

f--

-------~~------------ --- ----------~--

Virtual Machine/
System Product

System Product Interpreter
Reference

Release 5

SC24-5239-2

Third Edition (December 1986)

This edition, SC24-5239-2, is a major revision of SC24-5239-1, and applies to Release
5 of the mM Virtual Machine/System Product (5664-167) until otherwise indicated
in new editions or Technical Newsletters. Changes are made periodically to the
information contained herein; before using this publication in connection with the
operation ofmM systems, consult the IBM System/B70, BOx", ancl4BOO ProceBBors
Bibliography, GC20-0001, for the editions that are applicable arid current.

Summary of Changes

For a detailed list of changes, see "Summary of Changes" on page 201.

Changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

In this manual are illustrations in which names are used. These names are fanciful
and fictitious, created by the. author; they are used solely for illustrative purposes
and not for identification of any person or company.

References in this publication to mM products, programs, or
services do not imply that mM intends to make these available in
all countries in which IBM operates. Any reference to an mM
licensed program in this publication is not intended to state or
imply that only mM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addreBBed to mM Corporation,
Information Development, Department 060, P.O. Box 6, Endicott, NY, U.S.A.
13760. mM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

C Copyright International Business Machines Corporation 1983, 1984, 1986

:f
,~

Preface

This publication describes the Virtual Machine/System Product (VM/SP)
System Product Interpreter (hereafter referred to as the interpreter) and the
Restructured EXtended eXecutor language (sometimes abbreviated REXX).
Descriptions include use and syntax of the language, and explain how the
interpreter "interprets" the Restructured Extended Executor language as a
program is executing.

Two manuals are available for people who intend to learn the Restructured
Extended Executor language:

• The VM/SP System Product Interpreter User's Guide, SC24-5238, is more
suitable for beginners, and programmers who have not used a
"structured" language before.

• The book you are now reading is more suitable for experienced
programmers, particularly those who have used another high level
language (for example, PL/I, Algol or Pascal).

However, all users should use this book as a reference manual.

For ease of reference, the material in this book is arranged in chapters:

1. Introduction and General Concepts

2. Instructions (in alphabetical order)

3. Functions (in alphabetical order)

4. Debug Aids

5. Parsing (a method of dividing strings of words, such as command lines)

6. Numerics and Arithmetic

7. Reserved Keywords and Special Variables

8. Some Useful CMS Commands

9. System Interfaces.

Preface III

There are four appendixes covering:

• Performance c
• Example of a Function Package

• Error Numbers and Messages

• The System Product Interpreter in the GCS Environment.

IV VM/SP System Product Interpreter Reference

(~-.

Contents

Part 1: Introduction and General Concepts 1
Brief Description of the Restructured Extended Executor Language 1
Where to Find More Information 0., 0 0 • 0 0 • 0 0 0 • 0 • 0 0 ••• 0 0 • 0 0 0 0 0 0 0 0 2
Structure and General Syntax . 0 •• 0 • 0 0 • 0 ••••••••••••••••••••• o. 2

Tokens. 0.00 •••• 00000000.00 •• 000 •• 0 •• 00.0. 0 0.0 •• 00 ••••• o. 2
Implied Semicolons and Continuations o. 0 •• 0 •••• 0 •• 0 •• 0 •••• 0 • •• 5

Expressions and Operators . 0 0 •••• 0 ••••••••••••• 0 0 •• 0 •••• 0 ••• o. 6
Expressions 0 0 0 0 • 0 0 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 •• 0 0 0 •• 0 0 • 0 0 0 0 6
Operators 0 0 •• 0 0 0 • 0 • 0 0 0 • 0 •• 0 0 0 0 0 0 0 0 •••••• 0 ••••• 0 •••• 0 • • •• 7
Operator Priorities . 0 0 0 0 •• 0 0 •• 9

Clauses 00 ••••••• 00 ••••••••••••••••••••• 0 •••••••• 0 •••••••• 11
Null clauses 0 0 ••••••••••••••••••• 0 •• 0 •••••••••• " 11
Labels 0 0 0 0 0 0.00000000000 •• 0 0 0 • 0 0 00 •• 0 0 .00000 11
Assignments . 0 ••••• 0 0 •• 0 0 0 0 • 0 • 0 • 0 • 0 • 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 • 0 11
Instructions .. 0 0 • 0 •••• 0 0 0 •••••• 0 • 0 • 0 •••• 0 • 0 0 • 0 •• 0 0 ••• 0 0 0 11
Commands ... 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 • 0 CO 0 • 0 0 0 • 0 0 • 0 0 0 • 0 0 0 0 • 0 0 12

Assignments . 0 0 •••• 0 0 •• 0 • 0 0 • 0 •• 12
Constant symbols ... 0 ••••••••• 0 0 •• 0 0 0 0 •• 0 ••••• 0 •••••• 0 0 o. 13
Simple symbols 0 ••••••••••• " 13
Compound symbols 13
Stems .0 •••••••••••••••••••••••••••• 0 •••••••••••••••••• 14

Commands to the Host 0 0 •••••••••••••• 0 • • • • • • • • •• 16
Environment 0 •••••••••••••••• " 16
Commands . 0 •••• 0 0 •• 0 •• 16
The CMS Environment 0 0 •• 0 17
The COMMAND Environment 0 ••••••••• 0 • 0 •••••• 0 •••• o. 20
Issuing Subcommands from Your Program 0 20

Part 2: Instructions 0 • •• 23
ADDRESS .. 24
ARG ... 000 ••••• 0 26
CALL .. 00.00.000.0.000 ••• 00 •• 000. o. 0 0 0 0 0 0" 0 0 0 0 0 0 0 0 0 0 0 0 0 28
DO 0 0 0 0 0 0 ••• 0 ••• 0 ••• 0 o. 00 •• 00.0000000000. 0 •••••••••••••• 31

Simple DO Group 0 •••••••••• 0 ••••••••••••••• 0 ••• 0 0 • •• 32
Simple Repetitive Loops 000000 0 • 0 32
Controlled Repetitive Loops 0 0 0 0 0 0 0 0 0 0 •••••••••••• 0 • 0 •••••• 0 33
Conditional Phrases (WHILE and UNTIL) 34

DROP ... 36
EXIT ... 0 •• 37
IF 0 •••••••••••••••• 0 •••••••••••••• 38
INTERPRET _ 0 0 0 0 0 0 ••••••••••••••••••••• 39
ITERATE ... 0 •••••• 41
LEAVE .. 42
NOP .. 43
NUMERIC 0 •••••••• 0. 0 •••••••••••••••••••••• 44
OPTIONS ... 45

Contents V

PARSE .. 46
PROCEDURE ... 49
PULL ... 51
PUSH ... 52
QUEUE .. 53
RETURN .. 54
SAY .. 55
SELECT " 56
SIGNAL ... 58

The Special Variable SIGL 60
Using SIGNAL with the INTERPRET Instruction 61

TRACE .. 62
A Typical Example .. 65
Format of TRACE output 66

UPPER .. 68

Part 3: Functions•..•..............•......... 69
Syntax ... 69
Calls to Functions and Subroutines 70

Search Order 71
Errors during Execution 73

Built-in Functions .. 73
ABBREV ... 73
ABS .. 74
ADDRESS .. 74
ARG .. 75
BITAND ... 76
BITOR ... 76
BITXOR ... 77
CENTRE/CENTER 77
CMSFLAG ... 78
COMPARE ... 78
COPIES .. 78
C2D ... 78
C2X ... 79
DATATYPE .. 80
DATE ... 81
DELSTR ... 82
DELWORD ... 82
DIAG/DIAGRC .. 83
D2C ... 83
D2X ... 84
ERRORTEXT ... 84
EXTERNALS .. 85
FIND .. 85
FORMAT .. 85
INDEX .. 86
INSERT ... 87
JUSTIFY .. 87
LASTPOS .. 88
LEFT ... 88
LENGTH .. 88
LINE SIZE .. 89

VI VM/SP System Product Interpreter Reference

f
MAX .. 89
MIN .. 89
OVERLAY ... 90
POS ... 90
QUEUED .. 91
RANDOM .. 91
REVERSE .. 92
RIGHT .. 92
SIGN .. 93
SOURCELINE .. 93
SPACE .. 93
STORAGE .. 94
STRIP ... 94
SUBSTR ... 94
SUBWORD ... 95
SYMBOL .. 95
TIME ... 96
TRACE .. 97
TRANSLATE ... 98
TRUNC .. 98
USERID ... 99
VALUE .. 99
VERIFY .. 100
WORD .. 100
WORDINDEX .. 101
WORDLENGTH .. 101
WORDS ... 101
XRANGE ... 102
X2C .. 102
X2D .. 102

Function Packages .. 103
VM Functions .. 104

CMSFLAG(flag) .. 104
DIAG .. 105
DIAGRC .. 106
STORAGE ... 116

Part 4: Debug Aids 117
Interactive Debugging of Programs 117
Interrupting Execution and Controlling Tracing 119
Help ... 121

Part 5: Parsing for PARSE, ARG and PULL 123
Introduction ... 123

Parsing Words ... 123
Parsing Using String Patterns 124
Parsing Using Numeric Patterns 125
Parsing Arguments 125

Definition ... 126
Parsing with Literal Patterns 126
Parsing with Variable Patterns 128

(Use of the Period as a Placeholder 129
Parsing with Positional Patterns and Relative Patterns 129
Parsing Multiple Strings 131

Contents Vll

Part 6: Numerics and Arithmetic ••••.•..•.••..•....•....
Introduction .. .
Definition .. .

133 (-"
133 \. __ /

134

Part 7: Reserved Keywords and Special Variables 143
Reserved Keywords 143
Special Variables .. . 144

Part 8: Some Useful CMS Commands .•.•.•.•..•.......... 147

Part 9: System Interfaces ..•......••••••...••.•.•...... 149
Calls To and From the Interpreter 149

Calls Originating from the CMS Command Line : 150
Calls Originating from the XEDIT Command Line 150
Calls Originating from CMS EXECs•........... 151
Calls Originating from EXEC 2 Programs 151
Calls Originating from a Clause That Is an Expression 151
Calls Originating from a CALL Instruction or a Function Call 152
Calls Originating from a MODULE 152

DMSEXI 153
The Extended Parameter list 153

Using the Extended Parameter List 154
The File Block .. . 155

Function Packages 157
Non-SVC Subcommand Invocation 158
Direct Interface to Current Variables 159

The Request Block (SHVBLOCK) 160
Function Codes (SHVCODE) 161

EXECFLAG External Control Byte 164

Appendix A. Performance Considerations •.•...•......•... 167

Appendix B. Example of a Function Package 169

Appendix C. Error Numbers and Messages 177

Appendix D. The System Product Interpreter in the GCS
Environment 193 ',,- _/'

Processing EXECs in GCS (CSmEX module) 194
The Extended Plist 194
The Standard Tokenized Plist 195

The File Block ... 195
EXECCOMM Processing (Sharing Variables) 195

Shared Variable Request Block 196
Function codes (SHVCODE) 197

Summary of Changes .•••...•.•....................... 201

Bibliography •••••...••••.•..••.......•......•....... 203
Related Publications 203

Index•..•..•...•...••....•..•••.....•........ 207 /- "

Vlll VM/SP System Product Interpreter Reference

(Figures

1. How a Typical DO Loop Is Executed 35
2. External Routine Resolution and Execution 72
3. Request block(SHVBLOCK) 160

Figures IX

x VM/SP System Product Interpreter Reference

(

f ,

(

Brief Description of the Restructured Extended Executor Language

The Restructured Extended Executor (REXX) language is a language
particularly suitable for:

• Command procedures (EXECs)

• User defined XEDIT subcommands

• Prototyping

• Personal computing.

It is a general purpose, high-level language not unlike PL/I. REXX has the
usual "structured programming" instructions - IF, SELECT, DO WHILE,
LEAVE and so on - and a number of useful built-in functions.

No restrictions are imposed by the language on program format. There can
be more than one clause on a line or a single clause can occupy more than
one line. Indentation is allowed. Programs can, therefore, be coded in a
format that emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, so long as all
variables fit into the storage available. Symbols (variable names) are
limited to a length of 250 characters.

Compound symbols, such as

NAME.X.Y

(where X and Y can be the names of variables) may be used for constructing
arrays and for other purposes.

REXX programs normally have a filetype of EXEC; such files may contain
CP and CMS commands. Similarly, REXX programs with a filetype of
XEDIT may contain XEDIT subcommands.

REXX programs are executed by an interpreter. That is, the program is
executed line-by-line and word-by-word, without first being translated to
another form (compiled). The advantage of this to the user is that if the
program fails with a syntax error of some kind, the point of failure is

Part 1: Introduction and General Concepts 1

Introduction

clearly indicated; usually, it will not take long to understand the difficulty
and make a correction.

Where to Find More Information

This is the Reference Manual. Reference information is also available in a
convenient summary (card) form, the" VM/SP System Product Interpreter
Language Reference Summary.

You can find useful information in the VM/SP System Product Interpreter
User's Guide and through the on-line HELP facility available with VM/SP.
For any program written in the Restructured Extended Executor (REXX)
language, you can get information on how the interpreter interprets the
program or a particular instruction by using the REXX instruction,
TRACE.

Structure and General Syntax

Tokens

Programs written in the Restructured Extended Executor (REXX) language
must start with a comment (which distinguishes them from CMS EXEC and
EXEC 2 language programs).

A REXX program is built from a series of clauses that are composed of:
zero or more blanks (which are ignored); a sequence of tokens (see below);
zero or more blanks (again ignored); and a semicolon (;) delimiter that may
be implied by line-end, certain keywords, or the colon (:), if it follows a
single symbol. Each clause is scanned from left to right before execution,
and the tokens composing it are identified. Instruction keywords are
recognized at this stage, comments are removed, and multiple blanks
(except within strings) are converted to single blanks.· Blanks adjacent to
special characters (including operators, see page 5) are also removed.

The language is composed of tokens (of any length, up to an
implementation restricted maximum) that are separated by blanks or by· the
nature of the tokens themselves. The classes of tokens are:

Comments:
any sequence of characters (on one or more lines) that are
delimited by /* and */. Logically, comments may contain other
comments, as long as each begins and ends with the necessary
delimiters. Comments may be written anywhere in a program.
Logically, they are ignored by the interpreter (and hence may be
of any length), but they do act as separators. See
Appendix A, "Performance Considerations" on page 167.

/* This is a valid comment */

2 VM/SP System Product Interpreter Reference

(,-­

"--

("

'. :

Strings:

- -- ---~-~--~-----~

Introduction

a sequence including any characters and delimited by the single
quote (') or the double quote ("). Use two consecutive double
quotes ('"') to represent a" character within a string delimited
by double quotes. Similarly, use two consecutive single quotes
(' ') to represent a ' character within a string delimited by
single quotes. A string is a literal constant and its contents are
never modified when it is interpreted. A string with no
characters (that is, a string of length 0) is called a null string.

These are valid strings:

'Fred'
"Don't Panic!"
'You shouldn" t' /* Same as "You shouldn't" */

Implementation maximum: A literal string may contain up to
250 characters. (But note that the length of computed results is
limited only by the amount of storage available.)

Note that if followed immediately by a (, the string is considered
-to be a name of a function. Or, if followed immediately by an x,
it is considered to be a hexadecimal-defined string.

Hexadecimal Strings:

Symbols:

any sequence of zero or more hexadecimal digits (0-9, a-f,
A-F), optionally separated by blanks, delimited by single or
double quotes and immediately followed by the character x or X
(The X may not be part of a longer symbol.) A single leading 0 is
added, if necessary, at the front of the string to make an even
number of hexadecimal digits, which then represent a character
string constant formed by packing the hexadecimal codes given.
The blanks, which may only be present at byte boundaries (and
not at the beginning or end of the string), are to aid readability.
They are ignored.

These are valid hexadecimal strings:

'ABCD'x
"ld ec fS"X
"I dS"x

Implementation maximum: The packed length of a
hexadecimal string may not exceed 250 bytes.

groups of any EBCDIC characters, selected from the alphabetic
and numeric characters (A-Z, a-z, 0-9) and/or from the
characters @#$¢.!? and underscore, are called symbols. Any
lowercase alphabetic character in a symbol is translated to
uppercase.

Part 1: Introduction and General Concepts 3

Introduction

Numbers:

These are valid symbols:

Fred
Albert.Hall
HI!

A symbol may be a label (see page 11) or a REXX keyword (see
page 143). A symbol may be assigned a value. Valid symbols
may not begin with a number or period. If it has not been
assigned a value, its value is the characters of the symbol itself,
translated to uppercase.

Implementation maximum: A symbol may consist of up to 250
characters. (But note that its value, if it is a variable, is limited
only by the amount of storage available).

These are character strings consisting of one or more decimal
digits optionally prefixed by a plus or minus sign, and optionally
including a single period (.) that represents a decimal point. A
number may also have a power of ten suffixed in conventional
exponential notation: an E (uppercase or lowercase) followed
optionally by a plus or minus sign then followed by one or more
decimal digits defining the power of ten. Whenever a character
string is used as a number it is possible that rounding will occur,
to a precision specified by the NUMERIC DIGITS instruction
(default nine digits). See pages 133-142 for a full definition of
numbers.

Numbers may have leading blanks (before and/or after the sign,
if any) and may have trailing blanks. Embedded blanks are not
permitted. Note that a symbol (see above) may be a number and
so maya string constant. A number cannot be the name of a
variable.

These are valid numbers:

12
-17.9
127.0650
73e+128
, + 7.9E5 '

A whole number is a number that has a zero (or no) decimal
part, and that would not normally be expressed by the interpreter
in exponential notation. That is, it has no more digits before the
decimal point than the current setting of NUMERIC DIGITS
(the default is 9).

Implementation maximum: The exponent of a number
expressed in exponential notation may have up to nine digits
only.

4 VM/SP System Product Interpreter Reference

/

, /

f

(

Introduction

Operators:
The special characters: + - / % * I & = .., > < and the
sequences >= <= ..,> ..,< ..,= /= >< <> -- ..,==
/== / / && I I * * (which may have embedded blanks) are
operator tokens (see page 7). One or more blank character(s),
where they occur in expressions but are not adjacent to another
operator, also act as an operator.

Special Characters:
The characters, ; :) (together with the individual
characters from the operators have special significance when
found outside of strings. All these characters constitute the set
of "special" characters. They all act as token delimiters, and
blanks adjacent to any of these are removed, with the exception
that a blank adjacent to the outside of a parenthesis is only
deleted if it is also adjacent to another special character.

For example the clause:

'REPEAT' B + 3;

is composed of six tokens· a string (' REPEAT'), a blank operator, a symbol
(B, which may have a value), an operator (+), a second symbol (3, which is a
number and a symbol), and a delimiter (;). The blanks between the Band
the + and between the + and the 3 are removed. However, one of the
blanks between the REPEAT and the B remains as an operator. Thus, this is
treated as though it were written:

'REPEAT' B+3;

Implementation maximum: During parsing of a clause, the internal form
of a clause (which is approximately the same length as the visible form,
except that extra blanks and comments are removed) may not exceed 500
characters. Note that this does not limit in any way the length of data that
can be manipulated, which is dependent upon the amount of storage
(memory) available to the interpreter.

Implied Semicolons and Continuations

The end of a line marks the end of a clause (that is, a semicolon is implied),
except in the following cases:

• The line ends in the middle of a string

• The line ends in the middle of a comment.

If the line does not end in the middle of a string or comment and the last
non-comment token was a comma, then it is not considered the end of the
clause. The comma is functionally replaced by a blank, and hence acts as a
continuation character. Note that the comma remains in execution
traces.

Part 1: Introduction and General Concepts 5

Introduction

This means that semicolons need only be included when there is more than
one clause on a line.

Notes:

1. Semicolons are added automatically after colons (when following a
single symbol) and after certain keywords when in the correct context.
The keywords that may have this effect are: ELSE, OTHERWISE, and
THEN. These special cases reduce typographical errors significantly.

2. The two characters that indicate the beginning of a comment, "/*,"
should not be split by a line-end since they could not then be recognized
correctly; an implied semicolon would be added. Similarly, the two
characters indicating the end of a comment, "*/," should not be split.
The two characters forming a double quote within a string are also
subject to this line-end ruling.

Expressions and Operators

Expressions

Many clauses may include expressions which can consist of terms (strings,
symbols, or function calls), interspersed with operators and parentheses.

Terms may be:

• Strings (delimited by quotes), which are literal constants

• Symbols (no quotes), which are translated to uppercase. Those that do
not begin with a digit or a period may be the name of a variable, in
which case they are replaced by the value of that variable as soon as
they are needed during evaluation. Otherwise they are treated as a
literal string. A symbol may also be compound. See page 13.

• Function calls, which are of the form:

symbol([expression[, ...]]) or string([expression[, •.•]])

See page 69.

Evaluation of an expression is left to right, modified by parentheses and by
operator precedence in the usual "algebraic" manner (see below).
Expressions are always wholly evaluated, unless an error occurs during
evaluation.

All data is in the form of "typeless" character strings, (typeless because it is
not - as in some other languages - of a particular declared type, such as
Binary, Hexadecimal, Array, etc.). Consequently, the result of evaluating
any expression is itself a character string. All terms and results may be the

6 VM/SP System Product Interpreter Reference

/

(

Operators

String Concatenation

Arithmetic

Introduction

null string (a string of length 0). Note that the REXX language imposes no
restriction on the maximum length of results, but there is usually some
practical limitation dependent upon the amount of storage available to the
interpreter.

Each operator (except for the prefix operators) acts on two terms, which
may be symbols, strings, function calls, intermediate results, or
subexpressions in parentheses. Each prefix operator acts on the term or
subexpression that follows it. There are four types of operators:

The concatenation operators are used to combine two strings to form one
string. The combination may occur with or without an intervening blank:

(blank) Concatenate terms with one blank in between

II Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank

Concatenation without a blank may be forced by using the II operator, but
it is useful to know that if a string and a symbol are abutted, they will be
concatenated.

