is the &IF control statement. The SIF control 
statement provides the decision-making ability that you need to set up 
conditional branches in your EXEC procedure. 

One approach to decision-making with the SIF control statement is to 
compare two tokens, and perform some action based on the result of the 
comparison. When the comparison specified is equal (or true), the 
executable statement is executed. When the comparison is unequal (or 
false), control passes to the next sequential statement in the EXEC 
procedure. An example of a simple &IF statement is: 

&IF &1 EQ &2 STYPE MATCH FOUND 

If the comparand values are not equal, the statement &TYPE MITCH 
FOUND is not executed, and control passes to the next statement in the 
EXEC procedure. If the co.parand values are equal, the statement &TYPE 
MATCH FOUND is executed before control passes to the next statement. 
SIF statements can also be used to establish a comparison between a 
variable and a constant. For example, if a terminal user could properly 
enter a YES or NO response to a prompting message, you could set up &IF 
statements to check the response as follows: 

&READ ARGS 
&IF &1 EQ YES &GOTO -YESANS 
&IF &1 EQ NO &GOTO -NOANS 
&TYPE &1 IS NOT A VALID RESPONSE (MUST BE YES OR NO) 
&EXIT 
-YESANS 

-NOANS 

In this example, the branch to -YESANS is taken 
argument is YES; otherwise, control passes to the next 

216 IBM VM/310 CMS User's Guide 

if the entered 
SIF statement. ( 



) 

The branch to -NOANS is taken if the argument is NO; otherwisE~, control 
passes to the STYPE statement, which displays the entered argument in an 
error message and exits. 

The test performed in an SIF statement need not be a simple test of 
equality between two tokens; other types of comparisons can be tested, 
and more than two variables can be involved. The tests that can be 
performed and the symbols you can use to represent them are: 

~Y~~~l ~~~~~~i£ ~~!~!Bg 
= EO A equals B 
~= NE A does not equal B 
< LT A is less than B 
<= LE A is less than or equal to B (not greater than) 
> GT A is greater than B 
)= GE A is greater than or equal to B (not less than) 

You can place multiple SIF control statements on one line, to test a 
variable for aore than one condition. For example, the statement: 

SIF SNOM GT 5 SIF SNOM LT 10 STYPE O.K. 

checks the variable symbol SNOM for a value greater than 5 and less than 
10. If both of these conditions are satisfied, the &IF statement is 
true, and the STYPE statement is executed. If either condition is false, 
then the STYPE statement is not executed. 

The number of SIF statements that may be nested is limited only by 
restrictions placed on the record length of the EXEC file. 

BRANCHING WITH THE SGOTO STATEMENT 

The SGOTO control statement allows you to transfer control within your 
EXEC procedure: 

• To a specified EXEC label somewhere in the EXEC file: 

SGOTO -TEST 

where -TEST is the label to which control is passed. 

• To a particular line within the EXEC file. For example: 

SGOTO 15 

results in control being passed to statement 15 in the EXEC file. 

• Directly to the top of the EXEC file. For example: 

SGOTO TOP 

passes control to the beginning of the EXEC procedure. 

Section 14. Building EXEC Procedures 277 



The &GOTO control statement can be coded wherever an executable 
statement is permitted in an ~XEC procedure. One of its common uses is 
in conjunction with the &IF control statement. For example, in the 
statement: 

&IF &INDEX EO 0 &GOTO -ERROR 

the branch to the statement labeled -ERROR is taken when the value of 
the &INDEX special variable is zero. otherwise, control passes to the 
next sequential statement in the EXEC proceduie. 

An &GOTO statement can also stand alone as an EXEC control statement. 
When coded as such, it forces an unconditional branch to the specified 
location. For example, you might create an EXEC that has several 
execution paths, each of which terminates with an SGOTO state.ent 
leading to a common exit routine: 

-PATHl &CONTINUE 

&GOTO -EXIT 
-PATH2 &CONTINUE 

&GOTO -EXIT 
&PATH3 &CONTINUE 

-EXIT &CONTINUE 

You can use the &GOTO control statement to establish a loop. For 
example: 

&GLOBAL1 = &GLOBALl + 1 
&TYPE ENTER NUMBER: 
&READ VARS &NEXT 
&IF .&NEXT = .&GOTO -FINIS 
&IF &GLOBALl = 2 &TOTAL = 0 
STOTAL = &TOTAL • &NEXT 
&GOTO TOP 
-FINIS 
&TIPE TOTAL IS &TOTAL 

In this EXEC example, all of the statements, through the &GOTO TOP 
statement, are executed repeatedly until a null line is entered in 
response to the prompting message. Then, the branch is taken to the 
label -FINIS and the total is typed. 

Note the use of 
example. The &GLOBALn 
an initial value of 1. 

the special variable &GLOBALl in the 
special variables are self-initializing 

preceding 
and have 

When an EXEC procedure processes an &GOTO statement, and searches for a 
given label or line number, the scan begins on the line following the 
&GOTO statement, proceeds to the bottom of the file, then wraps around 
to the top of the file and continues to the line immediately preceding 

278 IBM VM/370 CMS User's Guide 

( 



) 

) 

the SGOTO state.ent. If there are duplicate labels in an EXEC file, the 
first label encountered during the search is the one that is branched 
to. 

If the label or line number is not found during the scan, EXEC 
terminates processing and displays the message: 

ERROR IN EXEC PILE filename, LINE n - SSKIP or SGOTO ERROR 

If the label or line nuaber is found, control is passed to that location 
and execution continues. 

BRANCHING WITH THE SSKIP STATEMENT 

The SSKIP control statement provides you with a second aethod of passing 
control to various points in an EXEC procedure. Instead of branching to 
a naaed or numbered location in an EXEC procedure, SSKIP passes control 
a specified nuaber of lines forward or backward in the file. 

Iou pass control forward in an EXEC by specifying how many lines to 
skip. Por exa.ple, to handle a conditional exit fro. an EXEC procedure, 
you could code the following: 

SIP SRETCODE EO 0 SSKIP 
SEXIT SRETCODE 

where the SEXIT statement is skipped whenever the value of SRETCODE 
equals zero. If the value of SRETCODE does not equal zero, control 
passes out of the current EXEC procedure with a return code that is the 
nonzero value in SRETCODE. NQte that when no SSKIP operand is 
specified, a value of 1 is assu.ed. 

A succession of SSKIP statements can be used to perform multiple 
tests on a variable. Por example, suppose an argu.ent should contain a 
value from 5 to 10 inclusive: 

SIP S1 LT 5 SSKIP 
SIF S1 LE 10 SSKIP 
STIPE S1 IS NOT WITHIN RANGE 5-10 

If the value of S1 is less than 5, control passes to the STYPE control 
statement, which displays the erroneous value and an explanatory 
message. If the value of S1 is greater than or equal to 5, the next 
statement checks to see if it is less than or equal to 10. If this is 
true, then the value is between 5 and 10 inclusive, and execution 
continues following the STIPE statement. 

When you want to pass control to a statement that precedes the 
current line, deter.ine how many lines backward you want to go, and code 
SSKIP with the desired negative value: 

SVAL = 1 
STIPE SVAL 
&VAL = &VAL + 1 
&IP SVAL NE 10 SSKIP -2 

In this EXEC, the STIPE statement is executed repeatedly until the value 
of SVAL is 10, and then execution continues with the statement following 
the SIP statement. 

Section 14. Building EXEC Procedures 279 



USING COUNTERS FOR LOOP CONTROL 

A primary consideration in designing a portion of an EXEC procedure that 
is to be executed many tiaes is how to control the number of executions. 
One way to dontrol the execution of a sequence of instructions is to 
create a loop that tests and changes the value of a counter. 

Before entering the loop, the counter is initialized to a value. 
Each time through the looPr the counter is adjusted (increased or 
decreased) toward a li.it value. When the limit value is reached (the 
counter value is the same as the limit value), control passes out of the 
loop and it is not executed again. For example, the following EXEC 
initializes a counter based on the argument &1: 

&IF &INDEX EO 0 &EXIT 12 
&TYPE COUNT IS &1 
&1 = &1 - 1 
&IF &1 GT 0 &SKIP -2 

When this EXEC procedure is invoked, it checks that at least one 
argument was passed to it. If an argument is passed, it is assumed to 
be a number that indicates how many times the loop is to execute. Each 
time it passes through the loop, the value of &1 is decreased by 1. 
When the value of &1 reaches zero, control passes from the loop to the 
next sequential statement. 

There are several ways of setting, adjusting, and testing counters. 
Some ways to set counters are by: 

• Reading arguments fro. a terminal, such as: 

&READ VARS &COUNT1 &COUNT2 

• Assigning an arbitrary value, such as: 

&COUNTER = 43 

• Assigning a variable value or expression, such as: 

&COUNTS = &INDEX - 1 

Counter values can be increased or decreased by any increment or 
decrement that meets your purposes. For example: 

&COUNTEM = &COUNTEM - &RETCODE 
&COUNT1 = &COUNT + 100 

LOOP CONTROL WITH THE &LOOP STATEMENT 

A convenient way- to control execution of a sequence of EXEC statements 
is with the &LOOP control statement. An &LOOP statement can be set up 
in four ways: 

• To execute a particular number of statements a specified number of 
times. For example, the statement: 

&LOOP 3 2 

indicates that the three statements following the &LOOP statement are 
to be executed twice. 

280 IBM VM/310 CMS User's Guide 

( 



) 

• To execute a particular number of statements until a specified 
condition is satisfied. For example: 

&LOOP 4 &X = 0 

The four statements following this statement are executed until the 
value of &X is O. 

• To execute the statements down to (and including) the statement 
identified by a label for a specified number of times. For example: 

&LOOP -ENDLOOP 6 

The statements between this &LOOP statement and the label -ENDLOOP 
are executed six times. 

• To execute the statements down to (and including) the state.ent 
identified by a label until a specified condition is satisfied. In 
the following example: 

&LOOP -ENDLOOP &X = 0 

the statements are executed repeatedly until the value of &X is O. 

The numbers specified for the number of lines to execute and the 
number of times through the loop must be positive integers. You can use 
a variable symbol to . represent the integer. If a label is used to 
define the limit of the loop, it must follow the &LOOP statement (it 
cannot precede the &LOOP statement). 

In a conditional &LOOP statement, any 
conditional phrase are substituted each time 
example, the statements: 

&X = 0 
&LOOP -END &1 EQ 2 
&X = &1 + 1 
-END &TYPE &X 

are interpreted and executed as follows: 

1. The variable &1 is assigned a value of ~. 

variable symbols in the 
the loop is executed. For 

2. The &LOOP statement is interpreted as a conditional form; that is, 
to loop to -END until the value of &X equals 2. Since the value of 
&X is not 2, the loop is entered. 

3. The variable &X is increased by 1 and is then displayed. 

4. Control returns to the beginning of the loop, where &X is tested to 
see if it equals 2. Since it does not, the loop is executed'again 
and 2 is displayed. The next time through the loop~ when &X equals 
2, control is passed to the EIEC statement immediately following 
the label -END. 

When this EXEC procedure is executed, the following lines are 
displayed: 

1 
2 

at which time the value of &1 equals 2; the loop is not executed again. 

Section 14. Building EXEC procedures 281 



Another example of a conditional loop is: 

SY = SLITERAL ASB 
SLOOP 2 .SX EQ SLITERAL .S 
SX = SSUBSTB SY 2 1 
STYPE SX 

These statements are interpreted and executed as follows: 

1. The variable SY is set to the literal value ASB. 

2. The two statements following the SLOOP statement are to be executed 
until the value of SX is S. 

3. The SSUBSTR built-in function is used to set the variable SX to the 
value of the second character in the variable SY, which is a 
literal ampersand (S). 

4. The ampersand is typed once, and the loop does not execute again 
because the condition that the value of SX be a literal ampersand 
is met. 

NESTING EXEC PROCEDURES 

If you want to use an EXEC procedure within another EXEC, you must use 
the EXEC command to execute it. Por example, if you have the statement: 

EXEC TEST 

in an EXEC procedure, it invokes the EXEC procedure TEST. The procedure 
TEST EXEC executes independently of the other EXEC; the variables S1, S2 
and so on are assigned values and the default settings for control 
statements such as SCONTROL and SHEX are reset. When TEST EXEC 
completes execution, control returns to the next line in the calling 
EXEC, where the values for variable symbols and EXEC settings are the 
same as when the TEST EXEC was invoked. 

Variables in an EXEC file have meaning only within the particular 
procedure in which they are defined. There are two methods you can use 
to pass variable information to nested EXECs. One way is to pass 
arguments on the EXEC command line. Por examFle, if the CHECK EXEC 
contains the line: 

EXEC COUNTEM SITEMCT SHUM 

then the current values of SITEMCT and SHU! are assigned to the variable 
symbols S1 and S2 in COURTEM EXEC. (The values of S1 and &2 in CHECK 
EXEC do not change.) 

You can also use the ten special variables &GLOBALO through &GLOB1L9. 
These variables can only contain integral numeric values; you cannot 
assign them character-string values. These variables can be used to set 
up arguments to pass to nested procedures, or to communicate between 
EXEC files at different recursion levels. 

282 IBM VM/370 CftS User's Guide 

( 



) 

Thus, if CHECK EXEC contains: 

&GLOBAL1 = 100 
EXEC COUNTEM 

The variable &GLOBAL1 has a value of 100 in COUNTEM EXEC, which may also 
test and modify it. 

The EXEC interpreter can handle up to 19 levels of recursion at one 
time, that is, up to 19 EXECs may be active, one nested within another. 
An EXEC may also call itself. 

Iou can test the &GLOBAL special variable to see if an EXEC is 
executing within another procedure and if so, at what level of recursion 
it is executing. For example, if the file RECOMP EXEC contained the 
lines: 

&IP &GLOBAL EQ 2 &GOTO -2NDPASS 

EXEC RECOMP 

-2NDPASS &TIPE SECOND PASS BEGINS 

then when the line "EXEC RECOMP" is executed, control passes 
beginning of the EXEC; the value of &GLOBAL changes from 1 to 
control is passed to the &TIPE statement at the label 2NDPASS. 

EXITING FROM EXEC PROCEDURES 

to the 
2; and 

Execution in an EXEC procedure proceeds sequentially through a file, 
line by line. When a statement causes control to be passed to another 
statement, execution continues at the second statement, and again 
proceeds sequentially through the file. When the end of the file is 
reached, the EXEC terminates processing. Frequently, however, you may 
not want processing to continue to the end of the file. You can use the 
&EXIT statement to cause an immediate exit from EXEC processing and a 
return to the CMS environment. If the EXEC has been invoked from 
another EXEC, control is returned to the calling EXEC file. For 
exaaple, the statement: 

&IF &RETCODE ~= 0 &EXIT 

would cause an immediate exit from the EXEC if the return code from the 
last issued CMS command was not zero. 

You can use the 
execution paths in 
statements, 

&EXIT statement to terminate each 
an EXEC. For example, using 

of a 
the 

series of 
following 

Section 14. Building EXEC Procedures 283 



&IF &1 EQ PRINT &GOTO -PRINT 
&IF &1 EQ TYPE &GOTO -TYPE 

-PRINT 

&EXIT 
-TYPE 

&EXIT 

you ensure that once the path through the -PRINT routin~ has been taken, 
the .EXEC does not continue processing with the -TYPE routine. 

The &EXIT control statement also provides a special function that allows 
you to pass a return code to CMS or to the program or EXEC that called 
this EXEC. You specify the return code value on the &EIIT control 
statement as follows: 

&EXIT 4 

Execution of this line results in a return to CMS with a ready message: 

R (00004) ; 

If you have a variety of exits in an EXEC, you can use a different value 
following each &EIIT statement, to indicate which path had been taken in 
the EXEC. 

You can also use a variable symbol as the value to be passed as the 
return code: 

&EXIT &VAL 

Another common use of the &EXIT statement 
taken following an error in a CMS command, 
from the CMS command in the &EIIT statement: 

&IF &RETCODE NE 0 &EIIT &RETCODE 

Terminal Communications 

is to cause an exit to be 
and using the return code 

You can design EXECs to be used interactively, so that their execution 
depends on information entered directly from the terminal during the 
execution. With the &TYPE statement, you can display a line at the 
terminal, and with the &READ statement, you can read one or more lines 
from the terminal or console stack. Used together, these statements can 
provide a prompting function in an EXEC: 

284 IBM VM/370 CMS User's Guide 

( 



) 

STYPE WHAT DO YOU WANT TO DO NOW? 
STYPE ENTER (STOP CONTINUE REPEAT): 
SREAD VARS SLABEL 
SGOTO -SLABEL 
-STOP 

-CONTINUE 

-REPEAT 

In this example, the SREAD control statement is used with the VARS 
operand, which accepts the words entered at the terminal as values to be 
assigned to variable symbols. If the word STOP is entered in response to 
the &READ VARS statement in this example, the variable symbol SLABEL is 
assigned the value STOP. Then, in the SGOTO statement, the symbol is 
substituted with the value STOP# so the branch is taken to the label 
-STOP. 

You can specify up to 17 variable .names on an &READ VARS control 
statement. If you enter fewer words than are expected, the remaining 
variables are set to blanks. If you enter a null line, any variable 
sy.bols on the SREAD line are set to blanks. If the execution of your 
EXEC depends on a value entered as a result of an SREAD VARS, you might 
want to include a test for a null line immediately following the 
statement; for example: 

SREAD VARS STITLE &SUBJ 
SIF .STITLE = . SEXIT 100 

If no tokens are entered in response to the terminal read request, the 
variable STITLE is null, and the EXEC terminates with a return code of 
100. 

If you are writing an EXEC that may receive a number of tokens from 
the terminal, you may find it more convenient to use the SREAD ARGS form 
of the SREAD control statement. When the SREAD ARGS statement reads a 
line from the terminal, the tokens entered are assigned to the &n 
special variables (S1, S2, and so on). 

READING CMS COMMANDS AND EXEC CONTROL STATEMENTS FROM THE TERMINAL 

When you use the &READ control statement with no operands, or with a 
numeric value, EXEC reads one line or the specified number of lines from 
the terminal. These lines are treated, by EXEC, as if they were in the 
EXEC file all along. For example, if you have an EXEC named COMMAND that 
looks like the following: 

STYPE ENTER NEXT COMMAND: 
SREAD 1 
SSKIP -2 

all the commands you enter during the terminal session are processed by 
the EXEC. Each time the SREAD statement is executed, you enter a CMS 
command. When the command finishes, control returns to EXEC, which 
prompts you to enter the next command. Since the CMS commands are all 

Section 14. Building EXEC procedu~es 285 



being executed from within the EXEC, you do not receive the CMS ready 
message at the completion of each command. 

You could also enter EXEC control statements or assignment 
statements. To terminate the EXEC and return to the CMS environment, 
you must enter the EXEC control statement SEXIT from the terminal: 

Sexit 

DISPLAYING DATA AT A TERMINAL 

You can use the STYPE and SBEGTYPE control statements 
from your EXEC at the terminal. In addition, you can 
command to display the contents of CMS files. 

to display lines 
use the CMS TYPE 

When you use the STYPE control statement, you can display variable 
symbols as well as data. Variable symbols on an STYPE control statement 
are substituted before they are displayed. For example, the lines: 

SNAME = ARCHER 
STYPE SNAME 

result in the display: 

ARCHER 

You can use the STYPE statement to display prompting messages, error 
or information messages, or lines of data. 

In an EXEC file with fixed-length records, only the first 72 
characters of each line are processed by the EXEC interpreter. 
Therefore, if you want to use the STYPE control statement to display a 
line longer than 72 characters, you must convert the file into 
variable-length records. 

All of the words in an STYPE control statement are scanned into 
8-character tokens. If you need to display a word that has aore than 8 
characters, you must use the SBEGTYPE control statement. The SBEGTYPE 
control statement precedes one or more data lines that you want to 
display; for example: 

SBEGTYPE 
THIS EXEC PERFORMS THE FOLLOWING FUNCTIONS: 
1. IT ACCESSES DISKS 193, 194, and 195 AS 

B, C, AND D EXTENSIONS OF THE A-DISK. 
2. IT DEFINES, FORMATS, AND ACCESSES A 

TEMPORARY 195 DISK (E). 
SEND 

The SEND statement must be used to terminate a series of lines 
introduced with the SBEGTYPE statement. "SEND" must begin in column 1 of 
the EXEC file. 

The lines following an SBEGTYPE statement, up to the SEND statement, 
are not scanned by the EXEC interpreter. Therefore, no substitution is 
performed on the variable symbols on these data lines. If you need to 
display a symbol, you must use the STYPE control statement. To display a 

286 IBM VM/370 CMS User's Guide 

( 



) 

) 

combination of scanned and unscanned lines, you might need to use both 
the &TYPE and &BEGTYPE control statements: 

&BEGTYPE 
EVALUATION BEGINS ••• 
&END 
&TYPE &VAL1 IS &IUM1. 
&TYPE &VAL2 IS &IUM2. 
&BEGTYPE 
EVALUATIOI COMPLETE. 
&END 

If you use the &BEGTYPE control statement in an 
fixed-length records, and you want to display lines 
characters, you must use the ALL operand. For example: 

&BEGTYPE ALL 
••• data line of 103 characters 
••• data line of 98 characters 
••• data line of 50 characters 
&END 

EXEC file with 
longer than 72 

You can display lines of up to 130 characters in this way. When you 
enter lines that are longer than the record length in an EXEC file, the 
records are truncated by the editor. You must increase the record length 
of the file by using the LRECL option of the EDIT command, for example: 

edit old exec a (lrecl 130 

In a variable-length EXEC file, you do not need to specify ALL to 
display long lines. If you originally created the file with a record 
length of 130 characters, you do not need to increase the size later to 
accomodate longer records. 

You can use the TYPE command in an EXEC file to display data files, or 
portions of data files. For example, you might have a number of files 
with the same filetype; the files contain various kinds of data. You 
could create an EXEC that invokes the TYPE comnand to display a 
particular file as follows: 

&IF &lNDEX EQ 2 &IF &2 EQ ? &GOTO -TYPE 

-TYPE 
ACCESS 198 B 
TYPE &1 MEMO B 

The filetype MEMO is a reserved filetype, 
uppercase and lowercase; you can use it for 
programming notes. 

which accepts data 
documentation files 

in 
or 

The two CMS Immediate commands that 
(halt typing) and RT (resume typing). 

control terminal display are HT 
When data is being displayed at 

Section 14. Building EXEC Procedures 287 



your terminal, you can suppress the display by signaling an attention 
interruption and entering: 

ht 

This command affects output that is being displayed: 

• As a response to a CMS command, including prompting messages, error 
messages, or normal display responses (as from the TIPE command) 

• From a program 

• In response to an STIPE or SBEGTYPE request in an EXEC 

Once display has been suppressed, and before the command, program, or 
EXEC completes execution, you can request that display be resumed by 
signaling another interruption and entering: 

rt 

In an EXEC file, if you want to halt or resume display, you must use 
the SSTACK control statement to enter the RT or HT commands. For 
example, the ACCESS command issues a message when a disk is accessed: 

D(198) R/O 

If you are going to issue the ACCESS command within an EXEC and you do 
not wish this message displayed, you could enter the lines: 

&STACK HT 
ACCESS 198 D 

Once you have stacked an HT command, all displaying 
the remainder of the EXEC file's execution, unless 
command is processed, either following an attention 
described above) or within the EXEC. To execute 
command in an EXEC, use the statement: 

&STACK RT 

is suppressed for 
the RT Immediate 
interruption (as 
the RT Immediate 

A physical read to the terminal, for example the result of an &READ 
control statement, also resets the display setting to RT. 

!~~ ~!!g~f1!~ ~~~i~l !g~igRl~: You can test the current value of the 
display controlling an EXEC with the STIPEFLAG special variable. The 
value of STIPEFLAG can only be one of the literal values HT or RT. For 
example: 

SIF &$ EQ ROTYPE SSTACK HT 

SIF &TIPEFLAG EQ HT SSKIP 3 
&TIPE LINE1 
STIPE LINE2 
&TIPE LINE3 
SCONTINUE 

In this example, if ROTYPE is entered as an argument when the EXEC is 
invoked, an HT command is stacked, so that no displaying is done at the 
terminal. Within the EXEC, the variable &TIPEFLAG is tested, and, if it 
is BT, then a series of &TIPE statements is skipped. Since EXEC does 
not have to process these lines, you can save time and system resources 
by not processing them. 

288 IBM VM/370 CMS User's Guide 

( 



) 

) 

Reading from the Console Stack 

When you are in the CMS environment executing programs or CMS commands, 
you can stack commands, either by entering multiple command lines 
separated by the logical line end symbol, as follows: 

print myfile listingtcp query printer 

or by signaling an attention interruption and entering a command line, 
as follows: 

print myfile listing 
! 
cp query printer 

In both of the preceding examples, the second command line is saved 
in a terminal input buffer, called the console stack. Whenever a read 
occurs in your virtual machine, CMS reads lines from the console stack, 
if there are any lines in it. If there are no lines in the stack, the 
read results in a physical read to your terminal (on a typewriter 
terminal, the keyboard unlocks) • 

A virtual machine read occurs whenever a command or subcommand 
finishes execution, or when an EXEC or a program issues a read request. 
Many CMS commands also issue read requests, for example, SORT and 
COPYFILE. If you want to execute one of these commands in an EXEC, you 
may want to stack, in the console stack, the response to the read 
request so that when it is issued it is immediately satisfied. For 
example: 

&STACK 42-121 1 
COPYFILE &NAME LISTING A = ASSEMBLE = (SPECS 

When the COPYFILE command is issued with the SPECS option, a prompting 
message for a specification list is issued, followed by a read request. 
In this EXEC, the request is satisfied with the line stacked with the 
&STACK control statement. If the response was not stacked, you would 
have to enter the appropriate information from the terminal during the 
execution of the EXEC that contained this COPYFILE command line. 

In addition to stacking predefined responses to commands and 
programs, you can use the console stack to stack CMS commands and EDIT 
subcommands, as well as data lines to be read within the EXEC. 

The number of lines that you can place in the console stack at any 
one time varies according to the amount of storage available in your 
virtual machine for stacking. You may want to stack one or two lines at 
a time, or you may wish to stack many lines. There are several features 
available in EXEC that can help you manipulate the stack. 

Just as the &TYPE control statement has an &BEGTYPE counterpart, the 
&STACK control statement has an &BEGSTACK counterpart. You can stack 
multiple data lines following an &BEGSTACK statement. Lines stacked in 
this way are not scanned by the EXEC processor, and no substitution is 
performed on variable symbols. For example, the lines: 

Section 14. Building EXEC Procedures 289 



SBEGSTACK 
.~.line of data 
••• line of data 
••• line of data 
SEND 

stack three data lines in the stack. The stacked lines must be followed 
by an SEND control statement, which must be entered in the EXEC file 
beginning in column 1. 

If you have an EXEC with fixed-length records, and you want to stack 
data lines longer than 12 characters, you must use the ALL operand of 
the SBEGSTACK control statement: 

SBEGSTACK ALL 
••• line of 103 characters 
••• line of 98 characters 
••• line of 60 characters 
SEND 

The ALL operand is not necessary for variable-length EXEC files. 

When you are stacking multiple lines in an EXEC, you may choose to 
reverse the sequence in which lines are read in from the stack. The 
default sequence is FIFO (first-in, first-out), but you may specify LIFO 
(last-in, first-out) when you enter the SSTACK or SBEGSTACK control 
statement. For example, execution of the lines: 

SSTACK STYPE A 
SSTACK STYPE B 
SSTACK LIFO STYPE C 
SSTACK LIFO STYPE D 
SSTACK STYPE E 

results in the display: 

D 
C 
A 
B 
E 

The EXEC special variable SREADFLAG always contains one of two values, 
STACK or CONSOLi. When it contains the value STACK, it indicates that 
there are lines in the stack. When it contains the value CONSOLE, it 
indicates that the stack is empty and that the next read request results 
in a physical read to the terminal (console). 

You can test this value in an EXEC, for example: 

SIF SREADFLAG EQ STACK &SKIP 2 
STYPE STACK EMPTY 
SEXIT 
SCONTINUE 

290 IBM VM/310 CMS User's Guide 

( 



) 

You might use a similar test in an EXEC that processes a nu.ber of lines 
from the stack, and loops through a series of steps until the stack is 
empty. 

STACKING CftS COftftANDS 

Whenever you place a command in the console stack, it remains there 
until a read request is presented to the terminal. If the request is the 
result of an SREAD control statement, then the line is read from the 
stack. For example, the lines: 

SSTACK CP QUERY TIftE 
SREAD 

result in the command line being stacked, read in, and then executed. 

If there are no read requests in an EXEC file, then any commands that 
are stacked are executed after the EXEC-has finished and has returned 
control to the CftS environment. For example, consider the lines: 

TYPE S1 LISTING A 
ACCESS 198 A 
TYPE S1 LISTING A 

If this EXEC is located en your 191 A-disk, then when the ACCESS command 
accesses a new A-disk, CftS cannot continue reading the EXEC file and 
issues an error message. However, if the EXEC was written as follows: 

TYPE S1 LISTING A 
SSTACK ACCESS 198 A 
SSTACK TYPE S1 LISTING A 

then, after the TYPE command, the next command lines are stacked, the 
EXEC finishes executing and returns cdntrol to CftS, which reads the next 
command lines from·the console stack. 

When you stack CftS commands with the SSTACK control statement in an 
EXEC procedure, you cannot place multiple command lines in one statement 
separated by the logical line end symbol (for example, print ate 
listinglprint xyz listing). CP does not translate the logical line end 
symbol (#) to a value of x'15' because a line is being read from the 
EXEC file cn disk and not from the terminal. However, you can place 
multiple command lines in one statement if separated by the value x'15'. 
The ALTER subcommand of EDIT can be used to insert the x'15' value. C~S 
does recognize the x'15' character. 

~!~!i~~ ~Yl~ ~Y~fg!!!~g§ 

If you want to issue the EDIT command from within an EXEC, you might 
want to stack EDIT subcommands to be read by the CftS editor. You should 
stack these subcommands, either with SSTACK statements, or with the 
SEEGSTACK statement, just before issuing the EDIT command. For example: 

SBEGSTACK 
CASE M 
GET SETUP FILE A 1 20 
TOP 
LOCATE /XX/ 
SEND 
SSTACK REPLACE 
EDIT &1 DATA (LRECL 120 

Section 14. Euilding EXEC Procedures 291 



If this EXEC is named E,DEX, and you invoke it with: 

edex fr01 

the EDIT subcommands are stacked in the order they appear in the EXEC. 
The EDIT command is invoked to edit the file FR01 DATA, and the EDIT 
subcommands are read from the stack and executed~ When the stack is 
empty, your virtual machine is in the edit environment in input mode, 
and the first line you enter replaces the existing line that contains 
the character string xx. 

Note that all of the EDIT subcommands in the example, except for the 
REPLACE subcommand, are stacked within an SBEGSTACK stack, and that the 
REPLACE subcommand is stacked with &STACK. If you are creating EXEC 
files with fixed-length records, you must use SSTACK to stack the INPUT 
and REPLACE subcommands. If you use SBEGSTACK, then the INPUT and 
REPLACE subcommands are treated as if they contain text data, and so 
insert or replace one line in the file (a line of bl.nks). This is not 
true, however, for variable-length EXEC files. 

Similarly, if you want to stack a null line, to change from input 
mode to edit mode in an EXEC, you must use the SSTACK statement with no 
other data on the line (in both fixed- and variable-length EXEC files), 
for example: 

SSTACK INPUT 
SBEGSTACK 
••• data line 
••• data line 
••• data line 
SEND 
SSTACK 
SSTACK FILE 
EDIT &1 S2 
SEXtT 

When this EXEC is invoked with a filename and filetype as arguments, the 
INPUT subcommand, data lines, null line, and FILE subcommand are placed 
in the stack before the EDIT command is issued. The data lines are 
placed in the specified file and the file is written onto disk before 
the EXEC- returns control to CMS. 

STACKING LINES FOR EXEC TO READ 

Lines in the console stack can be read by the EXEC interpreter with an 
SREAD control statement; for example: 

-SETUP 
SLOOP 3 SlUM = 50 
SSTACK SNUM SCHAR 
SNUM = SNUM + 1 
SCHAR = SCONCAT SSTRNG SNUM 

-READ 
SLOOP -FINIS SREADFLAG EQ COISOLE 
SHEAD AHGS 

-FINIS 

292 IBM VM/370 CMS User's Guide 



) 

) 

In this EXEC procedure, the statements following the label -SETUP stack 
a number of lines. The variables SNUM and SCHAR are substituted before 
they are stacked. At the label -READ, the lines are read in from the 
stack and processed. The values stacked are read in as the variable 
symbols S1 and S2. Control passes out of the loop when the stack is 
eapty. 

CLEARING THE CONSOLE STACK 

If you use the console stack in an EXEC procedure, you should be sure 
that it is empty before you begin stacking lines in it. Also, you 
should be sure that it is empty before exiting from the EXEC (unless you 
have purposely stacked CMS commands for execution). 

One way to clear a line from the stack without affecting the 
execution of your EXEC is to use the SREAD VARS or SREAD ARGS control 
statement. You can use SREAD VARS without specifying any variable 
sy.bols so that the line read is read in and effectively ignored. For 
example: 

SLOOP 1 SREADFLAG EO STACK 
SREAD ARGS 

If these lines occur at the beginning of an EXEC file, they ensure that 
any stacked lines are cleared. If the EXEC is named EXEC1 and is 
invoked with the line: 

exec1.type help memo'type print memo 

then the lines TYPE HELP MEMO and TYPE PRINT MEMO are cleared from the 
stack and are not executed. 

You could use the same technique to clear the stack in case of an 
error encountered in your EXEC, so that the stack is cleared before 
returning to CMS. You would especially want to do this if you stacked 
data lines or EXEC control statements that have no meaning to CMS. 

Another way to clear the console stack is with the CMS function 
DESBUF. For example: 

&IF &READFLAG EO STACK DESBUF 

When you use the DESBUF function to clear the console input stack, the 
output stack is also cleared. The output stack contains lines that are 
waiting to be displayed or typed at the terminal. Frequently, when an 
EXEC is processing, output lines are stacked, and are not displayed 
immediately following the execution of an STYPE statement. If you want 
to display all pending output lines before clearing the console input 
stack, you should use the CONWAIT function, as follows: 

CONWAIT 
SIF SREADFLAG EO STACK DESBUF 

The CONWAIT (console wait) function causes a suspension of program 
execution until the console output stack is empty. If there are no lines 
waiting to be displayed, CONWAIT has no effect. 

Clearing the stack is important when you write edit macros, since all 
subcommands issued in an edit macro must be first stacked. See "Section 
11. Writing Edit Macros" for additional information on using the console 
stack. 

Section 14. Building EXEC Procedures 293 



File Manipulation with EXECs 

You can, to a limited degree, read and write CMS disk files using EXECs. 
You can stack files with a filetype of EXEC in the console stack and 
then read them, one record at a time, with SREAD control statements. All 
data items are truncated to eight characters. You can write a file, one 
record at a time, with the SPUNCH control statement, and then you can 
read the spool punch file onto disk. Examples of these techniques 
follow. 

STACKING EXEC FILES 

There are two methods to stack EXEC files in the console stack. One is 
illustrated us~ng a CMS EXEC file, as shown in the following PREFIX 
EXEC: 

SLNAME = SCONCAT Sl * 
LISTFILE SLNAME SCRIPT * (EXEC 
EXEC CMS SSTACK 
SLOOP -END SREADFLAG EQ CONSOLE 
SREAD VARS SHAME STYPE SMOD 
SSUFFIX = SSUBSTR SHAME 3 6 
SHEWNAM = SCONCAT S2 SSUFFIX 
RENAME SNAME &TYPE SMOD SNEWNAM &TYPE &MOD 
&IF SRETCODE EQ 0 SSKIP 
STYPE FILE SNAME &TYPE NOT RENAMED 
-END 

This EXEC procedure is invoked with two arguments, each two characters 
in length, which indicate old and new prefixes for filenames. The EXEC 
renames files with a filetype of SCRIPT that have the first prefix, 
changing only the prefix in the filename. 

The LISTFILE command, invoked with the EXEC option, creates aces 
EXEC file in the format: 

Sl S2 filename SCRIPT mode 

When the EXEC is invoked with the line: 

EXEC Cl-1S SSTACK 

the argument &STACK is substituted for the variable symbol Slin each 
line in the CMS EXEC. The execution of the CMS EXEC effectively stacks, 
in the console stack, the complete file identifications of the files 
listed: 

SSTACK filename SCRIPT mode 
SSTACK filename SCRIPT mode 

These stacked lines are read back into the EXEC, one at a time, and the 
tokens "filename", "SCRIPT", and "mode" are substituted for the variable 
symbols &NAME, STYPE, and SMOD. 

Using the &SUBSTR and SCONCAT built-in functions, the new name for 
each file is constructed, and the RENAME command is issued to rename the 
files. 

294 IBM VM/370 CMS User's Guide 

( 



) 

) 

For example, if you invoke the EXEC procedure with the line: 

prefix ab xy 

all SCRIPT files that have filenames beginning with the characters AE 
are renamed so that the first two characters of the filename are XY. A 
sample execution summary of this EXEC is illustrated under "Debugging 
EXEC Procedures" in "Section 16. Refining Your EXEC Procedures." 

