

.|ll

Virtual Machine/
System Product

CMS for System Programming

Release 5
SC24-5286-0

DR A 4 RS TAR

ARSI R TN |

- g&:ﬁ#ﬂ -~

it f Wit dhar

First Edition (December 1986)

This edition, SC24-5286-0, applies to Release 5 of IBM Virtual Machine/System
Product (VM/SP) (program number 5664-167) unless otherwise indicated in new
editions or Technical Newsletters. It contains material formerly found in the
VM|SP System Programmer’s Guide, SC19-6203 and the VM/SP CMS User’s Guide,
SC19-6210. Changes are made periodically to the information herein; before using
this publication in connection with the operation of IBM systems, consult the
latest IBM System[370, 30xx, and 4300 Processors Bibliography, GC20-0001, for the
editions that are applicable and current.

Summary of Changes
For a detailed list of changes, see page “Summary of Changes” on page 379.

Changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality. Publications are
not stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Information Development, Dept. G60, P.O. Box 6, Endicott, New York, U.S.A.
13760. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986

This publication describes reference information about the functions of the
Conversational Monitor System (CMS) component of VM/SP. The
information is intended for system programmers, system analysts, and
programming personnel. Knowledge of Basic Assembler language and
experience with programming concepts and techniques are prerequisites to
using this publication.

This publication is one of a set of reference manuals for VM/SP system
programmers. The other books in the set include:

VM|SP CP for System Programming
VM|SP Group Control System Command and Macro Reference
VM/|SP Transparent Services Access Facility Reference

VM System Facilities for Programming
VM Diagnosis Guide

©c 0 0 0 O

The order numbers for these books and related publication can be found
under “Bibliography” in the back of this manual.

Some of the topics discussed in this publication are:

Processing abends

Handling interrupts

Using storage

Developing and executing programs
Linkage conventions

Updating programs

Developing commands and messages
Developing OS programs
Developing VSE programs

Using VSAM functions

Tailoring your CMS system

Using the batch facility

Using auxiliary directories
Understanding assembler virtual storage requirements
CMS macro library

0O 0 00 0OOO O COOCOCOOO O

After the appendices, the following sections are available to help you use
this manual more easily:

“Summary of Changes”

“Glossary of Terms and Abbreviations”
“Bibliography”

“Index”

0 0 0 ©

Preface 1ii

iV VM/SP CMS for System Programming

LSO NN T

Chapter 1. Introducing CIVIS e vvn e et e 1
The CMS Command Languagecuiieerinnnnnnnnen. 1
The File Systemttt 2
Preferred Filetypesottt it 3
Program Developmentc.. it iieinnennenns 4
Chapter 2. Processing Abends ettt e 5
Abend Exit Routine Processingcciiiiiiinn ... 5
CMS Abend Recoveryc.uiiiiiiiiiineeinnennneennn 6
Chapter 3. Handling Int2srupts in CLIS et e .9
SVC Interrupts .. oi vttt ittt e et e e e 9
Internal Linkage SVCs ittt tie i it enn, 9
Other SVCs ...ttt ittt e i e e e 10
Input/Output Interruptso v it ittt ettt i 10
Terminal Interrupts riin ittt it et it 11
Reader/Punch/Printer Interrupts , 12
User-Controlled Device Interrupts , 12
Program Interruptsttt e 13
External Interrupts v ittt e e 13
Machine Check Interruptst iinennnnn. 13
Chapter 4. Using Storafe .« v vttt ittt ittt ttneennesnsesens 15
Structure of CMS Storagecc0c.. e 15
Structure of DMSNUC i e e it ieennn 21
User and Transient Program Areasc. i, 23
Managing CMS Storageciiiiiiin ittt ennnnnn 23
GETMAIN Free Storage Managementc0vvvurn... 24
DMSFRE Free Storage Managementc.00ciieunnnn. 27
DMSFRE Service Routinescitiiiineinnnnennn. 35
Error Codes from DMSFREE, DMSFRES, and DMSFRET 37
Storage Protection Keys iinennn. 38
CMS Handling of PSW Keys iii ittt i iinenn 39
Chapter 5. Developing Programs under CMSo 43
Program Linkage (SVC Handling) e e 43
Register Usagecoiiiiiiin ittt e 43
Parameter Tasts i ... e 46
Common SVC Callsc ittt 48
Search Hierarchy for SVC 202, 54
Dynamic Linkage/fSUBCOMc.iiriiineinnnnnnnn 59
Returning to the Calling Routine it 61
The CMS Subset Environmentuttutiininnneeeeeennn 64
Assembling Programs e e 65
Executing Programs i i i e 66
Executing TEXT Files ..ottt i 67

Contents V

Resolving External References 68

Controlling the CMS Loaderc.c0iiiiiinrnnrnnn. 68
Creating Program Modulesttt iininnnnnn. 71
The Transient Program Areac.cciiiiriennnncnnn, 72
Creating EXEC Proceduresc.iuuiiiuierenennnnnennn 73
CMS Macro Instructionsc.iiiiitennrnnenennennnn 75
Disk File Manipulation00ttt nrennenenn 75
Terminal Communicationsc.c.cietteiinnereneenneenn 84
Unit Record and Tape I/Oottt i 85
Handling Interruptsccii it ireeeennsnn 85
System Product Editor Interface to Access Files in Storage 86
CMS Interface for Display Terminalsccoviiernennn.n 88
The CONSOLE MAacCrooviittitie ittt iiiieeaneeenn, 90
The DISPW Macro ..o v iit ittt ittt it ttneeianeaeneenn 93
Chapter 6. Updating Source Programs Using CMS 95
The UPDATE Philosophyc00 it enenennen. 95
Update Filesttt et 96
Sequencing Output Records 0. 99
Multiple Updatesviti ittt ittt ttnenenenan 102
Multiple Updates with XEDIT 0., 107
‘The VMFASM EXEC Procedure e, 109
Updating EXECs and Macrosc.ueuineineneennnnnns 110
The STK Optionc.citiiiiiiin it e it 111
Chapter 7. Developing Commands and RMessage Files 113
Using the Parsing Facility 0., 113
Advantages of the Parsing Facility 113
Advantages of DLCS i i e 113
L0 4 U= 114
Supported CMS Commands0 0ttt enennn. 116
Coding Your Own Command Syntax with DLCS 117
DBCS and the Parsing Facility 0., 130
Examples: Using the Parsing Facility 131
Creating and Distributing Your Own CMS Commands 144
Using Message Repository Files0 0., 145
Overview of Creating and Using a Message Repository 146
Rules for Making Your Own Repository 148
Substitution in Messagesuuiiintiiinnrinnennenn 151
Dictionary Substitution ittt 151
Creating Your Own CMS Messagesvvurmeneenneenn. 153
Creating Your Own HELP Files, 154
Making Your Messages Available toOthers 154
Creating Immediate Commandst .n. 154
Chapter 8. Developing OS Programs under CMS 157
Using OS Data Sets in CMS ittt i 159
OS Simulated Data Sets00.iiir it inneennn 160
Restrictions for Reading OS DataSets 161
The ACCESS Commandc.ciiiiiiiiirinneennenns 161
The FILEDEF Commandiitiiiiineneenennnns 162
Creating CMS Files from OS DataSets 169
Using CMS Librariescc.iitiie ittt enneennnenns 171

vi VM/SP CMS for System Programming

Macro Libraries MACLIBS)coi ittt 172

TEXT Libraries (TXTLIBs)c0itiiii i 181
OS Module Libraries and CMS LOADLIBS 183
The LKED Commandciiiiieiiniinennennnn. 186
OS Data Management Simulationc..... 188
Handling Files that Reside on CMS Disks 188
Handling Files that Reside on OS Disks 189
Simulating OS Supervisor Calls, 189
L0 Y, =) oo - 191
Access Method Support i 199
Reading OS Data Sets Using OS Macrosccvvvun.... 203
OS Tape Volume Switching 204
Chapter 9. Developing VSE Programs under CMS 207
Entering the CMS/DOS Environmentcc0uviuneennn.. 208
DL/I in the CMS/DOS Environmentu'uutteennennnnn 210
Using DOS Fileson DOS Diskst innennn.. 211
Reading DOS Files ... ittt e e e e i, 212
Creating CMS Files from DOS Librariesccvu.... 213
The ASSGN Commandctiiinrttinteneenneen 214
Assigning System Logical Unitst ennn. 215
Compiler I/O Assignmentsvitunreiinneenannnnnn 216
Manipulating Device Assignmentst .. 217
Listing I/O Assignmentstuttiiniiiiinneneeeennnn 217
Virtual Machine Assignments0eiiinernrnenenn 218
The DLBL Commandii ittt ineennennnn 218
Entering File Identifications 219
Clearing and Displaying File Definitions 220
Using DOS Libraries in CMS/DOS 220
The SSERV Commandcii ittt 221
The RSERV Command0itiniiiiiiniinneennnn. 222
The PSERV Command0iuiiiiiiinnennnennnnn. 222
The ESERV Commandctiiiiininnnnnennnn. 223
The DSERV Commandciiiirtiiimrnnnnnnnnn 224
The DOSLKED Commandc. i, 225
DOS Core Image Librariesc.ccuviiuirieeeeeneennn. 225
Using Macro Librariesovoiiiiineitnenenenneeneeen. 225
Creating CMS MACLIBS ittt ittt et e i enaann 225
The MACLIB Command0uiiiiiiinrennnennnnn. 227
Manipulating MACLIB Memberscoiuv..... 230
The MACLIST Command c.iiiiiinrernnnnnnnnn. 231
The GLOBAL Command00iiiiiiiiinnnnnnn.. 235
System MACLIBSttt e et iie e e 235
VSE Assembler Language Macros Supported 236
Assembling Source Programs 238
Link-editing Programs in CMS/DOS 240
Linkage Editor Input i i 241
Linkage Editor Output: CMSDOSLIBs 242
Executing Programs in CMS/DOS, 243
Executing DOS Phases00 iiiiiiniinennnn. 244
Search Order for Executable Phases 244
Making I/O Device Assignmentsc.c.iiiirrennnnn. 245
Specifying a Virtual Partition Size 246
Setting the UPSIByte0ttt 247

Contents Vi1

Debugging Programs in CMS/DOS i, 247

Using EXEC Procedures in CMS/DOS, 247
Hardware Devices Supportedc0 ittt nnennnnnn. 249
VSE Supervisor and I/O Macros Supported by CMS/DOS 249

SUPErVISOr MAacCrOS ..t v ittt ittt i eter st inennens 250

Declarative Macros (Sequential Access Method I/O Macros) 258

Imperative Macros (Sequential Access Method I/O Macros) 267
VSE Transient Routinescoittttnrnnnneeeennnn 268
EXCP Support in CMS/DOS JO 269
VSE Supervisor Control Blocks Simulated by CMS/DOS 269
CMS/DOS User Considerations and Responsibilities 270

VSE System Generation and Updating Considerations 270

VM/SP Directory Entriescuiiiiinieinnnennnennns 271

When the VSE System Must beOnlinecc00vun... L.2n

Performance i i i e e 272

Execution Considerations and Restrictions 272

Chapter 10. Using Access Method Serviees and VSAM under CIIS

and CMS/DOS ... ittt ittt it ettt ettt 275
Executing VSAM Programs Under CMScvvivennn.. 274
The AMSERV Commandiiiiiitinneeennnrnnnennns 276

AMSERV Output Listingsciviirierrrennnnnnnnnnnns 277
Controlling AMSERV Command Listingsc..... 277
Manipulating OS and DOS Disks for Use with AMSERV 278
Data and Master Catalog Sharing«..cc0iiernnennn.. 279
Disk Compatibilityciitiiriirrirnnneneeeennns 280
Allocating Spacettt e e i e e e e e e 280
Using VM/SP Minidisksciiiiiviia.... 281
The LISTDS Command P 281
Using Temporary Disks ittt iineennnn. 283
Defining DOS Input and Output Filesciiiverenn... 284
Using VSAM Catalogsvvvtirinnnneenennennnnnoninas 285
Using Job Catalogsiiiiiiiiiiiinnnnnenneeennnnn 288
Catalog Passwordsuiiriiiiinenenveneennennns 289
Verifying A Catalog Structureciviiiiinneneeennnn. 289
Defining and Allocating Space for VSAM files 290
Using Tape Input and OQutputc.ci ittt nennennnnnn 292
Defining OS Input and Output Files e 294
Allocating Extents on OS Disks and Minidisks 295
Using VSAM Catalogsiiiiriniirrennennnnnnnnnn 296
UsingadobCatalogc0uu... P 299
Catalog Passwords cviviiniiieeeeennnnneeeeeneneens 299
Verifying a Catalog Structureciiiiiinneieennnnnnn 300
Defining and Allocating Space for VSAM files 300
Using Tape Input and Outputco.... Ceeee 303
Using AMSERV under CMSiiiittirnnnnnnerennn. 304
The DEFINE and DELETE Funectionscv0eeviunnn. 305
The REPRO IMPORT, and EXPORT (or EXPORTRA/IMPORTRA)
FUNCEIONS .« oot oo et e et et e ettt e eae e eeans 307
Writing EXECs for AMSERV and VSAM e 309
ISAM Interface Program (ITP) it ninnnenneeennnnn. 310
VSE/VSAM Macros Supportediiiiiienienerneenennnens 311
Obtaining the VSE/VSAM Macrosoeucvu... et 311

viii VM/SP CMS for System Programming

VSE Supervisor Macros and Logical Transients Support for VSAM

OS/VSAM Macros Supported in CMS ,
OS/VSAM Error Codescviiiiiiiiiiinnnnnnnnnnnn
Hardware Devices Supportedccciimiiiinnnreeenennn

Chawtor 11, Tatloring Teur CIIS Systeiml v v v v it v v v v eens
Saving the CMS System ittt
Saved System Restrictions for CMS
Using the System Profile, SYSPROF EXEC, for Tailoring
What the System Profile Does
Invoking the IPLCMS Commandcviiieunnn..
How to Save a Named Systemccviiiernnennnn.
How to Create or Change SYSPROFEXEC
How to Bypass the System Profile
Setting Up a Protected Application Environment
What the System Profile Can Do for Installations
Sharing File Directory Information
The SAVEFD Commandcutttiitmunnnnnnneneeeenn
Putting File Directory Information into Shared Storage
Usage Notesciiiii it
Messagesand Return Codes iiiiiiiiinnnan.
Sharing EXECs and Editor Macroscuiiiiinneeennnn.

Chapter 12, Uging the CIEiS Bateh Ffaeility .. o0 v e v ii v v e v nn
Installing the CMS Batch Machine
Resetting the CMS Batch Facility System Limits
Writing Routines To Handle Special Installation Input

BATEXIT1: Processing User-Specified Control Language

BATEXIT2: Processing the Batch Facility [JOB Control Card
EXEC Procedures for the Batch Facility Virtual Machine
Data Security under the Batch Facility
Improved IPL Performance Using a Saved System

Chaptor 13, Using Auziliary Directories,
Adding an Auxiliary Directoryc..itiirinernennnnnn
Generating the Auxiliary Directory
Initializing the Auxiliary Directory
Establishing the Proper Linkageo ...
Creating an Auxiliary Directoryccuteiieennnnnnnnn

Chapter 14, Understanding Assembler Virtual Storage

™

ADPENAIIBE it vttt ettt i et e e e

Appendiz £, OWE liacro Libravry ..o v i v, f e

Appendix:z B, Sample Terminal Session for OS Programmers

Anpendiz C. Sample Terminal Session for BOS Programmers

Contents

BT 68 A o Ve & o
Overlay Structuresccviitttttieternrnnnnreneeeennas
Prestructured Overlayc.ciiiiieiin i "
Dynamic Load Overlaycciii i iniinerennnn.

312
312
316
319

321
322
322
322
323
325
325
327
327
328
328
329
330
330
331
331

333
334
335
335
335
335
336
336
336

339
339
339
340
341
342

345
345
346
347
349
351
355

361

ix

Appendiz B. Sample Terminal Session Using Access NMethed

Services ...

SummaryofChangesccivvveiinns e
Structural Changescottiten e nnenenennns
Technical Changes for VM System Facilities for Programming

Summary of Changes for the VM/SP System Programmer’s Guide ..
Glossary of Terms and Abbreviations e
Abbreviations0t i e e e e e
GlOSSaTY . vttt i e e e e e e
Bibliography .

Index

X VM/SP CMS for System Programming

© 0N 0O

36.

37.
38.
39.
40.

RIGILIRSIS

CMS Storage Map 1lttt ittt 18
CMS Storage Map 2ttt ittt 19
CMS Storage Map 3 ...ttt 20
Devices Supported by a CMS Virtual Machine 22
Register Contents When Called Routine Starts 45
PSW Fields When Called Routine Starts 45
SVC 202 High-Order Byte Values of Register 1 49
CMS Command Processingcueiiiimnnnrnnnnnn.. 57
SVC 202 Processing .. .vvvit ittt 58
FSCBIFOrmatvviiiiiiit ettt e e 75
A Sample Listing of a Program that Uses CMS Macros 83
Updating Source Files with the UPDATE Command 100
An Update with a Control File 106
Sample REXX Program 1iiuiiinieennnennnnn 135
Sample REXX Program 2 e e 136
Sample Assembler Program 1ccuv. ... 138
Sample Assembler Program 2 140
OS Terms and CMS Equivalents 158
CMS Commands that Recognize OS Data Sets on OS Disks 159
Creating CMS Files from OS DataSets 171
Sample MACLIST Screenc.uiiiinenneneennnnnn 177
Simulated OS Supervisor Calls 189
CMS/DOS Commands and CMS Commands with Special Operands 209
Sample MACLIST Screencouiiininrnennennn. 232
VSE Macros Supported by CMSccuuv.. 237
Physical I0OCS Macros Supported by CMS/DOS 250
SVC Support Routines and Their Operation 250
CMS/DOS Support of DTFCD Macrocvvunee... 259
CMS/DOS Support of DTFCN macroc.oouvuuunnnn.. 261
CMS/DOS Support of DTFDI Macro ccvviun.... 261
CMS/DOS Support of DTFMT Macroc.couuvunnnn.. 263
CMS/DOS Support of DTFPR Macroc.vuuunun... 264
CMS/DOS Support of DTFSD Macrocovvennin..... 265
Options of OS/VSAM Macros Supported in CMS 313
VSE/VSAM to OS/VSAM Error and Return Code Mapping for

OPEN Errors .. .vvitiiiiie ittt ittt e 316
VSE/VSAM to OS/VSAM Error and Return Code Mapping for

CLOSE Errors ..o vviet ittt e ettt e et 318
DATA Management Request Error Return Code Mapping 319
Parameters Passed to SYSPROF EXEC 326
An Overlay Structurecciiiiiie e nnnnnn. 346

New VM/SP System Programming Manuals for VM/SP Release 5 380

Figures X1

Xil VM/SP CMS for System Programming

Clhaicn 11 hriieEenmg CIIS)

The Conversational Monitor System (CMS), the major subsystem of VM/SP,
provides a comprehensive set of conversational facilities to the user.
Several copies of CMS may run under CP, thus providing several users with
their own time sharing system. CMS is designed specifically for the VM/SP
virtual machine environment.

Each copy of CMS supports a single user. This means that the storage area
contains only the data pertaining to that user. Likewise, each CMS user
has his own machine configuration and his own files. This makes
debugging simpler because the files and storage area are protected from
other users.

Programs can be debugged from the terminal. The terminal is used as a
printer to examine limited amounts of data. After examining program data,
the user can enter commands on the terminal that will alter the program.
This is the most common method used to debug programs that run in CMS.

CMS, operating with the VM/SP Control Program (CP), is a time sharing
system suitable for problem solving, program development, and general
work. It includes several programming language processors, file
manipulation commands, utilities, and debugging aids. Additionally, CMS
provides facilities to simplify the operation of other operating systems in a
virtual machine environment when controlled from a remote terminal. For
example, CMS creates and modifies job streams and analyzes virtual printer
output.

Part of the CMS environment is related to the virtual machine environment
created by CP. Each user is completely isolated from the activities of all
other users, and each machine where CMS executes has virtual storage
available to it and virtual storage managed for it by CP. The CP commands
are recognized by CMS. For example, the commands allow messages to be
sent to the operator or to other users and allow virtual devices to be
dynamically detached from the virtual machine configuration.

The CMS Command Language

The CMS command language offers terminal users a wide range of
functions. It supports a variety of programming languages, service
functions, file manipulation, program execution control, and general system
control. The CMS commands that are useful in debugging are discussed in
the VM Diagnosis Guide manual. For detailed information on all other
CMS commands, refer to the VM/SP CMS Command Reference.

Chapter 1. Introducing CMS 1

Introducing CIS

L — -

The File System

The Conversational Monitor System interfaces with virtual disks, tapes,
and unit record equipment. The CMS residence device is a read-only,
shared system disk. Permanent user files may be accessed from up to 25
active disks. CMS controls logical access to these virtual disks while CP
facilities manage the device sharing and virtual-to-real mapping.

User files in CMS are identified with three designators:
o A filename

o A filetype implying specific file characteristics to the CMS file
management routines.

o A filemode describing the location and access mode of the file.

User files can be created and changed directly from the terminal with the
VM/SP System Product Editor (XEDIT). XEDIT provides extensive context
editing services. File characteristics such as record length, record format,
tab locations, and serialization options can be specified. See VM/SP
System Product Editor Command and Macro Reference for more information
on XEDIT.

The size of user files is determined by the blocksize (BLKSIZE). For disks
with a blocksize of 800 bytes, a single user file is limited to a maximum of
65,533 records and must reside on one virtual disk. The file management
system limits the number of files on the virtual disk to 3400. When a
blocksize of 512, 1024, 2048, or 4096 bytes is specified, a single user file is
limited to a maximum of 231-1 CMS records and must reside on one virtual
disk. The maximum number of data blocks available in a variable format
file on a 512-byte blocksize minidisk is about 15 times less than 231-1, This
number is the maximum number of data blocks that can be accessed by the
CMS file system due to the 5 level tree structure. The maximum number of
files on any one disk is limited by the file management system to 231-1.
However, the actual number of files on a disk is limited by the available
disk space and the size of the user’s files.

When you access a read-only disk, a hyperblock mapping table (HYPMAP)
is built. When you access a read/write disk, a hash table complex
(HASHTAB) is built. (For further details on HYPMAP and HASHTAB, see
the VM/SP Data Areas and Control Block Logic Volume 2 (CMS) manual.)
These two tables decrease the paging overhead when searching for files.
However, the hyperblock mapping table is not built if the hyperblocks for
the disk do not span three or more pages. The hash table is not built if the
hyperblocks for the disk do not span two or more pages.

CMS automatically allocates compiler work files at the beginning of
command execution on whichever active disk has the greatest amount of
available space, and CMS deallocates them at completion. Compiler object
decks and listing files are normally allocated on the same disk as the input
source file or on the primary read/write disk, and are identified by

2 VM/SP CMS for System Programming

Intreducing GVIS

e e et e e < oo = 4 2ot e e e < e e e e SR, oy

combining the input filename with the filetypes TEXT and LISTING. These
disk locations may be overridden by the user.

Virtual disks may be shared by CMS users. This capability is provided by
VM/SP to all virtual machines. Specific files may be spooled between
virtual machines to accomplish file transfer between users. Commands
allow such file manipulations as writing from an entire disk or from a
specific disk file to a tape, printer, punch, or the terminal. Other
commands write from a tape or virtual card reader to disk, rename files,
copy files, and erase files. Special macro libraries and text or program
libraries are provided by CMS, and special commands are provided to
update and use them. CMS files can be written onto and restored from
unlabeled tapes via CMS commands.

Caution: Multiple write access under CMS can produce unpredictable
results.

Problem programs that execute in CMS can create files on unlabeled tapes
using any record length and blocksize; the record format can be fixed,
variable, or undefined.

Preferred Filetypes

CMS has a list of preferred filetypes. This list consists of filetypes that are
frequently searched for, but rarely found on your disk. The list of preferred
filetypes is as follows:

EXEC
MODULE
CMSUT1
AUTOSAVE
XEDTEMP
XEDIT
SYSUT1
TEXT

The active disk table (ADT) contains a byte signalling which preferred
filetypes are on the disk. Before scanning the file management tables for a
file, this byte is examined to see if any files of the desired type are present
on the disk. This process avoids searching for a file that is not on the disk;
therefore, improving system performance.

For example, if you are looking for a file with one of the preferred filetypes
and the byte in the ADT indicates that the filetype is not on the disk, then
you will avoid searching the disk for the file.

Performance may be improved by keeping preferred filetypes together on
separate disks.

Chapter 1. Introducing CMS 3

('3

Iniroducing GG
T e e e T T T

Program Development

The Conversational Monitor System includes commands to create, compile,
modify, and correct source programs; to build test files; to execute test
programs; and to debug from the terminal. The commands of CMS are
especially useful for OS and VSE program development, but the commands
also may be used in combination with other operating systems to provide a
virtual machine program development tool.

CMS uses the OS and VSE compilers via interface modules. The compilers
themselves normally are not changed. To provide suitable interfaces, CMS
includes a certain degree of OS and VSE simulation. For OS, the
sequential, direct, and partitioned access methods are logically simulated.
The data records are physically kept in the chained fixed-length blocks, and
they are processed internally to simulate OS data set characteristics. For
VSE, the sequential access method is supported. CMS supports VSAM
catalogs, data spaces, and files on OS and DOS disks using the Access
Method Services portion of VSE/VSAM. OS Supervisor Call functions such
as GETMAIN/FREEMAIN and TIME are simulated. The simulation
restrictions concerning what types of OS object programs can be executed
under CMS are primarily related to the OS/PCP, MFT, and MVT Indexed
Sequential Access Method (ISAM) and the telecommunications access
methods. Functions related to multitasking in OS and VSE are ignored by
CMS. For more information, see “OS Data Management Simulation” on
page 188 and “Chapter 9. Developing VSE Programs under CMS” on

page 207.

4 VM/SP CMS for System Programming

Clagien 2, PieeEsenig Alseics

When CMS abnormally terminates, the following steps are taken:

1. After checking for any SPIE, STXIT PC, STAE, or STXIT AB exits that
apply, CMS calls DMSABN, the abend recovery routine.

2. Before typing out any abend message at the terminal, DMSABN, the
abend recovery routine, checks for any abend exit routines, set by the
ABNEXIT macro.

3. If a list of exit routines exists, the current abend exit routine (that is,
the last one set) gains control. If no abend exit routines exist, CMS
abend recovery occurs.

Abend Exit Routine Processing

An abend exit routine may be established to intercept abends before CMS
abend recovery begins. You must provide the proper entry and exit linkage
for this abend exit routine. See the ABNEXIT macro in the VM/SP CMS
Macros and Functions Reference for details on the register contents when
the routine receives control.

The abend exit routine receives control with the nucleus protect key and is
disabled for interrupts. Information about the abend is available to the exit
routine in the DMSABW CSECT in DMSNUC. The address of this area is
passed to the exit routine via register 1. In addition to the information
currently available in DMSABW, a fullword specified on the ABNEXIT
macro contains information for the exit’s own purposes. ABUWRD is the
name of the fullword containing the information the user enters in the
UWORD parameter of the ABNEXIT macro.

An abend exit routine may choose to avoid CMS abend recovery and
continue processing normally. To do this, the exit must issue the
ABNEXIT RESET macro. This tells CMS to clear the abend condition.
The exit routine may also return to CMS to continue abend processing.

If the exit routine returns to CMS and another abend exit routine exists, it
is given control next. Each exit on the list is given control in sequence
until all the exits have been given control or until an exit chooses to avoid
CMS abend recovery, by issuing ABNEXIT RESET, and continues
processing.

If a program check occurs in the exit routine and ABNEXIT RESET was
not issued in this exit routine, DMSABN gives control to the next exit

Chapter 2. Processing Abends 5

Processing Abends

[

routine on the list. If no other exit routine exists, CMS abend recovery
occurs.

You cannot set or clear abend exit routines in an abend exit routine. You
can reset an abend exit routine only in an exit routine.

CMS Abend Recovery

If no abend exit routine exists or if the abend exit routine returns to CMS
to continue abend processing, DMSABN types out the abend message
followed by the line:

CMS

This line indicates to you that the next command can be entered.

Options available to you are:

o Issue the DEBUG command. DMSABN passes control to DMSDBG to
make the facilities of DEBUG available. DEBUG’s PSW and registers
are as they were at the time the recovery routine was invoked. In
DEBUG mode, you may alter the PSW or registers. Then, type GO to
continue processing, or type RETURN to return to DMSABN.
DMSABN continues the abend recovery.

o Issue any command (other than DEBUG). DMSABN performs its abend
recovery function and passes control to DMSINT to execute the
command that was typed in.

The abend recovery function performs the following, in sequence:

1. Clears the console input buffer and program stack.

2. Terminates all VMCF activity.

3. Reinitializes the work area stack for reentrant CMS nucleus modules.

4. Reinitializes the SVC handler, DMSITS, and frees all stacked save
areas.

5. Clears the auxiliary directories, if any. Invokes “FINIS * * *” to close
all files, and to update the master file directory.

6. Frees storage, if the DMSEXT module is in virtual storage.
7. Zeroes out the MACLIB directory pointers.
8. Frees the CMS work area, if the CMS subset was active.

9. Frets the RLDDATA buffer, used by the CMS loader to retain
relocation information for the GENMOD process, if it is still allocated.

6 VM/SP CMS for System Programming

Procassing Abends

]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Issues the STAE, SPIE, TTIMER, and STAX macros to cancel any
outstanding OS exit routines. Frees any TXTLIB, MACLIB, or LINK
tables.

Calls with a purge PLIST, all nucleus extensions that have the
“SERVICE” attribute defined.

Drops all nucleus extensions that do not have the “SYSTEM” attribute.
Also drops any nucleus extensions that are in type user storage.

Drops all SUBCOM SCBLOCKS that do not have the “SYSTEM”
attribute.

Frees console path and device entry control blocks.

Drops all storage resident execs that do not have the “SYSTEM”
attribute.

Clears all immediate commands that are not nucleus extensions with
the “SYSTEM?” attribute; returns all associated free storage.

Calls DMSCLN to zero out the userword of the SRPI command.

Calls DMSWITAB to delete all windows and vscreens that do not have
the “SYSTEM?” attributes.

Resets the storage keys for the whole virtual machine, except the
nonshared pages, according to FREETAB. Saves the setting for
KEYPROTECT.

Zeroes out all FCB, DOSCB, and LABSECT pointers.

Frees all storage of type user.

Restores the setting for KEYPROTECT.

Zeroes out all interrupt handler pointers in IOSECT.

Turns the SVCTRACE command off.

Closes the virtual punch and printer; closes the virtual reader with the
HOLD option.

Reinitializes the VSE lock table used by CMS/DOS and CMS/VSAM.
Zeroes out all OS loader blocks, and frees the FETCH work area.

Cleans up the CMS IUCV environment based on the existence of the
CMS id block.

Clears all ABNEXIT set and returns storage.

Chapter 2. Processing Abends 7

Precessing Abends

C

30. Computes the amount of system free storage that should be allocated
and compares this amount with the amount of free storage actually
allocated. Types a message to the user if the two amounts are unequal.

31. Issues a STRINIT and releases any pages remaining in the flush list via
a call to DMSPAGFL, if all storage is accounted for.

After abend recovery has completed, control passes to DMSINT at entry
point DMSINTAB to process the next command.

8 VM/SP CMS for System Programming

Cliggstien & MEGRINGE) IRfEausiE nn Clis.

SVYC Interrupts

CMS receives virtual SVC, input/output, program, machine, and external
interruptions and passes control to the appropriate handling program.

The Conversational Monitor System is SVC (supervisor call) driven. SVC
interruptions are handled by the DMSITS resident routines. Two types of
SVCs are processed by DMSITS: internal linkage SVC 202 and 203, and any
other SVCs. The internal linkage SVC is issued by the command and
function programs of the system when they require the services of other
CMS programs. (Commands entered by the user from the terminal are
converted to the internal linkage SVC by DMSINT). The OS SVCs are
issued by the processing programs (for example, the Assembler).

Internal Linkage SVCs

When DMSITS receives control as a result of an internal linkage SVC (202
or 203), it saves the contents of the general purpose registers, floating-point
registers, and the SVC old PSW, establishes the normal and error return
addresses, and passes control to the specified routine. (The routine is
specified by the first 8 bytes of the parameter list whose address is passed in
register 1 for SVC 202 or by a halfword code following SVC 203.)

For SVC 202, if the called program is not found in the internal function
table of nucleus (resident) routines, then DMSITS tries to call in a module
(a CMS file with filetype MODULE) of this name via the LOADMOD
command. If the program was not found in the function table, nor was a
module successfully loaded, DMSITS returns an error code to the caller.

To return from the called program, DMSITS restores the calling program’s
registers, and makes the appropriate normal or error return as defined by

the calling program.

See pages 48 and 52 for more details on SVC 202 and SVC 203.

Chapter 3. Handling Interrupts in CMS 9

Handling Interrupis

Other SVCs

The general approach taken by DMSITS to process other SVCs supported
under CMS is essentially the same as that taken for the internal linkage
SVCs. However, rather than passing control to a command or function
program, as is the case with the internal linkage SVC, DMSITS passes
control to the appropriate routine. The SVC number determines the
appropriate routine.

In handling non-CMS SVC calls, DMSITS refers first to a user-defined SVC
table (if one has been set up by the DMSHDS program). If the user-defined
SVC table is present, any SVC number (other than 202 or 208) is looked for
in that table. If it is found, control is transferred to the routine at the
specified address.

If the SVC number is not found in the user-defined SVC table (or if the
table is nonexistent), DMSITS either transfers control to the CMSDOS
shared segment (if SET DOS ON has been issued), or the standard system
table (contained in DMSSVT) of OS calls is searched for that SVC number.
If the SVC number is found, control is transferred to the corresponding
address in the usual manner. If the SVC is not in either table, then the
supervisor call is treated as an abend call.

The DMSHDS initialization program sets up the user-defined SVC table.
The user can provide his own SVC routines by using the HNDSVC macro.

Input/Output Interrupts

All input/output interruptions are received by the I/O interrupt handler,
DMSITI. DMSITI saves the I/O old PSW and the CSW (channel status
word). It then determines the status and requirements of the device causing
the interruption and passes control to the routine that processes
interruptions from that device.

DMSITI scans console facility device entries (CDEV) until it finds one
containing the device address that is the same as the interrupting device. If
a matching device is found and a CONSOLE ‘path’ is waiting for an
interrupt:

1. The wait field is cleared in the device entry,
2. The wait bit is turned off in the I/O old PSW, and

3. DMSITI returns control to the console facility by loading the I/O old
PSW.

If no path is waiting, the interrupt is considered unsolicited and DMSITI
checks for a user-defined interrupt handling routine. If DMSITI finds one,
it passes control to the routine. Otherwise, if the device also exists in a
console CDEV entry, DMSITI checks if any I/O was done and if an EXIT

10 VM/SP CMS for System Programming

FHandling Interrupls

R — R - 1

routine is specified. If an EXIT can be called, DMSITI turns off the PSW
wait bit, loads the PSW, and exits.

If no console path performed I/O or no exits were called, the interrupt for
the virtual console is passed to the system routine (DMSCITA) found in the
CMS device table (DEVTAB). For dialed devices, the unsolicited interrupt
is ignored. If fullscreen CMS is on, attention interrupts for the virtual
console are passed to a fullscreen read routine instead of DMSCITA.

The device table (DEVTAB) contains an entry for each device in the
system. Each entry for a particular device contains, among other things,
the address of the program that processes interruptions from that device.

When the appropriate interrupt handling routine completes its processing,
it returns control to DMSITI. At this point, DMSITI tests the wait bit in
the saved I/O old PSW. If this bit is off, the interruption was probably
caused by a terminal (asynchronous) I/O operation. DMSITI then returns
control to the interrupted program by loading the I/O old PSW.

If the wait bit is on, the interruption was probably caused by a nonterminal
(synchronous) I/O operation. The program that initiated the operation most
likely called the DMSIOW function routine to wait for a particular type of
interruption (usually a device end). In this case, DMSITI checks the
pseudo-wait bit in the device table entry for the interrupting device. If this
bit is off, the system is waiting for some event other than the interruption
from the interrupting device; DMSITI returns to the wait state by loading
the saved I/O old PSW. (This PSW has the wait bit on.)

If the pseudo-wait bit is on, the system is waiting for an interruption from
that particular device. If this interruption is not the one being waited for,
DMSITI loads the saved I/O old PSW. This again places the machine in the
wait state. Thus, the program that is waiting for a particular interruption
is kept waiting until that interruption occurs.

If the interruption is the one being waited for, DMSITI resets both the
pseudo-wait bit in the device table entry and the wait bit in the IO old
PSW. It then loads that PSW. This causes control to be returned to the
DMSIOW function routine, which, in turn, returns control to the program
that called it to wait for the interruption.

Terminal Interrupts

Terminal input/output interruptions are handled by the DMSCIT module.
All interruptions other than those containing device end, channel end,
attention, or unit exception status are ignored. If device end status is
present with attention and a write CCW was terminated, its buffer is
unstacked. An attention interrupt causes a read to be issued to the
terminal, unless attention exits have been queued via the STAX macro. The
attention exit with the highest priority is given control at each attention
until the queue is exhausted, then a read is issued.

Chapter 3. Handling Interrupts in CMS 11

Fandling Interrupts

L

Device end status indicates that the last I/O operation has been completed.
If the last I/O operation was a write, the line is deleted from the output
buffer and the next write, if any, is started. If the last I/O operation was a
normal read, the buffer is put on the finished read list and the next
operation is started.

If the read is caused by an attention interrupt, the line is first checked to
see if it is an immediate command (user-defined or built-in). If it is a
user-defined immediate command, control is passed to a user specified exit,
if one exists. Upon completion, the exit returns to DMSCIT. Ifitis a
built-in immediate command (HX, for example), appropriate processing is
performed by DMSCIT.

Unit exception indicates a canceled read. The read is reissued, unless it
had been issued with ATTREST =NO, in which case unit exception is
treated as device end.

Reader/Punch/Printer Interrupts

Interruptions from these devices are handled by the routines that actually
issue the corresponding I/O operations. When an interruption from any of
these devices occurs, control passes to DMSITI. Then DMSITI passes
control to DMSIOW, which returns control to the routine that issued the
I/O operation. This routine can then analyze the cause of the interruption.

User-Controlled Device Interrupts

Interrupts from devices under user control are serviced the same as CMS
devices except that DMSIOW and DMSITI manipulate a user-created device
table, and DMSITI passes control to any user-written interrupt processing
routine specified in the user device table. Otherwise, the processing
program regains control directly.

To handle unsolicited device interrupts, you may specify the EXIT
parameter for the OPEN request of the CONSOLE macro instruction. If
you specify this parameter, do NOT define an interruption routine via the
HNDINT macro for the same device. Use of the CONSOLE macro with the
use of HNDINT should be mutually exclusive. If for some reason there is
both a CONSOLE EXIT and an HNDINT routine for the same device, the
HNDINT routine overrides a CONSOLE EXIT only in the case of an
unsolicited interrupt.

The console facility supports multiple applications for a single device
whereas HNDINT only allows one application to handle all interrupts from
a specific device. Because it is difficult to tell what application is doing I/O
last, the console facility helps CMS keep track of what application is doing
I/O or what application handled interrupts last.

12 VM/SP CMS for System Programming

Flandling Interrupis

PR .

The CONSOLE macro supersedes an HNDINT routine when the interrupt is
solicited. In most cases, a CONSOLE WAIT and CONSOLE READ can be
issued instead of coding an HNDINT routine to handle all interrupts.
Therefore, if you want to perform I/O to a 3270 device, you should use the
CONSOLE macro instead of the HNDINT macro.

Program Interrupts

The program interruption handler, DMSITP, receives control when a
program interruption occurs. When DMSITP gets control, it stores the
program old PSW and the contents of the registers 14, 15, 0, 1, and 2 into
the program interruption element (PIE). (The routine that handles the
SPIE macro instruction has already placed the address of the program
interruption control area (PICA) into PIE.) DMSITP then determines
whether or not the event that caused the interruption was one of those
selected by a SPIE macro instruction. If it was not, DMSITP passes control
to the DMSABN abend recovery routine.

If the cause of the interruption was one of those selected in a SPIE macro
instruction, DMSITP picks up the exit routine address from the PICA and
passes control to the exit routine. Upon return from the exit routine,
DMSITP returns to the interrupted program by loading the original
program check old PSW. The address field of the PSW was modified by a
SPIE exit routine in the PIE,

External Interrupts

An external interruption causes control to be passed to the external
interrupt handler DMSITE. If CMS IUCYV support is active in the virtual
machine and an IUCV external interrupt occurs, control is passed to the
user exit specified on the HNDIUCV or CMSIUCYV macro. If the user has
issued the HNDEXT macro to trap external interrupts, DMSITE passes
control to the user’s exit routine.

If the interrupt was caused by the timer, DMSITE resets the timer and
types the BLIP character at the terminal. The standard BLIP timer setting
is two seconds, and the standard BLIP character is uppercase, followed by
the lowercase (it moves the typeball without printing). Otherwise, control
is passed to the DEBUG routine.

Machine Check Interrupts

Hard machine check interruptions on the real processor are not reflected to
a CMS virtual user by CP. A message prints on the console indicating the
failure. The user is then disabled and must IPL. CMS again to continue.

Chapter 3. Handling Interrupts in CMS 13

14 VM/SP CMS for System Programming

Chapte2alisinaiSterage)

The most important thing to remember about CMS, from a debugging
standpoint, is that it is a one-user system. The supervisor manages only
one user and keeps track of only one user’s file and storage chains. Thus,
everything in a dump of a particular machine relates only to that virtual
machine’s activity.

Structure of CMS Storage

Figures 1, 2, and 3 on pages 18, 19, and 20 describe how CMS uses its
virtual storage. The pointers indicated (MAINSTRT, MAINHIGH, and
FREELOWE) are all found in NUCON (the nucleus constant area).

The sections of CMS storage have the following uses:

(-]

DMSNUC (X‘00000° to ANUCEND). This is the nucleus constant area.
It contains system control blocks, pointers, flags, and other data
updated by the various system routines.

Low-Storage DMSFREE User Free Storage Area (ANUCEND to
X‘0E000’). This area is a free storage area where user requests to
DMSFREE are allocated.

Transient Program Area (X‘0E000’ to X‘10000°). Since it is not
essential to keep all nucleus functions resident in storage all the time,
some of them are made “transient.” This means that when nucleus
functions are needed, they are loaded from the disk into the transient
program area. Such programs may not be longer than two pages
because that is the size of the transient area. (A page is 4096 bytes of
virtual storage.) All transient routines must be serially reusable since
they are not read in each time they are needed. See “User and
Transient Program Areas” on page 23 for more details on the transient
program area.

Low-Storage DMSFREE Nucleus Free Storage Area (X‘10000° to
X¢20000°). This area is a free storage area where nucleus requests to
DMSFREE are allocated. The top part of this area contains the dummy
hyperblocks for the S- and Y-disk. Each block is 48 bytes long. This
area may be followed by the file status tables for the S2 filemode files of
the system disk.

