
Systems

File No. S370·30
Order No. GC20·1819-0

IBM Virtual Machine
Facility/370:
eMS User's Guide

Release 3 PLC 1

Contains general information and examples for
using the Conversational Monitor System (CMS)
component of I BM Virtual Machine Facility/370
(VM/370).

This publication is written for applications
programmers and nontechnical personnel who
want to learn how to use CMS to create and
modify data fiies (including VSAM data sets) and
programs, and to compile, test, and debug OS or
DOS programs under CMS.

The CMS Editor and EXEC facilities are described
with usage information and examples.

Prerequisite Publications

IBM Virtual Machine Facility/370: Terminal
User's Guide, Order No. GC20·1810
IBM Virtual Machine Facility/370: Introduction,
Order No. GC20-1800

1!~2~ ~g!UQ!! (February 1976)

This edition corresponds to Release 3 PLC 1 (Program Level Change) of
IBM Virtual Machine Facility/370, and to all subsequent releases unless
otherwise indicated in new editions or Technical Newsletters.

changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM systems,
cgnsult tme latest !~tt 312!~!Ll1~ §!~1!Q9!~EhI, Order No. GC20-0001, for
the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM corporation, VM/370 publications, 24 New England Executive Park,
Burlington, Massachusetts 01803. Comments become the property of IBM.

© Copyright International Business ~achines Corporation 1976

This publication is intended for the
general CMS user. It contains information
describing the interactive facilities of
CMS, and includes examples showing you how
to use CMS.

"Part 1. Understanding CMS" cont~ins
sections that describe, in general terms,
the CMS facilities and the CMS and CP
commands that you can use to control Jour
virtual machine. If you are an experienced
programmer who has used interactive
terminal systems before, you may be able to
refer directly to !~LJ1~: ~~~ ~2~~~n~~n~
~g££2 ~~!~£~B£~ publication to ~ind
specific details about CMS commands that
are summarized in this part. otherwise,
you may need to refer to later sections of
this publication to gain a broader
background in using CMS.

The topics discussed in Part 1 are:

• What It Means to Have a CMS Virtual
Machine

• VM/310-CMS Environments and Mode
Switching

• What You Can Do With VM/310-c~$ Commands
• The CMS File System
• The CMS Editor
• Introduction to the EXEC Processor
• Using Real Printers, Punches, Readers,

and Tapes

"Part 2. Program Development Using eMS"
is primarily for applications programmers
who want to use CMS to develop and test os
and DOS programs under CMS. The topics
discussed in Part 2 are:

• Developing os Programs Under CMS
• Developing DOS Programs Under CMS
• Using Access Method Services and

Under CMS and CMS/DOS
• How VM/310 Can Help You Debug

Programs
• Using the CMS Batch Facility
• Programming in the CMS Environment

"Part 3. Learning to
detailed information on
procedures to use with
discussed in Part 3 are:

Use EXEC"
creating

CMS. The

• Building EXEC Procedures
• Using EXECs with CMS Commands
• Refining Your EXEC Procedures
• Writing Edit Macros

VSAM

Your

gives
EXEC

topics

"Appendix A: Summary of CMS Commands"
lists the commands available in the CMS
command environment.

Preface

"Appendix B: Summary of CP Commands"
lists the CP command privilege classes and
summarizes the commands available in the CP
command environment.

"Appendix C: Considerations for 3210
Display Terminal Users" discusses aspects
of VM/310 and CMS that are different or
unique when you use a 3210 display
terminal.

"Appendix B: Sample Terminal Sessions"
shows sample terminal sessions for:

• Using the CMS Editor and CMS file system
commands

• Using line-number editing with the CMS
Editor

• Creating, assembling, and executing an
OS program in CMS

• Creating, assembling, and executing a
DOS program in CMS/DOS

• Using Access Method Services in CMS

Some of the following terms are used, for
convenience, throughout this publication:

• The term "CMS/DOS" refers to the
functions of CMS that become available
when you issue the command

•

set dos on

CMS/DOS is a part of the normal CMS
system, and is not a separate system.
Users who do not use CMS/DOS are
sometimes referred to as OS users, since
they use the OS simulation functions of
CMS.

The term "eMS files" refers exclusively
to files that are in the aOO-byte block
format used by eMS file system commands.
VSAM and OS data sets and DOS files are
not compatible with the eMS file format,
and cannot be manipulated using eMS file
system commands.

• The terms "disk" and "virtual disk" are
used interchangeably to indicate disks
that are in your eMS virtual machine
configuration. Where necessary, a
distinction is made between
eMS-formatted disks and disks in OS or
DOS format.

• "3270" refers to both the IBM 3275
Display Station, Model 2 and the IBM
3277 Display Station, Model 2.

• "3330" refers to the IBM 3330 Disk
storage Models 1, 2, and 11, the IBM
3333 Disk storage and Control Models 1
and 11, and the IBM 3350 Direct Acsess
storage in 3330 compatibility mode.

• "2305" refers to the IBM 2305 Pixed Head
storage, Models 1 and 2.

• "3340" refers to the IBM 3340 Direct
Access Storage Pacility and the IBM 3344
Direct Access Storage.

• "3350" refers to the
Access Storage device
native mode.

IBM 3350 Direct
when used in

• Any information pertaining to the IBM
2741 terminal also applies to the IBft
3767 terminal, unless otherwise noted.

Note: Information on the IBM 3344 and 3350
Direct Access Storage Devices is for
planning purposes only until the
avail&bility of the products.

Por a glossary of Vft/370 terms, see the
!!Hl !![j:.!!g! !lg~l!.!!!§ 19~i!i tIL11Q: Glo§.§§!:l
§ng !lg~j:.~[!ng§!, Order No. GC2 0-1813.

If this is the first time you have used a
computer terminal, you should consult the
!~L~lQ: l§!:~i!!gl Y§§!:!§ 2yig§, Order No.
GC20-1810, for information on using your
terminal.

If your terminal is a 3767
Communications Terminal, then IBM ~1§1
Q.E~!:2!21:!§ gy!g§, Order No. GA 18-2000, is a
prerequi,si te.

The IBft Virtual A2£h!n~ l2~!!itIL~lQ:
1!!!!:£gy£!12!!:-order No. GC20-1800, contains
an overview of the Vft/370 system and its
components, and lists the programs and
products that are supported in efts.

IBM Virtual Ilg£h!!!~ l2£i!i:t.:IL~lQ: £~.§
~2B1!!.!i~-·-ii~ A.!~U2 R§!§!:~!!£~, Or d er No.
GC20-1818, publication is a companion to
this user's guide. It contains complete

format descriptions of the CMS commands,
EDIT subcommands, EXEC control statements,
built-in functions, and special variables,
DEBUG subcommands, and CftS assembler
language macros that are discussed or used
in examples in this book.

!~A !ir!Ygl !§£h!!!~ l§£i!!!IL~lQ: ~Ist~1!!
!§§§g~§.§, Order No. GC20-1808, contains the
responses, error messages, and return codes
issued by the CMS commands, and EDIT and
DEBUG subcommands referenced in this
publication, as well as a complete list of
the error messages issued by the EXEC
processor.

To use CMS, you should be familiar with
the control program (CP) component of
VM/370. The CP commands available to
general users are described in !~] !!!:!yg!
A§£hi!!~ 12ci!i:t.IL~lQ: £g £2~ma!!g Ret~I~!!£~
for General Users, Order No. GC20-1820. If
you are--using-CftS to develop programs to
run under other operating systems, see IBM
!!I!!!g! Ag£hiD§ Pa£ili!~Ll1Q: Q.E§£g!i!!g
.§I§!~1!!§ in g !irty.!! Ag£hi!!§, Order No.
GC20-1821.

Additional descriptions of
functions and commands which
used by system support
described in

various CMS
ar e normally

personnel are

There are two publications available as
ready reference material when you use
Vft/370 and CftS. They are IB! !i!:!Ygl
~g£h!!!§ Ig£il!!IL11Q:

Co.mand Reference ~!1!!.g[I, Order No.
GX20=1961:--------

If you are going to use the
Spooling Communications subsystem,
1~~ !if~gg! ~g£Bi~~ Ig£i!i!~L~lQ:
§222!ing ~2m~Yni£g!i~~§ ~YR§~§!~~
Y~~~~2 ~gig~, Order Ho. GC20-1816.

Remote
see the
, B~!2!~
(B'§~§)

Assembler language programmers may find
information about the VM/310 asse$bler in
Q§L!§ , .QQ.§L!§ , ~ag !~LJ.1Q !§'2~!!lB!~!:
L~n~Y~~~, Order Ho. GC33-4010, and Q§L!§
~~g !~L~lQ A§§'~!!lR!~~ ~!:2g~gm!!l~~~~ §gig~,
Order Ho. GC33-4021.

CMS support of Access Method Services is
based on DOS/VS Access Method Services. The
control statements that you can use are
described in J1!~UVS A££~~§. ~~1.b2,g ser!:,!.£~§
User's Guide, Order Ho. GC33-S382. Error
iiessages--produced by the Access Method
Services program, and return codes and

reason codes are listed in .QQ§L!.§ Me§§ig~§.,
Order Ho. GC33-S319.

For a detailed description of DOS/VS
VSAM macros and macro parameters, refer to
the .QQ.§L!.§ .§Y~~!:!!§2! ~Dg iLQ ~~£!:2§, Order
Ho. GC33-S313. For information on OS/VS
VSAM macros, refer to 2§L!§ !i~1Y~! .§!2!g~
!££~§§ ~~1h2g (!~~) g!:~!:~~~f~§ §~,g~,
Order Ho. GC26-3818.

The CMS ESERV co.mand invokes the DOS/VS
ESERV program, and uses, as input, the
control statements that you would use in
DOS/VS. These control statements are
described in §gide to !h~]Q.§L!.§ A§§~~R!~f'
Order Ho. GC33-4024.

Linkage editor control statements, used
when invoking the DOS/VS linkage editor
under CMS/DOS, are described in]Q§L!§
.§Y2!~~ ~~ntrol §!g!~~~!§, Order Ho.
GC33-S316.

PART 1. UNDERSTANDINGCMS •••••

SECTION 1. WHAT IT MEANS TO HAVE A CMS
VIRTUAL MACHINE • • • • • • • •

How You Communicate With VM/370 ••
Getting Commands Into the system
Loading CMS in the Virtual Machine:

• 11

• 13
• 13
• 15

The IPL Command ••••••••••• 16
Logical Line Editing Symbols •••••• 16

How VM/370 Responds to Your Commands • 18
Getting Acquainted With CMS. • • • • • • 20
virtual Disks and How They Are Defined • 21

Permanent Virtual Disks. • • •• 21
Defining Temporary Virtual Disks • • • 22
Formatting virtual Disks • • • • • • • 22

Sharing Virtual Disks: Linking ••••• 23
Identifying Your Disk To CMS: Accessing. 24

Releasing virtual Disks. • • 24

SECTION 2. VM/370 ENVIRONMENTS AND MODE
SWITCHING. • • • • • 27

The CP Environment • • • • • • • 27
The CMS Environment. • • • • • • • • • • 28

EDIT, INPUT, and CMS Subset •••••• 29
DEBUG. • • • • • • • • • • • • 30
CMS/DOS •••••••••••••••• 31

Interrupting Program Execution • • 31
Virtual Machine Interrupts • • 32
Control Program Interrupts • • 33
Address stops and Breakpoints.. • 33

SECTION 3. WHAT YOU CAN DO WITH
VM/370-CMS CO~~ANDS • • • • •

Command Defaults • • • • • • •
Commands to Control Terminal

Communica tions. • • • • • • •
Establishing and Terminating
Communications with V~/370.

Controlling Terminal Output. •
Commands to Control How VM/370

Processes Input Lines • • • • •
Controlling Key,board-dependent

Communications. • • • • • • • •
Commands to Create, Modify, and Move

35
• 35

• 35

• 35
• 36

• 38

• 39

Data Files and Programs • • • • • • 40
Commands that Create Files •••••• 41
Commands that Modify Disk Files. • • • 42
Commands to Move Files •••••••• 43
Commands to Print and Punch Piles. • • 43

Commands to Develop and Test OS and CMS
Programs. • • • • • • • • • • • • • • • 44

Commands to Develop and Test DOS
Programs. • • • • • • • • • • • • • • • 45

Commands Used in Debugging Programs. • • 46
Commands to Request Information ••••• 47

Commands to Request Information About
Terminal Characteristics ••••••• 47

Commands to Request Information About
Data Files •••••••••••••• 48

Commands to Request Information About
Your Virtual Disks •••••••••• 49

Contents

Commands to Request Information About
Your Virtual Machine. • • • • 50

SECTION 4. THE CMS PILE SYSTEM •
CMS File Formats • • • • • • • •
How CMS Piles Get Their Names. •

51
• • 51

51
Duplicating Filenames and Filetypes. • 52

53 What Are Reserved Piletypes1 • •
Piletypes for CMS Commands • •
output Piles: TEXT and LISTING
Piletypes for Temporary Files.
Piletypes for Documentation ••

Filemode Letters and Numbers • •
When to Specify Filemode Letters:

54
• • 56
• • 58

58
58

Reading Piles • • • • • • • • • • • • 60
When to specify FilelBode Letters:

Wri ting Piles • • • • •
How Pilemode Numbers are Used.

Managing Your CMS Disks ••
CMS Pile Directories • •
CMS Command Search Order

SECTION 5. THE CMS EDITOR.
The EDIT Command • • • • • •

Writing a File Onto Disk • •
EDIT Subcommands • • • • •

The Current Line Pointer •

61
• • 62

64
64
65

69
69

• • 70
71

• • 73
verification and Search Columns.
Changing, Deleting, and Adding Lines •
Describing Data File Characteristics •

76
• 77
• 81

Record Length. • • • • • •
Record Pormat. • • • • • •
Using Special Characters •
Setting Truncation Limits.
Entering a continuation Character in

81
83
84
86

Column 72 • • • • • • • • • 87
Serializing Records. • • • • • • • 88
Line-Number Editing. • • • • 89
Renumbering Lines. • • • • 90

Controlling the Editor • 91
Communicating with CMS and CP. • • 92
Changing File Identifiers. 92
Controlling the Editor's Displays. 93
Preserving and Restoring Editor
Settings •••••••••••

X, Y, =, 1 Subcommands ••••
• • 94

What To Do When You Run Out of Space •
Summary of EDIT Subcommands. •

95
96
99

SECTION 6. INTRODUCTION TO THE EXEC
PROCESSOR. • • • • • • • .103
Creating EXEC Piles. • • • .103
Invoking EXEC Files. • • • • • • • 104

PROFILE EXECs. • • • • • • • .105
Exec~ting Your PROPILE EXEC.. • .106

CMS EXECs and How To Use Them. • .106
~odifying CMS EXECs. • • •• 108

Summary of the EXEC Language Facilities.l08
Arguments and Variables. • • • • .109
Assignment Statements. • • • • • • 110
Built-in Punctions and Special
Variables • • • • • • • • 111

Flow Control in an EXEC. • .111
Comparing Variable Symbols and
Constants. • • • • • • • .113

Doing I/O with an EXEC • • .113
Monitoring EXEC Procedures .115

Su •• ary of EXEC Control statements and
speciat Variables • • • • • • • .116

SECTION 7. USING REAL PRINTERS,
PUNCHES, READERS, AND.TAPES • • .121

CftS Unit Record Device Support.. .121
Using the CP Spooling System. • .121
Altering Spool Files ••••••••• 123
Using Your Card Punch and Card Reader
in cns •••••• ~ • • • • .124

Handling Tape Piles in CMS • • • .126
Using the C~S TAPE Command. • • .127
Tape J~abels in CMS • • • • • •• .129
The MOVEFILE Command • • • • .. • • • • 130
Tapes Created by OS Utility Programs .130
Specifying Special Tape Handling
Options. • • • • • • • • • • .131

Using the Remote Spooling
Communications Subsystem (R SC S). • 131

PART 2. PROGRAM DEVELOPMENT USING CMS •• 133

SECTION 8. DEVELOPING OS PROGRAMS UNDER
CMS • • • • • • • • • • •

Using OS Data Sets in CMS. • • .. •
Access Methods supported by CMS.

Using the FILEDEP Command. • • .. •
specifying the ddname. • • • ..
Specifying the Device Type •
Entering File Identifications. • • •
Specifying Options • • • • • .. •

Creatinq C~S Files Prom OS Data Sets •
Using C~S Libraries ••••

.135

.137

.138

.139

.139

.139

.140

.141
• 142
.144

The MlCLIE Command • • • • •
Using OS Macro Libraries • ..

D • • • • 145
.148

Using OS Macros Under CMS.
Assembling Programs in CMS •
Executing Programs • • • •

.. • • • • 149

Executing TEXT Files • • •
TEXT LIBRARIES (TXTLIB~
Resolving External References. •
Controlling the CMS Loader ••
Creating Program Modules • .. • •
Using EXEC Procedures

SECTION 9. DEVELOPING DOS PROGRAMS

.149

.151

.152

.153
• 154
.155
.156
.157

UNDER eMS. • • • .• • • • • • • • .159
The CMS/DOS Environment. • • • .. • .159
Using DOS Piles on DOS Disks. •• .160

Reading DOS Files. • • • • • •• . .162
Creating CMS Files from DOS Libraries.162

Using the ASSGN Command. • • • • • .164
Manipulating Device Assignments. .165
Virtual Machine Assignments. • .166

Using the DLBL Command. • • • • .166
Entering Pile Identifications. .166

Using DOS Libraries in CMS/DOS •. .168
The SSERV Command. .168
The RSERV Command. .169
The PSERV Com.and. • • • • • • .169
The ESERV Command. • .170
The DSERV Command. • • .171
Using DOS Core Image Libraries. .171

Using Macro Libraries. • • • .172
C~S MACLIBs. • • • • • • • ••• 172
Creating a CMS MACLIB. • • • • • 172
The MACLIB Command •••••••••• 173

DOS Assembler Language Macros Supported. 176
Assembling Source Programs ••••••• 178
Link-editing Programs in CMS/DOS •••• 179

Linkage Editor Input ••••••••• 179
Linkage Editor Output: CMS DOSLIBs •• 181

Executing Programs in CMSjDOS •••••• 182
Executing DOS Phases • • • • • • • • • 182
Search Order for Executable Phases •• 183
Making I/O Device Assignments. • .183
specifying a Virtual Partition Size •• 184
Setting the UPSI Byte ••••••••• 184
Debugging Programs in CMS/DOS ••••• 185
Using EXEC Procedures in CMS/DOS ••• 185

SECTION 1~. USING ACCESS METHOD
SERVICES AND VSAM UNDER CMS AND
CM S/DO S • • • • • • • • • • • • • • 187
Executing VSAM Programs Under C~s ••• 187

Using the AMSERV Command •••••••• 188
AMSERV Output Listings •••••••• 189
Controlling AMSERV Command Listings •• 190

Manipulating OS and DOS Disks for Use
with AMSERV • • • • • • • • .191

Using VM/370 Minidisks •••••••• 191
Using The LISTDS Command ••••••• 191
Using Temporary Disks ••••••••• 193

Defining DOS Input and Output Files ••• 194
Using VSAM Catalogs •••••••••• 195
Defining and Allocating Space for

VSAM files •••••••••••••• 198
Using Tape Input and Output •••••• 200

Defining OS Input and Output Files ••• 201
Allocating Extents on OS Disks and

Minidisks •••••••••••••• 202
Using VSAM Catalogs. • • • • • • • • .203
Defining and Allocating Space for

VSAM files. •• • •••••••• 206
Using Tape Input and Output •••••• 208

Using AMSERV Under CMS • • • • • • • • .209
Using the DEFINE and DELETE Functions.209
Using the REPRO, IMPORT, and EXPORT

(or EXPORTRA/IMPORTRA) functions ••• 211
Writing EXECs for AMSERV and VSAM ••• 212

SECTION 11. HOW VM/370 CAN HELP YOU
DEBUG YOUR PROGRAMS. • •••••• 215

preparing to Debug • • • •••••• 215
When a Program Abends. • •••••• 215

Resuming Execution After a Program
Check •••••••••••••••• 216

Using DEBUG Subcommands to Monitor
Program Execution ••••••••••• 217
Using Symbols with DEB UG • • • • • • .218

What To Do When Your Program Loops ••• 220
Tracing Program Activity. • • .220

Using the CP TRACE Command •••••• 221
Using the SVCTRACE command ••• 223

Using CP Debugging Commands ••••••• 223
Debugging with CP After a Program
Check. • • • •• • ••••••• 224

Program Dumps. • •• • ••••••• 225
Debugging Modules.. • ••••••• 225
Comparison Of CP And CMS Facilities For
Debugging. • • •• • ••••••• 226

What Your Virtual ftachine storage Looks
Like. • • • • • • • • • • • • • .227

Shared and Nonshared Systems • .227

SECTION 12. USIIG THI CftS BATCH
FACILITY. • • • • • • • • • • • • .231

Submitting Jobs to the CftS Batch
Pacility. • • • • • • • • • • •• .231

Input to the Batch ftachine • • .231
How the Batch Facility Works.. .234

Preparing Jobs for Batch Execution • • .234
Restrictions on CP and CftS Co.mands
in Batch Jobs • • • • • • • • • • • .235

Batch Pacility output ••••••••• 236
Using EXEC Files for Input to the Batch
Facility •••••••••••••••• 236
sa.ple System Procedures for Batch
Execution • • • • • • • • • • • • • .238

A Batch EXBC for a lon-CftS User •••• 239

SICTIOR 13. PBOGRAftftIIG FOR THB CftS
EIVIRONftENT •••••• '. • • • • .241

Program Linkage ••••••••••••• 241
Return Code Handling ••••••••• 242
Pa ra meter Lists. • • • • • • • • • • .242

Calling a CftS Command from a Program •• 243
Bxecuting Program ftodules. • • • • • • .244

The Transient Program Area •• ~ ••• 245
CftS ftacro Instructions • • • • • • • • .245

ftacros for Disk File ftanipulation ••• 245
CMS ftacros for Terminal

Communications. • • • • • .251
CBS ftacros for unit Record and Tape

I/O • • • • • • • • • • • •
Interrupt Handling ftacros. •

PART 3. LEARNING TO USE EXEC •

.251

.252

.253

SECTION 14. BUILDING EXEC PROCEDURES •• 255
What is a Token? • • • •••••• 255
Variables. • • • • • • •••••• 256
Arguments. • • • • • • •••••• 258

Using the SIIDEX Special Variable ••• 260
Checking Arguments • • • .260

Execution Paths in an EXIC .262
Labels in an EXEC procedure. • • • • .262
Conditional Bxecution with the SIF
statellent •• • ••••••••• 263

Branching with the SGOTO Statement •• 264
Branching with the SSKIP Statement •• 266
Using Counters for Loop Control. • • .266
Loop Control with the SLOOP Statement.267
Nesting EXEC Procedures •••••••• 269
Exiting From BXEC Procedures ••••• 269

Ter.inal Communications. • • • • • • • .271
Reading CftS Co •• ands and EXEC Control
Statements from the Terminal. • .271

Displaying Data at a Ter.inal.. .272
Reading from the Console Stack. • .275

Stacking CftS Comllands. • • .277
Stacking Lines for IXEC to Read. .278
Clearing the Console Stack • .279

Pile ftanipulation with BXECs .280
Stacking EXEC Files. • • • .280

SECTION 15. USING EXECS WITH CftS
COftftANDS. • • • •

I!oni.toring CftS Co.mand Execution •
.285
.285

Handling Error Returns Prom CMS
Commands •••••••••••••••• 286

Using the &ERROR Control Statement •• 286
Using the SRETCODE Special Variable. .287

Tailoring CftS Co.mands for Your Own Use.288
Creating Your Own Default Filetypes •• 289

SECTION 16. REFINING YOUR EXEC
PROCEDURES. • • • • • • •

Annotating EXEC Procedures •
Error situations ••••••

Writing Error ftessages • •
Debugging EXEC Procedures ••

Using CftS Subset • • • • • •
Sumllary of EXEC Interpreter Logic.

SECTION 17. WRITING EDIT ftACROS.
Creating Edit Macro Piles ••••
How Edit Macros Work • • • • • •

• .291
• .291
• .292
• .292
• .294
• .294
• .295

• .297
• .297
• .297

The Console Stack ••••••••
Notes on Using EDIT Subcomllands.

• • • 299

The STACK Subcomlland • •
An Annotated Edit Macro. •
User-Written Edit Macros •

SftAC80S. • • • • • • • • •
SMARK. • •
SPOINT • •
SCOL • • •

APPENDIXES •

• .300
• .303
• .304
• .306
• .306
• .307
• .309
• • 310

.311

APPENDIX A: SUftMARY OF CMS COMMANDS ••• 313

APPENDIX B: SUMftARY OF CP COftMANDS ••• 319

APPENDIX C: CONSIDERATIONS FOR 3270
DISPLAY TERftINAL USERS •••• ~ •• 325

Entering Commands. • • • • • • • .325
Setting Prograll Function Keys. • • .325
Controlling the Display Screen • • .326

Console Output • • • • • • • • • .328
Signaling Interrupts. • • • • • • .329

Balting Screen Displays. • • • .330
Using the CftS Editor with a 3270 •••• 330

Entering EDIT Subcollllands. • • • .330
Controlling the Display Screen •• 332
The Current Line Pointer. • • • .333
Using Program Function Keys. • • .334
Using the Editor in Line Mode ••••• 334
Using Special Characters on a 3270 •• 335

Using APL with a 3270 •••••••••• 336
Error situations ••••••••••• 337
Leaving the APL Environment •••••• 337

APPENDIX D: SAI!PLE TERftINAL SESSIONS •• 339
Sallple Terminal Session Using the
Editor and CftS File System Commands •• 340

Sample Terminal Session Qsing
Line-Bumber Editing • • • • • • • .348

Sample Terminal Session Por OS
Programmers • • • • • • • • • •

Sample Terminal Session for DOS
• .351

Program •• ers. • • • • • • • • • • • • .355
Sample Terminal Session Using Access

Method Services. • .361

INDEX •••••••••••••••••• 369

Figures

Figure 1.

Figure 2.

Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.

VM/370 Environ.ents and Mode
Switching ••••••••••••••••••••• 34
Filetypes Used by CMS
Commands •••••••••••••••••••••• 55
Filetypes Used in CMS/DOS ••••• 57
Bow CMS Searches for the
Co.mand to Execute •••••••••••• 67
Positioning the Current Line
Pointer ••••••••••••••••••••••• 76
Number of Records BandIed by
the Editor •••••••••••••••••••• 83
Summary of EDIT Subcommands and
Macros •••••••••••••••••••••••• 99
Summary of EXEC Built-in
Functions •••••••••••••••••••• lll
Su.mary of EXEC Control
State.ents ••••••••••••••••••• 116
EXEC Special Variables ••••••• 119
OS Terms and CMS Equivalents.136
CMS Com.ands That Recognize
OS Data Sets and OS Disks •••• 137
Creating CMS Files From OS
Data Sets •••••••••••••••••••• 144

Figure 14.
Figure 15.

Figure 16.

F.igure 17.
Figure 18.

Figure 19.
Figure 20.

Figure 21.

Figure 22.
Figure 23.

Figure 24.
Figure 25.
Figure 26.

OS Macros Simulated by CMS ••• 150
CMS/DOS Commands and CMS
Commands with Special Operands
for CMS/DOS •••••••••••••••••• 161
DOS/VS Macros supported by
CMS •••••••••••••••••••••••••• 177
Summary of DEBUG Subcommands.219
Comparison of CP and CMS
Facilities for Debugging ••••• 226
simplified CMS storage Map ••• 228
Sample CMS Assembler Program
Entry and Exit Linkage ••••••• 242
A Sample Listing of a
Program That Uses CMS Macros.250
CMS Command Summary •••••••••• 314
CP privilege Class
Descriptions ••••••••••••••••• 319
CP Command Summary ••••••••••• 320
3270 Screen Display •••••••••• 329
Bow the CMS Editor Formats
a 3270 Screen •••••••••••••••• 331

Part 1. Understanding eMS

Learning how to use C"S is not an end in itself: you have a specific
task or tasks to do, and fOU need to use the computer to perform them.
CMS has been designed to make these tasks easier, but if you are
unfamiliar with C"S, then the tasks may seem more difficult. The
information contained in Part 1 of the user's guide is organized to help
you make the acquaintance of eMS quickly, so that it enhances, rather
than impedes, the performance of your tasks.

"Section 1. What It Means To Have a CMS virtual Machine" introduces
you to VM/370 and its conversational component, CMS. It should help you
to get a picture of how you, at a terminal, use and interact with the
system.

During a terminal session, commands and requests that
processed by different parts of the system. How and
communicate with these different programs, is described
'"/370 Environments and Mode Switching."

you enter are
when you can

in "section 2.

There are almost two hundred commands and subcommands comprising the
YM/370 language. There are some that you may never need to use; there
are others that you will use over and over again. "section 3. What You
Can Do With VM/370-CMS Commands" contains a sampling of commands in
various functional areas, to give you a general idea of the kinds of
things you can do, and the commands available to help you do them.

Almost every CMS command that you enter results in some kind of
activity with a direct access storage device (DASD), known in CMS simply
as a disk, or minidisk. Data and programs are stored on disks in what
are called "files." "Section 4. The CMS File System" introduces you to
tBe creation and handling of CMS files.

"Section 5. The CMS Editor" contains all the basic information you
Beed to create and write a disk file directly from your terminal, or to
correct or modify an existing CMS file.

Just as important as the CMS Editor is another CMS facility, called
the EXEC processor or int~rpreter. Using EXEC files, you can execute
many commands and programs by entering a single command line from your
terminal, or you can write your own CMS commands. "Section 6.
Introduction to the EXEC Processor" presents a survey of the basic
characteristics and functions of EXEC.

"Section 7. Using Real Printers, Punches, Readers, and Tapes"
discusses how to use punched cards and tapes in CMS, and how to use your
virtual printer and punch to get real output.

Part 1. Understanding CMS 11

Section 1. What It Means To Have a eMS Virtual Machine

Virtual Machine Facility/370 (VM/370) is a system control program that
controls "virtual machines." A virtual machine is the functional
equivalent of a real computer, but where the computer has lights,
buttons, and switches on the real console to control it, you control
your virtual machine from your terminal, using a command language of
active verbs and nouns. There are actually three command languages, CP,
CMS, and RSCS.

The command languages correspond roughly to the three components of
YM/370: the Control Program (CP), the Conversational Monitor system
(CMS), the Remote Spooling Communications subsystem ~SCS), and the
Interactive Problem Control System (IPCS). CP controls the resources of
the real machine; that is, the physical machine in your computer room;
it also manages the communications among virtual machines, and between a
virtual machine and the real system. CMS is the conversational
operating system designed specifically to run under CP; it can simulate
many of the functions of the as and DOS operating systems, so that you
can run many as and DOS programs in a conversational environment. RSCS
is a subsyste~ designed to supervise transmission of files across a
teleprocessing network controlled by CP. IPCS provides system
programmers and installation support personnel with problem reporting
and analysis functions. Its commands execute in the CMS command
environment.

Although this publication is concerned primarily with using CMS, it
also contains examples of CP commands tbat you, as a CMS user, should be
fa.iliar with.

How You Communicate with VM/370

When you are running your virtual machine under VM/370, each command, or
request for work, that you enter on your terminal is processed as it is
entered; usually, you enter one command at a time and commands are
processed in the order that you enter them.

You can enter CP commands from either tbe CP or CMS environment; but
you cannot enter CMS commands while in the CP environment. The concept
of "environments" in VM/370 is discussed in "Section 2. VM/370
Environments and Mode switching."

After you have typed or keyed in the line you wish to enteri you
press the Return or Enter key on the keyboard. When you press this key,
the line you have entered is passed to the command environment you want
to have process it. If you press this key without entering any data,
you have entered a "null line." Null lines sometimes have ~pecial
meanings in VM/370.

If you make a mistake entering a line, VM/370 tells you what your
mistake was, and you must re-enter the entire command line. The
examples in this publication assume that the command lines are correctly
entered.

You can enter commands using any combination of uppercase and
lowercase characters; VM/370 translates your input to uppercase.
Examples in this publication show all user-entered input lines in
lowercase characters and system responses in uppercase characters.

section 1. What it Means to Have a CMS Virtual Machine 13

You use CP commands to communicate with the control program. CP commands
control the devices attached to your virtual machine and their
characteristics.

For example, if you want to allocate additional disk space for a work
area or if you want to increase the virtual address space assigned to
your virtual machine, use the CP command DEFINE. CP takes care of the
space allocation for you, and then allows your virtual machine to use
it.

Or, if for example, you are rece1v1ng printed output at your terminal
and do not want to be interrupted by messages from other VM/370 users,
you can use the CP command SET MSG OFF to refuse messages, since it is
CP that handles communication among virtual machines.

using CP commands, you can also send messages to the VM/370 system
operator and to other users, modify the configuration of devices in your
virtual machine, and use the virtual machine input/output devices. CP
commands are available to all virtual machines using VM/370. You can
invoke these commands when you are in the virtual machine environment
using CMS (or some other operating system) in your virtual machine.

The CP commands and command privilege classes are listed in "Appendix
B: summary of CP Commands" and are discussed in detail in the .!l!L11.Q: £f
Command Reference for General !!.§~~.§ and !l!L]l.Q: QE~!:s!!~g .§I2~~.!!!2 i!! !
!!£ig~! -~~£iin~: --Hovever;-- since many CP commands are used in
conjunction with CMS command@, some of the CP commands you will use most
frequently are discussed in this publication, in the context of their
usefulness for a CMS application. To aid you in distinguishing between
CMS commands and CP commands, all CP commands used in examples in this
publication are prefaced with "Cpu.

The CMS command language allows
problem, or application programs
files.

you to
and, in

create, modify, and debug
general, to manipulate data

Many as language processors can be executed under CMS: the assembler,
VS BISIC, as FORTRAN IV, as COBOL, and as PL/I Optimizing and Checkou~
Compilers. In addition, the DOS/VS CaROL and DOS/VS PL/I Prograa
Products are supported. You can find a comprehensive list of language
processors that can be executed under CMS and relevant publications in
thie !l!LJ1.Q: l!!!!:.Q,gy£!!.Q!!- CMS executes t he assembler and the compilers
when you invoke them with CMS commands. The ASSEMBLE command is used to
present examples in this publication; the supported compiler com.ands
ar,e described in the appropriate DOS and os Program Product
documentation.

The EDIT command invokes the CMS Editor so that you can create and
modify files. The EXEC facilities allow you to execute procedures
consisting of CP and CMS commands; they also provide the conditional
execution capability of a macro language. The DEBUG command gives you
several program debugging subcommands.

Other CMS commands allow you to read cards froll a virtual card
reader, punch cards to a virtual card punch, and print records on a
virtual printer. Many commands are provided to help you manipulate your
virtual disks and files.

14 IBM VM/370: CMS User's Guide

since you can invoke CP commands from within the CMS virtual machine
environment, the CP and CMS command languages are, for practical
purposes, a single, integrated command language for CMS users.

GETTING COMMANDS INTO THE SYSTEM

Before you can use CP and CMS, you should know (1) how to operate your
terminal and (2) your userid (user identification) and password.

There are many types of terminals you can use as a VM/370 virtual
console. Before you can con~eniently use any of the commands and
facilities described in this publication, you have to familiarize
yourself with the terminal you are using. Generally, you can find
information about the type of terminal you are using and how to use it
wi th VM/370 in the .YJ1LJ1.Q: I~!.!!.n~! !!§~!~§ 2'!!!Q~. If your terminal is a
3767, you also need the !IHI 1121 QEg!~!Q!.!.§ 2!!!Qg.

In this publication, examples and usage notes assume that you are
using a typewriter-style terminal (such as a 2741). If you are using a
display terminal (such as a 3270), consult "Appendix C: Considerations
for 3270 Display Terminal User~" for a discussion of special techniques
that you can use to communicate with VM/370.

Your userid is a symbol that identifies your virtual machine to VM/370
and allows you to gain access to the VM/370 system. Your password is a
symbol that functions as a protective device ensuring that only those
authorized to use your virtual machine can log on. The userid and
password are usually defined by the system programmer for your
installation.

To establish contact with VM/370, you switch the terminal device on and
VM/370 responds with some form of the message

vm/370 online

to let you know that VM/370 is running and that you can use it. If you
do not receive the "vm/370 online" message, see the !l1LJ1.Q: I~!:!!i!l~!
22~!:~§ ~gig~ for specific directions. You can now press the Attention
key (or equivalent) on your terminal and issue the LOGON command to
identify yourself to the system:

cp logon smith

where SMITH represents a userid. The LOGON command
pressing the Return (or Enter) key. If VM/370 accepts
responds by asking you for your password:

ENTER PASSWORD:

is entered by
your userid, it

You then enter your password, which may be hidden, depending on your
terminal.

section 1. What it Means to Have a CMS virtual Machine 15

LOADING CMS IN THE VIRTUAL MACHINE: THE IPL COMMAND

You load CMS in your virtual machine using the IPL command:

cp ipl cms

where "cms" is assumed to be the saved system name
installation's CMS. You could also load CMS by referring to
its virtual device address, such as 190:

cp ipl 190

VK/370 responds by displaying a message such as:

CMS VERSION v.3 - 02/28/76 12:02

for your
it using

to indicate that the IPL command executed successfully and that CMS is
loaded into your virtual machine.

Your userid may be set up for an automatic IPL,
this message, indicating that you are in the CMS
without having to issue the IPL command.

so that you receive
command environment,

Now you can enter a null line to begin your virtual machine
operation.

Note: If this is the first time you are using a new virtual disk
assIgned to you, you receive the message

DMSACC112S DISK'A(191)' DEVICE ERROR

and you
flIes.

must "format" the disk, that is, prepare
See "Formatting Virtual Disks" below.

Lc)gical Line Editing Symbols

it for use with CftS

To aid you in entering command or data lines from your terminal, VM/370
provides a set of logical line editing symbols, which you can use to
correct mistakes as you enter lines. Each symbol has been assigned a
default character value. These normally are:

~1!!!tQ!
Logical character delete
Logical line end
Logical line delete
Logical escape

~!t~I..2£:t~I.
a
• ¢

"

The logical character delete symbol (a) allows you to delete one or more
of the previous characters entered. The a deletes one character per a
entered, including the ¢ and I logical editing characters. For example:

ABClaa results in AB
ABcaD results in ABD
¢aDEF results in DEl
ABCaia deletes the entire string

16 IBM VM/370: CMS User's Guide

The logical line end symbol (#) allows you to key in more than one
command on the same line, and thus minimizes the amount of time you have
to wait between entering commands. You type the t at the end of each
logical command line, and follow it with the next logical command line.
VM/370 stacks the commands and executes them in sequence. For example,
the entry

query blip#query rdymsg#query search

is executed in the same way as the entries:

query blip
query rdymsg
query search

The logical line end symbol also has special significance for the ICP
function. Beginning any physical line with ICP indicates that you are
entering a command that is to be processed by CP immediately. If you
have set a character other than # as your logical line end symbol, you
should use that character instead of a t.

The logical line delete symbol (¢) (or [for Teletype1 Model 33/35
terminals) deletes the entire previous physical line, or the last
logical line back to (and including) the previous logical line end (t).
You can use it to cancel a line containing many or serious errors. If a
t immediately precedes the ¢ s~gn, only the # sign is deleted, since the
indicates the beginning of a new line, and the ¢ cancels the current
line. For example:

• Logical Line Delete:

ABCIDEF¢ deletes the IDEF and results in ABC
ABC#¢ results in ABC
ABC#DEF¢#GHI results in ABC'GHI
ABC#DEF¢GHI results in ABCGHI

• Physical Line Delete:

ABe¢ deletes the whole line

Note that when you cancel a line by using the ¢ logical line delete
symbol, you do not need to press a carriage return; you can continue
entering data on the same line.

ITrademark of the Teletype Corporation, Skokie, Illinois.

section 1. What it Means to Have a CMS virtual Machine 17

The logical escape symbol (") causes VM/370 to consider the next
character entered to be a data character, even if it is normally one of
the logical line editing symbols (~, ¢, ", or '). For example:

ABC"¢D results in ABC¢D
""ABC·II. results in "ABC"

If you enter a single logical escape symbol (II) as the last character
on a line, or on a line by itself, it is ignored.

The logical line editing symbols are defined for each virtual machine
during VM/370 system generation. If your terminal's keyboard lacks any
of these special characters, your installation can define other special
characters for logical-line editing. You can find out what logical line
editing symbols are in effect for your virtual machine by entering the
command

cp query terminal

The response might be something like:

LIN END • , LINEDEL ¢ , CHARDEL ~ , ESCAPE II
LINESIZE 130, MASK OFF, APL OFF, ATTN OFF, MODE VM

You can use the CP TERMINAL command to
editing characters for your virtual machine.

cp terminal linend /

Then, the line:

input • line / input / •

would be interpreted:

input # line
input

•

change the logical line
For exa~ple, if you enter:

The terminal characteristics listed in the response to the CP QUERY
TERMINAL command are all controlled by operands of the CP TERMINAL
command.

HOW VM/370 RESPONDS TO YOUR COMMANDS

CP and CMS respond differently to different types of requests. All CMS
command responses (and all responses to CP commands that are entered
from the CMS environment) are followed by the CMS Ready message. The
form of the Ready message can vary, since it can be changed using the
SET command. The long form of the Ready message is:

Ri T=7.36/19.89 09:26:11

18 IBM VM/370: CMS User's Guide

If you have issued the command

set rd ymsg smsg

the Ready message looks like:

R;

When you enter a command line incorrectly, you receive an error
message, describing the error. The Ready message contains a return code
from the command, for example

R (00028) ;

indicates that the return code from the command was 28.

If you enter a CP or CMS command that requests information about your
virtual machine, the response should be the information requested. For
example, if you issue the command

cp display g

CP responds by showing you the contents of your virtual machine's
general registers, for example:

GPR 0 = 00000003 00003340 000007AO 00000003
GPR 4 = 00000848 C4404040 00000040 00002DFO
GPR 8 = 00000008 000132F8 00002BAO 00002230
GPR 12 = 00003238 FFFFFFFD 50013386 00000000

Similarly, if you issue the CMS command

list file * assemble c

you might receive the following information:

JUNK
MYPROG

ASSEMBLE C1
ASSEMBLE C1

If you enter a CP command to alter your virtual machine configuration
or the status of your spool files, CP responds by telling you that the
task is accomplished. The response to

cp purge reader all

might be

0004 FILES PURGED

Some CP commands, those that alter some of the characteristics of
your virtual machine, give you no response at all. If you enter

cp spool e class x hold

you receive no response from CP.

certain CMS commands may issue prompting messages, to request you to
enter more information. The SORT command, which sorts CMS disk files,
is an example. If you enter:

sort in file a1 out file a1

section 1. What it Means to Have a CMS Virtual Machine 19

you are prompted with the message:

DMSSRT604R ENTER SORT FIELDS:

and yoa can then specify which fields you wish the input records to be
sorted on.

G'etting Acquainted with eMS

If you have just logged on for the first time, and you want to try a few
C~S commands, enter:

query disk a

The response should tell you that
191; it also provides information
disk and how much of it is used.
that indicates the disk may not
Disks. "

you have an A-disk at virtual address
such as how much room there is on the
Again, if you receive an error message
be formatted, see "Formatting virtual

your A-disk is the disk you use most often in CMS,
C~S files. Files are collections of data, and may have
For this exercise, the data is meaningless. Enter

to contain your
ma ny purpose s.

edit junk file

You should receive the response

NEW FILE:
EDIT:

which indicates that this file does not already exist on your A-disk.
Enter:

input

You should receive the response:

INPUT:

and you can start to create the file, that is, write input records that
are eventually going to be written onto your A-disk. Enter 5 or 6 data
lines, such as

hickory dickory dock
the mouse ran up the clock
the clock struck one
and down he run
dickory hickory dock

NOw, enter a null line (one with no data). You should receive the
message

EDIT:

Enter

file

You should see the message

R; T=0.01/0.02 19:31:29

20 IBM VM/370: CMS User's Guide

You have just written a CMS file onto your A-disk. If you enter:

type junk file a

you should see the following:

HICKORY DICKORY DOCK
THE MOUSE RAN UP THE CLOCK
THE CLOCK STRUCK ONE
AND DOWN HE RUN
DICKORY HICKORY DOCK

The CMS command, TYPE, requested a display of the disk file JUNK FILE,
on your A-disk.

To erase the file, enter

erase junk file

NOw, if you re-enter the TYPE command, you should receive the message

FILE NOT FOUND

Most CMS commands create or reference disk files, and are as easy to
use as the commands shown above. your CMS disks are among the most
important features in your VM/370 virtual machine.

Virtual Disks and How They Are Defined

Under VK/370, a real direct access storage device (DASD) unit, or disk
pack, can be divided into many small areas, called minidisks. Minidisks
(also called virtual disks because they are not equivalent to an entire
real disk) are defined in the VM/370 directory, as extents on real
disks. For CMS applications, you never have to be concerned with the
extents on your minidisks; when you use CMS-formatted minidisks, they
are, for practical purposes, functionally the same as real disks.
Minidisks can also be formatted for use with OS or DOS data sets or VSAM
files.

You can have both permanent and temporary disks attached to your
aachine during a terminal session. Permanent disks are defined in the
VM/370 directory entry for your virtual machine. Temporary disks are
those you define for your own virtual machine using the CP DEFINE
command, or those attached to your virtual machine by the system
operator.

PERMANENT VIRTUAL DISKS

The VM/370 directory entry for your userid defines your permanent
virtual disks. Each disk has associated with it an access mode
specifying whether you can read and write on the disk or only read from
it (its read/write status). virtual disk entries in the VM/370
directory may look like the following:

MDISK
MDISK
MDISK
MDISK
MDISK

190
191
194
198
19E

2314
3330
3330
3330
3330

000
010
010
050
010

050
005
020
010
050

CMS190
BDISKE
CMSOOl
CMS192
CMS19E

R
W
W
W
R

section 1. What it Means to Have a CMS Virtual Machine 21

The first two fields describe the device, minidisk in this example,
and the virtual address of the device. virtual addresses (shown above
as 190, 191, and so on), are the names by which you and VM/370 identify
the disk. Each device in your virtual machine has an address which may
or may not correspond to the actual location of the device on the VM/370
system.

The third field specifies the device type of your virtual disk. The
fourth and fifth fields specify the starting real cylinder at which your
virtual disk logically begins and the number of cylinders allocated to
your virtual disk, respectively. The sixth field is the label of the
real disk on which the virtual disk is defined and the seventh field is
a letter sp~cifying the read/write mode of the disk; "R" indicates that
the disk is a read-only disk, and "W" indicates that you have read/write
privileges. The MDISK control statement of the Directory Service
program is described in the !~Ll1Q: QE~!~iQ!~§ Q~~~~.

DEFINING TEMPORARY VIRTUAL DISKS

Using the CP DEFINE command, you can attach a temForary disk to your
virtual machine for the duration of a terminal session. The following
command allocates a 10-cylinder temporary disk from a 3330 device and
assigns it a virtual address of 291:

cp define t3330 as 291 cyl 10

When you define a minidisk, you can choose any valid address that is not
already assigned to a device in your virtual machine. Valid addresses
for minidisks range from 001 through 5FF, for a virtual machine in basic
control mode.

FORMATTING VIRTUAL DISKS

Before you can use any new virtual disk, you must format it. This
applies to new disks that have been assigned to you and to temporary
disks that you have allocated with the CP DEFINE command. When you
issue the FORMAT command you must use the virtual address you have
defined for the disk and assign a CMS mode letter, for example:

format 291 c

C~S then prompts you with the following message:

DMSFOR603R FORMAT WILL ERASE ALL FILES ON DISK 'C(291) '. DO YOU
WISH TO CONTINUE? (YESINO):

You respond:

yes

C~S then asks you to assign a label for the disk, which may be anything
you choose. Labels can have a maximum of 6 characters. When the

DMSFOR605R ENTER DISK LABEL:

message is issued, you respond by supplying a disk label. For example,
if this is a temporary disk, you might enter

scrtch

22 IBM VM/370: CMS User's Guide

CMS then erases all the files on that disk, if any existed, and formats
the disk for your use. When you enter the label, CMS responds by
telling you:

FORftATTING DISK 'c'

'10' CYLINDERS FORftATTED ON ·C(291)'.

R; T=0.15/1.60 11:26:03

The PORMAT co •• and should only be used to format CftS disks, that is,
disks you are going to use to contain CMS files. If you want to format
disks for OS, DOS, or 'SAM applications, the disks should be formatted
using the IBCDASDI program.

Sharing Virtual Disks: Linking

Since only one user can own a virtual disk, and there are many occasions
that require users to share data or programs, 'M/370 allows you to share
virtual disks, on either a permanent or temporary basis, by "linking."

Permanent links can be established for you in your 'M/370 directory
entry. These disks are then a part of your virtual machine
configuration every time you log on.

You can also have another user's disk temporarily added to your
configuration by using the CP LINK command. For example, if you have a
program that uses da~a that resides on a disk identified in userid
DATA's configuration as a 194, and you know that the password assigned
to this disk is GO, you could issue the command

cp link to data 194 as 198 r pass= go

DATA's 194 disk is then added to your virtual machine configuration at
virtual address 198.

The "R" in the command line indicates the access mode; in this case,
it tells CP that you wish only to read files from this disk. 'M/370
will not allow you to write OD it. If you try to issue this command
when someone is logged on to tbe userid DATA, you will not be able to
establish the link. If you want to link to DATA in any event, you can
rei$sue the LINK command using the access mode RB:

cp link data 194 198 rr go

The keywords TO, AS, and PASS= are optional; you do not have to specify
them.

You can also use the CP LINK command to link to your own disks. For
example, if you log on and discover tbat another user has access to one
of your disks, you may be given read-only access, even if it is a
read/write disk. You can request the other user to detach your disk
from his virtual machine, and after he has done so, you can establish
the link:

cp link * 191 191

When you link to your own disks, you can specify the userid as * and you
do not need to specify th.e access mode or a password.

section 1. What it Means to Have a CftS Virtual Machine 23

You can find more information about the CP LINK command and CP access
aodes in !~Lll~: ~~ ~Q!~!Rg R~!~~~~~~ !Q! Gen~!~! ~§g!§.

Identifying Your Disk to eMS: Accessing

LINK and DEFINE are CP commands: they tell CP to add DASD devices to
your virtual machine configuration. CMS must also know about these
disks, and you must use the ACCESS command to establish a filemode
letter for them:

access 194 b

CMS uses filemode letters to manage your files during a terminal
session. By using the ACCESS command you can control:

• Whether you can write on a disk or only read from it (its read/write
sta tus) •

• The library search order for- programs executing in your virtual
machine.

• Which disks are to contain the new files that you create.

If you want to know which disks you currently have access to, issue
the command

query search

you might see the following display:

PER191
DAT194
CMS190
CMS19E

191 A
198 B
190 S
19E Y

RIW
R/O
RIO
R/O

The first column indicates the label on the disk (assigned when the disk
is formatted), and the second column shows the virtual address assigned
to it.

The third column contains the filemode letter. Valid filemode letters
are A, B, C, D, E, F, G, S, I, and Z.

The fourth column indicates the read/write status of the disk. The
190 and 19E disks in this example are read-only disks that contain the
CMS nucleus and disk-resident commands for the CMS system.

For the most part you will probably use your 191 disk, that is, your
A-disk.

RELEASING. VIRTUAL DISKS

When you no longer need a disk during a terminal session, or if you want
to assign a currently active filemode letter to another disk, use the
CMS command RELEASE:

release c

Then, you can issue the ACCESS command to assign the fileDode letter C
to another disk.

24 IBM VM/370: CMS User's Guide

When you no longer need disks in your virtual machine configuration,
use the CP command DETACH to disconnect them from your virtual machine:

cp detach 194
cp detach 291

If you are going to release and detach the disk at the same time, you
can use the DET option of the RELEASE command:

release 194 (det

For more information on controlling disks in CMS, see "Section 4. The
CMS File System."

Section 1. What it Means to Have a CMS Virtual Machine 25

Section 2. VM/370 Environments and Mode Switching

When you are using VM/370, your virtual machine can be in one of two
possible "environments": the CP, or control program environment, or the
virtual machine environment, which may be CMS. The CMS environment has
several subenvironments, sometim~s called "modes." Each environment or
subenvironment accepts particular commands or subcommands, and each
environment has its own entry and exit paths, responses and error
messages. If you have a good understanding ·of how the VM/370
environments are related, you can learn to change environments quickly
and use your virtual machine efficiently.

This section introduces the CP and CMS environments that you use and
describes:

• Entry and exit paths
• Command subsets that are valid as input

Figure 1, at the end of this section, summarizes the VM/370 command
environments and lists the commands and terminal paths that allow you to
go from one environment to another.

with the exception of input mode in the edit environment, you can
always determine which environment your virtual machine is in by
pressing the Return or Enter k~y on a null line. The responses you
receive, and the environments they indicate, are:

:S~2.EQ!!§~
CP
CMS
CMS (DOS ON)
EDIT:
CMS SUBSET
DEBUG

~.!!!:i!.Q'!!'!!~'!!!
CP
CMS
CMS/DOS
Edit
CMS Subset
Debug

The CP Environment

When you log on to VM/370, your virtual machine is in the CP
environment. In this environment, you can enter any CP command that is
valid for your privilege class. This publication assumes that you are a
general, or class G, user. You can find information about the commands
that you can use in the !~L11Q: ~g ~Qmm~!!~ :S~~~!g!!£g !QI §g!!g£~!~2~~2.

Only CP commands are valid terminal input in the CP environment. You
can, however, preface a CP command line with the characters "CPu or
"tcP", followed by one or more blanks, although it is not necessary.
These functions are described under "The CMS Environment."

You can enter CP commands from other VM/370 environments. There may
be times during your te~minal session when you want to enter the CP
environment to issue one or more CP commands. You can do this from any
other environment by doing either of two things:

1. Issue the command

icp

Section 2. VM/370 Environments and Mode SWitching 27

2. Use your terminal's Attention key (or equivalent). On a 2741
terminal, you must normally press the Attention key twice, quickly,
to enter the CP environment.

The following message indicates that your virtual machine is in the CP
environment:

CP

After entering whatever CP commands you
virtual machine to the environment or mode
the CP command

cp begin

need to use, you return your
that it came from by using

"hich, literally, begins execution of your virtual machine.

The eMS Environment

You enter the CMS environment from CP by issuing the IPL command, which
loads CftS into your virtual storage area. If you are planning to use
eMS for your entire terminal session, you should not have to IPL again
unless a program failure forces you into the CP environment.

When you issue the IPL command, you can specify either the named
system CMS at your installation or you can load CMS by specifying the
virtual address of the disk on which the CMS system resides. For
Hxample,

cp ipl cms

-- or --

cp ipl 190

~hen yoar virtual machine is in the CMS environment, you can issue
any CMS command and any of the CP commands that are valid for your user
privilege class. You can also execute many of your own as or DOS
programs; the ways you can execute programs are discussed in "Section 8.
Developing as Programs Under CMS" and "Section 9. Developing DOS
Programs Under CMS."

You can enter CP commands from CMS in any of the following ways:

• Using the implied CP function of CMS (See BQ!~.)
• with the CP command
o with the ICP function

!Q1~: For the most part, you may enter any CP command directly from the
GMS environment. This implied CP function is controlled by an operand
of the CMS SET command, IMPCP. You can determine whether the implied CP
function is in effect for your virtual machine by entering the command

query impcp

If the response is

IftPCP = OFF

you can change it, by entering

set impcp on

28 IBM VM/370: CMS User's Guide

When the implied CP function is set off, you must use either the CP
command or the tcp function to enter CP commands from the CMS
environment. CP commands that you execut~ in EXEC procedures must
always be prefaced by the CP command, regardless of the implied CP
setting. An example of using the CP command is:

cp close punch

When you issue CP commands from the CMS environment either implicitly
or with the CP command, you receive, in addition to the CP response (if
any), the CMS Ready message. If you use the ICP function, discussed
next, you do not receive the Ready message.

You can preface any CP command line with the characters "ICP",
followed by one or more blanks. When you enter a CP command this way,
the comman~ is processed by CP immediately; it is as if your virtual
machine were actually in the CP environment.

EDIT, INPUT, AND CMS SUBSET

The CMS Editor is a VM/370 facility that allows you to create and modify
data files that reside on CMS disks. The editor environment, more
commonly called the edit environment, is entered when you issue the CMS
co.mand EDIT, specifying the identification of a data file you want to
create or modify.

edit myfile assemble

is an example of how you would enter the edit environment to either
create a file called MYFILE ASSEMBLE or to make changes to a disk file
that already exists under that name.

When you enter the edit environment your virtual machine is
automatically in edit mode, where you can only issue EDIT subcommands or
CP commands prefaced by "ICP." EDIT subcommands tell the editor what
you wish to do with the data you have accessed. After you enter the
EDIT sUbcommand

input

data lines that you enter are considered input to the file. To return
to edit mode, you must enter a null line.

If you issue the EDIT subcommand

cms

the editor responds

CMS SUBSET

and your virtual machine is in CMS subset mode, where you can issue any
valid CMS subset command, that is, a CMS command that is allowed in CMS
subset mode. These include:

ACCESS
CP
DISK
ERASE
EXEC
HT

LIST PILE
PRINT
PUICH
QUERY
READCARD

RT
SET
STATE
STATEW
TYPE

Section 2. VM/370 Environments and Mode Switching 29

You can also issue CP commands. To return to edit mode, you use the
special CMS subset command, RETURN. If you enter the Immediate command
HX, your editing session is terminated abnormally and your virtual
machine is returned to the CMS environment.

When you are finished with an edit session, you return to the CMS
environment by issuing the FILE subcommand, which indicates that all
modifications or data insertions that you have made should be written
onto a CMS disk, or by issuing the subcommand QUIT, which tells the
editor not to save any modifications or insertions made since the last
time the file was written.

More detailed information about EDIT subcommands and how to use the
eMS Editor is contained in this pUblication in "Section 5. The CMS
:edi tor" and in the !~Ll1.Q: £..H.§ £..Q!!!!!~!!g, ~!!g, l1~£!:Q]!!t!!!:~!!£~.

DEBUG

eMS DEBUG is a special CMS facility that provides subcommands to help
JOu debug programs at your terminal. Your virtual machine enters t~e
debug environment when you issue the CMS command

debug

lou may want to enter this command after you have loaded a program into
storage and before you begin executing it. At this time you can set
nbreakpoints," or address stops, where you wish to halt your program's
execution so that you can examine and change the contents of general
registers and storage areas. When these breakpoints are encountered,
Jour virtual machine is placed in the debug environment. You can also
enter the debug environment by issuing the CP EXTERNAL command, which
causes an external interrupt to your virtual machine.

Valid DEBUG subcommands that you can enter in this environment are:

BREAK
CAW
CSi
DEFINE
DUMP

GO
GPR
HX
ORIGIN
PSi

RETURN
SET
STORE
X

You can also use the ICP function in the debug environment to enter CP
c:ommands.

YOU leave the debug environment in any of the following ways:

~ If the program you are running completes execution, you are returned
to the CMS environment.

~ If your virtual machine entered the debug environment after a
breakpoint was encountered, it returns to CMS when you issue the
DEBUG subcommand

hx

To continue the execution of your program, you use the DEBUG
subcommand

go

30 IBM VM/370: CMS User's Guide

• If your virtual machine is in the debug environment and is not
executing a program, the DEBUG subcommand

return

returns it to the CMS environment.

CMS/DOS

If you are a DOS/VS user, the eMS/DOS environment provides you with all
the CMS interactive functions and facili ties, as well as special

j
CMS/DOS

commands which simulate DOS functions. The CMS/DOS environment becomes
active when you issue the command

set dos on

When your virtual machine is in the CMS/DOS environment you can issue
any command line that would be valid in the CMS environment, including
the facilities of EDIT, DEBUG, and EXEC, but excluding CMS comlJlands or
program modules that load and/or execute programs that use OS macros or
functions.

The following comman~s are provided in CMS/DOS to test and develop
DOS programs, and to provide access to DOS/VS libraries:

ASSGN
DLBL
DOS LIB
DOSLKED
DOSPLI

DSERV
ESERV
FETCH
FCOBOL
LISTIO

OPTION
PSERV
RSERV
SSERV

Your virtual machine leaves the CMS/DOS environment when you issue the
command

set dos off

If you reload CMS (with an IPL command) during a terminal session, you
must also reissue the SET DOS ON command.

Interrupting Program Execution

When you are executing a program under CMS or executing a CMS command,
your virtual machine is not available for you to enter' commands. There
are, however, ways in which you can interrupt a program and halt its
execution, either temporarily, in which case you can resume its
execution, or permanently, in wbich case your virtual machine returns to
the CMS environment. In both cases, you interrupt execution by creating
an "attention interrupt," whicb may take two forms:

• An attention interrupt to your virtual machine operating system
• An attention interrupt to the control program

These situations result in what are known as virtual machine (VM) or
control program (C~ "reads" being presented to your virtual console.
On a typewriter terminal, the keyboard unlocks when a read occurs.

Whether you have to press the Attention key once or twice depends on
the terminal mode setting in effect for your virtual machine. This
setting is controlled by the CP TERMINAL command:

section 2. VM/370 Environments and Mode Switching 31

cp terminal mode vm

The setting VM is the default for virtual machines; you do not need to
specify it. The VM setting indicates that one depression of the
Attention key sends an interrupt to your virtual machine, and that two
depressions results in an interrupt to the control program (CP).

The CP setting for terminal mode, which is the default for the system
operator, indicates that one depression of the Attention key results in
an interrupt to the control program (CP). If you are using your virtual
Ilachine to run an operating system other than CMS, you might wish to use
this setting, also. Issue the command:

cp terminal mode cp

VIRTUAL MACHINE INTERRUPTS

lihile a command or program is executing, if you press the Attention key
once on a 2741 (or the Enter key on a 3270), you have created a virtual
machine interrupt. The program halts execution, your terminal will
accept an input line, and you may:

~ Terminate the execution of the program, by issuing an Immediate
command to halt execution:

hx

The HX command causes the program to abnormally terminate (abend).

o Enter a CMS command. The command is stacked in a console buffer and
is processed by CMS when your program is finished executing and the
next virtual machine read occurs. For example:

print abc listing

After you enter this line, the program resumes execution.

•• If the program is directing output to your terminal and you wish only
to halt the terminal display, use the Immediate command:

ht

The program ~esumes execution. You can, if you want, cause another
interrupt and request that typing be resumed by entering the RT
(resume typing) command:

rt

" Enter a null line; your program continues execution. The null line is
stacked in the console stack and read by CMS as a stacked command
line.

HX, HT, and RT are three of the CMS Immediate commands. They are
"immediate" because they are executed as soon as they are entered.
Unlike other commands, they are not stacked in the console buffer. You
can only enter an Immediate command following an attention interrupt.

32 IBM VM/370: CMS Userls Guide

CONTROL PROGRAM INTERRUPTS

You can interrupt a program and enter the CP environment directly by
pressing the Attention key twice quickly, on a 2741, or pressing the PAl
key on a 3270. Then, you can enter any CP command. To resume the
program's execution, issue the CP command:

cp begin

If your terminal is operating with the terminal mode set to CP, pressing
the Attention key once places your virtual machine in the CP
environment.

ADDRESS STOPS AND BREAKPOINTS

A program may also be interrupted
you specifically set by the CP
issue the command

by an instruction address stop, which
command ADSTOP. For example, if you

cp adstop 201ea

An address stop is set at virtual storage location X'201EA'. When your
program reaches this address during its execution, it is interrupted and
your virtual machine is placed in the CP environment, where you can
issue any CP command, including another ADSTOP command, before resuming
your program's execution with the CP command BEGIN.

Breakpoints" similar to address stops, are set using the
subcommand BREAK, which you issue in the debug environment
executing a program. For example, if you issue:

break 1 201ae

DEBUG
before

Your program's execution is interrupted at this address and your virtual
machine is placed in the debug environment. You can then enter any
DEBUG subcommand. To resume program execution, use the DEBUG subcommand
GO. If you want to halt execution of the program entirely, use the
DEBUG subcommand HX, which returns your virtual machine to the CKS
environment. You can find more information about setting address stops
and breakpoints in "section 11. How VM/370 Can Help You Debug Your
Programs."

Section 2. VK/370 Environments and Kode Switching 33

Any "Class Any"
CP Command

LOGON ---+---,

Notes:

CP (Control Program)
Environment'

Any CMS Command
Any CMS/DOS Command
Any CP Command
Execute any DOS Program
#CP Command Line

'The CP environment may be entered from any other environment either by using
your terminal's Attention key or equivalent, or by entering the command #CP.

, Any CP command is any CP command that is val id for your user privilege class.
Any time that a CP command can be entered, it may be prefaced with #CP.

'The BEGIN command returns your virtual machine to the environment it was in
when CP was entered:

"If you were in edit or input mode, the current line pointer remains unchanged.

"If you were executing a program, execution resumes at the instruction address
indicated in the PSW.

DEBUG Environment

Figure 1. VM/370 Environments and Mode switching

34 IBM VM/370: eMS User's Guide

EDIT Environment

INPUT MODE

Any Input Une
Carrier return on a

null line
#CP Command Une

CMS Subset

Any CMS Subset Command
Any CP Command

...... ----i RETURN
-------IHX

#CP Command Une

Section 3. What You Can Do With VM/370-CMS Commands

This section provides an overview of the CMS and CP command languages,
and describes the various commands within functional areas, with
examples. The commands are not presented in their entirety, nor is a
complete selection of commands represented.

When you finish reading this section you should have an understanding
for the kinds of commands available to you, so that when you need to
perform a particular task using CMS you may have an idea of whether it
can be done, and know what command to reference for details. For
complete lists of the CP and CMS commands available in the VM/370
system, see "Appendix A: summary of CMS Commands" and "Appendix B:
summary of CP Commands."

Command Defaults

Many of the characteristics of your CMS virtual machine are already
established when you log on, but there are commands available so you can
change them. In the case of many eMS commands, there are implied values
for operands, so that when you enter a command line without certain
operands, values are assumed for them. In both of these instances, the
values set or implied are considered default values. As you learn CP
and CMS commands, you also should become familiar with the default
values or settings for each.

Commands To Control Terminal Communications

Using VM/370, you control
terminal. VM/370 provides
communications.

,your virtual
a complement

machine directly frem your
of commands for terminal

ESTABLISHING AND TERMINATING COMMUNICATIONS WITH VM/370

To initiate your communication with VM/370, use the CP LOGON command:

cp logon sa.

Optionally, you may enter your password on the same line:

cp logon sam 123456

When you are sure that your communication line is all right and you have
difficulty logging on (for example, someone else has logged on under
your userid), you can use the CP MESSAGE command:

cp message sam this is sam ••• pls log off

Another way to access the VM/370 system is to use the CP command
DIAL:

cp dial'tsosys

section 3. What You Can Do with VM/370-CMS Commands 35

In this example, TSOSYS is the userid of a virtual machine running a TSO
system. After this DIAL command is successful, you can use your
terminal as if you were actually connected to a TSO system, and you can
begin TSO logon procedures.

To end your terminal session, use the CP command LOGOFF:

cp logoff

If you have used a
'M/370 computer and
I:!nter:

cp logoff hold

switched (or dial-up) communication path to
you want the line to remain available, you

the
can

At times, you might be running a long program under one userid and wish
to use your ter.inal for some other work. Then, you can disconnect your
terminal:

cp disconn

-- or --

cp disconn hold

four virtual machine continues to run, and is logged off the system when
',our program has finished executing. If you want to regain terminal
,:ontrol of your virtual machine after disconnecting, log on as you would
to initiate your terminal session. Your virtual machine is placed in
the CP environment, and to resume its execution, you use the CP command
.BEGIN.

You should not disconnect your virtual machine if a program requires
an operator response, since the console read request cannot be
sa tisfied.

CONTROLLING WHAT YOU RECEIVE AT YOUR TERMINAL

During the course of a terminal session, you can receive .any kinds of
messages from VM/370, from the system operator, from other users, or
from your own programs. You can decide ~hether or not you want these
messages to actually reach you. For exampl~, if you use the command

cp set msg off

No one will be able to send messages to y09 with the CP MESSAGE command;
if another virtual machine user tries to send you a message, he receives
a message

userid NOT RECEIVING, MSG OFF

Similarly, you can use

cp set wng off

to prevent warning messages (which usually come from the system
operator) from coming to you. You would protably do this, however, only
in cases where you were typing some output at your terminal and did not
want the copy ruined.

VM/370 issues error messages whenever you issue a command incorrectly
or if a command or program fails. These messages have a long form,

36 IBM VM/370: CMS User's Guide

consisting of the error message code and number, followed by text
describing the error. If you wish to receive only the text portion of
messages with severity codes I, E, and W (for Informational, Error, and
Warning, respectively), you can issue .the command:

cp set emsg text

If you want to receive only the message code and number, (from which you
can locate an explanation of the error in !~LllQ: ~~2!~m ~~22gg~§) you
specify

cp set emsg code

You can also cancel error messages completely:

cp set emsg off

To restore the EMSG setting to its default, which is the message code
and text, enter:

cp set emsg on

Some CP commands issue inform~tional messages telling you that CP has
performed a particular function. You can prevent the reception of these
messages with the command

cp set imsg off

or restore the default by issuing

cp set imsg on

The setting of EMSG applies to CMS commands as well as to CP commands.

You can also control the format of the CMS Ready message. If you
enter

set rdymsg smsg

you receive only the "R;" or shortened form of the Ready message after
the completion of CMS commands. If you are not receiving error messages
(as described above) and an error occurs, the return code from the

command still appears in parentheses following the "R".

An additional feature exists for CMS. If you have a typewriter
terminal with a two-color ribbon, you can specify

set redtype on

so that CMS error messages are typed in red.

Some commands or messages result in displays of lines that are very
long. If you want to limit the width of lines that are received at your
terminal (for example, if you are using terminal paper that is only
eight inches wide), you can specify:

cp terminal linesize 80

so that all lines received at your terminal are formatted to fit within
an SO-character display.

You can also control two special characters in VM/370. One is the
exclamation point (I) that types when the Attention key is pressed. If
JOu do not want this character to type when you press the Attention key,
use the command:

section 3. What You Can Do with VM/370-CMS Commands 37

cp terminal attn off

CMS allows you to specify a "blip" character: this character is typed
or displayed whenever two seconds of CPU time are used. If you enter

set blip *
then, when a program is executing, this character types for every two
seconds of CPU time. You can cancel the function:

set blip off

or set it to nonprintable characters:

set blip on

When this
selectric
expected.

command has been entered on a typewriter terminal,
type ball tilts and rotates whenever a blip character

the
is

COMMANDS TO CONTROL HOW VM/370 PROCESSES INPUT LINES

You can manipulate VM/370's logical line editing function
own needs. In addition to using the CP TERMINAL co.mand
default logical line editing symbols, you can issue

cp set linedit off

to suit your
to change the

so that none of the symbols are recognized by VM/370 when it interprets
your input lines.

When you are in the CMS environment, there are a number of commands
that you can use to control how CMS validates a command line. The SET
command functions 1M PCP (implied CP) and IMPEX (implied EXEC) control
the recognition of CP commands and CMS EXEC procedures. For example, if
you issue

set impcp off I set impex off

then, when you enter CP commands in CMS or try to execute EXEC
procedures, you must preface the name of the command or procedure with
CP (or ICP), or EXEC, respectively. If implied EXEC is set to off, you
cannot use edit macros.

By using the SYNONYM and the SET ABBREV commands, you can control
what command names, synonyms, or truncations are valid in CMS. Par
example, you could set up a file named MYSYN SYNONYM which contains the
following records:

PRINT
RELEASE
ACCESS
DOSLKED

PRT
LETGOOF
GET
LNKEDT

1
5
1
3

The first column specifies an existing CMS command, module, or EXEC
name; the second column specifies the alternate name, or synonym, you
want to use; and the third column is a count field that indicates the
minimum number of characters of the synonym that can be used to truncate
the name. Using this file, after you enter the command

synonym mysyn

38 IBM VM/370: CMS User's Guide

you can use PRT, LETGOOF, GET, and LNKEDT in place of the corresponding
CMS command names. Also, if the ABBREV function is in effect, (it is
the default; you can make sure it is in effect by issuing the command
SET ABBREV ON), you can truncate any of your synonyms to the minimum
number of characters specified in the count field of the record (that
is, you could enter "pH for PRINT, "letgo" for RELEASE, and so on).

You can set up EXEC files with the same names as CMS commands, that
mayor may not perform the same function as the CMS names they
duplicate. For example, if every time you used the GLOBAL command you
used the same operands, you could have an EXEC file, named GLOBAL, that
contained a single record:

global maclib cmslib osmacro

Then, every time,You entered the command name

global

the command GLOBAL MACLIB CMSLIB OSMACRO would execute.

As another example, suppose you had an EXEC file named ITI, that
contained the following records:

&CONTROL OFF
CP QUERY TIME

Then,. whenever you entered

t

you would receive the CP time-oi-day message, and you could no longer
use the truncation "T" for the CMS command TYPE. In order to see the
contents of a CMS file displayed at your terminal you would have to
enter at least "TY" as a truncation.

CONTROLLING KEYBOARD-DEPENDENT COMMUNICATIONS

yOU are dependent on your terminal for communication with VM/370: when
your virtual machine is waiting for a read either from the control
program or from your virtual machine operating system, you can not
receive messages until you press the Return key to enter a command or a
null line. If you are in a situation where you must wait for a message
before continuing your work, for example, if you are waiting for a tape
device to be attached to your virtual machine, you can use the CP
command SLEEP to lock your keyboard:

cp sleep

You must then press the Attention key to get out of sleep and unlock the
keyboard so you can enter a command.

If your virtual machine is in the CP environment when you issue the
SLEEP command, or if you issue the SLEEP command from the CMS
environment using the fCP function, your virtual machine is in the CP
environment after you press the Attention key. If your virtual machine
is in the CMS environment when you enter the SLEEP command (or if you
enter CP SLEEP), your virtual machine is in the CMS environment when you
press the Attention key once.

You can control the effect of pressing the Attention key or your
terminal with the CP TERMINAL command. If you specify:

section 3. What You Can Do with VM/370-CMS Commands 39

cp terminal mode cp

then, whenever you press the Attention key, you are in the CP
'env ironment.

If you use the default terminal mode setting, which is V", and then
fOU press the Attention key once, you cause a read to your virtual
machine; if you press the Attention key twice you cause a CP read, and
you are in the CP environment.

The effect of pressing the Attention key is also important when you
are executing a program. At times, you may wish to enter some CP
commands while your program executes, but you do not want to interrupt
the execution of the program. If, before you begin your program you
issue the command

cp set run on

.and then use the Attention key to get to the CP environment while your
program executes, the program continues executing while you communicate
with CP. The default setting for the RUB operand of the SET command is
off; usually, when you press the Attention key (twice) during program
execution, your program is interrupted.

SPECIAL ~H!i!£I~i §~I2: If you are using a programming language or enterIng data that requires you to use characters that are not on your
keyboard, you can select soae characters that you do not use very often
and establish a translate table with the SET command. For example, if
your terminal does not have the special characters [and] (which have
the hexadecimal values AD and BD, respectively), you could issue the
commands

set input I ad
set input $ bd

Then, when you are entering data lines at your terminal, whenever you
enter the characters "I" or "$", they are translated and written into
your file as "[" and"]". When you display these lines, the character
positions occupied by the special characters appear to be blanks,
because they are not available on your keyboard. If you want these
special characters to appear on your terminal in symbolic form, you
should issue the commands

set output ad I
set output bd $

so that when you are displaying lines that contain these characters,
they will appear translated as I and $ on your terminal. If you are
going to use the input and output functions together, you must set the
output character first; if you set the input character first, then you
are unable to set the output function.

If you are an APL user and have
3210 feature and keyboard, you can
tables with the command

cp terminal apl on

the special APL type font or the APL
tell V"/310 to use APL translation

Commands To Create, Modify, and Move Data Files and Programs

The C"S command language provides you
manipulating files. A file, in CMS, is

40 IB" VM/370: CMS User's Guide

with many different ways of
any collection of data; it is

most often a disk file, but it may also be contained on cards or tape,
or it may be a printed or punched output file.

COMMANDS THAT CREATE FILES

You create files in CMS by several methods; either specifically or by
default. The EDIT command invokes the CMS Editor to allow you to create
a file directly at your terminal. yOU must specify a file identifier
when you are creating a new file:

edit mother goose

In this example, the file has an identifier, or fileid, of MOTHER
GOOSE. The EDIT subcommand INPUT allows you to begin inserting lines of
data or source code into this file. When you issue the subcommands FILE
or SAVE, the lines that you have entered are written into a CMS disk
file.

Files are created, and sometimes named, by default, with the
following types of commands:

• Commands that invoke programming language processors or compilers.
For example, if you issue the command

assemble myfile

the assembler assembles source statements from an existing CMS file
named MYFILE ASSEMBLE and produces an output file containing object
code, as well as a listing. The files that are created are named:

MYFILE TEXT
MYFILE LISTING

• Commands that load CMS files onto a disk from cards or tapes. These
commands are READCARD, TAPE LOAD, and DISK LOAD.

• The LISTFILE and LISTIO commands with the EXEC option create files
named CMS EXEC and $LISTIO EXEC which you can execute as EXEC
procedures.

• The TAPPDS and TAPEMAC commands create CMS disk files from OS data
sets on tape. If the data set is a partitioned data set, the TAPPDS
command creates individual CMS files from each of the members; the
TAPEMAC command creates a CMS macro library, called a MACLIB, from an
OS macro library.

• The MOVEFILE and FILEDEF commands, used together, can copy OS or DOS
data sets or files into CMS files; they can also copy files from
cards or tapes.

• CMS/DOS commands SSERV, ESERV, RSERV, and PSERV copy DOS files from
source statement, relocatable, and procedure libraries into CMS
files.

• Some CMS commands produce maps, or lists of files, data sets, or
program entry points. For example, if you issue the command

tape scan (disk

A CMS disk file named TAPE MAP is created that contains a list of the
CMS files that exist on a tape attached to your virtual machine at
virtual address 181.

Section 3. What You Can Do with VM/370-CMS Commands 41

Some commands create new files from files that already exist on your
virtual disks. The creation may involve a simple copy operation, or it
may be a combining of many files of one type into a larger file of the
same or a different type:

.. The COPYFILE command, in its simplest form, copies a file from one
virtual disk to another:

copyfile yourprog assemble b myprog assemble a

~ The MACLIB and TXTLIB commands create libraries from MACRO or COpy
files, or from TEXT (object) files.

.. The SORT command rearranges (in alphameric sequence) the records in a
file and creates a new file to contain the result. You have to
specify the name of the new file:

sort nonseq recs a seq recs a

tt The GENMOD command creates, from object modules that you have loaded
into your virtual storage area, nonrelocatable modules. For example,
the commands

load test
genmod payroll

create a file named PAYROLL MODULE, which you can then execute as a
user-written CMS command.

• The DOSLKED command creates or adds members to DOSLIBs, which are
libraries containing link-edited CMS/DOS program phases.

• The UPDATE command creates an updated source file and special update
files when you use it to apply updates to your source programs.

COMMANDS THAT MODIFY DISK FILES

You can use the CMS Editor to modify existing files on your virtual
disks. You issue the EDIT command, giving the file identifier:

edit old file

CMS Editor subcommands allow you to make minor specific changes or
global changes, which can affect many lines in a file at one time.

The MACLIB and TXTLIB commands also allow you to modify CMS macro and
text libraries. You can add, delete, or replace members in these
libraries using these commands.

The COPYFILE command has some options that allow you to change a file
without creating a new output file. For example, if you enter the
command

copyfile my file a (lowcase

then all of the uppercase characters in the file MY FILE are translated
to lowercase.

You can change the file identifier of a file using the RENAME
command:

42 IBM'VM/370: CMS User's Guide

rename test file al good file al

The ERASE command deletes files from your virtual disks:

erase temporary file bl

For additional examples of CMS file system commands, see "Appendix D:
Sample Terminal Sessions."

COMMANDS TO MCVE FILES

YOU can use CMS commands to transfer a data file from one device or
medium to another device of the same or of a different type. The types
of movement, and the commands to use, are described briefly here and in
detail in "Section 7. Using Real Printers, Punches, Readers, and
Tapes. "

If you need to transfer files between virtual machines, you can use
the PUNCH or DISK DUMP commands to punch virtual card image records.
These are then placed in the virtual card reader of the receiving
virtual machine. .

Before you use either of these commands, you must indicate the output
disposition of the files. You do this with the CP SPOOL command:

cp spool OOd to mickey

Then, you can use the PUNCH command to punch virtual card images:

punch acct records

The file ACCNT RECORDS is spooled to the userid MICKEY's virtual card
reader. If the CMS file you are transferring does not have fixed
length, 80-character (card image) records, you can use the command

disk dump acct records

The CMS TAPE command allows you to dump CMS files onto tape, or to
restore previously dumped files:

tape dump archive file
tape load archive file

VMI 370 also provides a special utility program, DASD Dump Restore,
that allows you to dump the entir~ contents of your virtual disk onto a

'tape and then later restore it to a disk. You might use this program,
invoked by the DDR command in CMS, to back up your data files before
using them to test a new program.

COMMANDS TO PRINT FILES AND PUNCH CARDS

The commands that you use most often to print and punch CMS files are
the commands PRINT and PUNCH. For example,

print myprog listing

prints the contents of the LISTING file on the system printer, and

punch myprog assemble

section 3. What You Can Do with VM/370-CMS Commands 43

punches the assembler language source statement file onto cards. You
can also punch members of MACLIBs and TXTLIBs:

punch cmslib maclib (member fscb

Some CMS commands have a PRINT option, so that instead of having some
kinds of output displayed at your terminal or placed in a disk file, you
can request to have it printed on the real system printer. For example,
if you want a list of the contents of a macro library to print, you
could issue the command

maclib map mylih (print

You can see the contents of a file displayed at your terminal by
using the TYPE command:

type week3 report

fOU can specify, on the TYPE command, that you want to see only some
specific records in this file:

type week3 report a 1 20

Commands To Develop and Test OS and eMS Programs

Use CMS to prepare programs: you can create them with the CMS Editor, or
write them onto your CMS disks using any of the methods discussed
above. You can also assemble or compile source programs directly from
cards, tapes, or OS data sets. If your source program is in a eMS disk
file, then during the development process you can use the editor to make
corrections and updates.

To compile your programs, use the assembler or any of the language
processors available at your installation. If your program uses macros
that are contained in either system or private program libraries, you
must make these libraries known to CMS by using the GLOBAL command:

global maclib cmslib asmlib

In this example, you are using two libraries: the CMS macro library,
CMSLIB MACLIB, and a private library, named ASMLIB MACLIB.

The output from the compilers, in relocatable object form, is stored
on a CMS disk as a file with the file type of TEXT. To load TEXT files
into virtual storage to execute them, use the LOAD command:

load myprog

The LOAD command performs the linkage editor function in CMS. If
MYPROG contains references to external routines, and these routines are
the names of CMS TEXT files, those TEXT files are automatically included
in the load. If you receive a message telling you that there is an
undefined name (which might happen if you have a CSECT name or entry
point that is not the same as the name of the TEXT file that contains
it), you can then use the INCLUDE command to load this TEXT file:

include scanrtn

When you have loaded the object modules into storage, you can begin
program execution with the START command:

start

44 IBM VM/370: CMS User's Guide

If you want to begin execution at a specified entry point, enter

start scanl

where SCANl is the name of a control section, entry point, or
procedure.

If you are testing a program that either reads or writes files or
data sets using OS macros, you must use the PILEDEP command to supply a
file definition to correspond to the ddname you specify in your program.
The command

filedef indd reader

indicates that the input file is to be read from your virtual card
reader. A disk file might be defined:

filedef outdd disk out file al

The PILEDEF command, in CMS, performs the same function as a data
definition (DO) card in os.

The commands to load and execute os programs are discussed in
"Section 8. Developing OS Programs Under CMS."

The RUN command, which is actually an EXEC procedure, combines many
of these commands for you, so that if you want to compile, load, and
execute a single source file, or load and execute a TEXT or MODULE file,
you can use the RUN command instead of issuing a series of commands. See
the discussion of the RUN command in !~Ll1~: ~~~ ~~~~~~ gD~ ~g£~~
ft~f~f~~£~ for a list of the os language processors available.

Commands To Develop and Test DOS Programs

CMS simulates many functions of the Disk Operating System
the CMS/DOS environment. CMS/DOS is not a separate system,
of CMS. When you enter the command

set dos on

(DOS/VS) in
but is part

you are in the CMS/DOS environment. If you want to use the libraries on
the DOS/VS system residence volume, you should access the disk on which
it resides and specify the mode letter on the SET DOS ON command line:

access 132 c
set dos on c

Using commands that are available only in the CMS/DOS environment,
you can assign system and programmer logical units with the ASSGN
command:

assgn sys200 reader

If the device is a disk device, you can set up a data definition with
the DLBL command:

assgn sysl00 b
dlbl infile b dsn myinput file (sysl00

you can find out the current logical unit assignments and active file
definitions with the LISTIO and QUERY DLBL commands, respectively:

section 3. What You Can Do with VM/370-CMS Commands 45

listio a
query dlbl

If you are an assembler language programmer, you can assemble a
source file with the ASSEMBLE command:

ass emble myprog

A CMS file with a filetype of DOSLIB simulates a DOS core image
library; you can link-edit TEXT files or relocatable modules from a DOS
relocatable library and place the link-edited phase in a DOSLIB using
the DOSLKED command:

doslked myprog newlib

Then, use the GLOBAL command to identify the phase library and issue the
FETCH command to bring the phase into virtual storage:

global doslib new lib
fetch myprog

The START command begins program execution:

start

During program development with CMS, you can use DOS/VS system or
private libraries. You can use files on these libraries or you can copy
them into CMS files. The DSERV command displays the directories of
DOS/VS libraries. The command

dserv cd

produces a copy of the directory for the core image library. To copy
phases from relocatable libraries into CMS TEXT files, you could use the
RSERV command:

rserv oldprog

The SSERV and ES ERV commands are available for you to copy files from
source statement libraries, or copy and de-edit macros from E
sublibraries. Also, the PSERV command copies procedures from the
procedure library.

The CMS/DOS commands are described in more detail in "Section 9.
Developing DOS Programs Under CMS."

Commands Used in Debugging Programs

When you execute your programs under CMS, you can debug them as they
execute, by forcing execution to halt at specific instruction addresses.
You do this by entering the debug environment before you issue the START
command. You enter the debug environment with the DEBUG command:

debug

To specify that execution be stopped at a particular virtual address,
you can use the BREAK subcommand to set a breakpoint. For example,

break 1 20adO

46 IBM VM/370: CMS User's Guide

Then, when this instruction is encountered during the execution of the
program, the debug environment is entered and you can examine registers
or specific storage locations, or print a dump of your virtual storage.
Subcommands that do these things might look like the following:

gpr 0 15
x 20c12 8
dump 20000 *

If, instead of using the CMS DEBUG subcommands, you use the CP ADSTOP
command to set address stops, for example,

cp adstop 20adO

then, in the CP environment, you can use CP commands to do the same
things, for example

cp display g
cp display 20c12.8
cp dump 20000

Both sets of commands shown in these examples result in displays of (1)
the contents of your virtual machine's general purpose registers, (2) a
display of eight bytes of storage beginning at location X'20C12' and (3)
a dump of virtual storage from location X'20000' to the end.

You can also use the CMS SVCTRACE command and the CP TRACE commands
to see a record of interrupt activity in your virtual machine.

The DEBUG subco.mands and the eMS and CP debugging
described in more detail in "Section 11. How VM/370 Can
your programs."

Commands To Requ$st Information

facilities are
Help You Debug

All of the CP and CMS commands discussed in this section have required
some action on your part: you set your terminal characteristics,
manipulate disk files, develop, compile, and test programs, and control
your virtual machine devices and spool files. During a terminal session
you can change the status of many of your devices and virtual machine
characteristics, modify the files on your disks and create spool files.
VM/370 provides many commands to help you find out what is and what is
not currently defined in your virtual machine.

COMMANDS TO REQUEST INFORMATION ABOUT TERMINAL CHARACTERISTICS

you can find out the status of your terminal characteristics by using
the CP command QQERY with the TERMINAL or SET operands. If you issue the
command

cp query terminal

you can see the settings for all of the functions controlled by the CP
TERMINAL command, including the current line size and line editing
symbols.

Similarly, the command

cp query set

Section 3. What You Can Do With VM/370-CMS Commands 47

tells you the settings for the functions controlled by the CP SET
command, such as error message display, and the MSG and WNG flags.

For most of the functions controlled by the CMS SET command, there
are corresponding CMS QUERY command operands; to find out a particular
setting, you must specify the function in the QUERY command. For
examFle,

query input

lists the current settings in effect for input character translation.
other functions that you can query this way are:

BLIP
IMPCP
IMPEX

INPUT
OUTPUT
RDYMSG

RED TYPE
SYNONYM

COMMANDS TO REQUEST INFOEMATION ABOUT DATA FILES

Use the LISTFILE command to get information about CMS files. The
information you can obtain from the LISTFILE command includes:

• The names of all the files on your A-disk:

listfile

• The names of all the files on any other accessed disk:

listfile * * b

• The names of all files that have the same filename:

listfile myprog *
• The names of all files with the same filetype:

listfile * assemble

• The record length and format, blocksize, creation date and disk label
for a particular file:

listfile records saved a2 (label

Use the STATE command to find out whether a certain file exists:

state sales list c

If you want to know if the file is on a read/write disk, you can use the
STATEW command.

To find out what CMS libraries have been made available, you can use
the commands:

query doslib
query mac lib
query txtlib
query library

To find out what members are contained in a particular macro or text
library use the commands:

48 IBM VM/370: CMS User's Guide

maclib map mylib (term
txt lib map proglib (term

The MODMAP command displays a load map of a MODULE file:

modmap payroll

To examine load maps created by the LOAD command, use the TYPE
command:

type load map as

The TYPE command can also be used to display the contents of any CMS
file. To examine large files, you can use the PRINT command to spool a
copy to the high-speed printer.

To compare the contents of two files to see if they are identical,
use the COMPARE command:

compare labor stat a1 labor stat b1

Any records in these files that do not match are displayed at your
terminal.

If you have OS or DOS disks attached to your virtual machine, you can
display a list of OS data sets or DOS files by using the LISTDS command,
for example

listds d

displays a list of the data sets or files on the OS or DOS disk accessed
as your D-disk.

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL DISKS

Use the CP QUERY command to find out:

• What virtual disks are currently part of your configuration:

cp query virtual dasd

• Whether a particular virtual disk address is in use:

cp query virtual 291

• What users might be linked to one of your disks:

cp query links 330

The CMS QUERY command can tell you about your accessed disks. If you
enter

query disk a

you can find out the number of files on your A-disk, the amount of space
that is being used, and its percentage of the total disk space, and the
read/write status. To get this information for all of your accessed
disks, issue the command:

query disk *

section 3. What You Can Do with VM/370-CMS Commands 49

To obtain information about the extents occupied by files on OS and DOS
disks, enter the command

listds * (extent

If you want to know the current order in which your disks are
searched for data files or programs, issue the command

query search

You could also use this command to find out what disks you have
accessed, what filemode letters you have assigned to them, whether they
are read/write or read-only, and whether they are CMS, OS, or DOS
disks.

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL MACHINE

If you issue the command

cp query virtual

you can find out the status of your virtual machine configuration. You
can also request specific information; for example, the command

cp query storage

gives you the amount of virtual storage you have available.

To find out the current spooling characteristics of your printer,
punch, or reader, issue the commands

cp query OOe
cp query OOd
cp query OOc

To see information about all three at once, use

cp query ur

For the status of spool files on any of these devices, issue the
c:ommands

cp query printer
cp query punch
cp query reader

using these commands, you can request the status of particular spool
jEiles . by referring to the spoolid number, for example:

cp query printer 4187

lou can also request additional information about the files, including
file identification and creation time:

cp query reader all

If you want to know the total number of spool files associated with
;rour virtual machine, you can use the command

cp query files

The response to this message is the same as the message you receive if
JOu have spool files when you log on.

50 IBM VM/370: CMS User's Guide

Section 4. The eMS File System

The file is the essential unit of data in the eMS system. eMS disk
files are unique to the eMS system and cannot be read or written using
other operating systems. When you create a file in eMS, you name it
using a file identifier. The file identifier consists of three fields:

• Filename (fn)
• Filetype (ft)
• Filemode (fm)

When you use eMS commands and programs to modify, update, or
reference files, you must identify the file by using these fields. Some
eMS commands require you to enter only the filename, or the filename and
filetype; others require you to enter the filemode field as well. This
section contains information about the things you must consider when you
give your eMS files their identifiers, notes on the file system commands
that create and modify eMS files, and additional notes on using eMS
disks.

CMS File Formats

The eMS file management routines write eMS files on disk in 800-byte
physical blocks, regardless of whether they have fixed- or
variable-length records. For most of your eMS applications, you never
need to specify either a logical record length and record format or
block size when you create a eMS file.

When you create a file with the eMS Editor, the file has certain
default characteristics, based on its filetype. The special filetypes
recognized by the editor, and their applications, are discussed under
"What are Reserved Piletypes?"

VSAM files written by eMS are in
written by OS/VS or DOS/VS and are
systems. You cannot, however, use any
and write VSAM files, because VSAM
virtual Storage Access Method.

the same format as VSAM files
recognized by those operating

eMS file system commands to read
file formats are unique to the

A single eMS file can contain up to 12,848,000 bytes of data grouped
into up to 65,535 logical records, all of which must be on the same
minidisk. If the file is a source program, the file size limit may be
smaller. The aaxiaum number of files per real disk is 3400 for a 3330,
3333, 3340, or 3350 disk, or 3500 for a 2314 or 2319.

How CMS Files Get Their Names

When you create a eMS file~ you can give it any filename and filetype
you wish. The rules for forming filenames and filetypes are:

• The filename and filetype can each be from 1- to 8 characters.
• The valid characters are A-Z, 0-9, and $, I, i

When you enter a command line into the VM/370 system, your input line
is always translated, by VM/370, into uppercase characters. So, when you
specify a file identifier, you can enter it in lowercase.

section 4. The eMS Pile System 51

Remember that, by default, the # and ~ characters are line editing
symbols in VM/370; when you use them to identify a file, you must
precede them with the logical escape symbol (").

The third field in the file identifier, the filemode, indicates the
mode letter (A-G, S, Y, or Z) currently assigned to the virtual disk on
which you want the file to reside. When you use the CMS Editor to
create a file, and you do not specify this field, the file you create is
written on your A-disk, and has a filemode letter of A.

The filemode letter, for any file, can change during a terminal
session. For example, when you log on, your virtual disk at address 191
is accessed as your A-disk, so a file on that disk named SPECIAL EVENTS
has a file identifier of:

SPECIAL EVENTS A

If, however, you later access another disk as your A-disk, and access
Jour 191 as your B-disk, then this file has a file identifier of:

SPECIAL EVENTS B

DUPLICATING FILENAMES AND FILETYPES

You can give the same filename to as many files on a given disk as you
want, as long as you assign them different filetypes. Or you can create
many files with the same filetype but different filenames.