Example:

If the variable FRED had the value 37.4, then Fred" %" would evaluate to
37.4%

Character strings that are valid numbers (see above) may be combined
using the arithmetic operators:

+ Add

*

I

%

/I

**

Subtract

Multiply

Divide

Divide and return the integer part of the result

Divide and return the remainder (not modulo, since the result
may be negative)

Raise a number to a whole-number power

Part 1: Introduction and General Concepts 7

Introduction

Comparative

Prefix - Negate the following term (must be numeric)

Preia + Take following term (must be numeric) as is.

See the section "Part 6: Numerics and Arithmetic" on page 133 for details
of accuracy, the format of valid numbers, and the combination rules for
arithmetic. Note that if an arithmetic result is shown in exponential
notation, it is likely that rounding has occurred.

The comparative operators return the value 1 if the result of the
comparison is true, or 0 otherwise.

The "= =", "-, = =", and "I = =" operators test for an exact match between
two strings. In this case, the two strings must be identical before they are
considered equal.

For all the other comparison operators, if both terms involved are numeric,
a numeric comparison (in which leading zeros are ignored, etc.) is effected;
otherwise, both terms are treated as character strings (leading and trailing
blanks are ignored, and then the shorter string is padded with blanks on
the right).

== True if terms are exactly equal (identical)

== True if the terms are equal (numerically or when padded, etc.)

-,=== True if the terms are NOT exactly equal (inverse of = =)

/= = True if the terms are NOT exactly equal (inverse of = =)

...,= Not equal (inverse of =)

/= Not equal (inverse of =)

> Greater than

< Less than

>< Greater than or less than (same as Not equal)

<> Greater than or less than (same as Not equal)

>= Greater than or equal to

Not less than

<= Less than or equal to

Not greater than

8 VM/SP System Product Interpreter Reference

~_/

Logical (Boolean)

Operator Priorities

(.

Introduction

A character string is taken to have the value "false" if it is 0, and "true" if
it is a 1. The logical operators take one or two such values (values other
than 0 or 1 are not allowed) and return 0 or 1 as appropriate:

& AND
Returns 1 if both terms are true.

Inclusive OR
Returns 1 if either term is true.

&& Exclusive OR
Returns 1 if either (but not both) is true.

Prefix -, Logical NOT
Negates; 1 becomes 0 and vice-versa.

Expression evaluation is from left to right; this is modified by parentheses
and by operator precedence:

• When parentheses are encountered, the expression in parentheses is
evaluated first.

• When the sequence:

terml operatorl term2 operator2 term3 •••

is encountered, and operator2 has a higher precedence that operatorl,
the expression (term2 operator2 term3 ...) is evaluated first, applying
the same rule repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in
the expression (that is, as soon as they are encountered). It is only the
order of operations that is affected by the precedence rules.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 will
evaluate to 13 (rather than the 25 that would result if strict left to right
evaluation occurred).

The order of precedence of the operators is (highest at the top):

-, - + (prefix operators)

** (exponentiation)

* / % II (multiply and divide)

+ - (add and subtract)

Part 1: Introduction and General Concepts 9

Introduction

" " II (abuttal) (concatenation with/without blank)

- > < (comparison oPerators)
-- 1- <>
>< >= <=
I> 1< /-,-. /==

(and)

I •• (or, exclusive or)

Examples:

Suppose that the following symbols represent variables; with values as
shown:

A has the value '3'
DAY has the value 'Monday'

Then:

A+S
A-4*2
A/2
0.5**2
(A+1»7
I '=' I

, '=="
, '..,=="
(A+1)*3=12
Today is Day
'If it is' day
Substr(Day,2,3)
'! 'xxx'!'

->
->
->
->
->
->
->
->
->
->
->
->
->

'S'
'-5'
'loS'
'0.25'
'0'
'1'
'0'
'1'
'1'
'TODAY
'If it
'ond'
'!XXX! '

/* that is, False */
/* that is, True */
/* that is, False */
/* that is, True */
/* that is, True */

IS Monday'
is Monday'

/* Substr is a function */

Note: The REXX order of precedence usually causes no difficulty, as it is
the same as in conventional algebra and other computer languages. There
is one exception, the prefix minus operator has a higher priority than the
exponential operator. ~hus:

-3**2 ->
-(2+1)**2 ->

9
9

/* not -9 */
/* not -9 */

10 VM/SP System Product Interpreter Reference

(
Clauses

Null clauses

f
" Labels

AsSignments

Instructions

Introduction

The clauses may be subdivided into five types:

A clause consisting only of blanks and/or comments is completely ignored
(except that if it includes a comment it will be traced, if appropriate).

Note: A null clause is not an instruction, so (for example) putting an extra
semicolon after the THEN or ELSE in an IF instruction is not equivalent
to putting a dummy instruction (as it would be in PL/I). The NOP
instruction is provided for this purpose.

A label is a clause that consists of a single symbol followed by a colon.
The colon acts as an implicit clause terminator, so no semicolon is required.
Labels are used to identify the targets of CALL instructions, SIGNAL
instructions, and internal function calls. They may be traced selectively to
aid debugging.

Any number of successive clauses may be labels, so permitting multiple
labels before another type of clause.

Assignments are single clauses with the form symbol = expression. An
assignment gives a variable a (new) value.

An instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. These control the external
interfaces, the flow of control, etc. Some instructions can include other
(nested) instructions. In this example, the DO construct (DO, the group of
instructions that follow it, and its associated END keyword) is considered a
single instruction.

DO

END

instruction
instruction
instruction

Part 1: Introduction and General Concepts 11

Introduction

Commands

Assignments

Commands are single clauses consisting of just an expression. The
expression is evaluated and passed as a command string to some external
environment.

A variable is an object whose value may be changed during the course of
execution of a REXX program. The process of changing the value of a
variable is called assigning a new value to it. The value of a variable is a
single character string, of any length, that may contain any characters.

Variables may be assigned a new value by the ARG, PARSE,or PULL
instructions, but the most common way of changing the value of a variable
is the assignment instruction itself. Any clause of the form:

symbol=[expression] 1

is taken to be an assignment. The result of expression becomes the new
value of the variable named by the symbol to the left of the equal sign. If
expression is not given, the variable is set to the null string.

Example:

/* Next line gives "FRED" the value "Frederic" */.
Fred= 'Frederic ,

The symbol naming the variable cannot begin with a digit (0-9) or a period.
(Without the restriction on the first character of a variable name, it would
be possible to redefine a number; for example 3=4; would give a variable
called 3 the value 4.)

Symbols may be used in an expression even if they have not been assigned a
value, since they have a defined value at all times. When unassigned, the
defined value is the character(s) of the symbol itself, translated to .
uppercase.

Example:

/* If "Freda" has not yet been assigned a value, */
/* then next line gives "FRED" the value "FREDA" */
Fred=Freda

Symbols may he subdivided into four classes: constant symbols, simple
symbols, compound symbols, and stems. Simple symbols may be used for
variables where the name corresponds to a single value. Compound
symbols and stems are used for more complex collections of varia hIes, such
as arrays and lists.

] 2 VM/SP System Product Interpreter Reference

(Constant symbols

Simple symbols

~ ...

\~.

Compound symbols

(.

Introduction

A constant symbol starts with a digit (0-9) or a period.

The value of a constant symbol cannot be changed, and it is simply the
string consisting of the characters of the symbol (that is, with any
alphabetic characters translated to uppercase).

These are constant symbols:

77
827.53
.12345
12e5
3D

/* Same as 12E5 */

A simple symbol does not contain any periods, and does not start with a
digit (0-9).

By default, its value is the characters of the symbol (that is, translated to
uppercase). If the symbol has been used as the target of an assignment, it
names a variable and its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea!
$12

/* Same as WHATAGOODIDEA! */

A compound symbol contains at least one period, which has characters on
each side of it. It may not start with a digit or a period.

The name begins with a stem (that part of the symbol up to and including
the first period), which is followed by parts of the name (delimited by
periods) that are constant symbols, simple symbols, or null.

These are compound symbols:

FRED. 3
Array.I.J
AMESSY •. One. 2 .

Before the Rymbol is used, the values of any simple symbols (I, J, and One
in the example) are substituted into the symbol, thus generating a new
derived name. This derived name is then used just like a simple symbol.
That is, its value is by default the derived name, or (if it has been used as
the target of an assignment) its value is the value of the variable named by
the derived name.

Part 1: Introduction and General Concepts 13

Introduction

(~

The substitution into the symbol that takes place permits arbitrary '~, j

Stems

indexing (subscripting) of collections of variables that have a common stem.
Note that the values substituted may contain any characters (including
periods). Substitution is only done once.

To summarize: the derived name of a compound variable that is referenced
by the symbol

sO.sl.s2. .sn

is given by

dO.vl.v2. --- .vn

where dO is the uppercase form of the symbol sO, and vi to vn are the
values of the constant or simple symbols s 1 through sn. Any of the
symbols sl-sn may be null. The values vl'-vn may also be null and may
contain any characters (lowercase characters will not be translated to
uppercase and blanks will not be removed).

Compound symbols may be used to set up arrays and lists of variables, in
which the SUbscript is not necessarily numeric, and thus offer great scope
for the creative programmer. A useful application is to set up an array in
which the subscripts are taken from the value of one or more variables, so
effecting a form of associative memory ("content addressable").

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3 ' to the variable 'A' */
b=4 /* '4' to 'B' */
c='Fred' 1* 'Fred' to 'c' */
a.b='Fred' /* 'Fred' to 'A.4 ' */
a.fred=S /* , 5' to 'A.FRED' */
a.c='Bill' /* 'Bill' to 'A.Fred' */
c.c=a.fred /* '5' to 'C.Fred' */
x.a.b='Annie' /* 'Annie' to 'X.3.4' */
say a b c a.a a.b a.c c.a a.fred x.a.4
/* will display the string: */
/* '3 4 Fred A.3 Fred Bill C.3 5 Annie' */

Implementation maximum: The length of a variable name, after
substitution, may not exceed 250 characters.

A stem contains just one period, which is the last character. It may not
start with a digit or a period.

These are· stems:

FRED.
A.

14 VM/SP System Product Interpreter Reference

/

(-"
\,--.~

,,< /

(

'f \

(

Introduction

By default, the value of a stem is the characters of its symbol (that is,
translated to uppercase). If the symbol has been assigned a value, it names
a variable and its value is the value of that variable.

Further, when a stem is used as the target of an assignment, all possible
compound variables whose names begin with that stem are given the new
value, whether they had a previous value or not. Following the assignment,
a reference to any compound symbol with that stem returns the new value
until another value is assigned to the stem or to the individual variable.
For example:

hole. = "empty"
hole.9 = "full"

say hole.l hole.mouse hole.9

/* says "empty empty full" */

Thus a whole collection of variables may be given the same value. For
example,

total. = 0
do until I datatype(n,number)

say "Enter an amount and a name:"
pull amt name
total.name = total.name + amt
end

Note: The value that has been assigned to the whole collection of variables
can always be obtained by using the stem. However, this is not the same as
using a compound variable whose derived name is the same as the stem.
For example,

total. = 0
null = ""
total.null = total. null + 5
say total. total.null /* says "0 5" */

Collections of variables, referred to by their stem, can also be manipulated
by the DROP and PROCEDURE instructions. DROP FRED. drops all
variables with that stem (see page 36), and PROCEDURE EXPOSE FRED.
exposes all possible variables with that stem (see page 49).

Notes:

1. When a variable is changed by the ARG, PARSE, or PULL
instructions, the effect is identical to an assignment. A stem used in a
parsing template therefore sets an entire collection of variables.

2. Since an expression may include the operator =, and an instruction
may consist purely of an expression (see next section), there would be a
possible ambiguity which is resolved by the following rule: any clause
that starts with a symbol and whose second token is = is an
assignment, rather than an expression (or an instruction). This is not
a restriction, since the clause maybe executed as a command in several

Part 1: Introduction and General Concepts 15

Introduction

ways, such as by putting a null string before the first name, or by
enclosing the first part of the expression in parentheses.

Similarly, if a programmer unintentionally uses a REXX keyword as the
variable name in an assignment, this should not cause confusion - for
example the clause:

Address='lO Downing Street';

would be an assignment, not an ADDRESS instruction.

Commands to the Host

Environment

Commands

The host system for the interpreter is assumed to include at least one
active environment for executing commands. One of these is selected by
default on entry to a REXX program.

The environment so selected will depend on the caller; for example if a
program is called from eMS, the default environment is eMS. If called
from an editor that accepts subcommands from the interpreter, the default
environment would be that editor. For a discussion of this mechanism see
"Issuing Subcommands from Your Program" on page 20.

The environment may be changed using the ADDRESS instruction. It may
be inspected using the ADDRESS built-in function.

Executing commands using the currently addressed environment may be
achieved using an instruction of the form:

expression;

The expression is evaluated, resulting in a character string (which may be
the null string) which is then prepared as appropriate and submitted to the
host.

The host then executes the command (which may have side-effects such as
altering REXX variables). It eventually returns control to the interpreter,
after setting a return code. _ The interpreter places this return code in the
REXX special variable Re. For example, if the host were eMS, the
sequence:

fn = "JACK"; ft = "RABBIT"
STATE fn ft Al

16 VM/SP System Product Interpreter Reference

{

(

(

-----~- ---- -~.~.

Introduction

would result in the string STATE JACK RABBIT Al being submitted to
CMS. Of course, the simpler expression:

'STATE JACK RABBIT Al'

would have the same effect in this case.

On return, the return code would be placed in RC that would probably have
the value '0' if the file JACK RABBIT Al existed, or '28' if it did not.

Note: Remember that the expression is evaluated before it is passed to the
environment. Any part of the expression that is not to be evaluated should
be written in quotes.

Examples:

erase "*" listing /* not "multiplied by"! */

load "(" start

a = any
access 192 "blaH /* not "divided by ANY" */

The eMS Environment

When the environment selected is CMS (which is the default for EXECs),
the command is invoked exactly as if it had been issued from the command
line (but cleanup after the command has completed is different). See "Calls
Originating from a Clause That Is an Expression" on page 151. The
interpreter will create two parameter lists:

• The result of the expression, tokenized and translated to uppercase, is
placed in a Tokenized Parameter List.

• The result of the expression, unchanged, is placed in an Extended
Parameter List.

The interpreter then asks CMS to execute the command. The interpreter
uses the same search order used for a command entered from the CMS
interactive command environment. The first token of the command is taken
as the command name. As soon as the command name is found, the search
stops and the command is executed.

The search order is:

1. Search for an EXEC with the specified command name:

a. Search for an EXEC in storage. If an EXEC with this name is
found, CMS determines whether the EXEC has a USER, SYSTEM,
or SHARED attribute. If the EXEC has the USER or SYSTEM
attribute, it is executed.

If the EXEC has the SHARED attribute, the INSTSEGsetting of the
SET command is checked. When INSTSEG is ON, all accessed

Part 1: Introduction and General Concepts 17

Introduction

disks are searched and the access mode of the Installation C-
Discontiguous Shared Segment (DCSS) is compared to the mode of
an EXEC with the name that resides on disk. If the access mode of
the DCSS is equal to or higher than the disk mode, the EXEC in the
DCSS is executed. Otherwise, the EXEC on disk is executed.

b. Search for a file with the specified command name and a filetype
EXEC on any currently accessed disk. CMS uses the standard .
search order (A through Z.) The table of active (open) disk files is
searched first. An open file may be used ahead of a file that resides
on a disk earlier in the search order.

2. Search for a translation or synonym for the command name. If found,
search for an EXEC with the valid translation or synonym by repeating
Step 1. (For a description of the translate tables, see the SET
TRANSLATE command in the VM/SP CMS Command Reference. For a
description of the synonym tables, see the SYNONYM command in the
VM/SP CMS Command Reference.)

3. Using an SVC 202, CMS now searches for:

a. a command installed as a nucleus extension

b. a transient module already loaded with the command name

c. . a nucleus resident command

d. a MODULE.

Note: For more information on using the CMS SVC 202, refer to the
VM/SP CMS User's Guide. The table of active (open) disk files is
searched first. An open file may be used ahead of a file that resides on
a disk earlier in the search order.

4. Search for a translation or synonym of the specified command name. If
found, search for a module with the valid translation or synonym by
repeating Step 3. ./

5. If the command name is not known to CMS (that is, all the above fails),
it is changed to uppercase and the interpreter asks CMS to execute the
command as a CP command.

Note: If the command is passed to CP, it will be executed as if it had been
entered from the CMS command line. (Specifically, if the password
suppression facility is in use, a CP command that provides a password will
be rejected. To issue such a command, use ADDRESS COMMAND CP
cp_command.) Since EXECs are often used as "covers" or extensions to
existing MODULEs, there is one exception to this order. A command
issued from within an EXEC will not implicitly invoke that same EXEC and
hence cause a possible recursion loop. To make your EXEC call itself
recursively, use the CALL instruction or the EXEC command. (" "

"j

18 VM/SP System Product Interpreter Reference

(

Introduction

To invoke a CP command explicitly, use the CMS command prefix CPo

To illustrate these last two points, suppose your EXEC contains the clause:

cp spool printer class s

You may have a "cover" program, CP EXEC, which is intended to intercept
all explicit CP commands. If such a program exists, it will be invoked. If
not, the CP command SPOOL will be invoked. You would prefix your
command with the word cp if you wanted to avoid invoking SPOOL EXEC
or SPOOL MODULE.

Notes:

1. The searches for EXECs, translations, synonyms, and CP commands are
all affected by the CMS SET command (lMPEX, ABBREV, IMPCP, and
TRANSLATE options). The full search order given above assumes
these are all ON.

2. When the environment is CMS, the interpreter provides both a
Tokenized Parameter List and an Extended Parameter List. For
example, the sequence:

fn=" Jack"; ft="Assemblersource"
State fn ft Al
Myexec fn ft Al

would result in both a Tokenized Parameter List and an Extended
Parameter List being built for each command and submitted to CMS.
The STATE command would use the Tokenized Parameter List

(STATE (JACK (ASSEMBLE) (Al

while MYEXEC (if it were a REXX EXEC) would use the Extended
Parameter List

(MYEXEC Jack Assemblersource Al)

For full details of this assembler language interface, see page 149.

Part 1: Introduction and General Concepts 19

Introduction

The COMMAND Environment

If you wish to issue commands without the search for EXECs or CP
commands, and without any translation of the parameter lists, (without any
uppercasing of the tokenized parameter list) you may use the environment
called COMMAND. Simply include the instruction ADDRESS COMMAND
at the start of your EXEC (see page 25). Commands will be passed to CMS
directly, using SVC 202, described on page 151.

The COMMAND environment name is recommended for use in "system"
EXECs that make heavy use of MODULEs and nucleus functions. This
makes these EXECs more predictable (commands cannot be usurped by user
EXECs, and operations can be independent of the user's setting of IMPCP
and IMPEX) and faster (the EXEC .and first abbreviation searches are
avoided).

Note to EXEC 2 users: EXEC 2 issues commands in this way.

Issuing Subcommands from Your Program

A command being executed by CMS may accept subcommands. Usually,
the command will provide its own command line, from which it takes
subcommands entered by the user. But this can be extended so that the
command will accept subcommands from a REXX program.

A typical example is an editor. You can write a REXX program that issues
editor subcommands, and run your program during an editing session.
Your program can inspect the file being edited, issue subcommands to make
changes, test return codes to check that the subcommands have been
executed as you expected, and display messages to the user when
appropriate. The user can invoke your program by entering its name on the
editor's command line.

The editor (or any other program that is designed to accept subcommands
from the interpreter) will first create a subcommand entry point, naming
the environment to which subcommands may be addressed, and then call
your program. Programs that can issue subcommands are called macros.
The REXX (and EXEC 2) interpreter have the convention that, unless
instructed otherwise, they direct commands to a subcommand environment
whose name is the filetype of the macro. Usually, editors name their
subcommand entry point with their own name and claim that name as the
filetype to be used for their macros.

For example, the XEDIT editor sets up a subcommand environment named
XEDIT, and the filetype for XEDIT macros is also XEDIT.

The macro issues subcommands to the editor (for example, NEXT 4, or
EXTRACT @ZONE). The editor "replies" with a return code (which the
interpreter assigns to the special variable RC) and sometimes with further
information, which may be assigned to other REXX variables. For example,
a return code of 1 from NEXT 4 indicates that end-of-file has been reached;
EXTRACT @ZONE assigns the current limits of the zone of XEDIT to the

20 VM/SP System Product Interpreter Reference

/

(

f

:{

.(

. --'-'--_.- ._--

Introduction

REXX variables ZONE.1 and ZONE.2. By testing RC and the other REXX
variables, the macro has the ability to react appropriately, and the full
flexibility of a programmable. interface is available.

The interpreter allows the default environment to be altered (between
various subcommand environments or the host environment) using the
ADDRESS instruction.

Note: The SUBCOM function is used to create, query, or delete
subcommand entry points.

Only the query form of SUBCOM is a subcommand, in the sense that it can
be issued from the terminal (or from a REXX program). The form of this
subcommand is:

SUBCOM name

This yields a return code of 0 if name is currently defined as a subcommand
environment name, or 1 if it is not.

The create and delete functions of SUBCOM are described in the VM/SP
eMS for System Programming.

Part 1: Introduction and General Concepts 21

Introduction

~ ./

22 VM/SP System Product Interpreter Reference

(

f

(.'

---------_. __ .. _------ .----... ----

Several of the more powerful features of the language (notably functions)
reduce the number of instructions needed in the REXX language.

In the following diagrams, symbols (words) in capitals denote keywords,
other words (such as expression) denote a collection of symbols as defined
above. Note however that the keywords are not case dependent: the
symbols if If and iF would all invoke the instruction shown below as IF.
Note also that most of the clause delimiters (;) shown may usually be
omitted as they will be implied by the end of a line.

The brackets [and] delimit optional parts of the instructions.