If there is enough room, the FREETAB table also occupies this area,
just below the file status tables, if they are there. Each entry in the

Chapter 4. Using Storage 15

ClS Storage

[

FREETAB table is one byte long. Each byte represents one page (4K or
4096 bytes) of defined storage.

e User Program Area (X‘20000° to Loader Tables or CMS Nucleus,
whichever has the lower value). User programs are loaded into this
area by the LOAD command for text decks or by the LOADMOD
command for modules. Storage allocated by means of the GETMAIN
macro instruction is taken from this area, starting from the high
address of the user program. In addition, this storage area can be
allocated from the top down by DMSFREE, if there is not enough
storage available in the low DMSFREE storage area. Thus, the usable
size of the user program area is reduced by the amount of free storage
that has been allocated from it by DMSFREE. See “User and Transient
Program Areas” on page 23 for details on the user program area.

o Loader Tables (Top pages of storage). The top of storage is occupied
by the loader tables, which are required by the CMS loader. These
tables indicate which modules are currently loaded in the user program
area (and the transient program area after a LOAD command). The size
of the loader tables can be varied by the SET LDRTBLS command.
However, to successfully change the size of the loader tables, the SET
LDRTBLS command should be issued immediately after IPL. If SET
LDRTBLS is not issued immediately, high storage may be fragmented.

© CMS Nucleus (NUCALPHA to NUCOMEGA). The CMS nucleus
contains the reentrant code for the CMS nucleus routines and the
system S-STAT and Y-STAT. If there is not sufficient room to contain
the S-STAT in this area, it is placed in low DMSFREE nucleus storage.
If there is not sufficient room to contain the Y-STAT in this area, the
Y-disk is accessed using the ACCESS command.

If the size of the user’s virtual machine is defined below the end of the CMS
nucleus (refer to label NUCSIGMA in Figure 1 on page 18), it is not
possible to IPL by device name. You cannot IPL by device name because
the CMS nucleus is too large to be loaded into the user’s virtual storage.
Therefore, the user can only IPL by system name (such as, IPL, CMS). The
loader table is placed immediately below the CMS nucleus.

On the other hand, if the size of the user’s virtual machine is defined above
the ending location of the CMS nucleus (refer to Figure 2 on page 19 and
Figure 3 on page 20), the user may IPL by either device name or system
name.

IPLing by device name:

The S-STAT, Y-STAT, and the loader table are placed above the CMS
nucleus. If there is not enough room to contain the S-STAT above the
CMS nucleus (NUCSIGMA), it is placed in low storage. Likewise, if
there is not sufficient room for the loader table above the CMS nucleus
(NUCSIGMA), the loader table is placed below the nucleus. Any
leftover free space above the nucleus is placed on the high DMSFREE
chain.

16 VM/SP CMS for System Programming

IPLing by system name:

The shared copy of the S-STAT, Y-STAT, and nucleus is used. If there
is sufficient room, the loader table is placed above the S-STAT and
Y-STAT (NUCOMEGA). If there is insufficient room to place the loader
table above the S- and Y-STAT, the loader table is placed below the
nucleus. Any leftover free space above the S- and Y-STAT
(NUCOMEGA) is placed on the high DMSFREE chain.

Chapter 4. Using Storage 17

CMS

Storage

| nucomEGa

|
S-STAT and Y-STAT
(Shared)
NUCSIGMA
CMS Nucleus
-L (Shared) -

l NUCALPHA

End of Storage

VMSIZE

FREELOWE

MAINHIGH

MAINSTRT

X'20000°

X'10000’

X'E000’

| ANUCEND

X0

Figure 1.

-‘ Storage Key = X'E’

Virtual Storage

——— T
0S Simulation, EXEC, EXEC 2, REXX, XEDIT, CMS

interrupt handlers, file system, free storage
management, loader, device |/O, debug.

Storage Key = X‘0’

System Loader Table
{Size Determined by SET LDRTBLS command)

Storage Key = X‘F’

DMSFREE requests when no more lowsstorage is available
Storage Key = X'E’' or X‘F’

Unused portion of User Program Area

GETMAIN requests
Storage Key = X'E*

The User’s Program
(Program is located via the LOAD command)

Storage Key = X'E’

Control Blocks in Free Storage ——=——

| oece || torst || aer

Il aor |

lEMSSAVEI l CMSCBJ l FSTB

Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT followed by the FREETAB, if there Is
enough room,

Storage Key = X'F’

Transient Program Area

Storage Key = X‘E’

Low Storage DMSFREE User Free Storage Area

Storage Key = X'E’

DMSNUC
System Control Blocks, flags constants, and pointers

Storage Key = X'F’ *

* The page starting at DMSNUCU containing OPSECT, SUBSECT,
DBGSECT, DMSERL, TSOBLKS, USERSECT, and free storage

has a Storage Key = X'E’,

CMS Storage Map 1. CMS virtual storage usage when the CMS nucleus is larger than the
user’s virtual storage. In this case, you must IPL by system name (VMSIZE is less than
NUCSIGMA). The arrows indicate that MAINHIGH is extended upward and FREELOWE is

extended downward.

18 VM/SP CMS for System Programming

FUMVITCR CAN e g mq
GV Shos)&

LTI

Virtual Storage

| NUCOMEGA (VM SI1ZE)

|
S-STAT and Y-STAT
{Shared — if lPL'(iI by system name)

NUCSIGMA

CMS Nucleus
{Shared — if IPL'd by system name)

== 0S simulation, EXEC, EXEC 2, REXX, XEDIT, CMS

[~ interrupt handlers, file system, free storage
management, loader, device 1/0, debug.

Storage Key = X'0’

NUCALPHA

System Loader Table
(Size Determined by SET LDRTBLS command)

Storage Key = X°F*

-l

FREELOWE

MAINHIGH ™~

MAINSTRT

DMSFREE requests when no more low storage is available

GETMAIN requests

The User’s Program
(Program is located via the LOAD command)

Storage Key = X'E’ or X'F’

Unused portion of User Program Area o)

Storage Key = X'E’

Storage Key = X‘E*

-1

Storage Key = X'E’}.

X'20000°

enough room,

‘Low Storagea DMSFREE Nucleus Free Storage
Area. The upper part of this area may contaln the
S-STAT followed by the FREETAB, If there is

Storage Key = X'F'}

X*10000°

Transient Program Area

Storage Key = X°E’

X‘ECOQ"

Low Storage DMSFREE User Free Storage Area

Storage Key = X'E’

ANUCEND

DMSNUC
System Control Blocks, flags, constants, and pointers

Storage Key = X'F* *

X0"

‘
Area

> Program

Control Blocks in Free Storage ==

| oece |f womst J| aer]| aor |

[CMSSAVEII cMscB ll FSTB I

* The page starting at DMSNUCU contalning OPSECT,SUBSECT,
DBGSECT, DMSERL, TSOBLKS, USERSECT, and free storage

has a Storage Key = X'E’.

| Figure 2.
|

CMS Storage Map 2. Virtual storage usage when the user’s virtual storage is equal to the CMS
nucleus. The user may IPL by system name or device. In addition, this figure shows the case
where there is insufficient room to place the loader table above S-STAT and Y-STAT. The arrows

indicate that MAINHIGH is extended upward and FREELOWE is extended downward.

Chapter 4. Using Storage 19

CMS Storage

-

Virtual Storage

VM SIZE

| NucomeGa

NUCSIGMA

| NucaLPHA

FREELOWE

de

MAINHIGH

MAINSTRT

X*20000°

X*10000°

X'E000’

| ANUCEND

System Loader Table
(Size Determined by SET LDRTBLS command)

Storage Key = X'F’

DMSFREE requests

Storage Key = X‘E’ or X'F*

I
S-STAT and Y-STAT
(Shared — if IPL'd by system name)

CMS Nucleus
L (Shared — if IPL'd by system name)

OS simulation, EXEC, EXEC 2, REXX, XEDIT, CMS
interrupt handlers, file system, free storage
management, loader, device 1/0, debug.

Storage Key = X'0’

DMSFREE requests when no more low storage is available

Unused portion of User Program Area

Storage Key = X'E’

GETMAIN requests

Storage Key = X'E’

The User's Program
(Program is focated via the LOAD command)

Storage Key = X‘E’

Storage Key = X'E’ or X'F’ .

o > - - - e - — ———— ———— — — — o v -

Control Blocks in Free Storage

I DECB “ LDRST]l AFTJI aoT |

ICMSSAVEI I CMscCB I | FSTB J

Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
SSTAT followed by the FREETAB, If there s
enough room.

Storage Key = X°F’

Transient Program Area

Storage Key = X'E’

Low Storage DMSFREE User Free Storage Area

Storage Key = X'E*

DMSNUC
System Control Blocks, flags, constants, and pointers

x'0’

Figure 3.

Storage Key = X'F* *

* The page starting at DMSNUCU containing OPSECT,SUBSECT,
DBGSECT, DMSERL, TSOBLKS, USERSECT, and free storage

has a Storage Key = X‘E’,

CMS Storage Map 3. CMS virtual storage usage when the user’s virtual storage is larger than
the CMS nucleus. The user may IPL by system name or device. In addition, this figure shows the
case where there is sufficient room to place the loader table above S-STAT and Y-STAT. The
arrows indicate that MAINHIGH is extended upward and FREELOWE is extended downward.

20 VM/SP CMS for System Programming

Structure of DMISNUC

USERSECT (User Area)

DEVTAB (Device Table)

ANV G ey e
(5SS DU]2

e e mn e]

DMSNUC is the portion of storage in a CMS virtual machine that contains
system control blocks, flags, constants, and pointers.

The CSECTSs in DMSNUC contain only symbolic references. This means
that an update or modification to CMS, which changes a CSECT in
DMSNUC, does not automatically force all CMS modules to be recompiled.
Only those modules that refer to the area that was redefined must be
recompiled.

The USERSECT CSECT defines space that is not used by CMS. A
modification or update to CMS can use the 18 fullwords defined for
USERSECT. There is a pointer (AUSER) in the NUCON area to the user
space.

The DEVTAB CSECT is a table describing the devices available for the
CMS system. The table contains the following entries:

1 console
26 disks
1 reader
1 punch
1 printer
16 tapes
1 dummy

0 00 00 0O

You can change some existing entries in DEVTAB. Each device table entry
contains the following information: '

Virtual device address

Device flags

Device types

Symbol device name

Address of the interrupt processing routine (for the console).

0 0 0 0 ©

The virtual address of the console is defined at logon time. The ACCESS
command can dynamically alter the virtual address of the user disks in
DEVTAB. The virtual address of a tape can be reassigned to any of the
addresses given in DEVTAB (TAPO - TAPF) by using CMS commands
and/or macros. Changing the virtual addresses of the reader, printer, or
punch in DEVTAB has no effect. Figure 4 describes the devices supported
by CMS.

Chapter 4. Using Storage 21

CMS Storage
[e

Virtual Virtuel Symbolic

IBM Device Type Addregs® Name (default) | Device Use

3210, 3215, 1052, cuul CON1 System console

3066, 3270

2314, 2319, 3310, 190 DSKO CMS System disk (read-only)

3330, 3340, 3350, 1912 DSK1 Primary disk (user files)

3370, 3375, 3380 cuu DSK2 Minidisk (user files)
cuu DSK3 Minidisk (user files)
192 DSK4 Minidisk (user files)
cuu DSK5 Minidisk (user files)
cuu DSK6 Minidisk (user files)
cuu DSK?7 Minidisk (user files)
19E DSK8 Minidisk (user files)
cuu DSK9 Minidisk (user files)
cuu DSKH Minidisk (user files)
cuu DSKI Minidisk (user files)
cuu DSKJ Minidisk (user files)
cuu DSKK Minidisk (user files)
cuu DSKL Minidisk (user files)
cuu DSKM Minidisk (user files)
cuu DSKN Minidisk (user files)
cuu DSKO Minidisk (user files)
cuu DSKP Minidisk (user files)
cuu DSKQ Minidisk (user files)
cuu DSKR Minidisk (user files)
cuu DSKT Minidisk (user files)
cuu DSKU Minidisk (user files)
cuu DSKV Minidisk (user files)
cuu DSKW Minidisk (user files)
cuu DSKX Minidisk (user files)

2540, 2501, 3505 00C RDR1 ‘Virtual reader

2540, 3525 00D PCH1 Virtual punch

1403, 1443, 3203, 00E PRN1 Line printer

3211, 3262, 3800,

4245, 4248, 3289-4

2401, 2402, 2403, 180 - 187, TAPO - TAP7, Tape drives

2415, 2420, 3410, 288 - 28F TAP8 - TAPF

3411, 3420, 3430,

3480, 8809, 3422

Figure 4. Devices Supported by a CMS Virtual Machine

* The device addresses shown are preassembled into the CMS resident
device table. These need only be modified and a new device table made
resident to change the addresses.

1 The virtual address of the system console may be any valid multiplexer
address.

2 191 is the default user-accessed A-disk unless it is dynamically changed
by an ACCESS at CMS initial program load (IPL).

22 VM/SP CMS for System Programming

SRV (AN ey o
s Siorane

User and Transient Program Areas

Two areas hold programs that are loaded from disk. These areas are called
the user program area and the transient program area, as discussed on page
15. (See Figures 1, 2, and 3 on pages 18, 19, and 20 for a description of CMS
storage use.) A summary of CMS modules and their attributes, including
whether they reside in the user program area or the transient area, is
contained in the VM/SP CMS Command Reference.

The user program area starts at location X’20000” and extends upward to
the loader tables. Generally, all user programs and certain system
commands are executed in the user program area. Because only one
program can be executing in the user program area at any one time, it is
impossible (without unpredictable results) for one program executing in the
user program area to invoke, by means of SVC 202, a module that will also
be executed in the user program area.

The transient program area is two pages long, extending from location
X"E000” to location X’FFFF’. It provides an area for system commands that
may also be invoked from the user program area by means of an SVC 202
call. When a transient module is called by an SVC, it is normally executed
with the PSW system mask disabled for I/O and external interrupts.

A program executing in the transient program area may not invoke another
program intended to execute in the transient program area. Thus, a
program executing in the transient program area may not invoke the TYPE
command.

DMSITS starts the programs to be executed in the user program area
enabled for all interrupts, but DMSITS starts the programs to be executed
in the transient program area disabled for all interrupts. The individual
programs may have to use the SSM (Set System Mask) instruction to
change the current status of its system mask.

Managing CMS Storage

You can allocate free storage by issuing the GETMAIN or DMSFREE

macros.

Storage allocated by the GETMAIN macro is taken from the user program
area, starting after the high address of the user program. Storage allocated
by the DMSFREE macro can be taken from several areas. First, DMSFREE
requests are allocated from the low address free storage area. Otherwise,
DMSFREE requests are satisfied from the unused portion of the user
program area.

There are two types of DMSFREE requests for free storage: requests for
USER storage and NUCLEUS storage, specified in the TYPE parameter of
the DMSFREE macro. These two types of storage are kept in separate 4K
pages. It is possible for storage of one type to be available in low storage,
while no storage of the other type is available.

Chapter 4. Using Storage 23

GIS Storane

r
[

GETMAIN Free Storage Management

The STRINIT Macro

All GETMAIN storage is allocated in the user program area, starting after
the end of the user’s actual program. Allocation begins at the location
pointed to by the NUCON pointer MAINSTRT. The location MAINHIGH
in NUCON points to the highest address of GETMAIN storage.

The STRINIT function initializes pointers used by CMS for simulation of
OS GETMAIN/FREEMAIN storage management. In the usual CMS
environment, that is, when execution is initiated by the LOAD and START
commands, CMS calls the STRINIT macro as part of the LOAD preparation
for execution. In an OS environment established by CMS, such as OSRUN,
CMS executes the STRINIT function. This should not be done by the user
program. In any case, the STRINIT macro should be issued only once in
the OS environment, preceding the initial GETMAIN request. In addition,
the STRINIT function makes any pages that were allocated by GETMAIN
available to be released by the CMS page manager.

The format of the STRINIT macro is:

[label] STRINIT TYPCALL=[SVC
BALR
where:
label

is any valid assembler language label.

TYPCALL=[SVC
BALR

indicates how control is passed to DMSSTG, the routine that
processes the STRINIT macro. Since DMSSTG is a nucleus-resident
routine, other nucleus-resident routines can branch directly to it
(TYPCALL =BALR). Routines that are not nucleus-resident must use
SVC linkage (TYPCALL=SVC). If no operands are specified, the
default is TYPCALL =SVC.

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH
are initialized to the end of the user’s program in the user program area.
The end of the user’s program is the upper boundary of the load module
created by the CMS LOAD and INCLUDE commands. This upper boundary
value is stored in the NUCON field LOCCNT. When the user’s program
begins execution, the STRINIT macro is executed and the LOCCNT value is
used to initialize MAINSTRT and MAINHIGH. During execution of the
user’s program, the LOCCNT field is used in CMS to pass starting and
ending addresses of files loaded by OS simulation (see Notes below). As
storage is allocated from the user program area to satisfy GETMAIN

24 VM/SP CMS for System Programming

SIS Shorag o
STl

requests, the MAINHIGH pointer is adjusted upward. Such adjustments
are always in multiples of doublewords, so that this pointer is always on a
doubleword boundary. As the allocated storage is returned, the
MAINHIGH pointer is adjusted downward.

The pointer MAINHIGH can never be higher than FREELOWE.
FREELOWE is the pointer to the lowest address of DMSFREE storage
allocated in the user program area. If a GETMAIN request cannot be
satisfied without extending MAINHIGH above FREELOWE, GETMAIN
takes an error exit, indicating that insufficient storage is available to
satisfy the request.

The area between MAINSTRT and MAINHIGH may contain blocks of
storage that are not allocated but are available for allocation by a
GETMAIN instruction. These blocks are chained together, and the first
block is pointed to by the NUCON location MAINLIST. Refer to Figures 1,
2, and 3 on pages 18, 19, and 20 for a description of CMS virtual storage
usage.

Notes:

1. Reissuing the STRINIT macro during execution of an OS program, or
issuing the STRINIT macro without having done a CMS LOAD is not
advised. The value in LOCCNT has not been appropriately set. This
may cause a storage management failure.

2. A high level language may issue a STRINIT. In this case, a user should
not issue an additional STRINIT.

The format of an element on the GETMAIN free element chain is as
follows:

FREPTR — pointer to next free
0(0) element in the chain, or 0
if there is no next element

FRELEN — 1length, in bytes, of
4(4) this element

Remainder of this free element

The maximum amount of storage that can be obtained via the GETMAIN
macro is determined by one of the following formulas:

VMSIZE < 512K:
(largest block of the user program area available) - 10 pages

VMSIZE > = 512K:

Chapter 4. Using Storage 25

Gl

S Slorags

L

(largest block of the user program area available) - (12 pages + 2
additional pages for each 256K of virtual storage over 512K)

Releasing Storage

Storage allocated by the GETMAIN macro instruction may be released in
any of the following ways:

1. A specific block of such storage may be released by means of the
FREEMAIN macro instruction.

2. Whenever any user routine or CMS command abends (so that the
routine DMSABN is entered) and the abend recovery facility of the
system is invoked, all GETMAIN storage pointers are reset.

3. Issuing a STRINIT macro releases all allocated GETMAIN storage.

26 VM/SP CMS for System Programming

Clo Storage

1

DMSFRE Free Storage Management

The DPMSFREE Macro

The DMSFREE macro allocates CMS free storage. The format of the

I: label]

DMSFREE macro is:
DMSFREE | DWORDS= | n ,MIN=| »
(1)} @)

[, TYPE = | USER
NUCLEUS

| ERR= {laddrH

[AREA= [LOW
HIGH

[TYPCALL= [sve
BALR

DWORDS={ n }

where:

is any valid assembler language label.

0)
is the number of doublewords of free storage requested. DWORDS=n
specifies the number of doublewords directly and DWORDS = (0)
indicates that register 0 contains the number of doublewords
requested. Do not specify any register other than register 0. The
register number for register 0 cannot be expressed as an equated
symbol.

CMS returns, in register 0, the number of doublewords allocated and,
in register 1, the address of the first byte of allocated storage.

MIN = { (rlz) }

indicates a variable request for free storage. If the exact number of
doublewords indicated by DWORDS operand is not available, then the
largest block of storage greater than or equal to the minimum is
requested. MIN =n specifies the minimum number of doublewords of
free storage directly. MIN=(1) indicates that the minimum is in
register 1. Do not specify any register other than register 1. The

Chapter 4. Using Storage 27

GRS Storage

{

actual amount of free storage allocated is returned to the requestor by
general register 0.

TYPE= (USER ‘
I NUCLEUS
indicates the type of CMS storage requested: USER or NUCLEUS

ERR= {'iaddr }

is the return address if any error occurs. laddr is any address that
can be referred to in an LA (load address) instruction. The error
return is taken if there is a macro coding error or if there is not
enough free storage available to fill the request. If the asterisk (*) is
specified for the return address, the error return is the same as a
normal return. There is no default for this operand. If it is omitted
and an error occurs, the system abends.

AREA= { LOW
HIGH
indicates the area of CMS free storage requested. LOW indicates any
free storage below the user areas, depending on the storage requested.
HIGH indicates DMSFREE storage above the user area. If AREA is
not specified, storage is allocated wherever it is available.

TYPCALL=fSVC
BALR.
indicates how control is passed to DMSFREE. Since DMSFREE is a
nucleus-resident routine, other nucleus-resident routines can branch
directly to it (TYPCALL=BALR). Routines that are not
nucleus-resident must use SVC linkage (TYPCALL =SVC).

The FREELOWE pointer in NUCON indicates the amount of storage that
DMSFREE has allocated from the high portion of the user program area.
These pointers are initialized to the beginning of the loader tables.

The pointer FREELOWE is the pointer to the lowest address of DMSFREE
storage in the user program area. As storage is allocated from the user
program area to satisfy DMSFREE requests, the pointer FREELOWE is
adjusted downward. As the allocated storage is returned, this pointer is
adjusted upward. Such adjustments are always in multiples of 4K bytes so
the pointer is always on a 4K boundary.

The pointer FREELOWE can never be lower than MAINHIGH.
MAINHIGH is the pointer to the highest address of GETMAIN storage. If
a DMSFREE request cannot be satisfied without extending FREELOWE
below MAINHIGH, DMSFREE takes an error exit, indicating that
insufficient storage is available to satisfy the request. Figures 1, 2, and 3
on pages 18, 19, and 20 show the relationship of these storage areas.

The FREETAB free storage table is usually kept in nucleus low FREE
storage. However, the FREETAB may be located at the top of the user

28 VM/SP CMS for System Programming

CNIS Storage

]

program area. This table contains a code indicating the use of that page of
virtual storage. The codes in this table are as follows:

USERCODE (X’01")
NUCCODE (X’02")
TRNCODE (X'03’)

USARCODE (X'04")

SYSCODE (X’05")

program area.

loader tables.

The page is assigned to user storage.

The page is assigned to nucleus storage.
The page is part of the transient program area.
The page is an unassigned page in the user

The page is none of the above. The page is
assigned to system storage, system code, or the

Other DMSFREE storage pointers are maintained in the DMSFRT CSECT,
in NUCON. The four chain header blocks are the most important fields in
DMSFRT. The four chains of unallocated elements are:

0 0 0 ©

For each of these chains of unallocated elements, there is a control block

The low storage nucleus chain
The low storage user chain
The high storage nucleus chain
The high storage user chain

consisting of four words with the following format:

POINTER — pointer to the first
00 FBD (free block descriptor)
in a cache of FBDs used to
describe the first "n" free
blocks of storage for the
particular chain.
NUM — the number of elements on
4(4) the chain.
MAX — a value equal to or
8(8) ?reater than the size of the
argest element on the chain.
12(C) FLAGS— |SKEY- TCODE- [Unused
Flag Storage |FREETAB
byte key code
where:
POINTER

points to the first FBD (file block descriptor) in a cache of FBDs used
to describe the first “n” free blocks of storage for the particular chain.

“n” 1s 10 for the high user chain, 9 for the high nucleus chain, 6 for

the low user chain, and 6 for the low nucleus chain.

Chapter 4. Using Storage

29

CIS Slorage

f]

NUM
contains the number of elements on this chain of free elements. If
there are no elements on this free chain, this field contains all zeroes.

MAX
is used to avoid searches that will fail. It contains a number not
exceeding the size, in bytes, of the largest element on the free chain.
Thus, a search for an element of a given size is not made if that size
exceeds the MAX field. However, this number may actually be larger
than the size of the largest free element on the chain.

FLAGS
The following flags are used:

FLCLN (X*‘80’) -- Clean-up flag. This flag is set if the chain must be
updated. This is necessary in the following circumstances:

o If one of the two high-storage chains contains a 4K page that is
pointed to by FREELOWE, that page can be removed from the
chain and FREELOWE can be increased.

o All completely unallocated 4K pages are kept on the user chain,
by convention. Thus, if one of the nucleus chains (low-storage or
high-storage) contains a full page, this page must be transferred to
the corresponding user chain.

FLCLB (X‘40’) -- Destroyed flag. Set if the chain has been destroyed.

FLHC (X¢20°) -- High-storage chain. Set for both the nucleus and user
high-storage chains.

FLUN (X‘10’) -- Nucleus chain. Set for both the low-storage and
high-storage chains.

FLPA (X‘08’) -- Page available. Set if there is a full 4K page
available on the chain. This flag may be set even if there is no such
page available.

SKEY
contains the one-byte storage key assigned to storage on this chain.

TCODE
contains the one-byte FREETAB table code for storage on this chain.

There are four caches of FBDs, one for each of the chains. The FBDs are
chained together at initialization time from the head pointers found in the
DMSFRT CSECT described above.

Each of the FBDs in the cache has the following format:

30 VM/SP CMS for System Programming

v

A

4 bytes

0(0) POINTER — pointer to the next FBD in the
chain unless it is the last FBD in the
cache in which case it points to the
next block of free storage in the chain
or is zero.

4(4) SIZE — size of the free block in bytes

8(8) FBDFREE — pointer to the free block
that this FBD is describing.

The FBDs in the cache always remain chained together, and when they do
not describe a free block, the fields SIZE and FBDFREE are zero. When
the cache is full, the forward pointer POINTER in the last FBD in the
cache points to the next free block that contains the following fields:

< 4 bytes >

0 POINTER — pointer to the next element
in the free chain or is zero

4(4) SIZE — size of this free element, in
bytes

Remainder of this free element

As indicated in the illustration above, the POINTER field points to the next
element in the chain, or contains the value zero if there is no next element.
The SIZE field contains the size of this element, in bytes.

The eight bytes before the first physical FBD in each cache contains eight
bytes of information about the cache and has the following fields:

< 4 bytes >

0(0) CHILAST — last FBD in the cache of free
gointers‘ The forward pointer in this
BD points to the first POINTER off the
cache or is zero if there are none.

4(4) CHINUM — the number of FBDs in the cache

8(8) CHIFLAG — a flag field used by storage
management.

All elements within a given chain are chained together in order of
descending storage address. This is done for two reasons:

1. Because the allocation search is satisfied by the first free element that

is large enough, the allocated elements are grouped together at the top
of the storage area, and prevent storage fragmentation. This is

Chapter 4. Using Storage 31

ClUS Slorage

[

particularly important for high-storage free storage allocations, because
it is desirable to keep FREELOWE as high as possible.

2. If free storage does become somewhat fragmented, the search causes as
few page faults as possible.

As a matter of convention, completely nonallocated 4K pages in high
storage are kept on the user free chain rather than the nucleus free chain.
This is because requests for large blocks of storage are made, most of the
time, from user storage rather than from nucleus storage. Nucleus requests
need to break up a full page less frequently than user requests.

Allocating User Free Storage

When DMSFREE with TYPE =USER (the default) is called, the following
steps are taken to try to satisfy the request. As soon as one of the following
steps succeeds, the user free storage allocation processing terminates and
the CMS page manager is notified of any full or partial pages that have
been allocated.

1. Search the low-storage user chain for a block of the required size.
2. Search the high-storage user chain for a block of the required size.

3. Extend high-storage user storage downward into the user program area,
modifying FREELOWE in the process.

4. For fixed requests, there is nothing more to try. For variable requests,
DMSFREE puts all available storage in the user program area onto the
high-storage user chain, and then allocates the largest block available
on either the high-storage user chain or the low-storage user chain.
The allocated block is not satisfactory unless it is larger than the
minimum requested size.

Allocating Nucleus Free Storage

When DMSFREE with TYPE = NUCLEUS is called, the following steps are
taken to satisfy the request. As soon as one of the following steps succeeds,
user free storage allocation processing terminates and the CMS page
manager is notified of any full or partial pages that have been allocated.

1. Search the low-storage nucleus chain for a block of the required size.
2. Search the high-storage nucleus chain for a block of the required size.

3. Get free pages from the high-storage user chain, if they are available,
and put them on the high-storage nucleus chain.

4, Extend high-storage nucleus storage downward into the user-program
area, modifying FREELOWE in the process.

5. For fixed requests, there is nothing more to try. For variable requests,
DMSFREE puts all available pages from the high-storage user chain

32 VM/SP CMS for System Programming

and the user program area onto the high-storage nucleus chain, and
allocates the largest block available on either the low-storage nucleus
chain or the high-storage nucleus chain.

Releasing Storage

Storage allocated by the DMSFREE macro instruction may be released in
either of the following ways:

1. A specific block of such storage may be released by means of the
DMSFRET macro instruction.

2. Whenever any user routine or CMS command abnormally terminates (so
that the routine DMSABN is entered) and the abend recovery facility of
the system is invoked, all DMSFREE storage with TYPE = USER is
released automatically.

Except in the case of abend recovery, storage allocated by the DMSFREE
macro is never released automatically by the system. It should always be
released explicitly by means of the DMSFRET macro instruction.

l Whenever a completely unused 4K page becomes available, it is made

| eligible for release by a call to the CMS page manager.

The DMSFRET Macro

The format of the DMSFRET macro is:

[label] DMSFRET DWORDS={ n} ,LOC = {laddr}
o) 1)

[,ERR = {lazdr}:l [,TYPCALL= {%AAL%RH

where:

label
is any valid assembler language label.

DWORDS= {(n)' }
0

is the number of doublewords of storage to be released. DWORDS=n

specifies the number of doublewords directly. DWORDS = (0) indicates

that register 0 contains the number of doublewords being released. Do
| not specify any register other than register 0. The register number for
| register 0 cannot be expressed as an equated symbol.

Chapter 4. Using Storage 33

CMS Page Management

LOC= fladdr }
1Q@)
is the address of the block of storage being released. 'laddr is any
address that can be referred to in an LA (load address) instruction.
LOC = laddr specifies the address directly. LOC=(1) indicates the
address is in register 1. Do not specify any register other than
register 1.

ERR= { iaddr_}

is the return address if any error occurs. laddr is any address that
can be referred to by an LA (load address) instruction. The error
return is taken if there is a macro coding error or if there is a problem
returning the storage. If the asterisk (*) is specified, the error return
address is the same as a normal return address. There is no default
for this operand. If it is omitted and an error occurs, the system
abends.

TYPCALL=({SVC
{ BALR
indicates how control is passed to DMSFRET. Since DMSFRET is a
nucleus-resident routine, other nucleus-resident routines can branch
directly to it (TYPCALL =BALR). Routines that are not
nucleus-resident must use SVC linkage (TYPCALL=SVC).

When DMSFRET is called, the block being released is placed on the
appropriate chain. At that point, the final update operation is performed, if
necessary, to advance FREELOWE or to move pages from the nucleus
chain to the corresponding user chain.

Similar update operations are performed, when necessary, after calls to
DMSFREE, as well. When FREELOWE is adjusted upward, the
corresponding pages are released by issuing a DIAGNOSE code X"10’
instruction to CP. The CMS page manager is notified of any completely
unallocated 4K pages.

The CMS page manager (DMSPAG) controls the release of de-allocated
storage. When the CMS page manager is notified.of a completely
nonallocated 4K page, that page is made available for release. The page
manager holds the available pages, and when the number exceeds a
system-defined maximum, those pages are released via DIAGNOSE code
X’10’. If storage management routines allocate any part of a 4K page being
held, that page is no longer available for release.

You can stop the release of available pages by issuing the SET RELPAGE
OFF command. The page manager continues to track pages, and when you
set RELPAGE ON, all available pages are released.

34 VM/SP CMS for System Programming

DMSFRE Service Routines

The DMSFRES Macro

GIMS Storage

e e [e o e e D

The system uses the DMSFRES macro instruction to request certain free
storage management services.

The format of the DMSFRES macro is:

[label:l DMSFRES | INIT1 B]

INIT2

ggggK ,TYPCALL={SVC }
BALR

CKOFF

UREC

CALOC

where:

label

is any valid Assembler language label.

INIT1

invokes the first free storage initialization routines to allow free
storage requests to access the system disk. Before INIT1 is invoked,
no free storage requests may be made. After INIT1 has been invoked,
free storage requests may be made. However, these are subject to the
following restraints until the second free storage management
initialization routine has been invoked:

o All requests for USER type storage are changed to requests for
NUCLEUS type storage.

o Error checking is limited before initialization is complete. In
particular, it is sometimes possible to release a block that was
never allocated.

o All requests that are satisfied in high storage must be temporary,
since all storage allocated in high storage is released when the
second free storage initialization routine is invoked.

When CP’s saved system facility is used, the CMS system is saved just
after the system disk has been accessed. It is necessary for DMSFRE
to be used before the size of virtual storage is known, because the
saved system can be used on any size virtual machine. Thus, the first
initialization routine initializes DMSFRE so that limited functions
can be requested. The second initialization routine performs the
initialization necessary to allow the full functions of DMSFRE to be
exercised.

Chapter 4. Using Storage 35

CMS Storage

L O - -

INIT2
invokes the second initialization routine. This routine is invoked
after the size of virtual storage is known, and it performs initialization
necessary to allow all the functions of DMSFRE to be used. The
second initialization routine performs the following steps:

© Releases all storage that has been allocated in the high-storage
area.

o Allocates the FREETAB free storage table and the PAGETAB
page management table. These tables each contain one byte for
each 4K page of virtual storage. Therefore, the tables cannot be
allocated until the size of virtual storage is known.

They are allocated in the nucleus low free storage area, if there is
enough room available. If not, then they are allocated in the
higher free storage area. For a 256K virtual machine, FREETAB
and PAGETAB each contain 64 bytes; for a 16 million byte
machine, they each contain 4096 bytes.

o The FREETAB and PAGETAB tables are initialized, and all
storage protection keys are initialized.

CHECK
invokes a routine that checks all free storage pointer chains for
consistency and correctness. Thus, it checks to see whether or not
any free storage pointers have been destroyed. The option can be used
at any time for system debugging.

CKON
turns on a flag that causes the CHECK routine to be invoked each
time a call is made to DMSFREE or DMSFRET. This can be useful
for debugging purposes (for example, when you wish to identify the
routine that destroyed free storage management pointers). Care
should be taken when using this option, since the CHECK routine is
coded to be thorough rather than efficient. Thus, after the CKON
option has been invoked, each call to DMSFREE or DMSFRET takes
much longer to be completed than before. This can impact the
efficiency of system functions.

CKOFF
turns off the flag that was turned on by the CKON option.

UREC
is used by DMSABN during the abend recovery process to release all
user storage.

CALOC
is used by DMSABN after the abend recovery process has been
completed. It invokes a routine that returns, in register 0, the number
of doublewords of free storage that have been allocated. This number

36 VM/SP CMS for System Programming

GlVIS Slorage

- e = e+ i 2 it e nema e e 24 £ Asnini et e 1< e oo e e -y

is used by DMSABN to determine whether or not the abend recovery
has been successful.

TYPCALL=fSVC

BALR}
indicates how control is passed to DMSFRES. Since DMSFRES is a
nucleus-resident routine, other nucleus-resident routines can branch
directly to it (TYPCALL =BALR). Routines that are not
nucleus-resident must use SVC linkage (TYPCALL=SVC).

Error Codes from DMSFREE, DMSFRES, and DMSFRET

A nonzero return code upon return from DMSFREE, DMSFRES, or
DMSFRET indicates that the request could not be satisfied. Register 15

contains this return code, indicating which error occurred. The following
codes apply to the DMSFREE, DMSFRES, and DMSFRET macros.

Code Error

1

(DMSFREE) Insufficient storage space is available to satisfy the
request for free storage. In the case of a variable request, even the
minimum request could not be satisfied.

(DMSFREE or DMSFRET) User storage pointers destroyed.

(DMSFREE, DMSFRET, or DMSFRES) Nucleus étorage pointers
destroyed.

(DMSFREE) An invalid size was requested. This error exit is taken
if the requested size is not greater than zero. In the case of variable
requests, this error exit is taken if the minimum request is greater
than the maximum request. (However, the latter error is not detected
if DMSFREE is able to satisfy the maximum request.)

(DMSFRET) An invalid size was passed to the DMSFRET macro.
This error exit is taken if the specified length is not positive.

(DMSFRET) The block of storage that is being released was never
allocated by DMSFREE. Such an error is detected if one of the
following errors is found:

o The block does not lie entirely inside either the free storage area
in low-storage or the user program area between FREELOWE
and FREEUPPR.

o The block crosses a page boundary that separates a page
allocated for USER storage from a page allocated for NUCLEUS
type storage.

o The block overlaps another block already on the free storage
chain.

Chapter 4. Using Storage 37

(DMSFRET) The address given for the block being released is not on
a doubleword boundary.

(DMSFRES) An invalid request code was passed to the DMSFRES
routine. Since all request codes are generated by the DMSFRES
macro, this error code (8) should never appear.

> 8 An unexpected and unexplained error has occurred in the free

Storage Protection Keys

storage management routine.

In general, the following rule for storage protection keys applies: system
storage is assigned the storage key of X'F0', while user storage is assigned
the storage key of X'EQ'. This is the storage key associated with the
protected areas of storage, not to be confused with the PSW or CAW key
used to access that storage.

The specific key assignments are as follows:

-]

The NUCON area is assigned the key of X'F0’, with the exception of the
last page containing the OPSECT and TSOBLOKS areas and user free
storage, which have a key of X"E('.

Free storage allocated by DMSFREE is broken up into user storage and
nucleus storage. The user storage has a protection key of X"E0’, while
the nucleus storage has a key of X'F0'.

The transient program area has a key of X’E0’.

The CMS nucleus code has a storage key of X’00°. In saved systems,
this entire segment is protected by CP from modification even by the
CMS system, and so must be entirely reentrant.

The user program area is assigned the storage key of X’E(’, except for
those pages which contain nucleus DMSFREE storage. These latter
pages are assigned the key of X'F0’.

The loader tables are assigned the key of X'F0’.

The SET KEYPROTECT Command

The SET KEYPROTECT command controls the resetting of user keys,
X'E(0’, when a DMSFRET occurs. The format of the SET KEYPROTECT
command is:

OFF

SET KEYPROTect {ON }

38 VM/SP CMS for System Programming

CMS Slorage

— - B

When you issue SET KEYPROTECT ON, the storage keys for the whole
virtual machine, except the nonshared pages, are reset according to
FREETAB. Then whenever a DMSFRET occurs, the user keys are reset.

SET KEYPROTECT OFF does not cause the user keys to be reset when a
DMSFRET occurs. (SET KEYPROTECT OFF is the default setting.) If an

ABEND occurs, the storage keys of the virtual machine are reset according
to FREETAB and the setting for KEYPROTECT is maintained.

To check the setting of KEYPROTECT, issue:

QUERY KEYPROTECT

Note: If user programs set keys, they must restore the keys to their
original settings. If there are programs that depend on CMS resetting user
keys, SET KEYPROTECT ON to insure that the user keys are set properly.

CMS Handling of PSW Keys

The DMSKEY Macro

The CMS nucleus protection scheme protects the CMS nucleus from
inadvertent destruction by a user program. This mechanism, however, does
not prevent you from writing in system storage intentionally. Because you
can execute privileged instructions, you can issue a LOAD PSW (LPSW)
instruction and load any PSW key you wish. If this occurs, there is nothing
to prevent your program from:

o Modifying nucleus code
o Modifying a table or constant area
o Losing files by modifying a CMS file directory

In general, user programs and disk-resident CMS commands are executed
with a PSW key of X’E’, while nucleus code is executed with a PSW key of
X0,

There are, however, some exceptions to this rule. Certain disk-resident
CMS commands run with a PSW key of X’0’, because they have a constant
need to modify nucleus pointers and storage. The nucleus routines called
by the GET, PUT, READ, and WRITE macros run with a user PSW key of
X’E’ to increase efficiency.

Two macros, DMSKEY and DMSEXS, are available to any routine that
wishes to change its PSW key.

The DMSKEY macro may be used to change the PSW key to the user value
or the nucleus value. The format of the DMSKEY macro is:

Chapter 4. Using Storage 39

GG Storage

[taber] | DMSKEY | {NUCLEUS [,NOSTACK] |
USER | ,NOSTACK | |
LASTUSER I:,NOSTACK:] |
RESET |

where:

label
is any valid assembler language label.

NUCLEUS
causes the nucleus storage protection key to be placed in the PSW,
and the old contents of the second byte of the PSW are saved in a
stack. This option allows the program to store into system storage,
which is ordinarily protected.

USER
causes the user storage protection key to be placed in the PSW, and
the old contents of the second byte of the PSW are saved in a stack.
This option prevents the program from inadvertently modifying
nucleus storage, which is protected.

LASTUSER
The SVC handler traces back through its system save areas for the
active user routine closest to the top of the stack. The storage key in
effect for that routine is placed in the PSW. The old contents of the
second byte of the PSW are saved in a stack. This option should be
used only by system routines that should enter a user exit routine.
(OS macro simulation routines use this option when they want to
enter a user-supplied exit routine. The exit routine is entered with the
PSW key of the last user routine on the SVC system save area stack.)

NOSTACK
This option may be used with any of the above options to prevent the
system from saving the second byte of the current PSW in a stack. If
this is done, then no DMSKEY RESET need be issued later.

RESET
The second byte of the PSW is changed to the value at the top of the
DMSKEY stack and removed from the stack. Thus, the effect of the
last DMSKEY NUCLEUS, DMSKEY USER, or DMSKEY LASTUSER
request is reversed. However, if the NOSTACK option was specified
on the DMSKEY macro, the RESET option should not be used. A
DMSKEY RESET macro must be executed for each DMSKEY
NUCLEUS, DMSKEY USER, or DMSKEY LASTUSER macro that
was executed and that did not specify the NOSTACK option. Failure
to observe this rule results in program abnormal termination. CMS
requires that the DMSKEY stack be empty when a routine terminates.

40 VM/SP CMS for System Programming

-

GG Slovage

The DMSEXS Macro

Note: The DMSKEY key stack has a current maximum depth of seven for
each routine. In this context, a “routine” is anything invoked by an SVC
call.

The DMSEXS, “execute in system mode,” macro allows a routine executed
with a user PSW key to execute a single instruction with a nucleus PSW
key. The single instruction may be specified as the argument to the
DMSEXS macro, and that instruction is executed with a nucleus PSW key.
This macro can be used instead of two DMSKEY macros.

The format of the DMSEXS macro is:

[label] DMSEXS | op-code,operands

The op-code and the operands of the Basic Assembler Language instruction
to be executed must be given as arguments to the DMSEXS macro.

