IBM Virtual Machine
Facility/370:
CMS User’s Guide

Systems

File No. $370-39
Order No. GC20-1819-2

IBM Virtual Machine
Facility/370:
CMS User’s Guide

I Release 6 PLC 1

Contains general information and examples for
using the Conversational Monitor System (CMS)
component of IBM Virtual Machine Facility/370
{(VM/370).

This publication is written for applications
programmers who want to learn how to use
CMS to create and modify data files (including
VSAM data sets) and programs, and to
compile, test, and debug OS or DOS programs
under CMS.

The CMS Editor and EXEC facilities are described
with usage information and examples.

Prerequisite Publications

I1BM Virtual Machine Facility/370: Terminal
User’s Guide, Order No. GC20-1810

IBM Virtual Machine Facility/370: Introduction,
Order No. GC20-1800

Third Editicn (March 1979)

This is a major revision of, and obsoletes, GCZ0-1819-1 with Technical
Newsletter GN25-0411. This edition applies to Release 6 PLC 1 (Prograa
Level Change) of IBM Virtual Machine Facility/37c, and to all sulsequent
releases unless otherwise indicated in new editions or . Technical
Newsletters.

Technical changes and additions to text and illustrations are indicated’

Ly a vertical bar to the left of the change.

Changes are periodically made to the information herein; before using
this publication’ in connection wlth the operation of 1IBM systenms,

the editions that are appllcable and current.

Publications are not stocked at the address given below; requests for
copies of IBM publications should be made to your IBM representative cr
to the IBM kranch office serving your locality.

A ferm for readers' comments is provided at the - back of this
pablication. If the form has been removed, comments may be addressed to
IBM Corporaticm, VM/370 Publications, Dept. D58, Bldg. 706-2, P.0O. Box
390, Poughkeepsie, New York 12602. IBM may use or distribute any of thke
information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use
the informaticn you supply. '

© Copyright International Business Machines Corporation 1976, 1977,
1979 '

g

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

This publication is intended for the
general CMS user. It contains information
describing the interactive facilities of
CMS, and includes examples showing you how
to use CMS.

"Part 1. Understanding CMS"™ contains
sections that describe, in general teras,
the CMS facilities and the CMS and CP

commands that you can use to control your
virtual machine. If you are an experienced
programmer vho has used interactive
terminal systems before, you may be able to
refer directly to the ¥YM/370: CMS Command

and Macro Reference publication to find
specific details about CMS commands that
are summarized in this part. Otherwise,

you may need to refer to later sections of
this publication to gain a broader
background in using CMs. The topics

discussed in Part 1 are:

e What It Means To Have a CMS Virtual
Machine
e VM/370-CMS Environments and Mode

Switching
e What You Can Do with VM/370-CMS Commands
e The CMS File System
e The CMS Editor
e Introduction to the EXEC Processor

e Using Real Printers, Punches,

Readers,
and Tapes

“Part 2. Program Development Using CMS"
is primarily for applications programmers
who want to use CMS to develop and test 0S
and DOS programs under CMS. The topics
discussed in Part 2 are:

e Developing 0S Programs Under CMS
e Developing DOS Programs Under CMS

e Using Access Method Services and VSAM
Under CMS and CMS/DOS

e How VM/370 Can
Programs

‘"Help You Debug Your

e Using the CMS Batch Facility
e Programming for the CMS Environment

"Part 3. Learning To Use EXEC"
detailed infcrmation on creating

gives
EXEC

Preface

procedures to use with CMS. The

discussed in Part 3 are:

topics

e Building EXEC Procedures
e Using EXECs with CMS Commands
e Refining Your EXEC Procedures
e Writing Edit Macros
"part 4. Learning To Use the HELP
Facility" contains descriptions and

examples of the use of HELP facility format
words in creating HELP description files.

Commands"
in the CHmS

"Appendix A: Summary of CHMS
lists the commands available
command environment.

"Appendix B: Summary of CP Commands"
lists the CP command privilege classes and
summarizes the commands available in the CP
command environment.

"Appendix C: Considerations for 3270
Display Terminal Users® discusses aspects
of VK/370 and CHMS that are different or
unique when you use a 3270 display
terminal.

"Appendix D: Sample Terminal Sessions"
shovs sample terminal sessions for:

e Using the CMS editor and CMS file system
conmands

e Using line-number
editor

editing with the CMS

e (Creating, assembling,
0S program in CHMS

and executing an
e (Creating, assembling, and executing a
DOS program in CMS/DOS

e Using access method services in CHS

TERMINOLOGY

Some of the following terms are aused, for

convenience, throughout this publication:

e The term Y“CMS/DOS™ refers to the
functions of CHMS that become available

when you issue the command

set dos on

CHMS/DOS is a part of +the normal CHMS
system, and is not a separate systen.
Users who do not use CMS/DOS are

Preface iii

of GC20—-1819-2 Rev March 30,

sometimes referred to as 0S users, since
they use the 0S
CMS.

The term "CMS files"™ refers exclusively
to files that are in the fixed block
format used by CMS file system commands.
VSAM and 0S5 data sets and DOS files are
not compatible with the CMS file format,
and cannot be manipulated using CMS file
system ccmmands.

The terms "disk" and "virtual disk® are
used interchangeably to indicate disks
that are in your CMS virtual machine
configuration. Where necessary, a
distinction is made between
CMS-formatted disks and disks in 0S or
DOS format. '

n3270" refers to a series of display
devices, namely, the IBM 3275, 3276
Controller Display Station, and 3277 and

3278 Dpisplay Stations. A specific
device type is used . only vwhen a
distinction is required between device
types.

Information about display terminal
usage also applies to the IBM 3138,
3148, and 3158 Display Consoles when

used in unless otherwise

noted.

display mode,

Any infrrmation pertaining to the IBM
3284 or 3286 Printer also pertains to
the IBM 3287, 3288, and 3289 printers,
unless otherwise noted.

"3330" refers to the IBM 3330 Disk
Storage Models 1, 2, and 11, the IBM
3333 Disk Storage and Control Models 1
and 11, and the IBM 3350 Direct Access
Storage in 3330 compatibility mode.

®2305" refers to the IBM 2305 Fixed Head
Storage, Models 1 .and 2.

®3340" refers to the IBM 3340 Direct
Access Storage Facility and the IBM 3344
Direct Access Storage.

the IBM 3350 Direct
device when wused in

"3350" refers to
Access Storage
native mode.

Any information pertaining to the IBM
2741 termrinal also applies to the IBM
3767 terminal, unless otherwise noted.

370x refers to - the
Communications Controllers.

3704/3705

"3370" refers to the IBM 3370 Direct
Access Storage Device.
"3310" refers to the IBM 3310 Direct
Access Storage Device.

IBM VM/370: CMS User's Guide

simulation functions of |

1979 by Supp. SD23-9024-1 for 5748-XX8

e "PB-512" refers to the IBM 3370 and 3310
Direct Access Storage Devices.

For a glossary of VM/370 terms, see the
IBM Virtual Machine Facility/370: Glossary
and Master Index, GC20-1813.

PREREQUISITE PUBLICATIONS

If this is the first time you have used a
computer terminal, you should consult the
VM/370 Terminal User's Guide, GC20-1810,

for information on using your terminal.

If your terminal is a 3767
Communications Terminal, then IBM 3767
Operator's Guide, GA18-2000, is a

prereguisite.

The IBM Virtual Machine Facility/370:

Introduction, GC20-1800, contains an
overview of the VM/370 syster and its
components, and 1lists the programs and

products that are supported in CMS.

COREQUISITE PUBLICATIONS

The IBM Virtual Machine Facility/370: CMS
Command and Macro Reference, 6C20-1818, is
a companion to this user's guide. It
contains complete format descriptions of
the CMS commands; EDIT subcommands; EXEC
control statements, built-in functions, and
special variables; DEBUG subcommands; and
CMS assembler language macros that are
discussed or used in examples in this book.

IBM Virtual Machine Facility/370: Systenm
Messages, GC20-1808, contains the
responses, error messages, and return codes
issued by the CES commands, and EDIT and
DEBUG subcommands referenced in this
publication, as well as a complete list of
the error messages issued by the EXEC
processor. '

should be familiar with
the control program (CP) component of
VM/370. The CP commands available +to
general users are described in IBM Virtual

To use CMS, you

for General Users, GC20-1820. If you are
using CMS to develop programs to run under
other operating systems, see IBM Virtu
Machine Facility/370: Operating Systems in
a Virtual Machine, GC20-1821.

.

o

RELATED VM/370 PUBLICATIONS

Additional descriptions of various CMS
functions and commands that are normally
used by system support personnel are

described in

e e et ereris s e e meaLEle

System Programmer's Guide, GC20-1807

Operator's Guide, GC20-1806

Plapnning apnd System Generation Guide,

GC20-1801

IPCS CMS commands are described in the
IBM VYM/370: Interactive Problem Control

System (IPCS) User's Guide, GC20-1823, and
not in this publication.

Information describing the CMS command

CPEREP, a command used to generate output
reports from VM/370's error recording
records, is ccntained in the:
IBM Virtual Machine Facility/370:
OLTSEP and Error Recording Guide,
GC20-1809

Details on the wuse of
operands, required to make use
are contained in:

0S/VS EREP
of CPEREP,

0Ss/vs, DOS/VSE, ¥M¥/370 Environmental
Recording, Editing, and Printing
Program, GC28-0772.

There are three publications available

as ready reference material
VM/370 and CMS. They are:

when you use

IBM Virtual Machine Facility/370:

Quick Guide for Users, 6GX20-1926

User), GX20-1961.

- =

If you use the Remote Spooling
Communications Sultsystesn, see the IEM
virtual Machine Facility/370: Remote
Subsystem (BRSCS)

User's Guide, GC20-1816.

Assembler language prcgrammers may find
information akout the VE/370 assembler in
0s/¥S, LOS/¥S, apnd VM/370 Assembler
Language, 6C33-4010, and CS/VS and YM/370
Assembler Programmer's Guide, GC33-4021.

RELATEL PUBLICATIONS FOR VSAM AND ACCESS

METHOD SERVICES USERS

CMS support of access method services is
based on LOS/VS access method services. The
control statements that yocu can use are
described in DOS/VS Access Method Services
er's Guide, GC33-5382. Error messages
produced by the access method services
program, and return codes and reason codes,
are listed in DOS/VS Messages, GC33-5379.

For a detailed description of DOS/VS
VSAM macros and macro parameters, refer to
the DOS/VS Supervisor and I/0 Macros,
GC33-5373. Por informaticn on O0S/VS VSAM
macros, refer to 0S/VS JVirtual Storage
Access Method (V¥SAM) Programmer's Guide,
GC26-3818.

RELATED PUBLICATIONS FOR CMS/DOS USERS

The CMS ESERV command invokes the DOS/VS
ESERV program, and uses, as input, the
control statements that you would use in
DOS/VS. These control statements are
described in Guide to the DCS/VS Assembler,
GC33-4024.

Linkage editor control statements, used
when invoking the DOS/VS 1linkage editor
under CMS/DOS, are described im DOS/VS
System Control Statements, GC33-5376.

Preface v

vi

IBM VYM/370: CMS User's Guide

=

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

RELATED VM/370 PUBLICATIONS

Additional descriptions of various CHMS
functions and commands that are normally
used by system support personnel are
described in

System Programser's Guide, GC20-1807

Operator's Guide, GC20-1806

Planning apd System Generation Guide,

GC20-1801

IPCS CMS commands are described in the
IBM VM/370: Interactive Problem Control

System (IBCS) User's Guide, GC20-1823, and
not in this publication.

Information describing the CMS coamand

CPEREP, a command used to generate output
reports from VM/370's error recording
records, is contained in the:
IBM Virtual Machine Facility/370:
OLTSEP apnd Erzor Recording Guide,
GC20-1809

Details on the use of 0S/VS EREP

operands, required to make use of CPEREP,
are contained in:

0S/V¥S, DOS/VSE, VM/370 Environmental

Recording, Bditing, apd Pripting

Program, GC28-0772.

For information om O0S/VS tape 1label
processing, discussed with "Label
Processing in 0S Sigulation"® in this
publication, refer to:

0S/¥S1 Data Management Services Guide,

GC26-3874

05/¥S2 Data Management Services Guide,

GC26-3875

0S/¥S Tape Labels, 6C26-3795

There are three publications available
as ready reference material when you use

¥4/370 and CMS. They are:

ommands (General User), GX20-1961.
Commapds (Other than Geperal User),
GX20-1995.

I1f you use the Renote Spooling
Communications Subsysten, see the IBM
virtual Machine Facility/370: Remote
Spocoling <Communications Subsystem (RSCS)
User's Guide, GC20-1816.

Assembler language programmers may find
information about the VM/370 assembler in
0s/¥s, DOS/¥S, and YM/370 Assembler
Language, GC33-4010, and 0S/VS and ¥M/370

RELATED PUBLICATIONS FOR VSAM AND ACCESS
METHOD SERVICES USERS

CMS support of access nmethod services is
based on DOS/VSE and VSE/VSAM. The control
statements that you can use are described
in Using VSE/VSAM and

SC24-5144. Error messages procduced by the
access method services program, and return
codes and reason codes, are 1listed in

DOS/VSE Messages, GC33-5379.

For a detailed description of VSE/VSAM
macros and macro parameters, refer +to the
DOS/VSE Macro User's Guide, GC24-5139. For
information on 0S/VS VSAM macros, refer to
0S/V¥S Virtual Storage Access Method (VSAM)
Programmer's Guide, GC26-3818.

RELATED PUBLICATIONS FOR CMS/DOS USERS

The CMS ESERV command invokes
ESERV program, and uses, as
control statements that you
DOS/VSE. These control

described in Guide to

the DOS/VSE
input, the
would use in
statements are
the DOS/VSE

Linkage editor control statements, used
when invoking the DOS/VSE linkage editor
under CMS/DOS, are described in DOS/VSE
System Control Statements, GC33-5376.

For information on DOS/VSE
tape label processing, refer to
following publications:

and CMS/DOS
the

DOS/VSE Tape Labels, GC33-5374

DOS/VSE Macro User's Guide, GC24-5139

DOS/VSE LIOCS, Volume 2, SY33-8560

Preface v

March 30, 1979

vi IBM VYM/370: CMS User's Guide

o

Pg.

The entries in

of GC20-1819-2 Rev March 30,

this Table of Contents are

accumulative and reflect the

1979 by Supp.

SD23-9024-1 for 57u48-XX8

Contents

VM/370 Basic System Extensions Program Product, Program Number 5748-XX8.

Summary of Amendments. <« .« < <« o« o o

PART 1. UNDERSTANDING CMS. o« o« o« «
SECTION 1. WHAT IT MEANS TO HAVE A
VIRTUAL MACHINE . . .« .
How You Communicate wlth VM/370 .« .

Getting Commands Into the Systenm

Loading CMS in the Virtual Machine: The

IPL Command . . . o o o o
Logical Line Edltlng Sylbols o o o o
How VM/370 Responds to Your Command
Getting Acquainted With CMS.
Virtual Disks and How They Are Define
Permanent Virtual Disks.
Defining Temporary Virtual Disks .
Formatting Virtual Disks
Sharing Virtual Disks: Linking . . .
Identifying Your Disk To CMS: Accessi
Releasing Virtual Disks.
Releasing Virtual Disks (5748—XX8)
SECTION 2. VM/370 ENVIRONMENTS AND
SHITCHING . . ¢ « o o o o o =
The CP Environment . . « - « «
The CMS Environment. . . « « .
EDIT, INPUT, and CMS Subset.
DEBUGe © « o o o o o o o o =
CMS/DO0S. v« o s o o o o o « =
Interrupting Program Execution .
virtual Machine Interruptionms.
Control Program Interruptioms.
Address Stops and Breakpoints.

o & s 8 4 8 s s

SECTION 3. WHAT YOU CAN DO WITH
YM/370-CMS COMMANDS . o o o o o « =
Command Defaults . « ¢ o « o o o« o «
Commands to Control Terminal
Communications. . ¢« . < « o « & & &
Establishing and Terminating
Communications with ¥M/370. . . .
Controlling Terminal Output. . . .
Commands to Control How VM/370
Processes Input Lines « «
Commands to Control How VM/370
Processes Input Lines (5748-XX8).
Controlling Keyboard-dependent
Communications. « « « « ¢ o «
Commands to Create, Modify, and Move
Data Files and Programs . « « « « «
Commands that Create Files
Commands that Modify Disk Files. .
Commands to Move Files . . . « . .
Commands to Print and Punch Files.
Commands to Develop and Test 0S and C
Programs. . . - . .« e e
Commands to Develop and Test DOS
PIrOgramsSe - « « o« o o o « o = = =« =

S

d

ng

MODE

DI - SR S R I

xiii

s 2 8 & & & 0 s ¥

-3
.3
-5

25
25

25

25
26

28

28.1

30
31
31
33
34
35

36

addition of the

Commands Used in Debugging Programs. . . 37

Commands to Regquest Information. . .

Commands to Request Information About

Terminal Characteristics. .

Commands to Request Information About

Data Files. « « « « e o o o o

Commands to Request Inforlatlon About

Your Virtual Disks. . . .

® ® e o

Commands to Request Information About

Your Virtual Machine. .« « o« « « «

SECTION 4. THE CMS FILE SYSTEM . . .
CMS File Formats . « o v « o o + w o
How CMS Files Get Their Names. . . .
How CMS Files Get Their Names
(5748=XX8) e o o o - o o o =
Duplicating Fllenames and Flletypes
What Are Reserved Filetyres?
Filetypes for CMS Commands . .
Output Files: TEXT and LISTING
Filetypes for Temporary Files.
Filetypes for Documentation. .
Filemode Letters and Numbers . .
When to Specify Filemode Letters:
Reading Files . . . e o . o o
When to Specify Fllenode Letters:
Writing Files o e
Hov Filemode Numbers are Used.
Managing Your CMS Disks. . « < .
CMS File Directories . . . « « .
CMS Command Search Order

L I R I
[T T R)

SECTION 5. THE CHMS EDITOR. .
The EDIT Command
Writing a File Onto Dlsk -
EDIT Subcommands
The Current Line Pointer
Verification and Search Columnms. -
Changing, Deleting, and adding Llnes
Describing Data File Characteristics
Record Length. . « « . « « . &
Record Format. « « « « . « «
Using Special Characters
Setting Truncation Limits. . .
Entering a Continuation Character i
Column 72
Serializing Records. . . .
Line-Number Editing.
Renumbering Lines. . . . 5
Controlling the Editor
Communicating with CMS and CP. .
Changing File Identifiers. . . .
Controlling the Editor's Displays.
Preserving and Restoring Editor
Settings. « o e -
Preserving and Restorlnq Edltor
Settlngs (5748-XX8) o o« « « « = =

X, Y, =, ? Subcommands . « . o o .

LI T I)
¢ s 0 0
@ s s 0
DR Y S }

¢ o 0 o 0
.

¢ & 0 2 0 s 9 4 De e s s 8 2 s s s 0 00

Contents

. 38
. 38
.« 39
. 40
. 40

o & & s s s 8 b 0
& &
[+ <] w

.
wn
[N

o & 0 b o @ F s 0 4 e @ s 3 8 e
o wm
L'} (<}

LR T R S SR
@
&

Pg. of GC20-1819-2 Rewv March 30,

What To Do When You Run Out of Space
Summary of EDIT Subcommands.

SECTION 6. INTRODUCTION TO THE EXEC
PROCESSOR v o o o o o o o = o =« =
Creating EXEC Files. . « ¢ « « «
Invoking EXEC FileS. v ¢ o o « &
PROFILE EXECs. e o
Executing Your PROFILE EXEC.
CMS EXECs and How To Use Them.
Modifying CMS EXECS. '« « . .
Summary of the EXEC Language Fa
Arguments and Variables. . .
Assignment Statements. . . .
Built-in Tunctions and Special
variables . .« o 4 4 o e 4o 4 4 o o =

acOcoon

Flow Control in an EXEC. & . o o« < «

Comparing Variable Syambols and
Constants e e e e e e e
Doing I/0 With an EXWC “ e e e = e o
Monitoring EXEC Procedures
Summary of EXEC Control Statements
Special Variables . « ¢ o« o '« o « «

SECTION 7.
PUNCHES,

USING REAL PRINTERS,
READERS, AND TAPES . .
CMS Unit Record Device Support .

Using the CP Spooling Systenm .
Altering Spool Files
Using Your Card Punch and Card
in CMS. v v o ¢ 6 o o o o o =
Handling Tape Files in CMS . . .
Using the CMS TAPE Command . .
Tape Labels:in CMS . . . -
Tape Labels in CHMS (§Zﬂ§—§§§). .
User Responsibilities (5748-XX8)
Label Processing in 0S Simulation

s 4. e & a4 s
.

¢ & o
.
. & 8

(5748-XX8)+ « = « o 4 4 2 4 e e . .
CMS TAESL Macro (5748-XX8) . « . . .
Tape Label Processing by CMS

Commands (5748-XX8) . . « e e e

LABELDEF Command (5748- ggg). “ leie e
End-of-vVolume and End-of-Tape
Processing (5746-XX8) . . .
Error Processing (5748-XX8).
The MOVEFILE Command . . .
The MOVEFILE Command (5748-

Tapes Created by 0S Utility
Programs. . . . o o o
Tapes Created by OS Utlllty
Programs (5748-XX8) -
Specifying Special Tape Handllng
options e o e u o .o o =
Using the Remote Spoollng
Communications Subsystem (RSCS) . . .

). -

|cno . a\'

XX

PART 2. PROGRAM DEVELOPMENT USING CHMS.
SECTION 8.
CMS . <« - e e e e e
Using 0S Data Sets in CMS. e = e e o =
Access Methods Supported by CMS. . .
Using the FILEDEF Command. . « « « - =
Specifying the ddname. . . . « . . .
Specifying the Device Type -
Entering File Identifications. . . .

viii IBM VM/370: CMS User's Guide

1979 by

cc(-foaoucn

[N
0]
9]
.

-
(=]
[«

eader

~122.7
122.10

. 88
. 91

. 95
. 95

.113
. 113
.113
. 115

. 116
.118
<119
<121
.121
<122

.122

122.10
122.12

122.13
122. 14

.122

122.14

.122

122.15

.123
.123

<125

DEVELOPING OS PROGRAMS UNDER

127
-129
-130
131
<131
.132
-132

Supp..

S023-9024~1 for 5748-XX8

Specifying CMS Tape Label Processing

(5748-XX8)« = = « + & « « + « o+ « . 2133
Specifying Options . « « « « « = o+ « .133
Creating CMS Files From CS Data Sets . .134
Creating CMS Files From OS Data Sets
(5748-XXB)+ = o v = & = = = o o o o 134,17
Using CMS Libraries. ¢ « « « « « « « « =136
The MACLIB Command . o o o « « o « « 137
Using OS Macro Libraries . . « « « . 140
Using OS Macros Under CMS.141
Assembling Programs in CMS 143
Executing Programs . . . « « « « « - - o144
Executing TEXT Files - . . . <« « « . o144
TEXT LIBRARIES (TXTLIBS) . « . - « o 145
Resolving External References.146
Controlling the CMS Loader147
Creating Program Modules149
Using EXEC Procedures. . . « « . - < 149
SECTION 9. DEVELOPING DOS PROGRAMS
UNDER CHS @ «o 4 o o o o o o = « = « o« -151
The CMS/DCS Environment. . « « « « « - 151
DL/I in the CMS/DOS Environment.152
Using DOS Files on DOS Disks . . . - . .154
Reading DOS Files. - <154
Creating CMS Files from DOS lerar es. 155
Using the ASSGN Command. - <« <156
Using the ASSGN Command (§zgg_gg§) . «156.1
Manipulating Device Assignments. . . .157
Virtual Machine Assignments.158
Using the DLBL Command . . « « « « « « «159
Entering File Identifications.159
Using DOS Libraries in CMS/DOS160
The SSERV Command. « « « « « 161
The RSERV Command. . . . <« « ¢ = « . «162
The PSERV Command. « « « « o « « <« - <162
The ESERV Command. « . . « « « « « . 2163
The DSERV Command. . . . e w o <2163
. Using DOS Core Image lerarles - - - L1684
Using Macro Libraries. . . . « . « . . =164
CMS MACLIBS. o « « « o « o =« a = « « =165
Creating a CMS MACLIB. . . . « e « « 165
The MACLIB Command =« . « <166

DOS Assemkler Language Macros Supported 169
Assembling Source Programs . « « « « o 171
Link-editing Programs in CMS/DOS172
Linkage Editor Input173
Linkage Editor Output: CMS DOSLIBs . .174
Executing Programs in CMS/DOS. 175
Executing DOS Phases . .« 175
Search Order for Executable Phases . .176
Making I/O Device Assignments.177
Specifying a Virtual Partition Size. .177
Setting the UPSI Byte. . . . « - . . 178
Cebugging Programs in CMS/DOS.178
Using EXEC Procedures in CMS/DOS . . .179

SECTION 10. USING ACCESS METHOD
SERVICES AND VSAM UNDER CMS AND
CMS/DOS v e = o o o . . .

Executing VSAM Programs Under CHS. -
Using the AMSERV Command . . . <« o« « .
AMSERV OQutput Listings . . « « « & =
Controlling AMSERV Command Listings.

Manipulating 0S and DOS Disks for Use

With AMSERV . . ¢ v o o ¢ o o o = o a.
Cata and Mastercatalog Sharing . . .
Cisk Compatibility . « o« « ¢ o o « &

. 181
. 181
. 182
-~ 183
. 184

. 185
. 185
. 186

Rev March 30,

Pg. of GC20-1819-2
Using VM/370 Mipnidisks187
Using The LISTDS Command187
Using Temporary Disks. . . . - - 188
Defining DOS Input and Output Flles. . 190
Using VSAM CatalogSe « « « o « « « « 190
Defining and Allocating Space for
VSAM fileSe o o o o o o o o « « « = 194
Using Tape Input and Output.196
Defining 0S Input and Output Files . . .197
Allocating Extents on 0OS Disks and
Minidisks « o o o o o ¢ 2 o« o o « « <198
Using VSAM Catalogs. - <« « - « < - <199
Defining and Allocating Space for
VSAM fileS. v« o« ¢ o o o o o o o « = 2202
Using Tape Input and Output.204
Using AMSERV Under CMS . ¢« . « « o« « o .205

Using the DEFINE and DELETE Functions.205

Using the REPRO, IMPORT, and EXPORT
(or EXPORTRA/IMPORTRA) functions. . .207
Writing EXECs for AMSERV and VSAM. . .209
SECTION 11. HOW VM/370 CAN HELP YOU
DEBUG YOUR PROGRAMS . . o o 2 « « - - 211
Preparing to Debug . . « « « « « -« « o 211
When a Program Abends. . . . « « . - < 211
Resuming Execution After a Program
Check - « e o e = 2212
Using DEBUG Subcommands to Monitor
Program Execution . . . « o o o « =« 2213
Using Symbols with DEBUG e e e e o - 2214
What To Do When Your Program Loops . . .216
Tracing Program Activity216
Using the CP TRACE Command217
Using the SVCTRACE command « . . . - .219
Using CP Debugging Commands. « e o o 2219
Debugging with CP After a Program
CheCKk v 2 o« @ ¢ o o o o o o o o « « 2220
Program DUMPS. « « o 2 « o o =« o « « « =221
Debugging Modules. o <221

Comparison Of CP And CMS Fac111t1es For

Debugging o« « « ¢ o« o o o o 4 o

What Your Virtual Machine Storage Looks

.222

1979 by Supp. SD23-9024-1 for 5748-XX8

-241
. 242
~-243
. 243
244

Calling a CMS Command from a Program .
Executing Program Modules.
The Transient Program Area
CMS Macro Imnstructions « . . .
Macros for Disk File Manipulation. .
CMS Macros for Terminal
Communications. . . e« o o e .
CMS Macros for Unit Record and Tape
I/O.............,...
Interruption Handling Macros .- o
Updating Source Programs Using
The UPDATE Philosophy. . -« « « « «
Update Files « ¢ ¢ o« o @ o o o o .
Sequencing Output Records.
Multiple Updates . . . e e e o o =
The VMFASM EXEC Procedure. e e e e e

. 250

. 250
. 251
. 251
«252
.252
. 254
» 257
-262

Qs
=
w0
.
’

PART 3. LEARNING TO USE EXEC - .265
SECTION 14, BUILDING EXEC PROCEDURES .
What is a Token? « o o o o o o o o = =
VariableSe.e o o« o o o =« ¢ o @ « o o o =
ACgUmentS. « o ¢ @ o = o o « =« =« . -
Using the EINDEX Special Varlahle. -
Checking Argaments
Execution Paths in an EXEC
Labels in an EXEC Procedure.
Conditional Execution with the E&IF
Statement <« + <« & 4 o @ 4 o o . -
Branching with the &GOTO Statement -
Branching with the &SKIP Statement . .279
Using Counters for Loop Control. . . .280
Loop Control with the §LCOP Statement.280
Nesting EXEC Procedures.282
Fxiting From EXEC Procedures . . . - .283
Terminal Communications. . . e o < < <284
Reading CMS Commands and EXEC control
Statements from the Terminal. . . .
Displaying Data at a Terminal. . . .
Reading from the Console Stack . . . «
Stacking CHS Commands. « « « « « « «
Stacking Lines for EXEC to Read. .
Clearing the Console Stack
File Manipulation with EXECs
Stacking EXEC Files. « « . .

- 267
-267
-268
.272
.273
-274
. 275
. 275

276
« 277

. 285
. 286
. 289
.291
.292
-293
- 294
-294

SECTION 15. USING EXECS ®WITH CMS
COMMANDS. @ ¢ ¢ o o o o o o o = « o =
Monitoring CMS Command Execution . . .

Handling Error Returns From CHMS
CommandsS. « « o« o o o o o o « o o -
Using the &ERROR Control Statement - -300
Using the SRETCODE Special Variable. .301
Tailoring CMS Commands for Your Own Use.302
Creating Your Own Default Filetypes. .303

- 299
- 299

-300

Lik€e o @ @ ¢ o 4 o 4 2 s a2 4 e o & s 2223
Shared and Nonshared Systems223
SECTION 12. USING THE CMS BATCH
FACILITY. . . . e o e s e e e = o o «227
Submitting Jobs to the CMS Batch
Facility. « « + . « e o o « o o o <227
Input to the Batch Machlne e e e o < 227
How the Batch Facility Works230
Preparing Jobs for Batch Execution . . .231
Restrictions on CP and CMS Commands
in BatCh JObS . & ¢ o o o o o « « o« 2232
Batch Facility Output.232
Purging, Reordering, and Restarting
Batch Jobs. e - « 233

Using EXEC Files for Input to the Batch

SECTION 16. REFINING YOQUR EXEC

PROCEDURES. . ¢ o o © o e o o o w« =
Annotating EXEC Procedures . . « «
Error Situations . <« <« ¢ ¢ o ¢ o . .

-305

~ 305

.306

FAaCilit¥e o« o o o o o o « o « o « « « <234
" Sample System Procedures for Batch
Execution « « « <235
A Batch EXEC for a Non-CMS User. < . <236
SECTION 13. PROGRAMMING FOR THE CMS
ENVIRONMENT . . ¢ o o« o o« o« « « « « « 239
Program Linkage. « « « « « o « « « - . <239
Return Code Handling . . . « « . « . .240
Parameter Lists. . . « 4+ . & <« . . . 2240

.306
-.308
.308
<309

Writing EXror Messages . « « « « « «
Debugging EXEC Procedures. . . « « « .
Using CMS Subset - o .
Summary of EXEC Interpreter Loglc. .

SECTION 17. WRITING EDIT MACROS. . . .
Creating Edit Macro Files.
How Edit Macros Work . . . « . - « . .

-311
.31
.31

Contents 1ix

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SLC23-9024-1 for 5748-XX8

The Console StaCKe o « « » = «.2a « « 2313
Notes on Using EDIT Subcommands.314
The STACK Subcommand « « « « o « « « <317
An Annotated Edit Macro. . « « « « « « <318
User-Written Edit MacCros . « « « « « « 2320
PMACROS: o ¢« ¢ o « o o o o« « o a « « 2320
SMARK. 2o ¢ 4 o o o o o o .o =« o« « « = 2321
FPOINT . +o © o o« = « o o« o« = = « « « 2323
PCOL + 4 o ¢ o o = o « o o« o s =« « « #3244

PART 4. LEARNING TO USE THE HELP
FACILITY (5748=XX8) « « o o « « « « -326.1

SECTION 18. HELP FILE NAMING CONVENTIONS
AND CREATION (5748—XX8) + « - « « - -3204.3
Naming Conventions (5748-XX8).324.3
HELP File Creation (5748-XX8).324.4
Enclosing Text . (.BX Format Word)
(5748=XX8) e = « = = o « o o o o o -32U.6
Placing Comments in HELP Files (.CHM
Format Word) (5748-XX8) . « « « - <324.7
Conditional Display of Text (.CS
Format Word) (5748-XX8) . « « . . -324.8
Use of Format Mode (.FO Format
Word) (5748-XX8). . « « . . - . . .320.8
Indenting Text (.IN and IL Format
Words) (5748-XX8) . « . « o « o « +324.8
Use of Offsets (.OF Format Word)
(5748-XX8) e o o« = « o o o o o o 324.10
Spacing between Lines of Text (. SP
Format Word) (5748-XX8) 324.11
Translating Output Characters (. TR
Format Word) (5748-XX8) 324.13

APPENDIXES o o o o« ¢ o o » o o o « = « <325

APPENDIX A: SUMMARY OF CMS COMMANDS. . .327

X IBM VM/370: CMS User's Guide

APPENDIX B: SUMMARY OF CP COMMANDS .

APPENDIX C: CONSIDERATIONS FOR 3270
DISPLAY TERMINAL USERS. . . .
Entering Commands. « « « . . «
Setting Program Function Keys.
Controlling the Display Screen
Console Output . « - « o« « »
Signaling Interruptioms. . . .
Haltlng Screen Displays. . .
Using the CMS Editor with a 3270
Entering EDIT Subcommands. . .
Controlling the Display Screen
The Current Line Pointer . . .
Using Program Function Keys. .
Using the Editor in Line Mode.
Using Special Characters on a 3
Using APL with a 3270.
Error Situations
Leaving the APL Environment. .

7

Using the 3277 Text Feature. .
Error Situations
Leaving the Text Envircnment

[T R Y B B S K R B R I T B BT B Y)
8 6 0 0 0 O &+ 2 s 2 o0 s s

APPENDIX D: SAMPLE TERMINAL SESSIONS
Sample Terminal Session Using the
Editor and CMS File System Commands
Sample Terminal Session Using
Line-Numker Editing « . . .
Sample Terminal Session For 0S
Programmers . . « . - . « o
Sample Terminal Se551on for DOS
ProgrammlerSe. « « o« + « = o o « o o
Sample Terminal Session Using Access
Method Services . . . v ¢ ¢ ¢ o o »

INCEXe ¢ o o o o o o o o « o s o = o

L I R e T S O S Y R R S T R R |

-333

.339
.339
-339
-~ 340
«342
.343
- 344
. 344
344
. 346
<347
. 348
. 348
.349
« 350
. 351
. 351
«352
352
. 352

. 353
. 354
.362
365
-369
375

.383

FIGURES

Figure
Figure

Figure
Figure

Fiqure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

13.

14.

VM/370 Environments and Mode
SWitchinge.eccccecnanaceaannaa2li
Filetypes Used by CHMS
CommandS.ececcecccaccanccacasaslt?
FPiletypes Used in CMS/D0S.....50
How CMS Searches for the

Command to EXeCUt€.ceeecsecceecesd9
Positioning the Current Line
POinter..c.ceccecccccccccccacasa68
Number of Records Handled by

the EditOreeieccececcoanceanaaals
Summary of EDIT Subcommands
MACrOS.ccecccceccccccccncneacadl
Summary of EXEC Built-In
FUnCtionS.cecvsececcccaccenecasl03
Summary of EXEC Control
StatementS.cccccececccscacsss 109
EXEC Special Variables..ce...112
0S Terms and CMS Equivalents.128
CMS Commands That Recognize

0S Data Sets and OS Disks....129
Creating CMS Files From OS

Data SetSeecceacwaccccccnccaas 136
0S Macros Simulated by CMS... 142

Figure

Figure

Figure
Figure

Figure
Figure

Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure
Figure

15.

16.

17.
18.

19.
20.

21,
22.
23.

24,
25.

26.
27.

28.
29,

CMS/DOS Commands and CMS
Commands with Special

Operands for CMS/DO0S...cac...153
DOS/VS Macros Supported by
CMS.ccccecccacscacncaanannsasll0
summary of DEBUG Subcommands.215
Comparison of CP and CHMS
Facilities for Debugging.....222
Simplified CMS Storage Map...224
Sample CMS Assembler Progranm
Entry and Exit Linkage.......240
A Sample Listing of a

Program That Uses CMS Macros.2u49
Updating Source Files with the
UPDATE CoOmMANA.ececaccecaccesa2BS
An Update with a Control '
5 1] X
CMS Command SUMMALYeecosececasa328
CMS Commands for Systen
PrOgralBerSecccceccccesneseaall2
CP Privilege Class
DesCriptionSeecececcecccecsescasalldl
CP Compand SUMMALYeeewceceseaa33l
3270 Screen DisplaYeeeceecsaa.343
How the CMS Editor Formats

a 3270 SCreeNaececacccaacsasaaalls

Contents xi

b

e

IBM VM/370 CMS Usexr's Guide

e

Summary of Amendments
for GC20-1819-2
VM/370 BRelease 6 PLC 1

SUPPRESSION OF PASSWORDS Oh THE COMMAND SPECIAL MESSAGE FACILITY
LINE

New: Program Feature
New: Program Feature

The special message facility is a method

VM/370 supports a system generation of transferring messages from a user to
option that prevents passwords from a specially programmed receiving virtual
being entered on the same line as LOGON, machine for processing. This support is
AUTOLOG, and LINK commands. . The reflected in "Section 3. What You Can Lc
passwords must be entered so that they With VM/370-CHMS Connmands.™®

are not displayed or are masked. This
support 1is mentioned where there are
examples showing the passvword being
entered on the same line. MISCELLANEOUS

New and Changed: Documentation
3278 MODEL 22 DISPLAY STATION
Technical and editorial changes have
teen made throughout this publication.
New: Program Feature

CP and CMS editor sugport the 3278 Model
2A Display Station. This is a 20-line
display console. Support is reflected
in "Appendix C. Ccnsiderations for 3270
Display Terminal Users."

Summary of Amendments xiii

DOS/VS RELEASE 34 SUPPORTED

Rew: Program Feature

CMS/DOS supports DOS/VS Release 34.
This support includes a new operand of
the SET ccmmand, DOSLNCNT, and a new
operand of the QUERY command, DOSLNCNT.
SET DOSLNCNT allows a user to establish
the number of SYSLST 1lines per page.

xiv IBM VM/370: CMS User's Guide

susmary of Amendments

for 6€20-1819-1

as updated by TNL GN25-0411
VM/370 Release 5 PLC 1

QUERY DOSLNCNT displays the current
number of SYSLST 1lines per page
established by the SET DCSLNCNT.

This release also contains support for
the 3330 Model 11 and 3350 DASD devices
as attached devices. DCS/V0S Release 34
information is contained in "Section 9.
Developing DOS Programs under CHMS."

Summary of Amendments
for 6C20-1819-1
VM/370 Release 4 PLC 1

NEW DEVICES SUPPORTED IBY Virtual Machine Facility/370:

New: Programming and Documentation Environmental Errcr Recording,
Editing, and Printing (EREP) Prcqranm,

YM/370 Suffports the 3270 display Order No. GC29-8300

devices. The "Prefacem® 1is updated to

indicate that information about Environmental Exrror Recording,

operating 3270 distlay terminals is Editing, and Printing (EREP) Program

applicable to the the 3275, 3276 Logic, Order No. SY25-7701

Controller Display Station, 3277, and .

3278 Display Staticns. It is also In order to make use of the CPEREP command,

applicable to 3138, 3148, and 3158 both of +the following publications are
Display Ccnsoles when wused in display required. The first publication provides
mode. Any information pertaining to the ~general information on the usage of the
IBM 3284 or 3286 Printer, also pertains command and detailed infcrmation on ccmmand

to the 3287, 3288, and 3289 Printers. operands applicable only to VYM/370. The
: , second publication Frovides detailed
The "preface" is also updated to information on the operamnds that are common
indicate that the 370473705 to both VM/370 and 0S/VS.
Communications Controllers are referred
to as 370x. v IBM Virtual Machine Facility/370: OLTSEP
and Error Recording Guide, Order ©No.
GC20-1809
DOCUMENTATION UPDATE 0S/VS Environmental Recording Editing
: and Printing (EREP) Erogram, Order Nc.
GC28-C772

Changed: Documentation Only

Program logic informaticn describing the
"Section 8. Developing 0S Programs interface between CMS and CS/VS EREP, and
Under CMS" now includes a description of describing 0S/VS EREP, is contained in:
the AUXPROC option that allows the

FILEDEF command to use an auxiliary IBM Virtual Machine Facility/370:
processing routine to receive control Service Routines Program Logic, Order
during I/0 processing. No. SY20-0882

"Section 10. Using Access Method 0S/V¥S Environmental Recording Editing
Services and VSAM"™ has been rewritten to and Priting (EREP) Program Logic, Order
include a description of Data and No. SY28-0773

Master—-catalog Sharing, - Disk

Compatibility, and VSAM Allocation. The following areas in this publication

reflect CPEREP docuamentation changes:
In addition, mincr technical and
editorial corrections have been made. Preface

Appendix A

VM/370 SUPPORTS 0S/VS EREP (IFCEREP?1)

Changed: Program and Documentation

The CPEREP command now uses all edit and
format operands that are available to

0S/Vs EREP. Because of VM/370s
compatibility with O0S/VS EREP VM/370
relies cn existing 0s/Vs EREP

documentation. Therefore, VvM/370 no
longer publishes the following:

Summary of Amendments XV

©oxvi

IBM VM/370: CMS User's Guide

AN

7

Part 1. Understanding CMS

Learning how to use CMS is not an end in itself: you have a specific
task or tasks to do, and you need to use the ccmputer to perform thenm.
CMS has been designed to make these tasks easier, but 1if you are
unfamiliar with CMS, then the tasks may seem more difficult. The
information contained in Part 1 of the user's guide is organized to help
you make the acquaintance of CMS guickly, so that it enhances, rather
than impedes, the performance of your tasks. ‘

“"Section 1. What It Means To Have a CMS Virtual Machine"™ introduces
you to VM/370 and its conversational component, CMS. It should help you
to get a picture of how you, at a terminal, use and interact with the
systen.

During a terminal session, commands and requests that you enter are
processed by different parts of the system. How and when you can
communicate with these different programs, is described in "Section 2.
VM/370 Environments and Mode Switching."

. There are almost two hundred commands and subcommands comprising the
VM/370 language. There are some that you may never need to use; there
are others that you will use over and over again. "Section 3. What You
Can Do With VM/370-CMS Commands" contains a sampling of commands in
various functional areas, to give you a general idea of the kinds of
things you can do, and the commands available to help you do them.

Almost every CMS command that you enter results in some kind of
activity with a direct access storage device (DASD), known in CMS simply
as a disk, or minidisk. Data and programs are stored on disks in what
are called "files."® ®Section 4. The CMS File System" introduces you to
the creation and handling of CMS files.

"Section 5. The CMS Editor" contains all the basic information you
need to create and write a disk file directly from your terminal, or to
correct or modify an existing CMS file.

Just as important as the CMS editor is another CMS facility, called
the EXEC processor or interpreter. Using EXEC files, you can execute
many commands and programs by entering a single command line from your
terminal, or you can ¥write your own CMS commands. "Section 6.
Introduction to the EXEC Processor" presents a survey of the basic
characteristics and functions of EXEC.

"Section 7. Using Real Printers, Punches, Readers, and Tapes"

discusses how to use punched cards and tapes in CMS, and how to use your
virtual printer and punch to get real output.

Part 1. Understanding CMS 1

2 1IBM VM/370 CMS User's Guide

—

~

March 30, 1979

Section 1. What It Means To Have a CMS
Virtual Machine

virtual Machine Facility/370 (VM/370) is a system control program that
controls "virtual machines." A virtual machine is the functional
equivalent of a real computer, but where the computer has 'lights,
buttons, and swvitches on the real console to control it, you control
your virtual machine from your terminal, using a command language of
active verbs and nouns. There are actually three command languages, CP,
CMS, and RSCsS.

The command 1languages correspond roughly to the four components of
VM/370: the Control Program (CP), the Conversational Monitor Systenm
(CMS), the Remote Spooling Communications Subsystem (RSCS), and the
Interactive Problem Control System (IPCS). CP controls the resources of
the real machine; that is, the physical machine in your computer room;
it also manages the communications among virtual machines, and between a
virtual machine and the real systenm. CMS 1is the conversational
operating system designed specifically to run wunder CP; it can simulate
many of the functions of the 0S and DOS operating systems, so that you
can run many OS and DOS programs in a conversational environment. RSCS
is a subsystem designed +to supervise transmission of files across a
teleprocessing network controlled by Cp. IPCS provides systenm
programmers and installation support personnel with problem reporting
and analysis ' functions. Its commands execute in the CMS command
environment.

Although this publication is concerned primarily with wusing CMS, it
also contains examples of CP commands that you, as a CMS user, should be
familiar with.

How You Communicate with VM/370

When you are running your virtuwual machine under VM/370, each command, or
request for work, that you enter on your terminal is processed as it is
entered; wusually, you enter one command at a time and commands are
processed in the order that you enter then.

You can enter CP commands from either +the CP or CMS environment; but
you cannot enter CMS commands while in the CP environment. The concept
of "environments"™ in VM/370 is discussed in "Section 2. vM/370
Environments and Mode Switching."

After you have typed or keyed in the line you wish to enter, you
press the Return or Enter key on the keybocard. When you press this key,
the line you have entered is passed to the command environment you want
to have process it. If you press this key without entering any data,
you have entered a "null 1line.m™ Null lines sometimes have special
meanings in vM/370.

If you make a mistake entering a command line, VM/370 tells you what
your mistake was, and you must re-enter the entire command 1line. The
examples in this publication assume that the command lines are correctly
entered.

You can enter commands using any combination of wuppercase and
lowercase characters; VM/370 translates your input to ‘uppercase.
Examples in this publication show all user-entered input 1lines in
lovwercase characters and system responses in uppercase characters.

Section 1. What it Means to Have a CMS Virtual Machine 3

March 30, 1979

The CP Command Language.

You use CP commands to communicate with the control program. CP commands
control the devices attached to your virtual machine and their
characteristics.

For example, if you want to allocate additiomnal disk space for a work
area or if you want to increase the virtual address space assigned to
your virtual machine, use the CP command DEFINE. CP takes care of the
space allocation for you and then allows your virtual machine to use it.

or if, for example, you are receiving printed output at your terminal
and do not want to be interrupted by messages from other VM/370 users,
you can use the CP command SET MSG OFF to refuse messages, since it is
CP that handles communication among virtual machines.

Using CP commands, you can also send messages to the. VM/370 systenm
operator and to other users, modify the configuration of ‘devices in your
virtual machine, and use the virtual machine input/output devices. CP
commands are available to all virtual machines using VM/370. You can
invoke these commands when you are in the virtual machine environment
using CMS (or some other operating system) in your virtual machine.

The CP commands and command privilege classes are listed in "Appendix
B: Summary of CP Commands". The CP Commands applicable to the average
user are discussed in detail in the VM/370 CP Command Reference for
General Users. The rest of the CP commands are discussed in YM/370
Operator's Guide. However, since many CP commands are used with CHMS
commands, some of the CP commands you will use most frequently are
discussed in this publication, in the context of their usefulness for a
CMS "application. To aid you in distinguishing between CMS commands and
CP commands, all CP commands used in examples in this publication are
prefaced with “CP"™,

The CMS Command Language

The CMS command language allows you to create, modify, and debug problem
or application programs and, in general, to manipulate data files.

Many 0S language processors can be executed under CMS: the assembler,
VS BASIC, OS FORTRAN IV, OS COBOL, and 0S PL/I Optimizing and Checkout
Compilers. In addition, the DOS/VS <COBOL and DOS/VS PL/I Prograsms
Products are supported. You can find a comprehensive list of language
processors that can be executed under CMS and relevant publications in
the VM/370 Introduction. CMS executes the assembler and the compilers
when you invoke them with .CMS commands. The ASSEMBLE command is used to
present examples in this publication; the supported compiler commands
are described in the appropriate 'DOS and OS program product
documentation.

The EDIT command invokes the CMS editor so that you can create and
modify files. The EXEC facilities allow you to execute procedures
consisting of CP and CMS commands; they also provide .the conditional
execution capability of a macro language. The DEBUG command gives you
several program debugging subcommands.

Other CMS commands allow you to read cards from a virtual card
reader, punch cards to a virtual card punch, and print records on a
virtual printer. Many commands are provided to help you manipulate your
virtual disks and files. ,

4 1IBM YM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

| You use the HELP command
| how to use CP commands and
| explanations of CP and CMS
| when a brief explanation
| sufficient, thereby avoiding
{ to a manual.

to display at your terminal information on
CMS commands. subcommands, and EXECs, and
messages. You can issue the HELP command
of syntaXx, a parameter, or function is
interrupting your terminal session to refer

Section 1. What it Means to Have a CMS Virtual Machine 4.1

March 30, 1979

4.2 IBM YM/370 CMS User's Guide

e

Since you can invoke CP commands from within the CMS virtual machine
environment, the CP and CMS command languages are, for practical
purposes, a single, integrated command language for CMS users.

GETTING COMMANDS INTO THE SYSTEM

Before you can use CP and CMS, you should know (1) how to operate your
terminal and (2) your userid (user identification) and password.

The Terminal: Your Virtual Console

There are many types of terminals you can use as a VM/370 virtual
console. Before you <can conveniently use any of the commands and
facilities described in this publication, you have to familiarize
yourself with the terminal you are using. Generally, you can find
information about the type of terminal you are using and how to use it
with VM/370 in the V¥M/370 Terminal User's Guide. If your terminal is a
3767, you also need the IBM 3767 Operator's Guide.

In this publication, examples and usage notes assume that you are
using a typewriter-style terminal (such as a 2741). If you are using a
display terminal (such as a 3270), consult "Aprendix C: Considerations
for 3270 Display Terminal Users" for a discussion of special techniques
that you can use to communicate with VM/370.

Your Userid and Password: Keys into the Systenm

Your userid is a symbol that identifies your virtual machine to VM/370
and allows you to gain access to the VM/370 system. Your password is a
symbol that functions as a protective device ensuring that only those
authorized +to use your virtual machine can 1lcg on. The userid and
password are wusually defined by the system programmer for your
installation.

Contacting VM/370

To establish contact with VM/370, you switch the terminal device on and
VM/370 responds with some form of the message

vmn/370 online

to let you know that VM/370 is running and that you can use it. If you
do not receive the "vm/370 online"™ message, see the YM/370 Terminal
User's Guide for specific directions. You can now press the Attention
key (or equivalent) on your terminal and issue the LOGON command to
identify yourself to the systenm:

cp logon smith
where SMITH represents a 'userid. The LOGON command is entered by
pressing the Return (or Enter) key. If VM/370 accepts your userid, it
responds by asking you for your password:

ENTER PASSWORD:
You then enter your password, which may be hidden, depending on your
terminal.

Section 1. What it Means to Have a CMS Virtual Machine 5

LOADING CMS IN THE VIRTUAL MACHINE: THE IPL COMMAND

You load CMS in your virtual machine using the IPL command:

cp ipl cms
where %cms" is assumed to be the saved systen name for your
installation's CMS. You could also load CMS by referring to it using
its virtual device address, such as 190:

cp ipl 190
VM/370 responds by displaying a message such as:

CMS VERSION v.3 - 02/28/76 12:02

to indicate that the IPL command executed successfully and that CMS is
loaded into your virtual machine.

Your userid may be set up for an automatic IPL, so that you receive
this message, indicating that you are in the CMS command environment,
without having to issue the IPL command.

Now you can enter a null line to begin your virtual machine
operation.

Note: 1If this is the first time you are wusing a new virtual disk
assigned to you, you receive the message:

DMSACC112S DISK'A(191)" DEVICE ERROR

and you must "format" the disk, that is, prepare it for use with CHMS
files. See "Formatting virtual Disks"™ below.

Logical Line Editing Symbols

To aid you in entering command or data lines from your terminal, VM/370
provides a set of logical 1line editing symbols, which you can use to
correct mistakes as you enter 1lines. Each symbol has been assigned a
default character value. These normally are:

Symbol Character
Logical character delete ?
Logical line end #
Logical line delete ¢
Logical escape "

Logical Character Delete

The logical character delete symbol (@) allows you to delete one or more
of the previous characters entered. The @ deletes one character per @
entered, including the ¢ and # logical editing characters. For example:

ABC#29@ results in AB
ABC®D results in-ABD
¢dDEF results in DEF
ABC@?@ deletes the entire string

6 IBM VM/370 CMS User's Guide

PraaN

=t

Logical Line End

The logical 1line end symbol (#) allows you to key in more than one
command on the same line, and thus minimizes the amount of time you have
to wait betvween entering commands. You type the # at the end of each
logical command line, and follow it with the next logical command line.
VM/370 stacks the commands and executes them in sequence. For example,
the entry:

query blip#query rdymsg#query search
is executed in the same way as the entries:

query blip
query rdymsg
guery search

The logical line end symbol also has special significance for the #CP
function. Beginning any physical line with #CP indicates that you are
entering a command that is to be processed by CP immediately. If you
have set a character other than # as your logical 1line end symbol, you
should use that character instead of a #.

Logical Line Delete

The 1logical line delete symbol (¢) (or [for Teletype! Model 33/35
terminals) deletes the entire previous physical 1line, or the last
logical line back to (and including) the previous logical line end (#).
You can use it to cancel a line containing many or serious errors. If a
immediately precedes the ¢ sign, only the # sign is deleted, since the
indicates the beginning of a new line, and the ¢ cancels the current
line. For example:

e Logical Line Delete:
ABC#DEF¢ deletes the #DEF and results in ABC
ABC#¢ results in ABC
ABC#DEFZ#GHI results in ABC#GHI
ABC#DEF¢GHI results in ABCGHI
e Physical Line Delete:
ABC¢Z deletes the whole line
Note that when you cancel a line by using the ¢ logical line delete

symbol, you do not need to press a carriage return; you can continue
entering data on the same line.

The logical escape symbol (") causes VM/370 +to consider the next
character entered to be a data character, even if it is normally one of
the logical line editing symbols (@, ¢, ", or #). For example:

ABC"¢D results in ABC¢D
WNABCH" results in "ABCY

1Trademark of the Teletype Corporation, Skokie, Illinois.

Section 1. What it Means to Have a CMS Virtual ﬁachine 7

If you enter a single logical escape symbol (") as the last character
on a line, or on a line by itself, it is ignored.

When you enter logical escape characters in conjunction with other
logical editing characters, the results may be difficult to predict.
For example, the lines:

ABC""aDEF
ABC"“2dDEF

both result in the line:

ABCDEF

Defining Logical Line Editing Symbols

The logical 1line editing symbols are defined for each virtual machine
during VM/370 system generation. If your terminal's keyboard lacks any
of these special characters, your installation can define other special
characters for logical line editing. You can find out what logical line
editing symbols are in effect for your virtual machine by entering the
command:

cp query terminal
The response might be something like:

LINEND # , LINEDEL ¢ , CHARDEL @ , ESCAPE "
LINESIZE 130, MASK OFF, APL OFF, ATTN OFF, MODE VM

You can use the CP TERMINAL command to change the logical 1line
editing characters for your virtual machine. For example, if you enter:

cp terminal linend /
Then, the line:

input # line / input / #
would be interpreted:

input # line

input

#
The terminal characteristics 1listed in the response to the CP QUERY

TERMINAL command are all controlled by operands of the CP TERMINAL
conmand.

HOW VM/370 RESPONDS TO YOUR COMMANDS

CP and CMS respond differently to different types of requests. All CMS
command responses (and all responses to CP commands that are entered
from the CMS environment) are followed by the CMS ready message. The
form of the ready message can vary, since it can be changed using the
SET command. The long form of the ready message is:

R; T=7.36/19.89 09:26: 11

8 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

If you have issued the command:
set rdymsg smsg
the ready message looks like:
R3
When you enter a command line incorrectly, you receive an error
message, describing the error. The ready message contains a return code
from the command; for example:

R (00028) ;

indicates that the return code from the command was 28.

Some Sample CP and CMS Command Responses

———— =

If you enter a CP or CMS command that requests information about your
virtual machine, the response should be the information requested. For
example, if you issue the command:

cp display g

CP responds by showing you the contents of your virtual wmachine's
general registers, for example:

GPR 0 = 00000003 00003340 000007A0 00000003
GPR 4 = 00000848 CL4u4O4O40 00000040 00002DFO
GPR 8 = 00000008 000132F8 00002BACQ 00002230
GPR 12 = 00003238 FFFFFFFD 50013386 00000000

Similarly, if you issue the CMS command:
listfile * assemble c
you might receive the following information:

JUNK ASSEMBLE C1
MYPROG ASSEMBLE C1

If you enter a CP command to alter your virtual machine configuraticn
or the status of your spool files, CP responds by telling you that the
task is accomplished. The response to:

cp purge reader all
might be:
0004 FILES PURGED

Some CP commands, those that alter some of the characteristics of
your virtual machine, give you no response at all. If you enter:

cp spool e class x hold
you receive no response from CP.
Certain CMS commands may issue prompting messages, to request you to
enter more information. The SORT command, which sorts CMS disk files,

is an example. If you enter:

sort in file a1 out file a1

Section 1. What it Means to Have a CMS Virtual Machine 9

March 30, 1979

you are prompted with the message:
DMSSRT604R ENTER SORT FIELDS:

and you can then
sorted on.

Getting Acquainted with CMS

specify which fields you wish the

input records to be

If you have just logged on for the first time, and you want to try a few

CMS commands, enter:

query disk a

The response should tell you that you
191;
disk and how much of it is used.
that indicates
Disks."

Your A-disk is
CMS files.

the disk you use

most often in CMS,
Files are collections of data, and may have

have an A-disk at virtual address
it also provides information such as

how much room there is on the

Again, if you receive an error message
the disk may not be formatted, see

"Formatting Virtual

to contain your
many purposes.