For the most part, filenames that you choose for your files have no
special significance to CMS. If, however, you choose a name that is the
same as the name of a CMS command, and the file that you assign this
name to is an executable module or EXEC procedure, then you may
emcounter difficulty if you try to execute the CMS command whose name
)'OU duplicated.

For an explanation of how CMS identifies a command name, see "CMS
Command Search Order" later in this section.

Many CMS commands allow you to specify one or more of the fields in a
file identifier as an asterisk (*) or equal sign (~, which identify
files with similar fileids.

Some CMS commands that manipulate disk files allow you to enter the
filename and/or filetype fields as an asterisk (*), indicating that all
files of the specified filename/filetype are to be modified. These
c:ommands are:

COPYFILE
ERASE

RENAME
TAPE DUMP

Por example, if you specify

erase * test a

all files with a filetype of TEST on your A-disk are erased.

52 IBM VM/370: CMS User's Guide

similarly, if you enter the command

rename temp * b perm - -

all files with a filename of TEMP are renamed to have filenames of PERM;
the existing filetypes of the files remain unchanged.

The LISTFILE command allowi you to request similar lists. If you
specify an asterisk for a filename or filetype, all of the files of th~t
filename or filetype are listed. There is an additional feature that you
can use with the LIST FILE command, to obtain a list of all the files
that have a filename or filetype that begin with the same character
string. For example,

listfile t* assemble

produces a list of all files on your A-disk whose filenames begin with
the letter T. The command

listfile tr* a*

produces a list of all files on your A-disk whose filenames begin with
the letters TR and whose filetypes begin with the letter A.

The COPYFILE, RENAME, and SORT commands allow you to enter output file
identifiers as equal signs (=), to indicate that it is the same as the
corresponding input file identifier. For example,

copyfile myprog assemble b = = a

copies the file MYPROG ASSEMBLE from your B-disk to your A-disk, and
uses the same filename and filetype as specified in the input fileid for
those positions in the output fileid.

What Are Reserved Filetypes?

For the purposes of most CMS commands, the filetype field is used merely
as an identifier. Some filetypes, though, have special uses in CMS;
these are known as "reserved filetypes."

Nothing prevents you from assigning any of the reserved filetypes to
files that are not being used for the specific eMS function normally
associated with that filetype.

Reserved filetypes also have special significance to the eMS Editor.
When you use the EDIT command to create a file with a reserved filetype,
the editor assumes various default characteristics for the file, such as
record length and format, tab settings, translation to uppercase,
truncation column, and so on.

Section 4. The eMS File System 53

FILETYPES FOR CMS COMMANDS

Reserved fi1etypes sometimes indicate how the file is used in the CMS
system: the fi1etype ASSEMBLE, for example, indicates that the file is
to be used as input to the assembler; the fi1etype TEXT indicates that
the file is in re10catab1e object form, and so on. Many CMS commands
assume input files of particular filetypes, and require you to enter
only the filename on the command line. For example, if you enter

synonym test

ClIS searches for a file with a filetype of SYNONYM and a filename of
TEST. A file named TEST that has any other filetype is ignored.

Some CMS commands create files of particular filetypes, using the
filename you enter on the command line. The language processors do this
as well; if you are recompiling a source file, but wish to save previous
output files, you should rename them before executing the command.

Figure 2 lists the fi1etypes used by CMS commands and describes how
they are used. Figure 3 lists the filetypes used by CMS/DOS commands.

In addition to these CMS fi1etypes, there are special filetypes
reserved for use by the language processors, which are IBM program
products. These filetypes, and the commands that use them, are:

f~!§t1~E~§
COBOL, TESTCOB
FORTRAN, FREEFORT,

FTnn001, TESTFORT
PLI, PLIOPT
VSBASIC, VSBDATA

,gQ!!!1!HH!2§
COBOL, FCOBOL, TESTCOB
FORTRAN, FORTGI, FORTHX

GOFORT, TESTFORT
DOSPLI, PLIC, PLICR, PLIOPT
VSBASIC

For details on how to use these filetypes, consult the appropriate
program product documentation.

54 IBM VM/370: CMS User's Guide

r
1 Filetype 1 Command
1------
I AMSERV AMSERV
1
I
1
I ASM3705 ASM3705
1 GEN3705
I
1 ASSEMBLE ASSEMBLE
I
1
I AUXxxxx UPDATE

CNTRL

COpy

DIRECT

EXEC

LISTING

LKEDIT

LOADLIB

MACLIB

MACRO

MAP

UPDATE

MACLIB

DIRECT

EXEC
GEN3705
LIST FILE

AMSERV
ASSEMBLE
ASM3705

LKED

LKED

GLOBAL
MACLIB

MACLIB

INCLUDE
LOAD
MACLIB
TAPE
TXTLIB

,
1 Comments 1

Contains VSAM Access Method Services control
statements to be executed with the AMSERV
command.

Used by system programmers to generate the
3704/3705 control program.

Contains source statements for assembler
language programs.

Points to files that contain UPDATE control
statements for mUltiple updates.

Lists files that either contain UPDATE control
statements or point to additional files.

Can contain COpy control statements and macros
or copy files to be added to MACLIBs.

Contains entries for the VM/370 user directory
file. The system operator controls this file.

Can contain sequences of CMS or user-written
commands, with execution control statements.

Listings are produced by the assembler and
the language processors as well as the AMSERV
command.

contains the listing created during the
generation of the 3704/3705 control program.

Is a library of 3704/3705 control program
load modules created during 3704/3705 control
program generation.

Library membe~s contain macro definitions or
copy files; the MACLIB command creates the
library, and lists, adds, deletes, or replaces
members. The GLOBAL command identifies which
macro libraries should be searched during an
assembly or compilation.

contains macro definitions to be added to a
CMS macro library (MACLIB).

Maps created by the LOAD and INCLUDE commands
indicate entry point locations; the MACLIB,
TXTLIB, and TAPE commands produce MAP files.

L- ____________________________________ ~

Figure 2. Filetypes Used by CMS Commands (Part 1 of 2)

section 4. The CMS File System 55

r
Filetype

---,
Command

MODULE GENMOD
LOADMOD
MODMAP

SYNON YM SYNONYM

SCRI PT 1 SCRIPT

TEXT ASSEMBLE
INCLUDE
LOAD
TXTLIB

TXTLIB GLOBAL
TXTLIB

UPDATE UPDATE

UPDLOG UPDATE

UPDTxxxx UPDATE

1 Comments

MODULE files created by the GENMOD command are
nonrelocatable executable programs.
The LOAEMOD commands loads a MODULE file for
execution; the MODMAP command displays a map
of entry point locations.

Contains a table of synonyms for CMS commands
and user-wr~tten EXEC and MODULE files.

SCRIPT text processor input includes data and
SCRIPT control words.

TEXT files contain relocatable object code
created by the assembler and compilers. The
LOAD and INCLUDE commands load them into
storage for execution. The TXTLIB command
manipulates libraries of TEXT files.

Library members contain relocatable object
code. The TXTLIB command creates the library,
and lists or deletes existing members. The
GLOBAL command identifies TXTLIEs to search.

Contains UPDATE control statements for single
updates applied to source programs.

Contains a record of additions, deletions, or
changes made with the UPDATE command.

Contains UPDATE control statements for
multilevel updates.

ZAP ZAP contains control records for the ZAP command,
which is used by system support personnel.

I

I --------------------------1
11 SCRIPT is an IBM Installed User Program (IUP). I
L __ _ ___ J

Figure 2. Filetypes Used by CMS Commands (Part 2 of 2)

OUTPUT FILES: TEXT AND LISTING

Output files from the assembler and the language processors are
logically related to the source programs by their filenames. Some of
these files are permanent and some are temporary. For example, if you
issue the command

assemble myfile

CMS locates a file named MYFILE with a filetype of ASSEMBLE and the
system assembler assembles it. If the file is on your A-disk, then when
the assembler completes execution, the permanent files you have are:

MYFILE ASSEMBLE A1
MYFILE TEXT A1
MYFILE LISTING A1

where the TEXT file contains the object code resulting from the
assembly, and the LISTING file contains the program listing generated by
the assembly. If any TEXT or LISTING file with the same name previously

56 IBM VM/370: CMS User's Guide

r- ---,
I Filetype I Command I Comments

COpy

DOSLIB

DOSLNK

ESERV

EXEC

LISTING

MACRO

MAP

PROC

TEXT

MACLIB
SSERV

DOSLIB
DOSLNK
FETCH
GLOBAL

DOSLKED

ESERV

LISTIO

ASSEMBLE
ESERV

ESERV
MACLIB

DOSLIB
DOSLKED
DSERV

PSERV

ASSEMBLE
DOSLKED
RSERV

When the SSERV command copies books or macros
from DOS source statement libraries, the output
is written to CMS COpy files, which can be added
to CMS macro libraries with the MACLIB command.

DOS core image phases are placed in a DOSLIB by
linkage editor, invoked with the DOSLNK command.
The GLOBAL command identifies DOSLIBs to be
searched when the FETCH command is executed.

Contains linkage editor control statements for
input to the CMS/DOS linkage editor.

contains input control statements for the ESERV
utility program.

The LISTIO command with the EXEC option creates
the $LISTIO EXEC that lists system and
programmer logical unit assignments.

Listings contain processor output from the ESERV
command, and compiler output from the assembler
and language processors.

Contains SYSPCH output from the ESERV program,
suitable for addition to a CMS MACLIB file.

The DSERV command creates listings of the
directories of DOS libraries. The DOSLIB command
with the MAP option produces a list of DOSLIB
members. The linkage editor map from the DOSLKED
command is written into a MAP file.

The PSERV command copies procedures from DOS
procedure libraries into CMS PROC files.

Object decks created by the assembler or
compilers are written into TEXT files. The
command creates TEXT files from modules in
relocatable libraries. TEXT files can also
used as input to the linkage editor.

RSERVI
DOS I
be I

I ________________ J

Figure 3. Filetypes Used in CMS/DOS

existed, it is erased. The source input file, MYFILE ASSEMBLE A1, is
neither erased nor changed.

The characteristics of the TEXT and LISTING files produced by the
assembler are the same as those created by other processors and programs
in CMS.

Because these files are CMS files, you can use the CMS Editor to
examine or modify their contents. If you want a printed copy of a
LISTING file, you can use the PRINT command to print it. If you want to
examine a TEXT file, you can use the TYPE or PRINT command specifying
the HEX option.

Section 4. The CMS File System 57

FILETYPES FOR TEMPORARY FILES

The filetypes of files created by the assembler and language processors
for use as temporary workfiles are:

SYSUT1
SYSUT2
SYSUT3
SYSUT4

SY5001
5Y5002
SY5003

5YS004
SYS005
5Y5006

The CM5 AM5ER' command, executing 'SAM utility functions, uses two
workfiles, that have filetypes of LDTFDl1 and LDTFDI2.

Disk space is allocated for temporary files on an as-needed basis.
They are erased when processing is complete. If a program you are
executing is terminated before completion, these workfiles may remain on
your disk. You can erase them.

The CMSUT1 filetype is used by CMS commands that create files on your
eMS disks. The CM5UT1 file is used as a workfile and is erased when the
file is created. When a command fails to complete execution properly,
the CMSUT1 file may not be erased. The commands, and the filenames they
assign to files they create, are listed below.

~2!!!!!!!!g
COPYFILE
DISK LOAD
EDIT
INCLUDE
LOAD
MACLIB
READCARD
TAPE LOAD
UPDATE

!!.!~1!.'!.!!!~
COpy FILE
DISK
EDIT
DMSLDR
DMSLDR
DMSLBM
READCARD
TAPE
fn (the filename of the UPDATE file)

FILETYPES FOR DOCUMENTATION

There are two CMS reserved filetypes that accept uppercase and lowercase
input data. These are MEMO and SCRIPT. You can use MEMO files to
document program notes or to write reports. The SCRIPT filetype is used
by the SCRIPT command, which invokes a text processor that is an IBM
Installed User Program (IUP).

F'ilemode Letters and Numbers

The file.ode field of a CMS file identifier has two characters: the
file.ode letter and the filemode number. The filemode letter is
established by the ACCESS command, and specifies the virtual disk on
which a file resides: A through G, S, Y, or Z. The file mode number is a
number from 0 to 5, which you can assign to the file when you create it
or rename it; if you do not specify it, the value defaults to 1. How
you access your disks and what filemode letters you give them with the

58 IBM 'M/370: CMS User~s Guide

ACCESS command depends on how you want to use the files that are on
them.

For most of the reading and writing you do of files, you use your
A-disk, which is also known as your primary disk. This is a read/write
disk. You may access other disks in your configuration, or access
linked-to disks, in read-only or read/write status, depending on whether
you have a read-only or read/write link.

When you load CMS (with the IPL command), your virtual disk at
address 191 is accessed for you as your A-disk. Your virtual disk at
address 190 (the system disk) is accessed as your S-diski and the disk
at 19E is accessed as an extension of your S-disk, with a mode letter of
Y. In addition, if you have a disk defined at address 192, it is
accessed for you as your D-disk.

The actual letters you assign to any other disks (and you may
reassign the letters A, 0, and Y), is arbitrary; but it does determine
the CMS search order, which is the order in which CMS searches your
disks when it is looking for a file. The order of search (when all disks
are being searched) is alphabetical: A through G, S, Y, and Z. If you
have duplicate file identifiers on different disks, you should check
your disk search order before issuing commands against that filename to
be sure that you will get the file you want. You can find out the
current search order for your virtual disks by issuing the command:

query search

You can also access disks as logical extensions of other disks, for
example:

access 235 b/a

The "/A" indicates that the B-disk is to be a read-only extension of the
A-disk, and the A-disk is considered the "parent" of the B-disk. A disk
.ay have .any extensions, but only one level of extension is allowed.

If you have a disk accessed as an extension of another disk, the
extension disk is automatically read-only, and you cannot write on it.
You might access a disk as its own extension, therefore, to protect the
files on it, so that you do not accidentally write on it, for example,

access 235 bib

Another use of extensions is to extend the CMS search order. If you
issue a command requesting to read a file, for example:

type alpha plan

CMS searches your A-disk for the file named ALPHA PLAN and if it does
not find it, searches any extensions that your A-disk may have. If you
have a file naaed ALPHA PLAN on your B-disk but have not accessed it as
an extension of your A-disk, eMS will not find the file, and you will
have to re-enter the command:

type alpha plan b

Additionally, if you issue a CMS command that reads and writes a
file, and the file to be read is on an extension of a read/write disk,
the output file is written to the parent read/write disk. The EDIT

section 4. The CMS File System 59

command is a good example of this type of command. If you have a file
named FINAL LIST on a B-disk extension of a read/write A-disk, and if
you invoke the editor to modify the file with the command:

edit final list

after you have made modifications to the file, the changed file is
written onto your A-disk. The file on the B-disk remains unchanged.

When you access a disk as a read-only extension, it remains an extension
of the parent disk as long as both disks are still accessed. If either
disk is released, the relationship is terminated.

If the parent disk is released, the extension remains accessed and
you may still read files on it. If you access another disk at the mode
letter of the original parent disk, the parent/extension relationship
remains in effect.

If you release a read-only extension and access another disk with the
same mode letter, it is not an extension of the original parent disk
unless you access it as such. For example, if you enter

access 198 cia
release c
access 199 c

the C-disk at virtual address 199 is not an extension of your A-disk.

WREN TO SPECIFY FILEMODE LETTERS: READING FILES

When you request CMS to access a file, you have to identify it so that
C~S can locate it for you. The commands that expect files of particular
filetypes (reserved filetypes) allow you to enter only the filename of
the file when you issue the command. When you execute any of these
commands, or execute a MODULE or EXEC file, CMS searches all of your
accessed disks (using the standard search order) to locate the file.
The CMS commands that perform this type of search are:

AMSERV
ASSEMBLE
DOSLIB
EXEC

Some C8S com.ands
i~entify a file. You
specify the filemode,
when it looks for the
disk you specify and
commands you use this

EDIT
ERASE
FILEDEF
PRINT

GLOBAL
LOAD
LOADMOD
MACLIB

require you to enter the filenaae and filetype to
may specify the filemode letter; if you do not
eMS searches only your A-disk and its extensions
file. If you do specify a filemode letter, the

its extensions are searched for the file. The
way are:

PUNCH
STATE
SYBONYM

TAPE DUMP
TYPE
UPDATE

There are two CMS commands that do not search extensions of disks
when looking for files. They are:

60 IBM V8/370: CMS User's Guide

DISK DUMP
LISTFILE

You must explicitly enter the filemode if you want to use these commands
to list or· dump files that are on extensions.

For some CMS commands, if you specify the filemode of a file as an
asterisk, it indicates that you either do not know or do not care what
disk the file is on and you want CMS to locate it for you. For example,
if you enter

list file mtfile test *
the LISTFILE command responds by listing all files on your accessed
disks named MYFI~E TEST. When you specify an asterisk for the filemode
of the COPYFILE, ERASE, or RENAME commands, CMS locates all copies of
the specified file. For example,

rename temp sort * good sort =

renames all files named TEMP SORT to GOOD SORT on all of your accessed
read/write disks. An equal sign (=) is valid in output fileids for the
RENAME, SORT, and COPYFILE commands.

For some commands, when you specify an asterisk for the filemode of a
file, CMS stops searching as soon as it finds the first copy of the
file. For example,

type myfile assemble *
If there are files named MYFILE ASSEMBLE on your A-disk and C-disk, then
only the copy on your A-disk is displayed. The commands that perform
this type of search are:

COMPARE
DISK DUMP
EDIT
FILEDEF

PRINT
PUNCH
RUN
SORT

STATE
SYNONYM
TAPE DUMP
TYPE

For the COMPARE, COPYFILE, RENAME, and SORT commands, you must always
specify a filemode letter, even if it is specified as an asterisk.

WHEN TO SPECIFY FILEMODE LETTERS: WRITING FILES

When you issue a CMS command that writes a file onto one of your virtual
diskS, and you specify the output filemode, CMS writes the file onto
that disk. The com.ands that require you to specify the output filemode
are:

COPY FILE
RENAME
SORT

The commands that allow you to specify the output filemode, but do
not require it, are:

section 4. The CMS File System 61

FILEDEF
GENMOD
READCARD

TAPE LOAD
TAPPDS
UPDATE

When you do not specify the filemode on these commands, CMS writes the
output files onto your A-disk.

Some CMS commands that create files always write them onto your
A-disk. The LOAD and INCLUDE commands write a file named LOAD MAP AS.
The LISTFILE command creates a file named CMS EXEC, on your A-disk. The
CMS/DOS commands DSERV, ESERV, SSERV, PSERV, and RSHRV also write files
onto your A-disk.

Other commands that do not allow you to specify the filemode write
output files either:

• To the disk from which the input file was read
• To your A-disk, if the file was read from a read-only disk.

These commands are:

AMSERV
MACLIB
TXTLIB
UPDATE

The SORT command also functions this way if you specify the output
file mode as an asterisk (*).

In addition, many of the language processors, when creating work
files and permanent files, write onto the first read/write disk in your
search order, if they cannot write on the source files's disk or its
parent.

HOW FILEMODE BUMBERS ARE USED

Whenever you specify a filemode letter to reference a file, you can also
specify a filemode number. since a filemode number for most of your
files is 1, you do not need to specify it. The filemode numbers 0, 2,
3 p 4, and 5 are discussed below. Filemode numbers 6 through 9 are
reserved for IBM use.

Filellode
p]~Ivate:
to your
rE!quests
of 0 are

0: A filemode number of 0 assigned to a file makes that file
No other user may access it unless they have read/write access
disk. If someone links to your disk in read-only mode and
a list of all the files on your disk, the files with a filemode
not listed.

Filemode 2: Filemode 2 is essentially the same, for the purposes of
readIng-and writing files, as filemode 1. Usually a filemode of 2 is
assigned to files that are shared by users who link to a common disk,
like the system disk. Since you can access a disk and specify which
files on that disk you want to access, files with a filemode of 2
provide a convenient subset of all files on a disk. For example, if you
issue the command:

access 489 e/a * * e2

you can only read files with a filemode of 2 on the disk at virtual
acldress 489.

6 '1
~. IBM VM/370: CMS User's Guide

Filemode 3: Files with a filemode of 3 are erased after they are read.
If-fou-create a file with a filemode of 3 and then request that it be
printed, the file is printed, and then erased. You can use this filemode
if you write a program or EXEC procedure that creates files that you do
not want to maintain copies of on your virtual disks. You can create the
file, print it, and not have to worry about erasing it later.

The language processors and some CMS commands create work files and
give these work files a filemode of 3.

Filemode 4: Files with a filemode of 4 are in as simulated data set format:- These files are created by as macros in programs running in
eMS. You specify that a file created by a program 1S to have as
simulated data set format by specifying a filemode of 4 when you issue
the FILEDEF command for the output file. If you do not specify a
filemode of 4, the output file is created in CMS format.

you can find more details about as simulated data sets in "Section
8. Developing os Programs Under CMS."

!Q~~: There are no filemode numbers reserved for DOS or VSAM data sets,
since CMS does not simulate these file organizations.

[~!~!Q~~ 2: This filemode number is the same, for purposes of reading
and writing, as filemode 1. You can assign a filemode of 5 to files that
you want to maintain as logical groups, so that you can manipulate them
in groups. For example, you can reserve the filemode of 5 for all files
that you are retaining for a certain period of time; then, when you want
to erase them, you could issue the command:

erase * * as

The CMS commands that create files with a filetype of MAP assign these
files a filemode of 5.

YOU can assign filemode numbers when you USe the following commands:

COPYFILE: You can assign a filemode number when you create a new file
wIth-the COPY FILE command. To change only the filemode number of an
existing file, you must use the REPLACE option. For example

copyfile test module a1 = = a2 (replace

changes the filemode number of the file TEST MODULE A from 1 to 2.

~~!I: You can assign a filemode number when you create a file with the
CMS Editor. To change the filemode number of an existing file, use the
RENAME or COPYFILE commands, or use the FMODE subcommand when you are in
the edit environment.

~1~1, Il1j~jI: When you assign file definitions to disk files for
programs or CMS command functions, you can specify a filemode number.

~~!~~Q: You can specify a filemode number on the GENMOD command line.
To change the filemode number of an existing MODULE file, use the RENAME
or COPYFILE commands.

READCARD: You can assign a filemode number when you specify a file
IdentIfIer on the READCARD command line, or on a READ control card.

Section 4. The CMS File System 63

RENAME: When you specify the fileids on the RENAME command, you can
;~;~rly the filemode numbers for the input and/or output files.

~.Q!!l: You can specify filemode numbers for the input and/or output
fileids on the SORT command line.

Managing Your CMS Disks

The number of files you can write on a CMS disk depends on both the size
of the disk and the size of the files that it contains. You can find
out how much space is being used on a disk by using the QUERY DISK
command. For example, to see how much space is on your A-disk, you would
enter

query disk a

The response may be something like this:

A (191): 171 FILES; 1221 REC IN USE, 107 LEFT (of 1328),
921 FULL (5 CYL), 3330, R/W

When a disk is becoming full, you should erase whatever files you no
longer need. Or dump to tape files that you need to keep but do not need
to keep active on disk.

When you are executing a command or program that writes a file to
disk, and the disk becomes full in the process, you receive an error
message, and you have to try to clear some space on the disk before you
can attempt to execute the command or program again. To avoid the
delays that such situations cause, you ~hould try to maintain an
awareness of the usage of your disks. If you cannot erase any more
files from your disks, you should contact installation support personnel
about obtaining additional read/write CMS disk space.

CMS File Directories

Each CMS disk has a master file directory that contains entries for each
of the CMS files on the disk. When you access a disk, information from
the master file directory is brought into virtual storage and written
into a user file directory. The user file directory has an entry for
each file that you may access. If you have accessed a disk specifying
only particular files, then the user file directory contains entries
only for those files.

If you have read/write access to a disk, then each time you write the
file onto disk the user file directory and master file directory are
updated to reflect the current status of the disk. If you have read-only
access to a disk, then you cannot update the master file directory or
user file directory. If you access a read-only disk while another user
is writing files onto it, you may need to periodically reissue the
ACCESS command for the disk, to obtain a fresh copy of the master file
directory.

!21!: You should never attempt to write on a disk at the same time as
another user.

The user file directory remains in virtual storage until you issue
the RELEASE command specifying the mode letter or virtual address of the
disk. If you detach a virtual disk (with the CP DETACH command) without

64 IBM VM/370: CMS User's Guide

releasing it, CMS does not know that the disk
virtual machine. When you attempt to read or
CMS assumes that the disk is still active
directory is still in storage) and encounters
read or write the file.

is no longer part of your
write a file on the disk

(because the user file
an error when it tries to

A similar situation occurs if you detach a disk and then add a new
disk to your virtual machine using the same virtual address as the disk
you detached. For example, if you enter the following sequence of
commands:

cp link user1 191 195 rr rpass
access 195 d
cp detach 195
cp link user2 193 195 rr rpass2
list file * * d

the LISTFILE command produces a list of the files on USER1's 191 disk;
if you attempt to read one of these files, you receive an error
message. You must issue the ACCESS command to obtain a copy of the
master file directory for USER2's 193 disk.

The entries in the master file directory are sorted alphamerically by
filename and filetype, to facilitate the CMS search for particular
files. When you are updating disk files, the entries in the user file
directory and master file directory tend to become unsorted as files are
created, updated, and erased. When you use the RELEASE command to
release a read/write disk, the entries are sorted and the master file
directory is rewritten. If you or any other user subsequently access
the disk, the file search may be more efficient.

CMS Command Search Order

When you enter a command line in the CMS environment, CMS has to locate
the command to execute. If you have EXEC or MODULE files on any of your
accessed disks, CMS treats them as commands, also: they are known as
user-written commands.

As soon as the command name is found, the search stops and the
command is executed. The search order is:

1. EXEC file on any currently accessed disk. CMS uses the standard
search order (A through G, 5, Y, and Z.)

2. Valid abbreviation or truncation for an EXEC file on any currently
accessed disk, according to current SYNONYM file definitions in
effect.

3. A command that has already been loaded into the transient area.
The transient area commands are:

ACCESS
ASSGN
COMPARE
DISK
DLBL
FILEDEF
GENDIRT
GLOBAL

LISTFlLE
MODMAP
OPTION
PRINT
PUNCH
QUERY
READCARD

RELEASE
RENAME
SET
SVCTRACE
SYNONYM
TAPE
TYPE

Section 4. The CMS File System 65

4. A nucleus-resident command. The nucleus-resident CMS commands are:

CP
DEBUG
ERASE
FETCH

GENMOD
INCLUDE
LOAD
LOADMOD

START
STATE
STATEW

5. Command module on any currently accessed disk. (All the remaining
CMS commands are disk resident and execute in the user area.)

6. Valid abbreviation or truncation for nucleus-resident or transient
area command module.

7. Valid abbreviation or truncation for disk resident command.

For example, if you create a command module that has the same name as
it CMS nucleus-resident command, your command module cannot be executed,
since CMS locates the nucleus-resident command first, and executes it.

Figure 4 shows more details of the command search order; you can find
it complete description of the search order in the Y~LJ1~: ~I2i~~
]~.!:gg.!:S!~!!g.!:~.§ Q~!~~.

66 IBM VM/370: CMS User's Guide

r---~

'r
CMS

EXEC
SEARCH

L
CMS

MODULE
SEARCH

L
CP

SEARCH

~

KEY IN A
COMMAND NAME

ISSUE
AN ERROR
MESSAGE

EXECUTE
THE FILE
AND RETURN
CONTROL TO
CMS.

EXPAND THE
NAME TO THE
FULL REAL
NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE THE
FILE AND
RETURN CONTROL
TO CMS.

EXPAND THE
NAME TO THE FULL
REAL NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE THE
COMMAND
AND RETURN
CONTROL TO
CMS.

L-___ ~

Figure 4. How CMS Searches for the Command to Execute

section 4. The CMS File System 67

Section 5. The eMS Editor

In eMS usage, the term edit is used in a variety of ways, all of which
refer, ultimately, to the functions of the eMS Editor, which is invoked
when you issue the EDIT command.

To edit a file means to make changes, additions, or deletions to a
eMS file that is on a disk, and to make these changes interactively: you
instruct the editor to make a change, the editor does it, and then you
request another change.

You can edit a file that does not exist; when you do so, you create
the file online, and can modify it as you enter it.

To file a file means to write a file you are editing back onto a
disk, incorporating any changes you made during the editing session.
When you issue the FILE subcommand to write a file, you are no longer in
the environment of the eMS Editor, but are returned to the eMS
environment. You can, however. write a file to disk and then continue
editing it, by using the SAVE subcommand.

An editing session is the period of time during which a file is in
your virtual storage area, from the moment you issue the EDIT command
and the editor responds EDIT: until you issue the FILE or QUIT
subcommands to return to the eMS command environment.

The EDIT Command

When you issue the EDIT command you must specify the filename and
filetype of the file you want to edit. If you issue

edit test file

eMS searches your A-disk and its extensions for a file with the
identification TEST FILE. If the file is not found, eMS assumes that you
want to create the file and issues the message

NEW FILE:
EDIT:

to inform you that the file does not already exist.

If the file exists on a disk other than your A-disk and its
extensions, or if you want to create a file to write on a read/write
disk other than your A-disk, you must specify the filemode of the file:

edit test file b

In this example, your B-disk and its extensions are searched for the
file TEST FILE.

After you issue the EDIT command, you are in edit mode, or the
environment of the eMS Editor. If you have specified the filename and
filetype of a file that already exists, you can now use EDIT subcommands
to make changes or corrections to lines in that file. If you want to
add records to the file, as you would if you are creating a new file,
issue the EDIT subcommand

section 5. The eMS Editor 69

input

to enter input mode. Every line that you enter is considered a data line
to be written into the disk file. For most filetypes, the editor
translates all of your input data to uppercase characters, regardless of
how you enter it. For example, if you create a file and enter input
mode as follows:

edit myfile test
NEW FILE:
EDIT:
input
INPUT:
This is a file I am
learning to create with the CMS Editor.

the lines are written into the file as

THIS IS A FILE I AM
LEARNING TO CREATE WITH THE CMS EDITOR.

You can use the Vft/370 logical line editing symbols to modify data
lines as you enter them.

To return to edit mode to modify a file or to terminate the edit
session, you must press the Return key on a null line. If you have just
entered a data line, for example, and your terminal's typing element or
cursor is positioned at the last character you entered, you must press
the Return key once to enter the data line, and a second time to enter a
null line.

You may also use the logical line end symbol to enter a null line,
for example,

last line of inputt
t

Both of these lines cause you to return to edit mode from input mode.

If you do not enter a nu~l line, but enter an EDIT subcommand or CftS
co.mand, the command line 1S written into your file as input. The only
exception to this is a line that begins with the characters tcP. These
characters indicate that the command is to be passed immediately to CP
flor processing.

WRITING A FILE ONTO DISK

A file you create and the modifications that you make to
edit session are not automatically written to a disk file.
results, you can do the following:

it during an
To save the

• Periodically issue the subcommand

save

to write onto disk the contents of the file
issue the subco.mand. Periodically issuing
protects your data against a system failure;
changes you make are not lost.

as it exists when you
this EDIT subcommand
you can be sure that

• At the beginning of the edit session, issue the AUTOSAVE subcommand,
with a number:

10 IBM Vft/370: CBS User's Guide

autosave 10

Then, for every tenth change or addition to the file, the editor
issues an automatic save request, which writes the file onto disk.

• At the end of the edit session, issue the subcommand

file

This subcommand terminates the edit session, writes the file onto
disk, replacing a previous tile by that ~ame (if one existed), and
returns you to the CMS environment. You can return to the edit
environment by issuing the EDIT command, specifying a different file
or the same file.

The editor decides which disk to write the file onto according to the
following hierarchy:

• If you specify a filemode on the FILE or SAVE subcommand line, the
file is written onto the specified disk.

• If the current filemode of the file is the mode of a read/write disk,
the file is written onto that disk. (If you have not specified a
file.ode letter, it defaults to your A-disk.)

• If the filemode is the mode of a read-only extension of a read/write
disk, the file is written onto the read/write parent disk.

• If the file.ode is the mode of a read-only disk that is not an
extension of a read/write disk, the editor cannot write the file and
issues an error message.

See "Changing File Identifiers" for information on how you can tell
the editor what disk to use when writing a file.

If you are editing a file and decide, after making several changes,
that you do not wish to save the changes, you can use the subcommand

quit

No changes that you made since you last used the SAVE subcommand (or the
editor last issued an automatic save for you) are retained. If you have
just begun an edit session, and have made no changes at all to a file,
and for some reason you do not want to edit it at all (for example, you
misspelled the naae, or want to change a CMS setting "before editing the
file), you can use the QUIT subcommand instead of the FILE subcommand to
terminate the edit session and return to CMS.

A file must have at least one line of data in order to be written.

EDIT SUBCOMMANDS

While you are in the edit environment, you can issue any EDIT subcommand
or macro. An edit macro is an EXEC file that contains a sequence of EDIT
subcommands that execute as a unit. You can create your own EDIT
subcommands with the CMS EXEC facility. EDIT subco •• ands provide a
variety of functions. You can:

• position the current line pointer at a particular line, or record, in
a file.

Section 5. The CMS Editor 71

Q control which columns of a file are displayed or searched during an
edi ting session.

Q Modify data lines.

• Describe the characteristics that a file and its individual records
will ha ve

• Automatically write and update sequence numbers for fixed-length
records.

Q Edit files by line number.

• Control the editing session.

Like CMS commands, EDIT subcommands have a subcommand name and some have
operands. In most cases, a subcommand name (or its truncation) can be
separated from its operands by one or more blanks, or no blanks. For
example, the subcommand lines

type 5
ty 5
t5

are equivalent.

Several subcommands also use delimiters, which enclose a character
string that you want the editor to operate on. For example, the CHANGE
subcommand can be entered:

change/apple/pearl

The diagonal (I) delimits the character strings APPLE and PEAR. For the
subcommands CHANGE, LOCATE, and DSTRING, the first nonblank character
following the subcommand name (or its truncation) is considered the
delimiter. No blank is required following the subcommand name. In the
s:u bcommand

loea te $vm/$

the dollar sign ($) is the delimiter. You cannot use a I in this case,
since the diagonal is part of the character string you want to locate.

When you enter these subcommands, you may omit the final delimiter,
for example

dstring/csect

You must enter the final delimiter, however, when you specify a global
change with the CHANGE subcommand.

For the FIND and OVERLAY subcommands, additional blanks following the
subcommand names are interpreted as arguments. The subcommand

find Pudding

requests the editor to locate the line that has" Pudding" in columns 1
through 9. Initial blanks are considered part of the character string.

An asterisk, when used with an EDIT
of the file" or "to the record length."

72 IBM VM/370: CMS User's Guide

subcommand, may mean "to the end
For example,

delete*

deletes all of the lines in a file, beginning with the current line.

verify *

indicates that the editor should display the entire length of records.

1~Q1I:

When you make an error entering an EDIT subcommand, the editor displays
the message

1EDIT: line •••

where line ••• is the line, as you entered it, that the editor does not
understand.

The Current Line Pointer

When you begin an editing session, a file is copied into virtual
storage; in the case of a new file, virtual storage is acquired for the
file you are creating. In either case, you can picture the file as a
series of records, or lines; these lines are available to you, one at a
time, for you to modify or delete. you can also insert new lines or
records following any line that is already in the file.

The line that you are currently editing is pointed to by the current
line pointer. What you do during an editing session is:

• position the current line pointer to access the line you want to
edit.

• Edit the line: change character strings in it, delete it or insert
new records following it.

• position the line pointer at the next line you want to edit.

When you are editing a file and you issue an EDIT subcommand that
either changes the position of the line pointer or that changes a line,
the current line or the changed line (or lines) is displayed. You can
also display the current line by using the TYPE subcommand:

type

If you want to examine more than one line in your file, you can use the
TYPE subcommand with a numeric parameter. If you enter

type 10

the current line and the 9 lines that follow it are displayed; the line
pointer then stays positioned at the last line that was displayed.

You can move the line pointer up or down in your file. "Up" indicates
a location toward the beginning of the file (the first record); "down"
indicates a location toward the end of the file (the last record). You
use the EDIT subcommands UP and DOWN to move the line pointer up or down
one or more lines. For example,

section 5. The eMS Editor 73

up 5

Iloves the current line pointer to a line 5 lines closer to the beginning
I::>f the file, and

down

moves the pointer to point at the next sequential record in the file.

You can also request that
beginning, or top of the file,
When you issue the subcommand

top

you receive the message

TOF:

the line
or at the

pointer be placed at the
end, or bottom of the file.

and the line pOinter is positioned at a null line that is always at the
top of the file. This null line exists only during your editing session;
it is not filed on disk when you end the editing session.

When you issue the subcommand

bottom

the current line pointer is positioned at the last record in the file.
If you now enter input mode, all lines that you enter are appended to
the end of the file.

If the current line pointer is at the tottom of the file and you
issue the DOWN subcommand, you receive the ~essage

EOF:

and the current line pointer is positioned at the end-of-file, following
the last record.

When you are adding records to your file, the current line pointer is
always pointing at the line you last entered. When you delete a line
from a file, the line pointer moves down to point to the next line down
in the file.

Going from edit mode to input mode does not change the current line
pointer. If you are creating a new file and, every 30 lines or so, you
move the current line pointer to make corrections to the lines that you
have entered, you must issue the BOTTOM subcommand to begin entering
more lines at the end of the file.

The current line pointer is also moved as the result of the LOCATE
and FIND subcommands. You use the FIND subcommand to get to a line when
you know the characters at the beginning of the line. For example, if
you want to change the line

BAXTER J. F. 065941 ACCNTNT

you could first locate it by using the subcommand:

find baxter

If you do not know the first characters on a line, you can issue the
LOCATE subcommand:

locate /accntnt/

14 IBM VM/310: CMS User's Guide

Both of these subcommands work only in a top-to-bottom direction: you
cannot use them to position the line pointer above the current line. If
you use the FIND or LOCATE subcommands and the target (the character
string you seek) is not found, the editor displays a message, and
positions the line pointer at the end of the file. Subsequently, if you
reissue the subcommand, the editor starts searching at the top of the
file.

In a situation like that above, or in a case where you are
repetitively entering the same LOCATE or FIND subcommand (if, for
example, there are many occurrences of the same character string, but
you seek a particular occurrence) you can use the = (REUSE) subcommand.
To use the example above, you are looking for a line that contains the
string ONCE UPON A TIME, but you do not know that it is above the
current line. When you issue the subcommand:

locate lonce upon a timet

the editor does not locate the line, and responds:

NOT FOUND
EOF:

if you enter

=

the editor searches again for the same string, beginning this time at
the top of the file, and locates the line:

"ONCE UPON A TIME" IS A COMMON

This may still not be the line you are looking for. You can, again,
enter:

=

The LOCATE subcommand is executed again.
locate the line:

A STORY THAT STARTED ONCE UPON A TIME

This time, the editor might

Figure 5 illustrates a simple CMS file, and indicates how the current
line pointer would be positioned following a sequence of EDIT
subcommands.

L!!~=!Y~~j~ ~~!1!!§: Some fixed-length files are suitable for editing by
referencing line numbers inst~ad of character strings. The EDIT
subcommands that allcw you to change the line pointer position by line
number are discussed under "Line-Number Editing."

section 5. The CMS Editor 75

r ,
~ EDIT PPRINT EXEC
I ClP
II ---) TOP:
I 0 (null line)
~ 1 &CONTROL OFF
I 2 &P =
~ 3 &IF .&1 EQ • &EXIT 100
I 4 &FN = &1
~ 5 &IF &1 EQ 1 &GOTO -TELL
I 6 &NFB = &COBCAT $ &1
~ 7 &IF .&2 EQ • &EXIT 200
I 8 &FT = &2
I 9 &FM = &3
I 10 &IF .&3 BE • &SKIP 2
I 11 &FM = A
I 12 &SKIP 3
t 13 &IF &3 NE (&SKIP 2
I 14 &FM = A
~ 15 &P = (
I 16 &COBTROl ALL
~ 17 COpy &FN &FT &FM &NFB &FT A (UNPACK
I 18 PRIBT &BFB &FT A &P &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14
~ 19 ERASE &NFN &FT A
I 20 &EXIT
~ 21 -TELL &TYPE THIS EXEC PRINTS A lISTING FROM PACKED FORMAT

EOF:

The line numbers represented are symbolic: they are not an actual
part of the file, but are used below to indicate at which line the
current line pointer is positioned after execution of the EDIT
subcommand indicated.

Subcommand

DOWN 5
UP
LOCATE /UNP/
TYPE 3
BOTTOM
DOWB
FIND -
TOP

ClP position
---) 0
---) 5
---) 4
---) 17
---) 19
---) 21
---) EOF:
---) 21
---) 0
---) 5 CHANGE /EQ/EQ/ 6

DELETE 2 ---) 7 (lines numbered 5 and 6 are deleted)
INPUT * ---) the line just entered (between 7 and 8) _________ .J

Figure 5. positioning the current Line Pointer

Verification and Search Columns

There are two EDIT subcommands you can use to control what you and the
editor "see" in a file. The VERIFY subcommand controls what you see
displayed; the ZONE subcommand controls what columns the editor
searches. Normally, when you edit a file, every request that you make
of the editor results in the display of one or more lines at your
terminal. If you do not want to see the lines, you can specify

verify off

Alternatively, if you want to see only particular columns in a file, you
can specify the columns you wish to have displayed:

76 IBM VM/370: CMS User's Guide

verify 1 30

Some filetypes have default values set for verification, which
usually include those columns in the file that contain text or data, and
exclude columns that contain sequence numbers. If a verification column
is less than the record length, you can specify:

verify *
to indicate that you want to see all columns displayed.

In conjunction with the VERIFY subcommand, you can use the ZONE
subcommand to tell the editor within which columns it can search or
modify data. When you issue the subcommand

zone 20 30

The editor ignores all text in columns 1-19 and 31 to the end of the
record when it searches lines for LOCATE, CHANGE, ALTER, and FIND
subcommands. Iou cannot unintentionally modify data outside of these
fields; you must change the zones in order to operate on any other
data.

The zone setting also controls the truncation column for records when
you are using the CHANGE sUbcommand; for more details, see "Setting
Truncation Limits."

Changing, Deleting, and Adding Lines

You can change character strings in individual lines of data with the
CHANGE subcommand. A character string may be any length, or it may be a
null string. Any of the characters on your terminal keyboard, including
blanks, are valid characters. The following example shows a simple data
line and the cumulative effect of CHANGE subcommands.

ABC ABC ABC
is the initial data line.

CHANGE /AEC/XIZ/
changes the first occurrence of the character string "ABC" to the
string "XIZ".

XIZ ABC ABC

CHANGE /ABC//
deletes the character string "ABC" and concatenates the characters
on each side of it.

XIZ ABC

CHANGE //ABC/
inserts the string "ABC" at the beginning of the line.

ABCXIZ ABC

CHANGE /XIZ /XIZ/
deletes one blank character following "XIZ".

ABCXIZ ABC

section 5. The CMS Editor 77

CHANGE /C/C /
adds a blank following the first occurrence of the character "C".

ABC XYZ ABC
is the final line.

THE ALTER SUBCOMMAND: You can use the ALTER subcommand to change a
single--character;--the ALTER subcommand allows you to specify a
hexadecimal value so that you can include characters in your files for
which there are no keyboard equivalents. Once in your file, these
characters appear during editing as nonprintable blanks. For example,
if you input the line

IF A = B THEN

in edit mode and then issue the subcommand

alter = 8c

the line is displayed:

IF A B THEN

If you subsequently print the file containing this line on a printer
equipped to handle special characters, the line appears as

IF A ~ B THEN

since X'8C' is the hexadecimal value of the special character ~.

Either or both of the operands on the ALTER
hexadecimal or character values. To change the
character, for example <, you could issue either

alter 8c ae

-- or

alter 8c <

subcommand can be
X'8C' to another

:~~] Q!]~1!! ~~~£Q~~!!Q: The OVERLAY subcommand allows you to replace
characters in a line by spacing the terminal's typing element or cursor
to a particular character position to make character-for-character
replacements, or overlays. For example, given the line:

ABCDEF

the subcommand

overlay xyz

results in the line

XYZDEF

A blank entered on an OVERLAY line indicates that the corresponding
character is not to be changed; to replace a character with a blank, use
an underscore character (_). Given the above line, XYZDEF, the
subcommand

overlay 3

results in

DE3 (The "D" is preceded by blanks in columns 1, 2, and 3.)

78 IBM VM/370: CMS User's Guide

You can make global, or repetitive changes, with the CHANGE and ALTER
subcommands. On these subcommand lines, you can include operands that
indicate:

e The number of lines to be searched for a character or character
string. An asterisk (*) indicates that all lines, from the current
line to the end of the file, are to be searched.

e Whether only the first occurrence or all occurrences on each line are
to be modified. An asterisk (*) indicates all occurrences. If you do
not specify an asterisk, only the first occurrence on any line is
changed.

For example, if you are creating a file that uses the (e) special
character (X'AF') and you do not want to use the ALTER subcommand each
time you need to enter the e. you could use the character ~ as a
substitute each time you need to enter a e. When you are finished
entering input, move the current line pointer to the top of the file,
and issue the global ALTER subcommand:

topialter ~ af * *
All occurrences of the character ~ are changed to X'AF'.
line pointer is positioned at the end of the file.

The current

When you use a global CHANG~ subcommand, you must be sure to use the
final delimiter on the subcommand line. For example,

change /hannible/hannibal/ 5

This subcommand changes the first occurrence of the string "HANNIBLE" on
the current line and the four lines immediately following it.

You can also make global changes with the OVERLAY subcommand, by
issuing a REPEAT subcommand just prior to the OVERLAY subcommand. Use
the REPEAT subcommand to indicate how many lines you want to be
affected. For example, if you are editing a file containing the three
lines

A
B
C

with the current line pointer at line "A", issuing the subcommands:

repeat 3
overlay

results in

A
B
C

The current line pointer is now positioned at the line beginning with
the character He".

section 5. The CMS Editor 79

You delete lines from a file with the DELETE subcommand; to delete more
than one line, specify the number of lines:

delete 6

Or, if you want to delete all the lines from the current line to the end
of the file, use an asterisk (*):

delete *

If you want to delete an undetermined number of lines, up to a
particular character string, you can use the DSTRING subcommand:

dstring /weather/

When this subcommand is entered, all the lines from and including the
current line down to and including the line just above the line
containing the character string "WEATHER" are deleted. The current line
pointer is positioned at the line that has "WEATHER" on it.

If you want to replace a line with another line, you can use the
REPLACE subcommand:

replace *******

The current line is deleted and the line "*******" is inserted in its
place. The current line pointer is net moved.

To replace an existing line with many new lines, you can issue the
REPLACE subcommand with no new data line:

replace

The editor deletes the current line and enters input mode.

You can insert a single line of data between existing lines using the
INPUT subcommand followed by the line of data you want inserted. For
example

input * this subroutine is for testing only

inserts a single line following the current line. If you want to insert
many lines, you can issue the INPUT subcommand to enter input mode.

You can also add new lines to a file by using the GETFILE subcommand.
This allows you to copy lines from other files to include in the file
you are editing or creating. For example,

getfile single items c

inserts all the lines in the file SINGLE ITEMS C immediately following
the current line pointer. The line pointer is positioned at the last
line that was read in.

You could also specify

getfile double items c 10 25

80 IBK VM/370: CMS User's Guide

to copy 25 lines, beginning with the tenth line, from the file DOUBLE
ITEMS C.

The $MOVE ~nd $DUP EDIT macros provide two additional ways of adding
lines into a file in a particular position. The $MOVE macro moves lines
from one place in a file to another, and deletes them from their former
position. For example, if you want to move 10 lines, beginning with the
current line, to follow a line 9 lines above the current line, you can
enter

$move 10 up 8

The $DUP macro duplicates the current line a specified number of
times, and inserts the new lines immediately following the current
line. For example,

$dup 3

creates 3 copies of the current line, and leaves the current line
pointer positioned at the last copy.

Describing Data File Characteristics

Whe you issue the EDIT command to create a new file, the editor checks
the filetype. If it is one of the reserved filetypes, the editor may
assign particular attributes to it, which can simplify the editing
process for you. The default attributes assigned to most filetypes are
as follows:

• Fixed-length, 80-chara~ter records

• All alphabetic characters are translated to uppercase, regardless of
how they are entered

• Input lines are truncated in column 80

• Tab settings are in columns 1, 6, 11, 16, 21, ••• 51, 61, and so on,
and the tab characters are expanded to blanks

• Records are not serialized

The filetypes for some CMS commands and for the language processors
deviate from these default values. Some of the attributes assigned to
files and how you can adjust them to suit your needs are discussed
below.

RECORD LENGTH

You can specify the logical record length of a file you are creating on
the EDIT command line:

edit new file (lrecl 130

If you do not specify a record length, the editor assumes the
following defaults:

• For editing old files, the existing record length is used.
• For creating new files, the following default values are in effect:

Section 5. The CMS Editor 81

1!!~lIE~
EXEC
LISTING
SCRIPT
FREEFORT
All others

!!~£.Q.!g 1~llg!!!
80 characters

121 characters
132 char act ers

81 characters
80

Forma t
VarIable
Variable
V ar iable
Variable
Fixed

If you edit a variable-length file and the existing record length is
less than the default for the filetype, the record length is taken from
the default value.

When you use the LRECL option of the EDIT command you can override
these default record lengths; you can also change the record lengths of
existing files to make them larger, but not smaller.

If you try to override the record length of an existing file and make
it smaller, the editor displays an error message, and you must issue the
EDIT command again with a larger record length. For example, suppose
you have on your B-disk a file named MYFILE FREEFORT, which was created
with the default record length of 81. If you try to edit that file by
issuing:

edit myfile freefort b (lrecl 72

the editor displays the message:

GIVE A LARGER RECORD LENGTH.

You must then issue the EDIT command again and either
of 81 or more, or allow it to default to the current
the file.

specify a length
record length of

You can use the COPYFILE command to increase or decrease the record
length of a file before you edit it. For example, if you have
fixed-length, 132-character records in a file, and you want to truncate
all the records at column 80 and create a file with 80-character
records, you could issue the command

copyfile extra funds a (lrecl 80

The largest record you can edit with the editor is 160
file with record length up to 160 bytes (for example, a
created by a DOS program) can be displayed and edited.

characters. A
listing file

The largest record you can create with the CMS Editor, however, is
130 characters using a 3270 display terminal and 134 characters using a
typewriter terminal such as a 2741 or 1050. If you enter more than 130
characters on a 3270, the record is truncated to 130 characters when you
press the Enter key. If you type more than 134 characters on a line
using a typewriter terminal, CP generates an attention interrupt to your
virtual machine and the input line is lost when you press the Return
key.

For most purposes, you will not need to create records longer than
130 characters. If it is necessary, however, you can expand a record
that you have entered. You do this by issuing the CHANGE subcommand
uith operands, to add more characters to the record (for example, by
changing a one-character string to a 31-character string).

82 IBM VM/370: CMS User's Guide

You cannot create a record that is longer than the record length of
the file. For example, if the file you are editing has a default record
length of 80, or if you specified LRECL 80 when you created the file,
the editor truncates all records to 80 characters.

There is a relationship between the record length of a file and the
maximum number of records it can contain. Figure 6 shows the
approximate number of records, rounded to the nearest hundred, that the
editor can handle in a virtual machine with different amounts of virtual
storage.

These numbers apply to a CMS virtual machine with only one accessed
disk.

r
virtual Machine Size

Record
Length 320K 512K 768K 11024K

80 Characters 1700 3800 6800 9800

120 Characters 1100 2600 4700 6800

132 Characters 1100 2400 4300 6200

160 Characters 900 2000 3600 5100
~

Figure 6. Number of Records Handled by the Editor

RECORD FORMAT

with the CMS Editor, you can create either fixed- or variable-length
files. Except for the filetypes EXEC, LISTING, FREEFORT, and SCRIPT, all
the files you create have fixed-length records, by default. You can
change the format of a file at any time during an editing session by
using the RECFM subcommand:

recfm v

This changes the record format to variable-length. This does not change
the record length; in order to add new records with a greater length,
you must write the file onto disk and then reissue the EDIT command.

The COPYFILE command also has an RECFM option, so that you can change
the record format of a file without editing it. The command

copyfile * requests a1 (recfm v trunc

changes the record formats of all the files with a filetype of REQUESTS
on your A-disk to variable-length. The TRUNC option specifies that you
want trailing blanks removed from each of the records.

Section 5. The CMS Editor 83

USING SPECIAL CHARACTERS

The IMAGE and CASE subcommands control how data, once entered on an
input line, is going to be represented in a file. The specific
characters affected, and the subcommands that control their
representation, are:

• Alphabetic characters: CASE subcommand
• Tab characters (X'05'): IMAGE subcommand (ON and OFF operands)
• Backspaces ('16 1): IMAGE subcommand (CANON operand)

If you are using a terminal that has only uppercase characters, you do
not need to use the CASE subcommand; all of the alphabetic characters
you enter are uppercase. On terminals equipped with both uppercase and
lowercase letters, all lowercase alphabetic characters are converted to
uppercase in your file, regardless of how you enter them. If you are
creating a file and you want it to contain both uppercase and lowercase
letters you can use the subcommand

case m

The "M" stands for "mixed." This attribute is not stored with the file
on disk. If you create a new file, and you issue the CASE M subcommand,
all the lowercase characters you enter remain in lowercase. If you
subsequently file the file and later edit it again, you must issue the
CASE M subcommand again to locate or enter lowercase data.

There are two reserved filetypes for which uppercase and lowercase is
the default. These are SCRIPT and MEMO, both of which are text or
document-oriented filetypes. For most programming applications, you do
not need to use lowercase letters.

Logical tab settings indicate the column positions where fields within a
record begin. These logical tab settings do not necessarily correspond
to the physical tab settings on a typewriter terminal. What happens
when you press the Tab key on a typewriter terminal depends on whether
the image setting is on or off. The default for all filetypes except
SCRIPT is IMAGE ON. You can Change the default by issuing the
subcommand

image off

If the image setting is on, when you press the Tab key the editor
replaces the tab characters with blanks, starting at the column where
you pressed the Tab key, and ending at the last column before the next
logical tab setting. The next character entered after the tab becomes
the first character of the next field. For example, if you enter

tabset 1 15

and then enter a line that begins with a tab
character following the tab is written into
regardless of the tab stop on your terminal.

84 IBM VM/370: CMS User's Guide

character, the first data
the file in column 15,

If the image setting is off, the tab character, X'05', is inserted in
the record, just as any other data character is inserted. No blanks are
inserted.

If you want to insert a tab character (X'OS') into a record and the
image setting is on, you can do one of the following:

1. Set IMAGE OFF before you enter or edit the record, and then use the
Tab key as a character key.

2. Enter some other character at the appropriate place in the record,
and then use the ALTER subcommand to alter that character to a
X'05'.

~Ill!!§ 1!~~: When you create a file,
effect, so that you do not need to set
language processors correspond to the
If you want to change them, or if
nonreserved filetype, you may want to
subcommand, for example:

tabset 1 12 20 28 72

there are logical tab settings in
them. The default values for the
columns used by those processors.
you are creating a file with a
set them yourself. Use the TABSET

Then, regardless of what physical tab stops are in effect for your
terminal, when you press the Tab key with image setting ON, the data you
enter is spaced to the appropriate columns.

The default tab settings used by the editor follow.

li!~.t.IEg ~~!g~!1_1~~_2~11ing2
ASSEMBLE, MACRO, 1, 10, 16, 31, 36, 41 , 46, 69, 72, 80,

UPDATE, UPDTxxxx,
ASM3705

AMSERV 2, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 61, 71, 80

FORTRAN 1, 7, 10, 15, 20, 25, 30, 80

FREEFORT 9, 15, 18, 23, 28, 33, 38, 81

BASIC, VSBASIC 7, 10, 15, 20, 25, 30, 80

PLIOPT, PLI 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37, 43, 49, 55,
79, 80

COBOL 1, 8, 12, 20, 28, 36, 44, 68, 72, 80

All Others 1 , 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 61, 71, 81,
91, 101, 111, 121, 131

!Qi~: When you are specifying tab settings for files, the first tab
setting you specify should be the column in which you want your data to
begin. The editor will not allow you to place data in a column preceding
this one. For example, if you issue

tabset 5 10 15 20

and then enter an input line:

input This is a line

columns 1, 2, 3, and 4 contain blanks; text begins in column 5.

Section 5. The CMS Editor 85

For most of your applications, you do not need to underscore or
overstrike characters or character strings. If you are using a
typewriter terminal, and are typing files that use backspaces and
underscores, you should use either the IMAGE OFF or IMAGE CANON
subcommands so that the editor handles the backspaces properly. IMAGE
CANON is the default value for SCRIPT files.

CANON means that regardless of how the characters are keyed in
(characters, backspaces, underscores), the editor orders, or canonizes,
the characters in the file as: character-backspace-underscore,
character-backspace-underscore, and so on. If, for example, you want an
input line to look like:

You could enter it as:

ABC, 3 backspaces, 3 underscores

- or -

3 underscores, 3 backspace$, ABC

A typewriter types out the line in the following order:

A backspace, underscore
B backspace, underscore
C backspace, underscore, which results in:
!~~

If you need to modify a line that has backspaces, and you do not want
to rekey all of the characters, backspaces, and overstrike characters in
a CHANGE or REPLACE subcommand, you can use the ALTER subcommand to
alter all of the backspaces to some other character and use a global
CHANGE command. For example, the following sequences shows how to
delete all of the backspace characters on a line:

AAAAA alter 16 + 1 *
+A+A_+A_+A_+A
change /_+// 1 *
AAAAA

This technique may also be useful on a display terminal.

SETTING TRUNCATION LIMITS

Every CMS file that you edit has a truncation column setting: this
column represents the last character position in a record into which you
can enter data. When you try to input a record that is longer than the
truncation column, the record is truncated, and the editor sends you a
message telling you that it has been truncated.

You can change the truncation column setting with the TRUNC
subcommand. For example, if you are creating a file with a record length
of 80 and wish to insert some records that do not extend beyond column
20, you could issue the subcommand

trunc 20

86 IBM VM/370: CMS User's Guide

Then, when you enter data lines, any line that is longer than 20
characters is truncated and the editor sends you a message. If you are
entering data in input mode, your virtual machine remains in input
mode.

When you use the CHANGE subcommand to modify records, the column at
which truncation occurs is determined by the current zone setting. If
you change a character string in a line to a longer string, and the
resultant line extends beyond the current end zone, you receive the
message

TRUNCATED.

If you need to create a line longer than the current end zone setting,
use the ZONE subcommand to increase the setting. The subcommand

zone 1 *
extends the zone to the record, length of the file. If the end zone
already equals the record lengt:h, you have to write the file onto disk
and reissue the EDIT subcommand specifying a longer record length.

For most filetypes, the truncation and end zone columns are the same
as the record length. For some filetypes, however, data is truncated
short of the record length. The default truncation and end zone columns
are:

li!g.tl,Eg
ASSEMBLE, MACRO

UPDATE,
UPDTxxxx

AMSERV, COBOL,
DIRECT, FORTRAN
PLI, PLIOPT

72

All other filetypes are truncated at their record length.

You can, when creating files for your own uses, set truncation
columns so that data does not extend beyond particular columns.

ENTERING A CONTINUATION CHARACTER IN COLUMN 72

When you are using the editor to enter source records for an assembler
language program and you need to enter a continuation character in
column 72, or whenever you want to enter data outside a particular
truncation setting, you can use the following technique:

1. Change the truncation setting to 72, so that the editor does not
truncate the continuation character:

trunc 72

2. Use the TABSET subcommand to set the left margin at column 72:

tab set 72

3. Use the OVERLAY subcommand to overlay an asterisk in column 72:

overlay *
Since the left margin is set at 72, the OVERLAY subcommand line
results in the character * being placed in column 72.

Section 5. The CMS Editor 87

4. Restore the editor truncation and tab settings:

trunc 71
tabset 1101631364151617181

M21g: If you issue the PRESERVE subcommand before you change the
truncation and tab settings, then after you enter the OVERLAY
subcommand, you can restore them with the RESTORE subcommand. See
"Preserving and Restoring Editor settings."

Use the $MARK 1~!1 ~A£f2: Another way to insert a continuation character
I"s-to-use-the $MARK edit macro. You can find out if the $MARK edit macro
is available on your system by entering, in the CMS or CMS subset
Hnvironment

listfile $mark exec *

If it is not available on your system, you can create the $MARK edit
macro for your own use. See "Section 17. writing Edit Macros" in "Part
3. Learning to Use EXEC."

If you have the $MARK macro, then when you need to enter a
continuation character, you can enter a null line to get into edit mode,
issue the command

$mark

and then return to input mode to continue entering text.

SERIALIZING RECORDS

Some CMS files that you create are automatically serialized for you.
'rhis means that columns 73 to 80 of each record contain an identifier in
the form:

cccxxxxx

where cec are the first 3 characters of the filename and xxxxx is a
sequence number. Sequence numbers begin at 00010 and are incremented by
10.

The filetypes that are automatically serialized in columns 73 to 80
are:

ASSEMBLE
DIRECT
MACRO

FORTRAN
COBOL
PLI

PLIOPT
UPDATE
UPDTxxxx

You can serialize any file that has fixed-length, 80-character
records by using the SERIAL subcommand:

serial on

The SERIAL subcommand can also be used to:

• Assign a particular 3-character identifier:

serial abc

88 IBM VM/370: CMS User's Guide

• specify that all 8 bytes of the sequence field be used to contain
numbers:

serial all

• Specify a sequence increment other than 10:

serial on 100

-- or --

serial ccc 100

• Indicate that no sequence numbers are to be assigned to new records
being inserted:

serial off

When you create a file or edit a file with sequence numbers, the
sequence numbers are not written or updated until you issue a FILE or
SAVE subcommand. Because the end verification columns for the filetypes
that are automatically serialized are the same as their truncation
columns, you do not see the serial numbers unless you specify

verify *
-- or --

verify 80

Although the serial numbers are not displayed while you edit the file,
they do appear on your output listings or printer files.

If you are editing files with the following filetypes:

BASIC
VSBASIC
FREEFORT

the sequence numbers are on the left. For BASIC and VSBASIC files,
columns 1-5 are used; numbers are blank-padded to the left. For
FREEFORT files, the sequence numbers use columns 1-8, and are
zero-padded to the left. To edit these files, you should use line-number
editing, which is discussed next.

LINE-NUMBER EDITING

To edit a file by line numbers means that when you are adding new lines
to a file or referencing lines that you wish to change, you refer to
them by their line, or sequence numbers, rather than by character
strings. You can use line~number editing only on files with
fixed-length, 80-character records.

If you want to edit by line numbers, issue the subcommand

linemode right

-- or --

linemode left

where "right" indicates that the sequence numbers are on the right, in
columns 76-80, and "left" indicates you want sequence numbers on the

Section 5. The CMS Editor 89

left in columns 1-5. LINEMODE LEFT is the default for BASIC, VSEASIC,
and FREEFORT files. You do not have to specify it. You must specify
LINEMODE for files with other filetypes.

If you specify LINE MODE RIGHT to use line-number editing on a
typewriter terminal, the line numbers are displayed on the left, as a
convenience, while you edit the file.

When you are using line-number editing in input mode, you are
prompted to enter lines; the line numbers are in increments of 10. For
example, when you are creating a new file, you are prompted for the
first line number as follows:

10

On a typewriter terminal, you enter your input line following the 10.
When you press the carriage return, you are prompted again:

20

and you continue entering lines in this manner until you enter a null
line.

You can change the prompting increment to a larger or smaller number
with the PROMPT subcommand:

prompt 100

When you are in edit mode you can locate a line by giving its line
number:

700

This is the nnnnn subcommand. In line-number editing, you use it instead
of the INPUT subcommand to insert a single line of text. For exam~le,

905 x = a * b

inserts the text line"1 = A * B" in the proper sequence in the file.
If you use "nnnnn text" specifying the number of a line that already
exists, that line is replaced; the current line pointer is moved to
point to it.

The EDIT subcommands that you normally use for context editing, such
as CHANGE, ALTER, LOCATE, UP, DOWN, and so forth, can also be used when
you are·line-number editing; their operation does not change.

When you are using line-number editing, the editor uses the prompting
increment set by the PROMPT subcommand. However, when you begin adding
lines of data between existing lines, the editor uses an algorithm to
select a line number between the current line number and the next line
number. If a prompting number cannot be generated because the current
line number and the next line number differ only by one, the editor
displays the message

RENUMBER LINES

and you must resequence the line numbers in the file before you can
continue line-number editing.

90 IBM VM/370: CMS User's Guide

You can resequence the line n~mbers in one of three ways:

1. If you are a VSBASIC, BAStC, or FREEFORT user, you must use the
RERUM subcommand:

renum

This subcommand resolves
renumbered.

all references to lines that are

2. If you are using right-handed line-number editing, you must

a. Turn off line-number editing:

linemode off

b. If you want to change the 3-character identifier or specify
8-character sequence numbers, issue the SERIAL subcommand, for
example:

serial all

If you want to use the default serialization setting, you do not
need to issue the SERIAL subcommand.

c. Issue the SAVE subcommand:

save

d. Reissue the
editing:

LINEMODE subcommand and continue line-number

linemode right

3. If you are using left-handed line-number editing for a filetype
other than VSBASIC, BASIC, or FREEFORT, you must manually change
individual line numbers using EDIT subcommands. In order to modify
the line numbers, you must change the zone setting and the tab
setting:

zone 1 *
tabset 1 6

so that you can place data i;n columns 1 through 6.

When you are using right-handed line-number editing, and a FILE,
SAVE, or automatic save request is issued, the editor does not
resequence the serial numbers, but displays the message

RESERIALIZATIOR SUPPRESSED

so that the lines numbers that are currently saved on disk match the
line numbers in the file. You mu~t cancel line-number editing (using the
LINEMODE OFF subcommand) before you can issue a FILE or SAVE subcommand
if you want to update the sequence numbers.

Controlling the Editor

There are a number of EDIT subcommands that you can use to maximize the
use of the editor in eMS. A few techniques are suggested here; as you
become more familiar with VM/370 and CMS you will develop additional
techniques for your own applications.

section 5. The CMS Editor 91

COMMUNICATING WITH CMS AND CP

Often durin~ a terminal session, you may need to issue a CMS command or
a CP command. You can issue certain CMS commands and most CP commands
without terminating the edit session. The EDIT subcommand CMS places
your virtual machine in the CMS subset mode of the editor, where you can
issue C~S commands that do not modify your virtual storage. Remember
that the editor is using your virtual storage; if you overlay it with
any other command or program, you will not be able to finish your
editing.

One occasion when you may want to enter CMS subset is when you want
to issue a GETFILE subcommand for a file on one of your virtual disks
and you have not accessed the disk. You can enter:

cms

the editor responds:

CMS SUBSET

and you can enter

access 193 b/a
return
get setup script b

The special CMS SUBSET command RETURN returns your virtual machine to
edit mode.

You can enter CP commands from CMS subset, or you can issue them
directly from edit mode or input mode with the ICP function. For
example, if you are inputting lines into a file and another user sends
you a message, you can reply without leaving input mode:

Icp m oph i will call you later

If you enter ICP without specifying a command line, you receive the
message

CP

which indicates that your virtual machine is in the CP command
environment, and you can issue CP commands. You would not, however,
want to issue any CP command that would modify your virtual storage or
alter the status of the disk on which you want to write the file.

To return to edit or input mode from CP, use the CP command, BEGIN.

CHANGING FILE IDENTIFIERS

There are several methods you can use to change a file identifier before
writing the file onto disk. You can use the FNAME and FMODE subcommands
to change the filename or filemode, or you can issue a FILE or SAVE
subcommand specifying a new file identifier.

For example, if you want to create several copies of a file while you
are using the editor, you can issue a series of FNAME subcommands,
followed by SAVE subcommands, as follows:

92 IBM VM/370: CMS User's Guide

edit test file
EDIT:

fn test1#save

fn test2tsave

fn test3tfile

Or, you could issue the SAVE and FILE subcommands as follows:

edit test file

save test1

save test2

file test3

In both of the preceding examples, when the FILE subcommand is executed,
there are files named TEST FILE, TEST1 FILE, TEST2 FILE, and TEST3 FILE.
The original TEST FILE is unchanged.

To change the filemode letter of a disk, use the FMODE subcommand.
You can do this in cases where you have begun editing a file that is on
a read-only disk, and want to write it. Since you cannot write a file
onto a read-only disk, you can issue the FMODE subcommand to change the
mode before filing it:

fmode a
file

Or, you can use the FILE (or SAVE) subcommand specifying a complete file
identifier:

file test file a

You should remember, however, that when you write a file onto disk,
it replaces any existing file that has the same identifier. The editor
does not issue any warning or informational messages. If you are
changing a file identifier while you are editing the file, you must he
careful that you do not unintentionally overlay existing files. To
verify the existence of a file, you can enter CMS subset and issue the
STATE or LISTFILE commands.

CONTROLLING THE EDITOR'S DISPLAYS

When you are using a typewriter terminal, you may not always want to see
the editor verify the results of each of your subcommands. Particularly
when you are making global changes, you may not want to see each line

section 5. The CMS Editor 93

displayed as it is changed. You can issue the VERIFY
the OFF operand to instruct the editor not to display
specifically requested. After you issue

verify off

subcommand with
anything unless

lines that are normally displayed as a result of a subcommand that moves
the current line pointer (UP, DOWN, TOP, BOTTOM, and so forth), or that
changes a line (CHANGE, ALTER, and so forth), are not displayed. If the
current line pointer moves to the end of the file, however, the editor
always displays the EOF: message.

If you are editing with verification off, then you must be
particularly careful to stay aware of the position of your current line
pointer. you can display the current line at any time using the TYPE
subcommand:

type

~Q~~ ~~g ~~Q£~ 1!!Q£ ~~§§!g~§: When you enter an invalid subcommand
while you are using the editor, the editor normally responds with the
error message

?EDIT: line •••

displaying the line that it did not recognize. If you prefer, you can
issue the SHORT subcommand so that instead of receiving the long form of
the error, you receive the short form, which is:

When you issue an invalid edit macro request (any line that begins with
a $), you receive the message

To resume receiving the long form of the error message, use the LONG
subcommand:

long

LONG and SHORT control the display of the error message regardless of
whether you are editing with verification on or off.

PRESERVING AND RESTORING EDITOR SETTINGS

The PRESERVE and RESTORE subcommands are used together; the PRESERVE
subcommand saves the settings of the EDIT subcommands that control the
file format, message and verification display, and file identifier. If
you are editing a file and you want to temporarily change some of these
settings, issue the PRESERVE subcommand to save their current status.
When you have finished your temporary edit project, issue the RESTORE
subcommand to restore the settings.

For example, if you are editing a SCRIPT file and want to change the
image setting to create a particular format, you can enter:

preserve
image on
tabset 1 15 40 60 72
zone 1 72
trunc 72

94 IBM VM/370: CMS User's Guide

When you have finished entering 4ata using these settings, you can issue
the subcommand

restore

to restore the default settings for SCRIPT filetypes.

x, Y, =, 1 SUBCOftftANDS

The X, Y, =, and 1 subcommands all perform very simple
can help you to extend the language of the CftS Editor.
to manipulate, reuse, or interrogate EDIT subcommands.

functions that
They allow you

If you have an editing project in
subcommand a number of times, you
subcommands, as follows:

which you have to execute the same
can assign it to the X or Y

x locate /insert here/
y getfile insert file c

Each time that you enter the X subcommand:

x

the command line LOCATE /INSERT HERE/ is executed, and every time you
enter the Y subcommand:

y

the GETFILE subcommand is executed.

When you specify a number following an X or Y subcommand, the
subcommand assigned to X or Y is executed the specified number of times,
for example

x locate /aa/
x 10

the LOCATE subcommand line is executed 10 times before you can enter
another EDIT subcommand.

Another method of re-executing a particular subcommand is to use the
= (REUSE) subcommand. For example, if you enter

locate /ard/
AARDVARK

the LOCATE subcommand is re-executed 7 times.

What the = (REUSE) subcommand actually does is to stack the
subcommand in the console stack. Since CftS, and the editor, read from
the console stack before rea4ing from the terminal, the lines in the
stack execute before a read request is presented to the terminal. When
JOu enter multiple equal signs, the subcommand is stacked once for each
equal sign you enter.

You can also stack an additional EDIT subcommand following an equal
sign. The subcommand line is also stacked, but it is stacked LIFO
(last-in, first-out) so that it executes before the stacked subcommand.
For example, if you enter:

section 5. The CMS Editor 95

delete
= next

a DELETE subcommand is executed, then a DELETE subcommand is stacked,
and a NEXT subcommand is stacked in front of it. Then the stacked lines
are read in and executed. The above sequence has the same effect as if
]'OU enter

delete
next
delete

In addition to stacking the last subcommand executed, you can also
find out what it was, using the? subcommand. For example, if you enter

next 10
?

the editor displays

NEXT 10

Since the subcommand line NEXT 10
you enter an = subcommand, it is
su bcommand.

was the last subcommand entered, if
executed again. you cannot stack a ?

IQi~: The ? subcommand,
subcommand into the user
l::-e-entering it.

on a display terminal,
input area, where you

copies the
may modify

last EDIT
it before

WHAT TO DO WHEN YOU RUN OUT OF SPACE

There are two situations that may prevent you from continuing an edit
session or from writing a file onto disk. You should be aware of these
situations, know how to avoid them, and how to recover from them, should
they occur.

When you issue the EDIT command to edit a file, the editor copies the
file into virtual storage. If it is a large file, or you have made many
additions to it, the editor may run out of storage space. If it does, it
issues the message:

AVAILABLE STORAGE IS NOW FULL

When this happens, you cannot make any
unless you first delete some lines. If
editor issues the message

NO ROOM

changes or additions to the file
you attempt to add a line, the

If you were entering data in input mode, your virtual machine is
returned to edit mode, and you may receive the message

STACKED LINES CLEARED

which indicates that any additional lines you entered are cleared and
will not be processed.

You should use the FILE subcommand to write the file onto disk. If
you want to continue editing, you should see that the editor has more

96 IBM VM/370: CMS User's Guide

storage space to work with. To do this, you can find out how large your
virtual machine is and then increase its size. To find out the size,
issue the CP QUERY command:

cp query virtual storage

If the response is

STORAGE = 256K

You might want to redefine your storage to 512K. Use the CP command
DEFINE, as follows:

cp define storage 512k

This command resets your virtual machine, and you must issue the CP IPL
command to reload the CMS system before you can continue editing.

If a file is very large, the editor may not have enough space to
allow you to edit it using the EtIT command. The message

DMSEDI132S FILE 'fn ft fm' TOO LARGE

indicates that you must obtain more storage space before you can edit
the file. If this is the case; or if you are editing large files, you
should redefine your storage before beginning the terminal session. If
this happens consistently, you should see your installation support
personnel about having the directory entry for your userid updated so
that you have a large storage size to begin with.

If the file you are editing is too large, and the data it contains does
not have to be in one file, you can split the file into smaller files,
so that it is easier to work with. Two of the methods you can use to do
this are described below.

Use the £~R!I!11 Command: You can use the COPYFILE command to copy
portions of a file Into-separate files, and then delete the copied lines
from the original file. For example, if you have a file named TEST FILE
that has 1000 records, and you want to split it into four files, you
could en ter :

copy file test file a test1 file a (fromrec 1 for 250
copyfi1e test file a test2: file a (fromrec 251 for 250
copyfi1e test file a testj file a (fromrec 501 for 250
copyfile test file a test4: file a (fromrec 751 for 250

When these COPYFILE commands are complete, you have four files
containing the information from the original TEST FILE, which you can
erase:

erase test file

~2~ 1h~ ~~i12!: If you use the editor to create smaller files, you can
edit them as you copy them, that is, if you have other changes that you
want to make to the data. To copy files with the editor, you use the
GETFILE subcommand. Using the file TEST FILE as an example, you might
enter:

Section 5. The CMS Editor 97

edit testl file
getfile test file a 1 250

file
edit test2 file
getfile test file a 251 250

Again, you could erase the original TEST FILE when you are through with
your edit session.

When you enter a FILE or SAVE subcommand or when an automatic save
request is issued, the editor writes a copy of the file you are editing
onto disk, and names it EDIT CMSUT1. If this causes the disk to become
full, you receive the message

DMSBWR170S DISK 'mode(cuu)' IS FULL

The editor erases the workfile, and issues the message

SET NEW FILEMODE, OR ENTE~ CMS SUBSET AND CLEAR SOME SPACE

The original file (as last written onto disk) remains unchanged. you
can use the CMS subcommand to enter CMS subset, and erase any files that
you do not need. You can use the LISTFILE command to list the files on
the disk, then the ERASE command to erase the unwanted files.

If you cannot erase any of the file on the disk, there are several
alternate recovery paths you can take:

" ;/. ..

If you have another read/write disk accessed, you can use the FMODE
subcommand to change the filemode of the file, so that when you
file it, it is written to the other disk. If you have a read/write
disk that is not accessed, you can access it in CMS subset. After
filing the file on the second disk, erase the original copy, and
then use the COPYPILE command to transfer the file back to its
original disk.

If you do not have any other read/write disk in your virtual
machine, you may be able to transfer some of your files to another
user, using the PUNCH or DISK DUMP commands in CMS subset. When the
files have been read onto the other user's disk, you can erase them
from your disk. Then, return to edit mode and issue the PILE
subcomlland.

3. In CMS subset, erase the original disk file (if it existed), then
return to edit mode and file the copy that you are editing. You
should not use this method unless absolutely necessary, since any
unexpected problems may result in the loss of both the disk file
and the copy.

After you use the FILE subcommand to write the file onto disk, you
should continue erasing any files you no longer need.

98 IBM VM/370: CMS User's Guide

Summary of EDIT Subcommands

The EDIT subcommands, and thei~ formats, are shown in Figure 7. Refer to
the !~L1IQ: £~~ ~Q~m~ng ~ng ~~££2]~l~f~~~~ for complete details.

r----------------------
Subcommand Format Function

--
ALter char1 char2

r ,
AUTOsa ve In I

IQ1:1:1
L -I

r ,
BAckward 1 nl

I 11
L -I

Bottom

r ,
CASE 1 M I

I U I
L -I

r ,
I n r , I
I * I G I I
I 1 I * I I
L L -1-1

IScans the next n records of
Ithe file, altering the speci
Ified character, either once in
leach line or for all occur
Irences in the line.

IAutomatically saves the file
Ion disk after the indicated
Inumber of lines have been
Iprocessed.

----I
IPoints the current line
Ipointer to a line above the
Iline currently pointed to.
I

I
I
1
1
I

IMakes the last line of the 1
Ifile the current line. I

-----------------------------1
I Indicates whether translation I
Ito uppercase is to be done, orl
Idisplays the current status. I
I 1

1
r r" IChanges string 1 to string2 for

Change [/string1[/string2[/ In IGII]]lln records or to EOF, either

1-----
I CMS
I
1--------------------
I
1
1
1
I
I

r ,.
DELete I n I

1 * I
I 1 I
L -I

I r,
1 DOwn I n I
1 I 1 1
1 L-I

I
1 DString /[string [I]]
I
1
1
1-----------------------------
1 FILE [fn [ft [fm]]]
1
I

11 1*1 I Ifor the first occurrence in
L L -1-1 I each line or for all

loccurrences.

IEnters CMS subset command
I mode.

IDeletes ~ lines or to the end
lof the file (*).
I
I
I

IPoints to the ~th line from
Ithe current line.
I
I

IDeletes all lines from the
Icurrent line down to the line
Icontaining the indicated
I string.

--------------------------ISaves the file being edited on
Idisk or changes its identi
Ifiers. Returns to eMS. L ___ _

----------------~----------------------------
Figure 7. Summary of EDIT Subcommands and Macros (Part 1 of 4)

Section 5. The CMS Editor 99

r-·------------------------------- I

I Subcommand Format Function I
I ---------------- -------1
I Find [line]
I
I
I FMode [fll]

1 Searches the file for the
Igiven line.

IResets or displays the
Ifilellode.

I
1
I
I
I I

I --------1
I FBaIRe [fn 1 IResets or displays the I
I Ifilename. I

FORMat {DISPLAY}
LINE

---I
ISwitches the 3270 terminal I
Ibetween display mode and line I
Imode. (3270 only) I

---I
r , IPoints to the nth

Ithe current line.
line after 1

POrward 1 n 1
1 .1 I
L ..I

r r r
Getfile fn I ft I fll 1 m

1 1 I 1
L L L

r , ,
1 n 1 1
I * 1 I
L ..I ..I

, ,
I 1
I 1

..I ..I

I
I

IInserts a portion or all of
Ithe specified file after the
Icurrent line.
I

I
I
1
I
1
I
1
1

------1
r ,

I8AGE lOB I
10FF I
ICABOBI
L ..I

Input [line]

IExpands text into line images
lor displays current settings.
I
I
I

IInserts a line in the file or
lenters input mode.

1---I r, ISets or displays current
I LIIE.ode ILEFT I Isetting of line-number
1 IRIGHTI 1 editing.
I 10FF I I
I L.J I
1-----------------------
I [Loca te l/[string [/ 1 1
I 1-------
I LONG
I
1---------------------
I r,
1 Next 1 n 1
1 I .1 1
1 L..I

1------------
I Overlay [line]
1
1---------------·---------

---------------------------IScans file frail next line for
Ifirst occurrence of 'string'.

IEnters long error message
Imode.

IPoints to the nth line down
Ifroll the current line.
I
I

IReplaces all or part of the
Icurrent line.

I PREserve ISaves current mode settings.

1--I r , I sets or displays line nUllber
I PR08PT In 1 lincrement. Initial setting is
1 11Q 1 110.
I L ..I I L __________________________________ ___

Figure 7. Summary of EDIT Subcommands and Macros (Part 2 of 4)

100 IBM V8/370: CMS User's Guide

1
I
1
1
1

r------
I Subcommand Format
I
I QUIT
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

r ,
RECfm I F I

I V I
L .J

r r " RENum Istrtno lincrnol I
11Q 1§!f.!:!!Q I I
L L .J.J

r ,
REPEAT I n I

I * I
I ! I
L .J

Replace [line]

REStore

RETURN

{RE~SE} [subcommand]

I
I SAVE [fn [ft [fm]]]
I
I
I r ,
I {SCroll } In I
I S[croll]U[p] 1* I
I 11 I
I L .J

I
I SERial { OPF r ,

} I ON lincrl
I ALL I 1Q I
I seq L .J

I
I SHORT
I
1---
I r ,
I STACK I n I
I I 1 I
I I 0 I
I Isubcommandl
I L .J

L

------,
Function I

------------- ---' --I

ITerminates edit session with I
Ino updates incorporated since I
Ilast save request. I

ISets or displays record format
Ifor subsequent files.
I
I

IRecomputes line numbers for
IVSBASIC and FREEFORT source
Ifiles.
I

IExecutes the following OVERLAY
Isubcommand !! times.
I
I
I

I Replaces the current line or
Ideletes the current line and
lenters input mode.

I Restores Editor settings to
Ivalues last preserved.

IReturns to edit environment
Ifrom CMS subset.

IStacks (LIFO) the last EDIT
Isubcommand that does not start
Iwith REUSE or the question
Imark (1) and then executes any
Igiven EDIT subcommand.

I Saves the file on disk and
Istays in edit environment.

IDisplays a number of screens
lof data above or below the
Icurrent line (3270 only).
I
I ---------
ITurns serialization on or off
lin columns 73 through 80.
I
I

-----------------------------------IEnters short error message
I mode.

---I
IStacks data lines or EDIT I
Isubcommands in the console I
linput stack. I
I I
I I
I I

.J

Figure 7. Su.mary of EDIT Subcommands and Macros (Part 3 of 4)

section 5. The CMS Editor 101

" ---,
Subcommand Format I Function I

I
TABSet n1 [n2 ••• nn] lSets logical tab stops. I

---I
TOP IMoves the current line pointerl

r ,
TRUNC I n I

I * I
L .I

1----·----
I r r "
I Type I min I I
I I 1 I * I I
I I * I I I
ILL .I J

1-----
I r,
I Up I n I
I I! I
I L.I

I--
I r,
I Verify I Q! I
I 10FFI
I
I--
I

II {~}
I

L .I

r ,
Isubcommandl
I n I
I ! I
L J

rr , ,
Iistartcullendcoll
II 1 I * I
L L .I .I

Ito the null line at the top I
lof the file. I

ISets or displays the column of
Itruncation. An asterisk (*)
lindicates the logical record
Ilength.

IDisplays ! lines beginning
I with the current line. Each
Iline may be truncated to n
Icharacters.
I

I Moves the current line pointer
Itoward the top of the file.
I
I

ISets, displays, or resets
Iverification. An asterisk (*)
lindicates the logical record
Ilength.

IAssigns to X or y the given
IEDIT subcommand or executes
Ithe previously assigned
I subcommand] times.
I I

I-- --
I
I
I
I
I

r r "
Zone I min I I

I ! I * I I
I * I I I
L L .1.1

1-------
I 1
I
1----------------,---
I {nnnnn } [text]
I nnnnnnnn
I
1------------------
I r,
I $DUP I n I
I I J I
I L.I

I
I $MOVE n { Up m }
I Down m
I TO label
L

ISets or displays the columns
Ibetween which editing is to
Itake place.
I
I

IDisplays the last EDIT
Isubcommand, except = or 1.

I Locates the line specified by
Ithe given line number and
linserts text, if given.

IDuplicates the current line n
Itimes. $DUP is an edit macro.
I
I

-I
IMoves y lines up or down ~ I
Ilines. $MOVE is an edit macro.1
I I ___ .J

Figure 7. Summary of EDIT Subcommands and Macros (Part 4 of 4)

102 IBM VM/370: CMS User's Guide

Section 6. Introduction to the EXEC Processor

An EXEC is a CMS file that contains executable statements. The
statements may be CMS or CP commands or EXEC control statements. Th~
execution can be conditionally controlled with additional EXEC
statements, or it may contain no EXEC statements at all. In its simplest
form, an EXEC file may contain only one record, have no variables, and
expect no arguments to be passed to it. In its most complex form, it can
contain thousands of records and may resemble a program written in a
high-level programming language. As a CMS user, you should become
familiar with the EXEC processor and use it often to tailor CMS commands
to your own needs, as well as to create your own commands.

The following is an example of a simple EXEC procedure that might be
named RDLINKS EXEC:

CP LINK DEWEY 191 291 RR DEWEY
CP LINK LIBRARY 192 292 RR DEWEY
ACCESS 291 B/A
ACC 292 C/A

When you enter

rdlinks

each command line contained in the file RDLINKS EXEC is executed.

You could also create an EXEC procedure that functions like a
cataloged procedure, and set it up to receive an argument, so that it
executes somewhat differently each time you invoke it. For example, a
file named ASM EXEC contains the following:

ASSEMBLE & 1
PRI NT 61 LISTI NG
LOAD & 1
START

If you invoke the EXEC specifying the name of an assembler language
source file, such as

asm myprog

the procedure executes as follows:

ASSEMBLE MYPROG
PRINT MYPROG LISTING
LOAD MYPROG
START

The variable &1 in the EXEC file is sUbstituted with the argument you
enter when you execute the EXEC. As many as 30 arguments can be passed
to an EXEC in this manner; the variables thus set range from &1 through
&30.

CREATING EXEC FILES

EXEC files can be created with the CMS Editor, by punching cards, or by
using CMS commands or programs. When you create a file with the editor,

section 6. Introduction to the EXEC Processor 103

records are, by default, variable-length with a logical record length of
80 characters. EXEC can process variable length files of up to 130
characters. To can create a variable-length EXEC file larger than 80
characters, use the LRECL option of the EDIT command:

edit new exec a (lrecl 130

To convert a variable-length file to a fixed-length file, you can
edit the EXEC file and issue the subcommand

recfm f

Or, you can use the COPYFILE command:

copy file old exec a (recfm f

If you use fixed-length EXEC files, you should be aware that the EXEC
interpreter only processes the first 72 characters of each record in a
fixed-length file, regardless of the record length. You can, however,
enter command or data lines that are longer than than 72 characters to
be processed by using the &BEGSTACK, &BEGTYPE, &BEGPUNCH, and &BEGEMSG
control statements preceding the line(s) you want to be processed. If
you specify &BEGPUNCH ALL, EXEC processes lines up to 80 characters
long; if you specify &BEGTYPE ALL, &BEGSTACK ALL, or &BEGEMSG ALL, EXEC
processes lines up to 130 characters.

In variable-length EXEC f~les, there are no such restrictions; lines
up to 130 characters are processed in their entirety.

Two CMS commands create EXEC files. One is LISTFILE, which can be
invoked with the EXEC option; it creates a file named CMS EXEC. The uses
of CMS EXEC files are discussed under the heading "CMS EXECs and How To
Use Them." The CMS/DOS command LISTIO creates an EXEC file named
$LISTIO EXEC, which creates records for each of the system and
programmer logical unit assignments. The LISTIO command and the $LISTIO
EXEC are described in "Section 9. Developing DOS Programs Under CMS."

INVOKING EXEC FILES

EXEC procedures are invoked when you
file. You can precede the filename on
co.mand, EXEC. For example:

exec test type list

enter the filename of the EXEC
the command line with the CMS

where TEST is the filename of the EXEC file and TYPE and LIST are
arguments (&1, &2, and so on) you are passing to the EXEC. For example,
an EXEC named PREPEDIT would be executed when you entered either:

prepedit newfile replace

-- or --

exec prepedit newfile replace

You must precede the EXEC filename with the EXEC command when:

• You invoke an EXEC from within another EXEC.

• You invoke an EXEC from a program.

• You have the implied EXEC function set off for your virtual machine.

104 IBM VM/370: CMS User's Guide

The implied EXEC function is controlled by the SET com.and. If you
issue the command

set impex off

then you must use the EXEC command to invoke an EXEC procedure. The
default setting is ON; you al.ost never need to change it.

There is one EXEC file that you never have to specifically invoke.
This is a PROFILE EXEC, which is automatically executed after you load
CftS, when your A-disk is accessed. PROFILE EXECs are discussed next.

PROFILE EXECs

A PROFILE EXEC must have a filename of PRO PILE. It can contain the CP
and CftS co •• ands you normally issue at the start of every terminal
session. For example:

• Co •• ands that describe your ter.inal characteristics, such as

CP SET LI.EDIT OB
SET BLIP *
SET RDY!!SG SfiSG
SYNONlfl flISYN

• Co.mands that spool your printer and punch for particular classes or
characteristics:

CP SPOOL E CLASS S HOLD

• Commands to initialize .acro and text libraries that you com.only
use:

GLOBAL !!ACLIB OSftACRO CftSLIB
GLOBAL TXTLIB PRIlLIB

• Co.~ands to access disks that are
configuration:

ACCESS 196 B

a permanent part of your

A PROFILE EXEC file that contains all of these commands might look
like this:

SCOITROL OFF
CP SET LINEDIT ON
CP SPOOL E CLASS S HOLD
SETRDY!!SG SftSG
SET BLIP *
SYNONY!! !!YSYI
GLOBAL fllCLIB OSMACRO CMSLIE
GLOBAL TXTLIB PRIlLIB
ACCESS 196 B

SCONTROL OFF is an EXEC control
and CflS command lines are not to
they execute.

statement that specifies that the CP
be displayed on your terminal before

A PROFILE EXEC can be as simple or as complex as you require. As an
EXEC file, it can contain any valid EXEC control statements or CMS
commands. The only thing that makes it special is its filename,

Section 6. Introduction to the EXEC Processor 105

PROFILE, ~hich causes it to be executed the first time you press the
Return key after loading CMS.

EXECUTING YOUR PROFILE EXEC

Usually, the first thing you do after loading CMS is to type a CMS
command. When you press the Return key to enter this command or if you
enter a null line, CMS searches your A-disk for a file with a filename
of PROFILE and a filetype of EXEC. If such a file exists, it is
executed before the first CMS command you enter is executed. Because
you do not do anything special to cause your PROFILE EXEC to execute,
you can say that it executes "automatically."

You can prevent your PROFILE EXEC from executing automatically by
entering

access (noprof)

as the first CMS command after you IPL CMS. You can enter:

profile

at any time during a CMS session to execute the PROFILE EXEC, if you had
accessed your A-disk without it, or if you had made changes to it and
wanted to execute it, or if you had changed your virtual machine and
wanted to restore its original characteristics.

CMS EXECs and How To Use Them

A file named CMS EXEC is created when you use the EXEC option of the
LISTFILE command, for example

list file pr* document a (exec

The usual display that results from this LISTFILE command is
all the files on your A-disk with a filetype of DOCUMENT
filenames beginning with the characters "PR". CMS, however,
CMS EXEC file that contains a record for each file that would
The records are in the format:

&1 &2 filename filetype filemode

a list of
that have
creates a

be listed.

Column 1 is blank. NOW, if you have the following files on your A-disk:

PRFILE1 DOCUMENT
PRFILE2 DOCUMENT
PRFILE3 DOCUMENT
PRFILE4 DOCUMENT

The CMS EXEC file would contain the records:

&1 &2 PRFILE1
&1 &2 PRFILE2
&1 &2 PRFILE3
&1 &2 PRFILE4

DOCUMENT A 1
DOCUMENT A 1
DOCUMENT A1
DOCU MENT A 1

106 IBM VM/370: CMS User's Guide

In the preceding lines, &1 and &2 are variables that can receive values
from arguments you pass to the EXEC when you execute it. For example,
if you execute this CMS EXEC by issuing:

cms disk dump

the EXEC interpreter substitutes, on each line, the variable &1 with the
DISK and the variable &2 with DUMP and executes the commands:

DISK DUMP PRFILE1 DOCUMENT A1
DISK DUMP PRFILE2 DOCUMENT 11
DISK DUMP PRFILE3 DOCUMENT A1
DISK DUMP PRFILE4 DOCUMENT A1

You can use this technique to transfer a number of files to another
user. You should remember to spool your punch with the CONT option
before you execute the EXEC, so that all of the files are transferred as
a single spool file, for example:

cp spool d cont library

then, after executing the EXEC file, close the punch:

cp spool d nocont close

If you pass only one argument to your CMS EXEC file, the variable &2
is set to a null string. For example,

cms erase

executes as

ERASE PRFILE1
ERASE PRFILE2
ERASE PRFILE3
ERASE PRFILE4

DOCUMaNT A1
DOCUMENT A 1
DOCUMaNT A1
DOCUMENT A 1

You could also use a CMS EXEC to obtain a listing of files on a
virtual disk. If you want, you can use one of the other LISTFILE command
options in conjunction with the EXEC option to get more information
about the files listed. For example,

listfile * * a (exec date

produces a CMS EXEC that contains, in addition to the
filetype, and filemode of each file listed, the file format
and date information. You can then use the PRINT command to
printed copy:

print cms exec

filename,
and size,

obtain a

Before printing this file, you may want to use the SORT command to
sort the list into alphabetic order by filename, by filetype, or both,
for ex all·ple

sort cms exec a cmssort exec a

When you are proapted to enter sort fields, you can enter

1 26

The file CMSSORT EXEC that is created contains a completely alphabetical
list.

section 6. Introduction to the EXEC Processor 107

MODIFYING CMS EXECS

A eMS EXEC is like any other CMS file; you can edit it, erase it, rename
it, or change it. If you have created it to catalog a particular group
of files, you might want to rename it; each time you use the LISTFILE
command with the EXEC option a eMS EXEC is created, and any old CMS EXEC
is erased. To rename it, you can use the CMS RENAME command, or, if you
are editing it, you can rename it when you file it:

edit cms exec
input &control off
file prfile exec

You might also want to edit a CMS EXEC to provide it with more
numeric variahles, for example:

edit cms exec
input &control off
input cp spool printer class s cont
change /al/al &3 &4 &5 &6/ *

input cp spool printer nocont
input cp close printer
file prfile exec
prfile print I (cc

When this EXEC is executed, the variahle &1 is suhstituted with PRINT,
the variable &2 is set to a null string (the special character %
indicates that you are not passing an argument to it), and &3 and &4 are
set to the PRINT com.and option (CC, so that the files in the EXEC print
with carriage control. The CP commands that are inserted ensure that
the files print as a single spool file, and not individually.