As explained on page 11, an instruction is recognized only if its keyword is
the first token in a clause, and if the second token is neither an =
character (implying an assignment) nor a colon (implying a label). The
keywords ELSE, END, OTHERWISE, THEN, and WHEN are recognized in
the same situation. A syntax error will result if they are not in their
correct pORition(s) in a DO, IF, or SELECT instruction. (The keyword
THEN may also be recognized in the body of an IF or WHEN clause.) In
other contexts, all these keywords are not reserved and may be used as
labels or as the names of variables (though this is generally not
recommended).

Certain other keywords are reserved within the clauses of individual
instructions. (For details, refer to the description of the instruction.) For a
general discussion on reserved keywords, see page 143.

Part 2: Instructions 23

ADDRESS

ADDRESS

Where:

environment
is a single symbol or string, which is taken to be a constant.

This instruction is used to effect a temporary or permanent change to the
destination of command(s). The concept of alternative subcommand
environments is described on page 20.

To send a single command to a specified environment, an environment
name followed by an expression is given. expression is evaluated, and the
resulting command string is routed to environment. After execution of the
command, environment will be set back to whatever it was before, thus
giving a temporary change of destination for a single command.

Example:

Address CMS 'STATE PROFILE EXEC'

If only environment is specified, a lasting change of destination occurs:
all following commands (expressions not preceded by a REXX keyword) will
be routed to the given command environment, until the next ADDRESS
instruction is executed. The previously selected environment is saved.

Example:

address CMS
'STATE PROFILE EXEC'
if rc=O then 'COpy PROFILE EXEC A TEMP = ='
address XEDIT

Similarly, the VALUE form may be used to make a lasting change to the
environment· here expression (which may be just a variable name) is
evaluated, and the result forms the name of the environment. The keyword
VALUE may be omitted as long as expression starts with a special
character (so that it cannot be mistaken for a symbol or string).

Example:

ADDRESS ('ENVIR' I I number)

If no arguments are given, commands will be routed back to the
environment that was selected before the previous lasting change of
environment was made, and the current environment name is saved.

24 VM/SP System Product Interpreter Reference

(
~

(

(

ADDRESS

Repeated execution of just ADDRESS will therefore switch the command
destination between two environments alternately.

The two environment names are automatically saved across subroutine and
internal function calls. See under the CALL instruction (page 28) for more
details.

The current ADDRESS setting may be retrieved using the ADDRESS
built-in function, described on page 74.

Note: In CMS, there are environment names that have special meaning.
Following are three commonly used environment names:

CMS This environment name, which is the default for EXECs,
implies full command resolution just as provided in normal
interactive command (terminal) mode. (See page 17 for
details.)

COMMAND This implies basic CMS SVC 202 command resolution. To
invoke an EXEC, the word EXEC must prefix the command,
and to issue a command to CP, the prefix CP must be used
(see page 20).

" (Null); same as COMMAND. Note that this is not the same
as ADDRESS with no arguments, which will switch to the
previous environment.

Part 2: Instructions 25

ARG

ARG

Where:

template
is a list of symbols separated by blanks and/or 'patterns'.

ARG is used to retrieve the argument strings provided to a program or
internal routine and assign them to variables. It is just a short form of the
instruction

PARSE UPPER ARG [template];

Unless a subroutine or internal function is being executed, the input
parameters to the program will be read, translated to uppercase, and then
parsed into variables according to the rules described in the section on
parsing (page 123). Use the PARSE ARG instruction if uppercase
translation is not desired.

If a subroutine or internal function is being executed, the data used will be
the argument string(s) passed to the routine.

The ARG (and PARSE ARG) instructions may be executed as often as
desired (typically with different templates) and will always parse the same
current input string(s). There are no restrictions on the length or content
of the data parsed except those imposed by the caller.

Example:

/* String passed to FRED EXEC is "Easy Rider" */

Arg adjective noun .

/* Now: "ADJECTIVE" contains 'EASY'
/* "NOUN" contains 'RIDER'

*/
*/

If more than one string is expected to be available to the program or
routine, each may be selected in turn by using a comma in the parsing
template.

Example:

/* function is invoked by FRED('data X' ,1,5) */

Fred: Arg string, num1, num2

/* Now:
/*
/*

"STRING" contains 'DATA X'
"NUM1" contains '1'
"NUM2" contains '5'

*/
*/
*/

26 VM/SP System Product Interpreter Reference

/

/

'f·

-----~--------

ARG

Notes:

1. The argument string(s) to a REXX program or internal routine may also
be retrieved or checked by using the ARG built-in function. See page
75.

2. The source of the data being interpreted is also made available on entry
to the program. See the PARSE instruction (SOURCE option) on page
47 for details.

3. A string passed from CMS command level is restricted to 130 characters
(including the name of the EXEC being invoked.)

Note for CMS EXEC and EXEC 2 Users: Unlike CMS EXEC and EXEC
2, the arguments passed to REXX programs can only be used after executing
either the ARG or PARSE ARG instructions (or retrieving their value with
the ARG built-in function). They are not immediately available in
predefined variables as in the other languages.

Part 2: Instructions 27

CALL

CALL

CALL is used to invoke a routine. The routine may be an internal routine,
an external routine or program, or a built-in function. name, given in the
CALL instruction, must be a valid symbol, which is treated literally, or a
string. If a string is used for name (that is, name is specified in quotes) the
search for internal labels is bypassed, and only a built-in function or an
external function will be invoked. Note that the names of built-in functions
(and generally the names of external routines too) are in uppercase, and
hence the name in the literal string should be in uppercase.

The invoked routine may optionally return a result upon its completion,
which is functionally identical to the clause:

result=name([expression] [,[expression]] ...);

where the variable RESULT will become uninitialized if no result is
returned by the routine invoked.

Up to ten expressions, separated by commas, may be specified. These are
evaluated in order from left to right, and form the argument string(s) during
execution of the routine. Any ARG or PARSE ARG instructions, or ARG
built-in function in the called routine will access these strings, rather than
those previously active in the calling program. Expressions may be omitted
if desired.

The CALL then causes a branch to the routine called name using exactly
the same mechanism as function calls. The order in which these are
searched for is described in the section on functions (page 69), but briefly is
as follows:

Internal routines:
(unless the routine name is specified in quotes) These are
sequences of instructions inside the same program, starting at
the label that matches name in the CALL instruction.

Built-in routines:
These are routines built in to the interpreter for providing
various functions. They always return a string containing the
result of the function. (See page 73.)

External routines:
Users may write or make use of routines that are external to the
interpreter and the calling program. An external routine may be
written in any language, including REXX, which supports the
system dependent interfaces used by the interpreter to invoke it -

28 VM/SP System Product Interpreter Reference

-- - ~-- -- ---~-- - ------~------

(

~-----------

CALL

see page 157 for details. A REXX program may be invoked as a
subroutine by the CALL instruction, and in this case may be
passed more than one argument string. These may be retrieved
using the ARG or PARSE ARG instructions, or the ARG
built-in function.

During execution of an internal routine, all variables previously known are
normally accessible. However, the PROCEDURE instruction may be used
to set up a local variables environment to protect the subroutine and caller
from each other. The EXPOSE option on the PROCEDURE instruction
may further be used to expose selected variables to a routine.

Calling an external program as a subroutine is similar to calling an
internal routine. The external routine is however an implicit
PROCEDURE in that all the caller's variables are always hidden, and the
status of internal values (NUMERIC settings, etc.) start with their defaults
(rather than inheriting those of the caller).

When control reaches the internal routine, the line number of the CALL
instruction is available in the variable SIGL (in the caller's variable
environment). This may be used as a debug aid, as it is therefore possible
to find out how control reached a routine.

Eventually the subroutine should execute a RETURN instruction, and at
that point control will return to the clause following the original CALL. If
the RETURN instruction specified an expression, the variable RESULT
will be set to the value of that expression. Otherwise, the variable
RESULT is dropped (becomes uninitialized).

Internal routines may include calls to other internal routines, including
itself.

Example:

/* Recursive subroutine execution ... */
arg x
call factorial x
say x'! =, result
exit

factorial: procedure
arg n
if n=O then return 1
call factorial n-1
return result * n

/* calculate factorial by .. */
/* .. recursive invocation. */

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and are then restored upon return
from the routine. These are:

• The status of DO-loops and other structures - Executing a SIGNAL
while within a subroutine is "safe" in that DO-loops, etc., that were
active when the subroutine was called are not deactivated (but those
currently active within the subroutine will be).

Part 2: Instructions 29

CALL

• Trace action - Once a subroutine is debugged, you may insert a
TRACE Off at the beginning of it, and this will not affect the tracing of
the caller. Conversely, if you only wish to debug a subroutine, you
could insert a TRACE R at the start - tracing will automatically be
resto.red to the conditions at entry (for example, "Off') upon return.
Similarly, ? (interactive debug) and ! (command inhibition) are saved
across routines.

• NUMERIC settings (the DIGITS, FUZZ, and FORM of arithmetic
operations, described on page 44) described in the NUMERIC
instruction) are saved and are then restored on RETURN. A
subroutine may therefore set the precision, etc., that it needs to use
without affecting the caller.

• ADDRESS settings (the current and secondary destinations for
commands - see the ADDRESS instruction on page 24) are saved and
are then restored on RETURN.

• Exception conditions (SIGNAL ON condition) are saved and are then
restored on RETURN. This means that SIGNAL ON and SIGNAL
OFF may be used in a subroutine without affecting the conditions set
up by the caller.

• Elapsed time clocks - A subroutine inherits the elapsed time clock
from its caller (see the TIME function on page 96), but since the time
clock is saved across routine calls, a subroutine or internal function

,/ ''"''

may independently restart and use the clock without affecting its caller. \-----/
For the same reason, a clock started within an internal routine is not
available to the caller.

Implementation maximum: The total nesting of control structures,
which includes internal routine calls, may not exceed a depth of 250.

30 VM/SP System Product Interpreter Reference

{ DO

DO

[FOREVER
~rr

[Pu~n]

Or, to present the instruction more generally:

,-:[~-]-:,
,,' ""~':.'" ,

,.""..'., -, .'q" ,

::QD~"E~Yii~iJJ'

Where:

repetitor
is one of:

name = expri [TO exprt] [BYexprb] [FOR exprf]
FOREVER
exprr

conditional
is one of:

WHILE exprw
UNTIL expru

DO

DO is used to group instructions together and optionally to execute them
repetitively. During repetitive execution, a control variable (name) may be
stepped through some range of values.

Part 2: Instructions 31

DO

Simple DO Group

Syntax Notes:

• exprr, expri, exprb, exprt, and exprf (if any are present) may be any
expression that evaluates to a number. exprr and exprf are further
restricted to result in a non-negative whole number. If necessary, the
numbers will be rounded according to the setting of NUMERIC DIGITS.

• exprw or expru (if present) may be any expression that evaluates to 1 or
O.

• the TO, BY, and FOR phrases may be in any order, if used.

• the instruction(s) may include constructs such as IF, SELECT, or the
DO instruction itself.

• the sub-keywords TO, BY, FOR, WHILE, and UNTIL are reserved
within a DO instruction, in that they cannot name variables in the
expression(s) but they may be used as the name of the control variable.
FOREVER is similarly reserved, but only if it immediately follows the
keyword DO.

• exprb defaults to 1, if relevant.

If neither repetitor nor conditional is given, the construct merely groups a
number of instructions together. These are executed once. Otherwise, the
group of instructions is a repetitive DO loop, and they are executed
according to the repetitor phrase, optionally modified by the conditional
phrase.

In the following example, the instructions are executed once.

Example:

/* The two instructions between DO and END will both * /
/* be executed if A has the value 3. */
If a=3 then Do

a=a+2
Say I Smile! I

End

Simple Repetitive Loops

If repetitor is not given or the repetitor is FOREVER, the group of
instructions will nominally be executed "forever"; that is, until the
condition is satisfied or a REXX instruction is executed that will end the
loop (for example, LEAVE).

Note: For a discussion on conditional phrases, see "Conditional Phrases
(WHILE and UNTIL)" on page 34)

:32 VM/SP System Product Interpreter Reference

(".
~./ I

(

('-

._---_ .. -------

DO

In the simple form of a repetitive loop, exprr is evaluated immediately (and
must result in a non·negative whole number), and the loop is then executed
that many times:

,Example:

/* This displays "Hello" five times */
Do 5

say 'Hello'
end

Note that, similar to the distinction between a command and an
assignment, if the first token of exprr is a symbol and the second token is
an .. = ," the controlled form of repetitor will be expected.

Controlled Repetitive Loops

The controlled form specmes a control variable, name, which is assigned
an initial value (the result of expri). The variable is then stepped (by
adding the result of exprb, at the bottom of the loop) each time the group of
instructions is executed. The group is executed repeatedly while the end
condition (determined by the result of exprt) is met. If exprb is positive, the
loop will be terminated when name is greater than exprt. If negative, the
loop will be terminated when name is less than exprt.

expri, exprt, and exprb must result 'in numbers. They are evaluated once
only, before the loop begins and before the control variable is set to its
initial value. The default value for exprb is 1. If exprt is not given, the loop
will execute indefinitely unless some other condition terminates it.

Example:

Do 1=3 to -2 by -1
say i
end

/* Would display:
/* 3
/* 2
/* 1
/* 0
/* -1
/* -2

*/
*/
*/
*/
*/
*/
*/

The numbers do not have to be whole numbers~

Example:

X=0.3
Do Y=X to X+4 by 0.7

say Y
end

/* Would display:
/* 0.3
/* 1.0
/* 1.7
/* 2.4
/* 3.1
/* 3.8

*/
*/
*/
*/
*/
*/
*/

The control variable may be altered within the loop, and this may affect the
iteration of the loop. Altering the value of the control variable is not
normally considered good programming practice, though it may be
appropriate in certain circumstances.

Part 2: Instructions 33

DO

Note that the end condition is tested at the start of each iteration. It is
therefore possible for the group of instructions to be skipped entirely if the
end condition is met immediately. Note also that the control variable is
referenced by name. If (for example) the compound name "A.I" was used for
the control variable, altering "I" within the loop will cause a change in the
control variable.

The execution of a controlled loop may further be bounded by a FOR
phrase. In this case, exprf must be given and must evaluate to a
non-negative whole number. This acts just like the repetition count in a
simple repetitive loop, and sets a limit to the number of iterations around
the loop if no other condition terminates it. Like the TO and BY
expressions, it is evaluated once only - when the DO instruction is first
executed and before the control variable is given its initial value. Like the
TO condition, the FOR condition is checked at the start of each iteration.

Example:

Do Y=0.3 to 4.3 by 0.7 for 3
say Y
end

/* Would display:
/* 0.3
/* 1.0
/* 1. 7

*/
*/
*/
*/

In a controlled loop, the symbol describing the control variable may be
specified on the END clause. This symbol must match name in the DO
clause (note that no substitution for compound variables is carried out); a
syntax error will result if it does not. This enables the nesting of loops to
be checked automatically, with minimal overhead.

Example:

Do K=l to 10

End k /* Checks that this is the END for K loop * /

Note: The values taken by the control variable may be affected by the
NUMERIC settings, since normal REXX arithmetic rules apply to the
computation of stepping the control variable.

Conditional Phrases (WHILE and UNTIL)

Any of the forms of repetitor (none, FOREVER, simple, or controlled) may
be followed by a conditional phrase, which may cause termination of the
loop. If WHILE or UNTIL is specified, exprw or expru, respectively, is
evaluated each time around the loop using the latest values of all variables
(and must evaluate to either 0 or 1), and the group of instructions will be
repeatedly eXiecuted either while the result is 1, or until the result is 1.

For a WHILE loop, the condition is evaluated at the top of the group of
instructions, and. for an UNTIL loop the condition is evaluated at the
bottom - before the control variable has been stepped.

34 VM/SP System Product Interpreter Reference

_/

(

(,

Example:

Do I=l to 10 by 2 until i>6
say i
end

/* Would display: 1, 3, 5, 7 */

DO

Note: The execution of repetitive loops may also be modified by using the
LEAVE or ITERATE instructions.

Start value assigned to control
variable

TO value (exprt) used to test
control variable for termination

FOR value (exprf) used to test
for termination

WHILE expression (exprw)
used to test for termination

UNTI L expression (expru)
used to test for termination

BY value (exprb) used to
update control variable

---'\..Discontinue execution of DO
-V group if TO value is exceeded.

Discontinue execution of DO
-'\..group if FOR value (number of -v iterations through the loop) is

exceeded.

- _ ~ Discontinue execution of DO
group if WHI LE condition ;s

- not met.

__ -'\.. Discontinue execution of DO
-v'group if UNTIL condition;s

met.

Figure 1. How a Typical DOLoop Is Executed

Part 2: Instructions 35

DROP

DROP

Where:

name
is a symbol, separated from any other names by one or more blanks.

DROP is used to "unassign" variables; that is, to restore them to their
original uninitialized state.

Each variable specified will be dropped from the list of known variables.
The variables are dropped in sequence from left to right. It is not an error
to specify a name more than once, or to DROP a variable that is not
known. If an EXPOSEd variable is named (see the PROCEDURE
instruction), the variable itself in the older generation will be dropped.

Example:

j=4
Drop a x. 3 x. j
/* would reset the variables: "A", "X.3", and "X.4" */
/* so that reference to them returns their name. */

If a stem is specified (that is, a symbol that contains only one period, as the
last character), all variables starting with that stem are dropped.

Example:

Drop x.
/* would reset all with names starting with "X." */

36 VM/SP System Product Interpreter Reference

C EXIT

EXIT

EXIT [expression J ;

EXIT is used to unconditionally leave a program, and optionally return a
data string to the caller. The program is terminated immediately, even if an
internal routine is currently being executed. If no internal routine is
active, RETURN (see page 54) and EXIT have the same function.

If expression is given, it is evaluated and the string resulting from the
evaluation is then passed back to the caller when the program terminates.

Example:

j=3
Exit j*4
/* Would exit with the string '12' */

If expression is not given, no data is passed back to the caller. If the
program was called as an external function, this will be detected as an error
- either immediately (if RETURN was used), or on return to the caller (if
EXIT was used).

"Running off the end" of the program is always equivalent to the
instruction EXIT, in that it terminates the whole program and returns no
result string.

Note: The interpreter does not distinguish between invocation as a
command on the one hand, and invocation as a subroutine or function on
the other. If in fact the program was invoked via the more primitive
command interface (which only allows a numeric return code), an attempt
is made to convert the returned value to a return code acceptable by the
host. The returned string must then be a whole number whose value will fit
in a S/370 register (that is, must be in the range -2**31 through 2**31-1). If
the conversion fails, it is deemed to be a failure of the host interface and is
thus not subject to trapping by SIGNAL ON SYNTAX. Note also that only
the last five digits of the return code (four digits for a negative return code)
will be displayed by the standard eMS ready message.

Part 2: Instructions 37

IF

IF

The IF construct is used to conditionally execute an instruction or group of
instructions - depending on the evaluation of the expression.

The instruction after the THEN is executed only if the result of the
evaluation was 1. If an ELSE was given, the instruction after the ELSE is
executed only if the result of the evaluation was O.

Example:

if answer='YES' then say 'OK!'
else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of
the THEN part, you need a semicolon to terminate that clause.

Example:

if answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level.

Example:

if answer='YES' then if narne='FRED' then say 'OK, Fred.'
else nap

else say 'Why not?'

Notes:

1. instruction includes all the more complex constructs such as DO groups
and SELECT groups, as well as the simpler ones and the IF instruction
itself. A null clause is not an instruction; so putting an extra semicolon
after the THEN or ELSE is not equivalent to putting a dummy
instruction (as it would be in PL/I). The NOP instruction is provided
for this purpose.

2. A variable called THEN cannot be used within expression, because the
keyword THEN is treated differently, in that it need not start a clause.
This allows the expression on the IF clause to be terminated by the
THEN, without a ";" being required - were this not so, people used to
other computer languages would experience considerable difficulties.

38" VM/SP System Product Interpreter Reference

,/ '" I '

['" i
(

~~/

INTERPRET

f

(

INTERPRET

INTERPRET is used to execute instructions that have been built
dynamically by evaluating expression.

expression is evaluated, and will then be executed (interpreted) just as
though the resulting string were a line inserted into the input file (and
bracketed by a DO; and an END;).

Any instructions (including INTERPRET instructions) are allowed, but
note that constructions such as DO ••. END and SELECT .•• END must be
complete. For example, a string of instructions being INTERPRETed
cannot contain a LEAVE or ITERATE instruction (valid only within a
repetitive DO loop) unless it also contains the whole repetitive DO .•• END
construct.

A semicolon is implied at the end of the expression during execution, as a
service to the user.

Example:

data='FRED'
interpret data '= 4'
/* Will a) build the string "FRED = 4" */
/* b) execute FRED = 4; */
/* Thus the variable "FRED" will be set to "4" */

Example:

data=' do 3; say
interpret data

Notes:

"Hello there!"; end'
/* Would display:
/* Hello there!
/* Hello there!
/* Hello there!

*/
*/
*/
*/

1. Labels within the interpreted string are not permanent and are
therefore ignored. Hence, executing a SIGNAL instruction from within
an interpreted string will cause immediate exit from that string before
the label search begins.

2. If you are new to the concept of the INTERPRET instruction and are
getting results that you do not understand, you may find that executing
it with TRACE R or TRACE I set is helpful.

Part 2: Instructions 39

INTERPRET

Example:

/* Here we have a small program. */
Trace Int
name='Kitty'
indirect=' name ,
interpret 'say "Hello'" indirect'"!'''

when run gives the trace:

2

3

4

Hello

-
>L>
-
>L>
-
>L>
>v>
>0>
>L>
>0>
-
>L>
>v>
>0>
>L>
>0>

name='Kitty'
"Kitty"

indirect= 'name ,
"name"

interpret 'say "Hello'" indirect'"!'''
"say "Hello""
"name"
"say "Hello" name"
""1 1111

"say "Hello" name"!""
say "Hello" name"!"

"Hello"
"Kitty"
"Hello Kitty"
II ! II

"Hello Kitty!"
Kitty!