For example, execution of the sequence,

USING NUCON,O
DMSEXS OI ,OSSFLAGS,COMPSWT

causes the OI instruction to be executed with a zero protect key in the
PSW. This sequence turns on the COMPSWT flag in the nucleus. It is
reset with

DMSEXS NI,OSSFLAGS,255-COMPSWT
The instruction to be executed may be an EX instruction.

Note: Programs that modify or manipulate bits in CMS control blocks,
however, may hinder the operation of CMS causing it to function
ineffectively.

Register 1 cannot be used in any way in the instruction being executed.

Whenever possible, CMS commands are executed with a user protect key.
This protects the CMS nucleus in cases where there is an error in the
system command that would otherwise destroy the nucleus. If the command
must execute a single instruction or small group of instructions that modify
nucleus storage, then the DMSKEY or DMSEXS macros are used so that
the system PSW key is used for as short a period of time as possible.

Chapter 4. Using Storage 41

CMS Storage

[

42 VM/SP CMS for System Programming

(it 50 [Dewaiopand [PYye@igmms e s

Program Linkkage (SVC Handling)

Register Usage

Program linkages, in CMS, are made by a supervisor call instruction, SVC
202. DMSITS (INTSVC) is the CMS system SVC handling routine. The
general operation of DMSITS is as follows:

1. The SVC new PSW (low-storage location X’60’) contains, in the address
field, the address of DMSITS1. The DMSITS module is entered

whenever a supervisor call is executed.

2. DMSITS allocates a system save area and user save area. The user save
area is a register save area (or work area) used by the routine, which is
invoked later as a result of the SVC call.

3. The called routine is called (via a LPSW or BALR).
4. Upon return from the invoked routine, the save areas are released.

5. Control is returned to the caller (the routine that originally made the
SVC call).

When calling a CMS routine, R1 must point to a valid parameter list
(PLIST) for that program. On return, RO may or may not contain
meaningful information. For example, on return from a call to FILEDEF
with no change, RO contains a negative address if a new FCB (file control
block) was set up. Otherwise, RO contains a positive address of the already
existing FCB. R15 contains the return code, if any. The use of registers 0
and 2 through 11 varies.

When a command or routine is called by SVC 202, the registers contain the
following information:

Chapter 5. Developing Programs under CMS 43

Developing Programs under GRS

4

Register

0

13

14

12 and 15

Contents
Points to an extended PLIST if the command is:

called from the terminal,

called from a REXX program,

called from an EXEC 2 EXEC, or

an Enhanced Connectivity Facilities on VM/SP call (see
SENDREQ in the VM|/SP IBM Programmer’s Guide to the
Server-Requester Programming Interface for VM/SP,
SC24-5291).

The EPLIST contains addresses referring to the extended
command as it was initially entered by the user.

Points to a parameter list of successive doublewords. The first
entry in the list is the name of the called routine or program.
Any successive doublewords may contain arguments passed to
the program.

Contains the address of a 24-fullword save area, which you can
use to save your caller’s registers. This save area satisfies
standard OS and DOS linkage conventions. You do not need to
use it in CMS, since the SVC routines save the registers.

Contains the return address of the SVC handling routines. You
must return control to this address when you exit from your
program. :

Contain your program’s entry point address. You can use this
address to establish immediate addressability in your program.
Most CMS routines use R12 as a base register. You should not
use R15 as a base address, since all CMS SVCs use it to
communicate with your programs.

On return from a routine, register 15 contains:

Return Code Meaning

0 No error occurred
<0 Called routine not found
>0 Error occurred

If a CMS routine is called by an SVC 202, CMS saves and restores registers
0 through 14. '

Figure 5 shows how registers are set up when the called routine is entered.

44 VM/SP CMS for System Programming

Devaloplng Pregrams undar GRS

Registers| Register | Registers| Register | Register | Register | Register
Type 0-1 2 3-11 12 13 14 15
SVC 202 | Same as | See note | Not Address Address Return Address
caller 1 defined of called | of user address of called
routine save to routine
area DMSITS
SVC 203 | Same as | Not Not Address See note | Return Address
caller defined defined of called |2 address of called
routine to routine
DMSITS
Other Same as Same as Same as | Address Address Return Same as
caller caller caller of called | of user address caller
routine save to
area DMSITS

Figure 5. Register Contents When Called Routine Starts

Notes:

1. If a nucleus extension or subcommand processor, register 2 has address of
SCBLOCK.

2. Depends on the function being invoked.

Figure 6 show how the PSW fields are set up when the called routine is
entered.

Called Type System Mask) Storage Key | Problem Bit
SVC 202 or 203 - Disabled System Off
Nucleus Resident

SVC 202 -- See note 1 See note 1 Off
Nucleus
Extension
Module

SVC 202 or 208 -- Disabled See note 2 Off
Transient Area
Module

SVC 202 or 208 - Enabled See note 2 Off
User Area
Module

User-handled Enabled User Off

OS-VSE -- Disabled System Off
Nucleus resident

-OS-VSE -- Disabled System Off
Transient area
module

Figure 6. PSW Fields When Called Routine Starts

Chapter 5. Developing Programs under CMS 45

Developing Programs under GIS

[

Parameter Lists

Tokenized PLIST

Extended PLIST

Notes:
1. User defined by using the NUCEXT function.

2. User defined by using the CMS GENMOD command or the CMS SET
PROTECT command.

For a tokenized parameter list, the symbolic name of the function being
called (8-character string, padded with blank characters on the right if
needed) is followed by extra arguments depending on the actual routine or
command being called. These arguments must be “tokenized.” Every
parenthesis is considered an individual argument, and each argument may
have a maximum length of eight characters. However, no error condition
results. R1 contains the address of this parameter list.

CMS commands look for a token of eight X’FF’s to find the end of the
PLIST.

See page 51 for an example of a tokenized PLIST.

For an extended parameter list (EPLIST), no restriction is put on the
structure of the argument list passed to the called routine or command.
The first non-blank character, left parenthesis, or right parenthesis
following the command is treated as a delimiter. This delimiter determines
where the pointer to the start of the argument is.

An extended PLIST has two forms, as illustrated below.

The First Form of the Extended PLIST: In the first form, RO points to
the following parameter list:

(a) DC A(COMVERB)

(b) DC A(BEGARGS)

(c) DC A(ENDARGS)
(d) DC A(0)

where the first three addresses are defined by:

COMVERB EQU *

DC C'cmdname' name of command
BEGARGS EQU *
DC C! ! argument list

ENDARGS EQU *
and where:

(a) is the beginning address of the command.

46 VM/SP CMS for System Programming

e

Developing Programs undar GVIS

S ey

(b) is the beginning address of the argument list.

(c) 1is the address of the byte immediately following the end of the
argument list.

(d) may be used to pass any additional information required by individual
called programs. If this word is not used to pass additional
information, it should be zero so that programs receiving optional
information via this word may detect that none is provided in this
call.

See page 51 for an example of an extended PLIST.
Notes:

1. These four words can be moved to some location convenient for the
command resolution routines or convenient for some other program
executed between the caller’s SVC 202 and entry to the program that the
parameter list is intended. For this reason, the called program may not
assume additional words following word 4, or the called program may not
assume that the storage address of these 4 words bears any relationship to
other data addresses.

2. For function calls in the System Product Interpreter, two additional
words are available. See the VM|SP System Product Interpreter
Reference for more information on function calls and the two additional
words.

The Second Form of the Extended PLIST: The second form of an
extended PLIST is used by Enhanced Connectivity Facilities on VM/SP (see
SENDREQ in the VM/SP IBM Programmer’s Guide to the Server-Requester
Programming Interface for VM|SP, SC24-5291). The second form provides a
way for a routine to:

o DPass up to 64K-1 bytes of arbitrary data and 32K-5 bytes of parameters
to another routine

o Receive up to 64K-1 bytes of arbitrary data and 32K-5 parameters from
another routine.

In the second form, RO points to the following parameter list:

(a) DC A(commandname)
(b) DC F (reserved)
(c) DC F (reserved)
(d) DC A(CPRB)

where:

(a) is the address of the name of the program being called
(b) is unused

{(c) 1s unused

(d) is the address of the connectivity program request block (CPRB).

If your routine is being called by another routine, you can verify that your
routine is being called using the second form of an extended PLIST. Check

Chapter 5. Developing Programs under CMS 47

beveloping Proaramos under GRS
S S

O

Common SVC Calls

SVC 202

the contents of A(CPRB) + 4. This address should contain the characters
CPRB.

If you want to call another routine using the second form of an extended
PLIST, see SENDREQ in the VM|/SP IBM Programmer’s Guide to the
Server-Requester Programming Interface for VM[SP, SC24-5291.

SVC conventions are important to any discussion of CMS because the
system is driven by SVCs (supervisor calls). SVCs 202 and 203 are the most
common CMS SVCs.

SVC 202 is the most commonly used SVC in the CMS system. It is used for
calling nucleus-resident routines, nucleus extensions, and routines written
as commands (for example, disk resident modules).

A typical coding sequence for an SVC 202 call is the following:

LA R1,PLIST
SvC 202
DC AL4 (ERRADD)

First, load the address of the parameter list into R1 and then issue an SVC.
The “DC AL4(address)” instruction following the SVC 202 is optional and
may be omitted if you do not expect any errors to occur in the routine or
command being called.

If the DC statement is included and the return code (R15) contains a
nonzero value after returning from the SVC call, control passes to the
address specified in the DC unless the address is equal to 1. In the above
example, control would go to the instruction at the label ERRADD.

If the address is 1, return is made to the instruction following the “DC
ALA4(1)” instruction. DMSITS determines whether this DC was inserted by
examining the byte following the SVC call. If the byte is nonzero, the
statement following the SVC 202 is an instruction. If the byte is zero, the
statement following the SVC 202 is either “DC AL4(address)” or “DC
AL4(Q1)”.

If you want to ignore errors, you can use the sequence:

LA R1,PLIST
svcC 202
DC AL4(1)

Whenever an SVC 202 is issued, the contents of general purpose registers 0
and 1 (RO and R1) are passed to the called routine. R1 points to an
8-character string, which may be the start of a tokenized PLIST. This
character string contains the symbolic name of the routine or command
being called. The called routine decides whether to use the tokenized

48 VM/SP CMS for System Programming

-

Daveloning Peoy i

SRR 1,

Y
Jodul \.Jx)u

PLIST or the extended PLIST (one of two forms) by examining the

high-order byte of R1. The SVC handler only examines the name and the

high-order byte of R1.

Note: Although an extended PLIST is provided, the called routine might

not be set up to use it.

When a program gets control, it checks the value of the the high-order byte
of R1 to determine what environment (EXEC, command line, etc.) it was
called from and if an extended PLIST is available. Then the program may
take appropriate action. CMS only places these values in the high-order

byte for the convenience of the program.

The following values may be found in the high-order byte of register 1:

B

Value

Meaning

Hrrtended
PLIST
Pointer in
Register 0?7

X’00"

The call did not originate from an EXEC
file or a command typed at the terminal.
(The SVC handler translates the value
X’04’ to X’00’ before entering the called
program.)

No

X0r

Either the call is from an EXEC 2 EXEC
or the System Product Interpreter when
“ADDRESS COMMAND? is specified, or
the call is an Enhanced Connectivity
Facilities on VM/SP call (see SENDREQ
in the VM/SP IBM Programmer’s Guide
to the Server-Requester Programming
Interface for VM|SP, SC24-5291). You can
tell by checking the form of the extended
PLIST, see “Extended PLIST” on page 46.
(The SVC handler translates the value
X’03’ to X'01’ before entering the called
program.)

Yes

X"02’

See “Dynamic Linkage/SUBCOM” on
page 59.

Yes

X'05’

Used by the System Product Interpreter
for external function calls.

Yes

X'06’

The command was invoked as an
immediate command. This setting should
never occur with SVC 202.

Yes

X'0B’

The command was called as a result of its
name being typed at the terminal, by the
CMDCALL command to invoke the
command from EXEC 2, or from a System
Product Interpreter EXEC when
“ADDRESS CMS” is specified.

Yes

Figure 7 (Part 1 of 2). SVC 202 High-Order Byte Values of Register 1

(A

v
)

Chapter 5. Developing Programs under CMS 49

Developing Programs under GRS

Extended

PLIST

Pointer in
Value | Meaning Register 0?7
X’0C’ | The call is the result of a command No

invoked from a CMS EXEC file with
“&CONTROL” set to something other
than “NOMSG” or “MSG”.

X’0D” | The call is the result of a command No
invoked from a CMS EXEC file with
“&CONTROL MSG” in effect (indicates
that messages are to be displayed at the
terminal).

X’0E’ | The call is the result of a command No
invoked from an CMS EXEC file with
“&CONTROL NOMSG” in effect.

X’FE’ | This is an end-of-command call from No
DMSINT (CMS console command
handler). See the NUCEXT function in

the VM[SP CMS Macros and Functions
Reference for details.

X’FF’ | This is a service call from DMSABN No
(abend) or from NUCXDROP. See the
NUCEXT function in the VM/SP CMS
Macros and Functions Reference for
details.

Figure 7 (Part 2 of 2). SVC 202 High-Order Byte Values of Register 1

Some CMS commands work differently when called from different
environments. An assembler language program can simulate the various
environments (listed in Figure 7 under “Meaning”) by using the
appropriate high-order byte.

For example, to call the ERASE command from an assembler program and
to suppress error messages, the program uses a high-order byte of X’0E’.
This simulates a call from a CMS EXEC with “&@CONTROL NOMSG” in
effect.

Some CMS commands can take advantage of an extended PLIST if it is
supplied. For example, the FILEDEF command uses the extended
parameter list when processing the DSN'quall[.qual2...] parameter. The
following program shows how to set up an extended parameter list and call
FILEDEF. The high-order byte, X’01’, in the program example simulates a
call from an EXEC2 EXEC or the System Product Interpreter when
“ADDRESS COMMAND?” is specified.

50 VM/SP CMS for System Programming

2

Developing Programs undaer GYIS

et e e e i e e e oS

SAMPLE CSECT
*
* ISSUE 'FILEDEF SYSIN DISK A A A DSN G.TEMP.DATA.LIBRARY'

REGEQU

USING *,R12

LR R12,R15

LA RO,EPLIST

LA R1,PLIST

ICM R1,B'1000',=X'01"'

SVC 202

DC AL4(1)

BR R14

DS OF
PLIST DC CL8'FILEDEF '

DC CL8'SYSIN'

DC CL8'DISK'

DC CL8'A'

DC CL8'A'

DC CL8'A'

DC CL8'DSN'

DC CL8'G.TEMP.D' NOTICE THAT THIS IS TRUNCATED
* BUT FILEDEF WILL USE THE
* EXTENDED PARAMETER LIST
* BELOW.

DC 2F'-1"
EPLIST DC A (COMVERB)

DC A (BEGARGS)

DC A(ENDARGS)

DC A(0)
COMVERB DC C'FILEDEF '
BEGARGS EQU *

DC C'DISK A A A DSN G.TEMP.DATASET.LIBRARY'
ENDARGS EQU * ENDARG POINTS ONE CHARACTER
* PAST THE END OF THE
* PARAMETER LIST.

END

Refer to page 43 for a description of the contents of R12, R13, R14, and R15.

SVC 202 Return Codes: On return from SVC processing, register 15
contains one of the following return codes:

0 No errors occurred.

-1 A CP command with this name was not found.

-2 An attempt was made to execute a CMS command while in CMS subset
mode. This would have caused the module to be loaded in the user
area.

-3 A CMS command issued from EXEC was not found with this name, or
an invalid function occurred when the SET or QUERY command was

issued from EXEC with IMPCP active.

-4 The LOADMOD failed.

Chapter 5. Developing Programs undéer CMS 51

Reveloping Pregrams under GRIS

LR

-5 A LOADMOD was issued in the wrong environment (for example, the
module was generated by the GENMOD command with the OS option,
and LOADMOD was attempted with DOS = ON specified).

SVC 203

SVC 203 is called by CMS macros to perform various internal system
functions. It is used to define SVC calls when no parameter list is provided.
For example, DMSFREE parameters are passed in registers 0 and 1.

A typical calling sequence for an SVC 203 call is:

svc 203
DC H'code'

The halfword decimal code following the SVC 203 indicates the specific
routine being called. DMSITS examines this halfword code taking the
absolute value of the code using a LPR instruction. The first byte of the
result is ignored, and the second byte of the resulting halfword is used as
an index into a branch table. The address of the correct routine is loaded,
and control is transferred to it.

It is possible for the address in the SVC 203 index table to be zero. In this
case, the index entry contains an 8-byte routine or command name, which is

handled in the same way as the 8-byte name passed in the parameter list to
an SVC 202.

The sign of the halfword code indicates whether the programmer expects an
error return. If an error return is expected, the code is negative. If the
code is positive, no error return is made. The sign of the halfword code has
no effect on determining the routine called since DMSITS takes the
absolute value of the code to determine the routine called.

Since only the second byte of the absolute value of the code is examined by
DMSITS, seven bits (bits 1-7) are available as flags or for other uses. For
example, DMSFREE uses these seven bits to indicate such things as
conditional requests and variable requests. Therefore, DMSITS considers
the codes X’3" and X’259’ to be identical and handles them the same as X’-3’
and X’-259’, except for error returns.

When an SVC 203 is invoked, DMSITS stores the halfword code into the
NUCON location CODE203 so the called routine can examine the seven bits
made available to it.

All calls made by SVC 203 should be made by macros with the macro
expansion computing and specifying the correct halfword code.

52 VM/SP CMS for System Programming

[e e

£

Developlng Programs undsr GIS

User-Handled SVCs

The programmer may use the HNDSVC macro to specify the address of a
routine that processes any SVC call for SVC numbers 0 through 200 and 206
through 255. If the HNDSVC macro is used, the linkage conventions are as
required by the user-specified SVC-handling routine. You cannot specify a
normal or error return from a user-handled SVC routine.

0S and VSE Macro Simulation SVC Calls

Invalid SVC Calls

CMS supports selected SVC calls generated by OS and VSE macros by
simulating the effect of these macro calls. DMSITS is the initial SVC
interrupt handler. If the SET DOS command has been issued, a flag in
NUCON indicates that VSE macro simulation is to be used. Control is then
passed to DMSDOS. Otherwise, OS macro simulation is assumed and
DMSITS passes control to the appropriate OS simulation routine.

DMSDOS acquires the specified SVC code from the OLDPSW field of the
current SVC save area. Using this code, DMSDOS computes the address of
the routine where the SVC is to be handled.

Many CMS/DOS routines (including DMSDOS) are contained in a
discontiguous shared segment (DCSS). Most SVC codes are executed
within DMSDOS, but some are in separate modules external to DMSDOS.
If the SVC code requested is external to DMSDOS, its address is computed
using a table called DCSSTAB. If the code requested is executed within
DMSDOS, the table SVCTAB is used to compute the address of the code to
handle the SVC.

There are several types of invalid SVC calls recognized by DMSITS.

1. Invalid SVC number. If the SVC number does not fit into any of the
classes described above, it is not handled by DMSITS. An error
message is displayed on your terminal, and control is returned directly
to the caller.

2. Invalid routine name in SVC 202 parameter list. If the routine named
in the SVC 202 parameter list is invalid or cannot be found, DMSITS
handles the situation in the same way as it handles an error return
from a legitimate SVC routine. You receive an error code of -3.

3. Invalid SVC 203 code. If an invalid code follows SVC 203 inline, an

error message is displayed on your terminal and the abend routine is
called to terminate execution.

Chapter 5. Developing Programs under CMS 53

Roveleping Pregrams undor GMS

Search Hierarchy for SVC 202

SVC 202 Entered from a Program

When a program issues SVC 202 and passes a routine or command name in
the parameter list, DMSITS searches for the specified routine or command.
(In the case of SVC 203 with a zero in the table entry for the specified
index, the same logic must be applied.)

As soon as the routine or command name is found, the search stops and the
routine or command is executed. Figure 9 on page 58 and the following list
describe the search order.

1.

DMSITS determines if the specified name is known dynamically to CMS
through the SUBCOM function. This step is executed only if the
high-order byte of R1 contains X’02’.

DMSITS searches for a nucleus extension routine with the specified
name. ‘

Note: This step is skipped if the high-order byte of register 1 contains
X’03’ or X’04’. X’03’ indicates that an extended PLIST is provided. X’04’
indicates that a tokenized PLIST is provided. X’03’ and X'04’ are
translated to X’01’ and X’00’, respectively, by the SVC interrupt handler
before the called program is entered.

DMSITS searches for a routine with the specified name in the transient
area.

DMSITS searches for a nucleus-resident command with the specified
name,

DMSITS searches currently accessed disks for a file with the specified
name and a filetype MODULE. CMS uses the standard search order (A
through Z). If this search is successful, the specified module is loaded
(via the LOADMOD command) and control is passed to the storage
location now occupied by the command. The table of active (open) disk
files is searched first. An open file may be used ahead of a file that
resides on a disk earlier in the search order.

DMSITS calls

a. DMSPKT to search the translation tables for the specified name. If
found, DMSITS searches for a routine with the valid translation by
repeating steps 2 through 5.

Note: This step is skipped if this SVC call is not from DMSINT or
DMSCSF.

54 VM/SP CMS for System Programming

%

PR U, DR F. N A P i M
ovolosing Presrams undor GRS

S S e]

b.

DMSINA to search the synonym tables for the specified name. If
found, DMSITS searches for a routine with the valid synonym by
repeating steps 2 through 5.

If all searches fail, then an error code of -3 is issued.

Commands Entered from the Terminal

When a command is entered from the terminal, DMSINT processes the
command line and calls the scan routine to convert it into a parameter list
consisting of 8-byte entries.

As soon as the command name is found, the search stops and the command
is executed. Figure 8 on page 57 and the following list describe the search

order.

1. Search for an EXEC with the specified command name:!

a.

DMSINT searches for an EXEC in storage. If an EXEC with this
name is found, DMSINT determines whether the EXEC has a USER,
SYSTEM, or SHARED attribute. If the EXEC has the USER or
SYSTEM attribute, it is executed.

If the EXEC has the SHARED attribute, the INSTSEG setting is
checked. When INSTSEG is ON, all accessed disks are searched
and the access mode of the Installation Discontiguous Shared
Segment (DCSS) is compared to the mode of an EXEC with that
name that resides on disk. If the access mode of the DCSS is equal
to or higher than the disk mode, the EXEC is executed. Otherwise,
the EXEC on disk is executed.

DMSINT searches accessed disks for a file with the specified name
and filetype: EXEC. The table of active (open) disk files is searched
first. An open file may be used ahead of a file that resides on a disk
earlier in the search order.

2. DMSINT calls

a.

DMSPKT to search the translation tables for the specified name. If
found, DMSINT searches for a routine with the valid translation by
repeating step 1.

DMSINA to search the synonym tables for the specified name. If
found, DMSINT searches for a routine with the valid synonym by
repeating step 1.

3. DMSINT executes SVC 202, passing the scanned tokenized parameter
list, with the command name in the first eight bytes of the PLIST
pointed to by register 1 and the extended PLIST address in register 0.

1 If implied EXEC is not in effect (SET IMPEX OFF), skip steps 1 and 2.

Chapter 5. Developing Programs under CMS 55

Peveloping Programs under GRS

[

DMSITS performs the search for SVC 202 as described above in “SVC
202 Entered from a Program.”

4. DMSINT searches for a CP command with the specified name, using the
CP DIAGNOSE instruction.?

5. If all of these searches fail, DMSINT displays the error message:

Unknown CP/CMS Command

2 If implied CP is not in effect (SET IMPCP OFF), skip step 4.

56 VM/SP CMS for System Programming

Devaloping Prodrams under

UV

)

NS

User enters name
at terminal

Read line from
terminal
("name...")

Implied
EXEC now in

Does file
“name EXEC"

effect
Note 1)

exist
Note 2

translation
for some req,

Notes:

1. If the command SET IMPEX OFF
has been executed, implied EXEC
is not in effect.

2. This EXEC must exist in storage
or on DASD.

3. A -3 return code indicates SVC 202
processing did not find the command.

4, If the command SET IMPCP OFF
has been executed, implied CP is
not in effect.

Figure 8. CMS Command Processing

name is now a
real name from
a translation or
synonym table

Issue SVC 202

(See SVC 202
subroutine)

Expand the line by
inserting EXEC in
front of the
command nome;
ie. 'EXEC name'

Does file

IsRC =~ -3
(Note 3)

Pass line to CP
for processing

" Was
gﬁELGgWN command
CP/CMS found and
COMMAND executed

®

SZ

Display Ready
message, with
error code if
RC-~=0

Chapter 5. Developing Programs under CMS 57

SE

Doveleping Programs vndor GRIS

r
13

SVC 202

High
order byte
= X ‘03 or

Nucleus
extension

la
name now

Check {a name Ne

No

Attempt to
te LOADMOD|

for subcom
chain

in transfent
area

a
Iuncy

Yes

Lookaside
buffer

s
name now
in tronsient
area

Avd

name module

from disk

Was the
LOADMOD
successful

Pass control to

the routine (in
_—'——"‘D the nucleus or

user areq) to
execute the cmd

Pass control to
routine in
transient arec

hv.4 Have we
been here

before

Pass control to
the routine (in N
the nucleus or

user arec) to
execute the cmd

Upon completion
return to SVC
routine

Return to routine
that issued the
SVC 202

XZ.

Is name
a translation
from some
real

a synonym
for some real
name

name is now a
real name from a
tronslation or
synonym table

D Set RC = -3 q

Return to routine
that issued the
SVC 202

Figure 9. SVC 202 Processing

Command Search Function

SUBCOM provides a function that lets you invoke a command (from a
program) that is resolved according to the CMS command search hierarchy.
That is, the command is resolved just as though the command was entered
from the terminal. This SUBCOM function is named CMS. This command
search function checks the IMPEX and IMPCP settings of CMS SET.

58 VM/SP CMS for System Programming

Dovelening Predranms undar GRUIS

e o ’ o T T T

The CMS SUBCOM function is defined during system initialization at IPL
and remains defined during the entire CMS session.

To pass a command to the CMS SUBCOM function, the user should define
PLISTs as follows:

PLIST DS OF
DC CL8'CMS'
EXPLIST DS OF

DC A(PLIST)
DC A (BEGARGS)
DC A (ENDARGS)

DC A(0)
BEGARGS DS or
DC C'command to be invoked'

ENDARGS EQU *

Register 1 must contain the address of PLIST and a high order byte of X’02’.
Register 0 must contain the address of the extended PLIST. Having
established the PLIST and register information the user issues an SVC 202.
The X’02’ in the high order byte of register 1 indicates that this is a call to
a previously defined SUBCOM.

Dynamic Linkage/SUBCOM

It is possible for a program that is already loaded from disk to become
dynamically known by name to CMS for the duration of the current
command; such a program can be called via SVC 202. In addition, this
program can also make other programs dynamically known if the first
program can supply the entry points of the other programs.

To become known dynamically to CMS, a program or routine invokes the
create function of SUBCOM. To invoke SUBCOM, issue the following
calling sequence from an assembler language program:

LA R1,PLIST
SvC 202
DC AL4 (ERROR)

PLIST DS OF
DC CL8' SUBCOM"
SUBCNAME DC CL8'name' COMMAND NAME
SUBCPSW DC XL2'0000" SYSTEM MASK, STORAGE KEY,
ETC.
DC AL2(0) RESERVED
SUBCADDR DC A(0) ENTRY ADDRESS, -1 FOR
QUERY PLIST
DC A(0) USER WORD

SUBCOM creates an SCBLOCK control block containing the information
specified in the SUBCOM parameter list. SVC 202 uses this control block
to locate the specified routine. All non-system SUBCOM SCBLOCKS are
released at the completion of a command (that is, when CMS displays the
ready message). A SUBCOM environment may be defined as a system
SUBCOM by setting a X'80" in the first byte of the interruption code field of

Chapter 5. Developing Programs under CMS 59

Developing Programs under GMS

[

the PLIST. See VM/SP Data Areas and Control Block Logic Volume 2
(CMS) for a description of the SCBLOCK control block.

When a program issues an SVC 202 call to a program that has become
known to CMS via SUBCOM, it places X"02" in the high-order byte of
register 1. Control passes to the called program at the address specified by
the called program when it invoked SUBCOM.

The PSW in the SCBLOCK specifies the system mask, the PSW key to be
used, the program mask (and initial condition code), and the starting
address for execution. The problem-state bit and machine-check bit may be
set. The machine-check bit has no effect in CMS under CP. The EC-mode
bit and wait-state bit cannot be set. They are always forced to zero. Also,
one 4-byte, user-defined word can be associated with the SUBCOM entry
point and referred to when the entry point is subsequently called.

When control passes to the specified entry point, the register contents are:

R2 Address of SCBLOCK for this entry point.
R12 Entry point address.

R13 24-word save area address.

R14 Return address (CMSRET).

R15 Entry point address.

You can also use SUBCOM to delete the potential linkage to a program or
routine’s SCBLOCK, or you can use SUBCOM to determine if an
SCBLOCK exists for a program or routine.

To delete a program or routine’s SCBLOCK, issue:

DC CL8'SUBCOM'

DC CL8'program or routine name'

DC 8X'00'

To determine if an SCBLOCK exists for a program or routine, issue:
DC CL8'SUBCOM'

DC CL8'program or routine name'

DC A(0) SCBLOCK addressed as a returned value
DC 4X'FF'

Note that if ‘SUBCOM name’ is called from an EXEC file, the QUERY
PLIST is the form of PLIST that is issued.

To query the chain anchor, issue:

DC CL8'SUBCOM'

DS CLS8 (contents not relevant)

DS AL4 Will receive chain anchor
contents from NUCSCBLK

DC AL4(1) Indicates request for anchor

Note that the anchor is equal to F*0’ if there are no SCBLOCKSs on the
chain.

‘60 VM/SP CMS for System Programming

A

Y ey e R 115 TP P P e LA T
Davaloningg Prodranns under Gl

S PSSP |

Note: If you create SCBLOCKS for several programs or routines with the
same name, they are all remembered, but SUBCOM uses the last one
created. A SUBCOM delete request for that name eliminates only the most
recently created SCBLOCK making active the next most recently created
SCBLOCK with the same name.

When control returns to CMS after a console input command has
terminated, the entire SUBCOM chain of SCBLOCKSs is released. None of
the subcommands established during that command are carried forward to
be available during execution of the next console command.

SUBCOM Function Return Codes

Return codes from the SUBCOM function are:

0 Successful completion. A new SCBLOCK was created, the
specified SCBLOCK was deleted, or the specified program or
routine has an SCBLOCK.

1 No SCBLOCK exists for the specified program or routine. This is
the return code for a delete or a query.

25 No more free storage available. SCBLOCK cannot be created for
the specified program or routine.

Returning to the Calling Routine

Return Location

When the called routine finishes processing, it returns control to DMSITS.
Then DMSITS returns control to the calling routine.

The return is accomplished by loading the original SVC old PSW, which
was saved at the time DMSITS was first entered, after possibly modifying
the address field. The address field modification depends upon the type of
SVC call and upon whether the called routine indicated an error return.

For SVC 202 and 203, the called routine places a zero in register 15
indicating a normal return and a nonzero code in register 15 indicating an
error return. If the called routine indicates a normal return, DMSITS
makes a normal return to the calling routine. If the called routine-

.indicates an error return, DMSITS passes the error return address to the

calling routine, if one was specified. If no error return address was
specified, DMSITS abnormally terminates.

For an SVC 202 not followed by “DC ALd4(address)” or “DC AL4(1)”, a
normal return is made to the instruction following the SVC instruction and
an error return causes an abend. For an SVC 202 followed by “DC
Al4(address)”, a normal return is made to the instruction following the DC
and an error return is made to the address specified in the DC, unless the
address is equal to 1. If the address is 1, return is made to the next

Chapter 5. Developing Programs under CMS 61

Developing Programs under GRS

f

Register Restoration

instruction after the “DC AL4(1)” instruction. In either case, register 15
contains the return code passed back by the called routine.

For an SVC 203 with a positive halfword code, a normal return is made to
the instruction following the halfword code and an error return causes an
abend. For an SVC 203 with a neéative halfword code, both normal and
error returns are made to the instruction following the halfword code. In
any case, register 15 contains the return code passed back by the called
routine.

For OS macro simulation SVC calls and user-handled SVC calls, no error
return is recognized by DMSITS. As a result, DMSITS always returns to
the calling routine by loading the SVC old PSW that was saved when
DMSITS was first entered.

Upon entry to DMSITS, all registers are saved as they were when the SVC -
instruction was first executed. Upon exiting from DMSITS, all registers are
restored to the values that were saved at entry.

The exception to this is register 15 for SVC 202 and 203. Upon return to
the calling routine, register 15 always contains the value that was in
register 15 when the called routine returned to DMSITS after it had
completed processing.

Modification of the System Save Area

If the called routine has system status so that it runs with a PSW storage
protect key of 0, it may store new values into the system save area.

If the called routine wishes to modify the location where control is to be
returned, it must modify the following fields:

o For SVC 202 and 203, the called routine must modify the NRMRET and
ERRET (normal and error return address) fields.

o For other SVCs, the called routine must modify the address field of
OLDPSW.

To modify the registers that are returned to the calling routine, the fields
EGPR1, EGPR2, through EGPR15 must be modified.

If this action is taken by the called routine, the SVCTRACE facility may
print misleading information, since SVCTRACE assumes that these fields
are exactly as they were when DMSITS was first entered. Whenever an
SVC call is made, DMSITS allocates two save areas for that particular SVC
call. Save areas are allocated as needed. For each SVC call, a system and
user save area are needed.

When the SVC-called routine returns, the save areas are not released. They
are kept for the next SVC. If the routine invoked by the SVC called the
parsing facility, any storage allocated by the parsing facility for parsing

62 VM/SP CMS for System Programming

Daveloping Pregrams under GVIS

N S, B

results is released upon return. At the completion of each command, all
SVC save areas allocated by that command are released.

DMSITS uses the system save area to save the value of the SVC old PSW at
the time of the SVC call, the calling routine’s registers at the time of the
call, and any other necessary control information. Since SVC calls can be
nested, there can be several of these save areas at one time. The system
save area is allocated in protected free storage.

The user save area (DSECT EXTUAREA) contains 12 doublewords (24
words) allocated in unprotected free storage. DMSITS does not use this
area at all. It simply passes a pointer to this area (via register 13). The
called routine can use this area as a temporary work area or as a register
save area. Each system save area has one user save area. The USAVEPTR
field in the system save area points to the user save area.

The exact format of the system save area can be found in the VM/SP Data
Areas and Control Block Logic Volume 2 (CMS). The most important fields
and their uses are as follows:

Field Usage

CALLER (Fullword) The address of the SVC instruction that resulted
in this call.

CALLEE (Doubleword) 8-byte symbolic name of the called routine.
For OS and user-handled SVC calls, this field contains a
character string of the form SVC nnn, where nnn is the SVC
number in decimal.

CODE (Halfword) For SVC 203, this field contains the halfword
code following the SVC instruction line.

OLDPSW (Doubleword) The SVC old PSW at the time that DMSITS

was entered.

NRMRET (Fullword) The address of the calling routine where control
is passed in case of a normal return from the called routine.

ERRET (Fullword) The address of the calling routine where control
is passed in case of an error return from the called routine.

EGPRS (16 Fullwords, separately labeled EGPR0O, EGPR1, EGPR2,
EGPRS, ..., EGPR15) The entry registers. The contents of
the general purpose registers at entry to DMSITS are stored
in these fields.

EFPRS (4 Doublewords, separately labeled EFPR0, EFPR2, EFPR4,
EFPR6) The entry floating-point registers. The contents of
the floating-point registers at entry to DMSITS are stored in
these fields.

Chapter 5. Developing Programs under Cl\r)IS 63

Developing Programs under CMS

SSAVENXT (Fullword) The address of the next system save area in the
chain. This points to the system save area being used, or
will be used, for any SVC call nested in relation to the
current one.

SSAVEPRV (Fullword) The address of the previous system save area in
the chain. This points to the system save area for the SVC
call in relation to where the current call is nested.

USAVEPTR (Fullword) Pointer to the user save area for this SVC call.

The CMS Subset Environment

When you issue the XEDIT subcommand:

cms

the editor responds:

CMS subset

and your virtual machine is in CMS subset mode. When in subset mode,
you can issue any valid CMS subset command, that is, a CMS command
that is allowed in CMS subset mode. The commands that are not allowed in
the CMS subset environment are commands that execute in the user area.
You can also issue CP commands. To return to edit mode, you use the
special CMS subset command, RETURN. If you enter the Immediate
command HX, your editing session terminates abnormally and your virtual
machine returns to the CMS environment.

When entering CMS subset mode either for a single command or until the
string ‘RETURN’ is entered, the following processing is done to ensure that
the previous environment is preserved. Upon entry to subset, a check is
made to determine if this entry would constitute a recursion, if so, return
code 1 is returned.

1. STAE, SPIE, and STAX information is saved and then cleared.

2. The OS environment settings are saved and then cleared so that any
module that issues an OSRESET based on these flags will not do so.

3. The read and write pointers from any currently opened files are saved.

4, All files are then closed by a ‘FINIS * * *’| but files with a filemode of 3
are not erased.

5. Any FSTs that were built by a previous call to STATE are saved.
If the entry to subset was just for the execution of a single command, the

entry message is suppressed and the next command is executed immediately.
But, if the request was to enter CMS subset for an indefinite duration, an

64 VM/SP CMS for System Programming

Developing Programs undar GVIS

et e e e e - S ey

announcement of entry to the CMS subset environment is made. This is
done so that a strict differentiation from the strict command environment is
given.

The principle difference in subset is the restriction that any command
executed may not use any storage other than DMSFREE storage and the
transient area. This protects programs which may be running in the USER
AREA. Also, any ready message issued from subset is in the abbreviated
form (i.e. identical to SET RDYMSG SMSGQG) so that program timing
information is not affected for the command currently in progress at the
time of subset entry.

Upon termination of CMS subset mode any settings or values that were
saved upon entry to subset are restored.

Assembiing Programs

To assemble assembler language source programs into object module
format, you can use the ASSEMBLE command, and specify assembler
options on the command line. For example:

assemble myfile (print

assembles a source program named MYFILE ASSEMBLE and directs the
output listing to the printer. All of the ASSEMBLE command options are
listed in the VM/SP CMS Command Reference.

When you invoke the ASSEMBLE command specifying a file with the
filetype of ASSEMBLE, CMS searches all of your accessed disks, using the
standard search order, until it locates the specified file. When the
assembler creates its output listing and text deck, it creates files with
filetypes of LISTING and TEXT, and writes them onto disk according to the
following priorities:

1. If the source file is on a read/write disk, the TEXT and LISTING files
are written onto that disk.

2. If the source file is on a read-only extension of a read/write disk, the
TEXT and LISTING files are written onto the parent disk.

3. 1If the source file is on any other read-only disk, the TEXT and LISTING
files are written onto the A-disk.

4. 1If none of the above choices are available, the command is terminated.

In all of the above cases, the TEXT and LISTING files have a filename that
is the same as the input ASSEMBLE file.

The input and output files used by the assembler are assigned by FILEDEF

commands that CMS issues internally when the assembler is invoked. If
you issue a FILEDEF command using one of the assembler ddnames before

Chapter 5. Developing Programs under CMS 65

Developing Programs under GRS

[

I U o

you issue the ASSEMBLE command, you can override the default file
definitions. -

The ddname for the source input file (SYSIN) is ASSEMBLE. If you enter:

filedef assemble reader
assemble sample

then the assembler reads your input file from your card reader and assigns
the filename SAMPLE to the output TEXT and LISTING files.

You could assemble a source file directly from an OS disk by entering:

filedef assemble disk myfile assemble b4 dsn os source file
assemble myfile

In this example, the CMS file identifier MYFILE ASSEMBLE is assigned to
the data set OS.SOURCE.FILE and then assembled.

LISTING and TEXT are the ddnames assigned to the SYSPRINT and
SYSLIN output of the assembler. You might assign file definitions to
override these defaults as follows:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
assemble myfile

In this example, output from the assembly of the file, myfile ASSEMBLE, is
written to the files, ASSEMBLE LISTFILE and ASSEMBLE TEXTFILE.

The ddnames PUNCH and CMSLIB are used for SYSPUNCH and SYSLIB
data sets. PUNCH output is produced when you use the DECK option of
the ASSEMBLE command. The default file definition for CMSLIB is the
macro library CMSLIB MACLIB, but you must still issue the GLOBAL
command if you want to use it.

Executing Programs

After you have assembled or compiled a source program, you can execute
the TEXT files that were produced by the assembly or compilation. You
may not, however, be able to execute all your OS programs directly in CMS.
There are a number of execution-time restrictions placed on your virtual
machine by VM/SP. You cannot execute a program that uses:

Multitasking

More than one partition
Teleprocessing

ISAM macros to read or write files
The PSW EC mode bit

66 VM/SP CMS for System Programming

3

Poveloping Pregrams under GVIS

e B . -

Executing TEXT Files

Defining Input and Output

The above is only a partial list of restrictions you might be concerned with.
For a complete list of restrictions, see the VM/SP Planning Guide and
Reference.

TEXT files, in CMS, are relocatable and can be executed simply by loading
them into virtual storage with the LOAD command and using the START
command to begin execution. For example, if you have assembled a source
program named CREATE, you have a file named CREATE TEXT. You can
issue the command:

load create

that loads the relocatable object file into storage. Then, to execute it, you
can issue the START command:

start

In the case of a simple program, as in the above example, you can load and
begin execution with a single command line, using the START option of the
LOAD command:

load create (start

When you issue the START command or LOAD command with the START
option, control is passed to the first entry point in your program. If you
have more than one entry point and you want to begin execution at an
entry point other than the first, you can specify the alternate entry point or
CSECT name on the START command:

start create2

When you issue the LOAD command specifying the filename of a TEXT file,
CMS searches all of your accessed disks for the specified file.

If your program expects a parameter list to be passed (via register 1), you
can specify the arguments on the START command line. If you enter
arguments, you must specify the entry point:

start * namel

When you specify the entry point as an asterisk (¥), it indicates that you
want to use the default entry point.

Files

You can issue the FILEDEF command to define input and output files any
time before you begin program execution. You can issue all your file
definitions before loading any TEXT files, or you can issue them during the
loading process. You can find out what file definitions are currently in
effect by issuing the FILEDEF command with no operands. You can also
use the FILEDEF operand of the QUERY command.

Chapter 5. Developing Programs under CMS 67

Daveloping Programs under GRIS

T
Rt st e e e v e

o T . s [

Resolving External References

The CMS loader loads files into storage as a result of a LOAD or INCLUDE
command. When a file is loaded, the loader checks for unresolved
references. If there are any, the loader searches your disks for TEXT files
with filenames that match the external entry name. When it finds a match,
it loads the TEXT file into storage. If a TEXT file is not found, the loader
searches any available TXTLIBs for members that match. If a match is
found, it loads the member.