Summary of the EXEC Language Facilities

The EXEC processor, or interpreter, recognizes keywords that begin with
the special character amFersand (&). Keywords may indicate:

• Control statements
• Built-in functions
• special variahles
• Argullents

yOU may also define your own variables in an EXEC file; the EXEC
interpreter can process them as long as they begin with an ampersand.
The following pages briefly discuss the kinds of things you can do with
an EXEC, introduca you to the ~ontrol statements, built-in functions,
and special variables, and give some examples of how to use the EXEC
processor. If you want more information on writing EXEC procedures, see
"Part 3. Learning To Use EXEC." For specific information on the format
and usage rules for any EXEC statement or variable, consult the !ALJ1.Q:
~Aa £g~~g~g g~g Ag£Eg R~~~~~£~·

In general the following rules apply to entering lines into an EXEC
procedure:

1. Most input lines (with a few exceptions) are scanned during
execution of the EXEC. Every word on a line is padded or truncated

108 IBM V"/310: CMS User's Guide

to fit into an 8-character "token."
the EXEC control statement

&type today is wednesday

So, for example, if you enter

when this EXEC is executed, the line is displayed at your terminal:

TODAY IS WEDNESDA

The lines that are not tokenized are those that begin with an *
(and are considered comments), and those that follow an &BEGEMSG,

&BEGPUNCH, &BEGSTACK, or &BEGTYPE control statement, up to an &END
statement.

2. You can enter input lines beginning in any column. The only time
that you must enter an EXEC line beginning in column 1 is when you
are using the &END control statement to terminate a series of lines
being punched, stacked, o~ typed.

ARGUMENTS AND VARIABLES

Most EXEC processing is contingent on the value of variable
expressions. A variable expression in an EXEC is a symbol that begins
with an ampersand (&). When the EXEC interpreter processes a line and
encounters a variable symbol, it substitutes the variable with a
predefined value, if the symbol has been defined. symbols can be
defined in three ways: (1) when passed as arguments to the EXEC, (2) by
assignment statements, (3) interactively, as a result of a &READ ARGS or
&READ VARS control statement.

You can pass arguments to EXEC files when you invoke them. Each
argument you enter is assigned a variable name: the first argument is
&1, the second is &2, the third is &3, and so on. You can assign values
for up to 30 variables this way_ Por example, if an EXEC is invoked:

scan alpha 2 notype print

the variable &1 has a value of ALPHA, the variable &2 has a value of 2,
&3 is NOTYPE and &4 is PRINT. These values remain in effect until you
change them.

You can test the arguments passed in several ways. The special
variable &INDEX contains the number of arguments received. Using the
example SCAN 4LPHA 2 NOTYPE PRINT, the statement

&IP &INDEX EO 4 &GOTO -SET

would be true, since four arguments were entered, so a branch to the
label -SET is taken.

You can change the values of arguments or assign values using the
&ARGS control statement. For exa.ple,

&11 &INDEX EO 0 &ARGS ABC

assigns the values A, B, and C to the variables &1, &2, and &3 when the
EXEC is invoked without any arguments.

Use the &READ ARGS control statement to enter arguments
interactively. Por example, if your EXEC file contains the line

&READ ARGS

section 6. Introduction to the EXEC Processor 109

when this line is executed, the EXEC issues a read to your virtual
machine so that you can enter up to 30 arguments, to be assigned to the
variables &1, &2, and so on.

ASSIGNMENT STATEMENTS

User-defined variable names begin with an ampersand (&) and contain up
to seven additional characters. These variables can contain numeric or
alphameric data. You define and initialize EXEC variables in assignment
statements. In an assignment statement, the value of the expression on
the right side of the equal sign is assigned to the variable named on
the left of the equal sign. For example,

&A = 35

is an assignment statement that assigns the numeric value 35 to the
variable symbol &A. A subsequent assignment statement might be:

&B = &A + 10

After this assignment statement executes, the value of &B would be 35
pIllS 10, or 45.

You can use the &READ control statement to assign variable names
interactively. For example, when the statement

&READ VARS SNAME SAGE

is executed, the EXEC issues a read to your virtual machine, and you can
enter a line of data. The first two words, or tokens, you enter are
assigned to the variable symbols &NAME and SAGE, respectively.

If you use a variable name that has not been defined the variable symbol
is set to a null string by the EXEC processor when the statement is
executed. Por example, if you have entered only two arguments on the
EXEC command line, then the statement

&IP S3 EO ~ONT SERROR &CONTINUE

is interpreted

&IP EO CONT SERROR &CONTINUE

SERROR and &CONTINUE are recognized ~y EXEC as control statements.
Since &3 is undefined, however, it ~s replaced by blanks and the
resulting line produces an error during EXEC processing. You can
prevent the error, and allow for null arguments or variables, by
concatenating some other character with the variable. A period is used
most frequently:

&IP .S3 EO .CONT &ERROR &CONTINUE

If S3 is undefined when this line is scanned, the result is

&IP • EO .CONT &ERROR SCONTINUE

which is a valid control statement line.

110 IBM VM/370: CMS User's Guide

BUILT-IN FUNCTIONS AND SPECIAL VARIABLES

The EXEC built-in functions are similar to those
languages. You can use the EXEC built-in functions to
symbols in an EXEC procedure.

Figure 8 summarizes the built-in functions. It
variable SA, the values resulting in a variable SB
function is used to assign its value. Notice that all
functions are used on the right-hand side of assignment
the SLITERAL built-in function' can be used in control
example:

STYPE SLITERAL SA

r
Function usage Example

of higher-level
define variable

shows, given the
when a built-in
of the built-in

statements. only
statements, for

--------,
I SB I ---------- 1

SCONCAT

SDATATYPE

&LENGTH

&LITERAL

&SUBSTR

L-

Concatenates tokens into a
single token.

Assigns the data type (NUM
or CHAR) to the variable.

Assigns the length of a
token to a variable.

Prohibits substitution of a
variable symbol.

Extracts a character string
from a token.

Figure 8. summary of EXEC Built-in Function~

FLOW CONTROL IN AN EXEC

&A =
SB =
SB =
SB =
SB =
SB =

123 I
I

SCONCAT &A 55 123551
I

SDATATYPE SA NUM 1
1

SLENGTH &A 3 I
I

SLITERAL &A &A I
I

SSUBSTR &A 2 2 23 I _________ .J

An EXEC is processed line by line: if a statement is encountered that
passes control to another line in the procedure, execution continues
there and each line is, again, executed sequentially. You can pass
control with an &GOTO control statement:

SGOTO -BEGIN

where BEGIN is a label. All labels in EXEC files aust begin with a
hyphen, and mu~t be the first token on a line. For example,

-LOOP

A label may have control statements or commands following it, for
example

-HERE SCONTIIUE

which indicates that the processing is to continue with the next line,
or

-END &EXIT

The SEXIT control statement indicates that the EXEC processor should
terminate execution of the EXEC and return control to CMS. You can also
specify a return code on the &EXIT control statement:

section 6. Introduction to the EXEC Processor 111

&EXIT 6

results in a "(00006)" following the "R" in the CMS Ready message. If
you invoke a CMS co.mand from the EXEC, you can specify that the return
code from the CMS command be used:

&EXIT &RETCODE

Since the &RETCODE special variable is set after each CMS command that
is executed, you can test it after any command to decide whether you
want execution to end. Por example, you could use the &IP control
statement to test it:

&IF &RETCODE BE 0 &EXIT &RETCODE

"&EXIT &RETCODE" places the value of the CMS return -code in the CMS
Ready message. You could place a line similar to the above following
each of your CMS command lines, or you could use the &ERROR control
statement, that will cause an exit as soon as an error is encountered:

&ERROR &EXIT &RETCODE

or you could use the &ERROR control state.ent to transfer control to
some other part of your EXEC:

&ERROR &GOTO -CHECK

-CHECK

Another way to transfer control to another line is to use the &SKIP
control statement:

&SKIP 10

transfers control to a line that is 10 lines below the &SKIP line. You
can transfer control above the current line as well:

&IF &X NE &Y &SKIP -3

Transferring control with &SKIP is faster, when an EXEC is executing J

than it is with &GOTO, but modifying your EXEC files becomes aore
difficult, particularly when you add or delete many lines.

You can use combinations of &IF, &GOTO, and &SKIP to set up loops in
an EXEC. Por example:

&X = 1
&IF &X = 4 &GOTO -ENDPRT
PRINT FILE&X TEST A
&X = &X + 1
&SKIP -3
-ENDPRT

Or, you can use the &LOOP control statement:

&X = 1
&LOOP 2 &X > 3
PRINT FILE&X TEST
&X = &X + 1
-ENDPRT

112 IBM VM/370: CMS User's Guide

In both of these examples, a loop is established to print the files
FILE1 TEST, FILE2 TEST, and FILE3 TEST. &X is initialized with a value
of 1 and then incremented within the loop. The loop executes until the
value of &X is greater than 3., As soon as this condition is met, control
is passed to the label -ENDPRT.

COMPARING VARIABLE SYMBOLS AND CONSTANTS

In an EXEC, you can test whether a certain condition is true, and then
perform some function based on the decision. Some examples have already
appeared in this section, such as

&LOOP 3 &X EQ &Y

In this example, the value of the variable &X is tested for an equal
comparison with the value of the variable &Y. The loop is executed until
the condition (&X equal to &Y) is true.

The logical comparisons you can make are:

£2RQiii2n ~D~~~Di£ 2I~Q~1
equal EQ =
not equal NE ~=

greater than GT >
less than LT <
greater than

or equal to GE >=
less than or

equal to LE <=

When you are testing a condition in an EXEC file, you can use either the
mnemonic or the symbol to represent the condition:

&IF &A LT &B &GOTO -NEXT

is the same as

&IF &A < &B &GOTO -NEXT

DOING I/O WITH AN EXEC

You can communicate with your terminal using the &TYPE and &READ control
statements. Use &TYPE to display a line at your terminal:

&TYPE ASMBLNG &1 ASSEMBLE

When this line is processed, if the variable &1 has a value of PROG1,
the line is displayed as

ASMBLNG PROG1 ASSEMBLE

Use the &READ control statement when you want to be able to enter
data, variables, or control statements into your EXEC file while it is
executing. If you use it in conjunction with an &TYPE statement, for
example

&TYPE DO YOU WANT TO CONTINUE ?
&READ &ANS

section 6. Introduction to the EXEC Processor 113

you could test the variable &ANS in your EXEC to find out how processing
is to continue.

The &BEGTYPE control statement can be followed by a sequence of lines
you want to be displayed at the terminal. For example, if you want to
display 10 lines of data, instead of using 10 &TYPE control statements,
you could use

&BEGTYPE
line1
line2

line10
&END

The &END control statement indicates the end of the lines to be typed.
you can also use the &BEGTYPE control statement when you want to type a
line that contains a word with more than 8 characters in it, for
example:

&BEGTYPE
TODAY IS WEDNESDAY
&END

The EXEC interpreter, however, does not perform sUbstitutions on lines
entered tbis way. The lines

&A = DOG
&BEGTYPE
MY &A IS NAMED FIDDLEFADDLE
&END

result in the display

MY &A IS NAMED FIDDLEFADDLE

You must use the &TYPE statement when you want to display variable data;
you must use the &BEGTYPE control statement to display words with more
than 8 characters.

TO type null or blank lines at your terminal (to make output
readable, for example), you can use the &SPACE control statement:

&SPACE 5

You can punch lines of tokens into your virtual card punch with the
&PUNCH control statement:

&PONCH &NAME &TOTAL

When you want to punch more than one line of data, or a line that
contains a word of more than 8 characters in it, you should use the
&BEGPUNCH control statement preceding the lines you want to punch, and
follow them with an &END statement. The EXEC processor does not
interpret these lines, however, so any variable symbols you enter on
these lines are not substituted.

114 IBM VM/370: CMS User's Guide

When you punch lines from an EXEC procedure what you
doing is creating a file in your virtual card punch. To
file for processing, you must close the punch:

cp close punch

are actually
release the

The destination of the file depends on how you have spooled your punch.
If you have spooled it to yourself, the file is placed in your virtual
card reader, and you can read it onto a virtual disk using the READCARD
command.

The EXEC control statements &STACK and &BEGSTACK allow you to stack
lines in your terminal console, to be executed as soon as a read occurs
in your virtual machine. stacking is useful when you use commands that
require responses, for example, the SORT command:

&STACK 1 20
SORT INFILE FILE A OUTFILE FILE A

When the SORT command is executed, a prompting message is issued, the
virtual machine read occurs, and the response that you have stacked is
read. If you do not stack a response to this command, your EXEC does
not continue processing until you enter the response from your
terminal.

stacking is useful in creating edit macros, or when you are editing
files from EXEC procedures.

MONITORING EXEC PROCEDURES

Two EXEC control statements, &CONTROL and &TIME, control how much
information is displayed at your terminal while your EXEC file is
executing. This display is called an execution summary.

Since, usually, you do not receive a CMS Ready message after the
execution of each CMS command in an EXEC, you do not receive the timing
information that is provided with the Ready message. If you want this
timing information to appear, you can specify

&TIME ON

or you can type the CPU times at particular places by using:

&TIME TYPE

The &CONTROL control statement allows you to specify whether certain
lines or types of information are displayed during execution. By
default, CP and CMS commands are displayed before they are executed. If
you do not wish to see them displayed, you can specify

&CONTROL OFF

You might find it useful, when you are debugging your EXECs, to use

&CONTROL ALL

Section 6. Introduction to the EXEC Processor 115

When you use this form, all EXEC statements, as well as all CP and CMS
commands, are displayed and you can see the variable sUbstitutions being
performed and the branches being taken in a procedure.

Summary of EXEC Control Statements and Special Variables

Figures 9 and 10 summarize
variables.

EXEC control statements and special

r
I

-------------------------------------- I
Control statement Function I

--------------------------- ---I
&variable = {string }

~:nction
X'xxxxxx

&ARGS [arg1 [arg2 ••• [arg30]]]

&BEGEM SG [ALL]
line 1
line2

&END

&BEGPUNCH [ALL]
line1
line2

&END

&BEGSTACK
line1
line2

&END

r , r ,
Il!l.Q I I ALL I
ILIFOI L .J
L .J

IAssigns a value to the symbol
Ispecified by &variable; the
lequal sign must be preceded
land followed by a blank.

I
I
I
I
i

IRedefines the variable symbolsl
1&1, &2 ••• with the values of I
l'arg1', 'arg2', ••• , and re- I
Isets the variable &INDEX. I

------1
IDisplays the following lines I
las CMS error messages, without~
Iscanning them. I
I i
I I
I ~

I Punches the following lines
lin the virtual card punch,
I without scanning them.
I
I
I

IStacks the following lines
lin the console input buffer,
I without scanning them.
I
I
I
I

--
&BEGTYPE [ALL]
line 1
line2

&END

IDisplays the following lines
lat the console, without
Iscanning thell.
I
I
I ---------.--------------------.-----

&CONTINUE I Provides a branch address for
I&ERROR, &GOTO, and other con
Iditional branching statements. L._ _ __ , ____ , _____________________ _

Figure 9. Summary of EXEC Control Statements (Part 1 of 3)

116 IBM VM/37U: CMS User's Guide

r
I

---, Control statement I Function
----------------------SCONTROL

r ,r ,r ,r ,
10FF I 111~§ IITIME I Ig!~!S I
IERRORI IROMSGI I!QI!~~I IROPACKI
I ~11~ I L .J L .J L .J

IALL I
L .J

SEMSG mmmnnns [tok 1 [••• tokn]]

SEND

r ,
SERROR I executable-statement I

I~~~JI!I~~ I
L .J

r ,
SEXIT I return-code I

I Q I
L .J

SGOTO { TOP }
linenullber
-label

SHEX {ON }
QIl

EO {tok2} executable-
NE S$ statement
LT s*
LE
GT
GE

=
..,=
<
<=
>
>=

Isets, until further notice,
Ithe characteristics of the
lexecution summary of the EXEC,
Iwhich is displayed at the
Iconsole.
I
I

IDisplays a line of tokens
las a CMS error message.

ITerminates a series of lines
Ifollowing an SBEGEMSG,
ISBEGPURCH, SBEGSTACK, or
ISBEGTYPE control statement.

IExecutes the specified
Istatement whenever a CMS
Icommand returns a nonzero
I return code.

IExits from the EXEC file with
Ithe given return code.
I
I

-----------------------.-------
I Transfers control to the top
lof the EXEC file, to the givenl
Iline, or to the line starting
Iwith the given label.

ITurns on or off hexadecimal
I conversion.

Executes the specified
statement if the condition is
satisfied.

SLOOP { n } { m }

-label condition

&PURCH [tok1 [••• tokn]]

ILoops through the following ~
Ilines, or down to (and includ-I
ling) the line at label, for I
1m times, or until the I
Icondition is satisfied. I

-------1
IPunches the specified tokens 1
Ito your virtual card punch. I

I

Figure 9. Summary of EXEC Control statements (Part 2 of 3)

section 6. Introduction to the EXEC Processor 117

r------------ ----------------------------------,
I Control statement I Function I
1--------------
I
I &READ
I
I
I
I
I

r
In
IJ
IARGS
IVARS
L

,
I
I
I

[&var1 [••• &var17]]1
J

IReads lines from the terminal
lor from the console stack.
IARGS assigns the tokens read
Ito the variables &1, &2 •••
IVARS assigns the tokens read
Ito the specified variable
I symbols.

I- ------------------------------------
I r,
I 8·SKIP I n I
I I 1 I
I L J

I--
I r,
I 8·SPACE I n I
I I 1 I
I L J

r , r
e~STACK IlllQ I I tok 1 [•••

I LIFOI I HT
L J IRT

r ,
STIME ION I

IQII I
IRESETI
ITYPE I
L J

L

,
tokn] I

I
I

J

ITransfers control forward or
Ibackward a specified number
lof lines.
I

IDisplays blank lines at the
Iterminal.
I
I

I Stacks a line in the terminal
linput stack.
I
I
I

IDisplays timing information
Ifollowing the execution of
ICMS commands.
I
I
I

STYPE [tok1 [••• tokn]] IDisplays a line at the
Iterminal. L-- _____________________ -.---J

Figure 9. Summary of EXEC Control statements (Part 3 of 3)

118 IBM VM/370: CMS User's Guide

r
Variable Usage

Sn

S*
S$

SDISKx

SDISK*

SDISK?

SDOS

SEXEC

SGLOBAL

SGLOBALn

SIliDEX

SLIBEBUM

SREADFLAG

SRETCODE

STYPEFLAG

so

Arguments passed to an EXEC are assigned to
the variables S1 through S30.

Test whether all (&*) or any (S$) of the
arguments passed to EXEC have a particular
value.

Indicates whether the disk access at mode 'x'
is a CMS OS, or DOS disk, or not accessed
(CMS, OS, DOS, or BA).

Contains the mode letter of the first read/write
disk in the CMSsearch order, or BONE if no
read/write disk is accessed.

contains the mode letter of the read/write disk
with the most available space or BONE, if no
read/write disk is accessed.

Indicates whether or not the CMS/DOS environment
is active (ON or OFF).

Contains the fil~name of the EXEC file currently
being executed.

Has a value ranging from 1 to 19, to indicate
the recursion (nesting) level of the EXEC that
is currently executing.

The variables SGtOBAL1 through SGLOBAL9 can
contain integral numeric values, and can be
passed among different recursion levels. If
not explicitly set, the variable will have a
value of 1.

Contains the number of arguments passed to
the EXEC on the command line or the number of
arguments entered as a result of an SARGS or
SREAD ARGS control statement.

Contains the current line number in the EXEC.

Indicates whether (STACK) or not (CONSOLE)
there are lines stacked in the terminal input
buffer (console stack).

contains the return code from the most recently
executed CMS command.

Indicates whether (RT) or not (DT) output is
being displayed at the console.

contains the name of the EXEC file.

Set By

User

EXEC

User

User

User

User

EXEC

EXEC

User

EXEC

EXEC

EXEC

CMS

EXEC

User
----------------1

Variables are assigned values by EXEC but you may modify them.
You may not modify these variables.
You aay assign a value to this variable but it is reset at the
completion of each eMS command. L-. _____________ _

Figure 10. EXEC Special Variables

1
1
I
I
I

.J

section 6. Introduction to the EXEC Processor 119

Section 7. Using Real Printers, Punches, Readers, and Tapes

eMS Unit Record Device Support

CMS supports one virtual card reader at address OOC, one virtual card
punch at address OOD, and one virtual printer at address OOE. When you
invoke a CMS command or execute a program that uses one of these unit
record devices, the device must be attached at the virtual address
indicated.

USING THE CP SPOOLING SYSTEM

Any output that you direct to your virtual card printer or punch, or any
output you receive through your card reader, is controlled by the
spooling facilities of the control program (CP). Each output unit is
known to CP as a spool file, and is queued for processing with the spool
files of other users on the VM/370 system. Ultimately, a spooled
printer file or a spooled punch file may be released to a real printer
or card punch for printing or punching.

The final disposition of a unit record spool file depends on the
spooling characteristics of your virtual unit record devices, which you
can alter with the CP comm&nd SPOOL. To find out the current
characteristics of your unit record devices you can issue the command:

cp query ur

you might see, as a response to this, the display:

RDR
PUN

PRT

OOC
OOD
OOD
OOE
OOE

CL A NOCONT
CL A NOCONT
POR CMSGDE
CL A CONT
POR CMSGDE

NOHOLD EOF
NOHOLD COpy 01
DIST 13SCRIPT

HOLD COpy 01
DIST 13SCRIPT

READY
READY

READY

Some of these characteristics, and the ways JOu can modify
discussed below. When you use the SPOOL command to control
unit record device, you do not change the status of spool
already exist, but rather set the characteristics for
output. For information on modifying existing spool
"Altering spool Piles," below.

them, are
a virtual

files that
subsequent

files, see

£1!~~ (£1): Spool files, in the CP spool file queue, are grouped
according to class, and all files of a particular class may be processed
together, or directed to the same real output device. The default
values for your virtual machine are set in your VM/370 directory entry,
and are probably the standard classes for your installation.

You may need, however, to change the class of a device if you want a
particular type of output, or some special handling for a spool file.
Por example, if you are printing an output file that requires special
forms, and your installation expects that output to be spooled class Y,
issue the command:

cp spool printer class y

section 7. Using Real Printers, Punches, Readers, and Tapes 121

All subsequent printed output directed to your printer at virtual
address OOE (all CMS output) is processed as class Y.

HOLD: If you place a HOLD on your printer or punch, any files that you
prInt or punch are not released to the control program's spooling queue
until you specifically alter the hold status. By placing your output
spool files in a hold status, you can select which files you print or
punch, and you can purge duplicate or unwanted files. To place printer
and punch output files in a hold status issue the commands:

cp spool printer hold
cp spool punch hold

!2!~: When you issue a SPOOL command for a unit record device, you can
refer to it by its virtual address, as well as by its generic device
type (for example, CP SPOOL E HOLD).

When you have placed a hold status on printer or punch files and you
produce an output file for one of these devices, CP sends you a message
to remind you that you have placed the file in a hold:

PRT FILE xxxx FOR userid COpy xx HOLD

If, however, you have issued the command

cp set msg off

then you do not receive the message.

When you place a reader file in a hold status, then the file remains
in the card reader until you remove the hold status and read it, or you
purge it.

COpy: If you want multiple copies of a spool file, you should use the
COpy operand of the SPOOL command:

cp spool printer copy 10

If you enter this command, then all subsequent printer files that you
produce are each printed 10 times, until you change the COpy attribute
of your printer.

IQ!: You can spool printed or punched output under another userid's name
by using the FOR operand of the SPOOL command. Por example, if you enter

cp spool printer for charlie

Then, all subsequent printer files that you produce have, on the output
separator page, the use rid CHARLIE and the distribution code for that
user. The spool file is then under the control of that user, and you
cannot alter it further •

. ~Q!l, !Q£Q!l: You can print or punch many spool files, but have them
print or punch as one continuous spool file if you use the CO NT operand
on the SPOOL command. For example, if you issue the following sequence
of commands:

cp spool punch cont to brown
punch asm1 assemble
punch asa2 assemble
punch asm3 assemble
cp spool punch nocont
cp close punch

122 IBM VM/370: eMS User's Guide

Then, the three files ASM1 ASSEMBLE, ASM2 ASSEMBLE, and ASM3 ASSEMELE,
are punched to user BROWN as a single spool file. When user BROWN reads
this file onto a disk, however, C~S creates separate disk files.

!Q: When you spool your printer or punch to another userid, all output
from that device is transferred to the virtual card reader of the use rid
you specify. When you are punching a CMS disk file, as in the example
above, you should use the TO operand of the SPOOL command to specify the
destination of the punch file.

You can also use this operand to place output in your own virtual
card reader by using the * operand:

cp spool printer to *
After you enter this command, subsequent printed output is placed in
your virtual card reader. You might use this technique as an alternative
way of preventing a printer file from printing, or, if you choose to
read the file onto disk from your reader, of creating a disk file from
printer output.

Similarly, if you are creating punched output in a program and you
want to examine the output during testing, you could enter:

cp spool punch to *
so that you do not punch any real cards or transfer a virtual punch file
to another user.

ALTERING SPOOL FILES

After you have requested that VM/370 print or punch a file, or after you
have received a file in your virtual card reader and before the file is
actually printed, punched, or read, you can alter some of its
characteristics, change its destination, or delete it altogether.

Every spool file in the VM/370 system has a unique 4-digit number
from 0 to 9900 assigned to it, called a spoolid. You can use the spoolid
of a file to identify it when you want to do something to it. You can
also change a group of files, by specifying that all files of a
particular class be altered in some way, or you can manipulate all of
your spool files for a certain device at the same time.

The CP commands that allow you to manipulate spool files are CHANGE,
ORDER, PURGE, and TRANSFER. In addition, you can use the CP QUERY
command to list the status and characteristics of spool files associated
with your userid.

When you use any of these commands to reference spool files of a
particular device, you have the choice of referring to the files by
class or by spoolid. You can also specify ALL. For example, if you
enter the command

cp query printer all

you might see the display:

ORIGINID FILE CLASS RECDS CPY HOLD DATE TIME NAME
SCARLET 0211 D PRT 000140 01 USER 07/09 10:25:23 TARA
SCARLET 0245 A PRT 000026 01 NONE 07/09 10:25:41 CMSLIB

TYPE DIST
FILE BIN015
MACLIB BIN015

Section 7. Using Real Printers, Punches, Readers, and Tapes 123

until any of these files are processed, or in the case of files in the
hold status, until they are released, you can change the spool file name
and spool file type (this information appears on the first page or first
card of output), the distribution code, the number of copies, the class,
or the hold status, using the CP CHANGE command. For example,

cp change printer all nohold

changes all printer files that are in a hold status to a nohold status.
The CP CHANGE command can also change the spooling class, distribution
code, and so on.

If you decide that you do not want to print a particular printer
file, you can delete it with the CP PURGE command:

cp purge printer 7615

After you have punched a file to some other user, you cannot change
its characteristics or delete it unless you restore it to your own
virtual reader. You can do this with the TRANSFER command:

cp transfer all from usera

'This command returns to your virtual card reader all punch files that
fOU spooled to USERA's virtual card reader.

You can determine, for your reader or printer files, in what order
they should be read or printed. If you issue the command:

cp order printer 8195 6547

~rhen, the file with spoolid of 8195 is printed before the file with a
:spoolid of 6547.

The CP spooling system is very flexible, and can be a useful tool, if
:rou understand and use it properly. The !~L11Q: £~ £Q!!~nd]~!~I~~£~ !Q~
§~!!~!:~l Y!2~!:!2 contains complete format and operand descriptions for the
CP commands you can use to modify spool files.

OSING YOUR CARD PUNCH AND CARD READER IN eMS

The CMS READCARD command reads cards from your virtual card reader at
address Ooe. Cards can be placed in the reader in one of two ways:

o By reading real punched cards into the system card reader. A CP ID
card tells the CP spooling system which virtual card reader is to
receive the card images.

~ By transferring a file from another virtual machine. Cards are
transferred as a result of a virtual punch or printer being spooled
with the TO operand, or as a result of the TRANSFER command. virtual
card images are created with the eMS PUNCH command, or from user
programs or EXEC procedures.

J[f you have a deck of punched cards that you want read into your virtual
lIachine card reader, you should punch, preceding the deck, a CP ID card:

ID HAPPY

424 IBM VM/370: eMS User's Guide

If you plan to use the READCARD command to read this file onto a CMS
disk, you can also punch a READ control card that specifies the filename
and filetype you want to have assigned to the file:

:READ PROG6 ASSEMBLE

Then, to read this file onto your CMS A-disk, you can enter the command

readcard *
If a file named PROG6 ASSEMBLE already exists, it is replaced.

If you do not punch a READ control card, you can specify a filename
and filetype on the READCARD command:

readcard prog6 assemble

If this spool file contained a aEAD control card, the card is not read,
but remains in the file; if you edit the file, you can use the DELETE
subcommand to delete it.

If a file does not have a READ control card, and if you do not
specify a filename and filetype when you read the file, CMS names the
file READCARD CMSUT1.

If you are reading many files into the real system card reader, and
you want to read them in as separate spool files (or you want to spool
them to different userids), you must separate the cards and read the
decks onto disk individually. The CP system, after reading an ID card,
continues reading until it reaches a physical end of file.

When you use the CMS PUNCH command to punch a spool file, a READ control
card is punched to precede the deck, so that it can be read with the
READCARD command. If you do not wish to punch a READ control card (also
referred to as a header card), you can use the NOHEADER option on the
PUNCH command:

punch prog8 assemble * (noheader

You should use the NOHEADER option whenever you punch a file that is not
going to be read by the READCARD command.

The PUNCH command can only punch records of up to 80 characters in
length. If you need to punch or to transfer to another user a file that
has records greater than 80 characters in length, you can use the DISK
DUMP command:

disk dump prog9 data

If your virtual card punch has been spooled to another user, that user
can read this file using the DISK LOAD command:

disk load

unlike the READCARD command, DISK LOAD does not allow you to specify a
file identification for a file you are reading; the filename and
filetype are always the same as those specified by the DISK DUMP command
that created the spool file.

A card file created by the DISK DUMP command can only be read onto
disk by the DISK LOAD command.

Section 7. Using Real Printers, Punches, Readers, and Tapes 125

Iou can use the MOVEFILE command, in
command, to place a file in your virtual
from your card reader to another device.

cp spool punch to *
filedef punch punch
filedef input disk coffee exec a1
movefile input punch

conjunction with the FILEDEF
card reader, or to copy a file
For example,

the file COFFEE EXEC A 1 is punched to your virtual card punch, (in
card-image format) and spooled to your own virtual reader.

Apart from the procedures shown above, that transfer whole files with
one or two commands, there are other methods you can use ta create files
using your virtual card punch. From a program or an EXEC file, you can
punch one line at a time to your virtual punch. Then use CLOSE command
to close the spool file:

cp close punch

Depending on how the punch was spooled (the TO setting), the virtual
punch file is either punched or transferred to a virtual card reader.

F~!£nI!~ £JR~§ ~§I!g !LQ ~!~RQ§: If you write an OS, DOS, or CMS program
that produces punched card output, you should make an appropriate file
definition. If you are an OS user, you should use the FILEDEF command
to define the punch as an output data device; if you are a DOS user, you
must use the ASSGN command. If you are using the CMS PUNCHC macro, the
punch is assigned for you. The spooling characteristics of your virtual
punch control the destination of the punched output.

~!!!£]l!!Q ~!!H!§ IRO~!! ~!~~: T he EXEC facilities provide two control
statements for punching cards: &PUNCH, which punches a single line to
the virtual card punch, and &BEGPUNCH, which precedes a number of lines
to be punched. You can also, in an EXEC, use the commands PUNCH and
DISK DUMP to punch CMS files.

Handling Tape Files in eMS

There are a variety of tape functions that you can perform in CMS, and a
number of commands that you can use to control tape operations or to
read or write tape files. One of the advantages of placing files on
tapes is portability: it is a convenient method of transferring data
from one real computing system to another. In CMS, you can use tapes
created under other operating systems. There are also two CMS commands,
TAPE and DDR, that create tape files in formats unique to CMS, that you
can use to back up minidisks or to archive or transfer CMS files.

Under VM/370, virtual addresses 1~1 through 184 are usually reserved
for tape devices. In most cases, you can refer to these tapes in CMS by
using the symbolic names TAP1 through TAP4. In any event, before you
can use a tape, you must have it mounted and attached to your virtual

126 IBM VM/370: CMS User's Guide

machine by the system operator. When the tape is attached, you receive
a message. For example, if the operator attaches a tape to your virtual
machine at virtual address 181, you receive the message

TAPE 181 ATTACHED

The various types of tape files, and the commands and programs you
can use to read or write them are:

TAPE Command: The CMS TAPE command creates tape files from CMS disk
lIles:--They are in a special format, and should only be read by the CMS
TAPE LOAD command. For examples of TAPE command operands and options,
see IIUsing the CMS T APE Command. II

TAPPDS Command: The TAPPDS command creates CMS disk files from OS or DOS
sequentIal-tape files, or from OS partitioned data sets.

TAPEMAC Command:
macro-libraries
program.

The TAPEMAC command creates CMS MACLIB files from OS
that were unloaded onto tape with the IEHMOVE utility

MOVEFILE Command: The MOVEPILE command can copy a sequential tape file
onto-CiIsk-;-or--a disk file onto tape. Or, it can move files from your
card reader to tape, or from tape to your card punch.

!!§.~£ f£29~.2.!!!§: You can write programs that read or write sequential tape
files using OS, DOS, or CMS macros.

!£~§§. ~gih2~ ~g£!i£~§.: Tapes created by the EXPORT function of Access
Method Services can be read only using the Access Method Services IMPORT
function. Both the IMPORT and EXPORT functions can be accomplished in
CMS using the AMSERV command. The Access Method services REPRO function
can also be used to copy sequential tape files.

QQ~ R£2~£~!: The DDR program, invoked with the CMS command DDR, dumps
the contents of a virtual disk onto tape, and should be used to restore
such files to disk.

USING THE CMS TAPE COMMAND

The CMS TAPE command provides a variety of tape handling functions. It
allows you to selectively dump or load CMS files to and from tapes, as
well as to position, rewind, and scan the contents of tapes. You can
use the TAPE command to save the contents of CMS disk files, or to
transfer them from one VM/370 system to another. The following example
shows how to create a CMS tape with three tape files on it, each
containing one or more CMS fi1es, and then shows how you, or another
user, might use the tape at a later time.

The example is in the form of a terminal session and shows, in the
"Terminal Displayll column, the commands and responses you might see.
System messages and responses are in uppercase, and user-entered
commands are in lowercase. The "Comments" column provides explanations
of the commands and responses.

section 7. Using Real Printers, Punches, Readers, and Tapes 127

listfile * assemble a (exec
R;
cms tape dump
TAPE DUMP PROG1 ASSEMBLE A1
DUMPING •••••
PROG1 ASSEMBLE A1
TAPE DUMP PROG2 ASSEMBLE A1
DUMPING •••••
PROG2 ASSEMBLE A1
TAPE DUMP PROG3 ASSEMBLE A1

TAPE DUMP PROG9 ASSEMBLE A1
DUMPING •••••
PROG9 ASSEMBLE A1
R;
tape wtm
R;
tape dump mylib maclib a
DUMPING •••••
MILIB MACLIB A1
R;
tape dump cmslib maclib *
DUMPING •••••
CMSLIB MACLIB S2
R;
tape wtm
R;
tape dump mylib txtlib a
DUMPING •••••
MILIB TXTLIB A1
R;
tape wtm 2
R;
tape rew
R;
tape scan (eof 4
SCANNING ••••
PROG1 ASSEMBLE A1
PROG2 ASSEMBLE A1
PROG3 ASSEMBLE A1
PROG4 ASSEMBLE A1
PROG5 ASSEMBLE A1
PROG6 ASSEMBLE A1
PROG7 ASSEMBLE 11
PROG8 ASSEMBLE A1
PROG9 ASSEMBLE A1
!ND-OF-FILE OR END-OF-TAPE
~ILIB MACLIB A1
CMSLIB MACLIB S2
END-OF-FILE OR END-OF-TAPE
~YLIB TXTLIB A1
END-OF-FILE OR END-OF-TAPE
END-OF-FILE OR END-OF-TAPE
H;
:tcp det 181
TAPE 181 DETACHED

128 IBM VM/370: CMS User's Guide

Comments
Message-indicates that the tape is

attached.
Prepare to dump all ASSEMBLE files

by using the LISTFILE command EXEC
option; then execute the CMS EXEC
using TAPE and DUMP as arguments.

The TAPE command responds to each
TAPE DUMP by printing the file
identification of the file being
dumped.

The last file, PROG9 ASSEMBLE, is
dumped.

The TAPE command writes a tape mark
to indicate an end-of-file.

Two macro libraries are dumped,
by specifying the file identifiers.

Another tape mark is written.

A TEXT library is dumped.

Two tape marks are written to
indicate the end of the tape.

The tape is rewound.

The tape is scanned to verify
that all of the files are on it.

Tape mark indication.

Two tape marks indicate the end
of the tape.

The CP DETACH command rewinds
and detaches the tape.

1~K!!!~1 ~!~E!§l £Q!!~~12

* * The tape created above is going to be read.

* *********
TAPE 181 ATTACHED

tape load prog4 assemble
LOADING •••••
PROG4 ASSEMBLE A1
R;

tape scan
SCANNIIG ••••
PROGS ASSEMBLE A1
PROG6 ASSEMBLE A1
PROG7 ASSEMBLE A1
PROG8 ASSEMBLE A1
EID-OP-PILE OR END-OP-TAPE
R;
tape scan
SCA I III NG. '" ••
MYLIB MACLIB A1
CMSLIB MACLIB S2
END-OP~PILE OR END-OP-TAPE
R;
tape bsf 2
R;

tape fsf
R;
tape. load (eof 2
LOADIN G •••••
MYLIB MACLIB A1
CMSLIB MACLIB A2
MYLIB TXTLIB A1
END-OP-PILE OR END-OP-TAPE
R;
• cp detach 181
TAPE 181 DETACHED

TAPE LABELS IN CMS

Message indicating the tape is
attached.

One file is to be read onto disk.
The TAPE command displays the

name of the file loaded. Any
existing file with the same
filename and filetype is erased.

The remainder of the first tape
file is scanned.

Indication of end of first tape file.

The second tape file is scanned

The tape is backed up and
postioned in front of the
last tape file.

The tape is forward spaced past
the tape mark.

The next two tape files are
going to be read.

The tape is detached •

CMS cannot read tap~ labels on tapes created under either OS or DOS.
When you want to read a tape file created using either of these
operating systems, you have to use the CMS TAPE co •• and to position the
tape following the tape label:

tape fsf

If you do not forward space the tape, you receive an end-of-file
indication the first time you attempt to read the tape.

Section 7. Using Beal Printers, Punches, Readers, and Tapes 129

THE MOVEFILE COMMAND

The MOVEFILE command can copy sequential tape files into disk files, or
sequential disk files onto tape. It can be particularly useful when you
need to copy a file from a tape and you do not know the format of the
tape.

To use the MOVEFILE command, you must first define the input and
output files using the FILEDEF command. For example, to copy a file from
a tape attached to your virtual machine at virtual address 181 to a CMS
disk, you would enter:

filedef input tap1
filedef output disk tape file a
movefile input output

This sequence of commands creates a file named TAPE FILE A1. Then use
eMS commands to manipulate and examine the contents of the file.

TAPES CREATED gy OS UTILITY PROGRAMS

The CMS command TAPPDS can read as partitioned and sequential data sets
from tapes created by the IEBPTPCH, IEBUPDTE, and IEHMOVE utility
programs. When you use the TAPPDS command, the OS data set is copied
into a CMS disk file, or in the case of partitioned data sets, into
multiple disk files.

1~~gIE£fi: Sequential or partitioned data sets created by IEBPTPCH must
be unblocked for CMS to read them. If JOu have a tape created by this
utility, each member (if the data set is partitioned) is preceded with a
card that contains "MEMBER=membername". If you read this tape with "the
command:

tappds *
then, CMS creates a disk file from each member, using the membername for
the filename and assigning a filetype of CMSUT1. If you want to assign a
particular filetype, for example TEST, you could enter the command as
follows:

tappds * test

If the file you are reading is a sequential data set, you should use the
10PDS option of the TAPPDS command:

tappds test file (nopds

The above command reads a sequential data set and assigns it a file
identifier of TEST FILE. If you do not specify a filename or filetype,
tbe default file identifier is TAPPDS CMSUT1.

!!~YEQI~: Tapes in control file format created by the IEBUPDTE utility
program can be read by CMS. Data sets may be blocked or unblocked, and
may be either sequential or partitioned. Since files created by
IEBUPDTE contain ./ADD control cards to signal the addition of members
to partitioned data sets, you must use the COL1 option of the TAPPDS
command. Also, you must indicate to CMS that the tape was created by
IEBUPDTE. For example, to read a partitioned data set, you would enter
tbe command

tappds * test (update co11

130 IBM VM/370: CMS User's Guide

The CMS disk files created are always in unblocked, 80-character
forma t.

!ln~~!l: os unloaded partitioned data sets on tapes created by the
IEHMOVE utility program can be read either ty the TAPPDS command or by
the TAPEMAC command. The TAPPDS command creates an individual CMS file
from each member of the PDS.

If the PDS is a macro library, you can use the TAPEMAC command to
copy it into a CMS MACLIB. AMACLIB, a CMS macro library, has a special
format, and can usually be created only by using the CMS MACLIB
command. If you use the TAPPDS command, you have to use the MACLIB
command to create the macro library from individual files containing
macro definitions.

SPECIFYING SPECIAL TAPE HANDLING OPTIONS

For most of the tape handling that you do in CMS, you do not have to be
concerned with the density or recording format of the magnetic tapes
that you use. There are, however, some instances when it may be
important and there are command options that you can use with the TAPE
command MODESET operand and with ASSGN and FILEDEF command options.

The specific situations, and the command options you should use, are
listed below.

• If you are reading or writing a 7-track tape, and the density of the
tape is either 200 or 556 bpi, you must specify DEB 200 or DEN 556.

• If you are reading or .riting a 7-track tape with a density of 800
bpi, you must specify 7TRACK.

• If you are reading or writing a 7-track tape without using the data
convert feature, you must use the TRTCH option.

• If you are writing a tape using a 9-track dual density tape drive,
and you want the density to be 800 (on an 800/1600 drive) or 6250 (on
a 1600/6250 drive), then you must specify DEN 800 or DEN 6250.

Using the Remote Spooling Communications Subsystem (RSCS)

If your VM/370 installation is on a Remote Spooling Communications
Subsystem (RSCS) network, you can send printer, punch, or reader spool
files to users at remote locations. To send a spool file, you must know
the userid of the virtual machine at your location that is running RSCS,
and the location identification (locid) of the remote location. If you
are sending a spool file to a particular user at the remote location,
you should also know that userid of the user.

The CP commands that you can use to transmit files across the network
are TAG and SPOOL. The TAG command allows you to specify the locid and
userid that are to receive a spool file, or, in the case of tagging a
printer or punch, of any spool files produced by that device. with the
SPOOL command, you spool your virtual device to the RSCS virtual
machine. You can also use the TRANSFER command to transfer files from
your own virtual card reader.

The CP commands TAG, SPOOL, and TRANSFER are discussed in detail in
the publication !AL11Q: ~~ ~Qm~~D~ ~~1~I~D~ 12I §~D~I!! Y§~I§·

section 7. Using Real Printers, Punches, Readers, and Tapes 131

Part 2. Program Development Using eMS

You can use eMS to write, develop, update, and test:

• as programs to execute either in the eMS environment (using as
simulation) or in an as virtual machine.

• DOS programs to execute in either the eMS/DOS environment or in a DOS
virtual machine.

• eMS programs to execute in the eMS environment.

The as and DOS simulation capabilities of eMS allow you to develop as
and DOS programs interactively in a time-sharing environment. When your
programs are thoroughly tested, you can execute them in an as or DOS
virtual machine under the control of VM/370.

"Section 8. Developing as Programs Under eMS" is for programmers who
use as. It describes procedures and techniques for using eMS commands
that simUlate as functions.

"Section 9. Developing DOS Programs Under eMS" is for programmers who
use DOS. It describes procedures and techniques for using eMS/DOS
commands to simulate DOS/VS functions.

If you use VSAM and Access Method Services, in either a DOS or an as
environment, "Section 10. Using Access Method Services and VSAM in eMS
and CMS/DOS" provides usage information for you. It describes how to
use CMS to manipulate VS1M disks and data sets.

You can use the interactive facilities of CP and CMS to test and
debug programs directly at your terminal. "Section 11. How VM/370 Can
Help You Debug Your Programs" shows examples of commands and debugging
techniques.

The CMS Batch Facility is a CMS
to another machine for execution.
to a CMS batch virtual machine is
eMS Batch Facility."

feature that allows you to send jobs
How to prepare and send job streams
described in "Section 12. Using the

As you learn to use CMS, you may want to write programs for eMS
applications. "Section 13. Programming for the CMS Environment"
contains information for assembler language programmers: linkage
conventions, programming notes, and macro instructions you can use in
CMS programs.

Part 2. Program Development Using CMS 133

Section 8. Developing OS Programs Under eMS

CMS simulates many of the functions of the Operating System (OS),
allowing you to compile, execute and debug as programs interactively.
For the most part, you do not need to be concerned with the CMS as
simulation routines: they are built into the CMS system. Before you can
compile and execute as programs in CMS, however, you must be acquainted
with the following:

• as macros that CMS can simulate
• Using as data sets in CMS
• How to use the FILEDEF command
• Creating CMS files from as data sets
• Using CMS and as Macro Libraries
• Assembling programs in CMS
• Executing programs

These topics are discussed below. Additional information for as VSAM
users is in "section 10. Using Access Method Services and VSAM Under eMS
and eMS/DOS."

For a practice terminal session ~sing the commands and techniques
presented in section 8, see "Appendix D: sample Terminal sessions."

The eMS system uses many OS terms, but there are a number of as
functions that CMS performs somewhat differently. To help you become
familiar with the some of the eMS equivalents (where they do exist) for
os terms and functions, see Figure 11. It lists some commonly-used as
terms and discusses how eMS handles the functions they imply.

Section 8. Developing os Programs Under eMS 135

r------·--------·-------
I os Term/Punction
II
I Cataloged procedure
II
I
~
I
~ Data set
I
~

Da ta Defini tion (DD)
card

Data set Control
Block (DSCB)

EXEC card

Job Control Language
(JCL)

Link-editing

Load module

Object module

Partitioned data $et

STEPCAT,JOBCAT

STEPLIB, JOBLIB

utility program

Volume Table of
Contents (VTOC)

--------- ------,
CMS Equivalent 1

------------------------------- ·------1
EXEC files can execute command sequences 1
similar to cataloged procedures, and provide I
for conditional execution based on return
codes from previous steps.

Data sets are called files in CKS; CKS files
are always sequential but CKS simulates os
partitioned data sets. CKS reads and writes
VSAM da ta sets.

The PILEDEP command allows you to perform the
functions of the DD statement to specify
device types and output file dispositions.

Information about a CMS disk file is contained
in a Pile status Table (PST).

To execute a program in CKS you specify only
the name of the program if it is an EXEC,
KODULE file, or CKS command. To execute TEIT
files, use the LOAD and START commands.

CKS and user-written commands perform the
functions of JCL.

The CMS LOAD command loads object decks (TEXT
files) into virtual storage, and resolves
external references; the GEHKOD command
creates absolute nonrelocatable modules.

CKS MODULE files (resulting from the LOAD and
GEHMOD co.mand~ are nonrelocatabl~.

Language compiler output is placed in CMS
files with a filetype of TEXT.

CMS MACLIBs and TITLIBs are the only CMS files
that resemble partitioned data sets.

VSAM catalogs can be assigned for jobs or job
steps in CKS by using the special ddnames
IJSYSCT and IJSYSUC when identifying catalogs.

The GLOBAL command establishes macro and text
libraries; you can indirectly provide job
libraries by accessing and releasingCMS disks
that contain the files and programs you need.

Punctions similar to those perf ormed by the as
utility programs are provided by CKS commands.1

The list of files on a CMS disk is contained
in a master file directory.

I
I
I L- . ______________________ _

___ .J

Figure 11. os Terms and CMS Equivalents

136 IBM VK/370: CMS User's Guide

Using OS Data Sets in eMS

You can have as disks defined in your virtual machine configuration;
they may be either entire disks or minidisks: their size and extent
depends on their VM/370 directory entries. You can use partitioned and
sequential data sets on as disks in CMS. If you want, you can create
CMS files from your as data sets. If you have data sets on as disks,
you can read them from programs you execute in CMS, but you cannot
update them. The CMS commands that recognize as data sets on as disks
are listed in Figure 12.

-----------,
Command Operation

ACCESS Makes the as disk containing the data set available
to your CMS virtual machine.

ASSEMBLE Assembles an as source program under CMS.

DDR Copies an entire as disk to tape.

DLBL Defines as data sets for use with Access Method Services
and VSAM files for program input/output.

FILEDEF Defines the as data set for use under CMS by associating
an as ddname with an as data set name. Once defined,
the data set can be used by an as program running under
CMS and can be manipUlated by the other commands that
support as functions.

GLOBAL Makes macro libraries available to the assembler. You can
prepare an as macro library for reference by the GLOBAL
command by issuing a FILEDEF command for the data set and
giving the data set a filetype of MACLIB.

LISTDS Lists information describing as data sets residing on
as disks.

MOVEFILE Moves data records from one device to another device. Each
device is specified by a ddname, which must have been
defined via FILEDEF. You can use the MOVEFILE command to
create CMS files from as data sets.

QUERY Lists (1) the files that have been defined with the

I

FILEDEF and DLBL commands (QUERY FILEDEF, QUERY DLBL), or
(2) the status of as disks attached to your virtual machinel
(QUERY DISK, QUERY SEARCH). I

I
RELEASE Releases an as disk you have accessed (via ACCESS) from I

your CMS virtual machine. I
I

STATE Verifies the existence of an as data set on a disk. I
Before STATE can verify the existence of the data set, I
you must have defined it (via FILEDEF) • I

_.J

Figure 12. CMS Commands That Recognize as Data Sets and as Disks

section 8. Developing as Programs Under CMS 137

ACCESS METHODS SUPPORTED BY CMS

as access methods are supported, to varying extents, by CMS. Under CMS,
you can execute programs that use the as data management macros that are
supplied for these access methods:

• BDAM
'. BPAM
• BSAM I. QSAM
• VSAM

JH~!l!, ~2!.H, ~l!.Q 2'§!~: You can execute programs in CMS that read records
from as data sets using the BPAM, BSAM, or QSAM access methods. You
Icannot, however, write or update as data sets that reside on as disks.

BDAM: CMS can neither read nor write as data sets on as disks using the
i~ii access method.

!.§!.H li!!§: CMS can read and write VSAM files
information on using VSAM under CMS, see "Section
Method Services and VSAM Under eMS and CMS/DOS."

on as disks.
10. using

For
Access

If you want to test programs in eMS that create or modify as data sets,
you can write "aS simulated data sets." These are eMS files that are
maintained on eMS disks, but in as format rather than in eMS format.
Since they are eMS files, you can edit, rename, copy, or manipulate them
just as you would any other eMS file. Since they are in OS-simulated
format, files with variable-blocked records may contain block and record
descriptor words so that the access methods can manipulate them
properly.

The files that you create from as programs do not necessarily have to
be as simulated data sets. You can create eMS files. The format of an
output file depends on how you specify the filemode number when you
issue the FILEDEF command to identify the file to eMS. If you specify
the filemode number as 4, eMS creates a file that is in as simulated
data set format on a eMS disk.

eMS can read and write as simulated data sets using the BDAM, BPAM,
aSAM, and QSAM access methods.

The following restrictions apply when you read as data sets from as
disks under eMS:

~ Read-password-protected data sets are not read.

~ BDAM and ISAM data sets are not read.

~ Multivolume data sets are read as single-volume data sets.
End-of-volume is treated as end-of-file and there is no end-of-volume
swi tching.

138 IBM VM/370: CMS User's Guide

• Keys in data sets with keys are ignored; only the data is read.

• User labels in user-labeled data sets are bypassed.

Using the FILEDEF Command

Whenever you execute an OS program under CMS that has
output files, or you need to read an OS data set onto a
must first identify the files to CMS with the FILEDEF
FILEDEF command in CMS performs the same functions
Definition (DD) card in os job control language (JCL): it
input and output files.

When you enter the FILEDEF command, you specify:

• The ddname
• The device type
• A file identification, if the device type is DISK
• Options (if necessary)

Some guidelines for entering these specifications follow.

SPECIFYING THE DDNAME

input and/or
CMS disk, you
command. The
as the Data
describes the

If the FILEDEF command is issued for a program input or output file,
then the ddname must be the same as the ddname or file name specified
for the file in the source program. For example, you have an assembler
language source program that contains the line:

INFILE DCB DDNAME=INPUTDD,MACRF=GL,DSORG=PS,RECFM=F,LRECL=80

For a particular execution of this program, you want to use as your
input file a CMS file on your A-disk that is named MYINPUT FILE, then,
you must issue a FILEDEF for this file before executing the program:

filedef inputdd disk myinput file a1

If the input file you want to use is on an OS disk accessed as your
C-disk, and it has a data set name of PAYROLL.RECORDS.AUGUST, then your
FILEDEF command might be

filedef inputdd c1 dsn payroll records august

SPECIFYING THE DEVICE TYPE

For input files, the device type you enter on the FILEDEF command
indicates the device from which you want records read. It can be DISK,
TERMINAL, READER (for input from real cards or virtual cards), or TAPn
(for tap~. Using the above example, if your input file is to be read
from your virtual card reader, the FILEDEF command might be as follows:

filedef inputdd reader

Or, if you were reading from a tape attached to your virtual machine at
virtual address 181 (TAP1):

section 8. Developing OS Programs Under CMS 139

filedef inputdd tap1

For output files, the device you specify can be DISK, PRINTER, PUNCH,
TAPn (tape), or TERMINAL.

If you do not want any real I/O performed during the execution of a
program for a disk input or output file, you can specify the device type
as DUMMY:

filedef inputdd dummy

ENTERING FILE IDENTIFICATIONS

If you are using a CMS disk file for your input or output, you specify

filedef ddname disk filename filetype filemode

The filemode field is optional; if you do not specify it, your A-disk is
assumed. If you want an output file to be constructed in OS simulated
data set format, you must specify the filemode number as 4. For
example, a program contains a DCB for an output file with a ddname of
OUTPUTDD, and you are using it to create a CMS file named DAILY OUTPUT
on your B-disk:

filedef outputdd disk daily output b4

If your input file is an OS data set on an as disk, you can identify
it in several ways:

• If the data set name has only two
HEALTH. RECORDS, you can specify:

filedef inputdd disk health records b1

qualifiers, for example

• If it has more than two qualifiers, you can use the DSN keyword and
enter:

filedef inputdd b1 dsn health records august 1974

Or you can request a prompt for a complete data set name:

filedef inputdd b1 dsn ?
ENTER DATA SET NAME:
health.records.august.1974

IQi~: When you enter a data set name using the DSN keyword, either
with or without a request for prompting, you should omit the device
type specification of DISK, unless you want to assign a CMS file
identifier, as in the example below.

• You can also relate an OS data set name to a CMS file identifier:

filedef inputdd disk ossim file c1 dsn monthly records

Then you can refer to the OS data set MONTHLY. RECORDS by using the
CMS file identifier, OSSIM FILE:

state ossim file c

When you do not issue a FILEDEF command for a program input or output
file, or if you enter only the ddname and device type on the FILEDEF
command, such as:

140 IBM VM/370: CMS User's Guide

filedef oscar disk

then CMS issues a default file definition, as follows:

FILEDEF ddname DISK FILE ddname A1

where ddname is the ddname you assigned in the DDNAME operand of the DCB
.acro in your progr~m or on the FILEDEF command. For example, if you
assign a ddname of OSCAR to an output file and do not issue a FILEDEF
command before you execute the program, then the CMS file FILE OSCAR A1
is created when you execute the program.

SPECIFYING OPTIOBS

The FILEDEF command has many options; those mentioned below are a
sampling only. For complete descriptions of all the options of the
FILEDEF command, see the !ALJ1Q: ~A2 £Q~~~~g ~~~ A~~~~ ~~!~~~]£§.

BLOCK, LRECl, RECFM, DSORG: If you are using the FILEDEF command to
relate i--data control-block (DCB) in a program to an input or output
file, you may need to supply som.e of t he file format informa tion, such
as the record length and block size, on the FILEDEF command line. For
example, if you have coded a DCB macro for an output file as follows:

OUTFILE DCB DDNAME=OUT,MACRF=PM,DSORG=PS

then, when you are issuing a FILEDEF for this ddname, you must specify
the format of the file. To create an output file on disk, blocked in as
simulated data set format, you could issue:

filedef out disk myoutput file a4 (recfm fn lrecl 80 block 1600

TO punch the output file onto cards, you would issue

filedef out punch (lrecl 80 recfm f

yOU must supply file format information on the FILEDEF command line
whenever it is not supplied on the DCB macro, except for existing disk
files.

f~BA: Usually, when you execute one of the language processors, all
existing file definitions are cleared. If the development of a program
requires you to recompile and re-execute it frequently, you might want
to use the PERM option when you issue file definitions for your input
and output files. For example:

cp spool punch to *
filedef indd disk test file a1 (lrecl 80 perm
filedef outdd punch (lrecl 80 perm

In this example, since you spooled your virtual punch to your own
virtual card reader, output files are placed in your virtual reader. You
can either read or delete them.

All file definitions issued with the PERM option stay in effect until
you log off, specifically clear those definitions, or redefine them:

filedef indd clear
filedef outdd tap1 (lrecl 80

In the above example, the definition for INDD is cleared; OUTDD is
redefined as a tape file.

section 8. Developing as Programs Under CMS 141

When you issue the command

filedef * clear

all file definitions are cleared, except those you enter with the PERM
option.

When a program abends, or when you issue the HX Immediate command,
all file definitions are cleared, including those entered with the PERM
option.

~l~f ~Q~: When you issue a FILEDEF command for an output file and assign
it a CMS file identifier that is identical to that of an existing CMS
file, then when anything is written to that ddname the existing file is
replaced by the new output file. If you want, instead, to have new
records added to the bottom of the existing file, you can use the DISP
MOD option:

filedef outdd disk new update a1 (disp mod

~]~~]~: If the file you want to read is a memter of an as partitioned
data set (or a CMS MACLIB or TXTLIB), you can use the MEMBER option to
specify the membername, for example

filedef test c dsn sys1 maclib (member test

defines the member TEST from the as macro library SYS1.MACLIB.

Creating CMS Files From OS Data Sets

If you have data sets on as disks, or on tapes or cards, you can copy
them into CMS files so that you can edit, modify, or manipulate them
with CMS commands. The CMS MOVEFILE command copies as (or CMS) files
from one device to another. You can move data sets from any valid input
device to any valid output device.

Before using the MOVEPILE command, you must define the input and
output data sets or files and assign them ddnames using the FILEDEF
command. If you use the ddnames INMOVE and OUTMOVE, then you do not
need to specify the ddnames when you issue the MOVEFILE command. For
example, the following sequence of commands copies a CMS disk file into
your virtual card punch:

filedef inmove disk diskin file a1
filedef outmove punch
movefile

The result of these commands is effectively the same as if you had
issued the command

punch diskin file (noheader

The example does, however, illustrate the basic relationship between the
FILEDEF and MOVEFILE commands. In addition to the MOVEFILE command, if
the as input data set is on tape or cards, you can use the TAPPDS or
READCARD command to create CMS files. These are also discussed below.

£Qf!!!§ ~~2~~!I!!~ DATA SETS FROM DISK: The MOVEPILE command copies a
sequential as disk ~i~i ;~~-f~~i-a--~~ad-only as disk into an integral
CMS file on a CMS read/write disk. You use FILEDEF commands to identify
the input file disk mode and data set name:

142 IBM VM/370: CMS User's Guide

filedef inmove c1 dsn sales manual

the CMS output file's disk location and fileid:

filedef outmove disk sales manual a1

and then you issue the MOVEPILE command:

movefile

COPYING PARTITIONED DATA SETS PROM DISK: The MOVEFILE command can copy
partItioned-data---(PDS) into- CMS-disk-files, and create separate CMS
files for each member of the data set. You can have the entire data set
copied, or you can copy only a selected member. Por example, if you
have a partitioned data set named ASSEMBLE. SOURCE whose members are
individual assembler language source files, your input file definition
might be:

filedef inmove c1 dsn assemble source

To create individual CMS ASSEMBLE files, you would issue the output file
definition as:

filedef outmove disk qprint assemble a1

Then use the PDS option of the MOVEPILE command:

movefile (pds

When the CMS files are created, the filetype on the output
definition is used for the filetype and the member names are
instead of the CMS filename you specified.

file
used

If you want to copy only a single member, you can use the MEMBER
option of the PILEDEF command:

filedef inmove disk assemble source c (member qprint

and omit the PDS option on the MOVEFILE command:

movefile

Figure 13 summarizes the various ways that you can create CMS files
from OS data sets.

section 8. Developing OS Programs Under eMS 143

,.---------------------------------------._---------, 1 Input File: An OS sequential data set named: COMPUTE.TEST.RECORDS 1
1 ------------------------------·----------1
1 Source 1 CMS Command Examples 1 CMS Output File 1
1------- -----------------1
1 Disk: 1 filedef indd cl dsn compute test records 1 COMPUTE RECORDS A1 1
1 os RIO 1 filedef outdd disk compute records a1 1 1
1 C-disk 1 movefile indd outdd 1 1
1- 1
1 Tape: filedef inmove tap1 (lrecl 80 TEST RECORDS A1 1
1 181 filedef outmove disk test records al 1
1 1 movefile 1 1
1 1--- --------------------------------------·-------1
1 1 tappds newtest compute (nopds 1 NEWTEST COMPUTE A1 1
1--------- --1
1 Cards I filedef cardin reader 1 COMPUTE CARDS Al 1
1 1 filedef diskout disk compute cards alii
1 1 movefile cardin disk out 1 1
1 1---1
1 1 readcard comFute test 1 COMPUTE TEST Al 1
1----------_· __ ·_------------------------------_·_------I
1-----------,-----------_·_-------------------------'--------1
1 Input file: OS partitioned data set named: TEST. CASES I
1 Members named: SIMPLE, COMPLEX, MIXED 1
1 ----------------1
1 Source I CMS Command Examples 1 CMS Output File(s) 1
1------ --·--1
1 Disk: 1 filedef infile disk test cases c 1 1 SIMPLE TESTCASE A 1 I
1 OS RIO 1 filedef outfile disk new testcase al 1 COMPLEX TESTCASE Al 1
1 C-disk 1 movefile infile outfile (pds 1 MIXED TESTCASE 1
1 1--------·--I
1 I filedef in cl dsn test cases (member simple 1 FILE RUN Al 1
1 1 filedef run disk I I
1 I movefile in run 1 1
1--------------,-_·_--1
1 Tape: I tappds * testrun (tap2 1 SIMPLE TESTRUN Al 1
1 182 I I COMPLEX TESTRUN A 1 I
1 I 1 MIXED TESTRUN A 1 I '--_______________________ . __________ ,'-_________________ --------1
Figure 13. Creating CMS Files From OS Data Sets

U sing eMS Libraries

CMS provides two types of libraries to aid in as program development:

• Macro libraries contain macro definitions and/or copy files

• Text, or program libraries contain relocatable object programs
(compiler output)

These CMS libraries are like OS partitioned data sets; each has a
directory and members. Since they are not like other CMS files, you
create, update, and use them differently than you do other CMS files.
Macro libraries are discussed below; text libraries are discussed under
"TEXT Libraries (TXTLIBs)" later in this section.

A CMS macro library has a filetype of MACLIB. You can create a ,MACLIB
from files with filetypes of MACRO or COPY. A MACRO file may contain
macro definitions; COpy files contain predefined source statements.

When you want to assemble or compile a source program that uses macro
or copy definitions, you must ensure that the library containing the
code is identified before you invoke the compiler. Otherwise, the
library is not searched. You identify libraries to be searched using the

144 IBM VM/370: CMS User's Guide

GLOBAL command. For example, if you have two MACLIBs that contain your
private macros and copy files whose names are TEST MAC MACLIE and
TESTCOPY MACLIE, you would issue the command

global maclib testmac testcopy

The libraries you specify on a GLOBAL command line are searched in the
order you specify them. A GLOBAL command remains in effect for the
remainder of your terminal session, until you issue another GLOBAL
MACLIB command or re-IPL CMS. To find out what macro libraries are
currently available for searching, issue the command

query mac lib

You can reset the libraries or the search order cy reissuing the GLOBAL
command.

THE MACLIB COMMAND

The MACLIB command performs a variety of functions. You use it to:

• Create the MACLIB (GEN function)
• Add, delete, or replace members (ADD, DEL, and REP functions)
• Compress the MACLIB (COMP function)
• List the contents of the MACLIB (MAP function)

Descriptions of these MACLIE command functions follow.

2~~ l~n£1!2n: The GEN (generate) function creates a CMS macro library
from input files specified on the command line. The input files must
have filetypes of either MACRO or COPY. For example:

maclib gen osmac access time put regequ

creates a macro library with the file identifier OSMAC MACLIB A1 from
macros existing in the files with the file identifiers:

ACCESS {MACRO},TIME {MACRO},PUT {MACRO},and REGEQU {MACRO}
COPY COpy COpy COpy

If a file named OSMAC MACLI~ A1 already exists, it is erased.

Assume that the files ACCESS MACRO, TIME COPY, POT MACRO, and REGEQU
COpy exist and contain macros in the following form:

ACCESS MACRO TIME COPY PUT MACRO REGEQO COpy
------------ --------- --------- -----------

GET *COPY TTIMER POT XREG
TTIMER

PUT *COPY STIMER YREG
STIMER

The resulting file, OSMAC MACLIB A1, contains the members:

GET
PUT
TTIMER

STIMER
PUT
REGEQU

The PUT macro, which appears
appears twice in the output.

twice in the input to the command, also
The MACLIB command does not check for

section 8. Developing OS Programs Under CMS 145

duplicate macro names. If, at a later time, the PUT macro is requested
from OSMAC MACLIB, the first PUT macro encountered in the directory is
used.

When COpy files are added to MACLIBs, the name of the library member
is taken from the name of the COpy file, or from the *COPY statement, as
in the file TIKE COpy, above. Note that although the file REGEQU COpy
contained two macros, they were both included in the MACLIB with the
name REGEQU. When the input file is a MACRO file, the member name(~ are
taken from macro prototype statements in the MACRO file.

A.!~12 lY.!!£!,!.2.!!: The ADD function appends new members to an existing macro
library. Por example, if OSMAC MACLIB A1 exists as created in the
example in the explanation of the GEN function and the file DCB COpy
exists as follows:

*COPY DCB
DCB macro definition

*COPY DCBD
DCBD macro definition

if you issue the eommand

mac lib add osmac dcb

the resulting OSMAC MACLIB A1 contains the members:

GET
PUT
TTl MER
STIMER

PUT
REGEQU
DCB
DCBD

!UU~ 1.Y.!!~!'!.2.!!: The REP (replace)' function deletes the directory entry for
the macro definition in the files specified. It then appends new macro
definitions to the macro library and creates new directory entries. For
example, assume that a macro library MYMAC MACLIB contains the members
A~ B, and C, and that the following command is entered:

mac lib rep .ymac a c

The files represented by file identifiers A MACRO and C MACRO each have
one macro definition. After execution of the command, MYMAC KACLIB
contains members with the same names as before, but the contents of A
and C are different.

~!H~ 1!!!!~!!.Q!!: The DEL (delete) function removes the specified macro name
from the macro library directory and compresses the directory so there
are no unused entries. The macro definition still occupies space in the
library, but since no directory entry exists it cannot be accessed or
retrieved. If you attempt to delete a macro for which two macro
definitions exist in the macro library, only the first one encountered
is deleted. For example:

maclib del osmac get put ttimer dcb

deletes macro names GET, PUT, TTIKER, and DCB from the directory of the
macro library named OSMAC MACLIB. Assume that OSMAC exists as in the ADD
function example. After the above command, OSMAC MACLIB contains the
following members:

STIMER
PUT
REGEQU
DCBD

146 IBM VM/370: CMS User's Guide

COMP Function: Execution of a MACLIB command with the DEL or REP
functions--can leave unused space within a macro library. The COMP
(compress) function removes any macros that do not have directory
entries. This function uses a temporary file named MACLIB CMSUT1. For
example, the command:

mac lib comp mymac

compresses the library MYMAC MACLIB.

MAP Function: The MAP function creates a list containing the name of
each-macro--in the directory, the size of the macro, and its position
within the macro library. If you want to display a list of the members
of a MACLIB at the terminal, enter the command

maclib map mylib (term

The default option, DISK, creates a file on your A-disk, which
filetype of MAP and a filename corresponding to the filename
MACLIB. If you specify the PRINT option, the list is spooled
virtual printer, as well as being written onto disk.

has a
of the

to your

The following CMS commands have MEMBER options, which allow you to
reference individual members of a MACLIB:

• PRINT (to print a member)
• PUNCH (to punch a member)
• TYPE (to display a member)
• FILEDEF (to establish a file definition for a member)

You can use the CMS Editor to create MACRO and COpy
use the MACLIB command to place the files in a library.
in a library, you can erase the original files.

files and then
Once they are

To extract a member from a macro library, you can use either the
PUNCH or the MOVEFILE command. If you use the PUNCH command you can
spool your virtual card punch to your own virtual reader:

cp spool punch to *

then punch the member:

punch testmac mac lib (member get noheader

and read it back onto disk:

readcard get macro

In the above example, the member was punched with the NOHEADER option of
the PUNCH command, so that a name could be assigned on the READCARD
command line. If a header card had been created for the file, it would
have indicated the filename and filetype as GET MEMBER.

If you use the MOVEFILE command, you must issue a file definition for
the input member name and the output macro or copy name before entering
the MOVEFILE command:

filedef inmove disk testcopy maclib (member enter
filedef outmove disk enter copy a
movefile

section 8. Developing OS Programs Under CMS 147

This example copies the member ENTER from the macro library TESTCOPY
tUlCLIB into a CMS file named ENTER COPY.

When you use the PUNCH or MOVEFILE commands to extract members from
CMS MACLIBs, each member is followed by a // record, which is a MACLIB
delimiter. You can edit the file and use the DELETE subcommand to
de!lete the / / record.

The macro libraries that are on the system disk contain CMS and. as
assembler language macros that you may want to use in your programs:

• CMSLIB MACLIB contains the CMS macros.

• OSMACRO MACLIB contains the as macros that CMS simulates.

• OSMACR01 MACLIB contains the macros CMS
assemble programs in CMS that contain
execute them in an as virtual machine.)

• TSOMAC MACLIB contains TSO macros.

does not simulate. (You can
these macros, but you must

• DOSMACRO MACLIB contains macros used in CMS/DOS.

To obtain a list of the macros in any of these libraries, use the MAP
function of the MACLIB com.and.

USING as MACRO LIBRARIES

If you want to assemble source programs that contain macro state.ents
that are defined in macro libraries on your as disks, you can use the
FILEDEF command to identify them to CMS so that you can name them when
you issue the GLOBAL command. For example, the commands

filedef caslib disk temp mac lib c dsn test asm macros
global maclib temp

allow you to access the macro library TEST.ASM.MACROS on the as disk
accessed as your C-disk.

When you issue a FILEDEF command for an assembler language macro
library you must use a ddname of CMSLIB; and you must provide a CMS file
identifier for the as data set. In the example above, the os macro
library TEST.ASM.MACROS is given the CMS file identifier TEMP MACLIB.

If you want to use more than one os macro library you must issue a
FILEDEF command for each library using the ddname CMSLIB and specifying
the CONCAT option. For example:

filedef cmslib disk aspl maclib * dsn asp1 macros rl (concat recfm fb block 3360 lrecl 80
filedef cmslib disk asp2 maclib * dsn asp2 macros rl (concat
filedef cmslib disk sys1 maclib *
global maclib asp1 asp2 sys1 osmacro cmslib

The GLOBAL command establishes the search order of the libraries as:
ASP1.MACROS.RL, ASP2.MACROS.RL, SYS1.MACLIB, OSMACRO MACLIB, and CMSLIB
MACLIB. Note that the third library specified is entered in an
abbreviated form. You can use this form when the data set name of the

148 IBM VM/370: CMS User's Guide

macro library has only two qualifiers and the second qualifier is
MACLIB; thus, the equivalency is established between SYS1.MACLIB and the
CMS file identifier SYS1 MACLIB.

The file format information describes the macro libraries to CMS;
when you are concatenating as macro libraries, they must all be in the
same format, s~nce the options entered on the first FILEDEF command are
applied to all the libraries.

If you are using only one as macro library in addition to CMS MACLIBs
you can enter either

filedef cmslib disk lib1 maclib * dsn sys1 maclib (concat
global maclib lib1 cmslib

or --

filedef cmslib disk lib1 maclib * dsn sys1 maclib
global maclib lib1 cmslib

To identify libraries for use with the language processors, you must
use the ddname SYSLIB.

Using OS Macros Under CMS

you can assemble and execute programs under CMS that use as macros.
Figure 14 lists the as macros that CMS simulates. The macros that are
are listed as "Effective no-op" and "no-op" are macros that are not
supported in CMS; you can assemble programs that contain these macros,
but when you execute them in CMS the macro functions are not performed.
To execute these programs, you must run them in an as virtual machine.

For a more detailed description of how CMS simulates the functions of
these macros, and to see whether any particular function of a macro is
not supported, see the Y~LJIQ: ~Y21~~ g!g~~~~~!~§ ~y~g~.

Assembling Programs in CMS

To assemble assembler language source programs into object module
format, you can use the ASSEMBLE command, and specify assembler options
on the command line, for example

assemble myfile (print

assembles a source program named MYFILE ASSEMBLE and directs the output
listing to the printer. All of the ASSEMBLE command options are listed
in the !~LllQ: ~~~ ~Qmm~Rg gRg ngf~Q i~!~!~Rf~·

When you invoke the ASSEMBLE command specifying a file with the
filetype of ASSEMBLE, CMS searches all of your accessed disks, using the
standard search order, until it locates the specified file. When the
assembler creates its output listing and text deck, it creates files
with filetypes of LISTING and TEXT, and writes them onto disk according
to the following priorities:

1. If the source file is on a read/write disk, the TEXT and LISTING
files are written onto that disk.

section 8. Developing as Programs Under CMS 149

r
~~£!Q
ABEND
ATTACH
BLDL
BSP
CHAP
CHECK
CHKPT
CLOSE
DCB
DCBD
DELETE
DEQ
DETACH
DEVTYPE
ENQ
EXTRACT
FIND
FREEDBUF
FREEMAIN
FREEMAIN
FREE POOL
GET
GETMAIN
GETMAIN
GET POOL
IDENTIFY
LINK
LOAD
NOTE
OPEN
OPENJ
POINT
POST
PUT
RDJFCB
READ
RETURN
SAVE
SNAP
SPIE

STAE

STAX
STIMER
STOW
SYNADAF
SYNADRLS
TCLEARQ
TCLOSE
TGET/TPUT
TIME
TRKBAL
TTIMER
WAIT
WRITE
WTO/WTOR
XCTL

XDAP L_. ______ _

~!~ ~Q.
13
42
18
69
44

63
20

09
48
62
24
56
40
18
57
05
10

04
10

41
06
08

19
22

02

64

51
14

60

96
47
21

94
23
93
11
25
46
01

35
07

00

Function
TermInate processing
Effective LINK
Build a directory list for a PDS
Back up a record on a tape or disk
Effective no-op
Verify READ/WRITE macro completion
Effective no-op
Deactivate a data file
construct a data control block
Generate a DSECT for a data control block
Delete a loaded phase
Effecti ve no-op
Effective no-op
Obtain device-type characteristics
Effective no-op
Effecti ve no-op
Locate a member of a partitioned data set
Release a free storage buffer
Release user-acquired storage
Manipulate user free storage
Simulate as SVC 10
Read system-blocked data (QSAM)
Conditionally acquire user storage
Manipulate user free storage
Simulate as SVC 10
Add entry to loader table
Link control to another phase
Read a phase into storage
Manage data set positioning
Activate a data file
Activate a data file
Manage data set positioning
Post the I/O completion
write system-blocked data (QSAM)
Obtain information from FILEDEF command
Access system-record data
Return from a subroutine
Save program registers
Dump specified areas of storage
Allow processing program to

handle program interrupts
Allow processing program to

decipher abend conditions
create an attention exit block
Set timer
Manipulate partitioned directories
Provide SYNAD analysis function
Release SYNADAF message and save areas
Clear terminal input queue
Temporarily deactivate a data file
Read or' write a terminal line
Get the time of day
no-op
Access or cancel timer
Wait for an I/O completion
write system-record data
Communicate with the terminal
Delete, then link control to another

load phase
Read or write direct access volumes

Figure 14. OS Macros Simulated by CMS

150 IBM VM/370: eMS User's Guide

,
I
I
I
I
I

2. If the source file is on a read-only extension of a read/write
disk, the TEXT and LISTING files are written onto the parent disk.

3. If the source file is on any other read-only disk, the TEXT and
LISTING files are written onto the A-disk.

In all of the above cases, the TEXT and LISTING files have a filename
that is the same as the input ASSE~BLE file.

The input and output files used by the assembler are assigned by
FILEDEF commands that CMS issues internally when the assembler is
invoked. If you issue a FIL.DEF command using one of the assembler
ddnames before you issue the ASSEMBLE command, you can override the
default file definitions.

The ddname for the source input file (SYSIN) is ASSEMBLE.
enter

filedef assemble reader
assemble sample

If you

then the assembler reads your input file from your card reader, and
assigns the filename SAMPLE to the output TEXT and LISTING files.

You could assemble a source file directly from an OS disk by entering

filedef assemble disk myfile assemble b4 dsn os source file
assemble myfile

In this example, the CMS file identifier MYFILE ASSEMBLE is assigned to
the data set OS.SOURCE.FILE and then assembled.

LISTING and TEXT are the ddnames assigned to the SYSPRINT and SYSLIN
output of the assembler. You might assign file definitions to override
these defaults as follows:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
assemble source

In this example, output from the assembly of the file, SOURCE ASSEMBLE,
is written to the files, ASSEMBLE LISTFILE and ASSEMBLE TEXTFILE.

The ddnames PUNCH and CMSLIB are used for SYSPUNCH and SYSLIB data
sets. PUNCH output is produced when you use the DECK option of the
ASSEMBLE command. The default file definition for CMSLIB is the macro
library CMSLIB MACLIB, but you must still issue the GLOBAL command if
you want to use it.

Executing Programs

After you have assembled or compiled a source program you can execute
the TEXT files that were produced by the assembly or compilation. You
may not, however, be able to execute all your OS programs directly in
CMS. There are a number of execution-time restrictions placed on your
virtual machine by VM/370. YOu cannot execute a program that uses:

• Multi tasking
• More than one partition
• Teleprocessing
• IS AM macros to read or write files

section 8. Developing OS Programs Under CMS 151

The above is only a partial list, representing those restrictions with
which you might be concerned. For a complete list of restrictions, see
th e !!!LIIQ: Rlg!!!!i!!9: ~H.!g ~I'§!~1! §~!!~!E:!:i.Q!! §.!!i.9~ •

EXECUTING TEXT FILES

TEXT files, in CMS, are relocatable, and can be executed simply by
loading them into virtual storage with the LOAD command and using the
START command to begin execution. For example, if you have assembled a
source program named CREATE, you have a file named CREATE TEXT. You can
issue the command

load create

which loads the relocatable object file into storage, and then, to
execute it, you can issue the START command:

start

In the case of a simple program, as in the above example, you can
load and begin execution with a single command line, using the START
option of the LOAD command:

load create (start

When you issue the START command or LOAD command with the START
Ol)tion, control is passed to the first-entry point in your program. If
you have more than one entry point and you want to begin execution at an
entry point other than the first, you can specify the alternate entry
point or CSECT name on the START command:

start create2

When you issue the LOAD command specifying the filename of a TEXT file,
cns searches all of your accessed disks for the specified file.

If your program expects a parameter list to be passed (via register
1)" you can specify the arguments on the START command line. If you
enter arguments, then you must specify the entry point:

start * nalle1

When you specify the entry point as an asterisk (*) it indicates that
you want to use the default entry point.

You can issue the FILEDEF command to define input and output files any
time before you begin program execution. You can issue all your file
definitions before loading any TEXT files, or issue them during the
loading process. You can find out what file definitions are currently
in effect by issuing the FILEDEF command with no operands:

filedef

You can also use the FILEDEF operand of the QUERY command.

152 IBM VM/370: CMS User's Guide

TEXT LIBRARIES (TXTLIBS)

You may want to keep your TEXT files in text libraries, that have a
filetype of TITLI~. Like ftAeLIBs, TXTLIBs have a directory and members.
TXTLIBs are created and modified by the TXTLIB command, which has
functions similar to the MACLIB command:

• The GEN function creates the TITLIB.
• The ADD function adds members to the TXTLIB.
• The DEL function deletes members and compresses the TITLIB.
• The MAP function lists members.

There is no REP function; you must use a DEL followed by an ADD to
replace an existing member. The CMS commands that recognize MACLIBs as
special filetypes also recognize TITLIBS, and allow you to display,
print, or punch TITLIB members.

The TITLIB command reads the object files as it wLites them into the
library, and creates a directory entry for each entry point or CSECT
na.e. If you have a TEIT file named MYPROG, which has a single routine
named BEGIR, and create the TITLIB named TESTLIB as follows:

txt lib gen testlib ayprog

TESTLIB contains no entry for the name MYPROG; you must specify the
.eabername BEGIN to reference this TXTLIB member.

When you want to load members of TXTLIBs into storage to execute them
(just as you execute TEIT files), you must issue the GLOBAL command to
identify the TXTLIB:

global txtlib testlib
load begin (start

When you specify more than one TXTLIB on the GLOBAL command line, the
order of search is established for the TXTLIBs. However, if the AUTO
option is in effect (it is the default), CMS searches for TEXT files
before searching active TXTLIBs.

When the TXTLIB command processes a TEXT file, it writes an LDT
(loader terminate) card at the end of the TEXT file, so that when a load
request is issued for a TITLIB member, loading terminat~s at the end of
the member. If you add as linkage editor control statements to the TEXT
file (using the CMS Editor) before you issue the TXTLIB command to add
the file to a TXTLIB, the control statements are processed as follows:

I!!!: A NAftE statement causes the TITLIB command to create the directory
entry for the .e.ber using the specified name. Thereafter, when you want
to load that member into storage or delete it from the TXTLIB you must
refer to it by the name specified on the RAME statement.

J!I!!: If you use an ERTRY statement, the entry point you specify is
validated and checked for a duplicate. If the entry point name is valid
and there are no duplicates in the TEXT file, the entry name is written
in the LDT card. Otherwise, an error message is issued. When this
.e.ber is loaded, execution begins at the entry point specified. (See
HDetermining Program Entry Points," below.)

!~l!~: An entry is created in the directory for the ALIAS name you
specify. A maximum of 16 alias names can be used in a single text deck.
You may load the single member and execute it by referring to the alias
na.e, but you cannot use the alias name as the object of V-type address
constant (VCOR), because the address of the member cannot be resolved.

Section 8. Developing as Programs Under CftS 153

§RI§~!: Information you specify on the SETSSI card is written in bytes
26 through 33 of the LDT card.

All other OS linkage editor control statements are ignored by the
TX·TLIB command and wri tt en into the TXTL IB member. W hen you a ttempt to
load the member, the CMS loader flags these cards as invalid.

RESOLVING EXTERNAL REFERENCES

There is no real linkage editor in CMS; the link-edit function, that of
locating external references and loading additional object modules into
storage, is performed by the CMS loader. The CMS loader loads files
into storage as a result of a LOAD or INCLUDE command, or when you issue
a dynamic load request from a program (using the OS macros LOAD, LINK,
Ol~ XCTL).

When a file is loaded, the leader checks for unresolved references;
if there are any, the loader searches your disks for TEXT files with
filenames that match the external entry name. When it finds a match, it
loads the TEXT file into storage. If a TEXT file is not found, the
loader searches any availab~e TXTLIBs for members that match, and loads
them when it does.

If there are still unresolved references, for example, if you load a
program that calls routines PRINT and ANALYZE but the loader cannot
locate them, you receive the message:

THE FOLLOWING NAMES ARE UNDEFINED:
PRINT
ANALYZE

You can issue the INCLUDE command to load additional TEXT files or
TXTLIB members into storage so the loader can resolve any remaining
references. For example, if you did not identify the TXTLIB that
contains the routines you want to call, you may enter the GLOBAL command
followed by the INCLUDE command:

global txtlib newlib
include print analyze (start

This situation might also occur if you have TEXT files with filenames
that are different from the CSECT names; you must explicitly issue LOAD
and INCLUDE commands for these files.

At execution time, if there are still any unresolved references,
their addresses are all set to 0 by the load€r, so any attempt to
address them in a program may result in a program check.

The INCLUDE command has the same format and option list (with one
exception) as the LOAD command. The main difference is that when you
issue the INCLUDE command the loader tables are not reset; if you issue
tuo LOAD commands in succession, the second LOAD command cancels the
effect of the first, and the pointers to the files loaded are lost.

Conversely, th€ INCLUDE command, which you must issue when you want
to load additional files into storage, should not be used unless you
have just issued a LOAD command. You may specify as many INCLUDE

154 IBM VM/370: CMS User's Guide

commands as necessary following a LOAD command to load files into
storage.

CONTROLLING THE eMS LOADER

The LOAD and INCLUDE commands allow you to specify a number of options.
You can:

• Change the entry point to which control is to be passed when
execution begins (RESET option).

• Specify tbe location in virtual storage at which you want the files
to be loaded (ORIGIN option).

• Control how CMS resolves references and handles duplicate CSECT names
(AUTO, LIB, and DUP options).

• Clear storage to binary zeros before loading files (CLEAR option) •

When the LOAD and INCLUDE commands execute, they produce a load map,
indicating the entry points loaded and their virtual storage locations.
You may find this load map useful in debugging your programs. If you do
not specify the NOMAP option, the load map is written onto your A-disk,
in a file named LOAD MAP AS. Each time you issue the LOAD command, the
old file LOAD MAP is erased and the new load map replaces it. If you do
not want to produce a load map, specify the ROMAP option.

You can find details
discussion of" the LOAD
R!'!~!n£!·

about these, and
command in !~Lll~:

other options
~~2 £~!!~~g

under the
~nd ~~£~9

In addition to the options provided with the LOAD and INCLUDE commands
that assist you in controlling the execution of TEXT files, you can also
use loader control statements. These can be inserted in TEXT files,
using the CMS Editor. The loader control statements allow you to:

• Set the location counter td specify the address at Which the next
TEXT file is to be loaded (SLC statement).

• Modify instructions and constants in a
length of the TEXT file to accomodate
Include Control section statements).

• Change the entry point (ENTRY statement).

TEXT file, and change
modifications (Replace

the
and

• Nullify an external reference so that it does not receive control
when it is called, and you do not receive an error message when it is
encountered (LIBRARY statement).