Here, lines 2 and 3 set the variables used in line 4. Execution of line 4
then proceeds in two stages. First the string to be interpreted is built
up, using a literal string, a variable (INDIRECT), and another literal.
The resulting pure character string is then interpreted, just as though it
were actually part of the original program. Since it is a new clause, it
is traced as such (the second *-* trace flag under line 4) and is then
executed. Again a literal string is concatenated to the value of a
variable (NAME) and another literal, and the final result (Hello
Kit t Y !) is then displayed.

3. For many purposes, the VALUE function (see page 99) may be used
instead of the INTERPRET instruction. Line 4 in the last example
could therefore have been replaced by:

say "Hello" value(indirect)"!"

INTERPRET is usually only required in special cases, such as when
more than one statement is to be interpreted at once.

40 VM/SP System Product Interpreter Reference

r· ITERATE

ITERATE

ITERATE alters the flow within a repetitive DO loop (that is, any DO
construct other than that with a simple DO).

Execution of the group of instructions stops, and control is passed to the
DO instruction just as though the bottom of the group of instructions had
been reached. The UNTIL expression (if any) is tested, the control variable
(if any) is incremented and tested, and the WHILE expression (if any) is
tested. If these tests indicate that conditions of the loop have not yet been
satisfied, the group of instructions is executed again (iterated), beginning at
the top.

If name is not specified, ITERATE will step the innermost active repetitive
loop. If name is specified, it must be the name of the control variable of a
currently active loop (which may be the innermost), and this is the loop
that is stepped. Any active loops inside the one selected for iteration are
terminated (as though by a LEAVE instruction).

Example:

do i=l to 4
if i=2 then iterate
say i
end

/* Would display the numbers:

Notes:

1, 3, 4 */

1. name, if specified, must match that on the DO instruction. No
substitution for compound variables is carried out when the comparison
is made.

2. A loop is active if it is currently being executed. If a subroutine is
called (or an INTERPRET instruction is executed) during execution of
a loop, the loop becomes inactive until the subroutine has returned or
the INTERPRET instruction has completed. ITERATE cannot be used
to step an inactive loop.

3. If more than one active loop uses the same control variable, the
innermost loop will be the one selected by the ITERATE.

Part 2: Instructions 41

LEAVE

LEAVE

LEAVE causes immediate exit from one or more repetitive DO loops (that
is, any DO construct other than that with a simple DO).

Execution of the group of instructions is terminated, and control is passed
to the instruction following the END clause, just as though the END
clause had been encountered and the termination condition had been met
normally. However, on exit, the control variable (if any) will contain the
value it had when the LEAVE instruction was executed.

If name is not specified, LEA VE will terminate the innermost active
repetitive loop. If name is specified, it must be the name of the control
variable of a currently active loop (which may be the innermost), and that
loop (and any active loops inside it) is then terminated. Control then passes
to the clause following the END that matches the DO clause of the selected
loop.

Example:

do i=l to 5
say i
if i=3 then leave
end

/* Would display the numbers:

Notes:

1, 2, 3 */

1. name, if specified, must match that on the DO instruction. No
substitution for compound variables is carried out when the comparison
is made.

2. A loop is active if it is currently being executed. If a subroutine is
called (or an INTERPRET instruction is executed) during execution of
a loop, the loop becomes inactive until the subroutine has returned or
the INTERPRET instruction has completed. LEAVE cannot be used
to terminate an inactive loop.

3. If more than one active loop uses the same control variable, the
innermost will be the one selected by the LEAVE.

42 VM/SP System Product Interpreter Reference

(

NOP

f

(

NOP

NOP;

NOP is a dummy instruction that has no effect. It can be useful as the
target of an THEN or ELSE clause:

Example:

Select

end

when a=b then nop
when a>b then say 'A > B'
otherwise say 'A < B'

/* Do nothing */

Note: Putting an extra semicolon instead of the NOP would merely insert
a null clause, which would be ignored. The second WHEN clause would be
seen as the first instruction expected after the THEN, and hence would be
treated as a syntax error. NOP is an instruction that is a valid target for
the THEN clause.

Part 2: Instructions 43

NUMERIC

The NUMERIC instruction is used to change the way in which arithmetic
operations are carried out. The options of this instruction are described in /~ ~
detail on pages 133-142, but in summary:

NUMERIC DIGITS

controls the precision to which arithmetic operations will be carried
out. expression (if specified) must evaluate to a positive whole
number, and the default is 9. This number must be larger than the
FUZZ setting.

There is no limit to the value for DIGITS (except the amount of
storage available), but note that high precisions are likely to be very
expensive in CPU time. It is recommended that the default value be
used wherever possible.

NUMERIC FORM

controls which form of exponential notation will be used for computed
results. This may be either SCIENTIFIC (in which case only one,
non-zero digit will appear before the decimal point), or
ENGINEERING (in which case the power of ten will always be a
multiple of three). The default is SCIENTIFIC.

NUMERIC FUZZ

controls how many digits, at full precision, will be ignored during a
comparison operation. expression (if specified) must result in a
non-negative whole number that must be less than the DIGITS
setting. The default value for FUZZ is O.

The effect of FUZZ is to temporarily reduce the value of DIGITS by
the FUZZ value before every comparison operation, so that the
numbers are subtracted under a precision of DIGITS-FUZZ digits
during the comparison and are then compared with O.

Note: The three numeric settings are automatically saved across
subroutine and internal function calls. See under the CALL instruction
(page 28) for more details.

44 VM/SP System Product Interpreter Reference

c OPTIONS

{

OPTIONS

OPTIONS [expression]

The OPTIONS instruction specifies whether double byte character set
(DBCS) strings can be manipulated.

expression is evaluated, and the result is examined one word at a time. If
one of the words is ETMODE, literal strings containing DBCS characters
can be used in the program. If one of the words is NOETMODE, DBCS
strings can not be used in the program. NOETMODE is the default.

The last occurrence of NOETMODE or ETMODE appearing in the result is
the setting that remains in effect. Any other words that appear in the
result are ignored. For example, if you issue:

OPTIONS USED TO SET NOETMODE OR ETMODE SETTING

then ETMODE is the setting in effect.

For a description of double byte character set (DBCS) strings, see VM/SP
System Product Editor Command and Macro Reference.

Notes:

1. Because of the System Product Interpreter's scanning procedures, you
are advised to place the OPTIONS instruction near the beginning of the
EXEC file.

2. The OPTIONS setting will be saved and restored across subroutine and
function calls. • ..

3. To distinguish DBCS characters from one-byte EBCDIC characters,
sequences of DBCS characters are enclosed with a shift-out (SO)
character and a shift-in (SI) character. The hexadecimal value of the
SO character is X'OE'. The hexadecimal value of the SI character is
X'OF'.

DBCS fields within a literal string, which are delimited by SO-SI
characters, are excluded from the search for a closing quote in literal
strings.

4. The keywords ETMODE and NOETMODE can appear several times
within the result. The last valid keyword specified takes effect.

Part 2: Instructions 45

PARSE

PARSE

Where:

template
is a list of symbols separated by blanks and/or "patterns."

The PARSE instruction is used to assign data (from various sources) to one
or more variables according to the rules described in the section on parsing
(page 123).

If the UPPER option is specified, the data to be parsed is IIrst translated to
uppercase. Otherwise, no uppercase translation takes place during the
parsing.

If template is not specified, no variables will be set but action will be taken
to get the data ready for parsing if necessary. Thus for PARSE
EXTERNAL and PARSE PULL, a data string will be removed from the
appropriate queue; and for PARSE VALUE, expression will be evaluated.

The data used for each variant of the PARSE instruction is:

PARSEARG

The string(s) passed to the program, subroutine, or function as the
input parameter list are parsed. (See the ARG instruction for details
and examples.)

Note: The argument string(s) to a REXX program or internal routine
may also be retrieved or checked by using the ARG built-in function,
described on page 75.

PARSE EXTERNAL

The next string from the terminal input buffer (system external event
queue) is parsed. This queue may contain data that is the result of
external asynchronous events· such as user console input, or
messages. If that queue is empty, a console read results. Note that f/"
this mechanism should not be used for "normal" console input, for '-

46 VM/SP System Product Interpreter Reference

«

(

PARSE

which PULL is more general, but rather it could be used for special
applications (such as debugging) when the program stack cannot be
disturbed.

The number of lines currently in the queue may be found with the
EXTERNALS built-in function, described on page 85.

PARSE NUMERIC

The current numeric controls (as set by the NUMERIC instruction,
see page 44) are made available. These controls are in the order
DIGITS FUZZ FORM.

Example:

9 0 SCIENTIFIC

See "Numeric Information" on page 141.

PARSE PULL

The next string from the program stack (system-provided data queue)
is parsed (see note). This queue can save a series of data strings.
Data can be added to the beginning or end of the queue using the
PUSH and QUEUE instructions respectively. The queue can also be
altered by other programs in the system, and can be used as a means
of communication between programs.

The number of lines currently in the queue may be found with the
QUEUED built-in function, described on page 91.

Note: PULL and PARSE PULL read from the program stack. If that
is empty, they read from the terminal input buffer; and if that too is
empty, a console read results. (See the PULL instruction, on page 51,
for further details.)

PARSE SOURCE

The data parsed describes the source of the program being executed.

The source string contains the characters CMS, followed by either
COMMAND, FUNCTION, or SUBROUTINE depending on whether
the program was invoked as some kind of host command (for example,
EXEC or macro), or from a function call in an expression, or via the
CALL instruction. These two tokens are followed by the program
filename, filetype, and filemode; each separated from the previous
token by one or more blanks. (The filetype and filemode may be
unknown if the program is being executed from storage, in which case
the SOURCE string will have one * for each unknown value.)
Following the filemode is the name by which the program was invoked
(due t.o synonyms, this may not be the same as the filename). It may
be in mixed case and will be truncated to 8 characters if necessary. (If

Part 2: Instructions 47

PARSE

< it cailnot be determined, "?" is used as a placeholder). The final word
is the initial (default) address for commands.

IT the interpreter was called from a program that setup a subcommand
environment; the filetype is usually the name of the default address
for commands· see page 20 for details. Note that if a PSW isused for
the default address, the PARSE SOURCE string will use? as the
name of the environment.

The string parsed might therefore look like this:

CMS COMMAND REXTRY EXEC * rext CMS

PARSE VALUE

expression is evaluated, and the result is the data that is parsed. Note
that WITH is a keyword in this context and so cannot be used as a
symbol within expression.

Thus, for example:

PARSE VALUE time () WITH hours I: I mins I: I secs

Will get the current time and split it up into its constituent parts.

PARSEVAR name

The value of the variable specified by name is parsed. name must be a
'i$ymbol· that is valid as a variable name (that is,it may not start with a
period ora digit). Note that the variable name may be included in the
template, so that for example:

PARSE VAR string wordl string

will remove the first word from string and put it in the variable wordl,
and

PARSE UPPER VAR string wordl string

will also translate the data from string to uppercase before it is
parsed .

. PARSE' VERSION

Information describing the language level and the date of the
interpreter is parsed. This consists of five words: first the string
"REXX370", then the language level description (for example, "3.40"),
and finally the interpreter release date (for example, "17 Jan 1984").

Note: PARSE VERSION information should be parsed on a word
basis rather than on an absolute column position.

48 VM/SP System Producilnterpreter Reference ,

PROCEDURE

PROCEDURE

PROCEDURE [EXPOSE name [name] [name ~ ..] ;

Where:

name
is a symbol, separated from any other names by one or more blanks.

The PROCEDURE instruction may be used within an internal routine
(subroutine or function) to protect all the existing variables by making
them unknown to the following instructions. On executing a RETURN
instruction, the original variables' environment is restored and any
variables used in the routine are dropped.

The EXPOSE option modifies this, in that the variables specified by names
are exposed, so that any references to them (including setting them and
dropping them) refer to the variables' environment owned by the caller. If
the EXPOSE option is used, at least one name must be specified. Any
variables not specified by name on a PROCEDURE EXPOSE instruction
are still protected. Hence, some limited set of the caller's variables can be
made accessible, and these variables may be changed (or new variables in
this set may be created). All these changes will be visible to the caller
upon RETURN from the routine.

The variables are exposed in sequence from left to right. It is not an error
to specify a name more than once, or to specify a name that has not been
used as a variable by the caller.

Example:

/* This is main program */
j=l; x.1='a'
call toft
say j k m /* would display "17M" */
exit

toft: procedure
say j k x. j
k=7; m=3
return

expose j k x.j
/* would display "1 K a" */
/* note "M" is not exposed */

Note that if x.J in the EXPOSE list had been placed before J, the caller's
value of J would not have been visible at that time, so X.l would not have
been exposed.

If a stem is declared in names, all possible compound variables whose
names begin with that stem are exposed. (A stem is a symbol containing
just one period, which is the last character. See page 14.)

Part 2: Instructions 49

PROCEDURE

Example:

Procedure Expose i j a. b.
/* This exposes "I", "J", and all variables whose */
/* name starts with "A." or "B." */
A.l='?' /* This will set "A.l" in the caller's */

/* environment, even if it did not */
/* previously exist. */

Variables may be exposed through several generations of routines, if
desired, by ensuring that they are included on all intermediate
PROCEDURE instructions.

Only one PROCEDURE instruction in each level of routine call is allowed,
all others (and those met outside of internal routines) are in error.

Notes:

1. An internal routine need not include a PROCEDURE instruction, in
which case the variables it is manipulating are those "owned" by the
caller.

2. It is suggested that the PROCEDURE instruction should be the first
instruction executed after the CALL or function invocation - that is, it
should be the first instruction following the label. This is not enforced.

See the CALL instruction and function descriptions on pages 28 and 69 for (--".
details and examples of how routines are invoked. :~

;/ ..

c
50 VM/SP System Product Interpreter Reference

r PULL

f

PULL

Where:

template
is a list of symbols separated by blanks and/or "patterns."

PULL is used to read a string from the program stack (system-provided
data queue), see note. It is just a short form of the instruction:

PARSE UPPER PULL [template] ;

I

The current head-of-queue will be read as one string. If no template is
specified, no further action is taken (and the data is thus effectively
discarded). Otherwise, the data is translated to uppercase and then parsed
into variables according to the rules described in the section on parsing
(page 123). Use the PARSE PULL instruction if uppercase translation is
not desired.

Note: If the program stack is empty, the terminal input buffer is used. If
that too is empty, a console read will occur. Conversely, if you
"type-ahead" before an EXEC asks for your input, your input data is added
to the end of the terminal input buffer and will be read at the appropriate
time. The length of data in the program stack is restricted to 255
characters. The length of data in the terminal input buffer is restricted to
130 characters.

Example:

Say 'DO you want to erase the file? Answer Yes or No:'
Pull answer
if answer=' YES , then Erase filename filetype filemode

Here the dummy placeholder "." is used on the template so as to isolate the
first word entered by the user.

The number of lines currently in the queue may be found with the
QUEUED built-in function, described on page 91.

Part 2: Instructions 51

:1.'

J
~I
.1
,I

PUSH

PUSH

The string resulting from expression will be stacked LIFO - Last In, First
Out - onto the most recently created buffer of the program stack
(system-provided data queue), see note. If expression is not specified, a null
string is stacked.

Note: The length of the data in the program stack is restricted to 255
characters. The program stack contains one buffer initially, but additional
buffers may have been created using the eMS command MAKEBUF.

Example:

a='Fred'
push
push a 2

/* Puts a null line onto the stack */
/* Puts "Fred 2" onto the stack */

The number of lines currently in the queue may be found with the
QUEUED built-in function, described on page 91.

52 VM/SP System Product Interpreter Reference

(QUEUE

r

t

QUEUE

QUEUE [expression J; .

The string resulting from expression will be appended to the most recently
created buffer of the program stack (system-provided data queue), see note.
That is, it will be stacked FIFO - First In, First Out. If expression is not
specified, a null string is queued.

Note: The length of data in the program stack is restricted to 255
characters. The program stack contains one buffer initially, but additional
buffers may have been created using the eMS command MAKEBUF.

Example:

a='Toft'
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

The number of lines currently in the queue may be found with the
QUEUED built-in function, described on page 91.

Part 2: Instructions 53

RETURN

RETURN

RETURN is used to return control (and possibly a result) from a REXX
. program or internal routine to the point of its invocation.

If no internal routine (subroutine or function) is active, RETURN is
essentially identical to EXIT. (See page 37.) .

If a subroutine is being executed (see the CALL instruction), expression (if
any) is evaluated, control passes back to the caller, and the REXX special
variable RESULT is set to the value of expression. If expression is not
specified, the special variable RESULT is dropped (becomes uninitialized).
The various settings saved at the time of the CALL (tracing, addresses, etc.)
are also restored. (See page 28.)

If a function is being executed, the action taken is identical, except that
expression must be specified on the RETURN instruction. The result of
expression is then used in the original expression at the point where the
function was invoked. See the description of functions on page 69 for more
details.

If a PROCEDURE instruction was executed within the routine (subroutine
or internal function), all variables of the current generation are dropped
(and those of the previous generation are exposed) after expression is
evaluated and before the result is used or assigned to RESULT.

54 VM/SP SysternProdud Interpreter ReferEmce

(
I

"'--

c

SAY

r

f

("

SAY

I SAY [_".);

The result of evaluating expression is displayed to the user. The result of
expression may be of any length.

Note: The data will be formatted (split up into shorter lengths, if
necessary) to fit the terminal line size (which may be determined using the
LINESIZE function). The line size is restricted to a maximum of 130
characters. The line splitting is done by the interpreter, hence allowing
any length data to be displayed. Lines are typed on a typewriter terminal,
or displayed on a display terminal. If you are disconnected (in which case
there is no "real" console, but data can still be written to the console log),
or CP TERMINAL LINESIZE OFF has been issued (in which case
LINESIZE = 0), SA Y will use a default line size of SO.

Example:

data=100
Say data 'divided by 4 =>, data/4
/* Would display: "lOa divided by 4 => 25" */

Part 2: Instructions 55

SELECT

SELECT

SELECT is used to conditionally execute one of several alternative
instructions.

Each expression following a WHEN is evaluated in turn and must result in
o or 1. If the result is 1, the instruction following the THEN (which may be
a complex instruction such as IF, DO, or SELECT) is executed and control
will then pass to the END. If the result is 0, control will pass to the next
WHEN clause.

If none of the WHEN expressions evaluate to 1, control will pass to the
instruction(s), if any, following OTHERWISE. In this situation, the
absence of an OTHERWISE will cause an error.

Example:

State Fn Ft Fm
Select

when rc=O then do
erase Fn Ft Fm
say 'File existed, Now erased'
end

\>Then rc=28 I rc=36 then say I File does not exist'
otherwise

say 'Unexpected return code' rc 'from STATE'
exit rc

End /* Select */

56 VM/SP System Product Interpreter Reference

r
SELECT

Notes:

1. A null clause is not an instruction, so putting an extra semicolon after
a WHEN clause is not equivalent to putting a dummy instruction. The
NOP instruction is provided for this purpose.

2. A variable called THEN cannot be used within expression, because the
keyword THEN is treated differently, in that it need not start a clause.
This allows the expression on the WHEN clause to be terminated by
the THEN, without a ; (delimiter) being required.

Part 2: Instructions 57

SIGNAL

SIGNAL

Where:

labelname
is a symbol that is taken as a constant.

The SIGNAL instruction causes an abnormal change in the flow of
control, or (if ON or OFF is specified) controls the trapping of exceptions.

In the case of neither ON nor OFF being specified:

labelname is used directly, or is the result of expression if VALUE is
specified All active pending DO, IF, SELECT, and INTERPRET
instructions in the current routine are then terminated (that is, they
cannot be reactivated). Control then passes to the first label in the
program that matches the required string, as though the search had
started from the top of the program. The match is done independently
of alphabetic case, but otherwise the label must match exactly.

Example:

Signal fred; /* Jump to label "FRED" below */

Fred: say 'Hi!'

Since the search effectively starts at the top of the program, control will
always pass to the first label in the program if duplicates' are present.
That is, duplicate labels are ignored.

58 VM/SP System Product Interpreter Reference

r

(

{

SIGNAL

In the case of ON or OFF being specified:

The condition is either enabled (ON) to trap an event or disabled
(OFF). When a condition is enabled and the corresponding event
occurs, the corresponding action (described below) will be taken. The
conditions and their corresponding events, which may be trapped, are:

ERROR
any host command returns a non-zero return code.

HALT
an external attempt is made to interrupt execution of the program,
for example, by using the CMS immediate command, HI (Halt
Interpretation). Refer to "Interrupting Execution and Controlling
Tracing" on page 119.

NOVALUE
an uninitialized variable is used in an evaluated expression, or
following the V AR keyword of the PARSE instruction, or in an
UPPER instruction. NOV ALUE will trap a return of LIT on a
function call SYMBOL('name').

SYNTAX
an interpretation error is deteoted.

The initial setting of all conditions is OFF. When a condition is disabled
(either initially or if OFF has been specified) the trap is not in effect. So,
when the corresponding event occurs, no special action is taken.

When a condition is currently enabled (ON has been specified) the trap is
in effect. So, when the corresponding event occurs, instead of the usual
action at that point, the special action is taken - execution of the current
instruction is terminated and a SIGNAL instruction is executed
automatically. This causes control to pass to the first label in the program
that matches the condition.

Example:

Signal on error

erase /* this command gives a non-zero */
/* return code */

ERROR: /* Program will continue from here */
say "Return code was" rc

Once an event is trapped, its corresponding condition is disabled (before the
SIGNAL takes place), and a new SIGNAL ON instruction is required to
re-enable it. Therefore, for example, if the required label is not found, a
normal Syntax Error exit will be taken, which traces the name of that label
and the clause in which the event occurred.

Part 2: Instructions 59

SIGNAL

For ERROR and SYNTAX, the REXX special variable RC is set to the
error return code or syntax error number respectively before control is
transferred to the condition label.

The conditions are saved on entry to a subroutine and are then restored on
RETURN. This means that SIGNAL ON and SIGNAL OFF may be used
in a subroutine without affecting the conditions set up by the caller. See
under the CALL instruction (page 28) for more details.