If there are still unresolved references, for example, if you load a program
that calls routines PRINT and ANALYZE but the loader cannot locate
them, you receive the message:

The following names are undefined:
PRINT
ANALYZE

You can issue the INCLUDE command to load additional TEXT files or
TXTLIB members into storage so the loader can resolve any remaining
references. For example, if you did not identify the TXTLIB that contains
the routines you want to call, you may enter the GLOBAL command
followed by the INCLUDE command:

global txtlib newlib
include print analyze (start

A failure to resolve external references might occur if you have TEXT files
with filenames that are different from either the CSECT names or the entry -
names. You must explicitly issue LOAD and INCLUDE commands for these
files.

At execution time, if there are still any unresolved references, their
addresses are all set to 0 by the loader; so any attempt to address them in a
program may result in a program check.

Controlling the CMS Loader

The LOAD and INCLUDE Commands

The INCLUDE command has the same format and option list (with one
exception) as the LOAD command. The main difference is that when you
issue the INCLUDE command the loader tables are not reset. If you issue
two LOAD commands in succession, the second LOAD command cancels the
effect of the first and the pointers to the files loaded are lost.

Conversely, the INCLUDE command, which you must issue when you want
to load additional files into storage, should not be used unless you have just
issued a LOAD command. You may specify as many INCLUDE commands
as necessary following a LOAD command to load files into storage.

68 VM/SP CMS for System Programming

Developing Pregrams under GRS

- — s |

The LOAD and INCLUDE commands allow you to specify a number of
options. You can:

o Change the entry point to which control is to be passed when execution
begins (RESET option).

o Specify the location in virtual storage at which you want the files to be
loaded (ORIGIN option).

o Control how CMS resolves references and handles duplicate CSECT
names (AUTO, LIBE, and DUP options).

o Clear storage to binary zeros before loading files (CLEAR option).
Otherwise, CMS does not clear user storage.

o Save the relocation information from the text files (RLDSAVE option).
If the RLDSAVE option is not specified on the LOAD and INCLUDE
commands, the relocation information will not be saved for the files
being loaded into storage.

o Save history information from the text files (HIST option). If the HIST
option is not specified on the LOAD or INCLUDE commands, history
information (comments) is not saved for the files being loaded into
storage.

When the LOAD and INCLUDE commands execute, they produce a load
map, indicating the entry points loaded and their virtual storage locations.
You may find this load map useful in debugging your programs. If you do
not specify the NOMAP option, the load map is written onto your A-disk in
a file named LOAD MAP A5. Each time you issue the LOAD command, the
old file LOAD MAP is erased and the new load map replaces it. If you do
not want to produce a load map, specify the NOMAP option.

You can find details about these options under the LOAD command in the
VM/SP CMS Command Reference.

Loader Control Statements

In addition to the options provided with the LOAD and INCLUDE
commands that assist you in controlling the execution of TEXT files, you
can also use loader control statements. These can be inserted in TEXT
files, using the CMS editor. The loader control statements allow you to:

o Set the location counter to specify the address where the next TEXT file
is to be loaded (SLC statement).

o Modify instructions and constants in a TEXT file, and change the
length of the TEXT file to accommodate modifications (Replace and

Include Control Section statements).

o Change the entry point (ENTRY statement).

Chapter 5. Developing Programs under CMS 69

Developing Programs under GRS

S T

T T T

o Nullify an external reference so that it does not receive control when it
is called, and you do not receive an error message when it is
encountered (LIBRARY statement).

These statements are also described under the LOAD command in the
VM[SP CMS Command Reference.

Determining Program Entry Points

When you load a single TEXT file or a TXTLIB member into storage for

execution, the default entry point is the first CSECT name in the object file
loaded. You can start execution at a different entry point by specifying the
entry point on the LOAD (or INCLUDE) command with the RESET option.

load myprog (reset beta

where BETA is the alternate entry point of your program, or you can
specify the entry point on the START command line:

start beta

When you load multiple TEXT files (either explicitly or implicitly by
allowing the loader to resolve external references), you also have the option
of specifying the entry point on the LOAD, INCLUDE, or START command
lines.

If you do not specifically name an entry point, the loader determines the
entry point for you according to the following hierarchy:

1. An entry point specified on the START command

2. The last entry specified with the RESET option on a LOAD or
INCLUDE command

3. The name on the last ENTRY statement that was read

4. The name on the last LDT statement that contained an entry name that
was read

5. The name on the first assembler- or compiler-produced END statement
that was read

6. The first byte of the first control section loaded.

For example, if you load a series of TEXT files that contain no control
statements and do not specify an entry point on the LOAD, INCLUDE, or
START commands, execution begins with the first file that you loaded. If
you want to control the execution of program subroutines, you should be
aware of this hierarchy when you load programs or when you place them in
TXTLIBs.

An area of particular concern is when you issue a dynamic load (with the
OS LINK, LOAD, or XCTL macros) from a program, and you call members

70 VM/SP CMS for System Programming

Peveloping Pregraims under GVIS

[Fm T s i - — e —

of CMS TXTLIBs. The CMS loader determines the entry point of the called
program and returns the entry point to your program. If a TXTLIB member
that you load has a VCON to another TXTLIB member, the LDT card from
the second member may be the last LDT card read by the loader. If this
LDT card specifies the name of the second member, CMS may return that
entry point address to your program rather than the address of the first
member.

Creating Program Modules

When your programs are debugged and tested, you can use the LOAD and
INCLUDE commands, in conjunction with the GENMOD command, to
create program modules. A module is a file whose external references have
been resolved. In CMS, these files must have a filetype of MODULE.

To create a nonrelocatable module file, load the TEXT files or TXTLIB
members into storage and issue the GENMOD command:

load create analyze print
genmod process

The module is generated at the virtual storage address where it is loaded.
In this example, PROCESS is the name of the module file, and it has a
filetype of MODULE. You could use any name; if you use the name of an
existing MODULE file, the old one is replaced.

To execute the program composed of the source files CREATE, ANALYZE,
and PRINT, enter:

process

If PROCESS requires input and/or output files, you have to define these
files before PROCESS can execute properly. If PROCESS expects
arguments passed to it, you can enter them following the MODULE name.
For example,

process testl

If you want to call your own programs or CMS program modules using SVC
202 instructions, you must be careful not to execute a module that uses the
same area of storage that your program occupies. If you want to call a
module that executes at location X’20000’, you can load the calling program
at a higher location. For example,

load create (origin 30000

As long as the MODULE file called by CREATE is no longer than X’10000"
bytes, it will not overlay your program.

You can also use the LOAD and GENMOD commands to create a

relocatable CMS module file. However, you must specify the RLDSAVE
option in the LOAD command:

Chapter 5. Developing Programs under CMS 71

Developing Programs under GRIS

[e o e T e e i i)

load progone (RLDSAVE
genmod progtwo

The relocatable CMS module file may now be established as a nucleus
extension by issuing the NUCXLOAD command:

nucxload progtwo

Relocatable CMS module files may also be used with the LOADMOD
command (for example, when issued as a command from the console). No
relocation is performed when the LOADMOD command is used. Relocation
is performed only when loaded by NUCXLOAD.

You can use the LOAD, INCLUDE, and GENMOD commands to create a
module that includes history information (comments) from the text file
used. For example:

load progone (HIST
include progtwo (HIST
genmod

The generated module contains the comments that were in the text files
progone and progtwo.

Note: Many CMS disk-resident command modules execute in the user
program area. That is, if you call a CMS command that runs in the user
program area, you must be certain that it does not overlay your own
program. Some CMS command modules issue the STRINIT macro or were
created using the STR option of the GENMOD command.

Both cause the user area storage pointers to be reset. The reset condition
may cause errors upon return to the original program (for example, when
0S GETMAIN/FREEMAIN macros are issued in the user program).

The CMS commands that execute in the user program area or that reset the
user area storage pointers are identified in the VM/SP CMS Command
Reference.

The Transient Program Area

To avoid overlaying programs executing in the user program area, you can
generate program modules to run in the CMS transient area, which is a
two-page area of storage reserved for the execution of programs that are
called frequently. Many CMS commands run in this area, which is located
at X’E000’. Programs that execute in this area run disabled.

To generate a module to run in the transient area, use the ORIGIN TRANS
option when you load the TEXT file into storage, then issue the GENMOD
command. For example,

load myprog (origin trans
genmod setup (str

72 VM/SP CMS for System Programming

Dsvaloning Programs undss G

Note: If a program running in the user area calls a transient routine in
which a module was generated using the GENMOD command with the STR
option, the user area storage pointers are reset. This reset condition could
cause errors upon return to the original program (for example, when OS
GETMAIN/FREEMAIN macros are issued in the user program).

The two restrictions placed on command modules executing in the transient
area are:

1. They may have a maximum size of 8192 bytes (the size of the transient
area).

2. They must be serially reusable. When a program is called by an SVC
202 and if it is already loaded into the transient area, it is not reloaded.

The CMS commands that execute in the transient area are identified in the
VM|SP CMS Command Reference.

Creating EXEC Procedures

Depending on how you code your programs and EXECs, you can choose
whether or not they will be recognized for translation into other languages.
CMS only recognizes translations for commands entered from the command
line (or with ADDRESS CMS from REXX or &PRESUME
&SUBCOMMAND CMS from EXEC 2). CMS does not translate your
command name or keywords if you SET TRANSLATE OFF or if you invoke
the command from another program using SVC 202 (or with ADDRESS
COMMAND from REXX or &PRESUME &COMMAND CMS from EXEC 2).
For more information on command translation, refer to “Chapter 7.
Developing Commands and Message Files” on page 113.

During your program development and testing cycle, you may want to
create EXEC procedures to contain sequences of CMS commands that you
execute frequently. For example, if you need a number of MACLIBs,
TXTLIBs, and file definitions to execute a particular program, you might
have an EXEC procedure as follows:

Chapter 5. Developing Programs under CMS 73

Developing Programs under GIS

[

/* EXEC to set up environment to run program TESTA */

signal on error

'GLOBAL MACLIB TESTLIB OSMACRO OSMACRO1'

'ASSEMBLE TESTA'

'PRINT TESTA LISTING'

'GLOBAL TXTLIB TESTLIB PROGLIB'

'ACCESS 200 E'

push 'OS.TEST3.STREAM.BETA'

'FILEDEF INDD1 E DSN ?'

'FILEDEF INDD2 READER'

'FILEDEF OUTFILE DISK TEST DATA Al'

signal off error

'LOAD TESTA (START'

select
when rc

100 then do

end
when rc

200 then do

end
otherwise
exit rc
end

Error:

say 'Error occurred on line' sigl':' sourceline(sigl)
exit rc

The “signal on error” control statement in the EXEC procedure ensures
that if an error occurs during any part of the EXEC, the remainder of the
EXEC does not execute, and the “Error:” displays the line number where
the error occurred as well as the actual command which gave the error.

Note: For the FILEDEF command entered with the DSN ? operand, you

must stack the response (using “push”) before issuing the FILEDEF
command.

When your program is finished executing, the REXX special variable RC
indicates the contents of general register 15 at the time the program exited
(the “Return Code”). You can use this value to perform additional steps in
your EXEC procedure. Additional steps are indicated in the preceding
example by ellipses.

74 VM/SP CMS for System Programming

Develoning Programs under CUS

0 S [, O

CMS Nacro Instructions

There are a number of assembler language macros distributed with the
CMS system that you can use when you are writing programs to execute in
the CMS environment. These macros are in the macro libraries CMSLIB
MACLIB and DMSSP MACLIB, which are normally located on the system
disk.

o CMSLIB MACLIB contains macros from VM/370.
o DMSSP MACLIB contains macros that are new or changed in VM/SP.

Note: When assembling programs that use CMS macros, both of these
libraries should be identified via the GLOBAL command. DMSSP
should precede CMSLIB in the search order.

There are macros to manipulate CMS disk files, to handle terminal
communications, to manipulate unit record and tape input/output, and to
trap interruptions. These macros are discussed in general terms here. For
complete format descriptions, see the VM/SP CMS Macros and Functions
Reference.

Disk File Manipulation

Disk files are described in CMS by means of a file system control block
(FSCB). The CMS macro instructions that manipulate disk files use FSCBs
to identify and describe the files. When you want to manipulate a CMS file,
you can refer to the file by its file identifier, specifying ‘filename filetype
filemode’ in quotation marks, or you can refer to the FSCB for the file,
specifying FSCB =fsch, where fscb is the label on an FSCB macro.

To establish an FSCB for a file, use the FSCB macro instruction specifying
a file identifier. For example,

INFILE FSCB 'INPUT TEST Al'

You can also provide, on the FSCB macro instruction, descriptive
information to be used by the input and output macros. If you do not code
an FSCB macro instruction for a file, an FSCB is created in-line (following
the macro instruction) when you code an FSREAD, FSWRITE, or FSOPEN
macro instruction.

The format of an FSCB and a description of each of the fields are listed

below.
Label Description
FSCBCOMM DC cLs' ! File system command

Figure 10 (Part 1 of 2). FSCB Format

Chapter 5. Developing Programs under CMS 75

Developing Programs under CMS

[e 2]

Label Description

FSCBFN DC cLs8' ! Filename

FSCBFT DC CcL8' ' Filetype

FSCBFM DC CL2' ' Filemode

FSCBITNO DC H'O' Relative record number (RECNO)

FSCBBUFF DC A'Q' Address of buffer (BUFFER)

FSCBSIZE DC F'o’ Number of bytes to read or write
(BSIZE)

FSCBFV DC CL2'F' Record format - F or V (RECFM)

FSCBFLG EQU FSCBFV+1 F]ag byte

FSCBNOIT DC H'1l' Number of records to read or
write (NOREC)

FSCBNORD DC AL4(0) Number of bytes actually read

FSCBAITN DC AL4(0) Extended FSCB relative record
number

FSCBANIT DC AL4 (1) Extended FSCB relative number
of records

FSCBWPTR DC AL4(0) Extended FSCB relative write
pointer

FSCBRPTR DC AL4(0) Extended FSCB relative read
pointer

Figure 10 (Part 2 of 2). FSCB Format

The FSCBAITN, FSCBANIT, FSCBWPTR, and FSCBRPTR fields are only
generated in the FSCB when the extended format FSCB is requested
(FORM =E is coded on the FSCB macro instruction). In this case, the
FSCBITNO and FSCBNOIT fields are reserved fields. Extended format
FSCBs must be used to manipulate files larger than 65,533 items. The
labels shown above are not generated by the FSCB macro. To reference
fields within the FSCB by these labels, you must use the FSCBD macro
instruction to generate a DSECT.

FSCBCOMM: When the FSCBFN, FSCBFT, and FSCBFM fields are filled
in, you can fill in the FSCBCOMM field with the name of a CMS command
and use the FSCB as a parameter list for an SVC 202 instruction. (You
must place a delimiter to mark the end of the command line.)

FSCBFN, FSCBFT, FSCBFM: The filename, filetype, and filemode fields
identify the CMS file to be read or written. You can code the fileid on a
macro line in the format ‘filename filetype filemode’, or you can use register
notation. If you use register notation, the register you specify must point
to an 18-byte field in the format:

FILEID DC CL8'filename'

DC CL8'filetype'
DC CL2'filemode'’

76 VM/SP CMS for System Programming

Daveloping Programs under GRS

e e et e+ e e]

The fileid must be specified either in the FSCB for a file or on the FSREAD,
FSWRITE, FSOPEN, or FSERASE macro instruction that references the
file.

FSCBITNO: For an FSCB without the FORM =E option, the record or
item number indicates the relative record number of the next record to be
read or written. It can be changed with the RECNO option. The default
value for this field is 0. When you are reading a file, a 0 indicates that
records are to be read sequentially beginning with the first record in the
file. When you are writing a file and the file already exist, a 0 indicates
that records are to be written sequentially beginning at the first record
following the end of the file. If the file is a new file, begin writing at record
1.

For an FSCB generated with the FORM =E option, the FSCBAITN field
contains the record or item number. The FSCBITNO field is reserved.

Whenever you read discontiguous files in CMS (that is, files with missing
records), the input buffer will be filled with the appropriate number of
bytes. Be aware that the flag byte in the FSCB may not reflect whether the
input buffer contains generated data items from RDBUF.

FSCBBUFF: The buffer address, specified in the BUFFER option,
indicates the label of the buffer where the record is to be written from or
where the record is to be read into. You should always supply a buffer
large enough to accommodate the longest record you expect to read or
write. This field must be specified either in the FSCB or on the FSREAD or
FSWRITE macro instruction.

FSCBSIZE: This field indicates the number of bytes that are read or
written with each read or write operation. The default value is 0. If the
buffer that you use represents the full length of the records you are going
to be reading or writing, you can use the BSIZE option to set this field
equal to your buffer length. When you are writing variable-length records,
use the BSIZE operand to indicate the length of each record you write.
This field must be specified.

FSCBFV: This two-character field indicates the record format (RECFM) of
the file. The default value is F (fixed).

FSCBFLG: The flag byte is X’20’ indicating an extended FSCB is
generated when the FORM =E option is coded on the FSCB macro
instruction.

FSCBNOIT: For an FSCB without the FORM =E option, this field
contains the number of whole records to be read or written in each read or
write operation. You can use the NOREC option with the BSIZE option to
block and deblock records.

For an FSCB generated with the FORM =E option, the FSCBANIT field

contains the number of whole records to be read or written. The
FSCBNOIT field is reserved.

Chapter 5. Developing Programs under CMS 77

Developing Programs under CMS

[

FSCBNORD: Following a read operation, this field contains the number
of bytes actually read, so if you are reading a variable-length file, you can
determine the size of the last record read. The FSREAD macro instruction
places the information from this field into register 0.

FSCBAITN: The alternate record or item number indicates the relative
record number of the next record to be read or written in an extended FSCB
format. See the description of the FSCBITNO field for the usage of this
field.

FSCBANIT: This field contains the alternate number of whole records in
an extended FSCB format. See the description of the FSCBNOIT field for
the usage of this field.

FSCBWPTR: The FSPOINT macro instruction uses this field to contain
the alternate write pointer for an extended FSCB during a POINT
operation.

FSCBRPTR: The FSPOINT macro instruction uses this field to contain
the alternate read pointer for an extended FSCB during a POINT operation.

Using the File System Control Block (FSCB)

The following example shows you how to code an FSCB macro instruction
to define various file and buffer characteristics and how to use the same
FSCB to refer to different files:

FSREAD 'INPUT FILE Al',FSCB=COMMON,FORM=E
FSWRITE 'OUTPUT FILE Al',FSCB=COMMON,FORM=E

COMMON FSCB BUFFER=SHARE,RECFM=V,BSIZE=200,FORM=E
SHARE DS CL200

In the above example, the fileid specifications on the FSREAD and
FSWRITE macro instructions modify the FSCB at the label COMMON each
time a read or write operation is performed. You can also modify an FSCB
directly by referring to fields by a displacement off the beginning of the
FSCB. For example,

MvC FSCB+8,=CL8'NEWNAME'

moves the name NEWNAME into the filename field of the FSCB at the
label FSCBFN.

As an alternative, you can use the FSCBD macro instruction to generate a
DSECT and refer to the labels in the DSECT to modify the FSCB. For
example,

78 VM/SP CMS for System Programming

Developing Proygrains under GO

e e . - e - g

LA R5,INFSCB
USING FSCBD,R5

MvC FSCBFN,NEWNAME

INFSCB FSCB 'INPUT TEST Al',FORM=E
NEWNAME DC CL8'OUTPUT'
FSCBD

In the above example, the MVC instruction places the filename OUTPUT
into the FSCBFN (filename) field of the FSCB. The next time this FSCB is
referenced, the file OUTPUT TEST is the file that is manipulated.

Reading and Writing CMS Disk Files

CMS disk files are sequential files. When you use CMS macros to read and
write these files, you can access them sequentially with the FSREAD and
FSWRITE macros. However, you may also refer to records in a CMS file by
their relative record numbers. So you can, in effect, access records using a
direct access method.

If you know the record you want to read or write, you can specify the
RECNO option on the FSCB macro instruction or on the FSOPEN,
FSREAD, or FSWRITE macro instructions. When you use the RECNO
option on the FSCB macro instruction, you must specify the exact record
number. For the FSOPEN, FSREAD, or FSWRITE macro instructions, you
may either specify the exact record number:

WRITE FSWRITE FSCB=WFSCB,RECNO=10,FORM=E

or specify the register containing the record to be read:

WRITE FSWRITE FSCB=WFSCB,RECNO=(5) ,FORM=E

When you want to access files sequentially, the FSCBITNO field of the
FSCB must be 0 for an FSCB without the FORM =E option. For an
extended FSCB, the FSCBAITN field must be 0. This is the default value.
When you are reading files with the FSREAD macro instruction, reading
begins with record number 1. When you are writing records to an existing
file with the FSWRITE macro, writing begins following the last record in
the file.

To begin reading or writing files sequentially beginning at a specific record
number, you must specify the RECNO option twice: once to specify the
relative record number where you want to begin reading, and a second time
to specify RECNO =0 so reading or writing will continue sequentially
beginning after the record just read or written. You can specify the

RECNO option on the FSREAD or FSWRITE macro instruction, or you
may change the FSCBITNO or FSCBAITN field in the FSCB for the file, as
necessary for the FSCB form.

For example, to read the first record and then the 50th record of a file, you
could code the following:

Chapter 5. Developing Programs under CMS 79

Raeveloping Programs under GRS

| S . B

READ1 FSREAD FSCB=RFSCB,FORM=E
FSWRITE FSCB=WFSCB,FORM=E
LA 5,RFSCB
USING FSCBD,5
MVC FSCBAITN,=F'50'
READ50 FSREAD FSCB=RFSCB,FORM=E
FSWRITE FSCB=WFSCB,FORM=E

-

RFSCB FSCB 'INPUT FILE Al',BUFFER=COMMON,BSIZE=120,FORM=E
WFSCB FSCB 'OUTPUT FILE Al',BUFFER=COMMON,BSIZE=120,FORM=E
COMMON DS CL120

FSCBD

In this example, the statements at the label READ1 write record 1 from the
file INPUT FILE A1l to the file OUTPUT FILE Al. Then, using the DSECT
generated by the FSCBD macro, the FSCBITNO field is changed because an
extended FSCB is being used.

FSCBAITN field is changed because an extended FSCB is being used and
record 50 is read from the input file and written into the output file.

The “update-in-place” facility allows you to write blocks back to their
previous location on disk. The “update-in-place” attribute of a CMS file is
indicated by the filemode number 6.

Reading and Writing Variable Length Records

When you read or write variable-length records, you must specify

RECFM =V either in the FSCB for the file or on the FSWRITE or FSREAD
macro instruction. The read/write buffer should be large enough to
accommodate the largest record you are going to read or write.

To write variable-length records, use the BSIZE = option on the FSWRITE
macro instruction to indicate the record length for each record you write.
To read variable-length records, register 0 contains, on return from
FSREAD, the length of the record read.

The following example shows how you could read and write a
variable-length file:

READ FSREAD 'DATA CHECK Al',BUFFER=SHARE,BSIZE=130,
ERROR=0UT , FORM=E
FSWRITE 'COPY DATA Al',BUFFER=SHARE,BSIZE=(0),FORM=E
B READ

When you update files of variable-length records, the replacement record
must be the same length as the original record. An attempt to write a
record shorter or longer than the original record results in truncation of
the file at the specified record number. No error return code is given.

80 VM/SP CMS for System Programming

Davaloping Procrams undsy G

[e e e s s e - . I s

End-of-File Checking

You can specify the ERROR = operand with the FSREAD or FSWRITE
macro instruction so an error handling routine receives control in case of
an error. In CMS, when an end of file occurs during a read request, it is
treated as an error condition. The return code is always 12. If you specify
an error handling routine on the FSREAD macro instruction, the first thing
this routine can do is check for a 12 in register 15.

Your error handling routine may also check for other types of errors. See
the macro description in the VM/SP CMS Macros and Functions Reference
for details on the possible errors and the associated return codes.

Opening and Closing Files

Usually, CMS opens a file whenever an FSREAD or FSWRITE macro
instruction is issued for the file. When control returns to CMS from a
calling program, all files accidentally left open are closed by CMS.
Therefore, you do not have to close files at the end of a program.

For a minidisk in 512-, 1K-, 2K-, or 4K-byte block format, a file may be open
for concurrent read and write operations and an FSCLOSE need not be
issued when switching from reading to writing, or vice versa. For example:

LA 3,2

READ FSREAD FSCB=UPDATE,RECNO=(3),ERROR=READERR , FORM=E

FSWRITE FSCB=UPDATE,RECNO=(3),ERROR=WRITERR, FORM=E
LA 3,1(3)
B READ

UPDATE FSCB 'UPDATE FILE Al',BUFFER=BUF1l,BSIZE=80,FORM=E

When you are running long running applications or running disconnected,
include several FSCLOSE macros to each file referenced. This insures that
changes to the file are reflected on the disk in the event that the user is
forced off the system. This consideration is important when running on
512-, 1K-, 2K-, or 4K-byte block disks since the disk directory is not updated
until all of the files on the disk are closed.

If you want to read and write records from the same file on an 800-byte

block format minidisk, you must issue an FSCLOSE macro instruction to
close the file whenever you switch from reading to writing. For example:

Chapter 5. Developing Programs under CMS 81

CS

Developing RPrograms under GRS

r e

Creating New Files

LA 3,2
READ FSREAD FSCB=UPDATE,RECNO=(3),ERROR=READERR
FSCLOSE FSCB=UPDATE

FSWRITE FSCB=UPDATE,RECNO=(3),ERROR=WRITERR
FSCLOSE FSCB=UPDATE

LA 3,1(3)

B READ

UPDATE FSCB 'UPDATE FILE Al',BUFFER=BUF1,BSIZE=80

To execute a loop to read, update, and rewrite records, you must read a
record, close the file, write a record, close the file, and so on. Since closing
a file repositions the read pointer to the beginning of the file and the write
pointer at the end of the file, you must specify the relative record number
(RECNO) for each read and write operation. In the above example, register
3 is used to contain the relative record number. It is initialized to begin
reading with the second record in the file and is increased by one following
each write operation.

When you use an EXEC to execute a program to read or write a file, the file
is not closed by CMS until the EXEC completes execution. Therefore, if
you read or write the same file more than once during the EXEC procedure,
you must use an FSCLOSE macro instruction to close the file after using it
in each program, or you must use the FSOPEN macro instruction to open it
before each use. Otherwise, the read or write pointer is positioned as it was
when the previous program completed execution.

When you want to begin writing a new file using CMS data management
macros, there are two ways to ensure that the file you want to create does
not already exist. One way is to issue the FSSTATE macro instruction to
verify the existence of the file.

A second way to ensure that a file does not already exist is to issue an
FSERASE macro instruction to erase the file. If the file does not exist,
register 15 returns with a code of 28. If the file does exist, it is erased. See
Figure 11 on page 83 for an illustration of a sample program using CMS
data management macros.

82 VM/SP CMS for System Programming

Developing Programs under GVIS

]

S -

LINE SOURCE STATEMENT

BEGIN CSECT 1
PRINT NOGEN
USING *,12 ESTABLISH ADDRESSABILITY
LR 12,15
ST 14,SAVE
LA 2,8(,1) R2=ADDR OF INPUT FILEID IN PLIST 2
LA 3,32(,1) R3=ADDR OF OUTPUT FILEID IN PLIST
* DETERMINE IF INPUT FILE EXISTS
FSSTATE (2),ERROR=ERR1,FORM=E
*

* READ A RECORD FROM INPUT FILE AND WRITE ON OUTPUT FILE

RD FSREAD (2),ERROR=EOF,BUFFER=BUFF1,BSIZE=80,FORM=E 3
FSWRITE (3),ERROR=ERR2,BUFFER=BUFF1,BSIZE=80,FORM=E
B RD LOOP BACK FOR NEXT RECORD

*

* COME HERE IF ERROR READING INPUT FILE

EOF C 15,=F'12"' END OF FILE ? 4
BNE ERR3 ERROR IF NOT
LA 15,0 ALL O.K. - ZERO OUT R15
B EXIT GO EXIT

* IF INPUT FILE DOES NOT EXIST

ERR1 WRTERM 'FILE NOT FOUND',EDIT=YES
B EXIT

*

* IF ERROR WRITING FILE

ERR2 LR 10,15 SAVE RET CODE IN REG 10 5
LINEDIT TEXT='ERROR CODE IN WRITING FILE',bSUB=(DEC, (10))
B EXIT

* IF READING ERROR WAS NOT NORMAL END OF FILE
ERR3 LR 10,15 SAVE RET CODE IN REG 10 &
LINEDIT TEXT='ERROR CODE IN READING FILE',6SUB=(DEC, (10))

EXIT L 14,SAVE LOAD RETURN ADDRESS
BR 14 RETURN TO CALLER

*

BUFF1 DS CL80

SAVE DS F
END

Figure 11 (Part 1 of 2). A Sample Listing of a Program that Uses CMS Macros

Chapter 5. Developing Programs under CMS 83

Developing Programs under CUS

| -

1

Notes:

The program might be invoked with a parameter list in the format: progname INPUT FILE
A1 OUTPUT FILE Al. This line is placed in a parameter list by CMS routines and addressed
by register 1 (see note 2).

The parameter list is a series of doublewords, each containing one of the words entered on
the command line. Thus, 8 bytes past register 1 is the beginning of the input fileid. 24 bytes
beyond that is the beginning of the second fileid.

The FSREAD and FSWRITE macros cause the files to be opened. No open macro is necessary.
CMS routines close all open files when a program completes execution (except CMS EXEC
files).

The return code in register 15 is tested for the value 12, indicating an end-of-file condition. If
it is the end of the file, the program exits. Otherwise, it writes an error message.

The dots in the LINEDIT macro are substituted, during execution, with the decimal value in
register 10.

Figure 11 (Part 2 of 2). A Sample Listing of a Program that Uses CMS Macros

Terminal Communications

There are four CMS macros you can use to write interactive,
terminal-oriented programs. They are RDTERM, WRTERM, LINEDIT, and
WAITT. RDTERM and WRTERM only require a read/write buffer for
sending and receiving lines from the terminal. The third, LINEDIT, has a
substitution and translation capability.

When you use the WRTERM macro to write a line to your terminal you can
specify the actual text line in the macro instruction, for example:

DISPLAY WRTERM 'GOOD MORNING'

You can also specify the message text by referring to a buffer that contains
the message.

The RDTERM macro accepts a line from the terminal and reads it into a
buffer you specify. You could use the RDTERM and WRTERM macros
together, as follows:

WRITE WRTERM 'ENTER LINE'
READ RDTERM BUFFER
LR 3,0

REWRITE WRTERM BUFFER, (3)

BUFFER DS CL130

84 VM/SP CMS for System Programming

Daeveloping Programs undaer CUS

et e ettt e e e i et e e e e 3

In this example, the WRTERM macro results in a prompting message. Then
the RDTERM macro accepts a line from the terminal and places it in the
buffer BUFFER. The length of the line read, contained in register 0 on
return from the RDTERM macro, is saved in register 3. When you specify a
buffer address on the WRTERM macro instruction, you must specify the
length of the line to be written. Here, register notation is used to indicate
that the length is contained in register 3.

The LINEDIT macro converts decimal and hexadecimal data into EBCDIC,
and places the converted value into a specified field in an output line.
There are list and execute forms of the macro instruction, which you can
use in writing reentrant code. Another option allows you to write lines to
the offline printer. The LINEDIT macro is described, with examples, in
VM[SP CMS Macros and Functions Reference. Figure 11 on page 83 shows
how you might use the LINEDIT macro to convert and display CMS return
codes.

The WAITT (wait terminal) macro instruction can help you to synchronize
input and output to the terminal. If you are executing a program that reads
and writes to the terminal frequently, you may want to issue a WAITT
macro instruction to halt execution of the program until all terminal I/O
has completed.

Unit Record and Tape 1/0

Handling Interrupts

CMS provides macros to simplify reading and punching cards (RDCARD
and PUNCHC), and creating printer files (PRINTL). When you use either
the PUNCHC or PRINTL macros to write or punch output files while a
program is executing, you should remember to issue a CLOSE command for
your virtual printer or punch when you are finished. You can do this
either after your program returns control to CMS, by entering:

cp close e
-— or --

cp close d

or you can set up a parameter list with the command line CP CLOSE E or
CP CLOSE D and issue an SVC 202.

The tape control macros, RDTAPE, WRTAPE and TAPECTL, can read and
write CMS files from tape, or control the positioning of a tape.

You can set up routines in your programs to handle interruptions caused by
I/O devices, by SVCs, or by external interruptions using the HNDINT,
HNDSVC, or HNDEXT macro instructions.

With the HNDINT macro instruction, you can specify addresses that are to
receive control when an interruption occurs for a specified device. If the

Chapter 5. Developing Programs under CMS 85

Developing Programs under GRS

C]

WALIT option is used for a device specified in the HNDINT macro
instruction, then the interruption handling routine specified for the device
does not receive control until after the WAITD macro instruction is issued
for the device.

You can use the HNDSVC macro instruction to trap supervisor call
instructions of particular numbers, if, for example, you want to perform
some additional function before passing control or you do not want any
SVCs of the specified number to be executed.

The CP EXTERNAL command simulates external interruptions in your
virtual machine; if you want to be able to pass control to a particular
internal routine in the event of an external interruption, you can use the
HNDEXT macro instruction.

System Product Editor Interface to Access Files in Storage

CMS uses the SUBCOM facility to allow a number of CMS commands to
use an XEDIT interface to access files in storage. Applications can read or
write specific records without having to go to disk or use the program stack
to transfer the data to or from XEDIT. This improves performance.

CMS uses the XEDIT interface for processing the FILELIST, HELP,
MACLIST, PEEK, and SENDFILE commands. The interface is invoked by
specifying the XEDIT option on the LISTFILE, MACLIB, or NAMEFIND
commands. This option may only be specified from the XEDIT
environment.

When using this interface from an application program, only the extended
parameter list can be used, and the high-order byte of of register 1 must
contain X’02’ to indicate SUBCOM is being used.

The application can invoke this interface via SVC 202 or via a BALR
instruction. Because XEDIT is a nucleus-resident routine, other
nucleus-resident routines can branch directly to it while routines that do
not reside in the nucleus use SVC linkage. When using an SVC 202,
register 1 must point to the FSCB where the name of the routine being
invoked is the first token. The high-order byte of register 1 must also be
X'02’. When using BALR, the calling program can determine the entry
point it wants by using SUBCOM. In this case, register 1 points to the
FSCB and register 2 points to the SCBLOCK. The address of the the
SCBLOCK has been returned from SUBCOM.

The routines available, their entry point names, and error return codes are:
¢ DMSXFLST - This routine returns the characteristics of a file RECFM,
LRECL, ete). It also ensures that the file is in the XEDIT ring. The

return codes are:

0 File is in the XEDIT ring
24 Incomplete fileid specified

86 VM/SP CMS for System Programming

e

[')ov@[])umg Pu ® JD’C’JHU’BS U M r GWIS

[- R ———

28 File is not in the XEDIT ring
Note: Return codes are similar to those for ESTATE.

DMSXFLRD - This routine transfers one record from XEDIT storage to
the calling program. If RECFM =F, it may transfer more than one
record. The return codes are:

READ performed

File is not in the XEDIT ring

Invalid buffer address

Number of items equals zero

RECFM is not ‘F’ or ‘V’

Buffer is too small (records truncated)
Number of items is not equal to one for V-file
End of file

REhowauom~o

Note: Return codes are similar to those for FSREAD.

DMSXFLWR - This routine transfers one record from the calling
program to XEDIT storage. If RECFM =F, it may transfer more than
one record. The return codes are:

WRITE performed

User buffer address equals zero

Skip over unwritten records

Number of bytes is not specified

11 RECFM is not ‘F’ or 'V’

13 No more space is available

14 Number of bytes is not integrally divisible by the number of item
15 Item length is not the same as previous

16 RECFM of ‘F’ or ‘V’ is not the same as previous
18 Number of items is not equal to one for V-file
28 File is not in the XEDIT ring

[e <IN]

Note: Return codes are similar to those for FSWRITE.

DMSXFLPT - This routine moves the current line pointer to a record
specified by the calling program. If you specify the read and write
pointer as all ones (X’FFFFFFFFX’), the current line pointer is
returned in the FSCB. The return codes are:

0 POINT performed
1 File not found
2 Invalid FSCB

Note: Return codes are similar to those for FSPOINT.

When the interface is used, XEDIT determines if a file is in the XEDIT ring
(active in storage) and does the processing required. The files in the XEDIT
ring are always open. New files may be added to the ring with the XEDIT
subcommand. Files in the ring may be closed with the FILE or QUIT
subcommands.

Chapter 5. Developing Programs under CMS 87

Developing Prograims under GRS

S S P — PR

The current line pointer serves the function of both the read and write
pointers of the CMS file system. If RECNO=0 is specified in a call to
DMSXFLRD, the data is transferred to the calling program starting at the
current line pointer. Transfer is stopped when the specified number of lines
has been transferred or when end-of-file is reached. The current line
pointer is advanced by one for each record transferred to the calling
program. If the current line pointer was at the end-of-file when
DMSXFLRD was called, no data is transferred and an end-of-file condition
is returned.

If RECNO =0 is specified in a call to DMSXFLWR, new records are written
starting at the line pointed to by the current line pointer. These new
records replace any existing records or add new records if at the end-of-file.
The current line pointer is advanced to the line following the last line
written at the end of the operation. Note that writing to a record in the
middle of a V-format file does not result in truncation of the file from that
point as it would in the CMS file system. Truncation (or spilling when SET
SPILL ON|WORD) may occur if the file is in V-format and the LRECL of
the file is less than the length of the record(s) being written. No message is-
issued and the return code is 0.

CMS Interface for Display Terminals

CMS has an interface allowing it to display large amounts of data in a very
rapid fashion. This interface for 3270 display terminals (also 3138, 3148, and
3158) is much faster and has less overhead than the normal write because it
displays up to 1760 characters in one operation instead of issuing 22
individual writes of 80 characters each (that is, one write per line on a
display terminal). Data displayed in the screen output area with this
interface is not placed in the console spool file.

The console facility provides a CMS macro interface to full-screen I/O that:

© provides screen coordination and
© provides an architecturally independent I/O interface.

Use the console facility instead of the DIAGNOSE code X’58’ interface or
the DISPW macro.

The console facility provides improved usability for writing 3270 I/O
applications. The CONSOLE macro performs I/O operations such as:

building the channel command word (CCW),

issuing DIAGNOSE code X’58" or Start I/O (SIO) instruction,
waiting for the I/O to complete, and

checking any error status from the device.

Applications must construct a valid 3270 data stream to write to the screen,
and a 3270 data stream is returned when a CONSOLE READ is performed.

88 VM/SP CMS for System Programming

Daveloping Programs undaer GIS

The CONSOLE macro allows programs to open ‘paths’ to a display device.
A path is a unique name that distinguishes one application from another
and allows the console facility to coordinate the use of the screen. For
example, if an application is writing to the screen, the CONSOLE macro
tells it that another ‘path’ has updated the screen lastly, and, therefore, the
screen must be reformatted. Because of this, full-screen applications do not
have to rewrite the entire screen every time a write is done.

Screen coordination can be done only for applications using the console
facility. Because some application still issue their own DIAGNOSE code
X’58’, you must reformat the screen. This avoids mixing data from two
different applications on the screen. Refer to “The CONSOLE Macro” on
page 90 for more details.

The CONSOLE macro provides the following functions:
o OPEN/CLOSE - Opening and closing a specific path to the console.

o READ/WRITE - Reading and writing buffers that have 3270 data
streams built by the application. In order to write to the screen,
applications must construct a valid 3270 data stream. When a read is
performed, the data is returned in the user’s buffer. The CMS console
facility issues the DIAGNOSE code X’58’ for the virtual console or a
Start I/O (SIO) for dialed devices, builds the CCW for READ and
WRITE requests, tests conditions after I/O, and gives the result of the
I/O operation to the application.

o EXCP - Performing READ or WRITE I/O operations using CCWs that
applications supply. An application must supply its own CCW if it uses
the EXCP function. This function is intended for use with dialed
devices.

o WAIT - Wait for an I/O interrupt from the console device.

o QUERY - Getting information about the device attributes (DIAGNOSE
code X"24’ and DIAGNOSE code X’8C’), or if the path is opened, getting
information about a specific path and its associated device. The user
should provide a buffer for this information and then map the
information using the CQYSECT mapping macro. For information
about the CQYSECT macro, refer to

The four formats of the CONSOLE macro instruction are:

Standard format
It is not reentrant.

List format MF=L)
Generates a parameter list, but does not generate code to execute
the function. The parameter list is generated in-line and usually
register notation cannot be used.

Chapter 5. Developing Programs under CMS 89

Developing Programs under CGMS

{

The CONSOLE Macro

Complex List format (MF = (L,addr[,1abel]))
Generates a parameter list, but does not generated code to
execute the function. The parameter list is generated in an area
that you specify.

Execute format (MF = (E,addr))
Generates code to execute the function.

Note: For the detailed formats of the CONSOLE macro, see VM/SP CMS
Macros and Functions Reference.

An Example of Using the Console Facility

Opening a Path

o OPEN a path with the optional BUFFER parameter.
o Get information about the device from the buffer.

© Build a 3270 data stream.

o Issue the CONSOLE WRITE with the EW option.

o Issue the READ with the WAIT option.

o Check the return code.

e If the return code from READ or WRITE is not 0, issue a QUERY to
determine what happened.

o CLOSE the path.

In order to use the CMS console facility for I/O, you must first open a
‘path’. You can do this by issuing the OPEN parameter of the CONSOLE
macro.

When you open a path, the console facility allocates storage containing
information about I/O activity for the application. A path entry is
associated with a device when you specify the CONSOLE OPEN parameter.
If the device does not already have paths opened to it, storage is allocated
for a new device entry and any existing device entries are linked to it.

90 VM/SP CMS for System Programming

|
I
I
|
|
|
l

Developing Pregrams under GIS

e

1

Querying a Path

You can use the CONSOLE QUERY to obtain information about a path and
its associated device or to obtain information about a virtual device even if
paths are not opened to it. To do this, you must also specify the BUFFER
parameter. You can map the information returned by the CQYSECT macro.
(See VM[SP Data Areas and Control Block Logic Volume 2 (CMS) for more
information.) CQYSECT contains length equates that an application can
use to obtain the size buffer needed.

Initially, when an application opens a path, it can specify a buffer that
contains path and device information and is mapped by CQYSECT. This
information is very useful at initialization time since it contains
DIAGNOSE code X’24’ information, and, depending on the device, it
contains DIAGNOSE code X’8C’ information. Then, the application can
obtain the device type and characteristics and can use the appropriate
routines to build data streams.