For this exercise, the data is meaningless. Enter:

edit junk file
You should receive the response:

NEW FILE:
EDIT:
which indicates that this file does

Enter:

input
You should receive the response:
INPUT:

and you can start to create the file,
are eventually going to be written onto
lines, such as:

hickory dickory dock
the mouse ran up the clock
the clock struck one
and down he run
dickory hickory dock
Now, enter a null line
message:

(one with no

EDIT:
Enter:
file
You should see the message:

R; T=0.01/0.02 19:31:29

10 IBM VM/370 CMS User's Guide

not already exist on

that is,

your A-disk.

write input records that

your A-disk. Enter S or 6 data

data) . You should receive the

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

You have just written a CMS file onto your A-disk. If you enter:
type junk file a
you should see the following:

HICKORY DICKORY DOCK

THE MOUSE RAN UP THE CLOCK
THE CLOCK STRUCK ONE

AND DOWN HE RUN

DICKORY HICKORY DOCK

The CMS command, TYPE, requested a display of the disk file JUNK FILE,
on your A-disk.

To erase the file, enter:
erase junk file
Now, if you re-enter the TYPE command, you should receive the message:
FILE NOT FOUND

Most CMS ccmmands create or reference disk files, and are as easy to
use as the ccmmands shown above. Your CHMS disks are among the most
important features in your VM/370 virtual machine.

Virtual Disks and How They Are Defined

Under VM/370, a real direct access storage device (DASD) unit (disk
pack) or an FB-512 device can be divided into many small areas, called
minidisks. Minidisks (also called virtual disks because they are not
equivalent to an entire real disk) are defined in the VM/370 directory,
as extents on real disks. For CMS applications, you never have to be
concerned with the extents on your minidisks; when you use CMS-formatted
minidisks, they are, for practical purposes, functionally the same as
real disks. Minidisks can also be formatted for use with O0S or DOS data
sets or VSAM files.

You can have both permanent and temporary disks attached to your
machine during a terminal session. Permanent disks are defined in the
VM/370 directory entry for your virtual machine. Temporary disks are
those you define for your own virtual machine using the CP DEFINE
command, or those attached to your wvirtual machine by the systen
operator.

PERMANENT VIRTUAL DISKS

The VM/370 directory entry for your userid defines your permanent
virtual disks. Each disk has associated with it an access mode
specifying whether you can read and write on the disk or only read from
it (its read/write status). virtual disk entries in the VM/370
directory may look like the following:

MDISK 190 2314 000 050 CMs190
MDISK 191 3330 010 005 BDISKE
MDISK 194 3330 010 020 CMsS001
MDISK 195 FB-512 1000 500 FBDISK
MDISK 198 3330 050 010 CMS192
MDISK 19E 3330 010 050 CMS19E

TE=aaxX

Section 1. What it Means to Have a CMS Virtual Machine 11

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

The first two fields describe the device, minidisk in this example,
and the virtual address of the device. Virtual addresses (shown above
as 190, 191, and so on), are the names by which you and VM/370 identify
the disk. Each device in your virtual machine has an address which may
or may not correspond to the actual location of the device on the VM/370
systen.

The third field specifies the device type of your virtual disk. For
count-key-data devices, the fourth and fifth fields specify the starting
real cylinder at which your virtual disk logically begins and the number
of cylinders allocated to your virtual disk, respectively. For FB-512
devices, the fourth field specifies the starting real block numbers
where your virtual disk begins, and the fifth field is the number of
blocks allocated to your virtual disk. The sixth field is the label cf
the real disk on which the virtual disk is defined and the seventh field
is a letter specifying the read/write mode of the disk; "R"™ indicates
that the disk is a read-only disk, and “W" indicates that you have
read/vwrite privileges. The MDISK control statement of the Directory
Service Program is described in the VM/370 Operator's Guide.

DEFINING TEMPORARY VIRTUAL DISKS

Using the CP DEFINE command, you can attach a temporary disk to your
virtual machine for the duration of a terminal session. The following
command allocates a 10-cylinder temporary disk from a 3330 device and
assigns it a virtual address of 291:

cp define t3330 as 291 cyl 10
When you define a minidisk, you can choose any valid address that is not
already assigned to a device in your virtual machine. Valid addresses

for minidisks range from 001 through S5FF, for a virtual machine in basic
control mode. .

FORMATTING VIRTUAL DISKS

Before you can use any nevw virtual disk, you must format it. This
applies to new disks that have been assigned to you and to temporary
disks that you have allocated with +the CP DEFINE command. ¥hen you
issue the FORMAT command you must use the virtual address you have
defined for the disk and assign a CMS mode letter, for example:

format 291 ¢
CMS then prompts you with the following message:

DMSFOR603R FORMAT WILL ERASE ALL FILES ON DISK 'C(291)'. DO YCU
WISH TO CONTINUE? (YES|NO):

You respond:

yes
CMS then asks you to assign a label for the disk, which may be anything
you choose. Labels can have a maximum of 6 characters. When the

message:

DMSFOR60SR ENTER DISK LABEL:

12 IBM VM/370 CMS User's Guide

?g. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8
is issued, you respond by supplying a disk label. For example, if this
is a temporary disk, you might enter:

scrtch

Section 1. What it Means to Have a CMS Virtual Machine 12.1

March 30, 1979

12.2 1IBM VM/370 CMS User's Guide

<

~_F

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

CMS then erases all the files on that disk, if any existed, and formats
the disk for your use. When you enter the label, CMS responds by
telling you:

FORMATTING DISK ‘'C!?
'10' CYLINDERS FORMATTED ON 'C(291)°.
R; T=0.15/1.60 11:26:03

The FORMAT command should only be used to format CMS disks, that is,
disks you are going to use to contain CMS files. If you want to format
count—-key-data disks for 0S, DOS, or VSAM applications, the disks should
Le formatted using the IBCDASDI program. '

The FORMAT command allows a choice of physical disk block size as an
option. See the VM/370 CMS Command and Macro Reference for details. To
format FB-512 disks for 0S, DOS, or VSAM applications, the disks can be
formatted using the INTDK stand-alone wutility progranm. See YM/370
Operator's Guide for details.

Sharing Virtual Disks: Linking

Since only one user can own a virtual disk, and there are many occasions
that require users to share data or programs, VM/370 allows you to share
virtual disks, on either a permanent or temporary basis, by "linking."

Permanent links can be established for you in your VM/370 directory
entry. These disks are then a part of your virtual machine
configuration every time you log on.

You <can also have another user's disk temrorarily added to your
configuration by using the CP LINK command. For example, if you have a
program that uses data that resides on a disk identified in wuserid
DATA's configuration as a 194, and you know that the password assigned
to this disk is GO, you could issue the command:

cp link to data 194 as 198 r pass= got

DATA's 194 disk is then added to your virtual machine configuration at
virtual address 198.

The "R" in the command line indicates the access mode; in this case,
it tells <CP that you wish only to read files from this disk. VM/370
will not allow you to write om it. If you try to issue this command
when someone is logged on to the wuserid DATA, you will not be able to
establish the link. If you want to link to DATA in any event, you can
reissue the LINK command using the access mode RR:

cp link data 194 198 rr got

The keywords TO, AS, and PASS= are optional; you do not have to specify
then.

You can also use the CP LINK command to link to your own disks. For
example, if you lcg on and discover that another user has access to one
of your disks, you may be given read-only access, even if it is a
read/write disk. You can request the other user to detach your disk

1Note that the password cannot be entered on the command line if the
password suppression facility was specified at sysgen.

Section 1. What it Means to Have a CMS Virtual Machine 13

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8
from his virtual machine, and after he has.done so, you can establish
the link: :

cp link * 191 191

When you link to your own disks, you can specify the userid as * and you
do not need to specify the access mode or a password.

You can find more information about the CP LINK command and CP access
modes in VM/370 CP cCommand Reference for General Users.

Identifying Your Disk to CMS: Accessing

LINK and DEFINE are CP commands: they tell CP to add DASD devices to
your virtual machine configuration. CMS must also know about these
disks, and you must use the ACCESS command to estaklish a filemode
letter for thenm:

access 194 b

CMS uses filemode letters to manage your files during a terminal
session. By using the ACCESS command you can control:

e Whether you can write on a disk or only read from it (its read/ﬁrite
status)

e The 1library search order for programs executing in your virtual
machine

e Which disks are to contain the new files that you create

If you want to know which disks you currently have access to, issue
the command:

query search

You might see the following display:

PER191 191 A R/W
DAT194 198 B R/0
CHS190 190 S R/0
CMS19E 19E ¥ R/0

The first column indicates the label on the disk (assigned when the disk
is formatted), and the second column . shows the virtual address assigned
to it.

The third column contains the filemode letter. All letters of the
alphabet are valid filemode letters.

The fourth column indicates the read/write status of the disk. The
190 and 19E disks in this example are read-only disks that contain the
CMS nucleus and disk-resident commands for the CMS system. You will
probably use your 191 (A) disk as your primary read/write work disk.

14 IBM VM/370 CMS User's Guide

e

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8
RELEASING VIRTUAL DISKS

When you no longer need a disk during a terminal session, or if you want
to assign a currently active filemode 1letter toc another disk, use the
CMS command RELEASE:

release ¢

Then, you can issue the ACCESS command to assign the filemode letter C
to another disk.

Section 1. What it Means to Have a CMS Virtual Machine 14.1

March 30, 1979

14.2 1IBM VM/370 CMS User's Guide

- When you no longer need disks in your virtual machine configuration,
use the CP command DETACH to disconnect them from your virtual machine:

cp detach 194
cp detach 291

If you are going to release and detach the disk at the same time, you
can use the DET option of the RELEASE command:

release 194 (det

For more information on controlling disks in CMS, see %“Section 4. The
CMS FPile System."%

Section 1. What it Means to Have a CMS Virtual Machine 15

16 IBM VM/370 CMS User's Guide

P

Section 2. VM/370 Environments and Mode
Switching

When you are using VYM/370, your virtual machine can bLe in one of two
possible "environments": the CP, or control program environment, or the
virtual machine environment, which may be CMS. The CMS environment has
several subenvironments, sometimes called "modes." Each environment or
subenvironment accepts particular commands or subcommands, and each
environment has its own entry and exit ©paths, responses and error
messages. If you have a good understanding of how the VM/370
environments are related, you can learn to change environments quickly
and use your virtual machine efficiently.

This section introduces the CP and CHMS environments that you use and
describes:

e Entry and exit paths
e Command subsets that are valid as input

Figure 1, at the end of this section, summarizes the VM/370 command
environments and lists the commands and terminal paths that allow you to
go from one environment to another.

With the exception of input mode in the edit environment, Yyou can
always determine which environment your virtual machine is in by
pressing the Return or Enter key on a null 1line. The responses you
receive and the environments they indicate, are:

Response Environment
Ccp CP

CMS CHMsS

CMsS (DOS ON) CMS/DOS
EDIT: Edit

CMS SUBSET CMS Subset
DEBUG Debug

The CP Environment

When you log on to VM/370, your virtual machine is in the CP
environment. In this environment, you can enter any CP command that is
valid for your privilege class. This publication assumes that you are a
general, or class G, user. You <can find information about the commands
that you can use in the ¥M/370 CP Command Reference for General Users.

Only CP commands are valid terminal input in the CP environment. You
can, however, preface a CP command line with the characters "“CP" or
"3CP", followed by one or more blanks, although it is not necessary.
These functions are described under "The CMS Environment."

You can enter CP commands from other VM/370 environments. There may
be times during your terminal session when you want to enter the CP
environment to issue one or more CP commands. You can do this from any
other environment by doing either of two things:

1. Issue the command:

#cp

Section 2. VM/370 Environments and Mode Switching 17

2. Use your terminal's Attention key (or equivalent). On a 2741
terminal, you must normally press the Attentlon key twice, quickly,
to enter the CP environment. :

The following message indicates that your virtual machine is in the CP
environment:

Cp

After entering vhatever CP commands you need to use, you return your
virtual machine to the environment or mode that it came from Ly using
the CP command:

cp begin

which, literally, begins execution of your virtual machine.

The CMS Environment

You enter the CMS environment from CP by issuing the IPL command, which
loads CMS into your virtual storage area. If you are planning to use
CMS for your entire terminal session, you should not have to IPL again
unless a program failure forces you into the CP environment.

When you issue the IPL command, you can specify either the named
system CMS at your installation or you can load CMS by specifying the
virtual address of the disk on which the CMS system resides. For
example:

cp ipl cnms
cp ipl 190

When your virtual machine is in the CMS environment, you can issue
any CMS command and any of the CP commands that are valid for your user
privilege <class. You can also execute many of your own O0S or DOS
programs; the ways you can execute programs are discussed in "Section 8.
Developing OS Programs Under CMS"™ and "Section 9. Developing DOS
Programs Under CMS."

You can enter CP commands from CMS in any of the following ways:
. bsing the implied CP function of CMS (See Note.)

With the CP command
e With the #CP function

Note: For the most part, you may enter any CP command directly fron
the CMS environment. This implied CP function is controlled by an
operand of the CMS SET command, IMPCP. You can determine whether the
implied CP function is in effect for your virtual machine by entering
the command:

query impcp
If the response is:

IMPCP = OFF
you can change it by entering:

set impcp on

18 1IBM VM/370 CMS User's Guide

When the implied CP function is set off, you must use either the
CP command or the #CP function to enter CP commands from the CMS
environment. CP commands that you execute in EXEC procedures must
always be prefaced by the CP command, regardless of the implied CP
setting. An example of using the CP command is:

cp close punch

When you issue CP commands from the CMS environment either
implicitly or with the CP command, you receive, in addition to the CP
response (if any), the CMS ready message. If you wuse the #CP
function, discussed next, you do not receive the ready message.

You can preface any CP command line with the characters "#CP",
followed by one or more blanks. When you enter a CP command this
way, the command is processed by CP immediately; it is as if your
virtual machine were actually in the CP environment.

EDIT, INPUT, AND CMS SUBSET

The CMS editor is a VM/370 facility that allows you to create and
modify data files that reside on CMS disks. The editor environment,
more commonly called the edit environment, is entered when you issue
the CMS command EDIT, specifying the identification of a data file
you want to create or modify.

edit myfile assemble
is an example of how you would enter the edit environment to either
create a file called MYFILE ASSEMBLE or to make changes to a disk
file that already exists under that name.

When you enter the edit environment your virtual machine is
automatically in edit mode, where you can only issue EDIT subcommands
or CP commands prefaced by "#CP." EDIT subcommands tell the editor
what you wish to do with the data you have accessed. After you enter
the EDIT subcommand:

input

data 1lines that you enter are considered input to the file. To
return to edit mode, you must enter a null line.

If you issue the EDIT subcommand:
cms
the editor responds:
CMS SUBSET
and your virtual machine 1is in CMS subset mode, where you can issue

any valid CMS subset command, that is, a CMS command that is allowed
in CMS subset mode. These include:

ACCESS LISTFILE RT

cp PRINT SET
DISK PUNCH STATE
ERASE QUERY STATEW
EXEC READCARD TYPE
HT

Section 2. VM/370 Environments and Mode Switching 19

20

You can also issue CP commands. To return to edit mode, you use
the special CMS subset command, RETURN. If you enter the Immediate
command HX, your editing session is terminated abnormally ‘and your
virtual machine is returned to the CMS environment.

When you are finished with an edit sessicn, you return to the CHMS
environment by issuing the FILE subcommand, which indicates that all
modifications or data insertions that you have made should be written
onto a CMS disk, or by issuing the subcommand QUIT, which tells the
editor not to save any modifications or insertions made since the
last time the file was written. -

More detailed information about EDIT subcommandsvénd how +to use
the CMS editor is contained in this publication in "Section 5. The
CMS Editor™ and in the VM/370 CMS Command and Macro Reference.

DEBUG

CMS DEBUG is a special CMS facility that provides subcommands to help
you. debug programs at your terminal. Your virtual machine enters the
debug environment when you issue the CMS command: '

debug

You may want to enter this command after you have loaded a program
into storage and before you begin executing it. At this time you can
set "breakpoints," or address stops, where you wish to halt your
program's execution so that you can examine and change the contents
of general registers and storage areas. When these breakpoints are
encountered, your virtual machine is placed in the debug environment.
You can also enter the debug environment by issuing the CP EXTERNAL
command, which causes an external interrupt to your virtual machine.

Valid DEBUG subcommands that you can enter in. this environment
are: - S

BREAK GO RETURN

CAW GPR v SET
CSW. HX _ STORE
DEFINE ORIGIN X :
DUMP PSW .

You can also use the #CP function in the debug environment to enter
CP commands. '

You leave the debug environment in any of the following ways:

If the program you are running completes execution, you are returned
to the CMS environment. C

If your virtual machine entered the ' debug environment'-after_ a
breakpoint was encountered, it returns to CMS when you issue the
DEBUG subcommand: '

hx

To continue the execution of your program, you use the DEBUG
subcommand:

go

IBM VM/370 CMS User's Guide

~

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for S5748-XX8

e If your virtual machine is in the debug environment and is not
executing a program, the DEBUG subcommand:

return

returns it to the CMS environment.

CMS/DOS

If you are a DOS/VSE user, the CMS/DOS environment provides you with all
the CMS interactive functions and facilities, as well as special CMS/DOS
commands which simulate DOS functionmns. The CMS/DOS environment becomes
active when you issue the command:

set dos on

When your virtual machine is in the CMS/DOS environment you can issue
any command line that would be valid in the CMS environment, including
the facilities of EDIT, DEBUG, and EXEC, but excluding CMS commands or
program modules that load and/or execute programs that use 0OS macros or
functions.

The following commands are provided in CMS/DOS to test and develop
DOS programs, and to provide access to DOS/VS libraries:

ASSGN DSERYV OPTION
DLBL ESERYV PSERV
DOSLIB FETCH RSERV
DOSLKED FCOBOL SSERV
DOSPLI LISTIO

Your virtual machine 1leaves the CMS/DOS environment when you issue the
command:

set dos off

If you reload CMS (with an IPL command) during a terminal session, you
must also reissue the SET DOS ON command.

Interrupting Program Execution

When you are executing a program under CMS or executing a CMS command,
your virtual machine is not available for you to enter commands. There
are, however, ways in which you can interrupt a program and halt its
execution, either temporarily, in which case you can resume its
execution, or permanently, in which case your virtual machine returns to
the CMS ‘environment. In both cases, you interrupt execution by creating
an "attenticn interruption," which may take two forms:

e An attention interruption to your virtual machine operating systen
e An attention interruption to the control program

These situaticns result in what are known as virtual machine (VM) or

control program (CP) "reads" being presented tc your virtual console.
On a typewriter terminal, the keyboard unlocks when a read occurs.

Section 2. VM/370 Environments and Mode Switching 21

March 30, 1979

- Whether you have to press the Attention key once or twice depends on
the terminal mode setting in effect for your virtual machine. This
setting is controlled by the CP TERMINAL command:

cp terminal mode vm

The setting VM is the default for virtual machines; you do not need to
specify it. The VM setting indicates that one depression of the
Attention key sends an interruption to your virtual machine, and that
two depressions results in an interruption to the control program (CP).

The CP setting for terminal mode, which is the default for the systenm
operator, .indicates that one depression of the Attention key results in
an interruption to the control program (CP). If you are using your
virtual machine to run an operating system other than CMS, you might
wish to use this setting. Issue the command:

cp terminal mode cp

VIRTUAL MACHINE INTERkUPTIONS

While a command or program is executing, if you press the Attention key
once on a 2741 (or ‘the Enter key on a 3270), you have created a virtual
machine interruption. The program halts execution, your +terminal will
accept an input line, and you may:

e Terminate the execution of the program . by issuing an Immediate
command to halt execution: :

hx
The HX command causes the program to abnormally terminate (abend).

e Epnter a CMS command. The command is stacked in a console buffer and
is processed by CMS when your program is finished executing and the
next virtual machine read occurs.. For example:

print abc listing

After you enter this line, the program resumes eXecution.

e If the program is directing output to your terminal and you wish only
to halt the terminal display, use the Immediate command:

ht
- The program resumes exXxecution. Terminal output can also be
suppressed immediately when you enter a command by placing #HT at the
end of the command line. The logical line end character (#) allowus

the Immediate command HT to .be accepted; program execution proceeds
without typing.

You can, if you want, cause another interruption and -request that
typing be resumed by entering the RT (resume typing) command:

rt
e Enter a null line; your program continues execution. The null line is

stacked in the console stack and read by CMS as a stacked command
line.

22 1IBM VM/370 CMS User's Guide

HX, HT, and RT are three of the CMS Immediate commands. They are
"immediate" because they are executed as soon as they are entered.
Unlike other commands, they are not stacked in the console buffer. You
can only enter an Immediate command following an attention interruption.

CONTROL PROGRAM INTERRUPTIONS

You can interrupt a program and enter the CP environment directly by
pressing the Attention key twice quickly, on a 2741, or pressing the PA1
key on a 3270. Then, you can enter any CP command. To resume the
program's execution, issue the CP command:

cp begin

If your terminal is operating with the terminal mode set to CP, pressing
the Attention key once places your virtual machine in the CP
environment.

ADDRESS STOPS AND BREAKPOINTS

A program may also be interrupted by an instruction address stop, which
you specifically set by the CP command ADSTOP. For example, if you
issue the command:

cp adstop 201ea

an address stop is set at virtual storage location X'201EA'. When your
program reaches this address during its execution, it is interrupted and
your virtual machine is placed in the CP environment, where you can
issue any CP command, including another ADSTOP command, before resuming
your program's execution with the CP command BEGIN.

Breakpoints, similar to address stops, are set using the DEBUG
subcommand BREAK, which you issue in the debug environment before
executing a program. For example, if you issue:

break 1 201ae

Your program's execution is interrupted at this address and your virtual
machine is placed in the debug environment. You can then enter any
DEBUG subcommand. To resume program execution, use the DEBUG subcommand
GO. If you want to halt execution of the program entirely, use the
DEBUG subcommand HX, which returns your virtual machine to the CMS
environment. You can find more information about setting address stops
and breakpoints in "Section 11. How VM/370 Can Help You Debug Your
Programs."

Section 2. VYM/370 Environments and Mode Switching 23

Any ““Ctass Any”"
CP Command

LOGON

Notes:

1The CP environment may be entered from any other environment either by using
your terminal’s Attention key or equivalent, or by entering the command #CP,
2 Any CP.command is any CP command that is valid for your user privilege class.

Y

CP {Control Program)
Environment’

Any CP Wz’,——
IPL CMS

BEGIN®

EXTERNAL

CMS/DOS Environment

Any CMS Command

Any CMS/DOS Command
Any CP Command
Execute any DOS Program
#CP Command Line

Program Execution

HX or (ABEND) smememmame
{Address Stop)

ICMS (Conversational-Monito
System) Environment

Any CMS Command
Any CP Command

Program
DEBUG
#CP Command Line

DEBUG Environment

Any DEBUG Subcommand
RETURNorHX
GO

(Breakpoint)

#CP Command Line

)

Any time that a CP command can be entered, it may be prefaced with #CP.

3The BEGIN command returns your virtual machine to the environment it was in

when CP was entered:

*1f you were in edit or input mode, the current line pointer remains unchanged.
*1f you were executing a program, execution resumes at the instruction address

indicated in the PSW.

Figure 1. VYM/370 Environments and

24

IBM VM/370 CMS User's Guide

Mode Switching

EDIT Environment

1 Any EDIT Subcommand

FILE or QUIT
Any EDIT Macro

EDIT filename filetype -~
SET DOS ON .
Execute any OS or CMS

[]

cMms
INPUT
#CP Command Line

INPUT MODE

Any. Input Line

| Carrier return on a
null line

#CP Command Line

CMS Subset

Any CMS Subset Command
Any CP Command

RETURN
HX
#CP Command Line

=T

w7

Section 3. What You Can Do with
VM/,/370-CMS Commands

This section provides an overview of the CMS and CP command languages,
and descrikes the various commands within functional areas, with
examnples. The commands are not presented in their entirety, nor is a
complete selection of commands represented.

When you finish reading this section you should have an understanding
of the kinds of commands available to you, so that when you need to
perform a particular task using CMS you may have an idea of whether it
can be done, and know what command to reference for details. For
complete lists of the CP and CMS commands available, see "Appendix A:
Summary of CMS Commands" and "Appendix B: Summary of CP Commands."

Command Defaults

Many of the characteristics of your CHMS virtual machine are already
established when you log on, but there are commands available so you can
change them. In the case of many CMS commands, there are implied values
for operands, so that when you enter a command line without certain
operands, values are assumed for then. In both of these instances, the
values set or implied are considered default values. As you learn CP
and CMS commands, you also should become familiar with the default
values or settings for each.

Commands to Control Terminal Communications

Using VM/370, you control your virtual wmachine directly from your
terminal. vM/370 provides a set of commands for terminal
communications.

ESTABLISHING AND TERMINATING COMMUNICATIONS WITH VM/370

To initiate your communication with VM/370, use the CP LOGON command:
cp logon sam
Optionally, you may enter your password on the same linel:
cp logon sam 123456
When you are sure that your dommunication line is all right and you have
difficulty logging on (for' example, someone else has logged on under

your userid), you can use the CP MESSAGE command:

cp message sam this is sam...pls log off

1Note that the password cannot be entered on the command line if the
password suppression facility was specified at sysgen.

Section 3. What You Can Do With VM/370-CMS Commands 25

Another way to access the ¥M/370 system is to use the CP command
DIAL:

cp dial tsosys
In this example, TSOSYS is the userid of a virtual machine running a TSO
systenm. After this DIAL command is successful, you can use your

terminal as if you were actually connected to a TSO system, and you can
begin TSO logon procedures.

To end your terminal session, use the CP command LOGOFF:
cp logoff
If you have used a switched (or dial-up) communication path to the
VM/370 computer and you want the line to remain available, you can
enter:
cp logoff hold
At times, you might be running a 1long program under one userid and wish
to use your terminal for some other work. Then, you can disconnect your
terminal:
cp disconn
- or -—-
cp disconn hold
Your virtual machine continues to run, and is logged off the system when
your program has finished executing. If you want to regain terminal
control of your virtual machine after disconnecting, log on as you would
to initiate your terminal session. Your virtual machine is placed in
the CP environment, and to resume its execution, you use the CP command
BEGIN.
You should not disconnect your virtual machine if a program requires

an operator response, since the console read request cannot be
satisfied.

CONTROLLING TERMINAL OUTPUT

During the course of a terminal session, you can receive many kinds of
messages from VM/370, from the system operator, from other users, or
from your own programs. You can decide whether or not you want these
messages to actually reach you. For example, if you use the command:

cp set msg off
no one will be able to send messages to you with the CP MESSAGE command;
if another virtual machine user tries to send you a message, he receives
the message:

userid NOT RECEIVING, MSG OFF

If your virtual machine handles special messages and you do not want to
receive special messages at this time, you can issue:

cp set smsg off

26 IBM VM/370 CMS User's Guide

March 30, 1979

No one will be able to send special messages to you with the CP SMSG
command; if another virtual machine user attempts to do so, he receives
a message:

userid NOT RECEIVING, SMSG OFF

Similarly, you can use:
cp set wng off

to prevent warning messages (which usually come from the systenm
operator) from coming to you. 7You would probably do this, however, only
in cases where you were typing some output at your terminal and did not
want the copy ruined.

VM/370 issues error messages whenever you issue a command incorrectly
or if a command or program fails. These messages have a 1long form,
consisting of the error message code and number, followed by text
describing the error. If you wish to receive only the text portion of
messages with severity codes I, E, and W (for informational, error, and
warning, respectively), you can issue the command:

Cp set emsg text
If you want to receive only the message code and number (from which you

can locate an explanation of the error in VM/370 System Messages), you
specify:

cp set emsg code
You can also cancel error messages completely:
cp set emsg off

To restore the EMSG setting to its default, which is the message text,
enter:

cp set emsg text

Some CP commands issue informational messages telling you that CP has
performed a particular function. You can prevent the reception of these
messages with the command:

cp set imsg off

or restore the default by issuing:

cp set imsg on :

The setting of EMSG applies to CMS commands as well as to CP commands.
You can also control the format of +the CMS ready message. If you
enter:
set rdymsg smsg
you receive only the "R;" or shortened form of the ready message after
the completion of CMS commands. If you are not receiving error messages

(as described above) and an error occurs, the return code from the
command still appears in parentheses following the "RY,

Section 3. What You Can Do With VM/370-CMS Commands 27

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 57u48-XX8

An additional feature exists for CMS.. If you have a typewriter
terminal with a two-color ribbon, you can specify:

set redtype on
so that CMS error messages are typed in red.

Some commands or messages result in displays of lines that are very
long. If you want to limit the width of lines that are received at your
terminal (for example, if you are using terminal paper that is only
eight inches wide), you can specify:

cp terminal linesize 80

so that all lines received at your +terminal are formatted to fit within
an 80-character display.

You can also control two special characters in VM/370. One 1is the
exclamation point (!) that types when the Attention key is pressed. If

you do not want this character to type when you press the Attention key,
use the command:

cp terminal attn off

CMS allows you to specify a "blip" character: this character is typed
or displayed whenever two seconds of processor time are used by your
virtual machine. If you enter:

set blip *

then, during program execution, this character types for every tvwo
seconds of CPU time. You can cancel the function:

set blip off
or set it to nomprintable characters:
set blip on

When this command has been entered on a typewriter terminal, the
Selectric type ball tilts and rotates whenever a blip character is
received.

Note: Issuance of the STIMER macro for more than two seconds will mask
off blips.

On a display terminal, you can control the intensity of the redisplay
of user input. If you enter:

cp terminal hilight on
the redisplay of user input is highlighted. If you enter:
cp terminal hilight off
the fedisplay of wuser input 'is at normal intensity. This is the

default.

28 1IBM VM/370 CHMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8
COMMANDS TO CONTROL HOW VM/370 PROCESSES INPUT LINES

You can manipulate VM/370's logical line editing function to suit your
own needs. In addition to using the CP TERMINAL command to change the
default logical line editing symbols, you can issue:

cp set linedit off

Section 3. What You Can Do With VM/370-CMS Commands :28.1

March 30, 1979

28.2 IBM VM/370 CMS User's Guide.

so that none of the symbols are recognized by VM/370 when it interprets
your input lines. '

When you are in the CMS environment, there are a number of commands
that you can use to control how CMS validates a commrand line. The SET
command functions IMPCP (implied CP) and IMPEX (implied EXEC) control
the recognition of CP commands and CMS EXEC procedures. For example, if
you issue:

set impcp off # set impex off

then, when you enter - CP ' commands in CMS or try to execute EXEC
procedures, you must preface the name of the command or procedure with
CP (or #CP), or EXEC, respectively.

By using the SYNONYM and the SET ABBREV commands, you can control
what command names, synonyms, or truncations are valid in CMS. For
example, you could set up a file named MYSYN SYNONYM which contains the
following records: :

PRINT PRT 1
RELEASE LETGOOF 5
ACCESS "GET 1
DOSLKED LNKEDT 3

The first column specifies an existing CMS command, module, or EXEC
name; the second column specifies the "alternate name, or synonym, you
want to use; and the third column is a count field that indicates the
minimum number of characters of the synonym that can be used to truncate
the name. Using this file, after you enter the command:

SYnonym mysyn
you can use PRT, LETGOOF, GET, and LNKEDT in place of the corresponding
CMS command names. Also, if the ABBREV function is in effect, (it is
the default; you can make sure it. is in effect by issuing the command
SET ABBREV ON), you can truncate any of your synonyms to +the minimum
nunber of characters specified in the count field of the record (that
is, you could enter "p" for PRINT, "letgo" for RELEASE, and so on).

You can set up EXEC files with the same names as CMS commands, that
may or may not perform the same function as the CMS names they
duplicate. For example, if every time you used the GLOBAL command you
used the same operands, you could have an EXEC file, named GLOBAL, that
contained a single record:

global maclib cmslib osmacro
Then, every time you entered the command name:
global -
the command GLOBAL MACLIB CMSLIB OSMACRO would execute.

As another example, suppose you had an EXEC file named 'T', that
contained the following records:

&CONTROL OFF
CP QUERY TIME

Then, whenever you entered:

t

Section 3. What You Can Do With VM/370-CMS Commands 29

you would receive the CP time-of-day message, and you could no longer
use the truncation "Tw for the CMS command TYPE. In order to see the
contents of a CMS file displayed at your terminal you would have to
enter at least "TY" as a truncation.

CONTROLLING KEYBOARD-DEPENDENT COMMUNICATIONS

You are dependent on your terminal for communication with VM/370: when
your virtual machine is waiting for a read either from the control
program or from your virtual machine operating system, you can not
receive messages until you press the Return key to enter a command or a
null line. If you are in a situation where you must wait for a message
before continuing your work, for example, if you are waiting for a tape
device to be attached to your virtual machine, you can use the CP
command SLEEP to lock your keyboard:

cp sleep

You must then press the Attention key to get out of sleep and unlock the
keyboard so you can enter a command.

If your virtual machine is in the CP environment when Yyou issue the
SLEEP command, or if you issue the SLEEP command from the CHMS
environment using the #CP function, your virtual machine is in the CP
environment after you press the Attention key. If your virtual machine
is in the CMS environment when you enter the SLEEP command (or if you
enter CP SLEEP), your virtual machine is in the CMS environment when you
press the Attention key once.

You can control the effect of pressing the Attention key on your
terminal with the CP TERMINAL command. If you specify:

cp terminal mode cp

then, whenever you press the Attention key, you are in the CP
environment.

If you use the default terminal mode setting, which is VM, and then
you press the Attention key once, you cause a read to your virtual
machine; if you press the Attention key twice you cause a CP read, and
you are in the CP environment.

The effect of pressing the Attention key is also important when you
are executing a program. At times, you may wish to enter some CP
commands while your program executes, but you do not want to interrupt
the execution of the progranm. If, before you begin your program you
issue the command:

Cp set run on

and then use the Attention key to get to the CP environment while your
program executes, the program continues executing while you communicate
with CP. The default setting for the RUN operand of the SET command is
off; usually, when you press the Attention key (twice) during program
execution, your program is interrupted.

SPECIAL CHARACTER SETS: If you are using a fprogramming language or
entering data that requires you to use characters that are not on your
keyboard, you can select some characters that you do not use very often
and establish a translate table with the SET command. For example, if
your terminal does not have the special characters [and] (which have

30 IBM VM/370 CMS User's Guide

£

the hexadecimal values AD and BD, respectively), you could issue the
commands:

set input % ad
set input $ bd

Then, when you are entering data 1lines at your terminal, whenever you
enter the characters "%" or "$", they are translated and written into
your file as "[" and "J*. When you display these 1lines, the character
positions occupied by the special characters appear to be blanks,
because they are not available on your keyboard. If you want these
special characters to appear on your terminal in symbolic form, you
should issue the commands:

set output ad %
set output bd $

so that when you are displaying lines that contain these characters,
they will appear translated as % and $ on your terminal. If you are
going to use the input and output functions together, you must set the
output character first; if you set the input character first, then you
are unable to set the output function.

If you are an APL user and have the special APL type font or the APL
3270 feature and keyboard, you can tell VM/370 to use APL translaticn
tables with the command:

cp terminal apl on

Commands to Create, Modify, and Move Data Files
and Programs

The CMS command language provides you with many different ways of
manipulating files.- A file, in CMS, is any collection of data; it is
most often a disk file, but it may also be contained on cards or tape,
or it may be a printed or punched output file.

COMMANDS THAT CREATE FILES

You create files in CMS by several methods; either specifically or by
default. The EDIT command invokes the CMS editor to allow you to create
a file directly at your terminal. You must specify a file identifier
when you are creating a new file:

edit mother goose
In this example, the file has an identifier, or fileid, of MOTHER GOOSE.
The EDIT subcommand INPUT allows you to begin inserting lines of data or

source code into this file. When you issue the subcommands FILE or
SAVE, the lines that you have entered are written into a CMS disk file.

Files are created, ahd sometimes named, by default, with the
following types of commands:

e Commands that invoke programming language processors or compilers.
For example, if you issue the command:

assemble myfile

Section 3. What You Can Do With VM/370-CMS Commands 31

the assembler assembles source statements from an existing CMS file
named MYFILE ASSEMBLE and produces an output file containing object
code, as well as a listing. The files that are created are named:

MYFILE TEXT
MYFILE LISTING

Commands that load CMS files onto a disk from cards or tapes. These
commands are READCARD, TAPE LOAD, and DISK LOAD. .

The LISTFILE and LISTIO commands with the EXEC option create files
named CMS EXEC and $LISTIO EXEC which you can execute as EXEC
procedures.

The TAPPDS and TAPEMAC commands create CMS disk files from O0S data
sets on tape. If the data set is a partitioned data set, the TAPPDS
command creates individual CMS files from each of the members; the
TAPEMAC command creates a CMS macro library, called a MACLIB, from an
0S macro library.

The MOVEFILE and FILEDEF commands, used together, can copy O0S or DOS
data sets or files into CMS files; they can also copy files from
cards or tapes.

CMS/DOS commands SSERV, ESERV, RSERV, and PSERV copy DOS files from
source statement, relocatable, and procedure libraries into CHMS
files.

Some CMS commands produce maps, or lists of files, data sets, or
program entry points. For example, if you issue the command:

tape scan (disk
a CMS disk file named TAPE MAP is created that contains a list of the
CMS files that exist on a tape attached to your virtual machine at
virtual address 181.

Some commands create new files from files that already exist on your

virtual disks. The creation may involve a simple copy operation, or it
may be a combining of many files of one type into a larger file of the
same or a different type:

The COPYFILE command, in its simplest form, copies a file from one
virtual disk to another:

copyfile yourprog assemble b myprog assemble a

The MACLIB and TXTLIB commands create libraries from MACRO or COPY
files, or from TEXT (object) files.

The SORT command rearranges (in alphameric sequence) the records in a
file and creates a new file to contain the result. You have to
specify the name of the new file:

sort nonseq recs a seq recs a
The GENMOD command creates nonrelocatable modules from object modules
that you have loaded into your virtual storage area. For example,
the commands:

load test
genmod payroll

create a file named PAYROLL MODULE, which you can then execute as a
user-written CMS command.

32 IBM VM/370 CMS User's Guide

PN

e The DOSLKED command creates or adds members to DOSLIBs, which are
libraries containing link-edited CMS/DOS program phases.

e The UPDATE command creates an updated source file and special update
files when you use it to apply updates to your source programs.

COMMANDS THAT MODIFY DISK FILES
You can use the CMS editor to modify existing files on your virtual
disks. You issue the EDIT command, giving the file identifier:
edit old file
CMS editor subcommands allow you +to make minor specific changes or

global changes, which can affect many lines in a file at one time.

The MACLIB and TXTLIB commands also allow you to modify CMS macro and
text 1libraries. You can add, delete, or rerlace members in these
libraries using these commands.

The COPYFILE command has some options that allow you to change a file
without creating a new output file. For example, if you enter the
command:

copyfile my file a (lowcase

then all of the uppercase characters in the file MY FILE are translated
to lovwercase.

You can change the file identifier of a file using the RENAME
command:

rename test file al good file at
The ERASE command deletes files from your virtual disks:
erase temporary file b1
For additional examples of CMS file system commands, see "Appendix D:
Sample Terminal Sessions."

COMMANDS TO MOVE FILES

You can use CMS commands to transfer a data file from one device or
medium to another device of the same or of a different type. The types
of movement and the commands to use are described briefly here and in
detail in "Section 7. Using Real Printers, Punches, Readers, and Tapes."™

If you need to transfer files between virtual machines, you can use
the PUNCH or DISK DUMP commands to punch virtual card image records.

These are then placed in the virtual card reader of the receiving
virtual machine.

Before you use either of these commands, you must indicate the output
disposition of the files. You do this with the CP SPOOL command:

cp spool 004 to mickey

Section 3. What You Can Do With VM/370-CMS Commands 33

Then, you can use the PUNCH command to punch virtual card images:

punch acct records
The file ACCT RECORDS is spooled to the userid MICKEY's virtual card
reader. If the CMS file you are transferring does not have fixed-
length, 80-character (card image) records, you can use the command:

disk dump acct records

The CMS TAPE command allows you to dump CMS files onto tape, or to
restore previously dumped files: ‘

tape dump archive file
tape load archive file

. YM/370 also provides a special utility program, DASD Dump Restore,
that allows you to dump the entire contents of your virtual disk onto a
tape and then later restore it to a disk. You might use this progranm,

invoked by the DDR command in CMS, to back up your data files before
using them to test a new program.

COMMANDS TO PRINT AND PUNCH FILES
The commands that you use most often to print and punch CMS files are
the commands PRINT and PUNCH. For example:
print myprog listing
prints the contents of the LISTING file on the system printer, and:
punch myprog assemble

punches the assembler language source statement file onto cards. You
can also punch members of MACLIBs and TXTLIBs:

punch cmslib maclib (member fscb
Some CMS commands have a PRINT option, so that instead of having some
kinds of output displayed at your terminal or placed in a disk file, you
can request to have it printed on the real system printer. For example,
if you want a list of the contents of a macro library to print, you
could issue the command:
maclib map mylib (print

You can see the contents of a file displayed at your terminal by
using the TYPE command:

type week3 report

You can specify, on the TYPE command, that you want to see only some
specific records in this file:

type week3 report a 1 20

34 1IBM VM/370 CMS User's Guide

March 30, 1979

Commands to Develop and Test OS and CMS
Programs

Use CMS to prepare programs: you can create them with the CMS editor, or
write them cnto your CMS disks using any of the methods discussed above.
You can also assemble or compile source programs directly from cards,
tapes, or 0S data sets. If your source program is in a CMS disk file,
then during the development process you can use the editor to make
corrections and updates.

To compile your programs, use the assembler or any of the language
processors available at your installation. If your program uses macros
that are contained in either system or private program libraries, you
must make these libraries known to CMS by using the GLOBAL command:

global maclib cmslib asmlib

In this example, you are using two 1libraries: the CMS macro library,
CMSLIB MACLIB, and a private library, named ASMLIB MACLIB.

The output from the compilers, in relocatable object form, is stored
on a CMS disk as a file with the filetype of TEXT. To load TEXT files
into virtual storage to execute them, use the LOAD command:

load myprog

The LOAD command performs the linkage editor function in CMS. 1If
MYPROG contains references to external routines, and these routines are
the names of CMS TEXT files, those TEXT files are automatically included
in the 1load. If you receive a message telling you that there is an
undefined name (which might happen if you have a CSECT name oOr entry
point that is not the same as the name of the TEXT file that contains
it), you can then use the INCLUDE command to load this TEXT file:

include scanrtn

When you have loaded the object modules into storage, Yyou can begin
program execution with the START command:

start
If you want to begin execution at a specified entry point, enter:
start scan1
where SCAN1 is the name of a control section, entry point, or procedure.
If you are testing a program that either reads or writes files or
data sets using 0S macros, you must use the FILEDEF command to supply a
file definition to correspond to the ddname you specify in your prograsm.
The command:

filedef indd reader

indicates that the input file is to be read from your virtual card
reader. A disk file might be defined:

filedef ocutdd disk out file a1

The FILEDEF command in CMS performs the same function as a data
definition (DD) card in OS.

The commands to load and execute OS programs are discussed in
"Section 8. Developing OS Programs Under CMS."

Section 3. What You Can Do With VM/370-CMS Commands 35

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

The RUN command, which is actuwally an EXEC procedure, combines many
of these commands for you, so that if you want to compile, 1load, and
execute a single source file, or load and execute a TEXT or MODULE file,
you can use the RUN command instead of issuing a series of commands. See
the discussion of the RUN command in VYM/370 CMS Command-and Macro
Reference for a list of the 0S language processors available. -

Commands to Develop and Test DOS Programs

CMS simulates many functions of DOS/VSE in the CMS/DOS environment.
CMS/DOS is not a separate system, but is part of CMS. When you enter the
command:

set dos on
you are in the CMS/DOS environment. If you ‘want to use the libraries on
the DOS/VSE system residence volume, you should access the disk on which
it resides and specify the mode letter on the SET DOS ON command line:

access 132 c
set dos on ¢

Using commands that are available only in the CMS/DOS environment,
you can assign system and programmer logical units ‘with the - ASSGN
command: ' fo '

assgn sys200 reader

If the device is a disk device, you can set up a data definition with
the DLBL command: : :

assgn sysi100 b
dlbl infile b dsn myinput file (sys100

You can find out the current logical unit assignments and active file
definitions with the LISTIO and QUERY DLBL commands, respectively:

listio a
query dlbl

If you are an assembler language programmer, you can assemble a
source file with the ASSEMBLE command:

assemble myprog
A CMS file with a filetype of DOSLIB simulates a DOS core image
library; you can link-edit TEXT files or relocatable modules from a DCS
relocatable library and place the link-edited phase in a DOSLIB using
the DOSLKED ccmmand:
doslked myprog newlib

Then, use the GLOBAL command to identify the phase library and issue the
FETCH command to bring the phase into virtual storage:

global doslib newlib
fetch myprog '

The START command begins program execution:

start

36 IBM VM/370 CMS User's Guide

During program development with CMS, you can use DOS/VS system or
private libraries. You can use files on these libraries or you can copy
them into CMS files. The DSERV command displays the directories of
DOS/VS libraries. The command:

dserv cd

produces a copy of the directory for the core image library. To copy
pPhases from relocatable libraries into CMS TEXT files, you could use the
RSERV command: wy

rserv oldprog

The SSERV and ESERV commands are available for you to copy files fronm
source statement libraries, or copy and de-edit macros from E
sublibraries. Also, the PSERV command copies procedures from the
procedure library.

The CMS/DOS commands are described in detail in "Section 9.
Developing DOS Programs Under CMS."

Commands Used in Debugging Programs

When you execute your programs under CMS, you can debug them as they
execute, by forcing execution to halt at specific instruction addresses.
You do this by entering the debug environment before you issue the START
command. You enter the debug environment with the DEBUG command:

debug

To specify that execution be stopped at a particular virtual address,
you can use the BREAK subcommand to set a breakpoint. For example:

break 1 20ad0

Then, when this virtual address is encountered during the execution of
the program, the debug environment is entered and you can examine
registers or specific storage locations, or print a dump of your virtual
storage. Subcommands that do these things might 1look 1like the
following:

gpr 0 15
X 20c12 8
dump 20000 =*

Instead of using the CMS DEBUG subcommands, you can use the CP ADSTCP
command to set address stops. For example:

cp adstop 20ado

Then, in the CP environment, you can use CP commands to do the same
things. For example:

cp display g
cp display 20c12.8
cp dump 20000

Both sets of commands shown in these examples result in displays of (1)
the contents of your virtual machine's general purpose registers, (2) a
display of eight bytes of storage beginning at lccation X'20C12' and (3)
a dump of virtual storage from location X'20000' to the end.

Section 3. What You Can Do With VYM/370-CMS Commands 37

You can also use the CMS SVCTRACE command and the CP TRACE commands
to see a record of interruption activity in your virtual machine.

The DEBUG subcommands and the CMS and CP debugging facilities are
described in more detail in "Section 11. How VM/370 Can Help You Debug
Your Programs."

Commands to Request Information

211 of the CP and CMS commands discussed in this section have required
some action on your ©part: you set your terminal characteristics,
manipulate disk files, develop, compile, and test programs, and control
your virtual machine devices and spool files. During a terminal session
you can change the status of many of your devices and virtual machine
characteristics, modify the files on your disks and create spool files.
VM/370 provides many commands to help you find out what is and what is
not currently defined in your virtual machine.

COMMANDS TO REQUEST INFORMATION ABOUT TERMINAL CHARACTERISTICS

You can find out the status of your terminal characteristics by using
the CP command QUERY with the TERMINAL or SET operands. If you issue the
command:

Ccp query terminal
you can see the settings for all of the functions controlled by the CP
TERMINAL command, including the «current line size and line editing
symbols.

Similarly, the command:

Cp query set
tells you the settings for the functions controlled by +the CP SET
command, such as error message display, and the MSG and WNG flags.

For most of thekfunctiOns controlled by the CMS SET command, there
are corresponding CMS QUERY command operands; to find out a particular
setting, you must specify the function in the QUERY command. For
example:

query input

lists the current settings in effect for input character translation.
Other functions that you can query this way are:

BLIP INPUT REDTYPE
IMPCP OUTPUT SYNONYM
IMPEX RDYMSG

38 IBM VM/370 CMS User's Guide

COMMANDS TO REQUEST INFORMATION ABOUT DATA FILES
Use the LISTFILE command to get information about CMS files. The
information you can obtain from the LISTFILE command includes:
e The names of all the files on your A-disk:
listfile
e The names of all the files on any other accessed disk:
listfile * * b
e The names of all files that have the same filenanme:
listfile myprog *
e The names of all files with the same filetype:
listfile * assemble

e The record length and format, blocksize, creation date and disk label
for a particular file:

listfile records saved a2 (label
Use the STATE command to find out whether a certain file exists:
state sales list c

If you want to know if the file is on a read/write disk, you can use the
STATEW command.

To find out what CMS libraries have been made available, you can use
the commands:

query doslib
query maclib
query txtlib
query library

To find out what members are contained in a particular macro or text
library use the commands: '

maclib map mylib (term
txtlid map proglib (term

The MODMAP command displays a load map of a MODULE file:
modmap payroll

To examine load maps created by the LOAD command, use the TYPE
command:

type load map a5
The TYPE command can also be used +to display the contents of any CMS
file. To examine large files, you can use the PRINT command to spool a
copy to the high-speed printer.

To compare the contents of two files to see if they are identical,
use the COMPARE command:

compare labor stat al labor stat b1

Section 3. What You Can Do With VM/370-CMS Commands 39

Any records in these files that do not match are displayed at your
terminal.

If you have 0S or DOS disks attached to your virtual machine, you can
display a list of 0S data sets or DOS files by using the LISTDS command;
for example:

listds 4

displays a list of the data sets or files on the 0S5 or DOS disk accessed
as your D-disk.

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL DISKS

Use the CP QUERY command to find out:
e What virtual disks are currently part of your configuration:
cp query virtual dasd
o Whether a particular virtual disk address is in use:
Ccp query virtual 291
e What users might be linked to one of your disks:
cp query links 330

The CMS QUERY command can tell you about your accessed disks. If you
enter:

query disk a
you can find out the number of files on your A-disk, the amount of space
that is being used, and its percentage of the total disk space, and the
read/write status. To get this information for all of your accessed
disks, issue the command:

query disk *

To obtain information about the extents occupied by files on 0S and DOS
disks, enter the command:

listds * (extent

If you want to know the current order in which your disks are
searched for data files or programs, issue the command:

query search
You could also use this command to find out what disks you have

accessed, what filemode letters you have assigned to them, whether they
are read/write or read-only, and whether they are CMS, 0S, or DOS disks.

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL MACHINE

If you issue the command:

cp query virtual

40 1IBM VM/370 CMS User's Guide

S

you can find out the status of your virtuwal machine configuration. You
can also request specific information; for example, the command:

CP query storage
gives you the amount of virtual storage you have availalble.

To find out the current spooling characteristics of your printer,
punch, or reader, issue the commands:

cp query 00e
cp query 004
cp query 00c
To see information about all three at once, use:

CpP query ur

For the status of spool files on any of these devices, issue the
commands:

CP query printer
cp query punch
cp query reader

Using these commands, you can request the status of particular spool
files by referring to the spoolid number; for example:

cp query printer 4187

You can also request additional information about the files, including
file identification and creation time:

Cp query reader all

If you want to know the total number of spool files associated with
your virtual machine, you can use the command:

cp query files

The response to this message is the same as the message you receive if
you have spool files when you log on.

Section 3. What You Can Do With VM/370-CMS Commands 41

42

IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

Section 4. The CMS File System

The file 1is the essential unit of data in the CHMS systen. CMS disk
files are unique to the CMS system and cannot be read or written using
other operating systems. When you create a file in CMS, you name it
using a file identifier. The file identifier consists of three fields:

e Filename (fn)
e Filetype (ft)
e Filemode (fm)

When you use CMS commands and programs to modify, update, or
reference files, you must identify the file by using these fields. Some
CMS commands require you to enter only the filename, or the filename and
filetype; others require you to enter the filemode field as well. This
section contains information about the things you must consider when you
give your CMS files their identifiers, notes on the file system commands
that create and modify CMS files, and additional notes on using CHMS
disks.

CMS File Formats

The CMS file management routines write CMS files on disk in fixed
physical blocks, regardless of whether they have fixed- or
variable-length records. For most of your CMS applications, you never
need to specify either a logical record length and record format or
block size when you create a CMS file.

When you <create a file with the CMS editor, the file has certain
default characteristics, based on its filetype. The special filetypes
recognized by the editor, and their applications, are discussed under
"What are Reserved Filetypes?"

VSAM files written by CMS are in the same format as VSAM files
written by 0S/VS or DOS/VS and are recognized by those operating
systems. You cannot, however, use any CMS file system commands to read
and write VSAM files, because VSAM file formats are unique to the
virtual storage access method.

For a minidisk formatted in 800-byte physical blocks, a single CMS
file can contain up to 12,848,000 bytes of data grouped into as many as
65,533 logical records, all of which must be on the same minidisk. If
the file is a source program, the file size limit may be smaller. The
maximum number of files per real disk in the 800-byte physical block
format is 3400 for a 3330, 3333, 3340, or 3350 disk, or 3500 for a 2314
or 2319.

For a minidisk formatted in 1024-, 2048-, or U4096-byte logical
blocks, a single CMS file can contain up to about (23% - 132,000) disk
blocks of data, grouped into as many as 23t-1 logical records, all cf
which must be on the same minidisk. The approximate 1limits to the
number of files per disk, expressed in thousands, are:

Section 4. The CMS File System - 43

Pg. of GC20-1819-2 Rev. March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

T DISK LOGICAL BLOCK SIZE
Device Type 1024-byte 2048-byte 4096-byte

2314 21 11 5
3330-11 149 86 4y
3340 50 26 11
3350 45 25 13
3310 55 29 15
3370 216 114 59

How CMS Files Get Their Names

When you create a CMS file, you can give it any filename and filetype
you wish. The rules for forming filenames and filetypes are:

e The filename and filetype can each be from one to eight characters.
e The valid characters are A-Z, 0-9, and $, #, @. Co

When you enter a command line into the VM/370 system, VM/370 always
translates your input 1line into uppercase characters. So, when Yyou
specify a file identifier, you can enter it in lowercase.

Remember that, by default, the # and @ characters are line editing
symbols in VM/370; when you use them to identify a file, you must
precede them with the logical escape symbol (").

The third field in the file identifier, the filemode, indicates the
mode letter (A-2Z) currently assigned to the virtual disk on which you
want the file to reside. When you use the CMS editor to create a file,
and you do not specify +this field, the file you create is written on
yocur A-disk, and has a filemode letter of A.

The filemode letter, - for any file, can change during a terminal
session. For example, when you log on, your virtual disk at address 191
is accessed as your A-disk, so a file on that disk named SPECIAL EVENTS
has a file identifier of:

SPECIAL EVENTS A

If, however, you later access another disk as your A-disk, and access
your 191 as your B-disk, then this file has a file identifier of:

SPECIAL EVENTS B

DUPLICATING FILENAMES AND FILETYPES

Yon can give the same filename to as many files on a given disk as you
want, as long as you assign them different filetypes. Or you can create
many files with the same filetype but different filenames.

For the most part, filenames that you choose for your ' files have no
special significance to CMS. If, however, you choose a name that is the
same as the name of a CMS command, and the file that you assign this
name to is an executable module or EXEC procedure, then you may
encounter difficulty if you try to execute the CMS command whose name
you duplicated. '

N

44 1IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

For an explanation of how CMS identifies a command name, see "“CMS
Command Search Order®" later in this section.

Many CMS commands allow you to specify one or more of the fields in a
file identifier as an asterisk (*) or equal sign (=), which identify
files with similar fileids.

Using Asterisks (*) in Fileids

Some CMS commands that manipulate disk files allow you to enter the
filename and/or filetype fields as an asterisk (*), indicating that all
files of the specified filename/filetype are to be modified. These
commands are:

COPYFILE RENAME
ERASE TAPE DUMP

For example, if you specify:
erase * test a

all files with a filetype of TEST on your A-disk are erased.

Section 4. The CMS File Systenm 4u.1

March 30, 1979

44.2 IBM VM/370 CMS User's Guide

The LISTFILE command allows you to request similar lists. If you
specify an asterisk for a filename or filetype, all of the files of that
filename or filetype are listed. There is an additional feature that you
can use with the LISTFILE command, to obtain a 1list of all the files
that have a filename or filetype that begin with the same character
string. For example:

listfile t* assemble

produces a list of all files on your A-disk whose filenames begin with
the letter T. The command:

listfile tr* ax

produces a list of all files on your A-disk whose filenames begin with
the letters TR and whose filetypes begin with the letter A.

Equal Signs in Output Fileids

The COPYFILE, RENAME, and SORT commands allow you to enter output file
identifiers as equal signs (=), to indicate that it is +the same as the
corresponding input file identifier. For example:

copyfile myprog assemble b = = a

copies the file MYPROG ASSEMBLE from your B-disk to your A-disk, and
uses the same filename and filetype as specified in the input fileid for
those positions in the output fileid.

Similarly, if you enter the command:
rename temp * b perm = =

all files with a filename of TEMP are renamed to have filenames of PERMNM;
the existing filetypes of the files remain unchanged.

What Are Reserved Filetypes?

For the purposes of most CMS commands, the filetype field is used merely
as an identifier. Some filetypes, though, have special uses in CHMS;
these are known as "reserved filetypes."

Nothing prevents you from assigning any of the reserved filetypes to
files that are not being used for the specific CMS function normally
associated with that filetype.

Some reserved filetypes also have special significance to the CMS
editor. When you use the EDIT command to create a file with a reserved
filetype, the editor assumes various default characteristics for the
file, such as record 1length and format, tab settings, translation to
uppercase, truncation column, and so on.

Section 4. Thé CMS File Systenm 45

FILETYPES FOR CMS COMMANDS

Reserved filetypes sometimes indicate how the file is used in the CHMS
system: the filetype ASSEMBLE, for example, indicates that the file is
to be used as input to the assembler; the filetype TEXT indicates that
the file is in relocatable object form, and so on. Many CMS commands
assume input files of particular filetypes, and require you to enter
only the filename on the command line. For example, if you enter:

synonynm test

CMS searches for a file with a filetype of SYNONYM and a filename of
"TEST. A file named TEST that has any other filetype is ignored.

Some CMS conmands create files of particular filetypes, using the
filename you enter on the command 1line. The language processors do this
as well; if you are recompiling a source file, but wish to save previous
output files, you should rename them before executing the command.