Notes:

1. In all cases, whenever the event occurs corresponding to an enabled
condition, the SIGNAL takes place immediately (and the current
instruction is terminated). Therefore, the instruction during which an
event occurs may be only partly executed (for example, if the event
corresponding to SYNTAX occurs during the evaluation of the
expression in an assignment, the assignment will not take place). Note
that HALT and ERROR can only occur at clause boundaries, but could
arise in the middle of an INTERPRET instruction.

2. During interactive debug, all conditions are set OFF so that unexpected
transfer of control does not occur should (for example) the user
accidentally use an uninitialized variable while SIGNAL ON
NOV ALUE is active. For the same reason, a syntax error during
interactive debug will not cause exit from the program, but is trapped ~
specially and then ignored after a message is given. \

3. Certain execution errors are detected by the host interface either before
execution of the program starts or after the program has exited. These
errors cannot be trapped by SIGNAL ON SYNTAX, and are listed on
page 177.

Note that labels are clauses consisting of a single symbol followed by a
colon. Any number of successive clauses may be labels; therefore, multiple

"'--J

labels are allowed before another type of clause. ~-,

~j

The Special Variable SIGL

When any transfer of control due to a SIGNAL (or CALL) takes place, the
line number of the clause currently executing is stored in the REXX special
variable SIGL. This is especially useful for SIGNAL ON SYNTAX (see
above) when the number of the line in error can be used, for example, to
control an editor. Typically, code following the SYNTAX label may
PARSE SOURCE to find the source of the data, then invoke an editor to
edit the source file positioned at the line in error. Note that in this case
the EXEC has to be reinvoked before any changes made in the editor can
take effect.

60 VM/SP System Product Interpreter Reference

(

SIGNAL

Alternatively, SIGL may be used to help determine the cause of an error
(such as the occasional failure of a function call), using the following
section of code (or something similar):

/* Standard handler for SIGNAL ON SYNTAX */
syntax:

$error='REXX error' rc 'in line' sigl':' errortext(rc)
say $error
say sourceline(sigl)
trace '?r'i nop

This code displays the error message and line number, then displays the
line in error, and finally drops into debug mode to allow you to inspect the
values of the variables used at the line in error (for instance). This may be
followed, in eMS, by the following lines, so that by pressing ENTER you
will be placed in XEDIT as suggested above:

call trace '0'
address command 'Dropbuf 0'
parse source . . $fn $ft $fm
push 'Command :'sigli push 'Command EMSG' $error
address cms 'Xedit' $fn $ft $fm
exit rc

Using SIGNAL with the INTERPRET Instruction

If, as the result of an INTERPRET instruction, a SIGNAL instruction is
issued or a trapped event occurs, the remainder of the string(s) being
interpreted will not he searched for the given label. In effect, labels within
interpreted strings are ignored.

Part 2: Instructions 61

TRACE

TRACE

Or, alternatively:

Where:

number is a whole number.

string or expression evaluates to:

• a number option,
• one of the valid prefix and/or alphabetic character (word) options shown

above, or
• null.

symbo 1 is taken as a constant, and is, therefore:

• a number option,
• one of the valid prefix and/or alphabetic character (word) options shown

above.

TRACE is primarily used for debugging. It controls the tracing action
taken (that is, how much will be displayed to the user) during execution of
a REXX program. The syntax of TRACE is more concise than other REXX
instructions. The economy of key strokes for this instruction is especially
convenient since TRACE is usually entered manually during interactive
debugging.

62.. VM/SP System Product Interpreter Reference

(-

TRACE

The t~acing action is determined from the option specified following
TRACE, or from the result of evaluating expression. If the expression
form is used, the keyword VALUE preceding it may be omitted as long as
expression starts with a special character or operator (so it cannot be
mistaken for a symbol or string).

Alphabetic Character (Word) Options

Although it is acceptable to enter the word in full, only the capitalized
character is significant, all others are ignored. That is why these are
referred to as alphabetic character options.

TRACE actions taken correspond to the alphabetic character options as
follows:

All

Commands

Error

all clauses are traced (that is, displayed) before execution.

all host commands are traced before execution and any
non-zero return code is displayed.

any host command resulting in a non-zero return code is
traced after execution.

Intermediates all clauses are traced before execution. Intermediate
results during evaluation of expressions and substituted
names are also traced.

Labels

Negative

Off

Results

Scan

labels are traced, not all labels, only those passed during
execution. This is especially useful with debug mode, when
the interpreter will pause after each label. It is also
convenient for the user to make note of all subroutine calls
and signals.

(Negative or Normal); any host command resulting in a
negative return code is traced after execution. This is the
default setting.

nothing is traced, and the special prefix actions (see below)
are reset to OFF.

all clauses are traced before execution. Final results
(contrast with Intermediate, above) of evaluating an
expression are traced. Values assigned during PULL, ARG,
and PARSE instructions are also displayed. This setting
is recommended for general debugging.

all remaining clauses in the data will be traced without
being executed. Basic checking (foJ,' missing ENDs etc.) is
carried out, and the trace is formatted as usual. This is
only valid if the TRACE S clause itself is not nested in any
other instruction (including INTERPRET or interactive
debug) or in an internal routine.

Part 2: Instructions 63

TRACE

Prefix Options

The prefixes ! and 1 are valid either alone or with one of the alphabetic
character options. Both prefixes may be specified, in any order, on one
TRACE instruction. A prefix may be specified more than once, if desired.
Each occurrence of a prefix on an instruction reverses the action of the
previous prefix. The prefix(es) must immediately precede the option (no
intervening blanks).

The prefixes ! and 1 modify tracing and execution as follows:

? is used to control interactive debug. During normal execution, a
TRACE .instruction prefixed with 1 will cause interactive debug to be
switched on. (See separate section on page 117 for full details of this
facility). While interactive debug is on, interpretation will pause after
most clauses that are traced. As an example, the instruction TRACE ?E
will make the interpreter pause for input after executing any host
command that retums an Error (that is, a non-zero return code).

Any TRACE instructions in the file being traced are ignored. (This is so
that you are not taken out of interactive debug unexpectedly.)

Interactive debug can be switched off, when it is in effect, by issuing a
TRACE instruction with a prefix 1. Repeated use of the 1 prefix will,
therefore, switch you alternately in and out of interactive debug. Or,
interactive debug can be turned off at any time by issuing TRACE 0 or
TRACE with no options.

Note: The CMS immediate command TS, entered from the command
line, can also be used to enter interactive debug.

is used to inhibit host command execution. During normal execution, a
TRACE instruction prefixed with! will cause execution of all
subsequent host commands to be suspended. As an example, TRACE ! C

will cause commands to be traced but not executed. As each command is
bypassed, the REXX special variable RC is set to o. This action may be
used for debugging potentially destructive programs. (Note that this
does not inhibit any commands issued manually while in interactive
debug, which are always executed.)

Command inhibition can be switched off, when it is in effect, by issuing
a TRACE instruction with a prefix 1. Repeated use of the! prefix will,
therefore, switch you alternately in and out of command inhibition
mode. Or, command inhibition can be turned off at any time by issuing
TRACE 0 or TRACE with no options.

64 VM/SP System Product Interpreter Reference

/~ ,

(Numeric Options

A Typical Example

TRACE

If interactive debug is active, and if the option specified is a positive whole
number (or an expression that evaluates to one), that number indicates the
number of debug pauses to be skipped over. (See the section on interactive
debugging, page 117, for further information.) However, if the option is a
negative number (or an expression that evaluates to one), all tracing,
including debug pauses, is temporarily inhibited for the specified number of
clauses. For example, TRACE -100 means that the next 100 clauses that
would normally be traced, will not, in fact, be displayed. After that, tracing
will resume as before.

If interactive debug is not active, numeric options are ignored.

If no option is specified on a TRACE instruction, or if the result of
evaluating the expression is null, the default tracing actions are restored.
The defaults are TRACE N, command inhibition (!) off, and interactive
debug (?) off.

The trace actions currently in effect can be retrieved by using the TRACE
built-in function, described on page 97.

Comments associated with a traced clause are included in the trace, as are
comments in a null clause, if TRACE A, R, I, or S is specified.

Commands traced before execution always have the final value of the
command (that is, the string passed to the environment), as well as the
clause generating it traced.

Trace actions are automatically saved across subroutine and function calls.
See under the CALL instruction (page 28) for more details.

One of the most common traces you will use is:

TRACE ?R
/* Interactive debug is switched on if it was off, */
/* and tracing Results of expressions begins. */

Note: Tracing may be switched on, without requiring modification to a
program, by using the CMS command SET EXECTRAC ON. Tracing may
also be turned on or off asynchronously, (that is, while an EXEC is
running) using the TS and TE immediate commands. See page 119 for the
description of these facilities.

Part 2: Instructions 65

TRACE

Format of TRACE output

Every clause traced will be displayed with automatic formatting
(indentation) according to its logical depth of nesting etc., and any control
codes (defined as EBCDIC values less than X'40') are replaced by a question
mark (?) to avoid console interference. Results (if requested) are indented
an extra two spaces and are enclosed in double quotes so that leading and
trailing blanks are apparent.

The first clause traced on any line will be preceded by its line number. If
the line number is greater than 99999, it is truncated on the left and the
truncation is indicated by a prefix of? For example the line number 100354
would be shown as ?00354.

All lines displayed during tracing have a three character prefix to identify
the type of data being traced. These may be: ,/' ,

- identifies the source of a single clause, that is, the data actually in
the program.

+++ identifies a trace message. This may be the non-zero return code
from a command, the prompt message when interactive debug is
entered, an indication of a syntax error when in interactive debug,
or the traceback clauses after a syntax error in the program (see
below).

»> identifies the Result of an expression (for TRACE R), or the value
assigned to a variable during parsing, or the value returned from a
subroutine call.

>. > identifies the value "assigned" to a placeholder during parsing (see
page 129).

The following prefixes are only used if Intermediates (TRACE I) are being
traced:

>c> The data traced is the name of a compound variable, traced after
substitution and before use, provided that the name had the value of
a variable substituted into it.

>F> The data traced is the result of a function call.

>L> The data traced is a literal (string or uninitialized variable).

>0> The data traced is the result of an operation on two terms.

>p> The data traced is the result of a prefix operation.

>v> The data traced is the contents of a variable.

\,- -

Following a syntax error that is not trapped by SIGNAL ON SYNTAX, the C "
clause in error will always be traced, as will any CALL or INTERPRET or

66 VM/SP System Product Interpreter Reference

--- -- ---- -----

I

{

"""----- -- -- -- ----

TRACE

function invocation clauses active at the time of the error. If the error was
caused by an attempt to transfer control to a label that could not be found,
that label is also traced. These traceback lines are identified by the special
trace prefix +++.

Part 2: Instructions 67

UPPER

UPPER c

Where:

variable
symbol, separated from any other variables by one or more blanks.

UPPER may be used to translate the contents of one or more variables to
uppercase. The variables are translated in sequence from left to right. /

It is more convenient (and faster) than using repeated invocations of the
TRANSLATE function.

Example:

a='Hello'; b='there'
Upper a b
say a b /* would display "HELLO THERE" */

Only simple symbols and compound symbols may be specified (see page 13). c ... ';
An error is signalled if a constant symbol or a stem is encountered. Using
an uninitialized variable is not an error, and has no effect, except that it
will be trapped if the NOV ALUE condition (SIGNAL ON NOV ALUE) is
enabled.

c
68 VM/SP System Product Interpreter Reference

r

Syntax

t

t

------_ .. -----

Calls to internal and external routines (called functions may be included
in an expression anywhere that a data term (such as a string) would be
valid, using the notation:

function-name ([expression] [,expression] ..•

Where:

function-name is a string, or a symbol that is taken as a constant.

There may be up to ten expressions, separated by commas, between the
parentheses. These are called the arguments to the function. Each
argument expression may include further function calls.

Note: Generally speaking, the last operand after the comma may be
omitted. No error is flagged in this case.

Note that the name of the function must be adjacent to the "(", with no
blank in between, or the construct will not be recognized as a function call.
(A blank operator will be assumed at this point instead.)

The arguments are evaluated in turn from left to right and they are all then
passed to the function. This then executes some operation (usually
dependent on the argument strings passed, though arguments are not
mandatory) and will eventually return a single character string. This
string is then included in the original expression just as though the entire
function reference had been replaced by the name of a variable that
contained that data.

For example, the function SUBSTR is built-in to the interpreter (see below,
page 94) and could be used as:

Nl='abcdefghijk'
Zl='Part of Nl is: 'Substr(c,2,7)
/* would set Zl to 'Part of Nl is: bcdefgh' */

A function may have no arguments, but parentheses must always be written
(otherwise the function call would not be recognized).

date() /* returns the date in the default format dd Mmm yyyy */

Part 3: Functions 69

Functions

Calls to Functions and Subroutines

The function calling mechanism is identical to that for subroutines. The
only difference between functions and subroutines is that functions must
return data, whereas subroutines need not. The various types of routines
that can be called as functions may be:

Internal If the routine name exists as a label in the program, the current
interpretation status is saved, so that it will later be possible to
return to the point of invocation to resume execution. Control is
then passed to the label found. As with a routine invoked by the
CALL instruction, various other status information (TRACE and
NUMERIC settings, etc.) is saved too. See the CALL instruction
(page 28) for details of this. If an internal routine is to be called
as a function, any RETURN instruction executed to return from
it must have an expression specified. This is not necessary if it is
only called as a subroutine.

Example:

/* Recursive internal function execution ... */
arg x
say x'! =' factorial(x)
exit

factorial: procedure
arg n

/* calculate factorial by .. */
/* recursive invocation. */

if n=O then return 1
return factorial(n-l) * n

(Unusually, FACTORIAL also calls itself. The PROCEDURE
instruction ensures that a new variable n is created for each
invocation).

Built-in These functions are always available, and are defined in the next
section of this manual. (See pages 73-103.)

External Users may write or make use of functions that are external to
the user's program and to the interpreter. An external function
may be written in any language, including REXX, that supports
the system dependent interfaces used by the interpreter to invoke
it. Again, when called as a function it must return data to the
caller.

Notes:

1. Calling an external program as a function is similar to
calling an internal routine. The external routine is however
an implicit PROCEDURE in that all the caller's variables are
always hidden, and the status of internal values (NUMERIC
settings, etc.) start with their defaults (rather than inheriting
those of the caller).

70 VM/SP System Product Interpreter Reference

--~ ~--- --~~

[

Search Order

f
{

r

Functions

2. Other REXX programs may be called as functions. Either
EXIT or RETURN may be used to leave the other REXX
program, and in either case an expression must be specified.

The search order for functions is the same as in the list above. That is,
internal labels take precedence, then built-in functions, and finally external
functions.

Internal labels are not used if the function name is given as a string (that
is, is specified in quotes) - in this case the function must be built-in or
external. This lets you usurp the name of, say, a built-in function to extend
its capabilities, yet still be able to invoke the built-in function when needed.

Example:

/* Modified DATE to return sorted date by default */
date: procedure

arg in
if in=" then in='Sorted'
return'DATE'(in)

Built-in functions have uppercase names, and so the name in the literal
string must be in uppercase for the search to succeed, as in the example.
The same is usually true of external functions.

External functions and subroutines have a special search order:

1. The name is prefixed with RX, and the interpreter attempts to execute
the program of that name, using SVC 202.

2. If the function is not found, the function packages will be interrogated
and loaded if necessary (they return RC =0 if they contained the
requested function, or RC = 1 otherwise). The function packages are
checked in the order RXUSERFN, RXLOCFN, and RXSYSFN. If the
load is successful, step (1) is repeated and will succeed.

3. If still not found, the name is restored to its original form, and all disks
are first checked for a program with the same filetype as the currently
executing program (if the filetype is not EXEC, as with XEDIT macros
for example), and then checked for a file with the filetype of EXEC. If
either is found, control is passed to it. (The IMPEX setting has no
control over this.)

4. Finally the interpreter attempts to execute the function under its
original name, using SVC 202. (If still not found, an error results.)

The name prefix mechanism, RX, allows new REXX functions to be written
with little chance of name conflict with existing MODULES.

Part 3: Functions 71

Functions

Start • Prefix name
with 'RX'

+
Execute SVC 202

~
Ves Was function

found ?

+Ho

Autoload from:
1. RXUSERFH OK
2.RXLOCFH
3.RXSYSFH

+ Fail

Subtract
'RX' prefix

+

Caller ftvpe Ho
EXEC?

Yes ~r

'!!. Ho Does macro
.... exist?

+ Yes
~,

Prepare
Does EXEC Yes --.. invocation

exist? ... for macro

Ho
or EXEC

~~ .. ~ ,
Execute SVC 202

+
,~ Yes Was function Ho

.... found ? ~ ,

I Fi nish J I Error J
Figure 2. External Routine Resolution and Execution

72 VM/SP System Product Interpreter Reference

['

r

f

Functions

Errors during Execution

If an external or built-in function detects an error of any kind, the
interpreter is informed, and a syntax error results. Execution of the clause
that included the function call is therefore terminated. Similarly, if an
external function fails to return data correctly, this will be detected by the
interpreter and reported as an error.

If a syntax error occurs during the execution of an internal function, it may
be trapped (using SIGNAL ON SYNTAX) and recovery may then be
possible. If the error is not trapped, execution of the whole program is
terminated in the usual way.

Built-in Functions

ABBREV

REXX provides a rich set of built-in functions. These include character
manipulation, conversion, and information functions. Further external
functions are generally available - see page 103.

General notes on the built-in functions:

• The built-in functions work internally with NUMERIC DIGITS 9 and
NUMERIC FUZZ 0 and are unaffected by changes to the NUMERIC
settings, except where stated.

• Where a string is referenced, a null string may be supplied.

• If an argument specifies a length, it must be a non-negative whole
number. If it specifies a start character or word in a string, it must be a
positive whole number.

• Where the last argument is optional, a comma may always be included
to indicate that it has been omitted; for example, DATATYPE(l,), like
DATATYPE(l), would return NUM.

• pad character, if specified, must be exactly one byte long.

• If a function has a sub-option selected by the first character of a
keyword, that character may be in upper- or lowercase.

· ... ··ABBREV(i~fof:mdtiQ~!i~fot.!~,.~tn··]·j.···· .
• • • • •• " c" •• '~

returns 1 if info is equal to the leading characters of information and
info is not less than the minimum length. Returns 0 if either of these

Part 3: Functions 73

Functions

ABS

ADDRESS

conditions is not met. The minimum length may be specified as the third
argument; the default is the length of info.

Here are some examples:

ABBREV('Print','Pri')
ABBREV('PRINT','Pri')
ABBREV('PRINT','PRI',4)
ABBREV('PRINT','PRY')
ABBREV('PRINT',")
ABBREV('PRINT',",l)

->
->
->
->
->
->

1
o
o
o
1
o

Note: A null string will always match if a length of 0 (or the default) is
used. This allows a default keyword to be selected automatically if desired;
for example:

say 'Enter option:'; pull option.
select /* keywordl is to be the default */

when abbrev('keywordl',option) then
when abbrev('keyword2',option) then ...

otherwise nop;
end;

returns the absolute value of number. The result is formatted according to
the current setting of NUMERIC DIGITS.

Here are some examples:

ABS (, 12 • 3 ')
ABS (' -0.307')

->
->

12.3
0.307

returns the environment to which host commands are currently being
submitted. In CMS, the environment may be a name of a subcommand
environment or a PSW. Trailing blanks are removed from the result.

Here are some examples:

74 VM/SP System Product Interpreter Reference

[

ARG

r

r

ADDRESS ()
ADDRESS ()

->
->

ARG([n [,option]])

'CMS' /* perhaps */
'XEDIT' /* perhaps */

Functions

returns information about the argument strings to a program or internal
routine.

If no parameter is given, the number of arguments passed to the program or
internal routine is returned.

If only n is specified, the nth argument string is returned. If the argument
string does not exist, the null string is returned. n must be positive.

If option is specified, the function tests for the existence of the nth
argument string. Valid opt ions (of which only the capitalized letter is
significant, all others are ignored) are:

Exists returns 1 if the nth argument exists; that is, if it was explicitly
specified when the routine was called. Returns 0 otherwise.

Omi t ted returns 1 if the nth argument was omitted; that is, if it was not
explicitly specified when the routine was called. Returns 0
otherwise.

Here are some examples:

/* following
ARG()
ARG(1)
ARG(2)
ARG(1, 'e')
ARG(1, '0')

/* following
ARG()
ARG(1)
ARG(2)
ARG(3)
ARG(n)
ARG(1, 'e')
ARG(2, 'E')
ARG(2, '0')
ARG(3, '0')
ARG(4, '0')

Notes:

"Call
->
->
->
->
->

"Call
->
->
->
->
->
->
->
->
->
->

name;"
o , ,
, ,
o
1

(no arguments) */

name 'a',,'b';" */
3
a
' ,
b
' , /* for n>=4 */
1
0
1
0
1

1. The argument strings to a program may be retrieved and parsed directly
using the ARG or PARSE ARG instructions - see pages 26, 46, and 123.

Part 3: Functions 75

Functions

BITAND

BITOR

2. Programs called as commands can have only 0 or 1 argument strings.

returns a string composed of the two input strings logically AND'ed
together, bit by bit. The length of the re.sult is the length of the longer of
the two strings. If no pad character is provided, the AND operation
terminates when the shorter of the two strings is exhausted and the
unprocessed portion of the longer string is appended to the partial result. If /'
pad is provided, it is used to extend the shorter of the two strings on the
right, before carrying out the logical operation. The default for str ing2 is
the zero length (null) string.

Here are some examples:

BITAND('73'x,'27'x)
BITAND('13'x,'5555'x)
BITAND('13'x,'5555'x,'74'X)
BITAND('pQrS',,'BF'x)

->
->
->
->

'23'x
'l155'x
'l154'x
'pqrs'

returns a string composed of the two input strings logically ORed together,
bit by hit. The length of the result is the length of the longer of the two
strings. If no pad character is provided, the OR operation terminates when
the shorter of the two strings is exhausted and the unprocessed portion of
the longer string is appended to the partial result. If pad is provided, it is
used to extend the shorter of the two strings on the right, before carrying
out the logical operation. The default for str ing2 is the zero length (null)
string.