These statements are also described under the LOAD command in VML11Q:
~~~ £Qm~~ng ~ng ~~£~9 R!!~E!~£!· 

Section 8. Developing OS Programs Under CMS 155 



When you load a single TEXT file or a TXTLIB member into storage for 
el(ecution, the default entry point is the first CSECT name in the object 
file loaded. You can specify a different entry point at which to start 
execution either on the LOAD (or INCLUDE) command line with the RESET 
option: 

load myprog (reset beta 

where BETA is the alternate entry point of your program, or you can 
specify the entry point ori the START command line: 

start beta 

When you load mUltiple TEXT files (either explicitly or ,implicitly, 
by allowing the loader to resolve external references), you also have 
the option of specifying the entry point on the LOAD, INCLUDE, or START 
command lines. 

If you do not specifically name an entry point, the loader determines 
the entry point for you, according to the fol1owing hierarchy: 

1. An entry point specified on the START command 

2. The last entry specified with the RESET option en a LOAD or INCLUDE 
command 

3. The name on the last ENTRY statement that was read 

4. The name on the last LDT statement that contained an entry name 
that was read 

5. The name on the first assellbler- or compiler-produced END statement 
that was read 

6. The first byte of the first control section loaded 

For example, if you load a series,of TEXT files that contain no 
control statements, and do not specify an entry point on the, LOAD, 
IRCLUDE, or START commands, execution begins with the first file that 
you loaded. If you want to control the execution of program subroutines, 
you should be aware of this hierarchy when you load programs or when you 
place them in TXTLIBs. 

An area of particular concern is when you issue a dynamic load (with 
the OS LINK, LOAD, or "XCTL macros) from a program, and you call members 
of CMS TXTLIBs. The CMS loader determines the entry point of the called 
program, and returns the entry point to your program. If a TXTLIB member 
that you load has a VCON to another TXTLIB member, the LDT card from the 
second member may be the last LDT card read by the loader. If this LDT 
card specifies the name of the second member, then CMS may return that 
entry point address to your program, rather than the address of the 
first member. 

CREATING PROGRAM MODULES 

When your programs are debugged and tested, you can use the LOAD and 
INCLUDE commands, in conjunction with the GENMOn command, to create 
program modules. A module is a nonrelocatable file whose external 

156 IBM VM/370: CMS User's Guide 



references have been resolved. In CMS, these files must have a filetype 
of MODULE. 

To create a program module, load the TEXT files or TXTLIB members 
into storage and issue the G~NKOD command: 

load create analyze print 
genmod process 

In this example, PROCESS is the filename you are assigning the 
module; it will have a filetype of MODULE. You could use any name; if 
you use the ijame of an existing MODULE file, the old one is replaced. 

To execute the program composed of the source files CREATE, ANALYZE, 
and PRINT, enter! 

process 

If PROCESS requires input and/or output files, you will have to define 
these files before PROCESS can execute properly; if PROCESS expects 
arguments passed to it, you can enter the. following the MODULE name, 
for example 

process test1 

For more information on creating program modules, see "Section 13. 
programming for the CMS Environment." 

USING EXEC PROCEDURES 

During your program development and testing cycle, you may want to 
create EXEC procedures to contain sequences of CMS commands that you 
execute frequently. For example, if you need a number of MACLIBs, 
TXTLIBs, and file definitions to execute a particular program, you might 
have an EXEC procedure as follows: 

SCONTROL ERROR TIME 
SERROR SEX IT SRETCODE 
GLOBAL MACLIB TESTLIB OSMACRO OSMACR01 
ASSEMBLE TESTA 
PRINT TESTA LISTING 
GLOBAL TXTLIB TESTLIB PROGLIE 
ACCESS 200 E 
8BEGSTACK 
OS.TEST3.STREAM.BETA 
SEND 
FILEDEF INDD1 E DSN ? 
FILEDEF INDD2 READER 
FILEDEF OUTFILE DISK TEST DATA A1 
LOAD TESTA (START 
SIF SRETCODE = 100 SGOTO -RET100 
&IF SRETCODE = 200 SGOTO -RET200 
SEXIT SRETCODE 
-~ET100 &CONTIBUE 

-RET200 &CONTINUE 

section 8. Developing OS Programs Under CMS 151 



The &CONTROL and &ERROR control statements in the EXEC procedure 
ensure that if an error occurs during any part of the EXEC, the 
remainder of the EXEC does not execute, and the execution summary of the 
EXEC indicates the command that caused the error. 

Note that for the PILBDBP command entered with the os. ? operand, 
you must stack the response before issuing the FILEDB! command. In this 
example, since the OS data set name has more than 8 characters~ you must 
use the &BEGSTACK control statement to stack it. If you use the &STICK 
control statement, the BXEC processor truncates all words to 8 
characters. 

When yonr program is finished executing, the EXEC special variable 
&RETCODE indicates the contents of general register 15 at the time the 
program exited. YOU can use this value to perform additional steps in 
your EXEC procedure. Additional steps are indicated in the preceding 
example by ellipses. 

For detailed information on creating EXEC procedures, see "Part 3. 
Learning to Use EXEC." 

158 IBM VM/370: CMS User's Guide 



Section 9. Developing DOS Programs Under eMS 

You can use CMS to create, compile, execute and debug DOS programs 
written in assembler, COBOL, or PL/I programming languages. CMS 
simulates many DOS/VS functions so that you can use the interactive 
facilities of VM/370 to develop your programs, and then execute them in 
a DOS virtual machine. 

Section 9 tells you how to use the CMS/DOS environment, and describes 
the .CMS commands you can use to manipulate DOS disks and DOS files and 
CMS/DOS commands you can use to simulate the functions of the Disk 
Operating system (DOS/VS): 

• The CMS/DOS environment 
• using DOS files on DOS disks 
• Using the ASSGN command 
• using the DLBL command 
• Using DOS libraries in CMSjDOS 
• using macro libraries 
• DOS assembler language macros supported 
• Assembling source programs 
• Link-editing programs in CMS/DOS 
• Executing programs in CMS/DOS 

For a practice terminal session using the commands and techniques 
presented in this section, see "Appendix D: Sample Terminal Sessions." 

CMS/DOS is neither CMS nor is it DOS; it is a composite, and its 
vocabulary contains both eMS and DOS terms. CMS/DOS performs many of 
the same functions as DOS, but where, under DOS, a function is initiated 
by a control card, in CMS it is initiated by a command. Many CMS/DOS 
commands, therefore, have the same names as the DOS control statement 
that performs the same function. In those cases where the control 
statement you would use in DOS and the command you use in CMS are 
different, the differences are explained. For the most part, whenever a 
term that is familiar to you as a DOS term is used, it has the same 
meaning to CMS/DOS, unless otherwise indicated. 

The eMS/DOS Environment 

After you have loaded eMS into your virtual machine you can enter the 
CMS/DOS environment by issuing 

set dos on 

If you want to access a DOS system residence volume during your CMS/DOS 
terminal session, you should link to and access the disk that contains 
the DOS SYSRES before you issue the SET command. For example, if you 
share the system residence volume with other users and it is in your 
directory at virtual address 390, you would issue the command 

access 390 g 

and then issue the SET command as follows: 

section 9. Developing DOS Programs Under CMS 159 



set dos on g 

to indicate that the SYSRES is located on your G-disk. If you are gcing 
to use the CftS/DOS librarian facilities to access any of the libraries 
on the system residence volume, you must enter the CftSjDOs environment 
this way. 

If you are using efts exclusively for DOS applications, you could put 
the ACCESS and SET DOS ON commands in your PROFILE EXEC. 

If you are going to use Access ftethod Services functions in CftS/DOS, 
or execute functions that read or write VSAft data sets, you must use the 
VSAft option of the SET DOS ON command: 

set dos on g (vsam 

When you are using CftS/DOS, you can use your virtual machine just as 
you would if you were in the CftS environment; but you cannot execute any 
CIlIS commands or program modules that load and/or use OS macros. The 
SCRIPT command, for example, uses OS macros, and is therefore invalid in 
the CftS/DOS environment. 

You have, however, in addition to the CP and CftS commands available, 
a series of commands that simulate DOS/VS functions. Except for the 
DLBL and DCSLIB commands, these commands or operands should only be 
issued in the CftS/DOS environment. 

The CftS/DOS commands are summarized in Figure 15. 

U:aing DOS Files on DOS Disks 

You can have DOS disks attached to your virtual machine by a directory 
entry or you can link to a DOS disk with the LINK com.and. You can use 
the ACCESS command to assign a mode letter to the disk: 

access 155 b 

and the RELEASE command to release it: 

release b 

Except for VSAft disks, you cannot write on DOS disks, or update DOS 
files on them. You can, however, execute programs and CftS/DOS co •• ands 
that read from these files, and you can use the LISTDS command to 
display the file-ids of files on a DOS disk, for example: 

listds b 

You can also verify the existence of a particular file. For example, if 
the file-id is REW.TEST.DATA you can enter 

listds new test data b 

You can use this form only if the file-id has 1- to 8-character 
q~Lalifiers separated by blanks. If the file-id of the DOS file you want 
to verify contains embedded blanks, for example REW.TEST DATA, then you 
have to enter the LISTDS commands with a question mark: 

listds ? b 

Ct.IS responds 

ERTER DATA SET RAftE: 

160 IBft VM/370: CMS User's Guide 



r--------
Command I 

ASSGN 

DLBL 

DOSLIB 

DOSLKED 

DSERV 

DOSPLI 

ESERV 

FCOBOL 

FETCH 

GLOBAL 

LISTIO 

OPTION 

QUERY 

PSERV 

RSERV 

SET 

SSERV 

Function 

Relates system and programmer logical units to physical 
devices. 

Relates a program ddname (filename) to a real disk file 
so you can perform input/output operations on it. 

Lists or deletes phases from a CMS/DOS phase library, or 
compresses the library. 

Link-edits CMS TEXT files or DOS phases from system or 
private relocatable libraries. 

Displays the directories of DOS libraries. 

An EXEC procedure that invokes the DOS/VS PL/I compiler. 

An EXEC procedure that invokes the ESERV utility functicns 
on edited assembler language macros. 

An EXEC procedure that invokes the DOS/VS COBOL compiler. 

Loads executable phases from a DOSLIB or DOS library into 
storage for execution, and optionally starts execution. 

When you want DOSLIBs searched for executable phases or 
macro libraries searched for macro definitions, you must 
identify them with the GLOBAL command. 

Displays the current assignments of system and programmer 
logical units, and optionally creates an EXEC file to 
contain the information. 

Sets or changes the options in effect for the DOS/VS 
COBOL compiler. 

Use QUERY command operands to list current DLBL defintions 
(QUERY DLBL) , to determine whether or not you are in 
the CMS/DOS environment (QUERY DOS), the setting of the 
UPSI byte (QUERY UPSI), the DOSLIBs identified by GLOBAL 
commands (QUERY DOSLIB or QUERY LIBRARY), which options 
are in effect for the COBOL compiler (QUERY OPTION), or to 
find out whether you have set a virtual partition size 
(QUERY DOSPART). 

Creates CMS files with a filetype of PBOC from the DOS/VS 
procedure library, or displays, prints or punches 
procedures. 

Copies a relocatable module from a DOS library and places 
it in a CMS file with a filetype of TEXT, or displays, 
prints, or punches modules. 

The SBT command has operands that allow you to enter or 
leave the CMS/DOS environment (SET DOS ON or SET DOS OFF), 
to set the UPSI byte (SET UPSI) , and to set a virtual 
partition size (SET DOSPART). 

Creates CMS COpy files from books on DOS source statement 
libraries. 

Figure 15. CMS/DOS Commands and CMS Commands with Special Operands for 
CMS/DOS 

section 9. Developing DOS Programs Under CMS 161 



and you can enter the exact file-id: 

new. test data 

If the data set exists, you receive a response 

FM DATA SET NAME 
B NEW.TEST DATA 

READING DOS FILES 

Under CMS/DOS, you can execute programs that read DOS sequential (SAM) 
files; you can also execute programs that read and write VSAM files. 
You cannot, however, execute programs to read direct (DAM) or indexed 
sequential (ISAM) DOS files. 

Complete information on using CMS to access and manipulate VSAM files 
is described in "Section 10. Using Access Method Services and VSAM In 
CMS and CMS/DOS." The discussion below lists the restrictions placed on 
reading SAM files. 

CMS cannot read DOS files that: 

• Have the input security indicator on. 

• Contain more than 16 user label and/or data extents. (If 
has user labels, they occupy the first extent; therefore 
must contain no more than 15 data extents.) 

the file 
the file 

• Multivolume files are read as single-volume files. End-of-volume is 
treated as end-of-file. There is no end-of-volume switching. 

• User labels in user-labeled files are bypassed. 

CMS does not support duplicate volume labels; you cannot access more 
than one volume with the same 6-character label while you are using 
CMS/DOS. 

CREATING CMS FILES FROM DOS LIBRARIES 

You can create CMS files from existing DOS files on DOS disks. CMS 
simulates the DOS librarian functions DSERV, RSERV, SSERV, ESERV, and 
PSERV with commands of the same names; you can use these CMS/DOS 
commands to create CMS files from relocatable, source statement, or 
procedure libraries located either on the DOS system residence volume or 
in private libraries. The functions are fully described later in this 
section. 

162 IBM VM/370: CMS User's Guide 



If you want to create CMS files from DOS files that are not cataloged in 
libraries, or from DOS files on tape, you can use the MOVEFILE command. 
The MOVEFILE command allows you to copy a file from one device to 
another device of the same or a different type. Before issuing the 
MOVEFILE command, the input and the output files must be described to 
CMS with the FILEDEF command. 

The MOVEFILE and FILEDEF commands are described and examples are 
given of how to use them in "section 8. Developing OS Program Under 
CMS." The procedures are the same for copying DOS files as for OS data 
sets. You must however, keep the following in mind: 

• Since DOS files on DOS disks do not contain BLKSIZE, RECFM, or LRECL 
options, these options must be specified via the FILEDEF command; 
otherwise, defaults of BLOCKSIZE=32760 and RECFM=U are assigned. 
LRECL is not used for RECFM=U files. 

• If a DOS file-id does not follow OS naming conventions (that is, 1-
to 8-byte qualifiers with each qualifier separated by a period; up to 
44 characters including periods), you must use the DSN ? operand of 
FILEDEF and the ? operand of LISTDS to enter the DOS file-ide 

If you have DOS files or soutce programs on cards, you can create CMS 
files directly by having these cards read into the real system card 
reader. yOU direct the cards to your virtual machine by punching a CP 
ID card in this format: 

ID HARMONY 

and placing this card in front of your card deck. When the cards appear 
in your virtual card reader, you can read them onto your CMS A-disk with 
the READCARD command: 

readcard dataproc assemble 

You can use the editor to remove any DOS control cards that may be 
included in the deck. 

CMS/DOS does not process tape labels. 
bypasses labels on input tapes or passes 
process header labels on input tapes. 
tapes as tapes with no labels. Trailer 
input tapes or output tapes. 

In general, CMSjDOS either 
control to a user routine to 

CMS/DOS processes all output 
labels are not supported for 

CMS/DOS passes control to user label routines, if there are any, for 
input tapes with standard or nonstandard labels. 

If a tape which is opened as an output tape already has a header 
label (standard or nonstandard), CMSjDOS writes over that label when it 
writes data to the tape. 

Section 9. Developing DOS Programs Under CMS 163 



There is no equivalent in CMS/DOS to the DOS/VS TLBL control 
statement. The TLBL label function is not required in CMS/DOS. 

Using the ASSGN Command 

The ASSGN and DLBL commands perform the same functions for CMS/DOS as 
the ASSGN and DLBL control statements in DOS/VS. You use the ASSGN 
command to designate an I/O device for a system or programmer logical 
unit (SYSXXX) and, if the device is a disk device, you can use the DLBL 
command to establish a real file identification for a symbolic filename 
in a program. The DLBL command is described under "Using the DLBL 
Command. " 

In addition to using the ASSGN command to relate real I/O devices 
with symbolic units, you must use it in CMS/DOS to: 

• Assign SYSIN or SYSIPT for the input source file for a language 
compiler when you use the DOSPLI or FCOBOL commands. 

• Identify the disk, by mode letter, on which a private core image, 
relocatable, or source statement library resides. 

• Assign SYSIN or SYSIPT to the CMS disk on which an ESERV file, 
containing control statements for the ESERV program, resides. 

When you enter the ASSGN command, you must supply the logical unit 
and the device, for example 

assgn sysl00 printer 

assigns the logical unit SYS100 to the printer. When you want to make 
an assignment to a disk device, you must specify the mode letter at 
which the disk is accessed. The command 

assgn sysOl0 b 

assigns the logical unit SYS010 to your B-disk. 

The system logical units you can assign and the valid device types 
you can assign to them in CMS/DOS follow. 

SISIPT, SYSRDR, SYSIN: These units can be assigned to disk (mode), TAPE, 
oi:liiiDER:--jf you--iiiake an assignment to SY SIN, both SYSRDR and SYSIPT 
are also assigned the same device. 

SISLST: The system logical unit for listings can be assigned to disk 
,(iiode), PRINTER, or TAPE. 

SISLOG: Terminal or operator output or· messages can be assigned to 
pi~iiiTER or TERMINAL. CMS/DOS always assigns SYSLOG to TERMINAL by 
default, so you never have to make this assignment except when you want 
tel alter it. 

§!SP~~: Punched output, for example text decks, can be assigned to 
PUNCH, disk (mode), or TAPE. 

§!§~1~, §!§~1~, §!§§1~: The system logical units SYSCLB, SYSRLB, and 
SISSLB can be assigned to private core image, relocatable, and source 
statement libraries, respectively. The only valid assignments for these 
units is to disk (mode). If you want to reference private libraries 
wi th the DSERV, ESERV, PETCH, SSERV, or RSERV commands, you must assign 
SISCLB, SYSRLB, or SYSSLB to the disks on which the libraries reside. 

164 IBH VH/370: eHS User's Guide 



You can assign programmer logical units SYS()OO through SY5241 with the 
ASSGN command. This deviates from DOS/VS, where the number of 
programmer logical units varies according to the number of partitions. 

MANIPULATING DEVICE ASSIGNMENTS 

Besides assigning I/O devices, the ASSGN command can also negate a 
previous assignment: 

assgn syspch ua 

or specify that, for a given device, no real I/O operation is to be 
performed during the execution of a program: 

assgn sys009 ign 

when you release a disk from your virtual machine, any assignments made 
to that disk are unassigned. 

You can find out the current assignments for system and programmer 
logical units with the LISTIO command, which lists all the system or 
programmer logical units, even those that are unassigned: 

listio 

To list only currently assigned units, enter 

listio a 

To find out the current assignment of one specific unit, for example 
SYS100, enter 

listio sys100 

with the EXEC option of the LISTIO command, you can create a disk 
file containing the list of assignments. The $LI5TIO EXEC that is 
created contains two EXEC numeric variables, &1 and &2, for each unit 
listed. For example, if you entered the command 

listio sys081 (exec 

then the file $LISTIO EXEC may contain the record 

&1 &2 SYS081 PRINTER 

When you use the STAT option, LISTIO lists, for disk devices, whether 
the disk is read-only or read/write, for example 

listio sys100 
SYS100 B R/W 

indicates that SYS100 is assigned to the B-disk, which is a read/write 
disk. 

You can cancel all current assignments by leaving the C~S/DOS 
environment and then re-entering it: 

set dos off 
set dos on 

section 9. Developing DOS Programs Under CMS 165 



VIRTUAL MACHINE ASSIGNMENTS 

When you assign a physical device type to a system or programmer logical 
unit, CMS relates the device to your virtual machine configuration; you 
receive an error message if you try to assign a logical unit to a device 
not in your configuration. For example, if you are using the ASSGN 
command to assign a logical unit to a disk file, you must specify the 
access mode letter of the disk. If the disk is not accessed, the ASSGN 
command fails. 

For another example, if you issue 

assgn syspch punch 

the punch specified is your own virtual machine card punch. The actual 
destination of punched output then depends on the spooling 
characteristics of the punch; if it is spooled to another user or to *, 
then no real cards are punched, but virtual card images are placed in 
the virtual reader of the destination userid, which may be another 
virtual machine or your own. 

CMS supports only one reader, one punch, and one printer; you cannot 
make any assignments for multiple output devices in CMS/DOS. When you 
make an assignment for a logical unit that has already been assigned, it 
replaces the current assignment. 

Using the DLBL Command 

Use the DLBL command to supply CMS/DOS with specific file identification 
information for a disk file that is going to be used for input or 
output. For any DLBL command you issue, you must previously have issued 
an ASSGB command for the disk, specifying a system or programmer logical 
unit. The basic relationship is: 

assgn SYSxxx mode 
dlbl filename mode DSN ? (SYSxxx 

Both the SYSxxx and the mode values must match on the ASSGN and DLBL 
commands; the disk on which the file resides must be accessed at mode. 

The filename on the DLBL command line, called a ddname in CMS/DOS, 
corresponds to the symbolic name for a file in a program. If you want to 
reference a private DOS library, you must use one of the following 
ddnames: 

§I§~~!! 
~Qgi£:21 !!!!!~ 
SYSCLB 
SYSRLB 
SYSSLB 

ril~!!2:.!!1~ 
IJSYSCL 
IJSYSRL 
IJSYSSL 

ENTERING FILE IDENTIFICATIONS 

When you issue the DLBL command you must identify the file, by file-id 
(for a DOS file) or by file identifier (for a CMS file). The keywords 

DSN and CMS indicate whether it is a DOS file or a CMS file, 
respecti vely. 

166 IBM VM/370: CMS User's Guide 



If the file is a DOS file residing on a DOS disk, you can enter the 
DLBL command in one of two ways. Por example, for a file named 
TEST. INPUT you could enter either: 

assgn sys101 d 
dlbl infile d dsn test input (sys101 

-- or --

assgn sys101 d 
dlbl infile d dsn 1 (5ys101 
ENTER DATA SET NAME: 
test. input 

Por any DOS file with a file-id that contains embedded blanks or 
hyphens, you must use the "DSN 1" form. 

When you issue a DLBL cQmmand for a CMS file, you enter the filename 
and fi1etype following the keyword CMS: 

assgn sys102 a 
dlb1 outfile a cms neW output (sys102 

In this example, if SYS102 is defined as an output file for a program, 
the output is written to your eMS A-disk in a file named NEW OUTPUT. 

You can, for convenience, use a eMS default file identifier. If you 
enter 

d1bl outfile a cms (sys102 

then the output fi1etype defaults to that of the ddname and the filename 
to FILE. So, this output file is named PILE OUTPILE. 

You can clear a DLBL definition for a file by using the CLEAR operand of 
the DLBL command: 

d1b1 outfile clear 

To clear all existing definitions, except those entered with the PERM 
option, you can enter 

dlbl * clear 

This command is issued by the assembler and the language processors when 
they complete execution. Definitions entered with the PERM option must 
be individually cleared. 

Whenever you use the HI Immediate command to halt the execution of a 
program, the DLBL definitions in effect are cleared, including those 
entered with the PERM option. 

You can find out what definitions are currently in effect by issuing 
the DLBL command with no operands: 

dlbl 

or, you can use the QUERY command with the DLBL operand. 

section 9. Developing DOS Programs Under CMS 167 



U!5ing DOS Libraries in eMS/DOS 

C~S/DOS provides you with the capability of using various types of files 
from DOS system or private libraries. You can copy, punch, display at 
the terminal, or print: 

• Books from system or private source statement libraries using the 
SSERV command. 

• Relocatable modules from system or private relocatable libraries 
using the RSERV command. 

• Procedures from the system procedure 
command. 

You can also: 

library using the PSERV 

• Copy and de-edit macros from system and private E sublibraries using 
the ESERV command. 

• Access the directories of system or private libraries using the DSERV 
command. 

• Link-edit relocatable modules from system or private relocatable 
libraries with the DOSLKED command. 

• Read core image phases from system or private core image libraries 
into storage for execution using the FETCH command. 

THE SSERV COMMAND 

If you have cataloged source programs or copy files on the system source 
statement library and you want to use CMS to modify and test them, you 
can copy them into CMS files using the SSERV command. For example, 
suppose you want to copy a book named PROCESS from the A sublibrary on 
the system residence volume. The DOS system residence is in your 
virtual machine configuration at virtual address 350, and you have 
accessed it as your F-disk. First, to indicate to CMSjDOS that the 
system residence is on your F-disk, you enter 

set dos on f 

then you can enter the SSERV command, specifying the sublibrary 
identification and the book name: 

sserv a process 

This creates, from the A sublibrary, a file named PROCESS COPY and 
places it on your A-disk. If the book contained assembler language 
source statements you would want the filetype to be ASSEMBLE, so you may 
enter 

sserv a process assemble 

If you want to copy a book from a private source statement library, 
you must first use the A55GB and DLBL commands to make the library known 
to CMS/DOS. For example, to obtain a copy file from a private library 
on a DOS disk accessed as your D-disk, enter: 

168 IBM VM/370: CMS User's Guide 



assgn sysslb d 
dlbl ijsyssl d dsn ? (sysslb 
ENTER DATA SET NAME: 
program. test library 

NOw, when you enter the SSERV command 

sserv t setup copy 

the book named SETUP in the T sublibrary of PROGRAM. TEST LIBRARY is 
copied into a CMS file named SETUP COPY. 

THE RSERV COMMAND 

In CMS/DOS, to manipulate relocatable modules that have been cataloged 
either on the system or a private relocatable library you must first 
copy them into CMS files with the RSERV command. You can link-edit 
modules directly from DOS relocatable libraries, but if you want to add 
or modify linkage editor control statements for a module, you must place 
the control statements in a CMS file. 

If you are copying a relocatable module from the system relocatable 
library, then you should make sure that you have indicated the system 
residence disk when you entered the CMS/DOS environment: 

set dos on f 

then you can issue the RSERV command specifying the name of the 
relocatable module you want to copy: 

rserv rtna 

The execution of this command results in the creation of a CMS file 
named RTNA TEXT on your A-disk. 

If you want to copy a relocatable module from 
library, you must first use the ASSGN and DLBL 
private library known to CMS/DOS: 

assgn sysrlb d 
dlbl ijsysrl d dsn reloc lib (sysrlb 

a private relocatable 
commands to make the 

Then, issue the RSERV command for a specific module in that library: 

rserv testrtna 

to create the CMS file TESTRTNA TEXT from the module named TESTRTNA. 

THE PSERV COMMAND 

If you want to copy DOS cataloged procedures into CMS files to use, for 
example, in preparing job streams for a DOS/VS virtual machine, you can 
use the PSERV command: 

pserv prep job 

This command creates a CMS file on your A-disk; the file is named 
PREPJOB PROC. To copy a procedure from the procedure library you must 

Section 9. Developing DOS Programs Under CMS 169 



have entered the CMS/DOS environment specifying a disk mode for the 
system residence volume. 

You cannot execute DOS/VS procedures directly from the CMS/DOS 
environment. However, if you modify a procedure, you can punch it to a 
virtual machine that is running a DOS/VS system, and execute it there. 

THE ESERV COMMAND 

The CMS/DOS ESERV command is actually an EXEC procedure that calls the 
DOS/VS ESERV utility program. To use the ESERV program, you first must 
use the CMS Editor to create a file with a filetype of ESERV that 
contains the ESERV control statements you want to execute. For example, 
if you want to write a de-edited copy of the macro DTFCD onto your 
A-disk, you might create a file named DTFCD ESERV, with the record: 

PUNCH E.DTFCD 

Is when you submit ESERV jobs in DOS/VS, column 1 must be blank. 

Then, you must assign SYSIN to the device on which the ESERV source 
file resides, usually your A-disk: 

assgn sysin a 

Then you can enter the ESERV command specifying the filename of the 
ESERV file: 

eserv dtfcd 

No other ASSGN commands are required; the CMS/DOS ESERV EXEC makes 
default assignments for SYSPCH and SYSLST to disk. 

To copy 
first issue 
example 

and de-edit macros from a private E sublibrary, you must 
the ASSGN and DLBL commands to identify the library, for 

assgn sysslb c 
dlbl ijsyssl c dsn test macros (sysslb 

The SYSLST output is contained in a CMS file with the same filename 
as the ESERV file and a filetype of LISTING; you must examine the 
LISTING file to see if the ESERV program executed successfully. You can 
either edit it (using the CMS Editor), or display its contents with the 
TYPE command: 

type dtfcd listing 

The SYSPCH output is contained in a file with the same name as the 
ESERV file and a filetype of MACRO. If you want to punch ESERV output 
to your virtual card punch, make an assignment of SYSPCH to PUNCH. 

When you use the PUNCH or DSPCH ESERV control statements, CATAL.S, 
END, or /* records may be inserted in the output file. When you use the 
"ACLIB command to add the MACRO file to a CMS macro library, these 
statements are ignored. 

See "Using Macro Libraries" for information on 
manipulating CMS macro libraries. 

170 IBM VM/370: CMS User's Guide 

creating arid 



THE DSERV COMMAND 

You can use the DSERV command to examine the contents of system or 
private libraries. If you do not specify any options with it, the DSERV 
command creates a disk file; named DSERV MAP, on your A-disk. You can 
use the PRINT or TERM options to specify that the directory list is 
either to be printed on your spooled printer or displayed at your 
terminal. You can also use the SORT option to create a list in 
collating sequence. 

In order to examine a system directory, you must have 
CMS/DOS environment specifying the mode letter of the 
residence: 

set dos on f 

entered the 
DOS system 

If you want to examine the directory of a private source statement, 
core image, or relocatable library you must issue the ASSGN and DLBL 
commands establishing SYSSLB, SYSCLB, or SYSRLB, before using the DSERV 
command. 

For example, to display at your terminal an alphameric list of 
procedures cataloged on the system procedure library, you would issue 

dserv pd (sort term 

If the directory you are exam1n1ng is for a core image library, you 
can specify a particular phase name to ascertain the existence cf the 
phase: 

dserv cd phase $$bopen (term 

To list the directory of a private source statement library, you 
would first issue the ASSGN and tLBL commands: 

assgn sysslb b 
dlbl ijsyssl b dsn test source (sysslh 

then enter the DSERV command 

dserv sd 

The CMS file, DSERV MAP A, that is created in this example contains the 
directory of the private source statement library TEST. SOURCE. 

USING DOS CORE IMAGE LIBRARIES 

You can load core image phases from DOS core image libraries into 
virtual stora~e and execute them under CMS/DOS. Since CMS cannot write 
directly to DOS disks, linkage editor output under CMS/DOS is placed in 
a special CMS file called a DOSLIB. When you execute the FETCH command 
in CMS/DOS you can load phases from either system or private DOS core 
image libraries as well as from CMS DOSLIBs. More information on using 
the FETCH command is contained under "Executing Programs in CMSjDOS." 

section 9. Developing DOS Programs Under CMS 171 



U sing Macro Libraries 

DOS/VS macro libraries cannot be accessed directly by the VM/370 
assembler. If you want to assemble DOS programs in CMS/DOS that use DOS 
macro or copy files that are on the system or a private macro library 
you must first create a CMS macro library (MACLIB) containing the macros 
you wish to use. Since the process of creating a CMS MACLIB from the 
DOS system source statement library (E sublibrary) can be very 
time-consuming, you should check with your installation's system 
programmer to see if it has already been done, and to verify the 
:filename of the macro library, so that you can use it in CMSjDOS. 

Hote: The DOS/VS PL/I and DOS/VS COBOL compilers executing in CMS/DOS 
~iiiot read macro or copy files from CMS MACLIBs. 

If you want to extract DOS system macros to modify them for your 
private use, or if you want to use macros from a private library in CMS, 
you must use the procedure outlined below to create the MACLIB files. 

ICMS MACLIBS 

A CMS macro library has a filetype of MACLIB. You can create a MACLIB 
:from files with filetypes of MACRO or COPY. A MACRO file may contain 
macro definitions; COpy files contain predefined source statements. 

When you want to assemble a source program that uses macro or copy 
definitions, you must ensure that ~he library containing the code is 
identified before you invoke the assembler. Otherwise, the library is 
not searched. You identift libraries to be searched using the GLOBAL 
command. For example, if you have two MACLIBs that contain your private 
macros and copy files whose names are TBSTMAC MACLIB and TESTCOPY 
MACLIB, you would issue the command 

global maclib testmac testcopy 

The libraries you specify on a GLOBAL command line are searched in the 
order you specify them. A GLOEAL command remains in effect for the 
remainder of your terminal session, or until you IPL CMS. To find out 
what macro libraries are currently available for searching, issue the 
command 

query maclib 

You can reset the libraries or the search order by reissuing the GLOBAL 
(:oamand. 

CREATING A CMS MACLIB 

!o create a CMS macro library, each macro or copy file you want included 
in the MAeLIB must first be contained in a CMS file with a filetype of 
COpy or ftACRO. If you are creating a CMS MACLIB file from a DOS library 
you must use the SSERV command to copy a file from any source statement 
library other than an E sublibrary, or use the BSBRV command to copy and 
de-edit a macro from an E sublibrary. The SSERV com.and uses a default 
filetype of COpy; the BSERV command uses a default filetype of MACRO. 

The following example shows how to copy macros 
and shows how to create and use the CMS MAeLIB 
Ilacros. 

172 IBM VM/370: eftS User's Guide 

from various sources 
that contains these 



1. Enter the CMS/DOS environment with the DOS system residence on a 
disk accessed as mode C: 

set dos on c 

2. Copy the macro book named OPEN from the A sublibrary of the system 
source statement library: 

sserv a open 

3. Establish a private source statement library: 

access 351 d 
assgn sysslb d 
dlbl ijsyssl d dsn ? (sysslb 
test source. lib 

4. Issue the SSERV command for a macro in the M sublibrary of TEST 
SOURCE. LIB: 

sserv m releas 

5. Create an ESERV file to copy from the E sublibrary: 

edit contrl eserv 
NEW PILE 
EDIT: 
input punch contrl 
file 

6. Execute the ESERV command: 

assgn sysin a 
eserv contrl 

7. Create a CMS macro library named MYDOSMAC from the files just 
created, which are named OPEN COPY, RELEAS COPY, and COITRL MACRO: 

8. 

maclib gen mydosmac open releas contrl 

To use these macros in an 
indicate that this MACLIB is 
file: 

global mac lib mydosmac 

assembler language program, you must 
accessible before assembling a source 

THE MACLIB COMMAND 

The MACLIB command performs a variety of functions. You use it to: 

• Create the MACLIB (GEN fUnction) 
• Add, delete, or replace members (ADD, DEL, and REP functions) 
• Compress the MACLIB (COMP function) 
• List the contents of the MACLIB (MAP function) 

Descriptions of these MACLIB co~mand functions follow. 

GEl Function: The GEN (generate) function creates a CMS macro library 
from-Input--files specified on the command line. The input files must 
have filetypes of either MACRO or COPY. Por example: 

maclib gen mymac get pdump put regequ 

section 9. Developing DOS Programs Under CMS 173 



creates a macro library with the file identifier MYMAC MACLIE Al from 
macros existing in the files with the file identifiers: 

GET {MACRO},PDUMP {MACRO},PUT {MACRO},and REGEQU {MACRO} 
COpy COpy COpy COpy 

If a file named MYMAC MACLIB Al already exists, it is erased. 

Assume that the files GET MACRO, PDUMP COpy, PUT MACRO, and REGEQU 
COpy exist and contain macros in the following form: 

GET MACRO PDUMP COpy PUT MACRO REGEQU COpy 
--------- ---------- --------- -----------

GET *COPY PDUMP PUT XREG 
PDUMP 

WAIT *COPY WAIT YREG 
WAIT 

The resulting file, MYMAC MACLIE Al, contains the members: 

GET 
WAIT 
PDUMP 

WAIT 
PUT 
REGEQU 

The WAIT macro, which appears twice in the input to the command, also 
appears twice in the output. The MACLIB command does not check for 
duplicate macro names. If, at a later time, the WAIT macro is requested 
from MYMAC MACLIB, the first WAIT macro encountered in the directory is 
used. 

When COpy files are added to MACLIBs, the name of the library member 
is taken from the name of the COpy file, or from the *COPY statement, as 
in the file PDUMP COPY, above. Note that although the file REGEQU COpy 
contained two macros, they were both included in the MACLIB with the 
name REGEQU. When the input file is a MACRO file, the member name is 
taken from the macro prototype statement in the MACRO file. 

!P'Q IYll£!!2ll: The ADD function appends new members to an existing macro 
library. For example, if MY MAC MACLIB Al exists as created in the 
example in the explanation of the GFN function and the file DTFDI COPY 
exists as follows: 

*COPY DTFDI 
DTFDI macro definition 

*COPY DIMOD 
DIMOD macro definition 

if you issue the command 

maclib add mymac dtfdi 

the resulting MYMAC MACLIE Al contains the members: 

GET 
WAIT 
PDUMP 
WAIT 

PUT 
REGEQU 
DTFDI 
DIMOD 

RllR l!ll£!!2ll: The REP (replace) function deletes the directory entry for 
the macro definition in the files specified. It then appends new macro 
definitions to the macro library and creates new directory entries. For 
example, assume that a macro library TESTMAC MACLIB contains the members 
A~ B, and C, and that the following command is entered: 

maclib rep test mac a c 

174 IBM VM/370: eMS User's Guide 



The files represented by file identifiers A MACRO and C MACRO each have 
one macro definition. After execution of the command, TESTMAC MACLIB 
contains members with the same names as before, but the contents of A 
and C are different. 

~]1 lyng1i2n: The DEL (delete) function removes the specified macrc name 
from the macro library directory and compresses the directory so there 
are no unused entries. The macro definition still occupies space in ~he 
library, but since no directory entry exists, it cannot be accessed or 
retrieved. If you attempt to delete a macro for which two macro 
definitions exist in the macro library, only the first one encountered 
is deleted. For examFle: 

maclib del mymac get put wait dtfdi 

deletes macro names GET, PUT~ WAIT, and DTFDI from the directory of the 
macro library named MYMAC MACLIE. Assume that MYMAC exists as in the ADD 
function example. After the above command, MYMAC MACLIB contains the 
following members: 

PDUMP 
WAIT 
REGEQU 
DIMOD 

COMP Function: Execution of a MACLIB command with the DEL or REP 
~;i~ti~i;--~i~ leave unused space within a macro library. The COMP 
(compress) function removes any macros that do not have directory 
entries. This function uses a temporary file named MACLIB CMSUT1. For 
example, the command: 

maclib comp mymac 

compresses the library MYMAC MACLIB. 

~!E I~B£1!QB: The MAP function creates a list containing the name of 
each macro in the directory, the size of the macro, and its position 
within the macro library. If you want to display a list of the members 
of a MACLIB at the terminal, enter the command 

maclib map mymac (term 

The default option, DISK, creates a file on your A-disk which has a 
filetype of MAP and a filename equal to the filename of the MACLIB. If 
you specify the PRINT option, then a copy of the map file is spooled to 
your virtual printer as well as being written onto disk. 

The following CMS commands supply a MEMBER option, which allows you to 
reference individual members of a MACLIB: 

• PRINT (to print a member) 
• PUNCH (to punch a member) 
• TYPE (to display a member) 
• FILEDEF (to establish a file definition for a member) 

You can use the CMS Editor to create the MACRO and COpy files and 
then use the MACLIB command to place them in a library. Once they are 
in a library, you can erase the original files. 

section 9. Developing DOS Programs Under CMS 175 



To extract a member from a macro library, you can use either the 
PUNCH or the MOVEPILE command. If you use the PUNCH command you can 
spool your virtual card punch to your own virtual reader: 

cp spool punch to * 

then punch the member: 

punch testmac mac lib (member get noheader 

and read it back onto disk: 

readcard get macro 

In the above example, the member was punched with the NOHEADER option of 
the PUNCH command, so that a name could be assigned on the READCARD 
command line. If a header had been created for the file, it would have 
indicated the filename and filetype as GET MEMBER. 

If you use the MOVEFILE command, you must issue a file definition for 
the input member name and the output macro or copy file before entering 
the MOVEPILE command: 

filedef inmove disk testcopy maclib (member enter 
filedef outmove disk enter copy a 
movefile 

This example copies the member ENTER from the macro library TESTCOPY 
MICLIB A into a CMS file named ENTER COPY. 

When you use the PUNCH or MOVEFILE commands to extract members from 
eMS MACLIBs, each member is followed by a // record, which is a MICLIB 
delimiter. You can edit the file and use the DELETE subcommand to 
delete the // record. 

The macro libraries that are on the system disk contain CMS, DOS, and OS 
assembler language macros. The MACLIBs are: 

• CMSLIB MACLIB contains the CMS macros. 

• DOSMACRO MlCLIB contains DOS/VS macros that CMS/DOS routines use. 

• OSMlCRO MlCLIB, OSMlCR01 MlCLIB, and TSOMAC MACLIB are used by OS 
progra mmers. 

DOS Assembler Language Macros Supported 

Figure 16 lists the DOS/VS Assembler Language macros supported by 
CMS/DOS. You can assemble source programs that contain these macros 
under CMS/DOS, provided that you have the macros available in either 
your own or a shared CMS macro library. The macros whose functions are 
described in the "Function" column with the term "no-op" are supported 
for assembly only; when you execute programs that contain these macros, 
the DOS/VS functions are not performed. To accomplish the macro 
function you must execute the program in a DOS/VS virtual machine. 

176 IBM VM/370: CMS User's Guide 



112f~Q 
CALL 
CANC~L 
CDLOAD 
CHECK 
CLOSEt 

CLOSER 
CNTRL 
COMRG 

DEQ 
DEOB 
DTFxXl 
DUMP 
ENQ 
ENOB 
EOJ 
ERET 
EXCP 
EXIT PC 
FCEPGOUT 
FETCH 

FREEVIS 
GENL 
GET 
GETVIS 
GETIME 
JDUMP 
LOAD 
MVCOM 
NOTE 
OPEN/ 

OPENR 
PAGEIN 
PDUMP 
PFIX 
PFREE 
POINTR 
POINTS 
POINTi 
POST 
PRTOV 
PUT 
PUTR 
READ 
RELEASE 
RELPAG 
RELSE 
RETURN 
RUNMODE 
SECTVAL 
SEIZE 
SETIM! 
SETPFl 
STXIT AB 

PC 
IT 
OC 

06 
65 

33 

42 
9 

41 
2 

14 

00 
17 
86 
01 
02 
62 

61 
34 

04 
05 

87 

67 
68 

40 

64 
85 

66 
75 
22 
10/24 
71 
37 
16 
20 
18 

Function 
Pass-control to another program 
Ter.inate processing 
Load a VSAM phase 
Verify completion of a read or write operation 
Deactivate a data file· 

Control a physical device 
Return address of background partition 

communication region 
no-op 
Release a resource 
Establish file definitions 
Dump storage and registers and terminate processing 
no-op 
Protect a resource 
Terminate processing normally 
Provide an error routine 
Execute a channel program 
Return from program check routine 
no-op 
Load and pass control to a phase 
Load and pass control to a logical transient 
Relea~e user free storage 
Generate a phase directory list 
Access a sequential file 
Obtain user free storage 
Get the time of day 
Dump storage and registers and terminate processing 
Read a phase into storage 
Modify bytes in the partition communication region 
Manage data set access 
Activate a data file 

no-op 
Dump storage and registers and continue processing 
no-op 
no-op 
position a file for reading 
Reposition a file to its beginning 
position a file for writing 
post the Event Control Block 
Control printer overflow 
write to a sequential file 
communicate with the system operator 
Access a sequential file 
Release a system resource 
no-op 
Skip to begin reading next block 
Return control to calling program 
Check if program is running real or virtual 
Obtain a sector number 
no-op 
no-op 
no-op 
Provide or terminate linkage to abnormal ending 

routine 
no-op 
no-op 

lThe DOS declarative macros supported are: 
DTFCN, DTFCD, DTFPR, DTFDI, DTFMT, DTFSD, DTFCP, and DTFSL 

Figure 16. DOS/VS Macros Supported by CMS (Part 1 of 2) 

1 

Section 9. Developing DOS Programs Under CMS 177 



r--------------------
~~£.IQ 
TRACK 
TRACK 
TRUNC 
TTIMER 
USE 
WAIT 
WRITE 
xxMODl 

.§!f 
FREE 36 
HOLD 35 

52 
63 
07 

!Y!l£t.iQ!l 
no-op 
no-op 
Skip to begin writing next block 
Return a 0 in Register 0 (effectively 
Reserve a system resource 
Wait for the completion of I/O 
write to a sequential file 
Create Logical IOCS routine inline 

----------------------------------
lThe DOS logic modules supported are: 

CDMOD, PRMOD, DIMOD, MTMOD, SDMODxx, and CPMOD L-_____ _ 

Figure 16. DOS/VS Macros Supported by CMS (Part 2 of 2) 

Assembling Source Programs 

a noop) 

, 
I 
I 
I 
I 
I 
I 
I 
I 
I 

--I 
1 
I ,---_.1 

If you are a DOS/VS Assembler Language programmer using CMS/DOS, you 
shoul~ be aware that the assembler used is the VM/370 assembler, not the 
DOS/VS assembler. The major difference is that the VM/370 assembler, 
invoked by the ASSEMBLE command, is designed for interactive use, so 
that when you assemble a program, error messages are displayed at your 
terminal when compilation is comFleted, and you do not have to wait for 
a printed listing to see the results. You can correct your source file 
and reassemble it immediately. When your program assembles without 
errors, you can print your listing. 

To specify options to be us€d during the assembly, you enter them on 
the ASSEMBLE command line. So, for example, if you do not want the 
output LISTING file placed on disk, you can direct it to the printer: 

assemble myfile (print 

All of the ASSEMBLE command options are listed in !~L11Q: £~2 £~~~~~g 
~!.!!~ !H!£!:Q ]~!~!:~!l£~. 

When you invoke the ASSEMBLE command specifying a file with a 
filetype of ASSEMBLE, CMS searches all of your accessed disks, using the 
standard search order, until it locates the file. When the assembler 
creates the output LISTING and TEXT files, it writes them onto disk 
according to the following priorities: 

1. If the source file is on a read/write disk, the TEXT and LISTING 
files are written onto the same disk. 

2. If the source file is on a read-only disk that is an extension of a 
read/write disk, the TEXT and LISTING files are written onto the 
paren t disk. 

3. If the source is on any other read-only disk, the TEXt and LISTING 
files are written onto the A-disk. 

In all of the above cases, the filenames assigned to the TEXT and 
LISTING files are the same as the filename of the input file. 

The output files used by the assembler are defined via FILEDEF 
commands issued by CMS when it calls the assembler. If you issue a 
PILEDEF command using one of the assembler ddnames before you issue the 
ASSEMBLE command, you can override the default file definitions. 

178 IBM VH/370: CMS User's Guide 



The ddname for the source input file is ASSEMBLE. If you enter 

filedef assemble reader 
assemble sample 

then the assembler reads your input file from your card reader, and 
assigns the filename SAMPLE to the output TEXT and LISTING files. You 
can use this method to assemble programs directly from DOS sequential 
files on DOS disks. 

LISTING and TEXT are the ddnames assigned to the SYSLST and and 
SYSPCH output of the assembler. You might issue file definitions to 
override these defaults as follows: 

filedef listing disk assemble listfile a 
filedef text disk assemble textfile a 
assemble source 

When these commands are executed, the output from the assembly of the 
file SOURCE ASSEMBLE is written to the disk files ASSEMBLE LISTFILE and 
ASSEMBLE TEXTFILE. 

Link-editing Programs in eMS/DOS 

When the assembler or one of the language compilers executes, the object 
module produced is written to a CMS disk in a file with a filetype of 
TEXT. The filename is always the same as that of the input source 
file. These TEXT files (sometimes referred to as decks, although they 
are not real card decks) can be used as input to the linkage editor, or 
can be the target of an INCLUDE linkage editor control statement. 

You can invoke the CMS/DOS linkage editor with the DOSLKED command, 
for example: 

doslked test testlib 

where TEST is the is the filename of either a DOSLNK or TEXT file (that 
is, a file with a filetype of either DOSLNK or TEXT), or the name of a 
relocatable module in a system or private relocatable library. TESTLIB 
indicates the name of the output file which, in CMS/DOS, is a phase 
library with a filetype of DOSLIB. 

When you issue the DOSLKED command, CMS first searches for a file 
with the specified name and a filetype of DOSLNK. If none are found, it 
searches the private relocatable library, if you have assigned one (you 
aust issue an ASSGN command for SYSRLB and use the ddname IJSSYRL in a 
DLBL statement). If the module is still not found, CMS searches all of 
your accessed disks for a file with the specified name and a filetype of 
TEXT. Last, CMS searches the system relocatable library, if it is 
available (you must enter the CMSjDOS environment specifying the mode 
letter of the DOS/VS system residence if you want to access the system 
libraries) • 

LINKAGE EDITOR INPUT 

You can place the linkage editor control statements ACTION, PHASE, 
INCLUDE, and ENTRY in a CMS file with a filetype of DOSLNK. When you 
use the INCLUDE statement, you may specify the filename of a CMS TEXT 
file or the name of a module in ~ DOS relocatable library: 

INCLUDE XYZ 

Section 9. Developing DOS Programs Under CMS 179 



or you may use the INCLUDE control statement to indicate that the object 
Gada follows: 

INCLUDE 
(CM 5 TEXT file) 

A typical DOSLNK file, named 
following: 

ACTION BEL 
PHASE PROGM1Ilf, S 
INCLUDE SUBA 
PHASE PROGA,* 
INCLUDE SUBB 

When you issue the command 

doslked control 

CONTROL DOSLNK, might contain the 

the linkage editor searches the following for the object files SOEA and 
SUBB: 

~ A DOS private relccatable library, provided you have issued the ISSGN 
and DLBL co •• ands to identify it: 

assgn sysrlb d 
dlbl ijsysrl d dsn ? (sysrlb 

~ Your CMS disks for files with filenames SUBA and SUBB and a filetype 
of TEXT 

~ The system relocatable library located on the DOS system residence 
volume (if it is available) 

When you want to link-edit individual CMS TEXT files, you can insert 
linkage editor control statements in the file using the CMS Editor and 
then issue the DOSLKED command: 

edit rtnb text 
EDIT: 
input include rtnc 
file 
dosiked rtnb mydoslib 

When the above DOSLKID command is executed, the CMS file RTII TEXT is 
used as linkage eiitor input, as long as there is no file named BTNB 
DOSLBK. The ICTION statement, however, is not recognized in TEXT 
files. 

You can also link-edit relocatable modules directly from a DOS system 
or private relocatable library, provided that you have identified the 
library. If you do this, however, you cannot provide control statements 
for the linkage editor. 

If you want to link-edit a relocatable module from a DOS private 
library and you want, also, to add linkage editor control statements to 
it, you could use the following procedure: 

1. Identify the library and use the RSERV co •• and to copy the 
relocatable module into a CMS TEXT file. In this example, the 
module BTIC is to be copied from the library OBJ.MODS: 

180 IBI V8/370: CftS User's Guide 



assgn sysrlh e 
dlbl ijsysrl e dsn obj mods (sysrlb 
rser~ rtnc 

2. Create a DOSLBK file, insert the linkage editor control statements, 
and copy the TEXT file created in step 1 into it usinq the GETFILE 
SubcolIBland. 

edit rt.nc doslnk 
input action reI 
getfile rtnc text a 
file 

3. Invoke the linkage editor with the DOSLKED command. 

doslked rtnc mydoslib 

Alternatively, you could create a DOSLBK file with the following 
records: 

ACTION REL 
I BCLUDE RTBC 

and link-edit the module directly from the relocatable library. If you 
do not need a copy of the module on a CMS disk, you might want to use 
this method to conserve disk space. 

When the linkage editor is reading modules, it may encounter a blank 
card at tke end of a file, or a * (comment) card at the beginning of a 
file. In either case, it issues a warning message indicating an invalid 
card, but continues to complete the link-edit. 

LliKAGE EDITOR OUTPUT: CMS nOSLIES 

The C~S/DOS linkage editor always places the link-edited executable 
phase in a CMS library with a £iletype of nOSLI!. You should specify 
the filename of the DOSLIB when you enter the DOSLKED command: 

doslked progO templib 

where PROtO is the relocatable module you are link-editing and TEMPtIB 
is the filename of the DOSLIB. 

If you do not specify the name ofa DOSLIB, the output is placed in a 
DOSLI! that has the same name as the DOSLBK or TEXT file being 
link~edited. In the above example, a CMS nOstII is created naaed 
TEMPLIB DOSLIB, or, if the file TEMPLIB nostIB already exists, the phase 
PRO GO is added to it. 

DOSLIBs can contain relocatable and core image phases suitable for 
executio·n in CBS/DO S. Sefore you ca n access phases in it, you must 
identify it to CMS with the GLOBAL command: 

global doslib templib p~rmlib 

When CMS is searching for executable phases, it searches all DOSLIBs 
specified on the last GLOBAL DOStfB comm~nd line. If you have named a 
number of nOSLIBs, or if any particular DOSLIB is yery large, the time 
required for CMS to fetch and execute the phase increases. You should 
use separate DOSLIBs for executable phases, whenever possible, and then 
specify only the DOStIBs you need on the GLOBAL co •• and. 

Section 9. Developing DOS Programs Onder CMS 181 



When you link-edit a module into a DOSLIB that already contains a 
phase with the same name, the directory entry is updated to point to the 
new phase. However, the space that was occupied by the old phase is not 
reclaimed. You should periodically issue the command 

doslib camp libname 

where libname is the filename of the DOSLIB, to compress the DOSLIB and 
delete unused space. 

The DOSLKED command also produces a linkage editor map, which it writes 
into a CMS file with a filename that is that of the name specified on 
the DOSLKED command line and a filetype of MAP. The filemode is always 
AS. If you do not want a linkage editor map, use the NOMAP option on 
the ACTION statement in a DOSLNK file. 

Executing Programs in eMS/DOS 

After you have assembled or compiled a source program and link-edited 
the TEXT files, you can execute the phases in your CMS virtual machine. 
You may not, however, be able to execute all your DOS programs directly 
in CMS. There are a number of execution-time restrictions placed on your 
virtual machine by VM/370. You cannOt execute a program that uses: 

• Multi tasking 
• More than one partition 
• Teleprocessing 
• ISAM macros to read or write files 

The above is only a partial list, representing those restrictions with 
which you might be concerned. For a complete list of restrictions, see 
the !!1L.J1Q: flg1!1!i1!g !l1!g .§I§.:tg! !ig!!g!~.:t!Q!!' !iy!g!!. 

EXECUTING DOS PHASES 

Iou can load ex€cutable phases into your CMS virtual machine using the 
FETCH command. Phases must be link-edited before you load them. When 
you issue the FETCH command, you specify the name of the phase to be 
loaded: 

fetch myprog 

Then you can begin executing the program by issuing the START command: 

start 

Or, you can fetch a phase and begin executing it on a single command 
line: 

fetch prog2 (start 

When you use the FETCH command without the START option, CMS. issues a 
message telling you at what virtual storage address the phase is loaded: 

PHASE PROG2 ENTRY POINT AT LOCATION 020000 

182 IBM VM/370: CMS User's Guide 



Location X'20000' is the starting address of the user program area for 
CMS; relocatable phases are always loaded starting at this address 
unless you specify a different address using the ORIGIN option of the 
FETCH command: 

fetch prog3 (origin 22000 
start 

The program PROG3 executes beginning at location 22000 in the CMS user 
program area. 

SEARCH ORDER FOR EXECUTABLE PHASES 

When you execute the FETCH command, CMS searches for the phase name you 
specify in the following places: 

1. In a DOS/VS private core image library on a DOS disk. If you have 
a private library you want searched for phases, you must identify 
it using the ASSGN and DLBL commands, using the logical unit 
SYSCLB: 

2. 

assgn sysclb d 
dlbl ijsyscl d dsn ? (sysclb 

In CMS DOSLIBs on CMS 
phases, you must use 
CMS/DOS: 

disks. If 
the GLOBAL 

global doslib templib mylib 

you want 
command 

DOSLIBs searched for 
to identify them to 

You can specify up to eight DOSLIBs on the GLOBAL command line. 

3. On the DOS system residence core image library. If you want the 
system core image library searched you must have entered the 
CMS/DOS environment specifying the mode letter of the system 
residence: 

set dos on z 

When you want to fetch a core i~age phase that has copies in both the 
core image library and a DOSLIB, and you want to fetch the copy from the 
CMS DOSLIB, you can bypass the core image library by entering the 
command 

assgn sysclb ua 

When you need to use the core image library, enter 

assgn sysclb c 

where C is the mode letter of the system residence volume. You do not 
need to reissue the DLBL command to identify the library. 

MAKING I/O DEVICE ASSIGNMENTS 

If you are executing a program that performs I/O, you can use the ASSGN 
command to relate a system or programmer logical unit to a real I/O 
device. As in DOS/VS, device type assignment in CMS/DOS is dependent on 
device specifications in the program. 

section 9. Developing DOS Programs Under CMS 183 



assgn sys052 reader 
assgn syslst printer 

In this example, your program is going to read input data from your 
virtual card reader; the output print file is directed to your virtual 
printer. If you want to reassign these units to different devices, you 
must be sure that the files have been defined as device independent. 

If you assign a logical unit to a disk, you should identify the file 
by using the DLBL command. On the DLBL command, you must always relate 
the DLBL to the system or programmer logical unit previously specified 
in an ASSGN command: . 

assgn sys015 b 
dlbl myfile b dsn ? (sys015 

When you enter the DLBL command with the ? operand you are prompted to 
enter the DOS file-ide 

You must issue all of the A5SGN and DLBL commands necessary for your 
program's I/O before you issue the PETCH command to load the program 
phase and begin executing. 

SPECIPYING A VIRTUAL PARTITION SIZE 

For most of the programs that you execute in CMS, you do not need to 
specify how large a partition you want a program to execute in. When 
you issue the START command or the START option on the FETCH command, 
eMS calculates how much storage is available in your virtual machine and 
sets a partition size. 

In some instances, however, you may want to control the partition 
size, as a performance consideration (some programs may run better in 
saaller partitions). You can set the partition size with the D05PART 
operand of the SET command. For example, after you enter the command 

set dospart 300k 

all programs that you subsequently execute will execute in a 300K 
partition. If you enter 

set dospart off 

then eMS calculates a partition size when you execute a program. This is 
the default setting. 

SETTING THE UPSI BYTE 

If your program uses the User Program Switch Indicator (UPSI) byte, you 
can set it by . using the UPSI operand of the CMS SET command. The UPSI 
byte is initially binary zeros. To set it to ls, enter 

set upsi 11111111 

To reset it to zeros, enter 

set upsi off 

Any value you set remains in effect for the duration of your terminal 
session, unless you reload eMS (with the IPL command). 

184 IBM V"/370: eMS User's Guide 



DEBUGGING PROGRAMS IN CMS/DOS 

You can debug your DOS programs in CMS/DOS using the facilities of CP 
and CMS. By executing your programs interactively, you can more quickly 
determine the cause of an error or program abend, correct it, and 
attempt to execute a program again. 

The CP and CMS debugging facilities are described in "section 11. How 
VM/370 Can Help You Debug Your Programs." Additional information for 
assembler language programmers is in "section 13. Programming for the 
CMS Environment." 

USING EXEC PROCEDURES IN CMS/DOS 

During your program development and testing cycle, you may want to 
create EXEC procedures to contain sequences of CMS commands that you 
execute frequently. For example, if you need a number of MACLIBs, 
DOSLIBs, and DLBL definitions to execute a part~cular program, you might 
have an EXEC procedure as follows: 

&CONTROL ERROR TIME 
&ERROR &EXIT &RETCODE 
GLOBAL MACLIB TESTLIB DOSMAC 
ASSEMBLE TESTA 
PRINT TESTA LISTING 
DOSLKED TESTA TESTLIB 
GLOBAL DOSLIB TESTLIB PROGLIE 
ACCESS 200 E 
ASSGN SYS010 E 
&BEGSTACK 
DOS.TEST3.STREAM.BETA 
&END 
DLBL DISKl E DSN 1 (SYS010 
ASSGN SYS011 PUNCH 
CP SPOOL PUNCH TO * 
ASSGN SYS012 A 
DLBL OUTFILE A CMS TEST DATA 
FETCH TESTA (START 
&IP &RETCODE = 100 &GOTO -RET100 
&IP &RETCODE = 200 &GOTO -RET200 
&EXIT &RETCODE 
-RET100 &CONTINUE 

-RET200 &CONTINUE 

The &CONTROL and &ERROR control statements in the EXEC procedure 
ensure that if an error occurs during any part of the EXEC, the 
remainder of the EXEC does not execute, and the execution summary of the 
EXEC indicates the command that caused the error. 

Note that for the DLBL command entered with the DSN 1 operand, you 
must stack the response before issuing the DLBL command. In this 
example, since the DOS file-id has more than 8 characters, you must use 
the &BEGSTACK control statement to stack it. When you use the &STACK 
control statement, the EXEC processor truncates all words to 8 
characters. 

section 9. Developing DOS Programs Under CMS 185 



When your program is finished 
&RETCODE indicates the contents of 
program exited. You can use this 
your EXEC procedure. Additional 
example by ellipses. 

executing, the EXEC special variable 
general register 15 at the time your 
value to perform additional steps in 

steps are indicated in the preceding 

For detailed information on creating EXEC procedures, see "Part 3. 
Learning To Use EXEC." 

186 IBM VM/370: CMS User's Guide 



Section 10. Using Access Method Services and VSAM Under 
CMS and CMS/DOS 

This section describes how you can use CMS to create and manipulate VSAM 
catalogs, data spaces, and files on OS and DOS disks using Access Method 
Services. The CMS support is based on DOS/VS Access Method Services and 
Virtual storage Access Method (VSAM); this means that if you are an OS 
VSAM user and plan to use CMS to manipulate VSAM files you are 
restricted to those functions of Access Method Services that are 
available under DOS/VS Access Method Services. The control statements 
you can use are described in the pUblication QQ2L!~ !£ce§§ Me1h~g 
2~I!!£~§ y§~~~§ QYig~· 

you can use CMS to 

• Execute the Access Method services utility programs for VSAM and SAM 
data sets on OS and DOS disks and minidisks. CMS can both read and 
write VSAM files using Access Method Services. 

• Compile and execute programs that read and write VSAM files from DOS 
programs written in the COBOL or PL/I programming languages. 

• Compile and execute programs that read and write VSAM files from OS 
programs written in the VS BASIC, COBOL, or PL/I programming 
languages. 

• Assemble assembler language source programs under CMS that use VSAM 
macros. You must create your own macro library from OS or DOS macro 
libraries. 

VSAM files written under CMS are wholly compatible for reading and 
writing under OS and DOS systems. None of the CMS commands normally used 
to manipulate CMS files are aPilicable to VSAM files, however. This 
includes such commands as PRINT, TYPE, EDIT, COPYFILE, and so on. 

This section provides information on using the CMS 
with which you can execute Access Method Services. The 
divided as follows: 

AMSERV command 
discussion is 

• "Using the AMSERV command" contains general information. 

• "Manipulating OS and DOS Disks for Use with AMSERV" describes how to 
use CMS commands with OS and DOS disks. 

• "Defining DOS Input and Output Files" is for CMS/DOS users only. 

• "Defining OS Input and Output Files" is for OS users only. 

• "Using AMSERV Under CMS" includes notes and examples showing how to 
perform various Access Method Services functions in CMS. 

EXECUTING VSAM PROGRAMS UNDER CMS 

The commands that are used to define input and output data sets for 
Access Method Services, DLBL and for CMS/DOS users, ASSGN, are also used 
to identify VSAM input and output files for program execution. 
Information on executing programs under CMS that manipulate VSAM files 
is contained in the Program Product documentation for the language 
processors. These publications are listed in the Y~LllQ: !n~~Qgg£liQn. 

Section 10. Using Access Method Services and VSAM 187 



Restrictions on the use of Access Method Services and VSAM under CMS 
for OS and DOS users are listed in !l1Ll1Q: £11~ CO!!l!!l.2!!.2 !!!!£ l1.2£!:Q 
E~!~~§n£~, which also contains complete CMS and CMS/DOS command formats, 
operand descriptions, and responses for each of the commands described 
here. 

When you are going to execute VSAM programs in CMS or CMS/DOS, you 
should remember to issue the DLBL command to identify the master 
catalog, as well as any other program input or output file you need to 
define. 

Using the AMSERV Command 

In CMS, you execute Access Method Service utility programs with the 
lMSERV command, which has the basic format 

amserv filename 

"filename" is the name of a CMS file that contains the control 
statements for Access Method Services. 

Ig!~: Throughout the remainder of this section the term "AMSERV" is used 
to refer to both the CMS AMSERV command and the OS/VS or DOS/VS Access 
Method Services, except where a distinction is being made between CMS 
and Access Method Services. 

You create an AMSERV file with the CMS Editor using a filetype of 
AMSERV and any filename you want, for example: 

edit mas~cat amserv 
NEW FILE: 
EDIT: 
input 

The Editor recognizes the filetype of AMSERV, and so automatically sets 
the mar9ins for your input lines at columns 2 and 72. The sample AMSERV 
file being created in the example above, MASTCAT AMSERV, might contain 
the following control statements: 

DEFINE MASTERCATALOG (NAME (MY CAT) -
VOLUME (123456) CYL (2) -
FILE (IJSYSCT) ) 

'Iote that the syntax of the control statements must conform to the rules 
for Access Method services, including continuation characters and 
parentheses. The only difference is that the AMSERV file does not 
contain a "/*" for a termination indicator. 

Before you can execute the DEFINE control statement in this AMSERV 
example, you must define the output file, using the ddname IJSYSCT. You 
can do this using the DLBL command. Since the exact form required in 
the DLBL command varies according to whether you are an as or a DOS 
user, separate discussions of the DLBL command are provided later in 
this section. All of the following examples assume that any disk data 
set or file that you are referencing with an AMSERV command will have 
been defined by a DLBL command. 

When you execute the AMSERV command, the AMSERV control statement 
file can be on any accessed CMS disk; you do not need to specify the 
filemode, and if you are a DOS user, you do not need to assign SYSIPT. 
The task of locating the file and passing it to Access Method Services 
is performed by CMS. 

188 IBM VM/370: CMS User's Guide 



AMSERV OUTPUT LISTINGS 

When the AMSERV command is finished processing, you receive the CMS 
Ready message, and if there was an error, the return code (from register 
15) is displayed following the "R". For example, 

R(00008); 

or, if you are receiving the long form of the Ready message, it appears: 

R(00008); T=0.01/0.11 10:50:23 

If you receive a Ready message with an error return code, you should 
examine the output listing from AMSERV to determine the cause cf the 
error. 

AMSERV output listings are written in CMS files with a filetype of 
LISTING; by default, the filename is the same as that of the input 
AMSERV file. For example, if you have executed 

amserv mastcat 

and the CMS Ready message indicates an error return code, you should 
examine the file MASTCAT LISTING: 

edit mastcat listing 
EDIT: 
locate /idc/I= 

Issuing the LOCATE subcommand twice to find 
will position you in the LISTING file at 
Services message. 

the character string IDC 
the first Access Method 

The publication QQ~L!~ ~~§§gg~§, Order No. GC33-5379, lists and 
explains all of the messages generated by Access Method Services 
together with the associated reason codes. 

Instead of editing the file, you could also use the TYPE command to 
display the contents of the entire file, so that you would be able to 
examine the input control statements as well as any error messages: 

type mastcat listing 

If you need to make changes to control statements before executing 
the AMSERV command again, use the CMS Editor to modify the AMSERV input 
file. 

If you execute the same AMSERV file a number of times, each execution 
results in a new LISTING file, which replaces any previous listing file 
with the same filename. 

When you use AMSERV to print a VSAM file, or to list catalog or recovery 
area contents using the PRINT, LISTCAT, or LISTeRA control statements, 
the output is written in a listing file on a eMS read/write disk, and 
not spooled to the printer unless you use the PRINT option of the AMSERV 
command: 

amserv listcat (print 

section 10. Using Access Method Services and VSAM 189 



If you want to save the output, you should issue the AMSERV command 
without the PRINT option and then use the CMS PRINT command to print the 
LISTING file. 

CONTROLLING AMSERV COMMAND LISTINGS 

The final disposition of the listing, as a printer or disk file, depends 
on how you enter the AMSERV command. If you enter the AMSERV command 
with no options, you get a CMS file with a filetype of LISTING and a 
filename equal to that of the AMSERV input file. This LISTING file is 
usually written on your A-disk, but if your A-disk is full or not 
accessed, it is written on any other read/write CMS disk you have 
accessed. 

If there is not enough room on your A-disk or any other disk, the 
AMSERV command issues an error message saying that it cannot write the 
LISTING file. If this happens, the LISTING file created may be 
incomplete and you may not be able to tell whether or not Access Method 
Services actually completed successfully. In this case, after you have 
cleared some space on a read/write disk, you may have to execute an 
AMSERV PRINT or LISTCAT function to verify the completion of the prior 
job. 

LISTING files take up considerable disk space, so you should erase 
them as soon as you no longer need them. 

If you do not want AMSERV to create a disk file from the listing, you 
can execute the AMSERV command with the PRINT option: 

amserv myfile (print 

The listing is spooled to your virtual printer, and no disk file is 
created. You might want to use this option if you are executing a PRINT 
or LISTCAT control statement and expect a very large output listing that 
you know cannot be contained on any of your disks. 

You can also control the filename of the output listing file by 
specifying a second name on the AMSERV command line: 

amserv listcat listcat1 

In this example, the input file is LISTCAT AMSERV and the output listing 
is placed in a file named LISTCAT1 LISTING. A subsequent execution of 
this same AMSERV file: 

amserv listcat listcat2 

creates a second listing file, LISTCAT2 LISTING, so that the listing 
created from the first execution is not erased. 

190 IBM VM/370: CMS User's Guide 



Manipulating OS and DOS Disks for Use with AMSERV 

To use eMS 'SAM and AMSER', you can have as or DOS disks in your virtual 
machine configuration. They can be assigned in your directory entry, or 
you can link to them using the CP LINK command. You must have read/write 
access to them in order to execute any AMSER' function or 'SAM program 
that requires opening the file for output or update. 

Before you can use an as or DOS disk you must access it with the CMS 
ACCESS command: 

access 200 d 

The response from the ACCESS command indicates that the disk is in as or 
DOS forma t: 

D (200) R/W - as 

-- or --

D (200) R/W - DOS 

You can write on these disks only through AMSER' or through the 
execution of a program writing 'SAM data sets. Once an as disk is used 
with AMSER' or 'SAM, CMS considers it a DOS disk, so regardless of 
whether you are an as user, w:hen .you access or request information about 
a VSAM disk, CMS indicates that it is a DOS disk. You can still use the 
disk in an as or DOS system; its format is not changed. 

USING VM/370 MINIDISKS 

If you have a 'M/370 minidisk in your virtual machine configuration, you 
can use it to contain VSAM files. Before you can use it, it must be 
formatted with the IBCDASDI program or other appropriate operating 
system utility program. When you request that a disk be added to your 
virtual machine configuration for use with 'SAM files under CMS, you 
should indicate that it be formatted for use with as or DOS. Or, you 
can format it yourself using the IBCDASDI program. A brief example of 
how to do this is given under "Using Temporary Disks," below. The 
IBCDASDI control statements are fully described in the 'ML~lQ: 

Q2~~§1Q~~§ §y!g!. 

!21~: If you are an as user, you should be careful about allocating 
space for VSAM on minidisks. Once you have used CMS AMSER' to allocate 
'SAM data space on a minidisk you should not attempt to allocate 
additional space on that minidisk using an as/'s system. as does not 
recognize minidisks, and would attempt to format the entire disk pack 
and thus erase any data on it. To allocate additional space for VSAM, 
you should use CMS again. If you use the IBCDASDI program to format the 
disk, and use the CYLIO parameter, the entire disk is flagged as full, 
so that OS cannot allocate additional space. 

USING THE LISTDS COMMAID 

For as or DOS disks or ainidisks, you can use the LISTDS command to 
determine the extents of free space available for use by 'SAM. You can 

section 10. Using Access Method Services and VSAM 191 



also determine 
information to 
files. 

what space 
supply the 

is already in use. You can use 
extent information when you define 

The options used with VSAM disks are 

• EXTENT, to find out what extents are in use, and 
• PREE, to find out what extents are available. 

this 
VSAM 

Por example, if you have an OS disk accessed as a G-disk, and you enter: 

listds g (extent 

The response might look like: 

EXTENT INPORMATION POR 'VTOC' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) 
000 VTOC 099 00 1881 099 18 1899 

TRACKS 
19 

EXTENT INFORMATION FOR 'PRIVAT.CORE.IMAGE.LIB' ON 'G' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYt-HD(RELTRK) TRACKS 
000 DATA 000 01 1 049 f8 949 949 

EXTENT INFORMATION POR 'SYSTEM.WORK.FILE.NO.6' ON 'G' DISK: 
SEQ TYPE CYL-HD (RELTRK) TO CYL-HD (RELTRK) TRACKS 
000 DATA 050 00 950 051 18 987 38 

You could also determine the extent for a particular data set: 

listds ? * (extent 
DMSLDS220R ENTER DATA SET NAME: 
system recorder file 

EXTENT INFORMATION POR 'SYSTEM RECORDER FILB' ON 'F' DISK: 
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 DATA 102 00 1938 102 18 1956 19 
002 DATA 010 06 206 010 08 208 3 

LISTDS searches all minidisks accessed until it locates the specified 
data set. In this example, t~e data set occupies two separate extents on 
disk P. If the data set 1S a multivolume data set, extents on all 
accessed volumes are located and displayed. 

If you want to find the free extents on a particular disk, enter: 

listds g (free 
FREESPACE EXTENTS 
CYL-HD(RELTRK) TO 
052 00 988 
054 02 1028 
081 01 1540 

POR 'G' DISK: 
CYL-HD (RBLTRK) 
052 01 989 
080 00 1520 
098 18 1880 

TRACKS 
2 

493 
341 

You can use this information when you allocate space for VSAM files. If 
you enter 

listds * (free 

CMS lists all the free space available on all of your accessed disks. 

192 IBM VM/370: CMS User's Guide 



USING TEMPORARY DISKS 

When you need extra space on a temporary basis for use with CMS VSAM and 
AMSERV, you can u~e the CP DEFIN~ command to define a temporary minidisk 
and then use the IBCDASDI program to format it. Once formatted and 
accessed, it is available to your virtual machine for the duration of 
your terminal session or until you detach it using the CP DETACH 
command. Remember that anything placed on a temporary disk is lost, so 
that you should copy output that you want to keep onto permanent disks 
before you log off. 

The example below shows a control statement file and an EXEC procedure 
that, together, can be used to format a minidisk with the IBCDASDI 
program. For a complete description of the control statements used, 
refer to the !AllIQ: QE~!~lQ!~2 ~gi~~. 

The input control statements for the IBCDASDI programs should be 
placed in a CMS file, so that they can be punched to your virtual card 
reader. For this example, suppose the statements are in a CMS file named 
TEMP IBCDASDI: 

DASD198 JOB 
MSG 
DADEF 
VLD 
VTOCD 
END 

TODEV=1052,~OADDR=009 
TODEV=3330,TOADDR=198,VOLID=SCRATCH,CYLNO=10 
NEWVOLID=123456 
STRTADR=185,EXTENT=5 

Now consider the CMS file named TEMPDISK EXEC: 

&ERROR &EXIT 100 
CP DEFINE T3330 198 10 
CP CLOSE C 
CP PURGE READER ALL 
ACC 190 Z/Z IPL * 
CP SPOOL PUNCH CONT TO * 
PUNCH IPL IBCDASDI Z (NOH) 
PUNCH TEMP IBCDASDI * (NOH) 
CP SPOOL PUNCH NOCONT 
CP CLOSE PUNCH 
CP IPL OOC 

you execute this procedure by entering the filename of the EXEC: 

tempdisk 

When the final line of this EXEC is executed, the IBCDISDI program is in 
control. You must then signal an Attention interrupt using the Attention 
or Enter key, and you receive the message: 

IBC105A DEFINE INPUT DEVICE 

you should enter 

input=2540,00c 

to indicate that the control statements should be read from your card 
reader, which is a virtual 2540 device at virtual address OOC. 

section 10. Using Access Method Services and VSAM 193 



When the IBCDASDI program is finished, your virtual machine is in the 
CP environment and must reload CMS (with the IPL command) to begin 
virtual machine execution. You can then access the temporary disk: 

acc 198 c 

and CMS responds 

C ( 198) R/W - as 

Dcefining DOS Input and Output Files 

Note: This information is for DOS/VS VSAM users. OS/VS VSAM users should 
refer to the section "Defining as Input and output Files. 1I 

you must use the DLBL command to define VSAM input and output files for 
both the AMSERV command and for program execution. The operands 
required on the DLBL command are: 

dlbl ddname filemode DSN datasetname (options SYSxxx 

where "ddname" corresponds to the FILE parameter in the AMSERV file and 
"datasetname" corresponds to the entry name or filename of the VSAM 
file. 

There are several options you can use when issuing the DLBL command 
to define VSAM input and output files. These are: 

• VSAM, which you must use to indicate that the file is a VSAM file. 

Note: You do not have to use the 
iSAM file if you are using any 
since they imply that the file 
ddnames (filenames) IJSYSCT and 
being defined is a VSAM file. 

VSAM option to identify a file as a 
of the other options listed here, 
is a VSAM file. In addition, the 

IJSYSUC also indicate that the file 

• EXTENT, which you must use when you are defining a catalog or a VSAM 
data space; you are prompted to enter the volume information. This 
option effectively provides the function of the EXTENT card in 
DOS/VS. 

• MULT, which you must use in order to access a multivolume VSAM file; 
you are prompted to enter the extent information. 

• CAT, which you can use to identify a catalog which contains the entry 
for the VSAM file you are defining. 

• BUFSP, which you can use to specify the size of the buffers VSAM 
should use during program execution. 

options are entered following the open parenthesis on the DLBL command 
line, with the SYSxxx: 

assgn sys003 e 
dlb1 file1 b1 dsn workfile (extent cat cat2 sys003 

Additional examples using some of these options are shown below. 

194 IBM VM/370: CMS User's Guide 



USING VSAM CATALOGS 

While you are developing and testing your VSAM programs in CMS, you may 
find it convenient to create and use your own master catalog, which may 
be on a CMS minidisk. VSAM catalogs, like any other cluster, can be 
shared read-only among several users. 

You name the VSAM master catalog for your terminal session using the 
logical unit SYSCAT in the ASSGN command and the ddname IJSYSCT for the 
DLBL command. For example, if your VSAM master catalog is located on a 
DOS disk you have accessed as a C-disk, you would enter 

assgn syscat c 
dlbl ijsysct c dsn mast cat (syscat 

Note: When you use the ddname IJSYSCT you do not need to specify the 
VSAM option on the DLBL command. 

You must identify the master catalog at the start of every terminal 
session. If you are always using the same master catalog, you might 
include the ASSGN and DLBL commands in an EXEC procedure or in your 
PROFILE EXEC. You could also include the commands necessary to access 
the DOS system residence volume and enter the CMS/DOS environment: 

ACCESS 350 Z 
SET DOS ON Z (VSAM 
ACCESS 555 C 
ASSGN SYSCAT C 
DLBL IJSYSCT C DSN MASTCAT (SYSCAT PERM 

You should use the PERM option so that you do not have to reset the 
master catalog assignment after clearing previous DLBL definitions. 

You must use the VSAM option on the SET DOS ON command line if you 
want to use any Access Method Services function or access VSAM files. 

The sample ASSGN and DLBL commands used in the above EXEC are almost 
identical with those you issue to define a master catalog using AMSERV. 
The only difference is that you must enter the EXTENT option so that you 
can list the data spaces that this master catalog is to control. 

As an example, suppose that you have a 30-cylinder 3330 minidisk 
assigned to you to use for testing your VSAM programs under CMS. 
Assuming that the minidisk is in your directory at address 333, you 
should first access it: 

access 333 d 
D (333) R/W - OS 

If you formatted the minidisk yourself, you know what its label is. If 
not, you can find out what the label is by using the CMS command 

query search 

The response might be 

USR191 191 A R/W 
DOS333 333 C R/W - OS 
SYS190 190 S R/O 
SIS 19E 19E Y/S R/O 

Section 10. Using Access Method Services and VSAM 195 



Use the label DOS333 in the VOLUMES parameter in the MASTCAT AMSERV 
file: 

DEPINE MASTERCATALOG -
(NAME (MASTCAT)
VOLU~E (DOS333) -
CYL (4) -
FILE (IJSYSCT) 

NOw, to find out what extents on the minidisk you can allocate for VSAM, 
use the LISTDS command with the EXTENT option: 

listds d (free 

The response from LISTDS might look like this: 

FREESPACE INPORMATION FOR 'n' DISK: 
CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS 
000 01 1 000 09 9 9 
000 11 11 029 18 569 560 

From this response, you can see that the volume table of contents (VTOC) 
is located on the first cylinder, so you can allocate cylinders 1 
through 29 for VSAM: 

assgn syscat c 
dlbl ijsysct c dsn mast cat (syscat perm extent 
DMSDLB331R ENTER EXTENT SPECIPICATIONS: 
19 551 

(null line) 

After entering the extents, in tracks, giving the relative track number 
of the first track to be allocated followed by the number of tracks, you 
aust enter a null line to complete the command. A null line is required 
because, when you enter multiple extents, entries may be placed on more 
than one line. If you do not enter a null line, the next line you enter 
causes an error, and you must re-enter all of the extent information. 

Note that, as in DOS/VS, the extents must be on cylinder boundaries, and 
you cannot allocat€ cylinder O. 

Now you can issue the AMSERV command: 

amserv mastcat 

A Ready message with no return code indicates that the master catalog is 
defined. You do not need to reissue the ASSGN and DLBL commands in order 
to use the master catalog for additional AMSERV functions. 

You can use the AMSERV co •• and to define private catalogs and spaces for 
them, also. The procedures for determining what space you can allocate 
are the same as those outlined in the example of defining a master 
catalog. 

For a user catalog, you may use any programmer logical unit, and any 
ddname: 

196 IBM VM/37~: CMS User's Gu~de 



access 199 e 
listds e (free 

assgn sys001 e 
dlbl cat1 e dsn private cat1 (sys001 extent perm 

amserv user cat 

The file USERCAT AMSERV might contain the following: 

DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
PILE (IJSYSUC)-
CYL (4) -
VOLUME (DOSVS2) -
CATALOG (MA STCA T) 

After this AMSERV command has completed successfully you can use the 
catalog PRIVATE.CAT1. When you issue a DLBL command to identify a 
cluster or data set cataloged in this catalog, you must identify the 
catalog using the CAT option on the DLBL command for the file: 

assgn sys100 c 
dlbl file2 e dsn ? (sys100 cat cat1 

Or, you can define this catalog as a job catalog. 

If you want to set up a user catalog as a job catalog so that it will be 
searched during all subsequent jobs, you can define the catalog using 
the special ddname IJSYSUC. For example: 

assgn sys101 c 
dlbl ijsysuc c dsn private cat1 (sys101 perm 

If you defined a user catalog (IJSYSUC) for a terminal session and 
you use the AMSERV command to access a VSAM file, the user catalog takes 
precedence over the master catalog. This means that for files that 
already exist, only the user catalog is searched. When you define a 
cluster, it is cataloged in the user catalog, rather than in the master 
catalog, unless you use the CAT option to override it. 

If you want to use additional catalogs during a terminal session, you 
first define them just as you would any other VSAM file: 

assgn sys010 f 
dlbl mycat2 f dsn private cat2 (sys010 vsam 

Then, when you enter the DLBL command for the VSAM file that is 
cataloged in PRIVATE.CAT2 use the CAT option to refer to the ddname of 
t he catalog: 

assgn sys011 f 
dlbl input f dsn input file (sys011 cat mycat2 

section 10. Using Access Method Services and VSAM 197 



If you want to stop using a job catalog defined as IJSYSUC, you can 
clear it using the CLEAR option of the DLBL command: 

dlbl ijsysuc clear 

Then, the master catalog becomes the job catalog for files not defined 
with the CAT option. 

When you define passwords for VSAM catalogs in CMS, or when you use CMS 
to access VSAM catalogs that have passwords associated with them, you 
must supply the password from your terminal when the AMSERV command 
executes. The message that you receive to prompt you for the password 
is the same message you receive when you execute Access Method services: 

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV FILE catalog 

When you enter the proper password, AMSERV continues execution. 

DEFINING AND ALLOCATING SPACE FOR VSAM FILES 

You can use CMS AMSERV to allocate additional data spaces for VSAM. To 
use the DEFINE SPACE control statement, you must have defined the 
catalog which that is to control the space, and you must have the volume 
or volumes on which the space is to be allocated mounted and accessed. 

For example, suppose you have a DOS-formatted 3330 disk attached to 
your virtual machine at virtual address 255. After accessing the disk 
and determining the free space on it, you could create a file named 
SPACE AMSERV: 

DEFINE SPACE -
(FI LE (FILE 1) -
TRACKS (1900) -
VOLUME (123456) -
CATALOG (PRIVATE.CAT2 CAT2) ) 

To execute this AMSERV file, define PRIVATE.CAT2 as a user catalog using 
the ddname CAT2, and then define the ddname for the FILE parameter: 

access 255 c 
assgn sysOl0 c 
dlbl cat2 c dsn private cat2 (sysOl0 vsam 
assgn sysOll c 
dlbl fi1el c (extent sysOll cat cat2 

Note that you do not need to enter a data set name to define the space. 
When CMS prompts you for the extents of the space you can enter the 
extent specifications: 

DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
190 1900 

198 IBM VM/370: CMS User's Guide 



When you define space for VSAM, you should be sure that the VOLUMES 
parameter and the space allocation parameter (whether CYLINDER, TRACKS, 
or RECORDS) in the AMSERV file agrees with the information you provide 
in the DLBL command. All data extents must tegin and end on cylinder 
boundaries. Any additional space you provide in the extent information 
that is beyond what you specified in the AMSERV file is claimed by 
VSAM. 

When you are specifying extents for a master catalog, data space, or 
unique file, you can specify up to 16 extents on a volume for a 
particular space. When prompted by CMS to enter the extents, you must 
separate different extents by commas, or place them on different lines. 
To specify a range of extents in the above example, you can enter 

dlbl file1 c (extent sys011 
190 190, 570 190, 1900 1520 

(null line) 

or --

dlbl file1 c (extent sys011 
190 190 
570 190 
1900 1520 

(null line) 

Again, the first number entered for each extent represents the relative 
track for the beginning of the extent and the second number indicates 
the number of tracks. 

You can define spaces that span up to 9 volumes for VSAM files; all of 
the volumes must be accessed and assigned when you issue the DLBL 
command to define or identify the data space. 

You should remember, though, that if you are using AMSERV and you do 
not use the PRINT option, you must have a read/write CMS disk so that 
AMSERV can write the output LISTING file. 

If you are defining a new multivolume data space or unique cluster, 
you must specify the extents on each volume that the data is to occupy 
(starting track and number of tracks), followed by the disk mode letter 
at which the disk is accessed and the programmer logical unit to which 
the disk is assigned: 

access 135 b 
access 136 c 
access 137 d 
assgn sys001 b 
assgn sys002 c 
assgn sys003 d 
dlbl newfile b (extent sys001 
DMSDLB33lR ENTER EXTENT SPECIFICATIONS: 
100 60 b sys001, 400 80 b sys001, 60 40 d sys003 
2000 100 c sys002 

(null line) 

section 10. Using Access Method Services and VSAM 199 



If you specify more than one extent on the same line, the e~tents must 
be separated by commas; if you enter a comma at the end of a line, it is 
ignored. Different extents for the same volume must be entered 
consecutively. 

Note that in the preceding example, the extent information is for 
2314 disks; and that these extents are also on cylinder boundaries. 

When you enter multivolume extents you can use a default mode. For 
example: 

dlbl nevfile b (extent sys001 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60, 400 80, 60 40 d sys003, 
2000 100 c sys002 

(null line) 

Any extents you enter without specifying a mode letter and SYSxxx value 
default to the mode and SYSxxx on the DLBL command line, in this case, 
the B-disk, SYS001. 

If you make any errors issuing the DLBL command or extent 
information, you must re-enter the entire command sequence. 

IDENTIFYING EXISTING ~~1I!!Q1Y~1 !!11~: When you issue a DLEL command to Ia:entIfy-an exIstIng multivolume VSAM file, you must use the MULT option 
of the DLBL command: 

dlbl old bl dsn ? (sys002 mult 
DMSDLB220R ENTER DATA SET NAME: 
dostest.file 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
c sys004, d sys003 
e sys007 

(null lin~ 

When you enter the DLBL command you should specify the mode letter and 
logical unit for the first volume on the command line. When you enter 
the MULT option you are prompted to enter additional specifications for 
the remaining extents. In the preceding example, the data set has 
extents on disks accessed as B-, C-, D-, and E-disks. 

USING TAPE INPUT AND OUTPUT 

If you are using A"SERV for a function that requires tape input and/or 
output, you must have the tape(s) attached to your virtual machine. The 
valid addresses for tapes are 181, 182, 183, and 184. ~hen referring to 
tapes, you can also refer to them using their CMS symbolic names TAP1, 
TlP2, TAP3, and TAP4. 

Since CMS does not read tape labels, there is no CMS/DOS equivalent 
to the TLBL control statement. For AMSERV functions that use tape 
input/output, you are prompted for the ddname (filenam~. 

When you invoke the AMSERV command, you must use the TAPIN or TAPOUT 
option to specify the tape device being used: 

amserv export (tapout 181 

In this example, the output from the A"SERV control statements in a file 
named EXPORT goes to a tape at virtual address 181. CMS prompts you to 
enter the ddname: 

200 IBM VM/370: CMS User's Guide 



DftSAftS367R EITER TAPE OUTPUT DDIAftES: 

After you enter the ddname specified on the PILB parameter in the AftSERV 
file and press the carriage return, the AftSERV command executes. 

When you create a tape in eMS using AMSERV, efts writes a tape mark 
preceding each output file that it writes. When this same tape is read 
using A"SERV under eMS, the tape mark is automatically skipped, so you 
do not have to forward space the tape. If you read this tape in a real 
DOS/VS system, you should use a TLEL card that specifies a filename, but 
no file-ide 

Similarly, when you create a tape under a DOS/VS system using Access 
ftethod Services, if the tape is created with standard labels, eftS AftSERV 
has no difficulty reading it. 

The ?nly tiae you should worry about positioning a tape created by 
AftSERV 1S when you want to read the tape using a method other than 
AftSERV, for exaaple, the ftOVEFILE command. Then, you aust forward space 
the tape using the eftS TAPE cOBmand before you can read it. 

Defining OS Input and Output Files 

!2!~: This inforaation is for OS/VS VSAft users only. DOS/VS VSAft users 
should refer to "Defining DOS Input and Output piles" for information on 
defining files for use with VSA~. 

If you are going to use Access ~ethod Services to manipulate VSAft or SAM 
files or you are going to execute VSAft programs under eMS, you must use 
the DLBL command to define the input and output files. The basic format 
of the DLBL coaaand is: 

DLBL ddnaae filemode DSI datasetname (options 

where ddname corresponds to the FILE parameter in the AMSERV file and 
datasetname corresponds to the entry name of the VS1M file, that is, the 
naae specified in the IAftE parameter of an Access Method Services 
control statement. 

If you are using a eftS file for AMSERV input or output, use the eMS 
operand, and enter eftS file identifiers, as follows: 

dlbl mine a cms out file1 (vsam 

The maxiaua length allowed for ddnames under eMS VSAft is 7 
characters. This means that if you have assigned a-character ddnames (or 
filenaaes) to files in your prograas, only the first 7 characters of 
each ddnaae are used. So, if a program refers to the ddname OUTPUTDD, 
you should issue the DLBL command for a ddname of OUTPUTD. Since you 
can encounter problems with a program that contains ddnames with the 
saae first seven characters, you should recompile those programs using 
1-character ddnaaes. 

There are several options you can use when issuing the DLBL command 
to define VSlft input and output files. These are: 

section 10. Using Access Method Services and VS1M 201 



• VSAM, which you must use to indicate that the file is a VSAM file. 

Note: You do not have to use the 
VS!K file if you are using any 
since they imply that the file 
ddnames (filenames) IJSYSCT and 
being defined is a VSAM file. 

VSAM option to identify a file as a 
of the other options listed here, 
is a VSAM file. In addition, the 

IJSYSUC also indicate that the file 

• EXTENT, which you must use when you are defining a catalog or a VSAM 