Figure 2 lists the filetypes used by CMS commands and describes how
they are used. Figure 3 lists the filetypes used by CMS/DOS commands.

In addition to these CMS filetypes, there are special filetypes
reserved. for use by the language processors, which are IBM progran
products. These filetypes, and the commands that use them, are:

Filetypes Commands

COBOL, SYMDMP, TESTCOB COBOL, FCOBOL, TESTCOB

FORTRAN, FREEFORT, FORTRAN, FORTGI, FORTEX
FTnn001, TESTFORT GOFORT, TESTFORT

PLI, PLIOPT DOSPLI, PLIC, PLICR, PLIOPT

VSBASIC, VSBDATA VSBASIC

For details on how to use these filetypes, consult the appropriate
program product documentation.

46 1IBM ¥M/370 CMS User's Guide

&3

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

——— S ———————— — — — ——— —— — — —— — — — — o —— - ——— ——— —— — — —— mn — — — — —— i —]

| Filetype | Command | Comments

t | |

| AMSERYV | AMSERV | Contains VSAM access method services control
| | | statements to be executed with the AMSERY

i | | command.

t | |

| ASM3705 | ASM3705 | Used by system programmers to generate the

i | GEN3705 | 3704/3705 control program.

(| |

| ASSEMBLE | ASSEMBLE | Contains source statements for assembler

{ { | language programs.

| | 1

| AUXxxxXx | UPDATE | Points to files that contain UPDATE control

{ | | statements for multiple updates.

| | |

| CNTRL | UPDATE | Lists files that either contain UPDATE control
| | { statements or point to additional files.

| (|

{ COPY | MACLIB | Can contain COPY control statements and macros
| | | or copy files to be added to MACLIBs.

| { |

{ DIRECT | DIRECT | Contains entries for the VM/370 user directory
| { | file. The system operator controls this file.
{ | |

| EXEC | EXEC | Can contain sequences of CMS or user-written
{ | GEN3705 | commands, with execution control statements.
| | LISTFILE |

I | |

| HELPCMS | HELP | Contains descriptive information for CP and

{ HELPCP | | CMS commands, messages, and menu lists.

| HELPDEBU | |

| HELPEDIT | (

| HELPMENU | |

{ HELPMSG | |

| R |

| LISTING | AMSERV { Listings are produced by the assembler and

i | ASSEMBLE | the language processors as Well as the AMSERV
{ | ASM3705 | command.

i | | ,

{ LKEDIT | LKED | Contains the listing created during the

{ | | generation of the 3704,/3705 control program.
| | |

| LOADLIB | LKED { Is a library of 3704/37C5 control program

| { | load modules created during 3704/3705 control
| { | program generation.

| l |

{ MACLIB | GLOBAL | Library members contain macro definitions or
| | MACLIB | copy files; the MACLIB command creates the

| | | library, and lists, adds, deletes, or replacesl|
] | | members. The GLOBAL command identifies which |
| | | macro libraries should ke searched durlng an |
{ | | assembly or compilation.

(| |

| MACRO | MACLIB | Contains macro definitions to be added to a

| | | CMS macro library (MACLIB).

| 1] . :

| MAP | INCLUDE | Maps created by the LOAD and INCLUDE commands
[| LOAD | indicate entry point locations; the MACLIB,

{ | MACLIB | TXTLIB, and TAPE commands produce MAP files.
| | TAPE |

| | TXTLIB |

1

Figure 2. Filetypes Used

by CMS Commands (Part 1 of 2)

Section 4. The CMS File System 47

March 30, 1979

Filetype | Command Comments

|
|

MODULE | GENMOD { MODULE files created by the GENMOD command are
{ LOADMOD | nonrelocatable executable programs.
{ MODMAP | The LOADMOD commands loads a MODULE file for
{ | execution; the MODMAP command displays a map
1 { of entry point locationms. :
| |

SYNONYM | SYNONYM | Contains a table of syncnyms for CMS commands
| | and user—written EXEC and MODULE files.
| I

SCRIPTT | SCRIPT | SCRIPT text processor input includes data and
| | SCRIPT control words. ‘
| | :

TEXT { ASSEMBLE | TEXT files contain relocatable object code
| INCLUDE | created by the assembler and compilers. The
{. LOAD { LOAD and INCLUDE commands load them into
i TXTLIB | storage for execution. The TXTLIB command
(| | manipulates libraries of TEXT files.
| | :

TXTLIB | GLOBAL { Library members contain relocatable object
| TXTLIB | code. The TXTLIB command creates the library,
| | and lists or deletes existing members. The
| | GLOBAL command identifies TXTLIBs to search.
| {

UPDATE | UPDATE | Contains UPDATE control statements for single
| | updates applied to source programs.
| {

UPDLOG | UPDATE | Contains a record of additions, deletions, or
| | changes made with the UPDATE command.
| | '

UPDTxxxx | UPDATE | Contains UPDATE control statements for
| | multilevel updates.
[|

ZAP | ZAP | Contains control records for the ZAP command,
| {

which is used by system support personnel.

—— — s ——— —— i —— ——— t—— — ——————— —— ——————————— a— —

B s e AE . D . S S G S S GE S SRED G SR S — — e S D — T y ——— —— T — ——— — e — — =y o)

|2SCRIPT is an IBM Installed User Program (IUP).
[l

Figure 2. Filetypes Used by CMS Commands (Part 2 of 2)

OUTPUT FILES: TEXT AND LISTING

Output files from the assembler and the language processors are
logically related to the source programs by their filenames. Some of
these files are permanent and some are temporary. For example, if you
issue the command: :

assemble myfile
CMS locates a file named MYFILE with a filetyre of ASSEMBLE and the
system assembler assembles it. If the file is c¢n your A-disk, then when
the assembler completes execution, the permanent files you have are:
MYFILE ASSEMBLE A1

MYFILE TEXT At
MYFILE LISTING A1

48 1IBM VM/370 CMS User's Guide

Filetype | Command | Comments

COPY MACLIB When the SSERV command copies books or macros
SSERV from DOS source statement libraries, the output
is written to CMS COPY files, which can be added
to CMS macro libraries with the MACLIB command.
DOSLIB DOSLIB DOS core image phases are placed in a DOSLIB by
DOSLNK linkage editor, invoked with the DOSLNK command.
FETCH The GLOBAL command identifies DOSLIBs to be
GLOBAL searched when the FETCH command is executed.
DOSLNK DOSLKED Contains linkage editor control statements for
input to the CMS/D0OS linkage editor.
ESERV ESERV Contains input control statements for the ESERV
utility program.
EXEC LISTIO The LISTIO command with the EXEC option creates

programmer logical unit assignments.

1
I
|
{
{
1
|
|
|
|
{
|
|
|
|
|
|
|
|
{
|
|
i

Listings contain processor output from the ESERV|
|
|
|
|
|
|
|

|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
| the $LISTIO EXEC that lists system and
|
|
|
|
|
|
|
!
|
|
|
i
|
{
|
l
|
|

ESERV commnand, and compiler output from the assembler
and language processors.
MACRO ESERV Contains SYSPCH output from the ESERV progranm,
MACLIB suitable for addition to a CMS MACLIB file.
MAP DOSLIB The DSERV command creates listings of the
DOSLKED directories of DOS libraries. The DOSLIB conmmand|
DSERV with the MAP option produces a list of DOSLIB |
members. The linkage editor map from the DOSLKED|
command is written into a MAP file. |
PROC PSERV The PSERV command copies procedures from DOS
procedure libraries into CMS PROC files.
TEXT ASSEMBLE| Object decks created by the assembler or

DOSLKED | compilers are written intc TEXT files. The RSERYV
RSERV { command creates TEXT files from modules in DOS
relocatable libraries. TEXT files can also be

|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
l
|
|
|
|
LISTING | ASSEMBLE

{
|
|
|
1
|
{
|
|
{
|
|
|
|
!
|
|
|
{ {

{ | used as input to the linkage editor.

.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
1
|
i
|
|
|
|
|
|
(
!
|
|
|

Figure 3. Filetypes Used in CMS/DOS

where the TEXT file contains the object code resulting from the
assembly, and the LISTING file contains the program listing generated by
the assembly. If any TEXT or LISTING file with the same name previously
existed, it is erased. The source input file, MYFILE ASSEMBLE A1, is
neither erased nor changed.

The characteristics of the TEXT and LISTING files produced by the
assembler are the same as those created by other processors and progranms
in CHS.

Because these files are CMS files, you can use the CMS editor to
examine or modify their contents. If you want a printed copy of a
LISTING file, you can use the PRINT command to print it. If you want to
examine a TEXT file, you can use the TYPE or PRINT command specifying
the HEX option.

Section U4. The CMS File System 49

Note that if a TEXT file contains control changes for the terminal,
the edit lines may not be displayed in their true form. Therefore, it
is suggested you do not use the editor for TEXT files, because the
results are unpredictable. Instead, use ' the TYPE and/or PRINT commands
with the HEX option to display TEXT decks. Put TEXT decks into a TXTLIB
and ZAP the TXTLIB to modify the TEXT deck.

. FILETYPES FOR TEMPORARY FILES

The filetypes of files created by the assembler and language processofs
for use as temporary workfiles are: '

SYSUT1 SYS001 ' SYS004
SYsuT2 SYsS002 SYS005
SYSUT3 SYS003 SYS006
SYSUT4

CMS handles all SYSUTx and SYS00x files as temporary files.

The CMS AMSERV command, executing VSAM utility functions, uses two
workfiles that have filetypes of LDTFDI1 and LDTFDI2.

Disk space is allocated for temporary files on an as-needed basis.
They are erased when processing is complete. If a program you are
executing is terminated before completion, these workfiles may remain on
your disk. You can erase then.

CMSUT1 Files

The CMSUT1 filetype is used by CMS commands that create files on your
CMS disks. The CHMSUT1 file is used as a workfile and is erased when the
file is created. When a command fails to complete execution properly,
the CMSUT1 file may not be erased.: The commands, and the filenames they
assign to files they create, are listed below.

Command Filename

COPYFILE COPYFILE
DISK LOAD DISK

EDIT EDIT

INCLUDE DMSLDR
LOAD DMSLDR
MACLIB DMSLBHM

READCARD READCARD
TAPE LOAD TAPE
UPDATE: fn (the filename of the UPDATE file)

FILETYPES FOR DOCUMENTATION

There are two CMS reserved filetypes that accept uppercase and lowercase
input data. These are MEMO and SCRIPT. You can use MEMO files to
document program notes or to write reports. The SCRIPT filetype is used
by the SCRIPT command, which invokes a text processor that is an IBM
Installed User Program (IUP). ' .

50 IBM VM/370 CMS User's Guide

PPN

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

Filemode Letters and Numbers

The filemode field of a CMS file identifier has two characters: the
filemode letter and the filemode number. The filemode 1letter is
established by the ACCESS command and specifies the wvirtuwal disk on
which a file resides: A through Z. The filemode number is a number from
0 to 5, which you can assign to the file when you create it or rename
it; if you do not specify it, the value defaults to 1. How you access
your disks and what filemode letters you give them with the ACCESS
command depends on how you want to use the files that are on thenm.

For most of the reading and writing you do of files, you use your
A-disk, which is also known as your primary disk. This is a read/write
disk. You may access other disks 1in your configuration, or access
linked-to disks, in read-only or read/write status, depending on whether
you have a read-only or read/write link.

When you load CMS (with the IPL command), your virtual disk at
address 191 is accessed for you as your A-disk. Your virtual disk at
address 190 (the system disk) is accessed as your S-disk; and the disk
at 19E is accessed as an extension of your S-disk, with a mode letter of
Y. In addition, if you have a disk defined at address 192, it is
accessed for you as your D-disk. If the 192 disk has not been
formatted, CMS will do it automatically and label the minidisk *SCRTCH'.

If ACCESS is the first command issued after an IPL of the CMS systenm,
only the A-disk is not automatically defined. Another ACCESS command
must be issued to define the A-disk.

The actual letters you assign to any other disks (and you may
reassign the letters A, D, and Y), is arbitrary; but it does determine
the CMS search order, which is the order in which CMS searches your
disks when it is looking for a file. The order of search (when all disks
are being searched) is alphabetical: A through Z. If you have duplicate
file identifiers on different disks, you should check your disk search
order before issuing commands against that filename to be sure that you
will get the file you want. You can find out the current search order
for your virtual disks by issuing the command:

query search
You can also access disks as logical extensions of other disks, for
example:
access 235 b/a
The "/A" indicates that the B-disk is to be a read-only extension of the

A-disk, and the A-disk is considered the "parent" of the B-disk. A disk
may have many extensions, but only one level of extemnsion is allowed.

———— . i i i s e | i e e i e

If you have a disk accessed as an extension of another disk, the
extension disk is automatically read-only, and you cannot write on it.
You wight access a disk as its own extension, therefore, to protect the
files on it, so that you do not accidentally write on it. For example:

access 235 b/b

Section 4. The CMS File Systenm 51

March 30, 1979

Another use of extensions is to extend the CMS search order. If you
issue a command requesting to read a file, for example:

type alpha plan

CMS searches your A-disk for the file named ALPHA PLAN and if it does
not find it, searches any extensions that your A-disk may have. If you
have a file named ALPHA PLAN on your B-disk but have not accessed it as
an extension of your A-disk, CMS will not find the file, and you will
have to reenter the command: ~

type alpha plan b

Additionally, if you issue a CMS command that =reads and writes a
file, and the file to be read is on an extension of a read/write disk,
the output file is written to the parent read/write disk. The EDIT
command is a good example of this type of command. If you have a file
named FINAL LIST on a B-disk extension of a read/write A-~disk, and if
you invoke the editor to modify the file with the command:

edit final list

after you have mnmade modifications to the file, the changed file is
written onto your A-disk. The file on the B-disk remains unchanged.

When you access a disk as a read-only extension, it remains an extension
of the parent disk as long as both disks are still accessed. If either
disk 1is released, the relationship of parent disk/extension is
terminated.

If the parent disk is released, the extension remains accessed and
you may still read files on it. If you access another disk at the mode
letter of the original parent disk, the parent/extension relationship
remains in effect.

If you release a read-only extension and access another disk with the
same mode letter, it is not an extension of the original parent disk
unless you access it as such. For example, if you enter:

access 198 c/a
release ¢
access 199 c

the C-disk at virtual address 199 is not an extension of your RA-disk.
WHEN TO SPECIFY FILEMODE LETTERS: READING FILES

When you request CMS to access a file, you have to identify it so that
CMS can locate it for you. The commands that expect files of particular
filetypes (reserved filetypes) allow you to enter only the filename of
the file when you issue the command. When you execute any of these
comnands or execute a MODULE or EXEC file, CMS searches all of your
accessed disks (using the standard search order) to locate the file.
The CMS commands that perform this type of search are: '

AMSERV GLOBAL . o MODHAP
ASSEMBLE LOAD RUN
DOSLIB LOADMOD TXTLIB
EXEC MACLIB

52 1IBM VM/370 CMS User's Guide

Some CMS commands require you to enter the filename and filetype to
identify a file. You may specify . the filemode letter; if you do not
specify the filemode, CMS searches only your A-disk and its extensions
when it looks for the file. If you do specify a filemode 1letter, the
disk you specify and its extensions are searched for the file. The
commands you use this way are:

EDIT - PUNCH TAPE DUMP
ERASE STATE = TYPE
FILEDEF SYNONYM ' UPDATE
PRINT ’

There are two CMS commands ~that do not search extensions of disks
when looking for files. They are:

DISK DUMP
LISTFILE

You must explicitly enter the filemode if you want to use these commands
to list or dump files that are on extensiomns.

Using Asterisks and Egual Signs

For some CMS commands, if you specify the filemode of a file as an
asterisk, it indicates that you either do not know or do not care what
disk the file is on and you want CMS to locate it for you. For example,
if you enter:

listfile myfile test *

the LISTFILE command responds by listing all files on your accessed
disks named MYFILE TEST. When you specify an asterisk for the filemode
of the COPYFILE, ERASE, or RENAME commands, CMS locates all copies of
the specified file. For example: :

rename temp sort * good sort =
renames all files named TEMP SORT to GOOD SORT on all of your accessed
read/vwrite disks. An equal sign (=) is valid in output fileids for the
RENAME and COPYFILE commands.

For some commands, when you specify an asterisk for the filemode of a
file, CMS stops searching as soon as it finds the first copy of the
file. For example:

type myfile assemble *
If there are files named MYFILE ASSEMBLE on your A-disk and C-disk, then
only the copy on your A-disk is displayed. The commands that perfornm
this type of search are: '

COMPARE PRINT STATE

DISK DUMP PUNCH SYNONYM
EDIT e RUN TAPE DUMP
FILEDEF - SORT : TYPE

For the COHPARE, COPYFILE, RENAME, and SORT commands, you must alway
specify a filemode letter, even if it is specified as an asterisk. :

Section 4. The CMS File Systenm 53

WHEN TO SPECIFY FILEMODE LETTERS: WRITING FILES

When you issue a CMS command that writes a file onto one of your virtual
disks, and you specify the output filemode, CMS writes the file onto
that disk. The commands that require you to specify the output filemode
are:

COPYFILE
RENAME
SORT

The commands that allow you to specify the output filemode, but do
not require it, are:

FILEDEF TAPE LOAD
GENMOD TAPPDS
READCARD UPDATE

When you do not specify the filemode on these commands, CMS writes the
output files onto your A-disk.

Some CMS commands that create files always write them onto your
A-disk. The LOAD and INCLUDE commands write a file named LOAD MAP AS.
The LISTFILE command creates a file named CMS EXEC, on your A-disk. The
CMS/DOS commands DSERV, ESERV, SSERV, PSERV, and RSERV also write files
onto your A-disk.

Other commands that do not allow you to specify the filemode, write
output files either:

e To the disk from which the input file was read, or
e To your A-disk, if the file was read from a read-only disk

These commands are:

AMSERY
MACLIB
TXTLIB
UPDATE

The SORT command also functions this way if you specify the output
filemode as an asterisk (¥).

In addition, many of the language processors, when creating work
files and permanent files, write onto the first read/write disk in your
search order, if they cannot write on the source file's disk or its
parent.

HOW FILEMODE NUMBERS ARE USED

Whenever you specify a filemode letter to reference a file, you can also
specify a filemode number. Since a filemode number for most of your
files is 1, you do not need to specify it. The filemode numbers 0, 2,
3, 4, and 5 are discussed below. Filemode numbers 6 through 9 are
reserved for IBM use.

Filemode 0: A filemode number of 0 assigned to a file makes that file
private. No other user may access it unless they have read/write access
to your disk. If someone links to your disk in read-only mode and
requests a list of all the files on your disk, the files with a filemode
of 0 are not listed.

54 1IBM VM/370 CMS User's Guide

P,

March 30, 1979

Filemode 2: Filemode 2 is essentially the same, for the purposes of
reading and writing files, as filemode 1. Usually a filemode of 2 is
assigned to files that are shared by users vho link to a common disk,
like the system disk. Since you can access a disk and specify which
files on that disk you want to access, files with a filemode of 2
rrovide a convenient subset of all files on a disk. For example, if you
issue the command:

access U89 esa * * e2

you can only read files with a filemode of 2 on the disk at virtual
address 489.

Filemode 3: Files with a filemode of 3 are erased after they are read.
If you create a file with a filemode of 3 and then request that it be
printed, the file is printed, and then erased. You can use this filemode
if you write a program or EXEC procedure that creates files that you do
not want to maintain copies of on your virtual disks. You can create the

file, print it, and not have to worry about erasing it later.

The language processors and some CMS commands create work files and
give these work files a filemode of 3.

Note: A filemode of 3 should not be used with EXECs. Depending on what
commands are issued within it, an EXEC with a filemode of 3 may be
erased before it completes execution.

Filemode 4: Files with a filemode of 4 are in OS simulated data set
format. These files are created by OS macros in programs running in
CMS. You specify that a file created by a program is to have O0S
simulated data set format by specifying a filemode of 4 when you issue
the FILEDEF command for the output file. If you do not specify a
filemode of 4, the output file is created in CMS format.

You can find more details about 0S simulated data sets in "Section 8.
Developing 0S Programs Under CMS."™

Note: There are no filemode numbers reserved for DOS or VSAM data sets,
since CMS dces not simulate these file organizationms.

Filemode 5: This filemode number is the same, for purposes of reading
and writing, as filemode 1. You can assign a filemode of 5 to files that
you want to maintain as logical groups, so that you can manipulate then
in groups. For example, you can reserve the filemode of 5 for all files
that you are retaining for a certain period of time; themn, when you want
to erase them, you could issue the command:

erase ¥ ¥ a5

When To Enter Filemode Numbers

You can assign filemode numbers when you use the following commands:

_COPYFILE: You can assign a filemode number when you create a new file

with the COPYFILE command. To change only the filemode number of an
existing file, you must use the REPLACE option. For example:

copyfile test moduie al = = a2 (replace

changes the filemode number of the file TEST MODULE A from 1 to 2.

Section 4. The CMS File System 55

Pg. of GC20-1819~-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

EDIT: You can assign a filemode number when you create a file with the
CMS editor. To change the filemode number of an existing file, use the
RENAME or COPYFILE commands, or use the FMODE subcommand when you are in
the edit environment. ' ‘

DLBL, FILEDEF: When you assign file definitions to disk files for
programs or CMS command functions, you can specify a filemode number.

GENMOD: You can specify a filemode number on the GENMCD command line.

To change the filemode number of an existing MODULE file, use the RENAME
or COPYFILE commands.

READCARD: You can assign a filemode number when you specify a file
identifier on the READCARD command line or on a READ control card.

RENAME: When you specify the fileids on the RENAME command, you can
specify the filemode numbers for the input and/or output files.

SORT: You can specify filemode numbers for the 1input and/or output
fileids on the SORT command line.

Managing Your CMS Disks

The number of files you can write on a CHMS disk depends on both the size
of the disk and the size of the files that it contains. You can find
out how much space is being wused on a disk by wusing the QUERY DISK
command. For example, to see how much space is on your A-disk, you would
enter:

query disk a

The response may be something like this:

LABEL cuu M STAT CYL TYPE BLKSIZE FILES BLKS USED- (%) BLKS LEFT BLK TOTAL
MYDISK 191 A R/W 5 3330 1024 171) 1221-92 » 107 1328

When a disk is becoming £full, you should erase whatever files you no
longer need. Or dump to tape files that you need to keep but do not need
to keep active on disk. ,

When you are executing a command or program that writes a file to
disk, and the disk becomes full in the process, you receive an error
message, and you have to try to clear some space on the disk before you
can attempt to execute the command or program again. To avoid the
delays that such situations cause, you should +try to maintain an
awareness of the usage of your disks. If you cannot erase any more
files from your disks, you should contact installation support personnel
about obtaining additional read/write CMS disk space.

CMS File Directories

Each CMS disk has a master file directory that ccntains entries for each
of the CMS files on the disk. When you access a disk, information frcm
the master file directory is brought into virtual storage and written
into a user file directory. The user file directory has an entry for
each file that you may access. If you have accessed a disk specifying
only particular files, then the user file directory contains entries
only for thcse files.

56 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

If you have read/vwrite access to a disk, then each time you write the
file onto disk the user file directory and master file directory are
updated to reflect the current status of the disk. If you have read-only
access to a disk, then you cannot update the master file directory or
user file directory. If you access a read-only disk while another user
is writing files onto it, you may need to periodically reissue the
ACCESS command for the disk, to obtain a fresh copy of the master file
directory.

Note: You should never attempt to write on a disk at the same time as
another user.

The user file directory remains in virtual storage until you issue
the RELEASE command specifying the mode letter or virtual address of the
disk. If you detach a virtual disk (with the CP DETACH command) without
releasing it, CMS does not know that the disk is no longer part of your
virtual machine. When you attempt to read or write a file on the disk
CMS assumes that the disk 1is still active (because the user file
directory is still in storage) and encounters an error when it tries to
read or write the file.

A similar situation occurs if you detach a disk and then add a new
disk to your virtual machine using the same virtual address as the disk
you detached. For example, if you enter the following sequence of
commands:

cp link user1 191 195 rr rpass?
access 195 d

cp detach 195

cp link user2 193 195 rr rpass2t
listfile * * 4

the LISTFILE command produces a list of the files on USER1's 191 disk;
if you attempt to read one of these files, you receive an error message.
You must issue the ACCESS command to obtain a copy of the master file
directory for USER2's 193 disk.

The entries in the master file directory are sorted alphamerically by
filename and filetype, to facilitate the CMS search for particular
files. When you are updating disk files, the entries in the user file
directory and master file directory tend to become unsorted as files are
created, updated, and erased. When you use +the RELEASE coamamand to
release a read/write disk, the entries are sorted and the master file
directory is rewritten. If you or any other user subsequently access
the disk, the file search may be more efficient.

CMS Command Search Order

When you enter a command line in the CMS environment, CMS has to locate
the command to execute. If you have EXEC or MODULE files on any of your
accessed disks, CMS treats them as commands; also, they are known as
user-written commands.

As soon as the compand name is found, the search stops and the
copmand is executed. The search order is:

1. EBEXEC file on any currently accessed disk. CMS uses the standard
search order (A through Z.)

1Note that the password cannot be entered on the command line if the
passvord suppression facility was specified at sysgen.

Section 4. The CMS File System 57

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

2. Valid abbreviation or truncation for an ' EXEC file on any currently
accessed disk, according to current SYNONYM file definitions in
effect. ‘ '

3.7 A command that has already been loaded into the transient area.
The transient area commands are:

ACCESS | HELP RELEASE
ASSGN LISTFILE RENAME
COMPARE MODMAP SET

DISK OPTION SVCTRACE
DLBL PRINT SYNONYM
FILEDEF PUNCH TAPE

- GENDIRT QUERY TYPE
GLOBAL READCARD

4. A nucleus-resident command. The nucleus-resident CMS commands are:

Ccp GENMOD START
DEBUG INCLUDE STATE
ERASE - LOAD STATEW
FETCH LOADMOD

5. Command module on any currently accessed disk. (A1l the remaining
CMS commands are disk resident and execute in the user area.)

6. Valid abbreviation or truncation for nucleus-resident or transient
area command module.

7. Valid abbreviation or truncation for disk-resident command.

For example, if you create a command module that has the same name as
a CMS nucleus-resident command, your command module cannot be executed,
since CMS locates +the nucleus—-resident command first, and executes it.
When a user-written command has the same name as a CMS command module
abkbreviation, certain error messages may indicate the CMS command name,
rather than the program name.

Figure 4 shows more details of the command search order.

58 IBM VM/370 CMS User's Guide

CMs
EXEC
SEARCH

CMsS
MODULE
SEARCH

cp
SEARCH

KEY IN A
COMMAND NAME

EXECUTE
THE FILE
AND RETURN
CONTROL TO
CMms.

IS THE
NAME AN ABBREV-
IATION OR TRUNCATION
FOR AN EXEC
FILE

EXPAND THE
NAME TO THE
FULL REAL
NAME, EXECUTE
IT, AND RETURN

CONTROL TO CMS.
1S THE EXECUTE THE
NAME A FILE AND
MODULE FILE RETURN CONTROL

TO CMs.

1S THE
NAME AN ABBREV-
IATION OR TRUNCATION
FOR AMODULE

EXPAND THE

NAME TO THE FULL
REAL NAME, EXECUTE
IT, AND RETURN

FILE CONTROL TO CMS.
EXECUTE THE
IS THE COMMAND
NAME A AND RETURN
CP COMMAND AND RETURN
CMS.

1SSUE
AN ERROR
MESSAGE

Figure 4.

How CMS Searches for the Command to Execute

Section 4. The CMS

File Systenm

59

60 IBM VM/370 CMS User's Guide

Section 5. The CMS Editor

In CMS usage, the term edit is used in a variety of ways, all of which
refer, ultimately, to the functions of the CMS editor, which is invoked
when you issue the EDIT command.

To edit a file means to make changes, additions, or deletions to a
CMS file that is on a disk, and to make these changes interactively: you
instruct the editor to make a change, the editor does it, and then you
request another change.

You can edit a file that does not exist; when you do so, you create
the file online, and can modify it as you enter it.

To file a file means to write a file you are editing back onto a
disk, incorporating any changes you made during the editing session.
When you issue the FILE subcommand to write a file, you are no longer in
the environment of +the CMS editor, but are returned to the CHS
environment. You can, however, write a file to disk and then continue
editing it, by using the SAVE subcommand.

An editing session 1is the period of time during which a file is in
your virtual storage area, from the moment you issue the EDIT command
and the editor responds EDIT: wuntil you issue the FILE or QUIT
subconmands to return to the CMS command environment.

The EDIT Command

When you issue the EDIT command Yyou must specify the filename and
filetype of the file you want to edit. If you issue:

edit test file
CMS searches your A-disk and 1its extensions for a file with the
identification TEST FILE. If the file is not found, CMS assumes that you
want to create the file and issues the message:

NEW FILE:
EDIT:

to inform you that the file does not already exist.

If the file exists on a disk other +than your A-disk and its
extensions, or 1if you want to create a file to write on a read/write
disk other than your A-disk, you must specify the filemode of the file:

edit test file b

In this example, your B-disk and its extensions are searched for the
file TEST FILE.

After you issue the EDIT command, you are in edit mode, or the
environment of +the CMS editor. If you have specified the filename and
filetype of a file that already exists, you can now use EDIT subcommands
to make changes or corrections to lines in that file. If you want to

Section 5. The CMS Editor 61

add records to the file, as you would 'if you are creating a new file,
issue the EDIT subcommand: »

input

to enter input mode. Every line that you enter is comnsidered a data line
to be written into the disk file. For most filetypes, the editor
translates all of your input data to uppercase characters, regardless of
how you enter it. For example, if you create a file and enter input
mode as follows: ' ' :

edit myfile test

NEW FILE:

EDIT:

input

INPUT:

This is a file I anm

learning to create with the CMS edltor.

the lines are written into the file as:

THIS IS A FILE I AM
LEARNING TO CREATE WITH THE CMS EDITOR.

You can use the VM/370 logical 1line editing symbols to modify data
lines as you enter then.

To return to edit mode to modify a file or +to terminate the edit
session, you must press the Return key on a null line. If you have just
entered a data line, for example, and your terminal's typing element or
cursor is positioned at the last character you entered, you must press
the Return key once to enter the data line, and a second time to enter a
null line. -

You may also use the logical line ‘end symbol to enter a null line;
for example: : N

last line of input#
#

Both of these lines cause you to return to edit mode from input mode.

If you do not enter a null line, but enter an EDIT suhcommaﬂd or CHMS

command, the command line is written into your file as input. The only
exception to this is a line that begins with the characters #CP. These
characters indicate that the command is to be passed immediately to CP
for processing. '

WRITING A FILE ONTO DISK

A file you create and the modifications that you make to it during an
edit session are not automatically wrltten to a disk file. To save the
results, you can do the following: o

e Periodically issue the subcommand:
save
to write onto disk the contents of the file as it exists when you
issue the subcommand. Periodically issuing this EDIT subcommand

protects your data against a system failure; you can be sure that
changes you make are not lost.

62 IBM VM/370 CMS User's Guide

e At the beginning of the edit session, issue the AUTOSAVE subcommand,
with a number: '

autosave 10

Then, for every tenth change or addition to the file, the editor
issues an automatic save request, which writes the file onto disk.

e At the end of the edit session, issue the subcommand:
file

This subcommand terminates the edit session, writes the file onto
disk, replacing a previous file by that name (if one existed), and
returns you to the CMS environment. You can rTeturn to the edit
environment by issuing the EDIT command, specifying a different file
or the same file.

The editor decides which disk to write the file onto according to the
following hierarchy: }

e If you specify a filemode on the FILE or SAVE subcommand 1line, the
file is written onto the specified disk.

e If the current filemode of the file is the mode of a read/write disk,
the file 1is written onto that disk. (If you have not specified a
filemode letter, it defaults to your A-disk.)

e If the filemode is the mode of a read-only extension of a read/write
disk, the file is written onto the read/write parent disk.

e If the filemode 1is the mode of a read-only disk that is not an
extension of a read/write disk, the editor cannot write the file and
issues an error message.

See “Changing File Identifiers® for information on how you can tell
the editor what disk to use when writing a file.

If you are editing a file and decide, after making several changes,
that you do not wish to save the changes, you can use the subcommand:

quit

No changes that you made since you last used the SAVE subcommand (or the
editor last issued an automatic save for you) are retained. If you have
just begun an edit - session, and have made no changes at all to a file,
and for some reason you do not want to edit it at all (for example, you
misspelled the name, or want to change a CMS setting before editing the
file), you can use the QUIT subcommand instead of the FILE subcommand to
terminate the edit session and return to CMS.

A file must have at least one line of data in order to be written.
EDIT SUBCOMMANDS

While you are in the edit environment, you can issue any EDIT subcommand
or macro. An edit macro is an EXEC file that contains a sequence of EDIT
subcommands that execute as a unit. You can create your own EDIT
subcommands with the CMS EXEC facility. EDIT subcommands provide a
variety of functions. You can: '

e Position the current line pointer at a particular line, or record, in
a file.

Section 5. The CMS Editor 63

e cControl which columns of a file are displayed or searched during an
editing session.

e Modify data lines.

e Describe the characteristics that a file and its individual records
will have.

e Automatically write and update sequence numbers for fixed-length
records.

e Edit files by line number.

e Control the editing session.

Entering EDIT Subcommands

Like CMS commands, EDIT subcommands have a subcommand name and some have
operands. In most cases, a subcommand name (or its truncation) can be
separated from its operands by one or more blanks, or no blanks. For
example, the subcommand lines:

type 5
ty 5
t5

are equivalent.

Several subcommands also use delimiters, which enclose a character
string that you want the editor to operate on. For example, the CHANGE
subcommand can be entered:

change/apple/pear/
The diagonal (/) delimits the character strings APPLE and PEAR. For the
subcommands CHANGE, LOCATE, and DSTRING, the first nonblank character
following the subcommand name (or its truncation) is considered the
delimiter. ©No blank is required following the subcommand name. In the
subcommand:

locate $vm/$

the dollar sign ($) 1is the delimiter. You cannot use a / in this case,
since the diagonal is part of the character string you want to locate.

When you enter these subcommands, you may omit the final delimiter;
for example:

dstring/csect

You must enter the final delimiter, however, when you specify a global
change with the CHANGE subcommand.

For the FIND and OVERLAY subcommands, additional blanks following the
subcommand names are interpreted as arguments. The subcommand:

find Pudding

requests the editor to locate the line that has " Pudding® in columns 1
through 9. Initial blanks are considered part of the character string.

64 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8
An asterisk, when used with an EDIT subcommand, may mean "to the end
of the file" or "to the record length." For example:
delete*
deletes all of the lines in a file, beginning with the current line.
verify *

indicates that the editor should display the entire length of records.

?EDIT:

—

When you make an error entering an EDIT subcommand, the editor displays
the message:

?BDIT: 1line...

where line... is the 1line, as you entered it, that the editor does not
understand.

The Current Line Pointer

When you begin an 'editing session, a file is copied into virtual
storage; in the case of a new file, virtual storage is acquired for the
file you are creating. In either case, you can picture the file as a
series of records, or lines; these lines are available to you, one at a
time, for you to modify or delete. You can also insert new 1lines or
records following any line that is already in the file.

The line that you are currently editing is pcinted to by the current
line pointer. On a display terminal, this line is highlighted. What
you do during an editing session is:

e Position the current line pointer to access the 1line you want to
edit. ;

e EJdit the 1line: change character strings in it, delete it or insert
new records following it.

e Position the line pointer at the next line you want to edit.
When you are editing a file and you issue an EDIT subcommand that
either changes the position of the line pointer or that changes a line,

the current line or the changed line (or lines) is displayed. You can
also display the current line by using the TYPE subcommand:

type

If you want to examine more than one 1line in your file, you can use the
TYPE subcommand with a numeric parameter. If you enter: :

type 10

the current line and the nine lines that follow it are displayed; the
line pointer then stays positioned at the last line that was displayed.

You can move the line pointer up or down in your‘file. ngp" indicates
a location toward the beginning of the file (the first record);. "down"

Section 5. The CMS Editor 65

March 30, 1979

indicates a location toward the end of the file (the last record). You
use the EDIT subcommands UP and DOWN to move the line pointer up or down
one or more lines. For example:

ap S ‘

moves the current 1line pointer to a 1line five lines closer to the
beginning of the file, and: '

down
moves the pointer to point at the next sequential record in the file.
You can also request that the line pointer be placed at the
beginning, or top of the file, or at the end, or bottom of the file.
When you issue the subcommand:
top
you receive the message:
 TOF:
and the line pointer is positioned at a null line that is always at the
top of the file. This null line exists only during your editing session;
it is not filed on disk when you end the editing session.
When you issue the subcommand:
bottom
the current line pointer is positioned at the last record in the file.
If you now enter input mode, all 1lines that you enter are appended to

the end of the file.

If the current line pointer is at the bottom of the file and you
issue the DOWN subcommand, you receive the message:

EOF:

and the current line pointer is positioned at the end of file, following
the last record. .

When you are adding records toc your file, the current line pointer is
always pointing at the line you last entered. HWhen you delete a line
from a file, the line pointer moves down to point to the next line down
in the file.

Going from edit mode to input mode does not change the current line
pointer. If you are creating a new file and, every 30 lines or so, you
move the current line pointer to make corrections to the lines that you
have entered, you must issue the BOTTOM subcommand to begin entering
more lines at the end of the file.

. The current line pointer is also moved as the result of the LOCATE
and FIND subcommands. You use the FIND subcommand to get to a line when
you know the characters at the beginning of the line. For example, if
you vant to change the line:

BAXTER J.F. 065941 ACCNTNT
you could first locate it by using the subcommand:

find baxter

66 IBM VM/370 CMS User's Guide

If you do not know the first characters on a line, you can issue the
LOCATE subcommand:

locate /accntnt/

Both of these subcommands work only in a top-to-bottom direction: you
cannot use them to position the line pointer above the current line. If
you use the FIND or LOCATE subcommands and the target (the character
string you seek) 1is not found, the editor displays a message, and
positions the line pointer at the end of the file. Subsequently, if you
reissue the subcommand, the editor starts searching at the top of the
file.

In a situation 1like that above, or in a case where you are
repetitively entering the same LOCATE or FIND subcommand (if, for
example, there are many occurrences of the same character string, but
you seek a particular occurrence) you can use the = (REUSE) subcommand.
To use the example above, you are looking for a 1line that contains the
string ONCE UPON AR TIME, but you do not know that it is above the
current line. When you issue the subcommand:

locate /once upon a time/
the editor does not locate the line, and responds:

NOT FOUND
EOF:

If you enter:

the editor searches again for the same string, beginnihg this time at
the top of the file, and locates the line:

"ONCE UPON A TIME"™ IS A COMMON

This may still not be the line 7you are looking for. You can, again,
enter:

The LOCATE subcommand is executed again. This time, the editor might
locate the line:

A STORY THAT STARTED ONCE UPON A TIME

Figure 5 illustrates a simple CMS file, and indicates how the current
line pointer would be positioned following a sequence of EDIT
subcommands.

R e e———— e — ===

referencing 1line numbers instead of character strings. The EDIT
subconmands that allow you to change the line pcinter position by line
number are discussed under "Line-Number Editing."

Section 5. The CMS Editor 67

EDIT PPRINT EXEC
CLP

|

|

]
\%

TOF:

{null line)

&ECONTROL OFF

EP =

&IF .&1 EQ . &EXIT 100

&FN = &1

&IF &1 EQ ? &GOTO —-TELL

ENFN = ECONCAT $ &1

&IF .82 EQ . &EXIT 200

&FT &2

&FM &3

10 €IF .&3 NE . &SKIP .2

1 &FM = A

12 &SKIP 3

13 &IF &3 NE (&SKIP 2

14) &EFM = A

15 &P = (

16 S§CONTROL ALL

17 COPY &FN &FT &FM &ENFN &FT A (UNPACK
18 PRINT ENFN EFT A &P &4 €5 &6 &7 €8 €9 &10 &11 12 &13 &14
ERASE ENFN &FT A

20 SEXIT

21 -TELL ETYPE THIS EXEC PRINTS A LISTING FROM PACKED FORMAT
EQF: .

VONATNOEWNaO

The line numbers represented are symbolic: they are not an actual
part of the file, but are used below to indicate at which line the
current line pointer is positioned after execution of the EDIT
subcommand indicated.

(0 - o v o ————— ——————————— o t— ——————— ———— —— "t 1 2 o o — o ot 22
ey
e

b e e e . e L m Sn S e W o ol G St L i R G . —— v T me e e um e wme e e dm e o

Subcommand CLP Position

—— -—=>0

DOWN 5 -—=>5

up -——> 4

LOCATE /UNP/ -—=> 17

TYPE 3 -—-=> 19

BOTTOM -—=> 21

DOWN —-—=> EOF:

FIND - -—=> 21

TOP -—> 0

CHANGE /EQ/EQ/ 6 ~-=>5

DELETE 2 —-==> 7 (lines numbered 5 and 6 are deleted)
INPUT * --=> the line just entered (between 7 and 8)

Figure 5. Positioning the Current Line Pointer

Verification and Search Columns

There are two EDIT subcommands you can use to control what you and the
editor "see"® in a file. The VERIFY subcommand controls what you see
displayed; the ZONE subcommand controls what columns the editor
searches. Normally, when you edit a file, every request that you make
of the editor results in the display of one or more 1lines at your
terminal. If you do not want to see the lines, you can specify:

verify off

68 IBM VM/370 CMS User's Guide

£

Alternatively, if you want to see only particular columns in a file, you
can specify the columns you wish to have displayed:

verify 1 30

Some filetypes have default values set for verification, which
usually include those columns in the file that contain text or data, and
exclude columns that contain sequence numbers. If a verification column
is less than the record length, you can specify:

verify *
to indicate that you want to see all columns displayed.

In conjunction with the VERIFY subcommand, you can use the ZONE
subcommand to tell the editor within which columns it can search or
modify data. When you issue the subcommand:

zone 20 30
The editor ignores all text in columns 1-19 and 31 to the end of the
record when it searches 1lines for LOCATE, CHANGE, ALTER, and FIND
subcommands. You cannot unintentionally modify data outside of these
fields; you must change the zomnes in order to operate on any other data.

The zone setting also controls the truncation column for records when

you are using the CHANGE subcommand; for more details, see "Setting
Truncation Limits."

Changing, Deleting, and Adding Lines

You can change character strings in individual lines of data with the
CHANGE subcommand. A character string may be any length, or it may be a
null string. Any of the characters on your terminal keyboard, including
blanks, are valid characters. The following example shows a simple data
line and the cumulative effect of CHANGE subcommands.

ABC ABC ABC
is the initial data line.

CHANGE /ABC/XYZ/
changes the first occurrence of the character string "“ABC" to the
string "Xyzn.
XYZ ABC ABC

CHANGE /ABC//
deletes the character string "ABC" and concatenates the characters
on each side of it.

XYZ ABC

CHANGE //ABC/ :
inserts the string "ABC" at the beginning of the line.

ABCXYZ ABC

CHANGE /XYZ /XYZ/
deletes one blank character following "XYzw.

ABCXYZ ABC

Section S. The CMS Editor 69

CHANGE /C/C / .
adds a blank following the first occurrence of the character "C".

ABC XYZ ABC
is-the final line.

THE ALTER SUBCOMMAND: You can use the ALTER subcommand to change a
single character; the ALTER subcommand allows you to specify a
hexadecimal value so that you can include characters in your files for
which there are no keyboard equivalents. Once in your file, these
characters appear during editing as nonprintable blanks. For example,
if you input the line:

IF A = B THEN

in edit mode and then issue the subcommand:
alter = 8c

the line is displayed:
IF A B THEN

If you subsequently print the file containing this line on a printer
equipped to handle special characters, the line appears as:

IF A < B THEN
since X'8C' is the hexadecimal value of the special character <.

Either or both of the operands on the ALTER subcommand can be
hexadecimal or character values. To change the X'8C' to another
character, for example <, you could issue either:

alter 8c ae

alter 8c <
THE OVERLAY SUBCOMMAND: The OVERLAY subcommand allows you to replace
characters in a line by spacing the terminal's typing element or cursor

to a particular character position to make character-for-character
replacements, or overlays. For example, given the line:

ABCDEF
the subcommand:

overlay xyz
results in the line:

XYZDEF
A blank entered on an OVERLAY 1line indicates that the corresponding
character is not.to be changed; to replace a character with a blank, use
an underscore character (_). Given the above 1line, XYZDEF, the
~subcommand:

'overlay 3

results in:

DE3 (The "D" is preceded by blanks in columns 1, 2, and 3.)

70 IBM VM/370 CMS User's Guide

p=uN

Global Changes

You can make global or repetitive changes with the CHANGE and ALTER
subcommands. On these subcommand lines, you can include operands that
indicate:

e The number of lines to be searched for a character or character
string. An asterisk (*) indicates that all lines, from the current
line to the end of the file, are to be searched.

o Whether only the first occurrence or all occurrences on each line are
to be modified. An asterisk (*) indicates all occurrences. If you do
not specify an asterisk, only the first occurrence on any 1line is
changed.

For example, if ybu are creating a file that uses the (e) special
character (X'AF') and you do not want to use the ALTER subcommand each
time you need to enter the e, you could use the character -~ as a
substitute each time you need to enter a e. When you are finished
entering input, move the current line pointer +to the top of +the file,
and issue the global ALTER subcommand:

top#alter -~ af * *

All occurrences of the character -~ are changed to X'AF'. The current
line pointer is positioned at the end of the file.

When you use a global CHANGE subcommand, you must be sure to use the
final delimiter on the subcommand line. For examfple:

change /hannible/hannibal/ 5

This subcommand changes the first occurrence of the string "HANNIBLE" on
the current line and the four lines immediately following it.

You can also make global changes with the OVERLAY subcommand, by
issuing a REPEAT subcommand just prior to the OVERLAY subcommand. Use
the REPEAT subcommand to indicate how many 1lines you want to be
affected. For example, if you are editing a file containing the three
lines:

Qw>

with the current line pointer at line "A", issuing the subcommands:

repeat 3
overlay | | |

results in:

QW

The current 1line pointer is now positioned at the line beginning with
the character "Cn,

Section 5. The CMS Editor 71

Deleting Lines

You delete lines from a file with the DELETE subcommand; to delete more
than one line, specify the number of lines:

delete 6

Oor, if you want to delete all the lines from the current line to the end
of the file, use an asterisk (*):

delete *

If you want +to delete an undetermined number of lines, up to a
particular character string, you can use the DSTRING subcommand:

dstring /vweather/
When this subcommand is entered, all the lines from and including the
current line down to and including the 1line Jjust above the 1line

containing the character string "WEATHER" are deleted. The current line
rointer is positioned at the line that has "WEATHER" on it.

If you want to replace a line with another line, you can use the
REPLACE subcommand:
replace ok o 3 o e kK
The current line is deleted and the line "kk%*%*%®" jg jnserted in its
place. The current line pointer is not moved.
To replace an existing line with many new lines, you can issue the
REPLACE subcommand with no new data line:
replace '

The editor deletes the current line and enters input mode.

Inserting Lines

You can insert a single line of data between existing lines wusing the
INPUT subcommand followed by the line of data you want inserted. For
example:

input * this subroutine is for testing only
inserts a single line following the current line. If you want to insert

many lines, you can issue the INPUT subcommand to enter input mode.

You can also add new lines to a file by using the GETFILE subcommand.
This allows you to copy lines from other files to include in the file
you are editing or creating. For example:

getfile single items c
inserts all the 1lines in the file SINGLE ITEMS C immediately following

the current 1line pointer. The 1line pointer 1is positioned at the last
line that was read in.

72 1IBM VM/370 CMS User's Guide

You could also specify:
getfile double items c 10 25

to copy 25 1lines, beginning with the tenth line, from the file DOUBLE
ITEMS C.

The $MOVE and $DUP EDIT macros provide two additional ways of adding
lines into a file in a particular position. The $MOVE macro moves lines
from one place in a file to another, and deletes them from their former
position. For example, if you want to move 10 lines, beginning with the
current line, to follow a line 9 lines above the current line, you can
enter:

$move 10 up 8
The $DUP macro duplicates the current line a specified number of
times, and inserts the new lines immediately following the current line.
For example: '

$dup 3

creates 3 copies of the current 1line, and 1leaves the current 1line
pointer positioned at the last copy.

Describing Data File Characteristics

When you issue the EDIT command to create a new file, the editor checks
the filetype. If it is one of the reserved filetypes, the editor may
assign particular attributes to it, which can simplify the editing
process for you. The default attributes assigned to most filetypes are
as follows:

e Fixed-length, 80-character records

e All alphabetic characters are translated to uppercase, regardless of
how they are entered

e Input lines are truncated in column 80

e Tab settings are in columns 1, 6, 11, 16, 21, ... 51, 61, and so on,
and the tab characters are expanded to blanks

e Records are not serialized.

The filetypes for some CMS commands and for the language processors
deviate from these default values. Some of the attritutes assigned to
files and how you <can adjust them to suit your needs are discussed
below.

RECORD LENGTH ‘ -
You can specify the logical record length of a file you are creating on
the EDIT command line:

edit new file (lrecl 130

Section 5. The CMS Editor 73

If you do not specify a record 1length, the editor assumes the
following defaults:

e For editing old files, the existing record length is used.
e Por creating new files, the following default values are in effect:

Filetype Record Length Format
EXEC 80 characters Variable
FREEFORT 81 characters Variable
LISTING 121 characters VYariable
SCRIPT 132 characters Variable
VSBDATA 132 characters Variable
All others 80 Fixed

If you edit a variable-length file and the existing record length is
less than the default for the filetype, the record length is taken fronm
the default value.

When you use the LRECL option of the EDIT command you can override
these default record lengths; you can also change the record lengths of
existing files to make them larger, but not smaller.

If you try to override the record length of an existing file and make
it smaller, the editor displays an error message, and you must issue the
EDIT command again with a larger record length. For example, suppose
you have on your B-disk a file named MYFILE FREEFORT, which was created
with the default record 1length of 81. If you try to edit that file by
issuing: '

edit myfile freefort b (lrecl 72
the editor displays the message:

GIVE A LARGER RECORD LENGTH.
You must then issue the EDIT command again and either specify a length
of 81 or more, or allow it to default to the current record length of
the file. v

You can use the COPYFILE command to increase or decrease the record

length of a file before you edit it. For example, if you have
fixed-length, 132-character records in a file, and you want to truncate
all the records at column 80 and create a file with 80-character
records, you could issue the command:

copyfile extra funds a (lrecl 80

Long Records

The largest record you can edit with the editor is 160 characters. A
file with record length up to 160 bytes (for example, a 1listing file
created by a DOS program) can be displayed and edited.

The largest record you can create with the CMS editor, however, is
130 characters using a 3270 display terminal and 134 characters using a
typewriter terminal such as a 2741 or 1050. If you enter more than 130
characters on a 3270, the record is truncated to 130 characters when you
press the Enter key. Note that as the 1line is truncated to 130
characters, the CMS editor will not know the actual line length entered,
and will not issue the "TRUNCATED" messgae. If you type more than 134
characters on a 1line using a typewriter terminal, CP generates an
attention interruption to your virtual machine and the input 1line is
lost when you press the Return key.

74 IBM VM/370 CMS User's Guide

P

For most purposes, you will not need to create records 1longer than
130 characters. If it is necessary, howvwever, you can expand a record
that you have entered. You do this by issuing the CHANGE subcommand
with operands, to add more characters to the record (for -example, by
changing a 1-character string to a 31-character string).

You cannot create a record that is longer than the record length of
the file. For example, if the file you are editing has a default record
length of 80, or if you specified LRECL 80 when you created the file,
the editor truncates all records to 80 characters.

Record Length and File Size

There is a relationship between the record 1length of a file and the
maximum number of records it can contain. Figure 6 shows the
approximate number of records, rounded to the nearest hundred, that the
editor can handle in a virtual machine with different amounts of virtual
storage.

| Virtual Machine Size

r !
: Record | :
] Length | 320K | 512K | 768K {1024K |
: 80 Characters | 1700 | 3800 | 6800 | 9800 :
: 120 Characters | 1100 | 2600 | 4700 | 6800 :
: 132 Characters { 1100 | 2400 | 4300 | 6200 :
i 160 Characters { 900 | 2000 | 3600 | 5100 ;

Figure 6. Number of Records Handled by the Editor

RECORD FORMAT

With the CMS editor, you can create either fixed- or variable-length
files. Except for the filetypes EXEC, LISTING, FREEFORT, SCRIPT, and
VSBDATA, all the files you create have fixed-length records, by default.
You can change the format of a file at any time during an editing
session by using the RECFM subcommand:

recfm v

This changes the record format to variable-length. This does not change
the record length; in order to add new records with a greater length,
you must write the file onto disk and then reissue the EDIT command
using the LRECL option.

The COPYFILE command also has an RECFM option, so that you can change
the record format of a file without editing it. The command:

copyfile * requests atl (recfm v trunc

changes the record formats of all the files with a filetype of REQUESTS
on your 2A-disk to variable-length. The TRUNC option specifies that you
want trailing blanks removed from each of the records. When 7you are
editing a file with variable-length records, trailing blanks are
truncated when you write the file onto disk with the FILE or SAVE
subcommand. (In VSBDATA files, however, blanks are not truncated.)

Section 5. The CMS Editor 175

USING SPECIAL CHARACTERS

The IMAGE and CASE subcommands control how data, once entered on an
input 1line, is going to be represented in a file. The specific
characters affected, and the subcommands that control their
representation, are:

e Alphabetic characters: CASE subcommand
e Tab characters (X'05'): IMAGE subcommand (ON and OFF operands)
e Backspaces (X'16'): IMAGE subcommand (CANON ofperand)

If you are using a terminal that has only uppercase characters, you do
not need to use the CASE subcommand; all of the alphabetic characters
you enter are uppercase. On terminals equipped with both uppercase and
lowercase letters, all lowercase alphabetic characters are converted to
uppercase in your file, regardless of how you enter them. If you are
creating a file and you want it +to contain both uppercase and lowvercase
letters you can use the subcommand:

case n

The "M" stands for “mixed." This attribute is not stored with the file
on disk. If you create a new file, and you issue the CASE M subcommand,
all the lowercase characters you enter remain in lowercase. If you
subsequently file the file and later edit it again, you must issue the
CASE M subcommand again to locate or enter lowercase data.

There are two reserved filetypes for which uppercase and lowercase is
the default. These are SCRIPT and MEMO, both of which are text or
document-oriented filetypes. For most programming applications, you do
not need to use lowercase letters.

Tab Characters

Logical tab settings indicate the column positions where fields within a
record begin. These logical tab settings do not necessarily correspond
to the physical tab settings on a typewriter terminal. What happens
when you press the Tab key on a typewriter terminal depends on whether
the image setting is on or off. The default for all filetypes except
SCRIPT is IMAGE ON. You can change the default by issuing the
subconmand:

image off

If the image setting is on, when you press the Tab key the editor
replaces the tab characters with blanks, starting at the column where
you pressed the Tab key, and ending at the last column before the next
logical tab setting. The next character entered after the tab becomes
the first character of the next field. PFor example, if you enter:

tabset 1 15
and then enter a 1line that begins with a tab character, the first data

character following the tab is written into the file in column 15,
regardless of the tab stop on your terminal.

76 IBM VM/370 CMS User's Guide

If the image setting is off, the tab character, X'05', is inserted in
the record, just as any other data character is inserted. No blanks are
inserted.

If you want to insert a tab character (X'05') into a record and the
image setting is on, you can do one of the following:

1. Set IMAGE OFF before you enter or edit the record, and then use the
Tab key as a character key.

2. Enter some other character at the appropriate place in the record,
and then use the ALTER subcommand to alter that character to a

SETTING TABS: When you create a file, there are logical tab settings in
effect, so that you do not need to set them. The default values for the
language processors correspond to the columns used by those processors.
If you want to change them, or if you are creating a file with a
nonreserved filetype, you may want to set them yourself. Use the TABSET
subcommand, for example: '

tabset 1 12 20 28 72

Then, regardless of what physical tab stops are in effect for your
terminal, when you press the Tab key with image setting ON, the data you
enter is spaced to the appropriate columns.

The default tab settings used by the editor follow.
Filetype Default_ Tab_ Settings

ASSEMBLE, MACRO, 1, 10, 16, 31, 36, 41, 46, 69, 72, 80,
UPDATE, UPDTXXXX,

ASM3705
AMSERV 2, 6, 11, 16, 21, 26, 31, 36, u1, ue, 51, 61, 71, 80
FORTRAN 1, 7, 10, 15, 20, 25, 30, 80
FREEFORT 9, 15, 18, 23, 28, 33, 38, 81
BASIC, VSBASIC 17, 1o, 15, 20, 25, 30, 80
PLIOPT, PLI 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37, 43, 49, 55,
79, 80
COBOL 1, 8, 12, 20, 28, 36, uu4, 68, 72, 80

211 others 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 61, 71, 81,

1,
91, 101, 111, 121, 131
Note: When you are specifying tab settings for files, the first tab
setting you specify should be the column in which you want your data to
begin. The editor will not allow you to place data in a column preceding
this one. For example, if you issue: '

tabset 5 10 15 20
and then enter an input line:

input This is a line

Columns ‘1, 2, 3, and 4 contain blanks; text»begins in column 5.

Secticn 5. The CMS Editor 77

Backspaces

For most of your applications, you do not need to underscore or
overstrike characters or character strings. If you are using a
typewriter terminal and are typing files that use backspaces and
underscores, you should use either the IMAGE OFF or IMAGE CANON
subconmands so that the editor handles the backspaces properly. IMAGE
CANON is the default value for SCRIPT files.

CANON neans that regardless of how the characters are keyed in
(characters, backspaces, underscores), the editor orders, or canonizes,
the characters in the file as: character-backspace-underscore,
character-backspace-underscore, and so on. If, for example, you want an
input line to look like:

ABC
You could enter it as:
ABC, 3 backspaces, 3 underscores
- or -
3 underscores, 3 backspaces, ABC
A typewriter types out the line in the following order:

A backspace, underscore

B backspace, underscore

C backspace, underscore, which results in:
ABC ,

If you need to modify a line that has backspaces, and you do not want
to rekey all of the characters, backspaces, and overstrike characters in
a CHANGE or REPLACE subcommand, you can use the ALTER subcommand to
alter all of the backspaces to some other character and use a global
CHANGE command. For example, the following sequences shows how to
delete all of the backspace characters on a line:

AAAAA

alter 16 + 1 *
+A+A_+A_+A_+A
change /_+// 1 *
AAAAA

This technique may also be useful on a display terminal.