Writing to and Reading from a Path

The console facility keeps track of the application that owns the screen by
keeping a field in the device entry (CDEV) for the address of the path entry
that performed the last I/O operation. If one application currently owns the
screen and another application wants to perform I/O, the second application
must gain control of the screen by reformatting it with an erase/write (EW),
an erase/write alternate (EWA), or, in some cases, a write structure field
(WSF). Therefore, applications should begin I/O processing with one of
these operations,

Warning: Until all applications use the console facility instead of
issuing a DIAGNOSE code X’58’, there is a possibility of seeing data
from two different applications mixed on the screen. An erase/write
(EW) must be issued so that the current application can gain total
ownership of the screen. If CP breaks in and writes a screen or if
another application using the console facility writes a screen, the
console facility can detect this situation and issues return code 32. If
you get return code 32, issue an erase/write or an erase/write alternate.
However, the console facility can not always detect who wrote to the
screen when applications modify PSWs in low storage and issue their
own DIAGNOSE X’58’. In this case, if you get mixed data on the
screen, you will have to press the CLEAR key or issue a command that
causes an erase/write. The VMFCLEAR command can be issued by an
application before exiting their program to accomplish this. Another
alternative for applications running in full-secreen CMS would be to
write an EXEC to issue a SET FULLSCREEN SUSPEND command,
then invoke their full-screen program, and when processing completes
they can resume fullscreen CMS by issuing SET FULLSCREEN
RESUME.

Most full-screen applications will wait for input and then read the data. To

accomplish this, you can issue a CONSOLE READ with the WAIT option,
or you can issue a CONSOLE WAIT followed by a CONSOLE READ. The

Chapter 5. Developing Programs under CMS 91

Reveloping Programs under CRIS

[

1/0 Advantages

Building Your Own CCW

CONSOLE READ with the WAIT option has a performance advantage
because it issues only one Supervisor Call (SVC) instead of two.

If you receive a return code 1 on an I/O operation, you should issue an
explicit WAIT. Do not specify a READ with the WAIT option. A
disconnect is detected before any READ options are checked. When you
specify a READ with the WAIT option, a WAIT is not issued and control is
immediately returned to the application with return code 1.

If an application performs linemode I/O or calls routines that perform
linemode I/O, it should issue a CMS WAITT macro to coordinate linemode
and full-screen I/O. This allows the I/O to complete before issuing any
console full-screen operations.

Applications can become much less dependent on low-level device
architecture by using the console facility. In the past, applications not only
had to construct data streams, but they had to build the channel command
word (CCW), determine the type of device (dialed or virtual console) and set
up for DIAGNOSE code X’58" or 3270 SIO, and check the channel status
word (CSW) to determine what action should be taken.

In addition, the applications would have to change whenever new devices
were introduced.

With the console facility, the application only needs to:
o build a data stream,

o issue a CONSOLE call, and

o check a return code.

The CSW error checking and retrying of IO is much more elaborate in the
console facility than what many applications do today. This gives
applications a better chance for completing a successful I/O options.

The CONSOLE EXCP parameter allows applications that still want to build
their own CCWs to do so. However, no CCW error checking is performed
so the CONSOLE module cannot determine the type of I/O requested and
cannot coordinate the use of the screen as effectively as with the READ or
WRITE functions.

The EXCP parameter is not recommended for the virtual console since the
application has to know the internal I/O processing performed in the
CONSOLE module. However, if you use this function carefully, you can
chain several CCWs. The first CCW in the string should be an EW, EWA,
or WSF to reformat and to gain control of the screen.

92 VM/SP CMS for System Programming

l

Daveloping Programs undsr Gluls

——— i e - e s ey

Completing an 1/0 Operation

Closing a Path

The DISPW Macro

When the console facility returns control to the application after an I/O
operation, the application can check the return code and continue
processing. If more information is needed about the I/O just performed, a
CONSOLE QUERY can be issued. The CONSOLE QUERY shows the CSW
after I/O, the sense data (if any), the last CCW executed, and all the device
information obtained by DIAGNOSE code X’24” and DIAGNOSE code X’8C’.

Before exiting your program, paths that are no longer needed should be
closed. Close processing releases storage for the path entry. If this was the
only path opened to the associated device, the device entry storage is
released as well. When releasing a device entry, a CP RESET command is
only issued for dialed devices.

Although the CONSOLE macro is the preferred interface for full-screen I/O,
the DISPW macro may be used to generate a calling sequence for the CMS
display terminal interface module, DMSGIO. DMSGIO creates a channel
program and issues a DIAGNOSE code X’58’ to display the data. DMSGIO
is a TEXT file that must be loaded to use DISPW.

The format of the CMS DISPW macro is:

[tabel] | DISPW | bufad { LINE = {n H {,BYTES ={nnnnH

0 1760

[,ERASE =YES |

[,CANCEL=YES]

where:

label
is an optional macro statement label.

bufad
is the address of a buffer containing the data to be written to the
display terminal.

LINE= {(r)z}

is the number of the line, 0 to 23, on the display terminal that is to be
written. Line number 0 is the default.

Chapter 5. Developing Programs under CMS 93

Developing Programs under GMS

-

BYTES= ¢nnnn
{160
is the number of bytes (0 to 1760) to be written on the display
terminal. 1760 bytes is the default.

ERASE=YES
specifies that the display screen is to be erased before the current data
is written. The screen is erased regardless of the line or number of
bytes to be displayed. Specifying ERASE =YES causes the screen to
go into “MORE” status.

CANCEL=YES
causes the CANCEL operation to be performed. The output area is
erased.

Note: It is advisable for the user to save registers before issuing the
DISPW macro and to restore them after the macro because the modules
called by the DISPW macro do not save the user’s registers. The DISPW
macro saves and restores register 13.

94 VM/SP CMS for System Programming

Clizpica @ Wpekinmg SewicE PYieeizame UEnG €IS,

As you test and modify programs, you may want to keep backup copies of
the source programs. Then you can always return to a certain level of a
program in case you have an error. CMS provides several approaches to
the problem of program backup. The method you choose depends on the
complexity of your project, the changes you want to make, and the size of
your programs.

The simplest method is to make a copy of the current source file under a
new name. You can do this using either the COPYFILE command or the
editor.

The UPDATE Philosophy

While the procedures outlined above for modifying programs are suitable
for many applications, they may not be adequate in a situation where
several programmers are applying changes to the same source code. These
procedures also have the drawback of not providing you with a record of
what has been changed. After using the editor, you do not have a record of
the lines that have been deleted, added, replaced, and so on, unless you
manually add comments to the code, insert special characters in the
serialization column, or use some technique that records program activity.

The UPDATE command and the XEDIT UPDATE option provide a way for
you to modify a source program without affecting the original. UPDATE
produces an update log, indicating the changes that have been made. Both
UPDATE and XEDIT have the capability of combining multiple updates at
one time, so that changes made by different programmers or changes made
at different times can be combined into a single output file.

The UPDATE command and the XEDIT UPDATE option are the basic
elements of the VM/SP updating scheme. Although the input filetypes used
by the UPDATE command default to ASSEMBLE file characteristics,
neither the UPDATE command nor the XEDIT UPDATE option is limited
to assembler language programs. Also, is it not limited to system
programming applications. You can use it to modify and update any
fixed-length, 80-character file that does not have data in columns 73
through 80.

Chapter 6. Updating Source Programs Using CMS 95

Updating Source Programs

[

Update Files

Creating an Update File

A simple update involves two input files:
o The source file, which is the program you want to update

o An update file, usually created by XEDIT, containing control
statements describing the changes you want to make.

The control statement file usually has a filetype of UPDATE. For
convenience, you can give it the same filename as your source file. For
example, if you want to update the file SAMPLE ASSEMBLE, you would
create a file named SAMPLE UPDATE using the XEDIT UPDATE option.
To apply the changes in the update file, you issue the command:

update sample

The default values used by the UPDATE command are filetypes of
ASSEMBLE and UPDATE for the source and update files, respectively. If
you are updating a COBOL source program named READY COBOL with an
update file named READY UPDATE, you would issue the command:

update ready cobol a ready update a

After an UPDATE command completes processing, the input files are not
changed; two new files are created. One of them contains the updated
source file, with a filename that is the same as the original source file but
preceded by a dollar sign (). Another file, containing a record of updates
is also created; it has a filename that is the same as the source file and a
filetype of UPDLOG. For example:

Source Files Output Files

SAMPLE ASSEMBLE $SAMPLE ASSEMBLE
SAMPLE UPDATE SAMPLE UPDLOG
READY COBOL SREADY COBOL

READY UPDATE READY UPDLOG

Now, you can assemble or compile the new source file created by the
UPDATE command.

You can create an update file using the XEDIT UPDATE option. Using
XEDIT, you do not need to enter the control statements in the UPDATE
file. They are generated automatically by the editor. For example:

xedit ready cobol a (upd

96 VM/SP CMS for System Programming

Undating Source Prodrams

N]

[e o e s e i e S £ 8 32t e e L 2 s e S o s s e+ e

specifies that a file called READY COBOL is to be edited and all updates to
the file are placed in a separate file called READY UPDATE along with the
appropriate control statements.

The XEDIT UPDATE option expects source files to have sequence numbers
in columns 73 through 80. Before you can create an UPDATE file you must
use the XEDIT SERIAL subcommand to sequence your files. To generate
these sequence numbers, you should issue:

serial all

prior to issuing a FILE or SAVE subcommand when you are editing a file.
Alternately, you can preface sequence numbers with a three character
identifier, usually the first three characters of the filename. If you issue:

serial on

XEDIT writes sequence numbers in columns 76 through 80 of your file.
Columns 73 through 75 contain the first three characters of the filename. If
SERIAL ON is specified, you must also specify the NOSEQS8 option on the
XEDIT command to tell the editor to expect a sequence of numbers only in
columns 75 through 80. For example:

xedit ready cobol a (upd noseg8
Using an Existing Update File

If an update file already exists for a given source file and you wish to
either:

1. browse the source file with the updates applied or
2. continue updating the source file

issue the same XEDIT command that you entered when you created the
update file. For example:

xedit ready cobol a (upd

applies all updates contained in READY UPDATE to the source file
READY COBOL and displays the resulting file on the screen. Any updates
created during this editing session are added to those already contained in
READY UPDATE. Again, all control statements are automatically
generated by XEDIT. More information about the XEDIT UPDATE option
can be found in the VM/SP CMS Command Reference.

UPDATE Control Statements
The control statements used by the UPDATE command are similar to those
used by the OS IEBUPDTE utility program or the DOS MAINT program
UPDATE function.
Each UPDATE statement must have the characters ./ in columns one and

two, followed by one or more blanks. The statements are described below.

Chapter 6. Updating Source Programs Using CMS 97

Updaling Source Programs

| SO

SEQUENCE Statement: This statement tells the UPDATE command you
want to number or renumber the records in a file. Sequence numbers are
written in columns 73 through 80. For example, the statement:

./ S 1000

indicates that you want sequence numbering to be done in increments of
1000 with the first statement numbered 1000. The SEQUENCE statement is
convenient if you want to apply updates to a file that does not already have
sequence numbers. In this case, you may want to use the REP (replace)
option of the UPDATE command, so that instead of creating a new file
($filename), the original source file is replaced:

update sample (rep
INSERT Statement: This statement precedes new records that you want

to add to a source file. The INSERT statement tells the UPDATE command
where to add the new records. For example, the lines:

./ I 1600
TEST2 TM HOLIDAY,X'02' HOLIDAY?
BNO VACATION NOPE. . . VACATION

insert two lines of code, following the statement numbered 00001600, into
the output file. The inserted lines are flagged with asterisks in columns 73
through 80. The INSERT statement also allows you to request that new
statements be sequenced. See “Sequencing Output Records” on page 99.

DELETE Statement: This statement tells the UPDATE command which
records to delete from the source file. If your update file contains:

./ D 2500

then only the record 00002500 is deleted. If the file contains
./ D 2500 2800

then all the statements from 2500 through 2800 are deleted from the source
file.

REPLACE Statement: The REPLACE statement replaces one or more
records in the source file. It precedes the new records you want to add. It
is a combination of the DELETE and INSERT statements. For example, the
lines

./ R 38000 38500

PLIST DS oD
DC CL8'TYPE'
DC cL8' '
DC CL8'FILE'

DC CL8'A1l'
DC 8X'FF'

replace the existing statements numbered 38000 through 38500 with the new

lines of code. As with the INSERT statement, new lines are not
automatically resequenced.

98 VM/SP CMS for System Programming

COMMENT Statement: Use this statement when you want to place
comments in the update log file. For example, the line:

./ * Changes by John J. Programmer

is not processed by the UPDATE command when it creates the new source
file, but it is written into the update log file.

Sequencing Output Records

The UPDATE command expects source files to have sequence numbers in
columns 73 through 80. If you use the XEDIT subcommand SET SERIAL to
sequence your files, the sequence numbers are usually written in columns
76 through 80; columns 73 through 75 contain a three-character identifier
that is usually the first three characters of the filename. If you want an
eight-character sequence number and you are editing the file, you must use
the subcommand:

serial all

prior to issuing a FILE or SAVE subcommand. Or, you can create an
UPDATE file with the single record:

./ S
and issue the UPDATE command to sequence the file.

If you use the UPDATE command with a file that has been sequenced using
the default values of XEDIT, you must use the NOSEQS8 option. Otherwise,
the UPDATE command cannot process your input file. The command:

update sample (noseg8
tells UPDATE to use only columns 76 through 80 when it looks for

sequence numbers. Figure 12 shows the four files involved in a simple
update.

Chapter 6. Updating Source Programs Using CMS 99

Updating Source Programs

The Source File, SAMPLE ASSEMBLE

SAMPLE CSECT
USING SAMPLE,R12
LR R12,R15
ST R14, SAVRET i
LINEDIT TEXT='PLEASE ENTER YOUR NAME!
RDTERM NAME
LINEDIT TEXT='PLEASE ENTER YOUR AGE'
RDTERM AGE

1
|
|
|
|
l
|
|
|
| LINEDIT TEXT='HI, ¢cceeeeees, YOU JUST TOLD ME YOU ARE',x00000900
|
1
1
i
|
|
1
i
i

00000100
00000200
00000300
00000400
00000500
00000600
00000700
00000800

SUB= (CHARA,NAME,CHARA,AGE) , RENT=NO 00001000
1 R14, SAVRET 00001100
BR R14 00001200
BJECT 00001300
NAME DC CL130" ¢ 00001400
AGE pC CL130" ¢ 00001500
SAVRET DC F'0! 00001600
REGEQU 00001700
END 00001800
—
The Update File, SAMPLE UPDATE
1))
| ./ * REVISION BY DLC SAM00010 |
| ./ R 500 SAM00020 |
| LINEDIT TEXT='WHAT''S YOUR NAME?',DOT=NO SAN00030 |
! ./ B 700 1000 SAMO0004O]
1 LINEDIT TEXT='HI, <eeeeee..., ENTER THE DOCNAME', XSAH00050 i
| SUB= (CHARA, NAME) SAM00060 i
| RDTERM NAME SAN00070 |
i MVC DOCFN, NAME SAM00080 |
1 LA 1,PLIST SAM00090 |
i svc 202 SAMO00100 |
i pC ALY (ERROR) SAM00110 |
| RETURN EQU =% SAH00120 |
1 ./ I 1200 SAM00130 \
| ERROR EQU % SAH00140 i
| WRTERM YFILE NOT FOUND' SAM00150 |
| B RETURN SAM00160 i
{ ./ D 1500 SAMO00170 |
1 ./ I 1600 SAM00180 |
| PLIST DS 0D SAH00190 i
i pC CL8'TYPE' SAM00200 |
| DOCFH DC cL8! ¢ SAM00210 |
i DC CL8'FILE' SAN00220 |
i pC CLB'ATY SAH00230 |
| DC BX'FF? SAM00240 |
L]

Figure 12 (Part 1 of 2). Updating Source Files with the UPDATE Command

100 VM/SP CMS for System Programming

Updating Source Programsos

]

The Record of Updates File, SAMPLE UPDLOG

H -/
| UPDATING ‘'SAMPLE ASSEMBLE A1' WITH 'SAMPLE UPDATE A UPDATE LOG -- PAGE 1
i ./ * REVISION BY DLC I
i ./ R 500 |
| DELETING... LINEDIT TEXT='"PLEASE ENTER YOUR NAME' 000005001
| INSERTING... LINEDIT TEXT='WHAT''S YOUR NAME?',DOT=NO EREARERK|
1 ./ R 700 1000 |
| DELETING... LINEDIT TEXT='PLEASE ENTER YOUR AGE! 00000700]
] RDTERN AGE 000008001
| LINEDIT TEXT='HI, eceeeeceees, YOU JUST TOLD ME YOU ARE',x00000900|
| SUB= (CHARA, NAME, CHARA, AGE) , RENT=NO 00001000}
| INSERTING... LINEDIT TEXT="HI, e.eeccsee-, ENTER THE DOCNAME?', XEEREEREEX|
| SUB=(CHARA, NAME) HREREREE|
| RDTERM NAME *RRKRERK|
i MVC DOCFN, NAME SREARKER|
| LA 1,PLIST ehhkknR|
{ SVC 202 ERERKEEH|
| DC ALY (ERROR) AR REREE|
i RETURN EQU * EREEREE|
1 ./ I 1200 1
] INSERTING... ERROR EQU * RS RRREK|
| WRTERM 'PILE NOT FOUND'! EERRRRK |
1 B RETURN EEEREREE|
{ ./ D 1500 |
{ DELETING... AGE bC CL130"' * 00001500)
1 ./ I 1600 |
|. INSERTING... PLIST DS 0D EEERERRR|
l ncC CL8'TYPE! AEEEERER |
| DOCFN DcC crge ¢ hRRRkRE|
| DC CLB'FILE! R Rkkkk|
| DC CL8'A1! Sk RRAEK|
| DC 8X'PP! ERRERKEK|
L -
The Updated Output File, $SAMPLE ASSEMBLE

' 1
| SANPLE CSECT 00000100
] USING SAHPLE,R12 00000200}
i LR R12,R15 00000300}
| ST R14,SAVRET 000004001
| e LINEDIT TEXT=°*WHAT''S YOUR NAME?',DOT=NO EREKEKER|
| RDTERM NAHE 00000600
| LINEDIT TEXT='HI, .cce<e.s..., ENTER THE DOCNAME!', XEEEREEEK |
1 SUB= (CHARA ,NAHE) kR kRkkE|
| RDTERHM NAME AEERKRER |
| MvC DOCFHN, NAME kkkkkkk|
I LA 1,PLIST xRk |
| SVC 202 kR
| rled ALU4 (ERROR) *REERERE|
| RETURN EQU * ARk RERKE|
1 L R14, SAVRET 00001100}
| BR R14 00001200]
| ERROR EQU * AkEEEREK|
i WRTERM 'FILE NOT FOURD?® ek RERE|
| B RETURN AERERRRK|
] EJECT 00001300}
| NAME DC CL130"' * 00001400}
| SAVRET DC POV 00001600
| PLIST Ds oD *EEREREE|
| phlel CLB8'TYPE! *EEEEERX|
| DOCFN DC cL8* ¢ sEkkkb kx|
| DC CL8'FILE' HEREEREK|
1 DC CLB8'A1* ERKEERER|
\ nC 8X'FF! EkREEK |
| REGEQU 00001700}
| END 00001800}
L '

Figure 12 (Part 2 of 2).

Updating Source Files with the UPDATE Command

Chapter 6. Updating Source Programs Using CMS 101

Updating Source Programs

.

Multiple Updates

The INSERT and REPLACE statements allow you to control the numbering
increment of records that you add to a source file. Notice, in Figure 12 on
page 100 that inserted records have the character string ‘****¥**¥’ jp
columns 73 through 80. If you want sequence numbers on the inserted
records, you must do two things:

1. Include a dollar sign ($) on the INSERT or REPLACE statement,
optionally followed by operands indicating how the records should be
sequenced.

2. Use the INC option on the UPDATE command line. If you use the CTL
option, you do not have to specify the INC option. The CTL option is
described below, under “Multiple Updates.”

For example, to sed_uence the records added in Figure 12 on page 100 the
control statements would appear as:

./ R 500 $
./ R 700 1000 $
./ I 1200 $
./ I 1600 $

and you would issue the UPDATE command:

update sample (inc

The UPDATE command sequences inserted records by increments of 10. If
you want to control the numbering (for example, inserting more than 9
statements between two existing statements), you can specify an alternate
sequencing scheme:

./ I 1800 $ 1805 5

Records introduced following this INSERT statement are numbered
00001805, 00001810, 00001815, and so on. (If the NOSEQS8 option is in effect,
then the records would be xxx01805, xxx01810, and so on, where xxx is the
three-character identifier used in columns 73 through 75.)

If you have several UPDATE files to apply to the same source, you may
apply them in a series of UPDATE commands. For example, if you have
updates named FICA UPDTUP1, FICA UPDTUP2, and FICA UPDTUPS to
apply to the source file FICA PLIOPT, you could do the following:

1. Update the source file with FICA UPDTUP1:
update fica pliopt a fica updtupl

2. Update the source file produced by the above command with the FICA
UPDTUP2:

102 VM/SP CMS for System Programming

Updaiing Soures Programs

e et ot o e i .]

The Control File

update S$fica pliopt a fica updtup2

3. Update the new source file with FICA UPDTUP3:

update $$fica pliopt a fica updtup3

This final UPDATE command produces the file $$$FICA PLIOPT, which is
now the fully updated source file. This method is cumbersome, however,
particularly if you have many updates to apply. They must be applied in a
particular order. Therefore, the UPDATE command provides a multilevel
update scheme, which you can use to apply many updates at one time, in a
specified order.

To apply multilevel updates, you must have a control file, which by
convention has a filetype of CNTRL and a filename that is the same as the
source input file. Therefore, to apply the three update files to FICA
PLIOPT, you should create a file named FICA CNTRL.

A control file is actually a list. It does not contain any actual update
control statements (INSERT, DELETE, and so on), but rather it indicates
what update files should be applied, and in what order. In the case of a
multilevel update, all the update files must have the same filename as the
source file. Therefore, only the filetypes need be specified in the control file
to uniquely identify the update file. In fact, since all your update files
specified in a control file must have filetypes beginning with the characters
UPDT, you need only specify the unique part of the filetype. The control
file for FICA PLIOPT, named FICA CNTRL, may typically look like the
following:

TEXT MACS PLILIB
FICA3 UP3
FICA2 UP2
FICAl UP1

The first non-commentary record in the control file must be a MACS
record. The second field in this record must be “MACS”, and it may be
followed by up to 29 macro library names (subject to the character limit of
the line). Every record in the control file must have an “update level
identifier.” In this example, the update level identifiers are TEXT on the
MACS record, FICA1 for the UP1 record, and so on. The update level
identifier may have a maximum of five characters. See the “The STK
Option” on page 111 for more details about the “update level identifier.”

The UPDATE command only uses the MACS record and the update level
identifier under special circumstances. These are described later under
“The VMFASM EXEC Procedure” on page 109. For now, you only need to
know that these things must be in a control file in order for the UPDATE
command to execute properly.

Then, to update FICA PLIOPT, issue the UPDATE command as follows:

update fica pliopt (ctl

Chapter 6. Updating Source Programs Using CMS 103

Updating Source Programs

C

When you use the CTL option and you do not specify the name of a control
file, the UPDATE command looks for a control file with the filetype of
CNTRL and a filename the same as the source file. From the control file, it
reads the filetypes of the updates to be applied. In this example, the
UPDATE command searches for the file FICA UPDTUP1 and if found,
applies the updates; then UPDATE searches for FICA UPDTUPZ2, and
applies those updates, if any. Last it searches for FICA UPDTUP3, and
applies those updates.

Notice that the updates are applied from the bottom of the control file,
toward the top. This becomes important when an update is dependent on a
previous update. For example, if you add some lines to a file in FICA
UPDTUP1, then modify one of those lines in FICA UPDTUP2, it is
important that UPDTUP1 was applied first.

Alternate Ways of Naming the Control Files

AUX Files

The example above, showing FICA CNTRL and UPDTxxxx files, illustrates
a naming scheme using the UPDATE command defaults. You can override
the defaults for the control file’s filename and filetype.

For example, if you name a control file GROUPA CNTRL, you can specify
the name of the control file on the UPDATE command line. Then to update
FICA PLIOPT using the GROUPA CNTRL control file, issue the following
UPDATE command:

update fica pliopt a groupa cntrl (ctl

The two levels of update processing shown so far may be adequate for your
applications. There is, however, an additional level or step in the update
structure that the VM/SP procedures use and that you may want to use
also.

These techniques may be useful when you have more than one set of
updates to apply to a source program. For example, you may have two
groups of programmers who are working on different sets of changes for the
same source file. Each group may create several update files and have a
unique control file. When you combine these changes, you could create one
control file or you can use what are known as auxiliary control files.

The updating structure for auxiliary control files is based on conventions
for assigning filenames and filetypes. If a control file contains an entry
that begins with the characters “AUX”, the UPDATE command assumes
that the file “fn AUXnnnn” contains a list of filetypes, not UPDATE
control statements. For example, if the file SAMPLE ASSEMBLE is being
updated with a control file that contains the record:

TEST1 AUXLIST

104 VM/SP CMS for System Programming

Updaling Source Pregrams

J— e et e = e e et 2 e e e e e e e 1

Then SAMPLE AUXLIST does not contain UPDATE control statements. It
contains entries indicating the filetypes of the update files, all of which
must have the same filename, SAMPLE.

Let’s expand the example to see how this structure works. We have the
source file, SAMPLE ASSEMBLE. The file SAMPLE CNTRL contains the
entries:

TEXT MACS
3676 AUXLIST

The file, SAMPLE AUXLIST may look like the following:

TEST1
FIXLOOP
BYPASS

The files:

SAMPLE TEST1
SAMPLE FIXLOOP
SAMPLE BYPASS

all contain UPDATE control statements INSERT, DELETE, and so on) to
be applied to the file SAMPLE ASSEMBLE. As with control file
processing, the updates are applied from the bottom of the AUX file, so the
updates in SAMPLE BYPASS are applied first, then the updates in
SAMPLE FIXLOOP are applied, and so on. For an illustration of a set of
update files, see Figure 13 on page 106.

Chapter 6. Updating Source Programs Using CMS 105

Updating Source Programs

-

REPORT CNTRL

TEXT MACS
UpP2 UPDTPROC
LIST AUXLIST

uP1 UPDTREP1
TEXT AUXFIX

REPORT REPORT REPORT
UPDTPROC UPDTREP1 AUXFIX

Y RTNB
REPORT RTNA
AUXLIST

REPORT REPORT
RTNB RTNA

REPORT REPORT
FIXIN FIXOUT

update report assemble a {ctl)

UPDATING ‘REPORT ASSEMBLE A1’ WITH ‘REPORT RTNA A1'.
UPDATING WITH ‘REPORT RTNB A1’,

UPDATING WITH ‘REPORT UPDTREP1 A1’.

UPDATING WITH '‘REPORT FIXQUT A1’,

UPDATING WITH 'REPORT FIXIN A1,

UPDATING WITH ‘REPORT UPDTPROC A1’,
R;

Figure 13. An Update with a Control File

106 VM/SP CMS for System Programming

Updaiing Source Programs

i -]

Since the updating scheme uses only filetypes to uniquely identify update
files, it is possible to use the same control file to update different source
input files. For example, issue the following command when using the
control file REPORT CNTRL shown in Figure 13 on page 106:

update fica pliopt a report cntrl (ctl

The UPDATE command begins searching for updates to apply to FICA
PLIOPT, based on the entries in REPORT CNTRL. It searches for FICA
AUXFIX, which may contain entries pointing to update files; then it
searches for FICA UPDTREP1, and so on.

As long as all updates and auxiliary files associated with a source file have
the same filename as the source file, the updates are uniquely identifiable.
Therefore, the same control file can be used to update various source files.
VM/SP takes advantage of this capability in its own updating procedures.
By maintaining strict naming conventions, updates to various CP and CMS
modules are easily controlled and identified.

A control file may point to many AUX files in addition to many UPDT files.
You can modify a control file when you want to control which updates are
applied to a program. You may have several control files, and specify the
name of the control file you want to use on the UPDATE command line.
There is a lot of flexibility in the UPDATE command processing. You can
implement procedures and conventions for your individual applications.

Multiple Updates with XEDIT

The XEDIT CTL option creates multiple updates to a source file. First,
create a control file listing the updates to be applied to a source file.
Initially, you might have only the MACS record and one UPDATE filetype
specified. For example, you can create a file called FICA CNTRL that
contains:

TEXT MACS PLILIB
FICAl UPDTUP1

Next, specify the control file name that you have created after the XEDIT
CTL option. For example:

xedit fica pliopt (ctl fica

The editor searches for an update file called FICA UPDTUPI1 and applies
all updates contained in this file. If the update file does not exist, XEDIT
creates a file called FICA UPDTUPI1 which will contain all changes made
to the source file during the editing session in addition to the required
control statements.

If you wish to add another level of updates to your source file, insert a new
update filetype in your control file after the MACS record, for example:

TEXT MACS PLILIB

FICA2 UPDTUP2
FICAl UPDTUP1

Chapter 6. Updating Source Programs Using CMS 107

Updating Source [Pregramso

E

Preferred Level Updating

Then, XEDIT your source file again, specifying the CTL option, for
example:

xedit fica pliopt (ctl fica

XEDIT applies all updates contained in FICA UPDTUP1 to the source file
FICA PLIOPT. After the resulting file is displayed, any additional updates
and the necessary control statements are automatically inserted in another
update file called FICA UPDTUPZ2, consistent with control file processing
from the bottom up.

Augxiliary control files can also be used with XEDIT. You can make your
control file point to AUX files that contain the filetypes of the actual
update files, or you can combine AUX files and update files in a single
control file. XEDIT begins applying updates from the bottom up in the
control file and references the AUX files indicated. Any updates to the
source file produced during the editing session are inserted in the topmost
update filetype specified in either the control file or in the last AUX file
encountered using the ‘bottom up’ processing rule. More information about
the XEDIT CTL option can be found in the VM/SP System Product Editor
Command and Macro Reference.

There may exist more than one version of an update, each applicable to
different versions of the same module. For example, you may need one
version of an update for an unmodified base source module and another
version of that update if that module has been modified by a licensed
program. The AUX file used to update a particular module must then be
selected based on whether or not a licensed program modifies that module.
The AUX files listing the updates applicable to modules modified by a
licensed program are called “preferred AUX files” because they must be
used if they exist rather than the mutually exclusive updates applicable to
unmodified modules. Using this preferred AUX file concept, every module
in a component can be assembled using the one CNTRL file applicable to a
user’s configuration.

A single AUX file entry in a CNTRL file can specify more than one filetype.
The first filetype indicates a file that UPDATE uses only on one condition:
the files that the second and subsequent filetypes indicate do not exist. If
they do exist, this AUX file entry is ignored and no updating is done. The
files that the second and subsequent filetypes indicate are preferred because
UPDATE does not use the file that the first filetype indicates. Usually, the
preferred files appear later in the CNTRL file in a format that causes them
to be used for updating.

UPDATE scans each CNTRL file entry until a preferred filetype is found,
until there are no more filetypes on the entry, or until a comment is found.
(A character string less than four or more than eight characters is assumed
to be a comment.)

108 VM/SP CMS for System Programming

Updating Source Proframs

The VMFASM EXEC Procedure

If you are an assembler language programmer and you are using the
UPDATE command to update source programs. you may want to use the
VMFASM EXEC procedure. VMFASM is a VM/SP update procedure. It
invokes the UPDATE command and uses the ASSEMBLE command to
assemble the updated source file.

If you are not an assembler language programmer, you may wish to create
an EXEC similar to VMFASM that calls one of the language compilers to
compile an updated source file, instead of calling the assembler.

When you use VMFASM, you specify the source filename, the filename of

the control file, and optionally, parameters for the assembler. (The control
file for VMFASM must have a filetype of CNTRL). For example, if you use
the file GENERAL CNTRL to update SAMPLE ASSEMBLE, you enter the

command line:

vmfasm sample general

The VMFASM EXEC uses the MACS card and the update level identifiers
in the control file. It reads the MACS card to determine which macro
libraries (MACLIBs) should be searched by the assembler. Then VMFASM
issues the GLOBAL MACLIB command specifying the MACLIBs you name
on the MACS card.

VMFASM uses the update level identifier to name the output text file
produced by the assembly. If the update level identifier of the most recent
update file (the last one located and applied) is anything other than TEXT,
the update level identifier is prefixed with the characters TXT to form the
filetype. For example, if the file GENERAL CNTRL contains the records:

TEXT MACS CMSLIB MYLIB OSMACRO
UP2 FIX2

UP1 FIX1

TEXT AUXLIST

and updates the file SAMPLE ASSEMBLE, then:

o If the file SAMPLE UPDTFIX2 is found and the updates applied,
VMFASM names the output text deck SAMPLE TXTUP2.

o If the file SAMPLE UPDTFIX1 is found and the updates applied but no
SAMPLE UPDTFIX2 is found, the text deck is named SAMPLE
TXTUPI.

e If the file SAMPLE AUXLIST is found but no SAMPLE UPDTFIX1 or
SAMPLE UPDTFIX?2 files are found, the text deck is named SAMPLE
TEXT.

o If no files are found, the update level identifier on the MACS card is
used and the text deck is named SAMPLE TEXT.

Chapter 6. Updating Source Programs Using CMS 109

Updating Source Programs

The new fn TEXT or fn TXTxxxxx resides on the A-disk. Because the
UPDATE command works from the bottom of a control file toward the top,
it is logical that the text filename be taken from the identifier of the last
update applied.

The VMFASM EXEC does not produce an updated source file, but leaves
the original source intact.

VMFASM produces two output files:
o A printed output listing that shows update activity

o The text file that contains the update log as well as the actual object
code.

If you use the CMS LOAD command to load a text file produced by
VMFASM, records from the update log are flagged as invalid, but the
LOAD operation is not impaired.

Updating EXECs and Macros

If you wish to use the update facility to track changes to EXECs or macros
written for the System Product Interpreter, you need to use the
EXECUPDT command. The EXECUPDT command applies updates to an
EXEC source file (using the UPDATE command) and removes the sequence
numbers from the updated file to produce an executable version of the file.
Using EXECUPDT is very similar to using the VMFASM EXEC to apply
updates to an assembler language source and to assemble it.

Source files for the EXECUPDT command are fixed-length, 80-character
files with sequence numbers just like those for assembler language or
COBOL. The filetype of the EXEC source file has a ‘$’ prefixed to the
normal filetype. For example, SAMPLE $EXEC could be the source for an
EXEC procedure and READY $XEDIT could be a source file for an XEDIT

macro.

Updates to the EXEC source are created using XEDIT in the same manner
as updates to programs in other languages. To apply the updates to the
source, use the EXECUPDT command. For a single level update, issue the
command:

execupdt sample exec

Note that the ‘$’ in the filetype is not included in the filetype specified on
the EXECUPDT command. To do a multi-level update, you may use the
CTL option of EXECUPDT. For example:

execupdt sample exec (ctl general

110 VM/SP CMS for System Programming

Updating Source Programs

r e+ s U S

The STK Option

If you are interested in writing your own EXEC procedure to invoke the
UPDATE command, you may wish to use the STK option. The STK (stack)
option is valid only with the CTL option and is meaningful only when the
UPDATE command is invoked within an EXEC procedure.

When the STK option is specified, UPDATE stacks the following data lines
in the console stack:

first line: * update level identifier
second line: * library list from MACS record

The update level identifier is the identifier of the most recent update that
was found and applied.

For example, an EXEC 2 EXEC that invokes the UPDATE command and
then the ASSEMBLE command may contain the lines:

&TRACE ALL

UPDATE &1 ASSEMBLE * &2 CNTRL * (STK CTL

&READ VARS &STAR &TX

&READ VARS &STAR &LIB1 &LIB2 &LIB3 &LIB4 &LIB5 &LIB6 &LIB7 &LIBS8
GLOBAL MACLIB &LIB1 &LIB2 &LIB3 &LIB4 &LIB5 &LIB6 &LIB7 &LIBS
&IF &TX NE TEXT FILEDEF TEXT DISK &1 TXT&TX Al

ASSEMBLE &l &3 &4 &5 &6 &7 &8 &9 &10

ERASE $&1 ASSEMBLE

Below is a System Product Interpreter program that invokes the UPDATE
command and then the ASSEMBLE command:

/* Sample System Product Interpreter program to */

/* Update and Assemble a source program */

trace a

parse arg filename cntrlfile options

'UPDATE' filename 'ASSEMBLE *' cntrlfile 'cntrl * (STK CTL'
parse pull star tx

parse pull star 1libl 1ib2 1ib3 1ib4 1ib5 1ib6 1ib7 1ib8
'GLOBAL MACLIB' 1libl 1ib2 1ib3 1lib4 1lib5 1lib6 1ib7 1ib8

if tx —= TEXT then 'FILEDEF TEXT DISK' filename 'TXT'tx 'Al'
'ASSEMBLE $'filename options

'ERASE s$'filename 'ASSEMBLE'

If the EXEC that you use is named UPASM EXEC, it is invoked with the
line:

upasm fica fica (print noxref
and the file FICA CNTRL contains:
MAC MACS CMSLIB OSMACRO MYTEST

FIX1 UPDTFIX
LIST AUXLIST

Chapter 6. Updating Source Programs Using CMS 111

Updating Source RPrograms
[

then the EXEC 2 EXEC executes the following commands:

UPDATE FICA ASSEMBLE * FICA CNTRL * (STK CTL
GLOBAL MACLIB CMSLIB OSMACRO MYTEST

FILEDEF TEXT DISK FICA TXTFIX1 Al

ASSEMBLE $FICA (PRINT NOXREF

ERASE $FICA ASSEMBLE

The System Product Interpreter program executes the following:

/* Update FICA ASSEMBLE using FICA CNTRL */
'UPDATE FICA ASSEMBLE * FICA CNTRL * (STK CTL'
'GLOBAL MACLIB CMSLIB OSMACRO MYTEST'

'FILEDEF TEXT DISK FICA TXTFIX1 Al'

'ASSEMBLE S$FICA (PRINT NOXREF'

'ERASE $FICA ASSEMBLE'

The above examples assume that the update file FICA UPDTFIX was found
and applied.

112 VM/SP CMS for System Programming

| Using the Parsing Facility

The CMS parsing facility parses and translates command arguments. Your
programs can use the parsing facility to see if the user specifies the proper
arguments on invocation and to see what the arguments are. For a list of
CMS commands that use the parsing facility, see “Supported CMS
Commands” on page 116.

Advantages of the Parsing Facility

Advantages of DLCS

When you use the parsing facility, programming commands is simpler
because:

o The parsing facility detects invalid command arguments.
o All keyword abbreviations are expanded for you.

o Command syntax is defined separately from your program and can be
translated into different national languages.

o When a national language is in use, keywords in that language are
translated into the language recognized by your program.

o You do not have to write scanning code.
o The address and length of each token is provided.

o Validation codes are provided to identify the type of each token.

To use the parsing facility, you must define command syntax in a special
language, the definition language for command syntax (DLCS).

Keep the DLCS definitions in CMS files. A file can contain more than one
DLCS definition. The parsing facility parses a specified command by
checking whether all operands, options, keywords, and so on, are specified
according to the DLCS definition for that command.

Chapter 7. Developing Commands and Message Files 113

Developing Commands and Messages

[

Overview

Coding DLCS Statements

Defining command syntax in a DLCS file and using the parsing facility has
the following advantages:

e Syntax checking is unnecessary in your program.

o If you want to invoke your program in another national language, you
just have to modify your DLCS file.

Refer to “Coding Your Own Command Syntax with DLCS” on page 117 for
details on using DLCS.

To have the parsing facility do this checking, do the following:
1. Write DLCS statements.

2. Check for any DLCS coding errors using the CHECK option of the
CONVERT COMMANDS command.

3. Issue the CONVERT COMMANDS command to put your syntax file
into a machine readable form the parsing facility can use.

4. Issue the SET LANGUAGE command to enable the user’s DLCS
definitions.

5. Issue the PARSECMD command from a REXX program or EXEC 2
EXEC or the PARSECMD macro from an assembler program to invoke
the parsing facility and to obtain the parsed and translated parameter
lists.

To show how DLCS statements work, here is a standard CMS command
string format:

command_name [operands...] [(options...]
DLCS has the following statements:

:CMD for a command name

:OPR for an operand

:0PT for an option

A few other statements you can use in DLCS include:
:SYN to define synonyms

:KW.n for command name modifiers

* to specify comments

For example, the RDRLIST command has the following format:

RDRLIST [([PROFile f£n] [Append] [)]]

114 VM/SP CMS for System Programming

Daveloping Gommands and Messages

- . - — -

Here is how the syntax for RDRLIST is coded in DLCS:
:CMD D9K.RDRLIST RDRLIST RDRLIST 4 :;

:SYN RLIST 2 :;
:OPT KWL(<PROFILE 4>) FCN(FN) :;
:OPT KWL(<APPEND 1>) :;

The section, “Coding Your Own Command Syntax with DLCS” on page 117,
describes DLCS statements in detail.

Converting Your DLCS File

When you are ready to use the DLCS file, you first have to convert the
DLCS file into an machine readable form the parsing facility can use. Use
the CONVERT COMMANDS command to do this.

You can use the CHECK option of CONVERT COMMANDS to make sure
your DLCS syntax descriptions are correct. In addition, you can issue
CONVERT COMMANDS with the CHECK option while you XEDIT the
DLCS file to help remove errors. Next, use the SET LANGUAGE command
to put the new DLCS definitions into effect.

Refer to the VM/SP CMS Command Reference for a complete description of
CONVERT COMMANDS and SET LANGUAGE.

Setting Command Name Synonyms and Translations

Use the SET TRANSLATE command to set user translation synonyms, user
translations, system translation synonyms, and system translations on or
off. Use the QUERY TRANSLATE command to display the contents of the
system synonym tables, system translate tables, user synonym tables, and
user translate tables.

These commands work similarly to the CMS SYNONYM and QUERY
SYNONYM commands.

(Refer to the VM/SP CMS Command Reference for descriptions of SET
TRANSLATE, QUERY TRANSLATE, SYNONYM, and QUERY
SYNONYM.)

Invoking the Parsing Facility
You can invoke the parsing facility in two ways:

1. From EXEC 2 EXECs or REXX programs, use the PARSECMD
command.

The PARSECMD command uses the EXECCOMM interface and creates
EXEC variables that describe the translated command string. See
Figure 14 on page 135 for an example using the PARSECMD command.

Refer to the VM/SP CMS Command Reference for a description of the
PARSECMD command.

Chapter 7. Developing Commands and Message Files 115

Developing Commands and Nessanes

[

2. From assembler programs, use the PARSECMD macro.

The PARSECMD macro call should be in the beginning of the program.
Upon return from the parsing facility, the syntax of the command is
verified and detailed information on the translated command string is

available. See Figure 16 on page 138 for an example using the
PARSECMD macro.

Refer to the VM/SP CMS Macros and Functions Reference for a
description of the PARSECMD macro.

Command keywords are uppercased according to the national language
uppercase table for the active application. If one is not found, the CMS

national language table is used.