You can create a data file, containing fixed-length records, using a 
fi1etype of EXEC. TO stack these data lines in the console stack, you 
can enter them following an &EEGSTACK (or &EEGSTACK ALL) contre1 
statement. For example, the file DATA EXEC is as follows: 

&EEGSTACK 
HARRY 10/12/48 
PATTI 1/18/49 
DAVID 5/20/70 
KATHY 8/6/43 
!ARVIN 2/28/50 

The file EDAY EXEC contains: 

&CONTROL ERROR 
EXEC DATA 
&IF &READFLAG EQ CONSOLE &GOTO -NO 
&READ VARS &NAME &DATE 
&IF &NA!E NE &1 &SKIP -2 
-FOUND 
&IF .&1 EQ • &EIIT 
&TYPE &1 'S BIRTHDAY IS &DATE 
CONWAIT 
DESBUF 
&EXIT 
-NO &TYPE &1 NOT IN LIST 
&EXIT 

When the BDAY EXEC is invoked, it expects an argument that is a first 
naae. The function of the EXEC is to display the birthday of the 
specified person. A sample execution of this EXEC might be: 

bday kathy 
KATHY'S BIRTHDAY IS 8/6/43 
R; 

BDAY EXEC first executes the DATA EXEC, which stacks names and dates 
in the console stack. Then, BDAY EXEC reads one line at a time from the 
stack, assigning the variable names &NAKE and &DATE to the tokens on 
each line. It compares &NAME with the argument read as &1. When it finds 
a match, it displays the message indicating the date, and clears the 
console stack after waiting for terminal output to finish. 

Note that the file DATA EXEC begins with an &BEGSTACK control 
statement, but contains no &END statement. The stack is terminated by 
the end of the EXEC file. "Writing Data Files" describes a technique 
you might use to add new names and birth dates to the DATA EXEC file. 

Section 14. Building EXEC Procedures 295 



You can build a CMS file in your virtual card punch using the SPUNCH and 
SBEGPUNCH control statements. Depending on the spooling characteristics 
of your virtual punch, the file that you build may be sent to another 
user's card reader, or to your own virtual card reader. When you read 
the file with the CMS READCARD command, the spool reader file becomes a 
CMS disk file. 

The following example illustrates how you might use your card punch 
and reader to update a CMS file by adding records to the end of it. The 
file being updated is the DATA EXEC, which is the input file for the 
BDAY EXEC, shown in the exaaple in "Stacking Data Files." You could 
create a separate EXEC to perform the update, but this example shows how 
you might modify the BDAY EXEC to perform the addition function 
(ellipses indicate the body of the EXEC, which is unchanged): 

SCONTROL ERROR 
&IF &1 EQ ADD &GOTO -ADDNAME 

&EXIT 
-ADDNAME 
&TYPE ENTER FIRST NAME AND DATE IN FORM MM/DD/YY 
&READ VARS &NAME &DATE 
SIF .&NAME = . SSKIP 3 
&PUNCH &NAME &DATE 
&TYPE ENTER NEXT NAME OR NULL LINE: 
&SKIP -4 
CP SPOOL PUNCH TO * 
CP CLOSE PUNCH 
READCARD NEW NAMES 
COPYFILE NEW NAMES A DATA EXEC A (APPEND 
&IF &RETCODE = 0 &SKIP 2 
&TYPE ERROR CREATING FILE 
&EIIT &RETCODE 
ERASE NEW NAMES 

When BDAY EXEC is invoked with the keyword AtD, you are prompted to 
enter lines to be added to the data file. Each line that you enter is 
punched to the card punch. When you enter a null line, indicating that 
you have finished entering lines, the CP commands SPOOL and CLOSE direct 
the spool file to your card reader and close the punch. 

The file is read in as the file NEW NAMES, which is appended to the 
file DATA EXEC using the COPYFILE co.mand with the APPEND option. The 
file NEW NAMES is erased and the EXEC terminates processing. 

When you punch lines in your virtual punch, the lines are not released 
as a CP spool file until the punch is closed. Since the EXEC processor 
does not close the virtual punch when it terminates processing, you must 
issue the CLOSE command to release the file. You can do this in the EXEC 
with the command line: 

CP CLOSE PUNCH 

or from the CMS environment after the EXEC has finished. If you use the 
CLOSE command in the EXEC, you must preface it with CP. 

296 IBM VM/370 CMS User's Guide 

( 



) 

The CMS PUNCH command, which you can use in an EXEC to punch an 
entire CMS file, does close the punch after punching a file. Therefore, 
if you want to create a punch file using a combination of SPUNCH control 
statements and PUNCH commands, you must spool your punch using the CONT 
option, so that a close request does not affect the file: 

CP SPOOL PUNCH TO * CONT 
SPUNCH FIRST FILE 
SPUNCH 
PUNCH FILE1 TEST ( NOH EADER 
SPUNCH SECOND FILE 
SPUNCH 
PUNCH FILE2 TEST ( NOH EADER 
CP SPOOL PUNCH CLOSE NOCONT 

The preceding example punches title lines introducing the files punched 
with the CMS PUNCH command. The null SPUNCH statements punch blank 
lines. The PUNCH command is issued with the NOBEADER option, so that a 
read control card is not punched. 

You can also use an EXEC procedure to punch a job to send to the CMS 
batch facility for processing. The batch facility, and an example of 
using an EXEC to punch a job to it, are described in "Section 12. Using 
the CMS Batch Facility." 

All lines punched to the virtual card punch are fixed-length, 
80-character records. When you use the SPUNCH control statement in a 
fixed-length EXEC file, EXEC scans only the first 72 columns of the 
EXEC. 

If you want to punch a word that contains more than eight characters, 
you must use the SBEGPUNCH control statement, which also, in 
fixed-length files, causes EXEC to punch data in columns 1 through 80. 

Section 14. Building EXEC Procedures 297 



c 
298 IBM VM/370 eMS User's Guide 



) 

Section 15. Using EXECs with CMS Commands 

Whenever you create an EXEC file you are, for all practical purposes, 
creating a new CMS command. When you enter a command line in the CBS 
environment, CMS searches for an. EXEC file with the specified fi1ena.e 
before searching for a MODULE file or CMS command. You can place the 
names of your EXEC files in a synonym table and assign minimu. 
truncation values for the synonyms, just as you can for CMS command 
names. 

While many of your EXEC procedures may be very simple, others may be 
very long and complicated, and perform many of the housekeeping 
functions perfor.ed by CMS co •• ands, such as syntax checking, error 
message generation, and so on. 

Monitoring CMS Command Execution 

Many, or most, of your EXEC procedures may contain sequences of CMS 
commands that you want to execute. If your EXEC procedure contains no 
EXEC control statements, each command line is displayed and then the 
command is executed. If an error occurred, the CMS error message is 
displayed, followed by a return code in the format: 

+++ R(nnnnn) •• + 

where nnnnn is the nonzero return code from the CMS command. If the 
command is not a valid CMS command, or the command function for SET or 
QUERY is invalid and the implicit CP function is in effect, the return 
code is a -3: 

+++ R(-0003) +++ 

You may also receive this error return when you use a CP command without 
prefacing it with the CP command. If you enter an unknown CP command 
following "CPU, you receive a return code of 1. 

If a command completes successfully, no ret~rn code is displayed. 

If you do not want to see the command lines displayed before 
execution, nor return codes following execution, you can use the EXEC 
control statement: 

SCOBTROL OFF 

Or, if you want to see only the command lines that produced errors, and 
the resultant return codes, you can specify: 

SCONTROL ERROR 

Regardless of these settings of the SCORTROL statement, CMS error 
messages are displayed, as long as the value of SREADFLAG is RT, and the 
terminal is displaying output. 

If you issue the LISTFILE, STATE, ERASE, or RENAME commands in an 
EXEC procedure, and you do not want to see the error message FILE NOT 
FOUND displayed, you can use the statement: 

SCONTROL NOMSG 

to suppress the display of these particular messages. 

Section 15. Using EXECs with CMS Commands 299 



You can request that particular timing inforaation be 
during an EXEC's execution. If you want to display the time 
which each com.and executes, you can specify: 

&CONTROL TIME 

displayed 
of day at 

Then, as each com.and line is displayed, it is prefaced with the time; 
for example: 

SCONTROL CMS TIME 
QUERY BLIP 

executes as follows: 

10:34:16 QUERY BLIP 
BLIP = * 

If you wish to see, following the execution of each CMS command, 
specific CPU timing information, such as the long form of the ready 
message, you can use the &TIME control statement. For example: 

&TIKE ON 
QUERY BLIP 
QUERY FILEDEF 

might execute as: 

QUERY BLIP 
BLIP = OFF 
T=0.01/0.04 10:44:21 

QUERY FILEDEF 
NO USER DEFINED FILEDEF'S IN EFFECT 
T=0.01/0.04 10:45:26 

Handling Error Returns from CMSCommands 

In many cases, you want to execute a com.and only if previous commands 
were su'ccessful. For example, you would not want to execute a PRINT 
command to print a file if you had been unable to access the disk on 
which the file resided. There are two methods, using EXEC procedures, 
that allOW you to monitor and control what happens following the 
execution of CKS commands. One method uses the EXEC control statement 
&ERROR to transfer control when an error occurs; the other tests the 
special variable &RETCODE upon co.pletion of a CMS command to determine 
whether that particular command completed successfully. 

USING THE SERROR CONTROL STATEKENT 

When a CMS command is executed within an EXEC, a return code is passed 
to the EXEC interpreter, indicating whether or not the command completed 
successfully. If the return code is nonzero, EXEC then activates the 
SERROR control statement currently in effect. For example, if the 
following statement is included at the beginning of an EXEC file: 

SERROR SEXIT 

then, whenever a eMS command (or user program) completes with a nonzero 
return code, the &EXIT statement in the &ERROR statement is executed, 
and the EXEC terminates processing. You might use a similar statement 

300 IBM VK/370 CMS User's Guide 

( 



) 

in your EXECs to ensure that they do not attempt to continue processing 
in the event of an error. 

An &ERROR control statement can specify any executable statement. It 
may transfer control to another portion of the EXEC, or it many be a 
single statement that executes before control is returned to the next 
statement in the EXEC. For exaaFle: 

&ERROR &GOTO -EXIT 

transfers control to the label -EXIT, in case of any CMS error. The 
statement: 

&ERROR &TYPE CMS ERROR 

results in the display of the message "CBS ERROR" before returning 
control to the statement following the command that caused the error. 

If you do not have an &ERROR control statement in an EXEC, or if you 
specify &ERROR with no operands, EXEC takes no special action when·a CMS 
command returns with an error return code. Specifying &ERROR with no 
operands is the same as specifying: 

&ERROR &CONTINUE 

Since an &ERROR control statement remains in effect for the remainder 
of the EXEC execution, or until another &ERROR control statement is 
encountered, you may use &ERROR &CONTINUE to restore default processing. 

USING THE &RETCODE SPECIAL VARIABLE 

An error return from a CMS command, in addition to calling an &ERRCR 
control statement, also places the return code value in the EXEC special 
variable &RETCODE. Following the execution of any CMS command in an 
EXEC procedure, you can test whether or not the command completed 
without error. For example: 

TYPE ALPHA FILE A 
&IF &RETCODE ~= 0 &EXIT 
TYPE BETA FILE A 
&IF &RETCODE ~= 0 &EXIT 

Note that the value of &RETCODE is modified after the execution of each 
CMS command. 

The value of &RETCODE is affected by your own programs. If you 
execute a program in your EXEC using the LOAD and START (or FETCH and 
START) commands, or if you execute a MODULE file, then the &RETCODE 
special variable contains Whatever value was in general register 15 when 
the program exited. If you are nesting EXEC procedures, then &RETCODE 
contains the value passed from the &EXIT statement of the nested EXEC. 

You can use the value of the return code, ,as well, to analyze the 
extent or the cause of the error and to set up an error analysis routine 
accordingly. For example, suppose you want to set up an analysis 
routine to identify return codes 1 through 11 and to exit from the EXEC 
when the return code is greater than 11. When a return code is 
identified, control is passed to a corresponding routine that attempts 
to correct the error. You could set up such an analysis routine as 
follows: 

Section 15. Using EXECs with CMS Commands 301 



-ERRANAL 
SCNT = 0 
&LOOP 2 SCNT EO 12 
SIF &RETCODE EO SCNT SGOTO -FIXSCNT 

. SCNT = SCNT + 1 

-FIXO SGOTO -ALLOK 
-FIX1 

SGOTO -ALLOK 
-FIX2 

SGOTO -ALLOK 

-FIX11 

-ALLOK 

When the value of the SCNT variable equals the return code value in 
SRETCODE, the branch to the corresponding -FIX routine is taken. Each 
corrective routine performs different actions, depending on its code, 
and finishes at the routine labeled-ALLOK. 

You can, in some cases, determine the cause of a CMS command error 
and attempt to correct it in your EXEC. To do this, you must know the 
return codes issued by VM/370 commands. See !~Ll1~ ~I§!~. ~~§§gg~§ for a 
discussion of the return codes for Vft/370 commands. In addition, the 
error messages and corresponding return codes are listed under the 
command descriptions for each CMS command in the !~Ll1~ ~1I~ £.Q.I!!g.n~ g.n~ 
11~£f:.Q .R~!~f:.!Hl£~ • 

As an example, all CMS commands that search for files issue a return 
code of 28 .when a file is not found. If you want to test for a 
file-nat-found condition in your EXEC, you might use statements similar 
to the following: 

SCONTROL OFF NOMSG 

TYPE HELP MEMO A 
SIF &RETCODE = 28 &GOTO -NOFILE 

Tailoring eMS Comma.nds for Your Own Use 

You can create EXEC procedures that simplify or extend the use of a 
particular CMS command. Depending on your applications, you can modify 
the CMS command language to suit your needs. You can create EXEC files 
that have the same names as CMS commands, and, since CftS locates EXEC 
files before MODULE files, the EXEC is found first. For example, the 
COPYFILE command, when used to copy CftS disk files, requires six 
operands. If you change only the filename when you copy files, you could 
create a COPY EXEC as follows: 

302 IBM VM/370 CftS User's Guide 

c 



; 

) 

) 

&CONTROL OFF 
&IF &INDEX ~= 3 &SKIP 2 
COPYFILE &1 &2 = &3 &2 = 
&EXIT 
COPYFILE &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14 &15 

If you always invoke the COPYFILE command using the truncation COPY, 
EXEC processes the command line for you, and if you have entered the 
three arguments, EXEC formats the COPYFILE command for you. If any 
other number of arguments is entered, the COPY FILE command is invoked 
with all the arguments as entered. 

CREATING YOUR OWN DEFAULT FILETYPES 

If you use special filetypes for particular aPFlications and they are 
not among those that the CMS editor supplies default settings for, but 
do require special editor settings, you can create an EXEC to invoke the 
editor. The EXEC can check for particular filetypes, and if it finds 
thea, stack the appropriate EDIT subcommands. If you name this EXEC 
procedure E EXEC, then you can bypass it by using a longer form of the 
EDIT command. The following is a sample E EXEC: 

&CONTROL OFF 
&IF &INDEX GT 1 &SKIP 2 
EDIT &1 SCRIPT 
&EXIT 
&IF &2 EQ TABLE &GOTO -TABLE 
&IF &2 EQ CHART &GOTO -CHART 
&IF &2 EQ EXEC &GOTO -EX 
&IF &2 EQ SYSIN &GOTO -SYSIN 
-NORM EDIT &1 &2 &3 &4 &5 &6 
&EIIT 
-TABLE &BEGSTACK 
IMAGE ON 
TABS 1 10 20 
CASE M 
&END 
EDIT &1 &2 &3 (LRECL 20 
&EXIT 
-CHART &BEGSTACK 
CASE M 
IMAGE ON 
&END 
EDIT &1 &2 &3 
&EXIT 
-EX 
EDIT &1 &2 &3 (LRECL 130 
&EXIT 
-SYSIN &BEGSTACK 
TABS 1 10 16 31 36 41 46 69 72 80 
SERIAL ON 
TRUNC 71 
VERIFY 72 
&END 
EDIT &1 &2 &3 
&EXIT 

This EXEC defines special characteristics for filetypes CHART, TABLE, 
and SYSIN, and defaults an EXEC file to 130-character records. If only 
one argument is entered, it is assumed to be the filename of a SCRIPT 
file. Since the editor is invoked from within the EXEC, control returns 
to EXEC after you use the FILE or QUIT subcommands during the edit 
session. You must use the &EXIT control statement so that the EXEC does 
not continue processing, and execute the next EDIT command in the file. 

Section 15. Using EXECs with CMS Commands 303 



( 
304 IBM VM/370 eMS User's Guide 



) 

Section 16. Refining Your EXEC Procedures 

This section provides supplemen,:tary information for writing complex EXEC 
procedures. Although the EXEC interpreter resembles, in some aspects, a 
high-level programming language, you do not need to be a programmer to 
write EXECs. Some of the techniques suggested here, for example, on 
annotating and writing error messages, are common programming practices, 
which help make programs self-documenting and easier to read and to use. 

Annotating EXEC Procedures 

Lines in an EXEC file that begin with an asterisk (*) are commentary and 
are treated as comments by the EXEC interpreter. You can use * 
statements to annotate your EXECs. If you write EXECs frequently, you 
may find it convenient to include a standard comment at the beginning of 
each EXEC, indicating its function and the date it was written, for 
example: 

* EXEC TO HELP CONVERT LISTING FILES 
* INTO SCRIPT FILES 
* J. BEAN 10/18/75 

You can also use single asterisks or null lines to provide spacing 
between lines in an EXEC file to make examining the file easier. 

In an EXEC, you cannot place comments on the same line with an 
executable statement. If you want to annotate a particular statement or 
group of statements, you must place the comments either above or below 
the lines you are annotating. 

A good practice to use, when writing EXECs, is to set them up to 
respond to a ? (question mark) entered as the sole argument. For 
example, an EXEC named FSORT might contain: 

SCONTROL OFF 
SIF SINDEX = 1 SIF S1 = ? SGOTO -TELL 

-TELL SBEGTYPE 
CORRECT FORM IS ' FSORT USERID <VADDR> ' 

PRINTS AN ALPHABETIC LISTING OF ALL FILES ON THE SPECIFIED 
USER'S DISK. IF A VIRTUAL ADDRESS (VAtDR) IS NOT 
SPECIFIED, THE USER'S 191 IS THE DEFAULT. 

SEND 

You may also wish 
enter an EXEC name 
arguments: 

to anticipate the situation -in which a user might 
with no arguments for an EXEC that requires 

Section 16. Refining Your EXEC Procedures 305 



SIF SINDEX = 0 SGOTO -HELP 
SlF SINDEX = 1 SIF Sl = ? SGOTO -TELL 

SEXIT 
-HELP SBEGTYPE 

SEND 
SEXIT 

CORRECT FORM IS • COPY OLDFN OLDFT NEWFN ' 
TYPE • COpy ? ' FOR MORE INFO 

-TELL SBEGTYPE 

SEND 
SEXIT 

CORRECT FORM IS ' COpy OLDFN OLDFT NEWFN ' 
USES COPYFILE COMMAND TO CHANGE ONLY THE FILENAME 

This type of annotating is especi~lly useful if you share your disks or 
your EXECs with other users. 

Error Situations 

It is good practice, when writing EXECs, to anticipate error situations 
and to provide meaningful error or information messages to describe the 
error when it occurs. The following error situations, and suggestions 
for handling them, have already been discussed: 

• Errors in invoking the EXEC~ either 
arguments, or with invalid arguments. 
14. Building EXEC procedures.") 

with an improper number of 
(See "Arguments" in "Section 

• Errors in CMS command processing that can be detected with an SERROR 
control statement or with the SRETCODE special variable. (See 
"Handling Error Returns from CMS Commands" in "Section 15. Using 
EXECs With CMS Commands.") 

Many different kinds of errors may also occur, in the processing of 
your EXEC control statements. EXEC process1ng errors, such as an attempt 
to branch to a nonexistent label or an invalid syntax, are 
"unrecoverable" errors. These errors always terminate EXEC processing 
and return your virtual machine to the CMS environment or to the calling 
EXEC procedure or program. The error messages produced by EXEC, and the 
associated return codes, are described in the !~L11~ ~I21~! ~~§§!g~. 

WRITING ERROR MESSAGES 

One way to make your EXECs more readable, especially if they are long 
EXECs, is to group all of your error messages in one place, probably at 
the end of the EXEC file. You may also wish to number your messages and 
associate the message numbe~ with a label number and a return code. For 
example: 

306 IBM VM/370 CMS User's Guide 

( 



) 

&IF &CT > 100 &GOTO -ERR100 
&IF &CT < 0 &GOTO -ERR200 

&IF &RETCODE EQ 28 &GOTO -ERR300 

-ERR100 
&TIPE COUNT TOO HIGH 
&EIIT 100 
-ERR200 
&TIPE COUNT TOO LOW 
&EIIT 200 
-ERR300 
&TIPE &1 &2 BOT ON DISK 'ct. 
&EIIT 300 

There is a facility, available in the EIEC processor, which allows you 
to write error messages that use the standard VM/370 message format, 
with an identification code and message number, as well as message text. 
When you use the &EMSG or &BEGEMSG control statement, the EXEC 
interpreter scans the first token and checks to see if the seventh (and 
last character) is an I, E, or W, representing information, error, or 
warning messages, respectively. If so, then the message is displayed 
according to the CP EMSG setting (ON, OFF, CODE, or TEXT). For example, 
if you have the statement: 

&EMSG ERROR1E BAD ARGUMENT ' &f ' 

the ERROR1E is considered the code portion of the message and BiD 
ARGUMENT is the text. If you have issued the CP command: 

cp set emsg text 

when this &EMSG statement is executed it may display: 

BAD ARGUMENT ' PRNIT ' 

where PRNIT is the argument that is invalid. 

When you use &EMSG (or &BEGEMSG, which allows you to display error 
messages of unscanned data), the code portion of the message is prefixed 
with the characters DMS, when displayed. For example: 

&BEGEMSG 
ERROR2E INCOMPATIBLE ARGUMENTS 
&END 

displays when the EMSG setting is ON: 

DMSERROR2E INCOMPATIBLE ARGUMENTS 

You should use the &BEGEMSG control statement when you want to display 
lines that have tokens longer than eight characters; however, no 
variable substitution is performed. 

Section 16. Refining Your EIEC Procedures 307 



Debugging EXEC Procedures 

If you have difficulty getting an EXEC procedure to execute properly, or 
if you are modifying an existing EXEC and wish to test it, there are a 
couple of simple techniques that you can use that may save you time. 

One is to place the &CONTROL ALL control statement at the top of your 
EXEC file. When &CONTROL ALL is in effect, all the EXEC control 
statements are displayed before they execute, as well as the CftS command 
lines. One of the advantages of usihg this method is that the line is 
displayed after it is scanned, so that you can see the results of symbol 
and variable substitution. 

"Stacking EXEC Files" in "Section 14. Building EXEC procedures" 
described a PREFIX EXEC, which chang.s the prefixes of groups of files. 
If the EXEC had an &CONTROL ALL statement, it might execute as follows: 

prefix pt ag 
&CONTROL ALL 
&LNAME = &CONCAT PT * 
LISTFILE PT* SCRIPT * ( EXEC 
EXEC CMS SSTACK 
&LOOP -END &READFLA EO CONSOLE 
LOOP UNTIL: STAC K EQ CONS 
&READ VARS SNAME &TIPE &MOD 
&SUFFIX = &SUBSTR PTA 3 6 
&NEWNAM = SCONCAT AG A 
RENAME PTA SCRIPT A1 AGA SCRIP~ A1 
SIF 0 EQ 0 SSKIP 
&SKIP 
LOOP UNTIL: STAC K EQ CONS 
SREAD VARS SNAME &TIPE &MOD 
&SUFFIX = SSUBSTR PTB 3 6 
SNEWNAM = SCONCAT AG B 
RENAME PTB SCRIPT A1 AGB SCRIPT A1 
&IF 0 EQ 0 SSKIP 
SSKIP 
LOOP UNTIL: CONS OLE EQ CONS 
R; 

lou can see from this execution summary that the files named PTA SCRIPT 
and PTB SCRIPT are renamed to AGA SCRIPT and AGB SCRIPT. Notice that 
the &LOOP statement results in a special LOOP UNTIL statement in the 
execution summary, which indicates the condition under which the loop 
executes. 

USING CMS SUBSET 

When you are using the CMS editor to create or modify an EXEC procedure, 
you can test the EXEC in the eMS subset environment, as long as the EXEC 
does not issue any CMS commands that are invalid in CMS subset. 

Before entering CMS subset with the CMS subcommand, you must issue 
the SAVE subcommand to write the current version of the EXEC onto disk; 
then, in CMS subset, execute the EXEC. For exaaple: 

308 IBM VM/370 CMS User's Guide 

\ 



) 

edit new exec 
NEW FILE: 
EDIT: 
input 
INPUT: 
Sa = Sl + S2 + S3 
Stype answer is Sa 

EDIT: 
save 
EDIT: 
cms 
CMS SUBSET 
new 34 56 899 
ANSWER IS 989 
R; 
return 
EDIT: 
quit 
R; 

If the EXEC does not execute properly, you can return to the edit 
environment using the RETURN command, modify the EXEC, reissue the SAVE 
and CMS subcomaands, and attempt to execute the EXEC again. 

SUMMARY OF EXEC INTERPRETER LOGIC 

The following information is provided for those who have an interest in 
how the EXEC interpreter works. It may help you in debugging your EXEC 
procedures if you have some idea of how processing is done by EXEC. 
When an EXEC file is invoked for execution, the EXEC interpreter 
examines each statement and analyzes it, according to the following 
sequence: 

1. If the first nonblank character of the line is an *, the line is 
counted and ignored. 

2. Null lines, except as a reponse to an SREAD statement, are also 
counted and ignored. 

3. The line is scanned, and nonblank character strings are placed in 
tokens. 

4. All EXEC special variables, and then all user variables, except for 
those that appear as the target of an assignment statement, are 
substituted. 

6. All blank tokens (resulting from the substitution of undefined 
symbols) are discarded. 

7. If the first nonblank character is a hyphen (-), indicating a 
label, the next token is considered the first token. 

8. If the first logical token does not begin with an ampersand (S), 
the line is passed to CMS for execution. The return code from CMS 
is placed in the special variable SRETCODE. 

9. If the first logical token begins with an ampersand (S) EXEC 
interprets the statement. 

10. If a statement is syntactically invalid and can be made valid by 
adding a token of blanks at the end, EXEC adds blanks, for example: 

Section 16. Refining Your EXEC Procedures 309 



&BLANK = 
&TIPE 
&LOOP 3 &X NE 

All of the above are valid EXEC control statements. 

11. EXEC executes the statement. If no error is 
passes to the next logical statement. If an 
EXEC terminates processing. 

310 IBM VM/370 CMS User's Guide 

encountered, control 
error is encountered, 

\ 



) 

) 

Section 17. Writing Edit Macros 

If you have a good knowledge of the CMS EXEC facilities and an 
understanding of the CMS editor, you may wish to write edit macros. An 
edit macro is simply an EXEC file that contains a sequence of EDIT 
subcommands. Edit macros can only be invoked frem the edit environment. 
An edit macro may contain a simple sequence of EDIT subcommands, or its 
execution may be dependent on arguments you enter when you invoke it. 
This section provides information on creating edit macros, suggestions 
on how to manipulate the console stack, and some examples of macros that 
you can create and use. 

Creating Edit Macro Files 

An edit macro aust have a filename 
a filetype of EXEC. Rules for 
substitution are the same as for all 
contain: 

• EDIT subcommands 
• EXEC control statements 

beginning with a dollar sign ($) and 
file format, scanning and token 
other EXEC files. A macro file may 

• CMS commands that are valid in CMS subset 

When you create an edit macro that accepts arguments, you should be 
sure to check the validity of the arguments, and issue appropriate error 
messages. If you are writing an edit macro to expect arguments, you must 
keep in mind that the macro command line is scanned, and that any data 
items you enter are padded or truncated into eight-character tokens. 
Tokens are always translated to uppercase letters. 

You should annotate all of your macro files, and provide a response 
to a question mark (1) entered as the sole argument (as described under 
"Annotating EXEC Procedures" in "Section 16. Refining Your EXEC 
Procedures"). 

How Edit Macros Work 

Since an edit macro is an EXEC file,_ it is actually executed by the EXEC 
interpreter, and not by the editor. The EXEC interpreter can only 
execute EXEC control statements and CMS commands. The only way to issue 
an EDIT subcommand from an EXEC file is to stack the subcommand in the 
console stack, so that when the editor is invoked, or receives control, 
it reads the subcommand(s) from the console stack before accepting input 
lines from the terminal. For example: 

&STACK CASE M 
&STACK RECFM V 
EDIT &1 CHART A1 

When the EDIT command is invoked from this EXEC, the editor reads the 
subcommands from the stack and executes them. 

To execute these same subcommands from an edit macro file, you must 
use the same technique; that is, you must place the subcommands.in the 
console stack, for example: 

section 17. Writing Edit Macros 311 



&BEGSTACK 
CASE M 
RECFM V 
&END 
&EXIT 

If this were an EXEC file named $VARY, you might execute it from the 
edit environment as follows: 

edit test file 
NEW FILE. 
EDIT: 
$vary 

Stacked subco.mands are executed only when the EXEC completes its 
execution, either by reaching the end of the file, or by processing an 
&EXIT statement. 

When you stack EDIT subcommands, you can use the &STACK and &BEGSTACK 
control statements. If you are stacking a subcommand that uses a 
variable expression, you must use the SSTACK control statement, rather 
than the &BEGSTACK control statement. The following EXEC, naaed $T, 
displays a variable number of lines and then restores the current line 
pointer to the position it was in when the EXEC was invoked: 

SCONTROL OFF 
&IF &INDEX EO 0 &GOTO -ERR 
&CHECK = &DATATYPE &1 
&IF &CHECK HE NUK &GOTO -ERR 
&STACK TYPE Sl 
SUP = &1 - 1 
&STACK UP SUP 
&EXIT 
-ERR STYPE CORRECT FORK IS < $T H > 
&EXIT 1 

This edit macro uses the built-in function SDATATYPE to check that a 
numeric operand is entered. 

CKS commands in an edit macro are executed as they are read by the 
EXEC interpreter, just as they would if the EXEC were invoked in the CftS 
environment. You could create a $TYPE edit macro, for example, that 
would allow you to display a file from the edit environment: 

&CONTROL OFF 
TYPE S1 &2 &3 &4 &5 &6 &7 

Or you might create a $STATE EXEC that would verify the existence of 
another file: 

SCONTROL OFF 
STATE &1 &2 &3 

In both of these examples, the macro file invokes the CKS command. 
Macros like these can eliminate having to enter CftS subset environment 
to execute one or two simple CMS commands. You must be careful, though, 
not to execute any CMS co.mand that uses the storage occupied by the 
editor. Only commands that are valid in CftS subset are valid in an edit 
macro. 

312 IBM VM/370 CMS User's Guide 

( 



) 

THE CONSOLE STACK 

When you write an edit macro, you want to be sure that there are no EDIT 
subcommands in the stack that could interfere with the execution of the 
subcommands stacked by the macro file. Your macro should check whether 
there are any lines in the stack, and if there are, it should clear thea 
from the stack. For example, you might use the lines: 

&IF &READFLAG EQ CONSOLE &SKIP 2 
DESBUF 
&TYPE STACKED LINES CLEARED BY &0 

The message "STACKED LINES CLEARED BY macro name" is issued by the edit 
macros distributed with the VM/310 system~ You may also want to use 
this convention in your macros, to alert a user that the console stack 
has been cleared. 

When an edit macro is invoked and the current line pointer is positioned 
at the top of the file or at the end of the file, the editor stacks a 
token in the console stack. If the line pointer is at the top of the 
file, the token stacked is "TOF"; if the line pointer is at the end of 
the file the token stacked is "EOF". If you write an edit macro that 
does not check the status of the console stack, and the .acro is invoked 
from the top or the end of the file, you receive the message: 

1EDIT: TOF 

or: 

1EDIT: EOF 

The editor does not recognize these tokens as valid subcommands. 

You may want to use these tokens to test whether the EXEC is invoked 
from the top or end of the file. If you want to clear these tokens in 
case the macro has been invoked from the top or end of the file, you 
might use the statement: 

&IF &READFLAG EQ STACK &READ ARGS 

which clears the token from the stack. 

If you do not want to clear the console stack when you execute an edit 
macro, you can stack all of the subcoamands using the LIFO (last-in 
first-out) operand of the &STACK and &BEGSTACK control statements. For 
example, suppose $FORMAT is the name of the following edit macro: 

&BEGSTACK LIFO 
TABSET 3 10 11 
TRUNC 11 
PRESERVE 
SEND 

Section 11. Writing Edit Macros 313 



When this edit macro is executed, the subcommands are placed in the 
console stack in front of any eXisting lines •. For example, if this macro 
were invoked: 

!format#input 

the subcommands would execute in the following order: PRESERVE, TRUNC, 
TABSET, INPUT. If the subcommands were stacked FIFO (first-in 
first-out), the default, the INPUT subcomman~ would be the first to 
execute (since it is the first command in the stack) and the remaining 
subcommands would be read into the file as input lines. 

If an EXEC processing error occurs during the execution of an edit 
macro, the editor clears the console stack and issues the "STACKED LINES 
CLEARED" message. An EXEC processing error is one that causes the error 
message DMSEXT072E: 

ERROR IN EXEC FILE filename, LINE nnnn - description 

These errors cause the EXEC interpreter to terminate processing. Any 
stacked subcommands are cleared before the editor regains control, so 
that none of the subcommands are executed, and the file remains 
unchanged. 

You should also ensure that any error handling routines in your edit 
macros clear the stack if an error occurs. Otherwise, the editor may 
begin reading invalid data lines from the stack and attempt to execute 
them as EDIT subcommands. 

You should not interrupt the execution of an edit macro by using the 
Attention or Enter key, and then entering a command or data line. 
Results are unpredictable, and you may inadvertently place unwanted 
lines in the stack. 

If your edit macro contains a CMS command that is invalid in the CftS 
subset environment, you receive a return code of -2. 

The maximum number of lines that 
varies according to the amount of free 
at the time of the stacking request. 
editor terminates abnormally. 

you can stack in an edit macro 
storage that is available to CftS 

If you stack too many lines, the 

Notes on Using EDIT Subcommands 

You can use any EDIT subcommand in a macro file, and there is one 
special subcommand whose use only has meaning in a macro: the STACK 
subcommand. For the most part, there is not any difference between 
executing an EDIT subcomaandfrom the edit environment, or from an EXEC 
edit macro. You do have to remember, however, that if you want a 
variable symbol on a subcommand line, you . must stack that subcommand 
using the SSTACK control statement rather than following an SBEGSTACK 
control statement. 

Listed below are some notes on using various EDIT subcommands in your 
macro files. You may find these notes useful when you design your own 
macros. 

314 IBM VM/370 CMS User's Guide 

( 



, 

gjESlj!~, !1!I!!, !!~ R~a!Q!~: Often, you may want to create an edit 
macro that alters the characteristics of a file (format, tab settings, 
and so on). To ensure that the original characteristics are retained 
when the macro has finished executing, you can stack the PRESERVE 
subcommand as the first subcommand in the stack, and the RESTORE 
subcoamand as the last subcommand in the stack: 

SBEGSTACK 
PRESERVE 
CASE M 
I A lowercase line 
RESTORE 
SEND 

The PRESERVE and RESTORE subcommands save and reinitialize the settings 
for the CASE, FMODE, FNAME, IMAGE, LINEMODE, LONG, RECFM, SERIAL, SHORT, 
TABSET, TRUNC, VERIFY, and ZONE subcommands. 

In an edit macro that issues many subcommands that display lines in 
response to CHANGE or LOCATE subcommands, you may want to turn the 
verification setting to OFF to suppress displays during the execution of 
the edit macro: 

SBEGSTACK 
PRESERVE 
VERIFY OFF 

RESTORE 
SEND 

You would particularly want to turn verification off for a macro that 
executes in a loop or that issues a global request. If you want a line 
or series of lines displayed, you can use the TYPE subcommand. 

If you have verification set off in an edit macro, then when you 
execute it you ~ay not receive any indication that the edit macro 
completed execution. The keyboard unlocks to accept your next EDIT 
subcommand from the terminal. To indicate that the macro is finished, 
you can stack, as the last subcommand in the procedure, a TYPE 
subcommand, to display the current line. Or, if you write an edit macro 
that terminates when an end-of-file condition occurs the EOF: message 
issued by the editor may indicate the completion of the macro. 

!!PU£, R!f~!£~: To change from edit mode to input mode in an edit macro, 
you can use the INPUT and REPLACE subcommands. In a fixed-length EXEC 
file, you must stack these subcommands using the SSTACK control 
statement: 

SSTACK INPUT 

-- or --

SSTACK REPLACE 

If you use either of these subcommands following an &BEGSTACK control 
statement, the subcommand line is padded with blanks to the line length 
and the result is a line of blanks inserted into the file. 

In a variable-length EXEC file, lines are not padded with blanks, so 
the INPUT and REPLACE subcommands with no data line execute the same 
following an SBEGSTACK control statement as they do when stacked with 
the SSTACK control statement. 

Section 17. Writing Edit Macros 315 



~Qing I£Q~ l~Eut HQgg!Q Edit Mode: To stack a null line in an edit 
macro, to cause the editor to-Ieave- input mode, you must use the SSTACK 
control statement with no other tokens, as follows: 

SSTACK 

~]AN~~, Q~~Bll~, ~Q~!~!: If you want to use the CHANGE, DSTRING, or 
LOCATE subcommands in an EXEC, you must take into account that when you 
stack any of these subcommands using the SSTACK control statement, all 
of the character strings on the line are truncated or padded to eight 
characters. Also, if you want to use a variable value for a character 
string, you are limited to eight characters, all uppercase. 

For example, if a 
delete the line on 
variable symbol: 

SSTACK LOCATE /Sl 
SSTACK DEL 

macro is used to locate a character string and 
which it appears, the LOCATE subcommand has a 

IMAGE, TABSET, OVERLAY: The TABSET and OVERLAY subcommands allow you to 
se~-margIns-and--column stops for records in a file and to overlay 
character strings in particular positions. For example, the following 
macro places a vertical bar in columns 1, 15, 40, and 60 for all records 
in the file from the current line to the end of the file: 

SBEGSTACK 
PRESERVE 
IMAGE ON 
TABSET 1 15 40 60 
REPEAT * 
o 1->1->1->1 
RESTORE 
SEND 

In the 
(X'OS'). 

above example, the "->" symbol represents a tab character 
To create this EXEC, you can either issue the EDIT subcommand: 

image off 

and use the Tab key (or equivalent) on your terminal vhen you enter the 
line, or jou can enter some other character and use the ALTER subcommand 
to alter that character to a X'OS'. 