SETTING TRUNCATION LIMITS

Every CMS file +that you edit has a truncation column setting: this
column represents the last character position in a record into which you
can enter data. When you try to input a record that is longer than the
truncation column, the record is truncated, and the editor sends you a
message telling you that it has been truncated.

You can change the truncation column setting with the TRUNC
subcommand. For example, if you are creating a file with a record length
of 80 and wish to insert some records that do not extend beyond column
20, you could issue the subcommand:

trunc 20

78 IBM VM/370 CMS User's Guide

PN

Then, when you enter data lines, any 1line that 1is longer than 20
characters is truncated and the editor sends you a message. If you are
entering data in input mode, your virtual machine remains in input mode.

When you use +the CHANGE subcommand to modify records, the column at
which truncation occurs 1is determined by the current zone setting. If
you change a character string in a 1line to a 1longer string, and the
resultant line extends beyond the current end zone, you receive the
message: :

TRUNCATED.

If you need to <create a line longer than the current end zone setting,
use the ZONE subcommand to increase the setting. The subcommand:

zone 1 *

extends the zone to the record length of the file. If the end zone
already equals the record 1length, you have to write the file onto disk
and reissue the EDIT subcommand specifying a longer record length.

For most filetypes, the truncation and end zone columns are the same
as the record length. For some filetypes, however, data is truncated
short of the record length. The default truncation and end zone columns
are:

Filetype Column
ASSEMBLE, MACRO 71
UPDATE,
UPDTXXXX
AMSERV, COBOL, 72

DIRECT, FORTRAN
PLI, PLIOPT

A1l other filetypes are truncated at their record length.

You can, when <creating files for your own uses, set truncation
columns so that data does not extend beyond particular columns.

ENTERING A CONTINUATION CHARACTER IN COLUMN 72

When you are using the editor to enter source records for an assembler
language progran and you need to enter a continuation character in
column 72, or whenever you want to enter data outside a particular
truncation setting, you can use the following technique. Note that this
technique will not work if CANON is specified on the IMAGE subconmmand.

1. Change the truncation setting to 72, so that the editor does not
truncate the continuation character:

trunc 72
2. Use the TABSET subcommand to set the left margin at column 72:
tabset 72
3. Use the OVERLAY subcommand to overlay an asterisk in column 72:
overlay *
Since the 1left margin is set at 72, the OVERLAY subcommand line

results in the character * being placed in column 72.

Section 5. The CMS Editor’' 179

4. Restore the editor truncation and tab settings:

trunc 71
tabset 1 10 16 31 36 41 51 61 71 81

Note: If you issue +the PRESERVE subcommand before you change the
truncation and tab settings, then after you enter the OVERLAY
subcommand, you can restore them with the RESTORE subcommand. See
"Preserving and Restoring Editor Settings."

Use the $MARK Edit Macro: Another way to imnsert a continuation character
is to.-use the $MARK edit macro. You can find out if the $MARK edit macro
is' available on your system by entering, in the CMS or CMS subset
environment:

listfile $mark exec *
If it is not available on your system, you can create the $MARK edit
macro for your own use. See "Section 17. Writing Edit Macros" in "Part
3. Learning to Use EXEC."

If you have the $MARK macro, then when you need to enter a
continuation character, you can enter a null line to get into edit mode,
issue the command:

$mark

and then return to input mode to continue entering text.

SERIALIZING RECORDS

Some CMS files that you create are automatically serialized for you.
This means that columns 73 to 80 of each record contain an identifier in
the form:

CCCXXXXX
where ccc are the first three characters of the filename and XXXXX is a

sequence number. Sequence numbers begin at 00010 and are incremented by
10.

The filetypes that are automatically serialized in columns 73 to 80
are:

ASSEMBLE FORTRAN PLIOPT
DIRECT COBOL UPDATE
MACRO PLI UPDTXXXX

You can serialize any file that has fixed-length, 80-character
records by using the SERIAL subcommand:

serial on
The SERIAL subcommand can also be used to:
e Assign a particular three-character identifier:

serial abc

80 1IBM VM/370 CMS User's Guide

L

e Specify that all eight bytes of the sequence field be used to contain
numbers:

serial all
e Specify a sequence increment other than 10:
serial on 100
— or --
serial ccc 100

e Indicate that no sequence numbers are to be assigned to nev records
being inserted:

serial off
When you <create a file or edit a file with sequence numbers, the
sequence numbers are not written or updated until you issue a FILE or
SAVE subcommand. Because the end verification columns for the filetypes
that are automatically serialized are the same as their +truncation
columns, you do not see the serial numbers unless you specify:
verify *

verify 80

Although the serial numbers are not displayed while you edit the file,
they do appear on your output listings or printer files.

If you are editing files with the following filetypes:
BASIC
VSBASIC
FREEFORT
the sequence numbers are on the left. For BASIC and VSBASIC files,
columns 1-5 are used; numbers are blank-padded to the left. For
FREEFORT files, the sequence numbers use columns 1-8, and are

zero-padded to the left. To edit these files, you should use line-number
editing, which is discussed next.

LINE-NUMBER EDITING

To edit a file by line numbers means that when you are adding nev lines
to a file or referencing 1lines that you wish +to change, you refer to
them by their 1line, or sequence numbers, rather than by character
strings. You can use right line-number editing only on files with
fixed-length, 80-character records. »
If you want to edit by line numbers, issue the subcommand:
linemode right

linemode left

Section 5. The CMS Editor 81

where "right" indicates that the sequence numbers are on the right, in
columns 76-80, and "left" indicates you want sequence numbers on the
left in columns 1-5. LINEMODE LEFT is the default for BASIC, VSBASIC,
and FREEFORT files. You do not have to specify it. You must specify
LINEMODE for files with other filetypes. v

If you specify LINEMODE RIGHT to ‘use line-number editing on a
typewriter terminal, the line numbers are displayed on the left, as a
convenience, while you edit the file. .

When you are using 1line-number editing in input mode, - you are
prompted to enter lines; the line numbers are in increments of 10. For
exanple, when you are creating a new file, you are prompted for the
first line number as follows: : . :

10

On a typewriter terminal, you enter your input line following the 10.
When you press the carriage return, you are prompted again:

20
and you continue entering lines in this wmanner until you enter a null

line.

You can change the prompting increment to a larger or smaller number
with the PROMPT subcommand:

prompt 100

When you are in edit mode you can locate a line by giving its line
number:

700

This is the nnnnn subcommand. In line-number editing, you use it instead
of the INPUT subcommand to insert a single line of text. For example:

905 x = a * b

inserts the text 1line "X = A * B" in the proper sequence in the file.
If you . use "nnnnn text" specifying the number of a line that already
exists, that 1line is replaced; the current line pointer is moved to
point to it. :

The EDIT subcommands that you normally use for context editing, such
as CHANGE, ALTER, LOCATE, UP, DOWN, and so forth, can also be used when
you are line-number editing; their operation does not change.

RENUMBERING LINES

When you are using line-number editing, the editor uses the prompting
increment set by the PROMPT subcommand. However, when you begin adding
lines of data between existing lines, the editor uses an - algorithm to
select a line number between the current line number and the next line
number. If a prompting number cannot be generated because the current
line number and the next line number differ only by one, the editor
displays the message: ‘

RENUMBER LINES
and you must resequence the 11ne numbers "in the file before you can

continue line-number editing.

82 IBM VM/370 CMS User's Guide

s

You can resequence the line numbers in one of three ways:
1. If you are a VSBASIC or FREEFORT user, you may use the RENUM
subcommand:
renun
This subcommand resolves all references to lines that are
renumbered.
2. 1If you are using right-handed line-number editing, you must:
a. Turn off line-number editing:
linemode off
b. If you want to change the three-character identifier or specify
eight-character sequence numbers, issue the SERIAL subcommand,
for example:
serial all
If you want to use the default serialization setting, you do not
need to issue the SERIAL subcommand.
c. Issue the SAVE subcommand:
save

d. Reissue the LINEMODE subcommand and continue line-number
editing:

linemode right

3. If you are using 1left-handed iine-number editing for a filetype
other than VSBASIC or FREEFORT, you must manually change individual
line numbers using EDIT subcommands. In order to modify the line
numbers, you must change the zone setting and the tab setting:

zone 1 *
tabset 1 6

so that you can place data in columns 1 through 6.

When you are using right-handed 1line-number editing, and a FILE,
SAVE, or automatic save request is 1issued, the editor does not
resequence the serial numbers, but displays the message:

RESERIALIZATION SUPPRESSED
so that the lines numbers that are currently saved on disk match the
line numbers in the file. You must cancel line-number editing (using the

LINEMODE OFF subcommand) before you can issue a FILE or SAVE subcommand
if you want to update the sequence numbers.

Section 5. The CMS Editor 83

Controlling the Editor

There:are a number of EDIT subcommands . that you can use to maximize the
use of the editor in CMS. A few teéchniques are suggested here; as you
become: more familiar with VM/370 and CMS °~ you will = develop additional
techniques for your own applications. . :

COMMUNICATING WITH CMS AND CP

Often during a terminal session, you may need to issue a CMS command or
a CP command. You can issue certain CMS commands and most CP commands
without terminating the edit session. The EDIT subcommand CMS places
your virtual machine in the CMS subset mode of the editor, where you can
issue CHS commands that do not modify your virtual storage. Remember
"that the editor is using your virtual storage; if you overlay it with
any other command or program, You will not -be able to finish your
editing.

One occasion when you may want to enter CMS subset is when you want
to issue a GETFILE subcommand for a file on one of your virtual disks
and you have not accessed the disk. You can enter:

cms
The editor reéponds:
CMS SUBSET
Then you can enter:
access 193 bya
return

get setup script b

The special CMS SUBSET command RETURN returns your virtual machine to
edit mode. ‘ :

You can enter CP commands from CMS subset, or you can issue then
directly from edit mode or input mode with the #CP function. For
example, if you are inputting lines into a file and ‘another user sends
you a message, you can reply without leaving input mode: - '

#cp m oph i will call you later

If you enter #CP without specifying a command line, you receive the
message: ,

cp
which indicates that your virtual machine is in the CP command
environment, and you can issue CP commands. You would not, however,

want to issue any CP command that would modify your . virtual storage or
alter the status of the disk on which you want to write the file.

To return to edit or input mode from CP, use the CP command, BEGIN.
If you are working at a display terminal and the screen image does not
reappear, enter the TYPE command to cause the editor to redisplay the
screens’ ' '

84 TIBM VM/370 CMS User's Guide

P

March 30, 1979
CHANGING FILE IDENTIFIERS

There are several methods you can use to change a file identifier before
writing the file onto disk. You can use the FNAME and FMODE subcommands
to change the filename or filemode, or you can issue a FILE or SAVE
subcommand specifying a new file identifier.

For example, if you want to create several cories of a file while you
are using the editor, you can issue a series of FNAME subcommands,
followed by SAVE subcommands, as follows:

edit test file
EDIT:

fn testi#save

fn test2#save

-

fn test3#file
Or, you could issue the SAVE and FILE subcommands as follows:

edit test file

save testl

file test3

In both of the preceding examples, when the FILE subcommand is executed,
there are files named TEST FILE, TEST1 FILE, TEST2 FILE, and TEST3 FILE.
The original TEST FILE is unchanged.

To change the filemode letter of a disk, use the FMODE subcommand.
You can do this in cases where you have begun editing a file that is on
a read-only disk, and want to write 1it. Since you cannot write a file
onto a read-only disk, you can issue the FMODE subcommand to change the
nocde before filing it:

fmode a
file

0or, you can use the FILE (or SAVE) subcommand specifying a complete file
identifier:

file test file a
You should remember, however, that when you write a file onto disk,
it replaces any existing file that has the same identifier. The editor

does not issue any warning or informational messages. If you are
changing a file identifier while you are editing the file, you must be

Section 5. The CMS Editor 85

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

careful that you do not unintentionally overlay existiﬁg files. To
verify the existence of a file, you can enter CMS subset and issue the
STATE or LISTFILE commands.

CONTROLLING THE EDITOR'S DISPLAYS

When you are using a typewriter terminal, you may not always want to see
the editor verify the results of each of your subcommands. Particularly
when you are making global changes, you may not want to see each line
displayed as it is changed. You can issue the VERIFY sukcommand with
the OFF operand to instruct the editor not to display anything unless
specifically requested. After you issue:

verify off

lines that are normally displayed as a result of a subcommand that moves
the current line pointer (UP, DOWN, TOP, BOTTOM, and so forth), or that
changes a line (CHANGE, ALTER, and so forth), are not displayed. If the
current line pointer moves to the end of the file, hovever, the editor
always displays the EOF: message.

If you are editing with verification off, then you mnmust be
particularly careful to stay aware of the position of your current line
pointer. You can display the current line at any time using the TYPE
subcommand:

type

Long and Short Error Messages: When you enter an invalid subcommand
while you are using the editor, the editor normally responds with the
error message:

?EDIT: line...
displaying the line that it did not recognize. If you prefer, you can
issue the SHORT subcommand so that instead of receiving the long foram of
the error, you receive the short form, which is:

-

When you issue an invalid edit macro request (any line that begins with
a $), you receive the message:

-~$

To resume receiving the long form of the errcr message, use the LONG
subcommand:

long

LONG and SHORT control the display of the error message regardless of
whether you are editing with verification on or off.’

On a display terminal, all EDIT messages that are displayed at the

top of the screemn, including error messages and '?EDIT:' messages, are
highlighted.

86 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

PRESERVING AND RESTORING EDITOR SETTINGS

The PRESERVE and RESTORE subcommands are used together; the PRESERVE
subcommand saves the settings of the EDIT subcommands that control the
file format, message and verification display, and file identifier. If
you are editing a file and you want to temporarily change some of these
settings, issue the PRESERVE subcommand +to save their current status.
When you have finished your temporary edit project, issue the RESTORE
subcommand to restore the settings.

Section 5. The CMS Editor 86.1

March 30, 1979

86.2 IBM VM/370 CMS User's Guide

For example, if you are editing a SCRIPT file and want to change the
image setting to create a particular format, you can enter:

preserve

image on

tabset 1 15 40 60 72
zone 1 72

trunc 72

When you have finished entering data using these settings, you can issue
the subcommand:

restore

to restore the default settings for SCRIPT filetypes.

X, ¥, =, ? SUBCOMMANDS

The X, Y, =, and ? subcommands all perform very simple functions that
can help you to extend the language of the CMS editor. They allow you
to manipulate, reuse, or interrogate EDIT subcommands.

If you have an editing project in which you have to execute the same

subcommand a number of times, you can assign it to the X .or ¥
subcommands, as follows:

X locate /insert here/
Yy getfile insert file c

Each time that you enter the X subcommand:
x

the command 1line LOCATE /INSERT HERE/ is executed, and every time you
enter the Y subcommand:

Y

the GETFILE subcommand is executed.

When you specify a number following an X or Y subcommand, the
subcommand assigned to X or Y is executed the specified number of times;
for example:

X locate /aa/
x 10

the LOCATE subcommand line is executed 10 times before you can enter
another EDIT subcommand.

Another method of re-executing a particular subcommand is to use the
= (REUSE) subcommand. For example, if you enter:

locate sard/
AARDVARK

the LOCATE subcommand is re-executed seven times.
What the = (REUSE) subcommand actually does is to stack the

subcommand in the console stack. Since CMS, and the editor, read from
the console stack before reading from the terminal, the lines .in the

Section 5. The CMS Editor 87

stack execute before a read request is presented to the terminal. When
you enter multiple equal signs, the subcommand is stacked once for each
equal sign you enter. ' :

You can also stack an additional EDIT subcommand following an equal

sign. The subcommand 1line is also stacked, but it is stacked LIFO
(last-in, first-out) so that it executes before the stacked subcommand.
For example, if you enter:

delete
= next

a DELETE subcommand is executed, then a DELETE subcommand is stacked,
and a NEXT subcommand is stacked in front of it. Then the stacked lines
are read in and executed. The above sequence has the same effect as if
you enter: '

delete
next
delete

In addition to stacking the last subcommand executed, you can also
find out what it was, using the ? subcommand. For example, if you
enter: .

next 10
?

the editor displays:

NEXT 10
Since the subcommand line NEXT 10 was the last subcommand entered, if
you enter an = subcommand, it is executed again. You cannot stack a ?
subcommand. L

Note: The ? subcommand, on a display terminal, copies the last EDIT
subcommand into the user input area, where you -may modify it before
re-entering it.

WHAT TO DO WHEN YOU RUN OUT OF SPACE

There are two situations that may prevent you from continuing an edit
session or from writing a file onto disk. You should be aware of these
situations, know how to avoid them, and how to recover from them, should
they occur.

When yéu issue the EDIT command to edit a file, the editor copies the
file into virtual storage. If it is a large file, or you have made many
additions to it, the editor may run out of storage space. If it does, it
issues the message:

AVAILABLE STORAGE IS NOW FULL
When this happens, you cannot make any changes or additions to the file
unless you first delete some lines. If you attempt to add a line, the
editor issues the message:

NO ROOM

If you were entering data in input mode, your virtual machine is
returned to edit mode, and you may receive the message: ‘

88 1IBM VM/370 CMS User's Guide

Pr=aN

STACKED LINES CLEARED

which indicates that any additional lines you entered are cleared and
will not be processed.

You should use the FILE subcommand to write the file onto disk. If
you want to continue editing, you should see that the editor has more
storage space to work with. To do this, you can find out how large your
virtual machine is and then increase its size. To find out the size,
issue the CP QUERY command:

Cp query virtual storage
If the response is:
STORAGE = 256K

You might want to redefine your storage to 512K. Use the CP command
DEFINE, as follows:

cp define storage 512k

This command resets your virtual machine, and you must issue the CP IPL
command to reload the CMS system before you can continue editing.

If a file is very large, the editor may not have enough space to
allow you to edit it using the EDIT command. The message:

DMSEDI132S FILE 'fn ft fm' TOO LARGE

indicates that you must obtain more storage space before you can edit
the file. If +this is the case, or if you are editing large files, you
should redefine your storage before beginning the terminal session. If
this happens consistently, 7you should see your installation support
Personnel about having the directory entry for your userid updated so
that you have a large storage size to begin with.

Splitting CMS Files Into Smaller Files

If the file you are editing is too 1large, and the data it contains does
not have to be in one file, you can split the file into smaller files,
so that it is easier to work with. Two of the methods you can use to do
this are described below.

Use the COPYFILE Command: You can use the COPYFILE command to copy
portions of a file into separate files, and then delete the copied lines
from the original file. For example, if you have a file named TEST FILE
that has 1000 records, and you want to split it into four files, you

could enter:

test1 file a (from 1 for 250

.test2 file a (from 251 for 250
test3 file a (from 501 for 250
testl4 file a (from 751 for 250

copyfile test file
copyfile test file
copyfile test file
copyfile test file

[]

When these COPYFILE <commands are complete, you have four files
containing the information from the original TEST FILE, which 7you can
erase:

erase test file

——— meRs il

edit them as you copy them, that is, if you have other changes that you

= Section 5. The CMS Editor 89

want to make to the data. To copy files with the editor, you use the
GETFILE subcommand. Using the file TEST FILE as an example, you might
enter;

edit test1 file
getfile test file a 1 250

file
edit test2 file
getfile test file a 251 250

F - -
G TR
-

Again,:you could erase the original TEST FILE when you are through with
your edit session.

When Your Disk Is Full

When you enter a FILE or SAVE subcommand or when an automatic save
request is issued, the editor writes a copy of the file you are editing
onto disk, and names it EDIT CMSUT1. If this causes the disk to become
full, you receive the message:

DMSBWR170S DISK 'mode(cuu)' IS FULL
The editor erases the workfile, and issues the message:
SET NEW FILEMODE, ORYENTER'CMS SUBSET AND CLEAR SOME SPACE

The original file (as last written onto disk) remains unchanged. You
can use the CMS subcommand to enter CMS subset, and erase any files that
you do not need. You can use the LISTFILE command to list the files on
the disk, then the ERASE command to erase the unwanted files.

If you cannot erase any of the files on the disk, there are several
alternate recovery paths you can take:

1. If you have another read/write disk accessed, you can use the FMODE
subcommand to change the filemode of the file, so that when you
file it, it is written to the other disk. If you have a read/write
disk that is not accessed, you can access it in CMS subset. After
filing the file on the second disk, erase the original copy, and
then use the COPYFILE command to transfer the file back to its
original disk.

2., If you do not have any other read/write disk in your virtual
machine, you may be able to transfer some of your files to another
user, using the PUNCH or DISK DUMP commands in CMS subset. When the
files have been read onto the other user's disk, you can erase then
from your disk. Then, return to edit mode and issue the FILE

"subcommand.

3. In CMS subset, erase the original disk file (if it existed), then
return to edit mode and file the copy that you are editing. You
should not use this method unless absolutely necessary, since any

"unexpected problems may result in the loss of both the disk file
and the copy.

After you use the FILE subcommand to write the file onto disk, you
should continue erasing any files you no longer need.

90 IBM VM/370 CMS User's Guide

Summary of EDIT Subcommands

The EDIT subcommands, and their formats, are shown in Figure 7. Refer to
the VM/370 CMS Command and Macro Reference for complete details.

Subcommand Format

| Function

ALter char1 char2

o ——-——
ls #2

[———

* @
b

| S |

1

|

{
|Scans the next n records of t
Ithe file, altering the speci- |
| fied character, either once in|
leach line or for all occur-—
|rences in the line.

AUTOsave

jAutomatically saves the file
lon disk after the indicated
|nunber of lines have been

| processed.

. r
BAckward |
|

L

|Points the current line
|pointer to a line above the
|line currently pointed to.
|

Bottom

|Makes the last line of the
|file the current line.

CASE | M
]

(S|

|Indicates whether translation
|to uppercase is to be done, or
{displays the current status.

|

[i |

Change [/stringi[/string2[/ In 1G113))in records or to EOF, either

11 1*1

L

| S |

{Changes string1 to string2 for

|for the first occurrence in
|each line or for all
joccurrences.

CMS

|Enters CMS subset command
|mode.

DELete

o ———-
fa %
[S |

|Deletes n lines or to the end
|of the file (¥).
|

DOwn

-
b d

|
t 1
L

|Points to the nth line from
|the current line.

|

|

DString /{string {/]]

|Deletes all lines from the
|current line down to the line
lcontaining the indicated
Istring.

|
|
I
|
|
|
|
|
I
i
|
[
I
[
|
I
[
|
[
|
I
|
|
|
|
|
[
i
|
|
I
|
[
|
|
|
|
|
I
|
I
|
|
|
|
|
I
|
|
|
|
| FILE [(fn [ft [£fn]]]
l .
|

ISaves the file being edited on
jdisk or changes its identi-
|fiers. Returns to CMS.

Figufe 7. Summary of EDIT Subcommands and Macros (Part 1 of #)

Section 5. The CMS Editor 91

Subcommand Format

| Function

Find [line]

|Searches the file for the
fgiven line.

FMode [fm] |Resets or displays the
‘ |filemode.
FName [fn] |Resets or displays the
|filenanme.
FORMat (DISPLAY |Switches the 3270 terminal
2270) LINE {between display mode and line
|mode. (3270 only)
r 1 |Points to the nth line after
Forward | n | |the current line.
[{
L 4 l
r r r r 7 711 |Inserts a portion or all of
Getfile fn | £t | fm | m | n | { | | |the specified file after the
’ I { 311 * 1 {1 | ({current line.
L [N L L 4 4 2 4 '
e 1 {Expands text into line images
IMAGE |ORN { tor displays current settings.
IOFF | {
| CANON | |
L a4 |

Input [line]

{Inserts a line in the file or
|enters input mode.

G r 1
LINEmode |LEFT |

{RIGHT|

|OFF

L

3

|Sets or displays current
fsetting of line-number
{editing.

|

|

[Locate])/[string [/]]

{Scans file from next line for
{first occurrence of 'string’'.

LONG

r——-

n
il

o

|Enters long error message

|mode.

{Points to the nth line down
Next |from the current line.

Overlay [line]

fReplaces all or part of the
{current line.

(o o e e e S - - = — —— — —— — —— — — — —— — — — — — — — e S — — — — — A — — — a—— e . S e G —— S —— o — o — —

e o o e e e - = o o - ——— —— — —— ———— — = o+ - —— - ——— T ————————— ——— —_—— o =]

PREserve | Saves current mode settings.
P |Sets or displays line number
PROMPT |n | iincrement. Initial setting is
1101 110.
L 4 |
Figure 7. Summary of EDIT Subcommands and Macros (Part 2 of U4)

92 IBM VM/370 CMS User's Guide

&S e

Subcommand Format’] Function

QUIT |Terminates edit session with
{no updates incorporated since
|last save request. -

|Sets or displays record format
|for subsequent files.

|

|

RECfm

-——-
——

. Q1 [Recomputes line numbers for
strtno |incrnojti | VSBASIC and FREEFORT source
10 Istrtnol ! |files.

|
L L 43 I

. r
RENum |

{Executes the following OVERLAY
|subcommand n times.

|

|

|

REPEAT

o ———
= 3
b =

Replace [line] |Replaces the current line or
jdeletes the current line and
|enters input mode.

REStore |Restores editor settings to
|values last preserved.

RETURN v : |Returns to edit environment
|from CMS subset. N

{REUSE} { subcommand) |Stacks (LIFO) the last EDIT

= |subcommand that does not start
{with REUSE or the question
Imark (?) and then executes any
{given EDIT subcommand.

SAVE {fn [ft [fm]]] |Saves the file on disk and
|stays in edit environment..

|Displays a number of screens
jof data above or below the
|current line (3270 only). :

|

|

SCroll in
S[croll]U[p]} 1%
11

[8

b e e —d

| Turns serialization on dr-off
{in columns 73 through 80.

|

|

SERial OFF
incr
10

ALL
seq

[——-
| Sy |

SHORT : ‘ |Enters short error message
|mode. -

|Stacks data lines or EDIT
|subcommands in the console
|input stack.

|

|

|

)
H
-
Q
=

subcommand

,.._“___ﬂ
Ol
—_———

N

[e o e s e - —— o —— —— = = e = ——— . — —————— - — —————— — ——— o — —— ——
e o e e e o — D . —— o ——— — — — — —— — — —— —— —— — N — —— — — —— o —— —— — —— — o — — —— —— —— — — — — — ——— — —— ——— —— — o e o]

Figure 7. Summary of EDIT Subcommands and Macros (Part 3 of 4)

Section 5. The CMS Editor 93

Subconmand Format | Function

TABSet n1 {n2 ... nn] [Sets logical tab stops.

TOP | Moves the current line pointer
|to the null line at the top
|of the file.

|Sets or ‘displays the column of
| truncation. An asterisk (¥)
lindicates the logical record
|length.

TRUNC

o —-—n
* o
b

|Displays B lines beginning

{with the current line. Each
{line may be truncated to n

icharacters. '

|

Type

P ———-
 #l-B
———
L -]
b —
b

|Moves the current line pointer
[toward the top of the file.

|

l

,.“_,
|
| SR

: - 1 |Sets, displays, or resets

startcol|endcol}| |verification. An asterisk (%)

1 | * | {indicates the logical record
4 4 llength.

Verify |ON
OFF

- —— -
o ——d
o ——
o ———

|Assigns to X or Y the given
IEDIT subcommand or executes
Ithe previously assigned
|subcommand n times.

|

subcommand
n
1

(o o ——

[|

|Sets or displays the columns
|between which editing is to
| take place.

|

|

? IDisplays'the last EDIT
|subcommand, except = or ?.

Zone

(o ——— -
o ——— -
* B
b
| SR —— |

nnnnn } [text] |Locates the line specified by
nnnnnnnn |{the given line number and
|inserts text, if given.

|Duplicates the current line n
|times. $DUP is an edit macro.
|
|

$MOVE n { UpP m } {Moves ur n lines or down m

-
$DUP | n
1

L

| SR

Down m |lines. $MOVE is an edit macro.
TO label l

e o v o o e W e Gmm - D e SR e G W TR T AR n N G S he e S T wm T S e S —— ——— - — " o = = mm = W s — e v

Figure 7. Summary of EDIT Subcommands and Macros (Part 4 of 4)

94 IBM VM/370 CMS User's Guide

Section 6. Introduction to the EXEC Processor

An EXEC is a CMS file that contains executable statements. The
statements may be CMS or CP commands or EXEC control statements. The
execution can be conditionally controlled with additional EXEC
statements, or it may contain no EXEC statements at all. In its simplest
form, an BEXEC file may contain only one record, have no variables, and
expect no arguments to be passed to it. In its most complex form, it can
contain thousands of records and may resemble a program written in a
high-level programming language. As a CMS user, you should ~~becone
familiar with the EXEC processor and use it often to tailor CMS commands
to your own needs, as well as to create your own commands. ‘ .

The following is an exanple of a simple EXEC procedure that might be
named RDLINKS EXEC:

CP LINK DEWEY 191 291 RR DEWEY
CP LINK LIBRARY 192 292 RR DEWEY
ACCESS 291 B/A

ACC 292 C/A

When yoh enter:
'rdlinks
each command line containedbin the file RDLINKS EXEC is executed. -
Youv could 'aléo create an EXEC procedure that functioms fike a
cataloged procedure, and set it up to receive an argument, so that it

executes somevhat differently each time you invcke it. For example, a
file named ASM EXEC contains the following:

ASSEMBLE &1
PRINT &1 LISTING
‘'LOAD &1

START

If you invoke the EXEC specifying the name of an assembler language
source file, such as:

asm mnyprog
the procedure executes as follows:.

ASSEMBLE MYPROG

PRINT MYPROG LISTING

LOAD MYPROG ’

START
The variable &1 in the EXEC file is substituted with the argument you
enter when you execute the EXEC. As many as 30 arguments can be-passed

to an EXEC in this manner; the variables thus set range from &1 through
§30. ‘

CREATING EXEC FILES

EXEC files can be created with the CMS editor, by punching cards, or by
using CMS commands or programs. When you create a file with the editor,

Section 6. Introduction to the EXEC Processgor 95

records are, by default, variable-length with a logical record length of
80 characters. EXEC can process variable-length files of up to 130
characters. To create a variable-length EXEBC file larger than 80
characters, use the LRECL option of the EDIT command:

edit newvw exec a (lrecl 130

To convert a variable-length file to a fixed-length file, you can
edit the EXEC file and issue the subcommand:

recfm f
Oor, you can use the COPYFILE command:
copyfile o0ld exec a (recfm £

If you use fixed-length EXEC files, you should be aware that the EXEC
interpreter only processes the first 72 characters of each record in a
fixed-length file, regardless of the record length. You can, however,
enter command or data lines that are longer than than 72 characters to
be processed by using the &BEGSTACK, &BEGTYPE, &BEGPUNCH, and &BEGEMSG
control statements preceding the line(s) you want to be processed. If
you specify &BEGPUNCH ALL, EXEC processes lines up to .80 characters
long; if you specify &BEGTYPE ALL, &BEGSTACK ALL, or SREGEMSG ALL, EXEC
processes lines up to 130 characters.

In variable-length EXEC files, there are no such restrictions; lines
up to 130 characters are processed in their entirety.

Two CMS conmnmands create EXEC files. One 1is LISTFILE, which can be
invoked with the EXEC option; it creates a file named CMS EXEC. The uses
of CMS EXEC files are discussed under the heading "CMS EXECs and How To
Use Them." The CMS/D0OS command LISTIO creates an EXEC file named
$LISTIO EXEC, which creates records for each of the system and
programmer logical unit assignments. The LISTIO command and the $LISTIO
EXEC are described in "Section 9. Developing DOS Programs Under CMS."

INVOKING EXEC FILES

EXEC procedures are invoked when you enter the filename of the EXEC
file. You can precede the filename on the command line with the CHMS
command, EXEC. For example:
exec test type list
where TEST is the filename of the EXEC file and TYPE and LIST are
arguments (&1, &2, and so on) you are passing to the EXEC. For example,
an BXEC named PREPEDIT would be executed when you entered either:
prepedit newfile replace
exec prepedit newfile replace
You must precede the EXEC filename with the EXEC command when:
e You invoke an EXEC from within another EXEC.

e You invoke an EXEC from a progranm.
e You have the implied EXEC function set off for your virtual machine.

96 1IBM VM/370 CMS User's Guide

March 30, 1979

The implied EXEC function is controlled by the SET command. If you
issue the command:

set impex off

then you must use the EXEC command to invoke an EXEC procedure. The
default setting is ON; you almost never need to change it.

- There is one EXEC file that you never have to specifically invoke.
This is a PROFILE EXEC, which is automatically executed after you load
CMS, when your A-disk is accessed. PROFILE EXECs are discussed next.

PROFILE EXECs

A PROFILE EXEC must have a filename ' of PROFILE. It can contain the CP
and CMS commands 7you normally issue at the start of every terainal
session. For examFple: ‘

e Commands that describe your terminal characteristics, such as:

CP SET LINEDIT ON
SET BLIP *

SET RDYMSG SMSG
SYNONYM MYSYN

e Commands that spool your printer and punch for particular classes or
characteristics:

CP SPOOL E CLASS S HOLD

e Commands to initialize macro and text 1libraries that you commonly
use:

GLOBAL MACLIB OSMACRO CMSLIB
GLOBAL TXTLIB PRIVLIB

e Commands to access disks that are a permanent part of your
configuration: ‘

ACCESS 196 B

A PROFILE EXEC file that contains all of these commands might look
like this:

&§CONTROL OFF

CP SET LINEDIT ON

CP SPOOL E CLASS S HOLD

SET RDYMSG SMSG

SET BLIP *

SYNONYM MYSYN

GLOBAL MACLIB OSMACRO CMSLIB
GLOBAL TXTLIB PRIVLIB

ACCESS 196 B

ECONTROL OFF is an EXEC control statement that specifies that the CP
and CMS command lines are not to be displayed omn your terminal before
they execute. ‘

A PROFILE EXEC can be as simple or as complex as you require. As an

EXEC file, it can contain any valid EXEC control statements or CHMS
commands. The only thing that makes it special is its filenanme,

Section 6. Introduction to the EXEC Processor 97

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

PROFILE, which causes it to be executed the first time you press the
Return key after loading CMS. :

EXECUTING YOUR PROFILE EXEC

Usually, the first thing you do after loading CMS is to type a CHMS
command. When you press the Return key to enter this command or if you
enter -a null line, CMS searches your A-disk for a file with a filenanme
of PROFILE and a filetype of EXEC. If such a file exists, it is
executed before the first CMS command you enter is executed. Because
you do not do anything special to cause your PROFILE EXEC to execute,
you can say that it executes "automatically."

You can prevent your PROFILE EXEC from executing automatically by
entering:

access (noprof)
as the first CMS command after you IPL CMS. You can enter:

profile
at any time during a CMS session to execute the PROFILE EXEC, if you had
accessed your A-disk without it, or if you had made changes to it and

wanted to execute it, or if you had changed ycur virtual machine and
wanted to restore its original characteristics.

CMSV EXECs and How to Use Them

A file named CMS EXEC is created when you use the EXEC option of the
LISTFILE command; for example:

listfile pr* document a (exec

The usual display that results from this LISTFILE command is a list of
all the files on your A-disk with a filetype of DOCUMENT that have
filenames beginning with the characters "PR". CMS, however, creates a
CMS EXEC file that contains a record for each file that would be listed.
The records are in the format:

€1 &2 filename filetype filemode

Column 1 is blank. Now, if you have the following files on jour A—-disk:

PRFILE1 DOCUMENT
PRFILE2 DOCUMENT
PRFILE3 DOCUMENT
PRFILE4 DOCUMERT

The CMS EXEC file would contain the records:
&1 &2 PRFILE1 DOCUMENT A1
&1 €2 PRFILE2 DOCUMENT A1

&1 &2 PRFILE3 DOCUMENT A1
&1 &2 PRFILE4 DOCUMENT A1l

98 1IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-Xi8

In the preceding lines, &1 and &2 are variables that can receive values
from arguments you pass to the EXEC when you execute it. For example,
if you execute this CMS EXEC by issuing:

cms disk dump

the EXEC interpreter substitutes, on each line, the variable &1 with the
DISK and the variable &2 with DUMP and executes the commands:

DISK DUMP PRFILE1 DOCUMENT A1
DISK DUMP PRFILE2 DOCUMENT A1
DISK DUMP PRFILE3 DOCUMENT A1
DISK DUMP PRFILE4 DOCUMENT A1

You can use this technique to transfer a number of files to another
user. You should remember to spool your punch with the CONT option
before you execute the EXEC, so that all of the files are transferred as
a single spool file; for example:

cp spool d cont library
Then, after executing the EXEC file, close the punch:

cp spool d nocont close

If you pass only one argument to your CMS EXEC file, the variable §2
is set to a null string. For example:

cms erase
executes as:

ERASE PRFILE1 DOCUMENT A1

ERASE PRFILE2 DOCUMENT A1l

ERASE PRFILE3 DOCUMENT A1

ERASE PRFILE4U DOCUMENT A1

You could also use a CMS EXEC to obtain a listing of files on a

virtual disk. If you want, you can use one of the other LISTFILE command
options with +the EXEC option to get more information about the files
listed. For example:

listfile * * a (exec date
produces a CMS EXEC +that contains, in addition to the filename,
filetype, and filemode of each file 1listed, the file format and size,
and date information. You can then use the PRINT command to obtain a
printed copy:

print cms exec

Before printing this file, you may want to use the SORT command to

sort the list into alphabetic order by filename, by filetype, or both;
for example:

sort cms exec a cmssort exec a
When you are prompted tc enter sort fields, you can enter:

1 25

The file CMSSORT EXEC that is created contains a completely alphabetical
list.

Section 6. Introduction tc the EXEC Processor 99

March 30, 1979
MODIFYING CMS EXECS

A CMS EXEC is like any other CMS file; you can edit it, erase it, renanme
it, or change it. If you have created it to catalog a particular group
of files, you might want to rename 3it; each time you use the LISTFILE
command with the EXEC option a CMS EXEC is created, and any old CMS EXEC
is erased. To rename it, you can use the CMS RENAME command, or, if you
are editing it, you can rename it when you file it:

edit cms exec
input &control off
file prfile exec

You nmight also want to edit a CMS EXEC to provide it with more
numeric variables; for example:

edit cms exec

input &control off

input cp spool printer class s cont
change /al/al €3 &4 €5 &6/ *

input cp spool printer nocont
input cp close printer

file prfile exec

prfile print % (cc

When this EXEC 1is executed, the variable &1 is substituted with PRINT,
the variable &2 is set to a null string (the special character %
indicates that you are not passing an argument to it), and &3 and &4 are
set to the PRINT command option (CC, so that the files in the EXEC print
with carriage control. The CP commands that are inserted ensure that
the files print as a single spool file, and not individually.

Summary of the EXEC Language Facilities

The EXEC processor, or interpreter, recognizes keywords that: begln with
the special character ampersand (§). Keywords may indicate:

Control statements
Built-in functions
Special variables
Arguments

You may also define your own variables in an EXEC file; the EXEC
interpreter can process them as long as they begin with an ampersand.
The following pages briefly discuss the kinds of things you can do with
an EXEC, introduce you to the control statements, built-in functions,
and special variables, and give some examples of how to use the EXEC
processor. If you want more information on writing EXEC procedures, see
“"Part 3. Learning To Use EXEC." For specific information on the format
and usage rules for any EXEC statement or variable, consult the ¥YM/370
CMS Command and Macro Reference.

In general the following rules apply to entering lines into an EXEC
procedure: - :

1. Most input 1lines (with a few exceptions) are scanned during
execution of the EXEC. Every word on a line is padded or truncated

100 IBM VM/370 CMS User's Guide

to fit into an eight-character "token." So, for example, if you
enter the EXEC control statement:

&type today is wednesday
when this EXEC is executed, the line is displayed at your terminal:
TODAY IS WEDNESDA

The lines that are not tokenized are those that begin with an *
(and are considered comments), and those that follow an &BEGEMSG,
&EBEGPUNCH, &BEGSTACK, or &BEGTYPE control statement, up to an &END
statement.

2. You can enter input lines beginning in any column. The only time
that you must enter an EXEC line beginning in column 1 is when you
are using the &END control statement to terminate a series of lines
being punched, stacked, or typed.

ARGUMENTS AND VARIABLES

Most RXEC processing is contingent on the value cf variable expressions.
A variable expression in an EXEC is a symbol that begins with an
ampersand (&). When the EXEC interpreter processes a 1line and
encounters a variable symbol, it substitutes the variable with a
predefined value, if the symbol has been defined. Symbols can be
defined in three ways: (1) when passed as arguments to the EXEC, (2) by
assignment statements, (3) interactively, as a result of a SREAD ARGS or
EREAD VARS control statement. ¢

You <can pass arguments to EXEC files when you invoke them. Each
argument you enter is assigned a variable name: the first argument is
&1, the second is &2, the third is &3, and so on. You can assign values
for up to 30 variables this way. For example, if an EXEC is invoked:

scan alpha 2 notype print

the variable &1 has a value of ALPHA, the variable &2 has a value of 2,
&3 is NOTYPE and &4 is PRINT. These values remain in effect until you
change then.

You can test the arguments passed in several ways. The special
variable §INDEX contains the number of arguments received. Using the
example SCAN ALPHA 2 NOTYPE PRINT, the statement:

&IF EINDEX EQ 4 &GOTO -SET

would be true, since four arguments were entered, so a branch to the
label -SET is taken.

You can change the values of arguments or assign values using the
EARGS control statement. For example: '

&IF &€INDEX EQ O &ARGS A B C

assigns the values A, B, and C to the variables &1, &2, and &3 when the
EXEC is invoked without any arguments.

Use the §&READ ARGS control statement to enter arguments
interactively. For example, if your EXEC file ccntains the line:

&READ ARGS

Section 6. Introduction to the EXEC Processor 101

when this 1line is executed, the
machine so that you can enter up to
variables &1, &2, and so on.

ASSIGNMENT STATEMENTS

User-defined variable names
to seven additional characters.
alphameric data.
statements.
an ampersand (&) and the second data
value of the expression on the right

&EA = 35

is an

EXEC issues
30 arguments, to be assigned to the

begin with an ampersand (§)
These
You define and initialize EXEC variables in assignment
In an assignment statement, the first data item starts with

assignment statement that assigns

a read to your virtual

and contain up
variables can contain numeric or

item is an equal sign (=). The

side of the equal sign is assigned
to the variable named on the left of the equal sign.

For example:

the numeric value 35 to the

variable symbol &A. A subsequent assignment statement might be:

&B = &A + 10

After this
plus 10, or 45.
SREAD control

You can use the

assignment statement executes, the

statement to

value of &B would be 35

assign variable names

interactively. For example, when the statement:

SREAD VARS ENAME EAGE

is executed, the EXEC issues a read to
enter a line of data. The first tvwo
assigned to the variable symbols &ENAME

Note: The
statement must be
the value of an

an equal sign (=)
equal sign.

data item immediately following the target of
and not an EXEC
Conversely, if an equal sign

your virtual machine, and you can
words, or tokens, you enter are
and &AGE, respectively.

an assignment
variable that has
is to be the

first data item following an EXEC control word, then it must bLe
specified as an EXEC variable that has the value of an equal sign and
not as an equal sign; otherwise, the statement is interpreted as an
assignment statement and the control word is thereafter treated as a
variable.

Null Variables

If you use a variable name that has not been defined, the variable

symbol is set to a null string by the
is executed. For example, if you have
EXEC command line, then the statement:

&IF €3 EQ CONT EERROR &CONTINUE
is interpreted:

&IF EQ CONT &ERROR &ECONTINUE
&EERROR and &CONTINUE are
Since &3 is wundefined, however, it

resulting line produces an erroz
prevent the error, and allow for

recognized

102 IBM VM/370 CMS User's Guide

EXEC processor when the statement
entered only two arguments on the

by EXEC as control statements.
is replaced by blanks and the

during EXEC processing. You can
null arguments or

variables, by

concatenating some other character with the variable. A period is used
most frequently:

&IF .63 EQ .CONT &EERROR &SCONTINUE
If &3 is undefined when this line is scanned, the result is:
&IF . EQ .CONT &ERROR SCONRTINUE

which is a valid control statement line.

BUILT-IN FUNCTIONS AND SPECIAL VARIABLES

The EXEC bLuilt-in functions are similar to those of higher-level
languages. You can use the EXEC built-in functions to define variable
symbols in an EXEC procedure.

Pigure 8 summarizZes the built-in functions. It shows, given the
variable &A, the values resulting in a variable &§B when a built-in
function is used to assign its value. WNotice that all of the built-in
functions are used on the right-hand side of assignment statements. Only
the SLITERAL built-in function can be used in control statements; for
example: ‘

§TYPE ELITERAL &A

L]
| Function | GUsage | Examgle | &B |
| |
| l | &2 = 123 | |
| &CONCAT | Concatenates tokens into a | | i
] | single token.) | 6B = &CONCAT &A 55 | 12355
{ &DATATYPE | Assigns the data type (NUM | ~ : | o
| { or CHAR) to the variable. | &B = &DATATYPE §A | NOUM
| ELENGTH | Assigns the length of a | | {
i | token to a variable. { 6B = SLENGTH &A I 3 \
| 6LITERAL | Prohibits substitution of a | | t
| | variable symbol. | 8B = ELITERAL &A | &A |
| &SUBSTR | Extracts a character string | ‘ | 1
| | from a token. | 6B = &SUBSTR &A 2 2 | 23 |
[3

Figure 8. Summary of EXEC Built-in Functions

FLOW CONTROL IN AN EXEC

An EXEC is processed line by line: if a statement is encountered that
passes control to another 1line in the procedure, execution continues
there and each 1line is, again, executed sequentially. You can pass
control with an &§GOTO control statement: ;

§GOTO -BEGIRN

where -BEGIN is a 1label. All labels in EXEC files must begin with a
hyphen, and must be the first token on a line. For example:

-LOOP

Section 6. Introduction to the EXEC Processor 103

A label may have control statements or commands following it; for
example: ,

~HERE &CONTINUE

which indicates that the processing is to continue with the next line,
or:

-END &EXIT
The EEXIT control statement indicates that the EXEC processor should
terminate execution of the EXEC and return contrcl to CMS. You can also
specify a return code on the SEXIT control statement:

SEXIT 6

results in a " (00006)" following the "R"™ in the CMS ready message. If
you invoke a CMS command from the EXEC, you can specify that the return
code from the CMS command be used:

EEXIT &RETCODE
Since the &ERETCODE special variable is set after each CHMS command that
is executed, you can test it after any command to decide whether you
want execution to end. For example, you could wuse the §IF control
statement to test it:

&IF ERETCODE NE O SEXIT &RETCODE
WEEXIT &RETCODE" places the value of the CMS return code in the CHMS
ready message. You could place a 1line similar to the above following
each of your CMS command lines, or you could use the &ERROR control
statement, that will cause an exit as soon as an error is encountered:

&ERROR &EXIT SRETCODE

or you could use the &ERROR control statement to transfer control to
some other part of your EXEC:

&ERROR &GOTO -CHECK

Another way to transfer control to another line is to use the &SKIP
control statement:

&SKIP 10

transfers control to a line that is 10 lines below the &SKIP line. You
can transfer control above the current line as well:

&IF &X NE &Y &SKIP -3

Transferring control with &SKIP is faster, when an EXEC is executing,
than it is with §&GOTO, but modifying your EXEC files becomes more
difficult, particularly vhen you add or delete many lines.

104 IBM VM/370 CMS User's Guide

3

-~

You can use combinations of &§IF, &GOTO, and ESKIP to set up loops in
an EXEC. For example:

&§X = 1

&§IF &X = 4 &GOTO -ENDPRT
PRINT FILE&X TEST A

€X = €X + 1

&SKIP -3

~ENDPRT

0r, you can use the §LOOP control statement:

&8X = 1

ELOOP 2 €X > 3
PRINT FILE&X TEST
EX = &X + 1
—ENDPRT

In both of these examples, a loop is established to print the files
FILE1 TEST, FILE2 TEST, and FILE3 TEST. €X is initialized with a value
of 1 and then incremented within the loop. The loop executes until the
value of &X is greater than 3. As soon as this condition is met, control
is passed to the label -ENDPRT.

COMPARING VARIABLE SYMBOLS AND CONSTANTS

In an EXEC, you can test whether a certain condition 1is true, and then
perform some function based on the decision. Some examples have already
appeared in this section, such as:

&LOOP 3 &X EQ &Y
In this example, the value of the variable §X 1is tested for an equal
comparison with the value of the variable &Y. The loop is executed until
the condition (&X equal to §Y) is true.

The logical comparisons you can make are:

Condition Mpemonic Symbol
equal EQ =
not equal NE a=
greater than GT >
less than LT <
greater than

or equal to GE >=
less than or

equal to LE <=

When you are testing a condition in an EXEC file, you can use either the
mnemonic or the symbol to represent the condition:

&IF 6A LT &B &§GOTO -NEXT
is the same as:

EIF &A < &B &GOTO -NEXT

Section 6. Introduction to the EXEC Processor 105

DOING I/O WITH AN EXEC

You can communicate with your terminal using the &TYPE and &READ control
statements. Use &§TYPE to display a line at your terminal:

ETYPE ASMBLNG &1 ASSEMBLE

When this_line is processed, if the variable &1 has a .value of PROGI1,
the line is displayed as:

ASMBLNG PROG1 ASSEMBLE

Use the &READ control statement when you want to be abkle +to enter
data, variables, or control statements into your EXEC file while it is
executing. If you use it with an &TYPE statement, for example:

&TYPE DO YOU WANT TO CONTINUE ?
&EREAD VARS &ANS

you could test the variable EANS in your EXEC to find out how processing
is to continue.

The &BEGTYPE control statement can be followed by a sequence of lines
you want to be displayed at the terminal. For example, if you want to
display ten lines of data, instead of using ten §&TYPE control
statements, you could use:

§BEGTYPE

linet

line2

line10

&EEND
The §END control statement indicates the end of the lines to be typed.
You can also use the §BEGTYPE control statement when you want to type a

line that contains a word with more than eight characters in it; for
example: '

&BEGTYPE
TODAY IS WEDNESDAY
EEND

The EXEC interpreter, however, does not perform substitutions on lines
entered this way. The lines:

&A = DOG

"&§BEGTYPE

MY €A IS NAMED FIDDLEFADDLE

SEND
result in the display:

MY &A IS NAMED FIDDLEFADDLE
You must use the ETYPE statement when you want to display variable data;
you must use the &EBEGTYPE control statement to display words with more
than eight characters.

To type null or blank lines at your terminal (to make output
readable, for example), you can use the &ESPACE control statement:

&ESPACE 5

106 IBM VM/370 CMS User's Guide

-z

You can punch lines of tokens into your virtual card punch with the
SEPUNCH control statement:

&EPUNCH &SNAME &TOTAL

When you want to punch more than one 1line of data, or a line that
contains a word of more than eight characters in it, you should use the
&BEGPUNCH control statement preceding the lines you want to punch, and
follow them with an &END statement. The EXEC processor does not
interpret these 1lines, however, so any variable symbols you enter on
these lines are not substituted.

When you punch lines from an EXEC procedure what you are actually
doing is «creating a file in your virtual card punch. To release the
file for processing, you must close the punch:

cp close punch
The destination of the file depends on how you have spooled your punch.
If you have spooled it to yourself, the file is placed in your virtual

card reader, and you can read it onto a virtual disk using the READCARD
command. .

Stacking Lines

The EXEC control statements &STACK and &BEGSTACK allow you to stack
lines in your terminal console, to be executed as soon as a read occurs
in your virtual machine. Stacking is useful when you use commands that
require responses, for example, the SORT command:

§STACK 1 20
SORT INFILE FILE A OUTFILE FILE A

When the SORT command is executed, a prompting message is issued, the
virtual machine read occurs, and the response that you have stacked is
read. If you do not stack a response to this command, your EXEC does
not continue processing until you enter the response from your terminal.

In the above example of the SORT command, Yyou can suppress the
prompting message by issuing the &STACK HT command immediately before
the SORT command. Restore normal terminal operations by placing an
&STACK RT command after the SORT command.

Stacking is useful in creating edit macros or in editing files from
EXEC procedures.

MONITORING EXEC PROCEDURES

Two EXEC control statements, &CONTROL and &TIME, ccntrocl how much
information is displayed at your terminal while your EXEC file is
executing. This display is called an execution summary.

Since you do not usually receive a CMS ready message after the
execution of each CMS command in an EXEC, you doc not receive the timing

Section 6. Introduction to the EXEC Processor 107

information that is provided with the ready message. If you want this
timing information to appear, you can specify:

&ETIME ON
or you can type the CPU times at particular places by using:
&§TIME TYPE
The &CONTROL control statement allows you to specify whether certain
lines or types of information are displayed during execution. By
default, CP and CMS commands are displayed before they are executed. If
you do not wish to see them displayed, you can sfecify: -
&§CONTROL OFF
You might find it useful, when you are debugging your EXECs, to use:
&§CONTROL ALL
When you use this form, all EXEC statements, as well as all CP and CMS

commands, are displayed and you can see the variable substitutions being
performed and the branches being taken in a procedure.

108 IBM VM/370 CMS User's Guide

v

Summary of EXEC Control Statements and Special

Variables ,

Figures 9 and 10 summarize EXEC control statements and special
variables.

r g al
| Control Statement { Function |
| (
| évariable = (string |Assigns a value to the symbol |
i ae | specified by &variable; the |
| function lequal sign must be preceded |
{ X'XXXXXX tand followed by a blank. |
i - |
| &6ARGS [arg1 [arg2 ...[arg30]]] {Redefines the variable symbols|
§ 161, 62... with the values of |
| |*arg1t', 'arg2', ..., and re- |
l | sets the variable &§INDEX. l
| |
|- EBEGEMSG [ALL] |Displays the following lines |
| line1l jas CMS error messages, wlthoutl
line2	scanning thenm.
.	
.	
&END	
&BEGPUNCH [ALL]	Punches the following lines 1
lineil {in the virtual card punch,	
1line2 {without scanning them.	
. { {	
-	
&END	
l	
pe “r 1 {Stacks the following lines	
§BEGSTACK [FIFOl I
! linet {LIFO	¢ J {without scanning themn. {
{ line2 L 4	
{ -	
{ -	
&END	
&BEGTYPE [ALL]	Displays the fcllowing lines
1line1l lat the console, without	
line2 Iscanning then.	
-	
. {	
&END {	
SCONTINUE	Provides a branch address for
	EERROR, &GOTO, and other con-
	ditional branching statements.
i []
Figure 9. Summary of EXEC Control Statements (Part 1 of 3)

Section 6.

Introduction to the EXEC Processor 109

Control Statement

| Function

&§CONTROL

r T r Tr T r
[OFF | |MSG | ITIME | [BACK
{ERROR| |NOMSG| |NOTIME| |NOPA
ICHS | t 4L 4t
IATL |

L 4

|Sets, until further notice,
Ithe characteristics of the
|executicn summary of the EXEC,
Iwvhich is displayed at the
|console.

|
i

EEMSG mmmnnns [tok1 [...tokn]]

{Displays a line of tokens
las a CMS error message.

EEND

|following an ®EMSG,
|EBEGPUNCH, &BEGSTACK, or
|&BEGTYPE control statement.

k r 2
EERROR |executable-statement|
|ECONTINUE I

L 4

|Executes the specified
|statement whenever a CMS
|command returns a nonzero
|return code.

r b |
SEXIT |return—code|

|Exits from the EXEC file with
{the given return code.

1
|
|
|
i
|
|
|
|
|
(
|
l
(

|Terminates a series of lines |
|
|
|
|
|
l
|
|
|
l
l
{
|
!
1

| 0 | |
L] |
&GOTO (TOP |Transfers control to the top
linenumber |of the EXEC file, to the given|
-label |line, or to the line starting |
fwith the given label.
EHEX {ON]} |Turns on or off hexadecimal
{OFF} |conversion.
EIF (tok1) fEQ) (tok2) executable— | Executes the specified
&% NE &% statement |statement if the condition is
&% LT {8* |satisfied.
LE |
GT |
GE |
(=) |
= |
< |
<= |
> |
>=J l

&ELOOP (n]
-label condition

|Loops through the following n
{lines, cor down to (and includ-
ling) the line at label, for

Im times, or until the
lcondition is satisfied.

EPUNCH [tok1 [...tokn]]

[o e A e e i s e M e e e G S e S e e G . S SR G S e G SR G S G G S e SR AND SR M AW SER S S S G —— m—— — ——— — — — — —— — —

{Punches the specified tokens
|to your virtual card punch.

Figure 9. Summary of EXEC Control Statements (Part 2 of 3)

110 IBM VM/370 CMS User's Guide

Control Statement | Function

1 {Reads lines from the terminal
&EREAD | jor from the console stack.

1 |ARGS assigns the tokens read
| {to the variables &1, 62 ...

| |VARS assigns the tokens read
4 |to the specified variable

|symbols.

RS [&varl (...6var17]]

|Transfers control forward or
|backward a specified number
|of lines.

|

|Displays blank lines at the
|terminal.

|

|

§SKIP

-
[
[P

ESPACE

o——
|l &3
e —

|Stacks a line in the terminal
{input stack.
|

|
|
r a |Displays timing information
ETIME (ON | |following the execution of
|

r

|tok1 [... tokn]
| HT

|RT

L

E3TACK E

1EQ
IF0

——

E
L

———
-

[S

|QFE ICMS commands.
|RESET| {
ITYPE | |
[8 4 |
ETYPE [tok1 [...tokn]] ’ |Displays a line at the

{terminal.

Figure 9. Summary of EXEC Control Statements (Part 3 of 3)

Section 6. Introduction to the EXEC Processor 111

completion of each CMS command.

¥

| Variable | Usage | Set By
i |

| &n | Arguments passed to an EXEC are assigned to | User
| | the variables &1 through &30. |

l | l

| &% | Test whether all (6*) or any (&%) of the | EXEC
| &% | arguments passed to EXEC have a particular |

(. | value.]

| | !