Here are some examples:

BITOR('lS'x,'24'x)
BITOR('15'x,'2456'x)
BITOR('15'x,'2456'x, 'FO'x)
BITOR('llll'x,,'4D'x)
BITOR('Fred',,'40'x)

->
->
->
->
->

'35'x
'3556'x
·'35F6'x
'5D5D'x
'FRED'

76 VM/SP System Product Interpreter Reference

r- BITXOR

f

l CENTRE/CENTER

Functions

returns a string composed of the two input strings logically eXclusive ORed
together, bit by bit. The length of the result is the length of the longer of
the two strings. If no pad character is provided, the XOR operation
terminates when the shorter of the two strings is exhausted and the
unprocessed portion of the longer string is appended to the partial result. If
pad is provided, it is used to extend the shorter of the two strings on the
right, before carrying out the logical operation. The default for str ing2 is
the zero length (null) string.

Here are some examples:

BITXOR('12'x,'22'x)
BITXOR('1211'x,'22'x)
BITXOR('C711'x,'222222'x,' ')
BITXOR('llll'x,'444444'x)
BITXOR('llll'x,'444444'x,'40'x)
BITXOR('l111'x,,'4D'x)

->
->
->
->
->
->

'30'x
'3011'x
'E53362'x
'555544'x
'555504'x
'5C5C'x

returns a string of length length with str ing centered in it, with pad
characters added as necessary to make up length. The default pad
character is blank. If the string is longer than length, it will be truncated
at both ends to fit. If an odd number of characters are truncated or added,
the right hand end loses or gains one more character than the left hand
end.

Here are some examples:

CENTER(abc,7)
CENTER(abc,8,'-')
CENTRE('The blue sky',8)
CENTRE('The blue sky',7)

->
->
->
->

ABC
'--ABC---'
'e blue s'
'e blue'

Note: This function may be called either CENTRE or CENTER, which
avoids errors due to the difference between the British and American
spellings.

Part 3: Functions 77

Functions

CMSFLAG

COMPARE

COPIES

C2D

This is part of the RXSYSFN package. See page 104.

returns 0 if the strings, str ingl and str ing2, are identical. If they are
not, the returned number is non-zero and is the position of the first
character that does not match. The shorter string is padded on the right
with pad if necessary. The default pad character is a blank.

Here are some examples:

COMPARE (I abc I , I abc I)

COMPARE (I abc I , I ak I)

COMPARE (I ab I, 'ab')
COMPARE (• ab I, I ab I " ')

COMPARE (I ab I, I ab I , I X I)

COMPARE (I ab-- I, I ab I , I _ I)

->
->
->
->
;..>
->

o
2
o
o
3
5

returns n concatenated copies of str ing. n must be positive or O.

Here are some examples:

COPIES (, abc I ,3)
COPIES (I abc I ,0)

->
->

, abcabcabc I
I I

Character to Decimal. Returns the decimal value of the binary
representation of string. If the result cannot be expressed as a whole

78 VM/SP System Product Interpreter Reference

c

/--

L

f

{
C2X

-(-",
/

Functions

number, an error results. That is, the result must not have more digits than
the current setting of NUMERIC DIGITS.

str ing may be the null string.

If n is not specified, string is taken to be an unsigned number:

Here are some examples:

C2D('09'x)
C2D('81'x)
C2D('a')
C2D('FF81'x)

->
->
->
->

9
129
129

65409

If n is specified, the binary value of the string is taken to be a two's
complement number expressed in n characters, and is converted to a REXX
whole number which may therefore be negative. If n is 0, 0 is always
returned.

The string is padded on the left with characters Of 'OO'X (note, not
"sign-extended") or truncated to length n characters, if necessary. That is,
as though RIGHT(string,n, 'OO'x) had been executed.

Here are some examples:

C2D('81'x,1)
C2D('81'x,2)
C2D('FF81'x,2)
C2D('FF81'x,1)
C2D('FF7F' x, 1)
C2D('F081'x,2)
C2D('F081'x,1)
C2D('0031'x,0)

->
->
->
->
->
->
->
->

-127
]:29

-127
-127

127
-3967

-127
o

Implementation maximum: The input string may not have more than
250 characters that will be significant in forming the final result. Leading
sign characters ('OO'x and 'ff'x) do not count towards this total.

Character to Hexadecimal. Converts a character string to its hexadecimal
representation (unpacks). The data to be unpacked may be of any length.

Here are some examples:

C2X('72s')
C2X('0123'x)

->
->

'F7F2A2'
'0123'

Part 3: Functions 79

Functions

DATATYPE

If only str ing is specified, the returned result is NUM if str ing is a valid
REXX number (any format), or CHAR otherwise.

If type is specified, the returned result is 1 if str ing matches the type, or
o otherwise. If string is null, 0 is returned (except when type is X, which
returns 1.) The valid types (of which only the capitalized letter is
significant, all others are ignored) are:

Alphanumer ic returns 1 if the input only contains characters from the
ranges a-z, A-Z, and 0-9.

Bits

Lowercase

returns 1 if the input only contains the characters 0 and/or
1.

returns 1 if the input only contains characters from the
range a-z.

Mixed case returns 1 if the input only contains characters from the
ranges a-z and A-Z.

Number

Symbol

Uppercase

returns 1 if the input is a valid REXX number.

returns 1 if the input only contains characters that are
valid in REXX symbols (see page 5). Note that not only
upper case alphabetics are permitted, but lower case
alphabetics as well.

returns 1 if the input only contains characters from the
range A-Z.

Whole number returns 1 if the input is a REXX whole number under the
current setting of NUMERIC DIGITS.

heXadecimal returns 1 if the input only contains characters from the
ranges a-f, A-F, 0-9, and blank (so long as blanks only
appear between pairs of hexadecimal characters.) Also
returns 1 if the input is a null string.

80 VM/SP System Product Interpreter Reference

r-

DATE

f

Functions

Here are some examples:

DATATYPE(' 12 ')
DATATYPE (, ,)
DATATYPE('123*')
DATATYPE('12.3','N')
DATATYPE (, 12 • 3' , 'W')
DATATYPE ('Fred' , 'M')
DATATYPE (, , , 'M')
DATATYPE('Fred','L')
DATATYPE('$20K','S')
DATATYPE('BCd3','X')
DATATYPE('BC d3','X')

->
->
->
->
->
->
->
->
->
->
->

NUM
CHAR
CHAR
1
o
1
o
o
1
1
1

I .•. iiA:,grt~)) c : ~.' ,", ':; .• > ...
-" , , . - - " . -

returns the local date in the format: dd Mmm yyyy; for example, 27 Aug
1983, with no leading zero on the day. The following options (of which
only the capitalized letter is signifigant, all others are ignored) may be
supplied to obtain alternative formats:

Basedate returns the number of days since the base date January I, 0001.

Century

Days

The expression DATE (B) //7 returns a number in the range
0-6, where 0 is Monday and 6 is Sunday,

Thus, this function can be used to determine the day of the week
independent of the national language you're working in.

Note: The origin of January I, 0001 is based on the Gregorian
calendar. Though this calendar did not exist prior to 1582,
Basedate is calculated as if it did: 365 days per year, an extra day
every four years except century years, and leap centuries if the
century is divisible by 400. It does not take into account any
errors in the calendar system that created the Gregorian
calendar originally.

returns number of days since January 1 of the last year which is
a multiple of 100 in the format: ddddd (no leading zeros).
Example: if a call is made to DATE(C) on June 30, 1985, the
number of days from January 1, 1900 to June 30, 1985 will be
returned.

returns number of days so far in this year (beginning with 1) in
the format: ddd (no leading zeros).

European returns date in the format: dd/mm/yy.

Part 3: Functions 81

Functions

DELSTR

DELWORD

Julian returns date in "OS" format: yyddd.

Month returns full name of the current month, for example, August

Ordered returns date in the format: yy/mm/dd (suitable for sorting, etc.)

Sorted returns date in the format: yyyymmdd (suitable for sorting, etc.)

Usa returns date in the format: mm/dd/yy.

Weekday returns day of the week, for example, Tuesday

Note: The flrst call to DATE or TIME in one expression causes a time
stamp to be made which is then used for all calls to these functions in that
expression. Hence if multiple calls to any of the DATE and/or TIME
functions are made in a single expression, they are guaranteed to be
consistent with each other.

deletes the substring of str ing that begins at the nth character, and is of
length length. If length is not specifled, the rest of str ing is deleted. If
n is greater than the length of str ing, the string is returned unchanged.
n must be a positive whole number.

Here are some examples:

DELSTR('abcd',3)
DELSTR('abcde',3,2)
DELSTR('abcde',6)

->
->
->

lab'
'abe'
'abcde'

deletes the substring of str ing that starts at the nth word. The length
option refers to the number of blank-delimited words. If length is omitted,
it defaults to be the remaining words in str ing. n must be a positive
whole number. Ifn is greater than the number of words in str ing,
str ing is returned unchanged. The string deleted includes any blanks
following the flnal word involved.

82 VM/SP System Product Interpreter Reference

DIAG/DIAGAC

D2C

r

r

r-

Here are some examples:

DELWORD('Now is the time',2,2)
DELWORD('Now is the time ',3)
DELWORD('Now is the time',S)

Functions

-> 'Now time'
-> 'Now is
-> 'Now is the time'

These are part of the RXSYSFN package. See page 105.

Die (whole-number [,n])

Decimal to Character. Returns a character string which is the binary
representation of the decimal number. Length may be specified by n, or
length is as needed if n is omitted.

whole-number must be a non-negative number unless n is specified, or an
error will result. If n is not specified, the result is returned such that there
are no leading 'OO'x characters. .

If n is specified, it is the length of the final result in characters; that is,
after conversion the input string will be sign-extended to the required
length. If the number is too big to fit into n characters, it will be truncated
on the left.

Here are some examples:

D2C(9)
D2C(129)
D2C(129,1)
D2C(129,2)
D2C(257,1)
D2C(-127,1)
D2C(-127,2)
D2C(-1,4)
D2C(12,O)

->
->
->
->
->
->
->
->
->

'09'x
'Sl'x
'Sl'x
'OOSl'x
'Ol'x
'Sl'x
'FFS1'x
'FFFFFFFF'x , ,

Implementation maximum: The output string may not have more than
250 significant characters, though a longer result is possible if it has
additional leading sign characters ('OO'x and 'fi'x).

Part 3: Functions 83

Functions

D2X

ERRORTEXT

Decimal to Hexadecimal. Returns a string of hexadecimal characters which
is the hexadecimal (unpacked) representation of the decimal number.

whole-number must be a non-negative number unless n is specified, or an
error will result. If n is not specified, the result is returned such that there
are no leading 0 characters.

If n is specified, it is the length of the final result in characters; that is,
after conversion the input string will be sign-extended to the required
length. If the number is too big to fit into n characters, it will be truncated
on the left.

Here are some examples:

D2X(9) -> '9'
D2X(129) -> '81'
D2X(129,1) -> '1 '
D2X(129,2) -> '81'
D;aX(129,4) -> '0081'
D2X(257,2) -> '01'
D2X(-127,2) -> '81'
D2X(-127,4) -> 'FF81'
D2X(12,0) -> ' ,

Implementation maximum: The output string may not have more than
500 significant hexadecimal characters, though a longer result is possible if
it has additional leading sign characters (0 and F).

returns the error message associated with error number n. n must be in
the range 0-99, and any other value is an error. If n is in the allowed range,
but is not a defined REXX error number, the null string is returned.

Here are some examples:

ERRORTEXT(16)
ERRORTEXT(60)

->
->

'Label not found' , ,

84 VM/SP System Product Interpreter Reference

(

~-

(EXTERNALS

FIND

(FORMAT

Functions

. EXTERNALS ()

returns the number of elements in the terminal input buffer (system
external event queue), that is, the number of logical typed-ahead lines, if
any. See PARSE EXTERNAL on page 46 for a description ofthis queue.

Here is an example:

EXTERNALS () -> o /* Usually */

searches str ing for the fIrst occurrence of the sequence of blank-delimited
words phrase, and returns the word number of the ftrst word of phrase in
str ing. Multiple blanks between words are treated as a single blank for
the comparison. Returns 0 ifphrase is not found.

Here are some examples:

FIND('now is the time','is the time')
FIND('now is the time','is the')
FIND('now is the time','is time ')

->
->
->

2
2
o

"' .. ~ ... '.. ." '"'. .' \". ,.:::<-:0t,·~;'j;~;::v~>/:··,~~:,:r'·> .. ~;.~,:·:,.::· ."«:". f~-·~~·~~>,:<.",;.~<"

·FOItMAr(numberf,[~eforeqt>t~r]s[~'{~l't.iptJ 1] J).
,~,..

rounds and formats number.

If only number is given, it will be rounded and formatted to standard REXX
rules, just as though the operation "number +0" had been carried out.
before and after describe how many characters are to be used for the
integer part and decimal part of the result respectively. If either of these is
omitted the number of characters used will be as many as are needed for
each part.

Part 3: Functions 85

Functions

INDEX

If before is not large enough to contain the integer part of the number, an
error results. If before is too large, the number is padded on the left with
blanks. If after is not the same size as the decimal part of the number, the
number will be rounded (or extended with zeros) to fit. Specifying 0 will
cause the number to be rounded to an integer.

Here are some examples:

FORMAT ('3' ,4)
FORMAT('1.73',4,0)
FORMAT('1.73',4,3)
FORMAT('-.76',4,1)
FORMAT('3.03',4)
FORMAT(' - 12.73',,4)
FORMAT(' - 12.73')
FORMAT (, 0.000')

->
->
->
->
->
->
->
->

3'
2 '
1. 730'

-0.8'
3.03'

'-12.7300'
'-12.73'
'0'

The first three arguments are as described above. In addition, expp and
expt control the exponent part of the result: expp sets the number of
places to be used for the exponent part, the default being to use as many as
are needed. expt sets the trigger point for use of exponential notation. If
the number of places needed for the integer part exceeds expt, exponential
notation will be used. Likewise, exponential notation will be used if the
number of places needed for the decimal part exceeds twice expt. The
default is the current setting of NUMERIC DIGITS. If 0 is specified for
expt, exponential notation is always used unless the exponent would be O.
expp must be less than 10, but there is no limit on the other arguments. If (~~
o is specified for the expp field, no exponent will be supplied, and the .~.~
number will be expressed in "simple" form with added zeros as necessary.
Otherwise, if expp is not large enough to contain the exponent, an error
results.

Here are some examples:

FORMAT('12345.73'",2,2)
FORMAT('12345.73',,3,,0)
FORMAT·(' 1. 234573' ,,3, ,0)
FORMAT('12345.73'",3,6)
FORMAT('1234567e5',,3,0)

->
->
->
->
->

'1.234573E+04'
'1.235E+4'
'i.235'
'12345.73'
'123456700000.000'

returns the character position of one string, needle, in another,

;-
I,

"'--.. /

haystack (see also the POS function). If the string needle is not found, 0
is returned. By default the search starts at the first character of haystack
(start is of the value 1). This can he overridden by giving a different
start point, which must be a positive whole number. C
Here are some examples:

86 VM/SP System Product Interpreter Reference

f
I

[

{

INSERT

JUSTIFY

Functions

INDEX('abcdef','cd')
INDEX('abcdef','xd')
INDEX('abcdef','bc',3)
INDEX('abcabc','bc',3)
INDEX('abcabc','bc',6)

->
->
->
->
->

3
o
o
5
o

INSERT(new,target L [n] [.[length] [,pad]]])

inserts the string new, padded to length length, into the string target
after the nth character. length and n must be non-negative. If n is
greater than the length of the target string, padding is added there also.
The default pad character is a blank. The default value for n is 0, which
means insert before the beginning of the string.

Here are some examples:

INSERT(' ','abcdef',3)
INSERT('123','abc',5,6)
INSERT('123','abc',5,6,'+')
INSERT('123','abc')
INSERT('123','abc',,5,'-')

. JUSTIFY(string,length [,pad])

->
->
->
->
->

'abc def'
'abc 123
'abc++123+++'
'123abc'
'123--abc'

formats blank-delimited words in string, by adding pad characters
between words to justify to both margins. That is, to width length
(length must be non-negative). The default pad character is a blank.

I

str ing is first normalized as though SPACE (str ing) had been executed
(that is, multiple blanks are converted to single blanks, and leading and
trailing blanks are removed). If length is less than the width of the
normalized string, the string is then truncated on the right and any trailing
blank is removed. Extra pad characters are then added evenly from left to
right to provide the required length, and the blanks between words are
replaced with the pad character.

Here are some examples:

JUSTIFY('The blue sky',14)
JUSTIFY('The blue sky',8)
JUSTIFY('The blue sky',9)
JUSTIFY('The blue sky',9,'+')

->
->
->
->

'The blue sky'
'The blue'
'The blue'
'The++blue'

Part 3: Functions 87

Functions

LASTPOS

LEFT

LENGTH

returns the position of the last occurrence of one string, needle, in
another, haystack. (See also POS.) If the string needle is not found, 0 is
returned. By default the search starts at the last character of haystack
(that is, start=LENGTH(string» and scans backwards. This may be
overridden by specifying start, the point at which to start the backwards
scan. start must be a positive whole number.

Here are some examples:

LASTPOS(' ','abc def ghi')
LASTPOS(' ','abcdefghi')
LASTPOS(' ','abc def ghi',7)

->
->
->

8
o
4

returns a string of length length containing the left-most length
characters of str ing. The string returned is padded with pad characters
(or truncated) on the right as needed. The default pad character is a blank.
length must be non-negative. The LEFT function is exactly equivalent to
SUBSTR(string, 1, length [,pad]).

Here are some examples:

LEFT('abc d' ,8)
LEFT ('abc d' ,8,'.')
LEFT('abc def',7)

->
->
->

returns the length of str ing.

Here are some examples:

'abc d
'abc d .•• '
'abc de'

88 VM/SP System Product Interpreter Reference

LlNESIZE

MAX

MIN

LENGTH('abcdefgh')
LENGTH('abc defg')
LENGTH (, ')

I· LlNE!IIZE()

->
->
->

8
8
o

Functions

returns the current terminal line width (the point at which the interpreter
will break lines displayed using the SAY instruction). If this is
indeterminate, 0 will be returned.

Note: This is the terminal width as set by the CP TERM LINESIZE
command (but is limited to the CMS maximum of 130); 0 implies that the
virtual machine is DISCONNected or that CP TERMINAL LINESIZE OFF
has been issued.

returns the largest number from the list specified, formatted according to
the current setting of NUMERIC DIGITS. Up to ten numbers may be
specified, although calls to MAX may be nested if more are needed.

Here are some examples:

MAX(12,6,7,9)
MAX(17.3,19,17.03)
MAX(-7,-3,-4.3)
MAX(1,2,3,4,5,6,7,8,9,MAX(10,11,12,13»

->
->
->
->

12
19
-3
13

returns the smallest number from the list specified, formatted according to
the current setting of NUMERIC DIGITS. Up to ten numbers may be
specified, although calls to MIN may be nested if more are needed.

Part 3: Functions 89

Functions

OVERLAY

POS

Here are some examples:

MIN(12,6,7,9)
MIN(17.3,19,17.03)
MIN(-7,-3,-4.3)

->
->
->

6
17.03
-7

overlays the string target, padded or truncated to length length, with the
string new starting at the nth character. If length is specified it must be
positive or zero. If n is greater than the length of the target string, padding
is added there also. The default pad character is a blank, and the default
value for n is 1. n must be greater than o.

Here are some examples:

OVERLAY(' ','abcdef',3)
OVERLAY('.','abcdef',3,2)
OVERLAY ('qq' , 'abed')
OVERLAY('qq','abcd',4)
OVERLAY('123','abc',5,6,'+')

->
->
->
->
->

'ab def'
'ab. ef'
'qqcd'
'abcqq'
'abc+123+++'

returns the position of one string, needle, in another, haystack. (See
also the LASTPOS and INDEX functions.) If the string needle is not
found, 0 is returned. By default the search starts at the first character of
haystack (that is start is of the value 1). This may be overridden by
specifying start (which must be a positive whole number), the point at
which to start the search. .

Here are some examples:

POS('day','Saturday')
POS('x','abc def ghi')
POS(' ','abc def ghi')
POS(' ','abc def ghi',S)

->
->
->
->

6
o
4
8

90 VM/SP System Product Interpreter Reference

r
l

f
I

t""

f

(">

QUEUED

RANDOM

Functions

I QUEUED()

returns the number of lines remaining in the program stack
(system-provided data queue) at the time when the function is invoked. H
no lines are remaining, a PULL or PARSE PULL will read from the
terminal input buffer. H there is no terminal input waiting this causes a
console read (VM READ).

Here is an example:

QUEUED () -> 5 /* Perhaps * /

returns a pseudo-random non-negative whole number in the range min to
max inclusive. If only one argument is specified, the range will be from 0 to
that number. Otherwise, the default values for min and max are 0 and 999
respectively. A specific seed (which must be a whole number) for the
random number may be specified as the third argument if repeatable results
are desired.

The magnitude of the range (that is, max minus min) may not exceed 100000.

Here are some examples:

RANDOM ()
RANDOM(5,8)
RANDOM(,,1983)
RANDOM(2)

Notes:

->
->
->
->

305
7

123 /* always */
o

1. To obtain a predictable sequence of pseudo-random numbers, use
RANDOM a number of times, but only specify a seed the first time.
For example, to simulate forty throws of a six-sided, unbiased die

sequence = RANDOM(1,6,12345) /* any number would */
/* do for a seed */

do 39
sequence = sequence RANDOM(1,6)
end

say sequence

Part 3: Functions 91

Functions

REVERSE

RIGHT

The numbers are generated mathematically, using the initial seed, so C
that as far as possible they appear to be random. Running the program
again will produce the same sequence; using a different initial seed will
produce a different sequence. If you do not supply a seed, the first time
RANDOM is called, the microsecond field of the time-of-day clock will
be used as the seed; and hence your program will give different results
each time it is run.