If you want to overlay only one character string in a particular 
position in a file, you can use the TABSET subcommand to set that column 
position as the left margin, and then use the OVERLAY subcommand, as 
follows: 

SCONTROL OFF 
&BEGSTACK 
PRESERVE 
VERIFY OFF 
TRUNC * 
TABS 72 
&END 
&STACK REPEAT &1 
SBEGSTACK 
OVERLAY C 
RESTORE 
SEND 

316 IBM VM/370 eMS User's Guide 



) 

If you name this file $CONT EXEC, and if you invoke it with the line: 

$cont 3 

then the OVERLAY subcoamand is executed on three successive lines, to 
place the continuation character "C" in column 72. 

THE STACK SUBCOMMAND 

The STACK subcommand allows you to stack up to 25 lines from a file in 
the console stack. The lines are not deleted from the file, but the line 
pointer is moved to point to the last line stacked. 

You can also use the STACK subcommand to stack EDIT subcommands. You 
might do this if there were subcommands that you wanted to place in the 
stack to execute after all the subcommands stacked by the EXEC had 
executed. 

These techniques are used in the two edit macros that are distributed 
with the VM/370 system: $MOVE and $DUP. If you want to examine these 
files for examples of how to use the STACK subcommand, you can display 
the files by entering, from the CMS environment: 

type $aove exec * 
type $dup exec * 

An additional use of the STACK subcommand is shown in "An Annotated 
Edit Macro." 

Section 17. Writing Edit Macros 317 



An Annotated Edit Macro 

The edit macro shown below, $DOUBLE, can be used to double ~pace a CftS 
file. Regardless of where the current line pointer is, a blank line is 
inserted in the file following every existing line. The statements in 
the edit macro are separated into groups; the number to the left of a 
statement or group of statements indicates an explanatory note. The 
numbers are not part of the EIEC file. 

1 &CONTROL OFF 

2 &IF &INDEI = 1 &IF &1 = 1 &GOTO -TELL 

3 &IF &INDEI = 1 &IF &1 = TWO &GOTO -LOOP 

4 &IF &INDEX NE o &GOTO -TELL 

5 &IF &READFLAG EO STACK &READ VARS &GARB 

6 &STACK 
&STACK PRESERVE 
&STACK VERIFY OFF 

7 &STACK BOTTOM 
&STACK I IXXXXXXI 
SSTACK TOP 

Notes: 
-l---The &CONTROL statement suppresses the display of CMS commands, in 

2 

3 

4 

5 

6 

7 

this case, the DESBUF command. 
The first SIF checks that there is only one operand passed in the 
$DOUBLE command. The second SIF checks whether $DOUBLE has been 
invoked with a question mark (1). If both SIFs are true, control 
is passed to the statement at the label -TELL. STYPE control 
statements at -TELL explains what the macro does. 
The second SIF statement checks whether $DOUBLE has been invoked 
with the argument TWO, which indicates that the macro has executed 
itself, so the subcommands that initialize the file are stacked 
only once. 
There are three ways to properly invoke this edit macro: with a 1, 
with the argument TWO, or with no arguments. The third SIF 
statement checks for the (no arguments) condition; if the macro is 
invoked any other way, control is passed to the label -TELL, which 
explains the macro usage. 
The SREADFLAG special variable is checked. If $DOUBLE is executed 
at the top or at the end of the file, the token TOF or EOF is in 
the stack, and should be read out. 
A null line is placed in the console stack for loop control (see 
Note 9.) The PRESERVE and VERIFY subcommands are stacked so that 
the editor does not display each line in the file as it executes 
the stacked subcommands. 
The BOTTOM, INPUT, and 
placing a marker at the 
the current line pointer 

TOP subcommands initialize the file by 
bottom of the file, and then positioning 
at the top of th~ file. 

318 IBM VM/310 CMS User's Guide 



) 

8 -LOOP 
&BEGSTACK 
NEXT 
STACK 1 
INPUT 
&END 

9 &READ ARGS 
&IF .&1 = • &SKIP 
&IF &1 EQ XXXXXXXX &SKIP 2 

10 -ENDLOOP &STACK $DOUBLE TWO 

11 &EXIT 

12 DESBUF 
&BEGSTACK 
UP 2 
DEL 3 
TYPE 
RESTORE 
&END 

&EXIT 

13 -TELL 
&IF &READFLAG EQ STACK &READ VARS 
&BEGTYPE 
CORRECT FORM IS: $DOUBLE 

THIS EXEC DOUBLE SPACES A FILE BY INSERTING 
A BLANK LINE FOLLOWING EVERY LINE IN THE FILE 
EXCEPT THE LAST. 
&END 

8 The NEXT, STACK, and INPUT subcommands are going to be repeated for 
each line in the file~ The INPUT subcommand with no data line 
stacks a null line. Note that in order for $DOUBLE to execute this 
subcommand properly, $DOUBLE EXEC must have fixed-length records. 
Each line is stacked, with the STACK subcommand; this stacked line 
is Checked in the read loop (Note 9). When the stacked line is 
equal to the marker, XXXXXXXX, it indicates that the end of the 
file has been reached. 

9 These lines check for an end of file, which occurs when the line 
containing the marker is read. The first time this loop is 
executed, the stack contains the null line (statement/6), so the 
check for the marker is skipped. 

10 The last subcommand stacked is $DOUBLE TWO, which re-invokes 
$DOUBLE, but causes it to skip the first sequence of subcommands. 

11 The &EXIT statement causes an exit from $IOUBLE, so that all the 
EDIT subcommand stacked thus far are executed. 

12 When the marker is read in, the EXEC clears the stack, moves the 
current line pointer to point to the null line added above the 
marker, and deletes that line, the marker, and the null line that 
was inserted following the marker. The RESTORE subcommand restores 
editor settings. 

13 This edit macro is self-documenting. If $DOUBLE is invoked with a 
question mark, or invoked with an argument, information regarding 
its proper use is displayed. 

section 17. Writing Edit Macros 319 



User-Written Edit Macros 

You can create the edit macros shown below, for your own use in CMS. 
You may want to refer to them as examples when you are learning to write 
your own macros. The macros have not been formally tested by IBM; they 
are presented for your convenience only. 

$MACROS 

The $MACROS edit macro verifies the existence of and describes the usage 
of edit macros. If you enter: 

$macros 

it lists the filenames of all the edit macros on your accessed disks. 
If you enter: 

$macros name1 name2 

it displays, for each valid 
usage. (This macro assumes 
respond to a 1 request.) 
instruction is: 

macro name entered, the macro format and 
that all macros have been designed to 
The format of the $M1CROS edit macro 

$MACROS [filenamel [filename2 [filenamen]]] 

filename is the filename(s) of macro files whose usage is to be 
displayed. If filename is omitted, the filenames of all 
available macro files are listed. 

To create $MACROS, enter: 

edit $macros exec 

and in input mode, enter the following: 

320 IBM VM/370 CMS User's Guide 

( 



) 

SMARK 

&CONTROL OFF 
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL 
&IF &INDEX GT 0 &GOTO -PARTIC 

* &BEGTYPE ALL 
EXEC FILES STARTING WITH A DOLLAR-SIGN ARE AS FOLLOWS. 
FOR INFORMATION ON ONE OR MORE OF THEM, TYPE: 
SMACROS FILENAME1 <FILENAME2> 
&END 
LISTF S* EXEC * (NOHEADER FNAME) 
&EXIT 

* -PARTIC &TRIP = 0 
&INDEXl = 0 

* &LOOP -ENDLOOP &INDEX 
&INDEX1 = &INDEX1 + 1 
&SUB = &SUBSTR &&INDEXl 1 1 
&IF &SUB EQ S &GOTO -STATIT 

&TYPE &&INDEXl IS INVALID 
&TRIP = 1 
&GOTO -ENDLOOP 
-STATIT STATE &&INDEX1 EXEC * 
&IF &RETCODE EQ 0 &GOTO -CALLIT 
&TYPE &&INDEX1 NOT FOUND 
&TRIP = 1 
&GOTO -ENDLOOP 
-CALLIT EXEC &&INDEX1 ? 
-ENDLOOP 

* &EXIT &TRIP 

* -TELL &BEGTYPE 
'SMACROS' HANDLES THE 'SMACROS' REQUEST. 
TYPE 'SMACROS' ALONE FOR MORE INFORMATION. 
&END 
&EXIT 

The $MARK edit macro inserts from one to six characters, starting with 
the current line and in the column specified, for a specified nURber of 
records. If there is data already in the columns specified, it is 
overlayed. If you enter: 

$mark 

the macro places an asterisk (*) in column 72 of the current line. If 
you enter: 

$mark 10 30 abc 

the macro places the string ABC beginning in column 30 in each of ten 
records, beginning with the current record. The format of the $MARK 
edit macro instruction is: 

r-----.------------------------------------------------.-------------------, 
r r r ", 

$MARK I n I col I char III 
I 1 I 1~ I * III 
L L L .J.J.J 

I 
I 
I 
I 
J 

section 17. Writing Edit Macros 321 



n indicates the number of consecutive lines, starting with the 
record currently being pointed to, that will be marked. If n is 
not specified, 1 is assumed, and the other default values are 
also assumed. 

col indicates the starting column in each record where the character 
string is to be inserted. The default is coluan 72. 

char indicates from one to six characters to be inserted in each 
record. The default is an asterisk (*). 

To create $MARK, enter: 

edit $mark exec 

and in input mode, enter the following: 

&CONTROL OFF 
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL 
&IF &INDEX GT 3 &GOTO -BADPARM 
&INDEXl = 1 
&IP &INDEX GT 0 &INDEX1 = &1 
&IF &INDEXl LT 0 &GOTO -BADPARM 
&INDEX2 = 72 
&IF &INDEX GT 1 &INDEX2 = &2 
&IF &INDEX2 LT 0 &GOTO -BADPARM 
&IF &INDEX2 GT 133 &GOTO -BADPARM 
&CHAR = * 
&IF &INDEX EQ 3 &CHAR = &3 
&LEN3 = &LENGTH &CHAR 
&IF &LEN3 GT 6 &GOTO -BADPARM 
&STACK LIFO RESTORE 
&STACK LIFO OVERLAY &CHAR 
&STACK LIFO REPEAT &INDEX1 
&STACK LIFO TABS &INDEX2 
&BEGSTACK LIFO 
IMAGE ON 
TRUNC * 
VERIFY OFF 
LONG 
PRESERVE 
&END 
&EXIT 

* -BADPARM &BEGTYPE 
INVALID $MARK OPERANDS 
&END 
&EXIT 1 

* -TELL &BEGTYPE 
CORRECT FORM IS: $MARK <N <COL <CHAR»> 
PUTS A 1-6 CHARACTER STRING IN COLUMN 'COL' OF 'N' LINES, STARTING 
WITH THE CURRENT LINE. THE NEW CURRENT LINE IS THE LAST LINE 
MARKED. DEFAULTS ARE: N=1; COL=72; CHAR=*. 
&END 
&EXIT 

322 IBM VM/370 CMS User's Guide 

( 



) 

$POINT 

The $POINT edit macro positions the current line pointer at the 
specified line number. The line numbers must be in columns 13 through 80 
and padded with zeros. For exaaple, if you enter: 

$point 800 

the current line pointer is positioned at the line that has the serial 
nu.ber 00000800 in columns 13 through 80. The format of the $POINT 
macro instruction is: 

1 
$POINT key I 

key is a one- to eight-character line number. If the specified key 
is less than eight characters long, it is padded with leading 
zeros. 

To create $POINT, enter: 

edit $point exec 

and in input mode, enter the following: 

SCONTROL OFF 
SIF SINDEX EQ 0 SGOTO -TELL 
SIF SINDEX EQ 1 SIF &1 EQ 1 SGOTO -TELL 
&IF SINDEX GT 1 &GOTO -BADPARM 
&KEYL = &LENGTH &1 
SINDEX1 = 8 - &KEYL 
&Z = &SUBSTR 00000000 1 &INDEll 
&1 = SCONCAT SZ S1 
SSTACK LIFO RESTORE 
SSTACK LIFO FIND S1 
SBEGSTACK LIFO 
TOP 
TABS 13 
IMAGE ON 
LONG 
PRESERVE 
&END 
SEXIT 

* -BADPARM SBEGTYPE ALL 
INVALID $POINT OPERANDS 
SEND 
SEXIT 1 

* -TELL SBEGTYPE ALL 
CORRECT FORM IS: SPOINT KEY 
IF 'KEY' CONTAINS LESS THAN 8 CHARACTERS, IT IS PADDED WITH LEADIBG 
ZEROS. THE FILE IS THEN SEARCHED FROM THE TOP FOR 'KEY' IN COLUMNS 
73-80. 
SEND 
SEXIT 

Section 17. Writing Edit Macros 323 



$COL 

The $COL edit macro inserts, after the current record in the file, a 
line containing column numbers (that is, 1, 6, 11, ••• , 76). The format 
of the $COL macro instruction is: 

, 
$COL I , 

No operands are used with $COL. If any arguments are entered, the macro 
usage is explained. 

To create $COL, enter: 

edit $co1 exec 

and in input mode, enter the following: 

SCONTROL OFF 
SIF SIND EX NE 0 SGOTO -TELL 
SSTACK LIFO RESTORE 
SSTACK LIFO 
&BEGSTACK LIFO ALL 
1 6 11 16 21 26 31 36 41 46 51 56 61 66 
&END 
SSTACK LIFO INPUT 
SBEGSTACK LIFO 
TRUNC * 
VERIFY OFF 
LONG 
PRESERVE 
SEND 
&EXIT 

* -TELL &BEGTYPE 
CORRECT FORM IS: $COL 
INSERTS A LINE INTO THE FILE SHOWING COLUMN NUMBERS. 
&END 
&EXIT 

324 IBM VM/370 CMS User's Guide 

71 76 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

Part 4. Learning to Use the HELP Facility 

The CMS HELP facility enables the user to interactively display co.mand 
and message information on a terminal. The command and message 
information is contained in files either supplied by IBM or created by 
the user. 

"Section 18. HELP File Naaing Conventions and Creation" describes the 
naming conventions for HELP facility files and techniques that the HELP 
facility provides for creating user HELP description files. 

Part 4. Learning to Use the HELP Facility 324.1 



March 30, 1919 

324.2 IBM VM/310 eMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

Section 18. HELP File Naming Conventions 
and Creation 

The HELP facility enables the user to: 

I. Extend the command and message description files IBM provides with 
I additional description files of the user's choice 

I • Produce a formatted terminal display by using the HELP format words 
I when creating the HELP description file 

Naming Conventions 

When you extend the HELP text files IBM provides, you must use the 
following naming conventions for the HELP files: 

I • The filename for components, commands, subcommands, or EXECs aust be 
I the exact full name of the component, command, subcommand, or EXEC. 

I • The filename for messages has the form xxxnnnt where: 

xxx is the component code 
messages). See !~Ll1Q 
component code prefixes. 

nnn is the message number. 

prefix (for example, 
§y£!~~ ~~~£gg~£ for a 

DMS for 
list of 

CMS 
the 

t is the message type code (for example, E for error messages in 
CMS). 

For example, the filename for the CMS message "NO FILENAME SPECIFIED" 
would be DMS001E. 

I • The filetype for components, commands, or EXECs is 'HELPxxxx' where 
I xxxx identifies the system associated with this component, command, 
I or EXEC. For example, the filetype for a CMS command would be 
I 'HELPCMS' • 

I. The filetype for subcommands is 'HELPxxxx' where xxxx identifies the 
I command name associated with this subcommand; for example, DEBU for 
I the DEBUG command. 

I • The filetype for messages is 'HELPMSG'. 

I • The filetype for a list of all supported commands for a given 
I function is 'HELPMENU'. 

The following examples illustrate the naming conventions required to 
interface with the HELP command. 

ACCESS 
E~IT 

CHANGE 
DMS186W 
CMS 

HELPCMS 
HELPCMS 
HELPEDIT 
HELPMSG 
HELPMENU 

A CMS command description 
A CMS command description 
An EDIT subcommand description 
A CMS message description 
A list of the CMS command and/or EXEC names 

supported by the HELP facility 

Section 18. HELP File Naming Conventions and Creation 324.3 



Pg.' qf .GC20-1819~2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5748-XX8 

HELP File Creation 

Users creating additional files for the HELP facility 
own file or use the format words the HELP facility 
format ~ords do the following: 

I • Draw boxes to enclose tables, illustrations or text 

I • Place comments within a file 

can format their 
supports. These 

I • Indicate that certain input lines are to be included in the formatted 
I output only under certain conditions 

I. Cause concatenation of input lines and left- and right-justification 
I of output 

I • Indent only the next input line the specified number of spaces 

I • Indent a series of input lines the specified number of spaces 

I. Indent the specifie~ number of spaces all but the first line in a 
I series of input lines 

I. Insert blank lines between output lines 

I. Change the final output representation of any input character 

The HELP format words are su.marized in Figure 23.1. Descriptions 
and examples of their use follow. 

324.4 IBK VM/310 CMS User's·Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for S748-XX8 

Format WOI:d 

• BX (BOX) 

• CM 
(COMMENT) 

• CS 
(CONDI­
TIONAL 
SECTION) 

• FO 
(FORMAT 
-MODE) 

.IL (IN­
DENT LINES) 

• IN (IN­
DENT) 

• OF (OFF­
SET) 

.SP 
(SP ACE) 

• TR (TRANS­
LATE) 

Figure 23.1. 

Operand Format 

V1 V2 ••• Vn 
OFF 

Comments 

nON/OFF 

ON/OFF 

nl+nl-n 

n\+nl-n 

nl+nl-n 

n 

s t 

Function 

Draws horizontal and 
vertical lines around 
subsequent output text, 
in blank columns. 

Places comments in a file 
for future reference. 

Allows conditional 
inclusion of input in 
the formatted output. 

Causes concatenation of 
input lines, and left and 
right justification of 
output. 

Indents only the next 
line the specified 
number of spaces. 

Specifies the numbeI: 
of spaces subsequent 
text is to be indented. 

Provides a technique 
for indenting all but the 
first line of a section. 

specifies the numbeI: of 
blank lines to be inserted 
befoI:e the next output line. 

specifies the final output 
representation of any input 
character. 

HELP Format Word Summary 

I Break I Default Value 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Draws a 
horizontal 
line. 

On 

o 

o 

o 

Section 18. HELP File Naming Conventions and Creation 324.5 



Pg. of GC2o-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

ENCLOSING TEXT (.~X FORMAT WORD) 

The HELP facility can insert vertical and horizontal lines in the 
formatted output to enclose text, illustrations, or tables. You use the 
.BI format word to specify when you want the horizontal lines to appear 
and in which coluans the vertical lines should appear. 

The .BX format word is used in three steps to completely enclose 
text: 

1. The first time you issue the .BX format word, 
in which you want the vertical lines to appear~ 

.bx 1 10 20 30 

results in the following output: 

, 

specify the columns 
For example: 

Note that this first occurrence of the .EI format word causes a 
horizontal line to appear between the first and last column you 
specified. 

2. After the first issuance of .BX, begin entering the text that is to 
be enclosed. As HELP formats these lines, vertical lines are 
placed in the columns that you specified on .EX. However, if a 
column already has a data character in it, it is not overlaid with 
the vertical line. 

Note that whenever you want just a horizontal line to appear (for 
example, to separate lines in a table), enter the .BX format work 
without operands. For example: 

.bx 

results in the following output: 

3. When you have finished entering the text that is to be enclosed, 
issue: 

.bx off 

to cause another horizontal line to appear and to prevent any more 
vertical lines from appearing. This output is: 

L--------I 

The following example illustrates this technique of enclosing text • 

• fo off 
.bx 1 10 50 
.in 2 
.of 8 
Ite. 1 Put Item1 text here. 
The second line can be written here • 
• bx 
.of 8 
Item 2 Then put Item2 text here • 
• bx off 

324.6 IB~ V8/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-X18 

When these input lines are processed, the result is: 

I I , 
I Item1 IPut Item1 text here. I 
I IThe second line can be written her«. , 
• I I 
I Item2 IThen put Item2 text here. , 
L I 

This example shows how you can change the vertical structure several 
times i~ succession. The control words: 

.bx 10 20 

.sp 

.bx 5 25 

.sp 

.bx 10 20 

.sp 

.bx 5 25 

.sp 

.bx 10 20 

.sp 

.hx off 

result in: 

r 
I 
L--~--__________ ~ 

I , 

PLACING COMMENTS IN HELP FILES (.CM FORMAT WORD) 

In addition to text and format words, HELP files can contain comments. 
Comments are useful for: 

I • Tracking files. You can include comments that give your name, the 
I date and reason you created a file, and a future date at which the 
I file may be erased. 

I • Documenting formats. If you use a special format in a HELP file that 
I may be accessed by other peoFle, you may want to place notes within 
I the file explaining how to update the file. 

I • Place-holders. If a file is incomplete, you may want to put comments 
I in the file where information should be added later. 

You can place comments in a HELP file with the .CM format word: 

.cm Created 12/21/75 

.cm Updated 3/3/76 

HELP ignores all .CM format words when processing. 

Section 18. HELP File Naming Conventions and Creation 324.7 



Pg. of GC20-1819-2 Rev March 30, 1979 by,Supp. SD23-9024-1 for 5748-118 

CONDITIONAL DISPLAY OF TEXT (.CS FORMAT WORD) 

You can indicate to HELP that certain sections ot the file are to be 
displayed as output only if the appropriate HELP command options are 
specified. These options are PARM, FORM, DESC, and ALL. (See VML11~ 
CMS Command and Macro Reference for information on the use of these options:)-- --- ----- ---------

In order for HELP command processing to display the appropriate 
information, you must use the .CS format word in the following manner: 

.cs 1 on 
(text for DESC option) 

.cs 1 off 

.cs 2 on 
(text for FORM option) 

.cs 2 off 

.cs 3 on 
(text for PARM option) 

.cs 3 off 

USE OF FORMAT MODE (.FO FORMAT WORD) 

Format-mode processing means that the HELP facility displays the output 
lines without breaks, unless specifically requested, and 
right-justified. You may not want this type of formatting in all cases; 
you may want certain output to appear exactly as it appears in the HELP 
file. For this, use the .FO format word to turn off for.at-mode 
processing as follows: 

.fo off 

When you want to resume format-mode processing, enter: 

.fo on 

Format-mode processing is the default. 

INDENTING TEXT (.IN AND .IL FORMAT WORDS) 

When you are creating documents, you may want to set off paragraphs or 
portions of text by indenting them. This often improves the readability 
by emphasizing certain text. You can cause paragraphs to be indented 
using the .IN format word. For eXample, the lines: 

This line is not indented. 
~in 5 
This line is indented. 

result in: 

This line is not indented. 
This line is indented. 

The .IN format word causes a break so that text accu.ulated before 
the .IN format word is processed and displayed, then the next text is 
processed. 

324.8 IBM VM/370 CMS User's Guide 



Pg~ of GC20-1819-2 Rev March 30, 1979 by Supp. 'SD23-9024-1 for 5748-XX8 

The .IN format word effectively sets a 
text so that when you want text indented you 
in front of the input lines (as you would 
continues to concatenate and justify input 
column 1, but displays the output indented 
specify. 

Here's another example: 

These few lines of text 
are formatted 
with enough words 
.in 5 
so that you can 
see how HELP's formatting 
process 
.in +3 
continues and may 
'. in -6 
even be reversed, by using a 
negative value. 

These lines may result in: 

These few lines of 
text are formatted 
with enough words 

so that you can 
see how HELP's 
formatting 
process 

continues and 
may 

even be reversed, 
by using a negative 
value. 

new left margin for output 
do not have to enter blanks 
for normal typing). HELP 
text lines that begin to 
the number of space's you 

In this example, the first' • IN format word shifts output to the right 
five spaces so that text begins in column 6. The second .IN format vord 
requests that the current indentation incr~ase by three spaces sotbe 
left margin is now in column 9. When you supply a negative value with 
the. IN format wor,d, the margin is shifted to the left. 

To cancel an indentation that is in effect, you can use a negative 
value, or you can use the format word: 

.in 0 

Because 0 is the default value, you need not specify it when you want to 
restore the left margin to column 1. You can specify simply: 

.in 

When you want to indent only a single line of text (that is, the next 
output line), use the .IL format word. For exam~le: 

This line begins in column 1 • 
• in 5 
This line begins in column 6, 
which is now the left margin • 
• il -3 
This line is shifted 3 spaces 
to the left of the current margin. 

Section 18. HELP File Naming Conventions, and Creation 324.9 



Pg. of GC20-1819-2Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

.il 3 
This line is shifted 3 spaces to 
the right of the curr~nt margin. 

Help processes these lines as follows: 

This line begins in column 1. 
This line begins in 
column 6, which is now 
the left margin. 

This line is shifted 3 
spaces to the left of 
the current margin. 

This line is shifted 
3 spaces to the right 
of the current margin. 

Because the .IL format word causes a break in text, you may find it 
useful to indicate the beginning of a new paragraph. For example: 

.il 3 
This line begins a paragraph • 
• il 3 
This line begins another. 

These lines result in: 

This line begins 
a paragraph. 

This line begins 
another. 

USE OF OFFSETS (.OF FORMAT WORD) 

In HELP formatting, an offset differs from an indentation in that 
offsets do not affect the first line immediately following the format 
word; the second and subsequent input lines are indented the specified 
number of characters. This is useful, for example, when formatting 
numbered lists where text is blocked to the right of the number. 

When a .OF format word is processed, the next text line is printed at 
the current left margin and subsequent lines (until the next .OF or .IN 
format word) are offset the specified number of characters. For 
example, the lines: 

.of 5 
-----This line begins 
a 5-character offset • 
• of 5 
-----This is another line offset 
5 characters • 
• sp 
.in 5 
An indent changes the left. 
margin and cancels the offset • 
• of 3 
---This paragraph begins 
at the new left margin • 
• of 3 
---Here's one.ore line. 

324~10 I~B'V~/370 CBS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5748-118 

result in: 

-----This line begins a 
5-character offset. 

-----This is another line 
offset 5 characters. 

An indent changes 
the left aargin and 
cancels the offset. 
---This paragraph 

begins at the new 
left margin. 

---Here's one more 
line. 

An offset can be canceled with the format word • 

• of 0 

This format word causes a break; subsequent text is printed at the 
current left margin, that is, whatever the indention is (0, if no .IN 
format word is in effect). 

A~y INDENT format word cancels a current offset and resets the left 
aarg1n. If you specify a positive or negative increment with the INDEIT 
format word and an offset is in effect, the offset is canceled and the 
new left margin is computed from the current indent value. 

The .IL (INDENT-LINE) format word uses the current margin (the indent 
value plus the offset value) when computing the margin for the next 
line. 

To achieve a format that has sever~l levels of offsetting, you can 
combine the .IN and .OF format words. 

When you use blank space following the item indicator (for exaaple, 
the number in a numbered list), HELP may add extra blanks when it 
justifies the line; if so, the first line may not be aligned with the 
remainder of the offset item. 

SPACING BETWEEN LINES OF TEXT (.SP FORMAT WORD) 

If you do not want an input line to be concatenated with the line above 
it, you must cause a break. To cause a break in a HELP file, begin a 
line with one or more blank characters (by using the space bar on your 
terminal keyboard). When HELP reads an input line that begins with a 
blank character, the formatting process is interrupted; all of the text 
that has" accumulated for the current line is displayed as is, even if 
more words would have fit on the line; the next input line begins a new 
output line. 

To create paragraphs in text, then, all you have to do is to enter 
spaces at the beginning of each line that is to begin a new paragraph. 
For example, the input lines: 

The quick brown 
fox 
came over to greet the lazy poodle. 

But the poodle was frightened 
and ran away. 

Section 18. HELP File Naming Conventions and creation 324.11 



Pg. of GC20-1819:-2 Rev ftarch 30, 1979 by Supp. SD23-902lt-1 for 57lt8-XX8 

may be displayed by HELP as: 

The quick brown fox 
came over to greet the 
lazy poodle. 

But the poodle was 
frightened and ran 
away. 

If you want to place blank lines between lines of text, you can press 
the space bar at least once on a line that has no other text, then press 
the Return or Enter key. 

Instead of entering a blank line, you can use the .SP format word. 
Thus the input lines: 

The quick brown fox came over to 
greet the lazy poodle • 
• sp 
But the poodle Was frightened 
and ran away. 

are formatted as follows by HELP: 

The quick brown fox 
came over to greet the 
lazy poodle. 

But the 
frightened 
away. 

poodle 
and 

was 
ran 

The .SP format 
indicating how many 
example: 

.sp 5 

word allows you 
spaces you want to 

to enter a numeric parameter 
leave on the text output. For 

indicates that you want to leave five lines of space in the text output. 
You can use multiple spaces when you want a heading or a title to stand 
out, for example the lines: 

A Love Story 
.sp 3 
The quick brown fox 
was eager 
to meet the pretty poodle. 

will result in: 

A Love Story 

The quick brown fox 
was eager to meet the 
pretty poodle. 

324.12 IBft Vft/370 CftS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. 5D23-9024-1 for 5148-X18 

TRANSLATING OUTPUT CHARACTERS (.TR FORMAT WORD) 

After HELP has formatted an output line but before it displays that 
line, HELP may translate any of the characters in that line to a 
different character representation. You use the .TR format word to 
request that this translation be done. For example, to request that all 
blanks (x'40') in the file be displayed as question marks, enter: 

.tr 40 1 

To stop the translation of the question mark as a blank, enter: 

~tr 1 1 

Note that when the .TR format word is used without operands, the 
translation of all characters is stopped. 

Section 18. HELP File Naming Conventions and Creation 324.13 



!arch.30, 1919 

324.14 IB! V!/370 C!S User's Guide 



Appendixes 

This publication contains the following appendixes: 

A. Summary of CMS Commands 

B. Sumaary of CP Commands 

C. Considerations for 3270 Display Terminal Users 

D. Sample TerminaL Sessions 

) 
Appendixes 325 



326 IBM VM/370 eMS User's Guide 

( 
~ 

( 



"arch 30, 1919 

Appendix A: Summary of CMS Commands 

ligures 24 and 25 contain alphabetical lists of the CMS commands and the 
functions performed by each. Figure 24 list's' those commands that -are 
available for general use; Figure 25 lists the commands used by syste. 
programmers and system support personn~l whd' are responsible for 
generating, aaintaining, and updating V"/310. Unless otherwise noted, 
C"S commands are described in '!ftLl1Q ~ft~ £21!!~ng ~ng ~~£!:2 !!~!~!:~!!£~. 

~2de 
DOS PP 

l1!g.!!i.!!.9 
Indicates that this command invokes a DOS Program prcduct, 
available froll IB! for a lic~nse f~e. 

EREP Indicates that this command is described in .!!L31.Q .Q1ISE,R g.!!.9 
I!!Q! i!£2!ging ~~ig~. Further details on the operands used 
by this command are contained in Q~L!'§ In!i!QnJ!!~!s! !H~.£2!gin.9 
l.9i!i.D.9 g.!!g f!i.D!ing (I!!f)' f!.Qg!~!·' ' 

IPCS Indicates that this command is a part of the Interactive 
Problem Control System (IPCS) and is described in !AL~10 !R~~ 
!!§!!~§ Guig!· 

Op Gd 

OS PP 

SCRIPT 

Indicates that this command is described in the .!~L~l.Q 

Q]~!§!2~§ ~~ig~· 

Indicates that this command invokes an OS program product, 
available fro. IB! for a license fee. 

Indicates that this command invokes a text processor that is 
an IB" Installed User Program, available from IBM for a 
license fee. 

SPG Indicates that this command is described in the !J1L31.Q ~I§!~! 
f!2g!g!I!!~§ ~Yig~· 

SYSGEN Indicates that this command is described in the VftLl1Q 
flg.!!.!!illg §ng ~§!~! Q~n~!§!!Q!! ~uig!. 

In addition to the commands listed in Figure 24 and 25, there are 
seven commands called Immediate commands that are handled in a different 
manner from the others. They may be entered while another command is 
executing by pressing the Attention key (or its equivalent) and are 
executed i.mediately. The Immediate commands are: 

• HB - Halt batch execution 
• HO - Halt tracing 
• HT - Halt typing 
• HI - Halt execution 
• RO - Resume tracing 
• RT - Resume typing 
• SO - Suspend tracing 

Appendix A: Summary of C"SCo •• ands 321 



Pg. of GC20-1819-2 Rev March 30, 1979 bySupp. SD23-9024-1 for 5748-118 

I . :;,;' 
ICo.mand 
I 
I ACCESS 
I 
I 
I· 
Il~SERV 
I 
I 
I,., 
IASSEMBLE· 
I 
IASSGN 
I 
I· 
ICMSBATCH 
I 

COBOL 

COMPARE 

CONVERT 

COPYFILE 

CP 

CPEREP 

DDR 

DEJ3UG 

DISK 

DLBL 

DOSLIB 

DOSLKED 

DOSPLI 

1 DSERV 
I 
I 
• 

1 
I 
I 
I 
l­
I 
I· 
f 
I 
I 
I 
I 
,I 
I 
I 

Code 

I.OS PP . 
T 
I 

IIdentify direct access space to a CMS virtual 
1 machine, create extensions and relate the disk 
I space to a logical directory. 

"1 ,c.:' .,': '. ' 
I I n,vok,e :.&ccess method services utili tyfuDctions to 
Icrea te.,'al t~r,: list, copy, delete, 'import, or 
l'expo'rt .~VS~M 'cfl:talogsand' da tasets.; . . 

As'semb~e:assemb~.~r ianguage so~'r'ce code. 

Assign or unassign a CMS/DOS system or programmer 
logical unit for a virtual I/O device. 

Invoke the eMS batch fac~l.i ty. 

Compile QS ANS Version 4 or OS/VS COBOL source 
code. 

ICompare records in CMS di~k files. 
I 

OSPP I Convert fr.ee form FORTRAN statements to fixed form.; 
I 
ICopy CMS disk files according to specifications. 
I 
IEnter CP commands from the CMS environment. 
I 

EREP IFormats and edits system error records for output. 
I 
I Perform bac:'kup, rest()re, and copy operations for 
I disks. 
", , ., , 

tEnter D~BUG flubcommand environ~ent, debug mode. 
I ' 
I Perform disk-to-card and card-to-disk operations 

·1 for CMS files. 
I 
IDefine a DOS filename or VSAM ddname and relate 
J that name to a disk file. 
I " ' ...' 
I Delete, compact, 'or list inf'ormation about the 
I phases of a CMS/DOS phase library. 
I· " 

.. Link-e'dit CMS text decks or object modules from a 
DOS/VS relocatable library and place them in 
executable form in\ a CMS/DOS phase library., 

I 
DOS PP Compile DOS PL/I source code under CMS/DOS. I , 

Display information contained in the DOS/VSE core , 
image, relocatable, source, procedure, and , 
transient directories. , 

Figure 24. CMS Command Summary (Part 1 of 4) 

328 IBM V,,/370 CMS User's~uide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

Command 

EDIT 

ERASE 

ESERV 

EXEC 

FCOBOL 

FETCH 

FILEDEF 

FORMAT 

FORTGI 

FORTHX 

GENDIRT 

'GENMOD 

GLOBAL 

GOFORT 

ICode Usage 

'Invoke the CMS editor to create or .odif! a disk 
file. 

Delete CMS disk files. 

Display, punch or print an edited (co.pressed) 
macro from a DOS/VSE source statement library 
(E sublibrary). 

Execute special procedures made up of frequently 
used sequences of commands. 

DOS PP Compile DOS/VS COBOL source code under CftS/DOS. 

OS PP 

OS PP 

OS PP 

Fetch a CMS/DOS or DOS/VSE executable phase. 

Define an OS ddnaae and relate that ddname to any 
device supported by CftS. 

Prepare disks in 800~, 1024-, 2048-, or 4096-byte 
block £ormat. . 

Compile FORTRAN source code using the G1 coapiler. 

Compile FORTRAN source code using the B-extended 
compiler. 

Fill in auxiliary module directories. 

Generate nonrelocatable CMS files (!ODULE files). 

Identify specific CMS libraries to be searched for 
macros, copy files, missing subroutines, or DOS 
executable phases. 

Compile FORTRAN source code and execute the program 
using the FORTRAN Code and Go compiler. 

HELP Display information regarding CP, C!S, or user-
supplied commands and messages. 

INCLUDE Bring additional TEXT files into storage and 
establish linkages. 

LABELDEF specify standard BDR1 and EOF1 tape label descrip-
tion information for CMS, C!S/DOS, and as 
simulation. 

LISTDS List information about data sets and space 
allocation on OS, DOS, and VSAM disks. 

LISTFILE List information about CMS disk files. 

LISTIO Display information concerning CMS/DOS system and 
programmer logical units. 

LOAD Bring TEXT files into storage for execution. 

LOADMOD Bring a single MODULE file into storage. 
MACLIB create or modify CMS macro libraries. 

Figure 24. CMS Command Summary (Part 2 of 4) 

Appendix A: Summary of C!S Commands 329 



Pg~ of GC20-1819-2 Rev March 30, 1979 by Supp::- SD23-9024-1 for 5748-XX8 

t I 
Command ICode Usage I 
-------------------------------------~--------~~------------~----I 
MODMAP 

MOVEFILE 

OPTION 

PLIC 

PLICR 

PLIOPT 

PRINT 

PSERV 

PUNCH 

QUERY 

READCARD 

RELEASE 

RENAME 

RSERV 

I 
I 
IRUN 
I 
I 
ISCRIPT 
I 
I 
ISET 
I 

as PP 

as PP 

OS PP 

t 

Display the load map of a KODULE file. I 
I 

Move data from one device to another device of the I 
same or a different type. I 

I 
Change the DOS COBOL compiler (FCOBOL) o.ptions that.1 

are in effect. for the current. terminal session. I 

Compile and execute PL/~ s6urce code using the 
PL/I Checkout Compile~. 