{ &DISKx | Indicates whether the disk access at mode 'x' { TUser
| | dis a CMS 0S, or DOS disk, or not accessed {

i | (cMs, os, DOS, or NB).]

| | |

| EDISK* | Contains the mode letter of the first read/write| User
| | disk in the CMS search order, or NONE if no |

] | read/write disk is accessed. {

{ | : |

| &§DISK? | Contains the mode letter of the read/write disk | User
{ | with the most available space or NONE, if no {

{ | read/vwrite disk is accessed. |

{ | !

| &DOS | Indicates whether or not the CMS/DOS environment{ User
| | is active (ON or OFF). 1

{ | l

| &EXEC | Contains the filename of the EXEC file currentlyi{ EXEC
{ | being executed. |

| | |

| &GLOBAL | Has a value ranging from 1 to 19, to indicate | EXEC
I | the recursion (nesting) level of the EXEC that |

| | is currently executing. |

| | |

| 8GLOBALn | The variables &GLOBAL1 through &GLOBALY9 can | User
| | contain integral numeric values, and can be |

| | passed among different recursion levels. If]

t | not explicitly set, the variable will have a !

| | value of 1. |

| | |

| &INDEX | Contains the number of arguments passed to | EXEC
l | the EXEC on the command line or the number of |

| | arguments entered as a result of an &ARGS or |

| | &READ ARGS control statement. l

| | ; |

| ELINENUM | Contains the current line number in the EXEC. | EXEC
| l |

| SREADFLAG | Indicates whether (STACK) or not (CONSOLE) | EXEC
| | there are lines stacked in the terminal input |

| | buffer (comsole stack). I

| i l

| SRETCODE | Contains the return code from the most recently | CHMS
| | executed CMS command. {

| | |

| 8TYPEFLAG | Indicates whether (RT) or not (HT) output is { EXEC
| | being displayed at the console. |

| | |

| &0 | Contains the name of the EXEC file. | User
i

|Eey:

|User: Variables are assigned values by EXEC but you may modify thenm.
IEXEC: You may not modify these variables.

|CMS: You may assign a value to this variable but it is reset at the
|

L

it mom e v A T m— R SR Tvmm SR G . MWD et G MEm MM S LN SR WS M A e v MMM ANl M — AEEL S e — - —— S —— v o s Om e M G . S G — —mt i i d— — o o w— o]

Figure 10. EXEC Special Variables

112 1IBM VM/370 CMS Usert's Guide

Section 7. Using Real Printers, Punches,
Readers, and Tapes

CMS Unit Record Device Support

CMS supports one virtual card reader at address 00C, one virtual card
punch at address 00D, and one virtual printer at address 00E. V®hen you
invoke a CMS command or execute a program that uses one of these unit
record devices, the device must be attached at the virtual address
indicated.

USING THE CP SPOOLING SYSTEM

Any output that you direct to your virtual card printer or punch, or any
output you receive through your card reader, is controlled by the
spooling facilities of the control program (CP). Each output unit is
known to CP as a spool file, and is gqueued for processing with the spool
files of other users on the VM/370 system. Ultimately, a spooled
printer file or a spooled punch file may be released to a real printer
or card punch for printing or punching.

The final disposition of a unit record spool file depends on the
spooling characteristics of your virtual unit record devices, which you
can alter with the CP command SPOOL. To find out the current
characteristics of your unit record devices you can issue the command:

Cp query ur

You might see, as a response toc this, the display:

RDR 00C CL A NOCONT NOHOLD EOF READY

PUN 00D CL A NOCONT NOHOLD COPY 01 REATY
00D FOR CMSGDE DIST 13SCRIPT

PRT OOE CL A CONT HOLD COPY 01 REALY

O0OE FOR CMSGDE DIST 13SCRIPT

Some of these characteristics, and the ways you can modify them, are
discussed below. When you use the SPOOL command to control a virtual
unit record device, you do not change the status of spool files that
already exist, but rather set the characteristics for subsequent output.
For information on modifying existing spool files, see "Altering Spool
Files," below.

CLASS (CL): Spool files, in the CP spool file queue, are grouped
according to class, and all files of a particular class may be processed
together, or directed to the same real output device. The default
values for your virtual machine are set in your V¥M/370 directory entry,
and are protably the standard classes for your installation.

You may need, however, to change the class of a device if you want a
particular type of output, or some special handling for a spool file.
For example, if you are printing an output file that requires special
forms, and your installation expects that output to be spooled class ¥,
issue the command:

cp spool printer class y

Section 7. Using Real Printers, Punches, Readers, and Tapes 113

All subsequent printed output directed to ycur printer at virtual
address O00E (all CMS output) is processed as class Y.

HOLD: If you place a HOLD on your printer or punch, any files that you
print or punch are not released .to the control program's spooling queue
until you specifically alter the hold status. By placing your output
spool files in a hold status, you can select which files you print or
punch, and you can purge duplicate or unwanted files. To place printer
and punch output files in a hold status issue the commands:

cp spool printer hold
cp spool punch hold

Note: When you issue a SPOOL command for a unit record device, you can
refer to it by its virtual address, as well as by its generic device
type (for example, CP SPOOL E HOLD). .

When you have placed a hold status on printer or punch files and you
produce an output file for one of these devices, CP sends you a message
to remind you that you have placed the file in a hold:

PRT .FILE xxxx FOR 'userid COPY xx HOLD
If, however, you havg issued the command:
cp set msg off
then you do not receive the message.

When you place a reader file in a hold status, then the file remains
in the card reader until you remove the hold status and read it, or you
purge it.

COPY: If you want multiple copies of a spool file, you should use the
COPY operand of the SPOOL command: /

cp spool printer copy 10

If you enter this command, then all subsequent printer files that you
produce are each printed 10 times, until you change the COPY attribute
of your printer. ‘

FOR: You can spool printed or punched output ‘under another userid's nanme
by using the FOR operand of the SPOOL command. For example, if you
enter:

cp spool printer for charlie

Then, all subsequent printer files that you produce have, on the output
separator page, the userid CHARLIE and the distribution code for that
‘user. The spool file is then under the contrcl of that user, and you
cannot alter it further. :

CONT, NOCONT: You can print or punch many spool files, but have thenm
print or punch as one continuous spool file if you use the CONT operand
on the SPOOL command. For example, if you issue the following sequence
of commands: .

cp spool punch cont to brown
punch asm1 assemble

punch asm2 assemble

punch asm3 assemble

cp spool punch nocont

cp close punch

114 1IBM VM/370 CMS User's Guide

Al

Then, the three files ASM1 ASSEMBLE, ASM2 ASSEMELE, and ASM3 ASSEMBLE,
are punched to user BROWN as a single spool file. When user BROWN reads
this file onto a disk, however, CMS creates separate disk files.

TO: When you spool your printer or punch to another userid, all output
from that device is transferred to the virtual card reader of the userid
you specify. When you are punching a CMS disk file, as in the example
above, you should use the TO operand of the SPOOL command to specify the
destination of the punch file.

You can also use this operand to place output in your own virtual
card reader by using the * operand:

cp spool printer to *

After you enter this command, subsequent printed output is placed in
your virtual card reader. You might use this technique as an alternative
way of preventing a printer file from printing, or, if you choose to
read the file onto disk from your reader, of creating a disk file from
printer output.

Similarly, if you are creating punched output in a program and you
want to examine the output during testing, you could enter:

cp spool punch to *

so that you do not punch any real cards or transfer a virtual punch file
to another user.

ALTERING SPOOL FILES

After you have requested that VM/370 print or punch a file, or after you
have received a file in your virtual card reader and before the file is
actually printed, punched, or read, you can alter some of its
characteristics, change its destination, or delete it altogether.

Every spool file in the YM/370 system has a unique four-digit number
from 0 to 9900 assigned to it, called a spoolid. You can use the spoolid
of a file to identify it when you want to do scmething to it. You can
also change a group of files, by specifying that all files of a
particular class be altered in some way, oOr you can manipulate all of
your spool files for a certain device at the same time.

The CP commands that allow you to manipulate spool files are CHANGE,
ORDER, PURGE, and TRANSFER. 1In addition, you can use the CP QUERY
command to list the status and characteristics of spool files associated
with your userid.

When you use any of these commands to reference spool files of a
particular device, you have the choice of referring to the files by
class or by spoolid. You can also specify ALL. For example, 1if you
enter the command:

cp query printer all
you might see the display:
ORIGINID FILE CLASS RECDS CPY HOLD DATE TIME NAME TYPE DIST

SCARLET 0211 D PRT 000140 01 USER 07/09 10:25:23 TARA FILE BINO15
SCARLET 0245 A PRT 000026 01 NONE 07,09 10:25:41 CMSLIB MACLTB BINRO15

Section 7. Using Real Printers, Punches, Readers, and Tapes 115

Until any of these files are processed, or in the case of files in the
hold status, until they are released, you can change the spool file name
and spool file type (this information appears on the first page or first
card of output), the distribution code, the number of copies, the class,
or the hold status, using the CP CHANGE command. For example: '

cp change printer all nohold
changes all printer files that are in a hold status to a nohold status.
The CP CHANGE command can also change the spooling class, distribution
code, and so on.

If you decide that you do not want to print a particular printer
file, you can delete it with the CP PURGE command:

cp purge printer 7615
After you have punched a file to some other user, you cannot change
its characteristics or delete it wunless you restore it to your own
virtual reader. You can do this with the TRANSFER command:

cp transfer all from usera

This command returns to your virtual card reader all punch files that
you spooled to USERA's virtual card reader.

You can determine, for your reader or printer files, in what order
they should be read or printed. If you issue the command:

cp order printer 8195 6547

Then, the file with spoolid of 8195 is printed before the file with a
spoolid of 6547. ,

The CP spooling system is very flexible, and can be a useful tool, if
you understand and use it properly. The VM/370 CP Command Reference for
General Users contains complete format and operand descriptions for the
CP commands you can use to modify spool files.

USING YOUR CARD PUNCH AND CARD READER IN CMS

The CMS READCARD command reads cards from your virtual card reader at
address 00C. Cards can be placed in the reader in one of two ways:

o By reading real punched cards into the system card reader. A CP ID
card tells the CP spooling system which virtual card reader 1is to
receive the card images.

e By transferring a file from another virtual machine. Cards are
transferred as a result of a virtual punch or printer being spooled
with the TO operand, or as a result of the TRANSFER command. Virtual
card images are created with the CMS PUNCE command, or from user
programs or EXEC procedures. '

Using Real Cards

If you have a deck of punched cards that you want read into your virtual
machine card reader, you should punch, preceding the deck, a CP ID carad:

ID HAPPY

116 IBM VM/370 CMS User's Guide

Y

If you plan to use the READCARD command to read this file onto a CMS
disk, you can also punch a READ control card that specifies the filename
and filetype you want to have assigned to the file:

:READ PROG6 ASSEMBLE

Then, to read this file onto your CMS A-disk, you can enter the command:
readdard *

If a file named PROG6 ASSEMBLE already exists, it is rerlaced.

If you do not punch a READ control card, you can specify a filename
and filetype on the READCARD command:

readcard prog6é assemble

If this spool file contained a READ control card, the card is not read,
but remains in the file; if you edit the file, you can use the DELETE
subcommand to delete it.

If a file does not have a READ control card, and if you do not
specify a filename and filetype when you read the file, CMS names the
file READCARD CMSUTA1.

If you are reading many files into the real system card reader, and
you want to read them in as separate spool files (or you want to spool
them to different userids), you must separate the cards and read the
decks onto disk individually. The CP system, after reading an ID card,
continues reading until it reaches a physical end of file.

When you use the CMS PUNCH command to punch a spool file, a READ control
card is punched to precede the deck, so that it can be read with the
READCARD command. If you do not wish +to punch a READ control card (also
referred to as a header card), you can use the NOHEADER option on the
PUNCH command:

punch prog8 assemble * (noheader

You should use the NOHEADER option whenever you punch a file that is not
going to be read by the READCARD command.

The PUNCH command can only punch records of up to 80 characters in
length. If you need to punch or to transfer to another user a file that
has records greater than 80 characters in length, you can use the DISK
DUMP command:

disk dump prog9 data

If your virtual card punch has been spooled to another user, that user
can read this file using the DISK LOAD command:

disk load
Unlike the READCARD command, DISK LOAD does not allow you ¢to specify a
file identification for a file you are reading; the filename and
filetype are always the same as those specified by the DISK DUMP command
that created the spool file.

A card file created by the DISK DUMP command can only be read onto
disk by the DISK LOAD command.

Section 7. Using Real Printers, Punches, Readers, and Tapes 117

Using the MOVEFILE Command

You can use the MOVEFILE command, in conjunction with the FILEDEF
command, to place a file in your virtual card reader, or to copy a file
from your card reader to another device. For example:

cp spool punch to *
filedef punch punch
filedef input disk coffee exec afl
movefile input punch

the file COFFEE EXEC A1 is punched to your virtual card punch (in
card-image format) and spooled to your own virtual reader.

Creating Files Using Your Reader and Punch

Apart from the procedures shown above, that transfer whole files with
one or two commands, there are other methods you can use to create files
using your virtual card punch. From a program or an EXEC file, you can
punch one line at a time to your virtual punch. Then use the CLOSE
command to close the spool file:

cp close punch

Depending on how the punch was spooled (the TO setting), the virtual
punch file is either punched or transferred to a virtual card reader.

PUNCHING CARDS USING I/O MACROS: If you write an 0S, DOS, or CMS program
that produces punched card output, you should make an appropriate file
definition. If you are an OS user, you should use the FILEDEF command
to define the punch as an output data device; if you are a DOS user, you
must use the ASSGN command. If you .are using the CMS PUNCHC macro, the
punch is assigned for you. The spooling characteristics of your virtual
punch control the destination of the punched outrut.

PUNCHING CARDS FROM AN EXEC: The EXEC facilities provide two control
statements for punching cards: &PUNCH, which punches a single 1line to
the virtual card punch, and &BEGPUNCH, which precedes a number of lines
to be punched. You can also, in an EXEC, use the commands PUNCH and

DISK DUMP to punch CMsS files.

‘Handling Tape Files in CMS

There are a variety of tape functions that you can perform in CMS, and a
number of commands that you can use to control tape operations or to
read or write tape files. One of the advantages of placing files on
tapes is portability: it is a convenient methcd of transferring data
from one real computing system to another. In CMS, you can use tapes
created under other operating systems. There are also two CMS commands,
TAPE and DDR, that create tape files in formats unique to CMS, that you
can use to back up minidisks or to archive or transfer CMS files.

Under VM/370, virtual addresses 181 through 184 are usually reserved
for tape devices. In most cases, you can refer to these tapes in CMS by
using the symbolic names TAP1 through TAP4. In any event, before you
can use a tape, you must have it mounted and attached to your virtual

118 1IBM VM/370 CMS User's Guide

P=auN

machine by the system operator. When the tape is attached, you receive
a message. For example, if the operator attaches a tape to your virtual
machine at virtual address 181, you receive the message:

TAPE 181 ATTACHED

The various types of tape files, and the commands and programs you
can use to read or write them are:

TAPE Command: The CMS TAPE command creates tape files from CMS disk
files. They are in a special format, and should only be read by the CMS
TAPE LOAD command. For examples of TAPE command operands and options,
see "Using the CMS TAPE Command."™

TAPPDS Command: The TAPPDS command creates CMS disk files from 0S or DOS

sequential tape files, or from OS partitioned data sets.

TAPEMAC Command: The TAPEMAC command creates CMS MACLIB files from 0S
macro libraries +that were unloaded onto tape with the TIEHMOVE utility
progranm.

MOVEFILE Command: The MOVEFILE command can copy a sequential tape file
onto disk or a disk file onto tape. Or, it can move files from your
card reader to tape or from tape to your card punch.

User Programs: You can write programs that read or write sequential tape
files using 0S, DOS, or CMS macros.

Access Method Services: Tapes created by the EXPORT function of access
method services can be read only using the access method services IMPORT
function. Both the IMPORT and EXPORT functions can be accomplished in
CMS using the AMSERV command. The access method services REPRO function
can also be used to copy sequential tape files.

DDR Program: The DDR program, invoked with the CMS command DDR, dumps
the contents of a virtual disk onto tape, and should be used to restore
such files to disk.

USING THE CMS TAPE COMMAND

The CMS TAPE command provides a variety of tape handling functions. It
allows you to selectively dump or load CMS files to and from tapes, as
well as to position, rewind, and scan the contents of tapes. You can
use the TAPE command to save the contents of CMS disk files, or to
.transfer them from one VM/370 system to another. The following example
shows how to create a CMS tape with +three tape files omn it, each
containing one or more CMS files, and then shows how you, or another
user, might use the tape at a later time.

The example is in the form of a terminal session and shows, in the
"Terminal Display" column, the commands and responses you might see.
System messages and responses are in uppercase, and user-entered
comnands are in 1lowercase. The "Comments"™ column provides explanations
of the commands and responses.

Section 7. Using Real Printers, Punches, Readers, and Tapes 119

Terminal Display
TAPE 181 ATTACHED

listfile * assemble a (exec
R;

cms tape dump

TAPE DUMP PROG1 ASSEMBLE A1
DUMPING.ceew

PROG1 ASSEMBLE A1

TAPE DUMP PROG2 ASSEMBLE A1
DUMPING.cc.«

PROG2 ASSEMBLE A1

TAPE DUMP PROG3 ASSEMBLE A1

TAPE DUMP PROG9 ASSEMBLE A1
DUMPING.....

PROGY ASSEMBLE A1

R;

tape wtm

R;

tape dump mylib maclib a
DUMPING.cc.-

MYLIB MACLIB Al

R;

tape dump cmslib maclib *
DUMPING.eea-

CMSLIB MACLIB s2

R;

tape wtnm

R;

tape dump mylib txtlib a
DUMPING....®

MYLIB TXTLIB A1l

R;

tape vtm 2

R)

tape rew

R;

tape scan (eof 4
SCANNING....

PROG1 ASSEMBLE A1
PROG2 ASSEMBLE A1
PROG3 ASSEMBLE A1
PROGY ASSEMBLE A1
PROGS ASSEMBLE A1
PROG6 ASSEMBLE A1

PROG?7 ASSEMBLE A1

PROGS ASSEMBLE A1

PROGY ASSEMBLE A1
END-OF-FILE OR END-OF-TAPE
MYLIB MACLIB A1
CMSLIB MACLIB s2
END-OF-FILE OR END-OF-TAPE
MYLIB TXTLIB A1
END-OF-FILE OR END-OF-TAPE
END-OF-FILE OR END-OF-TAPE
R;

#cp det 181

TAPE 181 DETACHED

120 1IBM VM/370 CMS User's Guide

Comments . '

Message indicates that the tape is
attached. -

Prepare to dump all ASSEMBLE files
by using the LISTFILE command EXEC
option; then execute the CMS EXEC
using TAPE and DUMP as arguments.

The TAPE command responds to each
TAPE DUMP by printing the file
identification of the file being
dumped. ’

The last file, PROGY ASSEMBLE, is
dumped. ' ‘

The TAPE command writes a tape mark
to indicate an end of file.

Two macro libraries are dumped,
by specifying the file identifiers.

Another tape mark is written.

A TEXT library is dumped.

Two tape marks are written to
indicate the end of the tape.
The tape is rewound.

The tape is scanned to verify
that all of the files are omn it.

Tape mark indication.

Two tape marks indicate the end
of the tape.

The CP DETACH command rewinds
and detaches the tape.

==

& A

March 30,
Terminal Display
kKA K&K
*
* The tape created above is going
*
Aok ok Kk

TAPE 181 ATTACHED

tape load progi4 assemble
LOADING..a.®

PROGY ASSEMBLE A1

R;

tape scan

SCANNING....

PROGS ASSEMBLE A1

PROG6 ASSEMBLE A1

PROG?7 ASSEMBLE A1

PROGS8 ASSEMBLE A1
END-OF-FILE OR END-OF-TAPE
R;

tape scan

SCANNING....

MYLIB MACLIB Al
CMSLIB MACLIB s2
END-OF-FILE OR END-OF-TAPE
R3

tape bsf 2

R;

tape fsf

R3

tape load (eof 2
LOADING.....

MYLIB MACLIB A1
CMSLIB MACLIB A2
END-OF-FILE OR END-OF-TAPE
MYLIB TXTLIB a1l
END-OF-FILE OR END-OF-TAPE
R;

#cp detach 181
TAPE 181 DETACHED

Tape Labels in CMS

Support in the CMS component
includes the following features:

Checks IBM standard labels on

Writes IBM standard labels on
Allows you
DOS and OS

Allows you to specify exits
labels during execution of CM
operation commands

of VM/370 to process

1979

to be read.

Message indicating the tape is
attached.

One file is to be read onto disk.

The TAPE command displays the
name of the file loaded. Any
existing file with the same
filename and filetype is erased

The remainder of the first tape
file is scanned.

Indication of end of first tape f

The second tape file is scanned.

The tape is backed up and
postioned in front of the
last tape file.

The tape is forward spaced past
the tape mark.

The next two tape files are
going to be read.

The tape is detached.

labelled

input

output

for processing tapes

S macro simulations and some CMS

Section 7. Using Real Printers, Punches, Readers, and Tapes

ile.

tapes

to specify routines to process standard user labels during
macro simulation under CHMS

with nonstandard

tare

121

March 30, 1979

CMS processes all tape labels; CP does not process tape labels.

CMS tape label processing does not include:

e Label processing for tapes that are read backwards
e Processing of multivolume files on tapes

e Support for ANSI tapes or ASCII labels

e Label processing for any functions of the CMS TAPE command except the
two functions DVOL1 and WVOL1 that’ process VOL1 labels

USER RESPONSIBILITIES

You must initiate all your own tape label processing. To specify that
you have a labelled tape, use the FILEDEF command for an OS simulaticn
program, or use a DOS DTFMT macro for a CMS/DOS program. You can also
use the TAPESL macro to process standard HDR1 and EOF1 labels and the
CMS TAPE cogmmand to write and display standard VOL1 labels. You can
provide IBM/standard label description details with the LABELDEF command
for all ty%es of label processing. After label processing has been
requested,/it occurs automatically and there is no interaction between
you and CMS unless an error occurs._ See the "Error Processing" secticn
later in this publication for a discussion of error processing.

LABEL/PROCESSING IN OS SIMULATIOXN

If you are running an OS simulation program and using OPEN and CLOSE
macros, you specify the type of label processing you want in a FILEDEF
command for a given file. Detailed information about the FILEDEF
command is found in the ¥M/370 CMS Command and Macro Reference. You amay
specify that you want standard label processing (with SL) or nonstandard
label processing (with NSL). Iif you choose nponstandard label
processing, you must already have written a routine to process
nonstandard labels. The name of this routine must be specified by the
filename in the NSL parameter on FILEDEF. An example of nonstandard
label processing is given in the section "NSL Processing". To be sure
that the tape you are using contains no IBM labels, you may specify no
label processing (NL) in the FILEDEF command. When NL is specified, CHMS
does not open files on a tape containing a VOL1 1label as its first
record. You also can specify bypass tape label processing (BLP) on a
FILEDEF command. BLP tells CMS to bypass tape label processing for a
file, and instead, to position the tape at a particular file before
processing the data records in the file. If you specify LABOFF for a
FILEDEF tape file, label processing is turned off and there is no tape
positioning or label checking. '

LABOFF is the default, so you do not receive any processing or tage
positioning for a tape file unless you specifically request it. If you
specify BLP, NL, SL, or SUL processing but omit a positional parameter,
the position defaults to 1 and the tape is positioned at the first file.
Examples of NL, BLP, and LABOFF processing are given in the sections "No
Label (NL) Processing", "Bypass Label (BLP) Processing®, and "Label Off
(LABOFF) Processing".

122 1IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

For IBM standard labels, you specify, SL or SUL, and optional positional
and VOLID parameters. On a FILEDEF command, SUL means standard user
labels. Everything you do for SL files, you must also do for SUL files.
The positional parameter for standard label files works the same way it
doces in 0S/VS. If you specify:

filedef filex tap1 sl 2

the tape 1is spaced to what is physically the fourth file on the tape
before processing begins. The reason for this spacing is that a
standard labelled tape has one header file, one data file, and one
trailer file for each data file. If you 1leave off the positional
pParameter:

filedef filey tap3 sul
you get the first file on the tape.

The optional VOLID parameter on the FILEDEF command allows you to
specify the volume serial number in the VOL1 label of a tape in case ycu
want only the VOL1 label checked on the tape. If you want to specify
other fields in IBM standard labels, you must also provide a LABELDEF
statement for the tape file. The LABELDEF statement allows you to
assign values to all fields in a standard HLR1 or EOF1 latel. A
conplete description of how the LABELDEF command works may be found in
the "LABELDEF Command"™ section later in this publication.

The following command defines filez as a standard labelled tape file
on a tape with a VOL1 label and a volume serial number of DEPT78:

filedef filez tapl1 sl volid dept78

If you alsc wish to specify a data set identifier for filez, you nust
furnish a LABELDEF command for filez as well as the FILEDEF conmnmand.
Data set name may not be specified on the FILEDEF command. The LABELDEF
statement belcw assigns a data set name of payroll to filez.

labeldef filez £id payroll

You can also specify file sequence number, volume sequence number,
expiration date and other fields on a LABELDEF command. However, if ycu
are using OS simulation macros (OPEN, CLOSE, READ, WRITE, GET, POT,
etc.) to process your tape file, the only LABELLEF parameter that has
meaning for input files is fid (data set identifier). This is the only
field that is checked on input by O0S simulation. The other LABELDEF
fields are used to specify values to be written in output labels. They
are alsoc used by other types of tape label processing (CMS/DOS and CMS)
to check input labels. If no LABELDEF command has been supplied fer
output files, default values are used to write out labels (see the
section on the LABELDEF command for the default values).

After you have set up your descriptive information for a standard
labelled tape file in FILEDEF and LABELDEF statements, you run a regular
0S simulation program under CMS. During program execution, HDR1 and
HDR2 labels are written or checked at OPEN time. EOF1 and EOF2 lakels
are written or checked at CLOSE time. To have EOF labels processed, you
must issue a CLOSE macro. The VOL1 1label on a tape is checked whenever
a file on that tape is opened if the user has specified a VOLID
parameter on his FILEDEF statement or LABELDEF statement for the file.
If the volid is specified on both LABELDEF and FILEDEF, the more recent
specification is used. If no volid is specified, it is not checked.
After checking the volid, the tape is positioned and the HDR 1label is

Section 7. Using Real Printers, Punches, Readers, and Tapes 122.1

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SLC23-9024-1 for 5748-XX8

processed. For processing multifile volumes, you may wish to wuse the
LEAVE option on the FILEDEF command. This option prevents a tape from
being rewound and positioned before each tape file is processed. The
LEAVE option does not exist on an 0S DD statement.

For input files, HDR2 and EOF2 labels are skipped. There is no merge
of information from a HDR2 label with information in the DCB as there is
under an 0S/VS operating system. Output HDR2/EOF2 records are written
from information in the DCB and the CMSCB (FCBSECT). Note that the tarfe
density and TRTCH fields in HDR2/EQOF2 records are taken from what the
user specifies in his FILEDEF command for the tape file. They may not
correspond to the actual density and TRTCH fields used to write the
tape. : .

To process standard user labels in 0S simulation, you must do the
following: '

1. Specify the file as SUL in a FILEDEF command.

2. Provide a routine to process the user standard labels in your
progranm.

3. Put the address of the user label routine in the DCB EXIT list of
the DCB for the file. See the. IBM publication 0S/VS1 Data
Management Services Guide or 0S/VS2 MVS Data Management Services
Guide, for instructions on how to establish a DCB EXIT 1list, and
the exact linkage for communication between user label routines and
the operating system. This exact linkage should ke used under CMS
with the following exceptions:

a. There is no support for code x'06' EOV EXIT routine.

b. For input labels, return codes 8 and 12 from the user routine
are not supported. If an input return code is not 0, it is
treated as if it were 4.

4. Note that your standard user label routines do not perform any
input/output. They set up an output label for writing, but the CHMS
tape label processing routines actually write out the label. For
input, the CMS label processing routines read in your user standard
label but then give control to your routine to check the label.

You should specify NL in the FILEDEF command when you expect a tape does
not contain any 1IBM standard tape labels. CMS reads your tape at the
time a file is opened and does not open the file if the tape contains a
VOL1 label as its first record. If the tape does not contain a VOL1
label, a file is opened and the tape is positioned by using the position
parameter (n). For example, if you specify:

filedef fileq tap? nt 2

fileq is not copened if the tape on tap1 (181) has a VOL1 label. If the
tape does not have a VOL1 1label, fileq is opened and the tape is
positioned at the second file. If you do not specify a positicn
parameter, the tape is positioned at the first file, (that is, the load
point).

122.2 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SLC23-9024-1 for 5748-XX8

Bypass Label (BLP) Processing

You should specify BLP in the FILEDEF command to bypass tape label
processing. CMS does not check your tape for an IBM standard tape
label. It uses the position parameter you specified to position the
tape during open processing. If you do not specify a position
parameter, the default is 1. For example: '

filedef fileabc tapel blp 4

positions the tape at the fourth file when it opens fileabc. Because
CMS does not know whether files on the tape are 1label files or data
files, the tape is positioned at what is physically the fourth file,
regardless of file content. Any label files on the tape are included in
counting files.

Label 0ff (LABOFF) Processing

You should specify LABOFF in the PFILEDEF command if you want no
positioning or 1label processing to occur during open processing. The
Position parameter is not valid for LABOFF. 1If you specify LABOFF, and
your tape is positioned at record.6 in the third file before you issue
an OPEN macro, the tape is positioned at exactly the same record after
open processing (record 6 in the third file). The following FILEDEF
command does not move tape2 (182) before processing the data in fileb:

filedef fileb tap2 laboff

Nonstandard Label (NSL) Processing

In order to process nonstandard labels, you must write your own routine
to read, write, and check the labels. If you have such a routine as a
CMS TEXT or MODULE file, you put the filename of the routine after the
NSL keyword parameter in the FILEDEF command for the file. The filenanme
must be the name of the first CSECT in the program. It is to this point
that control is transferred when the NSL routine gets control. If you
do not have a TEXT or MODULE file with the NSL filename you specify, you
get an error message. The OPEN and CLOSE routines will load your module
if it is not already in storage and will pass control to it at the time
they are opening or closing the file. Your routines will then be
responsible for processing the tape labels. Nonstandard label routines
must do the actual reading and writing of tape 1labels '"as well as
checking and setting up the 1label. This is one of several ways
nonstandard 1label processing is different from standard user 1label
processing. Because the CMS label processing routines do not know the
size or format of your nonstandard labels, they cannot read or write the
labels.

If you use a MODULE file for an NSL routine, it is important that you
create the MODULE file so that it starts at an address that will not
allow it to overlay the program or command you are executing at the time
the NSL routine is invoked. The reason for this restriction is that the
NSL routine is dynamically loaded while your program is executing. ' For
the TAPEMAC and TAPPDS commands, starting the NSL routine at an address
atove X'21000' prevents such an overlay. If the NSL routine is invoked
from your own program which is running in the user area, you pmust
determine how big your program is and where the NSL MODULE file should
be located to prevent overlay. Note that you do not have to specify a

Section 7. Using Real Printers, Punches, Readers, and Tapes 122.3

Pg.- of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

starting address for ©NSL routines that are TEXT files. The CMS loader
loads such files for you at an address that does not cause an overlay.

Although any user may write his own NSL routine, it is expected that
a system programmer will usually write such routines and then other
programmers in the installation will use them. Before writing an NSL
routine, read the Introduction +to CMS, Interrupt Handling, and CNS
Functional 1Information sections in- Part 3 of the VM/370 Systenm
Programmers Guide. 1In order to ensure proper communication with the CMS
system routines, you must use the linkage described below when you write
nonstandard label routines.

When an NSL tape label processing routine gets control, register 1
points to a 16-byte parameter list with the following format:

L 1
byte O | Type | Caller | Tape Mode— | Reserved |
| call | id | Set Byte | i
| l
byte 4 | TAPID |
| { — ID parameter
byte 8 |} FCBSECT address } | for
. |] | TAPEMAC and
byte 12 | DCB address | | TAPPDS
L j -4

The Type call field is a code +telling the type of 1label processing
being done:

x*00°" is OPEN input

x'04" is OPEN output

x'08¢* is CLOSE input

x'0C? is CLOSE output

x*10°" is End of Tape output

The Caller id is a one-byte code which is one of the following:

x'80°" Call by 0S simulation
x'20°" Call by CMS TAPEMAC or TAPPDS commands

Tape modeset byte 1is wused to communicate with the CHMS tape I/0
routines. It is a one byte hexadecimal code that depends on the type of
tape (7 or 9 track), tape density, etc. For further information on the
Mode Set, see the TAPE command description in the ¥M/370 CHS Command
and Macro Reference. (You probably will pass this byte to the CHMS tape
controlling module to read and write your tape labels and will never
need to know what its ccdes mean.)

FCBSECT address. is the address of the CMSCB (FCBSECT) for the tape
file you are. processing.

DCB address 1is the address of the DCB for the tape file you are
processing. :

Note that for the TAPEMAC and TAPPDS commands, the same interface is
used, except that instead of the FCBSECT and LCB address fields, the
eight character identifier specified in the ID=identifier field in the
command is, passed. This identifier enables you to 1identify which file
you are prccessing since the TAPEMAC and TAPPLS commands do not work
with CMSCBs or DCBs. .

122.4 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

Control is passed to your NSL routine by a BALR 14,15 instruction so
register 15 contains the address of your routine vwhen you receive
control. Register 14 contains the address you should return to vwhen you
are finished processing the nonstandard labels. You can return with a
BR 14 instruction. When you receive control, register 13 points to a
save area in which to store the callers register. The save area linkage
is standard 0S/VS linkage. You receive control with a PSW key of X'E'
which allows you to modify only user storage. When you are finished
processing, place a code in register 15 to the CMS 1label processing
routine that called your routine. Place the value 0 (zero) in register
15 if there have been no errors and you want processing to continue
normally and the data set to be opened. If you return a nonzero value
in register 15, a message is issued to your terminal and the data set is
not opened.

If you write the following FILEDEF statement:
filedef tapfl tap1 nsl readlab

and have a program called READLAB as a MODULE or TEXT file, your progranm
will receive <control when the data set called tapf1 is opened. When
your program gets control, register 1 contains the address of the
parameter list described above. Using the data in this parameter list,
you are able to read or write your own tape header labels. ¥hen the
same data set is closed, your program againm receives control and you can
read or write your own trailer labels. Your program can test whether it
is getting control for OPEN or CLOSE by examining the type call byte in
the parameter list passed to you. If the type call byte is x'10', your
NSL routine is Y}eing invoked while you are writing an output data set
and you have reached the reflective mark that indicates end of tape.
You may wish to do special processing in this case. See the "End of
Tape" and "End of Volume" section in this publication for further
informaticn on end of tape processing.

Differences Between Tape Label Processing Under 0S/VS and OS Simulaticn
ip CHS

There are a few minor differences in the way CMS OS simulation processes
tapes and the way 0S/VS processes them. These differences are listed
below.

e If you are using 0S/VS and you do not specify any label parameter on
your JCL statement, the default is SL or standard 1labels. When you
use 0S simulation under CMS and do not specify any label information
on a FILEDEF statement, the default is LABOFF. LABOFF turns off
label processing and nothing is done to position the tape or process
labels. Thus, if you specify no 1label information on FILEDEF, the
system will process your tape files exactly the same way they are
processed on a CMS system that has no tape 1label processing
facilities.

e You must specify CLOSE to process all trailer 1labels. No automatic
CLOSE occurs at end of data or after reading a tape mark. There is
no EOV monitor to process labels before a data set is closed. 1If an
input tape 1is positioned at an EOF1 or EOV1 record when CLOSE is
issued, the label is processed. If a tape file is closed before all
data records are read, the trailer 1label is not processed. Output
tapes have EOF records written only at CLOSE time.

e There is no deferred label processing under O0S simulation in CHMS.

Section 7. Using Real Printers, Punches, Readers, and Tapes 122.5

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SL23-90Z4-1 for 5748-XX8

e When the user has not specified a block count routine in his DCB EXIT
list under 0S/VS, the program abends when a block count error occurs.
Under CMS, this condition produces a message that asks whether or nct
to abend the operation.

e Certain fields in HDR1 and EOF1 1labels default to values different
from those under 0S/VS. These values can always be spécified in a
LABELDEF command if the user does not like the default values. For
example, the default for data set name in an output label under 0S
simulation is DDNAME and not DSNAME. The default dJata set sequence
number is always one even when the data set is not the first data set
on the tape. The default volume sequence numker is always one. Read
the section on the LABELDEF command in this manual to learn what the
default values are under CMS. You can find what default values are
in 0S/V5 by reading the IBM publication 0S/VS Tape Labels. Note that
you can always get exactly what you want written on a tape label by
explicitly specifying the field on a LABELDEF command. For example,
you can specify DSNAME as FID on such a command and have it written
in the label instead of DDNAME.

e Default volids (when you do not specify a volid in a LABELDEF or
FILEDEF statement) in output HDR1 and EOF1 records under CMS will be
CMS001 and will not be the actual volume serial in the VOL1 record
already cn the tape. It is recommended that you always specify the
volid in FILEDEF or LABELDEF to be sure the information written is
correct.

e Expiration date specification is always done in absolute form rather
than by retention period. You must always use the form yyddd where
YY is the year (0-99) and ddd the day (0-366). CMS does not handle
expiration dates specified by retention periods.

e When CMS reads a HDR1 label and finds an unexpired file, it always
issues a message allowing you to enter 'IGNORE' or 'ERROR'. 'ERROR'
prevents opening the file but 'IGNORE' 1lets you ignore the error and
write over the unexpired file.

e The NSL routine 1linkage is quite diffferent under CMS than in 0S/VS.
(See the section "NSL Processing" f r details.)

e Volume serial number verification occurs every time a file on a tape
is opened under 0S simulation unless the FILELCEF LEAVE option is used
for multifile tapes.

e Existing VOL1 labels are not automatically rewritten for density
incompatibility in CNS as they are in 0S/VS.

e HDR2 records are skirpped for input under CMS for 0S simulation. They
are not checked and information in them is not merged with DCB
information. HDR2 records are written (with information obtained
from the DCB) on output. ‘

e Blank tapes used for output in CMS cause the tape to run off the reel
if you define the tape file as SL or NL. The tape label processing
routines try to read an existing VOL1 or HDR1 label Lkefore writing on
the tape. Therefore, you should always use the CMS TAPE command to
write at least one tape mark (for NL tapes) or a VOL1 label (for SL
or SUL tapes) before using the tape to write an output data set.

e If you specify a position parameter that is too big (that is, there

are not that many files on the tape), the tape will run off the reel
in CHMS.

122.6 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

e There are no user exits for user standard labels for EOV 1label
processing in CHMS.

e (CMS does not support user return codes of 8 and 12 for input standard
user labels. If the return code from a user routine is not zero
after input label processing, CMS treats it as if the return code was
4. (See the IBM publication 0S/VS1 Data Management Services Guide or
0S/VS2 MVS Data Management Services Guide for details).

e No count is kept of user standard labels read or bypassed in CMS. If
more than eight such labels exist, the fact is not detected.

e User label processing routines do not receive control under CMS when
an abend or a permanent I/0 error occurs.

e If a CMS output tape is not positioned at a HDR1 label or a tape mark
when label processing begins, error message U422 is issued. Under
0S/VS such conditions cause an abend.

e TCLOSE with the REREAD option causes a tape to be rewound under CMS
and then forward spaced one file if the tape has standard labels.
Under 0S/VS, the tape is backspaced four files and forward spaced one
file. REREAD for unlabelled tapes in CMS always causes a revwind.

For further information on 0S/VS tape 1label processing, refer to the
fcllowing IBM publications: 0S/V¥S1 Data Management Services Guide,
0S/¥52 MVS Data Management Services Guide,

For details on end-of-tape/end-of-volume processing under CHMS, see
the "End-of-Volume" and "End-of-Tape Processing™ section later in this
publication.

LABEL PROCESSING IN CMS/DOS

You specify the type of label processing you want in CMS/DOS on a DTFHMT
macro in exactly the same way you specify it when you want to run your
program under DOS/VSE. See the VYM/370 System Prograpmer's Guide for
details on CMS support for the DTFMT macro.

Labelled tapes are only supported if you use the DTFMT macro. There
is no support for labelled tapes in , CMS/DOS for any other type. If yocu
try to read labelled tapes with a DTFCP or DTFDI macro, input standard
IBM header labels are skipped, but no other input labels are processed.
Output tapes with standard labels have these labels overwritten with a
tape mark. All tape work files are treated as output unlabelled files
in CMS/DOS although they are defined by a DTFMT. Tapes used for such
files have a tape mark written as the first record when the file is
opened.

Unlabelled and Nonstandard Labelled Tapes

You define an wunlabelled tape with the DTFMT parameter FILABL=NO. The
tape file is processed as having no labels.

You define a nonstandard labelled tape with the DTFMT parameter
FILABL=NSTD. You also must provide a routine to process your
nonstandard labels in the LABADDR=parameter of the DTFHMT. Tafe
processing in CMS for these files is the same as it is under DOS/VSE.

Section 7. Using Real Printers, Punches, Readers, and Tapes 122.7

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

e —— ———

You define a standard label tape with the DTFMT parameter FILABL=STL.
You also must supply a LABELDEF command to specify label descripticn
information. This command replaces the DOS/VSE TLBL card and is
required for standard label processing under CMS/DOS. The LABELDEF
command is discussed in detail in the "LABELDEF Command" section later
in this publication.

In order to connect the LABELDEF command for a file with +the DTFMT
for the same file, you must use the same name to label your DTFMT as you
use for a filename in your LABELDEF command. If you code a DTFMT macro
in your progranm as:

MT1 DTFMT e« FILABL=STD
you must then supply the following type of LABELLEF command:

labeldef mt1 £fid yourfile fseq...

You can put any description parameters you want on your LABELDEF
comnmand but the filename for it must be nmt?1 if you coded MT1 as the
label on the DTFNMT.

After you have set up your DTFMT and LABELDEF, you execute your
CMS/DOS program. HDR1 labels are checked or written when an OPEN macro
is issued. EOF1 labels are checked or written when a CLOSE macro is
issued. A VOL1 label voclume serial number is checked only if the tape
is positioned at load point when the 1label processing tegins and if you
have specified a VOLID parameter on a LABELDEF statement for the file.
Note, if NOREWIND is not specified in the DTFMT macro for the file, the
tape is rewound so it is positioned at load point for label processing.

If you want to process user standard labels as well as standard
labels in CMS/DOS, you specify FILABL=STD and also supply a LABADLR
parameter in the DTFMT for the file. Control is then transferred to
your label processing routines after standard labels are processed. The
linkage to user standard label routines is exactly the same as in
DOS/VSE.

Differenceg Between Tape Label Processing Under DQOS/VSE and CMS/DOS

There are minor differences in the way tapes are processed by CMS/DOCS
and the way they are processed by DOS/VSE. These differences are:

e The tape error messages are CMS error messages and not DOS/VSE error
messages. In some cases DOS/VSE allows the system operator to reply
NEWTAP to an error message. The system then waits for the operator
to mount a new tape and continues processing with this new tape.
Such a reply is never possible under CMS/DOS. In CMS/DOS, you
usually can reply IGNORE to ignore a tape label error condition or
CANCEL to cancel a job. NEWTAP is never allowed. In a few cases,
CMS/DOS allows an IGNORE reply where DOS/VSE does not.

e You must specify CLOSE to process all trailer 1labels. No automatic
CLOSE occurs at end . of data or after reading a tape mark. If an
input tape is positioned at an EOF1 or EOV1 record whem CLOSE is
issued, the label is processed. If a tape file is closed before all
data records are read, the trailer 1label is not processed. Output

122.8 1IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

tapes have EOF records written only at CLOSE time. For nonstandard
labelled tapes, your own routines do not receive control on input
when a tape mark is read. You must issue a CLOSE macro in your
EQOFADDR routine in order to have the trailer labels processed.

Certain fields in HDR1 and EOF1 labels default to values different
from those in DOS/VSE. For example, the default volume serial number
written in a HDR1 label is CMS001 and not the actual volume serial
number (volid) in the VOL1 label already on the tape. The default
file sequence and volume sequence numbers are always one even when
the file 1is not the first file on the tape. You should read the
section on the LABELDEF command in this publication to learn what the
default values are in CMS/D0OS. You also can read the IBM publicaticn
DOS/VSE Tape Labels to find what the default values are for DOS/VSE.
If you do not like the default values, you can always specify the
exact values you want in label fields in a LARELDEF command.

Expiration date specification is always done in absoclute form rather
than by retention period. You must always use the form yyddd where
Yy is the year (0-99) and the ddd the day (0-366). CMS does not
handle expiration dates specified by retention periods.

VOL1 1labels written in the vwrong density are not rewritten
automatically by CMS/DOS as they are by DOS/VSE.

Blank tares should not be used for tape files specified as FILABL=STD
in CMS/DOS; they will run off the reel. Use the CMS TAPE command to
Wwrite a VOL1 label or a tape mark on a blank tape before using it fcr
a STD file.

Not all tape movement and 1label checking that occurs in DOS/VSE
occurs under CHS. For example, when opening an output file, a
DOS/VSE system expects the tape to be positioned at a HDR1 lalbel or a
tape mark., It then backspaces the tape to read the last EOF1 label
on the tape. If it does not find the label it expects, it issues an
error message. This check is not performed ky CMS/DOS. If the tape
is not prpositioned at a HDR1 label or a tape mark when output open
processing begins, error message 422 is issued.

After an EOV1 1label is written (see "End-of-Tape/End-of-Volume
Processing" later in this publication), the tape is always rewound
and unloaded under CMS/DOS. DOS/VSE lets a DTFMT parameter control
whether or not the tape is rewound.

User label processing routines 4o not receive control when an I/O
error occurs under CMS/DOS.

Control is not passed to user standard label routines in CMS/DOS when
EOT has been sensed on output and an EOV1 latel has been written by
the system routines.

Work tapes are not checked for an expiration date when they contain
standard labels under CMS/DOS. If a tape is to be opened as a work
tape, CMS/DOS tests to see if it contains a VOL1 lakel. If it dces,
a dummy HDR1 label and a tape mark are immediately written on the
tape after the VOL1 1label. If the tape does not contain a VOL1
label, a tape mark is written at the beginning of the tape. DOS/VSE
checks expiration dates on previously labelled tapes used as work
tapes and gives the operator a chance to reject +the tapes if the
expiraticn date has not expired.

Section 7. Using Real Printers, Punches, Readers, and Tapes 122.9

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

For further 1nformat10n on DOS/VSE and CMS/DOS tape label proce551ng,
refer to the following IBM publications: v

DOS/VSE Tape Labels
DOS/VSE Macro User's Guide
DOS/VSE LIOCS Vol 2

CMS TAPESL MACRO

The TAPESL macro is provided for use in CMS programs that do not use 0S
and DOS simulation features. You can use the CMS TAPESL macro to
process IBM standard HDR1 and EOF1 labels without using DOS or 0S OPEN
and CLOSE macros. You will probably use TAPESL with the RDTAPE, WRTAPE,

and TAPECTL macros.

TAPESL processes only HDR1 and EOF1 1labels. It does not perform any
functions of opening a tape file other than label checking or writing.
The TAPESL macro generates linkage to the CMS tape label processing
routine that actually processes the label. The macro generates a block
of data (32 bytes 1long) in order to communicate with the tape label
Erocessing routines. TAPESL is used both to <check and to write tape
labels. A LABELDEF command must be issued prior to running the progranm
that contains this macro. The LABID parameter of the TAPESL macro is
used to specify +the name of the LABELDEF to be used. For example, if
you use the macro: :

TAPESL HOUT,181,LABID=GOODLAB

in ycur assenmbly language program, you must supply a LABELDEF command
for GOODLAB: :

labedef goodlab fid file10 fseq 4 exdte 78235

The tape must be positioned correctly (at the label to be checked or at
the place where the label is to be written), before you issue the macro.
TAPECTL may be used +to position the tape. TAPESL reads or writes only
one tape record unless you specify SPACE=YES for input. Then it spaces
the tape to beyond the tape mark that ends the label file. TAPESL reads
and checks a tape VOL1 label provided the tape is positioned at load
point and the user has specified a volid in his LABELDEF coamand.

TAPE LABEL PROCESSING BY CMS COMMANDS

There are three types of CMS commands that do some type of tape label
processing. They are:

e TAPEMAC and TAPPDS commands
e TAPE command
e MOVEFILE command

TAPEMAC and TAPPDS Commands

TAPEMAC and TAPPDS have operands where you can indicate the type of
label processing you want. The tape must be positioned properly (at the
data file or label file you want) before you issue the command. The
TAPE command may be used for positioning. A separate LABELDEF command

122.10 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

is required for these commands if 1IBM standard lakel checking is
desired. If SL label type is specified without a labdefid, standard
header labels are displayed on the terminal but not checked by the CHMS
label processing routines. The command:

tapemac macfile SL (tap2

displays any standard labels that exist on your terminal while the
series of commands:

labeldef maclab fid macro volseq 2 crdte 77102
tapemac macfile sl maclab (tap2

invokes the CMS tape label processing routines. These routines check to
see that your tape has a HDR1 label that has a file identifier of macro,
a volume sequence number 2, and a creation date of 77102. VOL1 labels
are not checked during label processing by TAPEMAC and TAPPDS unless the
tape is positioned at load point and you have specified a volid on your
LABELDEF command. The DVOL1 function of the TAPE command can be used
for volume verification before positioning the tape if the user does not
want to start at the first file. These commands process only HDR1
labels; they skip HDR2, UHL, and all trailer 1labels without processing
then.

To process nonstandard tape labels with TAPEMAC and TAPPDS, you use
the same interface described in the section "NSL Processing under CS
Simulation." The only difference is that instead of putting the CMSCB
and DCB addresses in the parameter list, the ID parameter you placed in
the command line is passed to your NSL routine.

tappds pdsfile cmsut1 * nsl superck id XYZ12345

passes the EBCDIC identifier XYZ12345 to your nonstandard label checking
routine called SUPERCK. This identifier may be up to eight characters
long and is left justified in bytes 8-15 of the parameter list. You can
use the identifier to inform your NSL routine of what file you are
processing.

Tape Command DVOL1 and WVOL1 Functionms

Use the DVOL1 function of the CMSTAPE command to display the VOL1 label
of a tape on your terminal. You may use this command to ensure the
system operator has mounted the correct tape before you begin processing
the tape. If the tape does not have a VOL1 1label and you issue the
CMSTAPE command, you are informed that +the VOL1 label is nmissing. Do
not use TAPE DVOL?1 if you have a blank tape. If TAPE DVOL1 is issued
and a blank tape is used, CMS will search the entire tape to find the
label record; since the tape is void of any records, the tape will run
off the end of the reel.

Use the WVOL1 function on the TAPE command to write a VOL1 label on a
tape. You can specify a one- +to six—-character volume serial number
(volid) through this command and also a one- to eight-character owner
field.

MOVEFILE Commpand

You can use the MOVEFILE command to move labelled tape files if these
files are defined as labelled by +the FILEDEF command. The MOVEFILE
command supgports only SL, NSL, BLP, ©NL, and LABOFF processing. SUL
files are processed as SL files and no user exits are taken.

Section 7. Using Real Printers, Punches, Readers, and Tapes 122. 11

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

You can also use the MOVEFILE command = to display tape labels on your
terminal if you want to see what these labels lcocok like. The following
sequence displays the VOL1 and first HDR1 labels on tap4 if the tape has
standard labels:

filedef in tapl
filedef out ternm
tape rew (tapl

move in out
LABELDEF COMMAND

The LABELDEF command is used to specify the exact data you want written
in certain fields of a HDR1 or EOF1 tape label for output. It can also
be used to specify fields in the same labels that you want checked o¢n
input. If you do not explicitly specify a field for output, a default
value is used. If you do not explicitly specify a field for input, the
field is not checked. For example:

labeldef abc fid master volseq 1 exdte 77364

used for input tells CMS to check the file identifier volume sequence
number and expiration date 1in an input HDR1 label. No other fields in
the label are checked. The same specification used for output causes
the HDR1 label to have MASTER written in the file identifier field, 1
written in the volume sequence number field and 77364 written in the
expiration date <field. Default values are written in the HDR1 fields
that are not specified.

Default values for HDR1 labels are as follows:
FID - for 0OS simulation, the DDNAME (Specified on FILEDEF)

- for CMS/D0S, the DTFMT symbolic nanme
- for CMS TAPESL nmacro, the LABELDEF id (LABID=labeldefid)

parameter
VOLID - CHMS001
VOLSEQ - 0001
FSEQ - 0001
GENN - Dblanks
GENV - blanks
CRDTE -~ current date that label is written
EXDTE - current date that label is written
SEC -0

The filename on the LABELDEF command is used to connect your label
definition tc¢ a file defined elsewhere. This is why you specify
different data for file name depending on the type of tape label
processing you are doing. Filepame is DDNAME for O0S simulation, DTFMT
symbelic name for-CMS/DOS and labeldefid for TAPESL.

/
The LABELDEF command takes the place of the DOS/VSE TLBL statement
for CMS/DOS. : :

122.12 1IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8
END-OF-VOLUME AND END-OF-TAPE PROCESSING

There is no true end-of-volume support available with CMS tape label
Frocessing. FEOV instructions are not supported under OS simulation and
there 1is no automatic volume switching. Multivolume files are not
supported. The follcwing features exist to aid the IBM standard label
tape user when he reaches end-of-tape on output or an EOV label in
input. These are the only ways in which CMS sugports EOV processing.

e Input - When a CLOSE macro is issued or when a TAPESL macro processes
an input trailer label, a message is issued if the 1label read is an
EOV1 1label instead of an EOF1 1label. The EOV1 latel is then
processed exactly as if it were an EOF1 label. You must request that
the operator mount a new tape and reopen a file if you want to
continue processing the data.

e Output - Under CMS/DOS and 0S simulation processing only (that is,
the processing does not occur for TAPESL or CMS commands), the
following limited EOV processing occurs:

a. If you specify that you have an IBM standard 1label tape file, a
single tape mark 1is written to end your data. This occurs when
end-of-tape is sensed on output while you are using regular access
method macros to write the file. The tape mark 1is written
immediately after the record that caused the EOT +to be sensed.
Following this tape mark, CMS writes an EOVi label and a single tape
mark. It then rewinds and unloads your tape. A message 1is issued
telling you that an EOV1 1label was written. If you specified
nonstandard labels instead of writing the EOV1 label, an exit to the
nonstandard label routine you specified for the file is taken after
the end-of-data tape mark is written. For BLP or NL files, only the
ending tape mark is written.

b. CMS/DOS jobs are always canceled after an EOT condition is
detected on output. In order to continue processing the tape, you
must have a new tape mounted, run the same job over again or run a
new job and reopen the file. ‘

€. O0S simulation programs that use (QSAM or contain a BSAM CHECK
macro cause an abend when EOT is detected, with code 001 after an
error message. A BSAM program that does not use a CHECK macro has no
way of detecting the EOT condition. Such a program continues to try
to write on the tape after it is rewound and unloaded. The program
enters a wait state rather than continue running to a normal or
abnormal completion. Therefore, you should always 3include a BSAM
CHECK macro after the WRITE if you expect your program to reach
end-of-tape. O0S simulation users are also responsible for completing
pProcessing on a new tape With the same or a new job after an EOT is
detected.

d. If you are a CMS/DOS user you always get the automatic output
end-of-tape processing described above. However, if you are an O0S
simulation user and do not want CMS to do any special end-of-tape
processing, you can suppress it by using the NOEOV option on your
FILEDEF command for the file. If you enter:

filedef dd1 tap3 sl (noeov

no tape marks or EOV1 labels are written when EOT is sensed on
output. Your tape is not rewound and unloaded. However, the progranm
causes an abend if you use QSAM or include a BSAM CHECK macro after
your WRITE macro. Without a CHECK macro, a BSAM program runs the
tape off the reel when EOT is sensed and NOEOV is specified.

Section 7. Using Real Printers, Punches, Readers, and Tapes 122.13

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8
ERROR PROCESSING

When the standard label processing routines find errors or discrepancies
on tape lakels, they send a message to the CMS terminal user who is
processing the tape. After an error message is issued, the user can ask
the system operator to mount a nevw tape, use the CMS TAPE command to
Fosition the tape at a different file, or respecify his 1label
description information. If you are a terminal user and want another
tape mounted, you send the system operator a message telling him what
tape to mount. '

Some errors cause program termination and others do not. The effect
of tape label processing errors depends on both the type of error and
the type of program (that is, CMS/DOS, 0S simulation, CMS command, etc.)
that invokes the label processing. The following are general guidelines
on error handling:

e Messages identifying the error are always issued.

e Under 0S simulation, tape label errors result in open errors. These
errors prevent a tape file fronm being opened. They do not
necessarily end a job. Errors in trailer labels (except block count
errors) have no effect on processing. ’

e In CMS/DOS, the terminal user is generally given twc choices: ignore
-the error or cancel the job. The new-tape option is not allowed.

e The CMS commands TAPEMAC and TAPPDS terminates with a non-zero return
code after a tape label error.

e Certain error situations' such as unexpired files and block count
errors for O0S simulation allow the user to ignore the error and do
not cause open errors. In these cases, the user enters his decision
at the terminal after he is notified of the error.

e Errors that occur during the loading of an NSL routine cause an abend
(code 155 or 151A). A block count abend gives an error code of 500.

In all cases, after an error has been detected and diagnosed, you
must decide what to do. You may wish to have a new tape mounted and
then re-execute the conmand or you may want to respecify your LABELDEF
description if it was incorrect. You can also use the TAPE command to
space the tape to a new file if it was positioned incorrectly.

THE MOVEFILE COMMAND

The MOVEFILE command can copy sequential tape files into disk files, or
sequential disk files onto tape. It can be particularly useful when you
need to copy a file from a tape and you do not know the format of the

To use the MOVEFILE command, you must first define the input and
output files using the FILEDEF command. For examfple, to copy a file from
a tape attached to your virtual machine at virtual address 181 to a CMS
disk, you would enter:

filedef input tap1

filedef output disk tape file a
movefile input output

122.14 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-X18

This sequence of commands creates a file named TAPE FILE A1. Then use
CMS commands to manipulate and examine the contents of the file.

MOVEFILE can also be used to display tape lakels and/or ‘move labelled
tape files. See "Tape Labels in CMS" for details.