data space; you are prompted to enter the volume information. 

• MULT, which you must use in order to access a multivolume VSAM file; 
you are prompted to enter the extent information. 

• CAT, which you can use to identify a catalog which contains the entry 
for the VSAM file you are defining. 

• BUFSP, which you can use to specify the size of the buffers VSAM 
should use during program execution. 

ALLOCATING EXTENTS ON OS DISKS AND MINIDISKS 

When you use Access Method Services to manipulate VSAM files under OS, 
you do not have to worry about allocating the real cylinders and tracks 
to contain the files. When you use CMS AMSERV, however, you are 
re~sponsible for indicating which cylinders and tracks should contain 
particular VSAM spaces when you use the DEFINE control statement to 
define space. 

Extents for VSAM data spaces can be defined, in AMSERV files, in 
te~rms of cylinders, tracks, or records. Extent information you supply to 
CMS when executing AMSERV must always be in terms of tracks. When you 
define data spaces or unique clusters, the extent information (number of 
cylinders, tracks, or records) in the AMSERV file must match the extents 
you supply when you issue the DLBL command to define the file. When you 
supply extent information for the master catalog, any extents you enter 
iu excess of those required for the catalog are claimed by the catalog 
and used as data space. 

CMS does not make secondary space allocation for VSAM data spaces. 
If you execute an AMSERV file that· specifies a secondary space 
allocation, CMS ignores the parameter. 

When you use the DLBL command to define VSAM data space, you must use 
the EXTENT option, which indicates to CMS that you are going to enter 
data extents. For example, if you enter 

dlbl space b (extent 

CMS prompts you to enter the extents: 

DMSDLB331R ENTER EXTENT SPECIFICATIONS: 

When you enter the extents, you specify the relative track number of the 
first track of the extent, followed by the number of tracks. For 
example, if you are allocating an entire 2314 disk, you would enter 

20 3980 
(null line) 

202 IBM VM/370: CMS User's Guide 



You can never write on cylinder 0, track 0; and, since VSAM data 
spaces must be allocated on cylinder boundaries, you should never 
allocate cylinder o. Cylinder 0 is often used for the volume table of 
contents (VTOC), as well, so it is always best to begin defining space 
with cylinder 1. 

The list below shows the DASD devices supported by CMS 
number of cylinders on each that can be allocated for VSAM 
the number of tracks per cylinder: 

Disk 
2314/2319 
3330 Series 
3340 Model 35 
3340 Model 70 

£YliDg~!§ 
200 
404 
348 
696 

1!9£~§L£~ling~! 
20 
19 
12 
12 

VSAM, the 
space, and 

You can determine which disk extents on an OS disk or minidisk are 
available for allocation by using the LISTDS command with the FREE 
option, which also indicates the relative track numbers, as well as 
actual cylinder and head numbers. 

USING VSAM CATALOGS 

While you are developing and testing your VSAM programs in CMS, you may 
find it convenient to create a~d use your own master catalog, which may 
be on a CMS minidisk. VSAM catalogs, like any other cluster, can be 
shared read-only a.ong several users. 

You name the VSAM mast~r catalog for your terminal session using the 
ddname IJSYSCT for the DLBL command. For example, if your VSAM master 
catalog is located on an OS disk you have accessed as a C-disk, you 
would enter 

dlbl ijsysct c dsn master catalog (perm 

You must define the master catalog at the start of every terminal 
session. If you are always using the same master catalog, you might 
include the DLBL command you need to define it in your PROFILE EXEC: 

ACCESS 555 C 
DLBL IJSYSCT C DSN KASTCAT (PERM 

You should use the PERM option so that you do not have to reset the 
.aster catalog assignment after clearing previous DLBL definitions. The 
co •• and 

dlbl * clear 

clears all file definitions except those entered with the PERM option. 

The sample DLBL command used in the preceding example is almost 
identical with the one you would issue to define a master catalog using 
A!SERV. The only difference is that you must enter the EXTENT option so 
that you can list the data spaces that this master catalog is to 
control. 

Section 10. Using Access Method Services and VSA! 203 



As an example, suppose that you have a 30-cylinder 3330 minidisk 
assigned to you to use for testing your VSAM programs under CMS. 
Assuming that the minidisk is in your directory at address 333, you 
should first access it: 

access 333 d 
D (333) R/W - as 

If you formatted the minidisk yourself, you know what label you assigned 
it; if not, you can find out the label assigned to the disk by issuing 
the CMS command 

query search 

The response might be 

USR191 
VSAM03 
SYS109 
SYS19E 

191 A 
333 C 
190 S 
19E Y/S 

R/W 
R/W - os 
RIO 
RIO 

Use the volume label VSAM03 in the MASTCAT AMSERV file: 

DEFINE MASTERCATALOG -
(NAME (MASTCAT)
VOLUME (VSAM03) -
CYL (4) -
FILE (IJSYSCT) 

To find out what extents on this minidisk you can allocate for VSAM, use 
the LISTDS command with the FREE option: 

listds d (free 

The response from LISTDS might look like this: 

FREESPACE INFORMATION FOR 'D' DISK: 
CYL-HD (RELTRK) TO CYL-HD (RELTRK) TRACKS 
000 01 1 000 09 9 9 
000 11 11 029 18 569 560 

From this response, you can see that the VTOC is located on the first 
cYlinder, so you can allocate cylinders 1 through 29 for VSAM: 

dlbl ijsysct c dsn mastcat (perm extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
19 551 

(null line) 

After entering the extents, in tracks, g1v1ng the relative track number 
of the first track to be allocated followed by the number of tracks, you 
must enter a null line to complete the command. (A null line is required 
because, when you enter multiple extents, entries may be placed on more 
than one line.) 

Now you can issue the AMSERV command: 

amserv mastcat 

A Ready message with no return code indicates that the master catalog is 
defined. You do not need to reissue the DLBL command in order to 
identify the master catalog for additional A"SERV functions. 

204 IBM VM/370: CMS User's Guide 



You can use the AMSERV command to define private catalogs and spaces for 
them. The procedures for determining what space you can allocate are the 
same as those outlined in the example of defining a master catalog. 

To define a user catalog, you can assign any ddname you want: 

access 199 e 
listds e (free 

dlbl cat1 e dsn private cat1 (extent 

amserv user cat 

The file USERCAT AMSERV might contain the following: 

DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
FILE (CAT 1) -
CYL (4) -
VOLUME (OSVSAM) -
CATALOG (MASTCAT) 

After this AHSERV command has completed successfully you can use the 
catalog PRIVATE.CAT1. When you define a file cataloged in it, you 
identify it using the CAT option on the DLBL command: 

dlbl file2 c dsn ? (cat cat1 

Or, you can define it as a job catalog. 

During a terminal session, you may be referencing the same private 
catalog many times. If this is the case, you can identify a job catalog 
by using the ddname IJSYSUC. Then, that catalog is searched during all 
subsequent jobs, unless you override it using the CAT option when you 
use the DLBL command to define a file. 

If you defined a user catalog (IJSYSUC) for a terminal session and 
you use the AMSERV command to access a VSAM file, the user catalog takes 
precedence over the master catalog. This means that for files that 
already exist~ the job catalog is searched. When you define a cluster, 
it is cataloged in the job catalog, rather than in the master catalog, 
unless you use the CAT option to override it. CMS never searches more 
than one VSAM catalog. 

You should use the CAT option to name a catalog when the AMSERV file 
you are executing references, with the CATALOG parameter, a catalog that 
is not defined either as the master catalog or as a user catalog. 

If you want to use additional catalogs during a terminal session, you 
first define them just as you would any other VSAM file: 

dlbl mycat2 f dsn private cat2 (vsam 

Section 10. Using Access Method Services and VSAM 205 



Then, when you enter the DLBL command for the VSAM file that is 
cataloged in PRIVATE.CAT2 use the CAT option to refer to the ddname of 
the catalog: 

dlbl input f dsn input file (cat mycat2 

If you want to stop using a job catalog defined with the ddname IJSYSUC, 
you can clear it using the CLEAR option of the DLBL command: 

dlbl ijsysuc clear 

or, you can assign the ddname IJSYSUC to some other catalog. 
clear the ddname for IJSYSUC, then the master catalog becomes 
ca talog. 

If you 
the job 

When you define passwords for VSAM catalogs in CMS, or when you use CMS 
to access VSAM catalogs that have passwords associated with them, you 
aust supply the password from your terminal when the AMSERV command 
executes. The message that you receive to prompt you for the password 
is the same message you receive when you execute Access Method Services: 

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV FILE catalog 

When you enter the proper password, AMSERV continues execution. 

DEFINING AND ALLOCATING SPACE FOR VSAM FILES 

You can use CMS AMSERV to allocate additional data spaces for VSAM. 70 
us,e the DEFINE SPACE control statement, you must have defined either the 
master catalog or a user catalog which will control the space, and you 
must have the volume or volumes on which the space is to be allocated 
mounted and accessed. 

For example, suppose you have an OS 3330 disk attached to your 
virtual machine at virtual address 255. After accessing the disk and 
determining the free space on it, you could create a file named SPACE 
AMSERV: 

DEFINE SPACE -
(FILE (FILE 1) -

TRACKS (1900) -
VOLUME (123456) -
CATALOG (PRIVATE.CAT2 CAT2) ) 

To execute this AMSERV file, you must define PRIVATE.CAT2 using the 
ddname CAT2, and then define the ddname for the file: 

access 255 c 
dlbl cat2 c dsn private cat2 (vsam 
dlbl file1 c (extent cat cat2 

You do not need to enter a data 
prompts you for the extents of 
sp1ecifica tions : 

set name to define the space. When CMS 
the space, you can enter the extent 

206 IBM VM/370: CMS User's Guide 



DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
190 1900 

When you define space for iSAM, you should be sure that the VOLUMES 
parameter and the space allocation parameter (whether CYLINDER, TRACKS, 
or RECORDS) in the AMSERV fiie agree with the track information you 
provide in the DLBL command. 

When you are specifying extents for a master catalog, data space, or 
unique file, you can specify up to 16 extents on a volume for a 
particular space. When prompted by CMS for the extents, you must 
separate the different extents by commas, or place them on different 
lines. To specify a range of extents in the above example, you could 
enter 

dlbl file1 c (extent 
190 190, 570 190, 1900 1520 

(null line) 

or --

dlbl file1 c (extent 
190 190 
570 190 
1900 1520 

(null line) 

Again, the first number entered for each extent represents the relative 
track for the beginning of the extent and the second number indicates 
the number of tracks. 

You can define spaces that sp&n up to nine volumes for VSAM files; all 
of the volumes must be accessed and assigned when you issue the DLBL 
command to define or identify the data space. 

You should remember, thaugh~ that if you are using AMSERV and you do 
not use the PRINT option, you must have a read/write CMS disk so that 
AMSERV can write the output LISTING file. 

If you are defining a new ~ultivolume data space or unique cluster, 
you must specify the extents on each volume that the data is to occupy 
(starting track and number of tracks), followed by the disk mode letter 
at which the disk is assigned: 

access 135 b 
access 136 c 
access 137 d 
dlbl newfile b (extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
100 60 b, 400 80 b, 60 40 d , 
2000 100 c 

(null line) 

section 10. Using Access Method Services and VSAM 207 



If you enter more than one extent on the same line, the extents must be 
separated by commas; if you enter a comma at the end of a line, it is 
ignored. Different extents for the same volume must be entered 
consecutively. Bote that in this example, the extent information is for 
2~114 disks and that these extents are also on cylinder boundaries. 

When you enter multivolume extents~ you do not have to enter a mode 
letter for those extents on the disk identified in the DLBL command. 
For the extents on disk B in the above example, you could enter 

dlbl nevfile b (extent 
DMSDLB331R EBTER EXTEBT SPECIPICATIONS: 
100 400 80, 60, 60 40 d 
2000 100 c 

(null line) 

If you make any errors issuing the DLBL com.and or extent 
information, you must re-enter the entire command sequence. 

IDENTIFYING EXISTING MULTIVOLUME l!1~~: When you issue a DLBL command to 
IdentIfy-an existing multivolume VSAM file, you must use the MULT option 
of the DLBL co •• and sequence: 

dlbl old b1 dsn 1 (mult 
DMSDLB220R ENTER DATASET NAME: 
vsamtest.file 
DMSDLB330R ENTER VOLUME SPECIFICATIONS: 
c, d 
e 

(null line) 

When you enter the DLBL command you should specify the mode letter for 
the first disk volume on the command line. When you enter the MULT 
option you are prompted to enter additional specifications for the 
remaining extents. In the above example, the data set has extents on 
disks accessed as B-, C-, D-, and E-disks. 

USING T.PE IBPUT ABD OUTPUT 

If you are using A"SERV for a function that requires tape input and/or 
output, you must have the tape(s) attached to your virtual maChine. The 
valid addresses for tapes are 181, 182, 183, and 184. When referring to 
tapes, you can also refer to them using their CMS symbolic names TAP1, 
TAP2, TAP3, and TAP4. 

When you use AMSERV to create or read a tape, you supply the ddna.e 
for the tape device interactively, after you issue the AKSERV co •• and. 
To indicate to AMSERV that you are using tape for input or output, you 
must use the TAPIB or TAPOUT option to specify the tape device being 
used: 

amserv export (tapout 181 

In this example, the 
virtual address 181. 

output from an EXPORT function is 
CKS prompts you to enter the ddname: 

DKSAKS367R EBTER TAPE OUTPUT DDNAKES: 

to a tape at 

lfter you enter the ddname for the tape file, AMSERV begins execution. 

2n8 IBM VM/370: CMS User's Guide 



When you create a tape file using AMSERV under CMS, CMS writes a tape. 
mark preceding each output file. When CMS AMSERV is used to read this 
same file, it automatically skips past the tape mark to read the file. 
If you want to read the tape on a real OS/VS system, however, you must 
use the LABEL=(2,NL) parameter on the data definition (DO) card for the 
tape. 

If you are creating a tape under OS/VS Access Method Services to be 
read by CMS AMSERV, you must be sure to create the tape using standard 
labels so that CMS can read it properly. CMS will not be able to read a 
tape created with LABEL=(,NL) on the DD card. 

For CMS to read this tape for any other purpose (for example, to use 
the MOVEFILE command to copy it), you must remember to forward space the 
file past the tape mark before beginning to read it. 

Using AMSERV Under eMS 

This section provides examples of AMSERV functions executed under CMS. 
The examples are applicable to both the CMS (OS) and eMS/DOS 
environments. You should be familiar with the material presented in 
either "Defining DOS Input and Output Files" or "Defining OS Input and 
Output Files," depending on whether you are a DOS or an OS user, 
respectively. For the examples shown below, command lines and options 
that are required only for CMS/DOS users are shaded. OS users should 
ignore these shaded entries. 

USING THE DEFINE AND DELETE FUNCTIONS 

When you use the DEFINE and DELETE control statements of AMSERV, you do 
not need to specify the DSN parameter on the DLBL command: 

dlb ijsysct c (perm extent 

If the above commands are executed prior to an AMSERV command to define 
a master catalog, the DEFINE will be successful as long as you have 
assigned a data set name using the NAME parameter in the AMSERV file. 
The same is true when you define clusters, or when you use the DELETE 
function to delete a cluster, space, or catalog. 

When you do not specify a data set name, AMSERV obtains the name from 
the AMSERV file. In the case of defining or deleting space, no data set 
name is needed; the FILE parameter corresponding to the ddname is all 
that is necessary, and AMSERV assigns a default data set name to the 
space. 

When you define space on a minidisk using AMSERV, CMS does not check 
the extents you specify to see whether they are greater than the number 
of cylinders available. As long as the starting cylinder is a valid 
cylinder number and the extents you specify are on cylinder boundaries, 
the DEFINE function completes successfully. However, you receive an 
error message when you use an AMSERV function that tries to use this 
space. 

Section 10. Using Access Method Services and VSAM 209 



To define a cluster for VSAM space that has already been allocated, you 
need (1) an AMSERV filE~ containing the control statements necessary for 
defining the cluster, and (2) the master catalog (and, perhaps, user 
catalog) volume, which will point to the cluster. The volume on which 
the cluster is to reside does not have to be online when you define a 
suballocated cluster. 

For example, the file CLUSTER AMSERV contains the following: 

DEFINE CLUSTER ( NAME (EOOK.LIST) -
VOLUMES (123456) -
TRACKS (40) -
FILE (BOOK) -
KEYS (14,0) RECORDSIZE (120,132) )

DATA (NAME (BOOK.LIST.DATA) ) -
INDEX (NAME (BOOK.LIST.INDEX) ) 

To execute this file, you would need to enter the following command 
sequence (assuming that the master catalog, on volume 123456, is in your 
virtual machine at address 310): 

access 310 b 
!J$agli>$ysca't b 
d1bl ijsysct b (p'~rm,,:~':~j 
amserv cluster 

Note that to define a suballocated cluster, you do not need to provide a 
DLBL command to define it to AMSERV. 

For a unique cluster (one defined with the UNIQUE attribute), you must 
define the space for the cluster at the same time you define its name 
and attributes; thus the volume or volumes on which the cluster is to 
reside must be mounted and accessed when you execute the AMSERV 
command. You must supply extent information for the cluster's data and 
index portions separately. 

To execute an AMSERV file named UNIQUE which contains the following 
(the ellipses indicate that the AMSERV file is not complete): 

DEFINE CLUSTER -
(NAME (PAYROLL) ) -

DATA ( FILE (UDATA) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (40) -. .. ") -

INDEX ( FILE (UINDEX) ) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (10) -. .. ) 

210 IBM VM/370: eMS User's Guide 



the command sequence should be: 

access 350 c 
.... "~R~·~i'4 
'~~~~<e~~~H(~~xten t 1ID!~~~1 
DMSDLB331 EXTENT SPECIFICATIONS: 
800 800 c 
dlbl uindex c (extent 
600 200 c .Itl!j ~~!!f~¥!!iMli 
amserv unique 

When you use AMSERV to delete a VSAM cluster, the volume containing the 
cluster does not have to be accessed unless the volume also contains the 
catalog in which the cluster is defined. In the case of data spaces and 
user catalogs, or the master catalog, however, the volume(s) must be 
mounted and accessed in order to delete the space. 

When you delete a cluster or a catalog, you do not need to use the 
DLBL command, except to define the master catalog; AMSERV can obtain the 
necessary file information from the AMSERV file. In the case of data 
spaces, you must supply a ddname (filename) with the DLBL command, but 
you do not need to use the DSN parameter. 

You should be particularly careful when you are using temporary disks 
with AMSERV, that you have not cataloged a temporary data space or 
cluster in a permanent catalog. You will not be atle to delete the space 
or cluster from the catalog. 

USING THE REPRO, IMPORT, AND EXPORT (OR EXPORTRA/IMPORTRA) FUNCTIONS 

you can manipulate VSAM files in CMS with the REPRO, IMPORT, and EXPORT 
functions of AMSERV. You can create VSAM files from sequential tape or 
disk files (on OS, DOS, or CMS disks) using the REPRO function. Using 
REPRO, you can also copy VSAM files into CMS disk files or onto tapes. 
For the IMPORT/EXPORT process, you have the option (for smaller files) 
of exporting VSAM files to CMS disks, as well as to tapes. 

You cannot, however, use the EXPORT function to write files onto OS 
or DOS disks. Nor can you use the REPRO function to copy ISAM (indexed 
sequential) files into VSAM data sets, since CMS cannot read ISAM 
files. 

You cannot use the ERASE or PURGE options of the EXPORT command if 
you are exporting a VSAM file from a read-only disk. The export 
operation succeeds, but the listing indicates an error code 184, meaning 
that the erase function could not be performed. 

You should not use an EXPORT DISCONNECT function from a CMS minidisk 
and try to perform an IMPORT CONNECT function for that data set onto an 
OS system. OS incorrectly rebuilds the data set control block (DSCB) 
that indicates how much space is available. 

The AMSERV file below gives :an example of using the REPRO function to 
copy a CMS sequential file into a VSAM file. The CMS input file must be 
sorted in alphameric sequence before it can be copied into the VSAM 
file, which is a keyed sequen~ial data set (KSDS). The VSAM cluster, 
NAME.LIST, is defined in an AMSERV file named PAYROLL: 

Section 10. Using Access Method Services and VSAM 211 



DEFINE CLUSTER ( NAME (NAME.LIST ) -
VOLUMES (CMSDEV) -
TRACKS (20) -
FILE (BOOK) -
KEYS (14,0) -
RECORDSIZE (120,132) ) -

DATA (NAME (NAME. LIST. DATA) ) -
INDEX (NAME (NAME.LIST.INDEX ) ) 

To sort the CMS file, create the cluster and copy the CMS file into it, 
use the following commands: 

sort name list a name sort a 
DMSSRT604R ENTER SORT FIELDS: 
1 14 
access 135 c 
-~ .. ~ 
dlbl ij~ysct"- c (perm .. dlIIJ 
amserv payroll 

, 'iABI'JJiIti 
dlbl sort a cms name sort 

l'fb"~1!~n name list 
amserv repro 

The file REPRO AMSERV contains: 

REPRO INFILE ( SOET 
ENV (RECORDFORMAT (F) -

BLOCKSIZE (80) -
PDEV (3330) ) ) -

OUTFILE (NAME) 

vsam 

When you use the REPRO, IMPORT, or EXPORT functions with tape files, 
you must remember to use the TAPIN and TAPOUT options of the AMSERV 
command. These options perform two functions: they allow you to specify 
the device address of the tape, 'and they notify AMSERV to prompt you to 
enter a ddname. 

In the example below, a VSAM file is being exported to a tape. The 
file, TEXPORT AMSERV, contains: 

EXPORT NAME.LIST
INFILE (NAME) -
OUTFILE (TAPE ENV (PDEV (2400) ) ) 

To execute this AMSERV, you enter the commands as follows: 

dlbl name c CIII:I1CJ.§j: vsam 
amserv texport (tapout 181 
DMSAMS367R ENTER TAPE OUTPUT DDNAMES: 
tape 

WRITING EXECS FOR AMSERV AND VSAM 

You may find it convenient to use EXEC procedures for most of your 
AMSERV functions, as well as setting up input and output files for 
program execution, and executing your VSAM programs. If, for example, a 
particular AMSERV function requires several disks and a number of DLBL 
state.ents, you can place all of the required co.mands in an EXEC file. 
For example, if the file below is named SETUP EXEC: 

212 IBM VM/370: CMS User's Guide 



ACCESS 135 B 
ACCESS 136 C 
ACCESS 137 D 
ACCESS 300 G 

DLBL IJSYSCT G (PER! ••• 

DLBL FILE1 B DSN FIRST FILE (VSAM 

DLBL FILE2 C DSN SECOND FILE (VSAM 

DLBL FILE3 D DSN THIRD FILE (VSAM ••• 
AMSERV fWLTPILE 

to invoke this sequence of commands, all you have to enter is the name 
of the EXEC: 

setup 

If you place, at the beginning of the EXEC file, the EXEC control 
statement 

&ERROR &EXIT &RETCODE 

then, you can be sure that the A!SERV com.and does not execute unless 
all of the prior commands compieted successfully. 

Por those AMSERY functions that issue response messages, you can use 
the &STACK EXEC control statement. Por example, 

&ERROR &EXIT &RETCODE 
ACCESS 305 D 

DLBL OUTPUT D (YSAM ••• 
&ERROR &CONTINUE 
&STACK TAPE 
AMSERY TI!PORT (TAPIN 181 
&IF &RETCODE BE 0 TYPE TI~PORT LISTING 
TAPE REW 
&EXIT 0 

When the AMSERY command in the EXEC is executed, the request for the 
tape ddname is satisfied immediately, by the response stacked with the 
&STACK statement. 

If you are executing a command that accepts multiple response lines, 
you have to stack a null line as follows: 

&STACK C D 
&STACK 
DLBL MULTFILE B (MULT ••• 

!2~: You can use the &BEGSTACK control statement to stack a series of 
responses in an EXEC, but you .ust use &STACK to stack a null line. 

section 10. Using Access Method Services and VSA! 213 





Section 11. How VM/370Can Help You Debug Your Programs 

Debugging is a critical part of the program development process. When 
you encounter problems executing application programs, or when you want 
to test new lines of code, you can use a variety of CP and CMS debugging 
commands and techniques to explore your program while it is executing. 

You can interrupt the execution of a program to examine and change 
your general registers, storage areas, or control words such as the 
Program status Word (PSW), and then continue execution. Also, you can 
trace the execution of a program closely, so you can see where branches 
are being taken, and when supervisor calls or I/O interrupts occur. 

In many cases, you may never need to look at a dump of a program to 
identify a problem. 

Preparing To Debug 

Before beginning to debug a program, you should have a current program 
listing for reference. When you use VM/370 to debug a program, you can 
monitor program execution, instruction by instruction, so you must have 
an accurate list of instruction addresses and addresses of program 
storage areas. You can obtain a listing of your program by using the 
PRINT command to print the LISTING file created by the assembler or 
compiler. To determine the virtual storage locations of program entry 
points, use the LOAD MAP file created by the LeAD and INCLUDE commands. 
If you are a CMS/DOS user, use the linkage editor map produced by the 
DOSLKED command. 

If the program that you are debugging creates printed or punched 
output, and you will be executing the program repeatedly, you may not 
wish all of the output printed or punched. You should place your 
printer or punch in a hold status, so that any files spooled to these 
devices are not released until you specifically request it: 

cp spool printer hold 
cp spool punch hold 

When you are finished debugging you can use the CP QUERY command to see 
what files are being held and then you can select which files you may 
want to purge or release. 

When a Program Abends 

The most common problem you might encounter is an abnormal termination 
resulting from a program interruption. When a program running in a CMS 
virtual machine abnormally terminates (abends), you receive, at your 
terminal, the message 

DMSITP141T exception EXCEPTION OCCURRED AT address IN ROUTINE name 

and your virtual machine is returned to the CMS environment. Prom the 
message you can determine the type of exception (program check, 
operation, specification, and so on), and, often, the instruction 
address in your program at which the error occurred. 

Section 11. Hov VM/370 Can Help You Debug Your Programs 215 



sometimes this is enough information for you to correct the error in 
your source program, reccmpile it and attempt to execute it again. 

When this information does not immediately identify the problem in 
your program, you can begin debugging procedures using VM/370. To 
access your program's storage areas and registers you can enter the 
command 

debug 

immediately after receiving the abend message. This command places your 
virtual machine in the debug environment. 

To check the contents of general registers 0 through 15, issue the 
DEBUG subcommand 

gpr 0 15 

If you want to look at only one register, enter 

gpr 3 

You might also wish to check the Program status Word (PSW). Use the PSW 
subcommand: 

psw 

You can examine storage areas in your program using the X subcommand: 

X 201AC 20 

In this example, the subcommand requests a display of 20 bytes, 
beginning at location 201AC in your program. User programs executed in 
CMS are always loaded beginning at location X'20000' unless you specify 
a different address on the LOAD or FETCH command. To identify the 
virtual address of any instruction in a program, you only need to add 
20000 to the hexadecimal instruction address. 

RESUMING EXECUTION AFTER A PROGRAM CHECK 

On occasion, you will be able to determine the cause of a program check 
and continue the execution of your program. There are DEBUG subcommands 
you can use to alter your program while it is in storage and resume 
execution. 

If, for example, the error occurred because you had forgotten to 
initialize a register to contain a zero, you could use the DEBUG 
subcommand SET to place a zero in the register, and then resume 
execution with the GO subcommand. you can use the GO subcommand to 
specify the instruction address to which you want execution to begin: 

set gpr 11 0000 
go 200EO 

An alternate method of specifying a starting address for execution to 
resume is by using the SET subcommand to change the last word cf the 
PSW: 

set psw 0 000200EO 
go 

216 IBM V~/370: CMS User's Guide 



If your program executes successfully, you can then make the 
necessary changes to your source file, recompile, and continue testing. 

Using DEBUG Subcommands to Monitor Program Execution 

The preceding examples did not represent a wide range of the 
possibilities for DEBUG subcommands. Nor do they represent the only way 
to approach program debugging. Some additional DEBUG subcommands are 
illustrated below. For complete details in using these subcommands, 
refer to the !~L1IQ: ~~~ ~Qm!gBg A~g ~A£±Q E~!~±~B£~. 

When you prepare to debug a program with known problems, or when you 
are beginning to debug a program for the first time, you might want to 
stop program execution at various instructions, and examine the 
registers, constants, buffers, and so on. To temporarily stop program 
execution, use the BREAK subcommand to set breakpoints. you should set 
breakpoints after you load the program into storage, but before you 
begin executing it. You can set up to 16 breakpoints at one time. For 
each breakpoint, you assign a value (id), and an instruction address: 

load myprog 
debug 
break 0 20BCO 
break 1 20C10 
break 2 20DOO 

Then, you can return to CMS and begin execution: 

return 
start 

When the first breakpoint in this example is encountered, you receive 
the messages 

DEBUG ENTERED. 
BREAKPOINT 1 AT 20BCO 

Then, in the debug environment, use the subcommands GPR, CSW, CAW, PSW, 
and X to display registers, control words, or storage locations. 

You can resume program execution with the GO subcommand: 

go 

If, at any time, you decide that you do not want to finish executing 
your program, but want to return to the CMS environment immediately, you 
aust use the HX subcommand 

hx 

There are three subcommands you can use to exit from the debug 
environment: 

1. RETURN, to return to the CMS environment when DEBUG is entered with 
the DEBUG command. 

2. GO, to resume program execution when it has been interrupted by a 
breakpoint. 

3. HX, to halt program execution entirely and return to the CMS 
environment. 

Section 11. How VM/370 Can Help You Debug Your Programs 217 



If you try to leave the debug environment with the wrong subcommand you 
receive the message 

INCORRECT DEBUG EXIT 

and you have to enter the proper subcommand. 

USING SYMBOLS WITH DEBUG 

To simplify the process of debugging in the CMS debug environment, you 
can use the ORIGIN and DEFINE subcommands. The ORIGIN command allows 
you to set an instruction location to serve as the base for all the 
addresses you specify. For exam~le, if you specify 

origin 20000 

then, to refer to your virtual storage location 201BC, you only need to 
E!nter 

x 1bc 

By setting the DEBUG origin at your program's base address, you can 
refer to locations in your program by the virtual storage numbers in the 
listing, rather than having to compute the actual virtual storage 
address each tiae. The current DEBUG origin stays in effect until you 
set it to a different value or until you reload CMS (with the IPL 
(::ommand) • 

You can use the DEFINE subcommand to assign symbolic names to storage 
locations so that you can reference those locations by symbol, rather 
than by storage address. For example, suppose that during a DEBUG 
session you will repeatedly be examining three particular storage 
locations labeled in your program NAME1, NAME2, and NAME3. They are at 
locations 20EPO, 20EF1, and 20F04. Enter: 

load nameprog 
debug 
origin 20000 
define name1 
define name2 
define name3 
break 
return 
start 

1 a04 

EFO 10 
EPA 10 
F04 10 

When the specified breakpoint is encountered, you can examine these 
storage areas by entering: 

x name1 
x name2 
x name3 

You can also refer to these symbols by name when you use the STORE 
:subcoamand: 

store name2 c4c5c3cSc1e4e5d6c9d9 

The names you specify do not have to be the same as the labels in the 
program; you can define any name up to 8 characters. 

Pigure 17 summarizes the DEBUG subcommands. 

218 IBM VM/370: CMS User's Guide 



...--------- ----, 
I Subcommand Format 
1-------------
I BReak id { Symbol} 
I hexloc 
I 
I CAW 
I 
I 
I CSW 
I 
I 
I r, 
I DEFine symbol hexlcc Ibytecountl 
I I ~ I 
I L.J 

Function 

IStops program execution at the 
Ispecified breakpoint. 

IDisplays the contents of the 
IChannel Address Word. 

IDisplays the contents of the 
IChannel status Word. 

IAssigns a symbolic name to the 
Ivirtual storage address. 
I 
I 

I 
I 
I 
I 
I 
I 
I 

r r , , I Du mps t he contents of specified 
DUmp Isymbol1 Isymbol21 [ident] I Ivirtual storage locations to the 

Ihexloc1 Ihexloc21 I Ivirtual spooled printer. 
I .Q I * I I I 
L L .If J JI 

I r , 
I GO Isymboll 
I Ihexlocl 
I L J 

GPR reg1 [reg2] 

HX 

IReturns control to your program 
land starts execution at the 
Ispecified location. 
I 

IDisplays the contents of the 
Ispecified general registers. 

IHalts execution and returns to 
Ithe CMS command environment. 

r , 
I 

ISpecifies the base address to be I 
ORigin Isymboll 

Ihexlocl 
I Q I 
L J 

ladded to locations specified in I 
lot her DEBUG subcommands. I 
I I 
I I 

I --------------------------------------1 
I PSW IDisplays the contents 

IProgram Status Word. 
of the old I 

I 
I 
I RETurn 
I 
1--------------------
I SET {CAW hexinfo } 
I CSW hexinfo (hexinfo] 
I P SW hex info [hexinfo] 
I GPR reg hexinfo (hexinfo] 

IExits from debug environment to 
Ithe CMS command environment. 

IChanges the contents of specified 
Icontrol words or registers. 
I 
I 

I -----------
I STore {symbOl} hexinfo [hexinfo] IStores up to 12 bytes of informa-
I hexloc Ition starting at the specified 
I Ivirtual storage location. 

I 

I ----------------1 
I r, IExamines virtual storage I 
I X symbol I n I Ilocations. I 
I I !~1!g!.!! I I I 
I L J I I 
I r , I I 
I hexloc I n I I I 
I I ~ I I I 
I L J I I L-____ _ ________________________ .J 

Figure 17. Summary of DEBUG Subcommands 

Section 11. How VM/370 Can Help You Debug Your Programs 219 



What To Do When Your Program Loops 

If, when your program is executing, it seems to he in a lOOF, you should 
first verify that it is looping, and then interrupt its execution and 
either (1) halt it entirely and return to the CMS environment or (2) 
resume its execution at an address outside of the loop. 

The first indication of a program loop may te either what seems to be 
an unreasonably long processing time, or, if you have a blip character 
defined, an inordinately large number of blips. 

You can verify a loop by checking the PSi frequently. If the last 
word repeatedly contains the same address, it is a fairly good 
indication that your program is in a loop. You can check the PSi by 
using the Attention key to enter the CP environment. You are notified 
by the message 

CP 

that your virtual machine is in the CP environment. You can then use 
the CP command DISPLAY to examine the PSi 

cp display psw 

and then enter the command BEGIN to resume program execution: 

cp begin 

If you are checking for a loop, you might enter both commands on the 
same line using the logical line end: 

cp d p.b 

When you have determined that your program is in a loop, you can halt 
execution using the CMS Immediate command HX. To enter this command, 
you must press the Attention key once to interrupt program execution, 
then enter 

hx 

If you want your program to continue executing at an address past the 
loop, you can use the CP command BEGIN to specify the address at which 
you want to continue execution: 

cp begin 20cdO 

Or, you could use the CP command STORE to change the instruction address 
in the PSW before entering the BEGIN command: 

cp store psw 0 20cdO'begin 

Tracing Program Activity 

ihen your program is in a loop, or when you have a program that takes an 
anexpected branch, you might need to trace the execution closely to 
determine at what instruction the program goes astray. There are two 
commands you can use to do this. The SVCTRACE command is a CMS command 
which traces all SVCs (supervisor call~ in your program. The TRACE 
Gommand is a CP command which allows you to trace different kinds of 
information, including supervisor call instructions. 

220 IBM VM/370: CMS User's Guide 



USING THE CP TRACE COMMAND 

yOU can trace the following kinds of activity in a program using the CP 
TRACE command: 

• Instructions 
• Branches 
• Interrupts (including program, external, I/O and SVC interrupts) 
• I/O and channel activity 

When the TRACE command executes, it traces all your virtual machine's 
activity; when your program issues a supervisor call, or calls any CMS 
routine, the TRACE continues. 

You can make most efficient use of the TRACE command by starting the 
trace at a specific instruction location. YOU should set an address 
stop for the location. For example, if you are going to execute a 
program and you want to trace a11 of the branches made, you would enter 
the following sequence of commands to begin executing the program and 
start the trace: 

load progress 
cp adstop 20004 
start 
ADSTOP AT 20004 
cp trace branch 
cp begin 

NOW, whenever your program executes a branch instruction, you receive 
information at the terminal that might look like this: 

02001E BALR 05E6 ==) 020092 

This line indicates that the instruction at address 2001E resulted in a 
branch to the address 020092. When this information is displayed, your 
virtual machine is placed in the CP environment, and you must use the 
BEGIN command to continue execution: 

cp begin 

When you locate the branch that caused the problem in your program, you 
should terminate tracing activity by entering 

cp trace end 

and then you can use CP commands to continue debugging or 
the EXTERNAL command to cause an external interrupt that 
virtual machine in the debug environment: 

cp external 

yOU receive the message 

DEBUG ENTERED. 
EXTERNAL INTERRUPT 

you can use 
places your 

And you can use the DEBUG subcommands to investigate the status of your 
program. 

Section 11. How VM/370 Can Help You Debug Your Programs 221 



'rhere are several things you can do to control the amount of information 
you receive when you are using the TRACE command, and how it is 
received. For example, if you do not want program execution to halt 
every time a trace output message is issued, you can use the RUN option: 

cp trace svc run 

Then, you can halt execution by pressing the Attention key when the 
interrupt you are waiting for occurs. You should use this option if you 
do not want to halt execution at all, but merely want to watch what is 
happening in your program. 

Similarly, if you do not require your trace output immediately, you 
can specify that it be directed to the printer, so that your terminal 
does not receive any information at all: 

cp trace inst printer 

When you direct trace output to a 
with any printed program output. 
from other printed output, use the 
printer at a virtual address lower 
E!xample: 

cp define printer 006 

printer, the trace output is mixed in 
If you want trace output separated 

CP DEFINE command to define a second 
than that of your printer at OOE. For 

Then, trace output will be in a separate spool file. CMS printed output 
always goes to the printer at address OOE. 

When you finish tracing, use the CP CLOSE command to close the 
virtual printer file: 

cp close e 

-- or --

cp close 006 

If you want trace output at the printer and at the terminal, you can use 
the BOTH option: 

cp trace all both 

If you are debugging a program that does a lot of I/O, or that issues 
many SVCs, and you are tracing instructions or branches, you might not 
wish to have tracing in effect when the supervisor or I/O routine has 
control. When you notice that addresses being traced are not in your 
program, you can enter 

cp trace end 

and then set an address stop at the location in your program that 
receives control when the supervisor or I/O routine has completed: 

cp adstop 20688 
begin 

222 IBM VM/370: CMS User's Guide 



Then, when this address is encountered, you can re-enter the CP TRACE 
command. 

USING THE SVCTRACE COMMAND 

If your program issues many SVCs, you may not get all of the information 
you need using the CP TRACE command. The SVCTRACE command is a CMS 
command, which provides more detailed information about all SVCs in your 
program, including register contents before and after the SVC, the name 
of the called routine, and the location from which it was called, and 
the contents of the parameter list passed to the SVC. 

The SVCTRACE command has only two operands, ON and OFF, to begin and 
end tracing. SVCTRACE information can be directed only to the printer, 
so you do not receive trace information at the terminal. 

since the SVCTRACE command can only be entered from the CMS 
environment, you must use the Immediate commands SO (suspend tracing) or 
HO (halt tracing) if you want tracing to stop while a program is 
executing. Use the Immediate command RO to resume tracing. 

Since the CMS system is "SVC-driven", this debugging technique can be 
useful, especially, when you are debugging CMS programs. For more 
information on writing programs to execute in CMS, see "Section 13. 
Programming for the CMS Fnvironment." 

Using CP Debugging Commands 

In addition to the CMS debugging facilities, there are CP commands that 
you can use to debug your programs. These commands are: 

• DISPLAY, which you can use to examine virtual storages, registers, or 
control words, like the PSW. 

• ADSTOP, which you can use to set an instruction address stop in your 
program. 

• STORE, which you can use to change the contents of a storage 
location, register, or control word. 

When you use the display command, you can request an EBCDIC translation 
of the display by prefacing the location you want display with a "T": 

cp display t20000.10 

This command requests a displ ay of X' 10' (16) bytes beginning at 
location X'20000'. The display is formatted 4 words to a line, with 
EBCDIC translation at the left, much as you would see it in a dump. 

You can 
registers. 

also use the DISPLAY command 
For example, the commands: 

cp display g 
cp display g1 
cp display g2-5 

to examine the general 

result in displays of all the general registers, of general register 1, 
and of a range of registers 2 through 5. 

Section 11. How VM/370 Can Help You Debug Your Programs 223 



The DISPLAY command also displays the PSW, CAW, and CSi: 

cp display psw 
cp display caw 
cp display csw 

With the STORE command, you can change the contents of registers, 
storage areas, or the PSW. 

As you can see, the CMS DEBUG subcommands and the CP commands ADSTOP, 
DISPLAY, and STORE, have many duplicate functions. The environment you 
choose to work in, CP or debug, is a matter of personal preference. The 
differences are summarized in Figure 18. What you should be aware of, 
however, is that you should never attempt to use a combination of CP 
commands and DEBUG subcommands when you are debugging a program. Since 
DEBUG itself is a program, when it is running (that is, when you are in 
the debug environment), the registers that CP recognizes as your virtual 
machine's registers are actually the registers being used by DEBUG. 
DEBUG saves your program's registers and PSi and keeps them in a special 
save area. Therefore, if you enter the DEBUG and CP commands to display 
registers, you will see that the register contents are different: 

gpr 0 15 
Icp d g 

DEBUGGING WITH CP AFTER A PROGRAM CHECK 

When a program that is executing under CMS abends because of a program 
check, the DEBUG routine is in control and saves your program's 
registers, so that if you want to begin debugging, you must use the 
DEBUG command to enter the debug environment. 

You can prevent DEBUG from gaining control when a program interrupt 
occurs by turning on the wait bit in the program new PSW (location X'68' 
in low storage) : 

cp store 68 00020000 

You should do this before you begin executing your program. Then, a 
program check occurs during execution, when CP tries to load the program 
new PSi, the wait bit forces CP into a disabled wait state and you 
receive the message 

DMKDSP450W CP ENTERED; DISABLED WAIT PSW 

All of your program's registers and storage areas remain exactly as they 
were when program interrupt occurred. The PSW that was in effect when 
your program was interrupted is in the program old PSi, at location 
X'28'. Use the DISPLAY command to examine its contents: 

cp display 28.8 

The program new PSW, or the PSW you see if you enter the command DISPLAY 
PSW contains the address of the tEBUG routine. 

If, after using CP to examine your registers and storage areas, you 
can recover from the problem, you must use the STORE command to restore 
the PSW, specifying the address of the instruction just before the one 
indicated at location X'28'. For example, if the instruction address in 
your program is X'566' enter: 

224 IBM VM/370: CMS User's Guide 



cp store psw 0 20566 
cp begin 

In this example, setting the first word of the PSW to 0 turns the wait 
bit off, so that execution can resume. 

Program Dumps 

When a progra. you execute under CMS abnormally terminates, you do not 
automatically receive a program dump. If, after attempting to use CMS 
and CP to debug interactively, you still have not discovered the 
problem, you may want to obtain a dump. yOU might also want to obtain a 
du.p if you find that you are displaying large amounts of information, 
which is not practical on a terminal. 

Depending on whether you are using CMS DEBUG or CP to do your 
debugging, you can use the DUMP command to specify storage locations you 
want printed. The formats of the DUMP command (CP) and the DUMP 
subcommand (DEBUG) are a little different. See !~ll~: £~~ £Q!!~ng ~ng 
Macro Reference for a discussion of the DEBUG subcommand, DUMP; see 
!i211~:-~f-~2ii~ng B~!~f~n~~ !2I ~~n~!!l M22~§ for a discussion of the 
CP DUMP command. 

In either event, you can selectively dump portions of your virtual 
storage, your entire virtual storage area, or portions of real storage. 
For example, to dump the virtual storage space that contains your 
program from the debug environment you would enter 

cp dump 20000 20810 

The second value depends upon the size of your program. 

Prom the CP environment, enter 

cp dump t20000-20810 

The CP DUMP co •• and allcws you to request EBCDIC translation with the 
hexadecimal dump. The dump produced by the DEBUG subcommand does not 
provide EBCDIC translation. 

Debugging Modules 

You can debug nonrelocatable MODULE files (created with the GEHMOD 
co •• and) in the same way you can debug object modules (TEXT files). 

To load the MODULE into storage, use the LOADMOD command: 

loadmod mymod 
cp adstop 201CO 
start 

If you make any changes to the module while it is in your virtual 
storage area and then issue the GEHMOD command, the changes are a 
permanent part of the executable module: 

loadllod mymod 
cp store 201CO 0002 
gen.od mymod 

To debug MODULE files in this manner, you must have a listing of the 
program as it existed when the module was created. 

section 11. How VM/370 Can Help You Debug Your Programs 225 



Comparison Of CP And CMS Facilities For Debugging 

If you are debugging problems while running CMS, you can choose the CP or CMS debugging 
tools. Refer to Figure 18 for a comparison of the CP and CMS debugging tools • 

...----- -----, 
I Functi.on I CP CMS I 
1---------------------------------- I 
Isettin9 I Can set only one address stop at a time. Can set up to 16 address stops I 
I address I at a time. I 
Istops. I I I 
1-------------------------------------------------------I 
IDumpinq I The dump is printed in hexadecimal format I The dump is printed in hexa- I 
I contents I with EBCDIC translation. The storage ad- I decimal format. The storage I 
lof storagel dress of the first byte of each line is I address of the first byte of I 
Ito the I identified at the left. I each line is identified at thel 
Iprinter. I I left. The contents of general I 
I I I and floating-point registers I 
I I I are printed at the beginning I 
I I I of the dump. I 
I----,--------------~----------------- I 
I Displaying I The display is typed in hexadecimal format The display is typed in hexa- I 
Ithe con- I with EBCDIC translation. The CP command I decimal format. The CMS com- I 
Itents of I displays storage keys, floating-point regi-I mands QQ BQ! display storage I 
Istorage I sters and control registers. I keys, floating-point registersl 
land I I or contrel registers as the CPI 
Icontrol I I command does. I 
I registers I I I 
I at the I I I 
I terminal. I I , 
I---,-------------,----~-----~~ I 
I Storing I The amount of information stored by the CP The CMS command stores up to I 
,informa- I command is limited only by the length of 12 bytes of information. CMS I 
Ition. I the input line. The information can be stores data in the general I 
I I fullword aligned when stored. CP stores registers but not in the I 
I I data in floating-point and control regis- floating-point or control reg-I 
I I ters, as well as in general registers. CP isters. CMS stores data in the, 
I I stores data in the PSW, but not in the CAW PSW, CAW, and CSW. I 
I , or CSW. However, data can be stored in the I 
, , CSW or CAW by specifying the hardware ad- I 
I I dress in the STORE command. I 
-------- I 
Tracing CP traces: CMS traces all SVC interrupts. I 
informa- • All interrupts, instructions, and CMS displays the contents I 
tion. branches of general and floating-point I 

L-

• SVC interrupts registers before and after I 
• I/O interrupts a routine is called. The para-I 
• Program interrupts meter list is recorded before I 
• External interrupts a routine is called. I 
• Privileged instructions I 
• All user I/O operations I 
• Virtual and real CCW's I 
• All instructions I 

The CP trace is interactive. You can stop 
it and display other fields. 

I 
I 
I 

Figure 18. Comparison of CP and CMS Facilities for Debugging 

226 IBM VM/370: CMS User's Guide 



What Your Virtual Machine Storage Looks Like 

Figure 19 illustrates a simplified CMS storage map. The portien of 
storage that is of most concern to you is the user program area, since 
that is where your programs are loaded and executed. The user program 
area and some of the other areas of storage shown in the figure are 
discussed below in general terms. 

When you issue a LOAD command (for OS or CMS programs) or a FETCH 
command (for DOS programs), and you do not specify the ORIGIN option, 
the first, or only, program you load is loaded at location X'20000', the 
beginning of the user program area. 

The upper limit, or maximum size, of the user program area is 
determined by the storage size of your virtual machine. You can find 
out how large your virtual machine is by using the CP QUERY command: 

cp query virtual storage 

If you need to increase the size of your virtual machine, then you 
aust use the CP command DEFINE. For example 

cp define storage 1024k 

increases the size of your virtual machine to 1024K bytes. If you are 
in the CMS environment when you enter this command, you receive a 
message like: 

STORAGE = 01024K 
DMKDSP450W CP ENTERED; DISABLED WAIT PSW '00020000 00000000' 

and you must reload CMS with the IPL command before you can continue. 

You might need to redefine your virtual machine to a larger size if 
you execute a program that issues many requests for free storage, with 
the OS GETMAIN or DOS/VS GETVIS macros. CMS allocates this storage from 
the user program area. 

At the top of the user program area are the loader tables, that are 
used by the CMS loader to point to programs that have have been loaded. 
You can increase the size of this area with the CMS SET LDRTBLS command. 
If you use the SET LDRTBLS command, you should issue it immediately 
after you IPL CMS. 

The transient program area is used for loading and executing 
disk-resident CMS MODULE files that have been created using the ORIGIN 
TRANS option of the LOAt command, followed by the GENMOD command. For 
aore information on CMS MODULE files and the transient area, see 
"Executing Program Modules" in "Section 13. Programming for the CMS 
Environment." 

SHARED AND NONSHARED SYSTEMS 

The areas in storage labelled in Figure 19 as the CMS nucleus and the 
DCSS are system programs that are loaded by various types of requests. 
When you enter the command 

cp ipl ems 

Section 11. How VM/370 Can Help You Debug Your Programs 227 



r- - - - - - - - - - - - - - - - - - , 
I 
I 
1 
1 ncss 

1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
L 

___________ J 

r- ----------, 
Loader Tables 1 

·----1 
1 
I 
1 
1 

User Program Area 1 
1 
1 
1 ---------1 
I 

CftS Nucleus 1 
1 

1 1 
1 1 
1 Transient Program Area 1 
1 I 
1 ---------------1 
1 Pree storage used by 1 
1 CftS routines I 
1 1 
1 System control Blocks, 1 
1 Pointers, Plags I 
I ~_--___ --__ ------J 

Figure 19. Simplified CftS Storage ftap 

X'n 
(w here n = your 
virtual machine 
storage size) 

X'20000' 

X'10000' 

X'EOOO' 

X'3000' 

the area shown 
is known to CP 
the CftS systelll 
using CftS, you 
cOllmand to load 
same system, CP 

as the CMS nucleus is loaded with the CMS system, which 
by its saved name, CMS. This saved system is a copy of 

that is available for many users to share. When you are 
share it with other users who have also issued the IPt 
the saved CMS system. By having many users share the 

can manage system resources more efficiently. 

Under some circumstances, you may need to load the CftS system into 
your virtual machine by entering the IPt command as follows: 

cp ipl 190 

This IPt command leads the CMS system by referring to its virtual 
address, which in most installations is 190. The copy of CMS you load 
this way is nonshared; it is your own copy, but it is the same system, 
functionally, as the saved system CftS. 

Some of the CP and CMS debugging commands do not allow you to trace 
or store information that is contained in shared areas of your virtual 
machine. For example, if you have entered the command 

cp trace inst 

228 IBft Vft/370: CMS User's Guide 



to trace instructions in your virtual machine, some of the instructions 
may be located in the CMS nucleus. If you have a shared copy of CMS, you 
receive a message like 

DMKVMA181E SHARED SYSTEM XCMS REPLACED WITH NONSHARED COpy 

and CP loads a copy of CMS for you that you do not share with other 
users. 

Some CMS routines and programs are stored on disks, and loaded into 
storaqe as needed. These segments include the CMS Editor, EXEC 
processor, and as simulation routines; CMS/DOS; VSAM; and Access Method 
Services. Beyond the end of your virtual machine address space is an 
area of storage into which these segments are loaded when you need 
thea. since this area is not contiguous with your virtual storage, the 
segments that are loaded in this area are called discontiguous shared 
segments. 

These segments are loaded only when you need them, and are released 
from the end of your virtual machine when you are through using them. 
Like the CMS system, they are saved systems, and can be shared by many 
users. For example, whenever you issue the EDIT command the segment 
named CMSSEG is loaded; when you enter the EDIT subcommands PILE or 
QUIT, the saved system CMSSEG is released. The other segments are named 
CMSDOS (for CMS/DOS), CMSVSAM (for VSAM interfaces), and CMSAMS (for 
Access Method Services Interfaces). 

If during the course 
of these segments, you 
operand, for example 

set nonshare cmsseg 

of debugging, you need a nonshared copy of one 
can use the SET command with the NONSHARE 

If you do not specifically request a nonshared copy before you issue a 
command that alters a shared segment, CP replaces the shared copy with a 
nonshared copy for you and issues the DMKVMA181E message. 

For additional information on saved systems, discontiguous shared 
segments, and CMS virtual storage, see the !~LJIQ: ~I2!~! RE2g~~!!~~~g 
~~!g~. 

section 11. How VM/370 Can Help You Debug Your Programs 229 





Section 12. Using the eMS Batch Facility 

The CMS Batch Facility provides a way of submitting jobs for batch 
processing in CMS. You can use the CMS Batch Facility when: 

• You have a job (like an assembly or execution) that takes a lot of 
time, and you want to be able to use your terminal for other work 
while the time-consuming job is being run. 

• yOU do not have access to a terminal. 

The CMS Batch Facility is really a virtual machine, generated and 
controlled by the system operator, who logs on VM/370 using the batch 
userid and invoking the CMSBATCH command. All jobs submitted for batch 
processing are spooled to the userid of this virtual machine, which 
executes the jobs sequentially. To use the CMS Batch Facility at your 
location, you must ask the system operator the userid of the batch 
virtual machine. 

Submitting Jobs to the eMS Batch Facility 

Under a real os or DOS syste~, jobs submitted in batch mode are 
controlled by JCt specifications. Batch jobs submitted to the CMS Batch 
Facility are controlled by the control cards /JOB, /SET, and /*, and by 
CMS commands. 

Any application or development program written in a language 
supported by VM/370 may be executed on the batch facility virtual 
machine. However, there are restrictions on programs using certain CP 
and CMS commands, as described later in this section. 

INPUT TO THE BATCH MACHINE 

Input records must be in card-image format, and may be punched on real 
cards, placed in a CMS file with fixed-length, aO-character records, or 
punched to your virtual card punch. These jots are sent to the batch 
virtual machine in one of two ways: 

• By reading the real punched card input into the system card reader. 

• By spooling your virtual card punch to the virtual reader of the 
batch virtual machine. 

When you submit a real card deck to the batch machine, the first card 
in the deck must be a CP 10 card. The 10 card takes the form: 

r---
110 userid 
L-

---------------------------------------, 
I _______________________________________ J 

where 10 must begin in card column one and be separated from userid (the 
batch facility virtual machine userid) by one or more blanks. 

Section 12. Using the CMS Batch Facility 231 



For example, if your ,installation's batch virtual machine has a 
userid of BATCH1, you punch the card: 

ID BATCHl 

and place it in front of your deck. 

When you are going to submit a job using your virtual card punch, you 
Rust first te sure that your punch is spooled to the virtual reader of 
the batch virtual machine: 

cp spool punch to batch1 

Virtual card input can be spooled to the batch machine in several ways. 
You may create a CMS file that contains the input control cards and use 
the CMS PUNCH command to punch the virtual cards: 

punch batch jcl (noheader 

When you punch a file this way, you must use the NOHEADER option of the 
l~UNCH command, since the CMS Batch Pacility cannot interpret the header 
card that is usually produced ty the PUNCH command. As it does with 
cards in an invalid format, the batch virtual machine would flush the 
Itleader ca rd. 

You can use an EXEC procedure to submit input to the batch machine. 
From an EXEC, you can punch one line at a time into your virtual punch, 
uS1ng the &PUNCH and &BEGPUNCH EXEC control statements. When you do 
this, you must remember to use the CP CLOSE command to release the spool 
punch file when you are finished: 

CP CLOSE PUNCH 

If you are using the EXEC to punch individual lines and entire CftS files 
to be read by the batch virtual machine as one continuous job stream, 
JOU must remember to spool your punch accordingly: 

CP SPOOL PUBCH CONT 
&PONCH /JOB BOSWELL 999888 
PUNCH BATCH JCL * (BOHlADER 
CP SPOOL PUNCH NOCONT 
CP CLOSE PUNCH 

A /JOB card must precede each job to be executed under the batch 
facility. It identifies your userid to the tatch virtual machine and 
provides accounting information for the system. It takes the form: 

,---_. , 
I /JOB userid accntnum (jobname] [comments] I 
I 

, ____ .J 

232 IBM VM/370: CMS User's Guide 



userid is your user identification, or the userid under which you 
want the job submitted. This parameter controls: (1) The 
userid charged by the CP accounting routines for the system 
resources used during a job. (2) The name and distribution 
code that appear on any spooled printer or punch output. (3) 
The userid to whom status messages are sent while the batch 
machine is executing the job. 

accntnum is your account number. This account number appears in the 
accounting data generated at the end of your job. It 
overrides the account number in the CP directory entry for the 
userid specified for this job. 

jobname is an optional parameter that specifies the name of the job 
being run. If you specify a jobname, it appears as the in the 
CP spool file identification in the filetype field. The 
filename field always contains CMSBATCH. See "Batch Facility 
Output" below. 

comments may be any additional information you want to provide. 

The 1* card indicates the end of a job to the batch facility. It 
takes the form: 

r------------------------------------------------------- -----------, 
I 1* I L-__________________ _ 

The batch facility treats all 1* cards after the first as nuil 
cards. Therefore, if you want to ensure against the previous jcb not 
having a 1* end-of-job indicator, you should precede your IJOB card with 
a /* card. 

The 1* card is also treated as an end-of-f~le indicator when a file 
is being read from the input stream. This is a special technique used in 
submitting source or data files through the card reader, and is 
discussed under "A Batch EXEC for Non-CMS Users." 

The /SET card sets limits on a system's time, printing, and punching 
resources during the execution of a job. It takes the form: 

r----
I /SET 
L-

seconds 

lines 

cards 

[TIME seconds] [PRINT lines] [PUNCH cards] 

is a decimal value that specifies the maximum number of 
seconds of virtual CPU time a job can use. 

is a decimal value that specifies the maximum number of lines 
a job can print. 

is a decimal number that specifies the maximum number of cards 
a job can punch. 

Section 12. Using the CMS Batch Facility 233 



The default values for the batch facility are set at 32,767 seconds, 
printed lines, and punched cards per job. Any new limits defined using 
the /SET card must be less than these maximum settings. The system 
resources can be set at lesser values than the default values by an 
installation's system programmer; be sure you know the maximum 
installation values for batch resource limits before you use the /SET 
card. 

80W THE BATCH FACILITY WORKS 

The CMS Batch Facility, once initialized, runs continuously. When it 
begins executing a job, it sends a message to the userid of the user 
submitting the job. So, if you are logged on when the batch machine 
begins executing a job you sent it, you receive the message: 

MSG FROM BATCHID: JOB 'yourjob' STARTED 

lihen the batch machine finishes processing a job, it sends the message: 

MSG FROM BATCHID: JOB 'yourjob' ENDED 

1ihere yourjob is the jobname you specified on the /JOB card. Before it 
reads the next job from its card reader, the tatch virtual machine: 

• Closes all spooling devices and releases spool files. 
•• Resets any spooling devices identified by the CP TAG command. 
• Detaches any disk devices that were accessed. 
•• Punches accounting information to the system. 
'. Reloads CM S. 

All of this "housekeeping" is done by the CMS Batch Facility so that 
each job that is executed is unaffected by any previous jobs. 

If a job that you send to the batch virtual machine terminates 
abnormally (abends), the batch machine sends you a message: 

MSG FROM BATCHID: JOB 'yourjob' ABEND 

and spools a CP storage dump of your virtual machine to the printer. 
The remainder of your job is flushed. 

Whenever the batch virtual machine has read and executed all of the 
jobs in its card reader, it waits for more input. 

Preparing Jobs for Batch Execution 

ihen you want to submit a job to the CMS Batch Facility for execution, 
you should provide the same CMS and CP commands you would use to preIare 
to execute the same job in your own virtual machine. 

You must provide the batch virtual machine with read access to any 
disk input files that are required for the job. You do this by supplying 
the LINK and ACCESS command lines necessary. The batch virtual machine 
has an A-disk (195), so you can enter commands to access your disks as 
read-only extensions. For example, if you wanted the batch machine to 
execute a program module named LONDON on your 291 disk, your input file 
might contain the following: 

234 IBM VM/370: CMS User's Guide 



/JOB FISH 012345 
CP LINK BOSWELL 291 291 RR SECRET 
ACCESS 291 B/A 
LONDON 

Similarly, if you are using the 
program using input and output 
definitions: 

CP LINK ARDEN 391 391 RR FOREST 
ACCESS 391 B/A 
FILEDEF INFILE D VITAL STAT 
FILEDEF OUTFILE PUNCH 
CP SPOOL PUNCH TO BOSWELL 
LONDON 

batch virtual machine to 
files, you must supply 

execute a 
the file 

If you expect printed or punched output from your job, you may need 
to include the spooling commands necessary to control the output. In 
the above example, the batch machine's punch is spooled to userid 
BOSWELL's virtual reader. 

Any output printer files produced by your job are spooled by the 
batch virtual machine to the printer. These files are spooled under your 
userid and with the distribution code associated with your userid. You 
can change the characteristics of these output files with the CP SPOOL 
command: 

CP SPOOL E CLASS T 

If you want output to appear under a name other than your userid, use 
the FOR operand of the SPOOL command: 

CP SPOOL E FOR JONSON 

Output punch files are spooled, by default, to the real system card 
punch (under your userid), unless you issue a SPOOL command in the batch 
job to control the virtual card punch of the tatch virtual machine. 

RESTRICTIONS ON CP AND CMS COMMANDS IN BATCH JOBS 

The batch facility permits the 
The following CP commands can 
machine: 

CHANGEI 
CLOSEI 
DETACH2 
DUMP 
DISPLAY 
LINK3 

!Qt~2: 

MSG 
QUERY 
REWIND 
SPOOLI 
STORE 
TAG 

use of many CP and most CMS commands. 
be used to control the batch virtual 

1. These commands may not be used to affect the virtual card reader. 

2. You can not use this command to detach any spooling devices or the 
system or IPL disks. 

3. The LINK command must be entered on one line in the format 

CP LINK userid vaddr vaddr mode password 

None of the LINK command keywords (AS, PASS, TO) are accepted. If 
the disk has no password associated with it, you must enter the 

section 12. Using the CMS Batch Facility 235 



password as ALL. A maximum of 10 links may be in effect at anyone 
time. 

All CP commands in a batch job must be prefaced with the "CP" 
c!ommand. 

since the batch virtual machine reads input from its card reader, you 
lean not use the following commands or operands that affect the card 
:reader: 

ASSGN SYSxxx READER (CMS/DOS only) 
DISK LOAD 
FILEDEF READER 
READCARD 

Invalid SET command operands are: 

BLIP 
EMSG 
IMPCP 
INPUT 

OUTPUT 
REDTYPE 
RELPAGE 
PROTECT 

~ll the other operands of the SET command can be used in a job executing 
in the batch virtual machine. 

BATCH FACILITY OUTPUT 

Any files that you request to have printed during your job's execution 
are spooled to the real system printer under your userid, unless you 
have spooled it otherwise. Once released for processing, these output 
.files are under the control of the CP spooling facilities; if you are 
logged on, you can control the disposition of these files before they 
are printed with the CLOSE, PURG!, ORDER, and CHANGE commands. 

Output files produced by the batch virtual machine are identifiable 
by the filename CMSBATCH in the CP spool file name field. The spool file 
type field contains the filetype JOB, unless you specified a jobname on 
the /JOB card. This applies to both printer and punch output files. 

In addition to your regular printed output, the CMS Batch Facility 
spools a console sheet that contains a record of all the lines read in, 
and the responses, error messages, and return codes that resulted from 
command or program execution. This file is identified by a spool file 
name of BATCH and a spool file type of CONSOLE. 

Using EXEC Files for Input to the Batch Facility 

There are a variety of ways that EXEC procedures can help facilitate the 
submission of jobs to the eMS Batch Facility. You can prepare an EXEC 
file that contains all of the CMS commands you want to execute, and then 
pass the name of the EXEC to the batch virtual machine. For example, 
consider the files COpy JCL and COPYF EXEC: 

COPY JCL: /JOB CARBON 999999 
EXEC COPYF 
/* 

COPYF EXEC: COPYFILE FIRST FILE A SECOND = = 
COPYFILE THIRD FILE A FOURTH = = 

236 IBM VM/370: CMS User's Guide 



Then, if you enter the commands 

cp spool punch to cmsbatch 
punch copy jcl * (noheader 

the commands in the EXEC file are executed by the batch virtual 
machine. 

You could also use an EXEC to 
machine. Using the same commands 
have an EXEC named BATCOPY: 

CP SPOOL PUNCH TO BATCH3 
&PUNCH IJOB CARBON 999999 

punch 
as in 

input to the batch virtual 
the example above, you might 

SPUNCH COPYFILE FIRST FILE A SECOND = = 
&PUNCH COPYFILE THIRD FILE A POURTH = = 
SPUNCH 1* 
CP CLOSE PURCH 

Then, when you enter the EXEC name: 

ba tcopy 

The input lines are punched to the batch virtual machine. 

The examples above are very simple; you protably would not go to the 
trouble of sending such a job to the tatch virtual machine for 
processing. The examples do, however, illustrate the two basic ways 
that you can use EXEC procedures with the batch facility: 

1. Invoking an EXEC procedure from a batch virtual machine. 

2. Using an EXEC procedure to create a jot stream for the batch 
virtual machine. 

In either case, the EXECs that you use may be very simple or very 
cOllplicated. In the first instance, an EXEC might contain many steps, 
with control statements to conditionally control execution, error 
routines, and so on. 

In the second instance, you might have an EXEC that is versatile, so 
that it can be invoked with different arguments so as to satisfy more 
than one situation. For example, if you want to create a simple EXEC to 
send jobs to the batch virtual machine to be assembled, it might 
contain: 

IJOB ARIEL 888888 
CP LINK ARIEL 191 391 RR LINKPASS 
ACCESS 291 BIA 
ASSE8BLE &1 (PRINT 
CP SPOOL PUNCH TO ARIEL 
PUNCH &1 TEXT A (NOHEADER 
1* 

If this file were named BATCHAS8 EXEC, then whenever you wanted the C8S 
Batch Facility to assemble a source file for you, you would enter 

batchasm filename 

and the batch virtual machine would assemble the source file, print the 
listing, and send you a copy of the resulting TEXT file. 

Section 12. Using the CMS Batch Facility 237 



SAMPLE SYSTEM PROCEDURES FOR BATCH EXECUTION 

To extend the above example a little further, suppose you wanted to 
process source files in languages other than the assembler language. You 
want, also, for any user to be able to use this EXEC. You might have a 
separate EXEC file for each language, and an EXEC to control the 
submission of the job. This example shows the controlling EXEC file 
BATCH and the ASSEMBLE EXEC. 

!!!If!! ~!~f: 

* THIS EXEC SUBMITS ASSEMBLIES/COMPILATIONS TO CMS BATCH 

* * - PUNCH BATCH JOB CARD; 
* - CALL APPROPRIATE LANGUAGE EXEC (&3) TO PUNCH EXECUTAELE COMMANDS 

* 
&CONTROL ERROR 
&IF &INDEX GT 2 &SKIP 2 
&TYPE CORRECT FORM IS: BATCH USERID FNAME FTYPE (LANGUAGE) 
&EXIT 100 
&ERROR &GOTO -ERR1 
CP SPOOL D CONT TO BATCHCMS 
&PUNCH /JOB &1 1111 &2 
&PUNCH CP LINK &1 191 291 RR SECRET 
&PUNCH ACCESS 291 B/A 
EXEC &3 &2 &1 
&PUNCH /* 
CP SPOOL D NOCONT 
CP CLOSE D 
CP SPOOL DOFF 
&EXIT 
-ERRl &EXIT 100 

!~~~~!!1!J ~!~f: 

* CORRECT FORM IS: ASSEMBLE FNAME USERID 

* * PUNCH COMMANDS TO: 
* - INVOKE CMS ASSEMBLER 
* - RETURN TEXT DECK TO CALLER 

* 
&CONTROL ERROR 
&ERROR &GOTO -ERR2 
&PUNCH GLOBAL MACLIE UPLIB CMSLIB OSMACRO 
&PUNCH CP MSG &2 ASMBLING ' &1 ' 
&PUNCH ASSEMBLE &1 (PRINT NOTERM) 
&PUNCH CP MSG &2 ASSEMBLY DONE 
&PUNCH CP SPOOL D TO &2 NOCONT 
&PUNCH PUNCH & 1 TEXT A 1 (NOHEADER) 
&BEGPUNCH 
CP CLOSE D 
CP SPOOL DOFF 
RELEASE 291 
CP DETACH 291 
&END 
&EXIT 
- ERR 2 &EXIT 102 

238 IBM VM/370: CMS User's Guide 



If the above EXEC procedure is invoked with the line: 

batch fay payroll assemble 

The BATCHCMS virtual machine's card reader should contain the following 
statements (in the same general form as a FIFO console stack) : 

IJOB FAY 1111 PAYROLL 
CP LINK FAY 191 291 RR SECRET 
ACCESS 291 BIB 
GLOBAL MACLIB UPLIB CMSLIB OSMACRO 
CP MSG FAY ASMBLING • PAYROLL ' 
ASSEMBLE PAYROLL (PRINT NOTERM) 
CP MSG FAY ASSEMBLY DONE 
CP SPOOL D TO FAY NOCONT 
PUNCH PAYROLL TEXT A 1 (NOHEADER) 
CP CLOSE D 
CP SPOOL DOFF 
RELEASE 291 
CP DETACH 291 
1* 

When the batch facility executes this job, the commands are executed as 
you see them: if you are logged on, you receive, in addition to the 
normal messages that the batch facility issues, those messages that are 
included in the EXEC. 

A BATCH EXEC FOR A NON-CMS USER 

Many installations run the CMS Batch Facility for non-CMS users to 
submit particular types of jobs. Usually, a series of EXEC files are 
stored on the system disk so that each user only needs include a card to 
invoke the EXEC, which executes the correct CMS commands to process data 
included with the job stream. 

For example, if a non-CMS user wanted to 
files, the following BATFORT EXEC file could 
disk: 

&CONTROL OFF 

compile FORTRAN source 
be stored on the system 

FILEDEF INMOVE TERM (RECFM F BLOCK 80 LRECL 80 
FILEDEF OUTMOVE DISK &1 FORTRAN A 1 (RECFM F LRECL 80 BLOCK 80 
MOVEFILE IN OUT 
GLOBAL TXTLIB FORTRAN 
FORTGI &1 (PRINT) 
&FORTRET = &RETCODE 
&IF &RETCODE NE 0 &GOTO -EXIT 
PUNCH & 1 TEXT A 1 (NOHEADER) 
-EXIT &EXIT &FORTRET 

To use this EXEC, a non-CMS user might place the following real card 
deck in the system card reader: 

section 12. Using the CMS Batch Facility 239 



ID CMSBATCH 
/JOB JOEUSER 1234 JOB10 
BATFORT JOEFORT 

source file 

/* (end-of-file indicator) 
/* (end-of-job indicator) 

When the hatch virtual machine executes this job, it begins reading 
the EXEC procedure from disk, and executes one line at a time. When it 
encounters the MOVEFILE command, it begins reading the source file from 
its card reader (the batch facility interprets a terminal read as a 
request to read from the card reade~. It continues reading until it 
reaches the end-of-file indicator (the /* card), and then resumes 
processing the EXEC on the next line following the MOVEFILE command 
line. 

Additional functions may be added to this EXEC procedure, or others 
aay be written and stored on the system disk to provide, for example, a 
compile, load, and execute facility. These EXEC procedures would allow 
an installation to accommodate the non-CMS users and maintain commen 
user procedures. 

240 IBM VM/370: CMS User's Guide 



Section 13. Programming for the eMS Environment 

This section contains information for assembler language programmers who 
may occasionally need to write programs to be used in the CMS 
environment. The conventions described here apply only to CMS virtual 
machines; you can not execute these programs under any other operating 
systems. 

Program Linkage 

Program linkages, in CMS, are generally made ty means of a supervisor 
call instruction, SVC 202. The SVC handling routine takes care of 
program linkage for you. The registers used, and their contents, are 
discussed in the following paragraphs. 

~~g!2~~E j: Points to a parameter list of successive doublewords. The 
first entry in the list is the name of the called routine or program, 
and any successive doublewords may contain arguments passed to the 
program. Parameter lists are discussed under "Parameter Lists." 

n~g!§!~~ 1~: Contains the address of a 24-fullword save area, which you 
can use to save your caller's registers. This save area is provided to 
satisfy standard as and DOS linkage conventions; you do not need to use 
it in CMS, since the SVC routines save the registers. 

~~g!2~~E j~: Contains the return address of the SVC handling routines. 
You must return control to this address when you exit from your 
program. 

The CMS routines that get control by way of register 14 close files, 
update your disk file directory, and calculate and type the time used in 
program execution. These values appear in the CMS Ready message, which 
is displayed at your terminal when your program finishes execution: 

R;T=n.nn/x.xx hh:mm:ss 

where n.nn is the CMS CPU time (in second~ and x.xx is the combined CP 
and CMS CP time. hh:.mm:ss is the time of day in hours, minutes, and 
seconds. 

~~gi2~~E j~: Contains your program's entry point address. You can use 
this address to establish immediate addressability in your program. You 
should not use it as a base address, however, since all CMS SVCs use it 
for communication with your programs. 

Figure 20 shows a sample CMS assembler language program entry and exit. 

section 13. Programming for the CMS Environment 241 



PROGRAft CSBCT 

SAVRET l. ____ _ 

USING PROGRAft,12 
lR 12,15 
ST 14,SAVRET 

1 
lA 
BR 
DS 

14,SAVRET 
15,0 
14 
F 

ESTABLISH ADDRESSABIlITY 

SAVE RETURN ADDRESS IN R14 

lOAD RETURN ADDRESS 
SET RETURN CODE IN R15 
GO 
SAVE AREA 

Figure 20. Sample CftS Assembler Program Entry and Exit linkage 

RETURN CODE HANDLING 

Register 15, in addition to its role in entry linkage, is also used, in 
eftS, as a return code register. All of the CMS internal routines pass a 
completion code by way of register 15, and the SVC routines that receive 
control when any program completes execution examine register 15. 

If register 15 contains a nonzero value, this value is placed in the 
eftS Ready message, following the "R": 

R (nnnnn) ;T=n. nn/x. xx hh :mm :ss 

It is good practice, when you are executing programs in CftS, if your 
programs do not use register 15 as a return code register, to place a 
zero in it before transferring control back to CftS. Otherwise, the Ready 
message may display meaningless data. 

I'ARAftETER lISTS 

When you execute a program from your terminal, a CMS scan roatine sets 
up a parameter list based on your command input line. The parameter list 
is doubleword aligned, with parameters occupying successive doublewords. 
The scan routine recognizes blanks and parentheses as argument 
delimiters; parentheses are placed, in the parameter list, in separate 
cloublewords. 

For example, if you have a CMS ftODUlE file named TESTPROG, and you 
call it with the command line: 

testprog (file2) 

The scan routine sets up the parameter list: 

CMNDLIST DS 
DC 
DC 
DC 
DC 
DC 

OD 
CL8'TESTPROG' 
CL 8' (' 
CL8'FILE2' 
CL8') , 
8X'FF' 

The last doubleword is made up of all 1s, to act as a delimiter. 

If you enter any argument longer than 8 characters, it is truncated 
and only the first 8 characters appear in the list. However, no error 
condition results. 

242 IBM VM/370: CMS User's Guide 



The scan routine that sets up this parameter list places the address of 
the list in register 1, and then calls the SVC handling routine. The 
SVC routine gives control to the program named in the first doubleword 
of the parameter list. 

When your program receives control, it can examine the argument list 
passed to it by way of register 1. 

You can use this technique, also, to call CMS commands from your 
programs. 

When you use the LOAD and RUN commands to execute 
you can pass an argument list to the program on the 
example, if you enter 

load myprog 
start * runl proga 

a program in CMS, 
command line. For 

the arguments RUNl and PROGA are placed in a parameter list and regi~ter 
1 contains the address of this list when your program receives control. 
If you want to use the RUN command to perform the load and start 
functions, you could enter 

run myprog (runl proga 

The parenthesis indicates the beginning of the argument list. 

Calling a CMS Command from a Program 

You can call a CMS command from a program by setting up a parameter 
list, like that shown above, and then issuing an SVC 202. The parameter 
list you set up must have doublewords that contain the parameters or 
arguments you would enter if you were entering the command from the 
terminal. For example: 

PUNCHER DS OD 
DC CL8'PUNCH' 
DC CL8'NAME' 
DC CL8'TYPE' 
DC CL8'*' 
DC CL 8' (' 
DC CL8'NOH' 
DC 8X'FF' 

In your program, when you want to execute this command, you should load 
the address of the list into ,register 1, and issue the supervisor call 
instruction (SVC) as follows: 

LA 1, PUNCHER 
SVC 202 
DC AL4(ERROR) 

When you issue an SVC 202, you must supply an error return address in 
the four bytes immediately after the SVC instruction. If the return code 
(register 15) contains a nonzero value after returning from the SVC 
call, control passes to the address specified. In the above examFle, 
control would go pass to the instruction at the label ERROR. 

section 13. Programming for the CMS Environment 243 



If you want to ignore errors, you can use the sequence: 

LA 1, PURCHER 
SVC 202 
DC AL4(*+4) 

If you do not specify an error address, control is returned to the next 
instruction after a normal return, but if there was an error executing 
the CMS command, your program terminates execution. 

If you want to execute a CP command or an EXEC procedure from a 
program, you must use the CP and EXEC commands; for example 

SPOOL 

EXEC 

DS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

OD 
CLS'CP' 
CLS'SPOOL' 
CLS'PRINTER' 
CLS' CLASS' 
SX'FF' 
eLS' EIEC' 
CLS'PFSET' 
8X'lF' 

As an alternative, you can use the CMSLIREDIT 
command from a program. Specify DISP=CPCOMM on the 
for example 

macro to call a CP 
macro instruction, 

LINEDIT TEXT'SPOOL E CLASS S',DISP=CPCOMft,DOT=NO 

The LINEDIT macro is described in !~L~1Q: ~~~ ~Q~~~ng ~ng !~£~Q 
B~!!!.!!!!!~!!· 

Executing Program Modules 

MODULE files, in CMS, are nonrelocatable programs. Using the GERMOn 
command, you can create a module from any program that uses OS or CMS 
.acros. When you create a .odule, it is generated at the virtual 
storage address at which it is loaded, for example: 

load ayprog 
genmod testi t 

The CMS disk file, TESTIT MODULE A, that is created as a result of this 
GERMOn command, always begins execution at location X'20000', the 
beginning of the user progra. area. 

If you want to call your own program modules using SVC 202 
instructions, you must be careful not to execute a module that uses the 
same area of storage that your program occupies. If you want to call a 
.odule that executes at location X'20000', you can load the calling 
program at a higher location, for example, 

load myprog (origin 30000 

As long as the MODULE file called by MYPROG is no lenger than X'10000' 
bytes, it will not overlay your program. 

Many CMS disk-resident command modules also execute in the user 
program area; if you call these co •• ands from a program, you should load 
Jour progra. at a higher location. 

244 IBM VM/370: eMS User's Guide 



THE TRANSIENT PROGRAM AREA 

To avoid overlaying programs executing in the user program area, you can 
generate program modules to run in the CMS transient area, which is a 
2-page area of storage that is reserved for the execution of programs 
that are called for execution frequently. Many CMS commands run in this 
area, which is located at X'EOOO'. To generate a module to run in the 
transient area, use the CRIGIN TRANS option when you load the TEXT file 
into storage, then issue the GENMOD command: 

load myprog (origin trans 
genmod setup (str 

You should use the STR option of the GENMOD 
module is loaded into the transient area, 
previously executed programs is cleared. 

command so that when the 
storage remaining from 

The two restrictions placed on command modules executing in the 
transient area are: 

1. They may have a maximum size of 8192 bytes, since that is the size 
of the transient area. This size includes any free storage acquired 
by GETMAIN macros. 

2. They must be serially reusable. When a program is called by an SVC 
202, if it has already been loaded into the transient area, it is 
not reloaded. 

The CMS commands that execute in the transient area are: ACCESS, 
ASSGN, COMPARE, DISK, DLBL, FILEDEF, GENDIRT, GLOBAL, LISTFILE, MODMAP, 
OPTION, PRINT, PUNCH, QUERY, READCARD, RELEASE, RENAME, SET, SVCTRACE, 
SYNONYM, TAPE, and TYPE. 

eMS Macro Instructions 

There are a number of assembler language macros distributed with the CMS 
system that you can use when you are writing programs to execute in the 
CMS environment. They are in the macro library CMSLIB MACLIB, which is 
normally located on the system disk. There are macros to manipulate CMS 
disk files, to handle terminal communications, to manipulate unit record 
and tape input/output, and to trap interrupts. These macros are 
discussed in general terms here; for complete format descriptions, see 
!~L~lQ: £~~ ~2!!gng gag ~g£IQ ~~!~I~~· 

MACROS FOR DISK PILE MANIPULATION 

Disk files are described in CMS by means of a file system control block 
(FSCE). The CMS macro instructions that manipulate disk files use FSCBs 
to identify and describe the files. When you want to manipulate a CMS 
file, you can refer to the file either by its file identifier, 
specifying 'filename filetype filemode' in quotation marks, or you can 
refer to the FSCB for the file, specifying FSCB=fscb, where fscb is the 
label on an FSCB macro. 

To establish an FseB for a file, you can use the FSCB macro 
specifying a file identifier, for example: 

INFILE FSCB 'INPUT TEST Al' 

section 13. Programming for the CMS Environment 245 



You can also provide, on the FSCB macro, descriptive information to be 
used by the input and output macros. If you do not code an FSCB macro 
for a file, an FSCB is created inline (following the macro instruction) 
when you code an FSREAD, FSWRITE, or FSOPEN macro. 

The format of an FSCE is listed below, followed by a description of 
each of the fields. 

1~~~.! 
FSCBCO~M DC 
FSCBFN DC 
FSCBFT DC 
FSCBFM DC 
FSCBITNO DC 
FSCBBUFF DC 
FSCBSIZE DC 
FSCBFV DC 
FSCBNOIT DC 
FSCBNORD DC 

CLS' • 
CL S' , 
CLS' , 
CL2' , 
H'O' 
A' O· 
F~O~ 

CL2'F' 
H Q 1 • 
AI.4 (0) 

Q~§£f!E!:!Q!! 
File system command 
Filename 
Filetype 
Filemode 
Relative record number (RECNO) 
Address of buffer (BUFFER) 
Number of bytes to read or write (BSIZE) 
Record format - F or V (RECFM) 
Number of records to read or write (NOREC) 
Number of bytes actually read 

The labels shown above are not generated by the FSCB macro; to reference 
fields within the FSCB by these labels, you must use the FSCBD macro to 
generate a DSECT. 

FSCBCOMM: When the FSCBFN, FSCBFT, and FSCBFM fields are filled in, you 
can-fIll in the FSCBCOMM field with the name of a CMS command, and use 
the FSCB as a parameter list for an SVC 202 instruction. (You must 
place a delimiter to mark the end of the command line.) 

1~~]1!, 1~~]11, 1~~~E~: The filename, filetype and filemode fields 
identify the CMS file to be read or written. You can code the fileid on 
a macro line in the format 'filename filetype filemode' or you can use 
register notation. If you us~ register notation, the register that you 
specify must point to an 1S-byte field in the format: 

FILEID DC 
DC 
DC 

CLSWfilename' 
CLS'filetype' 
CL2 11 fm' 

The fileid must be specified either in the FSCB for a file or on the 
FSREAD, FSWRITE, FSOPER, or FSERASE macro you use that references the 
file. 

FSCBITNO: The record, or item number indicates the relative record 
number-of the next record to be read or written; it can be changed with 
the RECNO option. The default value for this field is O. When you are 
reading files, a 0 indicates that records are to be read sequentially, 
beginning with the first record in the file. When you are ~riting 
files, a 0 indicates that records are to be written sequentially, 
beginning at the first record following the end of the file, if the file 
already exists, or with record 1, if it is a new file. 

FSCBBUFF: The buffer address, specified in the BUFFER option, indicates 
the-label of the buffer from which the record is to be written, or into 
which the record is to be read. You should always supply a buffer large 
enough to accommodate the longest record you expect to read or write. 
This field must be specified, either in the FSCB, or on the FSREAD or 
FSWRITE macro. 

FSCBSIZE: This field indicates the number of bytes that are read or 
wrItten-with each read or write operation. The default value is O. If 
the buffer that you use represents the full length of the records you 
are going to be reading or writing, you can use the BSIZE option to set 
this field equal to your buffer length. This field must be specified. 

246 IBM VM/370: CMS User's Guide 



FSCBFV: This 2-character field indicates the record format (RECFM) of 
the-file. The default value is F (fixed). 

FSCBNOIT: This field contains the number of whole records that are to be 
read-or-written in each read or write operation. You can use the NOREC 
option in conjunction with the BSIZE option, to block and deblock 
records. The default 'value is 1. 

r2~~!Q~~: Following a read operation, this field contains the number of 
bytes that were actually read, so that if you are reading a 
variable-length file, you can determine the size of the last record 
read. The FSREAD macro places the information from this field into 
register o. 

The following example shows how you might code an FSCB macro to define 
various file and buffer characteristics, and then use the same FSCB to 
refer to different files: 

COMMON 
SHARE 

FSREAD 'INPUT FILE A1',FSCB=COMMON 
FSWRITE 'OUTPUT FILE A1',FSCB=COMMON 

FSCB BUFFER=SHARE,RECFM=V,BSIZE=200 
DS CL200 

In the above example, the fileid specifications on the FSREAD and 
FSWRITE macros modify the FSCB at the label COMMON each time a read or 
write operation is performed. You can also modify an FSCB directly by 
referring to fields by a displacement off the teginning of the FSCB, for 
example, 

MVC FSCB+S,=CLS'NEWNAME' 

moves the name NEWNAME into the filename field of the FSCB at the label 
FSCBFN. 

As an alternative, you can use the FSCBD macro to generate a DSECT, 
and refer to the labels in the DSECT to modify the FSCB, for example: 

LA R5,INFSCB 
USING FSCBD,R5 

MVC FSCBFN,NEWNAME 

INFSCB FSCB 'INPUT TEST A1' 
NEWNAME DC CLS'OUTPUT' 

FSCBD 

In the above example, the MVC instruction places the filename OUTPUT 
into the FSCBFI (filename) field of the FSCB. The next time this FSCB is 
referenced, the file OUTPUT TEST is the file that is manipulated. 

section 13. Programming for the CMS Environment 247 



eMS disk files are sequential files; when you use CMS macros to read and 
write these files, you can access them sequentially with the FSREAD and 
FSWRITE macros. However, you may also refer to records in a CMS file by 
their relative record numbers, so you can, in effect, access reccrds 
using a dir~ct access method. 

If you know which record you want to read or write, you can s~ecify 
the RECNO option on the FSCB macro, or on the FSOPEN, FSREAD, or FSWRITE 
macros. When you use the RECNO option on the FSCB macro, you must 
specify it as a self-defining term; for the FSOPEN, FSREAD, or FSWRITE 
macros, you may specify either a self-defining term, as: 

~RITE FSWRITE FSCB=WFSCB,RECNO=10 

or using register notation, as follows: 

WRITE FSWRITE FSCB=WFSCB,RECNO=(5) 

where register 5 contains the record number of the record to be read. 

When you want to access files sequentially, the FSCBITNO field of the 
FSCB must be o. This is the default value. When you are reading files 
with the FSREAD macro, reading begins with record number 1. When you 
are writing records to an existing file with the FSWRITE macro, writing 
begins following the last record in the file. 

To begin reading or writing files sequentially beginning at a 
specific record number, you must specify the RECNO option twice: once to 
specify the relative record number at which you want to begin reading, 
and a second time to specify RECNO=O so that reading or writing will 
continue sequentially beginning after the record just read or written. 
You can specify the RECNO option on the FSREAt or FSWRITE macro, cr you 
may change the FSCBITNO field in the FSCB for the file. 

For example, to read the first record and then the 50th record of a 
file, you could code the following: 

READ1 

REAOSO 

RFSCB 
WFSCB 
COMMON 

FSREAD FSCB=RFSCE 
FSWRITE FSCB=WFSCB 
LA S,RFSCB 
USING FSCBD,S 
MVC FSCBITBO,=H'SO' 
FSREAD FSCB=RFSCB 
FSWRITE FSCB=WFSCB 

FSCB 'INPUT FILE A1',BUFFER=COMMON 
FSCB 'OUTPUT FILE A1' ,BUFFER=COMMCN,BSIZE=120 
OS CL120 

FSCBD 

In this example, the statements at the label READ1 write record 1 from 
the file INPUT FILE A1 to the file OUTPUT FILE A1. Then, using the 
OSECT generated by the FSCBD macro, the FSCBITNO field is changed, and 
record 50 is read from the input file and written into the output file. 

248 IBM VM/370: CMS User's Guide 



If you want to read and write 
issue an PSCLOSE macro to close 
reading to writing. Por example: 

records from the same file, you must 
the file whenever you switch fro. 

REID 

UPDATE 

LA 3,2 
PSREAD PSCB=UPDATE,RECNO=(3) ,ERROR=READEBR 
PSCLOSE FSCB=UPDATi 

FSWRITE FSCB=UPDATE,RECNO=(3),ERROR=WRITERR 
PSCLOSE PSCB=UPDATE 
LA 3,1(3) 
B READ 

FSCB 'UPDATE PILE Al' ,BUFFER=BUF1,BSIZE=80 

To execute a loop to read, update, and rewrite records, you must read 
a record, close the file, write a record, close the file, and so on. 
Since closing a file repositions the read pointer to the beginning of 
the file and the write pointer at the end of the file, you must specify 
the relative record number (RECNO) for each read and write operation. In 
the above example, register 3 is used to contain the relative record 
Duaber. It is initialized to begin reading with the second record in 
the file and is incremented by 1 following each write operation. 

The exa.ple above illustrated one of the situations in which you must 
explicitly close a file with the FSCLOSE macro. Usually, CMS opens a 
file whenever an PSREAD or PSWRITE macro is issued for the file. When 
control returns to CMS fro. a calling program, all open files are closed 
by C!S, so you do not have to close files at the end of a program. 

If, however, you use an EXEC to execute a program to read or write a 
file, the file is not closed by CMS until the EXEC completes execution. 
Therefore, if you read or write the same file more than once during the 
EIEC procedure, you must use an PSCLOSE macro to close the file after 
using it in each program, or use the FSOPEN macro to open it before each 
use. Otherwise, the read or write pointer is positioned as it was when 
the previous program completed execution. 

~jjAT1!§ !J! ll~I~: When you want to begin writing a new file using CMS 
data management macros, there are two ways to ensure that the file you 
want to create does not already exist. One way is to issue the FSSTATE 
.~cro to verify the existence of the file. 

A second way to ensure that a file does not already exist is to issue 
an FSERlSE macro to erase the file. If the file does not exist, register 
15 returns with a code of 28. If the file does exist, it is erased. 

Figure 21 illustrates a sample program using CMS data management 
.acros. 

Section 13. Programming for the CMS Environment 249 



r--
I.INE SOURCE STATEMENT 

BEGIN CSECT • 
PRINT NOGEN 
USING *,12 ESTABLISH ADDRESSABILITY 
LR 12,15 

------, 

ST 14,SAVE 
LA 2,8(,1) R2=ADDR OF INPUT FILEID IN PLIST • 
LA 3,32(,1) R3=ADDR OF OUTPUT FILEID IN PLIST 

* DETERMINE IF INPUT FILE EXISTS 
FSSTATE (2),ERBOB=ERRl 

* * READ A RECORD FROM INPUT FILE AND WRITE ON OUTPUT FILE 
FtD FSREAD (2) ,ERROR=EOF ,BUFFER=BUFF1, BSIZE=80 G 

FSWRITE (3),ERROR=ERR2,BUFFER=BUFF1,BSIZE=80 
B RD LOOP BACK FOR NEXT RECORD 

* COME HERE IF ERROE READING INPUT FILE 

0 nOF C 15,=F'12' ENr: OF FILE ? 
BNE ERR3 ERROR IF NOT 
LA 15,0 ALL O.K. - ZERO OUT R15 
B EXIT GO EXIT 

* IF INPUT FILE DOES NOT EXIST 
l~RR 1 WRTERM 'FILE NOT FOUND',EDIT=YES 

B EXIT 

* * IF ERROR WRITING FILE 
f:RR2 LR 10,15 SAVE RET CODE IN REG 10 e 

LINEDIT TEXT='ERROR COr:E •••• IN WRITING FILE',SUB=(DEC, (10» 
B EXIT 

* * IF READING ERROR WAS NOT NORMAL END OF FILE 10 A 
ERR3 LB 10,15 SAVE RET CODE IN REG ~ 

LINEDIT TEXT='ERROR CODE •••• IN READING FILE' ,SUB= (DEC, (10» 

* EXIT L 
BR 

14,SAVE 
14 

LOAD RETURN ADDRESS 
RETURN TO CALLER 

lie 

1 HUFFl DS CL80 
ISAVE DS F 
I END 
1---------
1}J.9t~.§: 

4ItThe program might be invoked with a parameter list in the format 