Supported CMS Commands

The following commands use the parsing facility:

ACCESS
ALARM
CLEAR
COMPARE
CONVERT
COPYFILE
CURSOR
DEFAULTS
DEFINE
DELETE
DISK

DROP
ERASE
EXECDROP
EXECLOAD
EXECMAP
EXECSTAT?
FILELIST
FORMAT
GENMSG

GET

HELP
HELPCONYV3
HIDE
IDENTIFY
LANGGEN
LANGMERG
LISTFILE
MACLIST
MAXIMIZE
MINIMIZE
MODMAP
MOREHELP
NAMES
NOTE
NUCXDROP
NUCXLOAD
NUCXMAP
PARSECMD
PEEK

POP
POSITION
PRINT
PUNCH
PUT
QUERY
RDR
RDRLIST
READCARD
RECEIVE
REFRESH
RELEASE
RENAME
RESERVE
RESTORE
ROUTE
SCROLL
SENDFILE
SET
SHOW

SIZE

SORT
STATE
SVCTRACE
SYNONYM
TAPE
TELL
TXTLIB
TYPE
UPDATE
WAITREAD
WAITT
WRITE
XEDIT*
XMITMSG

3 These commands do not have parameters requiring translation, but the
command name itself can be translated.

4 XEDIT subcommands are not supported.

116 VM/SP CMS for System Programming

Daveloping Commands and Vessaoms

-

Coding Your Own Command Syntax with DLCS

Rules to Remember

Defining Your Command

Some rules to remember while coding in DLCS are:

(=]

Use special characters : , < > and’ in your data tokens
(keyword names, function names, or function values) only if they are
enclosed in single quotes. The quotes are not counted as part of the
token.

Do not use lowercase characters to specify your keyword names,
function names, or function values. Specify these exactly as they
appear after the command line is uppercased by the system at execution
time with the language in effect.

Only the first 72 characters of any line of the DLCS file are used. Any
characters beyond 72 are ignored. You can use as many blanks as you
want between tokens, and you can continue DLCS statements on the
following line.

Only one system and one user DLCS file for an application can be made
active at any time. When both a user file and a system file are active,
the definitions in the user file override the definitions in the system file.
If no syntax definition is found in the user file, the definition in the
system file is used.

Your DLCS file must be merged with your user file for the application
you currently have. You can have only one user table; therefore, if you
have another command or receive a command from someone, you have
to merge it with the other commands in the user table. (For example, if
you want the CMS search order to find your command, define the
command in a DMS file.)

You can define the translation of some keywords to be the same as the
keyword the command recognizes. For more information on translation,
see the VM[SP CMS User’s Guide.

Define each command as follows:

Start with a CMD statement to specify the name of the command and its
national language equivalent.

Define any synonyms using SYN statements immediately following the
CMD statement.

Define a two word command using the first word as the command name
and using the KW.1 statement to define the second word. If the
command is a three word command, use the KW.2 statement to define
the third word. (The second and third words are command name

Chapter 7. Developing Commands and Message Files 117

Develeping Commands and Nesosages

.-

L T ‘ = U |

modifiers.) You can also have a four word command, a five word
command, etc.

4, Define the syntax for the command with zero or more OPR statements
followed by zero or more OPT statements.

5. Use “;’ to specify the end of a statement.

SPECIFYING THE APPLICATION AND NATIONAL LANGUAGE

DLCS Statement: Use the DLCS statement to define the application
where commands in the DLCS file are parsed, to specify whether the
commands are system or user commands, and to specify the national
language for the file. -

The format of the DLCS statement is:

:DLCS applid System|User langid

where:

applid
is an application identifier. It must be three alphanumeric characters,
and the first character must be alphabetic (e.g., DMS, DMK, OFS,
AGW, DKXK, etc...).

System|User
specifies whether the file contains system or user syntax definition
statements. (Only the first letter is significant.)
langid
is the identifier for the language you are working in. It must be one
to five alphanumeric characters (e.g., FRNCH, AMENG, etc...).
Notes:

1. The DLCS statement must be the first non-comment statement in the
DLCS file, and it must be the only DLCS statement in the file.

2. The CMS command search order uses translations and translation
synonyms defined in DLCS files with an application identifier of DMS.

3. The DLCS statement determines the filename and filetype of the output
files.

DEFINING THE COMMAND NAME, SYNONYMS, AND MODIFIERS

118 VM/SP CMS for System Programming

—_—— — —_——

Paoveloning Commands and Niessanos

IR - S 3

CMD Statement: Use the CMD statement to define the name of a
command as the system sees it and as the language sees it.

The format of the CMD statement is:

:CMD unique-id sl-name [nlname n] 3

where:

unique-id
identifies the syntax definition for the command within the DLCS file.
This is required, and it must be unique for each syntax definition.
When you invoke the parsing facility, unique-id is matched to the one
you specify in the PARSECMD.

unique-id is any combination of up to 16 characters. For quick access
to the syntax definitions, the first one or two characters are used as
an index. If the first two characters of unique-id are valid
hexadecimal digits, their value is used as the index. Otherwise, the
EBCDIC value of the first character is used. For example, unique-ids
D9xxx and Rxxx both have the same index value of 217. CMS can find
syntax definitions faster if you use as many of the 256 index values as
possible.

sl-name
is the command name as CMS sees it.

nl-name
is the command name as a national language user sees it. Defaults to
sl-name.

n

is the minimum number of characters that must be entered for nl-name
to be accepted. Defaults to the length of sl-name.

Notes:

1. A new command syntax begins each time a CMD statement is
encountered.

2. All uniqueids used for IBM commands have a period as the fourth
character. Do not use a period as the fourth character in the the uniqueid
for your own commands.

3. A uniqueid of all blanks is reserved to let you define more than one
translation for a command. When this uniqueid is found, no syntax
information is stored. You can only code the :CMD and :SYN statements
in this case.

Chapter 7. Developing Commands and Message Files 119

Developing Commands and Meossages

r
14

4. The minimum length for abbreviations of command name translations
cannot be more than eight or HELP does not recognize them.

5. nl-name is only used by the CMS search order if the application identifier
of this DLCS file is DMS.

6. The SET TRANSLATE command enables or disables nl-name.
7. If SET ABBREV OFF is in effect, you must use the full nl-name.

SYN Statement: Use the SYN statement to define translation synonyms
for the command name defined on the :CMD statement.

The format of the SYN statement is:

:SYN newnamel nl [newname2 n2) ...

where:

newname
is the synonym you are assigning to the command name.
is the minimum number of characters you must enter for the synonym
to be accepted by CMS.

Notes:

1. The SYN statement is valid only for the first word of a command name
(not the command name modifiers).

2. All of the SYN statements for a command must immediately follow the
CMD statement.

3. Only SYN statements defined in a DLCS file with an application
identifier of DMS are used by the CMS command search order.

4. The SET TRANSLATE command enables and disables translation
synonyms defined by the :SYN statement.

5. Using multiple names on a single SYN statement has the same effect as
specifying a single name on many SYN statements. Order is not

important.

6. If SET ABBREYV OFF is in effect, you must use the full newnamel.

120 VM/SP CMS for System Programming

Developing Comenands and Nessages

KW.n Statement: Use the KW.n statement to define command name
modifiers keywords that modify the syntax used for parsing the remaining
parameters. For example, a command to manipulate a simple data base can
require different operands-- a filename for an open request, an option for a
close request, and other operands for update requests. The KW.n statement
lets you define a different syntax for each.

The format of the KW.n statement is:

:KW.n slname slabbrev [nl-name nlabbrev] :;

where:

n
is the number of the level. It defines the nth modifier after the
command name.

sl-name
is the name as the command sees it.

sl-abbrev
is the minimum number of characters that must be entered for sl-name
to be accepted by CMS.

nl-name
is the name as the national language user enters it. Defaults to
sl-name.

nl-abbrev
is the minimum number of characters that must be entered for ni-name
to be accepted by CMS. Defaults to sl-abbrev.

Use the following form of the :KW.n statement to indicate that a string of
characters not defined by any :KW.n statement is accepted as an arbitrary
modifier.

KW .

Note: This form may not be used as the first :KW.n statement on a level,
and only applies to :KW.n statements on the same level. No further syntax
information may follow this statement, that is, no :OPR, :OPT, or :KW.n
statements with a larger value for n. When the parsing facility finds an
arbitrary modifier it will process that remainder of the argument string as
one text string.

Chapter 7. Developing Commands and Message Files 121

Developing Commands and Messaoes
b,

L

Example:

Suppose the format of a database command is:

DATABASE OPEN filename
UPDATE ROW row number
UPDATE COLUMN column-name
CLOSE [(REPLACE [)]]

When the DLCS for this command is coded, instead of defining OPEN,
UPDATE, and CLOSE as operand keywords, they are coded as modifiers
(because they modify the syntax) using the KW.n statement. Because each
is the first modifier following the command name, the modifier level (the n
part of KW.n) is 1. In this way, you can define a command with many -
modifiers at the same level. You can define the remaining operands and
options differently for OPEN, UPDATE, and CLOSE. The DLCS definition
so far is:

:CMD DATABASE DATABASE :;
:KW.1 OPEN 4 :;
:OPR FCN(FN) :;
:KW.1 UPDATE :;
:KW.1 CLOSE 5 :;
:OPT KWL (<REPLACE 3>) :;

The keywords ROW and COLUMN can only follow UPDATE, and they
modify the syntax further. Each is the second modifier after the command
name, so they are coded as a second level modifier following UPDATE.
Each KW.2 statement on this second level may be followed by either a third
level or operand and option definitions, and so on. These KW.2 statements
nest after the previous KW.1 statement so that ROW or COLUMN are only
recognized after UPDATE. The complete DLCS definition for the database
command is:

:CMD DATABASE DATABASE :; :* A sample syntax
:KW.1 OPEN 4 :;
:OPR FCN(FN) :; :* filename
:KW.1 UPDATE :;

:KW.2 ROW 3 :;

:OPR - FCN(PINTEGER) :; :* row—-number
:KW.2 COLUMN 3 :;

:OPR FCN(STRING) :; :* column-name

:KW.1 CLOSE 5 :; ‘
:OPT KWL (<KREPLACE 3>) :;

DEFINING OPERANDS

OPR Statement: Use the OPR statement to define the syntax of each
operand of the command.

The format of the OPR statement is:

122 VM/SP CMS for System Programming

B N TN :17"\ e IS - o~ TIN Y ST - L TP ’ 1r‘r" Tag wae y o)
Doveloplng Commmands Qid WIoSsaes

:OPR KWL(kwdefl [kwdef2 ..])
[OPTIONAL| STOP] [REPEAT]

:OPR FCN(fendefl [fendef2 ..])
[OPTIONAL| STOP] [REPEAT] :;

:OPR KWL(kwdefl [kwdef? ..])
FCN(fendefl [fendef2 ..])
[OPTIONAL| STOP] [REPEAT] 3

where:

KWL
defines the keyword when an operand (or option when defining an
option) is defined to be a keyword.

FCN
defines functions to be used to validate the value of an operand.

KWL FCN
defines a keyword-value pair using the kwdef and fcndef expressions.
The kwdef and fendef expressions are defined on pages 124 and 125.

OPTIONAL
indicates the operand can optionally be specified.

STOP
specifies that if the operand is not specified then parsing of the
operands stops at that point and no more operands can be specified.

REPEAT
indicates the operand can be specified one or more times.

Notes:

1. Specify OPR statements in the order the operands are specified on the
command.

2. Specify the OPR statement after the CMD statement and present SYN
statements or after appropriate KW.n statements.

3. If both OPTIONAL (or STOP) and REPEAT are specified, the operand
can be specified zero or more times.

Chapter 7. Developing Commands and Message Files 123

Developing Commands and WVessages

{

4. If no options are specified, the operand is a required operand that can be
specified only once.

DEFINING OPTIONS

OPT Statement: Use the OPT statement to define the syntax of the
options for the command.

The format of the OPT statement is:

:OPT KWL(kwdefl [kwdef?2 ..])

:OPT KWL(kwdefl [kwdef2 ..])
FCN(fendefl [fendef2 ...])

where:

KWL

defines the keyword when an option (or operand when defining an
operand) is defined to be a keyword.

KWL FCN
defines a keyword-value pair using the kwdef and fendef expressions.
The kwdef and fcndef expressions are defined below.

Note: OPT statements must follow the last OPR statement, if any were
used, for that command. Order of the OPT statements is not important.

kwdef EXPRESSION

The format of kwdef is:

[< sl-name sl-abbrev [nl-name nl-abbrev] >]

where:

sl-name
is the keyword known by your command.

124 VM/SP CMS for System Programming

Developing Commands and Messages

sl-abbrev
is the minimum number of characters that must be entered for sl-name
to be accepted.

nl-name
is the keyword known by a national language user. Defaults to
sl-name.
nl-abbrev
is the minimum number of characters that must be entered for nl-name
to be accepted. Defaults to sl-abbrev.
fendef EXPRESSION
fendef can be any one of the system functions listed below. In addition,
fendef can be a user function. See “User Functions” on page 127 for more
information.
System Functions

Syntax Description

ALPHANUM any alphanumeric string

APPLID any three character alphanumeric string with the first
alphabetic

CHAR any single nonblank character

CUU any hex number between 001 and FFF (assumes leading
Zeros)

DIGITS any unsigned number made up of digits 0-9

FN (filename) any string with the following characters:

A'Z’a'z’0'97$,#’@’ + ,":s and —_

FT (filetype) any string with the following characters:
A-Z,a-z,0-9,$,#,@, + 3yes and -

FM (filemode) first character: A-Z, a-z; optional second
character: 0-6

EFN same as FN with ‘“*’ or ‘%’ also a valid character
EFT same as FT with “*’ or ‘%’ also a valid character

EXECNAME any string that does not contain the following characters:
=,%(),” ', and X’FF”

Chapter 7. Developing Commands and Message Files 125

Developing Commands and Nessages

L

EXECTYPE any string that does not contain the following characters:

=,%(),"’, and X’FF’

HEX any hexadecimal number

INTEGER any decimal whole number (can have + or - signs)

NINTEGER any decimal negative whole number

PINTEGER any decimal positive whole number (can have + sign)

MODE any alphabetic character

STRING any nonblank character string

TEXT any character string

INVALID no valid values

Notes:

1. You can specify function definitions with a subset of valid values. Only

items in the subset are valid. For example, if you specify
STRING(MONDAY, TUESDAY, WEDNESDAY), MONDAY,
TUESDAY, and WEDNESDAY are the only valid values.

If a list of functions is specified for fendef, the parsing facility validates
an operand or option value with the functions in the order they are
specified. The first function the value is valid for determines the
validation code of the value in PVCENTRY. Refer to the VM/SP CMS
Macros and Functions Reference for more information on the
PVCENTRY macro.

Input to the parsing facility is uppercased according to current language
before it is provided to system or user functions for validation.

If a value is not valid according to any of the functions in the list, the
first one is used to determine which message, if any, is issued. If an error
message based on the first function is not appropriate, place the
INVALID function first in the list. For example:

:OPR FCN{INVALID, INTEGER(2,4,6), MODE) :;

The invalid function never accepts a value as valid, but a general error
message is issued when a value is not valid according to the rest of the
functions in the list.

Because some functions will validate tokens that are also valid for other
functions, you should be careful to list the most restrictive functions first.
For example, an operand defined as:

:OPR FCN(STRING, DIGITS, FN):;

126 VM/SP CMS for System Programming

—

Davae H [l J bomnumundu auud M Ssa@ S

LA

will always be validated as a string, while the syntax:

:OPR FCN(FN) REPEAT:;
:OPR FCN(DIGITS):;

can never be satisfied because the required digits operand will be
validated as part of the list of filenames.

6. The TEXT function cannot be specified in a list with any other function.
User Functions

In addition to the system functions listed above, you can also make your
own functions for the parser to use to check if a token is valid. For
instance, you could make a function VOWEL that considers only alphabetic
characters A,E,I,O and U valid.

After you make your program for your function, assemble it, load it with
the RLDSAVE option, and use the GENMOD command. Then install the
MODULE file of this assembled program as a nucleus extension. Next,
include the name of your function in the DLCS for your command exactly
as you would any other function. The function is invoked by the parsing
facility with an SVC 202. The entry point name of the module must be the
same as the function name (fcndef) in your DLCS file. Your function is
passed the following parameters:

o An eight byte area containing the function name

o token-addr: a fullword containing the address of the token to be
validated. The token is already uppercased according to the current
language.

o token-length: a fullword containing the number of characters in the
token.

o validation code: a byte containing the number interpreted by the parser
as the validation code of the user function. If the token is valid, this
field should be set by the user function. Upon return from the parsing
facility, you can check this validation code to see if your token is valid.

On entry to the program, R1 contains the address of the control block
containing the parameters described above. Use the assembler macro
PARSERUTF to generate a mapping of this control block.

Your program must pass back a return code in R15 that determines the
outcome of the function. A return code of zero specifies the token was
valid; a non-zero return code specifies the token was not valid. You can use
any non-zero return code except -3; this return code would be interpreted to
mean the function did not exist.:

Chapter 7. Developing Commands and Message Files 127

Developing Commands and Messages

S

Notes:

1. User functions do not override system functions with the same name
(system functions come first in the search order).

2. When you use CONVERT COMMANDS to process your DLCS file,
specify the ALL or USER options for user functions to be accepted.

3. When coding user functions in your CDSL file, you can enclose specific
values in parentheses as you can with any system functions and only
those values are accepted.

DEFINING ROUTINES AND KEYWORDS

Note: The :RTN and :KWD statements are reserved for IBM use. You may
not use them in writing your own commands in DLCS. They are only
shown here so that if you need to make your own translation of CMS
commands you can do so without introducing errors into the syntax or its
definition.

RTN Statements: Use the RTN statement to define the routine
responsible for parsing the command.

The format of the RTN statement is:

:RTN routine-name :

where:

routine-name
is a CMS defined name.

Notes:

1. When the :RTN and :KWD statements are used, they replace (and are
nutually exclusive with) the :OPR and :OPT statements. There is one
:RTN statement followed by any number of :KWD statements.

2. When you are translating a CMS command that uses routine parsing, you
should only changed the nl-name and nl-abbr fields on the :KWD
statement. You must not add or delete :KWD statements or change the
routine and system language names.

128 VM/SP CMS for System Programming

Laveloping Commeands and Wessaas

Writing Comments

KWD Statements: Use the KWD statement to define the keywords that
the command contains for translation purposes.

The format of the KWD statement is:

:KWD slname sl-abbrev [nl-name nl-abbrevJ 1

where:

sl-name
is the CMS defined keyword name.

sl-abbrev
is the minimum number of characters that must be entered for sl-name
to be accepted by CMS.

nl-name
is the keyword as a national language user enters it.

nl-abbrev)
is the minimum number of characters that must be entered for nl-name
to be accepted by CMS..

Notes:

1. When the :RTN and :KWD statements are used, they replace (and are
nutually exclusive with) the :OPR and :OPT statements. There is one
:RTN statement followed by any number of :KWD statements.

2. When you are translating a CMS command that uses routine parsing, you
should only changed the nl-name and nl-abbr fields on the :KWD
statement. You must not add or delete :KWD statements or change the
routine and system language names.

Comments: Use the characters :* to specify that a line or the remaining
characters of a line are to be ignored. Use this to put comments and
explanations in your DLCS file.

The format of a comment is:

[DLCS statements or parts of a statement:! :* comment

Chapter 7. Developing Commands and Message Files 129

Developing Commands and Messages

[

where:

comment

Creating a DLCS File

is any comment

For examples of creating a DLCS file, see “Creating a DLCS File” on
page 131 and “Creating a DLCS File with National Language Translations”
on page 132.

What the Parser Does Not Flag

1

The parser does not flag the following situations:

o Dependent options and operands. The MAP operand of the
MACLIB command gives an example. Refer to the VM/SP CMS
Command Reference. :

o Mutually exclusive options or operands. This is where you have a
pair of operands or options. You must specify one or the other --
you cannot specify neither or both. The ACK and NOACK
operands of the NOTE command give an example. Refer to the
VM[SP CMS Command Reference. Most commands that have
mutually exclusive options or operands ignore the condition and use
the last operand or option you specify.

Some IBM supplied commands also use the RTN and KWD statements
for special purposes. Do not use these statements for your own
commands.

DBCS and the Parsing Facility

This section lists rules to remember when the current language is a
double-byte character set (DBCS) language.

In DLCS and CONVERT COMMANDS

©

You can use DBCS characters only in keyword, modifier, and command
names.

You can mix single byte and DBCS characters in a name in the DLCS,
but CONVERT COMMANDS only recognizes single byte characters as
DLCS delimiters.

Shift-out and shift-in characters are always recognized as DBCS
delimiters in a DLCS definition regardless of the current language.

A double byte character is treated as a single logical character. When
you specify the minimum length for abbreviations of synonyms or
translations, count double byte characters and EBCDIC characters as
single logical characters and ignore shift-out and shift-in characters.

130 VM/SP CMS for System Programming

Developing Commands and VMessages

1

From CMS

For example, if you have the keyword ‘abced |of k1k2k3 ﬁ] efg’, setting
the minimum abbreviation of four allows ‘abcd’ as the shortest
abbreviation. Setting the minimum abbreviation of five, would allow
‘abed E' k1 Iﬂ " as the shortest abbreviation. Setting the minimum
abbreviation of six allows ‘abcdv k1k2 El " as the shortest abbreviation,
and so on.

o If you use DBCS characters when adding translations and translation
synonyms to a DLCS file, you can issue CONVERT COMMANDS and
SET LANGUAGE on these translations. However, you can only use
these commands if the language you are using is set up as a double-byte
language.

o DBCS or mixed DBCS command names and keywords are accepted.
DBCS strings cannot be specified for operand and option values such as
filename, filetype, filemode, cuu, and so on.

o Each token in the tokenized PLIST is resolved to be a complete DBCS
string. In other words, one of these tokens can contain no more than
three double byte characters.

o When you invoke CMS commands, you can use DBCS EBCDIC to
specify CMS delimiters such as blanks or parentheses.

Examples: Using the Parsing Facility

Creating a DLCS File

You have two commands, MYCMD1 and YOURCMD.

MYCMD1 has the following syntax:

MYCmdl fn £t [([DIsk|PRint] [NUMrecs nnnl [)]]

YOURCMD has the following syntax:

YOURcmd string [(TYPE [)] 1]
Instead of coding syntax checking into your program, you plan to invoke
the parsing facility for these commands. So you have to create a DLCS file

to contain both syntax definitions.

You can create a CMS file called TEST DLCS to contain the statements for
these commands that could look like this:

Chapter 7. Developing Commands and Message Files 131

Developing Commands and Messages

7

WO~ UTDWN

:DLCS DMS USER AMENG :;
:* The first command
:CMD MMYCMD1 MYCMD1 MYCMD1l 3 :;
:SYN MY1 3 :;
:OPR FCN(FN) :;
:OPR FCN(FT) :;
:OPT KWL (<KDISK 2> <PRINT 2>) :;
:OPT KWL (<KNUMRECS 3>) FCN(PINTEGER) :;
:* The second command
:CMD YYOURCMD YOURCMD YOURCMD 4 :;
:OPR FCN(STRING) :;
:OPT KWL(<TYPE 4>) :;

where:

Line
Number

1
2

ot L

9
10

11
12

Explanation

Defines this file for the DMS application, the commands as user
commands, and the ID of the language as AMENG.

A comment indicating the start of the first command syntax
definition.

Defines MMYCMDL1 as the unique-id for this syntax definition,
and MYCMD1 as the command name with a minimum
abbreviation of MYC.

Defines a synonym, MY1, for the command name with no
abbreviation.

Specifies the first required operand is a filename.

Specifies the second required operand is a filetype.

Specifies two options: DISK as an option with a minimum
abbreviation of DI, and PRINT as an option with a minimum
abbreviation of PR.

Specifies another option as a keyword-value pair: NUMRECS
as an option with a minimum abbreviation of NUM.,

A comment indicating the start of the second command syntax
definition.

Defines the unique-id and command name for this command
definition.

Defines the only operand of this command as string.

Defines TYPE as the option with no abbreviation.

Creéling a DLCS File with National Language Translations

You could also create TESTFRAN DLCS to contain national language
translations for these two commands. If you wanted to include French
translations, your file might look like this:

132 VM/SP CMS for System Programming

Pevaloning Commands and Nessaas

3

=
QWU WN K

[
N

:DLCS DMS USER FRANC :;
:* The first command

:* The second command

:CMD MMYCMD1l MYCMD1l FRANCMD1 8 :;
:SYN MY1 3 :;
:OPR FCN(FN) :;
:OPR FCN(FT) :;
:OPT KWL (<DISK 2 DISQUE 4> <PRINT 2 IMPRIMER 4>) :;
:OPT KWL (<NUMRECS 3 NOMENREG 6>) FCN(PINTEGER) :;

:CMD YYOURCMD YOURCMD VOTRECOM 5 :;
:OPR FCN(STRING) :;
:OPT KWL(<TYPE 4 AFFICHER 3>) :;

where:

Line Explanation
Number

1 Defines this file for the DMS application, the commands as user
commands, and the ID of the language to be FRANC,

2 A comment indicating the start of the first command syntax
definition.

3 Defines MMYCMDI1 as the unique-id for this syntax definition,
MYCMD1 as the command name, and FRANCMDL1 as the
national language name with no abbreviation.

4 Defines a synonym, MY1, for the command name with no
abbreviation.

5 Specifies the first required operand is a filename.

6 Specifies the second required operand is a filetype.

7 Specifies two options: DISK as an option with a minimum

abbreviation of DI, and DISQUE as the national language name
with a minimum abbreviation of DISQ. PRINT as an option
with a minimum abbreviation of PR, and IMPRIMER as the
national language name with a minimum abbreviation of IMPR.
8 Specifies another option as a keyword-value pair: NUMRECS
as an option with a minimum abbreviation of NUM, and
NOMENREG as the national language name with a minimum

abbreviation of NOMENR.

9 A comment indicating the start of the second command syntax
definition.

10 Defines the unique-id, command name, and national language
name for this command definition.

11 Defines the only operand of this command as string.

12 Defines TYPE as an option with no abbreviation, and

AFFICHER as the national language name with a minimum
abbreviation of AFF.

Calling the Parsing Facility from a REXX Program

You have a CMS file called TEST DLCS containing DLCS statements for
the command MYCMDI1 with the following syntax:

MYCmdl fn ft [([DIsk|PRint] [NUMrecs nnnl [)]]

Chapter 7. Developing Commands and Message Files 133

Developing Commands and Messages

[I]

The syntax definition for this command is in the file TEST DLCS. See the
example “Creating a DLCS File” on page 131 for the contents of TEST
DLCS.

Once you use CONVERT COMMANDS to convert your file into a format
that can be read in internally and use the SET LANGUAGE command to
activate the language, you can invoke the parsing facility from an EXEC.

The following two sample REXX programs process MYCMD1. The first one

illustrates a call to the parsing facility. The second does not call the
parsing facility. The EXEC performs syntax checking.

134 VM/SP CMS for System Programming

Developing Commands and Nessaces

/* This EXEC processes the MYCMD1l command with a format */
/* as follows: MYCmdl fn ft (DIsk|{PRint NUMrecs nnn) */
/* The options may be omitted; the file name and type */
/* cannot. */
address command
/¥ First, call the parser to check syntax of the command */
/* string. */
'PARSECMD MMYCMD1'
If rc 3= 0 then signal error /* Go to ERROR if bad */
/* string. *x/
* The command string is valid, so we can search through */
* the tokens to find out what options were specified. */
* It does not matter what language is active, because */
* the parser has translated the command name and any */
* options that were given. */
/* */
* We know that: */
/* token.l= the command name MYCMD1; */
/* token.2= the passed file name; */
/* token.3= the passed file type; */
/* if it exists,token.4=0PTSTART; */
/* and if they exist, remaining tokens -.5, .6, .7 - */
/* could be TYPE, DISK, NUMRECS, or nnn. */
how_to_output = 'DISK' /* Set default output to */
/* disk. ‘ */
number = '*!' /* Set number to the */
/* whole file. */
do i = 4 to token.O /* Loop thru tokens, set */
/* flags. */
select
when token.i = 'DISK' then how_to_output = 'DISK'
when token.i = 'PRINT' then how_to_output = 'PRINT'
otherwise /* Must be NUMRECS */
i=1i+1 /* parameter. */
number = token.i
end
end
/* At this point, all of our flags and values have been */
/* set, and we are ready to process the file.
. .. */

Figure 14. Sample REXX Program 1

Chapter 7. Developing Commands and Message Files 135

Developing Commeands and Messages

r

* This EXEC processes the MYCMD1l command with a format */
/* as follows: MYCmdl fn ft (DIsk|PRint NUMrecs nnn) */
* The options may be omitted; the file name and type */
/* cannot. */
address command
/* First lets see what was passed to us */
arg fn ft '(' options
if fn='' | ft = '' then signal NAME_MISS /*parms missing? */
'ESTATE' fn ft '*' /* check validity of £n/ft */
if rc = 20 then signal NAME_ERROR /* invalid fn or ft */
how_to_output = '' /* initialize to nulls */
number = '' /* same here */
do while options -1= '!' /* loop thru all options */
' parse var options opt options
select;
when (opt='DISK') /* DISK specified */
then do /* ensure DISK/TYPE only once */
if how_to_output—='' then signal HOW_ERROR
how_to_output = 'DISK'
end
when (opt='TYPE') /* TYPE specified */
then do /* ensure DISK/TYPE only once */
if how_to_output-='' then signal HOW_ERROR
how_to_output = 'TYPE'
end
when (opt='NUM'|opt='NUMR'|opt='NUMRE' |opt='NUMREC'|opt="'NUMRECS')
then do /* verify validity of number */
if number-i='' then signal NUM_ERROR
parse var options num options
if num = '' then signal NO_NUM_ERROR
if =—datatype(num,w) then signal INV_NUM_ERROR
if num <= 0 then signal INV_NUM_ERROR
number = num
end
otherwise /* unknown option */
signal INVALID_OPTION
end
end

Figure 15 (Part 1 of 2). Sample REXX Program 2

136 VM/SP CMS for System Programming

Paveloping Commands and Wlessages

/*¥ We must set the defaults.

if how_to_output = '' then how_to_output = 'DISK'

if number = '' then number = '*!'

signal OK

/* Error Routines */
NAME_MISS:

say 'File name and file type must be specified’
signal EXIT

NAME_ERROR:
say '"'fn ft'" is an invalid file ID'
signal EXIT

HOW_ERROR:
say how_to_output 'already specified, "'opt'" is invalid'
signal EXIT

NUM_ERROR:
say 'NUMRECS specified twice'
signal EXIT

NO_NUM_ERROR:
say 'The value for NUMRECS has been omitted'
signal EXIT

INV_NUM_ERROR:
say '"'num'" is an invalid positive number for NUMRECS'
signal EXIT

INVALID_OPTION:
say '"'opt'" is an invalid option'
signal EXIT

OK:

/* At this point, all of our flags and values have been */
/* set, and we are finally ready to process the file.

*/

*/

Figure 15 (Part 2 of 2). Sample REXX Program 2

Calling the Parsing Facility from an Assembler Program

The following two sample programs perform the same task. The first

program invokes the parsing facility via PARSECMD. In this way, you do
not need extra code to handle parsing. The second program includes code
for parsing abbreviations, missing operands, and extra operands as well as
code that issues error messages.

Chapter 7. Developing Commands and Message Files 137

Developing Commands and Messages

XSS EE XSS S ESER R SRS R SRR RS SR EE SR ERE RS RS EREEEREEREEEEREEEEEREEEESEEES

ROUTINE: SSORT
FUNCTION: TAKE 2 STRINGS AND DISPLAY THEM IN EITHER ASCENDING
OR DESCENDING ORDER
SYNTAX: SSORT {ASCENDING|DESCENDING} STRING1l STRING2
DLCS: :CMD FFSSORT SSORT SSORT 5 :;
:OPR KWL (<ASCENDING 3><DESCENDING 4>) :;
:OPR FCN(STRING) :;
:OPR FCN(STRING) :;

* % ¥ * ok % F X F

*
khkkhkkkhkhhkkhkhdhhkhkhkhhhhhhdhhkkhhkhhhhhhhhhhhdbhhhhkhkrhdhrhhhrhhhkhhdhhhkikrhokxkx

SSORT START
USING *,12
LR 12,15 ESTABLISH ADDRESSABLILITY
ST 14,R14SAVE SAVE RETURN ADDRESS

PR AR A S SRR RS ES AR SRS R RS SRS E RS AR EE R EEEEEEEELEREEEEEEEESEEEEEE]

* PARSE SSORT COMMAND .
khhkkhkhhhhkdbhkhhhkhhkhhhhhrhhhkhbhhhhhhkhdhbhhhhkdhdhhkhhdhhhhhhhdhhbhhohhhhddhhdhdbhhd
LA 3,PARSLBL GET ADDRESS OF PARSERCB STORAGE
USING PARSERCB, 3
PARSECMD MF=(E,PARSLBL) ,UNIQID=UID,PLIST=(1),
EPLIST=(0) ,ERROR=EXIT
USING PVCENTRY, 10

L 10,PARPVCAD GET PARSER VALIDATION CODE TABLE

L 10,PVCNEXTA POINT TO ENTRY OF ASCEND/DESCEND OPR
L 9,PVCETOKA GET ADDRESS OF ASCEND/DESCEND OPR

L 10,PVCNEXTA POINT TO ENTRY OF 1ST STRING

L 5,PVCETOKA GET ADDRESS OF 1ST STRING

L 6 ,PVCETOKL GET LENGTH OF 1ST STRING

L 10,PVCNEXTA POINT TO ENTRY OF 2ND STRING

L 7 ,PVCETOKA GET ADDRESS OF 2ND STRING

L 8, PVCETOKL GET LENGTH OF 2ND STRING

XS AR RS SRR RS RS EE LSS EEE LR R EEEEEEEEEEEEERERESEEEEESEEEEEEEEEESE S

* DISPLAY STRING1l AND STRINGZ IN EITHER ASCENDING OR DESCENDING ORDER
R R R R R T Y R R A R R AR R A R R R R R AR R R R T T X

CR 6,8 WHICH STRING HAS FEWER CHARS °?
BH COMP2 2ND STRING, TAKE BRANCH

BCTR 6,0 DECREMENT FOR EXECUTE

EX 6, COMPARGS COMPARE STRINGS

LA 6,1(,6) INCREMENT BACK

BNH SMALL1 IF 1ST STRING GOES 1ST, BRANCH
B SMALL2 IF 2ND STRING GOES 1ST, BRANCH

| Figure 16 (Part 1 of 2). Sample Assembler Program 1

138 VM/SP CMS for System Programming

MY 5 a Y o Y P O AR L e Y1) ~ e
Daveloping Gomrmands and Wiessages
COMP2 DS OH
BCTR 8,0 DECREMENT FOR EXECUTE
EX 8 ,COMPARGS COMPARE STRINGS
LA 8,1(,8) INCREMENT BACK
BNL SMALL?Z2 IF 2ND STRING GOES 1ST, BRANCH
SMALL1 DS OH
CLI 0(9),Cc'D! WANT TO SORT IN DESCENDING ORDER ?
BE TYPE21 YES, TYPE 2ND FOLLOWED BY 1ST
TYPE12 DS OH
WRTERM (5),(6) WRITE OUT THE 1ST STRING
WRTERM (7),(8) WRITE OUT THE 2ND STRING
B GOODEXIT EXIT WITH RC = O
SMALL?2 DS OH
CLI 0(9),C'D" WANT TO SORT IN DESCENDING ORDER ?
BE TYPE12 YES, TYPE 1ST FOLLOWED BY 2ND
TYPE21 DS OH
WRTERM (7),(8) WRITE OUT THE 2ND STRING
WRTERM (5),(6) WRITE OUT THE 1ST STRING
GOODEXIT DS OH
SR 15,15 ZERO OUT RC
EXIT DS OH
L 14,R14SAVE GET RETURN ADDRESS
BR 14 RETURN
PARSLBL PARSECMD MF=L GET INITIALIZED PARSERCB
UID DC CL16'FFSSORT' UNIQUE ID FOR PARSECMD
R14SAVE DS A RETURN ADDRESS
COMPARGS CLC O(*=%,5),0(7) COMPARE STRINGS
PARSERCB
PVCENTRY
END
Figure 16 (Part 2 of 2). Sample Assembler Program 1
Chapter 7. Developing Commands and Message Files 139

Developing Commands and Messages

| S

IEE AR S S SRS S SR RS SR E RS EEEEE TR R ESE R SRS SRR EREEEEEEEREEEREEEESEESTESEEE SR

ROUTINE: LSORT

FUNCTION: TAKE 2 STRINGS AND DISPLAY THEM IN EITHER ASCENDING
OR DESCENDING ORDER

SYNTAX: LSORT {ASCENDING|DESCENDING} STRING1l STRING2

REQUIREMENTS: MUST GENMOD WITH SYSTEM OPTION

* % ok % ¥ F ¥

Kkkkkhhhhhhkhhhhkh kA hhkhhh kA khhhhkhh kA hhkhh kA kkhkhkhhhkkkkhhkhkhhhhk*
LSORT START

USING *,12
LR 12,15 ESTABLISH ADDRESSABLILITY
ST 14 ,R14SAVE SAVE RETURN ADDRESS

kkhkkhkkhkhhkkhkhkhkhkhkhkkkhkhkhhhhhkkhhkhkhhhdhhkkhkhhhkhkhhhkkhhkkhkhkkhhkhhhkhhhkhkhkhhkhkhhhhkrhhkkk

* PARSE LSORT COMMAND
I R A R R R T I T T

LR 11,0 GET EPLIST ADDRESS
USING EPLIST,11
L 9,EPLARGBG GET ADDRESS OF 1ST ARG
L 10,EPLARGND GET END OF ARGS ADDRESS
DROP 11
SR 10,9 GET LENGTH OF ARGS FIELD
LTR 10,10 DOES ARGl EXIST ?
BZ MISSARG1 NO, ISSUE MESSAGE
LA 1,0(10,9) POINT PAST END OF ARGS FIELD
LR 3,9 GET ADDRESS FOR EXECUTE
BCTR 10,0 DECREMENT FOR EXECUTE
EX 10, FINDEND FIND END OF ARG 1
LA 10,1(,10) INCREMENT BACK
SR 1,9 GET LENGTH OF ARG 1
BZ MISSARG1 IF LENGTH O, MISSING ARG 1
LR 11,1 SAVE LENGTH OF ARG 1
BCTR 11,0 DECREMENT FOR EXECUTE
EX 11,UPCASE UPPERCASE ARG 1
LA 11,1(,11) INCREMENT BACK

TRYASC DS OH

c 11,ASCMINL ARG LENGTH LESS THAN MIN FOR ASCEND ?
BL TRYDESC YES, TRY DESCENDING
C 11,ASCMAXL ARG LENGTH TOO BIG FOR ASCENDING ?
BH TRYDESC YES, TRY DESCENDING
BCTR 11,0 DECREMENT FOR EXECUTE
EX 11,COMPASC SEE IF ASCENDING WAS SPECIFIED
LA 11,1(11) INCREMENT BACK
BE GETSTRG1 IF ASCENDING, GET STRINGS

Figure 17 (Part 1 of 4). Sample Assembler Program 2

140 VM/SP CMS for System Programming

Devyeloping Gommeands and Vlessaees

- — R B

TRYDESC DS
BL

BH
BCTR
EX
LA
BNE
GETSTRG1 DS
SR
Bz
LA
LR
BCTR
EX
LA
BZ
LR
LR
SR
SR
LA
LR
BCTR
EX
LA
Bz
SR
BZ
LR
GETSTRG2 DS
SR
BZ
LA
LR
BCTR
EX
LA
BZ
LR
LR
SR
SR
LA
LR
BCTR

OH
11,DESCMINL
BADARG1
11,DESCMAXL
BADARG1
11,0
11,COMPDESC
11,1(11)
BADARG1

OH

10,11
MISSARG2
4,0(11,9)
1,4

10,0
10,FINDSTRT
10,1(,10)
MISSARG2
5,1

U

2,
2,
10,2
1,0(10,5)
3,
10,0

10, FINDEND
10,1(,10)
MISSARG3
1,5
MISSARG2
6,1

OH

10,6
MISSARG3
4,0(6,5)
1,4

10,0
10,FINDSTRT
10,1(,10)
MISSARG3
7,1

7
4

~ 1O~

2,
2,
10,2
1,0(10,5)
3,
10

14
0
b

/0

ARG LENGTH LESS THAN MIN FOR DESCEND?
YES, ARGl IS BAD

ARG LENGTH TOO BIG FOR DESCENDING ?
YES, ARGl IS BAD

DECREMENT FOR EXECUTE

SEE IF ASCENDING WAS SPECIFIED
INCREMENT BACK

IF NOT DESCENDING, ARG IS BAD

ADJUST LENGTH OF ARGS FIELD
IF 0, MISSING ARG 2

POINT PAST END OF ARG 1

GET FOR EXECUTE

DECREMENT FOR EXECUTE

FIND START OF STRING 1
INCREMENT BACK

ARG 2 MISSING, ISSUE MESSAGE
REMEMBER ADDRESS OF STRING1
GET ADDRESS OF STRING 1

~ ADDRESS OF 1ST DEL AFTER ARG 1
ADJUST LENGTH OF ARGS FIELD
POINT PAST END OF ARGS FIELD
GET ADDRESS OF STRING 1
DECREMENT FOR EXECUTE

FIND END OF STRING 1
INCREMENT BACK

NO DELIMS, MISSING STRING 2
GET LENGTH OF STRING 1

IF LENGTH O, MISSING ARG 2
SAVE LENGTH OF STRING 1

ADJUST LENGTH OF ARGS FIELD
IF 0, MISSING ARG 3

POINT PAST END OF STRING 1
GET FOR EXECUTE

DECREMENT FOR EXECUTE

FIND START OF STRING 2
INCREMENT BACK

ARG 3 MISSING, ISSUE MESSAGE
REMEMBER ADDRESS OF STRING 2
GET ADDRESS OF STRING 2

- ADDRESS OF 1ST DEL AFTER ARG 2
ADJUST LENGTH OF ARGS FIELD
POINT PAST END OF ARGS FIELD
GET ADDRESS OF STRING 2
DECREMENT FOR EXECUTE

Figure 17 (Part 2 of 4).