Execute the PL/I object code generated by the OS 
PL/I Checkout Compiler~ 

Compile PL/I source code using the OS PL/I 
Optimizing Compiler. 

Spool a specified CMS ,file tcthe virtual printer. 

Copy a procedure from the DOS/VSE procedure library 
onto a CMS disk, displa¥ the procedure at the I 
terminal, or spool the procedure to the virtual I 
punch or printer. I 

I 
Spool a copy of a CMS file to ,the virtual punch. I 

I 
Request information about a CMS virtual machine. I 

I 
Read data from spooled card input device. I 

I 
Make a disk and its directory inaccessible to a CMSI 
virtual machine. I 

Change the name of a CMS -file or files. 

Copy a DOS/VSE relocatable module onto a CMS disk, 
display it at the terminal, or spool a copy to 
the virtual punch or printer. 

IInitiate series ,of functions to be performed on a 
I source, MODULE, TEXT, or EXEC file. 
I 

SCRIPT IFormat and print documen~s according to embedded 
I SCRIPT control words in the document file. 
I 
IEstablish, set, or reset CMS virtual machine 
I characteristics. 

J 

Figure 24. CMS Command Summary (Part 3 of 4) 

330 IBM YM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev Karch 30, 1979 by Supp. SD23-9024-1 for 5748-118 

Co •• and 

SORT 

SSERV 

START 

STATE 

STATEW 

SYCTRACE 

SYNONYK 

TAPE 

TAPEKAC 

TAPPDS 

TESTCOB 

TESTFORT 

TXTLIB 

TYPE 

UPDATE 

YSAPL 

YSBASIC 

VSBUTIL 

ICode 

OS PP 

as PP 

as PP 

as PP 

as PP 

Usage 

Arrange a specified file in ascending order 
according to sort fields in the data records. 

Copy a DOS/VS! source statement book onto a CftS 
disk, display it at the terminal, or spool a copy 
to the virtual punch or printer. 

Begin execution of programs ~reviously loaded (aS 
and CftS) or fetched (CMS/DOS). 

Verify the existence of a CftS disk file. 

Verify a file on a read/write CftS disk. 

Record information about supervisor calls. 

Invoke a table containing synonyms you have created 
for CftS and user-written co.mands. 

Pe~for. tape-to-disk and disk-to-tape operations 
for CftS files, position tapes, ana display or 
write VOL1 labels. 

create CKS KACLIB libraries directly from an 
IEHMOVE-created partitioned data set on tape. 

Load as partitioned data set (PDS) files or card 
image files from tape to disk. 

Invoke the as COBOL Interactive Debug Progra •• 

Invoke the FORTRAN Interactive Debug program. 

Generate and modify text libraries. 

Display all or part of a CftS file at the terminal. 

Kake changes in a program source file as defined 
by control cards in a control file. 

Invoke VS APL interface in CMS. 

Compile and execute VS BASIC progra.s under Cfts. 

Convert BASIC 1.2 data files to VS BASIC for.at. 

Figure 24. CMS Command summary (Part 4 of 4) 

Appendix A: Summary of CMS Co •• anas 331 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp'. SD23-9024-1 for 5748-XX8 

Command 

ASM3705 

ASMGEND 

CMSGEND 

CMSXGEN 

CPEREP 

DIRECT 

DOSGEN 

DUMPS CAN 

GEN3705 

GENERATE 

LKED 

NCPDUMP 

PRB 

PROB 

SAVENCP 

SETKEY 

STAT 

VMFBLD 

VMFDOS 

VMFDUMP 

VMFLOAD 

VSAMPP 

ZAP 

I Code Usage 

SYSGEN , Assemble 370x source code. 

SYSGEN Regenerate the VM/370 assembler command modules. 

SYSGEN Generate a new CMS disk-res:ident module from 
updated TEXT files. 

SYSGEN Generate the CMSSEG discontiguous saved segment. 

EREP Formats and edits system error records for output. 

Op Gd Set up VM/370 directory entries. 

SYSGEN Load and save the CMSDOS shared segment. 

IPCS Provide interactive analysis of CP abend dumps. 

SYSGEN Generate an EXEC file that assembles and link-edits 
the 370x control program. 

SYSGEN Update VM/370 or the VM/370 directory, or generate 
a new standalone copy of a service program. 

SYSGEN Link-edit the 370x control program. 

OP Gd, Process CP spool reader files created by 370x 
SPG dumping operations. 

IPCS Update IPCS problem status. 

IPCS Enter a problem report in IPCS. 

SYSGEN, Read 370x control program load into virtual 
SPG storage and save an image on a CP-owned disk. 

SPG Assign storage protect keys to storage assigned to 
named systems. 

IPCS Display the status of reported system problems. 

SYSGEN Generate and/or update VM/370 using the PLC tape. 

SYSGEN Create CMS files for DOS modules from DOS library 
distribution tape or SISIN tape. 

Op Gd, Format and print system abend dumps; under IPCS, 
IPCS create a problem report. 

SYSGEN Generate a new CP, CMS or RSCS module. 

SYSGEN Load and save the CMSVSAM, CMSAMS, and CMSBAM 
segments. 

Op Gd, Modify or dump LOADLIB, TXTLIB, or MODULE files. 
SPG 

Figure 25. CMS Commands for System programmers 

332 IBM VM/370 CMS User's Guide 



March 30, 1979 

Appendix B: Summary of CP Commands 

Figure 26 describes the CP command privilege classes. 

Class User and Function 

f~~!g!I ~I§1~! QE~!g1Q!: The class A user controls the 
VM/370 system. Class A is assigned to the user at the V!/370 
system console during IPL. The primary system operator is 
resFonsible for the availability of the VK/370 system and its 
communication lines and resources. In addition, the class A 
user controls system accounting, broadcast messages, virtual 
machine performance options and other command operands that 
affect the overall performance of VM/370. 

H~1~: The class A system operator who is automatically logged 
on during CP initialization is designated as the primary 
system operator. 

Bl ~I§1~! Re§QY!£~ QE~!§1Q~: The class B user controls all the 
real resources of the VM/370 system, except those controlled 
by the primary system operator and spooling operator. 

Cl ~I§1~! f~Qg!~!!~!: The class C user updates certain 
functions of the VM/370 system. 

Dl ~EQgl~~g QE~!~1Q!: The class D user controls spool data 
files and specific functions of the system's unit record 
equipment. 

El ~y§!~! An§lI§!: The class E user examines and saves certain 
data in the VM/370 storage area. 

Fl ~~£!~£~ R~E£~§~~1~1!!~: The class F user obtains, and 
examines, in detail, certain data about input and output 
devices connected to the VM/370 system. 

G2 General User: The class G user controls functions associated 
iIth-the-execution of his virtual machine. 

Any2 The Any classification is given to certain CP commands that 
are available to any user. These are Frimarily for the 
purpose of gaining and relinquishing access to the V!/370 
system. 

H Reserved for IBM use~ 

lDescribed in the !~Ll1Q QE~£$1Q£~§ Guide. 
2Described in the !!1Ll1Q ~f ~Q!!§~g R~!~£~~£~ !g~ ~~~~~gl .!!2~rs. 

Figure 26. CP Privilege Class Descriptions 

Appendix B: Summary of CP Commands 333 



March 30, 1979 

Figure 27 contains an alphabetical list of the 
privilege classes which may execute the command, and 
about the use of each command. 

CP commands, the 
a brief statement 

IPrivilegel 
Command 1 Class I Usage 

-----------1 1--------------------------------------------------
* 
'CP 

ACNT 

ADSTOP 

ATTACH 

ATTN 

AUTOLOG 

BACKSPAC 

BEGIN 

CHANGE 

CLOSE 

COUPLE 

CP 

DCP 

DEFINE 

1 any IAnnotate the console sheet. 
1 I 
1 any IExecute a CP command while remaining in the 
1 I virtual machine environment. 

I 
A ICreate accountiqg records for logged on users, 

G 

B 
B 
B 

G 

A,B 

D 

G 

D,G 

G 

G 

any 

C,E 

G 
B 

I reset accounting data, and close the spool 
I file that is accumulating accounting records. 

Halt execution at a specific virtual machine 
instruction address. 

Attach a real device to a virtual machine. 
Attach a DASD device for CP control. 
Dedicate all devices on a particular channel 

to a virtual machine. 

Make an attention interruFtion pending for the 
virtual machine console. 

Automatically log on a virtual machine and 
have it operate in disccnnect mode. 

Restart or reposition the output of a unit 
record spooling device. 

Continue or resume execution of the virtual 
machine at either a specific storage location 
or at the address in the current PSi. 

Alter one or more attributes of a closed spool 
file. 

Terminate spooling operations on a virtual card 
reader, punch, printer, or console. 

Connect channel-to-channel adapters. 

Execute a CP command while remaining in the CMS 
virtual machine environment. 

Display real storage at terminal. 

Reconfigure your virtual machine. 
Redefine the usage of SYSVIRT and VIRTUAL 3330V 

devices. 

Figure 27~ CP Co.mand Summary (Part 1 of 4) 

334 IBM Y8/370 CMS User's Guide 



Command 

DETACH 

DIAL 

DISABLE 

D1SCONN 

DISPLAY 

DMCP 

DRAIN 

DUMP 

ECHO 

ENABLE 

EXTERNAL 

I FLUSH 

FORCE 

FREE 

HALT 

HOLD 

INDICATE 

IPL 

LINK 

LOADBUF 

March 30, 1979 

privilege 
Class Usage 

B Disconnect a real device from a virtual machine. 
B Detach a DASD device from CP. 
B Detach a channel from a specific user. 
G Detach a virtual device from a virtual machine. 
G Detach a channel from your virtual machine. 

any Connect a terminal or display device to the 

A,B 

any 

G 

C,E 

D 

G 

G 

A,B 

G 

D 

A 

D 

A 

D 

A,E,G 

G 

G 

D 

virtual machine's virtual communication line. 

Disable 2701/2702/2703, 370X in EP mode, 
and 3270 local communication lines. 

Disconnect your terminal from your virtual 
machine. 

Display virtual storage on your terminal. 

Dump the specified real storage location on your 
virtual printer. 

Halt operations of specified spool devices upon 
completion of current operation. 

Print the following on the virtual printer: 
virtual PSi, general registers, floating-point 
registers, storage keys, and contents of 
specified virtual storage locations. 

Test terminal hardware by redisplaying data 
entered at the terminal. 

Enable communication lines. 

Simulate an external interruption for a virtual 
machine and return control to that machine. 

Cancel the current file being printed or punched 
on a specific real unit record device. 

Cause logoff of a specific user. 

Remove spool HOLD status. 

Terminate the active channel program on 
specified real device. 

Defer real spooled output of a particular user. 

Indicate resource utilization and contention. 

Simulate 1PL for a virtual machine. 

Provide access to a specific DASD by a 
virtual machine. 

Load real UCS/UCSB or FCB printer buffers. 

Figure 27. CP Command Summary (Part 2 of 4) 

Appendix B: Summary of CP Commands 335 



Privilege 
Command Class 

LOADVFCB G 

LOCATE C,E 

LOCK A 

LOGOFF any 

LOGON any 

MESSAGE A,B,any 

MONITOR A,E 

MSGNOH B 

NETWORK A,B,F 

NOTREADY G 

ORDER D,G 

PURGE D,G 

QUERY A,B,C,D, 
E,F,G 

READY G 

REPEAT D 

REQUEST G 

RESET G 

REWIND G 

SAVESYS E 

March 30, 1979 

Usage 

Load virtual forms control buffer for a virtual 
3203 or 3211 printer. 

Find CP control blocks. 

Bring virtual pages into real storage and lock 
them; thus, excluding them from future paging. 

Disable access to CP. 

Provide access to CP. 

Transmit messages to other users. 

Trace events of the real machine and record 
system performance data. 

Send a specified message, without the standard 
message header, from one virtual machine to 
another. 

Load, dump, trace, and control the operation of 
the 370X control program. Control the 
operation of 3270 remote devices. 

Simulate "not ready" for a device to a virtual 
machine. 

Rearrange closed spool files in a specific 
order. 

Remove closed spool file from system. 

Request information about machine configuration 
and system status. 

Simulate device end interruption for a virtual 
device. 

Repeat (a specified number of times) printing or 
punching of a specific real spool output file. 

Make an attention interruption pending for the 
virtual machine console. 

Clear and reset all pending interruptions for a 
specified virtual device and reset all error 
conditions. 

Rewind (to load point) a tape and ready a tape 
unit. 

Save virtual machine storage contents, 
registers, and PSi. 

SET A,B,E,F, Operator--establish system parameters. 
G User--control various functions within the 

virtual machine. 

Figure 27. CP Command Summary (Part 3 of 4) 

336 IBM VM/370 eMS User's Guide 



IPrivilegel 
Command I Class I 

SHUTDOWN A 

SLEEP any 

SMSG G 

SPACE D 

SPOOL G 

SPTAPE D 

START D 

STCP C 

STORE G 

SYSTEM G 

TAG G 

TERMINAL G 

TRACE G 

TRANSFER D,G 

UNLOCK A 

VARY B 

WARNING A,B 

March 30, 1979 

Usage 

Terminate all VM/370 functions and checkpoint CF 
system for warm start. 

Place virtual machine in dormant state. 

Send special message to aFFropriate virtual 
machine. 

Force single spacing on printer. 

Alter spooling control options; direct a file to 
another virtual machine or to a remote 
location via the RSCS virtual machine. 

Dump output spool files cn tape or load output 
spool files from tape. 

Start spooling device after draining or changing 
output classes. 

Change the contents of real storage. 

Alter specified virtual storage locations and 
registers. 

Simulate RESET, CLEAR STORAGE, and RESTART 
buttons on a real system console. 

Specify variable information to be associated 
with a spool file or output unit record 
device. 

Interrogate the current TAG text setting of a 
given sFool file or output unit record device. 

Define or redefine the input and attention 
handling characteristics of your virtual 
console. 

Trace specified virtual machine activity at your 
terminal, spooled printer, or both. 

Transfer input files to or reclaim input files 
from a specified user's virtual card reader. 

Unlock previously locked page frames. 

Mark a device unavailable or available. 

Transmit a high priority message to a specified 
user or to all users. 

Figure 27. CP Command Summary (Part 4 of 4) 

Appendix B: Summary of CP Commands 337 



March 30, 1979 

338 IBM VM/370 eMS User's Guide 



March 30, 1919 

Appendix C: Considerations for 3270 Display 
Terminal Users 

The IBM 3210 display terminal, co •• only referred to as a 3210, functions 
somewhat differently from a typewriter-style terminal when you use it as 
a virtual machine console under VB/310. Apart from the obvious 
difference in the way output is displayed, there are special techni~ues 
you can use with a 3210 that you cannot use on a 2141 or other 
typewriter terminal. This appendix describes how. to use a 3210 and 
provides additional notes to supplement discussions in the first part of 
this publication. 

Entering Commands 

Since the keyboard on a 3210 is never locked during the execution of a 
co •• and or program, you can enter successive com.and lines without 
waiting for the completion of the previous comaand. This stacking 
function can be combined with the other methods of stacking lines, such 
as using the logical line end syabol (I) to stack several command lines. 
If you try to enter aore lines than the terainal buffer can accoa.odate, 
however, you receive the status message BOT ACCEPTED and you aust wait 
until the bQffer is cleared before you can enter the line. 

You will find, as you becoae accustomed to using a 3210, that the ICP 
function is very useful. The ICP function, reaember, is a function that 
allows you to pass a command line to the control program im.ediately, 
bypassing any processing by the virtual aachine (CBS). The ICP function 
can be used in any VM/310 environment, and you can enter it even when a 
program is executing. You do not have to interrupt a prograa's execution 
to enter a command line such as: 

Icp display psw 

to display the current PSW, or: 

Icp spool printer class s 

to spool your virtual printer. 

If there are CP and CMS commands that you use frequently, you can set 
the program function (PF) keys on your terminal to execute thea. Soae 
examples of commands you might wish to catalog on PF keys are: 

ICP DISPLAY PSW 
ICP QUERY PRINTER ALL 
QUERY SEARCH 

To set functions keys 1, 2, and 3 to perfora these co.mand functions, 
enter: 

cp set pf1 i.med "Icp display psw 
cp set pf2 iamed "Icp query printer all 
cp set pf3 im.ed query search 

Appendix C: Considerations for 3210 Display Ter.inal Users 339 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

Wben you want to exe.cute a ,tcp functioDwi th a PF key,· or you,want a PF 
key to execute a series of commands, you must use the logical escape 
symbol (tI) when you enter the SET command. For exampl'e: 

cp set pfS immed edit test filetltbo"#input line"tfile 

sets the PF5 key as: 

EDIT TEST FILEtBOIINPUT LINEIFILE 

You cannot set lowercase characters in a PF key. 

The above examples use the IMMED operand of the SET command, which 
specifies that the function is performed as soon as you press the PF 
key. You can al~o set a key so that it is delayed; that is, the command 
or data line is placed in the user input area. Then, you must press the 
Enter key to execute the command. You may modify the line before you 
enter it. This is the default setting (DELAY) for program function keys. 
For example, you might set a key as: 

QUERY DISK XQ) 

When you press this PF key, the command line is placed in th~ user input 
area, with tbe cursor positioned following the "~" logical character 
delete symbol; you can enter the mode letter of the disk you are 
querying before yau press the Enter key to execute the command. If you 
enter 'A', the resulting command as seen by CMS is 'QUERY DISK A'. 

You can set all of your program function keys in your PROFILE EXEC, 
so they are set each time you load CMS. You can change a PF key setting 
any time during a terminal session, according to your needs. If, for 
example, you discover that you are repeating several procedures a number 
of ti.es, and the ptocedure does not lend itself to being written into 
an ErEC, yatt could use your program function keys. 

All the lines in an EXEC procedure are scanned, and 
strings are truncated to eight characters, so if you 
command line, insert spaces where possible: 

CP SET PFS IMMED EDIT TEST FILE 'BOt INPUT 

all character 
enter a long 

To change PF settings within the edit 
filename that begins with a dollar sign 
macro. 

environment, give the EXEC a 
($), so it functions as an edit 

For more details on setting PF keys, see the !~L11~ £~£mi~! ~2~£~2 
.§y!,g~. 

Controlling the Display Screen 

During a C~ or ~MS session (other than an EDIT session) messages and 
warnings from the system operator or other users are highlighted. This 
distinguishes these messages from other output and lessens the 
possibility of important messages being lost or ignored. 

A major feature of a 3270 display screen is the screen status area, 
which iridicates, at all times that you are ~ogged on, the current 
operating condition your virtual machine is 1n. Understanding the 
status conditions can help you use CMS on a 3270 more effectively. The 
screen status area indicates one of six conditions: 

340 IBM VM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1919 by Supp. SD23-9024-1 for 5748-X18 

~~ !~!~: After you log on, this is the first status message you see; it 
indicates that the terminal is waiting for a line to be read by the 
control program. You can enter only CP commands when the screen status 
area indicates a CP READ. 

Appendix C: Considerations for 3210 Display Terminal Users 340.1 



!!arch 30, 1979 

340.2 IBB 'B/370 CBS User's Guide 



) 

!! READ: This status indicates tha~ your terminal is waiting for a line 
to be-Issued to your virtual machine; you may be in the CMS environment, 
in the edit or debug environments, or you may be executing a program or 
an EXEC that has issued a read to the console. 

!Y!!l!§: This status means that your virtual machine is operating. Once 
you have loaded CMS and are using the CMS environment, this status is 
almost continually in effect, even when you are not currently executing 
a command or program. 

You can alter the way this works by using the AUTOREAD function of 
the SET com.and. When the AUTOREAD setting is OFF, (the default for 
display terminals), your terminal displays a RUNNING status after the 
execution of each CMS command. If you want the terminal to be in a VM 
READ status following each command, issue: 

set autoread on 

The ON setting is the default for typewriter terminals, since a read on 
a typewriter terminal must be accompanied by the unlocking of the 
keyboard. 

The advantage of keeping your virtual machine in a running status 
even when it is not actually executing a program is that it makes your 
terminal ready to receive messages. If your terminal is waiting for a 
read, either from CP or from the virtual machine, and if a user or a 
program sends a message to your virtual console, then the message is not 
displayed until you use the Enter key to enter a command or null line. 
When your machine is in a running status, the terminal console is always 
ready to accept messages. 

If your virtual machine is in the CP environment, and you want your 
terminal to be in a running status, you can use the command: 

cp sleep 

To return to the CP READ status, you must press the PA1 key or the Enter 
key. 

MORE ••• : This status indicates 
that-there is more data to be 
indicating that there is more 
screen's current display so 
necessary. 

that your display screen is full, but 
displayed. This message, in addition to 

data, gives you a chance to freeze your 
you can continue to examine it, if 

When you see the screen is in a MORE ••• status, you can either (1) 
press the Clear, Cancel, or PA2 keys to clear the screen and see the 
next screen, or (2) press the Enter key to hold the screen in its 
present status. If you do not do either, then after 60 seconds, the 
screen is cleared and the next screen is displayed. 

~gLD1!~: This indicates that you have 
the screen. You must use the Cancel, 
screen and go on to the next display. 

pressed the Enter key to freeze 
Clear, or PA2 keys to erase this 

A holding status also results if you have received a message that 
appeared on this screen. When the screen becomes full, it does not 
automatically pass to the next display after 60 seconds, but waits until 
you specifically clear the screen. (This feature ensures that any 
important messages you receive are not lost.) 

!gI A££~g!!~: Indicates that you are trying to enter a command line but 
the terminal buffer is full and cannot accept it. This message is also 
issued when you attempt to use the 3270 COpy function and a printer is 
either not available or not ready. 

Appendix C: Considerations for 3270 Display Terminal Users 341 



CONSOLE OUTPUT 

When you use a 3210 terminal as your virtual machine console, you do not 
ordinarily retain a console log, as you do on typewriter terminal. 
There may be many circumstances in which you need a printed record of 
your console output, whether it be to obtain a copy of program-generated 
output, or to retain a record of CP and/or CMS commands that resulted in 
an error condition. There are two techniques you can use in VM/310 to 
obtain hardcopy representations of display terminal sessions: spooling 
console output and the 3210 copy function. 

The CP SPOOL command provides the CONSOLE operand, which allows you to 
begin and end console spooling. You enter: 

cp spool console start 

when you want to begin recording your terminal session, and: 

cp spool console stop 

when you have finished. In between, you can periodically close the 
console file to release for printing whatever has been spooled thus far: 

cp spool console close 

other operands that you can enter are the same as you might specify for 
any printer file, such as CLASS, COPY, CONT, and HOLD. 

An alternate technique is to spool your console to your own virtual 
reader: 

cp spool console start * class a 

Then, when you close the console file, instead of being released to the 
CP printer spool file queue, it is routed to your virtual card reader, 
and you can load it onto your A-disk as a CMS disk file: 

readcard console file 

You can then use the editor to examine it (or to delete sections you 
don't need) and use the PRINT command to spool it to the printer. 

If you are using a 3210 display terminal, and you have available 
3286, 3281, 3288, or 3289 printer, you can copy the full screen 
currently appearing on the screen. TO copy the screen, you 
assign the copying function to a program function key, with 
command: 

cp set pf9 copy 

a 3284, 
display 
have to 
the SET 

Then, whenever you want to copy a screen display, you can press the PF9 
key (or whichever key you set). The display is printed on any 3210 
display printer that is attached t~ the same remote control unit as the 
display terminal. If, when you press the PF key, the screen status area 

342 IBM VM/310 CMS User's Guide 



March 30, 1979 

indicates NOT ACCEPTED, it means that the printer is either not ready or 
not available. When you press the PF key and receive no response, it 
means that the screen has been copied. 

There is a print matrix available to the 3274 and 3276 user that 
allows control of the display to printer operations. In addition, a 
local print key is provided on the 3274 that can be used for copy 
operations. 

Figure 28 is an example of a 3270 screen display that could be copied 
on the printer. When you use the copy function to copy a screen, all 24 
lines of the display screen are copied; the screen status area 
(indicated as RUNNING in Figure 28) is blank if the 3270 is locally 
attached. If the 3270 is remotely attached, the entire screen including 
the screen status area, is copied. You can use the user input area of 
your screen to key in comments, or your name or userid, if several users 
are spooling copy files. 

DEFINE STORAGE 16384K 
STORAGE = 16384K 
IPL 190 
CMS VERSION 3.0 02/28/76 10:32 

testl ••• t. jones RUNNING 

Figure 28. 3270 Screen Display 

Signaling Interruptions 

The two keys on your 3270 keyboard that signal interruptions are the PAl 
key -- REQ key on a 3278 Model 2A -- and the Enter key. Throughout this 
publication, interruption signaling has been described in terms of the 
Attention key, which is the interruption signaling key on a 2741. 

On a typewriter terminal, the Attention key, pressed once, causes a 
virtual machine interruption (if the terminal mode is set to VM); you 
must use it when you want to enter an Immediate command, such as HT or 
HX. On a display terminal, you can enter these commands whenever Jour 
virtual machine is in a running status, without having to signal an 
interruption before you enter the command. 

Sometimes, however, if your terminal is displaying output very 
rapidly, you must wait until the screen is full and the screen status 
area indicates a MORE ••• status before you attempt to enter the HT or HX 
command. 

The Enter key can also be used as an interruption signaling key. If 
you press it once when your virtual machine is running, you will place 
your virtual machine in the VM READ status, so you can enter a command 
line. If you press the Enter key twice, quickly, you enter the CP 
environment, with your console in a CP READ status. 

Appendix C: Considerations for 3270 Display Terminal Users 343 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

An easier way to enter the CP environment is ty pressing the PAl key. 
Whenever you press this key, your virtual machine is placed in a CP READ 
status, and you can enter any CP command. From t~e CP environment, you 
must use the CP command BEGIN to resume execution of your virtual 
machine. 

HALTING SCREEN DISPLAYS 

When your terminal is displaying successive screens of output from a 
program or a CMS command, you can use the HT or HX Immediate commands to 
halt the display or the execution of the command, respectively. If your 
terminal is writing the information ~t a very rapid rate, you may have 
difficulty entering the HT or HX command. In these circumstances, you 
can use the PA1 key -- REQ key on a 3278 Model 2A -- or press the Enter 
key twice to force your terminal to a CP READ status. Then, you can use 
the CP command ATTN or REQUEST to signal a virtual machine read~ When 
the screen status area indicates VM READ, you can enter HX or HT. 

Using the eMS Editor with a 3270 

The CMS editor has a special format and operation, called display mode, 
that makes editing CMS disk files with a 3270 more convenient than on a 
typewriter terminal. It uses most of the display screen, and, depending 
on the terminal type and model, displays, depending upon the terminal 
type end model, up to 38 lines of a file at once. In addition to 
displaying data lines of the file, the editor also indicates, on the 
topmost line of the screen, the filename, filetype, record format, and 
logical record length of the file being edited, as well as showing your 
current mode: input or edit. The format of the screen is shown in 
Figure 29. 

The screen lines that you are most concerned with while editing are 
the current line, the user input area (the bottom two lines), and the 
editor's message line (the second line from the top) in which the 
editor's responses and error messages are displayed. The current line 
and the editor's message line are highlighted. 

When you first invoke the editor to edit a file, whatever is 
currently on the screen (including your EDIT command line) is erased and 
the full screen is controlled by the editor. The current line pointer 
is positioned at the top of the file, the top part of the display screen 
appears blank. The editor displays the characters "TOF:" and "EOP:" to 
indicate the top and end of the file, respectively. 

ENTERING EDIT SUBCOMMANDS 

When you enter an EDIT subcommand into the user input area and press the 
Enter key the subcommand is not displayed on the screen, but the change 
(or line pointer movement) is reflected in the screen display. If you 
enter a subcommand that moves the current line pointer, all of the lines 
on the screen are shifted up or down, according to the action taken by 
the subcommand. 

If you use the INPUT subcommand to enter input lines, the edit status 
field indicates INPUT; all of the lines that you enter are placed in the 
file and appear on the screen as the current line. (Entering input 
lines from a remote 3270 is someWhat different. The following "Editing 
on a Remote 3270" discusses the differences.) 

344 IBM VM/370 CMS User's Guide 



March 30, 1979 

EDIT 1 DISPLAY SCREEN A12 F 80 3 

»»> 1 80. 

TOF: 5 

THIS IS THE FIRST LINE OF THE FILE. (CURRENT LINE). 6 

THIS IS THE SECOND LINE OF THE FILE. 
THIS IS THE THIRD LINE OF THE FILE. 
EOF: 

Notes: 

VM READ 

--i-Edit session status. This indicates EDIT, INPUT, or NEW FILE. 
The NEW FILE message appears when you edit a new file; it is 
replaced with INPUT when you enter input mode and thereafter is 
EDIT or INPUT. 

2 The filename, filetype, and filemode of the file. 
3 Record format and logical record length. 
4 Editor reponse area. The response shown may be the response to 

a VERIFY subcommand entered with no operands. 
5 The symbols TOF: and EOF: indicate top of file and end of file, 

respectively. 
6 The current line is located in the approximate center of the 

output area of the screen. 

Figure 29. How the CMS Editor Formats a 3270 Screen 

c 

If you enter an invalid EDIT subcommand, or if you enter a subcommand 
that requests information, the edit response appears in the message 
field of the screen. For example, if you enter: 

trunc 

the editor responds by displaying the current truncation setting, which 
might be: 

»»> 81 

If you enter: 

copy file myfile edit (trunc 

the editor would respond: 

»»> ?EDIT: copyfile myfile edit (trunc 

to indicate that it does not recognize the entered line (COPYFILE is not 
an EDIT subcommand). When you use line-number editing, the prompting 
message appears in this area; after you enter text in the user input 
area, the text line is written in the output display area, at the 
current line position. 

Appendix C: Considerations for 3270 Display Terminal Users 345 



March 30, 1979 

Two EDIT subcommands, CHANGE and 1, result in lines being copied in 
the user input area. In the case of the CHANGE subcommand, the line that 
is displayed is the current line. Once in the user input area, you can 
modify it and re-enter it,. While you are changing it, the original line 
appears unchanged in the output display area. If you decide that you do 
not want changes entered, you must press the Erase Input key and then 
press the Enter key before you enter any other EDIT subcommands. 

You can use the 1 subcommand to request that the last EDIT subcommand 
you entered be displayed in the user input area. If, for example, you 
enter a CHANGE or LOCATE subcommand that results in a NOT FOUND 
condition, or some other error, you can enter: 

1 

and modify the subcommand line and re-enter it, if you want; otherwise, 
use the Erase Input key to delete it. 

CONTROLLING THE DISPLAY SCREEN 

Usually the editor controls the entire screen display during an edit 
session. Occasionally, the screen goes into a MORE... status, and you 
must use the Cancel key or PA2 key to clear the screen. There are two 
other situations in which the screen must be cleared, either by the 
editor, or by you. When you use the CMS subcommand to enter CftS subset 
to enter CMS commands, the screen is cleared and the message CMS SUBSET 
is displayed at the top of the screen. When you issue the subcommand 
RETURN to return to edit mode, the screen disFlay is restored to its 
original appearance. 

The situation is slightly different, however, whenever you 
communicate with the control program (CP), or receive messages from 
other users during an edit session. Any CP message or command response 
causes your screen to go into a MORE ••• status; you must use the PA2 
(Cancel) key to see the response. To restore your screen to its edit 
display, you should use the EDIT subcommand TYPE. If you use the PA1 
key to place your virtual machine in the CP environment, and the screen 
status area indicates CP READ, use the CP command BEGIN to restore edit 
mode. Then enter the TYPE subcommand. If you enter a subcommand other 
than TYPE, the entire screen is not restored, and the top two lines (the 
editor's data and response fields) may contain lines of the CP response. 

If your virtual machine was in input mode when you entered the CP 
command, you may continue entering lines of input; the third through the 
ninth lines of the screen are restored after you enter the next line. 

If you enter a CP command that does not produce a response, then 
there is no change to the screen. 

The VERIFY subcommand allows you to alter the verification columns when 
you are editing a file or to cancel verification altogether. If, for 
example, you are editing a file with records longer than 80 characters, 
each line is displayed on two lines of the display screen. Sometimes, 
you may be editing only specific columns in a file, and do not need to 
see the lines displayed in their entirety. To see only the first 80 
columns, you could enter: 

346 IBM VM/370 CMS User's Guide 



March 30, 1919 

verify 1 80 

Or, if you wanted to see the last 80 columns of a file with 
120-character records, you could enter: 

verify 41 120 

If you cancel verification entirely by entering: 

verify off 

then modifications that you make to the file (including movement of the 
current line pointer) are not reflected on the display screen until you 
use the TYPE subcommand. 

THE CURRENT LINE POINTER 

There is one aspect of the CMS Editor on a 3210 that is much the saae as 
on a typewriter terminal: you must still be concerned with the 
positioning of the current line pointer, and you can only add or modify 
data on the current line, even though you see many lines being 
displayed. The current line, on the screen, appears near the aiddle of 
the output area of the screen (see Figure 29). 

To move the current line pointer, you can use the subcommands OP and 
DOWN: UP indicates movement toward the top of the file and DOWN 
indicates movement toward the bottom of the file. When you issue either 
of these subcommands, the entire display of the file shifts down the 
screen (if you use the UP subcommand) or up the screen (if you use the 
DOWN subcommand). 

If you have never used the CMS editor on a typewriter terminal, you 
may find the UP and DOWN subcommands confusing to use, so you can use 
instead the BACKWARD (UP) and FORWARD or NEXT (DOWN) subcommands to 
shift the display backward (toward the top of the file) and forward 
(toward the bottom of the file). 

You can also use the EDIT subcommand SCROLL, which allows you to 
display successive screen displays, and to examine an entire file 
quickly. For instance, on a 3210 Model 2 display terminal, you enter 
the SCROLL subcommand with no operands, it is the equivalent of entering 
the subcommand DOWN (FORWARD) 20, which results in the screen changing 
to display the 20 lines following the lines currently being displayed. 
If you enter: 

scroll 10 

The SCROLL subcommand executes 10 times, placing the screen in a 80BE ••• 
state at the end of each display. 

If the file you are editing has verification column settings greater 
than 80 characters (so each line takes up tvo display lines), then the 
SCROLL subcommand moves the screen 10 lines at once instead of 20. 

The UP (or BACKWARD) counterpart of SCROLL is SCROLLUP, which can be 
abbreviated so. 

Appendix C: Considerations for 3210 Display Terminal Users 347 



March 30, 1979 

USING PROGRAM FUNCTION KEYS 

You can enhance the use of the CMS editor on a 3270 by setting the 
program function (PF) keys on your terminal to correspond to some of the 
more frequently used EDIT subcommands, such as UP, DOWN, SCROLL, FILE, 
SAVE, and so on. You can also set a program function key to contain a 
line of data, so that if you are creating a file that has many duplicate 
lines in it, you can use the PF key instead of having to key in the 
entire line each time. PF keys cannot, however, contain lowercase 
character strings. 

You can set a program function key while you are in edit mode either 
by using the PA1 key -- REQ key on a 3278 Model 21 to enter the CP 
environment or by using the ICP function. 

USING THE EDITOR IN LINE MODE 

The editor's display mode is the most common format of operation on a 
3270. There are, however, instanc~s when it is not possible or not 
desirable to use the editor in display mode. Fer these instances, you 
should use the line mode of operation, which is the equivalent to using 
a typewriter terminal. When you use line mode, each EDIT subcommand you 
enter, and the response (if you have verification on), is displayed, a 
line at a time, on the screen in the output display area. There is no 
full screen display of the file. 

You need only be concerned with using line mode if you are connected 
to VM/370 by a remote 3270 line, or if you are editing a file from 
within an EXEC and you want to control the screen display. Although it 
is possrble to use the editor in line mode on a local 3270, it is rarely 
necessary for normal editing purposes. 

When you invoke the editor from a remote 3270, you are placed in line 
mode by the editor. The advantage of using the 3270 in line mode 
(particularly on a remote editor) is that the editor can respond more 
quickly to display requests. When you use display mode, the editor has 
to write out the entire output display area when you move the current 
line pointer; in line mode, it has only to write a single line. 

If you want to use display mode, you enter the EDIT subcommand: 

format display 

The editor hegins operating in display mode, and you can use the special 
editing" functions available in display mode. 

However, when you are using a remote 3270 in display mode, and you 
enter the INPUT subcommand to begin entering input lines, the screen is 
cleared, and your input lines are displayed as if you were in line mode, 
beginning at the top of the screen. When you enter a null line to return 
to edit mode, the editor returns to a full screen display. 

You can resume editing in line mode by using the subcommand: 

format line 

3~8 IBM VM/370 CMS User's Guide 



March 30, 1979 

If you invoke the editor from an EXEC, but you do not want the screen 
cleared when the editor gets control, you can specify the NQDISP option 
on the EDIT command line: 

edit test file (nodisp 

This places the 3270 in line mode, so that the lines already on the 
screen are not erased. 

The 3270 remains in line mode for the remainder of the edit session, 
and you cannot use the FORMAT subcommand to place it in display mode. 

USING SPECIAL CHARACTERS ON A 3270 

There are two special characters available on a typewriter terminal 
whose functions have no meaning on a display terminal. They are the tab 
character (X'OS') and the backspace character (X'16'). For most file 
creation and editing purposes, you will probably not need to use the 
backspace, but many CMS filetypes use tab settings to set up the proper 
column alignment in files. There are two methods you can use to enter 
any special character on a 3270 (including tabs), and an additional 
method of using tabs, which involves setting a program function key. In 
addition, the tab character can also be set via the CP command TERMINAL 
!!BC~!~. --------

To enter any special character (a backspace is used in this example) 
you can either: 

1. Enter another character at the appropriate place in the record, and 
then use the ALTER subcommand to alter that character to the 
hexadecimal value of the character you want to represent (a 
backspace character is a X'16'). For example: 

input ABC»> 
alter> 16 1-*~ 

When you enter backspaces and overstrike characters on a 3270, 
however, the characters and backspaces each occupy character 
positions, so that a single compound character occupies three 
character positions on the screen. If the image setting is CANON, 
and you want to use the backspace to enter compound characters, you 
must not enter the backspace character first. 