progname INPUT FILB Al OUTPUT FILE Al. This line is placed in a 
parameter list by eMS routines and addressed by register 1 
(see note 2) • 

• The parameter list is a series of doublewords, each containing 
one of the words entered on the command line. Thus, 8 bytes 
past register 1 is the beginning of the input fileid; 24 bytes 
beyond that is the beginning of the second fileid. 

GThe FSREAD and FSWRITE macros cause the files to be opened; no 
open macro is necessary. CMS routines close all open files when 
a program completes execution. 

OThe return code in register 15 is tested for the value 12, 
which indicates an end-of-file condition. If it is the end of 
the file, the program exits; otherwise, it writes an error 

A message. 
~The dots in the LINEDIT macro are substituted, during executicn, 

with the decimal value in register 10. L. ___________________ __ 

Figure 21. A Sample Listing of a Program that Uses CMS Macros 

250 IBM VM/370: eMS User's Guide 



CMS MACROS POR TERMINAL COMMUNICATIONS 

There are four CMS macros you can use to write interactive, 
terminal-oriented programs. They are RDTER!, WRTER!, LINEDIT, and 
WAITT. RDTER! and WRTER! only require a read/write buffer for sending 
and receiving lines from the terminal. The third, LINEDIT, has a 
substitution and translation capability. 

When you use the WRTERM macro to write a line to your terminal you 
can specify the actual text line in the macro instruction, for examFle: 

DISPLAY WRTER! 'GOOD MORNING' 

You can also specify the message text by referring to a buffer that 
contains the message. 

The RDTERM macro accepts a line from the terminal and reads it into a 
buffer you specify. You could use the RDTERM and WRTERM macros together, 
as follows: 

WRITE 
READ 

WRTERM 'ENTER LINE' 
RDTERM BU PPER 
LR 3,0 

REWRITE WRTERM BUPPER, (3) 

BUFPER DS CL130 

In this example, the WRTERM macro results in a prompting message. Then 
the RDTERM macro accepts a line from the terminal and places it in the 
buffer BUPPER. The length of the line read, contained in register 0 on 
return from the RDTERM macro, 'is saved in register 3. When you sFecify 
a buffer address on the WRTERM macro, you must specify the length of the 
line to be written. Here, register notation is used to indicate that 
the length is contained in register 3. 

The LIREDIT macro converts decimal and hexadecimal data into EBCDIC, 
and places the converted value into a specified field in an output 
line. There are list and execute forms of the macro, which you can use 
in writing reentrant code. Another option allows you to write lines to 
the offline printer. The LIIEDIT macro is described, with extensive 
exaaples, in !12L~1.Q: ~1!~ ~Q!!!lAn.9 A1!.9 1!A.£1:2 !i§i~1:§.!!'£~. Figure 21 shows 
how you might use the LINEDIT macro to convert and display CMS return 
codes. 

The WAITT (wait terminal) 
synchronize input and output to 
prog:am that reads and writes to 
to 1ssue a WAITT macro to halt 
terminal I/O has comFleted. 

macro instruction can help you to 
the terminal. If you are executing a 
the terminal frequently, you may want 
execution of the program until all 

CMS MACROS POR UNIT RECORD AND TAPE I/O 

CMS provides macros to simplify reading and punching cards (RDCARD and 
PUBCHC), and creating printer files (PRIITL). When you use either the 
PUNCHC or PRINTL macros to write or punch output files while a prograa 
is executing, you should remember to issue a CLOSE command for your 
virtual printer or punch when you are finished. You can do this either 
after your program returns control to CMS, by entering: 

section 13. Programming for the CMS Environment 251 



cp close e 

-- or --

cp close d 

or, you can set up a parameter list with the command line CP CLOSE E or 
CP CLOSE D and issue an SVC 202. 

The tape control macros, RDTAPE, WRTAPE and TAPECTL, can read and 
write CMS files from tape, or contrbl the positioning of a tape. 

INTERRUPT HANDLING MACROS 

yOU can set up routines in your programs to handle interrupts caused by 
I/O devices, by SVCs, or by external interrupts using the HNDINT, 
HNDSVC, or HNDEXT macro instructions. 

with the HNDINT macro instruction, you can specify addresses that are 
to receive control when an interrupt occurs for a specified device. If 
the WAIT option is used for a device specified in the HNDINT macro, then 
the interrupt handling routine specified for the device does not receive 
control until after the WAITD macro is issued for the device. 

You can user the HNDSVC macro to trap supervisor Call instructions of 
particular numbers, if, for example, you want to perform some additional 
function before passing control, or you do not want any SVCs of the 
specified number to be executed. 

The CP EXTERNAL command simulates external interrupts in your virtual 
machine; if you want to be able to pass control to a particular internal 
routine in the event of an external interrupt, you can use the HNDEXT 
macro. 

252 IBK VK/370: CKS User's Guide 



Part 3. Learning To Use EXEC 

In previous sections, the CMS EXEC facilities were described in general 
terms to acquaint you with the expressions used in EXEC files and the 
basic way that EXECs function. Also, examples of EXEC procedures have 
appeared throughout this publication. You should be familiar at least 
with the material in "Introduction to the EXEC Processor" before you 
attempt to use the information in Part 3. 

"Section 14. Building EXEC Procedures" describes the EXEC facilities 
in detail, with examples of techniques you may find useful as you learn 
about EXEC and develcp your own EXEC procedures. 

special considerations for using CMS commands in EXECs, and modifying 
CMS command functions using EXEC procedures, are described in "Section 
15. Using EXECs ~ith CMS Commands." 

"Section 16. Refining Your EXEC Procedures" lists several techniques 
you can use to make your EXEC files easier to use, and provides some 
hints on debugging EXEC procedures. 

If you are a frequent user of the CMS Editor, then you may be 
interested in "section 17. Writing Edit Macros," which describes how to 
create your own EDIT subcommands using EXEC procedures. 

Part 3. Learning to Use EXEC 253 





Section 14. Building EXEC Procedures 

This section discusses various techniques that you can use when you 
write EXEC procedures. The examFles are intended only as suggestions: 
you should not feel that they represent either the only way or the best 
way to achieve a particular result. Many combinations and variations of 
control statements are possible; in most cases, there are many ways to 
do the same thing. 

This section is called "Building EXEC Procedures" because you will 
often find that once you have created an EXEC procedure and begun to use 
it, you continually think of new applications or new uses for it. Using 
the CMS Editor, you may quickly build the additions and make the 
necessary changes. you are encouraged to develop EXEC procedures to help 
you in all the phases of your CMS work. 

What is a Token? 

An executable statement is any line in an EXEC file that is processed by 
the EXEC interpreter, including: 

• CMS command lines 
• EXEC control statements 
• Assignment statements 
• Null lines 

Executable statements may appear by themselves on a line, or as the 
object of another executable statement, for example in an SIP or SLOOP 
control statement. If you want to execute CP commands or other EXEC 
procedures in an EXEC, you must use the CP and EXEC commands, 
respectively. CP commands are passed directly to CP for processing. 

All executable statements in an EXEC are scanned by the CMS scan 
routine. This routine converts each word ~ords are delimited by blanks 
and parentheses) into an a-character quantity, called a token. If a 
word contains more than a characters, it is truncated on the right. If 
it contains fewer than eight characters, it is padded with blanks. When 
a parenthesis appears on the line, it is treated both as a delimiter and 
as a token. Por example, the line 

STYPE WHAT IS YOUR PREFERENCE (REDIBLUE)? 

scans as follows: 

STYPE WHAT IS YOUR FREFEREN ( REDIBLUE ) ? 

After a line has been scanned, each token is scanned for ampersands, 
and sUbstitutions are performed on any variable symbols in the tokens 
before the statement is'executed. 

Nonexecutable statements are lines that are not processed by 
interpreter, that is comment lines (those that begin with an 
data lines following an SBEGEMSG, SBEGPUNCH, SBEGSTACK, or 
control statement. Since these lines are not scanned, words 
truncated, and tokens are neither formed nor substituted. 

the EXEC 
*), and 

SBEGTYPE 
are not 

Since all executable statements in an EXEC are scanned, and the data 
items are treated as tokens, the term "token" is used throughout this 

section 14. Building EXEC Procedures 255 



section to describe data items before and after scanning. 
CMS Command and Macro Reference, which contains the 
descriptions of--the-ixic -control-statements, uses this 
well. Therefore, as you create your EXEC procedures, you 
the items that you enter on an EXEC statement as tokens, 
how they are used by the EIEC interpreter. 

Va:riables 

The !IL~l.Q: 
formats and 

convention as 
may think of 

since that is 

To make the best use of the CMS EXEC facilities, you should have an 
understanding of how the BIEC interpreter performs substitutions on 
variable symbols contained in tokens. Some examples follow. Por each 
example, the input lines are shown as they would appear in an EIEC file 
and as they would appear after being interpreted and executed by EXEC. 
Rates concerning substitution follow each example. 

~!MP11 ~Y~~l!IYI!QH: Host of the EXEC examples in this publication 
contain variable symbols that result in one-for-one sUbstitution. Most 
of your variables, too, will have a similar relationship. 

Lines 
ii-;-123 
&TYPE &X 

J!t~~ ~~~~1it~1i2~ 
&1 = 123 
&TYPE 123 

The EXEC interpreter accepts the variable symtol &X and assigns it the 
value 123. In the second statement, &1 is substituted with this value, 
and the control statement &TYPE is reco.nized and executed. 

Lines 
&Y-;-456 
&z = &Y 

After Substitution 
&Y-;-456----------

&Z = 456 

The symbol &Y is assigned a value of 456. In the second statement, the 
symbol &Y is substituted with this value, and this value is assigned to 
&z. 

SUBSCRIPTS POR VARIABLES: Since each token is scanned more than once for 
aapersands,-you-can-sriulate subscripts by using two variable values in 
the same token. 

~!~~§ 
&1 = ALPHA 
&2 = BETA 
&IRDEI1 = 1 
&TYPE &&INDEX1 
&IRDEX1 = 2 
&TYPE &&IRDEI1 

!!l~~ ~YR§!ilyti2~ 
&1 = ALPHA 
&2 = BETA 
&IRDEX 1 = 1 
&TYPE ALPHA 
&IRDlX 1 = 2 
&TYPE BETA 

In the statement &TYPE &&INDEX1, the token &IRDEI1 is scanned the first 
time, and the value &INDEX1 is substituted with the value 1. The token 
now contains &1, which is substituted with the value ALPHA on a second 
scan. When the value of &IRDEX1 is changed to 2, the value of &&INDEX1 
also changes. 

1i!l~§ 
&1 = 
&1&1 
&1 = 
&1&1 
&X = 

2 
= 5 
1 
= 2 
&1&1 + &X&I&1 

After substitution 
ir-;-2------------

&12 = 5 
&1 = 1 
&11 = 2 
&X = 2 + 5 

256 IBM VM/310: CMS User's Guide 



In the statement &X&I = 5, an~lysis of the first token 
substitution of the symbol &1 with the value of 2. The 
assigned a value of 5. 

results in the 
symbol &X2 is 

The value of &1 is changed to 1, and the symbol &Xl is assigned a 
value of 2. 

In the last statement, &X = &X&1 + &X&X&I, the value of &1 in the 
token &X&I is replaced with 1, then the symbol &Xl is substituted with 
its value, which is 2. The token &X&X&1 is substituted after each of 
three scans: &1 is replaced with the value 1, to yield the token &1&11. 
The symbol &11 has the value of 2, so the token is reduced to &X2, which 
has a value of 5. 

COMPOUND VARIABLE ~l~]~f~: Variable symbols may also be combined with 
character-~trIngs. 

1i!!g,§ 
&1 = BEE 
&TYPE HONEY&X 
&TYPE ABUMBLE&X 

A!1~~ ~~~2!i!Y!~~B 
&X = BEE 
&TYPE HONEYBEE 
&TYPE ABUMBLE 

In the above example, the first symbol encountered in the scan of 
HONEY&I is 81, which is substituted with the value &BEE. In the second 
&TYPE statement, the X is truncated when the line is scanned; the symbol 
& is an undefined symbol and is therefore set to blanks. 

1!.!!~2 
&X = HONEY 
&Y = BEE 
&TYPE &X&Y 

A!!~~ ~Y~21i1Y1i2~ 
&X = HONEY 
&Y = BEE 
&TYPE 

In the above example, after the symbol &Y is substituted with the value 
BEE, the token contains the symbol &XBEE, which is an undefined symbol, 
so the symbol is discarded. 

Lines 
&123-= ABCDE 
&X = 12345678 
&TYPE ABLE&&X 

A!!~~ ~~~2!i!Y!i2~ 
&123 = ABCDE 
&X = 12345678 
&TYPE ABLEABCD 

In this example, the sUbstitution of &X in the token ABLE&&X results in 
the character string ABLE&12345678, which is truncated to 8 characters, 
or ABLE&123. The scan continues, and &123 is substituted with the 
appropriate value, to result in ABCDE. The token is again truncated to 8 
characters. 

SUBSTITUTING lIIJ!!A1 !A1!!j~: You might want an allpersand to appear in a 
tokeii::---yoU can use the &LITERAL built-in function to suppress the 
SUbstitution of variable symbols in a token. 

Lines 
&9-;;-HELLO 
&A = 8LITERAL &9 
&TYPE &A 

After substitution 
&9-;;-HELLO--------
&A = &LITERAL &9 
&TYPE &9 

Because the value of &A was defined as a literal &9, no substitution is 
performed. 

~i!!~2 
&TYPE = QUERY 
&TYPE BLIP 

!!~g! ~ub,§!i!Y!i2~ 
&TYPE = QU ERY 
QUERY BLIP 

In the above example, even though &TYPE is an EIEC keyword, it is 
assigned the value of QUERY, and substitution is performed when it 

Section 14. Building EXEC Procedures 257 



appears on an input line. In this example, when it 
its value, the result is a command line which is 
processing. 

1!ng.§ 
&CONTROL = FIRST 
&LITERAL &CONTROL ALL 

Afig~ ~~~2i!i~ii9~ 
&CONTROL = FIRST 
&CONTROL ALL 

is substituted with 
passed to CMS for 

In this example, &CONTROL is assigned a value as a variable symbol, but 
when it is preceded by the built-in function &LITERAL, the substitution 
is not performed, so EXEC processes it as a control statement. 

[IIIQ~£1~11 11~ ~~£!~Al £g!!Jj~!Q~~: lou can perform hexadecimal to 
decimal and decimal to hexadecimal conversions in an EXEC if you use the 
control statement &HEX ON. To convert hexadecimal to decimal, you must 
use an assignment statement, prefacing the hexadecimal value you want to 
convert with the characters X' and assigning the value to a variable 
symbol. 

1in~.§ 
&HEX ON 
&DEC = X'10 
&TIPE &DEC 
&COUNT = 15 
&DECNT = X'&COUNT 
&TIPE &DECNT 

!!!~~ ~~~.§!i!~!iQn 
&HEX ON 
&DEC = X' 10 
&TIPE 16 
&COUNT = 15 
&DEC NT = X'15 
&TIPE 21 

When the characters X' are found in any EXEC statement other than an 
assignment statement, the value following them is considered a decimal 
value and is converted to its hexadecimal equivalent. 

1in~.§ 
&HEX ON 
&TYPE X'20 
&VAL = 3000 
&TIPE X'&VAL 
&TIPE X'13107299 

!!!~~ ~~~.§!i!~!!Qn 
&HEX ON 
&TIPE 14 
&VAL = 3000 
&TYPE BB8 
&TIPE 2000 

In the last statement above, the characters 99 are truncated before 
substitution occurs, sin~e EXEC tokens can be a maximum of 8 
characters. 

To suppress hexadecimal conversion during an EXEC procedure after 
having used it, you can use the EXEC control statement 

&HEX OFF 

so you can use tokens containing the characters X' without the EXEC 
processor converting them to hexadecimal. 

AlL"guments 

An argument in an EXEC procedure is one of the special variable symbols 
&1 through &30 that are assigned values when the EXEC is invoked. For 
example, if the EXEC named LINKS is invoked with the line 

links viola ariel oberon 

the tokens VIOLA, ARIEL, and OBERON are arguments, and are assigned to 
the variable symbols &1, &2, and &3, respectively. 

258 IBM VM/370: CMS User's Guide 



You can pass as many as 30 arguments to an EXEC procedure; thus the 
variable symbols you can set range from &1 to &30. These variables are 
collectively referred to as the special variable &n. Once these symbols 
are defined, they can be used and manipulated in the same manner as any 
other variable in an EXEC. They can be tested, displayed, changed, and, 
if they contain numeric quantities, used arithmetically. 

&IF &2 EQ PRINT &GOTO -PR 
&TYPE 61 IS AN INVALID ARGUMENT 
&1 = 2 
6CT = 61 + 100 

The above examples illustrate some explicit methods of manipulating the 
&n variables. They can also be implicitly defined or redefined by two 
EXEC control statements: &ARGS and &READ ARGS. 

An &ARGS control statement redefines all of 
variables. The statement 

&ARGS ABC 

the special 6n 

assigns the value of A, B, and C to the variables &1, &2, and &3 and 
sets the remaining variables, &4 through &30, to blanks. 

You can also redefine arguments interactively by using the &READ ARGS 
control statement. When EXEC processes this statement, a read request is 
presented to your terminal, and the tokens you enter are assigned to the 
&n variables. For example, the lines 

&TYPE ENTER FILE NAME AND TYPE: 
&READ ARGS 
STATE &1 &2 * 

request you to enter 
arguments &1 and &2. 
blanks. 

two tokens, and then treat these tokens as the 
The remaining variables &3 through &30 are set to 

If you want to redefine specific &n variables, and leave the values 
of others intact, you can either redefine the individual variables in 
separate assignment statements, or use the variable symbol in the &ARGS 
or &READ ARGS statement. For example, the statement 

&ARGS CONT &2 &3 RETURN &5 &6 &7 &8 &9 &10 

assigns new values to the variables &1 and &4, but does not change the 
existing values for the remaining symbols through &10. 

If you need to set an argument or &n special variable to blanks, 
either on an EXEC command line or in an &ARGS or &READ ARGS control 
statement, you can use a percent sign (%) in its place. For example, the 
lines: 

&ARGS SET QUERY % TYPE 
&TYPE 61 &2 &3 &4 

result in the display 

SET QUERY TYPE 

The symbol &3 has a value of blanks, and as a null token, is discarded 
from the line. 

Section 14. Building EXEC Procedures 259 



USING THE SINDEX SPECIAL VARIABLE 

The EXEC special variable, SINDEX, initially contains a numeric value 
corresponding to the number of arguments defined when the EXEC was 
invoked. The value of SINDEX is reset whenever an SARGS or SREAD ARGS 
control statement is executed. 

SINDEX can be useful in many circumstances. If you create an EXEC 
that may expect any number of arguments, and you are going to perform 
the same operation for each, you might set a counter and use the value 
of SINDEX to test it. Por example, an EXEC named PRINTX accepts 
arguments that are the filenames of ASSEMBLE files: 

SCT = 1 
SLOOP 2 SCT > SINDEX 
PRINT SSCT ASSEMBLE 
SCT = SCT + 1 

In the preceding example, the token SCT is sutstituted with Sl, S2, and 
so on until all of the arguments entered on the PRINTX line are used. 

You can also use SINDEX to test the number of arguments entered. If 
you design an EXEC to expect at least two arguments, the procedure might 
contain the statements: 

SIP SINDEX LT 2 SGOTO -ERRl 

-ERRl STYPE INVALID COMMAND LINE 
SEXIT 1 

In this example, if the EXEC is invoked with one or no arguments, an 
error message is displayed and the EXEC terminates processing with a 
return code of 1. 

As another example, suppose you wanted to supply an EXEC with default 
arguments, which might or might not be overridden. If the EXEC is 
invoked with no arguments, the default values are in effect; if it is 
invoked with arguments, the arguments replace the default values: 

SDISP = PRINT 
SCOUNT = 2 
SIF SINDEX GT 2 SEXIT 1 
SIP SINDEX EO 0 SGOTO -GO 
SCOUNT = Sl 
SIP SINDEX = 2 SDISP = S2 
-GO 

Default values are supplied for the variables SDISP and SCOUNT. Then, 
SINDEX is tested, and the variables are reset if any arguments wer~ 
entered. 

CHECKING ARGUMENTS 

There are a number 
an EXEC. In some 
specific argument 
numeric data. To 
functions SLENGTH 

of tests that you can perform on arguments passed to 
cases, you may want to test for the length of a 
or to test whether an argument is character data or 

perform these tests, you can use the EXEC built-in 
and SDATATYPE. 

260 IBM VM/370: CMS User's Guide 



To use either &LENGTH or &DATATYPE, you must first assign a variable 
to receive the result of the function, and then test the variable. For 
example, to test whether an entered argument is 5 characters long, you 
could use the statements: 

&LIMIT = &LENGTH &1 
&IF &LIMIT GT 5 &EXIT &LIMIT 

When these statements are 
greater than 5 characters, 
indicates the length of &1. 

executed, if the first 
the exit is taken, and 

argu.ent (&1) is 
the return code 

If you wish to check whether a number was entered for an argument, 
use the &DATATYPE function: 

&STRING = &DATATYPE &2 
&IF &STRING ~= NUM &GOTO -ERR4 

In this example, the second argument expected by the EXEC must be a 
numeric quantity. If it is not, a branch is taken to an error exit 
routine. 

Often, you may create an EXEC that tests for specific arguments and 
then takes various paths, depending on the argument. For example: 

&IF &2 = PRINT &GOTO -PR 
&IF &2 = TYPE &GOTO -TY 
&IF &2 = ERASE &GOTO -ER 
&EXIT 

In this EXEC, if the value of &2 is not PRINT, TYPE, or ERASE, or was 
not entered, the EXEC terminates processing. 

There are two special EXEC keywords that you may use to test arguments 
passed in an EXEC. They are &* and &$, which can be used only in an &IF 
or an &LOOP control state.ent. They test the entire range of nu.eric 
variables &1 through &30, as follows: 

!1: The special token &$ is interpreted as "any of the variables &1, &2, 
••• , &30. 11 That is, if the value of anyone of the numeric variables 
satisfies the established condition, then the &IF statement is 
considered to be true. The statement is false only when none of the 
variables fulfills the specified requirements. 

As an exa.ple, suppose you want to make sure that 
value is passed to the EXEC. You can check to see 
arguments satisfy this condition, as follows: 

&IF &$ EO PRINT &SKIP 2 
&TYPE PARK LIST MUST INCLUDE PRINT 
&EXIT 

some particular 
if any of the 

In this example, the path to the STYPE statement is taken only when none 
of the arguments passed to the EXEC procedure equal the character string 
PRINT. 

section 14. Building EXEC Procedures 261 



~!: The special token &* is interpreted as "all of the variables &1, &2, 
••• , &30." That is, if the value of each of the numeric variables 
satisfies the established condition, then the &IF statement is 
considered to be true. The statement is false when at least one of the 
variables fails to meet the specified requirements. 

Use &* to test for the absence of an argument as follows: 

&IF &* NE ASSEMBLE &EXIT 3 

In this example, if an EXEC is invoked, and none of the arguments equals 
ASSEMBLE, the EXEC terminates with a return code of 3. 

The tokens &* and &$ are set by arguments entered when an EXEC is 
invoked and reset when you issue an &ARGS or &READ ARGS control 
statement. If either &* or &$ is null because no arguments are entered, 
the &IF statement is considered a null statement, and no error occurs. 

Execution Paths in an EXEC 

You have already seen examples of the 
control statements. A more detailed 
statements and additional techniques for 
an EXEC procedure follow. 

LABELS IN AN EXEC PROCEDURE 

&IF, &GOTO, &SKIP, and &LOOP 
discussion on each of these 

controlling execution paths in 

In many instances, an execution control statement in an EXEC procedure 
causes a branch to a particular statement that is identified by a label. 
The rules and conventions for creating syntactically correct EXEC labels 
are: 

• A label must begin with a hyphen (dash), and must have at least one 
additional character following the hyphen. 

• Up to seven additional alphameric characters may follow the hyphen 
(with no intervening blanks). However, the sequence, 

&GOTO -PROBABLY 

-PROBABLY 

executes successfully, because when each 
token -PROBABLY is trunca ted to the 
-PROBABL. 

statement is scanned, the 
same 8-character token, 

• A label name may be the object of an &GOTO or &LDOP control 
sta tement. 

• A label that is branched to must be the first token on a line. It 
may stand by itself, with no other tokens on the line, or it may 
precede an executable CMS command or EXEC control statement. 

262 IBM VM/370: CMS User's Guide 



The following are examples of the correct use of labels: 

&GOTO -LABl 
-LABl 
-LAB2 &CCNTINUE 
-CHECK &IF &INDEX EQ 0 &GOTO -EXIT 
&IF &INDEX LT 5 &SKIP 
-EXIT &EIIT 4 
&TYPE &LITERAL &INDEX VALUE IS &INDEX 

CONDITIONAL EXECUTION WITH THE &IF STATEMENT 

The main tool available to you for controlling conditional execution in 
an EXEC procedure is the &IF control statement. The &IF control 
statement provides the decision-making ability that you need to set up 
conditional branches in your EXEC procedure. 

One approach to decision-making with the &IF control statement is to 
compare two tokens, and perform some action tased on the result of the 
comparison. When the comparison specified is equal (or true), the 
executable statement is execut~d. When the comparison is unequal (or 
false), control passes to the next sequential statement in the EXEC 
procedure. An example of a simple &IF statement is: 

&IF &1 EQ &2 &TYPE MATCH FOUND 

If the comparand values are not equal, the statement &TYPE MATCH 
FOUND is not executed, and control passes to the next statement in the 
EXEC procedure. If the comparand values are equal, the statement &TYPE 
MATCH FOUND is executed before control passes to the next statement. 
&IF statements can also be used to establish a ccmparison between a 
variable and a constant. For example, if a terminal user could properly 
enter a YES or NO response to a: prompting message, you could set up &IP 
statements to check the response as follows: 

&READ ARGS 
&IP &1 EQ YES &GOTO -YESANS 
&IP &1 EQ NO &GOTO -NOANS 
&TYPE &1 IS NOT A VALID RESPONSE (MUST BE YES OR NO) 
&EXrT 
-YESANS 

-NOANS 

In this example, the branch to -YESANS is taken if the entered 
argument is YES; otherwise, coritrol passes to the next &IF statement. 
The branch to -NOANS is taken if the argument is NO; otherwise, control 
passes to the &TYPE statement, ~hich displays the entered argument in an 
error message and exits. 

The test performed in an &IP statement need not be a simple test of 
equality between two tokens; dther types of comparisons can be tested, 
and more than two variables can be involved. The tests that can be 
performed and the symbols you can use to represent thell are: 

Section 14. Building EXEC Procedures 263 



2I~~Q! ~D~!Q~i£ ~~gD!~g 
= EQ A equals B 
~= NE A does not equal B 
< LT A is less than B 
<= LE A is less than or equal to B (not greater than) 
> GT A is greater than B 
>= GE A is greater than or equal to B (not less than) 

You can place multiple &IF control statements on one line, to test a 
variable for more than one condition. For example, the statement 

&IF &NUM GT 5 &IP &NUM LT 10 &TYPE O.K. 

checks the variable symbol &NUM for a value greater than 5 and less than 
10. If both of these conditions are satisfied, the &IF statement is 
true, and the &TYPE statement is executed. If either condition is false, 
then the &TYPE statement is not executed. 

The number of &IF statements that may be nested is limited only by 
restrictions placed on the record length of the EXEC file. 

BRANCHING WITH THE &GOTO STATEMENT 

The &GOTO control statement allows you to transfer control within your 
EXEC procedure 

• To a specified EXEC label somewhere in the EXEC file: 

&GOTO -TEST 

where -TEST is the label to which control is passed. 

• To a particular line within the EXEC file. For example, 

&GOTO 15 

results in control being passed to statement 15 in the EXEC file. 

• Directly to the top of the EXEC file. For example, 

&GOTO TOP 

passes control to the beginning of the EXEC procedure. 

The &GOTO control statement can be coded wherever an executable 
statement is permitted in an EXEC procedure. One of its common uses is 
in conjunction with the &IF control statement. For example, in the 
statement: 

&IF &IIDEX EQ 0 &GOTO -ERROR 

tae branch to the statement labeled -ERROR is taken when the value of 
the &INDEX special variable is zero. Otherwise, control passes to the 
next sequential statement in the EXEC procedure. 

264 IB! VM/370: CMS User's Guide 



An &GOTO statement can also stand alone as an EXEC control statement. 
When coded as such, it forces an unconditional branch to the specified 
location. For example, you might create. an EXEC that has several 
execution paths, each of which terminates with an &GOTO statement 
leading to a common exit routine: 

-PATH1 &CONTINUE 

&GOTO -EXIT 
-PATH2 &CONTINUE 

&GOTO -EXIT 
&PATH3 &CONTINUE 

-EXIT &CONTINUE 

You can use the &GOTC control statement to establish a loop. For 
example: 

&GLOBAL1 = &GLOBAL1 + 1 
&TYPE ENTER NUMBER: 
&READ VARS &NEXT 
&IF .&NEXT = • &GOTO -FINIS 
&IF &GLOEAL1 = 2 &TOTAL = 0 
&TOTAL = &TOTAL + &NEXT 
&GOTO TOP 
-FINIS 
&TYPE tOTAL IS &TOTAL 

In this EXEC example, all of the statements, through the &GOTO TOP 
statement, are executed repeatedly until a null line is entered in 
response to the prompting message. Then, the branch is taken to the 
label -FIBIS and the total is typed. 

Bote the use of the special variable &GLOBAL1 in the preceding 
example. The &GLOBALn special variables are self-initializing, and have 
an initial value of 1. 

When an EXEC procedure processes an &GOTO statement, and searches for a 
given label or line number, the scan begins on the line following the 
&GOTO statement, proceeds to the bottom of the file, then wraps around 
to the top of the file and continues to the line immediately preceding 
the &GOTO state.ent. If there are duplicate labels in an EXEC file, the 
first label encountered during the search is the one that is branched 
to. 

If the label or line number is not found during the scan, EXEC 
terminates processing and displays the message: 

ERROR II EXEC FILE filename, LIBE n - &SKIP or &GOTO ERROR 

If the label or line number is found, control is passed to that location 
and execution continues. 

section 1~. Building EXIC Procedures 265 



BRANCHING WITH THE &SKIP STATEMENT 

The &SKIP control statement provides you with a second method of passing 
control to various points in an EXEC procedure. Instead of branching to 
a named or numbered location in an EXEC procedure, &SKIP passes control 
a specified number of lines forward or backward in the file. 

Iou pass control forward in an EXEC by specifying how many lines to 
skip. Por example, to handle a conditional exit from an EXEC procedure, 
JOu could code the following: 

&IP &RETCODE EQ 0 &SKIP 
&EXIT &RETCODE 

where the &EXIT statement is skipped whenever the value of &RETCODE 
equals zero. If the value of &RETCODE does not equal zero, control 
passes out of the current EXEC procedure with a return code that is the 
nonzero value in &RETCODE. Note that when no &SKIP operand is 
specified, a value of 1 is assumed. 

A succession of &SKIP statements can be used to perform multiple 
tests on a variable. Por example, suppose an argument should ccntain a 
value from 5 to 10 inclusive: 

&IP &1 LT 5 &SKIP 
&IP &1 LE 10 &SKIP 
&TIPE & 1 IS NOT WIT HIN RANGE 5-10 

If the value of & 1 is less tha"ll 5, control passes to the &TYPE control 
statement, which displays the erroneous value and an explanatory 
message. If the value of &1 is greater than or equal to 5, the next 
statement checks to see if it is less than or equal to 10. If this is 
true, then the value is between 5 and 10 inclusive, and execution 
continues following the &TYPE statement. 

When you want to pass control to a statement that precedes the 
current line, determine how many lines backward you want to go, and code 
&SKIP with the desired negative value: 

&VAL = 1 
&TIPE &VAL 
&VAL = &VAL + 1 
&IF &VAL NE 10 &SKIP -2 

In this EXEC, the &TYPE statement is executed repeatedly until the value 
of &VAL is 10, and then execution continues with the statement following 
the SIF statement. 

USING COUNTERS FOR LOOP CONTROL 

l~ primary consideration in designing a portion of an EXEC procedure that 
is to be executed many times is how to control the number of 
executions. One way to control the execution of a sequence of 
instructions is to create a loop that tests and changes the value of a 
c::ounter. 

Before entering the loop, the counter is initialized to a value. 
Bach time through the loop, the counter is adjusted (increased or 
decrease~ toward a limit value. When the limit value is reached (the 
counter value is the same as the limit value), control passes out of the 
loop and it is not executed again. For example, the following EXEC 
initializes a counter based on the argument &1: 

266 IBM VM/370: CMS User's Guide 



&IF &INDEX EQ 0 &EXIT 12 
&TYPE COUNT IS &1 
&1 = &1 - 1 
&IF &1 GT 0 &SKIP -2 

When this EXEC procedure is invoked, it checks that at least one 
argument was passed to it. If an argument is passed, it is assumed to 
be a number that indicates how many times the loop is to execute. Each 
time it passes through the loop, the value of &1 is decremented by 1. 
When the value of &1 reaches zero, control passes from the loop to the 
next sequential statement. 

There are several ways of setting, adjusting, and testing counters. 
some ways to set counters are by: 

• Reading arguments from a terminal, such as: 

&READ VARS &COUNTl &COUHT2 

• Assigning an arbitrary value, such as: 

&COUNTER = 43 

• Assigning a variable value or expression, such as: 

&COUNTS = &INDEX - 1 

Counter values can be increased or decreased by any increment or 
decrement that meets your purposes. For example: 

&COUNTEM = &COUNTEM - &RETCODE 
&COUNTl = &COUNT + 100 

LOOP CONTROL WITH THE &LOOP STATEMENT 

A convenient way 
is with the &LOOP 
in four ways: 

to control execution of a sequence of EXEC statements 
control statement. An &LOOP statement can be set up 

• To execute a particular number of statements a specified number of 
times. For example, the statement 

&LOOP 3 2 

indicates that the three statements following the &LOO~ statement are 
to be executed twice. 

• To execute a particular number of statements until a specified 
condition is satisfied. For example: 

&LOOP 4 &X = 0 

The four statements following this statement are executed until the 
value of &X is o. 

• To execute the statements down to (and including) the statement 
identified by a label for a specified number of times. For example: 

&LOOP -ENDLOOP 6 

The statements between this &LOOP statement and the label -ENDLOOP 
are executed six times. 

section 14. Building EXEC Procedures 267 



• To execute the statements down to (and including) the statement 
identified by a label until a specified condition is satisfied. In 
the following example 

&LOOP -ENDLOOP &X = 0 

the statements are executed repeatedly until the value of &X is o. 
The numbers specified for the number of lines to execute and the 

number of times through the loop must be positive integers. You can use 
a variable symbol to represent the integer. If a label is used to 
define the limit of the loop, it must follow the &LOOP statement (it 
cannot precede the &LOOP statement). 

In a conditional &LOOP statement, any 
conditional phrase are substituted each time 
example, the statements: 

&X = 0 
&LOOP -BiD &X EO 2 
&X = &X + 1 
-END &TYPE &X 

are interpreted and executed as follows: 

1. The variable &X is assigned a value of O. 

variable symbols in the 
the loop is executed. For 

2. The &LOOP statement is interpreted as a conditional form; that is, 
to loop to -END until the value of &X equals 2. Since the value of 
&X is not 2, the loop is entered. 

3. The variable &X is incremented by 1 and is then displayed. 

4. Control returns to the beginning of the loop, where &X is tested to 
see if it equals 2. Since it does not, the loop is executed again 
and 2 is displayed. The next time through the loop, when &X equals 
2, control is passed to the EXEC statement immediately following 
the label -END. 

When this EXEC procedure is executed, the following lines are 
displayed: 

1 
2 

at which time the value of &X equals 2; the loop is not executed again. 

Another example of a conditional loop is: 

&Y = &LITERAL A&B 
&LOOP 2 .&X EQ &LITERAL .& 
&X = &SUBSTR &Y 2 1 
&TYPE &X 

These statements are interpreted and executed as follows: 

1. The variable &Y is set to the literal value A&B. 

2. The two statements following the &LOOP statement are to be executed 
until the value of &X is &. 

3. The &SUBSTR built-in function is used to set the variable &1 to the 
value of the second character in the variable &Y, which is a 
literal ampersand (&). 

268 IBM VM/370: eMS User's Guide 



4. The ampersand is typed once, and the loop does not execute again 
because the condition that the value of &X be a literal ampersand 
is met. 

JESTING EXEC PROCEDURES 

If you want to use an EXEC procedure within another EXEC, you must use 
the EXEC command to execute it. For example, if you have the statement 

EXEC TEST 

in an EXEC procedure, it invokes the EXEC procedure TEST. 

The EXEC interpreter can handle up to 19 levels of recursion at one 
time, that is, up to 19 EXECs may be active, one nested within ancther. 
An EXEC may also call itself. 

You can test the &GLOBAL special variatle 
executing within another procedure or not. For 
GLOBAL EXEC contained the lines: 

to see if an EXEC is 
example, if the file 

&IF &GLOBAL EQ 2 &GOTO -2NDPASS 

EXEC GLOBAL 

-2NDPASS &TYPE SECOND PASS BEGINS 

then when the line "EXEC GLOBAL" is executed, control passes 
beginning of the EXEC; the value of &GLOBAL changes from 1 to 
control is passed to the &TYPE statement at the label 2NDPASS. 

to the 
2; and 

Variables in an EXEC file have meaning only within the particular 
procedure in which they are defined. You cannot set up a variable in one 
EXEC, and test that variable in a nested procedure. The exceptions to 
this are the ten special variables &GLOBALO through &GLOBAL9. These 
variables can only contain integral numeric values; you cannot assign 
them character-string values. These variables can be used to set up 
arguments to pass to nested procedures, or to communicate between EXEC 
files at different recursion levels. 

EXITING FROM EXEC PROCEDURES 

Execution in an EXEC procedure proceeds sequentially through a file, 
line by line. When a statement causes control to be passed to another 
statement, execution continues at the second statement, and again 
proceeds sequentially through the file. When the end of the file is 
reached, the EXEC terminates processing. Frequently, however, you may 
not want processing to continue to the end of the file. You can use the 
&EXIT statement to cause an im~ediate exit from EXEC processing and a 
return to the CMS environment. If the EXEC has been invoked from 

section 14. Building EXEC Procedures 269 



another EXEC, control is returned to the calling EXEC file. For 
example, the statement 

&IP &RETCODE ~= 0 &HXIT 

would cause an immediate exit from the EXEC if the return code from the 
last issued CMS command was not zero. 

You can use the 
execution paths in 
sta temen ts, 

&EXIT statement to terminate each 
an EXEC. For example, using 

of a 
the 

series of 
following 

&IF &1 EQ PRINT &GOTO -PRINT 
&IF &1 EQ TYPE &GOTO -TYPE 

-PRINT 

&EXIT 
-TYPE 

&EXIT 

JOu ensure that once the path through the -PRINT routine has been taken, 
the EXEC does not continue processing with the -TYPE routine. 

The &EXIT control statement also provides a special function, which 
allows you to pass a return code to CMS, or to the program or EXEC which 
called this EXEC. You specify the return code value on the &EXIT 
control statement as follows: 

&EXIT 4 

Execution of this line results in a return to CMS with a Ready message: 

R (00004) ; 

If you have a variety of exits in an EXEC, you can use a different value 
following each &EXIT statement, to indicate which path had b~~_~n taken in 
the EXEC. 

You can also use a variable symbol as the value to be passed as the 
]~eturn code: 

&EXIT &VAL 

Another common use of the &EXIT statement 
taken following an error in a CMS command, 
from the CMS command in the &EXIT statement: 

&IF &RETCODE NE 0 &EXIT &RETCODE 

270 IBM VM/370: CMS User's Guide 

is to cause an exit to be 
and using the return code 



Terminal Communications 

You can design EXECs to be used interactively, so that their execution 
depends on information entered directly from the terminal during the 
execution. with the &TYPE statement, you can display a line at the 
terminal, and with the &READ statement, you can read one or more lines 
from the terminal or console stack. Used together, these statements can 
provide a prompting function in an EXEC: 

&TYPE WHAT DO YOU WANT TO DO NOW? 
&TYPE ENTER (STOP CONTINUE REPEAT): 
&READ VARS &LABEL 
&GOTO -&LABEL 
-STOP 

-CONTINUE 

-REPEAT 

In this example, the &HEAD control statement is used with the VARS 
operand, which accepts the words entered at the terminal as values to be 
assigned to variable symbols. If the word STOP is entered in response to 
the &READ VARS statement in this example, the variable symbol &LABEL is 
assigned the value STOP. Then, in the &GOTO statement, the symbol is 
substituted with the value STOP, so the branch is taken to the label 
-STOP. 

You can specify up to 17 variable names on an &HEAD VARS control 
statement. If you enter fewer words than are expected, the remaining 
variables are set to blanks. If you enter a null line, any variable 
symbols on the &READ line are set to blanks. If the execution of your 
EXEC depends on a value entered as a result of an &READ VARS, you might 
want to include a test for a null line immediately following the 
statement, for example: 

&READ VARS &TITLE &SUBJ 
&IF .&TITLE = • &EXIT 100 

If no tokens are entered in response to the terminal read request, the 
variable &TITLE is null, and the EXEC terminates with a return code of 
100. 

If you are writing an EXEC that may receive a number of tokens from 
the terminal, you may find it more convenient to use the &READ ARGS form 
of the &READ control statement. When the &READ ARGS statement reads a 
line from the terminal, the tokens entered are assigned to the &n 
special variables (&1, &2, and so on). 

READING CMS COMMANDS AND EXEC CONTROL STATEMENTS FROM THE TERMINAL 

When you use the &READ control statement with no operands, or with a 
numeric value, EXEC reads one line or the specified number of lines from 
the terminal. These lines are treated, by EXEC, as if they were in the 
EXEC file all along. For example, if you have an EXEC named COMMAND that 
looks like the following: 

section 14. Building EXEC Procedures 271 



&TYPE ENTER NEXT COMMAND: 
&READ 1 
&SKIP -2 

all the commands you enter during the terminal session are processed by 
the EXEC. Each time the &READ statement is executed, you enter a CMS 
command. When the command finishes, control returns to EXEC, which 
prompts you to enter the next command. Since the CMS commands are all 
being executed from within the EXEC, you do net receive the CMS Ready 
message at the completion of each command. 

You could also enter EXEC control statements or assignment 
statements. To terminate the EXEC and return to the CMS environment, 
you must enter the EXEC control statement &EXIT from the terminal: 

&exit 

DISPLAYING DATA AT A TERMINAL 

You can use the &TYPE and &BEGTYPE control statements 
fr6m your EXEC at the terminal. In addition, you can 
<:ommand to display the contents of CMS files. 

to display lines 
use the CMS TYPE 

When you use the &TYPE control statement, you can display variable 
symbols as well as data. Variable symbols on an STYPE control statement 
are substituted before they are displayed. For example, the lines: 

&NAME = ARCHER 
STYPE SNAME 

result in the display: 

ARCHER 

You can use the &TYPE statement to display prompting messages, error 
or information messages, or lines of data. 

In an EXEC file with fixed-length records, only the first 72 
characters of each line are processed by the EXEC interpreter. 
~rherefore, if you want to use the &TYPE control statement to display a 
line longer than 72 characters, you must convert the file into 
variable-length records. 

All of the words in an &TYPE control statement are scanned into 
8-character tokens. If you need to display a word that has more than 8 
characters, you must use the &EEGTYPE control statement. The &BEGTYPE 
control statement precedes one or more data lines that you want to 
display, for example: 

&BEGTYPE 
THIS EXEC PERFOBMS THE FOLLOWING FUNCTIONS: 
1. IT ACCESSES DISKS 193, 194, and 195 AS 

B, C, AND D EXTENSIONS OF THE A-DISK. 
2. IT DEFINES, FORMATS, AND ACCESSES A 

TEMPORARY 195 DISK (E). 
&END 

272 IBM VM/370: CMS User's Guide 



The &END statement must be used to terminate a series of lines 
introduced with the &BEGTYPE statement. "&END" must begin in column 1 of 
the EXEC file. 

The lines following an &BEGTYPE statement, up to the &END statement, 
are not scanned by the EXEC interpreter. Therefore, no substitution is 
performed on the variable symbols on these data lines. If you need to 
display a symbol, you must use the &TYPE control statement. To disFlay a 
combination of scanned and unscanned lines, you might need to use both 
the &TYPE and &BEGTYPE control statements: 

&BEGTYPE 
EVALUATION BEGINS ••• 
&END 
&TYPE &VAL1 IS &NUM1. 
&TYPE &VAL2 IS &NUM2. 
&BEGTYPE 
EVALUATION COMPLETE. 
&END 

If you use the &BEGTYPE control statement in an 
fixed-length records, and you want to display lines 
characters, you must use the ALL operand. Por example, 

&BEGTYPE ALL 
••• data line of 103 characters 
••• data line of 98 characters 
••• data line of 50 characters 
&END 

EXEC file with 
longer than 72 

You can display lines of up to 130 characters in this way. When you 
enter lines that are longer than the record length in an EXEC file, the 
records are truncated by the editor. You must increase the record length 
of the file by using the LRECL option of the EDIT command, for example: 

edit old exec a (lrecl 130 

In a variable-length EXEC file, you do not need to specify ALL to 
display long lines. If you originally created the file with a record 
length of 130 characters, you do not need to increase the size later to 
accomodate longer records. 

You can use the TYPE command in an EXEC file to display data files, or 
portions of data files. Por example, you might have a number of files 
with the same filetype; the files contain various kinds of data. You 
could create an EXEC that invokes the TYPE command to display a 
particular file as follows: 

&IP &INDEX EQ 2 &IF &2 EQ 1 &GOTO -TYPE 

-TYPE 
ACCESS 198 B 
TYPE &1 MEKO B 

The filetype MEMO is a reserved filetype, which accepts data in 
uppercase and lowercase; you can use it for documentation files or 
programming notes. 

Section 14. Building EXEC Procedures 273 



The two CMS Immediate commands that control terminal display are HT 
(halt typin~ and RT (resume typing). When data is being displayed at 
your terminal, you can suppress the display ty signaling an attention 
interrupt and entering: 

ht 

This command affects output that is being displayed: 

• As a response to a CMS command, including prompting messages, error 
messages, or normal display responses (as from the TYPE command) 

• From a program 

• In response to an &TYPE or &BEGTYPE request in an EXEC 

Once display has been suppressed, and before the command, program, or 
EXEC completes execution, you can request that display be resumed by 
signaling another interrupt and entering: 

rt 

In an EXEC file, if you want to halt or resume display, you must use 
the &STACK control statement to enter the RT or HT commands. For 
example, the ACCESS command issues a message when a disk is accessed: 

D(198) RIO 

If you are going to issue the ACCESS command within an EXEC and you do 
not wish this message displayed, you could enter the lines: 

&STACK HT 
ACCESS 198 D 

Once you have stacked an HT command, all displaying is suppressed for 
the remainder of the EXEC file's execution, unless the RT Immediate 
command is processed, either following an attention interrupt (as 
described above) or within the EXEC. To execute the RT Immediate 
command in an EXEC, use the statement: 

&STACK RT 

A physical read to the terminal, for example, the result of an &HEAD 
control statement, also resets the display setting to RT. 

Ih~ §11E~l1jg ~~~£ig! !~~!~B!~: You can test the current value of the 
display controlling an EXEC with the &TYPEFLAG special variable. The 
value of &TYPEFLAG can only be one of the literal values HT or RT. For 
example: 

SIF &$ EO ROTYPE &STACK HT 

SIF STYPEFLAG EO HT &SKIP 3 
&TIPE LINEl 
&TYPE LIBE2 
&TYPE LINE3 
SCOBTIRUE 

In this example, if NOTYPE is entered 
invoked, an HT command is stacked, so 

274 IBM VM/370: eMS User's Guide 

as an argument when the EXEC is 
that no displaying is done at the 



terminal. within the EXEC, the variable &TYPEFLAG is tested, and, Lf it 
is HT, then a series of &TYPE statements is skipped. Since EXEC does 
not have to process these lines, you can save time anq system resources 
by not processing them. 

Reading from the Console Stack 

When you are in the CMS environment executing programs or CMS commands, 
you can stack commands, either by entering multiple command lines 
separated by the logical line end symbol, as follows: 

print myfile listingtcp query printer 

or by signaling an attention interrupt and entering a command line, as 
follows: 

print myfile listing 
! 
cp query printer 

In both of the preceding examples, the second command line is saved 
in a terminal input buffer, called the console stack. Whenever a read 
occurs in your virtual machine, CMS reads lines from the console stack, 
if there are any lines in it. If there are no lines in the stack, the 
read results in a physical read to your terminal (on a typewriter 
terminal, the keyboard unlocks). 

A virtual machine read occurs whenever a command or subcommand 
finishes execution, or when an EXEC or a program issues a read request. 
Many CMS com.ands also issue read requests, for example, SORT and 
COPYPILE. If you want to execute one of these commands in an EXEC, you 
aay want to stack, in the console stack, the response to the read 
request so that when it is issued it is immediately satisfied. For 
example: 

&STACK 42-121 1 
COPYFILE &NAME LISTING A = ASSEMBLE = (SPECS 

When the COPYFILE command is issued with the SPECS option, a prompting 
.essage for a specification list is issued, followed by a read request. 
In this EXEC, the request is satisfied with the line stacked with the 
&STACK control statement. If the response was not stacked, you would 
have to enter the appropriate information from the terminal during the 

'execution of the EXEC that contained this COPYFILE command line. 

In addition to stacking predefined responses to commands and 
programs, you can use the console stack to stack CMS commands and EDIT 
subcommands, as well as data lines to be read within the EXEC. 

The number of lines that you can place in the console stack at any 
one time varies according to the amount of storage available in your 
virtual machine for stacking. You may want to stack one or two lines at 
a time, or you may wish to stack many lines. There are several features 
available in EXEC that can help you manipulate the stack. 

Just as the &TYPE control statement has an &BEGTYPE counterpart, the 
&STACK control statement has an &BEGSTACK counterpart. You can stack 

section 14. Building EXEC Procedures 275 



multiple data lines following an &BEGSTACK statement. Lines stacked in 
this way are not scanned by the EXEC processor, and no substituticn is 
performed on variable symbols. For example, the lines 

&BEGSTACK 
••• line of data 
••• line of data 
••• line of data 
&END 

stack three data lines in the stack. The stacked lines must be followed 
by an &END control statement, which must be entered in the EXEC file 
beginning in column 1. 

If you have an EXEC with fixed-length records, and you want to stack 
data lines longer than 72 characters, you must use the ALL operand of 
the &BEGSTACK control statement: 

&BEGSTACK ALL 
••• line of 103 characters 
••• line of 98 characters 
••• line of 60 characters 
&END 

The ALL operand is not necessary for variable-length EXEC files. 

When you are stacking multiple lines in an EXEC, you may choose to 
reverse the sequence in which lines are read in from the stack. The 
default sequence is FIFO (first-in, first-out), but you may specify LIFO 
(last-in, first-out) when you enter the &STACK or &BEGSTACK control 
statement. For example, execution of the lines 

&STACK &TYPE A 
&STACK &TYPE B 
&STACK LIFO &TYPE C 
&STACK LIFO &TYPE D 
&STACK &TYPE E 

results in the display: 

D 
C 
A 
B 
E 

The EXEC special variable &READFLAG always contains one of tva values, 
STACK or CONSOLE. When it contains the value STACK, it indicates that 
there are lines in the stack. When it contains the value CONSOLE, it 
indicates that the stack is empty and that the next read request results 
in a physical read to the terminal (console). 

You can test this value in an EXEC, for example: 

276 IB! V!/370: C!S User's Guide 



&IP &READPLAG EQ STACK &SKIP 2 
&TYPE STACK EMPTY 
&EXIT 
&CONTINUE 

You might use a similar test in an EXEC that processes a number of lines 
from the stack, and loops through a series of steps until the stack is 
empty. 

STACKING CMS COMMANDS 

Whenever yo~ place a command in the console stack, it remains there 
until a read request is presented to the terminal. If the request is the 
result of an &READ control statement, then the line is read from the 
stack. For example, the lines 

&STACK CP QUERY TIME 
&READ 

result in the command line being stacked, read in, and then executed. 

If there are no read requests in an EXEC file, then any commands that 
are stacked are executed after the EXEC has finished and has returned 
control to the CMS environment. For example, consider the lines: 

TYPE &1 LISTING A 
ACCESS 198 A 
TYPE &1 LISTING A 

If this EXEC is located on your 191 A-disk, then when the ACCESS command 
accesses a new A-disk, CMS can ~ot continue reading the EXEC file, and 
issues an error message. However, if the EXEC was written as follows: 

TYPE t1 LISTING A 
&STACK ACCESS 198 A 
&STACK TYPE &1 LISTING A 

then, after the TYPE command, the next command lines are stacked, the 
EXEC finishes executing and returns control to CMS, which reads the next 
command lines from the console stack. 

When you stack CMS commands in an EXEC procedure, you cannot place 
multiple command lines in one statement (for example, print abc 
listing'print xyz listing), because CMS does not recognize the logical 
Ii ne end (X I 15 I) • 

If you want to issue the EDIT command from within an EXEC, you might 
want to stack EDIT subcommands to be read by the CMS Editor. You should 
stack these subcommands, either with &STACK statements, or with the 
&BEGSTACK statement, just before issuing the EDIT command. Por example: 

&BEGSTACK 
CASE M 
GET SETUP FILE A 1 20 
TOP 
LOCATE /XX/ 
&END 
&STACK REPLACE 
EDIT &1 DATA (LRECL 120 

Section 14. Building EXEC Procedures 277 



If this EXEC is named EDEX, and you invoke it with 

edex fr01 

the EDIT subcommands are stacked in the order they appear in the EXEC. 
The EDIT command is invoked to edit the file FR01 DATA, and the EDIT 
subcommands are read from the stack and executed. When the stack is 
empty, your virtual machine is in the edit environment in input mode, 
and the first line you enter replaces the existing line that contains 
the character string XX. 

Note that all of the EDIT subcommands in the example, except for the 
REPLACE subcommand, are stacked within an &BEGSTACK stack, and that the 
REPLACE subcommand is stacked with &STACK. If you are creating EXEC 
files with fixed-length records, you must use &STACK to stack the INPUT 
and REPLACE subcommands. If you use &BEGSTACK, then the INPUT and 
REPLACE subcommands are treated as if they contain text data, and so 
insert or replace one line in the file (a line of blanks). This is not 
true, however, for variable-length EXEC files. 

Similarly, if you want to stack a null line, to change from input 
mode to edit mode in an EXEC, you must use the &STACK statement with no 
other data on the line (in both fixed- and variable-length EXEC files) , 
for example: 

&STACK INPUT 
&BEGSTACK 
••• data line 
••• data line 
••• data line 
&END 
&STACK 
&STACK FILE 
EDIT &1 &2 
&EXIT 

When this EXEC is invoked with a filename and filetype as arguments, the 
INPUT subcommand, data lines, null line, and FILE subcommand are placed 
in the stack before the EDIT command is issued. The data lines are 
placed in the specified file and the file is written onto disk before 
the EXEC returns control to CMS. 

STACKING LINES FOR EXEC TO READ 

Lines in the console stack can be read by the EXEC interpreter with an 
&REAt control statement, for example, 

-SETUP 
&LOOP 3 &NUM = 50 
&STACK &NUM &CHAR 
&NUM = &NUM + 1 
&CHAR = &CONCAT &STRNG &NUM 

-READ 
&LOOP -FINIS &READFLAG EQ CONSOLE 
&READ ARGS 

-FINIS 

278 IBM VM/370: CMS User's Guide 



In this EXEC procedure, the statements following the label -SETUP stack 
a number of lines. The variables &NUM and &CHAR are substituted before 
they are stacked. At the label -READ, the lines are read in from the 
stack and processed. The values stacked are read in as the variable 
symbols &1 and &2. Control passes out of the loop when the stack is 
empty. 

CLEARING THE CONSOLE STACK 

If you use the console stack in an EXEC procedure, you should be sure 
that it is empty before you begin stacking lines in it. Also, you 
should be sure that it is empty before exiting from the EXEC (unless you 
have purposely stacked CMS commands for execution). 

One way to clear a line from the stack without affecting the 
execution of your EXEC is to use the &READ VARS or &READ ARGS centrol 
statement. You can use &READ VARS without specifying any variable 
symbols so that the line read is read in and effectively ignored. For 
example: 

&LOOP 1 &READFLAG EO CONSOLE 
&READ VARS 

If these lines occur at the beginning of an EXEC file, they ensure that 
any stacked lines are cleared. If the EXEC is named EXEC1 and is 
invoked with the line: 

exec1ttype help memettype print memo 

then the lines TYPE HELP MEMO and TYPE PRINT MEMO are cleared frem the 
stack and are not executed. 

You could use the same technique to clear the stack in case of an 
error encountered in your EXEC, so that the stack is cleared before 
returning to CMS. You would especially want to do this if you stacked 
data lines or EXEC control statements that have no meaning to CMS. 

Another way to clear the console stack is with the CMS function 
DESBUF. For example, 

&IF &READFLAG EQ STACK DESBUF 

When you use the DESBUF function to clear the console input stack, the 
output stack is also cleared. The output stack contains lines that are 
waiting to be displayed or typed at the terminal. Frequently, when an 
EXEC is processing, output lines are stacked, and are not displayed 
immediately following the execution of an &TYPE statement. If you want 
to display all pending output lines before clearing the console input 
stack, you should use the CONWAIT function, as follows: 

CONWAIT 
&IF &READFLAG EQ STACK DESBUF 

The CONWAIT (console wait) function causes a suspension of program 
execution until the console output stack is empty. If there are no lines 
waiting to be displayed, CONWAIT has no effect. 

Clearing the stack is important when you write edit macros, since all 
subccmmands issued in an edit maCro must be first stacked. See "Secticn 
17. Writing Edit Macros" for additional information on using the console 
stack. 

section 14. Building EXEC Procedures 279 



File Manipulation with EXECs 

You can, to a limited degree, read and write CMS disk files using EXECs. 
You can stack files with a filetype of EXEC in the console stack and 
then read them, one record at a time, with SREAD control statements. All. 
data items are truncated to 8 characters. You can write a file, one 
record at a time, with the SPUReH control state.ent, and then you can 
read the spool punch file onto disk. Examples of these techniques 
follow. 

STACKIRG EXEC FILES 

There are two methods to stack IXIC files in the ccnsole stack. One is 
illustrated using a CMS EXEC file, as shown in the following PREFIX 
EXEC: 

&LRAKE = &CORCAT &1 * 
LISTFILE &LRAKE SCRIPT * (EXEC 
EXEC CKS &STACK 
&LOOP -ERD &READFLAG EO CORSOLE 
&READ VARS &RAME &TIPE &KOD 
&SUFFIX = &SUBSTR &HAMB 3 5 
&REWNAM = &CONCAT &2 &SUFFIX 
RERAME &IAMB &TYPE &MOD &HEWNAM &TYPE &MOD 
&IF &RETCODE EQ 0 &SKIP 
&TYPE FILE &RAMB &TYPB ROT RERAMED 
-END 

This EXEC procedure is invoked with two arguments, each 2 characters in 
length, which indicate old and new prefixes for filenames. The EXEC 
renames files with a filetype of SCRIPT that have the first prefix, 
changing only the prefix in the filename. 

The LISTFILE command, invoked with the EXIC option, creates a CMS 
EXEC file in the format: 

&1 &2 filename SCRIPT mode 

When the EXEC is invoked with the line 

EXEC CMS &STACK 

the argument &STACK is substituted for the variable symbol &1 in each 
line in the CMS EXEC. The execution of the eMS EXEC effectively stacks, 
in the console stack, the complete file identifications of the files 
listed: 

&STACK filename SCRIPT mode 
&STACK filename SCRIPT mode 

These stacked lines are read back into the BXEC, one at a time, and the 
tokens "filename", "SCRIPT", and "mode" are substituted for the variable 
symbols &RAME, &TYPE, and &MOD. 

Using the &SUBSTR and &CORCAT built-in functions, the new name for 
each file is constructed, and the RBRAME command is issued to rename the 
files. 

280 IBM V"/370: CMS User's Guide 



For example, if you invoke the EXEC procedure with the line 

prefix ab xy 

all SCRIPT files that have filenames beginning with the characters AB 
are renamed so that the first two characters of the filename are XY. A 
sample execution summary of this EXEC is illustrated under "Debugging 
EXEC Procedures" in "Section 16. Refining Your EXEC Procedures." 

You can create a data file, containing fixed-length records, using a 
filetype of EXEC. To stack these data lines in the console stack, you 
can enter them following an &BEGSTACK (or &BEGSTACK ALL) centrol 
statement. For example, the file DATA EXEC is as follows: 

&BEGSTACK 
HARRY 10/12/48 
PATTI 1/18/49 
DAVID 5/20/70 
KATHY 8/6/43 
MARVIN 2/28/50 

The file BDAY EXEC contains: 

&CONTROL ERROR 
EXEC DATA 
&IF &READFLAG EQ CONSOLE &GOTO -NO 
&READ VARS &NAME &DATE 
&IF &NAME NE &1 &SKIP -2 
-FOUND 
&IF .&1 EQ • &EXIT 
&TYPE &1 'S BIRTHDAY IS &DATE 
CONWAIT 
DESBUF 
&EXIT 
-NO &TYPE &1 NOT IN LIST 
&EXIT 

When the BDAY EXEC is invoked, it expects an argument that is a first 
name. The function of the EXEC is to display the birthday of the 
specified person. A sample execution of this EXEC might be: 

bday kathy 
KATHY 's BIRTHDAY IS 8/6/43 
R; 

BDAY EXEC first executes the DATA EXEC, which stacks names and dates 
in the console stack. Then, BDAY EXEC reads one line at a time from the 
stack, assigning the variable names &NAME and &DATE to the tokens on 
each line. It compares &NAME with the argument read as &1. When it finds 
a match, it displays the message indicating the date, and clears the 
console stack after waiting for terminal output to finish. 

Note that the file DATA EXEC begins with an &BEGSTACK control 
statement, but contains no &END statement. The stack is terminated by 
the end of the EXEC file. "Writing Data Files" describes a technique 
you might use to add new names and birth dates to the DATA EXEC file. 

Section 14. Building EXEC Procedures 281 



You can build a CMS file in your virtual card punch using the &PUNCH and 
&BEGPUNCH control statements. Depending on the spooling characteristics 
of your virtual punch, the file that you build may be sent to another 
user's card reader, or to your own virtual card reader. When you read 
the file with the CMS READCARD command, the spool reader file becomes a 
CMS disk file. 

The following example illustrates how you might use your card punch 
and reader to update a CMS file by adding records to the end of it. The 
file being updated is the DATA EXEC, which is the input file for the 
BDAY EXEC, shown in the example in "Stacking Data Files." You could 
create a separate EXEC to perform the update, but this example shows how 
you might modify the BDAY EXEC to perform the addition function 
(ellipses indicate the body of the EXEC, which is unchanged): 

&CONTROL ERROR 
&IF &1 EQ ADD &GOTO -ADDNAME 

&EXIT 
-ADDNAME 
&TYPE ENTER FIRST NAME AND tATE IN FORM MM/DD/YY 
&READ VARS &NAME &DATE 
&IF .&NAME = • &SKIP 3 
&PUNCH &NAME &DATE 
~YPE ENTER NEXT NAME OR NULL LINE: 
&SKIP -4 
CP SPOOL PUNCH TO * 
CP CLOSE PUNCH 
READCARD NEW NAMES 
COPYFILE NEW NAMES A DATA EXEC A (APPEND 
&IF &RETCODE = 0 &SKIP 2 
&TYPE ERROR CREATING FILE 
&EXIT ERETCODE 
ERASE NEW NAMES 

When BDAY EXEC is invoked with the keyword ADD, you are prompted to 
enter lines to be added to the data file. Each line that you enter is 
punched to the card punch. When you enter a null line, indicating that 
you have finished entering lines, the CP commands SPOOL and CLOSE direct 
the spool file to your card reader and close the punch. 

The file is read in as the file NEW NAMES, which is appended to the 
file DATA EXEC using the COpy FILE command with the APPEND option. The 
file NEW NAMES is erased and the EXEC terminates processing. 

When you punch lines in your virtual punch, the lines are not released 
as a CP spool file until the punch is closed. Since the EXEC processor 
does not close the virtual punch when it terminates processing, you must 
issue the CLOSE command to release the file. You can do this in the EXEC 
with the command line 

CP CLOSE PUNCH 

or from the CMS environment after the EXEC has finished. If you use the 
CLOSE command in the EXEC, you must preface it with CP. 

282 IBM VM/370: CMS User's Guide 



The C~S PUNCH command, which you can use in an EXEC to punch an 
entire CMS file, does clcse the punch after punching a file. Therefore, 
if you want to create a punch file using a comtination of SPUNCH ccntrol 
statements and PUNCH commands, you must spool your punch using the CONT 
option, so that a close request does not affect the file: 

CP SPOOL PUNCH TO * CONT 
SPUNCH FIRST FILE 
SPUNCH 
PUNCH FILE1 TEST ( NOHEADER 
SPUNCH SECOND FILE 
SPUNCH 
PUNCH FILE2 TEST ( NOH EADER 
CP SPOOL PUNCH CLOSE NOCONT 

The preceding example punches title lines introducing the files punched 
with the CMS PUNCH command. The null SPUNCH statements punch blank 
lines. The PUNCH command is issued with the NOHEADER option, so that a 
read control card is not punched. 

You can also use an EXEC procedure to punch a job to send to the C~S 
Batch Facility for processing. The batch facility, and an examFle cf 
using an EXEC to punch a job to it, are described in "Section 12. Using 
the CMS Batch Facility." 

All lines punched to the virtual card punch are fixed-length, 
80-character records. When you use the SPUNCE control statement in a 
fixed-length EXEC file, EXEC scans only the first 72 columns of the 
EXEC. 

If you want to punch a word that contains more than 8 characters, you 
must use the SBEGPUNCH control statement, which also, in fixed-length 
files, causes EXEC to punch data in columns 1 through 80. 

Section 14. Building EXEC Procedures 283 





Section 15. Using EXECs with CMS Commands 

Whenever you create an EXEC file you are, for all practical purFoses, 
creating a new CMS command. When you enter a command line in the CMS 
environment, CMS searches for an EXEC file with the specified filename 
before searching for a MODULE file or CMS command. You can place the 
names of your EXEC files in a synonym table and assign minimum 
truncation values for the synonyms, just as you can for CMS command 
names. 

While many of your EXEC procedures may be very simple, others may be 
very long and complicated, and perform many of the housekeeFing 
functions performed by CMS commands, such as syntax checking, error 
message generation, and so on. 

Monitoring CMS Command Execution 

Bany, or most, of your EXEC procedures may contain sequences of CMS 
commands that you want to execute. If your EXEC procedure contains no 
EXEC control statements, each command line is displayed and then the 
command is executed. If an error occurred, the CMS error message is 
displayed, followed by a return code in the format: 

+++ R(nnnnn) +++ 

where nnnnn is the nonzero return code from the CMS command. 
command is not a valid CMS command, the return code is a -3: 

+++ R(-0003) +++ 

If the 

You may also receive this error return when you use a CP command without 
prefacing it with the CP command. If you enter an unknown CP command 
following "CP", you receive a return code of 1. 

If a command completes successfully, no return code is displayed. 

If you do not want to see the command lines displayed before 
execution, nor return codes following execution, you can use the EXEC 
control statement: 

&CONTROL OFF 

Or, if you want to see only the command lines that produced errors, and 
the resultant return codes, you can specify: 

&CONTROL ERROR 

Regardless of these settings of the &CONTROL statement, CMS error 
messages are displayed, as long as the value of &READFLAG is RT, and the 
terminal is displaying output. 

If you issue the LISTFILE, STATE, ERASE, or RENAME commands in an 
EXEC procedure, and you do not want to see the error message FILE RJT 
FOUNt displayed, you can use the statement: 

&CONTROL ROMSG 

to suppress the display of these particular messages. 

Section 15. using EXECs with CMS Commands 285 



You can request that particular timing information be 
during an EXEC's execution. If you want to display the time 
which each command executes, you can specify 

&CONTROL TIME 

disFlayed 
of day at 

Then, as each command line is displayed, it is prefaced with the time, 
for example, 

&CONTROL CMS TIME 
QUERY BLIP 

executes as follows: 

10:34:16 QUERY BLIP 
BLIP = * 

If you wish to see, following the execution of each CMS command, 
specific CPU timing information, such as the long form of the Ready 
message, you can use the &TIME control statement. For example, 

&TIME ON 
QUERY BLIP 
QUERY FILEDEF 

might execute as: 

QUERY BLIP 
BLIP = OFF 
T=0.01/0.04 10:44:21 

QUERY FILEDEF 
NO USER DEFINED FILEDEF'S IN EFFECT 
T=O.01/0.04 10:45:26 

Handling Error Returns From CMS Commands 

In many cases, you want to execute a command only if previous commands 
were successful. For example, you would not want to execute a PRINT 
command to print a file if you had been unable to access the disk on 
which the file resided. There are two methods, using EXEC procedures, 
that allow you to monitor and control what happens following the 
execution of CMS commands. One method uses the EXEC control statement 
&ERROR to transfer control when an error occurs; the other tests the 
special variable &RETCODE upon completion of a CMS command to determine 
whether that particular command completed successfully. 

USING THE &ERROR CONTROL STATEMENT 

When a CMS command is executed within an EXEC, a return code is passed 
to the EXEC interpreter, indicating whether or not the command completed 
successfully. If the return code is nonzero, EXEC then activates the 
&ERROR control statement currently in effect. For example, if the 
following statement is included at the beginning of an EXEC file 

&ERROR &EIIT 

then, whenever a CMS command (or user program) completes with a nonzero 
return code, the &EXIT statement in the &ERROR statement is executed, 

286 IBM VM/370: CMS User's Guide 



and the EXEC terminates processing. You might use a similar statement 
in your EXECs to ensure that they do not attempt to continue processing 
in the event of an error. 

An &ERROR control statement can specify any executable statement. It 
may transfer control to another portion of the EXEC, or it many be a 
single statement that executes before control is returned to the next 
statement in the EXEC. Por example, 

&ERROR &GOTO -EXIT 

transfers control to the label -EXIT, in case of any CMS error. The 
statement 

&ERROR &TYPE CMS ERROR 

results in the display of the message "CMS ERROR" before returning 
control to the statement following the command that caused the error. 

If you do not have an &ERROR control statement in an EXEC, or if you 
specify &ERROB with no operands, EXEC takes no special action when a CMS 
command returns with an error return code. Specifying &ERROR with no 
operands is the same as specifying: 

&ERROR &CONTINUE 

since an &ERBOR control statement remains in effect for the remainder 
of the EXEC execution, or until another &ERROR control statement is 
encountered, you may use &ERROR &CONTINUE to restore default 
processing. 

USING THE &RETCODE SPECIAL VARIAELE 

An error return from a CMS command, in addition to calling an &ERROR 
control statement, also places the return code value in the EXEC special 
variable &RETCODE. Following the execution of any CMS command in an 
EXEC procedure, you can test whether or not the command completed 
without error. For example, 

TYPE ALPHA PILE A 
&IF &RETCODE ~= 0 &EXIT 
TYPE BETA PILE A 
&IF &RE~CODE ~= 0 &EXIT 

Bote that the value of &RETCODE is modified after the execution of each 
CMS command. 

The value of &RETCODE is affected by your own programs. If you 
execute a program in your EXEC using the LOAD and START (or PETCH and 
START) commands, or if you execute a MODULE file, then the &RETCODE 
special variable contains whatever value was in general register 15 when 
the program exited. If you are nesting EXEC procedures, then &RETCODE 
contains the value passed from the &EXIT statement of the nested EXEC. 

You can use the value of the return code, as well, to analyze the 
extent or the cause of the error, and set up an error analysis routine 
accordingly. Por example, suppose you want to set up an analysis 
routine to identify return codes ;1 through 11, and to exit from the EXEC 
when the return code is great€r than 11. When a return code is 
identified, control is passed to a corresponding routine that attempts 
to correct the error. You could set up such an analysis routine as 
follows: 

Section 15~ Using EXECs with CMS Commands 287 



-ERRANAL 
&CNT = 0 
SLOOP 2 SCNT EQ 12 
&IF &RETCODE EO &CNT &GOTO -FIX&CNT 
SCNT = SCNT + 1 

-FIXO SGOTO -ALLOK 
-FIX 1 

&GOTO -ALLOK 
-FIX2 

&GOTO -ALLOK 

-FIXll 

-ALLOK 

When the value of the &CNT variable equals the return code value in 
SRETCODE, the branch to the corresponding -FIX routine is taken. Each 
corrective routine performs different actions, depending on its code, 
and finishes at the routine labeled -ALLOK. 

You can, in some cases, determine the cause of a CMS command error 
and attempt to correct it in your EXEC. To do this, you must know the 
return codes issued by VM/370 commands. See !~L]lQ: ~~2!~! ~~22~g~2 for 
a discussion of the return codes for VM/370 commands. In addition, the 
error messages and corresponding return codes are listed under the 
command descriptions for each CMS command in the !~L]lQ: £~~ £2!!~ng ~Bg 
~~£~9 ~~!~~~n£~· 

As an example, all eMS commands that search for files issue a return 
code of 28 when a file is not found. If you want to test for a file not 
found condition in your EXEC, you might use statements similar to the 
following: 

&CONTROL OFF NOMSG 

TYPE HELP MEMO A 
&IF &RETCODE = 28 &GOTO -NOFILE 

Tailoring CMS Commands for Your Own Use 

You can create EXEC procedures that simplify or extend the use of a 
particular CMS co.mand. Depending on your applications, you can modify 
the CMS command language to suit your needs. You can create EXEC files 
that have the same names as CMS commands, and, since CMS locates EXEC 
files before MODULE files, the EXEC is found first. For e~ample, the 
COPY FILE command, when used to copy CMS disk files, requires six 
operands. If you change only the filename when you copy files, you could 
create a COpy EXEC as follows: 

288 IBM VM/370: CMS User's Guide 



&CONTROL OFF 
&IF &INDEX ~= 3 &SKIP 
COPYFIIE &1 &2 = &3 &2 = 
COPYFILE &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14 &15 

If you always invoke the COPYFILE command using the truncation COPY, 
EXEC processes the command line for you, and if you have entered the 
three arguments, EXEC formats the COPYFILE command for you. If any 
other number of arguments are entered, the COPYFILE command is invoked 
with all the arguments as entered. 

CREATING YOUR OWN DEFAULT FILETYPES 

If you use special filetypes for particular applications and they are 
not among those that the CMS Editor supplies default settings for, but 
do require special editor settings, you can create an EXEC to invoke the 
editor. The EXEC can check for particular filetypes, and if it finds 
them, stack the appropriate EDIT subcommands. If you name this EXEC 
procedure E EXEC, then you can bypass it using a longer form of the EDIT 
command. The following is a sample E EXEC: 

&CONTROL OFF 
&IF &INDBX GT 1 &SKIP 2 
EDIT &1 SCRIPT 
&EXIT 
&IF &2 EQ TABLE &GOTO -TABLE 
&IF &2 EQ CHART &GOTO -CHART 
&IF &2 EQ EXEC &GOTO -EX 
&IF &2 EQ SYSIN &GOTO -SYSIN 
-NORM EDIT &1 &2 &3 &4 &5 &6 
&EXIT 
-TABLE &BEGSTACK 
IMAGE ON 
TABS 1 10 20 
CASE M 
&END 
EDIT &1 &2 &3 (LRECL 20 
&EXIT 
-CHART &BEGSTACK 
CASE M 
IMAGE ON 
&END 
EDIT &1 &2 &3 
&EXIT 
-EX 
EDIT &1 &2 &3 (LRECL 130 
&EXIT 
-SYSIN &BEGSTACK 
TABS 1 10 16 31 36 41 46 69 72 80 
SERIAL ON 
TRUNC 71 
VERIFY 72 
&END 
EDIT &1 &2 &3 
&EXIT 

This EXEC defines special characteristics for filetypes CHART, TABLE, 
and SYSIN, and defaults an EXBC file to 130-character records. If only 
one argument is entered, it is assumed to be the filename of a SCRIPT 
file. Since the editor is invoked from within the EXEC, control returns 
to EXEC after you use the FILE or QUIT subcommands during the edit 
session, and you must use the &EXIT control statement so that the EXEC 
does not continue processing, and execute the next EDIT command in the 
file. 

section 15. Using EXECs with CMS Commands 289 





Section 16. Refining Your EXEC Procedures 

This section provides supplementary information for writing complex ~XEC 
procedures. Although the EXEC interpreter resembles, in some aspects, a 
high-level programming language, you do not need to be a programmer to 
write EXECs. Some of th~ techniques suggested here, for example, on 
annotating and writing error messages, are common programming practices, 
which help make programs self-documenting and easier to read and to 
use. 

Annotating EXEC Procedures 

Lines in an EXEC file that begin with an asterisk (*) are not processed 
by the EXEC interpreter. You can use * statements to annotate your 
EXECs. If you write EXECs frequently you may find it convenient to 
include a standard comment at the beginning of each EXEC, indicating its 
function and the date it was written, for example: 

* EXEC TO HELP CONVERT LISTING FILES 
* INTO SCRIPT FILES 
* J. BEAN 10/18/75 

You can also use single asterisks or null lines to provide spacing 
between lines in an EXEC file to make examining the file easier. 

In an EXEC, you cannot place comments on the same line with an 
executable statement. If you want to annotate a particular statement or 
group of statements, you must place the comments either above or below 
the lines you are annotating. 

A good practice to use, when writing EXECs, is to set them up to 
respond to a ? (question mark) entered as the sole argument. For 
example, an EXEC named FSORT might contain: 

&CONTROL OFF 
&IF &INDEX = 1 &IF &1 = ? &GOTO -TELL 

-TELL &BEGTYPE 
CORRECT FORM IS ' FSORT USERID <VADDR> ' 

PRINTS AN ALPHABETIC LISTING OF ALL FILES ON THE SPECIFIED 
USER'S DISK. IF A VIRTUAL ADDRESS (VADDR) IS NOT 
SPECIFIED, THE USER'S 191 IS THE DEFAULT. 

&END 

You may also wish 
enter an EXEC name 
arguments: 

to anticipate the situation in which a user might 
with no arguments, for an EXEC that requires 

section 16. Refining Your EXEC Procedures 291 



&IF &INDEX = 0 &GOTO -HELP 
&IF &INDEX = 1 &IF &1 = ? &GOTO -TELL 

&EXIT 
-HELP &BEGTYPE 

&END 
&EXIT 

CORRECT FORM IS ' COPY OLDFN OLDFT NEWFR ' 
TYPE ' COpy ? ' FOR MORE INFO 

-TELL &BEGTYPE 

&END 
&EXIT 

CORRECT FORM IS ' COPY OLDFR OLDFT NEWFR ' 
USES COPYFILE COMMAND TO CHANGE ONLY THE FILENAME 

This type of annotating is especially useful if you share your disks or 
your EXECs with other users. 

El'ror Situations 

It is good practice, when writing EXECs, to anticipate error situations 
and to provide lIeaningful error or information messages to describe the 
error when it occurs. The following error situations, and suggestions 
for handling them, have already been discussed: 

• Errors in invoking the EXEC, either 
arguments, or with invalid arguments. 
14. Building EXEC Procedures.") 

with an improper number of 
(see "Arguments" in "section 

• Errors in CMS command processing that can be detected with an &ERROR 
control statement or with the &RETCODE special variable. (See 
"Handling Error Returns from eMS Commands" in "Section 15. Using 
EXECs With CMS Commands.") 

Many different kinds of errors may occur, also, in the processing of 
your EXEC control state.ents. EXEC processing errors, such as an attempt 
to branch to a nonexistent label, or an invalid syntax, are 
"unrecoverable" errors. These errors always terminate EXEC processing 
and return your virtual machine to the CMS environment, or to the 
calling EXEC procedure or program. The error messages produced by EXEC, 
and the associated return codes, are described in the !~Ll1Q: ~I2i~! 

1!!!§§~g!§. 

WRITING ERROR MESSAGES 

One way to make your EXECs more readable, especially if they are long 
BIECs, is to group all of your error messages in one place, probably at 
the end of the EXEC file. You may also wish to number your messages and 
associate the message number with a label number and a return code. For 
e,xallple: 

292 IBM VM/370: CMS User's Guide 



&IF &CT > 100 &GOTO -ERR100 
&IF &CT < 0 &GOTO -IRR200 

&IF &RETCODE EQ 28 &GOTO -ERR300 

-ERR100 
&TYPE COUNT TOO HIGH 
&EIIT 100 
-ERR200 
&TYPE COUNT TOO LOW 
&EIIT 200 
-ERR300 
&TYPE &1 &2 NOT ON DISK 'C'. 
&EIIT 300 

There is a facility available in the EIEC processor, which allows you to 
write error messages that use the standard VM/370 message format, with 
an identification code and message number, as well as message text. 
When you use the &EMSG or &BEGEMSG control statement, the EXEC 
interpreter scans the first token and checks to see if the seventh (and 
last character) is an I, E, or W, representing information, error, or 
warning messages, respectively. If so, then the message is displayed 
according to the CP EMSG setting (ON, OFF, CODE, or TEXT). For example, 
if you have the statement 

&EMSG ERROR1E BAD ARGUMENT ' &1 • 

the ERROR1E is considered the code portion of the message and BAD 
ARGUMENT is the text. If you have issued the CP command 

cp set emsg text 

when this &EMSG statement is executed it may display 

BAD ARGUMENT • PRNIT • 

where PRNIT is the argument that is invalid. 

When you use &EMSG (or &BEGEMSG, which allows you to display error 
messages of unscanned data), the code portion of the message is prefixed 
with the characters DMS, when displayed. For example 

&BEGEMSG 
ERROR2E INCOMPATIBLE ARGUMENTS 
&END 

displays, when the EMSG setting is ON, 

DMSERROR2E INCOMPATIBLE ARGUMENTS 

You should use the &BEGEMSG control 
lines that have tokens longer than 
substitution is performed. 

statement when you want to display 
8 characters; however, no variable 

section 16. Refining Your EXEC Procedures 293 



D'ebugging EXEC Procedures 

If you have difficulty getting an EXEC procedure to execute properly, or 
if you are modifying an existing EXEC and wish to test it, there are a 
couple of simple techniques that you can use that may save you time. 

One is to place the &CONTROL ALL control statement at the top of your 
EXEC file. When &CONTROL ALL is in effect, all the EXEC centrol 
statements are displayed before they execute, as well as the CMS command 
lines. One of the advantages of using this method is that the line is 
displayed after it is scanned, so that you can see the results of symbol 
and variable substitution. 

"stacking EXEC Files" in "Section 14. Building EXEC Procedures" 
described a PREFIX EXEC, which changes the prefixes of groups of files. 
If the EXEC had an &CONTROL ALL statement, it might execute as follows: 

prefix pt ag 
&CONTROL ALL 
&LNAME = &CONCAT PT * 
LISTFILE PT* SCRIPT * ( EXEC 
EXEC CMS &STACK 
&LOOP -END &READFLA EQ CONSOLE 
LOOP UNTIL: STAC K EQ CONS 
&READ VARS &NAME &TYPE &MOD 
&SUFFIX = &SUBSTR PTA 3 5 
&NEWNAM = &CONCAT AG A 
RENAME PTA SCRIPT A1 AGA SCRIPT A1 
&IF 0 EQ 0 &SKIP 
&SKIP 
LOOP UNTIL: STAC K EQ CONS 
&READ VARS &NAME &TYPE &MOD 
&SUFFIX = &SUBSTR PTB 3 5 
&NEWNAM = &CONCAT AG B 
RENAME PTB SCRIPT A1 AGB SCRIPT A1 
&IF 0 EQ 0 &SKIP 
&SKIP 
LOOP UNTIL: CONS OLE EQ CONS 
R; 

You can see from this execution summary that the files named PTA SCRIPT 
and PTB SCRIPT are renamed to AGA SCRIPT and AGB SCRIPT. Notice that 
the SLOOP statement results in a special LOOP UNTIL statement in the 
execution summary, which indicates the condition under which the loop 
executes. 

USING CMS SUBSET 

When you are using the CMS Editor to create or modify an EXEC procedure, 
you can test the EXEC in the CMS subset environment, as long as the EXEC 
does not issue any CMS commands that are invalid in CMS subset. 

Before entering CMS subset with the CMS subcommand, you must issue 
the SAVE subcommand to write the current version of the EXEC onto disk; 
then, in CMS subset, execute the EXEC. For example: 

294 IBM VM/370: CMS User's Guide 



edit new exec 
NEW FILE: 
EDIT: 
input 
INPUT: 
&a = &1 + &2 + &3 
&type answer is &a 

EDIT: 
save 
EDIT: 
cms 
CMS SUBSET 
new 34 56 899 
ANSWER IS 989 
R; 
return 
EDIT: 
quit 
R; 

If the EXEC does not execute properly, you can return to the edit 
environment using the RETURN command, modify the EXEC, reissue the SAVE 
and CMS subcommands, and attempt to execute the EXEC again. 

SUMMARY OF EXEC INTERPRETER LOGIC 

The following information is provided for those who have an interest in 
how the EXEC interpreter works. It may help you in debugging your EXEC 
procedures if you have some idea of how processing is done by EXEC. 
When an EXEC file is invoked for execution, the EXEC interpreter 
examines each statement and analyzes it, according to the following 
sequence: 

1. If the first nonblank character of the line is an *, the line is 
ignored. 

2. Null lines, except as a reponse to an &READ statement, are also 
ignored. 

3. The line is scanned, and nont )k character strings are placed in 
tokens. 

4. All EXEC special variables, an~hen all user variables, except for 
those that appear as the tar~t of an assignment statement, are 
substituted. 

6. All blank tokens (resulting from the sUbstitution of undefined 
symbols) are discarded. 

7. If the first nonblank character is a hyphen (-), indicating a 
label, the next token is considered the first token. 

8. If the first logical token does not begin with an ampersand (&), 
the line is passed to CMS for execution. The return code from CMS 
is placed in the special variable &RETCODE. 

9. If the first logical token begins with an ampersand (&) EXEC 
interprets the statement. 

10. If a statement is syntactically invalid and can be made valid by 
adding a token of blanks at the end, EXEC adds blanks, for example: 

section 16. Refining Your EXEC Procedures 295 



&BLAHK = 
&TYPE 
&LOOP 3 &X HE 

All of the above are valid EXEC control statements. 

11. EXEC executes the statement. If no error is 
passes to the next logical statement. If an 
EXEC terminates processing. 

296 IBM VM/370: eMS User's Guide 

encountered, control 
error is encountered, 



Section 17. Writing Edit Macros 

If you have a good knowledge of the CMS EXEC facilities, and an 
understanding of the CMS Edit9r, you may wish to write edit macros. An 
edit macro is simply an EXEC file that contains a sequence of EDIT 
subcommands. Edit .acros can only be invoked from the edit environment. 
An edit macro may contain a simple sequence of EDIT subcommands, or its 
execution may be dependent on arguments you enter when you invoke it. 
This section provides information on creating edit macros, suggestions 
on how to manipulate the console stack, and some examples of macros that 
you can create and use. 

Creating Edit Macro Files 

An edit macro must have a filena.e 
a filetype of EXEC. Rules for 
substitution are the same as for all 
contain: 

• EDIT subcommands 
• EXEC control statements 

beginning with a dollar sign ($) and 
file format, scanning and token 
other EXEC files. A macro file may 

• ces commands that are valid in CMS subset 

When you create an edit macro that accepts arguments, you should be 
sure to check the validity of the arguments, and issue appropriate error 
messages. If you are writing an edit macro to expect arguments, you must 
keep in mind that the macro command line is scanned, and that any data 
items you enter are padded or truncated into 8-character tokens. Tokens 
are always translated to uppercase letters. 

You should annotate all of your macro files, and provide a response 
to a question mark (1) entered as the sole argument (as described under 
"Annotating EXEC Procedures" in "Section 16. Refining Your EXEC 
Proced ures ... 

How Edit Macros Work 

Since an edit macro is an EXEC file, it is actually executed by the EXEC 
interpreter, and not by the editor. The EXEC interpreter can only 
execute EXEC control statements and CMS commands. The only way to issue 
an EDIT subco.mand from an EIEC file is to stack the subcommand in the 
console stack, so that when the editor is invoked, or receives control, 
it reads the subcom.and(s) from the console stack before accepting input 
lines from the terminal. For example: 

&STACK CASE M 
&STACK RECF! V 
EDIT &1 CHART A1 

When the EDIT command is invoked from this EIEC, the editor reads the 
subcommands from the stack and executes them. 

To execute these same subcommands from an edit macro file, you must 
use the same technique; that is, you must place the subcommands in the 
console stack, for example: 

section 17. Writing Edit Macros 297 



&BEGSTACK 
CASE M 
RECFM V 
&END 
&EXIT 

If this were an EXEC file named $VARY, you might execute it from the 
edit environment as follows: 

edit test file 
NEW FILE. 
EDIT: 
$vary 

Stacked subcommands are executed only when the EXEC completes its 
execution, either by reaching the end of the file, or by processing an 
&EXIT statement. 

When you stack edit subcommands, you can use the &STACK and &BEGSTACK 
control statements. If you are stacking a subcommand that uses a 
variable expression, you must use the &STACK control statement, rather 
than the &BEGSTACK control statement. The following EXEC, named $T, 
displays a variable number of lines and then restores the current line 
pointer to the position it was in when the EXEC was invoked: 

&CONTROL OFF 
&IF &INDEX EQ 0 &GOTO -ERR 
&CHECK = &DATATYPE &1 
&IF &CHECK NE NUM &GO~O -ERR 
&STACK TYPE &1 
SUP = &1 - 1 
&STACK UP SUP 
&EXIT 
-ERR STYPE CORRECT FORM IS < $T N > 
&EXIT 1 

This edit macro uses the built-in frrnction &DATATYPE to check that a 
numeric operand is entered. 

CMS commands in an edit macro are executed as they are read by the 
EXEC interpreter, just as they wculd if the EXEC were invoked in the CMS 
environment. You could create a $TYPE edit macro, for example, that 
would allow you to display a file from the edit environment: 

&CONTROL OFF 
TYPE &1 &2 &3 &4 &5 &6 &7 

Or you might create a $STATE EXEC that would verify the existence of 
another file: 

&CONTROL OFF 
STATE &1 &2 &3 

In both of these examples, the macro file invokes the CMS command. 
Macros like these can eliminate having to enter CMS subset environment 
to execute one or two simple CMS commands. You must be careful, though, 
not to execute any CMS command that uses the storage occupied by the 
editor. Only commands that are valid in eMS sutset are valid in an edit 
.acro. 

298 IBM V"/370: eMS User's Guide 



THE CONSOLE STACK 

When you write an edit macro, you want to be sure that there are no EDIT 
auscommands in the stack that could interfere with the execution of the 
su~co.mands stacked by the macro file. Your macro should check whether 
th.re are any lines in the stack, and if there are, it should clear them 
from the stack. For example, you might use the lines: 

&IP &READFLAG EQ CONSOLE &SKIP 2 
DESBUF 
STYPE STACKED LINES CLEARED BY SO 

The message "STACKED LINES CLEARED BY macro name" is issued by the edit 
aacros distributed with the VM/370 system. You may also want to use 
tAis convention in your macros, to alert a user that the console stack 
has teen cleared. 

When aD edit macro is invoked and the current line pointer is positioned 
at t~e top of the file or at the end of the file, the editor stacks a 
token in the console stack. If the line pOinter is at the top of the 
file, the token stacked is -TOF"; if the line pointer is at the end of 
the file the token stacked is ~!OP". If you write an edit macro that 
~oes not check the status of the console stack, and the macro is invoked 
from the top or the end of the file, you receive the message 

1EDIT: TOF 

or: 

1EDIT: EOF 

The editor does not recognize these tokens as valid subcommands. 

You .ay want to use these tokens to test whether the EXEC is invoked 
from the top or end of the file. If you want to clear these tokens in 
case the macro has been invoked from the top or end of the file, you 
ai,at use the statement: 

&Ir &READFLAG EO CONSOLE &READ VARS 

.hic~ clears the token from the stack. 

If you do not want to clear th~ console stack when you execute an edit 
.acro, you can stack all of the subcommands using the LIFO (last-in 
first-out) operand of the &STACK and &BEGSTACK control statements: 

SBEGSTACK LIFO 
TAR SET 3 10 71 
TRUNC 71 
PRESE)VE 
SERD 

Section 17. Writing Edit Macros 299 



Wben this edit macro is executed, the subcommands are placed in the 
console stack in front of any existing lines. For example, if this macro 
wlere invoked 

$format#input 

the subcommands would execute in the following order: PRESERVE, TRUNC, 
TABSET, INPUT. If the subcommands were stacked FIFO (first-in 
first-out), the default, the INPUT subcommand would be the first to 
execute (since it is the first command in the stack) and the remaining 
subcommands would be read into the file as input lines. 

If an EXEC processing error occurs during the execution of an edit 
macro, the editor clears the console stack and issues the "STACKED LINES 
CLEARED" message. An EXEC processing error is one that causes the error 
message DMSEXT072E: 

ERROR IN EXEC FILE filename, LINE nnnn - description 

These errors cause the EXEC interpreter to terminate processing. Any 
stacked subcommands are cleared before the editor regains control, so 
that none of the subcommands are executed, and the file remains 
unchanged. 

You should also ensure that any error handling routines in your edit 
macros clear the stack if an error occurs. Otherwise, the editor may 
begin reading invalid data lines from the stack and attempt to execute 
them as EDIT subcommands. 

You should not interrupt the execution of an edit macro by using the 
Attention or Enter key, and then entering a command or data line. 
Results are unpredictable, and you may inadvertently place unwanted 
lines in the stack. 

If your edit macrO contains a CMS command that is invalid in the CMS 
subset environment, you receive a return code of -2. 

The maximum number of lines that 
varies according to the amount of free 
at the time of the stacking request. 
editor terminates abnormally. 

Notes on Using EDIT Subcommands 

you can stack in an edit macro 
storage that is available to CMS 

If you stack teo many lines, the 

You can use any EDIT subcommand in a macro file, and there is one 
special subcommand whose use only bas meaning in a macro: the STACK 
subcommand. For the most part, there is not any difference between 
executing an EDIT subcommand from the edit environment, or from an EXEC 
edit macro. You do have to remember, however, that if you want a 
variable symbol on a subcommand line, you must stack that subcommand 
using the 6STACK control statement rather than following an &BEGSTACK 
control statement. 

Listed below are some notes on using various EDIT subcommands in your 
macro files. You may find these notes useful when you design your own 
macros. 

300 IBM VM/370: CMS User's Guide 



EBI~~B!~, j~~!ll, A]~ ~]~!£~1: Often, you may want to create an edit 
macro that alters the characteristics of a file (format, tab settings, 
and so on). To ensure that the original characteristics are retained 
when the macro has finished executing, you can stack the PRESERVE 
subcommand as the first subcommand in the stack, and the RESTORE 
subcommand as the last subcommand in the stack: 

&BEGSTACK 
PRESERVE 
CASE M 
I A lowercase line 
RESTORE 
&END 

The PRESERVE and RESTORE subcom~ands save and reinitialize the settings 
for the CASE, FKODE, FNAME, IMAGE, LINEMODE, LONG, RECFM, SERIAL, SHORT, 
TABSET, TRUNC, VERIFY, and ZONE subcommands. 

In an edit macro that issues many subcommands that display lines in 
response to CHANGE or LOCATE subcommands, you may want to turn the 
verificatio~ setting to OFF to suppress displays during the execution of 
the edit macro: 

&BEGSTACK 
PRE,SERVE 
VERIFY OFF 

RESTORE 
&END 

You would particularly want to turn verification off for a macro that 
executes in a loop, or that issues a global request. If you want a line 
or series of lines displayed, you can use the TYPE subcommand. 

If you have verification set off in an edit macro, then when you 