Sample Assembler Program 2

Chapter 7. Developing Commands and Message Files 141

Developing Commands and NMessag

1GS

(‘)
A

GETLEN DS
CHKEXTRA DS

10,FINDEND
10,1(,10)
GETLEN
1,7
MISSARG3
8,1
CHKEXTRA
OH

8,10

OH

10,8
SORTSTRG
4,0(8,7)
1,4

10,0
10,FINDSTRT
10,1(,10)
SORTSTRG
2,1

2,4

10,2

2,1
EXTRAOP

FIND END OF STRING 2

INCREMENT BACK

NO DELIMS, USE LENGTH OF ARGS FIELD
GET LENGTH OF STRING 2

IF LENGTH 0, MISSING ARG 3

SAVE LENGTH OF STRING 2

SEE IF EXTRA OPERANDS SPECIFIED

USE LENGTH LEFT OF ARGS FIELD

ADJUST LENGTH OF ARGS FIELD
IF 0, ALL OK

POINT PAST END OF STRING 2
GET FOR EXECUTE

DECREMENT FOR EXECUTE

FIND EXTRA OPERANDS

INCREMENT BACK

NO EXTRA OPERANDS, ALL OK

GET ADDRESS OF EXTRA OPERANDS
- ADDRESS OF 1ST DEL AFTER ARG 3
GET LENGTH OF EXTRA OPERANDS
GET ADDRESS OF EXTRA OPERANDS
EXTRA OPERANDS, ISSUE MESSAGE

LR EEEEERE RS AR RS EEEEE LRSS EEEEEEESEE SRR RS AR EEESESEEREEEEEEEERESEREE]

* DISPLAY STRING1 AND STRING2 IN EITHER ASCENDING OR DESCENDING ORDER
KERK KA R AR IR AR AR AR KRR IR AR R AR AR AR A R R A Ak hhk kA hhhk kA hhhhkkh Ak kA hkkh k&

SORTSTRG DS
CR
BH

BCTR

EX
LA

BNH

B
COMP2 DS

BCTR

EX
LA

BNL

SMALL1 DS

CLI

BE
TYPE12 DS

OH

6,8

COMP2

6,0

6, COMPARGS
6,1(,6)
SMALL1
SMALL2

OH

8,0

8, COMPARGS
8,1(,8)
SMALL2

OH
0(9),Cc'D'
TYPE21

OH

WRTERM (5),(6)
WRTERM (7),(8)

B

GOODEXIT

WHICH STRING HAS FEWER CHARS ?
2ND STRING, TAKE BRANCH
DECREMENT FOR EXECUTE

COMPARE STRINGS

INCREMENT BACK

IF 1ST STRING GOES 1ST, BRANCH
IF 2ND STRING GOES 1ST, BRANCH

DECREMENT FOR EXECUTE

COMPARE STRINGS

INCREMENT BACK

IF 2ND STRING GOES 1ST, BRANCH

WANT TO SORT IN DESCENDING ORDER ?
YES, TYPE 2ND FOLLOWED BY 1ST

WRITE OUT THE 1ST STRING
WRITE OUT THE 2ND STRING
EXIT WITH RC = O

Figure 17 (Part 3 of 4).

142 VM/SP CMS for System Programming

Sample Assembler Program 2

Peveloping Commands and Wessages

I - —]

SMALL?2 DS OH
CLI 0(9),C'D"' WANT TO SORT IN DESCENDING ORDER ?
BE TYPE12 YES, TYPE 1ST FOLLOWED BY 2ND
TYPE21 DS OH
WRTERM (7),(8) WRITE OUT THE 2ND STRING
WRTERM (5),(6) WRITE OUT THE 1ST STRING
GOODEXIT DS OH
SR 15,15 ZERO OUT RC
B EXIT EXIT
EXTRAOP DS OH
APPLMSG NUM=070,CSECT=SSO,SUB=(CHARA, ((2),(10)))
B BADRC EXIT WITH RC = 24
BADARG1 DS OH
APPLMSG NUM=388,CSECT=SSO0., SUB=(CHARA, ((9), (11)))
B BADRC EXIT WITH RC = 24
MISSARG1 DS OH
MISSARG2 DS OH
MISSARG3 DS OH
APPLMSG NUM=386,CSECT=SSO
BADRC DS OH
LA 15,24 GET BAD RC
EXIT DS OH
L 14 ,R14SAVE GET RETURN ADDRESS
BR 14 RETURN
FINDEND TRT 0(*-*,3) ,DELIMS FIND NEXT DELIMITER
FINDSTRT TRT O(*-*,4) ,NONDELIM FIND NEXT NON-DELIMITER
UPCASE ocC 0(*-*,9),BLANKS UPPERCASE ARGUMENT

COMPASC CLC 0(*-*,9) ,ASCEND CHECK FOR ASCENDING OPERAND
COMPDESC CLC 0(*-*,9) ,DESCEND CHECK FOR DESCENDING OPERAND

COMPARGS CLC O(*=*,5),0(7) COMPARE STRINGS
DS OF

BLANKS DC ioc' ! BLANKS FOR UPPERCASING OPERAND

DELIMS DC 64X'00',C' ',12X'00',C'(',178X'00"

NONDELIM DC 64X'FF',X'00',12X'FF',X'FF',178X'FF'

ASCEND DC C'ASCENDING'

ASCMINL DC F'3'

ASCMAXL DC F'9!

DESCEND DC C'DESCENDING'

DESCMINL DC F'4'

DESCMAXL DC F'10"'

R14SAVE DS A RETURN ADDRESS
DSECT

EPLIST DS OH

EPLCMD DS

EPLARGBG DS

EPLARGND DS
END

R

| Figure 17 (Part 4 of 4). Sample Assembler Program 2

Chapter 7. Developing Commands and Message Files 143

Developing Commands and Messages

r

Creating and Distributing Your Own CMS Commands

Using DLCS

If you give users commands that call the parsing facility, put the syntax in
a DLCS file that has a unique application identifier. In this way, users who
receive your commands and syntax do not have to merge the syntax
definition with their DMS tables.

Refer to the example on page 132, In this example, you could change the
application identifier on the DLCS statement to your initials. For example,
if your initials are AGW, the DLCS statement looks like:

:DLCS AGW USER AMENG :;
and the call to PARSECMD in REXX is:

'PARSECMD MMYCMD1 (APPLID AGW'

To make it even easier for other users, you can automatically load and drop
the table from storage by inserting

'SET LANGUAGE (ADD AGW USER'
in your REXX program just before the call to PARSECMD, and

'SET LANGUAGE (DELETE AGW USER'

just before exiting. By doing this, all parsing is hidden, and users do not
have to issue the SET LANGUAGE command.

Defining Translations, Synonyms and Abbreviations

If users want to translate the command or the keywords of the command
into their own national language, they have to edit the DLCS table you
send them to translate the parameters. However, to translate commands or
keywords into a language other than the default language, the other
language must exist on your system. See “Chapter 16. Getting National
Languages on Your System” in the VM System Facilities for Programming
for more details. ‘

If users want to define a translation for the command name, they can just
add an entry in their DMS table. For example, if the user’s translation for
your command name is ‘FRIENDCMD’, the DMS table entry is

:CMD ' ' MYCMD1l FRIENDCMD 5 :;

If users just want to abbreviate your command name, they can add an entry
in their own DMS user tables that defines your command with the blank
uniqueid:

:CMD ' ' MYCMD1 MYCMD1 3:;

144 VM/SP CMS for System Programming

I

I

Develoning Commands and Messanes
[DINg]

Defining HELP Files

To abbreviate the command name and define a synonym, such as ‘MC’, they
can add:

:CMD ' ' MYCMD1 MYCMD1l 3:;
:SYN MC 2:;

After users define translations, synonyms and abbreviations, they must run
CONVERT COMMANDS against the files they have changed.

Note: This application does not support DBCS tokens unless there is
already a system table available for the application.

You can also create HELP text files for your own commands. The HELP
files contain information about these commands. By specifying the
appropriate HELP command, you can display information about the
commands you created. See the VM/SP CMS User’s Guide for details on
creating your own HELP files.

‘Using Message Repository Files

When you write a program and you want error messages to be displayed,
you can put message text directly in your program. For example, in
Assembler programs you can use the LINEDIT or other macros to display
messages on the screen; in REXX programs, you can just use a SAY
statement to display whatever message you want.

However, if you have many messages, your programs can become cluttered.
Instead of coding message text directly in a program, you can store all your
message texts in one file called a “repository.” Then, when you want to
display a message, you can retrieve the message text you want from this
repository.

Having all message text in one central file has the following advantages:
1. Message text will not clutter your program.

2. You can access the same message from many programs without having
to specify the message text each time.

3. If you would like your messages to be available in a language other
than English, translation centers can just translate your single message

file. You can then have your messages in the language you want.

You can create your own message file for whatever application you want to
run, including CMS.

For CMS system messages, a source repository file is already built for you;
it has a fileid “DMSMES REPOS”. You can XEDIT this file to view

Chapter 7. Developing Commands and Message Files 145

Developing Commands and Nessages

C

messages. You can also print off a copy of the CMS message file so you can
refer to it when you want to call a CMS message from your program.

Note: For languages other than English available on your system, the
filename of the CMS message repository is different. See “Chapter 16.
Getting National Languages on Your System” in VM System
Facilities for Programming for more details.

Overview of Creating and Using a Message Repository

Five steps are involved with creating and then using your own message
repository file. These steps are:

1. Creating a message repository file using XEDIT.
2. Checking the accuracy of the message repository notation.
3. Converting the repository into machine readable form.

4. Making the repository file available for the language you are working
with. ’

5. Accessing the messages from programs using the APPLMSG macro or
the XMITMSG command.

Creating a Message File: When you create a message repository file, you
must follow certain notation rules. These rules are explained in “Rules for
Making Your Own Repository” on page 148.

Checking the Accuracy of the Message File: After you create a message
repository, you should check to see if you made any incorrect entries. You

can use the GENMSG command with the NOOBJECT option to flag any
invalid syntax statements:

GENMSG fn ft fm applid (NOOBJECT

(fn ft £mis the fileid of your message repository you created in XEDIT.
applid is the identifier for your application. It must be three characters.
For example, if you made the message file for an accounting application,
you might want to have your applid be “ACT”.

Note: Be sure to record the applid you choose. You will need to reference
it when you access your messages, and you will also need the applid if you
create command syntax files.

GENMSG displays an error message in the listing file for any invalid
statement it finds in the message file. If you have any errors, just XEDIT
the file and correct any mistakes.

146 VM/SP CMS for System Programming

O

Daveloping Commands and Message

L

Compiling the Message File: When your message repository contains no
more syntax errors, you then have to “compile” your message repository
file. This step converts your file into an machine readable form that the
message processor recognizes. The GENMSG command also does this task:

GENMSG fn ft fm applid

GENMSG creates an output file that contains the internal version of your
message repository. The filename of this output file is the same as the
input file; the filetype is “TXTlangid,” where langid is the language
identifier. The default value for langid is the language currently in use.

See the VM[SP CMS Command Reference for details on the GENMSG
command.

Making the Message File Available: Once the message file has been
compiled, you must make the message file active for the language you are
working in. You accomplish this with the SET LANGUAGE command.

For example, suppose you created and compiled a message repository file
that is an addition to the CMS system repository. Before issuing the SET
LANGUAGE command, your compiled message file must have a filename of
DMSUME and a filetype of TXTlangid. To get your message file active,
you could issue the SET LANGUAGE command as follows:

SET LANGUAGE (ADD DMS USER

See the VM/SP CMS Command Reference for a complete description of the
SET LANGUAGE command.

Accessing the Messages: You can access messages from a repository in
two different ways:

1. From EXEC 2 EXECs, REXX programs, or CMS, use the XMITMSG
command.

For example, to display this CMS message from a REXX program:

File MSG TEST not found

you could use the following XMITMSG call:

"XMITMSG 002 'MSG' 'TEST' (DISP FOR 1 APPLID DMS COMP"

(See the VM/SP CMS Command Reference for a complete description of
XMITMSG.)

2. From assembler programs, use the APPLMSG macro.

For example, to display this CMS message from an assembler program:

File MSG TEST not found

you could use the following APPLMSG call (assuming the address of
MSG is in register 5 and the address of TEST is in register 6):

Chapter 7. Developing Commands and Message Files 147

Developing Commands and Nessages

l APPLMSG NUM=002,FMT=1,
| APPLID=DMS,COMP=YES, SUB=(CHARA, ((5),3)),
| CHARA, ((6) ,4)) ,DISP=TYPE, TYPCALL=SVC

| (See the VM/[SP CMS Macros and Functions Reference for a complete
| description of APPLMSG.)

'| Rules for Making Your Own Repository

| Each message record in a repository file contains five fields. When you
| create your file using XEDIT, you must make every message record in the
| following format:

| NNNNFFLLS ----—===--—————————— e text —-------—mem s
| columns 1 57 9 11 72
| where:

NNNN

|

| is the message number, in columns 1-4. You can use a 4 digit message

| number in a message repository, but by default only the last three digits
| are displayed in the message header. You can use the first digit to

| group messages; for example, the first digit of all dictionary records (see
| “Dictionary Substitution” on page 151) could be ‘8’.

| You do not have to place messages in sequence by message number in a
| CMS (or CMS application) user repository. However, message numbers
| do have to be in sequential order in a CP repository.

FF
is the message format, in columns 5-6. This field is for a message that
can be in several versions. If a message has just one format, you do not
need to type anything -- the format field defaults to “01”. You cannot
use “00” as a format number.

LL
is the line number of the message, in columns 7-8. This field is used if
you want the text for a single message format to be displayed on more
than one line. Messages that spread across more than one line must
have sequential, consecutive line numbers.

| If a single format of a message has just one line, you do not need to type
! a line number -- the line number defaults to “01”. You cannot use “00”
3 : as a line number,

| is the severity code, in column 9. Your severity codes should be one of
| the following:

148 VM/SP CMS for System Programming

|

-

Davelopiigg Commands and Wlessades

Code Message Type
E Error

I Information
R Response

S Severe

T Terminal

w Warning

text
is the message text, starting in column 11. You can specify up to 62
characters of message text on one line. If the text for a single message
is longer than 62 characters, you must put the message text on more
than one line and specify a line number for each.

If you want multi-line message text displayed on the screen in one
continuous line (wrapped around), the message number (NNNN), the
message format (FF), and the line number (LL1) must be identical for
each line.

If you want multi-line message text displayed on the screen in more than
one line, you must make the first line number 01 and line numbers after
that 02, 03, etc.

Your message repository file should also contain comment records. These
must start with an asterisk in column 1.

* This is an example of a comment line

Comment lines, which can go anywhere in a message repository file, should
describe what is in the file.

Finally, you must put a control line in your external repository. This
control line specifies two things:

1. A character that specifies substitutions. This must be the first
non-blank character on the control line.

2. A number that specifies the amount of message number digits (3 or 4)
you want to display. This must be the second non-blank character on
the control line.

The control line must be the first non-comment record.”
Example:
The following example shows an external repository file, which is stored on

a disk. You can view, edit, and update this message repository.
(Translation centers can also translate this to another language.)

Chapter 7. Developing Commands and Message Files 149

Developing Commands and Messages

[

*
*
*
*
*
*
&
0005 E
0015 R
002501 I
002502 I

0100 O1R
0100 02
0100 03

This is an example of a message repository file for a small
programming application.

This was created via XEDIT.

You can code a file similar to this for your own application.

3 SPECIFIES THE SUBSTITUTION CHARACTER + NO. OF DIGITS
Invalid syntax; please reissue command.

Enter the number of copies you want:

Function has completed

Subroutine has completed

Your program has just halted at label ABCD.
You can quit the program by entering 'Q', or
press the ENTER key to continue

Here is a line by line description of what this repository contains:

Line

Number(s) Explanation

1--6

7

10 --11

Comment lines.
The control line.

The first non-blank character on this line specifies the
substitution character for messages -- &. (See “Substitution in
Messages” on page 151) The second non-blank character
specifies that you want to display only three message number
digits (the default).

Note: If a message number is greater than 999, then 4 digits are
displayed regardless of the control line number.

The first message in the repository, number 0005. Message
0005 has only one format and takes up only one line in the file;
so the FORMAT columns (5-6) and the LINE columns (7-8) are
blank. The message results from a user error, so the severity
(column 9) is “E”.

The second message, number 0015. This message has only one
format and takes up only one line; so the FORMAT columns
(5-6) and the LINE columns (7-8) are blank. The message is
requesting input from a user, so the severity (column 9) is “R”.

The third message, number 0025. This message number has
two formats; depending on the error, either Function has
completed (format 01) or Subroutine has completed
(format 02) is displayed. These messages just give the user
information, so their severity is “L.”

150 VM/SP CMS for System Programming

Daveloping Goimmands and Vessadgas

R . PR 1

12--14 The fourth and final message, number 0100. This message has
only one format, but it spreads across three lines of the
repository. Columns (7-8) show the line numbers of this
message. The message requests input from a user, so the
severity is “R.”

Substitution in Messages

In the above example, the text for each message is the same every time the
message is displayed. However, you will probably want to have some
message texts that are similar, but say different things depending on the
situation. For example, you might have a message that says:

Invalid option 'GO'

But you also want to have these messages in your repository:

Invalid option 'FILE'
Invalid option 'RUN’
Invalid option 'STOP'

You do not need four separate messages in your repository. Instead, you
can have a single message text, and then substitute different information
for the bad option. The single message looks like this:

Invalid option '&l'

Messages that require substitutions have parameters in a form defined by
the user (eg. &1, &2 ...). These parameters show the placement of the
substitutions and their order. The first character in the first
non-commentary record of the external repository defines the substitution
character. This character may not be a DBCS character.

Here are some rules about substitutions:
o A substitution may be a single word, a phrase, or an entire sentence.
o A substitution can go anywhere within a message.

o You can have more than one substitution per message.

The data that replaces the &1, &2, etc. can come from the program itself (a
parameter on the APPLMSG or XMITMSG call) or from a dictionary.

Dictionary Substitution

Each dictionary record contains a 4 digit message identifier and dictionary
text. These records are stored in the repository file along with the
messages. You can make the first digit of the message identifier a certain
number (8, for example) that shows the item is a dictionary item.

Example:

Here is an example of a message repository that contains a two-item
dictionary:

Chapter 7. Developing Commands and Message Files 151

Develeoping Commands and Meseaaos

|

*

* This is an example of a message repository file made via XEDIT
* You can code a file similar to this for your application.

*

& 4 LINE SPECIFIES THE SUBSTITUTION CHARACTER + NO. OF DIGITS
0007 E Invalid option '&l'

0017 I You have invoked the &l

8001 compiler

8002 assembler

Here is a line by line description of what this repository contains:

Line

Number(s) Explanation

1--4

5

Comment lines.
The control line.

An ampersand (&) is the substitution character, and you want
to display 4 message number digits.

The first message in the repository, number 0007. When the
message is to be displayed, you have to specify what
information is to be substituted in place of the &1.

The second message, number 0017. When the message is to be
displayed, you have to specify what information is to be
substituted in place of the &1.

A dictionary item, number 8001. If you want to call message
0017 and specify DICT=8001 on a APPLMSG call (or just 8001
on a XMITMSG call), the following message is displayed:

aaammm0017I You have invoked the compiler

(The message header also includes the application id aaa and
the program name within the application mmm.)

A second dictionary item, numbered 8002. If you want to call
message 0017 and specify DICT=8002 on a APPLMSG call (or
just 8002 on a XMITMSG call), the following message is
displayed:

aaammmO0017I You have invoked the assembler

When you code the call to access a message (via APPLMSG or XMITMSG),
you just have to specify the dictionary number.

152 VM/SP CMS for System Programming

u r

[m ' N "’,'- CONTASY O 1Ty
') 7alon] m Dormands and Wescages
]

O L e

| Creating Your Own CMS Messages

| The CMS system repository uses three or four digits for CMS messages. It
| also uses 8000-8nnn for dictionary items and unnumbered responses. You

| can view this file using XEDIT, and you should print off a copy for you to
| use as reference.

| You can create your own CMS messages and put them in a repository.
| Once you compile the message file (using GENMSG) and make the file
| active (using SET LANGUAGE), you can access your own messages.

A user CMS repository can contain message numbers that are additions to
existing CMS messages or duplicate message numbers. If your CMS
repository contains message numbers that duplicate existing CMS
messages, your version overrides the system version.

| For example, suppose you wanted to add your own informational message
| that says:

| The command you issued takes five minutes to complete.
| You can enter this message in your CMS repository in two different ways:
| 1. Using your own unique message number.

| You can look in the CMS system repository -- file “DMSMES REPOS” --
| and find a number that is not currently being used for a CMS message.

| For example, if number 1000 is not currently being used, you can put

| this message in your repository as number 1000, compile the new

| repository file, and make the file active. You can then access the

| message using the command:

| XMITMSG 1000 (DISP FOR 1 APPLID DMS COMP
| 2. Using an existing CMS message number.

| The CMS system repository contains a message

| 046E No library name specified

| Suppose you enter the message

| The command you issued takes five minutes to complete.

| as number 046E in your repository, compile the repository file, and then
| make it active. When you access message 046E, you do not see the
| CMS system message, you see your own version of 046E.

If any of your own messages require dictionary substitutions, you should
note this restriction: You must include dictionary items for your messages in
your own message repository—you cannot access a message from your own
repository using dictionary items from the CMS message repository.

Chapter 7. Developing Commands and Message Files 153

Developing Commands and Messages

r
| S

O R

| Creating Your Own HELP Files

|
l
I
|

You can also create HELP text files for your own messages. The HELP
files contain explanatory information about these messages. By specifying
the appropriate HELP command, you can display information about the
messages you created. See the VM/SP CMS User’s Guide for details on
creating your own HELP files.

Making Your Messages Available to Others

When you make your own repository and issue a SET LANGUAGE
command, that repository is available only to your virtual machine.
However, you may want to allow other users on your system to access your
messages. You can accomplish this by either of the following two methods:

1. Have other users link to your disk. They must then issue a SET
LANGUAGE command for their virtual machine.

2. Have your message file placed in shared storage so all users can access
it. See “Chapter 16. Getting National Languages on Your System” in
VM System Facilities for Programming for details.

Creating Immediate Commands

In addition to the CMS built-in immediate commands, CMS provides
facilities for you to create your own immediate commands. Rules for
creating your own immediate commands are as follows:

1. Immediate commands can be created in three ways:

a. Immediate commands can be created from Assembler Language
programs by issuing the IMMCMD macro. This macro associates a
user-defined immediate command name with the address of a
user-supplied exit routine that receives control when the immediate
command 1is issued. Established immediate commands can also be
explicitly cancelled by the IMMCMD macro. If not explicitly
cancelled, all immediate commands created by the IMMCMD macro
are automatically cancelled either upon return to the CMS
command environment (if not in CMS SUBSET mode) or by entry to
CMS abend.

b. Immediate commands can be created from EXECs by use of the
IMMCMD command. This command establishes and cancels
immediate commands and determines the status of the immediate
command. All immediate commands not explicitly cancelled by the
IMMCMD command are automatically cancelled either upon return
to the CMS command environment (if not in CMS SUBSET mode)
or by entry to CMS abend. User exit routines cannot be used with
immediate commands established by the IMMCMD command.

154 VM/SP CMS for System. Programming

Daveloping Commeands and Messages

c¢. Immediate commands can be created by using the immediate
attribute that is supported by the NUCEXT function and the
NUCXLOAD command. When a nucleus extension is declared with
the immediate attribute, that nucleus extension is established as an
immediate command. By allowing nucleus extensions to be declared
as immediate commands, the following additional flexibility is
provided:

1) Immediate command routines can be created in free storage.

2) Immediate commands can be permanently established for the
duration of a CMS IPL (that is, they are not cleared during
CMS end-of-command processing).

3) Immediate commands can be invoked as exits during abend
(SERVICE attribute) and end-of-command (ENDCMD attribute)
processing.

4) Immediate commands can be established to survive CMS abend
(SYSTEM attribute).

Nucleus extensions established as immediate commands can be
invoked as immediate commands or as part of normal SVC 202
processing. When a nucleus extension is called as an immediate
command, the high-order byte of register 1 is set to X’06".

The immediate attribute is supported by the NUCEXT function
(DECLARE, QUERY, CANCEL) and by the NUCXLOAD,
NUCXDROP, and NUCXMAP commands.

Immediate commands can be 1 to 8 characters in length. Synonyms can
be set up for immediate commands just like they can be for regular
CMS commands. Immediate commands or their synonyms must begin
with a non-blank character.

Immediate commands are delimited by a blank. Any data following the
blank is passed to the immediate command routine as parameters. The
capability to pass parameters is not applicable to immediate commands
declared by the IMMCMD command. Immediate commands and their
parameters are subject to translation just as regular CMS commands
are.

Immediate commands can be set up to override built-in CMS Immediate
commands (for example, HX). However, built-in CMS commands cannot
be cleared.

Immediate commands with the same name can override each other in a
stack-like manner, with the most recent one declared being the one in
effect.

The logical line end character is ignored on immediate command input
lines.

Chapter 7. Developing Commands and Message Files 155

Developing Commands and Messa

glcs

.

| SR

Both the IMMCMD macro, the NUCEXT function, and the NUCXLOAD
command provide the capability to give control to an “exit” routine
whenever a specific immediate command is invoked. These exit
routines receive control as an extension of CMS I/O interrupt handing.
Therefore, they receive control with a PSW key of 0 and are disabled
for interrupts. The exit routine must not perform any I/O operations or
issue any SVCs that result in I/O operations. In addition, the exit
routine must not enable itself for interrupts. DIAGNOSE instructions
can be used within the exit, but the exit routine must not enable itself
for interruptions that may be caused by the DIAGNOSE (for example,
DIAGNOSE code X'58").

Terminal users may optionally require that all immediate commands be
prefixed with an escape character. Use the SET IMESCAPE command
to set the escape character. The status of IMESCAPE function can be

determined by the QUERY command. For more details, see the VM/SP
CMS Command Reference.

156 VM/SP CMS for System Programming

(Clhgpice & DEWEIBEIRE O PyieEimmes wisied CHIS

CMS simulates many of the functions of the Operating System (OS),
allowing you to compile, execute and debug OS programs interactively. For
the most part, you do not need to be concerned with the CMS OS '
simulation routines; they are built into the CMS system. Before you can
compile and execute OS programs in CMS, however, you must be
acquainted with the following:

Using OS data sets in CMS

How to use the FILEDEF command
Creating CMS files from OS data sets
Using CMS libraries

OS macros that CMS can simulate

o 0 & 0 O

These topics are discussed below. Additional information for OS VSAM
users is in “Chapter 10. Using Access Method Services and VSAM under
CMS and CMS/DOS” on page 273.

Note: The CMS system uses many OS terms, but there are a number of OS
functions that CMS performs somewhat differently. Refer to Figure 18 on

page 158 to help you become familiar with some of the equivalents (where

they do exist) for OS terms and functions. It lists some commonly-used OS
terms and discusses how CMS handles the functions they imply.

Chapter 8. Developing OS Programs under CMS 157

Developing OS Programs

[

OS Term/Function

CMS Equivalent

catalogued procedure

EXEC files can execute command sequences similar to
catalogued procedures, and provide for conditional execution
based on return codes from previous steps.

data set

Data sets are called files in CMS. CMS can simulate certain
OS data sets and can read real OS data sets only if they are
sequential or partitioned. CMS can never write to real OS
data sets. CMS reads and writes VSAM data sets.

data definition (DD)
card

The FILEDEF command allows you to perform the functions
of the DD statement to specify device types and output file
dispositions.

data set control block
(DSCB)

Information about a CMS disk file is contained in a file
status table (FST).

EXEC card

To execute a program in CMS you specify only the name of
the program if it is an EXEC, MODULE file, or CMS
command. To execute TEXT files, use the LOAD and START
commands.

job control language
(JCL)

CMS and user-written commands perform the functions of
JCL.

link-editing

The CMS LKED command creates LOADLIB libraries from
CMS TEXT files and/or OS object modules. The CMS LOAD
command loads TEXT files into virtual storage, and resolves

external references; the GENMOD command creates
MODULE files.

load module

Load modules are members of CMS LOADLIB libraries.
LOADLIB members are loaded, relocated, and executed by
the OSRUN command, and LOADLIB members are loaded
and relocated by the NUCXLOAD command. Also, LOADLIB
members are referenced by the LINK, LOAD, ATTACH and
XCTL macros.

object module

Language compiler output is placed in CMS files with a
filetype of TEXT.

partitioned data set

CMS MACLIBs, TXTLIBs, and LOADLIBs are the only CMS
files that resemble partitioned data sets.

STEPCAT, JOBCAT

VSAM catalogs can be assigned for jobs or job steps in CMS
by using the special ddnames IJSYSCT and IJSYSUC when
identifying catalogs.

STEPLIB, JOBLIB

The GLOBAL command establishes macro, text, and
LOADLIB libraries; you can indirectly provide job libraries
by accessing and releasing CMS disks that contain the files
and programs you need.

utility program

Functions similar to those performed by the OS utility
programs are provided by CMS commands.

volume table of
contents (VTOC)

The list of files on a CMS disk is contained in a file
directory.

Figure 18. OS Terms and CMS Equivalents

158 VM/SP CMS for System Programming

Using OS Data Sets in CMS

Daveloping O Programs
T OV |

You can have OS disks defined in your virtual machine configuration; they
may be either entire disks or minidisks: their size and extent depends on
their VM/SP directory entries. You can use partitioned and sequential data
sets on OS disks in CMS. If you want, you can create CMS files from your
OS data sets. If you have data sets on OS disks, you can read them from
programs you execute in CMS, but you cannot update them. The CMS
commands that recognize OS data sets on OS disks are listed in Figure 19.

Command

Operation

ACCESS

Makes the OS disk containing the data set available to your CMS
virtual machine.

ASSEMBLE

Assembles an OS source program under CMS.

DDR

Copies an entire OS disk to tape.

DLBL

Defines OS data sets for use with access method services and VSAM
files for program input/output.

FILEDEF

Defines the OS data set for use under CMS by associating an OS
ddname with an OS data set name. Once defined, the data set can be
used by an OS program running under CMS and can be manipulated
by the other commands that support OS functions.

GLOBAL

Makes macro libraries or LOADLIB libraries available to CMS. You
can prepare an OS library for reference by the GLOBAL command by
issuing a FILEDEF command for the data set and giving the data set
the appropriate filetype of MACLIB or LOADLIB.

LKED

Creates CMS LOADLIB libraries from CMS TEXT files and/or OS
object modules.

LISTDS

Lists information describing OS data sets residing on OS disks.

MOVEFILE

Moves data records from one device to another device. Each device is
specified by a ddname, which must have been defined via FILEDEF.
You can use the MOVEFILE command to create CMS files from OS
data sets.

NUCXLOAD

Loads, relocates, and establishes as a nucleus extension a load module
either from a CMS LOADLIB, an OS module library on an OS
formatted disk.

OSRUN

Loads, relocates, and executes a load module either from a CMS
LOADLIB or from an OS module library on an OS formatted disk.

QUERY

Lists (1) the files that have been defined with the FILEDEF and
DLBL commands (QUERY FILEDEF, QUERY DLBL), or (2) the
status of OS disks attached to your virtual machine (QUERY DISK,
QUERY SEARCH).

RELEASE

Releases an OS disk you have accessed (via ACCESS) from your CMS
virtual machine.

STATE

Verifies the existence of an OS data set on a disk. Before STATE can
verify the existence of the data set, you must have defined it (via
FILEDEF).

Figure 19. CMS Commands that Recognize OS Data Sets on OS Disks

When a language processor or a user-written program is executing in the
CMS environment and using OS-type functions, it is not executing OS code.

Chapter 8. Developing OS Programs under CMS 159

Developing O Programs

id

Instead, CMS provides routines that simulate the OS functions required to
support OS language processors and their generated object code.

CMS functionally simulates the OS macros in a way that presents
equivalent results to programs executing under CMS. The OS macros are
supported only to the extent stated in the publications for the supported
language processors and then only to the extent necessary to successfully
satisfy the specific requirement of the supervisory function.

Figure 22 on page 189 shows the OS macro functions that are partially or
completely simulated, as defined by SVC number.

0OS Simulated Data Sets

If you want to test programs in CMS that create or modify OS data sets,
you can write “OS simulated data sets.” These are CMS files that are
maintained on CMS disks, but in OS format rather than in CMS format.
Since they are CMS files, you can edit, rename, copy, or manipulate them
just as you would any other CMS file. Since they are in OS-simulated
format, files with variable-blocked records may contain block and record
descriptor words so that the access methods can manipulate them properly.

The files that you create from OS programs do not necessarily have to be
OS simulated data sets. You can create CMS files. The format of an output
file depends on how you specify the filemode number when you issue the
FILEDEF command to identify the file to CMS. If you specify the filemode
number as 4, CMS creates a file that is in OS simulated data set format on
a CMS disk. If you want to read an OS simulated data set that is variable
blocked or fixed blocked, rename the data set with a filemode number of 4.
CMS OS simulation routines are then able to read short blocks that are not
filled with records.

CMS can read and write OS simulated data sets using the BDAM, BPAM,
BSAM, and QSAM access methods. See “Access Method Support” on page
199 for a description of these access methods.

When an input or output error occurs, do not depend on OS sense bytes.
An error code is supplied by CMS in the ECB in place of the sense bytes.
These error codes differ for various types of devices and their meaning can
be found in the VM/[SP System Messages and Codes under DMS message
120S.

Note: Results may be unpredictable if two DCBs access the same data set
at the same time.

160 VM/SP CMS for System Programming

Daveloping OS Programs

]

Restrictions for Reading OS Data Sets

The following restrictions apply when you read OS data sets from OS disks
under CMS:

Read-password-protected data sets are not read.

RACF password protection is ignored.

BDAM and ISAM data sets are not read.

Multivolume data sets are read as single-volume data sets.
End-of-volume is treated as end-of-file and there is no end-of-volume
switching.

Keys in data sets with keys are ignored; only the data is read.

User labels in user-labeled data sets are bypassed. See “Tape Labels in
CMS” in the VM|SP CMS User’s Guide for details.

Results may be unpredictable if two DCBs access the same data set at
the same time.

An Indexed VT'OC on an OS disk is read the same as a standard OS
VTOC since there is no special support in CMS for this.

The following restrictions apply when you are reading OS data sets from
tapes under CMS:

o

The ACCESS Command

Read-password-protected data sets are read.
RACF password protection is ignored.

User labels in user-labelled data sets are bypassed. See “Tape Labels in
CMS” in the VM/SP CMS User’s Guide for details.

Results may be unpredictable if two DCBs access the same data set at
the same time.

Before CMS can read an OS data set that resides on a non-CMS disk, you
must issue the CMS ACCESS command to make the disk available to CMS.

The format of the ACCESS command is:

ACCESS | cuu mode [fext]

Chapter 8. Developing OS Programs under CMS 161

Developing OS Programs

For more details, see the VM/SP CMS Command Reference. You must not
specify options or file identification when accessing an OS disk.

The FILEDEF Command

Whenever you execute an OS program under CMS that has input and/or
output files or you need to read an OS data set onto a CMS disk, you must
first identify the files to CMS with the FILEDEF command. The FILEDEF
command in CMS performs the same functions as the data definition (DD)
card in OS job control language (JCL). The data definition card describes
the input and output files.

When you enter the FILEDEF command, you specify:

The ddname

The device type

A file identification, if the device type is DISK

Type of label on your tape file, if tape label processing is specified
Options (if necessary).

o 0 0 0o o

Some guidelines for entering these specifications follow.
Specifying the ddname

If the FILEDEF command is issued for a program input or output file, the
ddname must be the same as the ddname or file name specified for the file
in the source program. For example, you can have an assembler language
source program that contains the line:

INFILE DCB DDNAME=INPUTDD,MACRF=GL,DSORG=PS,RECFM=F,
LRECL=80

For a particular execution of this program, you want to use as your input
file a CMS file on your A-disk that is named MYINPUT FILE. You must
then issue a FILEDEF for this file before executing the program:

filedef inputdd disk myinput file al
If the input file you want to use is on an OS disk accessed as your C-disk

and it has a data set name of PAYROLL.RECORDS.AUGUST, then your
FILEDEF command might be:

filedef inputdd cl dsn payroll.records.august

' 162 VM/SP CMS for System Programming

Daevaeloping OS Programs

‘ R . [- 3

Specifying the Device Type

For input files, the device type you enter on the FILEDEF command
indicates the device from which you want records read. It can be DISK,
TERMINAL, READER (for input from real cards or virtual cards), or TAPn
(for tape). Using the above example, if your input file is to be read from
your virtual card reader, the FILEDEF command might be as follows:

filedef inputdd reader

Or, if you were reading from a tape attached to your virtual machine at
virtual address 181 (TAP1):

filedef inputdd tapl

For output files, the device you specify can be DISK, PRINTER, PUNCH,
TAPn (tape), or TERMINAL.

If you do not want any real I/O performed during the execution of a
program for a disk input or output file, you can specify the device type as
DUMMY:

filedef inputdd dummy
Entering File Identifications

If you are using a CMS disk file for your input or output, specify:

filedef ddname disk filename filetype filemode

Note: If * is used for the filemode of an output file, unpredictable results
may occur.

The filemode field is optional; if you do not specify it, your A-disk is
assumed.

If you want an output file to be constructed in OS simulated data set
format, you must specify the filemode number as 4. For example, if a
program contains a DCB for an output file with a ddname of OUTPUTDD
and you are using it to create a CMS file named DAILY OUTPUT on your
B-disk, specify:

filedef outputdd disk daily output b4

If your input file is an OS data set on an OS disk, you can identify it in
several ways:

o If the data set name has only two qualifiers, for example
HEALTH.RECORDS, you can specify:

filedef inputdd disk health records bl

o If it has more than two qualifiers, you can use the DSN keyword and
enter:

Chapter 8. Developing OS Programs under CMS 163

[Devcg;ll@

ping OS Programs

[

filedef inputdd bl dsn health records august 1974
— or --
filedef inputdd bl dsn health.records.august.1974

Or you can request a prompt for a complete data set name:

filedef inputdd bl dsn ?
Enter data set name:
health.records.august.1974

Note: When you enter a data set name using the DSN keyword either
with or without a request for prompting, you should omit the device
type specification of DISK, unless you want to assign a CMS file
identifier, as in the example below.

o You can also relate an OS data set name to a CMS file identifier:

filedef inputdd disk ossim file cl dsn monthly records
-—— or --—
filedef inputdd disk ossim file cl dsn monthly.records

Then you can refer to the OS data set MONTHLY.RECORDS by using
the CMS file identifier, OSSIM FILE:

state ossim file c

When you do not issue a FILEDEF command for a program input or output
file or if you enter only the ddname and device type on the FILEDEF
command, such as:

filedef oscar disk

then CMS issues a default file definition, as follows:

FILEDEF ddname DISK FILE ddname Al

where ddname is the ddname you assigned in the DDNAME operand of the
DCB macro in your program or on the FILEDEF command. For example, if
you assign a ddname of OSCAR to an output file and do not issue a
FILEDEF command before you execute the program, then the CMS file
FILE OSCAR Al is created when you execute the program. If the filetype
of a CMS input file, FILE ddname Al, is the same as the assigned
DDNAME, the file can be identified by a default file definition. Even
though an input file can be defined explicitly or by default, if an attempt is
made to read the file and the file is not found, unpredictable results may
occur.

Specifying CMS Tape Label Processing

You can use the label operands on the FILEDEF command to indicate that
CMS tape label processing is not desired (this is the default). If CMS tape
label processing is desired you can use the label operands on the FILEDEF
command to indicate the types of labels on your tape. See the VM/SP CMS
User’s Guide for a description of CMS tape label processing. '

164 VM/SP CMS for System Programming

s

Davaelo L)unag 09 Pregrarms

S —

Specifying Options

The FILEDEF command has many options; those mentioned below are a
sampling only. For complete descriptions of all the options of the FILEDEF
command, see the VM[SP CMS Command Reference.

Supplying File Format Information: If you are using the FILEDEF
command to relate a data control block (DCB) in a program to an input or
output file, you may need to supply some of the file format information on
the FILEDEF command line, such as the block size (BLOCK), record length
(LRECL), record format (RECFM), and data set organization (DSORG). For
example, if you have coded a DCB macro for an output file as follows:

OUTFILE DCB DDNAME=0OUT , MACRF=PM, DSORG=PS
then, when you are issuing a FILEDEF for this ddname, you must specify

the format of the file. To create an output file on disk blocked in OS
simulated data set format, you could issue:

filedef out disk myoutput file a4 (recfm fb lrecl 80 block 1600

To punch the output file onto cards, you would issue:

filedef out punch (lrecl 80 recfm £

You can omit file format information on the FILEDEF command line
whenever it is supplied on the DCB macro or whenever your file exists on
an OS disk. For existing CMS disk files, format information is required
only if you want OS-simulated data set formats other than F or V. When
the OPEN macro instruction is executed, the CMS simulation of the OS
OPEN routine initializes the data control block (DCB). The DCB fields are
filled in with information from the DCB macro instruction, the information
specified on the FILEDEF command, or if the data set already exists, the
data set label. However, if more than one source specifies information for a
particular field, only one source is used.

The order in which the DCB fields are filled follows:

1. The DCB macro instruction in your program
2. The fields you had specified on the FILEDEF command
3. The data set label if the data set already exists.

The DCB macro instruction takes precedence over the FILEDEF and the
data set label. The FILEDEF takes precedence over the data set label.
Data set label information from an existing CMS file is used only when the
OPEN is for input or update, otherwise, the OPEN routine erases the
existing file.

You can modify any DCB field either before the data set is opened or
through a data control block open exit. CMS supports only the data
control block exit of the EXIT LIST (EXLST) options. When the data set is
closed, the DCB is restored to its original condition. Fields that were

Chapter 8. Developing OS Programs under CMS 165

Developing OS Pregrams

[[]

merged in at OPEN time from the FILEDEF and the data set label are
cleared.

Keeping File Definitions: Usually, when you execute one of the language
processors, all existing file definitions are cleared. If the development of a
program requires you to recompile and re-execute it frequently, you might
want to use the PERM option when you issue file definitions for your input
and output files. For example:

cp spool punch to *
filedef indd disk test file al (lrecl 80 perm
filedef outdd punch (lrecl 80 perm

In this example, since you spooled your virtual punch to your own virtual
card reader, output files are placed in your virtual reader. You can either
read or delete them.

All file definitions issued with the PERM option stay in effect until you log
off, specifically clear those definitions, or redefine them:

filedef indd clear
filedef outdd tapl (lrecl 80

In the above example, the definition for INDD is cleared; OUTDD is
redefined as a tape file.

When you issue the command:

filedef * clear

all file definitions are cleared, except those you enter with the PERM
option.

When a program abends, or when you issue the HX Immediate command, all
file definitions are cleared, including those entered with the PERM option.

Adding Records to a File: When you issue a FILEDEF command for an
output file and assign it a CMS file identifier that is identical to that of an
existing CMS file, the existing file is replaced by the new output file if
anything is written to that ddname. If you want, instead, to have new
records added to the bottom of the existing file, you can use the DISP MOD
option:

filedef outdd disk new update al (disp mod

The file must be on a disk accessed as read/write. Note that an extension of
a disk is read/only. When adding new records using the DISP MOD option,
use an editor to delete the end-of-file (EOF) mark at the end of the existing
file for fixed-block (FB) OS simulated files (filemode of A4).

Specifying a Member Name of a Data Set: If the file you want to read is
a member of an OS partitioned data set (or a CMS MACLIB or TXTLIB),
you can use the MEMBER option to specify the member name. For
example:

166 VM/SP CMS for System Programming

Davaloping OS Proqgrams

filedef test c dsn sysl.maclib (member test
defines the member TEST from the OS macro library SYS1.MACLIB.

Receiving Control during I/O Operation: The AUXPROC option is valid
only when FILEDEF is executed by an internal program call. It cannot be
entered as a terminal command. The CMS language interface programs use
this feature for special I/O handling of certain (utility) data sets.

The AUXPROC option, followed by a fullword address of an auxiliary
processing routine, allows that routine to receive control from DMSSEB
before any device I/O is performed. At the completion of its processing, the
auxiliary routine returns control to DMSSEB signaling whether or not I/O
has been performed. If it has not been done, DMSSEB performs the
appropriate device I/O.