2. The random number generator is global for an entire program - the
current seed is not saved across internal routine calls.

returns str ing, swapped end for end.

Here are some examples:

REVERSE (, ABe. ')
REVERSE ('XYZ ')

->
->

, .eBA'
, ZYX'

returns a string of length length containing the right-most length
characters of str ing. The string returned is padded with pad characters
(or truncated) on the left as needed. The default pad character is a blank.
length must be non-negative.

Here are some examples:

RIGHT ('abe d' ,8)
RIGHT('abe def' ,5)
RIGHT (, 12 ' ,5, , 0 ')

->
->
->

abe d'
'e def'
'00012'

c
92 VM/SP System Product Interpreter Reference

r

f
l

SIGN

SOURCELINE

SPACE

Functions

I SIGN (numi>er) I
number is rounded according to the current setting of NUMERIC DIGITS,
and then:

if the result is:
< 0
= 0
> 0

Here are some examples:

SIGN (, 12.3')
SIGN(' -0.307')
SIGN(O.O)

->
->
->

1
-1
o

the value returned is:
-1
o
1

>1

If n is omitted, returns the line number of the final line in the source file.

IT n is given, the nth line in the source file is returned. n must be a
positive whole number, and must not exceed the number of the final line in
the source file.

Here are some examples:

SOURCELINE ()
SOURCELINE(l)

->
->

10
'/* This is a 10-line program */'

formats the blank-delimited words in str ing with n pad characters
between each word. n must be non-negative. If it is 0, all blanks are
removed. Leading and trailing blanks are always removed. The default for
n is 1, and the default pad character is a blank.

Part 3: Functions 93

Functions

STORAGE

STRIP

SUBSTR

Here are some examples:

SPACE('abc def ')
SPACE(' abc def',3)
SPACE('abc def ',1)
SPACE('abc def ',0)
SPACE (, abc def ',2, '+')

->
->
->
->
->

'abc def'
'abc def'
'abc def'
'abcdef'
'abc++def'

This is part of the RXSYSFN package. See page 116.

removes characters from string based on the option specified. Valid
optionss (of which only the capitalized letter is significant, all others are
ignored) are:

Leading removes leading characters from str ing

Trailing removes trailing characters from string

Both removes both leading and trailing characters from string. The
default is B.

The third argument, char, specifies the character to be removed, with the
default being a blank. If given, char must be exactly one character long.

Here are some examples:

STRIP(' ab c ')
STRIP (, ab c " 'L ')
STRIP(' ab c ','t')
STRIP('12.7000' ,,0)
STRIP('0012.700',,0)

->
->
->
->
->

'ab c'
'ab c

ab c'
'12.7'
'12.7'

returns the substring of str ing that begins at the nth character, and is of
length length, padded with pad if necessary. n must he a positive whole
number.

94 VM/SP System Product Interpreter Reference

/- ,

(

SUBWORD

f

r

SYMBOL

co

Functions

If length is omitted it defaults to be the rest of the string. The default pad
character is a blank.

Here are some examples:

SUBSTR (, abe' ,2)
SUBSTR('abe',2,4)
SUBSTR('abe',2,6,'.')

->
->
->

'be'
'be
'be '

Note: In some situations the positional (numeric) patterns of parsing
templates are more convenient for selecting substrings, especially if more
than one substring is to be extracted from a string.

returns the substring of str ing that starts at the nth word, and is of
length length blank-delimited words. n must be a positive whole number.
If length is omitted, it defaults to be the remaining words in str ing. The
returned string will never have leading or trailing blanks, but will include
all blanks between the selected words.

Here are some examples:

SUBWORD('Now is the
SUBWORD('Now is the
SUBWORD('Now is the

time' ,2,2)
time' ,3)
time',S)

->
->
->

'is the'
'the time' , ,

If name is not a valid REXX symbol, BAD is returned. If it is the name of a
variable (that is, a symbol that has been assigned a value), V AR is returned.
Otherwise LIT is returned, which indicates that it is either a constant
symbol or a symbol that has not yet been assigned a value (that is, a
Literal).

Like symbols appearing normally in REXX expressions, lowercase
characters in the name will be translated to uppercase and substitution in a
compound name will occur if possible.

Part 3: Functions 95

Functions

TIME

Note: Normally name should be specified in quotes (or derived from an
expression), to prevent substitution by its value before it is passed to the
function.

Here are some examples:

/* following:
SYMBOL ('J')
SYMBOL(J)
SYMBOL ('a. j')
SYMBOL(2)
SYMBOL (, * ,)

Drop A.3; J=3 */
-> VAR
-> LIT /* has tested "3" */
-> LIT /* has tested "A.3" */
-> LIT /* a constant symbol */
-> BAD /* not a valid symbol */

by default returns the local time in the 24-hour clock format: hh:mm:ss:
(hours, minutes, and seconds); for example, '04: 41: 37'.

The following options (only the capitalized letter is significant, all others
are ignored) may be supplied to obtain alternative formats, or to gain access (
to the elapsed time calculator. ~_

Elapsed returns sssssssss.uuuuuu, the number of seconds.microseconds
since the elapsed time clock was started or reset (see below).
The number will have no leading zeros, and is not affected by the
setting of NUMERIC DIGITS.

Hour s returns number of hours since midnight in the format: hh (no
leading zeros).

Long returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the
fraction of seconds, in microseconds).

Minutes returns number of minutes since midnight in the format: mmmm
(no leading zeros),

Reset returns sssssssss.uuuuuu, the number of seconds. microseconds
since the elapsed time clock was started or reset (see below), and
also resets the elapsed time clock to zero. The n~ber will have
no leading zeros, and is not affected by the setting of NUMERIC
DIGITS .

. Second returns number of seconds since midnight in the format: sssss (no
leading zeros).

Here are some examples: c
96 VM/SP System ProductInterpreter Reference

f

TRACE

Functions

TIME ('L') -> 16:54:22.123456 /* Perhaps */
TIME () -> 16:54:22
TIME ('H') -> 16
TIME ('M') -> 1014 /* 54 + 60*16 */
TIME('S') -) 60862 /* 22 + 60*(54+60*16) */

The elapsed time clock:

The elapsed time clock may be used for measuring real time intervals. On
the first call to the elapSed time clock, the clock is started, and both
TIME('E') and TIME ('R') will return O.

The clock is saved across internal routine calls, which is to say that an
internal routine will inherit the time clock started by its caller, but if it
should reset the clock any timing being done by the caller will not be
affected. An example of the elapsed time calculator:

time('E') -> 0 /* The first call */
/* pause of one second here */
time('E') -> 1.002345 /* or thereabouts */
/* pause of one second here */
time('R ') -> 2.004690 /* or thereabouts */
/* pause of one second here */
time ('R') -> 1.002345 /* or thereabouts */

Note: See the note under DATE about consistency of times within a single
expression. The elapsed time clock is synchronized to the other calls to
TIME and DATE, so multiple calls to the elapsed time clock in a single
expression will always return the same result. For the same reason, the
interval between two normal TIME/DATE results may be calculated exactly
using the elapsed time clock.

Implementation maximum: Should the number of seconds in the elapsed
time exceed nine digits (equivalent to over 31.6 years), an error will result.

returns trace actions currently in effect.

If option is supplied, it must be one of the valid prefixes (? or !) and/or
alphabetic character options (A, C, E, I, L, N, 0, R, or S) associated with
the TRACE instruction. (See the TRACE instruction, on page 62, for full
details.) The function uses option to alter the effective trace action (like,
command inhibition, tracing Labels, etc.). Unlike the TRACE instruction,
the TRACE function alters the trace action even if interactive debug is
active.

Unlike the TRACE instruction. option cannot be a number.

Part 3: Functions 97

Functions

TRANSLATE

TRUNC

Here are some examples:

-> '?R' /* maybe */ TRACE ()
TRACE ('0')
TRACE (, ?I ')

->
->

'?R' /* also sets tracing off */
'0' /* now in interactive debug */

Translates characters in str ing to be other characters, or may be used to
reorder characters in a string. If neither translate table is given, str ing is
simply translated to uppercase. tableo is the output table and tablei is
the input translate table (the default is XRANGE (, 00 ' x, 'FF' x». The
output table defaults to the null string, and is padded with pad or truncated
as necessary. The default pad is a blank. The tables may be of any length:
the first occurrence of a character in the input table is the one that is used
if there are duplicates.

Here are some examples:

TRANSLATE('abcdef')
TRANSLATE('abbc','&','b')
TRANSLATE('abcdef','12','ec')
TRANSLATE('abcdef','12','abcd','.')
TRANSLATE('4123','abcd','1234')

->
->
->
->
->

'ABCDEF'
'a&&c'
'ab2dlf'
'12 .. ef'
'dabc'

Note: The last example shows how the TRANSLATE function may be used
to reorder the characters in a string. In the example, any 4·character string
could be specified as the second argument and its last character would be
moved to the beginning of the string.

returns the integer part of number, and n decimal places. The default n is
zero. number is truncated to n decimal places (or trailing zeros are added
if needed to make up the specified length). Exponential form will not be
used.

Here are some examples:

98 VM1SP System Product Interpreter Reference

/' -- ",

c

USERID

VALUE

{

Functions

TRUNC(12.3)
TRUNC(127.09782,3)
TRUNC(127.1,3)
TRUNC(127,2)

->
->
->
->

12
127.097
127.100
127.00

Note: number will be rounded according to the current setting of
NUMERIC DIGITS if necessary before being processed by the function.

USERID()

returns the system-defined User Identifier.

USERID() -> 'ARTHUR' /* Maybe */

. VALUE (name)·. I
The value of the symbol name is returned. Like symbols appearing
normally in REXX expressions, lowercase characters in name will be
translated to uppercase and substitution in a compound name will occur if
possible. name must be a valid REXX symbol, or an error results.

Here are some examples:

/* following:
VALUE (, fred')
VALUE (fred)
VALUE (, a ' j)
VALUE (, a' j I I j)

Drop A3;
->
->
->
->

A33=7; J=3; fred='J' */
'J' /* looks up "FRED" */
'3' /* looks up "J" */
'A3'
'7'

Note: The VALUE function is typically used when a variable contains the
name of another variable, or a name is constructed dynamically; for
example, VALUE (, LINE' index). It is not useful to wholly specify name as
a quoted string, since the symbol is then constant and so the whole function
call could be replaced directly by the data between the quotes. (For
example, fred=VALUE ('j ,) is always identical to the assignment fred=j).

Part 3: Functions 99

Functions

VERIFY

WORD

Verifies that string is composed only of characters from reference, by
returning the position of the first character in str ing that is not also in
reference. If all the characters were found in reference, 0 is returned.

If match is specified, the position of the first character in string that is in
reference is returned, or 0 if none of reference is returned, or 0 if none
of the characters were found.

The default for start is 1, thus, the search starts at the first character of
str ing. This can be overridden by giving a different start point, which
must be a positive whole number.

The third argument may be any expression that results in a string starting
with M orm.

If string is null, the function returns 0, regardless of the value of the third
argument. Similarly if start is greater than LENGTH (str ing) , 0 is (
returned.

Here are some examples:

VERIFY('123' ,'1234567890')
VERIFY('lZ3','1234567890')
VERIFY('AB4T','1234567890','M')
VERIFY('lP3Q4' ,'1234567890' ,,3)
VERIFY('AB3CD5' ,'1234567890','M' ,4)

->
->
->
->
->

o
2
3
4
6

returns the nth blank-delimited word in string. n must be a positive
whole number. If there are less than n words in str ing, the null string is
returned. This function is exactly equivalent to SUBWORD (str ing , n , 1) .

~.

100 VM/SP System Product Interpreter Reference

f

WORDINDEX

WORDLENGTH

[

r
WORDS

Here are some examples:

WORD('Now is the time' ,3)
WORD('Now is the time' ,5)

WORDINDEX (string,n)

->
->

'the' , ,

Functions

returns the position of the nth blank-delimited word in string. n must be
a positive whole number. If there are not n words in the string, 0 is
returned.

Here are some examples:

WORDINDEX('Now is the time',3)
WORDINDEX('Now is the time',6)

WORDLENGTH (string,n)

->
->

8
o

returns the length of the nth blank-delimited word in str ing. n must be a
positive whole number. If there are not n words in the string, 0 is returned.

Here are some examples:

WORDLENGTH('Now is the time',2)
WORDLENGTH('Now comes the time',2)
WORDLENGTH('Now is the time',6)

->
->
->

2
5
a

I
returns the number of blank-delimited words in str ing ..

Here are some examples:

WORDS('Now is the time')
WORDS (' ')

->
->

4
o

Part 3: Functions 101

Functions

XRANGE

X2C

X2D

returns a string of all one byte codes between and including the values
start and end. start defaults to 'DO'x, and end defaults to 'FF'x. If
start is greater than end, the values will wrap from X'FF' to X'DO'.
start and end must be single characters. -

Here are some examples:

XRANGE (, a ' , , f ')
XRANGE('03'x,'07'x)
XRANGE(,'04'x)
XRANGE (, i' , , j ,)
XRANGE('FE'x,'02'x)

->
->
->
->
->

'abcdef'
'0304050607'x
'OOOl020304'x
'898A8B8C8D8E8F9091'x
'FEFF000102'x

Hexadecimal to Character. Converts hex-str ing (a string of hexadecimal
characters) to character. hex-string will be padded with a leading 0 if
necessary to make an even number of hexadecimal digits.

Blanks may optionally be added (at byte boundaries only, not leading or
trailing) to aid readability; they are ignored.

Here are some examples:

X2C ('F7F2 A2')
X2C ('F7f2a2 ')
X2C('F')

->
->
->

'72s'
'72s'
'OF'x

Hexadecimal to Decimal. Converts hex-str ing (a string of hexadecimal
characters) to decimal. If the result cannot be expressed as a whole

102 VM/SP System Product Interpreter Reference

:f~

\cj

f

f
t

Functions

number, an error results. That is, the result must have no more than
NUMERIC DIGITS digits.

hex-str ing may be the null string.

If n is not specified, hex-string is taken to be an unsigned number.

Here are some examples:

X2D('OE')
X2D('81')
X2D('F8l')
X2D ('FF8l')
X2D('e6 fO'X)

->
->
->
->
->

14
129
3969
65409
240

If n is specified, hex-string is taken to represent a two's complement
number expressed as n hexadecimal characters, and is converted to a REXX
whole number that may, therefore, be negative. If n is 0, 0 is always
returned.

If necessary, hex-str ing is padded on the left with 0 characters (note, not
"sign-extended"), or truncated on the left, to length n characters; (that is,
as though RIGHT (str ing , n, , a ') had been executed.)

Here are some examples:

X2D (, 81' , 2)
X2D('81' ,4)
X2D('F08l' ,4)
X2D('F08l' ,3)
X2D('F08l' ,2)
X2D('F08l' ,1)
X2D('0031' ,0)

->
->
->
->
->
->
->

-127
129
-3967
129
-127
1
a

Implementation maximum: The input string may not have more than
500 hexadecimal characters that will be significant in forming the final
result. Leading sign characters (0 and F) do not count towards this total.

Function Packages

If an external function or subroutine is called, which is in a function
package known to the interpreter, the interpreter will automatically load
the function package before calling the function. To the general user
with adequate virtual storage, the functions that have been provided in
packages seem like ordinary built-in functions.

The interpreter searches each of the function packages named below, if it is
installed.

RXUSERFN This is the name of a package that the general user may
write. The package would be written in assembler language
and would contain a number of functions and their common
subroutines. For a description of assembler language

Part 3: Functions 103

Functions

VM Functions

CMSFLAG(flag)

interfaces to the interpreter, see page 149. For a description
of function packages, see page 157.

RXLOCFN Similarly, this is the name of a package that system support
people at your installation may write.

RXSYSFN This is the name of the additional function package that can
be created and used by both system support personnel and
general users.

The interpreter will search for a function in the packages in the order given
above. See page 71 for the complete search order.

The following are additional external functions provided in the VM/SP
environment: CMSFLAG returns the setting of certain indicators, DIAG
and DIAGRC can be used to issue special commands to CP, and STORAGE
can be used to inspect or alter the main storage of your virtual machine.

returns the value 1 or 0 depending on the setting of f lag. Specify anyone
of the following flag names. (No abbreviations are allowed). For more
information on the commands listed below, refer to the VM/SP eMS
Macros and Functions Reference, SC24-5284.

ABBREV returns 1 if, when searching the synonym tables, truncations will "'--_ .

AUTO READ

be accepted; else returns O. Set by SET ABBREV ON; reset by
SET ABBREV OFF.

returns 1 if a console read is to be issued immediately after
command execution; else returns O. Set by SET AUTOREAD
ON; reset by SET AUTOREAD OFF.

CMSTYPE returns 1 if console output is to be displayed (or typed) within an
EXEC; returns 0 if console output is to be suppressed. Set by
SET CMSTYPE RT or the immediate command RT. Reset by
SET CMSTYPE HT or the immediate command HT.

DOS returns 1 if your virtual machine is in the DOS environment; else
returns O. Set by SET DOS ON; reset by SET DOS OFF. c

104 VM/SP System Product Interpreter Reference

r

DIAG

(-

EXECTRAC

IMPCP

IMPEX

Functions

returns 1 if EXEC Tracing is turned on (equivalent to the
TRACE prefix option "?"); else returns O. Set by SET
EXECTRAC ON or the immediate command TS. Reset by SET
EXECTRAC OFF or the immediate command TE. (See page 120.)

returns 1 if commands that eMS does not recognize are to be
passed to CP; else returns O. Set by SET IMPCP ON; Reset by
SET IMPCP OFF. Applies to commands issued from the CMS
command line and also to REXX clauses that are commands to
the 'CMS' environment.

returns 1 if EXECs may be invoked by filename; else returns O.
Set by SET IMPEX ON; Reset by SET IMPEX OFF. Applies to
commands issued from the eMS command line and also to REXX
clauses that are commands to the 'CMS' environment.

PROTECT returns 1 if the CMS nucleus is storage-protected; else returns O.
Set by SET PROTECT ON; Reset by SET PROTECT OFF.

RELPAGE returns 1 if pages are to be released after certain commands have
completed execution; else returns O. Set by SET RELPAGE ON;
Reset by SET RELPAGE OFF.

SUBSET returns 1 if you are in the eMS subset; else returns O. Set by
SUBSET (this command is issued by some editors); Reset by
RETURN. (For details, refer to "CMS subset" in the reference
manual of the editor you are using).

DIAG(n[?][,data][,data J ...)

communicates with CP via a dummy DIAGNOSE instruction and returns
data as a character string. (This interface is described in the discussion on
the DIAGNOSE Instruction in the VM/SP System Facilities for
Programming, SC24-5288.)

n is the hexadecimal diagnose code to be executed. Leading zeros can be
omitted. Also, the use of quotes is optional. ? indicates that diagnostic
messages are to be displayed if appropriate. data is dependent upon the
specific diagnose code being executed; it is generally the input data for the
given diagnose.

(Warning: A DIAGNOSE instruction with invalid parameters may in some
cases result in a specification exception or a protection exception.)

Part 3: Functions 105

Functions

DIAGRC

The data returned is in binary format; that is, it is precisely the data
returned by the DIAGNOSE; no conversion is performed.

Note: The REXX built-in functions C2X and C2D are invaluable for
converting the returned data. Samples of the use of these functions are
included in the descriptions of Diagnoses 'OC' and '60'.

Codes are the same as for DIAGRC (below).

is identical to the DIAG function where:

ri is the hexadecimal diagnose code to be executed. Leading zeros can be
omitted. Also, the use of quotes is optional. ? indicates that diagnostic
messages are to be displayed if appropriate. data is dependent upon the
specific diagnose code being executed; it is generally the input data for the
given diagnose.

In contrast to the DIAG function the data returned in this function is
prefixed with:

Character
position

1 to 9
10
11
12 to 16

Contents

Return code from CP
a blank
Condition code from CP
five blanks

The input and the returned data for each supported diagnose are:

DIAG (00) - Store Extended-Identification Code

DIAGRC(OO)

The value returned is a string, at least 40 characters in length,
depending on the level of nesting of VM/SP. Ordinarily 40 bytes of
data are returned.

DIAG (08, cpcommand [, sizebuf]) - Virtual Console Function

DIAGRC(08,cpcommand?lbrk.,sizebuf])

Input is cpcommand (CP command) to he issued (240 bytes maximum),
followed (optionally) by a third argument, sizebuf, that specifies the

106 VM/SP System Product Interpreter Reference

(

Functions

size (in bytes) of the buffer that will contain the result. This buffer
size must be a non-negative whole number; the default is 4096.

Any command response is returned as the function value. If the
response contains multiple lines, they are delimited in the returned
data by the character X'15'.

Note that the command is passed to CP without any translation to
uppercase. Thus commands specified as a quoted string (a good idea)
must be in uppercase or CP will not recognize them. For example:

Diag(8,'query rdr all') /* fails because CP has no */

Diag(B,query rdr all)

/* "query" command (only */
/* "QUERY"). */

/* ordinarily works, but will*/
/* fail if "query", "rdr" or * /
/* "all" are variables that */
/* have been assigned values */
/* other than their own names*/

Diag(B,'QUERY RDR ALL') /* is the best and safest. */

DIAG (OC) - Pseudo Timer

DIAGRC(OC)

The value returned is a 32 byte string containing the date, time,
virtual time used, and total time used.

For example, to display the virtual time:

Say 'Virtual time =' c2x(substr(diag('C'),17,8» '(Hex)'

/* This results in a display of the form */

Virtual time = 00000000004BF959 (Hex)

The virtual time may be displayed as a decimal value by using the
C2D function:

Say 'Virtual time =' c2d(substr(diag('C'),17,B»

/* This results in a display of the form */

Virtual time = 4979033

DIAG(14, acronym, rdrvaddr, addvals) - Input File Manipulation

DIAGRC(14,acronym,rdrvaddr,addvals)

Where:

1. acronym is one of those as described below.