2. Before you begin to create the file, use the CMS SET command to 
define some other character as the backspace character: 

set input> 16 

CMS then translates all occurrences of the character> to X'16'. 

If you need to correct a line that contains backspaces, you can 
reverse the above sequence; alter the X'16' characters to asterisks and 
enter the CHANGE subcommand. 

]~!i~i~g ~ ll1Q gfQg!g~ ~Y~£i1g~ ~gy f2! !~Q ~gii1~g§ 

You can set up a program function key to operate like a tab key on a 
typewriter terminal. You must use the CP SET command as follows: 

SET PFnn TAB nl n2 ••• nn 

Appendix C: Considerations for 3270 Display Terminal Users 349 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

PFnn is any valid function key from PF1 to PF24. 

n1 n2 ••• nn are the logical tab settings desired, expressed· as 
decimal numbers. Invalid tab settings are ignored. You 
can specify the setting values in any order, but they 
are normally specified in ascending order. 

You can define different PF keys with different tab settings for 
different filetypes. Whenever you press the PF key you have set for a 
tab, the cursor moves to the corresponding position in the user input 
area, in much the same way that a typing element on a typewriter would 
move to the next tab stop. 

If you press the PF tab key to a position that already contains a 
data character, the data remains intact. If there is no data in that 
position, a tab character is entered in the file. The effect of the tab 
in the file depends, as in normal usage, on the image setting of the 
editor. If the image setting is set to on (the default), the tab expands 
to an appropriate number of blanks, to correspond to the settings in 
effect for the TABSET subcommand. When the TAESET settings match the 
tab settings of the PF key, then any lines you enter in the user input 
area appear exactly as they will appear in the output display area. 

If you tab beyond the last defined tab position, the cursor is 
repositioned at the beginning of the user input area. 

When you edit a file on a 3270 terminal in display mode, you should not 
copy a line containing tabs or backspaces into the user input area. The 
tabs or backspaces are converted to blanks (X'40'). Similarly, if the 
line contains VM/370 logical line editing symbols that have been entered 
as data characters, the symbols are reinterpreted when you enter the 
line. 

If you use the SET OUTPUT function to display non printable characters 
in CMS, the character translations do not appear when the editor is in 
display mode. They are, however, displayed when the editor is in line 
mode. 

Using APL with a 3270 

If you have a 3277 or 3278 display station equipped with an APL 
keyboard, you can use APL on a 3270 terminal in CMS. You invoke the APL 
virtual machine by issuing the command specified in the VSAPt Program 
Product documentation. This command invokes the VSAPt-CMS interface 
program. You are then prompted to press the APL On/Off key which is cn 
your terminal; pressing this key changes the keyboard to APt character 
input mode. You are then prompted to press the Enter key to continue. 

EBCDIC or APL characters can always be displayed; the APt On/Off key 
does not change this. The VSAPL-CMS interface program issues the 
TERMINAL APL ON command for you and selects the appropriate translation 
tables. The TERMINAL APL ON command automatically forces a TERMINAL 
TEXT OFF condition. The interface program then invokes the VSAPL 
program. When the VSAPL ready message appears on the screen, you can 
use APL. 

350 IBM VM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5148-XX8 

You can send a copy of your display screen to a locally or remotely 
attached printer. Be sure that the printer you send your output to has 
the APL feature installed; if it does not, the APL characters are not 
printed. Most system printers do not have an APt print chain; therefore 
you may need to use the copy function to direct your screen output 
displays to a 3284, 3286, or 3281 printer. 

ERROR SITUATIONS 

If you do not have the APL hardware feature installed on your 3271 or 
3278 but you invoke APL: 

• The VSAPL program is invoked and the TERMINAL APt ON command is 
issued. 

• You cannot communicate with the VSAPL program. 

• Any APL characters that are written to the screen appear as blanks. 

If you have the APL feature installed on your terminal, but invoke 
APL manually without issui»g the TERMINAL APt ON command or issue 
TERMINAL APL OFF at sometime during APL processing: 

• The VSAPL program is activated. 
• You cannot communicate with the VSAPL program. 
• Any APL characters written to the screen appear as blanks. 

If you attempt to use· the APL 0/5 (overstrike) key when the APt 
hardware key is set off, it acts as a backtab key and reFositions the 
cursor to the beginning of the user input area. 

LEAVING THE APL ENVIR0NMENT 

Issue the APL command: 

} OFF 

to log off VM/370. 

Issue the APL command: 

} OFF HOLD 

to return to CMS. 
program, which: 

This APL command invokes the VSAPL-CMS interface 

• Issues the TERMINAL APL OFF command 
• Prompts you to press the APL hardware key 
• Returns to CMS 

!gte: The APL hardware feature is a key, not a switch. Each time you 
press the APL key you reverse its on/off setting. To determine whether 
APL is on or off, press a key that represents a special APL character. 
If the character displayed is an APL character, the hardware APL feature 
is set on. If the character displayed is a non-APt character, you must 
press the APL key once to set the APL feature on. 

Appendix C: Considerations for 3270 D:.sp1ay Terminal Users 351 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

Using the 3277 Text Feature 

If you have a 3271 or 3278 display station equipped with the Data 
Analysis Text keyboard, you can key in, as well as display, all of the 
special text characters. For a description of these characters, see the 
!~LJIQ I~£~!Dg! Q§g£~§ ~y!g~. 

These characters are in addition to those available with standard EBCDIC 
3270 terminals. If you have a suitably equipped printer attached to 
your 3270, you can use the SET PFnn COpy function to obtain a printed 
copy of the screen. 

When you want to activate the text feature, and use the special 
characters, enter the command: 

cp terminal text on 

The TERMINAL TEXT ON command automatically forces the TERMINAL APL OFF 
command. NOw, you can use any of the special characters when you enter, 
change, or locate text lines in a file. 

ERROR SITUATIONS 

If you do not have the appropriate text hardware feature on your 3270, 
but attempt to display a file that contains the characters, the 
characters appear as blanks on a 3277, and as hyphens on a 3276 and a 
3278. 

If you inadvertently issue the TERMINAL TEXT ON command while using a 
terminal that does not have the text capability, you must do the 
following to return to normal operating procedures: 

1. Press the PAl key to enter the CP environment. 

2. Key in, in uppercase letters only, the command line: 

TERMINAL TEXT OFF 

LEAVING THE TEXT ENVIRONMENT 

You leave the special text environment by entering the command: 

cp terminal text off 

1. The 3210 text hardware feature is activated by a key, not a switch. 
Each time you press the TEXT On/Off key, you reverse its setting. 
When the red light on the text keyboard is illuminated, the text 
feature is on. 

2. Compound characters, such as a character/backspace/character 
combination, are still entered and displayed as three characters. 
The screen position occupied by the backspace character appears as 
a blank because the character (X'16') is nondisplayable. 

352 IBM VM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

Appendix D: Sample Terminal Sessions 

This appendix provides sa.ple terminal sessions showing you how to use: 

• The CMS editor (using context editing), and the CMS COPYFILE, SORT, 
RENAME, and ERASE commands 

• The CMS editor (using line-number editing) 

• CMS as simulation to create, asse.ble, and execute a program using OS 
macros in the CMS environment 

I • CMS DOS/VSE simulation to create, assemble, and execute a program 
I using DOS/VSE macros in the CMS/DOS environment 

• Access method services under CMS, to create VSAM catalogs and data 
spaces, and to use the define and repro functions of AMSERV 

Appendix D: Sample Terminal Sessions 353 



March 30, 1919 

Sample Terminal Session Using the Editor and CMS 
File System Commands 

This terminal session shows you how to create a CMS fil~ and make changes to it using the 
CMS editor, and then manipulate it using the CftS file system commands, COPYFILE, ERASE, 
RENAME, and SORT. 

Bgte: Throughout this terminal session whenever a TYPE subcommand or command is issued 
that results in a display of the entire file, the complete display is not shown; o.itted 
lines are indicated by vertical ellipses ( ••• ). When you enter the TYPE command or 
subcommand, you should see the entire display. 

1 edit command data 
NEW FILE: 
EDIT: 

2 image 
ON 
tabs 1 12 80 
trunc 12 

3 input 
INPUT: 
copyfile copy cms files 
sort sort cms files in alphameric order by specific columns 
edit create a cms file 
edit modify a cms file 
rename change the name of a cms file 
punch punch a copy of a cms file on cards 
print print a cms file 
erase erase a cms file 
listfile list information on a cms file 
state verify the existence of a cms file 
statew verify the existence of a cms file on a read/write disk 
readcard read a cms file from your card reader onto disk 
disk dump punch a cms file in cms disk dump format into your virtual card punch for 

4 TRUNCATED 

5 

DISK DUMP PUNCH A CMS FILE IN CMS DISK DUMP FORMAT INTO YOUR VIRTUAL CA 
disk load read a disk dump file onto disk 
compare compare the contents of cms disk files 
tape dump dump cms files onto tape 
tape load read ems files onto disk from tape 

EDIT: 

1 Use the EDIT command to invoke the CMS editor to create a file with a filename of 
COMMAND and a filetype of DATA. Since the file does not exist, the editor issues 
the message NEW FILE. 

2 Check that the image setting is ON. This is the default for all filetypes except 
SCRIPT. Then, set the logical tab stops for this file at 1, 12, and 80, and set a 
truncation limit of 12. 

3 Enter the subcommand INPUT to enter input mode and begin entering lines in the file. 
For these input files, you should press the Tab key (or equivalent) on your terminal 
following each CMS command name. If there is a physical tab step on your terminal 
in column 12, the input data appears aligned. 

4 The message, TRUNCATED, indicates that the line you just entered exceeded the 
truncation limit you set for the file (column 12). The editor displays the line, so 
you can see how much of the line was accepted. Your virtual machine is still in 
input mode, so continue entering input lines. 

5 To get out of input mode, enter a null line (press the Return or Enter key without 
entering any data). The editor responds with the message EDIT:. 

354 IBM VM/370 eMS User's Guide 



) 

6 

7 

top 
TOF: 
type * 
TOF: 
COPYFILE COpy CMS FILES 

TAPE LOAD READ CMS FILES ONTO DISK FRO! TAPE 
8 EOF: 

locate /disk dump 
DISK DU!P PUNCH A CMS FILE IN CMS DISK DU!P FOR!AT INTO YOUR VIRTUAL CA 

9 replace disk dump punch a cas file onto cards 
input 
INPUT: 
type display the contents of a cms file at your terminal 
rename alter the name of a cms file 
sort resequence the records in a cms file 
copyfile reformat a file, by columns 
comprae verify that two files are identical 

10 
EDIT: 
change /rae/are/ 
COMPARE VERIFY THAT TWO FILES ARE IDENTICAL 

11 bo 

12 

TAPE LOAD READ CMS FILES ONTO DISK FRO! TAPE 
input 
INPUT: 

EDIT: 
13 file 

R; 

6 

7 

8 

9 

10 

11 

12 

13 

Us~ the TOP subcommand to position the current line pointer at the top of the file. 
The editor responds TOF:. 
Use the TYPE subcommand to display the entire file. Note that all of your input 
lines are translated to uppercase characters, and that the tab characters you 
entered have been expanded, so that the first word following each command name 
begins in column 12. 
The message EOF: indicates that the end of the file is reached. You can issue the 
LOCATE subcommand to locate a line. Since you are at the bottom of the file, the 
editor begins searching from the top of the file. Notice that you can enter the 
character string you want to locate in lowercase characters; the editor translates 
it to uppercase to locate the line. The editor displays the line. 
Use the REPLACE subcommand to replace this line, in a shortened form so that it is 
not truncated. Remember to enter a tab character after the command name; when you 
enter the line, the tab stop does not have to be in column 12. Then, use the INPUT 
subcommand again to resume entering input. The lines that you enter next are written 
into the file following the DISK DU!P line. 
When you make a spelling error or other mistake, you may want to correct it 
immediately. Enter a null line to return to edit mode, and use the CHANGE subcommand 
to correct the error. In this example, the string RAE is changed to ARE. The 
editor displays the line as changed. 
Use the BOTTO! subcommand to move the current line pointer to point to the last line 
in the file. Enter input mode with the INPUT subcommand. 
If you enter input mode and decide that you do not want to enter input lines, all 
you have to do to return to edit mode is enter a null line. 
To write the file onto disk, use the FILE subcommand. This writes it onto disk 
using the name with which you invoked the editor, CO!!AND DATA. The CBS ready 
message indicates that you are in the CBS command environment. 

Sample Terminal Session Using the CBS Editor and CBS File system Commands 355 



14 type command data 

COPYFILE COpy CftS FILES 
SORT SORT CftS FILES IN ALPHAftERIC ORDER BY SPECIFIC COLUMNS 

TAPE LOAD READ CftS FILES ONTO DISK FROM TAPE 
R; 

15 edit command data 
EDIT: 

16 

save 
EDIT: 

17 fname comm2 
file 
R; 

18 copyfile comm2 data a (lowcase 
R; 

19 copyfile command data a com.2 data a (ovly specs 
DMSCPY601R ENTER SPECIFICATION LIST: 
1-12 1 
R; 

20 type comm2 data 

21 

COpy FILE 
SORT 
EDIT 
EDIT 
RENAME 
PUNCH 
PRINT 
ERASE 
LISTFILE 
ht 
R; 

Copy cms files 
Sort cms files in alphameric order by specific columns 
Create a cms file 
Modify a cms file 
Change the name of a cms file 
Punch a copy of a cms file on cards 
Print a cms file 
Erase a cms file 
List information on a cms file 

14 To display the entire file at your terminal, use the CMS TYPE command. Note any 
errors that you made that you might want to correct. 

15 Use the EDIT command to edit the file COftMAND DATA again. This time, since the file 
exists, the editor does not issue the message, NEW FILE: 

16 While you are in edit mode, make any changes that you need to; then issue the SAVE 
subcommand to save these changes, and replace the existing copy of the file onto 
disk. 

17 Use the FNAftE subcommand to ch~nge the filename of the file to COMM2 (the filetype 
remains unchanged). When you 1ssue the FILE subcommand this time, the file is 
written onto disk with the name COMM2 DATA. 

18 You can rewrite the entire file, COMM2 DATA in lowercase characters, using the 
COpy FILE command with the LOWCASE option. 

19 The file COftft2 DATA is now all lowercase characters (you can display the file with 
the TYPE command if you want to verify it). However, the command names, and the 
first character of the description should be uppercase characters. You can use the 
COPYFILE command again, to overlay the original uppercase characters of COMMAND DATA 
in columns 1 through 12 over the lowercase characters in columns 1 through 12 of 
COMft2 DATA. 

20 Use the TYPE command to verify that the COPYFILE command did, in fact, overlay only 
the columns that you wanted. 

21 The HT Immediate command suppresses the display of the remainder of the file; you 
can see from the first few lines that the format of the file is correct. 

356 IBM VM/370 eftS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

22 listfile * data 
COMMAND DATA 
COMM2 DATA 
R; 

A1 
A1 

23 sort comm2 data a command sort a 
DMSSRT604R ENTER SORT FIELDS: 
1 9 
R; 

24 type command sort 

COMPARE 
COMPARE 

TYPE 

R; 

Verify that two files are identical 
Compare the contents of cms disk files 

Display the contents of a cms file at your terminal 

25 copyfile comm2 data a function data a ( specs 
DMSCPY601R ENTER SPECIFICATION LIST: 
12-72 1 1-9 70 
R; 

26 type function data 

Copy cms files 
Sort ems files in alphameric order by specific columns 

Read ems files onto disk from tape 
R; 

27 sort function data a function sort a 
DMSSRT604R ENTER SORT FIELDS: 
1 70 
R; 
type function sort 

Alter the name of a cms file 
Change the name of a cms file 

Verify the existence of a ems file on a read/write disk 
R; 

COpy FILE 
SORT 

TAPE LOAD 

RENAME 
RENAME 

STATEW 

22 The LISTFILE command lists your two files with the filetype of DATA. (If you 
previously had files with these filetypes, they are also listed.) 

23 To sort the file COMM2 DATA into alphabetic order, by command, issue the SORT 
command. When you are promFted for the sort fields, enter the columns that contain 
the command names, 1 through 9. 

24 The output file from the SORT command is named COMMAND SORT. You can use the TYPE 
command to verify that the records are now sorted alphabetically by command. 

25 To create another copy of the file, this time with the command names on the right 
and the functional description on the left~ use the COPYFILE command with the SPECS 
option again. To create a file this way, you must know the columns in your input 
file (COMM2 DATA) and how you want them arranged in your output file (FUNCTION 
DATA). Columns 1 through 9 contain the command names; columns 12 through 12 contain 
the descriptions. The specif~cation list entered after the prompting message 
indicates that columns 12 through 72 should be copied and placed beginning in column 
1, and that columns 1 through 9 should be copied beginning in column 70. 

26 Verify the COPYFILE operation with the TYPE command. 
27 Sort the file FUNCTION DATA so that the functional descriptions appear in alphabetic 

order. You may also want to display the output file, FUNCTION SOBT. 

Sample Terminal Session Using the CMS Editor and CMS File System Commands 357 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

28 

29 

30 

listfile 
COMMAND DATA A1 
COMM2 DATA A1 
COMMAND SORT A1 
FUNCTION DATA A1 
FUNCTION SORT A1 
R; 
erase command data 
R; 
rename comm2 data a command data a 
R-, 
listfile 
FILENAME 
FUNCTION 
COMMAND 
COMMAND 
FUNCTION 
R; 

* * a ( label 
FILETYPE FM 
SORT A1 
DATA A 1 
SORT A1 
DATA A1 

FORMAT 
F 
F 
F 
F 

LRECL 
80 
80 
80 
80 

RECS 
22 
22 
22 
22 

ELOCKS 
3 
3 
3 
3 

DATE 
10/13/75 
10/13/75 
10/13/75 
10/13/75 

31 edit function sort 
EDIT: 

32 

33 

34 

35 

zone 
1 80 

zone 60 
change / // * 
Alter the name of a cms file 
Change the name of a cms file 

Verify the existence of a cms file on a read/write disk 
EOF: 
top 
TOF: 
find List 
NOT FOUND 
EOF: 
case 

U 
case m 
find List 
List information on a cms file 

TIME 
7:52:03 
7:48:52 
7:48:15 
7:51:37 

LABEL 
ABC191 
ABC191 
ABC191 
ABC191 

RENAME 
RENAME 

STATEW 

LISTFILE 

28 If these are the only files on your A-disk, the LISTFILE command entered with no 
operands produces a list of the files created so far. 

29 The file COMM2 was created for a workfile, in case any errors might have happened. 
Since you no longer need the original file, COMMAND DATA, you can erase it. 

30 Use the RENAME command to rename the workfile COMM2 DATA to have the name COMMAND 
DATA. The LISTFILE command verifies the change. 

31 To begin altering the file FUNCTION SORT, invoke the editor again. 
32 The ZONE command requests a display of the current zone settings, which are columns 

1 and 80. When you issue the command ZONE 60, it changes the sett~ngs to columns 60 
and 80, so that you cannot modify data in columns 1 through 59. 

33 The CHANGE subcommand requests that the first appearance of five consecutive blanks 
on each line in the file be compressed. The editor displays the results of this 
CHANGE r~quest by displaying each line changed (which is each line in the file). The 
net effect is· to shift. th.e command. column 5 spaces to the left. 

34 position the ~urrent 1ine pointer at the top of the file, and then issue a FIND 
subcommand to ~ove the line pointer to the line that begins with "List". 

35 The editor indicates that the line is not found. Checking the current setting for 
the CASE subcommand, you can see that it is U, or uppercase, which indicates that 
the editor is translating your input data to uppercase. You can issue the CASE M 
subcommand to chang~ this setting, then reissue the FIND subcommand~ 

358 IBM VM/370 CMS User's Guide 



) 

) 

36 

37 

38 

change Ion a cas/about a CMS 
NOT FOUND 
= zone 1 * 
List information about a CMS file 
top 
TOF: 
change /cms/CMS/ * 
Alter the name of a CMS file 
Change the name of a CMS file 

Verify the existence of a CMS file on a read/write disk 
EOF: 

LISTFILE 

RENAME 
RENAME 

STATEW 

39 save 

40 

41 

42 

43 

44 

36 

37 

38 

39 

40 

41 
42 
43 

44 

EDIT: 
top 
TOF: 
next 
Alter the name of a CMS file 
$dup 
Alter the name of a CMS file 
change /name/filetype/ 
Alter the filetype of a CMS file 
next 
Change the name of a CMS file 
change /name/filename/ 
Change the filename of a CMS file 
next 
Compare the contents of CMS disk files 
next 
copy CMS files 
find M 
Modify a CMS file 
up 
List information about a CMS file 
i Make a copy of a CMS disk file 
top 
TOF: 

RENAME 

RENAME 

RENAME 

RENAME 

RENAME 

COMPARE 

COPYFILE 

EDIT 

LISTFILE 
COPYFILE 

The editor locates the line and displays it. You want to change the character string 
"on a cms" to "about a CMS". The editor does not find the string you specify because 
the zone setting for columns 60 through 80 is still in effect. You can enter the 
ZONE subcommand, and reissue the CHANGE subcommand, or you can enter the = (REUSE) 
subcommand to stack the CHANGE subcommand, and enter the ZONE subcommand to execute 
first. 
The ZONE subcommand is executed, then the CHANGE subcommand. The editor displays the 
changed line. 
At the top of the file, enter another global change request, to change lowercase 
occurrences of the string cms to uppercase. The editor displays each line changed. 
When the EOF: message indicates that the end of the file is reached, you can save 
the changes made during this edit session with the SAVE subcommand before 
continuing. 
Move the current line pointer to point to the first line in the file. You want to 
add an entry that is similar; use the $DUP edit macro to duplicate the line, then 
change the copy that you made of the line. 
You can change the word name to filename in the next line also. 
You can scan a file, a line at a time, by issuing successive NEXT subcommands. 
To insert a line beginning with the character M, and to maintain alphabetic 
sequencing, use the FIND subcommand to find the first line beginning with an M. The 
line to be inserted begins with the characters 8A, so you want to move the line 
pointer up. 
You can insert a single line into a file with the INPUT subcommand. Bere, the INPUT 
subcommand is truncated to I, so that when you space over to write the co.mand name 
in the right column, you can align it (you only have to allow for the two character 
spaces use by "i ". . 

Sample Terminal Session Using the CMS Editor and CMS File System Commands 359 



45 

46 

47 

/COPYFILE 
Copy CMS files 
n 
Create a CMS file 
n 
Display the contents of a CMS file at your terminal 
n 
Dump CMS files onto tape 
n 
Erase a CMS file 
up 3 
Create a CMS file 
i Delete a file from a CMS disk 
file 
R; 

COPYFILE 

EDIT 

TYPE 

TAPE DUMP 

ERASE 

EDIT 
ERASE 

48 type function sort a 

49 

50 

45 

46 
47 

48 
49 

50 

Alter the name of a CMS file 
Alter the filetype of a CMS file 
Change the filename of a CMS file 

Verify the existence of a CMS file on a read/write disk 

R; 
edit function sort 
zone 58 
change I II * * 
Alter the name of a CMS file 
Alter the filetype of a CMS file 
Change the filename of a CMS file 

Verify the existence of a CMS file on a read/write disk 
EOF: 
top 
TOF: 
change 1/1 I * 
Alter the name of a CMS file 
Alter the filetype of a CMS file 
Change the filename of a CMS file 

RENAME 
RENAME 
RENAME 

STATEW 

RENAME 
RENAME 
RENAME 

STATEW 

RENAME 
RENAME 
RENAME 

Verify the existence of a CMS file on a read/write disk I STATEW 
EOF: 

Move the line pointer to the top of the file and begin scanning again. A diagonal 
e/) is interpreted as a LOCATE subcommand. 
The NEXT subcommand can be truncated to "N". 
In front of the line beginning "Display", insert a line beginnirig with "Delete". If 
you want to make any other modifications, do so. Otherwise, write this file onto 
disk with the FILE subcommand. 
Verify your changes. 
Edit the file again. To compress unnecessary spaces in right hand columns, change 
the zone setting. This time, issue a CHANGE subcommand that will delete all blank 
spaces occuring after column 58. Since some changes you made to the file might have 
spoiled the alignment in the command column, this CHANGE subcommand should realign 
all of the columns. 
Return the current line pOinter to the top of the file. Change a null string to the 
string "I " for all lines in the file; since the left zone is still column 58, the 
characters are inserted in columns 58 and 59. 

360 IBM VM/370 CMS User's Guide 

( 



) 

51 

52 

zone 1 * 
top 
TOF: 
c //1 / * 

Alter the name of a CMS file 
Alter the filetype of a CMS file 
Change the filename of a CMS file 

. 
verify the existence of a CMS file on a read/write disk 

EOF: 
top 
TOF: 
next 

Alter the name of a CMS file 
tabset 72 
repeat * 
overlay I 

Alter the name of a CMS file 
Alter the filetype of a CMS file 
Change the filename of a CMS file 
Compare the contents of CMS disk files 

RENAME 
RENAME 
RENAME 

I STATEW 

I RENAME 

RENAME 
RENAME 
RENAME 
COMPARE 

Verify the existence of a CMS file on a read/write disk STATEW 
EOF: 
bottom 

Verify the existence of a CMS file on a read/write disk I STATEW 
53 input 
54 zone 1 72 

c / /-/ 1 * 
top 
TOF: 

55 input 
c / /-/ 1 * 

56 file 

51 

52 

53 

54 

55 
56 

R; 
print function sort 
R; 

Change the left zone setting to column 1 and let the right zone be equal to the 
record length; issue the CHANGE subcommand to insert the "I" in columns 1 and 2. 
CHANGE can be abbreviated as "C". 
At the top of the file, change the TABSET subcommand setting to 72. This makes 
column 12 the left margin. The REPEAT * subcommand, followed by the OVERLAY 
subcommand, indicates that all the lines in the file are to be overlaid with a I in 
the leftmost column (column 72). 
When you enter this INPUT subcommand, enter a number of blank spaces following it; 
this places a blank line in the file. 
Reset the ZONE setting to columns 1 and 72. The CHANGE subcommand indicates that all 
blanks on this line should be changed to hyphens (-). Only the blanks within the 
specified zone are changed. 
Insert another blank line at the top of the file and change it to hyphens. 
Write the file onto disk and use the CMS PRINT command to spool a copy to the 
offline printer. 

Sample Terminal Session Using the CMS Editor and CMS File System Commands 361 



Sample Terminal Session Using Line-Number Editing 

This terminal session shows how a terminal session using right-handed line-number editing 
might appear on a typewriter terminal. The commands function the same way on a display 
terminal, but the display is somewhat different. When you enter these input lines, you 
should have physical tab stops set at your terminal at positions 16 and 22 (for assembler 
columns 10 and 16; the difference compensates for the line numbers, as you will see). On 
a display terminal, tab settings have no significance; once the line is in the output 
display area, it has the proper number of spaces. 

1 

2 

3 

4 

5 

6 

7 

1 

2 

3 

4 

5 

6 

7 

edit test assemble 
NEW FILE: 
EDIT: 
linemode right 
input 
INPUT: 
00010 * sample of linemode right 
00020 test csect 
00030 balr 12,0 
00040 using *,12 
00050 st 14,sav14 
00060 wrtera testing ••• 
00070 
00080 
00090 
00100 

EDIT: 
60 

I 
br 
end 

00060 WRTERM 

14,sav14 
14 

c /testing ••• /·testing ••• • 
00060 WRTERM 
80 
00080 BR 14 
input 
INPUT: 

TESTING ••• 

·TESTING ••• • 

Use the EDIT command to invoke the CMS editor. Since this is a new file, the editor 
issues the NEW FILE message. 
Issue the LINEMODE subcommand to indicate that you want to begin line-number 
editing .• For ASSEMBLE files, you cannot have line numbers on the left, because the 
assembler expects data in columns 1 through 7. 
As soon as you issue the INPUT subcommand, the editor begins prompting you to enter 
input lines. For convenience in entering lines, the line numbers appear on the left, 
as they would if you were using left-handed line-number editing. In your ASSEMBLE 
file, however, the line numbers are actually on the right. 
When you are have finished entering these input lines, enter a null line to return 
to edit mode from input mode. 
To locate lines when you are using line-number ~diting, you can enter the line 
number of the line. In this case, enter 60 to position the current line pOinter at 
the line numbered 00060 •. The editor displays the line. 
Issue the CHANGE subcommand to place quotation marks around the text line for the 
WRTERM macro. The editor redisplays the line, with the change. 
Issue the nnnnn subcommand, specifying line number 80, and use the INPUT subcommand 
so you can begin entering more input lines. 

362 IBM VM/370 CMS User's Guide 

( 



) 

8 

9 

10 
11 

12 

13 
14 

15 

16 

8 

9 

10 
11 

12 

13 

14 

15 

16 

00083 sav14 ds f 
00085 wkarea ds 3d 
00081 flag ds x 
00088 runon equ x'80' 
00089 runoff equ x'40' 
RENUftBER LINES 
EDIT: 
linemode off 
serial on abc 
save 
EDIT: 
linellode right 
type 
00030 RUNOFF BQU X'40' 
verify 1 * 
type 
00030 RUNOFF EQU X'40' IBC00130 
135 runaix equ x'20' 
50 
00050 ST 14,SAV14 IBCOO050 
input 
INPUT: 
00053 tm flag,runon 
00055 bcr 1,14 
00051 

EDIT: 
top 
TOF: 
next 
* SlftPLE OF LINEftODE RIGHT ABCOO010 
restore 

When you begin entering input lines between two existing lines, the editor uses an 
algorithm to assign line nuabers. 
The editor ran out of line numbers, since the next line in the file is already 
numbered 90. You must renumber the lines. Before you can renumber the lines, you 
must turn line-number editing off. Before issuing the SlVE subcollmand, which writes 
the file and its new line numbers onto disk, you can issue the SERIIL subcommand. 
SERIAL ABC indicates that you want the characters ABC to appear as the first three 
characters of each serial number. 
The EDIT message indicates that the SlVE request has completed. 
Issue the LINEftODE subcommand to restore line-number editing. Use the TYPE 
subcommand to verify the position of the current line pointer. 
If you want to see the serial numbers in columns 12 through 80, issue the VERIFY 
subcommand, specifying *, or the record length. Normally, the editor does not 
display the columns containing serial numbers While you are editing. . 
You can use the nnnnn subcommand to insert individual lines of text. This subcommand 
inserts a line that you want numbered 135, and places it in its proper position in 
the file. Note that although, in this example, the current line pOinter is 
positioned at line 130, it does not need to be at the proper place in the file. When 
the subcomaand is complete, however, the current line pointer is positioned 
following the line just inserted. 
position the line pointer at the line numbered 50, and again begin entering the 
input lines indicated. 
Enter a null line to return to edit mode, move the current line pointer to the top 
of the file, and display the first line. 
The RESTORE subcommand restores the default settings of the editor, and the the 
verification columns are restored to 1 and 12, so that line numbers are not 
displayed in columns 12 through 80. 

Sample Terminal Session Using Line-Number Editing 363 



17 

18 

19 

17 
18 

19 

type * 
* SAftPLE OF LINEftODE RIGHT 
TEST CSECT 

BALR 12,0 
USING *,12 
ST 14,SAV14 
Tft FLAG,RUNON 
BCR 1,14 
WRTERft 'TESTING ••• , 
L 14,SAV14 
BR 14 

SAV14 DS F 
WKAREA DS 3D 
FLAG DS X 
RUNON EQU X' 80' 
RUNOFF EQU X'40' 
RUNMIX EQU X'20' 

END 
EOF: 
file 
RESERIALIZATION SUPPRESSED 
R; 
type test assemble 

* SAftPLE OF LINEftODE RIGHT ABCOO010 
TEST START X'20000' ABCOO020 

BALR 12,0 ABCOO030 
USING *,12 ABCOO040 
ST 14,SAV14 ABCOO050 
TM FLAG,RUNON 00053 
BCR 1,14 00055 
TYPE 'TESTING.~.' ABCOO060 
L 14,SAV14 ABCOO070 
BR 14 ABCOO080 

SAV14 DS F ABCOO090 
WKAREA DS 3D IBC00100 
FLAG DS X IBC00110 
RUNON EQU X' 80' ABCOO120 
RUNOFF EQU X'40' IBCOO130 
RUNMIX EQU X'20' 00135 

END IBCOO140 

Use the TYPE subcommand to display the file. 
When you issue the FILE subcomm"and to write the file onto disk, the editor issues 
the message RESERIALIZATION SUPPRESSED to indicate that it is not going to update 
the line numbers, so that the current line numbers match the line numbers as they 
existed when the SAVE subcommand was issued. 
If you want to see how the file exists on disk, use the CftS TYPE command to display 
the file. Note that the lines inserted after the SAVE subcommand do not have the 
initial ABC characters, and that they retain the line nu.bers they had when they 
were inserted. 

364 IBM VM/370 CftS User's Guide 

I 

(~ 



) 

Sample Terminal Session for OS Programmers 

The following terminal session shows how you might create an assembler language program 
in CMS, assemble it, correct assembler errors, and execute it. All the lines that appear 
in lowercase are lines that you should enter at the terminal. Uppercase data represents 
the system response that you should receive when you enter the command. 

The input data lines in the example are aligned in the proper columns for the 
assembler; if you are using a typewriter terminal, you should set your terminal's tab 
stops at columns 10, 16, 31, 36, 41, and 46, and use the Tab key when you want to enter 
text in these columns. If you are using a display terminal, when you use a PF key defined 
as a tab, or some input character, the line image is expanded as it is placed in the 
screen output area. 

There are some errors in the terminal session, so that you can see how to correct 
errors in CMS. 

1 edit ostest assemble 
NEW FILE: 

1 

EDIT: 
input 
INPUT: 
dataproc csect 

print nogen 
space 

rO equ 0 
r1 equ 1 
r2 equ 2 
r10 equ 10 
r12 equ 12 
r13 equ 13 
r14 equ 14 
r15 equ 15 

space 
stm r14 ,r12, 12 (r13) save caller's regs 
balr r12,0 establish 
using *,r12 addressability 
st r13,savearea+4 store addr of caller's savearea 
la r15,savearea get the address of my savearea 
st r15,8(r13) store addr in caller's savearea 
lr r13,r15 save addr of my savearea 
space 

*open files and check that they opened okay 

checkout 

space 
la 
open 
using 
la 
tm 
bnz 
la 
b 
la 
tm 
bnz 
la 
b 

r3,0 initially set return code 
(indata,outdata,(output» open files 
ihadcb,r10 get dsect to check files 
r10,indata prepare to check output file 
dcboflgs,x'10' everything ok? 
checkout .~.continue 
r3,100 set return code 
exit ••• exit 
r10,outdata check output file 
dcboflgs,x'10' is it okay? 
process 
r3,200 set return code 
exit 

The EDIT command is issued to create a file named OSTEST ASSEMBLE. Since the file 
does not exist, the editor indicates that it is a new file and you can use the INPUT 
subcommand to enter input mode and begin entering the input lines. 

Sample Terminal Session for OS Programmers 365 



2 

process 

exit 

space 
equ 
get 
lr 
put 
b 
space 
equ 
close 
1 
lr 
1 
1m 
br 
space 

savearea dc 
indata dcb 

EDIT: 
$mark 

* 
indata 
r2,rl 
outdata,(2) 
process 

* 

read a record from input file 
save address of record 
move it to output 
continue until end-of-file 

(indata"outdata) close files 
r13,savearea+4 addr of caller's save area 
r15,r3 load return code 
r14,12(r13) get return address 
rO,r12,20(r13) restore regs 
r14 bye ••• 

18f'0' 
ddname=indd,macrf=gl,dsorg=ps,recfm=f,lrecl=80, 

3 savelinput 

4 

EDIT: 
INPUT: 

outdata 

EDIT: 
file 
R; 

dcb 
dcbd 
space 
end 

eodad=exit 
ddname=outdd,macrf=pm,dsorg=ps 

5 global mac lib osmacro 
R; 

6 assemble ostest 

2 

3 

4 

5 

6 

* 
* 
* 
* 
* 
* * 

Since the DCB macro statement takes up more than one line, you have to enter a 
continuation character in column 12. To do this, you can enter a null line to return 
to edit mode and execute the $ftARK edit macro, which places an asterisk in column 
12. If the $ftARK edit macro is not on your system, you will have to enter a 
continuation character some other way. (See "Entering a continuation Character in 
Column 12" in "Section 5. The CftS Editor.") 
Before continuing to enter input lines, the EDIT subcommand SAVE is issued to write 
what has already been written onto disk. The CP logical line end symbol (I) 
separates the SAVE and INPUT subcommands. 
A null line returns you to edit mode. You may wish, at this point, to proofread 
your input file before issuing the FILE subcommand to write the ASSEftBLE file onto 
disk. 
Since this assembler program uses OS macros, you must issue the GLOBAL command to 
identify the CftS macro library, OS8ACRO 8ACLIB, before you can invoke the assembler. 
The ASSEBBLE command invokes the V8/310 assembler to assemble the source file; the 
asterisks (*) indicate the CftS blip character, which you mayor may not have made 
active for your virtual machine. 

366 IB8 V8/310 CftS User's Guide 



March 30, 1979 

7 ASSEMBLER DONE 
OST00230 23 LA R3,0 INITIALLY SET RETURN CODE 
IF0188 R3 IS AN UNDEFINED SYMBOL 
OST00240 24 OPEN (INDATA,OUTDATA,(CUTPUT» OPEN FILES 

4000000 27+ 12,*** IHB002 INVALIt OPTION OPERAND SPECIFIED-OUTDATA 
IF0197 *** MNOTE *** 
OST00290 32 LA R3,100 SET RETURN CODE 
IF0188 R3 IS AN UNDEFINED SYMBOL 
OST00340 37 LA R3,200 SET RETURN CODE 
IF0188 R3 IS AN UNDEFINED SYMBOL 
OST00460 63 LR R15,R3 LOAD RETURN CODE 
IF0188 R3 IS AN UNDEFINED SYMBOL 
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMELY = 5 
R (00012) i 

8 edit ostest assemble 
locate Ir2 
R2 EQU 2 
i r3 equ 3 
lopen 

OPEN (INDATA,OUTDATA,(OUTPUT» 
c 1,1,,1 

OPEN (INDATA"OUTDATA, (OUTPUT» 
9 file 

Ri 
assemble ostest 

* 
* 
* 
* 
* 
* 

10 ASSEMBLER DONE 
NO STATEMENTS FLAGGED IN THIS ASSEMBLY 
Ri 

11 filedef indd disk test data a 
Ri 

12 filedef outdd punch 
R; 

13 #cp spool punch to * 

OPEN FILES 

OPEN FILES 

7 The assembler displays errors encountered during ass~mbly. Depending on how 
accurately you copied the program in this sample session, you mayor may not receive 
some of these messages; you may also have received additional messages. 