execute it you may not receive any indication that the edit macro 
completed execution. The keyboard unlocks to accept your next EDIT 
subcommand from the terminal. To indicate that the macro is finished, 
you can stack, as the last subcommand in the procedure, a TYPE 
subcommand, to display the current line. Or, if you write an edit macro 
that terminates when an end-of-file condition occurs the EOF: message 
issued by the editor may indicate the completion of the macro. 

l!~Q!, B~~1Af]: To change f+om edit mode to input mode in an edit macro, 
you can use the INPUT and REPLACE subcommands. In a fixed-length EXEC 
file, you must stack these subcommands using the &STACK control 
statement: 

&STACK INPUT 

-- or --

&STACK REPLACE 

If you use either of these subcommands following an &BEGSTACK control 
statement, the subcommand line is padded with blanks to the line length 
and the result is a line of blanks inserted into the file. 

In a variable-length EXEC file, lines are not padded with blanks, so 
the INPUT and REPLACE subcommands with no data line execute the same 
following an &BEGSTACK control statement as they do when stacked with 
the &STACK control statement. 

section 17. Writing Edit Macros 301 



2~Qi.Dg l!2!!! !DE.!!! l!2g~ i2 jgii lIQg~: To stack a null line in an ed~t 
.acro, to cause the editor to leave input mode, you must use the SStACI 
control statement with nc other tokens, as follows: 

SSTACI< 

~~!I~B, R21B!I~, 1~~!I~: If you want to use the CHANGE, DSTRING, or 
LOCATE subcommands in an EXEC, you must take into account that when yo. 
stack any of these subcommands using the SSTACK control statement, all 
of the character strings on the line are truncated or- padded to • 
characters. Also, if you want to use a variatle value for a character 
string, you are limited to 8 characters, all uppercase. 

For example, if a 
delete the line on 
variable symbol: 

&STACK LOCATE /&1 
SSTACI< DEL 

macro is used to locate a character string and 
which it appears, the LOCATE subcommand has a 

!1~!2B, 1!1I2B1, ~!llj1A!: The TABSET and OVERLAY subcommands allow you ta 
set .argins and column stops for records in a file and to overlay 
character strings in particular positions. For example, the follQvinq 
macro places a vertical bar in columns 1, 15, 40, and 60 for all recoras 
im the file from the current line to the end of the file: 

&BEGSTACK 
PRESERVE 
IMAGE ON 
TAB SET 1 15 40 60 
REPEAT * 
a 1->1->1->1 
RESTORE 
SEND 

In the 
(:r' 05' ) • 

above example, the "->" symbol represents a tab charact.r 
To create this EXEC, you can either issue the EDIT subcomaani 

image off 

alld use the Tab key (or equivalent) on your terminal when you enter the 
line, or you can enter some other character and use the ALTER subeo •• aD4 
to alter that character to a X'05'. 

If you want to overlay only one character string in a particular 
position in a file, you can use the TABSET subcommand to set that column 
position as the left margin, and then use the OVERLAY command, as 
follows: 

SCONTROL OFF 
&BEGSTACK 
PRESERVE 
VERIFY OFF 
TRUNC * 
TABS 72 
SEND 
&STACK REPEAT &1 
&BEGSTACK 
OVERLAY C 
RESTORE 
&END 

302 IBM VM/370: eMS User's Guide 



If you name this file $CONT EXEC, and if you invoke it with the line: 

$cont 3 

then the OVERLAY subcommand is executed on three successive lines, to 
place the continuation character "C" in column 72. 

THE STACK SUBCOMMAND 

The STACK subcommand allows you to stack up to 25 lines from a file in 
the console stack. The lines are not deleted from the file, but the line 
pointer is moved to point to the last line stacked. 

You can also use the STACK subcommand to stack EDIT subcommands. You 
might do this if there were subcommands that you wanted to place in the 
stack to execute after all the subcommands stacked by the EXEC had 
executed. 

These techniques are used in the two edit macros that are distributed 
with the VM/370 system:, $MOV! and $DUP. If you want to examine these 
files for examples of how to use the STACK subcommand, you can display 
the files by entering, from the CMS environment: 

type $move exec * 

type $dup exec * 
An additional use of the STACK subcommand is shown in "An Annotated 

Edit Macro." 

section 17. Writing Edit Macros 303 



Alt1 Annotated Edit Macro 

The edit macro shown below, $DOUBLE, can be used to double space a CMS 
file. Regardless of where the current line pointer is, a blank line is 
inserted in the file following every existing line. The statements in 
the edit macro are separated into groups; the number to the left of a 
statement or group of statements indicates an explanatory note. The 
numbers are not part of the EXEC file. 

• &CONTROL OFF 

a &IF &INDEX = 1 &IF &1 = 1 &GOTO -TELL 

• &IF &INDEX = 1 &IF &1 = TWO &GOTO -LOOP 

• &IF &INDEX NE o &GOTO -TELL 

• &IF &READFLAG EO STACK &REAt VARS &GARB 

0 &STACK 
&STACK PRESERVE 
&STACK VERIFY OFF 

• &STACK BOTTOM 
&STACK I XXXXXXXX 
&STACK TOP 

Nettes: 

•
.... -·--The &CONTROL statement suppresses the display of CMS commands, in 

. this case, the DESBUF command. a. The first &IF statement checks whether SDOUBLE has been invoked 
with a question mark (1), in which case control is passed to the 
statement at the label -TELL. &TYPE control state.ents at -TELL 

• 
• 
• o 

• 

explains what the macro does. 
The second &IF statement checks whether SDOUBLE has been invoked 
with the argument TWO, which indicates that the macro has executed 
itself, so the subcommands that initialize the file are stacked 
only once. 
There are three ways to properly invoke this edit .acro: with a 1, 
with the argument TWO, or with no arguments. The third &IF 
statement checks for the (no arguments) condition; if the macro is 
invoked any other way, control is passed to the label -TELL, which 
explains the macro usage. 
The &READFLAG special variable is checked. If $DOUBLE is executed 
at the top or at the end of the file, the token TOF or EOF is in 
the stack, and should be read out. 
A null line is placed in the console stack for loop control (see 
Bote 9.) The PRESERVE and VERIFY subcommands are stacked so that 
the editor does not display each line in the file as it executes 
the stacked subcommands. 
The BOTTOM, INPUT, and 
placing a marker at the 
the current line pointer 

TOP subcommands initialize the file by 
bottom of the file, and then positioning 
at the top of the file. 

304 IBM V"1370: C"S User's Guide 



• 

-LOOP 
&BEGSTACK 
NEXT 
STACK 1 
INPUT 
&END 

&READ ARGS 
&IP .&1 = . &SKIP 
&IF &1 EO XXXXXXXX &SKIP 2 

-ENDLOOP &STACK $DOUBLE TWO 

&EXIT 

DESBUF 
&BEGSTACK 
UP 2 
DEL 3 
TYPE 
RESTORE 
&END 

&EXIT 

-TELL 
&IP &READFLAG EQ STACK &RE,AD VARS 
&BEGTYPE 
CORRECT FORM IS: $DOUBLE 

THIS EXEC DOUBLE SPACES A FILE BY INSERTING 
A BLANK LINE FOLLOWING EVERY LINE IN THE FILE 
EXCEPT THE LAST. 
&END 

--------------• 
• 

The NEXT, STACK, and INPUT subcommands are going to be repeated for 
each line in the file. The INPUT subcommand with no data line 
stacks a null line. Note that in order for $DOUBLE to execute this 
subcommand properly, $DOUBLE EXEC must have fixed-length records. 
Each line is stacked, with the STACK subcommand; this stacked line 
is checked in the read loop (Note 9). When the stacked line is 
equal to the marker, XXXXXXXX, it indicates that the end of the 
file has been reached • 
These lines check for an end of file, which occurs when the line 
containing the marker is read. The first time this loop is 
executed, the stack contains the null line (statement 6), so the 
check for the marker is skipped. 
The last subcommand stacked is $DOUBLE TWO, which re-invokes 
$DOUBLE, but causes it to skip the first sequence of subcommands. 
The &EXIT statement causes an exit from $DOUBLE, so that all the 
EDIT subcommand stacked thus far are executed. 
When the marker is read in, the EXEC clears the stack, moves the 
current line pointer to pcint to the null line added above the 
marker, and deletes that line, the marker, and the null line that 
was inserted following the marker. The RESTORE subcommand restores' 
editor settings. 
This edit macro is self-documenting. If $DOUBLE is invoked with a 
question mark, or invoked with an argument, information regarding 
its proper use is displayed. 

Section 17. Writing Edit Macros 305 



U:ser-Written Edit Macros 

You can create the edit macros shown below, for your own use in CMS. 
You may want to refer to them as examples when you are learning to write 
your own macros. The macros have not been formally tested by IBM; they 
are presented for your convenience only. 

$UACROS 

The $MACROS edit macro verifies the existence of and describes the usage 
of edit macros. If you enter 

$macros 

it lists the filenames of all the edit macros on your accessed disks. 
If you enter 

$macros namel name2 

it displays, for each valid macro name entered, the macro format and 
usage. (This macro assumes that all macros have been designed to 
respond to a ? request.) The format of the $MACROS edit macro is: 

r------------- ------------------- -----, 
I $MACROS I [filename1 [filename2 [filenamenJ]] I L _________________ , ________________________ _ _ __ .I 

filename is the filename(s) of macro files whose usage is to 
displayed. If filename is omitted, the filenames of 
available macro files are listed. 

To create $MACROS, enter: 

edit $macros exec 

and in input mode, enter the following: 

306 IBM VM/370: CMS User's Guide 

be 
all 



$MARK 

&CONTROL OFF 
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL 
&IF &INDEX GT 0 &GOTO -PARTIC 

* & BEGTYP E ALL 
EXEC FILES STARTING WITH A DOLLAR-SIGN ARE AS FOLLOWS. 
FOR INFORMATION ON ONE OR MORE OF THEM, TYPE: 
$MACROS FILENAMEl <PILENAME2) 
&END 
LISTF $* EXEC * (NOHEADER FNAME) 
&EXIT 

* -PARTIC &TRIP = 0 
&INDEX 1 = 0 

* &LOOP -ENDLOOP &INDEX 
&INDEXl = &INDEXl + 1 
&SUB = &SUBSTR &&INDEXl 1 1 
&IF &SUB EQ $ &GOTO -STATIT 

&TYPE &&INDEXl IS INVALID 
&TRIP = 1 
&GOTO -ENDLOOP 
-STAT IT STATE &&INDEXl EXEC * 
&IF &RETCODE EQ 0 &GOTO -CALLIT 
&TYPE &&INDEXl NOT FOUND 
&TRIP = 1 
&GOTO -ENDLOOP 
-CALLIT EXEC &&INDEXl ? 
-ENDLOOP 
* 
&EXIT &TRIP 

* -TELL &BEGTYPE 
'$MACROS' HANDLES THE '$MACROS' REQUEST. 
TYPE '$MACROS' ALONE FOR MORE INFORMATION. 
&END 
&EXIT 

The $MARK edit macro inserts from 1 to 6 characters, starting with the 
current line and in the column specified, for a specified number of 
records. If you enter 

$mark 

the macro places an asterisk (*) in column 72 of the current line. If 
you enter 

$mark 10 30 abc 

the macro places the string ABC beginning in column 30 in each of ten 
records, beginning with the current record. The format of the $MARK 
edit macro is: 

..-
I r r r , .... , 
I $MARK I n I col I char III 
I I ! I 1~ I * III -
I L .J L .J.J.J 

L-

Section 17. Writing Edit Macros 307 



n indicates the number of consecutive lines, starting with the 
record currently being pointed to, that will be marked. If n is 
not specified, 1 is assumed, and the other default values are 
also assumed. 

col indicates the starting column in each record where the character 
string is to be inserted. The default is column 72. 

char indicates from 1 to 6 characters to be inserted in each record. 
The default is an asterisk (*). 

To create $MARK, enter: 

edit $mark exec 

and in input mode, enter the following: 

SCONTROL OFF 
SIF SINDEX EO 1 SIF Sl EO 1 SGOTO -TELL 
SIP SINDEX GT 3 SGOTO -EADPARM 
SINDEXl = 1 
SIP SINDEX GT 0 SINDEXl = S1 
SIP SINDEXl LT 0 SGOTO -EADPARM 
SINDEX2 = 72 
SIP SINDEX GT 1 SINDEX2 = S2 
SIP SINDEX2 LT 0 SGCTO -EADPARM 
SIP SINDEX2 GT 133 SGOTO -BADPARM 
SCHAR = * 
SIP SINDEX EO 3 SCHAR = S3 
SLEN3 = 8LENGTH SCHAR 
SIP SLEN3 GT 6 SGOTO -BADPARM 
SSTACK LIPO RESTORE 
SSTACK LIPO OVERLAY (TAB) 1 SCHAR 
SSTACK LIFO REPEAT SINDEXl 
SSTACK LIFO TABS SINDEX2 
SBEGSTACK LIPO 
IMAGE ON 
TRUNC * 
VERIFY OFF 
LONG 
PRESERVE 
SEND 
SEXIT 

* -BADPARM SBEGTYPE 
INVALID $MARK OPERANDS 
SEND 
SEXIT 1 

* -TELL 8EEGTYPE 
CORRECT FORM IS: $MARK <N <COL <CHAR»> 
PUTS A 1-6 CHARACTER STRING IN COLUMN 'COL' OP 'N' LINES, STARTING 
WITH THE CURRENT LINE. THE NEW CURRENT LINE IS THE LAST LINE 
MARKED. DEPAULTS ARE: N=1; COL=72; CHAR=*. 
SEND 
SRXIT 

lThe word (TAB) represents pressing the Tab key (or equivalent logical 
tab) and should not be included in the data line. Instead, enter the 
appropriate tab character. 

308 IBM VM/370: CMS User's Guide 



SPOINT 

The SPOINT edit macro positions the current line pointer at the 
specified line number. The line numbers must be in columns 73 through 80 
and padded with zeros. Por example, if you enter 

Spoint 800 

the current line pointer is positioned at the line that has the serial 
number 00000800 in columns 73 through 80. The format of the SPOINT 
macro is: 

r-
I $POINT 
'-

--------------------------
key 

key is a 1- to 8-character line number. If the specified key is less 
than 8 characters long, it is padded with leading zeros. 

To create SPOIlT, enter: 

edit Spoint exec 

and in input mode, enter the following: 

&CONTROL OFF 
&IF SINDEX EQ 0 &GOTO -TELL 
&IF &INDEX EO 1 &IF &1 EQ ? &GOTO -TELL 
&IF SINDEX GT 1 &GOTO -BADPARM 
&KEYL = &LENGTH & 1 . 
&INDEXl = 8 - &KEYL 
&Z = &SUBSTR 00000000 1 &llDEXl 
&1 = SCONCAT &Z &1 
&STACK LIFO RESTORE 
&STACK LIFO Flit (TAB)l &1 
&BEGSTACK LIFO 
TOP 
TABS 1 72 
IMAGE ON 
LONG 
PRESERVE 
&EID 
&EXIT 

* -BADPARM &BEGTYPE ALL 
INVALID SPOINT OPERANDS 
&END 
&EXIT 1 

* -TELL &BEGTYPE ALL 
CORRECT FORM IS: $FOINT KEY 
IF 'KEY' CONTAINS LESS THAN 8 CHARACTERS, IT IS PADDED WITH LEADING 
ZEROS. THE FILE IS THEN SBARCHED PROM THE TOP POR 'KEY' IN COLUMNS 
73-80. 
&END 
&EXIT 

lThe word (TAB) represents pressing the Tab key (or equivalent logical tab) 
and should not be included in the data line. Instead, enter the appropriate 
tab character. 

section 17. Writing Edit Macros 309 



$COL 

The $COL edit macro inserts, after the current record in the file, a 
line containing column numbers (that is, 1, 6, 11, ••• , 76). The format 
of the $COL macro is: 

,.-------- ---------, 
I $COL I I L-__ _ _ ____________________________________ J 

No operands are used with $COL. 
If any arguments are entered, the macro usage is explained. 

To create $COL, enter: 

edit $col exec 

and in input mode, enter the following: 

&CONTROL OFF 
&IF &INDEX NE 0 &GOTO -TELL 
&STACK LIFO RESTORE 
&STACK LIFO 
&BEGSTACK LIFO ALL 
1 6 11 16 21 26 31 
&END 
&STACK LIFO INPUT 
&BEGSTACK LIFO 
TRUNC * 
VERIFY OFF 
LONG 
PRESERVE 
&END 
&EXIT 

* -TELL &BEGTYPE 
CORRECT FORM IS: $COL 

36 41 46 51 

INSERTS A LINE INTO THE FILE SHOWING COLUMN NUMBERS. 
&END 
&EXIT 

310 IBft Vft/370: CftS User's Guide 

56 61 66 71 76 



Appendixes 

This publication contains the following appendixes: 

A. Summary of CMS Commands 

B. summary of CP Co •• ands 

C. Considerations for 3270 tisplay Terminal Users 

D. sample Terminal Sessions 

Appendixes 311 





Appendix A: Summary of CMS Commands 

Figure 22 contains an alphabetical list of the CMS commands and the 
functions performed by each. Unless otherwise noted, CMS commands are 
described in !~LJ1~: £~~ £g!!2~g ~~g ~~£~Q ~~f~I~n£~. 

£gg~ 
DOS PP 

EREP 

IPCS 

Op Gd 

as PP 

SCRIPT 

JJ~~n!ng 
indicates that this command invokes a DOS Program product, 
available from IBM for a license fee. 

indicates that 
In!i!:Qn!~n~!!! 
.f~2g!:!!!· 

this command is 
!~£Q!:ging, ~g!1iBg, 

described in 
!!~.9 f!:i.!!!i.!!g 

indicates that this command is a part of the Interactive 
Problem Control System (IPCS) and is described in VMLJ1Q: 19~~ 

.Y§~~~§ ~!!!.Q~. 

indicates that this command is described in the !~LllQ: 

~E~!:!!!2£~2 ~y!g~. 

indicates that this command invokes an OS Program Product, 
available from IBM for a license fee. 

indicates that this command invokes a text 
an IBM Installed User Program, available 
license fee. 

processor that is 
from IBM for a 

SPG indicates that this command is descrited in the !~Ll1~: ~I21~! 
g~g~!:!!!!~£~§ ~Yi£~· 

SYSGEN indicates that this command is described in the !~Ll1Q: 

gl~~.!!i~g !!.!!£ ~I§!~! 2~.!!~!:e!i~n 2uig~. 

In addition to the commands listed in Figure 22, there are seven 
coamands called Immediate commands which are handled in a different 
manner from the others. They may be entered while another command is 
executing by pressing the Attention key (or its equivalent) and are 
executed immediately. The Immediate commands are: 

• HB - Halt batch execution 
• HO - Halt tracing 
• HT - Halt typing 
• HX - Hal t execution 
• RO - Resume tracing 
• RT - Resume typing 
• SO - Suspend tracing 

Appendix A: Summary of CMS Commands 313 



r 
ICommand 
I 
IACCESS 
I 
I 
I 
I AMSERV 
I 
I 
! 
. ASM3705 

ASSEMBL E 

ASSGN 

CMSBATCH 

COBeL 

COMPARE 

CONVERT 

COPYFILE 

CP 

CPEREP 

DDR 

DEBUG 

DIRECT 

DISK 

DLBL 

DOSGEN 

DOSLIB 

DOSLKED 

DOSPLI 

DSERV 

-------------------------------, 
I Code Usage I 

IIdentify direct access space to a CMS virtual 
machine, create extensions and relate the disk 
space to a logical directory. 

Invoke Access Method Services utility functions to 
create, alter, list, copy, delete, import, or 
export VSAM catalogs and data sets. 

SYSGEN Assemble 3704/3705 source code. 

OS PP 

os PP 

Assemble Assembler Language source code. 

Assign or unassign a CMS/DOS system or programmer 
logical unit for a virtual I/O device. 

Invoke the CMS Batch Facility. 

Compile OS INS Version 4 or OS/VS COBOL source 
code. 

Compare records in CMS disk files. 

Convert free form FORTRAN statements to fixed form. 

Copy CMS disk files according to specifications. 

Enter CP commands from the CMS environment. 

EREP Edit and print error information which was recorded 
by VM/370 error recording routines. 

Op Gd, Perform backup, restore, and copy operations for 
SYSGEN disks. 

Enter DEBUG subcommand environment, debug mode. 

Op Gd, Set up VM/370 directory entries. 
SYSGEN 

Perform disk·-to-card and card-to-disk operations 
for CMS files. 

Define a DOS filename or VSAM ddname and relate 
that name to a disk file. 

SYSGEN Load and save the CMSDOS shared segment. 

Delete, compact, or list information about the 
phases of a CMS/DOS phase library. 

Link-edit CMS text decks or object modules from a 
DOS/VS relocatable library and place them in 
executable form in a CMS/DOS phase library. 

DOS PP Compile DOS PL/I source code under CMS/DOS. 

Display information contained in the DOS/VS core 
image, relocatable, source, procedure, and 
transient directories. L ______________ . ______ _ 

Pigure 22. CMS Command Summary (Part 1 of 4) 

314 IBM VM/370: CMS User's Guide 



r-
I Command 

DUMPSCAN 

EDIT 

ERASE 

ESERV 

EXEC 

FCOBOL 

FETCH 

FIL EDEF 

FORMAT 

FORTGI 

FORTHX 

GEN3705 

GENDIRT 

GENMOD 

GLOBAL 

GOFORT 

INCL UDE 

LISTDS 

LISTFILE 

LISTIO 

LKED 

LOAD 

LOADMOD 

IMACLIB 
L 

Figure 22. 

ICode 

IPCS 

---------.... -------------------
Usage 

Provide inteIactive analysis of CP abend dumps. 

Invoke the C~S Editor to create or modify a disk 
file. 

Delete CMS disk files. 

Display, punch or print an edited (compressed) 
macro from a DOS/VS source statement library 
(E sublibrary). 

Execute special procedures made uF of frequently 
used sequences of commands. 

DOS PP Compile DOS/VS COBOL source code under eMS/DOS. 

OS PP 

OS PP 

Fetch a CMS/DOS or DOS/VS executable phase. 

Define an OS ddname and relate that ddname to any 
device supported by CMS. 

Prepare disks in CMS 800-byte block format. 

Compile FORTRAN source code using the G1 compiler. 

Compile FORTRAN source code using the H-extended 
com Filer. 

SYSGEN Generate an EXEC file that assembles and link-edits 
the 3704/3705 control program. 

OS PP 

Fill in auxiliary module directories. 

Generate non-relocatable CMS files (MODULE files). 

Identify specific eMS litraries to be searched for 
macros, copy files, missing subroutines, or DOS 
executable phases • 

Compile FORTRAN source code and execute the program 
using the FORTRAN Code and Go compiler. 

Bring additional TEXT files into storage and 
establish linkages. 

List information about data sets and space 
allocation on OS, DOS, and VSAM disks. 

List information about CMS disk files. 

Display information concerning eMS/DOS system and 
program,merlogical units. 

SYSGEN Link-edit the 3704/3705 control program. 

Bring TEXT files into storage for execution. 

Bring a single MODULE file into storage. 

Create or modify eMS macro libraries. 

CMS Command Summary (Part 2 of 4) 

, 

Appendix A: Summary of eMS Commands 315 



Command 

MODMAP 

MOVEFILE 

NCPDUMP 
f 

OPTION 

PLIC 

PLICR 

PLIOPT 

PRB 

PRINT 

PROB 

PSERV 

PUNCH 

QUERY 

READCARD 

RELEASE 

RENAME 

RSERV 

RUN 

SAVENCP 

SCRIPT 

ICode 

Op Gd, 
SYSGEN, 

SPG 

OS PP 

OS PP 

OS PP 

IPCS 

IPCS 

'----, 
Usage 1 

'---I 
Display the load map of a MODULE file. 1 

I 
Move data from one device to another device of the 1 

same or a different type. I 
1 

Process CP spool reader files created by 3704/3705 I 
dumping operations. 1 

I 
1 

Change the DOS COBOL compiler (FCOBOL) options that 
are in effect for the current terminal session. 

Compile and execute PL/I source code using the 
PL/I Checkout Compiler. 

Execute the PL/I object code generated by the OS 
PL/I Checkout Compiler. 

Compile PL/I source code using the OS PL/I 
Optimizing Compiler. 

Update IPCS problem status. 

Spool a specified CMS file to the virtual printer. 

Enter a problem report in IPCS. 

Copy a procedure from the DOS/VS procedure library 
onto a CMS disk, display the procedure at the 
terminal, or spool the procedure to the virtual 
punch or printer. 

Spool a copy of a CMS file to the virtual punch. 

Request information about a CMS virtual machine. 

Read data from spooled card input device. 

Make a disk and its directory inaccessible to a CMSI 
virtual machine. 

Change the name of a CMS file or files. 

Copy a DOS/VS relocatable module onto a eMS disk, 
display it at the terminal, or spool a copy to 
the virtual punch or printer. 

Initiate series of functions to be performed on a 
source, MODULE, TEXT, or EXEC file. 

SYSGEN, Read 3704/3705 control program load into virtual 
SPG storage and save an image on a CP-owned disk. 

SCRIPT Format and print documents according to embedded 
SCRIPT control words in the document file. 

SET Establish, set, or reset CMS virtual machine 
c ha racteris tics. 

l. __ _ 

Figure 22. CMS Command Summary (Part 3 of 4) 

316 IBM VM/370: CMS User's Guide 



r 
Command 

SETKEY 

SORT 

SSERV 

START 

STAT 

STATE 

STATEW 

SVCTRACE 

SYNONYM 

TAPE 

TAPEMAC 

TAPPDS 

TESTCOB 

TESTFORT 

TITLIB 

TYPE 

UPDATE 

VMPDUMP 

VMPLOAD 

VSAMGEN 

VSAPL 

VSBASIC 

VSBUTIL 

ZAP 

ICode 

SPG 

IPCS 

OS PP 

OS PP 

Usage 

Assign storage protect keys to storage assigned to 
named systems. 

Arrange a specified file in ascending order 
according to sort fields in the data records. 

Copy a DOS/VS source statement book onto a CMS 
disk, display it at the terminal, or spool a copy 
to the virtual punch or printer. 

Begin execution of programs previously loaded (OS 
and CMS) or fetched (CMS/DOS). 

Display the status of reported system problems. 

Verify the existence of a CMS disk file. 

Verify a file on a read/write CMS disk. 

Record information about supervisor calls. 

Invoke a table containing synonyms you have created 
for CMS and user-written commands. 

Perform tape-to-disk and disk-to-tape operations 
for CMS files, and position tapes. 

Create eMS MACLIB libraries directly from an 
IEHMOVE-created partitioned data set on tape. 

Load OS partitioned data set (PDS) files or card 
image files from tape to disk. 

Invoke the OS COBOL Interactive Debug Program. 

Invoke the FORTRAN Interactive Debug Program. 

Generate and modify text libraries. 

Display all or part of a CMS file at the terminal. 

Make changes in a program source file as defined 
by control cards in a control file. 

Op Gd Format and print system abend dumps; under IPCS, 
IPCS create a problem report. 

SYSGEN Generate a new CP, CMS or RSCS module. 

SYSGEN Load and save the VSAM shared segment. 

OS PP Invoke the VS APL interface. 

OS PP Compile and execute VS BASIC programs under CMS. 

OS PP Convert BASIC 1.2 data files to VS BASIC format. 

Op Gd, Modify or dump LOADLIB, TITLIB, or MODULE files. 
SYSGEN, 
SPG 

, 
I 

Figure 22. CMS Command Summary (Part 4 of 4) 

Appendix A: Summary of CMS Commands 317 





Appe:ndix B: Summary of CP Commands 

Figure 23 describes the CP command privilege classes. 

r , 

1 

Class User and Function I 
----- ------------1 

Al ~~i~g~l ~12ig! Q£~~~iQE: The class A user controls the 1 
VM/370 system. Class A is assigned to the user at the VM/370 1 
system console during IPL. The primary system operator is I 
responsible for the availability of the VM/370 system and its 
communication lines and resources. In addition, the class A 
user controls system accounting, broadcast messages, virtual 
machine performance options and other command operands that 
affect the overall performance of VM/370. 

!~!~: The class A system operator who is automatically legged 
on during CP initialization is designated as the primary 
system operator. 

Bl ~1§!~! ~~§QY~£~ Q£~~~~~£: The class B user controls all the 
real resources of the VM/370 system, except those controlled 
by the primary system operator and spooling operator. 

Cl,2 ~y~!~~ ~~~~~g~~~~: The class C user updates certain 
functions of the VM/370 system. 

Dl ~~QQli~~ QE~~g!Q~: The class D user controls spool data 
files and specific functions of the system's unit record 
equipment. 

El,2 ~1§!~! !~~!Y§i: The class E user examines and saves certain 
data in the VM/370 storage area. 

Fl,3 ~~~!~£~ ~~E~~2~~i~i!!~: The class F user obtains, and 
examines, in detail, certain data about input and output 
devices connected to the VM/370 system. 

G4 General User: The class G user controls functions associated 
wIth-the-execution of his virtual machine. 

Anyl,4 The Any classification is given to certain CP commands that 
are available to any user. These are primarily for the 
purpose of gaining and relinquishing access to the VM/370 
system. 

H Reserved for IBM use. 

11 Described in the !~Lll~: 
12Described in the !ALll~: 
1 !~LllQ: ~1§!~~ ~Q~i£ ~~g 
13Described in the !ALll~: 
14Described in the !ALll~: 1-. _____ _ 

Figure 23. CP Privilege Class Descriptions 

Appendix B: Summary of CP Commands 319 



Pigure 24 contains an alphabetical list of the CP commands, the 
privilege classes which may execute the command, and a brief statement 
about the use of each command. 

r-------------------------------------
I IPrivilegel 
I Command I Class I Usage 
------- I 
* any Annotate the console sheet. 

ICP 

lCIT 

ADSTOP 

ATTACH 

ATTN 

AOTOLOG 

BICKSPAC 

BEGIN 

CHIRGE 

CLOSE 

CP 

DCP 

DEFINE 

any 

A 

G 

B 
B 
B 

G 

A,B 

D 

G 

D,G 

G 

G 

any 

C,E 

G 

Execute a CP command while remaining in the 
virtual machine environment. 

Create accounting records for logged on users 
and reset accounting data. 

Halt execution at a specific virtual machine 
instruction address. 

Attach a real device to a virtual machine. 
Attach a tA&D device for CP control. 
Dedicate all devices on a particular channel 

to a virtual machine. 

Make an attention interruption pending for the 
virtual machine console. 

Automatically log on a virtual machine and 
have it operate in disconnect mode. 

Restart or reposition the output of a unit 
record spooling device. 

continue or resume execution of the virtual 
machine at either a specific storage location 
or at the address in the current PSi. 

Alter one or more attributes of a closed spool 
file. 

Terminate spooling operations on a virtual card 
reader, punch, printer, or console. 

Connect channel-to-channel adapters. 

IExecute a CP command while remaining in the CMS 
I virtual machine environment. 
I 
[Display real storage at terminal. 
I 
rReconfigure your virtual machine. 

Figure 24. CP Command Summary (Part 1 of 4) 

320 IBM VM/370: CMS User's Guide 



r-------
I 
I Command 

DETACH 

DIAL 

DISABLE 

DISCONN 

DISPLAY 

DMCP 

DRAIN 

DUMP 

ECHO 

EXTERNAL 

PLUSH 

PORCE 

PREE 

HALT 

HOLD 

IBDICAT! 

IPL 

LINK 

LOADBUP 

------------------------------------
I Privilege I 
I Class I Usage 

--------1---------------------
'B IDisconnect a real device from a virtual machine. 
B IDetach a DASD device from CP. 
B IDetach a channel from a specific user. 
G IDetach a virtual device from a virtual machine. 
G IDetach a channel from your virtual machine. 

I 
any Connect a terminal or display device to the 

A,E 

any 

G 

C,E 

D 

G 

G 

A,B 

G 

D 

A 

D 

A 

D 

E,G 

G 

G 

D 

virtual machine's virtual communication line. 

Disable 2701/2702/2703, 3704/3705 in EP mode, 
and 3210 local communicati6n lines. 

Disconnect your terminal from your virtual 
machine. 

Display virtual storage on your terminal. 

Dump the specified real storage location on your 
virtual printer. 

Halt operations of specified spool devices upon 
completion of current operation. 

Print the following on the virtual printer: 
virtual PSi, general registers, floating-point 
registers, storage keys, and contents of 
specified virtual storage locations. 

Test terminal hardware ty redisplaying data 
entered at the terminal. 

Enable communication lines. 

Simulate an external interruption for a virtual 
I machine and return control to that machine. 
I 
ICancel the current file teing printed or punched 
I on a specific real unit record device. 
I 
Cause logoff of a specific user. 

Remove spool HOLD status. 

Terminate the active channel program on 
specified real device. 

Defer real spooled output of a particular user. 

Indicate resource utilization and contention. 

Simulate IPL for a virtual machine. 

Provide access to a specific DASD device by a 
virtual machine. 

Load real UCS/UCSB or PCB printer buffers. 

Pigure 24. CP Co.mand Summ.ry (Part 2 of ~ 

Appendix B: Summary of CP Commands 321 



r----------------------------------------------------------- , 
J IPrivilegel I 
I Command I Class I Usage I 
1------ ------ -------------------------------------
I LOADVFCB G Load virtual forms control buffer for a virtual 
~ 3211 printer. 
I 
~ LOCATE C,E Find CP centrol blocks. 
I 
~ LOCK A Bring virtual pages into real storage and lock 
I them; thus excluding them from future paging. 
I 
1 LOGOFF any Disable access to CP. 
~ 
1 LOGON any Provide access to CP. 
I: 
~ MESSAGE A,B,any Transmit messages to other users. 

MONITOR 

NETWORK 

NOTREADY 

ORDER 

PURGE 

QUERY 

READY 

REPEAT 

REQUEST 

RESET 

REWIND 

SAVESYS 

SET 

A,E 

A,B,F 

G 

D,G 

D,G 

A,B,C,D, 
E,F,G 

G 

D 

G 

G 

Trace events of the real machine and record 
system performance data. 

Load, dump, trace and control the operation of 
the 3704/3705 control program. Control the 
operation of 3270 remote devices. 

Simulate "not ready" for a device to a virtual 
machine. 

Rearrange closed spool files in a specific 
order. 

Remove closed spool file from system. 

Request information about machine configuration 
and system status. 

Simulate device end interruption for a virtual 
device. 

Repeat (a specified number of times) printing or 
punching of a specific real spool output file. 

Make an attention interruption pending for the 
virtual machine console. 

Clear and reset all pending interruptions for a 
specified virtual device and reset all error 
conditions. 

G Rewind (to load point) a tape and ready a tape 
unit. 

E Save virtual machine storage contents, 
registers, and PSW. 

A,B,F,G Operator--establish system parameters. 
User-control various functions within the 

virtual machine. 

l~igure 24. CP Command Summary (Part 3 of 4) 

322 IBM VM/370: CMS User's Guide 



r-
I I Privilege I 
I Command I Class I 

SHUTDOWN A 

SLEIP any 

SPICI D 

SPOOL G 

START D 

STCP C 

STORE G 

SYSTEM G 

TAG G 

TERMINAL G 

TilCE G 

TIA.SPIR D,G 

UlLOCK A 

fARY B 

WIRNING A,B 

Usage 

Terminate all VM/370 functions and checkpoint cp 
system for warm start. 

Place virtual machine in dormant state. 

Force single spacing on printer. 

Alter spooling control options; direct a file to 
another virtual machine or to a remote 
location via the RSCS virtual machine. 

start spooling device after draining or changing 
output classes. 

Change the contents of real storage. 

Alter specified virtual storage locations and 
registers. 

Simulate RESET, CLEAR STORAGE and RESTART 
buttons on a real system console. 

Specify variable information to be associated 
with a spool file or output unit record 
device. 

Interrogate the current TAG text setting of a 
given spool file or output unit record device. 

Define or redefine the input and attention 
handling characteristics of your virtual 
console. 

Trace specified virtual machine acti vity at your 
terminal, spooled printer, or both. 

Transfer input files to or reclaim input files 
from a specified user's virtual card reader. 

Unlock previously locked page frames. 

Mark a device unavailable or available. 

Transmit a high priority message to a specified 
user or to all users. 

-----------fi,ure 24. CP Command Summary (Part 4 of 4) 

Appendix B: Summary of CP Commands 323 





Appendix C: Considerations for 3270 Display Terminal Users 

The tBM 3270 Display terminal, commonly referred to as a 3270, functions 
somewhat differently from a typewriter-style terminal when you use it as 
~ virtual machine console under VM/370. Apart from the obvious 
difference in the way output is displayed, there are special techniques 
you can use with a 3210 that you cannot use on a 2741 or other 
typewriter terminal. This appendix describes how to use a 3270, and 
provides additional notes to supplement discussions in the first part of 
this publication. 

Entering Commands 

since the keyboard on a 3270 is never locked during the execution of a 
command or program, you can enter successive command lines without 
waiting for the completion of the previous command. This stacking 
function can be combined with the other methods of stacking lines, such 
as using the logical line end symbol (I) to stack several command 
lines. If you try to enter more lines than the terminal buffer can 
accommodate, however, you receive the status message NOT ACCEPTED and 
you must wait until the buffer is cleared before you can enter the 
line. 

You will find, as you become accustomed to using a 3270, that the ICP 
function is very useful. The tcp function, remember, is a function that 
allows you to pass a command line to the control program immediately, 
bypassing any processing by the virtual machine (CMS). The ICP function 
can be used in any VM/370 environment, and you can enter it even when a 
program is executing. You do not have to interrupt a program's execution 
to enter a command line such as 

Icp display psw 

to display the current PSi, or 

Icp spool printer class s 

to spool your virtual printer. 

Setting Program FUnction Keys 

If there are CP and CMS commands that you tise frequently, you can set 
the progra~ function (PF) keys on your terminal to execute them. Some 
examples of commands you might wish to catalog on PF keys are 

ICP DISPLAY PSi 
ICP QUERY PRINTER ALL 
QUERY SEARCH 

To set functions keys 1, 2, and 3 to perform these command functions, 
enter: 

cp set pfi iamed "Icp di$play psw 
cp set pf2 immed "tcp query printer all 
cp set pf3 immed query search 

Appendix C: Considerations for 3270 Display Terminal Users 325 



When you want to execute a .CP function with a PP key, or you want a 'P 
key to execute a series of commands, you must use the logical escape 
symbol (") when you enter the SET command. 

cp set pf5 immed edit test file".bo".input line"tfile 

sets the PF5 key as 

EDIT TEST FILE'BO.INPUT LINE.FILE 

You cannot set lowercase characters in a PF key. 

The above examples use the IMKED operand of the SET command, which 
specifies that the function is performed as soon as you press the PP 
key. You can also set a key so that it is delayed, that is, that the 
command or data line is placed in the user input area. Then, you .sst 
press the Enter key to execute the command; you may modify tke lime 
before you enter it. This is the default setting (DELAY) for program 
function keys. For example, you might set a key as 

QUERY DISK X~ 

When you press this PF key, the command line is placed in the user input 
area, with the cursor positioned following the "a" logical character 
delete symbol; you can enter the mode letter of the disk you are 
querying before you press the Enter key to execute the command. 

You can set all of your program function keys in your PROFILE EXEC, 
so they are set each time you load CMS. You can change a PF key setting 
any time during a terminal session, according to your needs. If, for 
example, you discover that you are repeating several procedures a number 
of times, and the procedure does not lend itself to being written into 
an EXEC, you could use your program function keys. 

All the lines in an EXEC procedure are scanned, and 
strings are truncated to 8 characters, so if you enter a 
line, insert spaces where possible: 

CP SET PF5 IKMED EDIT TEST FILE 'BO' INPUT 

all character 
long command 

To change PF settings within the edit 
filename that begins with a dollar sign 
Dlacro. 

environment, give the EXEC a 
($), so it functions as an edit 

Controlling the Display Screen 

A major feature of a 3270 display screen is the screen status area, 
which indicates, at all times that you are logged on, the current 
operating condition your virtual machine is 1n. Understanding the 
status conditions can help you use CMS on a 3270 more effectively. The 
screen status area indicates one of six conditions: 

f~g !U;!!!: After you leg on, this is the first status message you see; it 
indicates that the terminal is waiting for a line to be read by the 
control program. You can enter only CP commands when the screen status 
area indicates a CP READ. 

!~ READ: This status indicates that your terminal is waiting for a line 
to ~;-Issued to your virtual machine; you may be in the CftS environment, 
in the edit or debug environments, or you may be executing a program or 
an EXEC that has issued a read to the console. 

326 IBM VM/370: CMS User's Guide 



RYBBIB§: This status means that your virtual machine is operating. Once 
you have loaded CMS and are using the CMS environment, this status is 
almost continually in effect, even when you are not currently executing 
a command or program. 

You can alter the way this works by using the AUTOREAD function of 
the SET command. When the AUTOREAD setting is OFF, (the default for 
display terminals), your terminal displays a RUNNING status after the 
execution of each CMS command. If you want the terminal to be in a VM 
READ status following each command, issue 

set autoread on 

The eN setting is the default for typewriter terminals, since a read on 
a typewriter terminal must be accompanied by the unlocking of the 
keyboard. 

The advantage of keeping your virtual machine in a running status 
even when it is not actually executing a program is that it makes your 
terminal ready to receive messages. If your terminal is waiting for a 
read, either from CP or from the virtual machine, and if a user or a 
program sends a message to your virtual console, then the message is not 
displayed until you use the Enter key to enter a command or null line. 
When your machine is in a running status, the terminal console is always 
ready to accept messages. 

If your virtual machine is in the CP environment, and you want your 
terminal to be in a running status, you can use the command: 

cp sleep 

To return to the CP BEAD status, you must press the PA1 key or the Enter 
key. 

MORE ••• : This status indicates 
that there is more data to be 
indicating that there is more 
screen's current display so 
necessary. 

that your display screen is full, but 
displayed. This message, in addition to 

data, gives you a chance to freeze your 
you can continue to examine it, if 

When you see the screen is in a MORE ••• status, you can either (1) 
press the Clear, Cancel, or PA2 keys to clear the screen and see the 
next screen, or (2) press the Enter key to hold the screen in its 
present status. If you do not do either, then after 60 seconds, the 
screen is cleared and the next screen is displayed. 

tlQ1YIB§: This indicates that you have 
the screen. You must use the Cancel, 
screen and go on to the next display. 

pressed the Enter key to freeze 
Clear, or PA2 keys to erase this 

A holding status also results if you have received a message that 
appeared on this screen. When the screen becomes full, it does not 
automatically pass to the next display after 60 seconds, but waits until 
you specifically clear the screen. (This feature ensures that any 
important messages you receive are not lost.) 

!QI A~~jflj~: Indicates that you are trying to enter a command line but 
the terminal buffer is full and cannot accept it. 

Appendix C: Considerations for 3270 Display Terminal Users 327 



CONSOLE·OUTPUT 

lihen you use a 3270 terminal as your virtual machine console, you do not 
ordinarily retain a console log, as you do on typewriter terminal. 
'rhere may be many circumstances in which you need a printed record of 
your console output, whether it be to obtain a copy of program-generated 
output, or to retain a record of CP and/or CMS commands that resulted in 
an error condition. There are two techniques you can use in VM/370 to 
obtain hardcopy representations of display terminal sessions: spooling 
console output and the 3270 copy function. 

~rhe CP SPOOL command provides the CONSOLE operand, which allows you to 
begin and end console spooling. You enter 

cp spool console start 

when you want to begin recording your terminal session, and 

cp spool console stop 

when you have finished. In between, you can Feriodically close the 
console file to release for printing whatever has been spooled thus far: 

cp spool console close 

other operands that you can enter are the same as you might specify for 
any printer file, such as CLASS, COPY, CONT, and HOLD. 

An alternate technique is to spool your console to your own virtual 
lceader: 

cp spool console start * class a 

Then, when you close the console file, instead of being released to the 
CP printer spool file queue, it is routed to your virtual card reader, 
and you can load it onto your A-disk as a· CMS disk file: 

readcard console file 

lou can then use the editor to examine it (or to delete sections you 
don't need) and use the PRINT command to spool it to the printer. 

If you are using a 3270 display terminal, and you have available a 3284, 
3286, or 3288 printer, you can copy the full screen display currently 
appearing on the screen. To copy the screen, you have to assign the 
copying function to a program function key, with the SET command: 

cp set pf9 copy 

Then, whenever you want to copy a screen display, you can press the PF9 
key (or whichever key you set). The display is printed on any 3284, 
3286, or 3288 printer that is attached to the same control unit as the 
display terminal. If, when you press the PF key, the screen status area 
indicates NOT ACCEPTED, it means that the printer is either not ready or 
not available. When you press the PF key and receive no response, it 
means that the screen has been copied. 

328 IBM VM/370: CMS User's Guide 



Figure 25 is an example of a 3270 screen display that could be cOFied 
on the printer. When you use the copy function to copy a screen, all 24 
lines of the display screen are copied; the screen status area 
(indicated as RUNNING in Figure 25) is blank. you can use the user 
input area of your screen to key in comments, or you name or userid, it 
several users are spooling copy files 

r ---, 

DEFINE STORAGE 16384K 
STORAGE = 16384K 
IPt 190 
CMS VERSION 3.0 02/28/76 10:32 

testl ••• t. jones 

Figure 25. 3270 Screen Display 

Signaling Interrupts 

RUNNING 

The two keys on your 3270 keyboard that signal interrupts are the PAl 
key and the Enter key. Throughout this publication, interrupt signaling 
has been described in terms of the Attention key, which is the interrupt 
signaling key on a 2741. 

On a typewriter terminal, the Attention key, pressed once, causes a 
virtual machine interrupt (if the terminal mode is set to VM); you must 
use it when you want to enter an Immediate command, such as HT or HI. 
On a display terminal, you can enter these commands whenever your 
virtual machine is in a running status, without having to signal an 
interrupt before you enter the command. 

sometimes, however, if your terminal is displaying output very 
rapidly, you must wait until the screen is full and the screen status 
area indicates a MORE ••• status before you attempt to enter the HT or HX 
command. 

The Enter key can also be used as an interrupt signaling. key. If you 
press it once when your virtual machine is running, you will place your 
virtual machine in the VM READ status, so you can enter a command line. 
If you press the Enter key twice, quickly, you enter the CP enYironment, 
with your console in a CP READ status. 

An easier way to enter the CP environment is by pressing the PA1 key. 
Whenever you press this key, your virtual machine is placed in a CP READ 
status, and you can enter any CP command. From the CP environment, you 
aust use the CP command BEGIN to resume execution of your Yirtual 
machine. 

Appendix C: Considerations for 3270 Display Terminal Users 329 



HALTING SCREEN DISPLAYS 

When your terminal is displaying successive screens of output from a 
program or a CMS command, you can use the HT or HX Immediate commands to 
halt the display or the execution of the command, respectively. If your 
terminal is writing the information at a very rapid rate, you may have 
difficulty entering the HT or HX command. In these circumstances, you 
can use the PAl key (or press the Enter key twice) to force your 
terminal to a CP READ status. Then, you can use the CP command ATTN or 
REQUEST to to signal a virtual machine read. When the screen status area 
indicates VM READ, you can enter HX or HT. 

Using the eMS Editor with a 3270 

The CMS Editor has a special format and operation, called display mode, 
that makes editing CMS disk files with a 3270 more convenient than on a 
typewriter 'terminal. It uses most of the display screen, and displays 
up to 20' lines of a file at once. In addition to displaying data lines 
of the file, the editor also indicates, on the topmost line of the 
screen, the filename, filetype, record format, and logical record length 
of the file being edited, as well as showing your current mode: input or 
edit. Th~'format of the screen is shown in Figure 26. 

The screen lines that you are most concerned with, while editing, are 
the current line (on the same line as the system available indicator) , 
the user input area (the bottom two line~, and the editor's message 
line, the second line from the top, in which the editor's responses and 
error messages are displayed. 

When you first invoke the editor to edit a file, whatever is 
currently on the screen (including your EDIT command line) is erased and 
the full screen is controlled by the editor. The current line pcinter 
is positioned at the top of the file, the top part of the display screen 
appears blank. The editor displays the characters "TOF:" and "EOF:" to 
indicate the top and end of the file, respectively. 

ENTERING EDIT SUECOMMANDS 

W hen you ent'er an EDIT subcommand into the user input area and press the 
Enter key the subcommand is not displayed on the screen, but the change 
(or line pointer movement) is reflected in the screen display. If you 
enter a subcommand that moves the current line pointer, all of the lines 
on the screen are shifted up or down, according to the action taken by 
the subcommand. 

If you use the INPUT subcommand to enter input lines, the edit status 
field indicates INPUT; all of the lines that you enter are placed in the 
file and appear on the screen as the current line. (Entering input 
lines from a remote 3270 is somewhat different. "Editing on a Remote 
3270" below, discusses the differences.) 

If yo:u "enter an invalid EDIT subcommand, or if you enter a subcommand 
that requests information, the edit response appears in the message 
field of the screen. For example, if you enter 

trunc 

330 IB"M"VM/370: CMS User's Guide 



r ------" 
EDIT 1 DISPLAY SCREEN A12 F 80 3 

»»> 1 80" 

TOF: 5 

THIS IS THE FIRST LINE OF THE FILE. (CURRENT LINE). 6 

THIS IS THE SECOND LINE OF THE FILE. 
THIS IS THE THIRD LINE OF THE FILE. 
EOF: 

c 

VM READ 
-----------------------------------------------------------

Notes: 
--i-Edit session status. This indicates EDIT, INPUT, or NEW FILE. 

The NEW FILE message appears when you edit a new file; it is 
replaced with INPUT when you enter input mode and thereafter is 
EDIT or INPUT. 

2 The filename, filetype, and filemoae of the file. 

3 Record format and logical record length • 

.. Editor reponse area. The response shown may be the response to 
a VERIFY subcommand entered with no operands. 

5 The symbols TOF: and EOF: indicate top- and end-of-file, 
respecti vely. 

6 The current line is always ~hown at line 9, opposite 
the system available indicator. 

'-------, 
Figure 26. How the CMS Editor Formats a 3270 Screen 

the editor responds by displaying the current truncation setting, which 
might be: 

»»> 81 

If you enter 

copyfile myfile edit (trunc 

the editor would respond: 

»»> ?EDIT: copyfile myfile edit (trunc 

to indicate that it does not recognize the entered line (COPYFILE is not 
an EDIT suncom.and). When you use line-number editing, the prompting 
message appears in this area; after you enter text in the use~ input 
area, the text line is written in the output display area, at the 
current line position. 

Appendix C: Considerations for 3270 Display Terminal Users 331 



Two EDIT subcommands, CHANGE and 1, result in lines being copied in 
the user input area. In the case of the CHANGE subcommand, the line that 
is displayed is the current line. Once in the user input area, you can 
modify it and re-enter it. While you are changing it, the original line 
appears unchanged'in the output display area. If you decide that you do 
not want changes entered, you must press the Erase Input key and then 
press the Enter key before you enter any other EDIT subcommands. 

You can use the 1 subcommand to request that the last EDIT subcommand 
you entered be displayed in the user input area. If, for example, you 
enter a CHANGE or LOCATE subcommand that results in a NOT FOUND 
condition, or some other error, you can enter 

1 

and modify the subcommand line and re-enter it, if you want; otherwise, 
use the Erase Input key to delete it. 

CONTROLLING THE DISPLAY SCREEN 

Usually the editor controls the entire screen display during an edit 
session. Occasionally, the screen goes into a MORE... status, and you 
.ust use the Cancel key to clear the screen. There are two other 
situations in which the screen must be cleared, either by the editor, or 
by you. When you use the CMS subcommand to enter CMS subset to enter 
eMS commands, the screen is cleared and the message CMS SUBSET is 
displayed at the top of the screen. When you issue the subcommand RETURN 
to return to edit mode, the screen display is restored to its original 
appearance. 

The situation is slightly different, however, whenever you 
communicate with the control program (CP), or receive messages from 
other users during an edit session. Any CP message or command response 
causes your screen to go into a MORE ••• status; you must use the PA2 
(Cancel) key to see the response. To restore your screen to its edit 
display, you should use the EDIT subcommand TYPE. If you use the PAl 
key to place your virtual machine in the CP environment, and the screen 
status area indicates CP READ, use the CP command BEGIN to restore edit 
~ode. Then enter the TYPE subcommand. If you enter a subcommand other 
than TYPE, the entire screen is not restored, and the top two lines (the 
editor's data and response fields) may contain lines of the CP 
response. 

If your virtual machine was in input mode when you entered the CP 
command, you may continue entering lines of input; the third through the 
ninth lines of the screen are restored after you enter the next l1ne. 

If you enter a CP command that does not produce a respons~, then 
there is no change to the screen. 

The VERIFY subcommand allows you to alter the verification columns when 
you are editing a file, or to cancel verification altogether. If, for 
example, you are editing a file with records longer than 80 characters, 
each line is displayed on two lines of the display screen. Sometimes, 
you may be editing only specific columns in a file, and do not need to 
see the lines displayed in their entirety. To see only the first 80 
columns, you could enter: 

332 IBM VM/370: CMS User's Guide 



verify 1 80 

Or, if you wanted to see the last 80 columns of a file with 
120-character records, you could enter 

verify 41 120 

If you cancel verification entirely by entering 

verify off 

then, modifications that you make to the file (including movement of the 
current line pointer) are not reflected on the display screen until you 
use the TYPE subcommand. 

THE CURRENT LINE POINTER 

There is one aspect of the CMS Editor on a 3270 that is much the same as 
on a typewriter terminal: you must still be concerned with the 
positioning of the current line pointer, and you can only add or modify 
data on the current line, even though you see many lines being 
displayed. The current line, on the screen, appears near the middle, on 
the same line as the SYSTEM AVAILABLE light. 

To move the current line pointer, you can use the subcommands UP and 
DOWN: UP indicates movement toward the top of the file and DOWN 
indicates movement toward the bottom of the file. When you issue either 
of these subcommands, the entire display of the file shifts down the 
screen (if you use the UP subcommand) or up the screen (if you use the 
DOWN subcommand) 0 

If you have never used the CMS Editor on a typewriter terminal, you 
may find the UP and DOWN subcommands confusing to use, so you can use 
instead the BACKWARD (UP) and FORWARD or NEXT (DOWN) subcommands to 
shift the display backward (toward the top of the file) and forward 
(toward the bottom of the file). 

You can also use the EDIT subcommand SCROLL, which allows you to 
display successive screen displays, and to examine an entire file 
quickly. If you enter the SCROLL subcommand with no operands, it is the 
equivalent of entering the subcommand DOWN (FORWARD) 20, which results 
in the screen changing to display the 20 lines following the lines 
currently being displayed. If you enter 

scroll 10 

Then, the SCROLL subcommand executes 10 times, placing the screen in a 
MORE ••• state at the end of each display. 

If the file you are editing has verification column settings greater 
than 80 characters (so each line takes up 2 display lines), then the 
SCROLL subcommand moves the screen 10 lines at once instead of 20. 

The UP (or BACKWARD) counterpart of SCROLL is SCROLLUP, which can be 
abbreviated SUe 

Appendix C: Consideratioud for 3270 Display Terminal Users 333 



USING PROGRAM FUNCTION KEYS 

you can enhance the use of the CMS Editor on a 3270 by setting the 
program function (PF) keys on your terminal to correspond to some cf the 
more frequently-used EDIT subcommands, such as UP, DOWN, SCROLL, FILE, 
SAVE, and so on. You can also set a program function key to contain a 
line of data, so that if you are creating a file that has many duplicate 
lines in it, you can use the PF key instead of having tc key in the 
entire line each time. PF keys, cannot, however, contain lowercase 
character strings. 

You can set a program function key 
by using the PA1 key to enter the CP 
function. 

while you are in edit mode either 
environment or by using the #CP 

USING THE EDITOR IN LINE MODE 

The editor's display mode is the most common format of operation on a 
3270. There are, however, instances when it is not possible or not 
desirable to use the editor in display mode. For these instances, you 
should use the line mode of operation~ which is the equivalent to using 
a typewriter terminal. When you use line mode, each EDIT subcommand you 
enter, and the response (if you have verification on), is displayed, a 
line at a time, on the screen in the output display area. There is no 
full screen display of the file. 

You need only be concerned with using line mode if you are connected 
to VM/370 by a remote 3270 line, or if you are editing a file from 
within an EXEC and you want to control the screen display. Although it 
is possible to use the editor in line mode on a local 3270, it is rarely 
necessary for normal editing purposes. 

When you invoke the editor 
mode by the editor. The 
(particularly on a remote 
more quickly to display 
terminal has to write out 
the current line pointer; 
line. 

from a remote 3270, you are placed in line 
advantage of using the 3270 in line mode 
terminal) is that the terminal can respond 

requests. When you use display mode, the 
the entire output display area when you move 
in line mode, it has only to write a single 

If you want to use display mode, you enter the EDIT subcommand 

format display 

And the editor begins operating in display mode, and you can use the 
special editing functions available in display mode. 

However, when you are using a remote 3270 in display mode, and you 
enter the INPUT subcommand to begin entering input lines, the screen is 
cleared, and your input lines are displayed as if you were in line mode, 
beginning at the top of the screen. When you enter a null line to return 
to edit mode, the editor returns to a full screen display. 

You can resume editing in line mode by using the subcommand: 

format line 

334 IBM VM/370: CMS User's Guide 



~g!!i~g l~Q~ gD EIEf l!!~ 
If you invoke the editor from an EXEC, but you dQ not want the screen 
cleared when the editor gets control, you can specify the NODISP option 
on the EDIT command line: 

edit test file (nodisp 

This places the 3270 in line mode, so that the lines already on the 
screen are not erased. 

The 3270 remains in line mode for the remainder of the edit session, 
and you cannot use the FORMAT subcommand to place it in display mode. 

USING SPECIAL CHlRACTERS ON A 3270 

There are two special characters available on a typewriter terminal 
whose functions have no meaning on a display terminal. They are the tab 
character (X'OS') and the backspace character (X'16'). For most file 
creation and editing purposes, you will probably not need to use the 
backspace, but many CMS filetypes use tab settings to set up the proper 
column alignment in files. There are two methods you can use to enter 
any special character on a 3270 (including tabs), and an additional 
method of using tabs, which involves setting a program function key. 

TO.enter any special character (a backspace is used in this example) 
you can either: 

1. Enter another character at the appropriate place in the record, and 
then use the ALTER subcommand to alter that character to the 
hexadecimal value of the character you want to represent (a 
backspace character is a X'19'). For example: 

input ABC»> __ _ 
alter> 16 1 * 

When you enter backspaces and overstrike characters on a 3270, 
however, the characters and backspaces each occupy character 
positions, so that a single compound character occupies three 
character positions on the SCreen. If the image setting is CANON, 
and you want to use the backspace to enter compound characters, you 
must not enter the backspace character first. 

2. Before you begin to create the file, use the CMS SET command to 
define some other character as the backspace character: 

set input> 16 

CMS then translates all occurrences of the character> to X'16'. 

If you need to correct a line that contains backspaces, you can 
reverse the above sequence; alter the X'16' characters to asterisks and 
enter the CHANGE subcommand. 

You can set up a program function key to operate like a tab key on a 
typewriter terminal. You must use the CP SET command as follows: 

SET PFnn TAB n1 n2 ••• nn 

Appendix c: Considerations for 3270 Display Terminal Users 335 



PFnn is any valid function key from PF1 to PF12. 

n1 n2 ••• nn are the logical tab settings desired, expressed as 
decimal numbers. Invalid tat settings are ignored. You 
can specify the setting values in any order, but they 
are normally specified in ascending order. 

You can define different PF keys with different tab settings for 
different filetypes. Whenever you press the PF key you have set for a 
tab, the cursor moves to the corresponding position in the user input 
area, in much the same way that a typing element on a typewriter would 
move to the next tab stop. 

If you press the PF tab key to a position that already contains a 
data character, the data remains intact. If there is no data in that 
position, a tab character is entered in the file. The effect of the tab 
in the file depends, as in normal usage, on the image setting cf the 
editor. If the image setting is set to on (the default), the tab expands 
to an appropriate number of blanks, to correspond to the settings in 
effect for the TABSET subcommand. When the TABSET settings match the 
tab settings of the PF key, then any lines you enter in the user input 
area appear exactly as they will appear in the output display area. 

If you tab beyond the last defined tat position, the cursor is 
repositioned at the beginning of the user input area. 

When you edit a file on a 3270 terminal in display mode, you should not 
copy a line containing tabs or backspaces into the user input area. The 
tabs or backspaces are converted to blanks (X'40'). Similarly, if the 
line contains VM/370 logical line editing symbols that have been entered 
as data characters, the symbols are reinterpreted when you enter the 
line. 

If you use the SET OUTPUT function to display nonprintab1e characters 
in CMS, the character translations do not appear when the editor is in 
display mode. They are, however, displayed when the editor is in line 
mode. 

Using APL with a 3270 

If you have a 3277 display station equipped with an APL keyboard, you 
can use APL on a 3270 terminal in CMS. You invoke the APL virtual 
machine by issuing the command specified in the VSAPL Program Product 
documentation. This command invokes the VSAPL-CMS interface program. 
You are then prompted to press the APL On/Off key which is on your 
terminal; pressing this key changes the keytoard to APL character input 
mode. You are then prompted to press the Enter key to continue. 

EBCDIC or APL characters can always be displayed; the APL On/Off key 
does not change this. The VSAPL-CMS interface program issues the 
TERMINAL APL ON command for you and selects the appropriate translation 
tables. The interface program then invokes the VSAPL program. When the 
VSAPL ready message appears on the screen, you can use APL. 

336 IBM VM/370: CMS User's Guide 



You can send a copy of your display screen to a locally or remotely
attached printer. Be sure that the printer you send your output to has 
the APL feature installed; if it does not, the APL characters are not 
printed. Mos~ system printers do not have an AFL print chain; therefore 
you may need to use the copy function to direct your screen output 
displays to a 3284 or 3286 printer. 

ERROR SITUATIONS 

If you do not have the APL hardware feature installed on your 3270 but 
you invoke APL: 

• The VSAPL program is invoked and the TERMINAL APL ON command is 
issued. 

• You cannot communicate with the VSAPL program. 

• Any APL characters that are written to the screen appear as blanks. 

If you have the APL feature installed on your terminal, but invoke 
APL manually without issuing the TERMINAL APL ON command or issue 
TERMINAL APL OFF at sometime during APL processing: 

• The VSAPL program is activated. 
• You cannot communicate with the VSAPL program. 
• Any APL characters written to the screen appear as blanks. 

If you attempt to use the APL 0/5 (overstrike) key when the APL 
hardware key is set off, it acts as a backtab key and repositions the 
cursor to the beginning of the user input area. 

LEAVING THE APL ENVIRONMENT 

Issue the APL command 

) OFF 

to log off VM/370. 

Issue the APL command 

) OFF HOLD 

to return to CMS. 
program, which 

This APL command invokes the VSAPL-CMS interface 

• Issues the TERMINAL APL OFF command 
• Prompts you to press the APL hardware key 
• Returns to CMS 

!Q!~: The APL hardware feature is a key, not a switch. Each time you 
press the APL key you reverse its on/off setting. To determine whether 
APL is on or off, press a key that represents a special APL character. 
If the character displayed is an APL character, the hardware APL feature 
is set on. If the character displayed is a non-APL character, you must 
press the APL key once to set the APL feature on. 

Appendix C: Considerations for 3270 Display Terminal Users 337 





Appendix D: Sample Terminal Sessions 

This appendix provides sample terminal sessions showing you how to use: 

• The CMS Editor (using context editin~, and the CMS COPYFILE, SORT, 
RENAME, and ERASE commands. 

• The CMS Editor (using line-number editing) 

• CMS OS simulation to create, assemble, and execute a program using OS 
macros in the CMS environment. 

• CMS DOS/VS simulation to create, assemble, and execute a program 
using DOS/VS macros in the eMS/DOS environment. 

• Access Method Services under CMS, to create VSAM catalogs and data 
spaces, and to use the define and repro functions of AMSERV. 

APFendix D: Sample Terminal Sessions 339 



Sample Terminal Session Using the Editor and CMS File System Commands 

This terminal session shows you how to create a CMS file and make changes to it using the 
CMS Editor, and then manipulate it using the CMS file system commands, COpy FILE, ERASE, 
RENAME, and SORT. 

!Q!g: Throughout this terminal session whenever a TYPE subcommand or command is issued 
that results in a display of the entire file, the complete display is not shown; omitted 
lines are indicated by vertical ellipses ( ••• ). When you enter the TYPE command or 
subcoamand, you should' see the entire display. 

o 

e 

edit command data 
N E:W FILE: 
EDIT: 
im.age 
Olli 
tabs 1 12 80 
trunc 72 
input 
IIIPUT: 
cClpyfile 
sClrt 
edit 
ed,it 

copy cms files 
sort cms files in alphameric order by specific columns 
create a cms file 
modify a cms file 
change the name of a cms file 
punch a copy of a cms file on cards 
print a cms file 
erase a cms file 
list information on a cms file 
verify the existence of a cms file 
verify the existence of a cms file on a read/write disk 
read a cms file from your card reader onto disk 
punch a cms file in cms disk dump format into your virtual card punch for 

rEmame 
punch 
print 
eI:ase 
list file 
state 
statew 
readcard 
disk dump 
TIlUNCATED 
DISK DUMP 
disk load 
compare 
taLpe dump 
tupe load 

PUNCH A CMS FILE IN CMS DISK DUMP FORMAT INTO YOUR VIRTUAL CA 
read a disk dump file onto disk 
compare the contents of cms disk files 
dump cms files onto tape 
read cms files cnto disk from tape 

EDIT: 

(j---~;;;-~;;-;DIT command to invoke the CMS Editor to create a file with a filename of 
COMMAND and a filetype of DATA. Since the file does not exist, the editor issues 

A the message NEW FILE. 
~ Check that the image setting is ON. This is the default for all filetypes e~cept 

SCRIPT. Then, set the logical tab stops for this file at 1, 12, and 80, and set a 
truncation limit of 72. e Enter the subcommand INPUT to enter input mode and begin entering lines in the file. 
For these input files, you should press the Tab key (or equivalent) on your terminal 
following each CMS command name. If there is a physical tab stop on your terminal 

O 
in column 12, the input data appears aligned. 

. The message, TRUNCATED, indicates that the line you just entered exceeded the 
truncation limit you set for the file (column 72). The editor displays the line, so 
you can see how much of the line was accepted. Your virtual machine is still in 
input mode, so continue entering input lines. e Te) get out of input mode, enter a null line (press the Return or Enter key without 
entering any data). The editor responds with the message EDIT:. 

340 IBM VM/370: CMS User's Guide 



o 
e 

o 
o 

top 
TOP: 
type * 
TOP: 
COPYPILE COpy CMS PILES 

TAPE LOAD READ CMS PILES ONTO DISK PROM TAPE 
EOP: 
locate /disk dump 
DISK DUMP PUNCH A CMS PILE IN CMS DISK DUMP PORMAT INTO YOUR VIRTUAL CA 
replace disk dump punch a cms file onto cards 
input 
INPUT: 
type 
rename 
sort 
copyfile 
comprae 

EDIT: 

display the contents of a cms file at your terminal 
alter the name of a cms file 
resequence the records in a cms file 
reformat a file, by columns 
verify that two files are identical 

change /rae/are/ 
COMPARE VERIPY THAT TWO PILES ARE IDENTICAL 
bo 
TAPE LOAD READ CMS PILES ONTO DISK FROM TAPE 
input 
INPUT: 

EDIT: 
file 
R; 

--------------o 
8 

Use the TOP subcommand to position the current line pointer at the top of the file. 
The editor responds TOP:. 
Use the TYPE subcommand to display the entire file. Note that all of your input 
lines are translated to uppercase characters, and that the tab characters you 
entered have been expanded, so that the first word following each command name 
begins in column 12. 
The message EOP: indicates that the end of the file is reached. You can issue the 
LOCATE subcommand to locate a line. since you are at the bottom of the file, the 
editor begins searching from the top of the file. Notice that you can enter the 
character string you want to locate in lowercase characters; the editor translates 
it to uppercase to locate the line. The editor displays the line. 
Use the REPLACE subcommand to replace this line, in a shortened form so that it is 
not truncated. Remember to enter a tab character after the command name; when you 
enter the line, the tab stop does not have to be in column 12. Then, use the INPUT 
subcommand again to resume entering input. The lines that you enter next are written 
into the file following the DISK DUMP line. 
When you make a spelling error or other mistake, you may want to correct it 
immediately. Enter a null line to return to edit mode, and use the CHANGE subcommand 
to correct the error. In this example, the string RAE is changed to ARE. The 
editor displays the line as changed. 
Use the BOTTOM subcommand to move the current line pointer to point to the last line 
in the file. Enter input mode with the INPUT subcommand. 
If you enter input mode and decide that you do not want to enter input lines, all 
you have to do to return to edit mode is enter a null line. 
To write the file onto disk, use the PILE' subcommand. This writes it onto disk 
using the name with which you invoked the editor, COMMAND DATA. The CMS Ready 
message indicates that you are in the CMS command environment. 

Sample Terminal Session using the CMS Editor and CMS Pile System Commands 341 



41). type command data 

342 

COPY FILE COPY CMS FILES 
SORT SORT CMS FILES IN ALPHAMERIC ORDER BY SPECIFIC COLUMNS 

TAPE LOAD READ CMS FILES ONTO DISK FROM TAPE 
Ri 
edit command data 
EDIT: 

save 
EDIT: 
fname comm2 
file 
R; 
copyfile comm2 data a (lowcase 
R; 
copyfile command data a comm2 data a (ovly specs 
DMSCPY601R ENTEB SPECIFICATION LIST: 
1-12 1 
B; 
type comm2 data 

COPYFILE 
SOBT 
EDIT 
EDIT 
BENAME 
PUNCH 
PRINT 
ERASE 
LISTFILE 
ht 
B; 

Copy ems files 
Sort ems files in alphameric order by specific columns 
Create a cms file 
Modify a cms file 
Change the name of a cms file 
Punch a copy of a cms file on cards 
Print a cms file 
Erase a cms file 
List information on a cms file 

To display the entire file at your terminal, use the CMS TYPE command. Note any 
errors that you made that you might want to correct. 
Use the EDIT command to edit the file COMMAND DATA again. This time, since the file 
exists, the editor does not issue the message, NEW FILE: 
While you are in edit mode, make any changes that you need to; then issue the SAVE 
subcommand to save these changes, and replace the existing copy of the file onto 
disk. 
Use the FNAME subcommand to change the filename of the file to COMM2 (the filetype 
remains unchanged). When you issue the FILE subcommand this time, the file is 
written onto disk with the name COMM2 DATA. 
You can rewrite the entire file, COMM2 DATA in lowercase characters, using the 
COPYFILE command with the LOWCASE option. 
The file COMM2 DATA is now all lowercase characters (you can display the file with 
the TYPE com.and if you want to verify it) • However, the command names, and the 
first character of the description should be uppercase characters. You can use the 
COPYFILE command again, to overlay the original uppercase characters of COMMAND DATA 
in columns 1 through 12 over the lowercase characters in columns 1 through 12 of 
COMM2 DATA. 
Use the TYPE command to verify that the COpy FILE command did, in fact, overlay only 
the columns that you wanted. 
The HT Immediate command suppresses the display of the remainder of the file; you 
can see from the first few lines that the format of the file is correct. 

IBM VM/370: CMS User's Guide 



listfile * data 
COMMAND DATA 
COMM2 DATA 
R; 

A1 
A1 

sort comm2 data a command sort a 
DMSSRT604R ENTER SORT FIELDS: 
1 9 
R; 
type command sort 

COMPARE 
COMPARE 

TYPE 

R; 

Verify that two files are identical 
Compare the contents of cms disk files 

Display the contents of a cms file at your terminal 

copyfile coma2 data a function data a ( specs 
DMSCPY601R ENTER SPECIFICATION LIST: 
1 2- 7 2 1 1- 9 70 
R; 
type function data 

Copy cms files 
sort cms files in alphameric order by specific columns 

Read cms files onto disk from tape 
R; 
sort function data a function sort a 
DMSSRT604R ENTER SORT FIELDS: 
1 70 
R; 
type function sort 

Alter the name of a cms file 
Change the name of a cms file 

Verify the existence of a cms file on a read/write disk 
R; 

COPYFILE 
SORT 

TAPE LOAD 

RENAME 
RENAME 

STATEW 

(If you ~---;h~--i;;;FILE command lists your two files with the filetype of DATA. 
~ previously had files with these filetypes, they are also listed.) 
~ To sort the file COMM2 DATA into alphabetic order, by command, issue the SORT 

command. When you are prompted for the sort fields, enter the columns that contain 
the command names, 1 through 9. 
The output file from the SORT command is named COMMAND SORT. You can use the TYPE 
command to verify that the records are now sorted alphabetically by command. 
To create another copy of the file, this time with the command names on the right 
and the functional description on the left, use the COPYFILE command with the SPECS 
option again. 'To create a file this way, you must know the columns in your input 
file (COMM2 DATA) and how you want them arranged in your output file (FUNCTION 
DATA). Columns 1 through 9 contain the command names; columns 12 through 72 contain 
the descriptions. The specification list entered after the prompting message 
indicates that columns 12 thro,ugh 72 should be copied and placed beginning in column 
1, and that columns '1 through 9 should be copied beginning in column 70. 
Verify the COPYFILE operation with the TYPE command. 
Sort the file FUNCTION DATA so that the functional descriptions appear in alphabetic 
order. You may also want to display the output file, FUNCTION SORT. 

Sample Terminal session Using the CMS Editor and CMS File System Commands 343 



listfile 
COM1'!AND 
COMl!!l2 
COMJ!AND 
FUNCTION 
FUNCTION 
Ri 

DATA 
DATA 
SORT 
DATA 
SORT 

erase command data 
Ri 

A1 
A1 
A1 
A1 
A1 

rename comm2 data a command data a 
Ri 
listfile 
FIL:l!:lUME 
FUNCTION 
COM.ifUND 
COMMAND 
FUNCTION 
Ri 

* * a ( label 
FILETYPE FM 
SORT A1 
DATA A1 
SORT A1 
DATA A1 

edit function sort 
EDI'r: 
zonl~ 

1 .sO 
zon'e 60 
cha:nge / / / * 

FORMAT 
F 80 
F 80 
F 80 
F 80 

Alter the name of a cms file 
Change the name of a cms file 

RECS 
22 
22 
22 
22 

BLOCKS DATE 
3 10/13/75 
3 10/13/75 
3 10/13/75 
3 10/13/75 

TIME 
7:52 
7:48 
7:48 
7:51 

Verify the existence of a cms file on a read/write disk 
EOF: 
top 
TOF: 
finti List 
NOT FOUHD 
EOF: 
caSle 

U 
case m 
finli List 
List information on a cms file 

LABEL 
ABC191 
ABC191 
ABC191 
ABC191 

RENAME 
RENAME 

STATEW 

LISTFILE 

~---i;-~;~~~- are the only files on your A-disk, the LISTFILE command entered with no 
operands produces a list of the files created so far. 

~ The file COMM2 was created for a workfile, in case any errors might have happened. 
Since you no longer need the original file, COMMAND DATA, you can erase it. 

4W) Use the BEHAME command to rename the workfile COMM2 DATA to have the name COMMAND 

I DATA. The LISTFILE co.mand verifies the change. 
To begin altering the file FUNCTION SORT, invoke the editor again. 

. The ZONE command requests a display of the current zone settings, which are columns 
1 and 80. When you issue the command ZONE 60, it changes the settings to columns 60 

~ and 80, so that you cannot modify data in columns 1 through 59. 
~ The CHANGE subcommand requests that the first appearance of five consecutive blanks 

on each line in the file be compressed. The editor displays the results of this 
CHANGE request by displaying each line changed (which is each line in the file). The 
net effect is to shift the command column 5 spaces to the left. 

4e) Position the current line pointer at the top of the file, and then issue a FIND 
subcommand to move the line pointer to the line that begins with "List". G The editor indicates that the line is not found. Checking the current setting for 
the CASE subcommand, you can see that it is U, or uppercase, which indicates that 
the editor is translating your input data to uppercase. You can issue the CASE M 
subcommand to change this setting, then reissue the FIND subcommand. 

344 IBM VM/370: CMS User's Guide 



change Ion a cms/about a CMS 
NOT FOUND 
= zone 1 * 
List information about a CMS file 
top 
TOF: 
change /cms/CMS/ * 
Alter the name of a CMS file 
Change the name of a CMS file 

. 
verify the existence of a CMS file on a read/write disk 
EOF: 
save 
EDIT: 
top 
TOF: 
next 
Alter the name of a CMS file 
Sdup 
Alter the name of a CMS file 
change /name/filetype/ 
Alter the filetype of a CMS file 
next 
Change the name of a CMS file 
change /name/filename/ 
Change the filename of a CMS file 
next 
Compare the contents of CMS disk files 
next 
Copy CMS files 
find M 
Modify a CMS file 
up 
List information about a CMS file 
i Make a copy of a CMS disk file 
top 
TOF: 

LISTFILE 

RENAME 
RENAME 

STATEW 

RBNAME 

RBNAME 

RENAME 

RENAME 

RENAME 

COMPARE 

COPYFILE 

EDIT 

LISTFILE 
COPYFILE 

~---;;;-;~~;~r locates the line and displays it. You want to change the character string 
"on a cms" to "about a CMS". The editor does not find the string you specify because 
the zone setting for columns 60 through 80 is still in effect. You can enter the 
ZONE subcom.and, and reissue the CHANGE subco.mand, or you can enter the = (REUSE) 
subcommand to stack the CHANGB subcommand, and enter the ZONE subcommand to execute 
first. 
The ZONE subcommand is executed, then the CHANGB subcommand. The editor displays the 
changed line. 
At the top of the file, enter another global change request, to change lowercase 
occurrences of the string cms to uppercase. The editor displays each line changed. 
When the EOF: message indicates that the end of the file is reached, you can save 
the changes made during this edit session with the SAVE subco.mand before 

A con tin uing. 
~ Move the current line pointer to point to the first line in the file. You want to 

CD 

I 
add an entry that is similar; use the SDUP edit macro to duplicate the line, then 
change the copy that you made of the line. 
You can change the word name to filename in the next line also. 
You can scan a file, a line at a time, by issuing successive NEXT subco •• ands. 
To insert a line beginning with. the character M, and to .aintain alphabetic 
sequencing, use the FIND subcommand to find the first line beginning with an M. The 
line to be inserted begins with the characters MA, so you want to move the line 
pointer up. CI) You can insert a single line into a file with the INPUT subco.mand. Here, the INPUT 
subcommand is truncated to I, so that when you space over to write the co.mand name 
in the right column, you can align it (you only have to allow for the two character 
spaces use by "i ". 

Sample Terminal Session Using the CMS Editor and CMS File System Commands 345 



/COPYFILB 
Copy CMS files 
n 
Create a CMS file 
n 
Display the contents of a CMS file at your terminal 
n 
Dump CMS files onto tape 
n 
Brase a CMS file 
up 3 
Create a CMS file 
i Delete a file from a CMS disk 
file 
B; 
type function sort a 

Alter the name of a CMS file 
Alter the filetype of a CMS file 
Change the filename of a CMS file 

Verify the existence of a CMS file on a read/write disk 

B; 
edit function sort 
zone 58 
change / // * * 
Alter the name of a CMS file 
Alter the filetype of a CMS file 
Change the filename of a CMS file 

Verify the existence of a eMS file on a read/write disk 
EOF: 
top 
TOF: 
change //1 / * 
Alter the name of a CMS file 
Alter the filetype of a CMS file 
Change the filename of a CMS file 

. 

BERAME 
BERAME 
BEBAME 

STATEW 

COPYFILE 

EDIT 

TYPE 

TAPE DUMP 

EBASE 

EDIT 
EBASE 

BENAME 
BEBAME 
BENAME 

STATEW 

BERAME 
REBAME 
RBNAME 

Verify the existence of a CMS file on a read/write disk I STATBW 
EOF: 

~---;~;;-;~;-line pointer to the top of the file and begin scanning again. A diagonal 

I 
(/) is interpreted as a LOCATE subcommand. 

',' The BEXT subcommand can be truncated to "B". 
In front of the line beginning "Display", insert a line beginning with "Delete". If 
you want to make any other modifications, do so. Otherwise, write this file onto 

8 
disk with the FILE subcommand. 

': Verify your changes. 
" Bdit the file again. To compress unnecessary spaces in right hand columns, change 

the zone setting. This time, issue a CHARGE subcommand that will delete all blank 
spaces occuring after coluan 58. Since some changes you made to the file might have 
spoiled the alignment in the command column, this CHANGE subcommand should realign 
all of the columns. 

4m) Return the current line pointer to the top of the file. Change a null string to the 
string "I " for all lines in the file; since the left zone is still column 58, the 
characters are inserted in columns 58 and 59. 

346 IBM VM/370: eMS User's Guide 



M 

zone 1 * 
top 
TOF: 
c //1 / * 
I Alter the name of a CMS file 
I Alter the filetype of a CMS file 
I Change the filename of a CMS file 

. 
I Verify the existence of a CMS file on a read/write disk 
EOF: 
top 
TOF: 
next 
I Alter the name of a CMS file 
tabset 72 
repeat * 
overlay I 
I Alter the name of a CMS file 
I Alter the filetype of a CMS file 
I Change the filename of a CMS file 
I Compare the contents of CMS disk files 

. 
I Verify 
EOF: 
bottom 
I Verify 
input 
zone 1 72 
c / /-/ 

top 
TOF: 
input 

1 

the 

the 

* 

c / /-/ 1 * 
file 
Ri 

existence 

existence 

print function sort 
Ri 

of a CMS file on a read/write disk 

of a CMS file on a read/write disk 

RENAME 
RENAME 
RENAME 

I STATEW 

I REBAME 

I 

RENAME 
REBAME 
REBAME 
COMPARE 

STATEW 

STATEW 

4D)---~;;;~;-;~e left zone setting to column 1 and let the right zone be equal to the 
record lengthi issue the CHANGE subcommand to insert the' "I" in columns 1 and 2. 
CHANGE can be abbreviated as "CU. e At the top of the file, change the TABSET subcommand setting to 72. This makes 
column 72 the left margin. The REPEAT * subcommand, followed by the OVERLAY 
subcommand, indicates that all the lines in the file are to be overlayed with a I in 
the leftmost column (column 72). 

4!) When you enter this INPUT subcommand, enter a number of blank spaces following it; 
this places a blank line in the file. 41) Reset the ZONE setting to columns 1 and 72. The CHANGE subcommand indicates that all 
blanks on this line should be changed to hyphens (-). Only the blanks within the 

8 
specified zone are changed. 
Insert another blank line at the top of the file and change it to hyphens. 

I Write the file onto disk and use the CMS PRINT command to spool a copy to the 
offline printer. 

Sample Terminal Session Using the CMS Editor and CMS File System Co •• ands 347 



Sample Terminal Session Using Line-Number Editing 

This terminal session shows how a terminal session using right-handed line-number editing 
might appear on a typewriter terminal. The commands function the same way on a display 
terminal, but the display is somewhat different. When you enter these input lines, you 
should have physical tab stops set at your terminal at positions 16 and 22 (for assembler 
columns 10 and 16; the difference compensates for the line numbers, as you will see). On 
a display terminal, tab settings have no significance; once the line is in the output 
display area, it has.the proper number of spaces. 

o 
8 

e 

o 
8 
o 
8 

edit test assemble 
NEW FILE: 
EDIT: 
linemode right 
input 
INPUT: 
00010 * sample 
00020 test 
00030 
00040 
00050 
00060 
00070 
00080 
00090 
00100 

EDIT: 
60 

of linemode right 
csect 
balr 12,0 
using *,12 
st 14, sa v14 
wrterm testing ••• 
1 14, sa v 14 
br 14 
end 

000.60 WRTEBM 
c /testing ••• /.testing ••• • 
000.60 WRTEBM 
80 
00080 BR 14 
input 
INPUT: 

TESTING ••• 

·TESTING ••• • 

.---~~:~-;;~-;DIT command to invoke the CM S Editor. Since t his is a new file, the editor 
issues the NEW FILE message. 8 Issue the LINEMODE subcommand to indicate that you want to begin line-number 
editing. For ASSEMBLE files, you cannot have line numbers on the left, because the 
assembler expects data in columns 1 through 7. 

~ As soon as you issue the INPUT subcommand, the editor begins prompting you to enter 
input lines. FOr convenience in entering lines, the line numbers appear on the left, 
as they would if you were using left-handed line-number editing. In your ASSEMBLE 
file, however, the line numbers are actually on the right. e WhEm you are have finished entering these input lines, enter a null line to return 
to edit mode from input mode. 8 To locate lines when you are using line-number editing, you can enter the line 
number of the line. In this case, enter 60 to position the current line pointer at 

~ the line numbered 00060. The editor displays the line. 
~ Issue the CHANGE subcommand to place quotation marks around the text line for the 

WRTERM macro. The editor redisplays the line, with the change. 8 Issue the nnnnn subcommand, specifying line number 80, and use the INPUT subcommand 
so you can begin entering more input lines. 

348 IBM VM/370: CMS User's Guide 



0 00083 sav14 ds f 
00085 wkarea ds 3d 
00081 flag ds x 
00068 runon equ x'80' 

• 00089 runoff equ x'40' 
RENUMBER LINES 
EDIT: 
line mode off 
serial on abc 

I 
save 
EDIT: 
linemode right 
type 

fD 
00030 RUNOFF EQU X'40' 
verify 1 * 
type 

I 
00030 RUNOFF EQU X'40' ABC00130 
135 runmix equ x'20' 
50 
00050 ST 14,SIV14 ABCOO050 
input 
INPUT: 
00053 tm flag,runon 
00055 bcr 1,14 
00051 

G) EDIT: 
top 
TOF: 
next 

e * SAMPLE OF LINEMODE RIGHT ABCOO010 
restore 

~---;;;~-;~~- begin entering input lines between two existing lines, the editor uses an 
~ algorithm to assign line numbers. 
~ The editor ran out of line numbers, since the next line in the file is already 

numbered 90. You must renumber the lines. Before you can renumber the lines, you 
must turn line-number editing off. Before issuing the SAVE subcommand, which writes 
the file and its new line numbers onto disk, you can issue the SERIAL subcommand. 
SERIAL IBC indicates that you want the characters ABC to appear as the first three 
characters of each serial number. 
The EDIT message indicates that the SAVE request has completed. 
Issue the LINEMODE subcommand to restore line-number editing. 
subcommand to verify the position of the current line pointer. 

Use the TYPE 

If you want to see the serial numbers in columns 12 through 80, issue the VERIFY 
subcommand, specifying *, or the record length. Normally, the editor does not 
display the columns containing serial numbers while you are editing. 
You can use the nnnnn subcommand to insert individual lines of text. This subcommand 
inserts a line that you want numbered 135, and places it in its proper position in 
the file. Note that although, in this example, the current line pointer is 
positioned at line 130, it does not need to be at the proper place in the file. When 
the subcommand is complete, however, the current line pointer is positioned 
following the line just inserted. 
Position the line pointer at the line numbered 50, and again begin entering the 
input lines indicated. 
Enter a null line to return to edit mode, move the current line pointer to the top 
of the file, and display the first line. 
The RESTORE subcommand restores the default settings of the editor, and the the 
verification columns are restored to 1 and 12, so that line numbers are not 
displayed in columns 12 through 80. 

Sample Terminal Session Using Line-Number Editing 349 



G t~rpe * 
* SAMPLE OF LINEMODE RIGHT 
T)[i!ST CSECT 

BALR 12,0 
USING *,12 
ST 14,SAV14 
TM FLAG,RUNON 
BCR 1,14 
WRTERM 'TESTING ••• ' 
L 14,SAV14 
BR 14 

Sll V14 DS F 
WKAREA DS 3D 
F]~AG DS X 
RUNON EQU X'SO' 
RUNOFF EQU X'40' 
RUNM IX EQU X'20' 

END 
EOF: 

e fi.le 
Rl:SERIALIZATION SUPPRESSED 
R; 

G) type test assemble 

* SAMPLE OF LINEMOD! RIGHT ABCOO010 
TE:ST START X'20000' ABCOO020 

BALH 12,0 ABCOO030 
USING *,12 ABCOO040 
ST 14,SAV14 ABCOO050 
TM FLAG,RUNON 00053 
BCR 1,14 00055 
TYPE 'TESTING ••• ' ABCOO060 
L 14,SAV14 ABCOO070 
BR 14 ABCOOOSO 

SAV14 DS F ABCOO090 
WRAREA DS 3D ABC00100 
FLAG DS X ABC00110 
RUNON EQU X'SO' ABC00120 
RUNOFF EQU X'40' ABC00130 
RUNMIX EQU X'20' 00135 

END ABC00140 

G)---~~'~-;~~-;YPE subcomlland to display the file. e Whl~n you issue the FILE subcommand to write the file onto disk, the editor issues 
the message RESERIALIZATION SUPPRESSED to indicate that it is not going to update 
the line numbers, so that the current line numbers match the line numbers as they 
existed when the SAVE subcommand was issued. CE) If you want to see how the file exists on disk, use the CMS TYPE command to display 
thl~ file. Note that the lines inserted after the SA VE subcommand do not ha ve the 
initial ABC characters, and that they retain the line numbers they had when they 
welC'e inserted. 

3~O IBM VM/370: CMS User's Guide 



Sample Terminal Session for OS Programmers 

The following terminal session shows how you might create an assembler language program 
in CMS, assemble it, correct assembler errors, and execute it. All the lines that appear 
in lowercase are lines that you should enter at the terminal. Uppercase data represents 
the system response that you should receive when you enter the command. 

The input data lines in the example are aligned in the proper columns for the 
assembler; if you are using a typewriter terminal, you should set your terminal's tab 
stops at columns 10, 16, 31, 36, 41, and 46, and use the Tab key when you want to enter 
text in these columns. If you are using a display terminal, when you use a PF key defined 
as a tab, or some input character, the line image is expanded as it is placed in the 
screen output area. 

There are some errors in the terminal session, so that you can see how to correct 
errors in CMS. 

~ edit ostest assemble 
NEW FILE: 

o 

EDIT: 
input 
INPUT: 
dataproc csect 

print nogen 
space 

rO equ 0 
r 1 equ 1 
r2 equ 2 
r10 equ 10 
r12 equ 12 
r13 equ 13 
r14 equ 14 
r15 equ 15 

space 
stm r14,r12,12(r13) save caller's regs 
balr r12,0 establish 
using *,r12 addressability 
st r13,savearea+4 store addr of caller's savearea 
la r15,savearea get the address of my savearea 
st r15,8(r13) store addr in caller's savearea 
lr r13,r15 save addr of my savearea 
space 

*open files and check that they opened okay 

checkout 

space 
la 
open 
using 
la 
tm 
bnz 
la 
b 
la 
tm 
bnz 
la 
b 

r3,0 initially set return code 
(indata,outdata, (output» open files 
ihadcb,r10 get dsect to check files 
r10,indata prepare to check output file 
dcboflgs,x'10' everything ok? 
checkout ••• continue 
r3,100 set return code 
exit ••• exit 
r10,outdata check output file 
dcboflgs,x' 10' is it okay? 
process 
r3,200 set return code 
exit 

The EDIT command is issued to create a file named OSTEST ASSEMBLE. Since the file 
does not exist, the editor indicates that it is a new file and you can use the INPUT 
subcommand to enter input mode and begin entering the input lines. 

Sample Terminal Session for OS Programmers 351 



o 

8 
o 

process 

exi t 

space 
equ 
get 
lr 
put 
b 
space 
equ 
close 
1 
lr 
1 
1m 
br 
space 

sa ',earea dc 
inclata dcb 

EDIT: 
$mark 
sa ',e .input 
EDIT: 
INPUT: 

outdata dcb 
dcbd 
space 
end 

EDIT: 
fiJLe 
R; 

* indata 
r2,rl 
outdata, (2) 
process 

* 

read a record from input file 
save address of record 
move it to output 
continue until end-of-file 

(indata, , outda tal close files 
r13,savearea+4 addr of caller's save area 
r15,r3 load return code 
r14,12(r13) get return address 
rO,r12,20(r13) restore regs 
r14 bye ••• 

l8f'0' 
ddname=indd,macrf=gl,dsorg=ps,recfm=f,lrecl=80, 

eodad=exit 
ddname=outdd,macrf=pm,dsorg=ps 

global maclib osmacro 
R; 
as!:;emble ostest 

* 
* 
* 
* 
* 
* 
* 

---------------

" 
o 
e 

since the DCB macro statement takes up more than one line, you have to enter a 
continuation character in column 72. To do this, you can enter a null line to return 
to edit mode and execute the $MARK edit macro, which places an asterisk in column 
72. If the $MARK edit macro is not on your system, you will have to enter a 
continuation character some other way. (See "Entering a continuation Character in 
Column 72" in "Section 5. The CMS Editor.") 
Before continuing to enter input lines, the EDIT subcommand SAVE is issued to write 
whnt has already been written onto disk. The CP logical line end symbol (I) 
separates the SAVE and INPUT subcommands. 
A null line returns you to edit mode. You may wish, at this point, to proofread 
your input file before issuing the FILE subcommand to write the ASSEMBLE file onto 
disk. 
Since this assembler program uses OS macros, you must issue the GLOBAL command to 
identify the CMS macro library, OS MACRO MACLIB, before you can invoke the 
assembler. 
The ASSEMBLE command invokes the VM/370 assembler to assemble the source file; the 
asterisks P) indicate the CMS blip character, which you mayor may not have made 
active for your virtual machine. 

352 IBM V8/370: CMS User's Guide 



• 

23 
AN UNDEFINED 

LA 
SYMBOL 

R3,0 INITIALLY SET RETURN CODE 
ASSEMBLER DONE 
OST00230 
IF0188 R3 IS 
OST00240 24 

27+ 
MNOTE *** 

OPEN (INDATA,CUTDATA,(OUTPUT» OPEN FILES 
4000000 12,*** IHB002 INVALID OPTION OPERAND SPECIFIED-OUTDATA 

IF0197 *** 
OST00290 
IF0188 R3 IS 
OST00340 
IF0188 R3 IS 
OST00460 

32 LA 
AN UNDEFINED SYMBOL 

37 LA 
AN UNDEFINED SYMBOL 

63 LR 
IS AN UNDEFINED SYMBOL 

R3,100 

R3,200 

R15,R3 
IFO 188 R3 
NUMBER OF 
R (00012) ; 

STATEMENTS FLAGGEt IN THIS ASSEMBLY 

edit ostest assemble 
locate Ir2 
R2 EQO 2 
i r3 egu 3 
lopen 

c 1,1,,1 
OPEN (INDATA,OUTDATA, (OUTPUT» 

OPEN (INDATA, ,OUTDATA, (OUTPUT» 
file 
R; 
assemble ostest 

* 
* 
* 
* 
* 
* 

ASSEMBLER DONE 
NO STATEMENTS FLAGGED IN THIS ASSEMBLY 
Ri 
filedef indd disk test data a 
R; 
filedef outdd punch 
R; 
.cp spool punch to * 

SET RETURN CODE 

SET RETURN CODE 

LOAD RETURN CODE 

5 

OPEN FILES 

OPEN FILES 

.---;~~--;;;~Ilbler displays errors encountered during assembly. Depending on how 
accurately you copied the program in this sample session, you mayor may not receive 
some of these messages; you may also have received additional messages. 

~ You must edit the file OSTEST ASSEMBLE and correct any errors in it. The errors 
placed in the example included a missing comma on the OPEN macro, and the omission 
of an EQU statement for a general register. These changes are made as shown. The 
CMS Editor accepts a diagonal (I) as a LOCATE subcommand. 

4E» After all the changes have been made to the ASSEMBLE file, you can issue the FILE 
subcommand to replace the existing copy on disk, and then reassemble it. 

~ This time, the assembler completes without encountering any errors. If your 
ASSEMBLE file still has errors, you should use the editor to correct them. 

~ The FILEDEF command is used to define the input and output files used in this 
program. The ddnames INDD and OUTDD, defined in the DCBs in the program, must have a 
file definition in CMS. To execute this program, you should have a f~le on your 
A-disk name TEST DATA, which must have fixed-length, aO-character records. If you 
have no such file, you can make a copy of your ASSEMBLE file as follows: 

copyfile ostest assemble a test data a 

The output file is defined as a punch file, so 
virtual card punch. 

that it will be written to your 

The CP SPOOL command is issued, using the .CP function, to spool your virtual punch 
to your virtual card reader. When you use the .CP function, you do not receive a 
Ready message. 

sample Terminal Session for OS Programmers 353 



load ostest 
R; 
start 
DHSLI0740I EXECUTIOB BEGINS ••• 
DMSSOP036E OPEN ERROR CODE '04' ON 'OUTDD ' 
R (00200) ; 
filedef 
IUDD DISK TEST tAT A 11 
OllTDD PUNCH 
R; 
filedef outdd punch (lrecl 80 recfm f 
R; 
Icp query reader all 
NO RDR FILES 
load ostest (start 
DHSLI0740I EXECUTION BEGINS ••• 
PUN FILE 6198 TO BILBO COPY 01 NOHOLD 
R; 
ft indd reader 
R; 
ft outdd disk new osfile a4 (recfm fb block 1600 lrecl 80 
R; 
listfile new osfile a4 (label 
DHSLST002E lILE NOT FOUID. 
R(00028) ; 
rllLn ostest 
EXECUTION BEGINS ••• 

* R;; 
listfile new osfile a4 (label 
FILENAeE FILETYPE le POReAT 
NEW OSFILE A4 F 1600 
R~ 

RECS BLOCKS DATE TIftE LABEL 
5 10 9/30/75 8:26 PAT198 