TAPES CREATED BY OS UTILITY PROGRAMS

The CMS command TAPPDS can read OS partitioned and sequential data sets
from tapes <created by the IEBPTPCH, IEBUPDTE, and IEHMOVE utility
programs. When you use the TAPPDS command, the OS data set is copied
into a CMS disk file, or in the case of partitioned data sets, into
multiple disk files. '

IEBPTPCH: Sequential or partitioned data sets created by IEBPTPCH must
be unblocked for CMS to read them. If you have a tape created by this
utility, each member (if the data set is partitioned) is preceded with a
card that contains "MEMBER=membername". If you read this tape with the

command:
tappds *

then, CMS creates a disk file from each member, using the membername for
the filename and assigning a filetype of CMSUT1. If you want to assign a
particular filetype, for example TEST, you could enter the command as
follows:

tappds * test

If the file you are reading is a sequential data set, you should use the
NOPDS option of the TAPPDS command:

tappds test file (nopds

The above command reads a sequential data set and assigns it a file
identifier of TEST FILE. If you do not specify a filename or filetype,
the default file identifier is TAPPDS CMSUT1.

program can be read by CMS. Data sets may be blocked or unblocked, and
may be either sequential or partitioned. Since files <created by
IEBUPDTE contain ./ADD control cards to signal the addition of members
to partitioned data sets, you must use the COL1 option of the TAPPDS
command. Also, you must indicate to CMS that the tape was created by
IEBUPDTE. For example, to read a partitioned data set, you would enter
the command:

tappds * test (update coltl

Section 7. Using Real Printers, Punches, Readers, and Tapes 122.15

March 30, 1979

122.16 IBM VM/370 CMS User's Guide-

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

The CMS disk files created are always in unblocked, 80-character format.

IEHMOVE: 0S unloaded partitioned data sets on tapes <created by the
IEHMOVE utility program can be read either by the TAPPDS command or by
the TAPEMAC command. The TAPPDS command creates an individual CMS file

from each member of the PDS.

If the PDS is a macro library, you can use the TAPEMAC command to
copy it into a CMS MACLIB. A MACLIB, a CMS macro library, has a special
format and can usually be created only by using the CMS MACLIB command.
If you use the TAPPDS command, you have to wuse the MACLIB command to
create the macro 1library from individual files containing macro
definitions.

SPECIFYING SPECIAL TAPE HANDLING OPTIONS

For most of the tape handling that you do in CMS, you do not have to be
concerned with the demnsity or recording format of the magnetic tapes
that you use. There are, however, some instances when it may be
important and there are command options that you can use with the TAPE
conmand MODESET operand and with ASSGN and FILEDEF command options.

The specific situations and the command options you should use are
listed below.

e If you are reading or writing a 7-track tape and the density of the
tape is either 200 or 556 bpi, you must specify DEN 200 or DEN S556.

e If you are reading or writing a 7-track tape with a density of 800
bpi, you must specify 7TRACK.

o If you are reading or writing a 7-track tape without using the data
convert feature, you must use the TRTCH option.

e If you are writing a tape using a 9-track dual density tape drive
with the 9TRACK option specified, and you want the density to be 800
(on an 800/1600 drive) or 6250 (on a 1600/6250 drive), then you must
specify DEN 800 or DEN 6250.

e If you are writing a tape, the default tape tlock size is 4096 bytes
Plus a 5-byte header. This format is not compatible with previous
VM/370 systenms. Therefore, if you want +to write a tape compatible
with previcus VM/370 systems, you must use the 'BLK 800' option of
the TAPE command. The TAPE command is described in detail in ¥YM/370
CMS Command and Macro Reference.

Using the Remote Spooling Communications
Subsystem (RSCS)

If your VM/370 installation is on a Remote Spooling Communications
Subsystem (RSCS) network, you can send printer, punch, or reader spool
files to users at remote locations. To send a spool file, you must know
the userid of the virtual machine at your location that is running RSCS
and the location identification (locid) of the remote location. If you
are sending a spool file to a particular user at the remote location,
you should also know that userid of the user.

The CP commands that you can use to transmit files across the netvork

are TAG and SPOOL. The TAG command allows you to specify the locid and
userid that are +to receive a spool file, or, in the case of tagging a

Section 7. Using Real Printers, Punches, Readers, and Tapes 123

‘March 30, 1979

printer or punch, of any spool files . produced by that device. With the
SPOOL command, you spool your virtual device to the RSCS virtual
machine. You can also use the TRANSFER command to transfer files frcm
your own virtual card reader.

The CP commands TAG, SPOOL, and TRANSFER are discussed in detail in
the publication ¥YM/370 CP Command Reference for General Users.

124 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 57u8-XX8

Part 2. Program Development Using CMS

You can use CMS to write, develop, update, and test:

e (0S programs to eXxecute either in the CMS environment (using OGS
simulation) or in an OS virtual machine

e DOS programs to execute in either the CMS/DOS environment or inm a DOS
virtual machine

e CMS programs to execute in the CMS environment

The 0S and DOS simulation capabilities of CMS allow you to develop 0S
and DOS programs interactively in a time-sharing environment. When your
programs are thoroughly tested, you can execute them in an 0S or DCS
virtual machine under the control of vM/370.

"Section 8. Developing 0S Programs Under CMS" is for programmers who
use 0S. It describes procedures and techniques for using CMS commands
that simulate 0S functioms.

"Section 9. Developing DOS Programs Under CMS" is for programmers who
use DOS. It describes procedures and techniques for using CMS/DOS
commands to simulate DOS/VSE functiomns.

If you use VSAM and access method services in either a DOS or an CS
environment, "Section 10. Using Access Method Services and VSAM in CHS
and CMS/DOS" provides usage information for you. It describes hov to
use CMS to manipulate VSAM disks and data sets.

You can use the interactive facilities of CP and CMS to test and
debug programs directly at your terminal. "Section 11. How VM/370 Can
Help You Debug Your Programs" shows examples of commands and debugging
techniques.

The CMS batch facility is a CMS feature that allows you to send jobs
to another machine for execution. How to prepare and send job streams
to a CMS batch virtual machine is described in "Section 12. Using the
CMS Batch Facility."

As you 1learn to use CMS, you may want to write programs for CHS
applications. "Section 13. Programming for the CMS Environment"
contains information for assembler language programmers: linkage
conventions, programming notes, and macro instructions you can use in
CMS progranms.

Part 2. Program Developméent Using CMS 125

March 30, 1979

126 IBM VM/370 CMS User's Guide:

March 30, 1979

Section 8. Developing OS Programs under
CMS

CMS simulates many of the functions of the Operating System (0S),
allowing you to compile, execute and debug 0S programs interactively.
For the most part, you do not need to be concerned with the CMS 0S
simulation routines; they are built into the CMS system. Before you can
compile and execute 0S programs in CMS, however, you must ke acquainted
with the following:

0S macros that CMS can simulate
Using 0S data sets in CMS

How to use the FILEDEF command
Creating CMS files from 0S data sets
Using CMS and 0S macro libraries
Assembling programs in CMS

Executing fprograms

These topics are discussed below. Additional information for O0S VSAM
users is in "Section 10. Using Access Method Services and VSAM Under CHMS
and CMS/DOS."

For a practice terminal session using the commands and technigues
presented in Section 8, see "Appendix D: Sample Terminal Sessions."

A Note About Terminology

The CMS system uses many OS terms, but there are a number of ' CS
functions that CMS performs somewhat differently. To help you become
familiar with the some of the CMS equivalents (where they do exist) for
0S terms and functions, see Figure 11. It lists some commonly-used CS
terms and discusses how CMS handles the functions they imply.

Section 8. Developing 0S Programs Under CHMS 127

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SC23-9024-1 for 5748-XX8

0S Teram/Function

CMS Equivalent

I e e . — —————— S R Gl T G CED S GEn e L G S e ——— ——— — —— - S S . > e | ——— — ————— —m—— —— —

Cataloged procedure

Data set

Data Definition (DD)
card

Data Set Control

Block (DSCB)

EXEC card

Job Control Language
(JCL) v

Link—editing

Load module
Object module
Partitioned data set

STEPCAT,JOBCAT

STEPLIB, JOBLIB

Utility progranm

Volume Table of
Contents (VTOC)

EXEC files can execute command sequences
similar to cataloged procedures, and provide
for conditional execution based on return
codes from previous steps.

Data sets are called files in CMS; CMS files
are always sequential but CMS simulates OS
partitioned data sets. CMS reads and writes
VSAM data sets. ‘

The FILEDEF command allcws you to perform the
functions of the DD statement to specify
device types and output file dispositions.

Information about a CMS disk file is contained
in a file status table (FST).

-
I

l

|

I

|

[

[

|

|

|

|

|

|

|

|

i

|

|

|
To execute a program in CMS you specify only |
the name of the program if it is an EXEC, |
MODULE file, or CMS command. To execute TEXT |
files, use the LOAD and START commands. {
|

|

|

|

|

|

|

i

|

|

|

|

|

(

1

|

i

[

|

|

i

CMS and user-written commands perform the
functions of JCL.

The CMS LOAD command loads object decks (TEXT
files) into virtual storage, and resolves
external references; the GENMOD command
creates absolute nonrelocatable modules.

CMS MODULE files (resulting from the LOAD and
GENMOD commands) are nonrelocatable.

Language compiler output is placed in CHMS
files with a filetype of TEXT.

CMS MACLIBs and TXTLIBs are the only CMS files
that resemble partitioned data sets.

VSAM catalogs can be assigned for jobs or job
steps in CMS by using the special ddnames
IJSYSCT and IJSYSUC when identifying catalogs.

The GLOBAL command estaltlishes macro and text
libraries; you can indirectly provide job
libraries by accessing and releasing CMS disks
that contain the files and programs you need.

utility programs are provided by CMS commands.

The list of files on a CMS disk is contained
in a file directory for 800-byte format CMS
disks, or in the file directory for CMS disks

I
|
|
|
|
|
Functions similar to those performed by the 0S|
|
|
|
{
|
with a 1024-, 2048-, or 4096-byte block format|

[

Figure 11. 0S Terms and CMS Equivalents

128 1IBM VM/370 CMS User's Guide

S

Using OS Data Sets ih CMSs

You can have 0S disks defined in your virtual machine configuration;
they may be either entire disks or minidisks: their size and extent
depends on their VM/370 directory entries. You can use partitioned and
sequential data sets on 0S disks in CMS. If you want, Yyou can create
CMS files from your 0S data sets. If you have data sets on 0S disks,
you can read them from programs you execute in CMS, but you cannot
update them. The CMS commands that recognize 0S data sets on O0S disks
are listed in Figure 12.

Command Operation

ACCESS Makes the 0S disk containing the data set available

to your CMS virtual machine.
ASSEMBLE| Assembles an 0S source program under CMS.
CDR Copies an entire 0S disk to tape.

Defines 0S data sets for use with access method services
and VSAM files for program input/outrput.

DLBL

Defines the 0S data set for use under CMS by associating
an 0S ddname with an 0S data set name. Once defined,

the data set can be used by an 0S program running under
CMS and can be manipulated by the other commands that
support 0S functions.

FILEDEF

|

|

|

|

l

|

{

1

|

|

|

|

i

(

!

|

|
GLOBAL | Makes macro libraries available to the assembler. You can
| prepare an 0S macro library for reference by the GLOBAL
| command by issuing a FILEDEF command for the data set and
| giving the data set a filetype of MACLIB.
|
|
|
l
|
|
|
|
|
|
|
i
|
|
|
|
|
|
{
|

LISTDS Lists information describing O0S data sets residing on

0S disks.

Moves data records from one device toc another device. Each
device is specified by a ddname, which must have been
defined via FILEDEF. You can use the MOVEFILE command to
create CMS files from 0S data sets.

MOVEFILE

QUERY Lists (1) the files that have been defined with the
FILEDEF and DLBL commands (QUERY FILEDEF, QUERY DLBL), or
- (2) the status of 0S disks attached to your wvirtual machine

(QUERY DISK, QUERY SEARCH).

Releases an 0S disk you have accessed (via ACCESS) from
your CMS virtual machine.

RELEASE

Verifies the existence of an 0S data set on a disk.
Before STATE can verify the existence of the data set,
you must have defined it (via FILEDEF).

STATE

o M A G — e — — — ————— S — ———— —— —————— ——— —— ———— — ————— o — —
bt v e - —— — —— — — — ———— —— —————— — — — — — - _——— —— - — — — —— — —)

Figure 12. CMS Commands That Recognize 0S Data Sets and OS Disks

Section 8. Developing O0S Programs Under CMS 129

— . wm— G —— — — — —

ACCESS METHODS SUPPORTED BY CMS

0S access methods are supported, to varying extents, by CMS. Under CKS,
you can execute programs that use the 0S data management macros that are
supplied for the access methods listed below.

r 1
} | CMS Support for 0OS | CMS Support for Real |
| | Simulated Data Sets | 0S Data Sets on OS |
| Access Method | on CMS Disks { Disks |
| 1
| BDAM | Yes (No |
| BPAM | Yes | Yes (read only) |
i BSAM | Yes | Yes (read only) |
| QSAM | Yes | Yes (read only) |
| VSAM | No | Yes |
[R R ——— -d

BPAM, BSAM, and QSAM: You can execute programs in CMS that read records
from 0S data sets using the BPAM, BSAM, or QSAM access methods. You
cannot, however, write or update 0S data sets that reside on 0S disks.

BLAM: CMS can neither read nor write 0S data sets on O0S disks using the
BDAM access method.

VSAM Files: CMS can read and write VSAM files on O0S disks. For
information on using VSAM under CMS, see "Section 10. Using Access
Method Services and VSAM Under CMS and CMS/DOS."

0S Simulated Data Sets

—_— e e aE e m—— a=aa

If you want to test programs in CMS that create or modify 0S data sets,
you can write "0S simulated data sets." These are CMS files that are
maintained on CMS disks, but in 0S format rather thanm in CMS format.
Since they are CMS files, you can edit, rename, copy, or manipulate them
just as you would any other CMS file. Since they are in OS-simulated
format, files with variable-blocked records may contain block and record
descriptor words so that the access methods can manipulate thenm
properly. .

The files that you create from 0S programs do not necessarily have to
be 0S simulated data sets. You can create CMS files. The format of an
output file depends on how you specify the <filemode number when you
issue the FILEDEF command to identify the file to CHMS. If you specify
the filemode number as #, CMS creates a file that is in O0S simulated
data set format on a CMS disk.

CMS can read and write 0S simulated data sets using the BDAM, BPAMN,
BSAM, and QSAM access methods.

~ When an input or output error occurs, do not depend on 0OS sense

tytes. An error code is supplied by CMS in the ECB in place of the
sense bytes. These error codes differ for various types of devices and
their meaning can be found in the IBM VM/370 System Messages, under DMS
message 120S.

130 IBM VM/370 CMS User's Guide

PN

March 30, 1979

Restrictions for Reading 0S Data Sets

The following - restrictions apply when you read 0S data sets from CS

disks under CMS:

e Read-password-protected data sets are not read.

e BDAM and ISAM data sets are not read.

e Multivolume data sets are read as single-volume data sets.
End-of-volume is treated as end-of-file and there is no end-of-volume
switching.

e Keys in data sets with keys are ignored; only the data is read.

e User lakels in user-labeled data sets are bypassed (except for user
standard labels on tapes). See “"Tape Labels in CMS" for details.

e Results may be unpredictable if two DCBs access the same data set at
the same tinme.

Using the FILEDEF Command

Whenever you execute an 0S program under CMS that has input and/or
output files, or you need to read an 0S data set onto a CMS disk, you
must first identify the files to CMS with the FILEDEF command. The
FILEDEF command in CMS performs the same functions as the data
definition (DD) card in 0S job control language (JCL): it describes the
input and output files.
When you enter the FILEDEF command, you specify:
e The ddname
e The device type
e A file identification, if the device type is DISK
e Type of 1label on your tape file, if +tare label processing is
specified

e Options (if necessary)

Some guidelines for entering these specifications follow.
SPECIFYING THE DDNAME

If the FILEDEF command is issued for a program input or output file,
then the ddname must be the same as the ddname or file name specified
for the file in the source program. For example, you have an assembler
language source program that contains the line:

INFILE DCB DDNAME=INPUTDD, MACRF=GL,DSORG=PS,RECFM=F,LRECL=80
For a particular execution of this program, you want to use as your

input file a CMS file on your A-disk that is named MYINPUT FILE, then,
you must issue a FILEDEF for this file before executing the progranm:

Section 8. Developing 0S Programs Under CMS 131

March 30, 1979

filedef inputdd disk myinput file at
If the input file you want to use is on an 0S disk accessed as your
C-disk, and it has a data set name of PAYROLL.RECORDS.AUGUST, then your
FILEDEF command might be:

filedef inputdd c1 dsn payroll records august

SPECIFYING THE DEVICE TYPE

For input files, the device type you enter on the FILEDEF command

indicates the device from which you want records read. It can be DISK,

TERMINAL, READER (for input from real cards or virtual cards), or TAPn

(for tape). Using the above example, if your input file 1is to be read

from your virtual card reader, the FILEDEF command might be as follows:
filedef inputdd reader

Oor, if you were reading from a tape attached to your virtual machine at
virtual address 181 (TAP1):

filedef inputdd tapt

For output files, the device you specify can be DISK, PRINTER, PUNCH,
TAPn (tape), or TERMINAL.

If you do not want any real I/O performed during the execution of a
program for a disk input or output file, you can specify the device type
as DUMMY:

filedef inputdd dummy
ENTERING FILE IDENTIFICATIONS

If you are using a CMS disk file for your input cr output, you specify:
filedef ddname disk filename filetype filemode

Note that if * is used for the filemode of an output file, unpredictable
results may occur. '

The filemode field is optional; if you do not specify it, your A-disk is
assumed. If you want an output file to be constructed in O0S simulated
data set format, you must specify the filemode number as 4. For
example, a program contains a DCB for an output file with a ddname of
OUTPUTDD, and you are using it to create a CMS file named DAILY OUTPUT
on your B-disk:

filedef outputdd disk daily output b4

If your input file is an 0S data set on an 0S disk, you can identify
it in several ways:

e If the data set name has only two qualifiers, for example
HEALTH.RECORDS, you can specify:

filedef inputdd disk health records b1

132 1IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for S5748-XX8
e If it has more than two qualifiers, you can use the DSN keywvord and
enter:
filedef inputdd b1 dsn health records august 1974
Or you can request a prompt for a complete data set name:
filedef inputdd b1 dsn ?

ENTER DATA SET NAME:
health.records.august.1974

Section 8. Developing 0S Programs Under CMS 132.1

March 30, 1979

132.2 1IBM VM/370 CMS User's Guide

March 30, 1979

Note: When you enter a data set name using the DSN keyword, either
with or without a request for prompting, you should omit the device
type specification of DISK, unless you want to assign a CMS file
identifier, as in the example below.

e You can also relate an 0S data set name to a CMS file identifier:
filedef inputdd disk ossim file c1 dsn monthly records

Then you can refer to the 0S data set MONTHLY.RECORDS by using the
CMS file identifier, 0SSIM FILE:

state ossim file c

When you do not issue a FILEDEF command for a program input or output
file, or if you enter only the ddname and device type on the FILEDEF
coamand, such as: -

filedef oscar disk
then CMS issues a default file definition, as follows:
FILEDEF ddname DISK FILE ddname A1

wvhere ddname is the ddname you assigned in the DDNAME operand of the DCB
macro in your program or on the FILEDEF command. For example, if you
assign a ddname of OSCAR to an output file and do not 1issue a FILEDEF
conmand before you execute the program, then the CMS file FILE OSCAR A1
is created when you execute the program.

SPECIFYING CMS TAPE LABEL PROCESSING

You can use the label operands on the FILEDEF command +to indicate that
CMS tape label processing is not desired (this is the default). - If CMS
tape label processing is desired you can use the label operands on the
FILEDEF command to indicate the types of labels on your tape. See "Tape
Labels in CMS" for a description of CMS tape label processing.

SPECIFYING OPTIONS

The FILEDEF command has many options; those mentioned below are a
sampling only. For complete descriptions of all the options of the
FILEDEF command, see the VYM/370 CMS Command and Macro Reference.

BLOCK, LRECL, RECFM, DSORG: If you are using +the FILEDEF command to
relate a data control block (DCB) in a program to an input or output
file, you may need to supply some of the file format information, such
as the record 1length and block size, on the FILEDEF command: line. For
example, if you have coded a DCB macro for an output file as follows:

OUTFILE DCB DDNAME=0OUT, MACRF=PM,DSORG=PS

then, vhen you are issuing a FILEDEF for this ddname, you must specify
the format of the file. To create an output file on disk, blocked in GS
simulated data set format, you could issue:

filedef out disk myoutput file a4 (recfm fb lrecl 80 block 1600

Section 8. Developing O0S Programs Under CHMS 133

March 30, 1979

To .punch the output file onto cards, you would issue:
filedef ocut punch (lrecl 80 recfm £

You must supply file format information on the FILEDEF command 1line
whenever it is not supplied on the DCB macro, except for existing disk
files.

PERM: Usually, wvhen you execute one of the language processors, all
existing file definitions are cleared. If the development of a progranm
requires you to recompile and re-execute it frequently, you might want
to use the PERM option when you issue file definitions for your input
and output files. For example:

cp spoocl punch to *
filedef indd disk test file al1 (lrecl 80 pernm
filedef outdd punch (lrecl 80 pernm

In this example, since you spocoled your virtual punch to your own
virtual card reader, output files are placed in your virtual reader. You
can either read or delete then.

All file definitions issued with the PERM option stay in effect until
you log off, specifically clear those definitions, or redefine them:

filedef indd clear
filedef outdd taptl (lrecl 80

In the above example, the definition for INDD is <cleared; OUTDD is
redefined as a tape file.

When you issue the command:
filedef * clear

all file definitions are cleared, except those you enter with the PERM
option. ‘

When a program abends, or when you issue the HX Immediate command,
all file definitions are cleared, including those entered with the PERM
option.

DISP MOD: When you issue a FILEDEF command for an output file and assign
it a CMS file identifier that is identical to that of an existing CHMS
file, then when anything is written to that ddname the existing file is
replaced by the new output file. If you want, instead, to have new
records added to the bottom of the existing file, you can use the DISP
MOD option: ~ o . ' .

filedef outdd disk; new update al (disp mod

—— i e e e

data set (or a CMS MACLIB or TXTLIB), you can use the MEMBER option to
specify the membername; for examfple: ‘

filedef test ¢ dsn sys?! maclib (member test

defines the member TEST from the 0S macro library SYS1.MACLIB.

control during I/O operating. .It is valid only when. FILEDEF is executed
by an internal program call and cannot be entered on a terminal command.
For details on how to use this option of the FILEDEF command, see the
YM/370 System Programmer's Guide.

134 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

Creating CMS Files From OS Data Sets

If you have data sets on 0S disks, or on tapes or cards, you can copy
them into CMS files so that you can edit, modify, or manipulate them
with CMS commands. The CMS MOVEFILE command copies 0S (or CMS) files
from one device to another. You can move data sets from any valid input
device to any valid output device.

Section 8. Developing 0S Prcgrams Under CMS 134.1

134.2

March 30, 1979

IBM VM/370 CMS User's Guide

Before using the MOVEFILE command, you must define the input and
output data sets or files and assign them ddnames using the FILEDEF
command. If you use the ddnames INMOVE and OUTMOVE, then you do not
need to specify the ddnames when you issue the MOVEFILE command. For
exanple, the following sequence of commands copies a CMS disk file into
your virtual card punch:

filedef inmove disk diskin file a1l
filedef outmove punch
movefile

The result of these commands is effectively the same as if you had
issued the command: :

pPunch diskin file (noheader

The example does, however, illustrate the basic relationship between the
FILEDEF and MOVEFILE commands. In addition +to the MOVEFILE command, if
the 0S input data set is on tape or cards, Yyou can use the TAPPDS or
READCARD command to create CMS files. These are also discussed below.

COPYING SEQUENTIAL DATA SETS FROM DISK: The MOVEFILE command copies a
sequential 0S disk data set from a read-only 0S disk into an integral
CMS file on a CMS read/write disk. You use FILEDEF commands to identify
the input file disk mode and data set name:

filedef inmove c1 dsn sales manual

the CMS output file's disk location and fileid:
filedef cutmove disk sales manual a1l

and then you issue the MOVEFILE command:
movefile

COPYING PARTITIONED DATA SETS FROM DISK: The MOVEFILE command can copy
partitioned data sets (PDS) into CMS disk files, and create separate CMS
files for each member of the data set. You can have the entire data set
copied, or you can copy only a selected member. For example, if you
have a partitioned data set named ASSEMBLE.SOURCE whose members are
individual assembler language source files, your input file definition
might be:

filedef inmove c¢1 dsn assemble source

To create individual CMS ASSEMBLE files, you would issue the output file
definition as:

filedef outmove disk qprint assemble a1l
Then use the PDS optionvof the MOVEFILE command:
movefile (pds
When thé CMS files are created, the filetype on the output file

definition is used for the filetype and the member names are used
instead of the CMS filename you specified.

If you want to copy only a single member, you can use the MEMBER
option of the FILEDEF command: '

filedef inmove disk assemble source c (member gprint

Section 8. Developing 0S Programs Under CHMS 135

and omit the PDS option on the MOVEFILE command:
novefile

Figure 13 summarizes the various ways that you can create CMS files
from 0S data sets.

Input File: An OS sequential data set named: COMPUTE.TEST.RECORDS

Source | CMS Command Examples | CMS Output File

Disk: | filedef indd c1 dsn compute test records | . COMPUTE RECORDS A1
0S R/0 | filedef outdd disk compute records a1l t
C—-disk | movefile indd outdd |

Tape: { filedef inmove tapl (lrecl 80 f TEST RECORDS A1
181 | filedef outmove disk test records at |
| movefile |
{
| tappds newtest compute (nopds { NREWTEST COMPUTE A1l
Cards filedef cardin reader | COMPUTE CARDS A1

|

| filedef diskout disk compute cards at f
{ movefile cardin diskout |
|
|

readcard compute test { COMPUTE TEST a1

Input file: 0S partitioned data set named: TEST.CASES
Members named: SIMPLE, COMPLEX, MIXED

filedef run disk |
movefile in run |

Source | CMS Command Examples | CHMS Output File (s)
Disk: | filedef infile disk test cases c1 | SIMPLE TESTCASE A1
0S R/0 | filedef outfile disk new testcase a1 | COMPLEX TESTCASE A1
C-disk | movefile infile outfile (pds | MIXED TESTCASE

|

| filedef in c1 dsn test cases (member simple { FILE RUN a1

|

|

Tape: | tappds * testrun (tap2 { SIMPLE TESTRUN A1
182 | | COMPLEX TESTRUN A1
| | MIXED TESTRUN A1

o e e e = o o =~ — . ————— . = 4= - o ——— - —— —
he o = ——— ——— — . — ———————————— — ——— — ———— — o— o}

Figure 13. Creating CMS Files From 0S Data Sets

Using CMS Libraries

CMS provides two types of libraries to aid in 0S program development:
e Macro litkraries contain macro definitions and/or copy files

e Text, or program libraries contain relocatable object prograss
(compiler output)

These CMS 1libraries are like OS partitioned data sets; each has a
directory and members. Since they are not like other CMS files, you
create, update, and use them differently than you do other CMS files.
Although these library files are similar in function to 0S partitioned
data sets, 0S macros should not be used to update them. Macro libraries
are discussed below; text libraries are discussed under "TEXT Libraries
(TXTLIBs)" later in this section.

A CMS macro library has a filetype of MACLIB. You can create a MACLIB

from files with filetypes of MACRO or COPY. A MACRO file may contain
macro definitions; COPY files contain predefined source statements.

136 IBM VYM/370 CMS User's Guide

-

When you want to assemble or compile a source program that uses macro
or copy definitions, you must ensure that the library containing the
code 1is identified before you invoke the compiler. Otherwise, the
library is not searched. You identify libraries to be searched using the
GLOBAL command. For example, if you have two MACLIBs that contain your
private macros and copy files whose names are TESTMAC MACLIB and
TESTCOPY MACLIB, you would issue the command:

global maclidb testmac testcopy

The libraries you specify on a GLOBAL command line are searched in the
order you specify then. A GLOBAL command remains in effect for the
remainder of your terminal session, until you issue another ' GLOBAL
MACLIB command or re-IPL CMS. To find out what macro 1libraries are
currently available for searching, issue the command:

query maclib

You can reset the libraries or the search order by reissuing the GLOBAL
command.

THE MACLIB COMMAND

The MACLIB command performs a variety of functions. You use it to:

Create the MACLIB (GEN function)

Add, delete, or replace members (ADD, DEL, and REP functions)
Compress the MACLIB (COMP function)

List the contents of the MACLIB (MAP function)

Lescriptions of these MACLIB command functions fcllow.
GEN Function: The GEN (generate) function creates a CMS macro library
from input files specified on the command line. The input files must
have filetypes of either MACRO or COPY. For example:

maclib gen osmac access time put regequ

creates a macro library with the file identifier OSMAC MACLIB A1 fronm
macros existing in the files with the file identifiers:

ACCESS { MACRO)|,TIME { MACRO),PUT (MACRO)},and REGEQU (MACRO
COPY CcCOoPY COorY COPY
If a file named OSMAC MACLIB A1 already exists, it is erased.

Assume that the files ACCESS MACRO, TIME COPY, PUT MACRO, and REGEQU
COPY exist and contain macros in the following form:

ACCESS MACRO TIME COPY PUT MACRO REGEQU COPY
GET *COPY TTIMER PUT XREG
TTIMER
PUT *COPY STIMER YREG
STIMER

Section 8. Developing 0S Programs Under CMS 137

The resulting file, OSMAC MACLIB A1, contains the members:

GET STIMER
PUT PUT
TTIMER REGEQU

The PUT macro, which appears twice in the input to the command, also
appears twice in the output. The MACLIB command does not check for
duplicate macro names. If, at a later time, the PUT macro is requested
from OSMAC MACLIB, the first PUT macro encountered in the directory is
used.

When COPY files are added to MACLIBs, the name of the library member
is taken from the name of the COPY file, or from the *CCOPY statement, as
in the file TIME COPY, above. Note that although the file REGEQU COPY
contained two macros, they were both included in the MACLIB with the
name REGEQU. When the input file is a MACROC file, the member name(s) are
taken from macro prototype statements in the MACRO file.

ADD Function: The ADD function appends new members to an existing macro
library. For example, assume that OSMAC MACLIB A1 exists as created in
the example in the explanation of the GEN function and the file DCB COFY

exists as follows:
*COPY DCB
DCB macro definition
*COPY DCBD
DCBD macro definition
If you issue the command:
maclib add osmac dcb

the resulting OSMAC MACLIB A1 contains the members:

GET PUT
PUT REGEQU
TTIMER DCB
STIMER DCBD

REP Function: The REP (replace) function deletes the directory entry for
the macro definition in the files specified. It then appends new macro
definitions toc the macro library and creates new directory entries. For
example, assume that a macro library MYMAC MACLIE contains the members
A, B, and C, and that the following command is entered:

maclib rep mymac a ¢

The files represented by file identifiers A MACRO and C MACRO each have
one macro definition. After execution of the command, MYMAC MACLIB
contains members with the same names as before, but the contents of A
and C are different.

DEL Function: The DEL (delete) function removes the specified macro name
from the macro 1library directory and compresses the directory so there
are no unused entries. The macro definition still occupies space in the
library, but since no directory entry exists it cannot be accessed or
retrieved. If you attempt to delete a macro for which two macro
definitions exist in the macro library, only the first one encountered
is deleted. For example:

maclib del osmac get put ttimer dcb

138 1IBM VM/370 CMS User's Guide

£

March 30, 1979

deletes macro names GET, PUT, TTIMER, and DCB from the directory of the
macro library named OSMAC MACLIB. Assume that OSMAC exists as in the ADD
function example. After the above command, OSMAC MACLIB contains the
following members:

STIMER
PUT
REGEQU
DCBD

COMP Function: Execution of a MACLIB command with the DEL or REP
functions can leave unused space within a macro 1library. The COMP
(compress) . function removes any macros that do not have directory
entries. This function wuses a temporary file named MACLIB CMSUT1. For
exanple, the command:

maclib comp mymac
compresses the library MYMAC MACLIB.
MAP Function: The MAP function creates a 1list containing the name cf
each macro in the directory, the size of the macro, and its position
within the macro library. If you want to display a list of the menmkers
of a MACLIB at the terminal, enter the command:

maclib map mylib (ternm
The default option, DISK, creates a file on your A-disk, which has a
filetype of MAP and a filename corresponding to the filename of the
MACLIB. If you specify the PRINT option, the list is spooled to your
virtual printer.

Note: TERM and PRINT options will erase the old MAP file.

Manipulating MACLIB Members

The following CMS commands have MEMBER options, which allow you to
reference individual members of a MACLIB:

PRINT (to print a member)

PUNCH (to punch a member)

TYPE (to display a member)

FILEDEF (to establish a file definition for a member)

You can use the CMS editor to create MACRO and COPY files and then
use the MACLIB command to place the files in a 1library. Once they are
in a library, you can erase the original files.

To extract a member from a macrc library, you can use either the
PUNCH or the MOVEFILE command. If you use the PUNCH command you can
spool your virtual card punch to your own virtual reader:

cp spool punch to *
Then punch the member:

punch testmac maclib (member get noheader
and read it back onto disk:

readcard get macro

Section 8. Developing OS Programs Under CMS 139

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SCL23-9024-1 for 5748-XX8

In the above example, the member was punched with the NOHEADER option of
the PUNCH command, 'so that a name could be assigned on the READCARD
command line. If a header card had been created for the file, 1t would
have indicated the filename and filetype as GET MEMBER.

If you use the MOVEFILE command, you must issue a file definition fcr
the input member name and the output macro or copy name before entering
the MOVEFILE command: .

filedef inmove disk testcopy maclib (member enter
filedef outmove disk enter copy a
movefile

This example copies the member ENTER from ' the macro 1library TESTCOPY
MACLIB into a CMS file named ENTER COPY. ‘ :

When you use the PUNCH or MOVEFILE commands to extract members from
CMS MACLIBs, each member is followed by a // record, wvwhich is a MACLIB
delimiter. You can edit the file and use the DELETE subcommand to
delete the // record. ‘

If you wish to move the complete MACLIB to another file, use the
COPYFILE command. ' .
System MACLIBsS
The macro 1libraries that are on the system disk contain CHMS and CS
assembler language macros that you may want to use in your programs:

e CMSLIB MACLIB contains the CMS macros.

e DMSB20 MACLIB contains the CMS macros for VM/370 Basic Systen
Extensions (Program No. 5748-XX8).

e OSMACRO MACLIB contains the 0S macros that CMS supports or simulates
or those that require no CMS support.

e OSMACRO1 MACLIB contains the macros CMS does not support or simulate.
(You can assemble programs in CMS that contain these macros, but you
must execute them in an 0S virtual machine.)

e TSOMAC MACLIB contains TSO macros.

e DOSMACRO MACLIB Contains macros used in CMS/DOS.

To obtain a list of the macros in any of these libraries, use the MAF
function of the MACLIB command.

USING OS MACRO LIBRARIES

If you want to assemble source programs that contain macro statements
that are defined in macro libraries on your OS disks, you can use the
FILEDEF command to identify them to CMS so that you can name them when
you issue the GLOBAL command. For example, the commands:

filedef cmslib disk temp méclib c dsn test asm macros
global maclib temp

allow you to access the macro library TEST.ASM.MACROS on the 0S5 disk
accessed as your C-disk.

140 1IBM VM/370 CMS User's Guide’

Assembling Programs in CMS

To assemble assembler language source programs into object module
format, you can use the ASSEMBLE command, and specify assembler options
on the command line; for example:)

assemnble myfile (print
assembles a source program named MYFILE ASSEMBLE and directs the output

listing to the printer. All of the ASSEMBLE command options are listed
in the ¥YM/370 CMS Command and Macro Reference.

When you invoke the ASSEMBLE command specifying a file with the
filetype of ASSEMBLE, CMS searches all of your accessed disks, using the
standard search order, until it locates the srecified file. When the
assembler creates its output 1listing and text deck, it creates files
with filetypes of LISTING and TEXT, and writes them onto disk according
to the following priorities:

1. If the source file is on a read/write disk, the TEXT and LISTING
files are written onto that disk.

2. If the source file is on a read-only extension of a read/write
disk, the TEXT and LISTING files are written onto the parent disk.

3. 1If the source file is on any other read-cnly disk, the TEXT and
LISTING files are written onto the A-disk.

In all of the above cases, the TEXT and LISTING files have a filenare
that is the same as the input ASSEMBLE file.

The input and output files used by the assembler are assigned by
FILEDEF commands that CMS issues internally when the assembler is
invoked. If you issue a FILEDEF command using one of the assembler
ddnames before you issue the ASSEMBLE command, you can override the
default file definitions.

The ddname for the source input file (SYSIN) is ASSEMBLE. If you
enter:

filedef assemble reader
assemnble sample

then the assembler reads your input file from your card reader, and
assigns the filename SAMPLE to the output TEXT and LISTING files.

You could assemble a source file directly from an 0S disk by
entering:

filedef assemble disk myfile assemble b4 dsn os source file
assemble myfile

In this example, the CMS file identifier MYFILE ASSEMBLE is assigned to
the data set 0S.SOURCE.FILE and then assembled.

LISTING and TEXT are the ddnames . assigned to the SYSPRINT and SYSLIN
output of the assembler. You might assign file definitions to override
these defaults as follows:

filedef listing disk assemble listfile a

filedef text disk assemble textfile a

assemble source
In this example, output from the assembly of the file, SOURCE ASSEMELE,
is written to the files, ASSEMBLE LISTFILE and ASSEMBLE TEXTFILE.

Section 8. Developing OS Programs Under CMS 143

The ddnames PUNCH and CMSLIB are used for SYSPOUNCH and SYSLIB data
sets. PUNCH output is produced when you use the DECK option of the
ASSEMBLE command. The default file definition for CMSLIB is the macro
library CMSLIB MACLIB, but you must still issue the GLOBAL command if
you want to use it.

Executing Programs

After you have assembled or compiled a source fprogram you can execute
the TEXT files that were produced by the assembly or compilation. You
may not, however, be able to execute all your O0S programs directly in
CMS. There are a number of execution-time restrictions placed on your
virtual machine by VM/370. You cannot execute a program that uses:

Multitasking

More than one partition
Teleprocessing

ISAM macros to read or write files

The above is 'only a partial list, representing those restrictions with
which you might be concerned. For a complete list of restrictions, see
the ¥M/370 Planning and System Generation Guide.

EXECUTING TEXT FILES

TEXT files, in CMS, are relocatable, and can be executed simply by

loading them into virtual storage with +the LOAL command and nusing the

START command to begin execution. For example, if you have assembled a

source program named CREATE, you have a file named CREATE TEXT. You can
issue the command:

load create

which 1loads the relocatable object file into storage, and then, to
execute it, you can issue the START command:

start
In the case of a simple program, as in the above example, you can
load and begin execution with a single command line, using the START
option of the LOAD command:
load create (start
When you issue the START command or LOAD command with the START
option, control is passed to the first entry point in your program. If
you have more than one entry point and you want to begin execution at an
entry point other than the first, you can specify the alternate entry
point or CSECT name on the START command:
start create2

When you issue the LOAD command specifying the filename of a TEXT file,
CMS searches all of your accessed disks for the specified file.

If your program expects a parameter list to ke passed (via register
1), you can specify +the arguments on the START command line. If you
enter arguments, then you must specify the entry point:

start * namel

144 1IBM VM/370 CMs User's Guide

When you specify the entry point as an asterisk (*) it indicates that
you vwant to use the default entry point.

Defining Input and Output Files

You can issue the FILEDEF command to define input and output files any
time before you begin program execution. You can issue all your file
definitions before 1loading any TEXT files, or issue them during the
loading process. You can find out what file definitions are currently
in effect by issuing the FILEDEF command with no operands:

- filedef

You can also use the FILEDEF operand of the QUERY command.

TEXT LIBRARIES (TXTLIBS)

You may want to keep your TEXT files in text 1libraries, that have a
filetype of TXTLIB. Like MACLIBs, TXTLIBs have a directory and members.
TXTLIBs are created and modified by the TXTLIB command, which has
functions similar to the MACLIB command: : '

The GEN function creates the TXTLIB.

The ADD function adds members to the TXTLIB.

The DEL function deletes members and compresses the TXTLIB.
The MAP function lists members.

There is no REP function; you must use a DEL followed by an ADD to
replace an existing member. The CMS commands that recognize MACLIBs as
special filetypes also recognize TXTLIBs, and allow you to display,
print, or punch TXTLIB members. :

The TXTLIB command reads the object files as it writes them into the
library, and creates a directory entry for each entry point or CSECT
name. If you have a TEXT file named MYPROG, which has a single routine
named BEGIN, and create the TXTLIB named TESTLIB as follows:

’

txtlib gen testlidb myprog

TESTLIB contains no entry for the name MYPROG; you must specify the
membername BEGIN to reference this TXTLIB member.

When you want to load members of TXTLIBs into storage to execute then
(just as you execute TEXT files), you must issue the GLOBAL command to
identify the TXTLIB:

global txtlib testlib
load begin (start

"When you specify more than one TXTLIB on the GLOBAL command line, the
order of search is established for the TXTLIBs. However, if the AUTO
option is in effect (it is the default), CMS searches for TEXT files
before searching active TXTLIBs.

When the TXTLIB command processes a TEXT file, it writes an LDT
(loader terminate) card at the end of the TEXT file, so that when a load
request is issued for a TXTLIB member, 1loading terminates at the end of
the member. If you add 0S linkage editor control statements to the TEXT
file (using the CMS editor) before you issue the TXTLIB command to add
the file to a TXTLIB, the control statements are processed as follows:

Section 8. Developing 0S Programs Under CMS 145

NAME: A NAME statement causes the TXTLIB command to create the directory
entry for the member using the specified name. Thereafter, when you want
to load that member into storage or delete it from the TXTLIB you must
refer to it by the name specified on the NAME statement.

ENTRY: If you use an ENTRY statement, the entry point you specify is
validated and checked for a duplicate. If the entry point name is valid
and there are no duplicates in the TEXT file, the entry name is written
in the LDT card. Otherwise, an error message 1is issued. When this
member is 1loaded, execution begins at the entry point specified. (See
the following "Determining Program Entry Points.")

ALIAS: An entry is created in the directory for the ALIAS name Yyou
specify. A maximum of 16 alias names can be used in a single text deck.
You may load the single member and execute it by referring to the alias
name, but you cannot use the alias name as the object of V-type address
constant (VCON), because the address of the member cannot be resolved.

SETSSI: Information you specify on the SETSSI card is written in bytes
26 through 33 of the LDT card.

All other O0S linkage editor control statements are ignored by the
TXTLIB command and written into the TXTLIB member. When you attempt to
load the member, the CMS loader flags these cards as invalid.

RESOLVING EXTERNAL REFERENCES

There is no real linkage editor in CMS; the link-edit function, that of
locating external references and loading additional object modules into
storage, is performed by the CMS loader. The CMS loader loads files
into storage as a result of a LOAD or INCLUDE command, or when you issue
a dynamic load request from a progranm (u51ng the OS macros LOAD, LINK,
or XCTL).

When a file is loaded, the loader checks for unresolved references;
if there are any, the loader searches your disks for TEXT files with
filenames that match the external entry name. When it finds a match, it
loads the TEXT file into storage. If a TEXT file is not found, the
loader searches any available TXTLIBs for members that match; if a match
is found, it loads the member.

If there are still unresolved references, for example, if you load a
program that calls routines PRINT and. ANALYZE but the lcader cannot
locate them, you receive the message:

THE FOLLOWING RAMES ARE UNDEFINED:
PRINT
ANALYZE

You can issue the INCLUDE command to load additional TEXT files or
TXTLIB members into storage so the 1loader can resolve any remaining
references. For example, if you did not identify the TXTLIB that
contains the routines you want to call, you may enter the GLOBAL command
followed by the INCLUDE command:

global txtlib newlib
include print analyze (start

This situation might also occur if you have TEXT files with filenames .

that are different from the CSECT names; you must explicitly issue LOAD
and INCLUDE commands for these flles.

146 IBM VM/370 CMS User's Guide

9

At execution time, if there are still any unresolved references,
their addresses are all set to 0 by the loader, so any attempt to
address them in a program may result in a program check.

The LOAD and INCLUDE Commands

The INCLUDE command has the same format and option 1list (with one
exception) as the LOAD command. The main difference is that when you
issue the INCLUDE command the loader tables are not reset; if you issue
two LOAD commands in succession, the second LCAD command cancels the
effect of the first, and the pointers to the files loaded are lost.

Conversely, the INCLUDE command, which you must issue when you want
to load additional files into storage, should not be used unless you
have Jjust issued a LOAD command. You may srecify as many INCLUDE
commands as necessary following a LOAD command to 1load files into
storage.

CONTROLLING THE CMS LOADER

The LOAD and INCLUDE commands allow you to specify a number of options.
You can:

e Change the entry point to which control is to be passed when
execution begins (RESET option).

e Specify the location in virtual storage at which you want the files
to be loaded (ORIGIN option).

e Control how CMS resolves references and handles duplicate CSECT names
(AUTO, LIB, and DUP options).

e (Clear storage to binary zeros before loading files (CLEAR option).

When the LOAD and INCLUDE commands execute, they produce a load map,
indicating the entry points loaded and their virtual storage locations.
You may find this load map useful in debugging your programs. If you do
not specify the NOMAP option, the load map is written onto your A-disk,
in a file named LOAD MAP AS5. Bach time you issue the LOAD command, the
0ld file LOAD MAP is erased and the new load map replaces it. If you do
not want to produce a load map, specify the NOMAP option.

You can find details about these, and other options under the
discussion of the LOAD command in VM/370 CMS Command and Macro
Reference.

Loader Control Statements

In addition to the options provided with the LOAD and INCLUDE commands
that assist you in controlling the execution of TEXT files, you can also
use loader control statements. These can be inserted in TEXT files,
using the CMS editor. The loader control statements allow you to:

e Set the location counter to specify the address at which the next
TEXT file is to be loaded (SLC statement).

Section 8. Developing OS Programs Under CMS 147

® Modify instructions and constants in a TEXT file, and change the
length of the TEXT file to accomodate modifications (Replace and
Include Control Section statements).

e Change the entry point (ENTRY statement).

e Nullify an external reference so that it dces not receive control
when it is called, and you do not receive an error message when it is
encountered (LIBRARY statement).

These statements are also descrlhed under the LOAD command in VM/370 CMS
command and Macro Reference.

Determining Program Entry Points

When you load a single TEXT file or a TXTLIB member into storage for
execution, the default entry point is the first CSECT name in the object
file loaded. You can specify a different entry point at which to start
execution either on the LOAD (or INCLUDE) command line with the RESET
option:

load myprog (reset beta

where BETA is the alternate entry point of your program, or you can
specify the entry point on the START command line:

start beta

When you load multiple TEXT files (either explicitly or implicitly,
by allowing the loader to resolve external references), you also have
the option of specifying the entry point on the LOAD, INCLUDE, or START
command lines. ;

If you do not specifically name an entry point, the loader determines
the entry point for you, according to the following hierarchy:

1. An entry point specified on the START command

2. The last entry specified with the RESET option on a LOAD or INCLUDE
command ‘

3. The name on the last ENTRY statement that was read

4. The name on the last LDT statement that contained an entry name
that was read

5. The name on the first assemhler— or compiler-produced END statement
that was read

6. The first byte of the first control section loaded

For example, if you load a series of TEXT files that contain no
control statements, and do not specify an entry point on the LOAD,
INCLUDE, or START commands, execution begins with the first file that
you loaded. If you want to control the execution of program subroutines,
you should be aware of this hierarchy when you lcad programs or when you
place them in TXTLIBs.

148 1IBM VM/370 CMS User's Guide

An area of particular concern is when you issue a dynamic load (with
the 0S LINK, LOAD, or XCTL macros) from a program, and you call members
of CMS TXTLIBs. The CMS loader determines the entry point of the called
program and returns the entry point to your program. If a TXTLIB member
that you load has a VCON to another TXTLIB member, the LDT card from the
second member may be the last LDT card read by the loader. If this LDT
card specifies the name of the second member, then CMS may return that
entry point address to your program, rather than the address of the
first member.

CREATING PROGRAM MODULES

When your programs are debugged and tested, you can use the LOAD and
INCLUDE commands, in conjunction with the GENMOD command, to create
program modules. A module is a nonrelocatable file whose external
references have been resolved. In CMS, these files must have a filetype
of MODULE.

To create a program module, 1load the TEXT files or TXTLIB members
into storage and issue the GENMOD command:

load create analyze print
genmod process

In this example, PROCESS is the filename you are assigning the
module; it will have a filetype of MODULE. You could use any name; if
you use the name of an existing MODULE file, the o0ld one is replaced.

To execute the program composed of the source files CREATE, ANALYZE,
and PRINT, enter:

process

If PROCESS requires input and/or output files, you will have to define
these files before PROCESS can eXxecute properly; if PROCESS expects
arguments passed to it, you can enter them following the MODULE name;
for example:

process test1

For more information on creating program modules, see "Section 13.
Programming for the CMS Environment."

USING EXEC PROCEDURES

During your program development and testing cycle, you may want to
create EXEC procedures to contain sequences of CMS commands that you
execute frequently. For example, if you need a number of MACLIBs,
TXTLIBs, and file definitions to execute a particular program, you might
have an EXEC procedure as follows:

Section 8. Developing OS Programs Under CMS 149

ECONTROL ERROR TIME

&ERROR &EXIT ERETCODE

GLOBAL MACLIB TESTLIB OSMACRO OSMACRO1
ASSEMBLE TESTA

PRINT TESTA LISTING

GLOBAL TXTLIB TESTLIB PROGLIB
ACCESS 200 E

&EBEGSTACK

OS.TEST3.STREAM.BETA

GEND

FILEDEF INDD1 E DSN ?

FILEDEF INDD2 READER

FILEDEF OUTFILE DISK TEST DATA A1
LOAD TESTA (START

&IF ERETCODE = 100 &GOTO -RET100
&§IF ERETCODE = 200 &GOTO —RET200
EEXIT &ERETCODE

—-RET100 &CONTINUE

—RET200 &CONTINUE

The §&CONTROL and &ERROR control statements in the EXEC procedure
ensure that if an error occurs during any part of the EXEC, the
remainder of the EXEC does not execute, and the execution summary of the
EXEC indicates the command that caused the error.

Note that for the FILEDEF command entered with the DSN ? operand,
you must stack the response before issuing the FILEDEF command. In this
example, since the 0S data set name has more than eight characters, you
must use the §&BEGSTACK control statement to stack it. If you use the
ESTACK control statement, the EXEC processor truncates all words to
eight characters. '

When your program is finished executing, the EXEC special variable
ERETCODE indicates the contents of general register 15 at the time the
program exited. You can use this value to perform additional steps in
your EXEC procedure. Additional steps are indicated in the preceding
example by ellipses.

For detailed information on creating EXEC procedures, see "Part 3.
Learning to Use EXEC." . '

150 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

Section 9. Developing DOS Programs under CMS

You can use CMS to create, compile, execute and dekug DOS programs
written in assembler, COBOL, or PL/I programming languages. CMs
simulates many functions of the Disk Operating System (DOS/VSE) so that
you can use the interactive facilities of VM/370 to develop your
programs, and then execute them in a DOS virtual machine.

This section tells you how to use the CMS/DOS environment. It
describes the CMS commands you can use to manipulate DOS disks and DOS
files and CMS/DOS commands Yyou can use to simulate the functions of
DOS/VSE:

The CMS/DOS environment

Using DOS files on DOS disks

Using the ASSGN command

Using the DLBL command

Using DOS libraries in CMS/DOS

Using macroc libraries

DOS assembler language macros supported
Assembling source programs
Link-editing programs in CMS/DOS
Executing programs in CMS/DOS

For a practice terminal session using the commands and techniques
presented in this section, see "Appendix D: Sample Terminal Sessions.™

A Word About Terminoclogy

CMS/DOS is neither CHS nor is it DOS; it 4is a composite, and its
vocabulary contains both CMS and DOS terms. CMS/DOS performs many of
the same functions as DOS, but where, under DOS, a function is initiated
by a control card, in CMS it is initiated by a command. Many CMS/DOS
commands, therefore, have the same names as the DOS control statement
that ‘performs the same function. In those cases where the control
statement you would use in DOS and the command you use in CMS are
different, the differences are explained. For the most part, whenever a
term that is familiar to you as a DOS term is used, it has the same
meaning to CMS/DOS, unless otherwise indicated.

The CMS/DOS Environment
After you have loaded CMS into your virtual machine you can enter the
CHS/DOS environment by issuing: :

set dos on
If you want to access a DOS system residence volume during ydur CMS/DCS
terminal session, you should link to and access the disk that contains
the DOS SYSRES before you issue the SET command. For example, if you
share the system residence volume with other users and it is in your
directory at virtual address 390, you would issue the command:

access 390 g

and then issue the SET command as follows:

Section 9. Developing DOS Programs Under CMS 151

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

set dos on g

to indicate that the SYSRES is located on your G-disk. If you are going
to use the CMS/DOS librarian facilities to access any of the libraries
on the system residence volume, you must enter the CMS/DOS environment
this way.

. If you are using CMS exclusively for DOS applications, you could put
the ACCESS and SET DOS ON commands in your PROFILE EXEC.

If you are going to use access method services functions in CMS/DOS,
or execute functions that read or write VSAH data sets, you must use the
VSAM option of the SET DOS ON command:

set dos on g (vsanm

When you are using CMS/D0OS, you can use your virtual machine just as
you would if you were in the CMS environment; but you cannot execute any
CMS commands or program modules that load and/or use 0OS macros. The
SCRIPT command, for example, uses 0S macros, and is therefore invalid in
the CMS/DOS environment.

You have, however, in addition to the CP and CMS commands available,
a series of commands that simulate DOS/VSE functions. Except for the
DLBL and DOSLIB commands, these commands or ofperands should only be
issued in the CMS/DOS environment.

The CMS/DOS commands are summarized in Figure 15.

DL/lin the CMS/DOS Environment

Batch DL/I prograss can be written and tested in the CMS/DOS
environment. This includes all programs writtemn in COBOL, PL/X, and
Assembler language. :

Data base description generation and program specification block
generation can also be executed. However, the application control block
generation must be submitted to a DOS/VSE virtual machine for execution.
The data Lase recovery and reorganization wutilities must also be
executed in a DOS/VSE virtual machine.

This support provides the abilitf to:

e Interactively code DL/I control blocks and application programs that
contain imbedded DL/I calls.

e Store and maintain macros used to generate DL/I control blocks, and
programs created under CMS, in the CMS library. Production libraries
are thus isolated from the test environment.

e Modify and compile programs using the CMS/DOS text manipulation and
EXEC facilities.

» Link-edit and execute batch DL/I programs either interactively or in
CMSBATCH. Online DL/I application programs requiring access to
CICS/VS must be submitted to a DOS/VSE virtual machine fcr
link-editing, cataloging, and execution. S

The following restrictions apply:
e All the existing guidelines and restrictions that apply to VSAM data

set creation, maintenance, and application program use apply to DL/I
data sets. : :

152 IBM VM/370 CMS User's Guide

~gT

March 30, 1979

Command

Function

ASSGN

DLBL

DOSLIB

DOSLKED

DSERYV
DOSPLI

ESERV

FCOBOL
FETCH

GLOBAL

LISTIO

OPTION

QUERY

PSERV

RSERV

SET

SSERV

(O e e mn . G G G S S — G — —— —— — ——— t———— —— —— —— —— — — — — — — ——— — a—— — Gmme L WS GES e - G G Ghn - —— — e e CEN G W GED S e e

Relates system and programmer logical units to physical
devices.

Relates a program ddname (filename) to a real disk file
so you can perform input/output operations on it.

Lists or deletes phases from a CMS/DOS phase library, or
compresses the library.

Link—edits CMS TEXT files or DOS phases from systea or
private relocatable libraries.

Displays the directories of DOS libraries.

An EXEC procedure that invokes the DOS/VS PL/I compiler.

An EXEC procedure that invokes the ESERV utility functionms

on edited assembler language macros.
An EXEC procedure that invokes the DOS/VS COBOL compiler.

Loads executable phases from a DOSLIE or DOS library into
storage for execution, and optionally starts execution.

When you want DOSLIBs searched for executable phases or
macro libraries searched for macro definitions, you must
identify them with the GLOBAL command.

Displays the current assignments of system and programmer
logical units, and optionally creates an EXEC file to
contain the information.

Sets or changes the options in effect for the DOS/VS
COBOL compiler.

Use QUERY command operands to list current DLBL defintions

(QUERY DLBL), to determine whether or not you are in
the CMS/D0OS environment (QUERY DOS), the setting of the
UPSI byte (QUERY UPSI), the DOSLIBs identified by GLOBAL
commands (QUERY DOSLIB or QUERY LIBRARY), the current
number of lines per page (QUERY DOSLNCNT), which options

are in effect for the COBOL compiler (QUERY OPTION), or to

find out whether you have set a virtual partition size
(QUERY DOSPART).

Creates CMS files with a filetype of PROC from the DOS/VS
procedure library, or displays, prints or punches
procedures.

Copies a relocatable module from a DOS library and places
it in a CMS file with a filetype of TEXT, or displays,
prints, or punches modules.

The SET command has operands that allow you to enter or

leave the CMS/DOS environment (SET DOS OR or SET DOS OFF),
to set the number of SYSLST lines per page (SET DOSLNCNT),

to set the UPSI byte (SET UPSI), and to set a virtual
partition size (SET DOSPART).

Creates CMS COPY files from books on DOS source statement
libraries.

e e e e - - —— - —— —— =D — ——— — — AR . G G D — — D ———— — —— D s S . GER SV R SIS AR CES G T GE G R G S G G —— SIS amn e =)

Figure 15.

CMS/DOS Commands and CMS Commands with Special Operands for
CMS/DOS

Section 9. Developing DOS Programs Under CMS 153

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

e The CMS/DOS restriction on writing to sequential files applies to
SHSAM and HSAM.

e To assemble a DBD or PSB under CMS/DOS, you must first copy the
DBDGEN and PSBGEN macros from the DOS/VSE source statement library to
a CMS MACLIB. :

For more 1nformat10n about using DL/I in the CMS/DOS env1ronment, see
PL/I DOS/VS Generation Informatiocn.