8 You must edit the file OS TEST ASSEMBLE and correct any errors in it. The errors 
placed in the example included a missing comma on the OPEN macro, and the omission 
of an EQU statement for a general register. These changes are made as shown. The 
CMS editor accepts a diagonal (I) as a LOCATE subcommand. 

9 After all the changes have been made to the ASSEMBLE file, you can issue the FILE 
subcommand to replace .the existing copy on disk, and then reassemble it. 

10 This time, the assembler completes without encountering any errors. If your 
ASSEMBLE file still has errors, you should use the editor to correct them. 

11 The FILEDEF command is used to define the input and output files used in this 
program. The ddnames INDD and OUTDD, defined in the DCBs in the program, must have a 
file definition in CMS. To execute this program, you should have a file on your 
A-disk name TEST DATA, which must have fixed-length, 80-charaqter records. If you 
have no such file, you can make a copy of your ASSEMBLE file as follows: 

copy file ostest assemble a test data a 

12 The output file is defined as a punch file, so that it will be written to your 
virtual card punch. 

13 The CP SPOOL command is issued, using the #CP function, to spool your virtual punch 
to your virtual card reader. When you use the iCP function, you do not receive a 
Ready message. 

Sample Teiminal Session for OS Programmers 367 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 ,for 5748~XX8 

14 load ostest 
R; 
start 
DMSLI07401 EXECUTION BEGINS ••• 

15 DMSSOP036E OPEN ERROR CODE '04' ON 'OUTDD ' 
R(00200); 

16 filedef 
INDD DISK TEST DATA A1 
OUTDD PUNCH 
R; 

17 filedef outdd punch (lrecl 80 recfm f 
R; 

18 #cp query reader all 
NO RDR FILES 

19 load ostest (start 
DMSLI07401 EXECUTION BEGINS ••• 

20 PUN FILE 6198 TO BILBO COpy 01 NOHOLD 
R; 

21 fi indd reader 
R; 
fi outdd disk new osfile a4 (recfm fb block 1600 lrecl 80 
R; 

22 listfile new osfile a4 (label 
DMSLST002E FILE NOT FOUND. 
R(00028); 

23 run ostest 

24 

EXECUTION BEGINS ••• 

* R; 
listfile new osfile a4 (label 
FILENAME FILETYPE FM FORMAT LRECL RECS fLOCKS 
NEW OSFILE A4 F 1600 5 10 
R; 

DATE TIME LABEL 
9/30/75 8:26:14 PAT198 

14 The LOAD command loads the TEXT file produced by the assembly into virtual storage. 
The START command begins program execution. 

15 An open error is encountered during program execution. The CMS ready message 
indicates a return code ot 200, which is the value placed in it by your program. 

16 The FILEDEF command, with no operands, results in a display of the current file 
definitions in effect. 

17 Error code 4 on an open request means that no RECFM or LRECL information is 
available. An examinat~on of the program listing would reveal that the DCB for 
OUTDD does not contain any information about the file format; you must supply it on 
the FILEDEF command. Re-enter the FILEDEF command. 

18 You can use the CPQUERY bommandto determine whether there are any files in your 
card reader. It should be empty; if not, determine whether they might be files you 
need, and if ~o, read them into your virtual machine; otherwise, Furge them. 

19 Use the LOAD command to execute the program again; this time, use the START option 
of the LOAD command to begin the program execution. 

20 The PUN FILE message indicates that a file has been transferred to your virtual card 
,reader. The ready message indicates that your program executed successfully. 

21 For the next execution of this program, you are going to read the file back out of 
your card reader and create a new CMS disk file, in OS simulated data set format. 
FI is an acceptable system truncation for the command name, FILEDEF. 

22 The LISTFILE command is issued to check that the file NEW OSFILE does not exist. 
23 The RUN command (which is an EXEC procedure) is used instead of the LOAD and START 

commands, to load and execute the program. The ready message indicates that the 
'program completed execution. 

24 The LISTFILE command is issued again, and the file NEW OSFILE is ,listed. (If you 
issue another CP QUERY READER command, you will also see that the file is no longer 
in your card reader.) 

368 IBM VM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30. 1979 by Supp_ SD23-9024-1 for 5148-118 

Sample Terminal Session for DOS Programmers 

The following terminal session shows how you might create an assembler language program 
in CMS. assemble it, correct assembler errors. and execute it. All the lines that appear 
in lowercase are lines that you should enter at the terminal. Uppercase data represents 
the system response that you should receive when you enter the command. 

The input data lines in the example are aligned in the proper columns for the 
assembler; if you are using a typewriter terminal. you should set your terminal's tab 
stops at columns 10, 16. 31, 36. 41, and 46 and use the Tab key when you want to enter 
text in these columns. If you are using a display terminal. when you use a PF key or an 
input character defined as a tab. the line image is expanded as it is placed in the 
screen output area. 

Note: The assembler, in CMS. cannot read macros from DOS/VSE libraries. This sample 
terminal session shows how to copy macros from DOS/VSE libraries and create CMS MACLIB 
files. Ordinarily, the macros you need should already be available in a system MACLIB 
file. You do not have to create a MACLIB each time you want to assemble a program. 

There are some errors in the terminal session. so that you can see how to correct 
errors in CMS. 

1 cp link dosres 130 130 rr linkdos 
DASD 130 LINKED R/O 
R; 
access 130 z 
Z (130) R/O - DOS 
R; 

2 set dos on z 
R; 

3 edit dostest assemble 
NEW FILE: 
EDIT: 
input 
INPUT: 
begpgm csect 

balr 12,0 
using *,12 
la 13,savearea 
open infile,outfile 

loop get infile 
put outfile 
b loop 

eodad equ * 
close infile,outfile 
eoj 
eject 

buffer dc CL80' , 
infile dtfdi modname=shrmod.ioarea1=buffer.devaddr=sysipt. 

1 Use the CP LINK command to link to the DOS system residence volume and the ACCESS 
command to access it. In this example, the system residence is at virtual address 
130 and is accessed as the Z-disk. 

2 Enter the CMS/DOS environment. specifying the mode letter at which the DOS/VSE 
system residence is accessed. 

3 Use the EDIT command to create a file named DOSTEST ASSEMBLE. Since the file does 
not exist, the editor indicates that it is a new file and you can use the INPUT 
subcommand to enter input mode and begin entering the input lines. 

Sample Terminal Session for DOS Programmers 369 



4 
EDIT: 
$mark 

5 save#input 
EDIT: 
INPUT: 

March 30, 1979 

eofaddr=eodad,recsize=80 

6 

7 

outfile dtfdi modname=shrmod,ioarea1=buffer,devaddr=syspch, 

EDIT: 
$mark 
save.input 
EDIT: 
INPUT: 

shrmod 
endpgm 

EDIT: 
file 
R; 

recsize=81 
dimod typefle=output 
equ * 
end 

8 edit getmacs eserv 
NEW FILE: 
EDIT: 
tabs 2 72 
input 
INPUT: 

9 punch open,close,get,put,dimod,dtfdi 

EDIT: 
file 
R; 

10 assgn sysipt a 
R; 
eserv getmacs 
R; 

4 Since the DTFDI macro statement takes up more than one line, you have to enter a 
continuation character in column 72. To do this, you can enter a null line to return 
to edit mode and execute the $MARK edit macro, which places an asterisk in column 
72. If the $MARK edit macro is not on your system, you will have to enter a 
continuation character some other way. (See "Entering a Continuation Character in 
Column 72" in "Section 5. The CMS Editor.") 

5 Before continuing to enter input lines, the EDIT subcommand SAVE is issued to write 
what has already been written onto disk. The CP logical line end symbol (#) 
separates the SAVE and INPUT subcommands. 

6 Another continuation character is needed. 
7 A null line returns you to edit mode. You may want, at this point, to proofread your 

input file before issuing the FILE subcommand to write the ASSEMBLE file on disk. 
8 To obtain the macros you need to assemble this file, use the editor to create an 

ESERV file. By setting the logical tabs at columns 2 and 72, you can protect 
yourself from entering data in column 1. 

9 PUNCH is an ESERV program control statement that copies and de-edits macros from 
source statement libraries; in this case, the system source statement library. The 
output is directed to the SYSPCH device, which the CMS/DOS ESEBV EXEC assigns by 
default to your A-disk. 

10 You must assign the logical unit SYSIPT before you invoke the ESEBV co.mand. GETMACS 
is the filename of the ESERV file containing the ESERV control statements. 

370 IBM VM/370 CMS User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

11 listfile getmacs * 
GETMACS ESERV A1 
GETMACS MACRO A1 
GETMACS LISTING A1 
R; 

12 maclib gen dosmac getmacs 
R; 
erase getmacs * 
R; 

13 global maclib dosmac 
R; 

14 assemble dostest 

15 

16 

* 
* 
ASSEMBLER DONE 
DOS00040 4 LA 13,SAVEAREA 
IF0188 SAVEAREA IS AN UNDEFINED SYMBOL 
DOS00110 35 EOJ 
IF0078 UNDEFINED OP CODE 
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMELY 
R (00008) ; 
edit dotest assemble 
EDIT: 
locate /buffer/ 
BUFFER DC CL80" 
input savearea ds 9d 
file 
R; 

17 edit eoj eserv 
NEW FILE: 

18 

EDIT: 
i punch eoj 
file 
R; 
listio sysipt 

SYSIPT DISK 
R; 
eserv eoj 
R; 

A 

2 

11 After the ESERV EIEC completes execution, you have three files. You may want to 
examine the LISTING file to check the ESERV program listing. The MACRO file 
contains the punch (SYSPCH) output. 

12 The MACLIB command creates a macro library named DOSMAC MACLIB. Since the MACLIE 
command completed successfully, you can erase the files GETMACS ESERV. GETMACS 
LISTING, and GETMACS MACRO; an asterisk in the filetype field of the ERASE command 
indicates that all files with the filename ef GETMACS should be erased. 

13 Before you can invoke the assembler, you have to identify the macro library that 
contains the macros; use the GLOBAL command, specifying DOSMIC MICLIE. 

14 The ASSEMBLE command invokes the VM/370 assembler to assemble the source file; the 
.asterisks (*) indicate the CMS blip character, which you may o~ may not have made 
active fer your virtual machine. 

15 The assembler displays errors encountered during assembly. Depending on how 
accurately you copied the program in this sample session, you mayor may not receive 
some of these messages; you may also have received additional messages. 

16 To correct the first error, which was the omission of a DS statement for SAVEAREI, 
edit the file DOSTEST ASSEMBLE and insert the missing line. 

17 The second error indicates that the macro EOJ is not available, since it was not 
copied from the source statement library. Create another ESERV file to punch this 
macro. 

18 Use the LISTIO co.m~nd to check that SYSIPT is still assigned to your A-disk, so 
that you do not have to issue the ASSGN command again. Then issue the ESERV command 
again, this time specifying the filename EOJ. 

Sample Terminal Session for DOS Programmers 371 



March 30, 1979 

19 maclib add dosmac eoj 
Ro , 
maclib 
MACRO 
OPEN 
CLOSE 
GET 
PUT 
DIMOD 
DTFDI 
EOJ 
R; 

map dosmac (term 
INDEX SIZE 

2 43 
46 43 
90 56 

147 93 
241 647 
889 284 

1174 6 

20 erase eoj * 
R; 
assemble dostest 

* 
* 
* 

21 ASSEMBLER DONE 

22 

NO STATEMENTS FLAGGED IN THIS ASSEMBLY 
R; 
listfile 
DOSTEST 
DOSTEST 
DOSTEST 
R; 

dostest * 
ASSEMBLE A1 
LISTING A1 
TEXT A1 

print dostest listing 
R; 

23 doslked dostest 

24 
R; 
listfile 
DOSTEST 
DOSTEST 
DOSTEST 
DOSTEST 
DOS TEST 
R; 

dostest * 
ASSEMBLE A1 
DOSLIB A1 
TEXT A1 
LISTING A1 
MAP AS 

19 Use the ADD function of the MACLIB command to add the macro EOJ to DOSMAC MACLIE. 
Then, issue the MACLIB command again, using the MAP function and the TERM option to 
display a list of the macros in the library. 

20 Erase the EOJ files. You should always remember to erase files that you do not need 
any longer. Reassemble the program. 

21 This time, the assembler . completes without encountering any errors. If your 
ASSEMBLE file still has errors, you should use the editor to correct them. 

22 Use the LISTFILE command to check for DOSTEST files. The assembler created the 
files, DOSTEST LISTING and DOSTEST TEXT. The TEXT file contains the object module. 
You can print the program listing, if you want a printed copy. Then, you may want to 
erase it. 

23 Use the DOSLKED command to link-edit the TEXT file into an executable phase and 
write it into a DOSLIB. Since this program has no external references, you do not 
need to add any linkage editor control statements. 

24 NOw, you have a DOSTEST DOSLIB, containing the link-edited phase, and a MAP file, 
containing the linkage editor map. You can display the linkage editor map with the 
TYPE command, or use the PRINT command if you want a printed copy. 

372 rBM VM/370 CMS User's Guide 



25 

26 

21 

Pg. of GC20-1819-2 Rev "arch 30, 1979 by Supp. SD23-9024-1 for 5148-118 

Icp spool punch to * 
punch test data a 
PUN FILE 0100 TO BILBO 
R; 
#cp query reader all 

COpy 01 NOHOLD 

ORIGINID FILE CLASS RECDS CPY HOLD DATE TIME NAME 
PATTI 5840 A PUN 000097 01 NONE 09/29 15:00:39 TEST 
assgn sysipt reader 
R; 
assgn syspch a 
R; 
dlbl outfile a cms punch output (syspch 
R; 
state punch output a 
DMSSTT002E FILE NOT FOUND. 
R (00028) ; 

TYFE 
DATA 

DIST 
BIN211 

28 global doslib dostest 
R; 
fetch dostest 
DMSFET710I PHASE 'DOSTEST' ENTRY POINT AT LOCATION 020000. 
R; 

29 start 

25 

DMSLI07401 EXECUTION BEGINS ••• 
R; 
listfile punch output a (label 
FILENAME FILETYPE FM FORMAT LRECL RECS ELOCKS 
PUNCH OUTPUT A1 F 80 97 10 

DATE TIME LABEL 
9/29/75 14:50:55 BBB191 

R; 
#cp query reader all 
NO RDR FILES 

To execttte this program in 
records into your virtual 
fixed-length, aO-character 
CMS editor, or by copying 
follows: 

CMS/DOS, punch 
card punch. 

records, you 
your ASSEMBLE 

a file that has fixed-length 80-character 
If you do not have any files that have 

can create a file named TEST DATA with the 
source file with the CCPYFILE command, as 

copy file dostest assemble a test data a 

Use the CP SPOOL command to spool the punch to your own virtual machine, then use 
the PUNCH command to punch the file. The PUN FILE message indicates that the file 
is in your card reader. Use the CP QUERY command to check that it is the first, or 
only file in your reader. 

26 Use the ASSGN command to assign SYSIPT to your card reader and SYSPCH to your 
A-disk. 

21 When you assign a logical unit to a disk mode, you must issue the DLBL command to 
identify the disk file to CMS. For this program execution, you are creating a CMS 
file named PUNCH OUTPUT. The STATE command ensures that the file does not already 
exist. If it does exist, rename it, or else use another filename or filetype on the 
DLBL command. 

28 Use the GLOBAL command to identify the tOSLIB, DOSTEST, you ~ant to search for 
executable phases, then issue the FETCH command specifying the phase name. The 
FETCH command loads the executable phase into storage. When the FETCH ccmmand is 
executed without the START option, a message is displayed indicating the entry point 
location of the program loaded. 

29 The START command begins program execution. The CMS ready message indicates that 
your program completed successfully. YOl) can check the input and output activity by 
using the LISTFILE command to list the file PUNCH OUTPUT. If you use the CP QUERY 
command, you can see that the file is no longer in your virtual card reader. 

Sample Terminal Session for DOS Programmers 373 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8 

30 assgn sysipt a 
R; 
dlbl infile a cms punch output (sysipt 
R; 
assgn syspch punch 
R; 

31 fetch dostest (start 
DMSLI07401 EXECUTION BEGINS ••• 

32 PUN FILE 5829 TO BILBO COpy 01 NOHOLD 
R; 
read punch2 output 
R; 
listfile punch2 output a (label 
FILENAME FILETYPE FM FORMAT LRECL RECS fLOCKS 
PUNCH2 OUTPUT A1 F 80 97 10 
R; 

DATE TIME 
9/29/75 14:50:59 

LABEL 
BBB191 

30 If you want to execute this program again, you can assign SYSIPT and SYSPCH to 
different devices; in this example, the input disk file PUNCH OUTPUT is written to 
the virtual punch. You do not need to reissue the GLOBAL DOSLIB command; it remains 
in effect until you reissue it or IPL CMS again. 

31 This time, the program execution starts immediately, because the START option is 
specified on the FETCH command line. 

32 Again, the PUN FILE message indicates that a file has been received in your virtual 
card reader. You can use the CMS command READCARD to read it onto disk and assign it 
a filename and filetype, in this example, PUNCH2 OUTPUT. 

374 IBM VM/370 CMS User's Guide 



), 

Sample Terminal Session Using Access Method Services 

This sample terminal session 
should have an understanding 
terminal session. 

shows you how to use access method services under CMS. You 
of VSAM and access method services before you use this 

The terminal session uses a number of CMS files, which you may create during the 
course of the terminal session; or, you may prefer to create all of the files that you 
need beforehand. Within the sample terminal session, the file that you should create is 
displayed prior to the commands that use it. 

This terminal session is for both CMS OS VSAft programmers and CftS/DOS VSAft 
programmers; all the ASSGN commands and SYSxxx operands that apply when the CftS/DOS 
environment is active are shaded. If you have issued the command SET DOS ON, you must 
enter the shaded entries; if not, you must omit the shaded entries. 

!!gte§: 

1 

1 

1. This terminal session assumes that you have, to begin with, a read/write CMS A-disk. 
This is the only disk required. Additional disks used in this exercise are temporary 
disks, formatted with the IBCDASDI disk initialization program under CMS. If you 
have OS or DOS disks available, you should use them, and remember to supply the 
proper volume and virtual device address information, where appropriate. The number 
of cylinders available to users for temporary disk space varies among installations; 
if you cannot acquire ample disk space, see your system support personnel for 
assistance. 

2. Output listings created by AMSERV take up disk space, so if your A-disk does not 
have a lot of space on it, you may want to erase the LISTING files created after 
each AMSERV step •. 

3. If any of the ABSERV commands that you execute during this sample terminal session 
issue a nonzero return code; for example: 

R(00012); 

You should edit the LISTING file to examine the access method services error 
messages. The publication QQ~!§ !~§§§g~§ contains the return codes and reason codes 
issued by access method services. You should determine the cause of the error, 
examine the DLBL commands and ABSERV files you used, correct any errors, and retry 
the command. 

Icp define t3330 200 10 
DASD 200 DEFINED 010 CYL 
Icp define t3330 300 10 
DASD 300 DEFINED 010 CYL 
#cp define t3330 400 10 
DASD 400 DEFINED 010 CYL 

These commands define temporary 3330 mindisks at virtual addresses 200, 300, and 
400. 

Sample Terminal Session Using Access Method Services 315 



2 File: PUNCH IBCDASDI 

222222 JOB 
ftSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=200,VOLID=SCRATCH,CYLNO=10 
VLD NEWVOLID=222222 
VTOCD STRTADR=10,EXTENT=5 
END 

333333 JOB 
ftSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=300,VOLID=SCRATCH,CYLNO=10 
VLD NEWVOLID=333333 
VTOCD STRTADR=10,EXTENT=5 
END 

444444 JOB 
ftSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=400,VOLID=SCRATCH,CYLNO=10 
VLD NEWVOLID=444444 
VTOCD STRTADR=10,EXTENT=5 
END 

3 File: IBCDASDI EXEC 

&CONTROL OFF 
CP CLOSE C 
CP PURGE RDR ALL 
ACC 190 Z/Z IPL * 
CP SPOOL D CONT * 
PUNCH IPL IBCDASDI Z ( NOH 
PUNCH PUNCH IBCDASDI * ( NOH 
CP SPOOL PUNCH NOCONT 
CP CLOSE PUNCH 
CP IPL OOC 

4 ibcdasdi 
NO FILES PURGED 
DftSACC7231 Z (190) R/O 
DftSACC7231 190 ALSO = S-DISK 
PUN FILE 1492 TO BILBO COpy 01 NOHOLD 
IBC105A DEFINE INPUT DEVICE. DASDI 7.77 

5 input=2540,00c 

2 

3 

4 

5 

This file contains control statements for the IBCDASDI program, which formats and 
initializes disks for OS and DOS. These disks are labelled 222222, 333333, and 
444444. Any messages produced by the IBCDASDI program are sent to your terminal. 
This file contains the commands necessary to use the IBCDASDI program under CftS. You 
must punch a copy of the IBCDASDI program, followed by the file containing your 
control statements, to your virtual card reader, and then load the IBCDASDI program. 
This is all done in the file IBCDASDI EXEC. 
Execute the IBCDASDI EXEC. The last command in the EXEC is the IPL command, which 
passes control to the IBCDASDI program. The message IBC105A prompts you to enter 
the address of the control statements. 
Since the control statements are in your card punch, you indicate the device type 
(2540) and the address (OOC) on the INPUT= statement. 

376 IBft Vft/370 CftS User's Guide 

( 



6 

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-118 

DASDI 7.77 
222222 JOB 

MSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=200,VOLID=SCRATCH,CYLNO=10 
VLD NEWVOLID=222222 
VTOCD STRTADR=10,EXTENT=5 
END 

IBC163A END OF JOB. 
DASDI 7.77 

333333 JOB 
MSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=300,VOLID=SCRATCH,CYLNO=10 
VLD NEWVOLID=333333 
VTOCD STRTADR=10,EXTENT=5 
END 

IBC163A END OF JOB. 
DASDI 7.77 

444444 JOB 
MSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=400,VOLID=SCRATCH,CYLNO=10 
VLD NEiVOLID=444444 
VTOCD STRTADR=10,EXTENT=5 
END 

IBC163A END OF JOB. 
7 DMKDSP450W CP ENTERED; DISABLED WAIT PSi 'OC060000 OOOOEEEE' 

ipl cms 

8 

9 

10 

6 

7 

8 

9 
10 

CMS ••• VERSION 3.0 02/28/76 

a 
DMSACC7231 B (200) R/Ttl - OS 
Ro , 
access 300 c 
DMSACC7231 C (300) R/i - OS 
R; 
access 400 d 
DMSACC7231 D (400) R/ll - OS 
R; 
query search 
BBB191 191 A R/i 
222222 200 B R/W - OS 
333333 300 C R/W - OS 
444444 400 D R/ll - OS 
CMS190 190 S 

These messages are issued by the IBCDASDI program, which displays the statements 
executed and indicates the end of each job. 
When the last IBCDASDI job 1S complete, your virtual machine is in the CP 
environment and you must reload the CMS system before you can continue. 
If you are a CMS/DOS user, you must reaccess the DCS/VSE system residence volume and 
issue the SET DOS ON command line, specifying the VSAM option. If you have not 
previously linked to the system residence, you must use the CP LINK command before 
you issue the ACCESS command. 
Access the three newly formatted disks as your B-, C-, and D-disks. 
You can issue the QUERY SEARCH command to verify the status of all disks you 
currently have accessed. 

Sample Terminal Session Using Access Method Services 377 



March 30, 1979 

11 File: MASTCAT AMSERV 

12 

13 

DEFINE MASTERCATALOG -
( NAME (MASTCAT) 

VOLUME (222222) -
CYL (4) -
UPDATEPW (GAZELLE) -
FILE IJSYSCT) ) 

sysct dsn mastcat (IIIIII! perm extent 
DMSDLB331R ENTER EXTENT SPEC:t'Flc'Jfi"IONS: 
19 171 

R; 
14 amserv mastcat 

R; 

15 File: CLUSTER AMSERV 

16 

DEFINE CLUSTER ( NAME (BOOK. LIST ) -
VOLUMES (222222) -
TRACKS (20) -
FILE (BOOK) -
KEYS (14,0) -
RECORDSIZE (120,132) ) -
DATA (NAME (BOOK.LIST.DATA) ) -
INDEX (NAME (BOOK.LIST.INDEX ) ) 

amserv cluster 
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOE AMSERV 
gazelle 
R; 

17 File: REPRO AMSERV 

REPRO INFILE (BFILE -
ENV ( RECORDFORHAT(F) -
BLOCKSIZE(120) -
PDEV (3330) ) ) -
OUTFILE (BOOK) 

FILE MASTCAT 

11 The file MASTCAT AMSERV defines the VSAM master catalog that you are going to use. 
12 Identify the master catalog volume, and use the EXTENT option on the DLBL command so 

that you can enter the extents. For this extent, specify 171 tracks (9 cylinders) 
for the master catalog. Since 4 cylinders are specified in the AHSERV file, the 
remaining 5 cylinders will be used for suballocation by VSAM. 

13 You must enter a null line to indicate that you have finished entering extent 
information. 

14 Issue the AMSERV command, specifying the MASTCAT file. The ready message indicates 
that the master catalog is created. 

15 Define a suballocated cluster. T·his cluster is for a key-sequenced data set, named 
BOOK.LIST. 

16 No DLBL command is necessary when you define a suballocated cluster. Note that 
since the password was not provided in the AMSERV file, access method services 
prompts you to enter the password of the catalog, which is defined as GAZELLE. 

17 Use the access method services REPRO command to copy a CMS data file into the 
cluster that you just defined. 

378 IBM VM/370 CMS User's Guide 



) 

18 

19 

data a (recfm f lrecl 120 
R; 
sort test data a book file a 
DMSSRT604R ENTER SORT FIELDS: 
1 14 
R; 
dlbl bfile a cms book file 

book list {vsam 
R; 
amserv repro 
R; 

20 File: SPACE AMSERV 

21 

22 

19 

20 

21 

22 

R; 

DEFINE SPACE -
( FILE (SPACE) -

TRACKS (57) -
VOLUME (333333) ) 

amserv space 

SPECIFICATIONS: 

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOE AKSERV 
gazelle 
R; 

FILE KASTCAT 

You must identify the dnames for the input and output files for the REPRO function. 
BFILE is a CMS file, which must be a fixed-length, 120-character file, and it must 
be sorted alphamerically in columns 1 through 14. The COPYFILE command can copy any 
existing file that you have to the proper record format; the SORT command sorts the 
records on the proper fields. 
The output file is the VSAM cluster, so you must use the VSAM option on this DLBL 
command. 
Create an AMSERV file to define additional space for the master catalog on the 
volume labelled 333333. 
Again, use the EXTENT option on the DLBL command so that you can enter extent 
information, and a null line to indicate that you have finished entering extents. 
Issue the AMSERV command. Again, you are prompted to enter the password of the 
master catalog. 

Sample Terminal Session Using Access Method Services 379 



23 File: UNIQUE AMSERV 

DEFINE CLUSTER-
( NAME (UNIQUE. FILE) -

UNIQUE ) -
DATA 
( CIL (3) -

FILE (KDATA) -
RECORDSIZE (100 132) -
KEIS(12,0) -
VOLUMES (333333 ) } -

INDEX -
(CIL (1)-

FILE (KINDEX) -
VOL UMES (333333) 

24 dlbl kdata c (extent 111111 
DMSDLB331R ENTER EXTENT SPECIfICATIONS: 
76 57 

R; 
dlbl kindex c (extent_ 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
133 19 

R; 
amserv unique 
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOE AMSERV 
gazelle 
R; 

FILE MASTCAT 

25 File: USERCAT AMSERV 

26 

23 
24 

25 

26 

DEFINE USERCATALOG -
( CIL (4) -

FILE (IJSISUC) -
NAME (PRIVATE. CATALOG) -
VOLUME (444444) -
UPDATEPW (UNICORN) -
ATTEMPTS (2) ) -

DATA (CIL (3) )­
INDEX ( CIL (1) ) -
CATALOG (MASTCAT/GAZELLE 

dlbl ijsysuc d dsn private catalog (extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
19 152 

Ri 
amserv usercat 

* R; 

peril 

This AMSERV file defines a unique cluster, with data and index components. 
Iou must enter DLBL commands and extent information for both the data and index 
components of the unique cluster. 
Next, define a private (user) catalog for the volume 444444. This catalog is -named 
PRIVATE.CATALOG and has a password of UNICORN. 
When you define a user catalog that you are going to use as the job catalog for a 
terminal session, you should use the ddname IJSYSUC. 

380 IBM VM/370 CMS User's Guide 

( 



) 

27 TAPE 181 ATTACHED 
28 File: EXPORT AMSERV 

29 

EXPORT BOOK.LIST 
INFILE (BOOK) -
OUTFILE (TEMP ENV (PDEV (2400) » 

dlbl 
IJSYSCT DISK FILE IJSYSCT B1 
BFILE DISK BOOK FILE A1 
BOOK DISK FILE BOOK B1 
SPACE DISK FILE SPACE C1 
KDATA DISK FILE KDATA C1 
KINDEX DISK FILE KINDEX C1 
IJSYSUC DISK FILE IJSYSUC D1 
Ri 

MASTCAT 

BOOK.LIST 

PRIVATE. CATALOG 

30 dlbl book b dsn book list (cat ijsysct 111111 
Ri 

31 amserv texport (tapout 181 
DMSAMS361R ENTER TAPE OUTPUT DDNAMES: 
temp 
R; 

32 File: IMPORT AMSERV 

IMPORT 
CATALOG (PRIVATE. CATALOG/UNICORN) -
INFILE (TEMP ENV (PDEV (2400») -
OUTFILE (BOOK2) 

33 tape rew 
R; 

27 

28 

29 

30 

31 

32 

33 

dlbl book2 d dsn book list (vsam 111111"\ 
Ri 
amserv timport (tapin 181 
DMSAMS361R ENTER TAPE INPUT DDNAMES: 
temp 
R; 

You may want to try an EXPORT/IMPORT function, if you can obtain a scratch tape from 
the operator. When the tape is attached to your virtual machine, you receive this 
message. 
The file that is being exported is the cluster BOOK.LIST created above. If you do 
not have access to a tape, you can export the file to your CMS A-disk. Remember to 
change the PDEV parameter to reflect the aPFropriate device type. 
Before issuing the AMSERV command to perform the export function, you may want to 
check the DLBL definitions in effect. Issue the DLBL command with no operands to 
obtain a list of current DLBL definitions. 
You must reissue the DLBL for BOOK.LIST, because there is a job catalog in effect, 
and the file is cataloged in the master catalog. Use the CAT option to override the 
job catalog. 
There is no default tape value when you are using tapes with the AMSERV command. You 
must specify the TAPIN or TAPOUT option and indicate the virtual address of the 
tape. You are prompted to enter the ddname, which for this file is TEMP. 
The last AMSERV file imports the cluster BOOK.LIST to the user catalog, 
PRIVATE. CATALOG. 
You should rewind the tape before reading it as input. 

Sample Terminal Session Using Access Method Services 381 



c 
382 IBft Vft/370 efts User's Guide 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

Index 

The entries in this Index are accumulative and reflect the addition of the VM/370 Basic 
System Extensions Program Product, Program Number 5748-XX8. 

¢ logical line delete symbol 7 

.BX format word (57~~=!!~) 

.CM format word (57~~=!!~) 

.CS format word (57~~=!!~) 

.FO format word (~1!~=!!~) 

.IL format word (~1~~=!!~) 

.IN format word (~1~~=!!~) 

.OF format word (57~~=!!~) 

.SP format word (5748-XX8) 

.TR format word (~1!~=!!~) 

&$ special variable 
resetting 275 

324.6 
324.7 
324.8 
324.8 
324.8 
324.8 
324.10 
324.11 
324.13 

using to test arguments 275 
&* special variable 

resetting 275 
using to test for absence of arguments 

275 
&ARGS control statement, changing &n 
special variables with 272 

&BEGEMSG control statement, when to use 
307 

&BEGPUNCH control statement, when to use 
297 

&BEGSTACK control statement, when to use 
289 

&EEGTYPE control statement 
examples 106 
when to use 286 

&CONTINUE centrol statement 
following label 104 
used with &ERROR control statement 301 

&CONTROL control statement 
controlling execution summary of EXEC 

procedure 299 
examples 108 

&DATATYPE built-in function, using to test 
arguments 274 

&EMSG control statement, examples 307 
&ERROR control statement 

examples 104 
provide error exit for CMS commands 301 

&EXIT control statement 
examples 104 
passing return code to CMS 284 

&GLOBAL special variable, testing recursion 
level of EXEC 283 

&GLOBALn special variable 
example 278 
passing arguments to nested procedures 

283 
&GOTO control statement 

examples 103 
transferring control in EXEC procedure 

277 

&HEX control statement, examples 271 
&IF control statement 

maximum number allowed in nest 277 
testing variable symbols 276 

&INDEX special variable 101 
testing 273 
using to establish loop 273 

&LENGTH built-in function, using to test 
arguments 274 

&LITERAL tuilt-in functicn 
examples 280 
examples of substitution 269 

&LCOP control statement 
example 105 
execution summary when &CONTROL ALL is 
in effect 308 

preparing loops in EXEC procedure 280 
&n special variable, manipulating 272 
&PUNCH control statement 

punching jobs to CMS hatch facility 234 
using to create file 296 

&READ control statement 
ARGS operand 101 

changing &n special variables 272 
examples 106 
reading CMS commands 285 

&READFLAG special variable 
determining if console stack needs to be 
cleared 293 

using to test console stack 290 
&RETCODE special variable 

example 104 
testing after CMS command execution 301 
using with &EXIT control statement 283 

&SKIP control statement 
examples 104 
transferring control in EXEC procedure 

279 
&SPACE control statement, example 106 
&STACK control statement 

stacking EXEC files with 294 
using in edit macros 311 
using to stack null line 292 
when to use, in edit macros 315 

&SUBSTR built-in function, examples 
280,294 

&TIME control statement, example 108 
&TYPE control statement" 

displaying prompting messages in EXEC 
procedure 284 

examples 106 
when to use 286 

&TYPEFLAG special variable, testing whether 
EXEC is displaying data 288 

&1 through &30, special variables 101 

Index 383 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

! (exclamation point), controlling whether 
it is displayed 28 

$, used as first character of filename for 
edit macros 311 

$COL edit macro 324 
$CONT EXEC 316 
$DUP edit macro, example 73 
$LISTIO EXEC file 158 
$MACROS edit macro 320 
$MARK edit macro 321 

used to enter continuation character 80 
$MOVE edit macro, how to use 73 
$POINT edit macro 323 

* (asterisk) 
in EDIT subcommands 65 
in fileids on command lines 44 
in fileids on command lines (~1~~=!!~) 

44.1 
in filemode field 53 
used to write comments in EXEC procedure 

305 
*COpy statement 

examples 138 

/* 

in CMS/DOS 166 

CMS batch acility control card, used to 
signal end of job 229 

end-of-file indicator 
in AMSERV file 182 
in batch job 237 

// record, used as delimiter in MACLIBs 
140,169 

/ (diagonal), as delimiter on EDIT 
subcommands 64 

/JOB control card, description 228 
/SET control card, description 229 

% (percent symbol), setting EXEC arguments 
to blanks 273 

subcommand 
usage 88 
usage, on display terminal 346 

usage as argument for EXEC procedure 
305 

?EDIT message 65 

384 IBM VM/370 CMS User's Guide 

I logical line end symbol 7 
restriction on stacking in EXEC 
procedure 291 

using to enter null line in input mode 
62 

using when setting program function keys 
340 

#CF function' 7,19 
using in edit or input mode 84 
using on display terminals 339 

a logical character delete symbol 6 
using when setting prcgram function keys 

340 

(equal sign) 
entered in fileids on command lines 45 
entered in filemode field 53 

subcommand (§~~ REUSE subcommand) 

" logical escape symbol 8 

A 

used when setting program function keys 
340 

abnormal termination (abend), effect on 
DLBL definitions 160 

ACCESS command 
accessing CMS disks 14 
response when you access VSAM disks 185 
used with OS disks 129 

access method services 
control statements, executing 182 
DOS/VS, using in CMS/DOS 181 
DOS/VSE, using in CMS/DOS (~1~~=!!~) 

181 
executing in CMS, examples 205 
functions 

DEFINE CLUSTER 206 
DEFINE MASTERCATALCG 191,199 
DEFINE USERCATALOG 193,200 
DELETE 207 
EXPORT 208 
IMPCRT 208 
REPRO 208 

OS/VS, restriction on using in CMS 181 
return codes 183 
sample terminal session 375 
using in CMS 181 
using tape input/output 204 

in CMS/DOS 196 



Pg. of GC20-1819-2 Rev ftarch 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

access methods 
DOS, supported in CMS 154 
OS, supported in CftS 130 

accessing 
directories of DOS/VS libraries 163 
directories of DOS/VSE libraries 

(.21!!!!=XX!!) 1 63 
disks 14 

as read-only extensions 51 
in CftS batch virtual machine 231 

DOS disks 154 
DOS/VS system residence volume 151 
DOS/VSE system residence volume 