When control is received from DMSSEB, the general purpose registers
contain the following information:

GPR2 = data control block (DCB) address

GPR3 = base register for DMSSEB

GPR8 = CMS OPSECT address

GPR11 = file control block (FCB) address

GPR14 = return address in DMSSEB

GPR15 = auxiliary processing routine address
all other registers = work registers

The auxiliary processing routine must provide a save area to save the
general purpose registers. This routine must also perform the save
operation. DMSSEB does not provide the address of a save area in general
purpose register 13, as is usually the case. When control returns to
DMSSEB, the general purpose registers must be restored to their original
values. Control is returned to DMSSEB by branching to the address
contained in general purpose register 14.

GPR15 is used by the auxiliary processing routine to inform DMSSEB of
the action that has been or should be taken with the data block as follows:

GPR15=0 No I/O performed by AUXPROC routine. DMSSEB
performs I/O.

GPR15<0 I/O performed by AUXPROC routine and error was
encountered. DMSSEB takes error action.

GPR15>0 I/O performed by AUXPROC routine with residual count
in GPR15. DMSSEB returns normally.

GPR15=65,536 I/O performed by AUXPROC routine with zero residual
count.

Chapter 8. Developing OS Programs under CMS 167

Developing O Pregrams

[

——]

Passing Information to the DMSTVI Routine: An interface routine,
DMSTVI, can be used to give control to a different multivolume switching
routine than the one supplied with VM (DMSTVS) or a tape management
system.

Use the new SYSPARM option to pass information not included on the
FILEDEF or LABELDEF command to the DMSTVI routine.

When DMSTVI is called, the general-purpose registers contain the
following information:

GPR 1 = Address of a parameter list defined by the TVISECT DSECT
GPR 14 = Return address
GPR 15 = Entry point address

The calling routine saves and restores the register contents.

When DMSTVI gets control, it must check the call function keyword in the
register 1 PLIST. The call function keyword identifies the function being
processed when DMSTVI is called. DMSTVI should use the information in
the PLIST to build a command or to invoke the tape volume switching
routine or tape management system.

When DMSTVI is called during FILEDEF processing, only the call function
(SYSPARM) and the SYSPARM string address and length field are filled in.
The other fields are set to zeroes.

Because DMSTVI gets control during OPEN macro processing before any
I/O is done, you do not have to mount a tape before OPEN is issued. The
interface routine can mount the tape before returning control to OPEN
macro processing.

If you specify only the first volid of a multivolume tape and the end of the
first volume is reached, DMSTVI gets control with a call function of ‘EOV’
and a volid of SCRATC. The tape management system can mount the next
volume if it knows what tape is currently mounted on the drive and the
volid of the next volume in the series.

A 44 character fileid can now be entered with the LABELDEF command.
The 44 character fileid is passed to DMSTVI during OPEN, EOV, and
CLOSE macro processing. DMSTVI should check the TVISCRAT field in
the register 1 PLIST to determine if a tape was requested from the tape
management system. DMSTVI checks the TVISCRAT field by giving a
fileid.

If the TVISCRAT field contains ‘SCRATCH’, a scratch tape was requested.
If this field contains ‘NOSCRATC’, a scratch was not requested -- ‘SCRATC’
was put in TVIVOLID as a default. If a fileid is also specified (TVIFILID),
a tape containing this fileid was requested. If you want to mount a tape by
specifying just the fileid, you should not specify any volid on FILEDEF or
LABELDETF (including ‘SCRATCH’).

168 VM/SP CMS for System Programming

Paeveloping O Progranmss

t e —]

If no fileid is specified on the LABELDEF command, the TVIFID field in
the register 1 PLIST contains all zeros. The system uses the ddname
(TVIFILE) as the default.

DMSTVI must return to the calling routine when processing is complete.

Creating CMS Files from OS Data Sets

If you have data sets on OS disks, on tapes, or on cards, you can copy them
into CMS files so that you can edit, modify, or manipulate them with CMS
commands. The CMS MOVEFILE command copies OS (or CMS) files from
one device to another. You can move data sets from any valid input device
to any valid output device.

Before using the MOVEFILE command, you must define the input and
output data sets or files and assign them ddnames using the FILEDEF
command. If you use the ddnames INMOVE and OUTMOVE, then you do
not need to specify the ddnames when you issue the MOVEFILE command.
For example, the following sequence of commands copies a CMS disk file
into your virtual card punch:

filedef inmove disk diskin file al
filedef outmove punch
movefile

The result of these commands is effectively the same as if you had issued
the command:

punch diskin file (noheader

The example does, however, illustrate the basic relationship between the
FILEDEF and MOVEFILE commands. In addition to the MOVEFILE
command, if the OS input data set is on tape or cards, you can use the
TAPPDS or READCARD command to create CMS files. These are also
discussed below.

Note: The MOVEFILE command does not support data containing spanned
records. In addition, when copying a variable length data set (RECFM =V
or VB) from an OS disk to a CMS disk, the logical record length (LRECL)
of the file that is created on the CMS disk is equal to the size of the largest
record in the data set being copied. If the file that is being created has a
filemode of 4, the logical record length will be equal to the LRECL of the
largest record plus 8 bytes. The actual LRECL of the new file can be
determined by using the CMS LISTFILE command.

Copying Sequential Data Sets from Disk

The MOVEFILE command copies a sequential OS disk data set from a
read-only OS disk into an integral CMS file on a CMS read/write disk. You
use FILEDEF commands to identify the input file disk mode and data set
name:

filedef inmove cl dsn sales.manual

Chapter 8. Developing OS Programs under CMS 169

Developing OS Pregrams

[

the CMS output file’s disk location and fileid:

filedef outmove disk sales manual al

and then you issue the MOVEFILE command:

movefile

Copying Partitioned Data Sets From Disk

The MOVEFILE command can copy partitioned data sets (PDS) into CMS
disk files and create separate CMS files for each member of the data set.
You can have the entire data set copied, or you can copy only a selected
member. For example, if you have a partitioned data set named
ASSEMBLE.SOURCE whose members are individual assembler language
source files, your input file definition might be:

filedef inmove cl dsn assemble source

filedef inmove cl dsn assemble.source

To create individual CMS ASSEMBLE files, you would issue the output file
definition as:

filedef outmove disk gprint assemble al

Then use the PDS option of the MOVEFILE command:

movefile (pds

When the CMS files are created, the filetype on the output file definition is
used for the filetype and the member names are used instead of the CMS
filename you specified.

If you want to copy only a single member, you can use the MEMBER
option of the FILEDEF command:

filedef inmove disk assemble source c (member gprint

and omit the PDS option on the MOVEFILE command:

movefile

The following figure summarizes the various ways that you can create CMS
files from OS data sets.

170 VM/SP CMS for System Programming

Dovuﬂ punag Qo Hno Jrauun(“

|

Input File:

Source CMS Command Examples

An OS Sequential Data Set Named:

COMPUTE.TEST.RECORDS

CMS OQutput File
COMPUTE RECORDS A1

TEST RECORDS Al

NEWTEST COMPUTE A1

COMPUTE CARDS A1

COMPUTE TEST Al

TEST.CASES

SIMPLE, COMPLEX, MIXED

CMS Output File(s)

SIMPLE TESTCASE A1
COMPLEX TESTCASE Al
MIXED TESTCASE

SIMPLE TESTRUN A1

Disk: filedef indd c1 dsn compute test records
0S R/0O filedef outdd disk compute records a1
C-disk movefile indd outdd

Tape: filedef inmove tap1 (irec! 80
181 filedef outmove disk test records al

movefile
tappds newtest compute (nopds
Cards: filedef cardin reader
filedef diskout disk compute cards a1
movefile cardin diskout
readcard compute test
Input file: OS Partitioned Data Set Named:
Members named:

Source CMS Command Examples

Disk: filedef infile c1 dsn test cases
0S R/0 filedef outfile disk new testcase al
C-disk movefile infile outfile (pds

filedef in c1 dsn test cases (member simple FILE RUN A1
filedef run disk
movefile in run

Tape: tappds * testrun (tap2

182 P

COMPLEX TESTRUN A1
MIXED TESTRUN A1

Figure 20. Creating CMS Files from OS Data Sets

Using CMS$ Libraries

CMS provides three types of libraries to aid in OS program development:

o Macro libraries contain macro definitions and/or copy files.

o Text, or program libraries contain relocatable object programs

(compiler output).

o LOADLIB libraries contain link edit files (load modules).

These CMS libraries are like OS partitioned data sets; each has a directory
and members. Since they are not like other CMS files, you create, update,
and use them differently than you do other CMS files. Although these
library files are similar in function to OS partitioned data sets, OS macros

Chapter 8. Developing OS Programs under CMS 171

Developing OS Pregrams

[C]

should not be used to update them. Macro libraries are disc¢ussed below;
text libraries are discussed under “TEXT Libraries (TXTLIBs)” on page 181,
and LOADLIB libraries are discussed under “OS Module Libraries and
CMS LOADLIBS” on page 183.

Macro Libraries (MACLIBs)

A CMS macro library has a filetype of MACLIB. You can create a
MACLIB from files with filetypes of MACRO or COPY. A MACRO file may
contain macro definitions. COPY files contain predefined source
statements.

The MACLIB Command

The MACLIB command performs a variety of functions. You use it to:

Create the MACLIB (GEN function). ,

Add, replace, or delete members (ADD, REP, and DEL functions).
Compress the MACLIB (COMP function).

List the contents of the MACLIB (MAP function).

Descriptions of these MACLIB command functions follow.

Creating a Macro Library: The GEN (generate) function creates a CMS
macro library from input files specified on the command line. The input
files must have filetypes of either MACRO or COPY. For example:

maclib gen osmac access time put regequ

creates a macro library with the file identifier OSMAC MACLIB Al from
macros existing in the files with the file identifiers:

ACCESS [MACRO\ , TIME [MACRO) , PUT {MACRO , and REGEQU {MACRO.
CcoPY COPY COPY COPY

If a file named OSMAC MACLIB Al already exists, it is erased.

Assume that the files ACCESS MACRO, TIME COPY, PUT MACRO, and
REGEQU COPY exist and contain macros in the following form:

ACCESS MACRO COoPY PUT MACRO REGEQU COPY
GET *COPY TTIMER PUT XREG
TTIMER
pPUT *COPY STIMER YREG
STIMER

The resulting file, OSMAC MACLIB Al, contains the members:
GET STIMER

PUT PUT
TTIMER REGEQU

172 VM/SP CMS for System Programming

Developling OS Programs

N]

The PUT macro, which appears twice in the input to the command, also
appears twice in the output. The MACLIB command does not check for
duplicate macro names. If, at a later time, the PUT macro is requested from
OSMAC MACLIB, the first PUT macro encountered in the directory is
used.

When COPY files are added to MACLIBs, the name of the library member is
taken from the name of the COPY file or from the *COPY statement, as in
the file TIME COPY, above.

Note: Although the file REGEQU COPY contained two macros, they were
both included in the MACLIB with the name REGEQU. When the input

file is a MACRO file, the member name(s) are taken from macro prototype
statements in the MACRO file.

Adding a Member to a Macro Library: The ADD function appends new
members to an existing macro library. For example, assume that OSMAC
MACLIB Al exists as created in the example in the explanation of the GEN
function and the file DCB COPY exists as follows:

*COPY DCB
DCB macro definition
*COPY DCBD
DCBD macro definition

If you issue the command:

maclib add osmac dcb

the resulting OSMAC MACLIB Al contains the members:

GET PUT
PUT REGEQU
TTIMER DCB
STIMER DCBD

Replacing a Member of a Macro Library: The REP (replace) function
deletes the directory entry for the macro definition in the files specified. It
then appends new macro definitions to the macro library and creates new
directory entries. For example, assume that a macro library MYMAC
MACLIB contains the members ALPHA, BETA, and SIGMA, and that the
following command is entered:

maclib rep mymac alpha sigma

The files represented by file identifiers ALPHA MACRO and SIGMA
MACRO each have one macro definition. After execution of the command,
MYMAC MACLIB contains members with the same names as before, but
the contents of ALPHA and SIGMA are different.

Chapter 8. Developing OS Programs under CMS 173

Developing O Programs

[

Deleting a Member of a Macro Library: The DEL (delete) function
removes members from the macro library directory and compresses the
directory so there are no unused entries. The macro definition still
occupies space in the library, but since no directory entry exists, it cannot
be accessed or retrieved. If you attempt to delete a macro for which two
macro definitions exist in the macro library, only the first one encountered
is deleted. For example:

maclib del osmac get put ttimer dcb

deletes macro names GET, PUT, TTIMER, and DCB from the directory of
the macro library named OSMAC MACLIB. Assume that OSMAC exists as
in the ADD function example. After the above command, OSMAC MACLIB
contains the following members:

STIMER
PUT
REGEQU
DCBD

Compressing a Macro Library: Execution of a MACLIB command with
the DEL or REP functions can leave unused space within a macro library.
The COMP (compress) function removes any macros that do not have
directory entries. This function uses a temporary file named MACLIB
CMSUT1. For example, the command:

maclib comp mymac
compresses the library MYMAC MACLIB.

Listing Information about Members of a Macro Library: The MAP
function creates a list containing the name of each macro in the directory,
the size of the macro, and its position within the macro library. If you want
to display a list of the members of a MACLIB at the terminal, enter the
command:

maclib map mylib (term

The default option, DISK, creates a file on your A-disk, which has a filetype
of MAP and a filename corresponding to the filename of the MACLIB. If
you specify the PRINT option, the list is spooled to your virtual printer as
well as being written onto disk.

Note: The DISK, PRINT, and TERM options erase the old MAP file.

You can also retrieve information for specific members of the library by
indicating the member names following the MAP operand. For example:

maclib map mylib swerve yield

returns the MAP output for only members SWERVE and YIELD of MYLIB
MACLIB.

If you want to place that information in the program stack, use the STACK
option of the MAP operand. The information can be stacked FIFO (first-in

174 VM/SP. CMS for System Programming

Devalo

[e e e eai e e s e are

NG O Programs

- P -

first-out) or LIFO (last-in first-out). The default order when STACK is
specified alone is FIFO. The options STACK, STACK FIFO, and FIFO are
equivalent. The options STACK LIFO and LIFO are equivalent. For
example:

maclib map mylib neutral reverse (stack fifo

stacks in the program stack, the MAP output for the NEUTRAL and
REVERSE members of MYLIB in first-in first-out order.

See “The MACLIST Command” on page 176 for more information on listing
members of a MACLIB.

Manipulating MACLIB Members

The following CMS commands recognize MACLIBs and have a MEMBER
option:

XEDIT (to create and/or edit a specific member).
PUNCH (to punch a member)

FILEDEF (to establish a file definition for a member)
PRINT (to print a member)

TYPE (to display a member at the terminal)

0 0 0 0 ©

You can use the editor to create MACRO and COPY files and then use the
MACLIB command to place the files in a library. Once they are in a
library, you can erase the original files, or you can edit a member of a CMS
library using the XEDIT command with the MEMBER option. For
example, entering the command:

xedit mylib maclib al (member swerve

If the SWERVE member does not exist in that library, a new file is created
with a fileid of SWERVE MEMBER Al. If SWERVE is an existing member
of MYLIB MACLIB, you can edit the file.

You can also select members of a specific CMS library to edit from your
MACLIST (invoked by the MACLIST command).

Note: You cannot create a new MACLIB using the MEMBER option of the
XEDIT command. You must use the MACLIB command with the GEN
option to create a new MACLIB.

To extract a member from a macro library, you can use either the PUNCH

or the MOVEFILE command. If you use the PUNCH command, you can
spool your virtual card punch to your own virtual reader:

cp spool punch to *

Then punch the member:

punch testmac maclib (member get noheader

and read it back onto disk:

Chapter 8. Developing OS Programs under CMS 175

Developing 0S8 Programs

The MACLIST Command

readcard get macro

In the above example, the member was punched with the NOHEADER
option of the PUNCH command, so that a name could be assigned on the
READCARD command line. If a header card had been created for the file,
it would have indicated the filename and filetype as GET MEMBER.

If you use the MOVEFILE command, you must issue a file definition for the

input member name and the output macro or copy name before entering the
MOVEFILE command:

filedef inmove disk testcopy maclib (member enter
filedef outmove disk enter copy a
movefile

This example copies the member ENTER from the macro library
TESTCOPY MACLIB into a CMS file named ENTER COPY.

When you use the PUNCH or MOVEFILE commands to extract members
from CMS MACLIBs, each member is followed by a /[record, which is a
MACLIB delimiter. You can edit the file and use the DELETE
subcommand to delete the [/ record.

If you want to move the complete MACLIB to another file, use the
COPYFILE command.

To print a single member or all members of a macro library, use the CMS
PRINT command with the MEMBER option. To display on the terminal a
single member or all members of a macro library, use the CMS TYPE
command with the MEMBER option.

The MACLIST command displays a list of all members in a specified macro
library. MACLIST provides you with an easy way to select and edit CMS
maclib members. CMS commands can be issued against the members
directly from the displayed list. The commands execute when you press the
ENTER key.

In the MACLIST environment, information that is normally provided by the
MACLIB command (with the MAP option) is displayed under the control of
the System Product editor. You can use XEDIT subcommands to
manipulate the list itself.

The following MACLIST screen was created by issuing the MACLIST
command as follows:

maclist mylib

Note that the members are sorted alphabetically by member name.
Members with the same name are then sorted by index number (least to
greatest).

176 VM/SP CMS for System Programming

D@weﬂoper) Drogr"’m’ub

e e e e e e e S — -]

rFARRELL MACLIST A0 V 130 Trunc=130 Size=18 Line=1 Col=1 Alt=0 \
Cmd Member name Index Records Library name Library type Mode
CAUTION 190 6 MYLIB MACLIB Al
FAST 240 25 MYLIB MACLIB Al
FORWARD 613 57 MYLIB MACILIB Al
GO 197 25 MYLIB MACLIB Al
GO 615 25 MYLIB MACLIB Al
LTURN 546 55 MYLIB MACLIB Al
NEUTRAL 266 5 MYLIB MACLIB Al
PARK 602 4 MYLIB MACLIB Al
REVERSE 272 118 MYLIB MACLIB Al
RTURN 524 21 MYLIB MACLIB Al
SKID 391 43 MYLIB MACLIB Al
SLOW 671 61 MYLIB MACLIB Al
SLOWER 435 5 MYLIB MACLIB Al
SLOWEST 441 82 MYLIB MACLIB Al
SPEED 2 132 MYLIB MACLIB Al
STOP 607 5 MYLIB MACLIB Al
SWERVE 223 16 MYLIB MACLIB Al
YIELD 135 54 MYLIB MACLIB Al
1= Help 2= Refresh 3= Quit 4= Sort(name) 5= Sort(index) 6= Sort(size)
7= Backward 8= Forward 9= FL /n 10= 11= XEDIT 12= Cursor
===
XEDIT 1 File

J

Figure 21. Sample MACLIST Screen

Finding Members in Your MACLIST List: If there are many members in
the maclib, the list may take up more than one screen. To find a member in
your MACLIST list, you can do any of the following:

Scroll through the list using the PF keys.

PF7 Scrolls backward one full screen.

PF8 Scrolls forward one full screen.
Rearrange the list using one of the following PF keys:

PF4 Sorts the list by member name. This is how the list is
initially arranged.

PF5 Sorts the list by index (largest first). The most recently
updated members have a greater number.

PF6 Sorts the list by size (largest to smallest).

Use the XEDIT subcommand LOCATE if you know the member name
that you are looking for.

Rearrange the list by entering one of the following synonyms on the
command line:

SINDEX Sorts the list by index (greatest to least) within a library.

Chapter 8. Developing OS Programs under CMS 177

Developing OS Programs

[

SLIB Sorts the list alphabetically by library fileid.

SNAME Sorts the list alphabetically by member name. This is how
the list is initially arranged.

SSIZE Sorts the list by member size (number of records, greatest
to least).

Entering Commands in the MACLIST Environment: You can type
commands that operate on member names in the list directly on the lines of
the MACLIST display. When you press the ENTER key, all commands
typed on the lines in the file displayed on the current screen are executed.
Symbols can be used to represent operands in the command to be executed.
Symbols are needed if the command to be executed has operands or options
that follow the fileid. For example to issue the PRINT command for this
member of your MACLIST:

NEUTRAL 266 5 MYLIB MACLIB Al

type directly on the line that contains this member as follows:

print /EUTRAL 266 5 MYLIB MACLIB Al

and then press the ENTER key. Refer to the MACLIST command in the
VM|SP CMS Command Reference for more information about using
symbols in MACLIST.

Another way to issue commands that make use of member names displayed
is to move the current line to the first (or only) member you want the
command to use. Then issue an EXECUTE command (in the form-
“EXECUTE lines command”) from the XEDIT command line. This method
may be used on both display and typewriter terminals. You can also enter
commands from the MACLIST command line.

Editing a Maclib Member: The MACLIST command allows you to select
and edit a CMS maclib member from the list. To edit a member, position
the cursor on the line that contains the member to be edited and press the
PF11 key. Otherwise, you can edit a CMS maclib member by using the
XEDIT command with the MEMBER option. For example, to edit the
SWERVE member of MYLIB maclib, enter:

xedit mylib maclib al (member swerve

If the SWERVE member did not exist in MYLIB MACLIB, a new file is
created with a fileid of SWERVE MEMBER A1l.

178 VM/SP CMS for System Programming

h)ow,!lon)m J S L)“L)” PG

|

Adding and Replacing Maclib Members: When the MEMBER option is
specified for the XEDIT command for a member that does not exist in the
library, a new file is created with the fileid of “membername MEMBER fm.”

If the MEMBER option is specified on the XEDIT command for an existing
member of a library, the member is read into a file called “membername
MEMBER fm” for you to edit.

When you issue FILE or SAVE for the new or changed member, the library
directory is updated. The new or changed member and the updated library
directory are added to the end of the library. If the directory already
contains a member with the same name as the one being saved, the old
entry is blanked out, so that the updated member replaces the old version.

Deleting Maclib Members: Use the DISCARD command to delete a member
from a library. DISCARD is equivalent to the CMS command MACLIB
DEL. DISCARD can either be typed in the command area of the line that
describes the member you want discarded, or it can be entered from the
command line (at the bottom of the screen). DISCARD can only be used
while in the FILELIST, RDRLIST, MACLIST, and PEEK command
environments.

Setting MACLIST Defaults: When XEDIT is invoked by the MACLIST
command to display the list, the default XEDIT macro, PROFMLST XEDIT,
is executed. If you want to invoke a different XEDIT macro, you can
specify the PROFILE option with the MACLIST command. For example, to
invoke MACLIST with the MYMCLST XEDIT macro, enter

maclist mylib (profile mymclst

You can do the same with the COMPACT and NOCOMPACT options of the
MACLIST command.

If you are using an alternate profile most of the time, you may change the
default profile with the DEFAULTS command. For example:

defaults set maclist profile mymclst

Entering the DEFAULTS command with no options provides you with the
status of defaults currently in effect. For example, entering

defaults

after changing the XEDIT macro, returns the following information:

Chapter 8. Developing OS Programs under CMS 179

‘Developing OS Programs

The following default options have been set:

Filelist options = PROFILE PROFFLST NOFILELIST

Help options = SCREEN BRIEF ALL

Maclist options = PROFILE MYMCLST NOCOMPACT

Note options = PROFILE PROFNOTE SHORT LOG NOACK NOTEBOOK ALL
Peek options = PROFILE PROFPEEK FROM 1 FOR 200

Rdrlist options =
Receive options =

PROFILE PROFRLST
LOG OLDDATE NOTEBOOK ALL

Sendfile options = NEW TYPE NOFILELIST LOG NOACK
Tell options = MSGCMD MSG

To change any default options enter DEFAULTS Set Cmdname Optl <Opt2..>

The GLOBAL Command

System MACLIBs

When you want to assemble or compile a source program that uses macro
or copy definitions, you must ensure that the library containing the code is
identified before you invoke the assembler. Otherwise, the library is not
searched. You identify libraries to be searched using the GLOBAL
command. For example, if you have two MACLIBs that contain your
private macros and copy files whose names are TESTMAC MACLIB and
TESTCOPY MACLIB, you would issue the command:

global maclib testmac testcopy

The libraries you specify on a GLOBAL command line are searched in the
order you specify them. A GLOBAL command remains in effect for the
remainder of your terminal session, until you issue another GLOBAL
MACLIB command or IPL. CMS again. To find out what macro libraries
are currently available for searching, issue the command:

query maclib

You can reset the libraries or the search order by reissuing the GLOBAL
command.

The macro libraries that are on the system disk contain CMS and OS

assembler language macros you may want to use in your programs. The
MACLIBs are:

o CMSLIB MACLIB contains the CMS macros from VM/370.

o DMSSP MACLIB contains the macros that are new or changed in
VM/SP.

Note: When assembling programs that use CMS macros, both of these
libraries should be identified via the GLOBAL command. DMSSP
should precede CMSLIB in the search order.

o OSMACRO MACLIB contains the OS macros that CMS supports or
simulates or those that require no CMS support.

180 VM/SP CMS for System Programming

2l00IE] O Predranms

S]

o OSMACRO1 MACLIB contains the macros CMS does not support or
simulate. (You can assemble programs in CMS that contain these
macros, but you must execute them in an OS virtual machine.)

o OSVSAM MACLIB contains the subset of supported OS/VSAM macros.
o TSOMAC MACLIB contains TSO macros.
o DOSMACRO MACLIB contains macros used internally in CMS/DOS.

Note: The DOSMACRO MACLIB contains macros used internally by
CMS/DOS system routines. These macros should not be used in user
written programs.

To obtain a list of macros in any of these libraries, use either the MACLIST
command or the MACLIB command with the MAP function. In the
MACLIST environment, you can issue CMS commands against the members
directly from the displayed list. You can find more information about the
MACLIST command in the VM/SP CMS Command Reference.

TEXT Libraries (TXTLIBs)

The TXTLIB Command

You may want to keep your TEXT files in text libraries. These files have a
filetype of TXTLIB. You can create a TXTLIB from files with a filetype of
TEXT. Like MACLIBs, TXTLIBs have a directory and members.

TXTLIBs are created and modified by the TXTLIB command, which has
functions similar to the MACLIB command:

o Create the TXTLIB (GEN function).

o Add members to the TXTLIB (ADD function).

o Delete members of the TXTLIB and compress the TXTLIB (DEL
function).

o List the members of the TXTLIB (MAP function).

There is no REP function. You must use a DEL followed by an ADD to
replace an existing member.

Creating a TXTLIB: The TXTLIB command with the FILENAME option
specified reads the object files as it writes them into the library and creates
a directory entry for each filename. If you have a TEXT file named
MYPROG, which has an entry point named BEGIN, create the TXTLIB
named TESTLIB as follows:

txtlib gen testlib myprog (filename
TESTLIB contains a member name MYPROG with an entry point BEGIN,

Specify the member name MYPROG to reference this TXTLIB member. If
you do not specify the FILENAME option, TESTLIB will contain no entry

Chapter 8. Developing OS Programs under CMS 181

Devel

[

oping O% Programs

for the name MYPROG. You will have to specify the member name BEGIN
to reference this TXTLIB member.

Loading and Executing TXTLIBs: When you want to load members of
TXTLIBs into storage to execute them (ust as you execute TEXT files), you
must issue the GLOBAL command to identify the TXTLIB:

global txtlib testlib
load begin (start

When you specify more than one TXTLIB on the GLOBAL command line,
the order of search is established for the TXTLIBs. However, if the AUTO
option of the LOAD and INCLUDE commands is in effect (it is the default),
CMS searches for TEXT files before searching active TXTLIBs.

When the TXTLIB command processes a TEXT file, it writes an LDT
(loader terminate) card at the end of the TEXT file so that when a load
request is issued for a TXTLIB member loading terminates at the end of the
member. If you add OS linkage editor control statements to the TEXT file
(using the CMS editor) before you issue the TXTLIB command to add the
file to a TXTLIB, the control statements are processed as follows:

NAME Statement: A NAME statement causes the TXTLIB command to
create the directory entry for the member using the specified name.
Thereafter, when you want to load that member into storage or delete it
from the TXTLIB you must refer to it by the name specified on the NAME
statement.

Note: The FlLename option overrides any name card found in a text file.
The name card functions as before, but the specified file name becomes the
membername in the TXTLIB. The name card is the only entry within that
membername of the TXTLIB.

The loader does not use name cards to resolve entry points. It is important
that the name on the name card be the same as the name on the CSECT or
entry card. This will ensure that the loader will find the correct text deck
and loader tables (any external references) will be resolved with the entry
point. If the names differ, the loader will load the text deck based on the
name card (or file name). However, the loader tables will be set up
according to entry or CSECT cards encountered during the load. Any
external reference using the name from the name card will be resolved as
Zeros.

ENTRY Statement: If you use an ENTRY statement, the entry point you
specify is validated and checked for a duplicate. If the entry point name is
valid and there are no duplicates in the TEXT file, the entry name is
written in the LDT card. Otherwise, an error message is issued. When this
member is loaded, execution begins at the entry point specified.

182 VM/SP CMS for System Programming

Davelopning O Prograrns

ALIAS Name: An entry is created in the directory for the ALIAS name
you specify. A maximum of 16 alias names can be used in a single text
deck. You may load the single member and execute it by referring to the
alias name, but you cannot use the alias name as the object of V-type
address constant (VCON) because the address of the member cannot be
resolved.

SETSSI Card: TXTLIB command information you specify on the SETSSI
card is written in bytes 26 through 33 of the LDT card.

All other OS linkage editor control statements and commands are ignored
by the TXTLIB command and written into the TXTLIB member. When you
attempt to load the member, the CMS loader flags these cards as invalid.
These cards may be added as history information to a module if you specify
the HIST option on the LOAD or INCLUDE commands and then issue a
subsequent GENMOD command.

Manipulating TXTLIB Members

The following CMS commands recognize TXTLIBs and have a MEMBER

option:

o PUNCH
o PRINT
o TYPE

Use the CMS PUNCH command with the MEMBER option to punch a
single member or all members of a TXTLIB. Use the CMS PRINT command
with the MEMBER option to print a single member or all members of a
TXTLIB. Use the CMS TYPE command with the MEMBER option to
display on the terminal a single member or all members of a TXTLIB.

OS Module Libraries and CMS LOADLIBS

The OS relocating loader allows the user to load a member of a CMS
LOADLIB or an OS module library on an OS formatted disk. The OS
LINK, LOAD, ATTACH, and XCTL macros are supported. In addition, the
OSRUN command (which generates a LINK SVC) loads and executes
members directly from the console.

For the LINK, LOAD, ATTACH, and XCTL macros, the libraries specified
in the LOADLIB global list are searched. If the requested member is not
found, CMS looks for a TEXT file by that name. Then, if still not found,
the TXTLIBs specified in the TXTLIB global list are searched for the
member name.

For the OSRUN command, the libraries specified in the LOADLIB global
list are searched. If the member is not found and the user has a $SYSLIB
LOADLIB file, it is searched for the member name. (TEXT files and
TXTLIBs are not considered by OSRUN.)

Chapter 8. Developing OS Programs under CMS 183

Dioveloping O Programs

!

Executing OS Module Libraries

If the module to be executed resides in an OS module library on an OS
formatted disk, the disk must be accessed and the library must be defined
(via the FILEDEF command) to make it known to CMS.

For example, access the OS disk as a B-disk at the address 250:

ACCESS 250 B

Suppose SYS1.TESTLIB is an OS module library on the OS disk and
contains the member TEST1. Use the FILEDEF command to relate
SYS1.TESTLIB to the CMS LOADLIB called OSLIB LOADIB:

FILEDEF $SYSLIB DISK OSLIB LOADLIB B DSN SYS1 TESTLIB
(DSORG PO RECFM U BLOCK 7294

Now you can refer to the OS module library, SYS1.TESTLIB, by using the
CMS file identifier OSLIB LOADLIB.

Before you try to execute TEST1, use the GLOBAL command to identify the

CMS LOADLIBs to be searched. For example,

GLOBAL LOADLIB OSLIB

Then, the OSRUN command searches OSLIB LOADLIB for the member,
TEST1, to load and execute. For example,

OSRUN TEST1

The DDNAME specified on the FILEDEF command must be $SYSLIB., The

filename (OSLIB), specified on the FILEDEF command, can be any name,

but it must correspond to the name stated in the GLOBAL command. The
filetype must be LOADLIB.

Creating and Executing CMS LOADLIBs

If the program to be executed resides on a CMS disk, use the LKED
command. The LKED command creates a CMS LOADLIB from a CMS
TEXT file. For example:

LKED TESTFILE

takes the CMS TEXT file, TESTFILE TEXT, and creates the CMS
LOADLIB, TESTFILE LOADLIB. For more information on input to the
LKED command refer to “The LKED Command” on page 186. The CMS
LOADLIB created by the LKED command is an OS simulated partitioned
data set (PDS) named TESTFILE LOADLIB and contains one member
named TESTFILE.

Before executing TESTFILE, use the GLOBAL command to identify the
LOADLIB to be searched:

GLOBAL LOADLIB TESTFILE

184 VM/SP CMS for System Programming

R N T U 15 1T TN SO,
Lraloniingg O PLoeing

Then the OSRUN command loads, relocates, and executes the TESTFILE
member of TESTFILE LOADLIB:

OSRUN TESTFILE

Maintaining CMS LOADLIBs

Concatenating Files

The LOADLIB command provides the utility necessary to maintain the
CMS LOADLIBs. The following functions are provided:

COPY Copy members from one LOADLIB to another
Merge complete. LOADLIBs
Copy with SELECT or EXCLUDE

COMPRESS Compress a CMS LOADLIB
LIST LIST members of a CMS LOADLIB

For more detailed information on the LKED, GLOBAL, OSRUN, and
LOADLIB commands, refer to the VM/SP CMS Command Reference.

To define more than one library with the same DDNAME, use the CONCAT
option of the FILEDEF command. You can concatenate the LOADLIB files
on OS disks with each other and/or with CMS LOADLIB files. Any library
to be searched must be specified in the GLOBAL LOADLIB statement. The
data set with the largest block size should be specified first (both in the
FILEDEF and in the GLOBAL list). CMS files do not require a file
definition. But, if used, the file with the largest block size should be
specified first. The GLOBAL list determines the order in which the
libraries are searched.

For example, search two OS files and a CMS LOADLIB for the member,
THETA, using the following commands:

ACCESS 250 B (if 250 is the address of the 0S disk)
FILEDEF S$SYSLIB DISK OSLIB LOADLIB DSN SYS1 LIB1
(DSORG PO RECFM U BLOCK 7294)
FILEDEF $SYSLIB DISK MYLIB LOADLIB B DSN SYS1 LIB2 (CONCAT)
GLOBAL LOADLIB OSLIB MYLIB CMSLIB
OSRUN THETA

Note: The first FILEDEF command for $SYSLIB must describe the first
library filename in the GLOBAL list. Its attribute will be used when the
libraries are searched. It is advisable not to code the CONCAT option on
the first FILEDEF command so that it clears all previous FILEDEFSs for
that ddname.

Chapter 8. Developing OS Programs under CMS 185

Daeveloping OS Pregrams

[

L1

The LKED Command

The LKED command uses the OS Linkage Editor for the actual link of the
TEXT file to the LOADLIB as an executable module. In order to link edit
CMS files, you can issue the FILEDEF command to identify input to the OS
Linkage Editor. Primary LKED input is a data set known to the linkage
editor as SYSLIN, which can be described in the FNAME operand of the
LKED command. The filetype of the input file named in the command line
must be TEXT. Optionally, you can override the FNAME operand by
issuing a FILEDEF that defines SYSLIN as the ddname of an alternate
primary input source. If your alternate input is a CMS file, the choice of
filetype is unrestricted. The contents of the SYSLIN dataset may be:

1. Object text such as assembler or compiler output
2. Linkage editor control statements
3. A combination of object text and control statements.

Linkage editor control statements can be inserted before, between, and after
object modules and other control statements. Editing procedures can be
used to construct files to meet your requirements. Linkage editor
INCLUDE statements may be used to designate explicitly the following files
or file members as secondary linkage editor input:

CMS TEXT files

Members of CMS TXTLIB files
Members of CMS LOADLIB files
Members of OS object libraries
Members of OS load libraries.

N N

A FILEDEF must be issued before the LKED command to define a unique
ddname for each file to be included as secondary linkage editor input. An
INCLUDE statement in the SYSLIN dataset must specify the ddname
assigned to the file by your FILEDEF. For library files, the statement must
also specify all members of the library that are to be included as input. The
use of all FILEDEF commands and INCLUDE statements to identify input
files is shown in the following examples.

CMS commands:

FILEDEF LIBDEF DISK MYLIB TXTLIB B
FILEDEF TXTDEF DISK MYFILE TEXT C

SYSLIN input:

INCLUDE LIBDEF (CSECT1,CSECT2)
INCLUDE TXTDEF

INCLUDE statements must begin in column 2. The applicable statement
formats are described in the OS/VS Linkage Editor and Loader.

When SYSLIN input to the LKED command is an assembled object file in
fixed-block format residing on an OS disk, the RECFM FBS option of the
FILEDEF command must be specified. The following example shows

186 VM/SP CMS for System Programming

Developing O Proagrams

e e e e it e S 1

FILEDEF commands and SYSLIN input to identify a member of an OS
object library and a CMS TXTLIB.

CMS commands:

FILEDEF OSOBJ DISK OBJECT FILE Q DSN SYS1 FEOBJ (RECFM FBS
LRECL 80 BLOCK 3120
FILEDEF TXTDEF DISK NEWLIB TXTLIB B

SYSLIN input:

INCLUDE OSOBJ(MEMBER1)
INCLUDE TXTDEF (CSECT1)

Automatic library search is available for either CMS or OS type library
members if the FILEDEF for the dataset to be searched specifies SYSLIB as
the ddname. Additional libraries can be selected for automatic search by
placing linkage editor LIBRARY statements in your SYSLIN input file.
Each library statement must contain the associated ddname and a list of
members within the library to be included in the search. A FILEDEF must
be issued before the LKED command to assign a unique ddname to each
dataset to be searched. The library search conducted during a single
linkage editor execution is limited to either object-type or load-type
modules and may not combine both types. The CONCAT option of the
FILEDEF command is not valid for LKED input datasets. To expand the
use of the automatic SYSLIB search, the user may combine the members of
several CMS libraries into a single composite library. The automatic
search facility applies to CMS TXTLIBs and LOADLIBs and to OS object
libraries and LOAD libraries. The following example shows FILEDEF
commands and SYSLIN input for an automatic library search.

CMS commands:

FILEDEF SYSLIB DISK SEARCH1 TXTLIB B
FILEDEF LIBDEFA DISK SEARCH2 TXTLIB C
FILEDEF LIBDEFB DISK OSTEXT LIBRARY D DSN OBJMODS

SYSLIN input:

LIBRARY LIBDEFA(CSECT1,CSECT2)
LIBRARY LIBDEFB(MEMBER1,MEMBER2)

LIBRARY statements must begin in column 2. The GLOBAL command is
not needed to identify linkage editor input libraries. For LOADLIB input
to the linkage editor, the RECFM U option of the FILEDEF command must
be specified.

The default FILEDEF commands issued by the LKED command for the
ddnames presented to the Linkage Editor are as follows:

Chapter 8. Developing OS Programs under CMS 187

Daeveleping OS Programs

(.

FILEDEF
FILEDEF
-or-

FILEDEF
FILEDEF
FILEDEF
-or-

FILEDEF
-or-

FILEDEF

SYSLIN DISK FNAME TEXT * (RECFM F BLOCK 80 NOCHANGE
SYSLMOD DISK fname LOADLIB Al (RECFM U BLOCK 260 NOCHANGE

SYSLMOD DISK libname LOADLIB Al (RECFM U BLOCK 260 NOCHANGE
SYSUT1 DISK fname SYSUT1 *

SYSPRINT DISK fname LKEDIT Al

SYSPRINT PRINTER

SYSPRINT DUMMY

At the completion of the LKED command, all FILEDEFs that do not have
the PERM option are erased.

OS Data Management Simulation

The disk format and data base organization of CMS are different from those
of OS. A CMS file produced by an OS program running under CMS and
written on a CMS disk has a different format from that of an OS data set
produced by the same OS program running under OS and written on an OS
disk. The data is exactly the same, but its format is different. (An OS disk
is one that has been formatted by an OS program, such as the Device
Support Facility.) CMS does not support multi-buffering for unit record
devices. There is one DCB per device, not per file.

Handling Files that Reside on CMS Disks

CMS can read, write, or update any OS data that resides on a CMS disk.
By simulating OS macros, CMS simulates the following access methods so
that OS data organized by these access methods can reside on CMS disks:

o BDAM (direct) -- identifying a record by a key or by its relative
position within the data set.

o BPAM. (partitioned) -- seeking a named member within data set.

Note: Two BPAM files with the same filetype cannot be
updated at the same time.

o BSAM/QSAM (sequential) -- accessing a record in a sequence in relation
to preceding or following records.

o VSAM (direct or sequential) -- accessing a record sequentially or
directly by key or address.

Note: CMS support of OS VSAM files is based on
VSE/VSAM. Therefore, the OS user is restricted to those
functions available under VSE/VSAM. See the section
“CMS Support for OS and VSE/VSAM Functions” for
details.

188 VM/SP CMS for System Programming

Developing 08 Prograns

Refer to Figure 22 on page 189 and “OS Macros” on page 191, then read
“Access Method Support” on page 199 to see how CMS handles these access
methods.

Since CMS does not simulate the indexed sequential access method (ISAM),
no OS program using ISAM can execute under CMS. Therefore, no .
program can write an indexed sequential data set on a CMS disk.

Handling Files that Reside on OS Disks

By simulating OS macros, CMS can read, but not write or update, OS
sequential and partitioned data sets that reside on OS disks. However, an
OS sequential or partitioned data set that resides on an OS disk can be
written or updated only by an OS program running in an OS system.

CMS can execute programs that read and write VSAM files from OS
programs written in the VS BASIC, COBOL, PL/I, VS/APL, and VS
FORTRAN programming languages. CMS also supports VSAM for use with
DOS/VS SORT/MERGE. This CMS support is based on the VSE/VSAM
Program Product and, therefore, the OS user is limited to those VSAM
functions that are available under VSE/VSAM.

Simulating OS Supervisor Calls

Macro S5VC

Nanae Number | FFunction

XDAP 00 Reads or writes direct access volumes

EXCP 00 Executes graphic channel programs for graphic access
method (GAM)

WAIT 01 Waits for an I/O completion

POST 02 Posts the I/O completion

EXIT/RETURN 03 Returns from a called phase

GETMAIN 04 Conditionally acquires user storage

FREEMAIN 05 Releases user-acquired storage

GETPOOL - Simulates as SVC 10

FREEPOOL - Simulates as SVC 10

LINK 06 Links control to another phase

XCTL 07 Deletes, then links control to another load phase

LOAD 08 Reads a phase into storage

DELETE 09 Deletes a loaded phase

GETMAIN/FREEMAIN 10 Manipulates user free storage

TIME 11 Gets the time of day

Figure 22 (Part 1 of 3).

Simulated OS Supervisor Calls

Chapter 8. Develo