Using DOS Files on DOS Disks

- You can have DOS disks attached to your virtual machine by a directory
entry or you can link to a DOS disk with the LINK command. You can use
the ACCESS command to assign a mode letter to the disk:

access 155 b '
and the RELEASE command to release it:

release b
Except for VSAM disks, you cannot write on DOS disks, or wupdate DOS
files on them. You can, however, execute programs and CMS/DOS commands
that read from these files, and you can use the LISTDS command to
display the file-ids of files on a DOS disk; for example:

listds b

You can also verify the existence of a particular file. For example, if
the file—-id is NEW.TEST.DATA you cCah enter:

listds new test data b
You can use this form only if the file-id has ocne- to eight-character
qualifiers separated by periods. If the file-id of the DOS file you
want to verify contains embedded blanks, for example NEW.TEST DATA, then
you have to enter the LISTDS commands with a question mark:

listds ? b
CMS responds:

ENTER DATA SET NAME:
and you can enter the exact file-id:

new.test data

If the data set exists, you receive a response:

FM DATA SET NAME
B NEW.TEST DATA

READING DOS FILES

Under CMS/DOS, you can execute programs that read DOS sequential (SAMN)
files; you can also execute programs that read and write VSAM files.
You cannot, however, execute programs to read direct (DAM) or indexed
sequential (ISAM) DOS files.

154 IBM VM/370 CMS User's Guide

March 30, 1979

Complete information on using CMS to access and manipulate VSAM files
is described in "Section 10. Using Access Method Services and VSAM In
CMS and CMS/D0OS."™ The discussion below lists the restrictions placed on
reading SAM files.

Restrictions on Reading DOS Disk Files in CMS

CMS cannot read DOS files that:
e Have the input security indicator onmn.

e Contain more than 16 user labels and/or data extents. (If the file
has user labels, they occupy the first extent; therefore the file
must contain no more than 15 data extents.)

e Are multivolume files. Multivolume files are read as single-volume
files. End of volume is treated as end cf file. There is no
end-of-volume switching.

e Have user labels. User labels in user-labeled files are bypassed.

CMS does nct support duplicate volume labels; you cannot access more
than one volume with the same six-character label while you are using
CMS/DOS.

CREATING CMS FILES FROM DOS LIBRARIES

You can create CMS files from existing DOS files on DOS disks. CHMS
simulates the DOS librarian functions DSERV, RSERV, SSERV, ESERV, and
PSERV with commands of the same names; you can use these CMS/DCS
commands to create CMS files from relocatable, source statement, or
procedure libraries located either on the DOS system residence volume or
in private lilkraries. The functions are fully described later in this
section.

Copying DOS Disk and Tape Data Files

If you want to create CMS files from DOS files that are not cataloged in
libraries or from DOS files on tape, you can use the MOVEFILE command.
The MOVEFILE command allows you to copy a file from one device to
another device of the same or a different type. Before issuing the
MOVEFILE command, the input and the output files must be described to
CMS with the FILEDEF command.

The MOVEFILE and FILEDEF commands are described and examples are
given of how to use them in "Section 8. Developing CS Program Under
CMS." The procedures are the same for copying DOS files as for 0S data
sets. You must, however, keep the following in mind:

e Since DOS files on DOS disks do not contain BLKSIZE, RECFM, or LRECL
options, these options must be specified via the FILEDEF command;
otherwise, defaults of BLOCKSIZE=32760 and RECFM=U are assigned.
LRECL is not used for RECFM=U files.

e If a DOS file-id does not follow 0S naming conventions (that is, one-
to eight-byte qualifiers with each qualifier separated by a period;

Section 9. Developing DOS Programs Under CMS 155

Pg.

of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

up to 44 characters including periods), Yyou must use the DSN 2
operand of FILEDEF and the ? .operand of LISTDS to enter the DCS

file-id.

Copying Modules from DOS Library or SYSIN Tapes

You <can create individual CMS files for DOS modules from a DOS
library distribution tape or DOS SYSIN tape. Use the VMFDOS command.
The VMFDOS command can create a CMS file for each DOS module that
exists, and the CMS filename corresponds to the DOS module name. You
can restore individual modules, groups of modules, or the entire
module set. :

For DOS 1library distribution tapes, the VNFDOS command restores
modules from either system or private (relocatable and/or source
statement) 1libraries. The created CMS files have a filetype of
'TEXT' if they are from a relocatable library. They have a filetype
of 'MACRO' if they are from a source statement library.

For DOS SYSIN tapes, modules containing a period as the second
character (for example, 'A.') of a DOS 'CATALX' control statement
have a filetype of 'MACRO'. All other files have a filetype cf
'TEXT'.

The VMFDOS command is described in the VYM/370 Planning and Systenm
Generation Guide.

If you have DOS files or source programs on cards, you can create CHMS
files directly by having these cards read into the real system card
reader. You direct the cards to your virtual machine Lty punching a
CP ID card in this format:

ID HARMONY
and placing this card in front of your card deck. When the cards
appear in your virtual card reader, you can read them onto your CHMS
A-disk with the READCARD command:

readcard dataproc assemble

You can use the editor to remove any DOS control cards that may be
included in the deck. : :

Using Tapes in CMS/DOS

See "Tape Labels in CMSY for a description of CMS tape 1label
processing for CMS/D0OS tape files. The suprort for tape labels is
only for files defined by a DTFMT macro. If you do not wuse this
macro, CMS bypasses IBM standard labels on input tapes and writes a
tape mark over any existing labels on an output tape. The CHMS
LABELDEF command is equivalent in CMS/DOS to the DOS/VM TLBL control
statement when standard tape label processing is used.

156 1IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8
Using the ASSGN Command

The ASSGN and DLBL commands perform the same functions for CMS/DOS as
the ASSGN and DLBL control statements in DOS/VSE. You use the ASSGN
conmand to designate an I/O device for a system or programmer logical
unit (SYSxxx) and, if the device is a disk device, you can use the
DLBL command to establish a real file identification for a symbolic
filename in a program. The DLBL command is descrited wunder "Using
the DLBL Command."

In addition to using the ASSGN command to relate real I/0 devices
with symbolic units, you must use it in CMS/DOS to:

Assign SYSIN or SYSIPT for the input source file for a language
compiler when you use the DOSPLI or FCOBOL commands.

Identify the disk, by mode 1letter, on Wwhich a private core image,
relocatable, or source statement library resides.

Section 9. Developing DOS Programs Under CMS 156.1

March 30, 1979

156.2 IBM VM/370 CMS User's Guide

e Assign SYSIN or SYSIPT to the CMS disk on which an ESERV file,
containing control statements for the ESERV program, resides.

When you enter the ASSGN command, you must supply the logical unit
and the device; for example:

assgn sys100 printer
assigns the logical unit SYS100 to the printer. When you want to make
an assignment to a disk device, you must specify the mode letter at
which the disk is accessed. The command: .

assgn sys010 b
assigns the logical unit SYS010 to your B-disk.

The system 1logical units you can assign and the valid device types
you can assign to them in CMS/DOS follow.

SYSIPT, SYSRDR, SYSIN: These units can be assigned to disk (mode), TAPE,
or READER. If you make an assignment to SYSIN, both SYSRDR and SYSIPT
are also assigned the same device.

SYSLST: The system logical unit for listings can be assigned to disk

(mode) , PRINTER, or TAPE.

SY¥SLOG: Terminal or operator ocutput or messages can be assigned to
PRINTER or TERMINAL. CMS/DOS always assigns SYSLOG to TERMINAL by
default, so you never have to make this assignment except when you want

to alter it.

SYSPCH: Punched output, for example text decks, can be assigned to

PUNCH, disk (mode), or TAPE.

SYSCLB, SYSRLB, SYSSLB: The system logical wunits SYSCLB, SYSRLB, and
SYSSLB can be assigned to private core image, relocatable, and source
statement libraries, respectively. The only valid assignments for these
units is to disk (mode). If you want to reference ©private libraries
with the DSERV, ESERV, FETCH, SSERV, or RSERV commands, you must assign
SYSCLB, SYSRLB, or SYSSLB to the disks on which the libraries reside.

You can assign programmer logical units SYS000 through SYS241 with the
ASSGN command. This deviates fronm DOS/Vs, where the number of
programmer logical units varies according to the number of partitioms.

MANIPULATING DEVICE ASSIGNMENTS
Besides assigning I/0 devices, the ASSGN command can also negate a
Previous assignment:

assgn syspch ua

or specify that, for a given device, no real I/0 operation is to be
performed during the execution of a program:

assgn sys009 ign

Section 9. Developing DOS Programs Under CHMS 157

When you release a disk from your virtual machine, any assignments made
to that disk are unassigned.

You can find out the current assignments for system and programmer
logical units with the LISTIO command, which 1lists all the system or
programmer logical units, even those that are unassigned:

listio
To list only currently assigned units, enter:
listio a

To find out the current assignment of one specific unit, for example
SYS100, enter:

listio sys100

With the EXEC option of the LISTIO command, Yyou can create a disk
file containing the 1list of assignments. The $LISTIO EXEC that is
created contains two EXEC numeric variables, &1 and &2, for each unit
listed. PFor example, if you entered the command:

listio sys081 (exec
then the file $LISTIO EXEC may contain the record:
€1 &2 SYS081 PRINTER

When you use the STAT option, LISTIO lists, for disk devices, whether
the disk is read-only or read/write; for example:

listio sys100
SYS100 B R/W

indicates that SYS100 is assigned to the B-disk, which 1is a read/write
disk.

You can <cancel all current assignments by 1leaving the CMS/DOS
environment and then re-entering it:

set dos off
set dos on

VIRTUAL MACHINE ASSIGNMENTS

When you assign a physical device type to a system or programmer logical
unit, CMS relates the device to your virtual machine configuration; you
receive an 'error message if you try to assign a logical unit to a device
not in your configuration. For example, if you are using the ASSGN
conmand to assign a logical unit to a disk file, you must specify the
access mode letter of the disk. If the disk is not accessed, the ASSGN
command fails.

Por another example, if you issue:
assgn syspch punch
the punch specified is your own virtual machine card punch. The actual
destination of punched output then depends on the spooling

characteristics of the punch; if it is spooled to another user or to *,
then no real cards are punched, but virtual card images are placed in

158 1IBM VM/370 CMS User's Guide

the virtual reader of the destination userid, which may be another
virtual machine or your own.

CMS supports only one reader, one punch, and one printer; you cannot
make any assignments for multiple output devices in CMS/DOS. When you
make an assignment for a logical unit that has already been assigned, it
replaces the current assignment.

Using the DLBL Command

Use the DLBL command to supply CMS/DOS with specific file identification
information for a disk file that is going to be used for input or
output. For any DLBL command you issue, you must previously have issued
an ASSGN command for the disk, specifying a system or programmer logical
unit. The tasic relationship is:

assgn SYSxXXX mode
dlbl filename mode DSN ? (SYSxxx

Both the SY¥Sxxx and the mode values must match on the ASSGN and DLBL
commands; the disk on which the file resides must be accessed at mode.

The filename on the DLBL command line, called a ddname in CMS/DOS,
corresponds to the symbolic name for a file in a program. If you want to
reference a private DOS library, you must use one of the following
ddnames:

System
Logical Unit Filepame
SYSCLB IJSYSCL
SYSRLB IJSYSRL -
SYSSLB TJISYSSL

ENTERING FILE IDENTIFICATIONS

When you issue the DLBL command you must identify the file, by file-id
(for a DOS file) or by file identifier (for a CMS file). The keywords
DSN and CMS indicate whether it is a DOS file or a CMS file,
respectively.

If the file is a DOS file residing on a DOS disk, you can enter the
DLBL command in one of two ways. For example, for a file named
TEST.INPUT you could enter either:

assgn sys101 4
dlbl infile 4 dsn test input (sys101

assgn sys101 4
dlbl infile d dsn ? (sys101

ENTER DATA SET NAME:
test.input

For any DOS file with a file-id that contains emtedded blanks or
hyphens, you must use the "DSN ?" form.

Section 9. Developing DOS Programs Under CMS 159

When you issue a DLBL command for a CMS file, you enter the filename

and filetype following the keyword CHMS:

assgn sys102 a
dlbl outfile a cms new output (sys102

In this example, if SYS102 is defined as an output file for a program,
the output is written to your CMS A-disk in a file named NEW OUTPUT. ' -

You can, for convenience, use a CMS default file identifier. If you
enter:

dlbl outfile a cas (sys102

then the output filetype defaults to that of the ddname and the filenanme
to FILE. So, this output file is named FILE OUTFILE.

Clearing and Displaying File Definitionmns

You can clear a DLBL definition for a file by using the CLEAR operand of
the DLBL command:

dlbl ocutfile clear

To clear all existing definitions, except those entered with the PERM
‘option, you can enter:

dlbl * clear
This command is issued by the assembler and the language processors when
they complete execution. Definitions entered with the PERM option must
be individually cleared.
Whenever you use the HX Immediate command to halt the execution of a
program, the DLBL definitions in effect are cleared, including those
entered with the PERM option.

You can find out what definitions are currently in effect by issuing
the DLBL command with no operands:

dlbl

or, you can use the QUERY command with the DLBL operand.

Using DOS Librariesin CMS/DOS

CMS/DOS provides you with the capability of using various types of files
from DOS system or private libraries. You can copy, punch, display at
the terminal, or print:

e Books from system or private source statement libraries using the
SSERV command

e Relocatakle modules from system or private relocatable 1libraries
using the RSERV command -

e Procedures from the system procedure library using the PSERV command

160 IBM VM/370 CMS User's Guide

March 30, 1979

You can also:

e Copy and de-edit macros from system and private E sublibraries using
the ESERV command

e Access the directories of system or private likraries using the DSERV
command

e Link-edit relocatable modules from system or private relocatable
libraries with the DOSLKED command

e Read core image phases from system or private core image libraries
into storage for execution using the FETCH command

THE SSERV COMMAND

If you have cataloged source programs or copy files on the system source
statement library and you want to use CMS to modify and test them, you
can copy them into CMS files using the SSERV command. For example,
suppose you want to copy a book named PROCESS from the A sublidbrary on
the system residence volume. The DOS system residence is in your
virtual machine configuration at virtuval address 350, and you have
accessed it as your F-disk. First, to indicate to CMS/DOS that the
system residence is on your F-disk, you enter:

set dos on £

then you can enter the SSERV command, specifying the sublibrary
identification and the book name:

SServ a EFrocess

This creates, from the A sublibrary, a file named PROCESS COPY and
Places it on your A-disk. If the book contained assembler language
source statements you would want the filetype to be ASSEMBLE, so you may
enter:

sserv a process assemble

If you want to copy a book from a private source statement library,
you must first use the ASSGN and DLBL commands to make the library known
to CMS/D0OS. For example, to obtain a copy file from a private library
on a DOS disk accessed as your D-disk, enter:

assgn sysslb d

d1bl ijsyssl 4@ dsn ? (sysslb
ENTER DATA SET NAME:
program.test library

Now, when you enter the SSERV command:

sserv t setup copy
the book named SETUP in the T sublibrary of PROGRAM.TEST LIBRARY is
copied into a CMS file named SETUP COPY. If SETUP is not found in the

private 1library, then CMS searches the system 1library, if it is
available.

Section 9. Developing DOS Programs Under CMS 161

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8
THE RSERV COMMAND

In CMS/DOS, to manipulate relocatable modules that have been cataloged
either on the system or a private relocatable library you must first
copy them into CMS files with the RSERV command. You can link-edit
modules directly from DOS relocatable libraries, but if you want to add
or modify linkage editor control statements for a module, you must place
the control statements in a CMS file.

If you are copying a relocatable module from the systenm relocafahle
library, then you should make sure that you have indicated the system
residence disk when you entered the CMS/DOS environment:

set dos on f

then you can issue the RSERV command specifying +the name of the
relocatable module you want to copy:

rserv rtna

The execution of this command results in the creation of a CHMS file
named RTNA TEXT on your A-disk. '

If you want to copy a relocatable module from a private relocatable
library, you must first use the ASSGN and DLBL commands to make the
private library known to CMS/DOS: : :

assgn sysrlb- d
d1lbl ijsysrl 4 dsn reloc l1lib (sysrlb

Then, issue the RSERV command for a specific module in that library:
rserv testrtna
to create the CMS file TESTRTNA TEXT from the module named TESTRTNA. If

the module TESTRTNA is not found in RELOC.LIB, CMS searches the systen
library, if it is available.

THE PSERV COMMAND

If you want to copy DOS cataloged procedures into CMS files to use, for
example, in preparing job streams for a DOS/VS virtual machine, you can
use the PSERV command:

pserv prepjob

This command creates a CMS file on your A-disk; the file is named
PREPJOB PROC. To copy a procedure from the procedure 1library you must
have entered the CMS/DOS environment specifying a disk mode for the
system residence volunme.

You cannot execute DOS/VS procedures directly from the CMS/DCS

environment. However, if you modify a procedure, you can punch it to a
virtual machine that is running a DOS/VSE system, and execute it there.

162 IBM VM/370 CMS User's Guide

BPg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

THE ESERV COMMAND

The CMS/D0OS ESERV command is actually an EXEC procedure that calls the
DOS/VSE ESERV utility program. To use the ESERV program, you first must
use the CMS Editor to create a file with a filetype of ESERV that
contains the ESERV control statements you want tc execute. For example,
if you want to write a de-edited copy of the macro DIFCD onto your
A-disk, you might create a file named DTFCD ESERV, with the record:

PUNCH E.DTFCD
As when you submit ESERV jobs in DOS/VSE, column 1 must be blank.

Then, you must assign SYSIN to the device on which the ESERV source
file resides, usually your A-disk:

assgn sysin a

Then you can enter the ESERV command specifying the filename of the
ESERV file:

eserv dtfcd

No other ASSGN commands are required; the CMS/DOS ESERV EXEC makes
default assignments for SYSPCH and SYSLST to disk.

To copy and de-edit macros from a private E sublibrary, issue the
ASSGN and DLBL commands to identify the 1library. For example, to
identify a source statement library named TEST.MACROS on the DOS disk
accessed as the C-disk, enter:

assgn sysslb c
d1lbl ijsyssl c dsn test macros (sysslb

The SYSLST output is contained in a CMS file with the same filename
as the ESERV file and a filetype of LISTING; you must examine the
LISTING file to see if the ESERV program executed successfully. You can
either edit it (using the CMS editor), or display its contents with the
TYPE command:

type dtfcd listing

The SYSPCH output is contained in a file with the same name as the
ESERV file and a filetype of MACRO. If you want to punch ESERV output
to your virtual card punch, make an assignment of SYSPCH to PUNCH.

When you use the PUNCH or DSPCH ESERV control statements, CATAL.S,
END, or /* records may be inserted in the output file. When you use the
MACLIB command to add the MACRO file to a CMS macro library, these
statements are ignored.

See M"Using Macro Libraries"™ for information on creating and
manipulating CMS macro libraries.

THE DSERV COMMAND

You can use the DSERV command to examine the contents of system or
private libraries. If you do not specify any options with it, the DSERV
command creates a disk file, named DSERV MAP, on your A-disk. You can
use the PRINT or TERM options to specify that the directory 1list is
either to be printed on your spooled printer or displayed at your
terminal. You can also use the SORT option to create a 1list in
collating sequence.

Section 9. Developing DOS Programs Under CMS 163

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

In order to examine a system directory, you must have entered the
CMS/DOS environment specifying the mode letter of the DOS systenm
residence: : ‘ :

set dos on f

If you want to examine the directory of a private source statement,
core ‘image, or relocatable library you must issue the ASSGN and DLEL
commands establishing SYSSLB, SYSCLB, or SYSRLB before using the DSERV
command.

For example, to display at your terminal an alphameric list of
procedures cataloged on the system procedure library, you would issue:

dserv pd (sort ternm

If the directory you are examining is for a core 3image library, you
can specify a particular phase name to ascertain the existence of the
phase:

dserv cd phase $$bopen (term

To list the directory of a private source statement library, you
would first issue the ASSGN and DLBL commands:

assgn sysslb b
dlbl ijsyssl b dsn test source (sysslb

then enter the DSERV command:
dserv sd

The CMS file, DSERV MAP A, that is created in this example contains the
directory of the private source statement library TEST.SOURCE.

USING DOS CORE IMAGE LIBRARIES

You can load core image phases from DOS core image libraries into
virtual storage and execute them under CMS/D0OS. Since CMS cannot write
directly to DOS disks, linkage editor output under CMS/DOS is placed in
a special CMS file called a DOSLIB. When you execute the FETCH command
in CMS/DOS you can load phases from either system or private DOS core
image libraries as well as from CMS DOSLIBs. More information on using
the FETCH command is contained under "Executing Programs in CMS/DOS."

Using Macros Libraries

DOS/VS macro 1libraries cannot be accessed -directly by the VM/370
assembler. If you want to assemble DOS programs in CMS/DOS that use DCS
macro or copy files that are on the system or a private macro library
you must first create a CMS macro library (MACLIE) containing the macros
you wish to use. Since the process of creating a CMS MACLIB from the
DOS system source statement 1library (E . suklibrary) .can be very
time-consuming, you should check with your installation's system
programmer. to see if it has already been done, and to verify the
filename of the macro library, so that you can use it in CMS/DOS.

Note: The DOS/VSE PL/I and DOS/VSE COBOL compilers executing in CMS/DOS
cannot read macro or copy files from CMS MACLIBs.

164- IBM VM/370 CMS User's Guide

If you want to extract DOS system macros tc modify them for your
private use, or if you want to use macros from a private likrary in CMS,
you must use the procedure outlined below to create the MACLIB files.

CMS MACLIBS

A CMS macro 1library has a filetype of MACLIB. You can create a MACLIB
from files with filetypes of MACRO or COPY. A MACRO file may contain
macro definitions; COPY files contain predefined source statements.

When you want to assemble a source program that uses macro or copy
definitions, you wmust ensure that the library containing the code is
identified before 7you invoke the assembler. Otherwise, the 1library is
not searched. You identify 1libraries to be searched using the GLOBAL
command. For example, if you have two MACLIBs that contain your private
macros and copy files whose names are TESTMAC MACLIB and TESTCOEFY
MACLIB, you would issue the command:

global maclib testmac testcopy

The libraries you specify on a GLOBAL command line are searched in the
order you specify then. A GLOBAL command remains in effect for the
remainder of your terminal session, or until you IPL CMS. To find out
what macro 1libraries are currently available fcr searching, issue the
command:

query maclib

You can reset the libraries or the search order by reissuing the GLOBAL
command.

CREATING A CMS MACLIB

To create a CMS macro library, each macro or copy file you want included
in the MACLIB must first be contained in a CMS file with a filetype of
COPY or MACRO. If you are creating a CMS MACLIB file from a DOS library
you must use the SSERV command to copy a file from any source statement
library other than an E sublibrary, or use the ESERV comrmand to copy and
de-edift~a macro from an E sublibrary. The SSERV command uses a default
filetype of COPY; the ESERV command uses a default filetype of MACRO.

The folloving example shows how to copy macros from various sources
and shows how to create and use the CMS MACLIBR that contains these
macros.

1. Enter the CHMS/DOS environment with the DOS system residence on a
disk accessed as mode C:

set dos on ¢
2. Copy the macro book named OPEN from the A sublibrary of the systen
source statement library:

sSserv a open

Section 9. Developing DOS Programs Under CMS 165

3. Establish a private source statement library:

access 351 d

assgn sysslb d

dlbl ijsyssl d dsn ? (sysslb
test source.lib ’

4. Issue the SSERV command for a macro in the M sublibrary of TEST
SOURCE.LIB:

sserv B releas
5. Create an ESERV file to copy from the E sublibrary:
edit contrl eserv
NEW FILE
EDIT:
input punch contrl
file
6. Execute the ESERV command:

assgn sysin a
eserv contrl

7. Create a CMS wmacro library named MYDOSMAC from the files Jjust
created, which are named OPEN COPY, RELEAS COPY, and CONTRL MACRO:

maclib gen mydosmac open releas contrl
8. To use these macros in an assembler language program, you must
indicate that this MACLIB is accessible before assembling a source
file:

global maclib mydosmac

THE MACLIB COMMAND

The MACLIB command performs a variety of functions. You use it to:

Create the MACLIB (GEN function)

Add, delete, or replace members (ADD, DEL, and REP functions)
Compress the MACLIB (COMP function)

List the contents of the MACLIB (MAP function)

Descriptions of these MACLIB command functions follow.

GEN Function: The GEN (generate) function creates a CMS macro library

——— . e o e s e

from input files specified on the command line. The input files must
have filetypes of either MACRO or COPY. For example:

maclib gen mymac get pdump put Tregequ

creates a macro library with the file identifier MYMAC MACLIB A1 from
macros existing in the files with the file identifiers:

GET {(MACRO),PDUMP. { MACRO),PUT { MACRO),and REGEQU { MACRO
COPY COPY CoPY COoPY

If a file named MYMAC MACLIB A1 already exists, it is erased.

166 1IBM VM/370 CMS User's Guide

Assume that the files GET MACRO, PDUMP COPY, PUT MACRO, and REGEQU
COPY exist and contain macros in the following form:

GET MACRO PDUMP COPY PUT MACRO REGEQU COPY
GET *COPY PDUMP PUT XREG
PDUMP
WAIT *COPY WAIT YREG
WAIT

The resulting file, MYMAC MACLIB A1, contains the members:

GET - WAIT
WAIT PUT
PDUMP REGEQU

The WAIT macro, which appears twice in the input to the command, also
appears twice in the output. The MACLIB command does not check for
duplicate macro names. If, at a later +time, the WAIT macro is requested
from MYMAC MACLIB, the first WAIT wmacro encountered in the directory is
used.

When COPY files are added to MACLIBs, the name of the library member
is taken from the name of the COPY file, or from the *COPY statement, as
in the file PDUMP COPY, above. Note that although the file REGEQU COPBY
contained two macros, they were bhoth included in the MACLIB with the
name REGEQU. When the input file is a MACRO file, the member name is
taken from the macro prototype statement in the MACRO file.

ADD Function: The ADD function appends new members to an existing macro
library. For example, assume that MYMAC MACLIB A1 exists as created in
the example in the explanation of the GEN function and the file DTFDI

COPY exists as follows:
*COPY DTFDI
DTFDI macro definition
*COPY DIMOD
DIMOD macro definition
If you issue the command:
maclib add mymac dtfdi

the resulting MYMAC MACLIB A1 contains the members:

GET PUT

WAIT REGEQU
PDUMP DTFDI
WAIT DIMOD

REP Function: The REP (replace) function deletes the directory entry for
the macro definition in the files specified. It then appends new macro
definitions to the macro library and creates new directory entries. For
example, assume that a macro library TESTMAC MACLIB contains the members
A, B, and C, and that the following command is entered:

maclib rep testmac a ¢
The files represented by file identifiers A MACRO and C MACRO each have
one macro definition. After execution of the command, TESTMAC MACLIB

contains members with the same names as before, but the contents of A
and C are different.

Section 9. Developing DOS Programs Under CMS 167

sama s

from the macro library directory and compresses the directory so there
are no unused entries. The macro definition still occupies space in the
library, but since no directory entry exists, it cannot be accessed or
retrieved. If you attempt to delete a macro for which two macro
definitions exist in the macro library, only the first one encountered
is deleted. For example:

maclib del mymac get put wait dtfdi

deletes macro names GET, PUT, WAIT, and DTFDI from the directory of the
macro library named MYMAC MACLIB. Assume that MYMAC exists as in the ADD
function example. After the above command, MYMAC MACLIB contains the
following members:

PDUMP
WAIT
REGEQU
DIMOD

COMP Function: Execution of a MACLIB command with the DEL or REP
functions can leave unused space within a macro library. The COMP
(compress) function removes any macros that do not have directory
entries. This function uses a temporary file named MACLIB CMSUT1. For
example, the command:

maclib comp mymac
compresses the library MYMAC MACLIB.

MAP Function: The MAP function creates a list containing the name cof
each macro in the directory, the size of the macro, and its position
within the macro library. If you want to display a list of the members

of a MACLIB at the terminal, enter the command:
maclib map mymac (term

The default option, DISK, creates a file on your A-disk which has a
filetype of MAP and a filename equal +to the filename of the MACLIB. If
you specify the PRINT option, then a copy of the map file is spooled to
your virtual printer as well as being written onto disk.

The following CMS commands supply a MEMBER option, which allows you to
reference individual members of a MACLIB:

PRINT (to print a member)
PUNCH (to punch a member)
TYPE (to display a member)
FILEDEF (to establish a file definition for a member)

o %00

You can use the CMS editor to create the MACRO and COPY files and
then use the MACLIB command to place them in a 1library. Once they are
in a library, you can erase the original files. ~

To ‘extract a member from a macro library, you can use either the
PUNCH or the MOVEFILE command. If you use the PUNCH command you can
spool your virtual card punch to your own virtual reader: :

cp spocl punch to *

168 IBM VM/370 CMS Usert's Guide

Pg. of GC20-1819-2 Rev ‘March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

Then punch the member:

punch testmac maclib (member get noheader
and read it back onto disk:

readcard get macro

In the above example, the member was punched with the NOHEADER option of
the PUNCH command, so that a name could be assigned on the READCARD
command line. If a header had been created for the file, it would have
indicated the filename and filetype as GET MEMBER.

If you use the MOVEFILE command, you must issue a file definition for
the input member name and the output macro or copy file before entering
the MOVEFILE command:

filedef inmove disk testcopy maclid (member enter
filedef cutmove disk enter copy a
movefile

This example copies the member ENTER from the macro 1library TESTCOPRY
MACLIB A into a CMS file named ENTER COPY.

When you use the PUNCH or MOVEFILE commands to extract members frca
CMS MACLIBs, each member is followed by a // record, which is a MACLIB
delimiter. You can edit the file and use the DELETE subcommand to
delete the // record.

If you wish to move the complete MACLIB to another file, wuse the
COPYFILE command.

System MACLIBs

The macro libraries that are on the system disk contain CMS, DOS, and CS
assembler language macros. The MACLIBs are:

e CMSLIB MACLIB, which contains the CMS macros.

e DMSB20 MACLIB contains the CMS macros for VM/370 Basic Systen
Extensions (Program No. 5748-XX8).

e DOSMACRO MACLIB, which contains DOS/VS macros that CMS/DOS routines
use.

e OSMACRO MACLIB, OSMACRO1 MACLIB, and TSOMAC MACLIB, which are used by
0S programmers.

DOS Assembler Language Macros Supported

Figure 16 lists +the DOS/VSE assembler language macros supported by
CMS/DOS. You can assemble source programs that contain these macrcs
under CMS/DOS, provided that you have the macros available in either
your own or a shared CMS macro 1library. The macros whose functions are
described in the "Function" column with the term "no—-op"™ are supported
for assembly only; when you execute programs that contain. these macros,
the DOS/VSE functions are not performed. To accomplish the macro
function you must execute the program in a DOS/VSE virtual machine.

Section 9. Developing DOS Programs Under CMS 169

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for S748-XX8

Macro
CALL
CANCEL
CDLOAD
CHECK
CLOSE/
CLOSER

CNTRL

‘COMRG

DEQ
DEQB
DTFxx1
DUMP
ENQ
ENQB
EOJ
ERET
EXCP
EXIT PC
EXIT AR
FCEPGOUT
FETCH

FREEVIS

GENL
GET
GETVIS
GETIME
JDUMP
LOAD
MVCOM
NOTE
OPEN/
OPENR
PAGEIN
PDUMP
PFIX
PFREE
POINTR
POINTS
POINTW
POST
PRTOV
PUT
PUTR
READ
RELEASE
RELPAG
RELSE
RETURN

'RUNMODE
'SECTVAL
- SEIZE

SETIME
'SETPFA-

Function

Pass control to another progranm

Terminate processing

Load a VSAM phase

Verify completion of a read or write operatlon
Deactivate a data file

Control a physical device

Return address of background partition
communication region

no—op

Release a Tesource

Establish file definitions

Dump storage and registers and terminate processing

no-op

Protect a resource

Terminate processing normally

Provide an error routine

Execute a channel program

Return from program check routine

Return from abnormal termination routine

no—-op '

Load and pass control to a phase

Load and pass control to a logical transient

Release user free storage

Generate a phase directory list

Access a sequential file

Obtain user free storage

Get the time of day

Dump storage and registers and terminate processing

Read a phase into storage

Modify bytes in the partition communication region

Manage data set access

Activate a data file

no-op
Dump storage and registers and continue processing
no—op
no—-op
Position a file for reading
Reposition a file to its beglnnlng
Position a file for writing
Post the event control block -
Control printer overflow
Write to a sequential file
Communicate with the system operator
Access a sequential file
Release a system resource
no-op
Skip to begin reading next -blcck
Return control to calling program
Check if program is running real or virtual
Obtain a sector number
no-op
no—op

"no—op

[0 e e T e D S NmS M A D D S WD m e G R S T G — A ——— ——— —— — — — — — — ———— — — — o= —— o— t0_— o — ot Wme St S aw——

DTFCN,

~tThe declarative macros supported are:
DTFCD, DTFPR, DTFDI, DTFMT, DTFSD, DTFCP, and DTFSL

be e o o e e e . S . — G . - - . G S G G G G G S S D ML G N S SUe G M AL S . e G— A o —- e g ——— — — = e m— ——

Figure 16. DOS/VSE Macros Supported by CMS (Part 1 of 2)

170 IBM VM/370 CMS User's Guide-

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

l’ 1
| Macro SVYC - Function |
| STXIT AB 37 Provide or terminate linkage to abnormal ending |
| PC 16 routine |
| IT 20 no—op I
| ocC 18 no—op |
{ TRACK FREE 36 no—op |
| TRACK HOLD 35 no—op |
| TROUNC - Skip to begin writing next blcck [
1 TTIMER 52 Return a 0 in Register 0 (effectively a noop) |
| USE 63 Reserve a system resource ' t
] WAIT 07 Wait for the completion of I/C t
| WRITE - Write to a sequential file i
{ xxMOD1 - Create Logical IOCS routine inline |
| |
| 1The DOS logic modules supported are: |
| CDMOD, PRMOD, DIMOD, MTMOD, SDMODxx, and CPMOD |
H 2
Figure 16. .DOS/VSE Macros Supported by CMS (Part 2 of 2)

Assembling Source Programs

If you are a DOS/VSE assembler language programmer using CMS/DOS, you
should be aware that the assembler used is the VM/370 assembler, not the
DOS/VSE assembler. The major difference is that the VM/370 assembler,
invoked by the ASSEMBLE command, is designed for interactive wuse, so
that when you assemble a program, error messages are displayed at your
terminal when compilation is completed, and you do not have to wait for
a printed listing to see the results. You can correct your source file
and reassemble it immediately. When your program assembles without
errors, you can print the listing.

To specify options to be used during the assembly, you enter them cn
the ASSEMBLE command line. Sso, for example, if you do not wvant the
ouﬁput LISTING file placed on disk, you can direct it to the printer:

assemble myfile (prlnt

A1l of the ASSEMBLE command options are listed in vu/370 CMS Command and
Macro Reference.

When you invoke the ASSEMBLE command specifying a file with a
filetype of ASSEMBLE, CMS searches all of your accessed disks, using the
standard search order, until it locates the file. When the assembler
creates the output LISTING and TEXT files, it writes them onto disk
according to the following priorities:

1. If the source file is‘on a read/write dlsk the TEXT and LISTING
files are written onto the same disk. :

2. If the source f11e is omn a read-only-disk that is an extension of a
read/write disk, the TEXT and LISTING files are written onto the
parent disk. : < ‘ ,

3. If the source is on any other .read-only-disk, the TEXT .and LISTING
flles are written onto the A—dlsk.

In all of the above cases, the fllenales assigned to the TEXT and
LISTING files are the same as the filename of the input file.

The output files used by the assembler are defined via FILEDEF
commands issued by CMS when it calls the assemkler. If you 1issue a

Section 9. Developing DOS Programs Under CMS 171

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

FILEDEF command using one of the assembler ddnames before you issue the
ASSEMBLE command, you can override the default file definitions.

The ddname for the source input file is ASSEMBLE. If yéu enter:

filedef assemble reader
assemble sanmple

then the assembler reads your input- file from your card reader, and
assigns the filename ' SAMPLE to the output TEXT and LISTING files. Yocu
can use this method to assemble programs directly from DOS sequential
files on DOS disks. For example, to assemble ‘a source file named
DOSPROG from a DOS disk accessed as a C-disk, you could enter:

filedef assemble c dsn dosprog (recfm £ lrecl 80
assemble dosprog

Again, the name you assign on the ASSEMBLE command may be anything; the
assembler uses this name to assign filenames +to the TEXT and LISTING
output files.

LISTING and TEXT are the ddnames assigned tc the SYSLST and SYSPCH
output of the assembler. You might issue file definitions to override
these defaults as follows:

filedef listing disk assemble listfile a
filedef text disk assemble textflle a
assemble source

When these -commands are executed, :the output from the assembly . of the
file SOURCE ASSEMBLE is written to the disk files ASSEMBLE LISTFILE and
ASSEMBLE TEXTFILE.

Link-editing Programs in CMS/DOS

When the assembler or one of the language compilers executes, the object
module produced is written to a CMS disk in a file with a filetype cf
TEXT. The filename is always the same as that of the input source file.
These TEXT files (sometimes referred to as decks, although they are not
real card decks) can be used as input to the linkage editor or can be
the target of an INCLUDE linkage editor control statement.

You can invoke the CMS/DOS linkage editor with the DOSLKED command,
for example: : : : v

doslked test testlib

where TEST is the filename of either a DOSLNK or TEXT file (that is, a
file with a filetype of either DOSLNK or TEXT) or the name of a
relocatable module in a system or private relocatable-library. TESTLIB
indicates the name of the output file which, in CMS/DOS, is a phase
library with a filetype of DOSLIB.. o ‘

When you 4issue the DOSLKED command, CMS first searches for. a file
with the specified name and a filetype of DOSLNK. If none are found, it
searches the private relocatable library, if - you have assigned one (you
Bust issue an ASSGN command for SYSRLB and use the ddname IJSSYRL in a
DLBL statement). If the module is still not found, CMS searches all cf
your accessed disks for a file-with the specified name and a filetype of
TBXT_ Last, CMS searches the system relocatable-likrary, if it is
available (you must enter the CMS/DOS environment specifying the mode
letter of the DOS/VSE system residence if you want to access the systel
libraries). :

172 1IBM VM/370 CMS User's Guide

PE

LINKAGE EDITOR INPUT

You <can place the 1linkage editor control statements ACTION, PHASE,
INCLUDE, and ENTRY in a CMS file with a filetype of DOSLNK. ¥When you
use the INCLUDE statement, you may specify the filename of a CMS TEXT
file or the name of a module in a DOS relocatable library:

INCLUDE XYZ

or you may use the INCLUDE control statement to indicate that the object
code follows:

INCLUDE
(CMS TEXT file)

A typical DOSLNK file, named CONTROL DOSLNK, might <contain the
following:

ACTION REL

PHASE PROGMAIN,S
INCLUDE SUBA
PHASE PROGA,*
INCLUDE SUBB

When you issue the command:
doslked control

the linkage editor searches the following for the object files SUBA and
SUBB:

e A DOS private relocatable library, provided yocu have issued the ASSGN
and DLBL commands to identify it:

assgn sysrlb d
dlbl ijsysrl 4 dsn ? (sysrlb

e Your CMS disks for files with filenames SUBA and SUBB and a filetype
of TEXT

e The system relocatable library located on the DOS system residence
volume (if it is available) .

Link-editing TEXT Files

When you want to link-edit individual CMS TEXT files, you can insert
linkage editor control statements in the file using the CMS editor and
then issue the DOSLKED command:

edit rtnb text

EDIT:

input include rtnc
file

doslked rtndb mydoslib

When the above DOSLKED command is executed, the CMS file RTNB TEXT is
used as 1linkage editor input, as long as there is no file named RTNB
DOSLNK. The ACTION statement, however, is not recognized in TEXT files.

You can also link-edit relocatable modules directly from a DOS systenm
or private relocatable library, provided that you have identified the
library. If you do this, however, you cannot provide control statements
for the linkage editor.

Section 9. Developing DOS Programs Under CHMS 173

To link-edit a relocatable module from a DOS private library and add
linkage editor control statements to it, you could use this procedure:

1. Identify the 1library and use the RSERV command to copy the
relocatable module into a CMS TEXT file. 1In this example, the
-module RTNC is to be copied from the library OBJ.MODS:

assgn sysrlb e
dlbl ijsysrl e dsn obj mods (sysrlb
rserv rtnc

2. Create a DOSLNK file, insert the linkage editor control statements,
and copy the TEXT file created in step 1 into it using the GETFILE
subcommand:

edit rtnc doslnk

input action rel
getfile rtnc text a
file

3. 1Invoke the Iinkage editor with the DOSLKED command:
doslked rtnc mydoslib

Alternatively, you could create a DOSLNK file with the following
records:

ACTION REL
INCLUDE RTNC

and link-edit the module directly from the relocatable library. If you
do not need a copy of the module on a CMS disk, you might want to use
this method to conserve disk space.

When the linkage editor is reading modules, it may encounter a blank
card at the end of a file, or a * (comment) card at the beginning of a
file. In either case, it issues a warning message indicating an invalid
card, but continues to complete the link-edit.

LINKAGE EDITOR OUTPUT: CMS DOSLIBS

The CMS/DOS linkage editor'always places the link-edited executable
phase in a CMS library with a filetype of DOSLIB. You should specify
the filename of the DOSLIB when you enter the DOSLKED command:

doslked prog0 templib

where PROGO is the relocatable module you are link-editing and TEMPLIB
is the filename of the DOSLIB.

If you do not specify the name of a DOSLIB, the output is placed in a
DOSLIB that has the same name as the DOSLNK or TEXT file being
link-edited. In the above example, a CMS DOSLIB is created named
TEMPLIB DOSLIB, or, if the file TEMPLIB DOSLIB already exists, the phase
PROGO is added to it. ‘

DOSLIBs - can. contain relocatable core image phases Ssuitable for
execution in CMS/DOS. Before you can access fhases in it, you must
identify it to CMS with the GLOBAL command: :

global doslib templib permlib

174, IBM VH/370 CHS User's Guide

h_—d

When CMS is searching for executable phases, it searches all DOSLIBs
specified on the last GLOBAL DOSLIB command line. If you have named a
number of DOSLIBs, or if any particular DOSLIB is very 1large, the time
required for CMS to fetch and execute the phase increases. You should
use separate DOSLIBs for executable phases, whenever possible, and then
specify only the DOSLIBs you need on the GLOBAL command.

When you 1link-edit a module into a DOSLIB that already contains a
phase with the same name, the directory entry is updated to point to the
new phase. However, the space that was occupied by the o0ld phase is not
reclaimed. You should periodically issue the command:

doslib comp libname

where libname is the filename of the DOSLIB, to compress the DOSLIB and
delete unused space.

Linkage Editor Maps

The DOSLKED command also produces a linkage editor map, which it writes
into a CMS file with a filename that is that of the name specified on
the DOSLKED command line and a filetype of MAP. The filemode is always
A5. If you do not want a linkage editor map, use the NOMAP option on

the ACTION statement in a DOSLNK file.

Executing Programs in CMS/DOS

After you have assembled or compiled a source program and link-edited
the TEXT files, you can execute the phases in ycur CMS virtual machine.
You may not, however, be able to execute all your DOS programs directly
in CMS. There are a number of execution—-time restrictions placed on your
virtual machine by VM/370. You cannot execute a program that uses:

e Multitasking

e More than one partition

e Teleprocessing

e 1ISAM macros to read or vrite files

e CMS module files created by DOS programs

The above is only a partial list, representing those restrictions with
which you might be concerned. For a complete list of restrictions, see

EXECUTING DOS PHASES

You can load executable phases into your CMS virtual machine using the
FETCH command. Phases must be link-edited before you load them; they
must have been link-edited with ACTIOR REL. When you issue the FETCH
command, you specify the name of the phase to be loaded:

fetch myprog
Then you can begin executing the program by issuing the START command:

start

Section 9. Developing DOS Programs Under CMS 175

Or, you <can fetch a phase and begin executing it on a single command
line: ' ‘

fetch prog2 (start

When you use the FETCH command without the START option, CHS issues a
message telling you at what virtual storage address the phase is loaded:

PHASE PROGZ2 ENTRY POINT AT LOCATION 020000
Location X'20000' is the starting address of the user program area for
CMS; relocatable phases are always loaded starting at this address
unless you specify a different address using the ORIGIN option of the
FETCH command: '

fetch prog3 (origin 22000
start

The program PROG3 executes beginning at location 22000 in the CMS user
program area.

SEARCH ORDER FOR EXECUTABLE PHASES
When you execute the FETCH command, CMS searches for the phase name you
specify in the following places: .

1. In a DOS/VS private core image library on a DOS disk. If you have
a private library you want searched for phases, you must identify
it wusing the ASSGN and DLBL commands, using the logical unit
SYSCLB: .

assgn sysclb d
dlbl ijsyscl 4 dsn ? (sysclb

2. In CMS DOSLIBs on CMS disks. If you want DOSLIBs searched for
phases, you must use the GLOBAL command to identify them to
CMS/DOS:

global doslib templidb mylib
You can specify up to eight DOSLIBs on the GLOBAL command line.

3. On the DOS system residence core image library. If you want the
system core image library searched you must have entered the
CMS/DOS environment specifying the mode 1letter of the systen
residence:

set dos on 2z
When you want to fetch a core image phase that has copies in both the

core image library and a DOSLIB, and you want to fetch the copy from the
CMS DOSLIB, you can bypass the core image library by entering the
command: ‘ :

assgn sysclb ua
When you need to use the core image library, enter:

assgn sysclb ¢
where C is the mode letter of the system residence volume. You do not
need to reissue the DLBL command to identify the library.

176 1IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024—1 for 5748-XX8
MAKING I/O DEVICE ASSIGNMENTS

If you are executing a program that performs I/C, you can use the ASSGN
command to relate a system or programmer logical unit to a real I/0
device. As in DOS/VSE, device type assignment in CMS/DOS is dependent
on device specifications in the program. -

assgn syslst printer
assgn sys052 reader

In this example, your program is going to read input data from your
virtual card. reader; the output print file is directed to your virtual
printer. If you want to reassign these units to different devices, you
must be sure that the files have been defined as device independent.

If you assign a logical unit to a disk, you should identify the file
by using the DLBL command. On the DLBL command, you must always relate
the DLBL to the system or programmer logical wunit previously specified
in an ASSGN command:

assgn sys015 b
dlbl myfile b dsn ? (sys015

When you enter the DLBL command with the ? operand you are prompted to
enter the DOS file-id.

You must issue all of the ASSGN and DLBL commands necessary for your
program's I/0 before you issue the FETCH command to load the progranm
Fhase and begin executing.

SPECIFYING A VIRTUAL PARTITION SIZE

For most of the programs that you execute in CMS, you do not need to
specify how 1large a partition you want those programs to .execute in.
When you issue the START command or use the START option on the FETCH
command, CMS calculates how much storage 1is available in your virtual
machine and sets a partition size. CMS calculates how much storage is
available in the following manner:

FREELOWE - (MAINHIGH + (4096 * FRERESPG))

where: k

FREELOWE equals the low extent of allocated stcrage obtained from the
top of virtual storage downwards via the DMSFREE systen
request.

MAINHIGH - equals the high extent of allocated storage obtained from the

. low virtual storage upwards via the GETMAIN user request for
storage. .)

FRERESPG equals the amount of storage to be‘reserved vfor subsequent
system requests, in pages. v . :

In some instances, you may want to control the partition size:
e TFor performance considerations
e Because the default may not leave enough free storage to satisfy the

GETVIS commands issued by the DOS program or the access methcd
services function being executed.

Section 9. Developing DOS Programs Under CMS 177

March 30, 1979
You can set the partition size with the DOSPART operand of . the SET
command. For example, after you enter the commapnd:
set dospart 300k

all programs that you subsequently execute during this session will
execute in a 300K partition. 1In this way you can:

e Set a smaller partition size for programs that run better in smaller
partitions. ’ »

e Set a smaller partition size to leave more free storage. If the
reduction of the DOS partition does not free enough storage for the
GETVIS commands, a larger virtual machine must be defined.

If you enter:

set dospart off

the CMS calculates a partition size when you execute a program. This is
the default setting.

Note that the CMS partition, unlike the DOS partition, is used only for
the 1loading and executing of programs invoked by the FETCH or LOAD
commands. Areas allocated by GETVIS will be assigned addresses outside
the partition but within the user's virtual machine.

SETTING THE UPSI BYTE

If your program uses the user program switch indicator (UPSI) byte, you
can set it by using the UPSI operand of the CMS SET command. The UPSX
byte is initially binary zeros. To set it to 1s, enter

set upsi 11111111
To reset it to zeros, enter:
set upsi off

Any value you set remains in effect for the duration of your terminal
session, unless you reload CMS (with the IPL command).

DEBUGGING PROGRAMS IN CMS/DOS

You can debug your DOS programs in CMS/DOS using the facilities of CP
and CMS. By executing your programs interactively, you can more gquickly
determine the cause of an error or program abend, correct it, and
attenpt to execute a progranm agaln.

The CP and CMS debugging facilities are described in "Sectlon 11. How
¥YM/370 Can Help You Debug Your Programs." Additional information for
assembler language programmers is in “Section 13. Programming for the
CMS Environment."

178 IBM VM/370 CMS User's Guide

USING EXEC PROCEDURES IN CMS/DOS

During your program development and testing cycle, you may want to
create EXEC procedures to contain sequences of CMS commands that you
execute frequently. For example, if you need a number of MACLIBs,
DOSLIBs, and DLBL definitions to execute a particular program, you might
have an EXEC procedure as follows:

&CONTROL ERROR TIME

&ERROR &EXIT &RETCODE

GLOBAL MACLIB TESTLIB DOSMAC
ASSEMBLE TESTA

PRINT TESTA LISTING

DOSLKED TESTA TESTLIB

GLOBAL DOSLIB TESTLIB PROGLIB
ACCESS 200 E

ASSGN SYS010 E

&§BEGSTACK

DOS.TEST3.STREAM.BETA

&END

DLBL DISK1 E DSN ? (S¥S010

ASSGN SYS011 PUNCH

CP SPOOL PUNCH TO *

ASSGN SYS012 A

DLBL OUTFILE A CMS TEST DATA (S¥s012
FETCH TESTA (START

&IF ERETCODE = 100 &GOTO -RET100
&§IF &RETCODE = 200 &GOTO —-RET200
&EXIT &RETCODE

—RET100 &CONTINUE

-RET200 &CONTINUE

The &CONTROL and &ERROR control statements in the EXEC procedure
ensure that if an error occurs during any part of the EXEC, the
remainder of the EXEC does not execute, and the execution summary of the
EXEC indicates the command that caused the error.

Note that for the DLBL command entered with the DSN ? operand, you
must stack the response before issuing the TLBL command. In this
example, since the DOS file—~id has more than eight characters, you must
use the EBEGSTACK control statement to stack it. If you use the ESTACK
control statement, the EXEC processor truncates all words to eight
characters.

When your program is finished executing, the EXEC special variable
6RETCODE indicates the contents of general register 15 at the time your
program exited. You can use this value to perform additional steps in
your EXEC procedure. Additional steps are indicated in the preceding
example by ellipses.

For detailed information on creating EXEC procedures, see "Part 3.
Learning To Use EXEC."

Section 9. Developing DOS Programs Under CMS 179

180 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

Section 10. Using Access Method Services
and VSAM under CMS and CMS/DOS

This section describes how you can use CMS to create and manipulate VSAM
catalogs, data spaces, and files on 0S and DOS disks using access method
services. The CMS support is based on DOS/VSE and VSE/VSAM:; this means
that if you are an 0S VSAM user and plan to use CMS to manipulate VSAM
files you are restricted to those functions of access method services
that are available under the access method services portion of VSE/VSAN.
The control statements you can use are descrited in the publication

You can use CMS to:

e Execute the access method services utility programs for VSAM and SAM
data sets on 0S and DOS disks and minidisks. CMS can Loth read and
write VSAM files using access method services.

e Conmpile and execute programs that read and write VSAM files from DOS
programs written in the COBOL or PL/I programming languages.

e Compile and execute programs that read and write VSAM files from CS
programs written in the VS BASIC, COBOL, or EL/I programming
languages. :

e Assemble assembler language source programs under CMS that use VSAM
macros. You must create your own macro library from 0S or DOS macro
libraries. .

VSAM files written under CMS are wholly compatible for reading and
writing under OS and DOS systems. None of the CMS commands normally used
to manipulate CMS files are applicable +to VSAM files, however. This
includes such commands as PRINT, TYPE, EDIT, COPYFILE, and so on.

This section provides information on using the CMS AMSERV command
with which - you can execute access method services. The discussion is
divided as follows:

e "OUsing the AMSERV command" contains general information.

e "Manipulating 0S and DOS Disks for Use With AMSERV" describes how to
use CMS commands with 0S and DOS disks.

e "Defining DOS Input and Output Files" is for CMS/DOS users only.
e WDefining OS Input and Output Files"™ is for 0S users only.

e "Using AMSERV Under CMS" includes notes and examples showing how to
perform various access method services functions in CHS. a

EXECUTING VSAM PROGRAMS UNDER CMS

The commands that are used to define input and output data sets for
access methocd services (DLBL) and for CMS/DOS users (ASSGN) are alsoc
used to identify VSAM input and output files for program eXxecution.
Information on executing programs under CMS that manipulate VSAM files
is contained in the program product documentation for the language
Processors. These publications are listed in the VM/370 Introduction.

Section 10. Using Access Method Services and VSAM 181

March 30, 1979

~ Restrictions on the use of access method services and VSAM under CMS
for O0S and DOS users are listed in .YM/370 - CMS Command and Macro

operand descriptions, and responses for each of the commands described
here.

When you are going to execute VSAM programs imn CMS or CMS/DOS, you
should remember to issue the DLBL command to identify the master
catalog, as well as any other program input or cutput file you need to
define. .

Using the AMSERV Command

In CMS, you execute access method services utility programs with the
AMSERV command, which has the basic format:

amserv filenanme

#filename" is the name of a CMS file that contains the control
statements for access method services.

Note: Throughout the remainder of this section the term "AMSERVY is used
to refer to both the CMS AMSERV command and the O0S/VS or DOS/VS access
method services, except where a distinction 1is being made between CHS
and access method services. :

You create an AMSERV file with the CMS editor using a filetype of
AMSERYV and any filename you want; for example:

edit mastcat amserv
NEW FILE:

EDIT:

input

The editor recognizes the filetype of AMSERV and so automatically sets
the margins for your input lines at columns 2 and 72. The sample AMSERV
file being created in the example above, MASTCAT AMSERV, might contain
the following control statements:

DEFINE MASTERCATALOG (NAME (MYCAT) -
VOLUME (123456) CYL(2) -
FILE (IJSYSCT))

Note that the syntax of the control statements must. conform to the rules
for access method services, including continuation characters and
parentheses. The only difference is that the AMSERV file does not
contain a "/*" for a termination indicator.

Before you can execute the DEFINE ' control statement in this AMSERV
exanpPle, you must define the output file, using the ddname IJSYSCT. You
can do this using the DLBL command. Since the exact form required in
the DLBL command varies according to whether you are amn OS or a DCS
user, separate discussions of the DLBL command are provided later in
this section. All of the following examples assume that any disk data
set or file that you are referencing with an AMSERV command will have
been defined by a DLBL command. :

When you execute the AMSERV command,, the AMSERV control statement
file can be on any accessed CMS disk; you. do not need to specify the
filemode and, if you -are a DOS user, you do not need to assign SYSIPT.
The task of locating the file and passing it to access method services
is performed by CHMS.

182 1IBM VM/370 CMS User's Guide

—=r

AMSERV OUTPUT LISTINGS

When the AMSERV command is finished processing, you receive the CHMS
ready message, and if there was an error, the return code (from register
15) is displayed following the "R". For example:

R (00008) ;
or, if you are receiving the long form of the ready message, it appears:
R (00008) ; T=0.01/0.11 10:50:23

If you receive a ready message With an error return code, Yyou should
examine the output listing from AMSERY to determine the cause of the
€error.

AMSERV output 1listings are written in CMS files with a filetype of
LISTING; by default, the filename is the same as that of the input
AMSERV file. For example, if you have executed:

amserv mastcat

and the CMS ready message indicates an error return code, you should
examine the file MASTCAT LISTING:

edit mastcat listing
EDIT:
locate /idc/#=

Issuing the LOCATE subcommand twice to find the character string IDC
will position you in the LISTING file at the first access method
services message.

The publication DOS/VS Messages lists and explains all of the
messages generated by access method services together with the
associated reason codes.

Instead of editing the file, you could also use the TYPE command to
display the contents of the entire file, so that you would be able to
examine the input control statements as well as any error messages:

type mastcat listing
If you need to make changes to control statements before executing
the AMSERV command again, use the CMS editor to modify the AMSERV input
file.
If you execute the same AMSERV file a number of times, each executicn

results in a new LISTING file, which replaces any previous listing file
with the same filenane.

Output from PRINT, LISTCAT, and LISTCRA

When you use AMSERV to print a VSAM file, or to list catalog or recovery
area contents using the PRINT, LISTCAT, or LISTCRA control statements,
the output is written in a listing file on a CMS read/write disk, and
not spooled to the printer unless you use the PRINT option of the AMSERV
command:

amserv listcat (print

Section 10. Using Access Method Services and VSAM 183

If you want to save the output, you should issue the AMSERV command
without the PRINT option and then use the CHS PRINT command to print the
LISTING file.

CONTROLLING AMSERV COMMAND LISTINGS

The final disposition of the listing, as a printer or disk file, depends
on how you enter the AMSERV command. If you enter the AMSERV command
with no options, you get a CMS file with a filetype of LISTING and a
filename equal to that of the AMSERV input file. This LISTING file is
usually written on your A-disk, but if your A-disk is f£full or not
accessed, it is written on any other read/write CMS disk you have
accessed.

If there is not enough room on your A-disk or any other disk, the
AMSERV command issues ' an error message saying that it cannot write the
LISTING file. If this happens, the LISTING file created may be
incomplete and you may not be able to tell whether or not access method
services actually completed successfully. In this case, after you have
cleared some space on a read/write disk, you may have to execute an
AMSERV PRINT or LISTCAT function to verify the completion of the prior
job.

LISTING files take up considerable disk space, so you should erase
them as soon as you no longer need thenm. :

AMSERV Command Listing Options

If you do not want AMSERV to create a disk'file from the listing, you
can execute the AMSERV command with the PRINT option:

amserv myfile (print
The listing is spooled to your virtual printer, and no disk file is
created. You might want to use this option if you are executing a PRINT
or LISTCAT control statement and expect a very large output listing that
you know cannot be contained on any of your disks.