(.21!! 8-XX!!) 1 51 
file directories for CMS disks 57 
files of a particular mode number 55 
multiple access systems with DIAL 

command 26 
OS disks 129 

ACTION 
DOS/VS linkage editor control statement 

173 
DOS/VSE linkage editor control statement 

(.21!! 8-XX!!) 173 
ADD operand 

of MACLIB command 
usage 138 
usage in CMS/DOS 167 

adding 
members to macro library 

example 138 
example in CMS/DOS 167 

address 
stops 

setting 217 
to enter CP environment 23 

virtual 
calculating for instructions in 

program 212 
definition 12 
for unit record devices 113 

A-disk 51 
ADSTOP command, how to set address stops 

217 
ALIAS, OS linkage editor control statement, 
supported by TXTLIB command 146 

ALL 
operand 

of &BEGSTACK control statement, when 
to use 290 

of &BEGTYPE control statement, when 
to use 287 

of &CONTROL control statement, using 
to debug EXECs 308 

allocating 
space for VSAM files 186,188,202 

in CMS/DOS 194 
VSAM extents on OS disks and minidisks 

198 

ALTER subcommand 
global changes 71 
how to use 70 

altering 
characteristics of spool files 115 
characters in CftS file, with ALTER 

subcommand 70 
multiple occurrences cf character in 
file 71 

AftSERV 
command 

executing in EXEC Irocedure 209 
how to use 182 

files 
examples 182,378 

filetype 182 
usage in CftS 47 

functions under CftS (5748~XX8) 205 
using to read tapes (~1!~=!X8) 204 

annotated, edit macro 318 
annotating, EXEC procedure 305 
APL, using on display terminal 350 
appending, data to existing files, during 

program execution 134 
arguments 

in EXEC procedure 95,101,272 
checking 274 
passing to nested JXECs 283 
testing with &$ and &* 274 

on RUN command, passing parameter list 
241 

on START command, parameter list 241 
ASM3705 filetype, usage in CMS 47 
ASSEMBLE 

command 
assembling OS programs 143 
in CftS/DOS 171 

filetype 
usage in CftS 47 
used as input to assembler 143 

assembling 
OS programs in CMS 143 
programs 

sample terminal session 366 
using CMS batch facility 235 

programs in CftS/DOS 171 
sample terminal session 371 

source files, from OS disks 143 
VSAM programs in CftS 181 

ASSGN command 
entering before program execution 177 
using to assign logical units 156 

Index 385 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

assigning 
file mode letters to disks 51 
logical units in CMS/DOS 

before program execution 177 
for VSAM catalogs 193 
to disk devices 158 
to virtual devices 158 

values to variable symbols, in EXEC 
procedure 102 

assignment statement, examples 102 
attention interruption 

causing 21 
effect of mode setting 30 

automatic 
IPL 6 
save function of CMS editor 63 

AUTOREAD operand of CMS SET command, 
display terminals 341 

auxiliary control files 259 
preferred 260 

auxiliary processing routine, receiving 
control during I/O operation 134 

AUXPROC option, of FILEDEF command 134 
AUXxxxx filetype 

auxiliary control files 259 
usage in CMS 47 

B 
backspace 

characters 

batch 

changing in file being edited 78 
deleted in user input area 350 
effect of image setting 78 
entering on display terminal 349 

facility (§~~ CMS batch facility) 
jobs for CMS batch facility 227 

non-CMS users 236 
processing, in CMS 227 

batch jobs 
purging 233 
reordering 233 
restarting 233 

BDAM, access method, CMS support 130 
BEGIN command, to return to virtual machine 
environment 18 

beginning 
tracing 217 
virtual machine execution 18 

386 IBM VM/370 CMS User's Guide 

blanks 
as delimiters, on EDIT subcommands 64 
in character strings changed with CHANGE 

subcommand 69 
used on OVERLAY subcommand 70 

blip, characters, setting 28 
BLeCK option, of FILEDEF command 133 
BLP (§~~ bypass label processing) 
(Jl~H~=~~l! ) 

books 
from DOS/VS source statement libraries, 
copying 161 

from DOS/VSE source statement libraries, 
copying (Jl~~=~X8) 161 

BOTTOM subcommand, moving current line 
pcinter to end of file 66 

BPAM access method, CMS support 130 
branching in EXEC procedure 

&GOTO control statement 277 
&SKIP control statement 279 
based on &IF control statement 276 

BREAK subcommand 4 setting program 
breakpoints 213 

breakpoints, setting 213 
BSAM access method, CMS support 130 
buffers, used by FSCB 245 
BUFSP option 

of DLBL command 198 
in CMS/DOS 190 

bypass latel processing (Jl~~=~X8) 122 

C 
calculating storage available in your 
virtual machine 177 

canceling 
changes made during edit session 63 
DLBL definitions 160 
FILEDEF definitions 134 
verification of changes made by editor 

69 
card punch 

used to send jobs to eMS batch facility 
228 

using in EXEC procedure 296 
card reader 

restriction on use in job for CMS batch 
facility 232 

spooling punch or printer files to 115 
cards 

used as input to CMS batch facility 
228,237 

/* as end-of-file indicator 229 
CASE subcommand, usage 76 
CAT option of DLBL command 198 

identifying catalogs 201 
in CMS/DOS 190,193 



Pg~ of GC2~1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

cataloged procedures, OS, equivalent in CMS 
128 

causing breaks in text (~1!8-~!~) 324.11 
CAW (channel address word), displaying, 

with DISPLAY command 220 
CHANGE 

command, changing hold status on spool 
files 116 

subcommand 
global changes 71 
how to use 69 
using in edit macros 316 
using on display terminal 346 

changing 
characteristics of spool files 115 
characteristics of unit record devices 

113 
file identifier, on SAVE subcommand 85 
filemode numbers 55 
file mode of file, FMODE subcommand 85 
lines in file being edited 69 

that contain backspace characters 78 
multiple occurrences of character string 
in file 71 

changing output representation of a 
character (~1!8-XX~) 324.13 

channel address word (see CAW (channel 
address word» ---

channel status word (see CSW (channel 
status word» 

character, strings, changing 69 
characters 

altering 
with ALTER subcommand 70 
with CHANGE subcommand 69 

deleting from line 6 
special 

defining translate table for entering 
30 

displaying on display terminal 350 
entering on display terminal 349 

translated to uppercase, in edit macros 
311 

valid in CMS file identifiers 43 
valid in CMS file identifiers (~74~=XX~) 

44 
CLASS, operand of SPOOL command 113 
classes 

CP command privilege 333 
of CP spool files 113 

clearing 
console stack 

at top or end of file 313 
for edit macro execution 313 
in EXEC procedure 293 
issuing message after 313 

DLBL definitions 160 
FILEDEF definitions 134 
job catalogs ,201 
job catalogs in CMS/DOS 193 

closing 
CMS files, after reading or writing 248 
virtual card punch l after using &PUNCH 
control statement 296 

virtual unit record devices 250 
clusters, VSAM, defining and deleting 206 
CMS 

operand of DLBL command 160 
saved system name 223 

CMS (Conversational Monitor system) 
basic description 3 
commands (~~~ CMS commands) 
DOS/VS simulation 151 
DOS/VS! simulation (~1!8-XX8) 151 
file system 43 
file system commands, samples 354 
files (~files, CMS) 
loading into your virtual machine 6 
OS simulation 127 

CMS batch facility 
control cards 227 

/* 229 
/JOE 228 
/SET 229 

controlling spool files 231 
description 227 
housekeeping done after executing job 

230 
how jobs are processed 230 
jobs for non-CMS users 236 
using EXEC procedure to submit jobs 234 

CMS commands 
executing 

from programs 241 
in edit macros 312 
in !XEC procedure 299 

for tape handling 119 
general information 4 
nucleus-resident 58 
stacking in EXEC procedure 291 
summary 328 
that execute in transient area 58 
used in CMS/DOS (~~~ CMS/DOS co.mands) 
used with OS data sets 129 
using EXEC procedure to modify 302 
valid in edit macros 312 

Index 387 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

CMS editor 
environment 19 
format of 3270 display screen 345 
how to use 61 
invoking 61 

in EXEC procedure 291 
line mode on display terminal 348 
sample terminal session 354 
using on display terminal 344 

CMS environment 18 
CMS EXEC file 98 

format 98 
modifying 100 
sorting 99 

CMS files (§~~ files) 
CMS macro instructions 

examples 249 
usage 243 

CMS subset 
environment 19,84 
using 90 
using to test EXEC procedure 308 

CMSAMS, saved system name 225 
CMS/DOS 

commands 
ASSGN 156 
ASSGN (~1!§=!!§) 156.1 
DOSLIB 175 
DOSLKED 172 
DSERV 163 
entering 21 
ESERV 163 
FETCH 175 
LISTIO 158 
PSERV 162 
RSERV 162 
sample terminal session 369 
SSERV 161 
summary 154 

environment 21 
entering 151 

program development using 151 
relationship to CMS and to DOS/VS 151 
relationship to CMS and to DOS/VSE 
(~1!!!=!!!! ) 1 51 

restrictions on e~ecuting OS programs 
152 

CMSDOS, saved system name 225 
CMSLIB, ddname used to identify OS macro 
libraries 141 

CMSLIB MACLIB 140,169,243 
CMSSEG, saved system name 225 
CMSUT1 file~ CMS commands that create 50 
CMSVSAM, saved system name 225 

388 IBM VM/370 CMS User's Guide 

CNTRL filetype 
control files 258 
usage in CMS 47 

command 
defaults 25 
environments 17 
how to enter 3 
language 3 

CMS 4 
CP 3 

lines, how scanned in CMS 240 
comments 

in EXEC procedure 305 
in HELP text files (21!§=!!§) 324.7 

communicating 
with CMS and CP during editing session 

84 
with VM/370 3 

COMP 
operand of MACLIB command 

usage 139 
usage in CMS/DOS 168 

COMPARE command, comparing contents of CMS 
files 39 

comparing, variable symbols in EXEC 
procedure 105,276 

compilers, supported in CMS 4 
components, of VM/370 3 
compressing 

DOSLIB files 175 
MACLIBs 139 

in CMS/DOS 168 
CONCAT option, of FILEDEF command, example 

141 
conditional execution. &LOOP control 
statement 280 

conditionally displaying text (21!§=!!§) 
324.8 

console 
log 

creating disk file from 342 
printing 342 
produced by CMS batch facility 233 

output, spooling for display terminal 
342 

stack 
cleared in case of error during edit 

macro execution 314 
clearing 293 
clearing for edit macro execution 

313 
using in EXEC procedure 289 
using to write edit macros 311 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

CONT 
operand of SPOOL command 114 

using to spool virtual punch in EXEC 
procedure 297 

continuation character, how to enter in 
column 72 79 

continuous spooling 114 
control cards, for CMS batch facility (§~~ 

CMS batch facility control cards) 
controlling 

CMS loader 147 
execution of EXEC Brocedure, summary of 
control statements 103 

intensity of the redisplay of user input 
(.21!!8-!!!!l 28 

converting 
decimal values to hexadecimal, in EXEC 
procedure 270 

fixed-length files to variable-length 
format 75 

hexadecimal values to decimal, in EXEC 
procedure 270 

CONWAIT function 
example 295 
using to clear console stack 293 

COpy 
files 

adding to MACLIB 138 
adding to MACLIB, in CMS/DOS 166 

filetype 
usage in CMS 47 
usage in CMS/DOS 49 

function, on display terminals 342 
operand of SPOOL command 114 

COPYFILE command 
changing filemode numbers 55 
changing record format of file 75 
copying files from one virtual disk to 
another 32 

creating small files from large one 89 
copying 

books from DOS/VS source statement 
libraries 161 

books from DOS/VSE source statement 
libraries (.21!!§=!!§) 161 

contents of display screen 342 
DOS files into CMS files 155 
files 

from one device to another 118 
from tape to disk 122 

lines in CMS file 73 
macros from DOS/VS libraries to add to 

CMS MACLIB 165 
macros from DOS/VSE libraries to add to 

CMS MACLIB (.21!!§=!!§) 165 
members of MACLIBs 139,168 
modules from DOS/VS relocatable 
libraries 162 

modules from DOS/VSE relocatable 
libraries (.21!!~=!X8) 162 

OS data sets into CMS files 135 
parts of CMS file, with GETFILE 

subcommand 73 
spool files 114 
VSAM data sets 208 

into CMS files 208 
copying modules from DOS library or SYSIN 
tapes (.21!!~=!!§) 156 

core image libraries 
CMS (§~~ DOSLIB files) 
DOS/VS, using in CMS/DOS 164 
DOS/VSE, using in CMS/DOS (~1!!~=!!~) 

164 
correcting, lines as you enter them 6 
counters, using in EXEC procedure 280 
CP (control program) 

basic description 3 
commands, general information 3 
privilege classes 333 
spooling facilities 113 

CP commands 19 
executing from programs 242 
summary 334 
used for debugging 220 

compared with DEBUG subcommands 222 
using in EXEC procedure 267 
using in job for CMS batch facility 232 

CP environment, entering 17 
CP READ status, on display screen 340 
creating 

CMS EXEC file 98 
CMS files 31 

from DOS disks and 
from DOS libraries 
from OS data sets 
in EXEC procedure 

CMS macro libraries 
example 137 

tapes 
155 

134,136 
296 

example in CMS/DOS 165 

156 

from DOS macro libraries 165 
DOSLIB files 174 
file system control block (FSCB) 244 
files with CMS editor 61 
HELP text files (~1.!l§=!!~) 324 .• 4 
modules from DOS library or SYSIN tapes 
(~1!!§=!X8) 156 

one spool file from many files being 
printed or punched 114 

program modules 149 
programs, sample terminal session 365 
reserved filetypes 303 
user-written commands 149 
user-written edit macros 311 

CSW (channel status word), displaying, with 
DISPLAY command 220 

current line pointer. 
displaying when verification is off 86 
how to use 65 
position on display terminal screen 344 
positioning 68 
subcommands for display terminals 347 

Index 389 



Pg. of GC20-1819~2 Rev ftarch 30~ 1979 by Supp SD23-9024-1 for 5748-XX8 

cylinders 
extents 

D 

entering in CftS/DOS 192 
specifying for OS disks 198 

on 2314/2319 disk 199 
on 3330 disk 199 
on 3340 ftodel 35 disk 199 
on 3340 Model 70 disk 199 

data control block (DCB), relationship to 
FILEDEF command 131 

data sets, OS, using in CftS 129 
ddna.es 

in OS VSAft programs, restricted to 7 
characters in CftS 197 

specifying with FILEDEF command, 131 
used by assembler 143 
used with assembler 172 

DDR command, used with OS data sets 129 
DEBUG 

cOllmand 20 
to enter debug environment 212 

sub commands 
compared with CP debugging commands 

222 
entering 20 
monitoring program execution 213 
relationship to CP commands for 

debugging 220 
summary 215 

debug environment 20 
debugging 

commands and subcommands used in 
relationship 220 
summary of differences 222 

EXEC procedure 308 
nonrelocatable ftODULE files 221 
programs 211 

summary of commands 37 
using CP commands 219 

decimal, and hexadecimal conversion in EXEC 
procedure 270 

de-editing 
DOS/VS macros 163 
DOS/VSE macros (~l.9.!!=!!~J \ 163 

default 
command 25 
DLBL definition 160 
FILEDEF definition 133 
for filetypes for CftS editor, 
establishing in EXEC procedure 303 

logical line editing symbols 6 
setting up in EXEC procedure 273 

390 IBft Vft/370 CftS User's Guide 

DEFINE 
access method services function 206 
command 

defining temporary disk 12 
defining virtual storage 223 
to increase virtual storage size 89 

subcommand, defining symbols for 
debugging session 214 

defining 
logical line editing symbols 8 
program input and outFut files in CftS 

145 
space for VSAft files 186,202 

in eMS/DOS 194 
temporary disks 12 
translate tables 30 
virtual printer for trace information 

218 
virtual storage 223 
VSAft files 

for AftSERV 197 
for AftSERV, in CftS/DOS 190 

VSAft master catalog 199 
CftS/DOS 191 

DEL 
operand 

of MACLIB command 138 
of MACLIB command, in CftS/DOS 168 

DELETE 
access method services function 207 
subcommand, how to use 72 

deleting 
lines in file being edited 72 

to a particular line 72 
members of ftACLIB 

exallple 138 
exallple in CftS/DOS 168 

VSAft clusters and catalogs 207 
delimiters, on EDIT subcommand lines 64 
density of tapes, when to specify 123 
DESBUF function 

example 295 
using to clear console stack 293 

DETACH, command, after R!LEASE command 15 
detaching 

disks 15 
without releasing them 57 

device types 
assignments in eftS/DOS 156 
assignments in eMS/DOS (574~=!X8) 156.1 
specifying with FILED!F command 132 

devices, disks, cylinders and tracks 199 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

DIAGNOSE instruction, executing CP commands 
242 

DIAL command 26 
DIRECT, filetype, usage in CMS 47 
DISCONN, command 26 
disconnecting, your terminal from your 
virtual machine 26 

discontiguous, saved systems 223 
DISK 

command 
LOAD operand, restriction in job for 

CMS batch facility 232 
using 117 

disk determination 
default for reading files 

commands for which you must specify 
file mode 53 

commands that search all accessed 
disks 52 

commands that search only A-disk 53 
commands that search only A-disk and 
its extensions 53 

default for writing files 
commands for which you must specify 
file mode 54 . 

commands that write files onto your 
A-disk 54 

commands that write output files to 
read/write disk 54 

filemode selection by editor 63 
disks 

defined in VM/370 directory entry 11 
defining temporary disks for terminal 
session 12 

definition 11 
DOS, accessing 154 
full, during editing session 90 
linking 13 
listing information about 40 
master file directory 56 
OS 

determining extents for VSAM 198 
using in CMS 129 

OS and DOS 
compatibility 186 
formatting with IBCDASDI program 189 
used with VSAM data sets 185 

providing for CMS batch virtual machine 
231 

querying status of 56 
read-only, exporting VSAM files from 

208 

search order 14,51 
sharing 13 
VSAM, accessing 185 
writing files on, how editor selects 
disk 63 

DISP MOD option, of FILEDEF command 134 
DISPLAY command, displaying storage and 
registers while debugging 219 

display screen, status ccnditions 340 
display terminals 

changing editor verification setting 
346 

controlling screen, during edit session 
346 

display mode 348 
entering backspace characters 349 
entering commands 339 
example of display screen 343 
how editor formats screen 345 
line mode 348 
signaling interruptions 343 
text feature 352 
using CMS editor 344 
using tab characters 349 

displaying 
eMS files 34 

in EXEC procedure 287 
column numbers in file being edited, 
using $COL edit macro 324 

command information (5748-XX8) 324.1 
data lines at terminal-------

in EXEC procedure 286 
WRTERM macro 250 

directories of DOS/VS libraries 163 
directories of DOS/VSE libraries 
(21~~=!!~) 163 

DLBL definitions 160 
FILEDEF definitions 145 
general registers, in debug environment 

212 
lines at terminal, in EXEC procedure 

106 
listings from access method services 

183 
particular columns of file, during edit 
session 69 

prompting messages in EXEC procedure 
284 

PSW (program status word), during 
program execution 216 

screensful of data 347 
short form of editor error message 86 
special characters on display terminal 

350 

Index 391 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

timing information in EXEC procedure 
108 

trace information on terminal 218 
virtual storage during program execution 

219 
disposition, of spool files 113 
DLBL 

command 
assigning filemode numbers 56 
default file definition 160 
defining OS data sets 129 
entering before program execution 

177 
EXTENT option, examples 204 
how to use in CMS/DOS 159 
identifying VSAM data sets 197 
identifying VSAM data sets in CMS/DOS 

190 
relationship to ASSGN command 159 
specifying extents 203 
specifying extents in CMS/DOS 195 

DL/I programs in CMS/DOS 152 
DMS, prefixing error messages in EXEC 

procedure 307 
documenting, EXEC procedure 305 
DOS, disks, compatibility with OS disks 

186 
DOS (Disk Operating System) 

files 
identifying in DLBL command 159 
restrictions on reading in CMS 155 
using in CMS 154 

macros supported in CMS 170 
program development, summary of commands 

36 
simulation in CMS 151 

DOSLIB 
command, compressing DOSLIBs 175 
files 174 

executing phases from 176 
size considerations 175 

filetype, usage in CMS/DOS 49 
DOSLKED command, link-editing programs in 

CMS/DOS 172 
DOSLNK 

files, using in CMS/DOS 173 
filetype 

usage in CMS/DOS 49 
used by DOSLKED command 172 

DOSMACRO MACLIB 140,169 
DOSPART operand, of CMS SET command, 

example 178 

392 IBM VM/370 CMS User's Guide 

DOS/VS system residence volume, using in 
CMS/DOS 151 

DOS/VSE system residence volume, using in 
CMS/DOS (21~~=!X8) 151 

drawing boxes (21~8-!!~) 324.6 
DSERV command, examples 163 
DSN operand of DLBL command 159 
DSORG option, of FILEDEF command, when to 
specify 133 

DSTRING subcommand 
example 72 
using in edit macros 316 

dummy data set, specifying with FILEDEF 
command 132 

DUMP 
command, example 221 
subcommand, example 221 

dumping, virtual storage 221 
duplicating 

filenames or filetypes 44 
lines in CMS file 73 

dynamic loading of TXTLIE members 148 

E 
E EXEC 302 
EDIT command 

creating CMS files 31 
entering edit environment 19 
executing in EXEC procedure 291 
invoking CMS editor 61 

edit environment 19 
edit macros 

$COL 324 
$CONT 316 
$DOUBLE 318 
$DUP 73 
$MACROS 320 
$MARK 321 

entering continuation character in 
column 72 80 

$MOVE 73 
$POINT 323 
CMS commands valid in 312 
distributed with CMS 317 
effect of IMPEX setting 29 
examples 312 
executing 311 
how to write 311 
sample 318 
using variable-length EXEC files 315 

edit mode, returning from input mode 62 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

EDIT subcommands 
delimiters 64 
entering on display terminals 344 
executing in edit macros 314 
stacking in console stack 291 
summary 91 

editing 
CMS files 61 
lines as you enter them from terminal 6 
on display terminal 344 

in EXEC procedure 349 
session 61 

end of file 
executing edit macros 313 
indicating for input stream to batch 
virtual machine 237 

indicating on jobs sent to batch virtual 
machine 229 

indication in file being edited 66 
end-of-tape processing (21~~=!!~) 122 
end-of-volume processing (21~~=!!~) 122 
entering 

APL characters on display terminal 350 
CMS commands, in CMS subset environment 

19 
CMS environment 18 
CMS/DOS environment 21,151 
commands 3 

more than one command on line 7 
on display terminals 339 
using synonyms 29 
while command or program is executing 

22 
continuation character in column 72 79 
CP commands 

from CMS command environment 18 
from edit environment 84 

CP environment 
after program check 220 
during program execution 23 
from CMS environment 17 
from edit mode 84 

debug environment 
after program abend 212 
via breakpoint 20,213 
via DEBUG command 20 
via EXTERNAL command 20 
via external interruption 217 

DEBUG subcommands 20 
DLBL definitions, in EXEC procedure 179 
edit environment 19 
EDIT subcommands 64 

on display terminal 344 

extent information when defining VSAM 
master catalog 199 

file identifications 
on DLBL command 159 
on FILEDEF command 132 
on LISTDS command 154 

FILEDEF definitions, in EXEC procedure 
150 

Immediate commands 22 
on display terminal 343 

lines at terminal, during program 
execution 250 

logical line editing symbols as data 8 
multivolume VSAM extents 204 

in CMS/DOS 195 
null lines 3 
special characters 

using ALTER subcommand 70 
using translate tatle 30 

tab characters on disFlay terminal 349 
VSAM extent information, in CMS/DOS 191 

entry, linkage, for assembler language 
programs in CMS 240 

ENTRY, OS linkage editor control statement, 
supported by TXTLIB command 146 

entry pOint 
displayed following FETCH command 176 
for program execution, determining 148 
specifying, using OS ENTRY statement 

146 
specifying for program execution 144 

environments 
VM/370 17 

summary 24 
EOF, token stacked when edit macro executed 
at end of file 313 

EOF: message 66 
ERASE, command 33 
erasing 

CMS files 33 
after reading them 55 
to clear disk space during editing 
session 90 

error messages 
controlling whether you receive them 27 
displayed by CMS editor 65 

short form 86 
displaying in red 27 
in EXEC procedure 306 

errors 
during CMS commands, handling in EXEC 
procedure 300 

Index 393 



Pg. of GC20-1819-2 Rev March 30. 1979 by Supp SD23-9024-1 for 5748-XX8 

during EXEC processing 306 
during standard label processing 
(~l!!~=!!!D 122 

handling in EXEC procedure 301 
in edit macros 314 

ESERV 
command, examples 163 
filetype 163 

usage in CMS/DOS 49 
examining, output listings from access 

method services 183 
EXEC 

built-in functions, summary 103 
command 

using in EXEC procedure 267 
when to use 96 

control statements, summary 109 
files 

changing record format 96 
differences between fixed-length and 
variable-length 287,292 

record format 96 
stacking 294 

filetype 
for edit macros 311 
usage ~n CMS 47 
usage 1n CMS/DOS 49 

interpreter, how lines are processed 
309 

procedures 95 
building 267 
debugging 308 
executable statements 267 
executing from programs 242 
nesting 282 
opening and closing CMS files 248 
setting program function keys 340 
submitting jobs to CMS batch facility 

234 
testing in CMS subset 308 
to execute DOS programs 179 
to execute IBCDASDI disk 
initialization program 189,375 

to execute OS programs 149 
used by non-CMS users to submit batch 

jobs 236 
using to submit jobs to CMS batch 
facility 228 

with same names as CMS commands 29 
processing errors 306 
special variables, summary 112 

executable statements, in EXEC procedure 
267 

394 IBM VM/370 CMS User's Guide 

executing 
access method services, in EXEC 
procedure 209 

CMS commands 
from programs 241 
in edit macros 312 
in EXEC procedure 299 

CMS EXECs 99 
commands, using program function keys 

339 
CP commands 

from programs 242 
in EXEC procedure 267 

DOS programs 
sample terminal session 373 
setting UPSI byte 178 
specifying virtual partition size 

178 
using EXEC procedure 179 

DOS/VS procedures 162 
DOS/VSE procedures (~1!!~=!!§) 162 
edit macros 311 

verifying completion 315 
EDIT subcommands 

in EXEC procedure 292 
using program function keys 340 

EXEC procedure 58,95,96 
from programs 242 
in jobs for CMS hatch facility 234 

executable statements in EXEC procedure 
267 

Immediate commands, in EXEC procedure 
287 

MODULE files 58.149 
from programs 242 

OS programs 144 
restrictions 144 
using EXEC procedure 149 

PROFILE EXEC 98 
programs 

in CMS/DOS 175 
sample terminal session 368 

TEXT files 144 
VSAM programs 181 

execution 
conditional, using &IF control statement 

276 
paths in EXEC procedure 275 

execution summary of EXEC procedure 
description 107 
example when 8CONTROL ALL is in effect 

308 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

exit linkage, for assembler language 
programs in CMS 240 

exiting 
from EXEC procedure 104,283 

based on &RETCODE special variable 
301 

EXPORT, access method services function 
208 

exporting, VSAM data sets 208 
extensions, read-only, using 51 
EXTENT option 

of DLBL command 198 
in CMS/DOS 190 

extents 
determining for VSAM functions 188 
for VSAM files 

entering in CMS/DOS 191 
multiple 203 
multiple in CMS/DOS 195 

EXTERNAL, command, interrupting program 
execution 217 

external references, how CMS loader 
resolves 147 

extracting, members of MACLIBs 139,168 

F 
FETCH command, executing programs in 

CMS/DOS 175 
fetching, core image phases for execution 
in CMS/DOS 175 

FIFO, first-in first-out stacking, in EXEC 
procedure 290 

file 
definitions, making with FILEDEF command 

131 
directories, CMS 56 
format, specifying on FILEDEF command 

133 
identifier 

assigned by FILEDEF command 132 
changing with SAVE sUbcommand 85 
CMS, rules for assigning 43 
CMS, rules for assigning (~1!8-!!~) 

44 
coded as asterisk (*) 44 
coded as asterisk (*) (~1~~=!!~) 

44,.1 
coded as equal sign (=) 45 
default assigned by DLBL command 160 
specifying for FSCB 244 
used in FSCB 244 

size, relationship to record length 75 
system 43 

macro instructions 244 

FILE subcommand, writing file onto disk 63 
FILED!F 

command 
assigning filemode nu.bers 56 
default definition 132 
guidelines for entering 131 
how to use 131 
used to identify OS macro libraries 

140 
used with OS data sets 129 

commands, issued by asse.bler, 
overriding 172 

file.ode 
in file identifier 43 
letters 44 

assigning 51 
when to specify, reading files 52 
when to specify, writing files 54 

nUBbers 
descriptions 54 
when to specify 55 
4 130 

filename 43 
for edit macros 311 
for HELP text files (~1~8-XX8) 324.3 

files (§~~ ~!§Q DOS files, OS data sets) 
CMS 

erasing 33 
format 43 
identifiers 43 
identifying on DLBL command 160 
maximum number of records 43 
renaming 33 
too large to edit, what to do 89 

manipulating with CftS macro instructions 
244 

that are erased after they are read 55 
filetype 

created by assembler and language 
processors 48 

for HELP text files (~1!8-XX8) 324.3 
for workfiles 50 
in file identifiers 43 
reserved 45 

establishing your own 303 
used by CMS commands 46 
used by language prccessors 46 

FIND, subcommand, how to use 66 
first-in first-out stacking, in EXEC 
procedure 290 

fixed-length, EXEC files, difference 
between &STACK and &BEGST1CK 292 

fixed-length files, converting to 
variable-length 75 

Index 395 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

FMODE 
subcommand 

examples 85 
used to change filemode numbers 56 

FOR, operand of SPOOL command, usage 114 
FORMAT command, formatting CMS disk 12 
format of disk files, specifying on FILEDEF 

command 133 
format words 

.BX (~1!§=!!§) 324.6 

.CM (~1~§=!!§) 324.7 

.CS (~1!§=!!§) 324.8 

.FO (~1~§=!!§) 324.8 
• IL (~l!§=!!§J 324.8 
.IN (~1~§=!!§) 324.8 
.OF (~1~§=!!§) 324.10 
• SP (~l!§=!!§J 324. 11 
• TR (~1~§=!!§) 324. 13 
functions (~1~8-!!§) 324.4 
summary (~1~§=!!§) 324.5 

format-mode processing (~1~§=!!§) 324.8 
formatting 

CMS disks, example 12 
FB-512 disks (~1~§=!!§) 13 
numbered lists (~1~§=!!§) 324.11 
OS and DOS disks, example 189 

forming, tokens of words in EXEC procedure 
267 

free space on OS and DOS disks, determining 
for use with VSAM 188 

FREELOWE 177 
FRERESPG 177 
FSCB, macro, usage 244 
FSCB (file system control block) 

creating 244 
fields defined 244 
modifying for read/write operations 245 
usage 244 
using with I/O macros 245 

FSCBD macro, generating DSECT for FSCB 246 
FSCLOSE macro, example 248 
FSERASE macro, usage 248 
FSREAD macro, examples 245 
FSWRITE macro, examples 245 
full disk 56 

during editing session 90 

G 
GEN operand 

of MACLIB command 
usage 137 
usage in CMS/DOS 165 

general registers 
conventions used in CMS 239 
displaying in debug environment 212 
displaying with DISPLAY command 219 
modifying during program execution 212 

GENMOD command 
creating user-written CMS command 149 
regenerating existing MODULEs 221 

GETFILE subcommand 
how to use 73 
used to create small files from large 

one '89 
global changes, using EDIT subcommands 71 

396 IBM. VM/370 CMS User's Guide 

GLOBAL command 
used to identify nOSLIEs 174 
used to identify macrc libraries 137 

in CMS/DOS 164 
, used to identify OS macro libraries 

129,140 
used to identify TXTLIBs 145 

GO subcommand, to resume program execution 
213 

H 
halting 

program execution 22 
screen displays 344 
terminal displays 22 

in EXEC procedure 287 
HELP command, usage (~1!§=!!§) 5 
HELP facility 

file naming conventions (21~§=!!§) 
324.3 

format words (21!§=!!§) 324.4 
HELPCMS filetype, usage in CMS (~1!8-!!§) 

47 
HELPCP filetype, usage in CMS (~1!§=!!§) 

47 
HELPDEBU filetype, usage in CMS (~1!§=!X8) 

47 
HELPEDIT filetype, usage in CMS (2148=!!§) 

47 
HELPMENU filetype, usage in CMS (21!§=!!§) 

47 
HELPMSG filetype, usage in CMS (21~§=!!§) 

47 
hexadecimal, conversion in EXEC procedure 

270 
highlighting of messages on display 
terminal (21~§=!!~) 340 

highlighting the redisplay of user input 
(11!!§=!!§) 28 

HILIGHT operand of CP TERMINAL command 
(11~§=!!§) 28 

HOLD, operand of SPOOL command 114 
hold status, placing virtual output devices 
in during debugging 211 

holding 
display on display terminal 341 
spool files to keep them from being 

processed 114 
HOLDING status, on display screen 341 
HT Immediate command 22 

HX 

I 

executing in EXEC procedure 287 

DEBUG subcommand 213 
Immediate command 22 

effect in CMS subset 20 
effect on DLBL definitions 160 
effect on FILEDEF definitions 134 

IBCDASDI disk initialization program 
formatting temporary disks 

example 189,375 
ID card, to submit jobs to CMS batch 
facility 228 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

identifying 
macro libraries to search 137 

in CMS/DOS 164 
multivolume VSAM files 204 

in CMS/DOS 196 
VSAM master catalog 199 
VSAM master catalog in CMS/DOS 191 

IEBPTPCH utility program, creating CMS 
files from tapes created by 122 

IEBUPDTE utility program, creating CMS 
files from tapes created by 122 

IEHMOVE utility program, creating CMS files 
from tapes created by 123 

IJSYSCL, defining in CMS/DOS 159 
IJSYSCT 

defining 199 
defining in CMS/DOS 190 

IJSYSRL, defining in CMS/DOS 159 
IJSYSSL, defining in CMS/DOS 159 
IJSYSUC 

defining 201 
defining in CMS/DOS 193 

image setting, effect on tab characters 76 
IMAGE subcommand, using in edit macros 316 
Immediate commands 

entering, on display terminal 343 
summary 327 

IMPCP operand, of CMS SET command, setting 
18 

implied 
CP function 18 

controlling 29 
EXEC function 97 

. controlling 29 
IMPORT, access method services function 

208 
importing, VSAM data sets 208 
INCLUDE 

command, entering after LOAD command 
147 

DOS/VS linkage editor control statement, 
specifying in DOSLNK file 173 

DOS/VSE linkage editor control 
statement, specifying in DOSLNK file 
(~1~8-!!!!) 173 

increasing, virtual machine storage 89 
indenting text (~1~!!=!!~) 324.8 
INPUT 

operand, of CMS SET command, defining 
input translate table 30 

subcommand 
inserting single line into file 72 
stacking in EXEC procedure 292 
using in edit macros 315 

input and output files, VSAM, defining 197 
input data 

left margin while using editor 77 
right margin while using editor 79 
translated to uppercase by editor 62 

input mode 19,62 
entered after REPLACE subcommand 72 
on display terminal 344 
on display terminal in line mode 348 
returning to edit mode, in edit macros 

316 

input stack, clearing 293 
inserting 

lines in file being edited 72 
using line-number editing 82 

instructions 
calculating virtual storage address 212 
tracing 217 

INTDK utility program (~1~!!=!!~) 13 
intensity, highlighted on display terminal 
(~148=11~) 340 

Interactive Problem Control System (§~~ 
IPCS (Interactive Problem Control System» 

interrupting 
execution of edit macros 314 
program execution 21 

with breakpoint 213 
interruptions 

CMS macros for handling 251 
external 217 
signaling on display terminal 343 

invoking 
access method services 182 
Cl!S editor 61 
EXEC procedure 96 
VSAPL en display terminal 350 

I/O 
device assignments in Cl!S/DOS 156 

manipulating 157 
device assignments in CMS/DOS (~74~=!!!!) 