.---;i~~-~~i~- co.mand loads the TEXT file produced by the assembly into virtual storage. 
~ The START cOllmand begins program execution. 
~ An open error is encountered during program execution. The CftS Ready message 
A, indicates a return code of 200, which is the value placed in it by your program. 
W The FILEDEF comlland, with no operands, results in a display of .the current file 
& dc:!finitions in effect. 
W E]~ror code 4 on an open request means that no RECFft or LRECL information is 

available. An exa.ination of the program listing would reveal that the DCB for 
OUTDD does not contain any information about the file format; you must supply it on 
the FILEDEF com.and. Re-enter the FILEDEF com.and. G You can use the CP QUERY cOllmand to determine whether there are any files in your 
card reader. It should be ellpty; if not, determine whether they might be files you 
need, and if so, read them into your virtual machine; otherwise, purge them. 
Ose the LOAD command to execute the program again; this time, use the START option 
of the LOAD com.and to begin the program execution. 
The PON FILE message indicates that a file has been transferred to your virtual card 
reader. The Ready message indicates that your program executed successfully. 
For the next execution of this program, you are going to read the file back out of 
YC)UI:' card reader and create a new CftS disk file, in OS sillula ted da ta set format. 
FI is an acceptable system truncation for the co.mand name, ~ILEDEF. 
The LISTFILE command is issued to check that the file NEW OS FILE does not exist. 
The RON co.mand (which is an EXEC procedure) is used instead of the LOAD and START 
commands, to load and execute the program. The Ready message indicates that the 
program completed execution. 
The LISTFILE command is issued again, and the file NEW OSFILE is listed. (If you 
issue another CP QUERY READER co •• and, you will also see that the file is no longer 
ill your card reader.) 

354 IBft V!/310: CIS U •• r's Guide 



Sample Terminal Session For DOS Programmers 

The following terminal session shows how you might create an assembler language program 
in CMS. assemble it, correct assembler errors, and execute it. All the lines that appear 
in lowercase are lines that you should enter at the terminal. Uppercase data represents 
the system response that you should receive when you enter the co •• and. 

The input data lines in the example are aligned in the proper columns for the 
assembler; if you are using a typewriter terminal, you should set your terminal's tab 
stops at columns 10, 16, 31, 36, 41, and 46 and use the Tab key when you want to enter 
text in these columns. If you are using a display terminal, when you use a PF key or an 
input character defined as a tab, the line image is expanded as it is placed in the 
screen output area. 

!2!~: The assembler, in CMS, cannot read macros from DOS/VS libraries. This sample 
terminal session shows how to copy macros from DOS/VS libraries and create CftS ftACLIB 
files. Ordinarily, the macros you need should already be available in a system ftACLIB 
file. You do not have to create a ftACLIB each time you want to assemble a program. 

There are some errors in the terminal session, so that you can see how to correct 
errors in CftS. 

4Da cp link dosres 130 130 rr linkdos 
DASD 130 LINKED R/O 
R; 
access 130 z 
Z (130) R/O - DO S 
R; 
set dos on z 
R; 
edit dostest assemble 
NEW FILE: 
EDIT: 
input 
INPUT: 
begpgm osect 

balr 12,0 
using 
la 
open 

loop get 
put 
b 

eodad equ 
close 
eoj 
eject 

*,12 
13,savearea 
infile,outfile 
infile 
outfile 
loop 

* infile,outfile 

buffer 
infile 

dc 
dtfdi 

CL80' , 
modnaae=shrmod,ioareal=buffer,devaddr=sysipt, 

4Ij---~;;-;~;-~p LINK command to link to the DOS system residence volume and the ACCESS 
command to access it. In this example, the system residence is at virtual address 
130 and is accessed as the Z-disk. e Enter the CftS/DOS environment, s,pecifying the mode letter at which the DOS/VS system 
residence is accessed. 

~ Use the EDIT command to create a file named DOSTEST ASSEMBLE. Since the file does 
not exist, the editor indicates that it is a new file and you can use the INPUT 
subcommand to enter input mode and begin entering the input lines. 

Sample Terminal Session for DOS Programmers 355 



o 
8 

o 

o 

fa 

EDIT: 
$mark 
saveiinput 
EDIT: 
INPUT: 

eofaddr=eodad,recsize=80 
outfile dtfdi modname=shrmod,ioarea1=buffer,devaddr=syspch, 

EDIT: 
$mark 
saveiinput 
EDIT: 
INPUT: 

shrmod 
endpgm 

recsize=81 
dimod typefle=output 
equ * 

EDIT: 
file 
R; 

end 

edit getmacs eserv 
NEW FILE: 
EDIT: 
tabs 2 72 
input 
INPUT: 
punch open,close,get,put,dimod,dtfdi 

EDIT: 
file 
R-, 
assgn sysipt a 
H; 
eserv getmacs 
R-, 

~---~i~~~-;~~ DTPDI macro statement takes up more than one line, you have to enter a 
continuation character in column 72. To do this, you can enter a null line to return 
to edit mode and execute the $MAHK edit macro, which places an asterisk in column 
72. If the $MARK edit macro is not on your system, you will have to ent~r a 
continuation character some other way. (See "Entering a Continuation Character in 

A Column 72" in "Section 5. The CMS Editor. II) 
~ Before continuing to enter input lines, the EDIT subcommand SAVE is issued to write 

what has already been written onto disk. The CP logical line end symbol (t) 

"

separates the SAVE and INPUT subcommands. 
, Another continuation character is needed. 

A null line returns you to edit mode. You may want, at this point, to proofread your 

O. input file before issuing the FILE subcommand to write the ASSEMBLE file on disk. 
To obtain the macros you need to assemble this file, use the editor to create an 
ESERV file. By setting the logical tabs at columns 2 and 72, you can protect 

~ yourself from entering data in column 1. 
~ PONCH is an ESERV program control statement that copies and de-edits macros from 

source statement libraries; in this case, the system source statement library. The 
output is directed to the SYSPCH device, which the eMS/DOS ESERV EXEC assigns by 
default to your A-disk. 

~ You must assign the logical unit SYSIPT before you invoke the ESERV command. GETMACS 
is the filename of the ESERV file containing the ESERV control statements. 

356 IBM VM/370: eMS User's Guide 



listfile getmacs * 
GETMACS ESERV Al 
GETMACS MACRO Al 
GETMACS LISTING Al 
Ri 
maclib gen dosmac getmacs 
R; 
erase getmacs * 
R; 
global maclib dosmac 
R; 
assemble dostest 

* 
* 

ASSEMBLER DONE 
DOS00040 4 LA 13,SAVEAREA 
IF0188 SAVEAREA IS AN UNDEFINED SYMBOL 
DOSOOll0 35 EOJ 
IF0078 UNDEFINED OP CODE 
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY 
R (00008) ; 
edit dotest assemble 
EDIT: 
locate /buffer/ 
BUFFER DC CL80" 
input savearea ds 9d 
file 
R; 
edit eoj eserv 
NEW FILE: 
EDIT: 
i punch eoj 
file 
R; 
listio sysipt 

SYSIPT DISK 
R; 
eserv eoj 
R; 

A 

2 

~---;;~;;-~;; ESERV EXEC completes execution, you have three files. You may want to 
examine the LISTING file to check the ESERV program listing. The MACRO file 
contains the punch (SYSPCH) output. 

~ The MACLIB command creates a macro library named DOSMAC MACLIB. Since the MACLIB 
command completed successfully, you can erase the files GETMACS ESERV, GETMACS 
LISTING, and GETMACS MACRO; an asterisk in the filetype field of the ERASE command 
indicates that all files with the filename of GETMACS should be erased. CI) Before you can invoke the assembler, you have to identify the macro library that 

~ contains the macros; use the GLOBAL command, specifying DOSMAC MACLIB. 
~ The ASSEMBLE command invokes the VM/370 assembler to assemble the source file; the 

asterisks (*) indicate the CMS blip character, which you mayor may not have made 
active for your virtual machine. 

~ The assembler displays errors encountered during assembly. Depending on how 
accurately you copied the program in this sample session, you mayor may not receive 

~ some of these messages; you may also have received additional messages. 
~ To correct the first error, which was the omission of a DS statement for SAVEAREA, 
~ edit the file DOSTEST ASSEMELE and insert the missing line • 
.., The second error indicates that the macro EOJ is not available, since it was not 

copied from the source statement library. Create another ESERV file to punch this 
macro. 
Use the LISTIO command to check that SYSIPT is still assigned to your A-disk, so 
that you do not have to issue the ASSGN command again. Then issue the ESERV command 
again, this time specifying the filename EOJ. 

Sample Terminal Session for DOS Programmers 357 



maclib add dosmac eoj 
R; 
maclib 
MACRO 
OPEN 
ClOSE 
GE,T 
PUT 
DIKOD 
DTPDI 
EOJ 

map dosmac (terll 
INDEX SIZE 

R; 

2 43 
46 43 
90 56 

141 93 
241 641 
889 284 

1114 6 

erase eoj * 
Ri 
assemble dostest 

* 
* * 

ASSEMBLER DONE 
NO STATEMENTS PLAGGED IN THIS ASSEKBLY 
R; 
listfile 
DOSTEST 
DOSTEST 
DOSTEST 
R; 

dostest * 
ASSEMBLE 
LISTING 
TEXT 

A1 
A1 
A1 

pI:'in t dostest listing 
R; 
doslked dostest 
Ri 
listfile 
DClSTEST 
DOSTEST 
DOSTEST 
DOSTEST 
DOSTEST 
Ri 

dostest * 
ASSEMBLE 
DOSLIB 
TEXT 
LISTING 
KAP 

A1 
A1 
11 
A1 
AS 

.---~;;;-;;;-;DD function of the KAeLIB command to add the macro EOJ to DOSKAC MACLIB. 
Then, issue the MAC LIB command again, using the MIP function and the TERft option to 
display a list of the macros in the library. e Erase the EOJ files. You should always remember to erase files that you do not need 
any longer. Reassemble the program. fl) Tltis tille, the assembler completes without encountering any errors. If your 
ASSEMBLE file still has errors, you should use the editor to correct them. e Us:e the LISTPILE comlland to check for DOSTEST files. The assembler created the 
fi.les, DOSTEST LISTING and DOSTEST TEXT. The TEXT file contains the object module. 
You can print the program listing, if you want a printed copy. Then, you may want to 

A eI:ase it. 
~ Use the DOSLKED command to link-edit the TEXT file into an executable phase and 

write it into a DOSLIB. Since this program has no external references, you do not 
need to add any linkage editor control statements. G Now, you have a DOSTEST DOSLIB, containing the link-edited phase, and a ftAP file, 
containing the linkage editor map. You can display the linkage editor map with the 
TIPE command, or use the PRINT command if you want a printed copy. 

358 IBK VM/310: CftS User's Guide 



Icp spool punch to * 
punch test data a 
PUN FILE 0100 TO BILBO 
R; 
tcp query reader all 

COpy 01 NOHOLD 

ORIGINID FILE CLASS RECDS CPY HOLD DATE TIME NAME 
PATTI 5840 A PUN 000097 01 NONE 09/29 15:00:39 TEST 
assgn sysipt reader 
R; 
assgn syspch a 
R; 
dlbl outfile a cms punch output (syspch 
R; 
state punch output a 
DMSSTT002E FILE NOT FOUND. 
R(00028); 
global doslib dostest 
R; 
fetc h dostest 
DMSFET7101 PHASE 'DOSTEST' ENTRY POINT AT LOCATION 020000. 
R; 
start 
DMSLI07401 EXECUTION BEGINS ••• 
R; 

TYPE 
DATA 

listfile punch output a (label 
FILENAME FILETYPE FM FORMAT RECS BLOCKS DATE TIME LABEL 
PUNCH OUTPUT 11 F 80 
R; 
Icp query reader all 
NO RDR FILES 

97 10 9/29/75 14:50 BBB191 

DIST 
BI N211 

~---;~-;;;~~;e this program in 
records into your virtual 
fixed-length, 80-character 
CMS Editor, or by copying 
follows: 

CMS/DOS, punch 
card punch. 

records, you 
your ASSEMBLE 

a file that has fixed-length 80-character 
If you do not have any files that have 

can create a file named TEST DATA with the 
source file with the COpy FILE command, as 

copy file dostest assemble a test data a 

Use the CP SPOOL command to spool the punch to your own virtual machine, then use 
the PUNCH command to punch the file. The PUN FILE message indicates that the file 
is in your card reader. Use the CP QUERY command to check that it is the first, or 
only file in your reader. 
Use the ASSGN command to assign SYSIPT to your card reader and SYSPCH to your 
A-disk. 

unit to a disk mode, you must issue the DLBL command to 
CMS. For this program execution, you are creating a CMS 
The STATE command ensures that the file does not already 

When you assign a logical 
identify the disk file to 
file named PUNCH OUTPUT. 
exist. If it does exist, 
DLBL cOllmand. 

rename it, or else use another filename or filetype on the 

Use the GLOBAL command to identify the DOSLIB, DOSTEST, you want to search for 
executable phases, then issue the FETCH command specifying the phase name. The 
FETCH command loads the executable phase into storage. When the FETCH command is 
executed without the START option, a message is displayed indicating the entry point 
location of the program loaded. 
The START command begins program execution. The CMS Ready message indicates that 
your program completed successfully. You can check the input and output activity by 
using the LISTFILE command to list the file PUNCH OUTPUT. If you use the CP QUERY 
command, you can see that the file is no longer in your virtual card reader. 

Sample Terminal Session for DOS Programmers 359 



a~;sgn sysipt a 
R: 
dlbl in file a cms punch outFut (sysipt 
R;; 
assgn syspch punch 
R; 
fetch dostest (start 
D8SLI0740I EXECUTION BEGINS ••• 
PUN FILE 5829 TO BILBO COPY 01 NOHOLD 
R;: 
read punch2 output 
Ri 
listfile punch2 output a (label 
FILENAME FILETYPE FM FORMAT 
PUNCH2 OUTPUT A1 F 80 
Ri 

------ ... _------

RECS BLOCKS DATE TIME 
97 10 9/29/75 14:50 

LABEL 
BBB191 

G If you want to execute this program again, you can assign SYSIPT and SYSPCH to 
different devices; in this example, the input disk file PUNCH OUTPUT is written to 
the virtual punch. You do not need to reissue the GLOBIL DOSLIB command; it remains 
in effect until you reissue it or IPL CMS again. CD This time, the program execution starts immediately, because the STIRT o:ption is 
specified on the FETCH co.mand line. ED I~Jain, the PUN FILE message indicates that a file has been received in your virtual 
card reader. You can use the CMS coamand REIDCIRD to read it onto disk and assign it 
a filenaae and filetype, in this example, PUNC82 OUTPUT. 

360 IBM Vft/370: CftS User's Guide 



Sample Terminal Session Using Access Method Services 

This sample terminal session 
should have an understanding 
terminal session. 

shows you how to use Access Method Services under CMS. You 
of VSAM and Access Method Services -before you use this 

The terminal session uses a number of CMS files, which you may create during the 
course of the terminal session; or, you may prefer to create all of the files that you 
need before-hand. within the sample terminal session, the file that you should create is 
displayed prior to the commands that use it. 

This terminal session is for both CMS OS VSAM programmers and CMS/DOS VSAM 
programmers; all the ASSGN commands and SYSxxx operands that apply when the CMS/DOS 
environment is active are shaded. If you have issued the command SET DOS ON, you must 
enter the shaded entries; if not, you must omit the shaded entries. 

I£~§: 

1. This terminal session assumes that you have, to begin with, a read/write CMS A-disk. 
This is the only disk required. Additional disks used in this exercise are temporary 
disks, formatted with the IBCDASDI disk initializatjon program under CMS. If you 
have OS or DOS disks available, you should use them, and remember to supply the 
proper volume and virtual device address information, where appropriate. The number 
of cylinders available to users for temporary disk space varies among installations; 
if you cannot acquire ample disk space, see your system support personnel for 
assistance. 

2. Output listings created by AMSBRV take up disk space, so if your A-disk does not 
have a lot of space on it, you may want to erase the LISTING files created after 
each AMSBRV step. 

3. If any of the AMSERV commands that you execute during this sample terminal session 
issue a nonzero return code, for example, 

0 

R(00012); 

you should edit the LISTING file to examine the Access Method Services error 
messages. The publication QQ~L!~ ~~§2~g~2 contains the return codes and reason codes 
issued by Access Method Services. You should determine the cause of the error, 
examine the DLBL commands and AMSERV files you used, correct any errors, and retry 
the command. 

.cp define t3330 200 10 
DASD 200 DBFINED 010 CYL 
.cp define t3330 300 10 
DASD 300 DEFINED 010 CYL 
fcp define t3330 400 10 
DASD 400 DEFINED 010 CYL 

4Ij---;;~;:-~~~.ands define temporary 3330 mindisks at virtual addresses 200, 300, and 
400. 

Sample Terminal Session Using Access Method Services 361 



~ File: PUICH IBCDASDI 

222222 JOB 
MSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=200,VOLID=SCRATCH,CYLBO=10 
VLD NEWVOLID=222222 
VTOCD STRTADR=10,EXTENT=5 
END 

33:3333 JOB 
MSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=300,VOLID=SCRATCH,CYLBO=10 
VLD NEWVOLID=333333 
VTOCD STRTADR=10,EXTENT=5 
END 

44iJ444 JOB 
MSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=400,VOLID=SCRATCH,CYLNO=10 
VLD NEWVOLID=444444 
VTOCD STRTADR=10,EXTENT=5 
END 

8 File: IBCDASDI EXEC 

CP CLOSE C 

e 
• 

CP PURGE RDR ALL 
0003 FILES PURGED 
ACe 190 Z/Z IPL * 
DMSACC7241 '190' REPLACES ' Z (350) ,- DOS 
DMSACC7231 Z (190) R/O 
DMSACC7251 190 ALSO = S-DISK 
CP SPOOL D CONT * 
PURCH IPL IBCDASDI Z ( ROH 
PUNCH 222222 IBCDASDI * ( HOH 
CP SPOOL PUNCH NOCONT 
CP CLOSE PUNCH 
PUN FILE 2753 TO PATTI COpy 01 BOHOLD 
CP IPL OOC 

ibc:dasdi 
IBC105A DEFINE INPUT DEVICE. DASDI 7.77 
input=2540,00c 

.---;;;l;-;ii~ contains control state.ents for the IBCDASDI program, which formats and 
initializes disks for OS and DOS. These disks are labelled 222222, 333333, and 
444444. Any aessages produced by the IBCDASDI prograa are sent to your terminal. 

4Et This file contains the commands necessary to use the IECD1SDI progra. under Cfts. You 
must punch a copy of the IECDASDI program, followed by the file containing your 
control statements, to your virtual card reader, and then load the IBCD1SDI progra •• 
This is all done in the file IBCDASDI BXEC. e Exc~cute the IBCD1SDI BXEC. The last command in the BXEC is the IPL com.and, which 
pa:;ses control to the IBCDASDI program, Which prompts you to enter the address of 
the control state.ents. e Since the control statements are in your card punch, you indicate the device type 
(2540) and the address (OOC) on the INPUT= state.ent. 

362 I)~B V!/370: C!S User's Guide 



o 

o 

G 

DASDI 7.77 
222222 JOB 

MSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=200,VOLID=SCRATCH,CYLNO=10 
VLD NEWVOLID=222222 
VTOCD STRTADR=10,EXTENT=5 
END 

IBC163A END OF JOB. 
DASDI 7.77 

333333 JOB 
MSG TODEV=1052,TOADDR=009 
DADEF TODEV=3330,TOADDR=300,VOLID=SCRATCH,CYLNO=10 
VLD NEWVOLID=333333 
VTOCD STRTADR=10,EXTENT=5 
END 

IBC163A END OF JOB. 
DASDI 7.77 

444444 JOB 
MSG TODEV=1052,TOADtR=009 
DADEF TODEV=3330,TOADDR=400,VOLID=SCRATCH,CYLNO=10 
VLD HEWVOLID=444444 
VTOCD STRTIDR=10,EXTENT=5 
ERD 

IBC163A END OF JOB. 
DMKDSP450W CP ENTEREDi DISABLED WAIT PSW '00060000 OOOOEEEE' 
ipl cms 
CMS ••• VERSIOR 3.0 02/28/76 

B (200) R/W - OS 
Ri 
access 300 c 
DMSACC7231 C (300) R/i - OS 
Ri 
access 400 d 
DMSACC7231 D (400) R/W - OS 
Ri 
query search 
BBB191 191 A R/W 
222222 200 B R/W - OS 
333333 300 C R/W - OS 
444444 400 D R/W - OS 
CMS190 190 S R/O 
~:J:911~&;~1~.iQ;k~e?J;l)Qa·~ 
R; 

~---;;~;~-;~~sages are issued by the IBCDASDI program, which displays the statements 

8 
e , 

executed and indicates the end ~f each job. 
When the last IBCDISDI job 1S complete, your virtual .achine is in the CP 
environment and you must reload the CMS system before you can continue. 
If you are a CMS/DOS user, you must reaccess the DOS/VS system residence volume and 
issue the SET DOS ON command line, specifying the VSlft option. If you have not 
previously linked to the system residence, you must use the CP LINK command befor.e 
you issue the ACCESS command. 
Access the three newly formatted disks as your B-, C-, and D-disks. 
You can issue the QUERY SEARCH command to verify the status of all disks you 
currently have accessed. 

Sample Terminal Session Using Access Method Services 363 



File: MASTCAT AMSERV 

DEFINE ~ASTERCATALOG -
( NAME (MASTCAT) 

VOLU~E (222222) -
CYL (4) -
UPDATEPW (GAZELLE) -
FILE (IJSYSCT) ) 
'e~. •... . ,,', 

dlbl jsysct b dsn mastcat "~:t~:rq~~~ perm extent 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
19 171 

R; 
amserv mastcat 
R; 

Pile: CLUSTER A~SERV 

DEFINE CLUSTER ( NAME (BOOK.LIST ) -
VOLUMES (222222) -
TRACKS (20) -
FILE (BOOK) -
KEYS (14,0) -
RECORDSIZE (120,132) ) -
DATA (NA~E (BOOK. LIST. DATA) ) -
INDEX (NAME (BOOK.LIST.INDEX ) ) 

amsE~rv cluster 
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV 
gaz(~lle 

R; 

G Pil.~: REPRO AMSERV 

REPRO INPILE (BFILE -
ENV ( RECORDFORMAT(F) -
BLOCKSIZE(120) -
PDEV (3330) ) ) -
o UTFILE (BOOK) 

FILE MASTCAT 

CIt---;;;-;ii;-MASTCAT AMSERV defines the VSAM master catalog that you are going to use. 
~ Identify the master catalog volume, and use the EXTENT option on the DLBL command so 

that you can enter the extents. For this extent, specify 171 tracks (9 cylinders) 
for the master catalog. Since 4 cylinders are specified in the AMSERV file, the 

~ remaining 5 cylinders will be used for suballocation by VSAM. 
~ You must enter a null line to indicate that you have finished entering extent 

information. 
41) Issue the AMSERV command, specifying the MASTCAT file. The Ready message indicates 

that the master catalog is created. 
CE) Define a suballccated cluster. This cluster is for a key-sequenced data set, named 

BOOK.LIST. 
41) No DLBL command is necessary when you define a suballocated cluster. Note that 

since the password was not provided in the AMSERV file, Access Method Services 
prompts you to enter the password of the catalog, which is defined as GAZELLE. G Use the Access Method Services REPRO command to copy a CMS da ta file into the 
cluster that you just defined. 

364 IBM VM/370: CMS User's Guide 



e>,,~"~r""~~~~~~:~~ 
copyfile test data a (recfm f lrecl 120 
R; 
sort test data a book file a 
DMSSRT604R ENTER SORT FIELDS: 
1 14 
Ri 
dlbl bfile a cms book file tl!iO:Ql~ 
R-

~~ij'I~!>~I~~Q:~~tm 
Ri 
dlbl book b dsn book list (vsam ~~~:$JUt~~~ 
R; 
amserv repro 
R; 

~ File: SPACE AMSERV 

DEFINE SPACE -

R;> 

( FILE (SPACE) -
TRACKS (57) -
VOLUME (333333) ) 

G dlbl space c (extent ~««l~ 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
19 57 

R; 
amserv space 
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV 
gazelle 
R; 

FILE MASTCAT 

~---;~~-;~;~-identifY the dnames for the input and output files for the REPRO function. 
BFILE is a CMS file, which must be a fixed-length, 120-character file, and it must 
be sorted alphamerically in columns 1 through 14. The COPYFILE command can copy any 
existing file that you have to the proper record format; the SORT command sorts the 

.~ records on the proper fields. 
'" The output file is the VSAM cluster, so you must use the VSAM option on this DLBL 

command. 
~ Create an AMSERV file to define additional space for the master catalog on the 

volume labelled 333333. 
~ Again, use the EXTENT option on the DLBL command so that you can enter extent 
~ information, and a null line to indicate that you have finished entering extents. 
'" Issue the AMSERV command. Again, you are prompted to enter the password of the 

master catalog. 

sample Terminal Session using Access Method Services 365 



~ File: UNIQUE AftSERV 

DEFINE CLUSTER-
( NAftE (UNIQUE.FILE) -

UNIQUE ) -
DATA 
(CYL (3) -

FILE (KDATA) -
RECORDSIZE (100 132) -
KEYS (12,0) -
VOLUMES (333333 ) ) -

INDEX -
(CYL (1)-

FILE (KINDEX) -
VOLUMES (333333) 

dlbl kdata c (extent II_~~ 
D~SDLB331R ENT~R EXTE T SPECIFICATIONS: 
76 57 

R~ 
dlbl kindex c (extent *M@U 
DMSDLB331R ENTER EXTERT SPECIFICATIONS: 
1:J3 19 

R; 
aDlserv un ique 
4221A ATTEMPT 1 OF 2. ERTER PASSWORD FOR JOB AMSERV 
gazelle 
R; 

G Fi.le: USERCAT lftSERV 

DEFINE USERCATALOG -
( CYL (4) -

FILE (IJSYSUC) -
NAftE (PRIVATE.CATALOG) -
VOLUME (444444) -
UPDATEPW (UNICORN) -
ATTEMPTS (2) ) _. 

DATA (CYL (3) )
INDEX ( CYL (1) ) -
CATALOG (MASTCAT/GAZELLE 

d jsysuc d dsn private catalog (extent .mEi perm 
DMSDLB331R ENTER EXTENT SPECIFICATIONS: 
19 152 

R; 
amserv usercat 

* R; 

FILE MA STCA T 

m---;;~l;-;;~;RV file defines a unique cluster, with data and index components. 
~ You must enter DLBL commands and extent information for both the data and index 

conponents of the unique cluster. e NeJct, define a private (user) catalog for the volume 444444. This catalog is named 
PRIVATE.CATALOG and has a password of UNICORN. o Whon you define a user catalog that you are going to use as the job catalog for a 
terminal session, you should use the ddname IJSYSUC. 

366 IBM VM/370: CMS User's Guide 



fl) 

TAPE 181 ATTACHED 
File: EXPORT AMSERV 

EXPORT BOOK.LIST 
I NFl LE (BOOK) -
OUTFILE (TEMP ENV (PDEV (2400) » 

dlbl 
IJSYSCT DISK FILE IJSYSCT B1 
BFILE DISK BOOK FILE A1 
BOOK DISK FILE BOOK B1 
SPACE DISK FILE SPACE C1 
KDATA DISK FILE KDATA C1 
KINDEX DISK FILE KINDEX C1 
IJSYSUC DISK FILE IJSYSUC D1 
R; 
dlbl book b dsn book list (cat ijsysct 
R; 
amserv texport (tapout 181 
DMSAMS361R ENTER TAPE OUTPUT DDIAMES: 
temp 
R; 

MASTCAT 

BOCK. LIST 

PRIVATE. CATALOG 

~ File: IMPORT AMSERV 

IMPORT 

tape rew 
R; 

CATALOG (PRIVATE.CATALOG/UNICORN) -
INFILE (TEMP EIV (PDEV (2400») -
OUTFILE (BOOK2) 

dlbl book2 d dsn book list (vsam '.I,llral 
R; 
amserv timport (tapin 181 
DMSAMS361R ENTER TAPE INPUT DDRAMES: 
temp 
R; 

~---;~;-;;;-;ant to try an EXPORT/IMPORT function, if you can obtain a scratch tape from 
the operator. When the tape is attached to your virtual machine, you receive this 
message. 

~ The file that is being exported is the cluster BOOK. LIST created above. If you do 
not have access to a tape, you can export the file to your CMS A-disk. Remember to 
change the PDEV parameter to reflect the appropriate device type. 

4m) Before issuing the AMSERV command to perform the export function, you may want to 
check the DLBL definitions in effect. Issue the DLBL command with no operands to 
obtain a list of current DLEL definitions. 

4W) You must reissue the DLBL for BOOK. LIST, because there is a job catalog in effect, 
and the file is cataloged in the master catalog. Use the CAT option to override the 
job catalog. 

4D) There is no default tape value when you are using tapes with the AMSERV command. You 
Bust specify the TAPIR or TAPOUT option and indicate the virtual address of the 

~ tape. You are prompted to enter the ddname, which for this file is TEMP. 
~ The last AMSERV file imports the cluster BOOK. LIST to the user catalog, 

PRIVATE.CATALOG. 
4i) You should rewind the tape before reading it as input. 

sample Terminal session Using Access Method Services 367 





¢ logical line delete symbol 17 

&$ special variable 
resetting 262 
using to test arguments 261 

&* special variable 
resetting 262 
using to test for absence of arguments 

262 
&ARGS control statement, changing &n 
special variables with 259 

&BEGEMSG control statement, when to use 
293 

&BEGPUNCH control statement, when to use 
283 

&BEGSTACK conttol statement, when to use 
275 

&BEGTYPE control statement 
examples 114 
when to use 272 

&CONTINUE control statement 
following a label 111 
used with &ERROR control statement 287 

&CONTROL control statement 
controlling execution summary of an EXEC 

285 ' 
examples 115 

&DATATYPE built-in function, using to test 
arguments 261 

&EMSG control statement, examples 293 
&ERROR control statement 

examples 112 
provide error exit for CMS commands 286 

&EXIT control statement 
examples· 111 
passing return code to CMS 270 

&GLOBAL special variable, testing recursion 
level of EXEC 269 

&GLOBALn special variable 
example 265 
passing arguments to nested procedures 

269 
&GOTO control statement 

examples 111 
transferring control in an EXEC 

procedure 264 
&HEX control statement, examples 258 
&IF control statement 

maximum number allowed in nest 264 
testing variable symbols 263 

&INDEX special variable 109 
testing 260 
using to establish a loop 260 

&LENGTH built-in function, using to test 
arguments 261 

SLITERAL built-in function 
examples 268 
examples of sUbstitution 257 

SLOOP control statement 
example 112 

Index 

execution summary when &CONTROL ALL is 
in effect 294 

preparing loops in an EXEC procedure 
267 

&n special variable, manipulating 259 
&PUNCH control statement 

punching jobs to CMS Batch Facility 237 
using to create a file 282 

&READ control statement 
ARGS operand 109 

changing &n special variables 259 
examples 113 
reading CMS commands 271 

SREADFLAG special variable 
determining if console stack needs to be 
cleared 279 

using to test the console stack 276 
SRETCODE special variable 

example 112 
testing after CMS command execution 287 
using with SEXIT control statement 270 

SSKIP control statement 
examples 112 
transferring control in an EXEC 

procedure 266 
SSPACE control statement, example 114 
SSTACK control statement 

stacking EXEC files with 280 
using in edit macros 297 
using to stack a null line 278 
when to use, in edit macros 301 

&SUBSTR built-in function, examples 
268,2~0 

STIME control statement, example 115 
STYPE control statement 

displaying prompting messages in an EXEC 
procedure 271 

examples 113 
when to use 272 

&TYPEFLAG special variable, testing whether 
EXEC is displaying data 274 

&1 through S30, special variables 109 

! (exclamation point), controlling whether 
it is displayed 37 

$, used as first character of filename for 
edit macros 297 

$COL edit macro 310 
$CONT EXEC 302 
$DUP edit macro, example 81 
$LISTIO EXEC file 165 
$M1CROS edit macro 306 
$MARK edit macro 307 

used to enter continuation character 88 
$MOVE edit macro, how to use 81 
$POINT edit macro 309 

Index 369 



* (asterisk) 
entered in fileids on command lines 52 
entered in filemode field 61 
on EDIT subcommands 72 
used to write comments in EXEC 

procl:!dures 291 
*COPY stiit ement 

examples 145 
in CftS/DOS 174 

/* 
CftS Batch Facility control card, used to 
signal end-of-job 233 

end-oi-file indicator 
in AftSERV file 188 
in batch job 240 

// record, used as delimited in ftACLIBs 
148,176 

/ (diagonal), as delimiter on EDIT 
subcommemds 72 

/JOB control card, description 232 
/SET control card, description 233 

I (percent symbo~, setting EXEC arguments 
to blan).s 259 

1 
subcommand 

uSClge 96 
using on a display terminal 332 

using as an argument for EXEC procedures 
291 

1EDIT message 73 

• logical line end symbol 17 
restriction on stacking in an EXEC 
procedure 277 

using to enter a null line in input lIode 
70 

using when setting program function keys 
326 

.CP function 17,29 
using in edit or input mode 92 
using on display terminals 325 

a logical. character delete symbol 16 
using when setting program function keys 

326 

= (equal sign) 
entered in fileids on command lines 53 
entered in file.ode field 61 

= subcom.and (§~~ REUSE subcommand) 

370 IB~ Vft/370: CftS User's Guide 

" logical escape symbol 18 

A 

used when setting program function keys 
326 

abnormal termination (abend), effect on 
DLBL definitions 167 

ACCESS command 
accessing CftS disks 24 
response when you access VSAft disks 191 
used with OS disks 137 

Access ftethod Services 
control statements, executing 188 
DOS/VS, using in CftS/DOS 187 
executing in CftS, examples 209 
functions 

DEFINE CLUSTER 210 
DEFINE ftASTERCATALOG 196,204 
DEFINE USERCATALOG 197,205 
DELETE 211 
EXPORT 211 
IftPORT 211 
REPRO 211 

OS/VS, restriction on using in CftS 187 
return codes 189 
sample terminal session 361 
using in CftS 187 
using tape input/output 208 

in CftS/DOS 200 
access met hods 

DOS, supported in CftS 162 
OS, supported in CftS 138 

accessing 
directories of DOS/VS libraries 171 
disks 24 

as read-only extensions 59 
in CftS batch virtual machine 234 

DOS disks 160 
DOS/VS system residence volume 159 
file directories for CftS disks 64 
files of a particular mode number 62 
multiple access systems with the DIAL 

cOlllmand 35 
OS disks 137 

ACTION, DOS/VS linkage editor control 
statement 180 

ADD operand 
of ftACLIB command 

usage 146 
usage in CftS/DOS 174 

adding 
members to a macro library 

example 146 
example in CftS/DOS 174 

address 
stops 

setting 221 
to enter CP environment 33 

virtual 
calculating for instructions in a 

program 216 
definition 22 
for unit record devices 121 

A-disk 59 
ADSTOP com.and, how to set address stops 

221 



ALIAS, OS linkage editor control statement, 
supported by TXTlIB command 153 

ALL 
operand 

of &BEGSTACK control statement, when 
to use 276 

of &BEGTYPE control statement, when 
to use 272 

of &CONTROL control statement, using 
to debug EXECs 294 

allocating 
space for VSAM files 192,206 

in CMS/DOS 198 
VSAM extents on OS disks and minidisks 

202 
ALTER subcommand 

global changes 79 
how to use 78 

altering 
characteristics of spool files 123 
characters in a CMS file, with the ALTER 

subcommand 78 
multiple occurrences of a character in a 
file 79 

AMSERV 
command 

executing in an EXEC procedure 213 
how to use 188 

files 
examples 188,361 

filetype 188 
usage in CMS 55 

annotated, edit macro 304 
annotating, EXEC procedures 291 
APL, using on a display terminal 336 
appending, data to existing files, during 

program execution 142 
appendixes 311 
argullents 

in an EXEC procedure 103,109,258 
checking 260 
passing to nested EXECs 269 
testing with &$ and &* 261 

on the RUN cOllmand, passing parameter 
list 243 

on the START command, parameter list 
243 

ASM3705 filetype, usage in CMS 55 
ASSEMBLE 

command 
assembling OS programs 149 
in CMS/DOS 178 

filetype 
usage in CMS 55 
used as input to the assembler 149 

assembling 
OS programs in CMS 149 
programs 

sample terminal session 351 
using CMS Batch Facility 238 

programs in CMS/DOS 178 
sample terminal session 355 

source files, from OS disks 151 
VSAM programs in CMS 187 

ASSGN command 
entering before program execution 184 
using to assign logical units 164 

assigning 
filemode letters to disks 58 
logical units in CMS/DOS 

before program execution 183 
for VSAM catalogs 197 
to disk devices 166 
to virtual devices 165 

values to variable symbols, in EXEC 
procedures 110 

assignment statement, examples 110 
attention interrupt 

causing 31 
effect of mode setting 40 

automatic 
IPL 16 
save function of the CMS Editor 71 

AUTOREAD operand of CMS SET command, 
display terminals 327 

AUXxxxx filetype, usage in CMS 55 

B 
backspace 

characters 
changing in a file being edited 86 
deleted in user input area 336 
effect of image setting 86 
entering on a display terminal 335 

batch 
facility (§~~ CMS Batch Facility) 
jobs for CMS Batch Facility 231 

non-CMS users 239 
processing, in CMS 231 

BDAM, access method, CMS support 138 
BEGIN command, to return to virtual machine 

environment 28 
beginning 

tracing 221 
virtual machine execution 28 

blanks 
as delimiters, on EDIT subco.mands 72 
in character strings changed with the 

CHANGE subcommand 77 
used on OVERLAY subcommand 78 

blip, characters, setting 38 
BLOCK option, of PILEDEP command 141 
books, from DOS/VS source statement 
libraries, copying 168 

BOTTOM subcommand, moving current line 
pointer to end-of-file 74 

BPAM access method, CMS support 138 
branching 

in an EXEC procedure 
&GOTO control statement 264 
&SKIP control statement 266 
based on &IP control statement 263 

BREAK subcommand, setting program 
breakpoints 217 

breakpoints, setting 217 
BSAM access method, CMS support 138 
buffers, used by PSCB 246 
BUFSP option 

of DLBL cOllmand 202 
in CMS/DOS 194 

Index 371 



C 
canceling 

changes made during edit session 71 
DLBL definitions 167 
FILEDEF definitions 141 
verification of changes made by the 
editor 76 

card pUJrlch 
for :sending jobs to batch facility 231 
using in EXEC procedures 282 

card rea.der 
restriction on use in job for CMS Batch 
Facility 235 

spooling punch or printer files to 123 
cards 

used as input to CMS Batch Facility 
231,240 

/* as end-of-file indicator 233 
CASE subcommand, usage 84 
CAT option of DLBL command 202 

identifying catalogs 205 
identifying catalogs in CMS/DOS 197 
in C~S/DOS 194 

cataloged procedures, OS, equivalent in CMS 
136 

CAW (Channel Address Word), displaying, 
with DISPLAY command 224 

CBANGE 
command, changing hold status on spool 
files 124 

subcommand 
global changes 79 
how to use 77 
using in edit macros 302 
using on a display terminal 332 

changing 
characteristics of spool files 123 
characteristics of unit record devices 

121 
file identifier, on SAVE subcommand 92 
filemode numbers 63 
filemode of a file, FMODE subcommand 93 
lines in a file being edited 77 

that contain backspace characters 86 
multiple occurrences of a character 
string in a file 79 

Channel Address Word (§!! CAW (Channel 
Address Word» 

Channel status Word (§~~ CSW (Channel 
Status Word» 

character, strings, changing 77 
char act. ers 

altering 
with the ALTER subcommand 78 
with the CBANGE subcommand 77 

deleting from a line 16 
special 

defining a translate table for 
entering 40 

displaying on a display terminal 336 
entering on a display terminal 335 

translated to uppercase, in edit macros 
297 

valid in CMS file identifiers 51 
CLASS, operand of SPOOL command 121 
classes 

CP command privilege 319 
of CP spool files 121 

372 IBM VM/370: CMS User's Guide 

clearing 
console stack 

at top- or end-of-file 299 
for edit macro execution 299 
in an EXEC procedure 279 
issuing a message after 299 

DLBL definitions 167 
FILEDEF definitions 141 
job catalogs 206 
job catalogs in CMS/DOS 198 

closing 
CMS files, after reading or writing 249 
virtual card punch, after using &FUNCB 
control statement 282 

virtual unit record devices 252 
clusters, VSAM, defining and deleting 210 
CMS 

operand of DLBL command 167 
saved system name 228 

CMS (Conversational Monitor System) 
tasic description 13 
commands (§£~ CMS commands) 
DOS/VS simulation 159 
file system 51 
file system commands, samples 340 
files (§~~ files, CM S) 
loading into your virtual machine 16 
OS simulation 135 

CMS Batch Facility 
control cards 231 

/* 233 
/JOB 232 
/SET 233 

controlling spool files 235 
description 231 
housekeeping done after executing a job 

234 
how jobs are processed 234 
jobs for non-CMS users 239 
using EXEC procedures to submit jobs 

237 
CMS cOlllmands 

executing 
from programs 243 
in edit macros 298 
in EXEC procedures 285 

for tape handling 127 
general information 14 
nucleus resident 66 
stacking in an EXEC procedure 277 
summary 314 
that execute in the transient area 65 
used in CMSIDOS (~£~ CMS/DOS commands) 
used with OS data sets 137 
using EXEC procedures to modify 288 
valid in edit macros 298 

CMS Editor 
environment 29 
format of 3270 display screen 331 
how to use 69 
invoking 69 

in an EXEC procedure 277 
line mode on a display ter~inal 334 
sample terminal session 340 
using on a display terminal 330 

CMS environment 28 
CMS EXEC file 106 

format 106 



CMS EXEC file (cont.top) 
lIodifying 108 
sorting 107 

CMS files (2~~ files) 
CMS macro instructions 

examples 251 
usage 245 

CMS subset 
environment 29,92 
using 98 
using to test EXEC procedures 294 

CMSAMS, saved system name 229 
CMS/DOS 

commands 
ASSGN 164 
DOStIB 182 
DOStKED 179 
DSERV 171 
entering 31 
ESERV 170 
FETCH 182 
LISTIO 165 
PSERV 169 
RSERV 169 
sample terminal session 355 
SSERV 168 
summary 161 

environment 31 
entering 159 

program development using 159 
relationship to CMS and to DOS/VS 159 
restrictions on executing OS programs 

160 
CMSDOS, saved system name 229 
CMSLIB, ddname used to identify OS macro 
libraries 148 

CMSLIB MICLIB 148,176,245 
CMSShG, saved system name 229 
CMSUT1 file, CMS commands that create 58 
CMSVSIM, saved system name 229 
CNTRL filetype, usage in CMS 55 
command 

defaults 35 
environments 27 
language 13 

CMS 14 
CP 14 

lines, how scanned in CMS 242 
commands, how to enter 13 
comments, in EXEC procedures 291 
communicating 

with CMS and CP during editing session 
92 

with VM/370 13 
COMP 

operand of MICLIB command 
usage 147 
usage in CMS/DdS 175 

COMPARE command, comparing contents of CMS 
files 49 

cOllparing, variable symbols in an EXEC 
procedure 113,264 

compilers, supported in CMS 14 
components, of VM/370 13 
compressing 

DOSLIB files 182 
MACLIBs 147 

in CMS/DOS 175 

CON CAT option, of FILEDEF command, example 
148 

conditional execution, &LOOP control 
statement 267 

console 
log 

creating disk file from 328 
printing 328 
prpduced by CMS Batch Facility 236 

output, spooling for display terminal 
328 

stack 
cleared in case of error during edit 

macro execution 300 
clearing 279 
clearing for edit macro execution 

299 
using in EXEC procedures 275 
using to write edit macros 297 

CONT 
operand of SPOOL command 122 

using to spool virtual punch in EXEC 
procedures 283 

continuation character, how to enter in 
column 72 87 

continuous spooling 122 
control cards, for CMS Batch Facility (§~~ 

CMS Batch Facility control cards) 
controlling 

CMS loader 155 
execution of an EXEC procedure, summary 

of control statements 111 
converting 

decimal values to hexadecimal, in an 
EXEC procedure 258 

fixed-length files to variable-length 
format 83 

hexadecimal values to decimal, in an 
EXEC procedure 258 

CONWIIT function 
example 281 
using to clear the console stack 279 

COpy 
files 

adding to MICLIB 146 
adding to MICLIB, in CMS/DOS 174 

filetype 
usage in CMS 55 
usage in CMS/DOS 57 

function, on display terminals 328 
operand of SPOOL command 122 

COPYFILE command 
copying files from one virtual disk to 

another 42 
used to change filemode numbers 63 
used to create small files from a large 
file 97 

using to change record format of a file 
83 

copying 
books from DOS/VS source statement 
libraries 168 

contents of display screen 328 
DOS files into CMS files 163 
files 

from one device to another 126 
from tape to disk 130 

lines in a CMS file 81 

Index 313 



macros from DOS/VS libraries to add to a 
CftS KACLIB 173 

members of ftACLIBs 147,176 
modules from DOS/VS relocatable 
libraries 169 

OS data sets into CftS files 142 
parts of a CftS file, with the GETFILE 

subcommand 80 
spool files 122 
VSAK data sets 211 

into CftS files 211 
core image libraries 

CftS (2~~ DOSLIB files) 
DOS/VS, using in CftS/DOS 171 

correcting, lines as you enter them 16 
counters, using in EXEC procedures 266 
CP (Control progra~ 

basic description 13 
commands, general information 14 
privilege classes 319 
spooling facilities 121 

CP command 29 
using in EXEC procedures 255 
using in jobs for CKS Batch Facility 

236 
CP commands 

executing from programs 244 
summary 320 
used for debugging 224 

compared with DEBUG subcommands 226 
valid in job for CftS Batch Facility 235 

CP environment, entering 27 
CP READ status, on a display screen 326 
creating 

CftS EXEC file 106 
CftS files 41 

fro. DOS disks and tapes 163 
from DOS libraries 163 
from OS data sets 142,144 
in an EXEC procedure 282 

CftS macro libraries 
example 145 
example in CftS/DOS 173 
from DOS macro libraries 173 

DOSLIB files 181 
file system control block (FSCB) 245 
files with the CftS Editor 69 
one spool file from many files being 
printed or punched 122 

program modules 157 
progralls, sample terminal session 351 
reserved filetypes 289 
user-written comllands 157 
user-written edit macros 297 

CSW (Channel Status Word), displaying, with 
DISPLAY command 224 

current line pointer 
displaying when verification is off 94 
how to use 73 
position on display terminal screen 330 
positioning 76 
subcommands for display terminals 333 

cylinders 
extents 

entering in CftS/DOS 196 
specifying for OS disks 202 

on 2314/2319 disk 203 
on 3330 disk 203 

374 IBft Vft/370: CftS User's Guide 

D 

on 3340 ftodel 35 disk 203 
on 3340 ftodel 70 disk 203 

data control block (DCB), relationship to 
FILEDEF command 139 

data sets, OS, using in CftS 137 
ddnames 

in OS VSAft programs, restricted to 7 
characters in CftS 201 

specifying with FILEDEF command 139 
used by the assembler 151 
used with the assembler 179 

DDR command, used with OS data sets 137 
DEBUG 

command 30 
to enter debug environment 216 

subcommands 
compared with CP debugging commands 

226 
entering 30 
monitoring program execution 217 
relationship to CP commands for 

debugging 224 
summary 219 

debug environment 30 
debugging 

commands and subcommands used in 
relationship 224 
summary of differences 226 

EXEC procedures 294 
nonrelocatable ftODULE files 225 
programs 215 

summary of commands 4& 
using CP commands 223 

decimal, and hexadecimal conversion in an 
EXEC procedure 258 

de-editing, DOS/VS macros 170 
default 

command 35 
DLBL definition 167 
FILEDEF definition 140 
for filetypes for the CftS Editor, 
establishing in an EXEC 289 

logical line editing symbols 16 
setting up in EXEC procedures 260 

DEFINE 
Access ftethod Services function 210 
command 

defining a temporary disk 22 
defining virtual storage 227 
to increase virtual storage size 97 

subcommand, defining symbols for a 
debugging session 218 

defining 
logical line editing symbols f8 
program input and output files in CMS 

152 
space for VSAft files 206 

in CftS/DOS 198 
temporary disks 22 
translate tables 40 
virtual printer for trace information 

222 
virtual storage 227 
VSAft files 

for AftSERV 201 
for AftSERV, in CftS/DOS 194 



VSA! master catalog 204 
C!S/DOS 195 

DEL 
operand 

of !ACLIB com.and 146 
of MACLIB command, in CMS/DOS 115 

DELETE 
Access Method Services function 211 
subcommand, how to use 80 

deleting 
lines in a file being edited 80 

to a particular line 80 
members of a MACLIB 

example 146 
example in CMS/DOS 115 

VSAM clusters and catalogs 211 
delimiters, on EDIT subcommand lines 12 
density of tapes, when to specify 131 
DESBUF function 

example 281 
using to clear the console stack 219 

DETACH, command, after RELEASE co.mand 25 
detaching 

disks 25 
without releasing them 65 

device types 
assignments in CMS/DOS 164 
specifying with FILEDEF command 139 

devices, disks, cylinders and tracks 203 
DIAL command 35 
DIRECT, filetype, usage in CMS 55 
DISCONN, command 36 
disconnecting, your terminal from your 
virtual machine 36 

discontiguous, saved systems 228 
DISK 

command 
LOAD operand, restriction in job for 

CMS Batch Facility 236 
using 125 

disk determination 
default for reading files 

commands for which you must specify a 
filemode 61 

commands that search all accessed 
disks 60 

commands that search only the A-disk 
60 

commands that search only the A-disk 
and its extensions 60 

default for writing files 
commands for which you must specify a 

filemode 62 
commands that write files onto your 
A-disk 62 

commands that write output files to a 
read/write disk 62 

filemode selection by the editor 11 
disks 

defined in your VM/310 directory entry 
21 

defining temporary disks for a terminal 
session 22 

definition 21 
DOS, accessing 160 
full, during an editing session 98 
linking 23 
listing information about 49 

master file directory 64 
OS 

determining extents for VSAM 202 
using in CMS 131 

OS and DOS 
formatting with IBCDASDI program 193 
used with VSAM data sets 191 

providing for CMS batch virtual machine 
234 

querying the status of 64 
read-only, exporting VSAM files from 

211 
search order 24,59 
sharing 23 
VSAM, accessing 191 
writing files on, how the editor selects 

a disk 11 
DISP MOD option, of FILEDEF co.mand 142 
DISPLAY command, displaying storage and 
registers while debugging 223 

display screen, status conditions 326 
display terminals 

changing editor verification setting 
332 

controlling the screen, during edit 
session 332 

display mode 334 
entering backspace characters 335 
entering commands 325 
example of display screen 329 
how the editor formats a screen 331 
line mode 334 
signaling interrupts 329 
using tab characters 335 
using the CMS Editor 330 

displaying 
CMS files 44 

in an EXEC procedure 273 
coluan numbers in a file being edited, 

using $COL edit macro 310 
data lines at the terminal 

in an EXEC procedure 272 
WRTERft macro 251 

directories of DOS/VS libraries 171 
DLBL definitions 167 
FILEDEF definitions 152 
general registers, in the debug 

environment 216 
lines at the terminal, in an EXEC 
procedure 113 

listings from Access Method Services 
189 

particular columns of a file, during 
edit session 11 

prompting messages in an EXEC procedure 
211 

PSI (Program Status lord), during 
progra. execution 220 

screensful of data 333 
short form of editor error message 94 
special characters on a display terminal 

336 
timing information in an EXEC procedure 

115 
trace information on the terminal 222 
virtual storage during program execution 

223 
disposition, of spool files 121 

Index 315 



DLBL 
command 

assigning file mode numbers 63 
default file definition 167 
defining OS data sets 137 
entering before program execution 

'184 
EXTENT option, examples 207 
how to use in CMS/DOS 166 
identifying VSAM data sets 201 
identifying VSAM data sets in CMS/DOS 

'194 
relationship to ASSGN command 166 
specifying extents 206 
specifying extents in CMS/DOS 199 

DMS, prefixing error messages in an EXEC 
procedure 293 

documenting, EXEC procedures 291 
DOS (Disk Operating system) 

files 
identifying in DLBL command 167 
restrictions on reading in CMS 162 
using in CMS 160 

macros supported in CMS 176 
program development, summary of commands 

45 
simulation in CMS 159 

DOSLIB 
command, compressing DOSLIBs 182 
files 181 

executing phases from 183 
size considerations 181 

filetype, usage in CMS/DOS 57 
DOSLKED command, link-editing programs in 

eMS/DOS 179 
DOSLNK 

files, using in eMS/DOS 180 
filetype 

usage in CMS/DOS 57 
used by DOSLKED command 180 

DOSMACRO MACLIB 148,176 
DOSPART operand, of CMS SET command, 

examplE! 184 
DOS/VS system residence volume, using in 

eMS/DOS 159 
DSERV command, examples 171 
DSN operand of DLBL command 167 
DSORG option, of FILEDEF command, when to 
specify 141 

DSTRING subcommand 
example 80 
using in edit macros 302 

dummy data set, specifying with FILEDEF 
commancl 140 

DUMP 
command, example 225 
subcommand, example 225 

dumping, virtual storage 225 
duplicating 

filenames or filetypes 52 
lines in a CMS file 81 

dynamic loading of TXT LIB members 156 

E 
E EXEC 289 

316 IBM VM/370: CMS User's Guide 

EDIT command 
creating eMS files 41 
entering edit environment 29 
executing in an EXEC procedure 271 
invoking CMS Editor 69 

edit environment 29 
edit macros 

$COL 310 
$CONT 302 
$DOUBLE 304 
$DUP 81 
$MACROS 306 
$MARK 307 

entering continuation character in 
column 72 88 

$MOVE 81 
$POINT 309 
CMS commands valid in 298 
distributed with CMS 303 
effect of IMPEX setting 38 
examples 298 
executing 298 
how to write 297 
sample 304 
using variable-length EXEC files 301 

edit mode, returning from input mode 70 
EDIT subcommands 

delimiters 72 
entering on a display terminals 330 
executing in edit macros 300 
stacking in the console stack 277 
summary 99 

editing 
CMS files 69 
lines as you enter them from the 
terminal 16 

on a display terminal 330 
in EXEC procedures 335 

session 69 
end-of-file 

executing edit macros 299 
indicating for input stream to batch 
virtual machine 240 

indicating on jobs sent to batch virtual 
machine 233 

indication in a file being edited 74 
entering 

APL characters on a display terminal 
336 

CMS commands, in CMS subset environment 
29 

CMS environment 28 
CMS/DOS environment 31,159 
commands 13 

more than one command on a line 11 
on display terminals 325 
using synonyms 38 
while a command or program is 
executing 32 

continuation character in column 12 87 
CP commands 

from the CMS command environment 28 
from the edit environment 92 

CP environment 
after a program check 224 
during program execution 33 
from CMS environment 27 
from edit mode 92 



debug environment 
after program abend 216 
via breakpoint 30,211 
via DEBUG command 30 
via EXTERNAL com.and 30 
via external interrupt 221 

DEBUG subcommands 30 
DLBL definitions, in an EXEC procedure 

185 
edit environment 29 
EDIT subcommands 12 

on display terminal 330 
extent information when defining VSAM 

master catalog 204 
file identifications 

on DLBL command 166 
on FILEDEF command 140 
on LISTDS command 162 

FILEDEF definitions, in an EXEC 
procedure 158 

Immediate commands 32 
on a display terminal 329 

lines at the terminal, during program 
execution 251 

logical line editing symbols as data 18 
multivolume VSAM extents 201 

in CMS/DOS 199 
null lines 13 
special characters 

using a translate table 40 
using the ALTER subcommand 18 

tab characters on a display terminal 
336 

VSAM extent information, in CMS/DOS 196 
entry, linkage, for assembler language 

programs in CMS 242 
ENTRY, OS linkage editor control statement, 

supported by TXTLIB command 153 
entry point 

displayed following FETCH command 182 
for program execution, determining 156 
specifying, using OS ENTRY statement 

153 
specifying for program execution 152 

environments 
VM/310 27 

sumlllary 34 
EOF, token stacked when edit macro executed 
at end-of-file 299 

EOF: message 14 
ERASE, command 43 
erasing 

CMS files 43 
after reading them 63 
to clear disk space during an editing 
session 98 

error messages 
controlling whether you receive them' 37 
displayed by the CMS Editor 73 

short form 94 
displaying in red 37 
in an EXEC procedure 292 

errors 
during CMS commands, handling in an EXEC 

procedure 286 
during EXEC processing 292 
handling in an EXEC procedure 287 
in edit macros 300 

ESERV 
command, examples 170 
file type 110 

usage in CMS/DOS 57 
examining, output listings from Access 

Method Services 189 
EXEC 

built-in functions, summary 111 
command 

using in EXEC procedures 255 
when to use 105 

control statements, summary 116 
files 

changing the record format 104 
differences between fixed-length and 
variable-length 213,218 

record format 104 
stacking 280 

filetype 
for edit macros 291 
usage ~n CMS 55 
usage 1n CMS/DOS 57 

interpreter, how lines are processed 
295 

procedures 103 
building 255 
debugging 294 
executable statements 255 
executing from programs 244 
nesting 269 
opening and closing CMS files 249 
setting program function keys 326 
submitting jobs to CMS Batch Facility 

236,237 
testing in CMS subset 294 
to execute DOS programs 185 
to execute IBCDASDI disk 
initialization program 193,361 

to execute OS' programs 157 
used by non-CMS users to submit batch 

jobs 239 
using to submit jobs to CMS Batch 
Facility 232 

with same names as CMS commands 39 
processing errors 292 
special variables, summary 119 

executable statements, in an EXEC procedure 
255 

executing 
Access Method Services, in an EXEC 
procedure 213 

CMS commands 
from programs 243 
in edit macros 298 
in EXEC procedures 285 

CMS EXECs 107 
commands, using program function keys 

325 
CP commands 

from programs 244 
in an EXEC procedure 255 

DOS programs 
sample terminal session 355 
setting the UPSI byte 184 
specifying a virtual partition size 

184 
using EXEC procedures 185 

DOS/VS procedures 110 

Index 377 



edit macros 298 
verifying completion 301 

EDIT subcommands 
in an"EXEC procedure 277 
using program function keys 326 

EXEC procedures 65,103,104 
from programs 244 
in jobs for CMS Batch Facility 236 

executable statements in an EXEC 
proc::ed ure 255 

Immediate commands, in an EXEC procedure 
274 

MODULE files 66,157 
from programs 244 

OS programs 152 
restrictions 151 
using EXEC procedures 157 

PROFILE EXEC 105 
progralls 

ill CMS/DOS 182 
sample terminal session 351 

TEXT files 152 
YSAM programs 187 

execution 
conditional, using the &IF control 
sta temen t 263 

paths in an EXEC procedure 262 
execution summary of an EXEC 

description 115 
example when &CONTROL ALL is in effect 

294 
exit linkage, for assellbler language 

programs in CMS 242 
exiting 

froll an EXEC procedure 111,269 
based on &RETCODE special variable 

287 
EXPORT, Access Method Services function 

211 
exporting, YSAM data sets 211 
extensions, read-only, using 59 
EXTENT option 

of DLBL cOlllland 202 
in CMS/DOS 194 

extents 
determining for YSAM functions 192 
for '\1SAM files 

entering in CftS/DOS 196 
lIultiple 207 
multiple in CMS/DOS 199 

EXTERNAL, comlland, interrupting program 
execution 221 

external references, how CftS loader 
resol V4:!S 154 

extracting, me.bers of ftACLIBs 147,176 

F 
FETCH command, executing programs in 

CftS/DOS 182 
fetching, core image phases for execution 
in CftS/DOS 182 

FIFO, first-in first-out stacking, in an 
EXEC procedure 276 

file 
definitions, making with FILEDEF command 

139 

378 IBft Yft/370: CftS User's Guide 

directories, CftS 64 
format, specifying on FILEDEF command 

141 
identifier 

assigned by FILEDEF cOllmand 140 
changing with the SAVE subcommand 92 
CftS, rules for assigning 51 
coded as an asterisk (*) 52 
coded as an equal sign (=) 53 
default assigned by DLBL command 167 
specifying for an FSCB 245 
used in FSCB 246 

size, relationship to record length 83 
system 51 

macro instructions 245 
FILE subcommand, writing a file onto disk 

71 
FILEDEF 

command 
assigning filemode numbers 63 
default definition 140 
guidelines for entering 139 
how to use 139 
used to identify OS macro libraries 

148 
used with OS data sets 137 

commands, issued by the assembler, 
overriding 179 

filemode 
in file identifier 51 
letters 52 

assigning 58 
when to specify, reading files 60 
when to specify, writing files 61 

numbers 
descriptions 62 
when to specify 63 
4 138 

filename 51 
for edit macros 297 

files (~~ alsQ DOS files, OS data sets) 
CftS 

erasing 43 
format 51 
identifiers 51 
identifying on DLBL command 167 
maximum number of records 51 
renalling 42 
too large to edit, what to do 97 

manipulating with CftS macro instructions 
245 

that are erased after they are read 63 
filetype 

created by assembler and language 
processors 56 

for workfiles 58 
in file identifiers 51 
reserved 53 

establishing your own 289 
used by CftS cOllmands 54 
used by language processors 54 

FIID, subco.mand, how to use 74 
first-in first-out stacking~ in an EXEC 

procedure 276 
fixed-length, EXEC files, difference 

between &STACK and &BEGSTACK 278 
fixed-length files, converting to 
variable-length 83 



FMODE 
subcommand 

examples 93 
used to change filemode numbers 63 

FOR, operand of SPOOL command, usage 122 
FORMAT command, formatting a CMS disk 22 
format of disk files, specifying on FILEDEF 

command 141 
formatting 

CMS disks, example 22 
OS and DOS disks, example 193 

forming, tokens of words in an EXEC 
procedure 255 

free space on OS and DOS disks, determining 
for use with VSAM 192 

FSCB, macro, usage 245 
Fsca (file system control block) 

creating 245 
fields defined 246 
modifying for read/write operations 247 
usage 245 
using with I/O macros 241 

FSCBD macro, generating a DSECT for an FSCB 
241 

FSCLOSE macro, example 249 
FSERASE macro, usage 249 
FSREAD macro, examples 241 
FSWRITE macro, examples 241 
full disk 64 

during an editing session 98 

·G 
GEl operand 

of MACLIB com.and 
usage 145 
usage in CMS/DOS 113 

general registers 
conventions used in CMS 241 
displaying in debug environmen~ 216 
displaying with the DISPLAY command 223 
modifying during program execution 216 

GEIMOD command 
creating a user-written CMS command 157 
regenerating existing MODULEs 225 

GET FILE subcommand 
how to use 80 
used to create small files from a big 

one 98 
global changes, using EDIT subco •• ands 79 
GLOBAL command 

used to identify DOSLIBs 181 
used to identify macro libraries 144 

in CMS/DOS 112 
used to identify OS macro libraries 

131,148 
used to identify TXTLIBs 153 

GO subcommand, to resume program execution 
211 

H 
halting 

program execution 32 
screen displays 330. 
terminal displays 32 

in an EXEC procedure 274 

hexadecimal, conversion in an EXEC 
procedure 258 

HOLD, operand of SPOOL command 122 
hold status, placing virtual output devices 
in during debugging 215 

holding 
display on a display terminal 321 
spool files to keep them from being 

processed 122 
HOLDING status, on a display screen 321 
BT Immediate command 32 

HX 

I 

executing in an EXEC procedure 214 

DEBUG subcommand 211 
Immediate command 32 

effect in CMS subset 30 
effect on DLBL definitions 161 
effect on FILEDEF definitions 142 

IBCDASDI disk initialization program 
formatting temporary disks 

example 193,361 
ID card, to submit jobs to CMS Batch 
Facility 231 

identifying 
macro libraries to search 144 

in CMS/DOS 112 
multivolume VSAM files 208 

in CMS/DOS 199 
VSAM master catalog 203 
VSAM master catalog in CMS/DOS 195 

IEBPTPCH utility program, creating CMS 
files from tapes created by 130 

IEBUPDTE utility program, creating CMS 
files from tapes created by 130 

IEHMOVE utility program, creating CMS files 
from tapes created by 131 

IJSYSCL~ defining in CMS/DOS 166 
IJSYSCT 

defining 203 
defining in CMS/DOS 195 

IJSYSRL, defining in CMS/DOS 166 
IJSYSSL, defining in CMS/DOS 166 
IJSYSUC 

defining 205 
defining in CMS/DOS 197 

image setting, effect on tab characters 84 
IMAGE subcommand, using in edit macros 302 
Immediate commands 

entering, on a display terminal 329 
summary 313 

IMPCP operand, of CMS SBT command, setting 
28 

implied 
CP function 28 

controlling 38 
EXEC function 105 

controlling 38 
IMPORT, Access Method Services function 

211 
importing, VSAM data sets 211 
INCLUDE 

command, entering after LOAD command 
154 

DOS/VS linkage editor control statement, 
specifying in DOSLNK file 180 

Index 319 



increasing, virtual machine storage 97 
INPUT 

operand, of CMS SET command, defining an 
input translate table 40 

subcommand 
inserting a single line into a file 

80 
stacking in an EXEC procedure 278 
using in edit macros 301 

input and output files, VSAM, defining 201 
input data 

left margin while using the editor 85 
right margin while using the editor 87 
translated to uppercase by the editor 

70 
input mode 29,70 

entered after REPLACE subcommand 80 
on a display terminal 330 
on a display terminal in line mode 334 
returning to edit mode, in an edit macro 

30:2 
input stack, clearing 279 
inserting 

lines in a file being edited 80 
using line-number editing 90 

instructions 
calculating virtual storage address 216 
tra<::ing 221 

Interactive Problem Control system (see 
IPCS (Interactive Problem Control System» 

in te rrupting 
execution of edit macros 300 
program execution 31 

with a breakpoint 217 
interrupts 

CMS macros for handling 252 
exb~rnal 221 
signaling on a display terminal 329 

invoki)lg 
Access Method Services 188 
CMS Editor 69 
EXEC procedures 104 
VSAPL on a display terminal 336 

I/O 
device assignments in CMS/DOS 164 

manipulating 165 
macros used in CMS programs 245 

IPCS (Interactive Problem Control System) 
13 

IPL command 
to enter CMS environment 28 
using to load CMS 16 

ISAM access method 

J 

CMS restriction 138 
CMS/DOS restriction 162 

job catalog 
using 205 
using in CMS/DOS 197 

job control language, equivalent in CMS 
136 

JOBCAT~ CMS equivalent 136 
jobnam.~ 

for job sent to CMS Batch Facility 
:specifying 233 
used to identify spool files 236 

380 IBM VM/370: CMS User's Guide 

jobs, for CMS Batch Facility, submitting 
231 

L 
labels 

DOS VSAM disks, determining for IMSERV 
195 

in an EXEC procedure 
how &GOTO searches for 265 
rules for forming 262 

in EXEC procedures 111 
terminating a loop 268 

O~ VSAM disks, determining for AMSERV 
204 

tape 129 
using VSAM tapes 209 
using VSAM tapes in CMS/DOS 201 

writing on CMS disks 22 
large files, splitting into smaller files 

97 
LDRTBLS operand, of CMS SET command, usage 

227 
leaving 

eMS subset environment 30 
CMS/DOS environment 31 
debug environment 30,217 
edit environment 30,71 
input mode 70 

length, of lines displayed at your 
terminal, controlling 37 

libraries 
CMS (§~~ ~l§Q DOSLIB, MACLIB, TXTLIB) 
144 

distributed with the CMS system 
148,176 

macro libraries (§~~ macro 
libraries, CMS) 

TEXT libraries 153 
DOS/VS 

identifying in CMS/DOS 166 
using directories 171 
using in CMS/DOS 168 

DOS/VS core image, executing phases from 
183 

DOS/VS procedure, copying procedures 
169 

DOS/VS relocatable 
copying modules from 169 
link-editing modules from 180 

DOS/VS source statement, using in CMS 
168 

OS, using in CMS 148 
LIFO 

last-in first-out stacking 
in an EXEC procedure 276 
in edit macros 299 

line 
mode, of the eMS Editor 334 
pointer (§~~ current line pointer) 

LINEDIT macro, executing CP commands 244 
LINEMODE subcommand, beginning line-number 
editing 89 

line-number editing 89 
sample terminal session 348 

lines, deleting at the terminal before 
entering 17 



LINK command 
format in job for batch facility 235 
linking to other user's disks 23 

linkage conventions, for programs executing 
in CMS 242 

linkage editor 
DOS/VS 

invoking in CMS/DOS 179 
specifying control statements 180 

maps, using when debugging 215 
OS, control statements supported by 

TXTLIB command 153 
link-editing 

modules from DOS/VS relocatable 
libraries 180 

programs in CMS/DOS 179 
specifying linkage editor control 
statements 180 

TEXT files and TXTLIB members 154 
TEXT files in CMS/DOS 180 

examples 180 
linking 

to other users' disks 23 
to your own disks 23 

LISTCAT, Access Method Services function, 
output 189 

LISTCRA, Access Method Services function, 
output 189 

LISTDS command 
listing DOS files 162 
listing extents occupied by VSAM files 

191 
listing free space exents 191 
used with OS data sets 137 

LISTING, assembler ddname, overriding 
default definition 151 

listing 
edit macros, with $MACROS edit macro 

306 
information 

about CMS files 48,107 
about disks 49 
about DOS files 161 
about MACLIB members 147,175 
about OS and DOS disks 191 
about OS and DOS files 49 
about your terminal 47 
about your virtual machine 50 

logical unit assignments in CMS/DOS 165 
listing files 

created by AMSERV command 
changing the filename 190 
printing 190 

created by assembler and language 
processors 56 

created by ESERV command 170 
created by the assembler, output 

filemode 149 
LISTING file type 

created by AMSERV command 189 
usage in CMS 55 
usage in CMS/DOS 57 

LISTIO command, listing device assignments 
165 

literal values, using in an EXEC 257 
LKEDIT filetype, usage in CMS 55 
LOAD, command, loading and executing TEXT 
files 152 

load map 
produced by LOAD and INCLUDE commands 

155 
using when debugging 215 

LOAD MAP file, created by CMS loader 155 
loader 

CMS 
description 154 
entry point determination 156 

control statements, summary 155 
tables 

effect of LOAD and INCLUDE commands 
154 

usage 227 
Loader Terminate (LDT) loader control 

statement, usage 153 
loading 

CMS into your virtual machine 16 
specifying virtual device address 

228 
core image phases into storage for 
execution 182 

programs into storage, specifying 
storage locations 244 

TEXT files into storage 152 
TXTLIB members 

dynamically 156 
into storage 153 

LOADLIB filetype, usage in CMS 55 
LOADMOD command, to debug a MODULE file 

225 
LOCATE subcommand 

how to use 74 
using in edit macros 302 

locating 
lines in a file being edited 74 

using line-number editing 90 
location, starting, for loading link-edited 
phases 182 

locking, terminal keyboard to wait for 
communication 39 

logging off VM/370 36 
logging on to VM/370 15,35 
logical 

character delete symbol 16 
escape symbol 18 
line delete symbol 17 
line editing symbols 16 

defining 18 
overriding 38 
used with the editor 70 

line end symbol (~~~ s!§2 • logical 
line end sy mbol) 17 

operators, used for comparisons in EXEC 
procedures 113 

record length of a CMS file, overriding 
editor defaults 81 

units, assigning in CMS/DOS 164 
LOGOFF command 36 
LOGON command 35 

contacting VM/370 15 
LONG, subcommand, when to use 94 
loop, during program execution, debugging 

220 
looping 

in an EXEC procedure 112 
based on number of arguments passed 

260 

Index 381 



using counters 266 
using the SLOOP control statement 

266 
lowercase letters 

suppressing translation to uppercase 84 
translated to uppercase by the editor 

70 
LRECL option 

ft 

of COpy PILE command, truncating records 
in a file 82 

of EDIT command, when to use 81 
of PILEDEP command, when to specify 141 

MACLIB 
cOllmand 

usage 145 
usage in CftS/DOS 172 

files 
adding MACRO files created by ESERV 

program 170 
querying 145 
querying, in CMS/DOS 172 

filetype, usage in CMS 55 
ftACRO 

files 
adding to MACLIB 146 
adding to MACLIB in CMS/DOS 174 
created by ESERV command 170 

filet.ype 
usage in CMS 55 
usage in CMS/DOS 57 

lIacro libraries 
CMS 144 

ad,ding to 146 
cr'eating 145 
deleting members of 146 
displaying information about members 
in 147 

distributed with the CMS system 
148,176 

replacing members of 146 
using in CftS/DOS 172 

DOS/VS assembler language, restriction 
on using in CMS/DOS 172 

OS, identifying for use in CMS 148 
.acros 

MAP 

DOS/V'S assembler language 
creating a CMS MACLIB 355 
supported in CMS 176 

OS, supported in CMS 149 

fi1etype 
created by DOSLKED co.mand 182 
created by DSERV command 171 
created by MACLIB command 147,175 
usage in CMS 55 
usage in CMS/DOS 57 
written to A-disk 62 

operand 
of MACLIB command 147,175 

option of DOS/VS ACTION control 
statement, effect in CMS/DOS 182 

maps 
creat.ed by DOS/VS linkage editor 182 
of CMS virtual storage 228 

382 IBM VM/370: CMS User's Guide 

margins 
setting left margin for input with the 
editor 85 

setting right margin for input with the 
editor 87 

master catalogs 
VSAM 

defining 204 
defining in CMS/DOS 196 

master file directory 64 
maximulI, number of records in a CMS file 

51 
MEMBER option 

CMS commands that have a MEMBER option 
175 

of PILEDEP command 142 
to copy a member of an OS partitioned 
data set 143 

MEMO fi1etype 58 
MESSAGE command, using before logging on 

35 
messages 

controlling whether you receive them 36 
from CMS Batch Facility 234 
from CP during edit session, effect on 

display screen 332 
froll the editor, on a display terminal 

330 
sending to other virtual machine users 

35 
minidisks (§~~ ~J§~ disks) 

definition 21 
transporting to OS system after using 

with CMS VSAM 191 
using with VSAM data sets 191 

EXPORT/IMPORT restriction 211 
mode 

edit and input 70 
setting for your terminal 31,39 
switching 27 

summary 34 
modifying 

CMS EXECs 108 
CMS files, examples of cOllmands 42 
FSCB 247 
groups of CMS files 61 
registers during program execution 216 

MODULE 
files 

creating 157 
debugging 225 
executing from programs 244 
generating, to execute in transient 
area 245 

modifying 225 
fi1etype, usage in CMS 56 

modules, DOS/VS re10catab1e, copying into 
CMS files 169 

MORE ••• status, on a display screen 327 
MOVEPILE command 

copying OS data sets 142 
copying tape files 130 
reading files from virtual card reader 

126 
to extract a member of a MACLIB 147,176 
used with OS data sets 137 

moving 
CMS files, exallp1es of commands 43 



current line pointer 73 
lines in a file being edited 81 

MULT option of DLBL command 202 
in CMS/DOS 194 

multiple 
extents for VSAM files 

specifying 206 
specifying in CMS/DOS 199 

output devices, restriction in CMS/DOS 
166 

variable symbols in a token, examples 
257 

multivolume VSAM extents 
specifying 207 
specifying in CMS/DOS 199 

B 
BAME, os linkage editor control statement, 
supported by TXTLIB command 153 

naming, CMS files 51 
nesting 

&IF statements in an EXEC procedure 264 
EXEC procedures 269 

return code passed 287 
nnnnn subcommand, examples 90 
BODISP option of EDIT command, using in 

EXEC procedures 335 
nonrelocatable modules, creating 157 
nonshared copy 

of CMS 228 
of saved system, obtaining during 

debugging 229 
BOPROF option, of ACCESS command, 
suppressing execution of PROFILE EXEC 106 

BOT ACCEPTED status, on a display screen 
327 

nucleus-resident CMS commands 66 
null 

o 

line 
after IPL 16 
at top of file 74 
entering to determine environment 27 
how to enter 13 
in an EXEC procedure 255 
stacking in an EXEC 213,278 
testing for in an EXEC procedure 271 
to resume program execution after 
attention interrupt 32 

to return to edit mode from input 
mode 70 

variables in an EXEC 110 

object files 
created by assembler and language 

processors 56 
loading into storage 152 

opening, CMS files 249 
options, for FILEDEF command 141 
ORDER command, selecting files for 
processing 124 

origin, for debug environment, setting 218 
ORIGIN, subcommand, how to use 218 

OS 
access methods supported in CMS 138 
data sets 

copying into CMS files 142 
restrictions on reading in CMS 138 
using in CMS 137 

disks, using in CMS 137 
linkage editor control statements, read 

by TXTLIB command 153 
macros supported in CMS 149 
partitioned data sets (2~~ partitioned 
data sets) 

program development 
sample terminal session 351 
summary of commands 44 

simulated data sets 138 
simulation in CMS 135 
utility programs, creating CMS files 

from tapes created by 130 
OSMACRO MACLIB 148,176 
OSMACR01 MACLIB 148,176 
output 

files, produced by ASSEMBLE command 179 
from CMS Batch Facility 236 
from virtual console, spooling 328 

OUTPUT, operand, of CMS SET command, 
defining an output translate table 40 

output stack, clearing 279 
OVERLAY subcommand 

how to use 78 
overlay more than one line 79 
using in edit macros 302 

overlaying 
character strings 78 

with $MARK edit macro 307 
virtual storage, during program 
execution 244 

overriding, logical record length of a file 
being edited 81 

P 
parameter lists 

passing with START command 152,243 
setting up to execute a CMS command 243 
used by CMS routines 242 
using FSCB 246 

parent disk, of read-only extension 59 
parentheses, scanned by EXEC interpreter 

255 
partition size, specifying for program 
execution, in CMS/DOS 184 

partitioned data sets 
copying into CMS files 143 
specifying member names with the FILEDEF 

command 142 
passing 

arguments 
to an EXEC procedure 258 
to nested EXEC procedures 269 

control in an EXEC procedure 264,266 
passwords 

entering on LOGOB command line 35 
for VSAM catalogs 206 

in CMS/DOS 198 
for your virtual machine 15 
supplying on LINK command line 23 

PAl key, to enter CP environment 329 

Index 383 



PDS option, of MOVEFILE command, to copy OS 
partitioned data sets 143 

periods, used to concatenate EXEC variable 
symbols 110 

PERM option, of FILEDEF command, when to 
specify 141 

PF keys (§~~ program function keys) 
phases, CMS/DOS core image, writing into 

DOSLIBs 181 
positioning 

current line pointer 73,76 
using $POINT edit macro 309 

tapes, examples 128 
preparing, jobs for CMS Batch Facility 234 
PRESERVE subcommand 

saving EDIT subcommand settings 94 
using in edit macros 301 

preserving, editor settings 94 
PRINT 

Access Method Services function, output 
189 

command, printing CMS files 43 
printer files 

produced by job running in batch virtual 
machine 235 

querying the status of 123 
printing 

Access Method Services listings 189 
CMS files 43 
multiple copies 122 
trace information on virtual printer 

222 
PRINTL macro, usage 251 
privilege classes, for CP commands 319 
PROC filetype 169 

usage in CMS/DOS 57 
procedures, DOS/VS, copying into CMS files 

169 
PROFII.E EXEC 

saDlple 105 
for OS VSAM user 204 

sample for CMS/DOS VSAM user 195 
program 

abend, message 215 
check, using CP to debug 224 
debugging 215 
dumps, obtaining 225 
eXE~cution 

entry point determination 156 
interrupting 31 
resuming with BEGIN command 225 
tracing 220 

input and output files, identifying 139 
interrupts 

address stops 33 
breakpoints 33 

libraries 153 
linkage, in CMS 241 
listings, using when debugging 215 
loops, debugging 220 

program development 
DOS programs 159 

sample terminal session 355 
summary of commands 45 

OS programs 135 
sample ter.inal session 351 
summary of commands 44 

using CMS 133 

384 IBM VM/370: CMS User's Guide 

program function keys 
. setting 325 

COpy function 328 
for EDIT subcommands 334 
in EXEC procedures 326 
logical tab stops 335 

using 325 
Program Status Word (~~ PSW (Program 
Status Word» 

programmer logical units, assigning in 
CMS/DOS 165 

prompting 
for line numbers while line-number 
editing 90 

messages in an EXEC procedure 271 
protecting, files from being accessed 62 
PSERV command, examples 169 
PSW, operand of DISPLAY command 220 
PSW (Program Status Word) 

displaying 
in debug environment 216 
while program loops 220 
with DISPLAY command 224 

modifying wait bit 224 
PUNCH 

command 
example 125 
punching jobs to batch virtual 

machine 232 
using with &PUNCH control statement 

283 
ESERV ~ontrol statement, executing in 

CMSjDOS 170 
punch files, produced by job running in 

batch virtual machine 235 
PUNCHC macro, usage 251 
punching 

CMS files 43 
files to your virtual card punch 125 
jobs to the batch virtual machine 232 

in EXEC procedures 237 
lines in an EXEC procedure 114 
lines to the virtual card punch 126 
members of MACLIBs 147,176 

PURGE, command, purging spool files 124 

o 
OSAM access method, CMS support 138 
QUERY 

command (CMS), used with OS data sets 
137 

command (CP), displaying the status of 
spool files 123 

OUIT subcommand, terminating an edit 
session 71 

R 
RDTERM macro, examples 251 
read, to virtual console, definition 31 
READ control card, punching 125 
READCARD command 

examples 125 
restriction in CMS Batch Facility 236 
used to assign filemode numbers 63 
using with &PUNCH control statement 282 



READER operand 
of ASSGN command, restriction in job for 

CMS Batch Facility 236 
of FILEDEF command, restriction in job 
for CMS Batch Facility 236 

reading 
arguments from terminal during EXEC 

processing 263 
cards from your virtual card reader 124 
CMS commands 

from the console stack 277 
from the terminal during EXEC 
processing 271 

CMS files 
from an EXEC procedure 280 
from the console stack 280 
with the FSREAD macro 248 

DOS files in CMS 162 
files from tapes 127 
from the terminal 

in an EXEC procedure 113 
RDTERM macro 251 

lines from the console stack, in an EXEC 
proced ure 275 

real card decks into your virtual 
machine 125 

specific records in a eMS file 248 
variable symbols from the terminal 
during EXEC processing 271 

read-only, extensions, using 59 
read/write 

pointer, positioning 249 
status of disks 

displaying 24 
in VM/370 directory entry 21 

Ready message 18 
controlling how it is displayed 37 
CPU times displayed 241 
displaying return code from EXEC 

procedures 270 
not displayed after tcp function used in 

CMS environment 29 
RECFM, option, of FILEDEF command, when to 
specify 141 

record format 
describing for file being edited 81 
of a CMS file, changing 83 
specifying for DOS files 163 
specifying for program input and output 
files 141 

record length 
creating long records with the editor 

82 
of a CMS file 

changing 82 
default values set by the editor 81 
relationship to file size 83 

records, in a CMS file, maximum number 51 
recursion level of EXEC, testing with 

&GLOBAL special variable 269 
red type, displaying error messages in 37 
re-entering, EDIT subcommands 95 
re-executing, EDIT subcommands 95 
register 15 

checking contents after program 
execution 158 

in CMS/DOS 186 

register 15 (cont.) 
contents after CMS command execution 

242 
testing contents in an EXEC procedure 

287 
registers (§gg general registers) 
relative record number, specified in FSCB 

246 
RELEASE command 24 

updating master file directory 64 
used with OS disks 137 

releasing 
disks 24,64 
read-only extensions 60 

relocatable 
modules, link-editing in CMS/DOS 180 
object files, loading into storage for 
execution 154 

Remote spooling communications Subsystem 
(§§~ RSCS (Remote Spooling communications 
Subsystem (RSCS» 

remote terminals, using the C~S Editor 334 
RENAME command, renaming CMS files 42 
renaming, CMS files 42 
RENUM subcommand, usage 91 
renumbering, records in a file, while 
line-number editing 91 

REP 
operand 

of MACLIB command 146 
of MACLIB command in CMSjDOS 174 

REPEAT subcommand, used with OVERLAY 
subcommand 79 

REPLACE 
option of COPYFILE command, used to 
change filemode letters 63 

subcommand 
how to use 80 
using in edit macros 301 

replacing 
lines in a file being edited 80 

using line-number editing 90 
members in a macro library, example in 

CftS/DOS 174 
REPRO, Access ftethod Services function 211 
resolving, unresolved references 154 
responding 

to CMS commands in an EXEC procedure 
115 

to prompting messages from AMSERV, in an 
EXEC procedure 213 

responses 
from CMS commands 19 

suppressing the display in an EXEC 
procedure 274 

from CP commands 19 
from VM/370 18 
to CMS com.ands, stacking in an EXEC 
procedure 275 

RESTORE 
subcommand 

usage 95 
using in edit macros 301 

restoring 
editor settings 95 
screen display during edit session, 
using TYPE subcommand 332 

Index 385 



restrictions 
on commands used in CMS Batch Facility 

235 
on ddnames in OS VSAM programs 201 
on executing DOS programs in CMS/DOS 

182 
on executing OS pro~rams in CMS 151 
on executing OS programs in CMSjDOS 160 
on number of lines that can be stacked 
in an edit macro 300 

on programs executing in transient area 
245 

on reading DOS files in eMS 162 
on reading OS data sets in CMS 138 
on using DOS/VS macro libraries in 

CMS/DOS 172 
on using minidisks with VS1M data sets 

191 
resume 

program execution 
after a program check 216 
after an attention interrupt 32 

terminal displays 32 
in an EXEC procedure 274 

RETURII 
CMS subset comaand, to leave CMS subset 

30 
DEBUG subcomaand, before starting 

program execution 217 
retu r:n codes 

displayed in Ready message 242 
from Access Method services 189 
from an EXEC procedure 270 
from CMS commands 

displaying during EXEC processing 
285 

specifying error address following 
SVC 202 243 

in CftS Ready message 19 
passed by register 15 242 
1 285 
-2 300 
-3 285 

REUSE subcommand 
after LOCATE or FIND subcommand 75 
usaLge 95 

RSCS (Remote spooling Communications 
Subsystem) 13 

general information 131 
RSERV command, examples 169 
RT Immediate command 32 

executing in an EXEC procedure 274 
RUN, command, specifying arguments 243 
RUBBING status, on a display screen 327 

S 
SAM f:Lles (.§~~ sequential access method 

(S Aft} files) 
sampl«~, terminal sessions 339 
SAVE subcommand 

changing file identifier 92 
writing a file onto disk 70 

scanning 
CMS command lines 242 
lines in an EXEC procedure 255,295 
tokens in an EXEC procedure 108 

386 IBM V8/370: CftS User's Guide 

screen 
example of 3270 screen display 329 
format used by the Cft5 Editor 331 
status 

SCRIPT 

CP READ 326 
HOLDING 327 
MORE.. • 327 
NOT ACCEPTED 327 
RUBBIBG 327 
VM READ 326 

command, restriction on executing in 
CMS/DOS 160 

files 58 
using backspaces 86 

filetype, usage in CMS 56 
SCROLL subcommand, how to use 333 
search order 

for CMS commands, summary 67 
for executable phases in CftS/DOS 183 
of CMS commands, considerations when 

naming EXEC procedures 288 
of CMS disks 59 

displaying 24 
used by DOSLKED command 180 

searching 
disks for CMS files (2~~ disk 
determination) 

for a line in a file being edited 74 
for label in an EXEC procedure 265 
only particular columns of a file being 
edited 77 

read-only extensions 59 
segment, shared system loaded into 229 
sending messages, to other virtual machine 
users 35 

sequence numbers, specifying identifier 88 
sequential access method (5Aft) files, 
reading in CMS/DOS 162 

serial numbers 
changing verification setting to display 

89 
in a file being edited 88 

SERIAL subcommand, examples 88 
seriali zing 

records in a file 88 
while line-number editing 90 

SET command (CMS) 
controlling message displays 37 
operands invalid in job for CMS Batch 
Facility 236 

setting implied CP and EXEC functions 
38 

SET command (CP), controlling message 
displays 36 

SETSSI, OS linkage editor control 
statement, supported by TXTLIB command 
154 

setting 
entry point for program executi'on 156 
limits on system resources during batch. 
jobs 233 

program function keys 325 
in edit macros 326 

sharing 
CMS system 228 
virtual disks 23 

SHORT subcommand, when to use 94 



simulated data sets 
filemode number of 4 63 
format 138 

size 
of a CMS file 

maximum 51 
relationship to record length 83 

of virtual storage in your virtual 
machine 227 

skipping, lines in an EXEC procedure 266 
SLEEP command 

locking terminal keyboard 39 
using on display terminals 327 

sorting 
CMS EXEC 107 
directories of DOS/VS libraries 171 

special variables, EXEC (§~~ EXEC special 
variables) 

specifying 
device type for FILEDEF command 139 
filemode numbers, on DLBL and FILEDE, 

command 63 
which records to read or write 248 

splitting, CMS files into smaller files 97 
SPOOL command 

changing characteristics of unit record 
devices 121 

spooling console output 328 
spool file, determining the status of 123 
spool files 121 

controlling in job for CMS Batch 
Facility 235 

determining the status of 50 
produced by CMS Batch Facility, 
controlling 236 

spooling 
basic description 121 
console output 328 
multiple copies 122 

SSERV command, examples 168 
STACK, subcommand, using in edit macros 

303 
stacking 

CMS commands, in an EXEC procedure 271 
command lines, after attention interrupt 

32 
commands lines, with t (logical line end 

sYllbol) 17 
EDIT subcommands 277 

in edit macros 297 
with REUSE subcommand 95 

EXEC files in the console stack 280 
Immediate cOllmands in an EXEC procedure 

274 
last-in first-out in an EXEC procedure 

276 
lines in an EXEC procedure 115 

limitations 215,300 
lines in the console stack, in an EXEC 
procedure 275 

null lines 
after attention interrupt 32 
in EXEC procedures 213,278 

responses in EXEC procedures 275 
AMSERV command 213 
DLBL command 185 
FILEDEF command 158 
to CMS commands 115 

START 
command 

after LOAD command 152 
used with FETCH command 182 

option 
of FETCH command 182 
of LOAD command 152 

starting, program execution in CMS 152 
STATE command, used with OS data sets 137 
STEPCAT, CMS equivalent 136 
STORE 

CP command, using to change the Program 
Status iord (PSi) 220 

subcommand, changing storage locations 
218 

suballocated VSAM cluster, defining 210 
submitting 

jobs to CMS Batch Facility 231 
non-CMS users 239 

substituting, variable symbols in an EXEC 
procedure 256 

summary 
of CMS commands 314 
of CMS/DOS commands 161 
of CP command privilege classes 319 
of CP commands 320 
of DEBUG subcommands 219 
of EDIT subcommands 99 
of EXEC built-in functions 111 
of EXEC control statements 116 
of EXEC special variables 119 
of Immediate commands 313 

suppressing 
long form of editor 1EDIT message 94 
verification of changes made by the 
editor 94 

SVC 
instructions 

tracing with CP TRACE command 222 
tracing with SVCTRACE command 223 

SVC 202, used to call a CMS command 243 
SVCTRACE command, usage 223 
symbolic addresses for tapes 126 
symbols 

debug 
defining 218 
using with DEBUG subcommands 218 

logical line editing 16 
used for comparisons in EXEC procedures 

113 
variable, in an EXEC procedure (~~ 
variable symbols) 

SYNONYM 
command, invoking synonym tables 38 
filetype, usage in CMS 56 

synonyms, for CMS and user-written 
commands, defining 38 

SYSCAT, assigning in CMS/DOS 195 
SYSCLB 

assigning in CMS/DOS 164 
unassigning 183 

SYSIN 
assigning in CMS/DOS 164 
input for ESERV command 170 

SYSIPT, assigning in CMS/DOS 164 
SYSLIB, ddname used to identify OS macro 
libraries 149 

SYSLOG, assigning in CMSjDOS 164 

Index 387 



SYSLST 
assigning in CMS/DOS 164 
output from ESERV program 170 

SYSPCH 
assi~Jning in CMS/DOS 164 
output from ESERV program 170 

SYSRDR, assigning in CMS/DOS 164 
SYSRLB, assigning in CMS/DOS 164 
SYSSLB, assigning in CMS/DOS 164 
system disk, files available 62 
system logical units 164 
SYSUT1 filetype 58 
SYSUT2 filetype 58 
SYSUT3 filetype 58 
5YSUT4 filetype 58 
SYSxxx 

option of DLBL command 166 
programmer logical units, assigning 164 

5YS001 file type 58 
SYS002 filetype 58 
5YS003 filetype 58 
SYS004 filetype 58 
5YS005 file type 58 
SYS006 filetype 58 

T 
tab 

cha ra.cte rs 
deleted in user input area 336 
entering in a file being edited 84 
using in edit macros 302 
using on display terminals 335 

settings, used by the editor 85 
TABSET subcommand, using in edit macros 

302 
TAPE command, examples 128 
tapes 

considerations for CMS/DOS users 163 
controlling 126 
density of, when to specify 131 
for lMSERV, example 212 
labels 129 

processing in CMS 163 
reading 209 
reading in CMS/DOS 201 

used for AMSERV input and output 208 
iIll CMS/DOS 200 

TAPn, symbolic addresses for tapes 126 
TAPPDS command, copying files from tapes 

130 
temporary disks, using for VSAM data sets 

193 
TERMINAL, command, setting logical line 
editing symbols 18 

terminals 
chara.cteristics, setting 37 
commands to control communications 35 
communication in an EXEC procedure 271 
disconnecting 36 
display (~~~ display terminals) 
input buffer (~~~ console stack) 
macros for communication 251 
mode setting 31,39 

display terminals 327 
sample sessions 339 

terms, as, equivalents in CMS 136 

388 IBM VM/370: CMS User's Guide 

testing 
arguments passed to an EXEC procedure 
260 

EXEC procedures, using CMS subset 294 
for a null line entered in an EXEC 271 
return codes from CMS commands 210 

in an EXEC procedure 271 
variables symbols, using the &IF control 
statement 263 

TEXT 
assembler output ddname, overriding 
default definition 151 

files 
created by assembler and language 

processors 56 
link-editing in eMS/DOS 180 
loading into storage 153 

filetype 
usage in CMS 56 
usage in CMS/DOS 57 

time information, displaying during EXEC 
processing 286 

TO, operand of SPOOL command 123 
TOF, token stacked when edit macro executed 
at top-of-file 299 

TOP: message 74 
tokens 108 

with multiple variable symbols 257 
TOP, subcommand, moving current line 
pointer to top-of-file 74 

top-of-file 
executing edit macros 299 
indication in a file being edited 74 

TRACE, command, usage 221 
tracing 

output, printing 222 
program execution 220 

controlling the trace 222 
tracks 

entering extent information in terms of 
202 

number per cylinder on disk devices 203 
TRANSFER command, moving reader files 124 
transferring 

control in an EXEC procedure 
&ERROR control statement 286 
using &GOTO control statement 264 

transient area 
CMS commands that execute in 65 
creating modules to execute in 245 
location in virtual storage 227 
restrictions on modules executing in 

245 
translate tables 

defining input and output characters for 
40 

using on display terminals 335 
translating, virtual storage to EBCDIC 223 
transporting, VSAM data sets 211 
TRUNC 

option of COPY FILE command, used to 
convert record formats 83 

subcommand, setting right margin for 
input with the editor 87 

truncating 
data while changing lines with the 
editor 87 

input data while using the editor 86 



trailing blanks from fixed-length 
records 83 

words in an EXEC procedure 255 
truncation, settings used by the editor 87 
TSOMAC ~ACLIB 148,176 
TXTLIB 

command 
OS linkage editor control statements 
supported 153 

usage 153 
files 

assigning entry point names 153 
manipulating 153 

filetype, usage in CMS 56 
members, assigning names for 153 

TYPE 

U 

command, displaying CMS files 44 
subcommand 

effect on current line pointer 73 
using to restore screen display 332 

unassigning logical unit assignments in 
CMS/DOS 165 

underscore 
characters in a file being edited 86 
using on OVEBLAY subcommand 78 

unique clusters, defining 210 
unit record, devices 121 
unresolved references, how the loader 
resolves 154 

UPDATE, filetype, usage in CMS 56 
updating, CMS file directories 64 
UPDLOG filetype, usage in CMS 56 
UPDTxxxx filetype, usage in CMS 56 
UPSI 

byte, setting in CMS/DOS 184 
operand, of CMS SET command, example 

184 
user catalog 

VSAM 205 
in CMS/DOS 197 

user file directory 64 
user program area 227 

executing programs and CMS commands 244 
userid 

for your virtual machine 15 
of CMS batch virtual machine 231 
specifying for output spool files 122 

user-written 

v 

commands, creating 157 
edit macros 306 

variable symbols 
compound 257 
examples of substitution 256 
how scanned 256 
in an EXEC procedure 109 

comparing 113 
using as counters 266 
reading values from the terminal 271 
stacking in edit macros 298 

variable-length EXEC files, considerations 
for writing edit macros 301 

VARS operand of &READ control statement 
271 

verification setting 
changing in an edit macro 301 
changing on a display terminal 332 
columns used by the editor 76 

VERIFY subcommand 
canceling editor displays 94 
how to use 76 
using in an edit macro 301 

verifying, execution of an edit macro 301 
virtual 

addresses 
for disks 22 
for tapes 126 
for unit record devices 121 

storage (§~~ virtual storage) 
virtual disks (§~~ ~!§Q disks) 

definition 21 
virtual Machine Facility/370 (VM/370) 

tasic description 13 
command summaries 314 
components 13 
environments 27 

virtual machines 
definition 13 
size 227 

virtual storage 
addresses, calculating 216 
CMS utilization 228 
displaying 223 
examining in debug environment 216 
how CMS uses 227 
increasing the size 97 
overlaying during program execution 244 
specifying locations for program 
execution 244 

used by the editor, what to do when it 
is full 96 

VM READ status, on a display screen 326 
VM/370 (§~~ virtual Machine Facility/370 

(VM/370) ) 
vm/370 online 15 
VSAM 

access method, CMS support 138 
catalogs 

deleting 211 
passwords 206 
passwords in CMS/DOS 198 
using in CMS/DOS 195 

clusters 
defining 210 
deleting 211 
unique 210 

data sets, manipulating with the AMSERV 
command 187 

files 
identifying multivolume 208 
identifying multivolume in CMS/DOS 

199 
relationship to CMS files 51 

input and output files 
defining 201 
defining in CMS/DOS 194 

master catalog 
defining 204 

Index 389 



defining in CMS/DOS 195 
identifying 203 
identifying before executing programs 

188 
identifying in CMS/DOS 195 

multivolume extents 
specify ing 207 
specifying in CMS/DOS 199 

option 
of DLBL command 202 
of DLBL command, in CMS/DOS 194 

programs, compiling and executing in CMS 
187 

user catalogs 
defining 205 
defining in CMS/DOS 196 

using in CMS 187 
VSAPL program, invoking on a display 
terminal 336 

W 
wait bit, in program new PSW, modifying 

224 
iAITT macro, usage 251 
warning messages, controlling whether you 
receive them 36 

writing 
CMS files 

in an EXEC procedure 282 
with the FSWRITE macro 248 

CMS files onto disk 
disk determination 61 
how the editor selects a disk 71 

edi t macros 297 
error messages in an EXEC procedure 292 
labels on CMS disks 22 
lines to the terminal 251 
specific records in a eMS file 248 
tape marks, examples 128 

WRTER~ macro, examples 251 

390 IBM VM/370: CMS User's Guide 

X 
X 

y 

DEBUG subcommand, example 218 
EDIT subcommand, usage 95 

Y subcommand, usage 95 

Z 
ZAP filetype, usage in CMS 56 
zone setting 

columns used by the editor 76 
increasing 87 

ZONE subcommand 

1 

setting truncation columns for CHANGE 
subcommand 87 

specifying columns for the editor to 
search 77 

19E virtual disk address, accessed as 
Y-disk 59 

190 virtual disk address 
accessed as S-disk 59 
using to IPL CMS 16 

191 virtual disk address, accessed as 
A-disk 59 

192 virtual disk address, accessed as 
D-disk 59 

3 
3270 terminals (.§~~ display termin,als) 



! : 
::i: 
1/1" :c: 
.... " 
CII"' 
c: " 
0" <: 
§ : . " 

" " 

READER#S COMMENTS 

Title: IBM Virtual Machine Facility/370: Order No. GC20-1819-0 
CMS User's Gu ide 

Please check or fill in the items; adding explanations/comments in the space provided. 

Which of the following terms best describes your job? 

o Customer Engineer o Manager o Programmer o Systems Analyst 
o Engineer o Mathematician o Sales Representative o Systems Engineer 
o Instructor o Operator o Student/Trainee o Other (explain below) 

How did you use this publication? 
o Introductory text o Reference manual o Student/D Instructor text o Other (explain) ___________________________ _ 

Did you find the material easy to read and understand? 0 Yes 

Did you find the material organized for convenient use? 0 Yes 

Specific criticisms (explain below) 
Clarifications on pages 
Additions on pages 
Deletions on pages 
Errors on pages 

Explanations and other comments: 

o No ( explain below) 

o No (explain below) 

Thank you for your cooperation. No pO$tage necessary if mailed in the U.S.A. 



GC2Q-1lJ19-0 

YOUR COMMENTS PLEASE ... 

Your views about this publication may help improve its usefulness: this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance and/or additional publications or to suggest 
programming changes will delay response, however. For more direct handling 
of such requests, please contact your IBM representative or the IBM Branch 
Office sel'ving your locality. Your comments will be carefully reviewed by the 
person or persons responsible for writing and publishing this material. All 
comments or suggestions become the property of IBM 

FOLD FOLD 

:~ 
: 3' 
:):> 
'0 
• :J 
·to 

:-i 
:~ 
: c, 
• :J 
• (!) 

......... II ••••••••• " ................ II ...... II ••••• II _, .............. II •• II ........ I ............................ II ......... I-I II ................. : 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A, 

FOLD 

POSTAGE WI LL BE PAID BY 

IBM CORPORATION 
VM/370 PUBLICATIONS 

24 NEW ENGLAND EXECUTIVE PARK 

BURLINGTON, MASS. 01803 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10804 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(Internat:lonal) 

FIRST CLASS 

PERMIT NO. 172 

BURLINGTON, MASS. 

FOLD 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	replyA
	replyB