You can also control the filename of the output 1listing file by
specifying a second name on the AMSERV command line:

amserv listcat listcat1
In this example, the input file is LISTCAT AMSERY and the output listing
is placed in a file named LISTCAT?1 LISTING. A subsequent execution cof
this same AMSERV file:

amserv listcat listcat2

creates a second listing file, LISTCAT2 LISTING, so that the listing
created from the first execution is not erased. »

184 - IBM VM/370 CMS User's Guide

March 30, 1979

Manipulating OS and DOS Disks for Use with
AMSERV '

To use CMS VSAM and AMSERV, you can have 0S or DCS disks in your virtual
machine configuration. They can be assigned in your directory entry, or
you can link to them using the CP LINK command. You must have read/write
access to them in order to execute any AMSERV function or VSAM program
that requires opening the file for output or update.

Before you can use an 0S or DOS disk you must access it with the CHMS
ACCESS command:

access 200 4

The response from the ACCESS command indicates that the disk is in 0S or
DOS format:

D (200) R/W - OS
D (200) R/W - DOS

You can write on these disks only through AMSERV or through the
execution of a program writing VSAM data sets. Cnce an 0S disk is used
with AMSERV or VSAM, CMS considers it a DOS disk, so regardless of
whether you are an 0S user, when you access or request information about
a VSAM disk, CMS indicates that it is a DOS disk. You can still use the
disk in an 0S or DOS system for VSAM data set processing. Although the
format is not changed, the " disk is still subject to any
incompatibilities that can currently exist between OS and DOS disks.

LDATA AND MASTERCATALOG SHARING

There are two meanings of "sharing" that must be defined clearly with
respect to the CMS support of VSAM. The first 1is that of the
SHAREOPTION parameter found in the DEFINE (and ALTER) command for access
method services.

The SHAREOPTION keyword enables the VSAM user to define how a
component will be shared across partitions (users). Since CMS is a
single-partition, single-user system and there 1is no data set sharing
capability in the control program (CP), the built-in data sharing in
VSAM is of no value under CHMS. However, if the VSAM user specifies
SHAREOPTION three fewer 1lines of code will be executed and, therefore,
that option is recommended. ‘ '

The area of sharing most familar to CMS users is that of disk
(minidisk) read-sharing provided by CP. For the VSAM user under CMS, it
is still possible to share disks in read-only mode in order to:
read-share VSAM components. However, there 1is a restriction with
respect to the VSAM master catalog. That is, only one virtual machine
may have the disk containing the master catalog in write status. This
is necessary even if only read functions are being performed during the
session. This is due to the master catalog updating read statistics‘at
close time and, when necessary, writing a new control record in the
catalog at open time. Under the 0S/VS and DOS/VS systems (real) this is
not a consideration because the master catalog is always on a systenm
pack and, therefore, always in write status by that system and by the
VSAM routines. The virtual machines (0S or DOS) cannot share the VSAM
catalog since each thinks it is a "real" system and has control of the
VSAM master catalog. '

Section 10. Using Access Method Services and VSAM 185

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

Under CMS, it is possible to have the master catalog disk read-only.
A bit in the ACB indicates to VSE/VSAM that it is running under CMS. If
this bit is on, VSAM will not write to the master catalog for either cf
the two cases described above. This allows one or more CHMS virtual
machines to share the VSAM master catalog. This assumes either no other
virtual machine has the master catalog disk in write status or only one
virtual machine (DOS, 0S,.or CMS) has it.

Multiple CMS users may have the VSAM master catalog disk in read-only
‘status but only one virtual machine may have the same in write status.
With respect to dataset sharing, there is only read-sharing for the CHMS
user. ‘

DISK COMPATIBILITY

Since the CMS VSAM support writes VSAM datasets to DOS disks, the
question of disk compatibility is not one between CMS and DOS nor
between CMS or 0S but rather between DOS and 0S disks. In other words,
because CMS actually uses VSE/VSAM for processing VSAM datasets, all
disks used by CMS VSAM are DOS disks. For this reason, we need only
discuss how DOS and O0S disks are compatible and, Lecause they are
compatible, we can conclude that CMS and OS are also compatible.

In the format-4 DSCB, there is a bit in the VTOC Indicators (byte 59,
bit 0) defined by 0S/VS to indicate (when OFF) that a format-5 label is
included in the VTOC. This bit is always On under DOS/VSE because DCS
does not maintain the format-5 label. This technique allows 0S/VS to
realize when +the format-5 is invalid and that it must recompute free
space and rewrite the format-5 so that device integrity is maintained.

Thus, if a disk originally was used (allocated) wunder 0S/VS and,
subsequently, with DOS/VSE, further allocation could occur under DOS/VSE
but with the format-5 ignored and, therefore, no longer valid. If the
disk was then used under 0S/VS and still further allocation performed,
0S/VS would recognize the fact that the format-5 was not valid
(contamination bit turned ON by DOS/VSE) and would rewrite the format-5,
turning the bit OFF. .

This shows that DOS and 0S disks are compatible in that they are
portable between the two systems, but one of the systems (0S/VS) must
perform some extra processing (rewriting format-5) prior to . using the
disk if it intends to reallocate using the. .format-5. ‘

- DOS .and 0S disks containing VSAM datasets are no exception to. this.
0S and DOS disks containing VSAM datasets that are used (allocated)
under CMS are portable among all three systems. Since CMS uses VSE/VSAM
code, all disks used under CMS to process VSAM datasets become DOS/VSE
disks in that the contamination bit is turned ON as it is when using
DOS/VSE. , -

The term "minidisk" may be interchanged with the word "disk" in the
atove explanation if we .are dealing with "virtual" DOS/VSE and. 0S/VS
systems. However, real systems are not aware of, and do not support,
minidisks. \ ~

It is necessary to distihgnish between tvo types of allocatibn under
VSAM. The first refers to actual space allocation on the disk, and the
second is that within the dataset itself. '

 Space for VSAM components must be allocated cn the DASD device using
the DEFINE commands. The only component for which the user is able to

186 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

allocate space is for the master catalog, a data space, and a UNIQUE
cluster. In defining the actual DASD space for components, there are
parameters for the DEFINE SPACE command which allows the user to include
a "secondary allocation" specification. These parameters (CYLINDERS,
RECORDS, TRACKS) have this secondary facility only as a syntactic
compatibility with the 0S/VS access method services commands. That is,
DOS/VSE (and, therefore, CMS) does not perform secondary space
allocation on a DASD.

The facility does exist under DOS/VSE (and CMS) to extend data or
index components through already allocated data space, catalog extents,
or UNIQUE cluster extents. Thus, the CYLINDERS, TRACKS, and RECORDS
parameters of the DEFINE commands for alternate indexes, clusters, and
catalogs do not dynamically allocate DASD space but only extend a
component through existing space.

USING VM/370 MINIDISKS

If you have a VM/370 minidisk in your virtual machine configuration, you
can use it to contain VSAM files. Before you can use it, it must be
formatted with the IBCDASDI program or other appropriate . operating
system utility program. When you request that a disk be added to your
virtual machine configuration for use with VSAM files under CMS, you
should indicate that it be formatted for use with 0S or DOS. Or you can
format it yourself using the IBCDASDI program. A brief example of how to
do this is given under the following "Using Temporary Disks." The
IBCDASDI control statements are fully described in the VM/370 Operator's
Guide.

Note: If you are an 0S user, jyou should be careful about allocating
space for VSAM on minidisks. Once you have used CMS AMSERV to allocate
VSAM data space on a minidisk, you should not attempt to allocate
additional space on that minidisk using an 0S/VS system. OS does not
recognize minidisks, and would attempt to format the entire disk pack
and thus erase any data on it. To allocate additional space for VSAMN,
you should use CMS again. If you use the IBCDASLI program to format the
disk, and use the CYLNO parameter, the entire disk is flagged as full,
so that 0S cannot allocate additional space. Minidisk space allocation
is fully described in the ¥YM/370 Planning and System Generation Guide.

USING THE LISTDS COMMAND

For 0S or DOS disks or minidisks, you can use the LISTDS command to

determine the extents of free space available for use by VSAM. You can

also determine what space is already in use. You can use this

information to supply the extent information when you define VSAM files.
The options used with VSAM disks are:

e EXTENT, to find out what extents are in use, and
e FREE, to find out what extents are available.

For example, if you have an 0S disk accessed as a G-disk, and you enter:

listds g (extent

Section 10. Using Access Method Services and VSAM 187

March 30, 1979

The response might look like:

EXTENT INFORMATION FOR 'VTOC' ON 'G' DISK: o
SEQ TYPE CYL-HD (RELTRK) TO CYL-HD (RELTRK) “TRACKS*-
000.vTOC 099 00 1881 - 099 18 1899 e 19

EXTENT : INFORMATION FOR °*PRIVAT.CORE.IMAGE.LIB' ON 'G' DISK:
SEQ TYPE CYL-HD (RELTRK) TO CYL-HD (RELTRK) TRACKS :
000 DATA 000 01 1 049 18 ‘ 9u9 949

EXTENT INFORMATION FOR °'SYSTEM.WORK.FILE.NO.6' ON 'G' DISK?
SEQ TYPE CYL-HD (RELTRK) TO CYL-HD(RELTRK) ~TRACKS '
000 DATA 050 00 950 - 051 18 - 987 - 38

You could alsc determine the extent for a particular data set:

listds ? * (extent
DMSLDS220R ENTER DATA SET NAME:
system recorder file

EXTENT INFORMATION FOR ‘SYSTEM RECORDER FILE' ON 'F' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD (RELTRK) TRACKS '
000 DATA 102 00 1938 102 18 1956 - 19
002 pATA 010 06 206 010 08 208 ‘ 3

LISTDS searches all minidisks accessed until it locates the specified
data set. In this example, the data set occupies two separate extents on
disk F. If the data set is a multivolume data set, extents on all
accessed volumes are located and displayed. ' o

If you want to find the free extents on a particular disk,_enter:
listds g (free

"FREESPACE EXTENTS FOR 'G' DISK:
CYL-HD (RELTRK) TO CYL-HD (RELTRK) TRACKS

05200 988 052 01 989 2
© 054 02 1028 080 00 1520 493

081 01 1540 098 18 1880 341

You can use this information when you allocate space for VSAM files. 1If
you enter: ' '

listds * (free

CMS lists all the free space available on all of your accessed disks.

USING TEMPORARY DISKS

When you need extra space on a temporary basis for use with CMS VSAM and
AMSERV, you can use the CP DEFINE command to define a temporary minidisk
and then use the IBCDASDI program to format it. Once formatted and
accessed, it is available to your virtual ‘machine for the duration of
your terminal session or until you detach it using the CP DETACH
command. Remember that anything placed on a temporary disk is lost, so
that you should copy output that you want to keep onto permanent disks
Lefore you log off.

188 1IBM VYM/370 CMS User's Guide

March 30, 1979

The example below shows a controcl statement file and an EXEC procedure
that, together, can be used +tc format a minidisk with the IBCDASDI
program. For a complete description of the control statements used,
refer to the ¥M/370 Operator's Guide.

The . input control statements for the IBCDASDI programs should be
placed in a CMS file, so that they can be punched to your virtual card
reader. For this example, suppose the statements are in a CMS file named
TEMP IBCDASDI: ’)

DASD198 JOB ;
MSG TODEV=1052, TOADDR=009
DADEF TODEV=3330,TOADDR=198, VOLID=SCRATCH,CYLNO=10
VLD NEWVOLID=123456
VTOCD STRTADR=185,EXTENT=5
END

Now consider the CMS file named TEMPDISK EXEC:

&§ERROR &EXIT 100 .

CP DEFINE T3330 198 10

CP CLOSE C

CP PURGE READER ALL

ACC 190 2/Z IPL *

CP SPOOL PUNCH CONT TO *
PUNCH IPL IBCDASDI Z (NOH)
PUNCH TEMP IBCDASDI * (NOH)
CP SPOOL PUNCH NOCONT

CP CLOSE PUNCH

CP IPL 0OC

You execute this procedure by entering the filename of the EXEC:
tempdisk
When the final line of this BXEC is executed, the IBCDASDI program is in
control. You must then signal an attention interruption using the
Attention or Enter key, and you receive the message:
IBC105A DEFINE INPUT DEVICE
You should enter:

input=2540,00c

to indicate that the control statements should be read from your card
reader, which is a virtual 2540 device at virtual address 00C.

When the IBCDASDI program is finished, your virtual machine is in the
CP environment and must reload CMS (with the IPL command) to begin
virtual machine execution. You can then access the temporary disk:
acc 198 c¢
and CMS responds:

C(198) R/W - 0S

Section 10. Using Access Method Services and VSAM 189

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 57u48-XX8

Defining DOS Input and Output Files

Note: This information is for VSE/VSAM users. 0S/VS VSAM —-users should
refer to the section "Defining 0S Input and Output Files."™ ' . :

You must use the DLBL command to define VSAM input and output files for
both the AMSERV command and for program eXecution. The = operands
required on the DLBL command are:

dlbl ddname filemode DSN datasefhame (options SYSxxX

where "ddname" corresponds to the FILE parameter in the AMSERV file and
"datasetname" corresponds to the entry name or filename of the VSAM
file. v

There are several options you can use when issuing the DLBL command
to define VSAM input and output files. These are:

e VSAM, which you must use to indicate that the file is a VSAM file. -

Note: You do not have to use the VSAM option to identify a file as a
VSAM file if you are using any of the other options 1listed here,
~since they imply that the file is a VSAM file. In addition, the
ddnames (filenames) IJSYSCT and IJSYSUC also indicate that the. file
being defined is a VSAM file.

e EXTENT, which you must use when you are defining a catalog or a VSAM
data space; you are prompted to enter the volume information. ' This
option effectively provides the function of. the EXTENT card in
DOS/VS.

e MULT, which you must use in order to access a multivolume VSAM file;
you are prompted to enter the extent information.

e CAT, which you can use to identify a catalog which contains the entry
for the VSAM file you are defining.

e BUFSP, which you can use to specify the size of the buffers VSAM
should use during program execution. . , :

Options are entered following the open parenthesis on the DLBL command
line, with the SYSxxx:

assgn sys003 e
d1bl filel1 b1 dsn workfile (extent cat cat2 sys003

Additional examples using some of these options are shown below.

USING VSAM CATALOGS

While you are developing and testing your VSAM programs in CMS, you may
find it convenient to create and use your own master catalog, which may
be on a CMS minidisk. VSAM catalogs, 1like any other cluster, «can be
shared read-only among several users. :

You name the VSAM master catalog for your terminal session using the
logical unit SYSCAT in the ASSGN command and the ddname IJSYSCT for the
CLBL command. For example, if your VSAM master catalog is located on a
LOoS disk you have accessed as a C-disk, you would enter:

190 1IBM VM/370 CMS User's Guide

assgn syscat c
dlbl ijsysct c dsn mastcat (syscat

Note: When you use the ddname IJSYSCT you do not need to specify the
VSAM option on the DLBL command.

You must identify the master catalog at the start of every terminal
session. If you are always using the same master catalog, you might
include the ASSGN and DLBL commands in an EXEC procedure or in your
PROFILE EXEC. You could also include the commands necessary to access
the DOS system residence volume and enter the CMS/DOS environment:

ACCESS 350 2

SET DOS ON Z (VSAM

ACCESS 555 C

ASSGN SYSCAT C

DLBL IJSYSCT C DSN MASTCAT (SYSCAT PERM

You should wuse the PERM option so that you do not have to reset the
master catalog assignment after clearing previous DLBL definitioms.

You must use the VSAM option on the SET DOS ON command 1line if you
want to use any access method services function or access VSAM files.

The sample ASSGN and DLBL commands used in the above EXEC are almost
identical with those you issue to define a master catalog using AMSERV.
The only difference is that you must enter the EXTENT option so that you
can list the data spaces that this master catalog is to control.

As an example, suppose that you have a 30-cylinder 3330 minidisk
assigned to you to use for testing your VSAM programs under CMS.
Assuming that +the minidisk is in your directory at address 333, you
should first access it:

access 333 d
D (333) R/W — 0OS

If you formatted the minidisk yourself, you know what its label is. If
not, you can find out what the label is by using the CMS command:

query search
The response'might be:

USR191 191 A R/W
DOS333 333 C R/W - 03
SYs190 190 s R/0
SYS19E 19E Y/S R/O

Use the 1label DOS333 in the VOLUMES parameter in the MASTCAT AMSERY
file:

DEFINE MASTERCATALOG -
(NAME (MASTCAT) -
VOLUME (DOS333) -
CYL (4) -

FILE (IJSYSCT))

Now, to find out what extents on the minidisk you can allocate for VSAM,
use the LISTDS conmand with the EXTENT option:

Section 10. Using Access Method Services and VSAM 191

listds 4 (free
The response from LISTDS might lcok like this:

FREESPACE INFORMATION FOR 'D' DISK:

CYL-HD (RELTRK) TO CYL-HD (RELTRK) TRACKS
000 01 1 000 09 9 9
000 11 11 029 18 569 560

From this response, you can see that the volume table of contents (VTOC)
is located on the first cylinder, so you can allocate cylinders 1
through 29 for VSAM:

assgn syscat c¢
dlbl ijsysct c dsn mastcat (syscat perm extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
19 551
(null line)

After entering the extents, in tracks, giving the relative track number
of the first track to be allocated followed by the number of tracks, you
must enter a null line to complete the command. A null line is required
because, when you enter multiple extents, entries may be placed on more
than one line. If you do not enter a null line, the next line you enter
causes an error, and you must re-enter all of the extent information.

Note that, as in DOS/VS, the extents must be on cylinder boundaries, and
you cannot allocate cylinder 0.

Now you can issue the AMSERV command:
amserv mastcat

A ready message with no return code indicates that the master catalog is
defined. You do not need to reissue the ASSGN and DLBL commands in order
to use the master catalog for additional AMSERY functions.

You can use the AMSERV command to define private catalogs and spaces for
them, also. The procedures for determining what space you can allocate
are the same as those outlined in the example of defining a master
catalog.

For a user catalog, you may use any programmer logical unit, and any
ddname:

access 199 e
listds e (free

assgn sys001 e
dlbl cat1 e dsn private catl (sys001 extent pernm

amserv usercat

192 1IBM VM/370 CMS User's Guide

P

~m

The file USERCAT AMSERV might contain the following:

DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
FILE (IJSYSUC) -
CYL (4) -
VOLUME (DOSVS2) —
CATALOG (MASTCAT))

After this AMSERV command has completed successfully you can use the
catalog PRIVATE.CAT1. When you issue a DLBL command to identify a
cluster or data set cataloged in this catalog, you must identify the
catalog using the CAT option on the DLBL command for the file:

assgn sys100 c
dlbl file2 e dsn ? (sys100 cat cat1

or, you can define this catalog as a job catalog.

Using a Job Catalog

If you vant to set up a user catalog as a job catalog so that it will be
searched during all subsequent jobs, you can define the catalog using
the special ddname IJSYSUC. For example:

assgn sys101 c
dlbl ijsysuc c¢ dsn private catl1 (sys101 perm

If you defined a user catalog (IJSYSUC) for a terminal session and
you use the AMSERV command to access a VSAM file, the user catalog takes
precedence over the master catalog. This means that for files that
already exist, only the user catalog is searched. When you define a
cluster, it is cataloged in the user «catalog, rather than in the master
catalog, unless you use the CAT option to override it.

If you want to use additional catalogs during a terminal session, you
first define them just as you would any other VSAM file:

assgn sys010 £
dlbl mycat2 f dsn private cat2 (sys010 vsanm

Then, when you enter the DLBL command for the VSAM file that is
cataloged in PRIVATE.CAT2 use the CAT option to refer to the ddname of
the catalog:

assgn sys011 £
dlbl input £ dsn input file (sys011 cat mycat2

If you want to stop using a job catalog defined as IJSYSUC, you can
Clear it using the CLEAR option of the DLBL command:

dlbl ijsysuc clear

Then, the master catalog becomes the job catalog for files not defined
with the CAT option.

Section 10. Using Access Method Services and VSAM 193

Catalog Passwords

When you define passwords for VSAM catalogs in CMS, or when you use CMS
to access VSAM catalogs that have passwords associated with them, you
must supply the password from your terminal when the AMSERV command
executes. The message that you receive to prompt you for the password
is the same message you receive when you execute access method services:

42212 ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOE AMSERV FILE catalog

When you enter the proper password, AMSERV continues execution.

DEFINING AND ALLOCATING SPACE FOR VSAM FILES

You can use CMS AMSERV to allocate additional data spaces for VSAM. To
use the DEFINE SPACE control statement, Yyou must have defined the
catalog that is to control the space, and you must have the volume or
volumes on which the space is to be allocated mounted and accessed.

For example, suppose you have a DOS-formatted 3330 disk attached to
your virtual machine at virtual address 255. After accessing the disk
and determining the free space on it, you could create a file named
SPACE AMSERV:

DEFINE SPACE -
(FILE (FILE1) -
TRACKS (1900) -
VOLUME (123456) -
CATALOG (PRIVATE.CAT2 CAT2))

To execute this AMSERV file, define PRIVATE.CAT2 as a user catalog using
the ddname CAT2, and then define the ddname for the FILE parameter:

access 255 c

assgn sys010 c

dlbl cat2 c dsn private cat2 (sys010 vsanm
assgn sys011 ¢

dlbl filel1 ¢ (extent sys011 cat cat2

Note that you do not need to enter a data set name to define the space.
When CMS prompts you for the extents of the space Yyou can enter the
extent specifications:

DMSDLB331R ENTER EXTENT SPECIFICATIONS:
190 1900

-
-

When you define space for VSAM, you should be sure that the VOLUMES
parameter and the space allocation parameter (whether CYLINDER, TRACKS,
or RECORDS) in the AMSERV file agrees with the information you provide
in the DLBL command. A1l data extents must begin and end on cylinder
boundaries. Any additional space you provide in the extent information
that is beyond what you specified in the AMSERV file is claimed by VSAM.

194 IBM VM/370 CMS User's Guide

March 30, 1979

Specifying Multiple Extents

When you are specifying extents for a master catalog, data space, or
unique file, you can specify up to 16 extents on a volume for a
particular space. When prompted by CMS to enter the extents, you must
separate different extents by commas or place them on different lines.
To specify a range of extents in the above example, you can enter:

dlbl file1 c (extent sys011
190 190, 570 190, 1900 1520
(null line)

dlbl filel ¢ (extent sysO11

190 190
570 190
1900 1520

(null line)
Again, the first number entered for each extent répresents the relative

track for the beginning of the extent and the second number indicates
the number of tracks.

Specifying Multivolume Extents

You can define spaces that span up to nine volumes for VSAM files; all
of the volumes must be accessed and assigned when you issue the DLBL
conmand to define or identify the data space.

You should remember, though, that if you are using AMSERV and you do
not use the PRINT option, you must have a read/write CMS disk so that
AMSERV can write the output LISTING file.

If you are defining a nev multivolume data space or unique cluster,
you must specify the extents on each volume that the data is to. occupy
(starting track and number of tracks), followed by the disk mode letter
at which the disk is accessed and the programmer logical unit to which
the disk is assigned: : ,

access 135 b
access 136 c
access 137 d
assgn sys001 b
assgn sys002 c
assgn sys003 d
dlbl newfile b (extent sys001
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60 b sys001, 400 80 b sys001, 60 40 4 sys003
2000 100 c sys002
"~ (null line)

If you specify more than one extent on the same 1line, the extents must
te separated by commas; if you enter a comma at the end of a line, it is
ignored. Different extents for the same volume must be entered
consecutively.

Note that in the preceding example, the extent information 'is for
2314 disks; and that these extents are also on cylinder boundaries.

When you enter multivolume extents you can use a default mbde.lror
example: » :

Section 10. Using Access Method Services and. VSAM 195

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

dlbl newfile b (extent sys001
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60, 400 80, 60 40 4 sys003,
2000 100 c sys002

(null line) '

Any extents you enter without specifying a mode letter and SYSxxx value
default to the mode and SYSxxx on the DLBL command 1line, in this case,
the B—-disk, SYSO001.

If you make any errors issuing the DLEL command or extent
information, you must re-enter the entire command sequence.

IDENTIFYING EXISTING MULTIVOLUME FILES: When you issue a DLBL command to
identify an existing multivolume VSAM file, you must use the MULT option
of the DLBL command:

dlbl old b1 dsn ? (sys002 mult
DMSDLB220R ENTER DATA SET NAME:
dostest.file
DMSDLB330R ENTER VOLUME SPECIFICATICNS:
c sys004, d sys003
e sys007

(null line)

When you enter the DLBL command you should specify the mode letter and
logical unit for the first volume on the command line. When Yyou enter
the MULT opticn you are prompted +to enter additional specifications for
the remaining extents. In the preceding example, the data set has
extents on disks accessed as B-, C-, D-, and E-disks.

USING TAPE INPUT AND OUTPUT

If you are using AMSERV for a function that requires tape input and/or
output, you must have the tape(s) attached to your virtual machine. The
valid addresses for tapes are 181, 182, 183, and 184. When referring to
tapes, you can also refer to them using their CMS symkolic names TAP1,
TAP2, TAP3, and TAP4. : '

For AMSERV functions that wuse tape input/output, the TLBL control
statement is simulated by building a dummy DLBL containing a
user-supplied ddname (filename). CMS does not read tape labels and does
not recognize tape data set names.

When you invoke the AMSERV command, you must use the TAPIN or TAPOUT
option to specify the tape device being used: '

amserv export (tapout 181

In this example, the output from the AMSERV control statements in a file
named EXPORT goes to a tape at virtual address 181. CMS prompts you to
enter the ddnanme:

DMSAMS367R ENTER TAPE OUTPUT DDNAMES:

After you enter the ddname specified on the FILE parameter in the AMSERV
file and press the carriage return, the AMSERV command executes.

AMSERV opens all tape files as standard labelled tapes (FILAB=STD on
the DTFMT macro). Therefore, you need a LABELDEF command £for any tape
file used for input or ocutput with AMSERV. The LABELDEF command is the
CMS/DOS equivalent of the DOS/VSE TLB control statement. The LABELDEF
command is used to specify information in VOL1 and HDR1 labels on the

196 1IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

tape. See the description of the LABELDEF command in section 7 for more
information on this command.

You should use the same name for the filename on your LABELDEF
command as you do for +the ddname you enter in reply to message
DMSAMS367R (the ddname specified on the FILE ©rparameter in the AMSERYV
file). However, the LABELDEF command must be issued tefore the AMSERV
command. The following sequence of commands might be used when you have
tape output:

assgn sys005 tap?l

tape rew (181

assgn syscat e

assgn sys006 e

labeldef catout fid catfile volid amserv
dlbl ijsysct e dsn mastcat (syscat vsan
d1bl catin e dsn file (sys006 vsam
amserv repro (tapout 181

DMSAMS367R ENTER TAPE OUTPUT DDNAMES
catout

Note that if you do not care what is written in a tape output label
or do not want input labels checked, you can specify a LABELDEF with no
parameters other than filename. The command:

labeldef intape

used for an input tape with ddname INTAPE causes the standard labels cn
the tape to be skipped without any checking. A similar statement for
output writes tape labels with default values (see the description cf
the LABELDEF command in section 7).

If you try to use a tape that does not already contain a VOL1 label
for an AMSERV tape file, you will receive an error message. If the tape
is used for ocutput, this message is followed by another message that
informs you that you have a choice of continuing by writing a VOL1 label
on the previcusly unlabelled tape or rejecting this tape. Input tape
files must already contain standard VOL1 and HLCR1 labels to be processed
by AMSERV.

Section 10. Using Access Method Services and VSAM 196.1

March 30, 1979

196.2 1IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8
Reading V¥SAM Tape Files

When you create a tape in CMS using AMSERV, CMS vwrites a tape mark
preceding each output file that it writes. When this same tape is read
using AMSERV under CMS, HDR1 and VOL1 labels are checked using the
LABELDEF command you provide. If you read this tape in a real DOS/VS
system, you should use a TLBL card instead of the LABELDEF command.

Similarly, when you create a tape under a DOS/VS system using access
method services, if the tape is created with standard labels, CMS AMSERY
has no difficulty reading it.

The only +time you should worry about positiocning a tape created by
AMSERV is when you want to read the tape using a method other than
AMSERV, for example, the MOVEFILE command. Then, you must forward space
the tape past the label, using the CMS TAPE command before you can read
it. . .

Defining OS Input and Output Files

Note: This information is for 0S/VS VSAM users only. VSE/VSAM users
should refer to "Defining DOS Input and Output Files" for information c¢n
defining files for use with VSAM.

If you are going to use access method services tc manipulate VSAM or SAM
files or you are going to execute VSAM programs under CMS, you must use
the DLBL command to define -the input and output files. The basic format
of the DLBL ccommand is:

- DLBL ddname filemode DSN datasetname (options

where ddname corresponds to the FILE parameter in the AMSERV file and
datasetname corresponds to the entry name of the VSAM file, that is, the
name specified in the NAME parameter of an access method services
control statement.

If you are using a CMS file for AMSERV input or output, use the CHMS
operand and enter CMS file identifiers as follows:

dlbl mine a cms out file1 (vsam

The maximum length allowed for ddnames under CMS VSAM is seven
characters. This means that if you have assigned eight-character ddnames
(or filenames) to files in your programs, only the first seven
characters of each ddname are used. So, if a program refers. to the
ddname OUTPUTDD, you should issue the DLBL command for a ddname of
OUTPUTD. Since you can encounter problems with a program that contains
ddnames with the same first seven characters, you should recomplle those
programs using seven-character ddnanmes. .

There are several options you can use when issuing the DLBL command
to define VSAM input and output files. These are:

e VSAM, whlch you must use to indicate that the f11e is a VSAM f11e.

Note: You do not have to use the VSAM option to identify a file as a
VSAM file if you are using any of the other options 1listed here,
sincethey imply that the file is a VSAM file. 1In addition, the
ddnames (filenames) IJSYSCT and IJSYSUC also indicate that the file
being defined is a VSAM file.

Section 10. Using Access Method Services and VSAM 197

March 30, 1979

e EXTENT, which you must use when you are defining a catalog or a VSAM
data space; you are prompted to enter the volume information.

e MULT, which you must use in order to access a multivolume VSAM flle'
~ you are prompted to enter the extent information.

e CAT, which you can use to identify a catalog which contains the entry
for the VSAM file you are defining. ~

e BUPFSP, which you can use to specify the size of the buffers VSAM
should use during program execution. i

ALLOCATING EXTENTS ON OS DISKS AND MINIDISKS

Rhen you use access method services to manipulate VSAM files under 0S5,
you do not have to worry about allocating the real cylinders and tracks
to contain the files. When you use CMS AMSERV, however, you are
responsible for indicating which cylinders and tracks should contain
particular VSAM spaces when you use the DEFINE control statement to
define space.

Extents for VSAM data spaces can be defined, in AMSERV files, in
terms of cylinders, tracks, or records. Extent information you supply to
CMS when executing AMSERV nust always be in terms of tracks. When you
define data spaces or unique clusters, the extent information (number of
cylinders, tracks, or records) in the AMSERV file must match the extents
you supply when you issue the DLBL command to define the file. When you
supply extent information for the master «catalog, any extents you enter
in excess of those required for the catalog are claimed by the catalog
and used as data space.

CMS does not make secondary space ‘allocation for VSAM data spaces.
If you execute an AMSERV file that specifies a secondary space
allocation, CMS ignores the parameter.

When you use the DLBL command to define VSAM data space, you must use
the EXTENT option, which indicates to CMS that you are going to enter
data extents. For example, if you enter:

dlbl space b (extent
CMS prompts you to enter the extents:
DMSDLB331R ENTER EXTENT SPECIFICATIONS:

When you enter the extents, you specify the relative track number of the
first track of the extent, followed by +the number of tracks. Fer
example, if yocu are allocating an entire 2314 disk, you would enter:

20 3980
(null line)

You can never write on cylinder 0, track 0; ‘and, since VSAM data
spaces must be allocated on cylinder boundaries, you should never
allocate cylinder 0. Cylinder 0 is often used for the volume ' table of
contents (VIOC) as well, so it is always best to begin defining space
with cylinder 1. o

The list below shows the DASD devices supported by CMS VSAN, the

number of cylinders on each that can be allocated for VSAM space, and
the number of tracks per cylinder: ' ' E

198 1IBM VM/370 CMS User's Guide

Disk Cylipders Tracks/Cylinder

2314/2319 200 20
3330 Model 1 404 19
3330 Model 11 808 19
3340 Model 35 3u8 12
3340 Model 70 696 12
3350 555 30

You can determine which disk extents on an CS disk or minidisk are
available for allocation by using the LISTDS command with the FREE
option, which also indicates the relative track numbers, as well as
actual cylinder and head numbers.

USING VSAM CATALOGS

While you are developing and testing your VSAM programs in CMS, you may
find it convenient to create and use your own master catalocg, which may
be on a CMS @minidisk. VSAM catalogs, 1like any other cluster, can be
shared read-only among several users.

You name the VSAM master catalog for your terminal session using the
ddname IJSYSCT for the DLBL command. ¥For example, if your VSAM master
catalog is 1located on an 0S disk you have accessed as a C-disk, you
would enter:

dlbl ijsysct c dsn master catalog (pernm

You must define the master catalog at the start of every terminal
session. If 7you are always using the same master catalog, you might
include the DLBL command you need to define it in your PROFILE EXEC:

ACCESS 555 C
DLBL IJSYSCT C DSN MASTCAT (PERM

You should use the PERM option so that you do not have to reset the
master catalog assignment after clearing previous DLBL definitions. The
command:

dlbl * clear

clears all file definitions except those entered with the PERM option.

The sample DLBL command used in the preceding example 1is almost
identical with the one you would issue to define a master catalog using
AMSERV. The only difference is that you must enter the EXTENT option so
that you can 1list the data spaces that this master catalog is to
control.

As an example, suppose that you have a 30-cylinder 3330 minidisk
assigned to you to use for testing your VSAM programs under CMS.
Assuming that the minidisk is in your directory at address 333, you
should first access it:

access 333 d
D (333) R/W - OS

Section 10. Using Access Method Services and VSAM 199

If you formatted the minidisk yourself, you know what label you assigned
it; if not, you can find out the label assigned to the disk by issuing
the CMS command:

query search

The response might be:

USR191 191 A R/W
VSAMO3 333 C R/W - O0S
SYsS109 190 s R/0
SYS19E 19E Y/S R/O

Use the volume label VSAMO3 in the MASTCAT AMSERV file:

DEFINE MASTERCATALOG -
(NAME (MASTCAT) -
VOLUME (VSAMO3) -
CYL (4) -

FILE (IJSYSCT))

To find out what extents on this minidisk you can allocate for VSAM, use
the LISTDS command with the FREE option:

listds d (free
The response from LISTDS might look like this:

FREESPACE INFORMATION FOR 'D' DISK:

CYL-HD (RELTRK) TO CYL~-HD (RELTRK) TRACKS
000 o1 1 000 09 9 9
000 11 1 029 18 569 560

From this response, you can see that the VTOC is located on the first
cylinder, so you can allocate cylinders 1 through 29 for VSAM:

dlbl ijsysct ¢ dsn mastcat (perm extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
19 551

(null line)

After entering the extents, in tracks, giving the relative track number
of the first track to be allocated followed by the number of tracks, you
must enter a null line to complete the command. (A null line is required
because, when you enter multiple extents, entries may ke placed on more
than one line.)
Now you can issue the AMSERV command:
amserv mastcat
A Ready message with no return code indicates that the master catalog is

defined. You do not need to reissue the DLBL command in order to
identify the master catalog for additional AMSERV functioms.

You can use the AMSERV command to define private catalogs and spaces for
them. The procedures for determining what space you can allocate are the
same as those outlined in the example of defining a master catalog.

To define a user catalog, you can assign any ddname you want:

200 IBM VM/370 CMS User's Guide

PN

access 199 e
listds e (free

A .
V .
dlbl cat1 e dsn private cat1 (extent
amserv usercat
The file USERCAT AMSERV might contain the following:
DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
FILE (CAT1) -
CYL (4) -
VOLUME (OSVSAM) -
CATALOG (MASTCAT))
After this AMSERV command has completed successfully you can use the
catalog PRIVATE.CAT1. When you define a file cataloged imn it, you
identify it using the CAT option on the DLBL command:
dlbl file2 c dsn ? (cat cat1l
or, you can define it as a job catalog.
Using a Job Catalog
y During a terminal session, you may be referencing the same private
ﬂ catalog many times. If this is the case, you can identify a job catalog
by using the ddname IJSYSUC. Then, that catalog is searched during all
subsequent jobs, unless you override it wusing the CAT option when you
use the DLBL command to define a file.

If you defined a user catalog (IJSYSUC) for a terminal session and
you use the AMSERV command to access a VSAM file, the user catalog takes
precedence over the master catalog. This means that for files that
already exist, the Jjob catalog is searched. When you define a cluster,
it is cataloged in the job catalog, rather than in the master catalog,
unless you use the CAT option to override it. CMS never searches more
than one VSAM catalog.

You should use the CAT option to name a catalog when the AMSERV file
you are executing references, with the CATALOG parameter, a catalog that
is not defined either as the master catalog or as a user catalog.

If you want to use additional catalogs during a terminal session, you
first define them just as you would any other VSAM file:

dlbl mycat2 £ dsn private cat2 (vsanm
Then, when you enter the DLBL command for the VSAM file that is
cataloged in PRIVATE.CATZ use the CAT option to refer to the ddname of
the catalog:
d1lbl input £ dsn input file (cat mycat2
If you want to stop using a job catalog defined with the ddname IJSYSUC,
) you can clear it using the CLEAR option of the DLBL command:

Section 10. Using Access Method Services and VSAM 201

dlbl ijsysuc clear
or, you can assign the ddname IJSYSUC to some other catalog. If you

clear the ddname for IJSYSUC, then the master catalog becomes the job
catalog.

Catalog Passwords

When you define passwords for VSAM catalogs in CMS, or when you use CMS
to access VSAM catalogs that have passwords associated with them, you
must supply the password from your terminal when the AMSERV command
executes. The message that you receive to prompt you for the password
is the same message you receive when you execute access method services:

42212 ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOE AMSERV FILE catalog

When you enter the proper password, AMSERV continues execution.

DEFINING AND ALLOCATING SPACE FOR VSAM FILES

You can use CMS AMSERV to allocate additional data spaces for VSAM. To
use the DEFINE SPACE control statement, you must have defined either the
master catalog or a user catalog which will control the space, and you
must have the volume or volumes on which the space is to be allocated
mounted and accessed.

For example, suppose Yyou have an OS 3330 disk attached to your
virtual machine at virtual address 255. After accessing the disk and
determining the free space on it, you could create a file named SPACE
AMSERV:

DEFINE SPACE -
(FILE (FILE1) -
TRACKS (1900) -
VOLUME (123456) -
CATALOG (PRIVATE.CAT2 CAT2))

To execute this AMSERV file, you must define PRIVATE.CAT2 using the
ddname CAT2, and then define the ddname for the file:

access 255 c¢
dlkl cat2 c¢ dsn private cat2 (vsanm
dlbl filel ¢ (extent cat cat2

You do not need to enter a data set name to define the space. When CHMS
prompts you for the extents of the space, you can enter the extent
specifications:

DMSDLB331R ENTER EXTENT SPECIFICATIONS:
190 1900

When you define space for VSAM, you should be sure that the VOLUMES
parameter and the space allocation parameter (whether CYLINDER, TRACKS,
or RECORDS) in the AMSERV file agree with the track information you
provide in the DLBL command.

202 IBM VM/370 CMS User's Guide

March 30, 1979

Specifying Multiple Extents

When you are specifying extents for a master catalog, data space, or
unique file, you can specify up to 16 extents on a volume for a
particular space. When prompted by CMS for the extents, you must
separate the different extents by commas, or 'place them on different
lines. To specify a range of extents in the akove example, you could
enter:

dlbl file1 ¢ (extent
190 190, 570 190, 1900 1520
(null line)

dlbl filel ¢ (extent

190 190
570 190
1900 1520

(null line)
Again, the first number entered for each extent represents the relative

track for the beginning of the extent and the second number indicates
the number cf tracks. ' '

Specifying Multivolume Extents

You can define spaces "that span up to nine volumes for VSAM files; all
of the volumes must be accessed and assigned when you issue +the DLBL
command to define or identify the data :space. '

You should remember, though, that if you are using AMSERV and you do
not use the PRINT option, you must have a read/wrlte Cns disk so that
AHSERV can wrlte the output LISTING file.

If you are defining a new multlvolune data space or - unique cluster,
you must specify the extents on each volume that the data is to occupy
(starting track and number of tracks), followed by the disk mode letter
at which the disk is assigned:

access 135 b
access 136 c
access 137 4
d1bl newfile b (extent
DMSDLB331R 'ENTER EXTENT SPECIFICATIONS:
100 60 b, 400 80 b, 60 40 4 ,
2000 100 c ‘
(null line)

If you enter more than one extent on the same line, the extents must be
separated by commas; if you enter a comma at the end of a 1line, it is
ignored. Different extents for the ‘'same vclume must be entered
consecutively. ' Note that in this example, the extent information is for
2314 disks and that these extents are also on cylinder toundaries.

When you enter multivolume extents, you do not have to enter a mode

letter for those extents on the disk identified in the DLBL command.
For the extents on disk B in the above example, you could enter:

Section 10. Using Access Method Services and VSAM 203

March 30, 1979

dlbl newfile b (extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 400 80, 60, 60 40 4
2000 100 ¢ :
(null line)

_ If you make ‘any _errors issuing the DLBL command or extent
information, you must re-enter the entire command sequence. ;

IDENTIFYING EXISTING MULTIVOLUME FILES: When you issue a DLBL command to
identify an ex1st1ng multivolume VSAM f11e, you must use the MULT option
of the DLBL command sequence:

dlbl o0l1ld b1 dsn ? (mult
DMSDLB220R ENTER DATASET NAME:
vsamtest.file
DMSDLB330R ENTER VOLUME SPECIFICATIONS:
c, d
e

(null line)

When you enter the DLBL command you should specify the mode letter for
the first disk volume on the command line. When you enter the MULT
option you are prompted to enter additional specifications for the
remaining extents. In the above example, the data set has extents on
disks accessed as B-, C-, D-, and E-disks.

USING TAPE INPUT AND OUTPUT

If you are using AMSERV for a function that requires tape input and/or
output, you must have the tape(s) .attached to your virtual machine. The
valid addresses for tapes are 181, 182, 183, and 184. When referring to
tapes, you can also refer to them using their CMS symtolic names TAP1,
TAP2, TAP3, -and TAP4..

When you use AMSERV to create or read a tape, Yyou supply the ddname
for the tape device interactively, after you issue the AMSERV command.
You must also supply a LABELDEF command for tape 1label checking before
you issue the AMSERV command. : To indicate to AMSERV that you are using
tape for input or output, you must use the TAPIN or TAPOUT option to
specify the tape device belng used: : ‘ R

labeldef tapedd fid filename...
amserv export (tapout 181

In this example, the output from an EXPORT function is to a fape at
virtual address 181. CMS prompts you to enter the ddname:

DMSAMS367R ENTER TAPE OUTPUT DDNAMES:

After you enter the ddname (TAPEDD in thls examfle) for the tape file,
AMSERV begins execution. : '

- AMSERV in CHS, treats all tape files as having standard latels. The
LABELDEF command is required because the CMS/DOS routine that performs
the tape open .needs label information for standard labelled tapes. See
the description of the LABELDEF command in Section 7 for further
information. The filename you specify on the LARELDEF command should be
the same one you use to reply tc the access method service message that
requested you to supply the tape's ddnames. . However, the LABELDEF
command must be issued before the AMSERV command. If you only want the
tape labels skipped, but not checked, enter a LABELDEF with no
parameters other than filename.

204 IBM VM/370 CMS User's Guide

Pg. of GC20-1819-2 Rev March 30, 1979 by Supp. SD23-9024-1 for 5748-XX8

Tapes used for input must alvays contain standard VOL1, HDR1, and
EOF1 labels or they are rejected by CMS AMSERV. Output tapes do not
need to contain VOL1 1labels because the user is prompted to enter a
volume serial number and have the VOL1 label written if he wants.
However, blank tapes should not be wused for output because the open
routine tries to read the tape.

Reading Tapes

When you create a tape file using AMSERV under CMS, CMS writes a label
file preceding each output data file. When CMS AMSERV is used to read
this same file, it checks the HDR1 and VOL1 lakels using the LABELDEF
command you provide before it reads the data file. If you want to read
the tape on a real 0S/VS system, however, you must use the LABEL=SL as a
parameter on the data definition (DD) card for the tape.

Section 10. Using Access Method Services and VSAM = 204.1

March 30, 1979

204.2 IBM VK/370 CMS User's Guide

March 30, 1979

If you are creating a tape under 0S/VS access method services to be
read by CMS AMSERV, you must be sure to create the tape using standard
labels so that CMS can read it properly. CMS will not be akle to read a
tape created with LABEL=(,NL) on the DD carad.

For CMS to read this tape for any other purpose (for example, to use
the MOVEFILE command to copy it), you must remember to forward space the
file past the label file before beginning to read it.

Using AMSERV under CMS

This section provides examples of AMSERV functions executed under CMS.
The examples are applicable to both the CHMS (0s) and CMS/DOS
environments. You should be familiar with the material presented in
either "Defining DOS Input and Output Files" or "Defining OS Input and
Output Files," depending on whether you are a DOS or an 0OS user,
respectively. For the examples shown below, command 1lines and options
that are required only for CMS/DOS users are shaded. O0S wusers should
ignore these shaded entries.

A CMS format variable file cannot be used directly as input to AMSERV
functions as a variable (V) or variable blocked (VB) file because the
standard variable CMS record does not contain the BL and RL headers
needed by the variable record modules. If these headers are not included
in the record, errors will result.

All files placed on the CMS disk by AMSERV will show a RECFM of V,
even if the true format is fixed (F), fixed blocked (FB), undefined (U),
variable or variable blocked. The programmer must know the true format
of the file he is trying to use with the AMSERV command and access it
properly or errors will result.

A CMS standard variable-format file can be accessed as RECFM=U to use
the file as follows: :

AMSERV AMREPUV

The file AMREPUS AMSERV contains the following 2 cards:

REPRC INFILE (INPUT ENV (RECFM (U) ,BLKSZ (800) ,PDEV(3330)))
OUTFILE (OUTPUT ENV (RECFM(V) ,BLKSZ(800) ,RECSZ(84) ,PDEV (3330)))

The input file can be any CMS file with LRECL 800 or 1less. The
output file will be a true variable file that can be used with AMSERV.

USING THE DEFINE AND DELETE FUNCTIONS

When you use the DEFINE and DELETE control statements of AMSERV, you do
not need to specify the DSN parameter on the DLBL command: ’

-

jsysct ¢ (perm extent EysCat

AR e

‘aibpl

If the above commands are executed prior +to an AMSERV command to define
a master catalog, the DEFINE will be successful as 1long as ' you have
assigned a data set name using the NAME parameter in the AMSERV file.
The same is true when you define <clusters, or when you use the DELETE
function to delete a cluster, space, or catalog.

Section 10. Using Access Method Services and VSAM 205

March 30, 1979

When you do not specify a data set name, AMSERV obtains the name from
the AMSERV file. In the case of defining or deleting space, no data set
name is needed; the FILE paraneter, corresponding to the ddname is all
that is necessary, and AMSERV assigns a default data set name to the
space.

When you define space on a minidisk using AMSERV, CMS does not check
the extents you specify to see whether they are greater than the number
of cylinders available. As long as the starting cylinder is a valid .
cylinder number and the extents you specify are on cylinder boundaries,
the DEFINE function completes successfully. However, you receive an
error message when you use an AMSERV function that tries to use this
space.

Defining a Suballocated Cluster

To define a cluster for VSAM space that has already been allocated, you
need (1) an AMSERV file containing the control statements necessary for
defining the cluster, and (2) the master catalog (and, perhaps, user
catalog) volume, vhich will point to the cluster. The volume on which
the cluster is to reside does not have +to be online when you define a
suballocated cluster.

For example, the file CLUSTER AMSERV contains the following:

DEFINE CLUSTER (NAME (BOOK.LIST) -
VOLUMES (123456) -
TRACKS (40) -
FILE (BOOK) - ~
KEYS (14,0) RECORDSIZE (120,132)) -
DATA (NAME (BOOK.LIST.DATA)) -
INDEX (NAME (BOOK.LIST.INDEX))

To execute this file, you would need to enter the following command
sequence (assuming that the master catalog, on volume 123456, is in your
virtual machine at address 310):

access 310 b

1bl ijsysct

(perm !
amserv cluster :

Note that to deflne a suballocated clustet, you do not need to prov1de a
DLBL command to define it to AMSERV. .

Defining a Unique Cluster

For a unique cluster (one defined with the UNIQUE attribute), you must
define the space for the cluster at the same time you define its nanme
and attributes; thus - the volume or volumes on which the cluster is to
reside must be mounted and accessed when you execute the AMSERV command.
You must supply extent information for the cluster's data and index
portions separately. 5 ;

To execute an AMSERV file named UNIQUE which contains the following
(the ellipses indicate that the AMSERV file is not complete):

206 IBM VYM/370 CMS User's Guide

DEFINE CLUSTER -
(NAME (PAYROLL)) -
DATA (FILE (UDATA) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (40) -

)
INDEX (FILE (UINDEX)) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (10) -
eee)

the command sequence should be:

CIFICATIONS:
800 800 c
dlbl uinde
600 200 c
amserv unique

Deleting Clusters, Spaces, and Catalogs

When you use AMSERV to delete a VSAM cluster, the volume containing the
cluster does not have to be accessed unless the volume also contains the
catalog in which the cluster is defined. In the case of data spaces and
user catalogs or the master catalog, however, the volume(s) must be
mounted and accessed in order to delete the space.

When you delete a cluster or a catalog, you do not need +to use the
DLBL command, except to define the master catalog; AMSERY can obtain the
necessary file information from the AMSERV file. In the case of data
spaces, you must supply a ddname (filename) with the DLBL command, but
you do not need to use the DSN parameter.

You should be particularly careful when you are using temporary disks
with AMSERV, that you have not cataloged a temporary data space or
cluster in a permanent catalog. You will not be able to delete the space
or cluster from the catalog.

USING THE REPRO, IMPORT, AND EXPORT (OR EXPORTRA/IMPORTRA) FUNCTIONS

You can manipulate VSAM files in CMS with the REPRO, IMPORT, and EXPORT
functions of AMSERV. You can create VSAM files from sequential tape or
disk files (on 0S, DOS, or CMS disks) using the REPRO function. Using
REPRO, you can also copy VSAM files into CMS disk files or onto tapes.
For the IMPORT/EXPORT process, you have the option (for smaller files)
of exporting VSAM files to CMS disks, as well as to tapes.

You cannot, however, use the EXPORT function to write files onto CS
or DOS disks. ©Nor can you use the REPRO function to copy ISAM (indexed
sequential) files into VSAM data sets, since CMS cannot read ISAM files.

When creating a VSAM file from a non-VSAM disk file, the device track

size must be the maximum BLOCKSIZE in the INFILE statement. AMSERY
expects a DOS or 0S file as input and will not open a disk file when the

Section 10. Using Access Method Services and VSAM 207

BLOCKSIZE specified is greater than the track capacity of the disk
device being used.

You cannot use the ERASE or PURGE options of the EXPORT command if
you are exporting a VSAM file from a read-only disk. The export
operation succeeds, but the listing indicates an error code 184, meaning
that the erase function could not be performed.

You should not use an EXPORT DISCONNECT function from a CMS minidisk
and try to perform an IMPORT CONNECT function for that data set onto an
0S5 system. 0S incorrectly rebuilds the data set control block (DSCB)
that indicates how much space is available.

The AMSERV file below gives an example of using the REPRO function to
copy a CMS sequential file into a VSAM file. The CMS input file must be
sorted in alphameric sequence before it can be copied into the VSAM
file, which 1is a keyed sequential data set (KSLS). The VSAM cluster,
NAME.LIST, is defined in an AMSERV file named PAYROLL:

DEFINE CLUSTER (NAME (NAME.LIST) -
VOLUMES (CMSDEV) -
TRACKS (20) -
FILE (BOOK) -
KEYS (14,0) -
RECORDSIZE (120,132)) -
DATA (NAME (NAME.LIST.DATA)) -
INDEX (NAME (NAME.LIST.INDEX))

To sort the CMS file, create the cluster and copy the CMS file into it,
use the following commands:

sort name list a name sort a
DMSSRT604R ENTER SORT FIELDS:
1 14 :
access 135 c

d1bl name c dsn name list |
amserv repro

The file REPRO AMSERV contains:

REPRO INFILE (SORT -
ENV (RECORDFORMAT (F) -
BLOCKSIZE (80) -
PDEV (3330))) -
OUTFILE (NAME)

When you use the REPRO, IMPORT, or EXPORT functions with tape files,
you must remember to use the TAPIN and TAPOUT options of +the AMSERV
command. These options perform two functions: they allow you to specify
the device address of the tape, and they notify AMSERV to prompt you to
enter a ddname.

In the example below, a VSAM file is being exported +to a tape. The
file, TEXPORT AMSERV, contains:

EXPORT NAME.LIST -

INFILE (NAME) -
OUTFILE (TAPE ENV (PDEV (2400)))

208 IBM VM/370 CMS User's Guide

£ a

March 30, 1979

To execute this AMSERV, you enter the commands as follows:

$7s5006 vsan

labeldef tape fid tapf volid dept10 exdte 79040
amserv texport (tapout 181

DMSAMS367R ENTER TAPE OUTPUT DDNAMES:

tape

The fid, volid, and exdte parameters on LABELDEF are only examples;
you can substitute any value you want for them on your tape label.

WRITING EXECS FOR AMSERV AND VSAM

You may find it convenient to use EXEC procedures for most of your
AMSERV functions, as well as setting up input and output files for
program execution, and executing your VSAM programs. If, for example, a
particular AMSERV function requires several disks and a number of DLEL
statements, you can place all of the required commands in an EXEC file.
For example, if the file below is named SETUP EXEC:

ACCESS 135
ACCESS 136
ACCESS 137
CCESS 300

QU QW

DLBL IJSYSCT G (PERM |
W B

DSN FIRST FILE (VSAM |

DLBL FILE

DLBL FILE2 C DSN SECOND FILE (VSAM §

SN THIRD FILE (VSAM |
AMSERV MULTFILE

to invoke this sequence of commands, all you have to enter is the name
of the EXEC:

setup

If you place, at the beginning of the EXEC file, the EXEC control
statement:

&ERROR &EXIT &RETCODE

then, you can be sure that the AMSERYV command does not exXxecute unless
all of the prior commands completed successfully.

For those AMSERV functions that issue response messages, you cah use
the &§STACK EXEC control statement. For example:

&ERROR &EXIT SRETCODE
ACCESS 305 D

DLBL OUTPUT D (VSAM 3
LABELDEF TAPE FID FILE1
&EERROR &§CONTINUE

&STACK TAPE

AMSERV TIMPORT (TAPIN 181

&IF SRETCODE NE 0 TYPE TIMPORT LISTING
TAPE REW

EEXIT O

Section 10. Using Access Method Services and VSAM 209

March 30, 1979

When the AMSERV command in the EXEC is executed, the request for the
tape ddname is satisfied immediately, by the response stacked with the
&ESTACK statement. ,

If you are executing a command that accepts muitiple response lines,
you have to stack a null line as follows:

%

&STACK C
&STACK
- DLBL MULTFILE B (MULT

i

Note: fbﬁ can use the &BEGSTACK control statement to stack a series of
responses in an EXEC, but you must use &STACK to stack a null line.

210 IBM VM/370 CMS User's Guide

Section 11. How VM/,/370 Can Help You Debug
Your Programs

Debugging is a critical part of the program development process. When
you encounter problems executing application programs or when you want
to test new lines of code, you can use a variety of CP and CHS debugging
commands and techniques to examine your program while it is executing.

You can interrupt the execution of a program to examine and change
your general registers, storage areas, or control words such as the
program status word (PSW), and then continue execution. Also, you can
trace the execution of a program closely, so you can see where branches
are being taken and when supervisor calls or I/O interruptions occur.

In many cases, you may never need to look at a dump of a program to
identify a problen.

Preparing to Debug

Before beginning to debug a program, you should have a current progranm
listing for reference. When you use VM/370 to debug a program, you can
monitor program execution, instruction by instruction, so you must have
an accurate list of instruction addresses and addrésses of program
storage areas. You can obtain a listing of your program by using the
PRINT command to print the LISTING file created by the assembler or
compiler. To determine the virtuwal storage locations of program entry
points, use the LOAD MAP file created by the LOAD and INCLUDE commands.
If you are a CMS/DOS user, use the linkage editor map produced by the
DOSLKED command.

If the program that you are debugging creates printed or punched
output and you will be executing the program repeatedly, you may not
wish all of the output printed or punched. You should place your
printer or punch in a hold status, so that any files spooled to these
devices are not released until you specifically request it:

cp spool printer hold
cp spool punch hold

When you are finished debugging you can use the CP QUERY command to see
what files are being held and then you can select which files you may
want to purge or release.

When a Program Abends

The most common problem you might encounter is an abnormal termination
resulting fros a program interruption. When a program running in a CMS
virtual machine abnormally terminates (abends), you receive, at your
terminal, the message:

DMSITP141T exception EXCEPTION OCCURRED AT address IN ROUTINE nanme
and your virtual wachine is returned to the CMS environment. PFrom the
message you can determine the type of exception (program check,

operation, specification, and so on), and, often, the instruction
address in your program at which the error occurred.

Section 11. How VM/370 Can Help You Debug Your Programs 21

Sometimes this is enough information for you to correct the error in
your source program, recompile it and attempt to execute it again.

When this information does not immediately identify the problem in
your program, you can begin debugging procedures using VM/370. To
access your program's storage areas and registers you can enter the
command:

debug

immediately after receiving the abend message. This command places your
virtual machine in the debug environment.

To check the contents of general registers 0 through 15, issue the
DEBUG subcommand: '

gpr 0 15

If you want to locok at only one register, enter:

gpr 3

You might also wish to check the program status word (PSW). Use the PSW
subcommand:

psw
You can examine storage areas in your program using the X subcommand:
X 201aC 20

In this example, the subcommand requests a display of 20 bytes,
beginning at location 201AC in your program. User programs executed in
CMS are always loaded beginning at location X'20000' unless you specify
a different address on the LOAD or FETCH command. To identify the
virtual address of any instruction in a program, you only need to add
20000 to the hexadecimal instruction address.

RESUMING EXECUTION AFTER A PROGRAM CHECK

On occasion, you will be able to determine the cause of a program check
and continue the execution of your program. There are DEBUG subcommands
you can use to alter your program while it is in storage and resume
execution. '

If, for example, the error occurred because you had forgotten to
initialize a register to contain a zero, you could use th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>