156.1 
macros used in CMS programs 244 

IPCS (Interactive Problem Centrol System) 
3 

IPL command 
entering CMS environment 6,18 
loading alternate saved segment 225 

IS AM access method 

J 

CMS restriction 131 
CMS/DOS restriction 154 

jot catalog 
using 201 
using in CMS/DOS 193 

jot control language, equivalent in CMS 
128 

JOECAT, Cl!S equivalent 128 
jobname 

for jot sent to CMS batch facility 
specifying 228 
used to identify spool files 233 

jots, for CMS batch facility, submitting 
227 

Index 397 



Pg_ of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

L 
label off processing (~1!~=!!~) 122 
LABELDEF command, use in tape label 

processing (~1!~=!!~) 122 
labels 

DOS 'SAM disks, determining for AMSER' 
191 

in EXEC procedure 103 
how &GOTO searches for 278 
rules for forming 275 
terminating loop 280 

OS 'SA~ disks, determining for AMSER' 
199 

tape 121 
using 'SAM tapes 204 
using 'SAM tapes in CMS/DOS 197 

writing on CMS disks 12 
LABOFF (§~~ label off processing) 
(~1!~=!!~) 

large files, splitting into smaller files 
89 

LDRTBLS operand, of CMS SET command, usage 
223 

leaving 
CMS subset environment 20 
CMS/DOS environment 21 
debug environment 20,213 
edit environment 20,63 
input mode 62 

length, of lines displayed at your 
terminal, controlling 28 

libraries 
CMS (§~~ 2!§~ DOSLIB, MACLIB, TXTLIB) 
CMS 136 

distributed with CMS system 140,169 
macro libraries (§~~ macro 
libraries, CMS) 

TEXT libraries 145 
DOS/'S 

identifying in CMS/DOS 159 
using directories 163 
using in CMS/DOS 160 

DOS/'S core image, executing phases from 
176 

DOS/'S procedure, copying procedures 
162 

DOS/'S relocatable 
copying modules from 162 
link-editing modules from 174 

DOS/'S source statement, using in CMS 
161 

DOS/'SE 
identifying in CMS/DOS (~1!~=!!~) 

159 
using directories (~1!~=!!~) 163 
using in CMS/DOS (~1!~=!!~) 160 

DOS/'SE core image, executing phases 
from (~1!~=!!~) 116 

DOS/'SE procedure, copying procedures 
(~1!!~=!!~) 162 

DOS/'SE relocatable 
copying modules from (~1!~=!!~) 162 
link-editing modules from (~1!~=!!~) 

114 
DOS/'SE source statement, using in CMS 
(~1!!~=!!~) 161 

OS, using in CMS 140 

398 IBM 'M/370 CMS User's Guide 

LIFO 
last-in first-out stacking 

in edit macros 313 
in EXEC procedure 290 

line 
mode, of CMS editor 348 
pointer (§~~ current line pointer) 

LINEDIT macro, executing CP commands 242 
LINEMODE subcommand, beginning line-number 
editing 81 

line-number editing 81 
sample terminal sessicn 362 

lines, deleting at terminal before entering 
7 

LINK command 
format in job for CMS batch facility 

232 
linking to other user's disks 13 

linkage conventions, for ~rograms executing 
in CMS 240 

linkage editor 
DOS/'S 

invoking in CMS/DOS 112 
specifying control statements 113 

DOS/'SE 
invoking in CMS/DOS (~1!~=!!~) 172 
specifying control statements 

(~1.!! 8-!!~ ) 113 
maps~ using when debugging 211 
OS, control statements supported by 

TXTLIE command \ 145 
link-editing 

modules from DOS/'S relocatable 
libraries 114 

modules from DOS/'SE relocatable 
libraries (~1!~=!X8) 174 

programs in CMS/DOS 112 
specifying linkage editor control 
statements 173 

TEXT files and TXTLIB members 146 
TEXT files in CMS/DOS 172 

examples 173 
linking 

to other users' disks 13 
to your own disks 13 

LISTCAT, access method s€rvices function, 
output 183 

LISTCRA, access method services function, 
output 183 

LISTDS command 
listing DOS files 154 
listing extents occupied by 'SAM files 

187 
listing free space extents 187 
used with OS data sets 129 

LISTING, assembler ddname, overriding 
default definition 143 

listing 
edit macros, with $MACROS edit .acro 

320 
information 

about CMS files 39,99 
about disks 40 
about DOS files 154 
about MAeLIB members 139,168 



Pg. of GC20-1819-2 Rev March 30. 1979 by Supp SD23-9024-1 for 5748-XX8 

about OS and DOS disks 187 
about OS' and DOS files 40 
about your terminal 38 
about your virtual machine 40 

logical unit assignments in CMS/DOS 158 
listing files 

created by AMSERV command 
changing filename 184 
printing 184 

created by assembler, output filemode 
143 

created by assembler and language 
processors 48 

created by ESERV command 163 
LISTING filetype 

created by AMSERV command 183 
usage in CMS 47 
usage in CMS/DOS 49 

LISTIO command, listing device assignments 
158 

literal values, using in EXEC 269 
LKEDIT filetype, usage in CMS 47 
LOAD, command, loading and executing TEXT 
files 144 

load map 
produced by LOAD and INCLUDE commands 

147 
using when debugging 211 

LOAD MAP file, created by CMS loader 147 
loader 

CMS 
description 146 
entry point determination 148 

control statements, summary 147 
tables 

effect of LOAD and INCLUDE commands 
147 

usage 223 
loader terminate (LDT) loader control 
statement, usage 145 

loading 
alternate saved segment on IPL command 

225 
CMS into your virtual machine 6 

specifying virtual device address 
224 

core image phases into storage for 
execution 175 

programs into storage, specifying 
storage locations 243 

TEXT files into storage 144 
TXTLlB members 

dynamically 148 
into storage 145 

LOADLlB filetype, usage in CMS 47 
LOADMOD command, to debug MODULE file 221 
LOCATE subcommand 

how to use 67 
using in edit macros 316 

locating 
lines in file being edited 67 

using line-number editing 82 
location, starting, for loading link-edited 

phases 176 
locking r terminal keyboard to wait for 

communication 30 
logging off VM/370 26 
logging on to VM/370 5,25 
logical 

character delete symbol 6 
escape symbol 8 
line delete symbol 7 
line editing symbols 6 

defining 8 
overriding 28 
overriding (~1!~=!!~) 28.1 
used with editor 62 

line end symbol (§~~ ~1§~ # logical 
line end symbol) 

line end symbol 7 
operators, used for ccmparisons in EXEC 
procedure 105 

record length of CMSfile. overriding 
editor defaults 74 

units 
assigning in CMS/DOS 156 
assigning in CMS/DOS (~1!~=!!~) 

156.1 
LOGOFF command 26 
LOGON command 25 

contacting VM/370 5 
LONG, subcommand. when to use 86 
loop 

during program execution, debugging 216 
in EXEC procedure 105 

based on number of arguments passed 
273 

using &LOOP control statement 279 
using counters 280 

lowercase letters 
suppressing translation to uppercase 76 
translated to uppercase by editor 62 

LRECL option 
of COPYFILE command, truncating records 
in file 74 

of EDIT command, when to use 74 
of FILEDEF command, when to specify 133 

Index 399 



Pg_ of GC20-1819-2 Rev March 30, 1979 by Supp SD2.3-9024-1 for 5748-XX8 

M 
MACLIB 

'command 
usage 137 
usage in CMS/DOS 164 

files 
adding MACRO files created by ESERV 

program 163 
moving to other files 140,169 
querying 137 
querying, in eMS/DOS 164 

filetype, usage in CMS 47 
MACRO 

files 
adding to MACLIB 138 
adding to MACLIB in CMS/DOS 167 
created by ESERV command 163 

filetype 
usage in CMS 47 
usage in CMS/DOS 49 

macro libraries 
CMS 136 

adding to 138 
creating 137 
deleting members of 138 
displaying information about members 
in 139 

distributed with CMS system 140,169 
replacing members of 138 
using in CMS/DOS 164 

DOS/VS assembler language, restriction 
on using in CMS/DOS 164 

DOS/VSE assembler language, restriction 
on using in CMS/DOS (~1~~=!!~) 164 

OS, identifying for use in CMS 140 
macros 

DOS/VS assembler language 
creating CMS MACLIB 372 
supported in CMS 170 

DOS/VSE assembler language 
creating CMS MACLIB (~1~~=!!~) 372 
supported in CMS (~1~~=!!~) 170 

OS, supported in CMS 142 
MAINHIGH 177 
MAP 

filetype 
created by DOSLKED command 175 
created by DSERV command 163 
created by MACLIB command 139,168 
usage in CMS 47 
usage in CMS/DOS 49 
written to A-disk 54 

operand 
of MACLIB command 139,168 

option of DOS/VS ACTION control 
statement, effect in CMS/DOS 175 

option of DOS/VSE ACTION control 
statement, effect in CMS/DOS (~1~~=!!~) 
175 

400 IBM VM/370 CMS User's, Guide 

maps 
created by DOS/VS linkage editor 175 
created by DOS/VSE linkage editor 
(.21~~=!!~) 175 

of eMS virtual storage 224 
margins 

setting left margin for input with 
editor 77 

setting right margin for input with 
editor 79 

master catalogs 
VSAM 

defining 199 
defining in CMS/DOS 191 
sharing 185 

master file directory 56 
maximum, number of records in CMS file 43 
MEMBER option 

CMS commands that have MEMBER aptian 
168 

of FILEDEF command 134 
to copy member of OS partitioned data 
set 135 

MEMO filetype 50 
MESSAGE command, using before logging on 

25 
messages 

controlling whether you receive them 26 
from CMS batch facility 230 
from CP during edit session, effect on 
display screen 346 

from editor, on display terminal 344 
to other virtual machine users 25 

minidisks (§!!~ s!§.Q disks) 
definition 11 
transporting to as system after using 
with CMS VSAM 187 

using with VSAM data sets 187 
EXPORT/IMPORT restriction 208 

mode 
edit and input 62 
setting for your terminal 22,30 
switching 17 

summary 24 
modifying 

CMS EXECs 100 
CMS files, examples of commands 33 
FSCB 245 
groups of CMS files 53 
registers during program execution 212 

MODULE 
files 

creating 149 
debugging 221 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

executing from programs 242 
generating, to execute in transient 
area 243 

modifying 221 
filetype, usage in CMS 48 

modules 
DOS/VS relocatable, copying into CMS 
files 162 

DOS/VSE relocatable, copying into CMS 
files (21~!!=!X8) 162 

MORE ••• status, on display screen 341 
MOVEFILE command 

copying os data sets 134 
copying tape files 122 
copying tape files (~1~§=!!§) 122 
extracting member of MACLIB 140,169 
moving labelled tapes (~1~§=!!§) 122 
reading files from virtual card reader 

118 
used with os data sets 129 

moving 
CMS files, examples of commands 33 
current line pointer 65 
lines in file being edited 73 

MULT option of DLBL command 198 
in CMS/DOS 190 

multiple 
extents for VSAM files 

specifying 203 
specifying in CMS/DOS 195 

output devices, restriction in CMS/DOS 
159 

updates 257 
variable symbols in token, examples 269 

multivolume VSAM extents 
specifying 204 
specifying in CMS/DOS 195 

N 
NAME, OS linkage editor control statement, 
supported by TXTLIB command 146 

naming 
CMS files 43 
CMS files (~1~§=!!§) 44 
user commands 58 

naming conventions for HELP text files 
(21~§=!!§) 324.3 

nesting 
&IF statements in EXEC procedure 277 
EXEC procedure 282 

return code passed 302 
NL (see no label processing) (~1~§=!!§) 
nnnnn-subcommand, examples 82 
no label processing (~1~§=!!§) 122 
NODISP option of EDIT command, using in 

EXEC procedure 349 
nonrelocatable modules, creating 149 
nonshared copy 

of CMS 224 
of saved system, obtaining during 

debugging 224 
nonstandard label processing (~1~~=!!§) 

122 

NOPROF option, of ACCESS command, 
suppressing execution of PROFILE EXEC 98 

NO! ACCEPTED status, on display screen 341 
NSL (§~~ nonstandard label processing) 
(]1~~=!!!l ) 

nucleus-resident CMS commands 58 
null 

o 

line 
after IPL 6 
at top of file 66 
entering to determine environment 17 
how to enter 3 
in EXEC procedure 267 
stacking in EXEC procedure 210,292 
testing for in EXEC procedure 285 
to resume program execution after 
attention interruption 22 

to return to edit mode from input 
mode 62 

variables in EXEC procedure 102 

object files 
created by assembler and language 
processors 48 

loading into storage 144 
offsetting text (~1~8-1!~) 324.10 
opening, CMS files 248 
options, for FILEDEF command 133 
OREER command, selecting files for 
processing 116 

origin, for debug environment, setting 214 
ORIGIN, subcommand, how to use 214 
OS 

access methods supported in CMS 130 
data sets 

copying into CMS files 134 
restrictions on reading in CMS 131 
using in CMS 129 

disks 
compatibility with DOS disks 186 
using in CMS 129 

linkage editor control statements, read 
by TXTLIB command 145 

macros supported in CMS 142 
partitioned data sets (§~~ partitioned 
data sets) 

program development 
sample terminal session 365 
summary of commands 35 

simulated data sets 130 
simulation in CMS 127 
utility programs, creating CMS files 

from tapes created by 122 

Index 401 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

OSMACRO MACLIB 140 r 169 
OSMACR01 MACLIB 140 r 169 
output 

files, produced by ASSEMBLE command 172 
from CMS batch facility 233 
from virtual console r spooling 342 

OUTPUT, operand r of CMS SET command, 
defining output translate table 30 

output stack r clearing 293 
OVERLAY subcommand 

how to use 70 
overlay more than one line 71 
using in edit macros 316 

overlaying 
character strings 70 

with $MARK edit macro 321 
virtual storage r during program 
execution 243 

overriding, logical record length of file 
being edited 74 

p 
parameter lists 

detecting absence of 241 
passing with START command 144 r 241 
setting up to execute CMS command 241 
used by CMS routines 240 
using FSCB 244 

parent disk r of read-only extension 52 
parentheses r scanned by EXEC interpreter 

267 
partition sizer specifying for program 

execution r in CMS/DOS 178 
partitioned data sets 

copying into CMS files 135 
specifying member names with FILEDEF 

command 134 
passing 

arguments 
to EXEC procedure 272 
to nested EXEC procedure 283 

control in EXEC procedure 277,279 
password suppression on command line 

13 r 25,57 
passwords 

entering on LOGON command line 25 
for VSAM catalogs 202 

in CMS/DOS 194 
for your virtual machine 5 
supplying on LINK command line 13 

402 IBM VM/370 CMS User's Guide 

PAl key, to enter CP environment 344 
PDS option, of MOVEFILE command, to copy OS 
partitioned data sets 135 

periods, used to concatenate EXEC variable 
symbols 103 

PERM option, of FILEDEF command r when to 
specify 134 

PF keys (2~ program function keys) 
phases r CMS/DOS core image, writing into 

DOSLIBs 174 
positioning 

current line pointer 65,68 
using $POINT edit macro 323 

tapes, examples 120 
preferred auxiliary files 260 
preferred level updating 260 
preparing r jobs for CMS batch facility 231 
PRESERVE subcommand 

saving EDIT subcommand settings 86 
using in edit macros 315 

preserving. editor settings 86 
PRINT 

access method services function, output 
183 

command, printing CMS files 34 
printer files 

produced by job running in batch virtual 
machine 231 

querying status of 115 
printing 

access method services listings 184 
CMS files 34 
multiple copies 114 
trace information on virtual printer 

218 
PRINTL macro, usage 250 
privilege classes, for CP commands 333 
PROC filetype 162 

usage in CMS/DOS 49 
procedures 

DOS/VS, copying into CMS files 162 
DOS/VSE, copying into CMS files 
(.21~~=!!~) 162 

PROFILE EXEC 
sample 97 

for CMS/DOS VSAM user 191 
for OS VSAM user 199 

program 
abend, message 
check, using CP 
debugging 211 
dumps, obtaining 

211 
to debug 220 

221 



March 30, 1919 

execution 
entry point determination 148 
interrupting 21 
resuming with BEGIN command 221 
tracing 216 

input and output files, identifying 131 
interruptions 

address stops 23 
break{:oints 23 

libraries 145 
linkage, in CMS .239 
listings, using when debugging 211 
loops, debugging 216 

program development 
DOS programs 151 

sample terminal session 369 
summary of commands 36 

OS programs 121 
sample terminal session 365 
summary of commands 35 

using CMS 125 
program function keys 

setting 339 
COpy function 342 
for EDIT subcommands 348 
in EXEC procedure 340 
logical tab stops 349 

using 339 
program status word (§gg PSi (program 
status word» 

programmer logical units, assigning in 
CMS/DOS 157 

prompting 
for line numbers while line-number 
editing 82 

.essages in EXEC procedure 284 
protecting, files from being accessed 54 
PSERV command, examples 162 
PSi, operand of DISPLAY command 216 
PSi (program status word) 

displaying 
in debug environment 212 
while program loops 216 
with DISPLAY command 220 

modifying wait bit 220 
PUNCH 

command 
example 111 
punching jobs to batch virtual 

machine 228 
using with &PUNCH control statement 

291 
ESERV control statement, executing in 

CMS/DOS 163 

punch files, produced by job running in 
batch virtual machine 231 

PUNCHC macro, usage 250 
punching 

CMS files 34 
files to your virtual card punch 117 
jobs to batch virtual machine 228 

in EXEC procedure 234 
lines in EXEC procedure 101 
lines to virtual card punch 118 
members of MACLIBs 139,169 

PURGE, command, purging spool files 116 
purging batch jobs 233 

Q 
QSAM access method, C!S support 130 
QUERY 

command (CMS), used with OS data sets 
129 

command (CP), displaying status of spool 
files 115 

QUIT subcommand, terminating edit session 
63 

R 
RDlER! macro, examples 250 
read, to virtual console, definition 21 
READ control card, punching 111 
READCARD command 

examples 111 
restriction in CMS batch facility 232 
used to assign file mode numbers 56 
using with &PUNCH control statement 296 

READER operand 
of ASSGN command, restriction in job for 

CftS batch facility 232 
of FILEDEF command, restriction in job 
for CftS batch facility 232 

reading 
arguments from terminal during EXEC 
processing 216 

cards from your virtual card reader 116 
CftS commands 

from console stack 291 
from terminal during EXEC processing 

285 

Index 403 



March 30, 1979 

CMS files 
from console stack 294 
from EXEC procedure 294 
with FSREAD macro 246 

DOS files in CMS 154 
files from tapes 119 
from terminal 

in EXEC proceaure 106 
RDTERM macro 250 

lines from console stack, in EXEC 
procedure 289 

real card decks into your virtual 
machine 117 

specific records in CMS file 246 
variable symbols from terminal during 

EXEC processing 285 
read-only, extensions, using 51 
read/write 

pointer, positioning 248 
status of disks 

displaying 14 
in VM/370 directory entry 11 

ready message 8 
controlling how it is displayed 27 
CPU times displayed 239 
displaying return code from EXEC 
procedure 284 

not displayed after #CP function used in 
CMS environment 19 

RECFM, option, of FILEDEF command, when to 
specify 133 

record format 
describing for file being edited 73 
of CMS file, changing 75 
specifying for DOS files 155 
specifying for program input and output 
files 133 

record length 
creating long records with editor 74 
of CMS file 

changing 74 
default values set by editor 74 
relationship to file size 75 

records, in CMS file, maximu~ number 43 
recursion level of EXEC, testing with 

&GLOBAL special variable 283 
red type, displaying error messages in 28 
re-executing, EDIT subcommands 87 
register 15 

checking contents after program 
execution 150 

in CMS/DOS 179 
contents after CMS command execution 

240 
testing contents in EXEC procedure 301 

404 IBM VM/370 CMS User's Guide 

registers (§~~ general registers) 
relative record number, specified in FSCB 

245 
RELEASE command 14 

updating master file directory 57 
used with OS disks 129 

releasing 
disks 14,57 
read-only extensions 52 

relocatable 
modules, link-editing in CMS/DOS 174 
object files" loadirig into storage for 
execution 146 

Remote Spooling Communications subsystem 
(§~~ RSCS (Remote Spooling Communications 
Subsystem)} 

remote terminals, using CMS editor 348 
RENAME command, renaming CMS files 33 
renaming, CMS files 33 
RENUM subcommand, usage 82 
renumbering, records in file, while 

line-number editing 82 
reordering batch jobs 233 
REP 

operand 
of MACLIB command 138 
of MACLIB command in CMS/DOS 167 

REPEAT sutcommand, used with OVERLAY 
subcommand 71 

REPLACE 
option of COPYFILE command, used to 

change filemode letters 55 
subcommand 

how to use 72 
using in edit macros 315 

replacing 
lines in file being edited 72 

using line-number editing 82 
members in macro library, example in 

CMS/DOS 167 
REPRO, access method services function 208 
resolving, unresolved references 147 
responding 

to CMS commands in EXEC procedure 107 
to prompting messages from AMSERV, in 

EXEC procedure 209 
responses 

from CMS commands 9 
suppressing display in EXEC procedure 

287 
from CP commands 9 
from VM/370 8 
to CMS commands, stacking in EXEC 

procedure 289 
restarting batch jobs 233 



Pg. of GC20-1819-2 Rev Karch 30, 1919 by Supp SD23-9024-1 for 5148-XX8 

RESTORE 
subcommand 

usage 81 
using in edit macros 315 

restoring 
editor settings 81 
screen display during edit session, 
using TYPE subcommand 346 

restrictions 
on commands used in CMS batch facility 

232 
on ddnames in OS VSAM programs 191 
on executing DL/I programs in CMS/DOS 

152 
on executing DOS programs in CMS/DOS 

115 
on executing OS programs in eMS 144 
on executing OS programs in eMS/DOS 152 
on number of files per disk (21~~=!!~) 

43 
on number of lines that can be stacked 

in edit macro 314 
on programs executing in transient area 

243 
on reading DOS files in CMS 155 
on reading OS data sets in CMS 131 
on using DOS/VS macro libraries in 

CMS/DOS 164 
on using DOS/VSE macro libraries in 

CMS/DOS (5148-XX8) 164 
on using miniaisks with VSAM data sets 

181 
resume 

program execution 
after attention interruption 22 
after program check 212 

terminal displays 22 
in EXEC procedure 288 

RETURN 
CMS subset command, to leave CMS subset 

20 
DEBUG subcommand, before starting 

program execution 213 
return codes 

displayed in ready message 240 
from access method services 183 
from eMS commands 

displaying during EXEC processing 
299 

specifying error address following 
SVC 202 242 

from EXEC procedure 
in CMS ready message 
passed by register 15 
1 299 
-2 314 
-3 299 

284 
9 

240 

REUSE subcommand 
after LOCATE or FIND subcommand 61 
usage 81 

RSCS (Remote Spooling Communications 
subsystem) 3 

general information 123 
RSERV command, examples 162 
RT Immediate command 22 

executing in ~XEC procedure 288 
RUN, command~ specify~ng arguments 241 
RUNNING status, on display screen 341 

S 
SAM files (§~~ sequential access method 

(SAM) files) 
sample, terminal sessions 353 
SAVE subcommand 

changing file identifier 85 
writing file onto disk 62 

scanning 
CMS command lines 240 
lines in EXEC procedure 261,309 
tokens in EXEC procedure 100 

screen 
example of 3210 screen display 343 
format used by CMS editor 345 
status 

SCRIPT 

CP READ 340 
CP READ (~1~~=]]~) 340.1 
HOLDING 341 
MORE... 341 
NOT ACCEPTED 341 
RUNNING 341 
VM READ 341 

command, restriction cn executing in 
CMS/DOS 152 

files 50 
using backspaces 18 

filetype, usage in CMS 48 
SCROLL subcommand, how to use 341 
search order 

for CMS commands 
considerations when naming EXEC 
procedure 302 

summary 59 
for CMS disks 51 

displaying 14 
for executable phases in CMS/DOS 116 
used by DOSLKED command 112 

searching 
disks for CMS files (see disk 
determination) 

for label in EXEC procedure 218 
for line in file being edited 61 

Index 405 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

only particular columns of file being 
edited 69 

read-only extensions 52 
segment 

alternate, loading on IPL command 225 
shared system loaded into 224 

sending messages, to other virtual machine 
users 25 

sequence numbers 
specifying identifier 80 
updating 254 

sequential access meth6d (SAM) files, 
reading in CMS/DOS 154 

serial numbers 
changing verification setting to display 

81 
in file being edited 80 

SERIAL subcommand, examples 80 
serializing 

records in file 80 
while line-number editing 82 

SET command (CftS) 
controlling message displays 27 
operands invalid in job for CMS batch 
facility 232 

setting implied CP and EXEC functions 
29 

SET command (CP), controlling message 
displays 26 

SETSSI, OS linkage editor control 
statement, supported by TXTLIB command 
146 

setting 
entry point for program execution 148 
limits on system resources during batch 

jobs 229 
program function keys 339 

in edit macros 340 
sharing 

CftS system 223 
data and master catalog, in CftS VSAM 

185 
virtual disks 13 

SHORT subcommand, when to use 86 
simulated data sets 

filemode number of 4 55 
format 130 

size 
of CftS file 

maximum 43 
relationship to record length 75 

of virtual storage in your virtual 
machine 223 

406 IBft VM/370 CftS User's Guide 

skipping, lines in EXEC Frocedure 279 
SLEEP command 

locking terminal keybcard 30 
using on display terminals 341 

SMSG command (CP) 27 
sorting 

CftS EXEC 99 
directories of DOS/VS libraries 163 
directories of DOS/VSE libraries 

(5748-XX8) 163 
spaCing-between lines of text (21!~=!!§) 

324.11 
special characters 

eMS editor handling 76 
on 3270 terminals 349 
3270 Text feature 352 

special messages, controlling whether you 
receive them 26 

special variahles, EXEC (§~~ EXEC special 
variables) 

specifying 
device type for FILEDEF command 132 
filemode numbers, on tLEL and FILEDEF 

command 56 
which records to read or write 246 

splitting, CMS files intc smaller files 89 
SPOOL command 

changing characteristics of unit record 
devices 113 

spooling console output 342 
spool files 113 

controlling in job for CftS batch 
facility 231 

determining status of 41,115 
produced by CMS hatch facility, 
controlling 233 

spooling 
hasic description 113 
console output 342 
multiple copies 114 

SSERV command, examples 161 
STACK, sutcommand, using in edit macros 

317 
stacking 

eftS commands, in EXEC procedure 291 
command lines, after attenticn 
interruption 22 

commands lines, with # (logical line end 
symhol) 7 

EDIT subcommands 291 
in edit macros 311 
with REUSE subcommand 88 

EXEC files in console stack 294 
Immediate commands in EXEC procedure 

287 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

last-in first-out in EXEC procedure 290 
lines in console stack, in EXEC 
procedure 289 

lines in EXEC procedure 107 
limitations 289,314 

null lines 
after attention interruption 22 
in EXEC procedure 210,292 

responses in EXEC procedure 289 
AMSERV command 209 
DLBL command 179 
FILEDEF command 150 
to CMS commands 107 

START 
command 

after LOAD command 144 
used with FETCH command 175 

option 
of FETCH command 176 
of LOAD command 144 

starting, program execution in CMS 144 
STATE command, used with OS data sets 129 
STEPCAT, CMS equivalent 128 
storage available in your virtual machine, 

calculated by CMS 177 
STORE 

CP command, using to change program 
status word (PSi) 216 

subcommand, changing storage locations 
214 

suballocated VSAM cluster, defining 206 
submitting 

jobs to CMS batch facility 227 
non-CMS users 236 

substituting, variable symbols in EXEC 
procedure 268 

summary 
of CMS commands 328 
of CMS/DOS commands 154 
of CP command privilege classes 333 
of CP commands 334 
of DEBUG subcommands 215 
of EDIT subcommands 91 
of EXEC built-in functions 103 
of EXEC control statements 109 
of EXEC special variables 112 
of Immediate commands 327 

suppressing 
long form of editor ?EDIT message 86 
verification of changes made by editor 

86 

suppression of passwords on the command 
line 13,25,57 

SVC 
instructions 

tracing with CP TRACE command 218 
tracing with SVCTRACE command 219 

SVC 202, used to call CMS command 241 
SVCTRACE command, usage 219 
symbolic addresses for tapes 118 
symbols 

debug 
defining 214 
using with DEBUG subcommands 214 

logical line editing 6 
used for comparisons in EXEC procedure 

105 
variable, in EXEC procedure (see 
variatle symbols) 

SYNONYM 
command, invoking syncnym tables 29 
filetype, usage in CMS 48 

synonyms, for CMS and user-written 
commands, defining 29 

SYSCAT, assigning in CMS/DOS 190 
SYSCLB 

assigning in CMS/DOS 157 
unassigning 176 

SYSIN 
assignin~ in CMS/DOS 157 
input for ESERV command 163 

SYSIPT, assigning in CMS/DOS 157 
SYSLIB, ddname used to identify OS macro 
libraries 141 

SYSLOG, assigning in CMS/DOS 157 
SYSLST 

assigning in CMS/DOS 157 
output from ESERV program 163 

SYSPCH 
assigning in CMS/DOS 157 
output from ESERV program 163 

SYSRDR, assigning in CMS/DOS 157 
SYSRLB, assigning in CMS/DOS 157 
SYSSLB, assigning in eMS/DOS 157 
system disk, files available 54 
system logical units 157 
SYSUT1 filetype 50 
SYSUT2 filetype 50 
SYSUT3 filetype 50 
SYSUT4 filetype 50 
SYSxxx 

option of DLBL command 159 
programmer logical units 

assigning 156 
assigning (~1~'§=]]'§) 156.1 

Index 407 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

SISOOl filety~e 50 
SY5002 filetype 50 
5YS003 filety~e 50 
SY5004 filety~e 50 
5YS005 filety~e 50 
SY5006 filety~e 50 

T 
tab 

characters 
deleted in user input area 350 
entering in file being edited 76 
using in edit macros 316 
using on display terminals 349 

settings, used by editor 77 
TABSET subcommand, using in edit macros 

316 
TAPE command, examples 120 
TAPEMAC command, use in tape label 

processing (2I~~=!!~) 122 
tapes 

considerations for CMS/DOS users 156 
controlling 118 
density of, when to specify 123 
for AMSERV, example 208 
labels 121 

end-of-tape processing (21~~=!!~) 
122 

end-of-volume processing (21~~=!!~) 
122 

error processing (21~~=!!~) 122 
processing in CMS 156 
processing in CMS (21~~=!!~) 121,133 
processing in CMS/DOS (21~~=!!~) 122 
processing in OS simulation 
(21~~=!!~) 122 

reading 204 
reading in CMS/DOS 197 

used for AMSERV input and output 204 
in CMS/DOS 196 

TAPESL macro, use in tape label processing 
(21~~=!!~) 122 

TAPn, symbolic addresses for tapes 118 
TAPPDS command 

copying files from tapes 122 
copying files from tapes (21~~=!!~) 122 
use in tape label processing (21~~=!!~) 

122 
temporary disks, using for VSAM data sets 

188 
TERMINAL, command, setting logical line 
editing symbols 8 

terminals 
characteristics, setting 28 
commands te centrol communications 25 
communication in EXEC procedure 284 
disconnecting 26 
display (§gg display terminals) 
input buffer (§g~ console stack) 
macros for communication 248 
mode setting 22,30 

display terminals 341 
sample sessions 353 

terms, OS, equivalents in CMS 128 

408 IBM VM/370 CMS User's Guide 

testing 
arguments passed to EXEC procedure 274 
EXEC procedure, using CMS subset 308 
for null line entered in EXEC procedure 

285 
return codes from CMS commands 283 

in EXEC procedure 284 
variables symbols, using &IF control 
statement 276 

TEXT 
assembler output ddname, overriding 
default definition 143 

files 
created by assembler and language 
processors 48 

link-editing in CMS/DeS 172 
loading into storage 145 

filetype 
usage in CMS 48 
usage in CMS/DOS 49 

text feature, for 3270 terminals 352 
time information, displaying during EXEC 
processing 300 

TO, operand of SPOOL command 115 
TOF, token stacked when edit macro executed 
at top of file 313 

TOF: message 66 
tokens 100 

with multiple variable symbols 269 
TOP, subcommand, moving current line 
pointer to top of file 66 

top of file 
executing edit macros 313 
indication in file being edited 66 

TRACE, command, usage 217 
tracing 

output, printing 218 
program execution 216 

controlling trace 218 
tracks 

entering extent information in terms of 
198 

number per cylinder on disk devices 199 
TRANSFER command, moving reader files 116 
transferring 

control in EXEC procedure 
&ERROR control statement 301 
using &GOTO control statement 277 

transient area 
CMS commands that execute in 58 
creating modules to execute in 243 
location in virtual storage 223 
restrictions on modules executing in 

243 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

translate tables 
defining input and output characters for 

30 
using on display terminals 349 

translating, virtual storage to EBCDIC 219 
translating output characters (~1!~=!!~) 

324.13 
transporting, VSAM data sets 208 
TRUNC 

option of COPYFILE command, used to 
convert record formats 75 

subcommand, setting right margin for 
input with editor 79 

truncating 
data while changing lines with editor 

79 
input data while using editor 78 
trailing blanks from fixed-length 
records 75 

words in EXEC procedure 267 
truncation, settings used by editor 79 
TSOMAC MACLIB 140,169 
TXTLIB 

command 
os linkage editor control statements 

supported 145 
usage 145 

files 
assigning entry point names 145 
manipulating 145 

filetype, usage in CMS 48 
.embers, assigning names for 146 

TYPE 

U 

command, displaying CMS files 34 
subcommand 

effect on current line pointer 65 
using to restore screen display 346 

unassigning logical unit assignments in 
CMS/DOS 158 

underscore 
characters in file being edited 78 
using on OVERLAY subcommand 70 

unique clusters, defining 206 
unit record, devices 113 
unresolved references, how CMS loader 
resolves 147 

UPDATE 
control statement usage 253 
filetype 

creating update files 252 
usage in CMS 48 

updating 
CMS file directories 57 
source files 251 

examples 255,256 
UPtLOG filetype, usage in eMS 48 
UPDTxxxx filetype, usage in CMS 48 
UPSI 

byte, setting in CMS/DOS 178 
operand, of CMS SET command, example 

178 
user catalog 

VSAM 200 
in CMS/DOS 193 

user file directory 56 
user program area 223 

executing programs and CMS commands 243 
userid 

for your virtual machine 5 
of eMS batch virtual machine 228 
specifying for output spool files 114 

user-written 

v 

commands, creating 149 
edit macros 320 

variable symbols 
compound 269 
examples of substitution 268 
how scanned 268 
in EXEC procedure 101 

comparing 105 
using as counters 280 

reading values from terminal 285 
stacking in edit macrcs 312 

variable-length EXEC files, considerations 
for writing edit macros 315 

VARS operand of SREAD control statement 
285 

verification setting 
changing in edit macros 315 
changing on display terminal 346 
columns used by editor 69 

VERIFY subcommand 
canceling editor displays 86 
how to use 69 
using in edit macros 315 

verifying, execution of edit macros 315 

Index 409 



Pg. of GC20-1819-2 Rev March 30, 1979 by Supp SD23-9024-1 for 5748-XX8 

virtual 
addresses 

for disks 12 
for tapes 118 
for unit record devic~s 113 

storage (§~~ virtual storage) 
virtual disks (§~~ ~!§Q disks) 

definition 11 
virtual Machine Facility/370 (VM/370) 

basic description 3 
command summaries 328 
components 3 
environments 17 

virtual machines 
definiticn 3 
size 223 

virtual storage 
addresses, calculating 212 
CMS utilization 224 
displaying 219 
examining in debug environment 212 
how CMS uses 223 
increasing size 89 
overlaying during program execution 243 
specifying locations for program 

execution 243 
used by editor, what to do when it is 
full 88 

VM READ status, on display screen 341 
VMFASM EXEC procedure 262 
VMFDOS command (~1~!!=!!!!) 156 
VM/370 (§~~ Virtual Machine Facility/370 

(VM/37 0) ) 
vm/370 online 5 
VSAM 

access method, CMS support 130 
catalogs 

deleting 207 
passwords 202 
passwords in CMS/DOS 194 
using in CMS/DOS 190 

clusters 
defining 206 
deleting 207 
unique 206 

data sets, manipulating with AMSERV 
command 181 

files 
allocating space for 186 
identifying multivolume 204 
identifying multivolume in CMS/DOS 

196 
relationship to CMS files 43 

410 IBM VM/370 CMS User's Guide 

input and output files 
defining 197 
defining in CMS/DOS 190 

master catalog 
defining 199 
defining in CMS/DOS 191 

. identifying 199 
identifying before executing programs 

182 
identifying in CMS/DOS 191 
sharing 1 a5 

multivolume extents 
specifying 204 
specifying in CMS/DOS 195 

option 
of DLBL command 197 
of DLBL command, in CMS/DOS 190 

programs, compiling and executing in CMS 
181 

user catalogs 
defining 200 
defining in CMS/DOS 192 

using in CMS 181 
VSAPL program, invoking on display terminal 

350 

W 
wait bit, in program new PSW, modifying 

220 
WAITT macro, usage 250 
warning messages, controlling whether you 
receive them 27 

writing 
CMS files 

in EXEC procedure 296 
with FSWRITE macro 246 

CMS files onto disk 
disk determination 54 
how editor selects disk 63 

edit macros 311 
error messages in EXEC procedure 306 
labels on CMS disks 12 
lines to terminal 250 
specific records in CMS file 246 
tape marks, examples 120 

WRTERM macro, examples 250 



x 

y 

DEBUG sUbco.mand, example 214 
EDIT subcom.and, usage 81 

Y subcommand, usage 81 

Z 
ZAP filetype, usage in CMS 48 
zone setting 

columns used by editor 69 
increasing 19 

ftarch 30, 1919 

ZONE subcommand 
setting truncation columns for CHANGE 

subcommand 19 
specifying columns for editor to search 

69 

1 
19E virtual disk address, accessed as 
Y-disk 51 

190 virtual disk address 
accessed as S-disk 51 
using to IPL CftS 6 

191 virtual disk address, accessed as 
A-disk 51 

192 virtual disk address, accessed as 
D-disk 51 

3 
3210 terminals (§~~ disFlay terminals) 

Index 411 



March 30, 1979 

412 IBM VM/370 eMS User's Guide 



Title: IBM Virtual Machine 
Facility/370: 
CMS User's Guide 

Order No. GC20·1819- 2 

Please check or fill in the items; adding explanations/comments in the space provided. 

Which of the following terms best describes your job? 

[j Customer Engineer o Manager o Programmer 
o Engineer o Mathematician o Sales Representative 
o Instructor o Operator o Student/Trainee 

How did you use this publication? 

READER'S 
COMMENT 
FORM 

o Systems Analyst 
o Systems Engineer 
o Other (explain below) 

o Introductory text o Reference manual o Student/ 0 Instructor text 
o Other (explain) __________________________ _ 

Did you find the material easy to read and understand? 0 Yes 

Did you find the material organized for convenient use?' 0 Yes 

Specific criticisms (explain below) 
Clarifications on pages 
Additions on pages 
Deletions on pages 
Errors on pages 

Explanations and other comments: 

o No ( explain. below) 

o No (explain below) 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GC20-1819-2 

Reader's Comment Form 

Fold and tape 

. Attn: VM/370 PubUcations 

Please Do Not Staple 

\\\\\\ 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

International Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

Fold and tape 

First Class 
Permit 40 
Armonk 
New York 

Fold and tape Please Do Not Staple Fold and tape 

--- ------ ------- .......... _-- - ---- - - ----------_.-
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, Wh ite Plains, N. V. 10604 

IBM World Trsae Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, Nor:th Tarrytown, N.V., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.V., U.s.A. 10601 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

--I 
I 

"'CJ 
~ 

5' 
S' a. 
5' 
c: 
en 
~ 

G) 
n 
N 
9 
...a 
CO 
...a 
cp 
N 