2. rdrvaddr is the address of the virtual reader.

Part 3: Functions 107

Functions

3. addvals are one or more additional and sometimes optional
values aSsociated with a given acronym. Acronym descriptions
(below) describe any additional, associated values as well.

The value l'eturned·is:

Character
position

1
2
3to6
7 toB
9 onwards

Contents

Condition code
a blank
Four bytes from register y + 1
two blanks
a return string (if any) whose length and
content depend upon the function being
performed.

No~: The PARSE instruction may be used to assign these operands
to suitable variables, as in the examples given below.

Acronym Descriptions:

RNSB,rdrvaddr - Read Next Spool Buffer (data record)

There are no additional values associated with this acronym.

The return string is the 4096 byte spool file buffer. For example,

Parse value diag(14,'RNSB','OOC'),
with cc 2 . 3 Ryp1 7 . 9 buffer

/* will read the next spool buffer from the */
/* card reader at address X'OOC' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* BUFFER = the 4096 byte spool buffer */

RNPRSFB,rdrvaddrffi,readnum" - Read Next PRint Spool File Block

readnum may be used to specify the number of doublewords of the
spool file block to be read. (See item 3 of "Notes on Diagnose
X'14'" on page 112.)

The return string is the next spool file block of type PRT. Thus
to read the next spool file block of type PRT from device X'OOC':

Parse value diag(14,'RNPRSFB','OOC',15),
with cc 2 . 3 Ryp1 7 . 9 SFB

/* will read the next print spool file block from */
/* the card reader at address X'OOC' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 120 byte spool file block */
/* (or 15 doublewords) */

108 VM/SP System Product Interpreter Reference

\ "'---..

c

r

(~

Functions

RNPUSFB,rdrvaddrffi,readnum" - Read Next PUnch Spool File
Block

readnum may be used to specify the number of doublewords of the
spool file block to be read. (See item 3 of "Notes on Diagnose
X'14'" on page 112.)

The return string is the next spool file block of type PUN.

Thus to read the next spool file block of type PUN from device
X'OOC':

Parse value diag(14,'RNPUSFB','OOC',15),
with cc 2 . 3 Rypl 7 • 9 SFB

/* will read the next punch spool file block from */
/* the card reader at address X'OOC' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+l */
/* SFB = the 120 byte spool file block */

SF, rdrvaddr, spf ileid - Select a File for processing

spf ileid specifies the spool file id.

There is no return string other than the condition code and Ry + 1
value.

Thus to select spool file number 8159 for processing from device
X'OOC':

Parse value diag(14,'SF','OOC',8159),
with cc 2 • 3 Ryp1 7

/* will select a file for processing from the */
/* card reader at address X'OOC' and assign: */
/* CC = the condition code */
/* RYPl = the contents of register y+1 */

RPF ,rdrvaddr ,newcopy - RePeat active File nn times

newcopy specifies the new copy count.

There is no return string other than the condition code and Ry + 1
value.

Thus to change the copy count for the active file on device X'OOC'
to 5:

Parse value diag(14,'RPF','OOC',5),
with cc 2 . 3 Ryp1 7

/* will repeat active file 5 times on the
/* card reader at address X'OOC' and assign:
/* CC = the condition code
/* RYP1 = the contents of register y+l

*/
*/
*/
*/

Part 3: Functions 109

Functions

RSF ,rdrvaddr - ReStart active File at beginning

There are no additional values associated with this acronym.

The return string is the first 4096 byte spool file buffer.

Thus to reset the active file on device X'OOC' to the beginning and
read the first spool buffer:

Parse value diag(14,'RSF' ,'OOC'),
with cc 2 . 3 Ryp1 7 . 9 buffer

BS,rdrvaddr - BackSpace one record

There are no additional values associated with this acronym.

The return string is the 4096 byte spool file buffer.

Thus to read the previous spool buffer from the file active on
device X'OOC':

Parse value diag(14,'BS','OOC'),
with cc 2 • 3 Ryp1 7 • 9 buffer

/* will read the previous spool file buffer from
/* the card reader at address X'OOC' and assign:
/* CC = the condition code
/* RYP1 = the contents of register y+1
/* BUFFER = the first 4096 bytes of the file

*/
*/
*/
*/
*/

RNMNSFB,rdrvaddrffl,readnum" - Read Next MoNitor Spool File
Block

readnum may be used to specify the number of doublewords of the
spool file block to be read. (See item 3 of "Notes on Diagnose
X'14'" on page 112.)

The return string is the spool file block.

Thus to read the next monitor spool file block from device X'OOC':

Parse value diag(14,'RNMNSFB','OOC',lS),
with cc 2 . 3 Rypl 7 . 9 SFB

/* will read the next monitor spool file block from */
/* the card reader at address X'OOC' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+l */
/* SFB = the 120 byte spool file block */

RNMNSB, rdrvaddr - Read Next MoNitor Spool Buffer

There are no additional values associated with this acronym.

The return string is the 4096 byte spool file buffer.

110 VM/SP System Product Interpreter Reference

/-,
f

~j

r
1

(

Functions

Thus to read the next monitor spool buffer from the card reader at
address X'OOC':

Parse value diag(14,'RNMNSB','OOC'),
with cc 2 . 3 Ryp1 7 • 9 buffer

/* will read the next monitor spool file buffer */
/* from the card reader at address X'OOC' and */
/* assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* BUFFER = the 4096 byte spool buffer */

RSFD, spf ilenum [, numwords [,3800]] - Retrieve Subsequent File
Descriptor

spf ilenum specifies the spool file number. The optional
numwords specifies the number of doublewords of spool file block
data to be returned. (See item 3 of "Notes on Diagnose X'14'" on
page 112.) 3800, also optional, may be specified to cause 40
bytes of 3800 information to be included between the spool file
block and tag.

Thus to obtain information about the next spool file without
regard to type, class, etc.:

Parse value diag(14,'RSFD' ,0,15,3800),
with cc 2 . 3 Ryp1 7 . 9 SFB,
129 data_3800 169 . 181 tag

/* will read the spool file block */
/* from the card reader at address X'OOC' and */
/* assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 120 byte spool file block */
/* DATA_3800 = the 3800 data */
/* TAG = the tag data */

(Refer to Notes 1 and 2 below for additional information.)

RSFDNPR, n [, numwords [,3800]] - Retrieve Subsequent File
Descriptor Not Previously Retrieved

n is either 0 (to retrieve subsequent file descriptor not previously
retrieved), or 1 (to reset the previously retrieved flags for all the
file descriptors; then retrieve the first file descriptor). The
optional numwords specifies the number of doublewords of spool
file block data to be returned. (See item 3 of "Notes on Diagnose
X'14'" below.) 3800 also optional, may be specified to cause 40
bytes of 3800 information to be included between the spool file
block and the tag.

Part 3: Functions 111

Functions

•

Thus to obtain information about the next not previously
retrieved file without regard to type, class etc.:

Parse value diag(14,'RSFDNPR',0,15),
with cc 2 . 3 Rypl 7 . 9 SFB 129 . 181 tag

/* will read the spool file block */
/* from the card reader at address X'OOC' and */
/* assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 120 byte spool file block */
/* TAG = the tag data */

(Refer to Notes 1 and 2 below for additional information.)

Notes on Diagnose X'14'

1. Because only one bit is provided to indicate that the length of
return data is being explicitly stated and that 3800 data is being
requested, if either is specified (on RSFD or RSFDNPR calls), 40
bytes of 3800 data are returned.

2. RSFD and RSFDNPR will wait for a file being used by a system
function. If, however, the file does not become available in the
250 millisecond time limit, the function will return a null string
for DIAG, normal return code information for DIAGRC. For a
discussion of possible causes for this condition, see the notes on
"DIAGNOSE Code X'14'" in the VM/SP System Facilities for
Programming, SC24·5288.

3. For RNPRSFB, RNPUSFB, RMNSFB, RSFD, and RSFDNPR, the
default number of doublewords of spool file block is 13; however,
the length of the spool file in the current release of VM/SP is 15
doublewords (120 bytes),

DIAG(24,devaddr) - Device Type and Features

DIAGRC(24,devaddr)

The input, devaddr, is the device address (or·1 for virtual console),

112 VM/SP System Product Interpreter Reference

,/
!

Functions

The value returned is a 13·byte string of virtual and real device
information:

Position Contents
1 through 4 Virtual device information from

Register y
5 through 8

9 through 12

Real device information from Register
y+1

13

(if ·1 was specified) virtual console
information from Register x
Condition code

DIAG(5C,editstring[,headerlen]) - Error Message Editing

DIAGRC(5C,editstring[,headerlen)

edit string, is a string to be edited according to the current EMSG
setting. header len is the length of the header used for the editing.
If headerlen is not specified, the default length is 10. The header len
may not be longer than editstring.

The value returned is the edited message, which will be a null string,
the message code, the message text, or the entire input string,
depending on the EMSG setting.

DIAG (60) - Determine Virtual Storage Size

DIAGRC(60)

The value returned is the 4 byte virtual storage size.

This value may be displayed in hexadecimal via:

Say 'Virtual storage =' c2x(Diag(60»

resulting (for example) in display of the line:

Virtual storage = 00100000

Alternatively, storage size may be expressed in terms of K via:

Say 'Virtual storage =' x2d(c2x(diag(60»)/1024'K'

resulting (for example) in display of the line:

Virtual storage = 512K

Comparisons of the value returned may be done in hexadecimal:

Say diag(60) > '00100000'x

Part 3: Functions 113

Functions

results in display of 1 for virtual machines greater than 1M
in size and 0 for those 1M or less.

The same comparison may be expressed in terms of megabytes:

Say x2d(c2x(diag(60»)/(1024*1024) > 1

with the same results.

DIAG (64, sub code , name) - Find, Load, or Purge a Named Segment

DIAGRC(64,subcode,name)

The input, sub code, is a 1-character code indicating the subfunction
to be performed, followed by a third argument, name, the name of the
segment.

The value returned is a 9-byte string consisting of the returned Rx and
Ry values, and a single byte condition code.

The subfunction codes are:

S Load the named segment in shared mode.
L Load the named segment in non-shared mode.
P Release the named segment from virtual storage.
F Find starting address of the named segment.

For example, to find the load address of the segment SPFSEG and
display the starting and ending addresses and the condition code:

spfsegaddr=diag(64,'F','SPFSEG')
Say 'Start:' c2x(substr(spfsegaddr,2,3»,

, End:' c2x(substr(spfsegaddr,6,3»,
CC:' substr(spfsegaddr,9,1)

/* which displays:
Start: 230000 End: 24FFFF CC: 0 */

indicating that the segment loads from 230000 to 24FFFF, and is
already loaded (cc=O).

Warning: The Land S functions should be used with caution. It is
the coder's responsibility to ensure that the loaded segment will not
overlap virtual storage (see diag 60 above). CP will load a segment
in the middle of your virtual storage if requested, so code carefully.

DIAG (8C) - Access Certain Device Dependent Information

DIAGRC(8C)

The value returned is a string no larger than 502 bytes. The string
contains device-dependent information about the device (the virtual
console). If the virtual machine is disconnected or the virtual console
is a TTY device, then the returned string is null. .

114 VM/SP System Product Interpreter Reference

\
~./

. ..r- ..

(

Functions

The value returned is:

Byte
o

1
2·3
4·5
6·n,
n<502

Contents
flags:
X'Ol'
X'20'

14·bit addressing is available
programmed symbol sets are
available

X' 40' device has extended highlighting
X'SO' device has extended color

number of partitions
number of columns on the terminal
number of rows on the terminal
information returned to CP by the initial
Write Structured Field Query Reply

DIAG(C8,langid) - SET CP's language

The function value returned is a five byte string containing the langid
that CP set.

DIAGRC(C8,langid)

The diagrc value returned is a sixteen byte string composed of nine
characters for the return code, a blank, and six characters for the
condition code.

If this DIAGNOSE code is issued from an exec and CMS is on a back
level version of CP, error message DMSREX475E (Incorrect call
to routine) is issued and the exec will terminate.

DIAG (CC , lang id, addr) - SAVE CP's language repository at address
addr

The value returned for the DIAG function is a null string. addr
must be on a page boundary.

DIAGRC(CC,langid,addr)

The diagrc value returned is a sixteen byte string composed of nine
characters for the return code, a blank, and six characters for the
condition code.

If this DIAGNOSE code is issued from an exec and CMS is on a back
level version of CP, error message DMSREX475E (Incorrect call.
to routine) is issued and the exec will terminate.

Message DMSREX475E also results if an unauthorized userid tries to
issue DIAGNOSE code X'CC'. Return code 20040 is set.

Part 3: Functions 115

Functions

STORAGE

returns the current virtual machine size expressed as a hexadecimal string
if no arguments are specified. Ot.herwise, returns length bytes from the
user's memory starting at address. length is in decimal; the default is 1
byte. address is a hexadecimal number.

If data is specified, after the "old" value has been retrieved, storage
starting at address is overwritten with data (the length argument has
no effect on this).

If length would imply returning storage beyond the virtual machine size,
only those bytes up to the virtual machine size are returned; and if an
attempt is made to alter any bytes outside the virtual machine size, they are
left unaltered.

Warning: The STORAGE function allows any location in your virtual
machine to be altered. Do not use this function without due care and
knowledge.

Example:

STORAGE(AA,9)
STORAGE ()

->
->

'IBM VM/SP' /* Maybe! */
'lSEOOO' /* After DEF STOR 1400K */

116 VM/SP System Product Interpreter Reference

\
",-, /

c

(:'

In addition to the TRACE instruction, described on page 62, there are the
following debug aids.

• The interactive debug facility

• The CMS immediate commands:

HI Halt Interpretation
TS Trace Start
TE Trace End

• The CMS HELP command.

Interactive Debugging of Programs

The debug facility permits interactively controlled execution of a program.

Changing the TRACE action to one with a preflx? (for example, TRACE ?A
or the TRACE built-in function) turns on interactive debug and indicates to
the user that interactive debug is active. Further TRACE instructions in
the program are ignored, and the interpreter pauses after nearly all
instructions that are traced at the console (see below for the exceptions).
When the interpreter pauses, indicated by a VM READ or unlocking of the
keyboard, three debug actions are available:

1. Entering a null line (no blanks even) makes the interpreter continue
execution until the next pause for debug input. Repeatedly entering a
null line, therefore, steps from pause point to pause point. For TRACE
? A, for example, this is equivalent to single-stepping through the
program.

2. Entering an equal sign (=) with no blanks makes the interpreter
re-execute the clause last traced. For example: if an IF clause is about
to take the wrong branch, you can change the value of the variable(s)
on which it depends, and then re-execute it.

Once the clause has been re-executed, the interpreter pauses again.

3. Anything else entered is treated as a line of one or more clauses, and
interpreted immediately (that is, as though DO; line; END; had been
inserted in the me). The same rules apply as in the INTERPRET
instruction (for example, DO-END constructs must be complete). If an
instruction has a syntax error in it, a standard message is displayed and

Part 4: Debug Aids 117

Debug Aids

you are prompted for input again. Similarly all the other SIGNAL
conditions are disabled while the string is interpreted to prevent
unintentional transfer of control.

During execution of the string, no tracing takes place, except that
non-zero return codes from host commands are displayed. Host
commands are always executed (that is, are not affected by the prefix!
on TRACE instructions), but the variable RC is not set.

Once the string has been interpreted, the interpreter pauses again for
further debug input unless a TRACE instruction was entered. In this
latter case, the interpreter immediately alters the tracing action (if
necessary) and then continues executing until the next pause point (if
any). Hence to alter the tracing action (from All to Results for
example) and then re-execute the instruction, you must use the built-in
function TRACE (see page 97). For example, CALL TRACE I changes
the trace action to "I" and allows re-execution of the statement after
which the pause was made. Interactive debug is turned off when it is in
effect, if a TRACE instruction uses a prefix, or at any time, when a
TRACE 0 or TRACE with no options is entered.

The numeric form of the TRACE instruction may be used to allow
sections of the program to be executed without pause for debug input.
TRACE n (that is, positive result) allows execution to continue, skipping
the next n pauses (when interactive debug is or becomes active).
TRACE -n (that is, negative result) allows execution to continue
without pause and with tracing inhibited for n clauses that would
otherwise he traced.

The trace action selected by a TRACE instruction is saved and restored
across subroutine calls. This means that if you are stepping through a
program (say after using TRACE ?R to trace Results) and then enter a
subroutine in which you have no interest, you can enter TRACE 0 to turn
tracing off. No further instructions in the subroutine are traced, but on
return to the caller, tracing is restored.

Similarly, if you are interested only ina subroutine, you can put a TRACE
?R instruction at its start. Having traced the routine, the original status of
tracing is restored and hence (if tracing was off on entry to the subroutine)
tracing (and interactive debug) is turned off until the next entry to the
subroutine.

Tracing may be switched on (without requiring modification to a program)
by using the command SET EXECTRAC ON. Tracing may be also turned
on or off asynchronously, (that is, while a program is running) by using the
TS and TE immediate commands. See page 119 for the description of these
facilities.

Since any inst.ructions may be executed in interactive debug you have
considerable control over execution.

118 VM/SP System Product Interpreter Reference

-(

I
-t

Some examples:

Say expr

name=expr

Trace 0

Trace ?A

Trace L

exit

Debug Aids

/* displays the result of evaluating the
/* expression.

/* alters the value of a variable.

/* (or Trace with no options) turns off
/* interactive debug and all tracing.

/* turns off interactive debug but continue
/* tracing all clauses.

/* makes the interpreter pause at labels
/* only. This is similar to the traditional
/* "breakpoint" function, except that you */
/* don't have to know the exact name and
/* spelling of the labels in the program.

/* terminates execution of the program.

*/
*/

*/

*/
*/

*/
*/

*/
*/

*/
*/

*/

Do i=l to 10 /* displays ten elements of the array stem. */
say stem.i
end

Exceptions: Some clauses cannot safely be re·executed, and therefore the
interpreter does not pause after them, even if they are traced. These are:

• Any repetitive DO clause, on the second or subsequent time around the
loop.

• All END clauses (not a useful place to pause in any case).

• All THEN, ELSE, OTHERWISE, or null clauses.

• All RETURN and EXIT clauses.

• All SIGNAL and CALL clauses (the interpreter pauses after the target
label has been traced).

• Any clause that causes a syntax error. (These may be trapped by
SIGNAL ON SYNTAX, but cannot be re-executed.)

Interrupting Execution and Controlling Tracing

The interpreter may be interrupted during execution in several ways:

• The HI (Halt Interpretation) immediate command may be used to cause
all currently executing REXX programs to terminate, as though there
has been a syntax error. This is especially useful when an editor macro
gets into a loop, and it is desirable to halt it without destroying the
whole environment (as HX would do). When a HI interrupt causes a
R:r.;XX program to terminate, the program stack is cleared. A HI
interrupt may be trapped by using SIGNAL ON HALT, described on
page 58.

Part 4: Debug Aids 119

Debug Aids

;<
• The TS (Trace Start) immediate command turns on the external tracing ~

bit. If the bit is not already on, TS puts the program into normal
interactive debug and you can then execute REXX instructions etc. as
normal (for example, to display variables, EXIT, etc.). This too is useful
when you suspect that a REXX program is looping - TS may be entered,
and the program can be inspected and stepped before a decision is made
whether to allow the program to continue or hot.

• The TE (Trace End) immediate command turns off the external tracing
bit. If it is not already off, this has the effect of executing a TRACE 0
instruction. This can be useful to stop tracing when not in interactive
debug (as when tracing was started by issuing SET EXECTRAC ON and
interactive debug was subsequently terminated by issuing TRACE ?).

The system (external) trace bit:

Before each clause is executed, an external trace bit, owned by CMS
("EXECTRAC," see page 164) is inspected. The user may turn the bit on
by the TS immediate command, and turn it off by the TE immediate
command. The user may also alter the bit by using the SET EXECTRAC
command (see below). This bit is never altered by CMS itself, except that it
is cleared on return to CMS command level.

The interpreter maintains an internal "shadow" of the external bit, which
therefore allows it to detect when the external bit changes from a 0 to a 1,
or vice-versa. If the interpreter sees the bit change from 0 to 1, ?
(interactive debug) is forced on and the tracing action is forced to R if it is
A, C, E, L, N, or O. The tracing action is left unchanged if it is I, R, or S.

Similarly, if the shadow bit is seen to change from 1 to 0, all tracing is
forced off. This means that tracing may be controlled externally to the
REXX program: interactive debug can be switched on at any time without
making any modifications to the program. The TE command can be useful
if a program is tracing clauses without being in interactive debug (that is,
after SET EXECTRAC ON, TRACE ? was issued). TE may be used to
switch off the tracing without affecting any other output from the program.

If the external bit is on upon entry to a REXX program, the SOURCE string
is traced (see page 47) and interactive debug is switched on as normal -­
hence with use of the system trace bit, tracing of a program and all
programs called from it, can be easily controlled. .

The internal "shadow" bit is saved and restored across internal routine
calls. This means that (as with internally controlled tracing) it is possible
to turn tracing on or off locally within a subroutine. It also means that if a
TS interrupt occurs during execution of a subroutine, tracing will also be
switched on upon RETURN to the caller.

The CMSFLAG(EXECTRAC) function and the command QUERY
EXECTRAC may be used to test the setting of the system trace bit.

120 VM/SP System Product Interpreter Reference

Help

r
i,

Debug Aids

The command SET EXECTRAC ON turns on the trace bit. Using it before
invoking a REXX program causes the program to be entered with debug
tracing immediately active. If issued from inside a program, SET
EXECTRAC ON has the same effect as TRACE ?R (unless TRACE I or S is
in effect), but is more global in that all programs called are traced, too.
The command SET EXECTRAC OFF turns the trace bit off. Issuing this
when the bit is on is equivalent to the instruction TRACE 0, except that it
has a system (global) effect.

Note: SET EXECTRAC OFF turns off the system trace bit at any time; for
example, if it has been set by a TS immediate command issued while not in
a REXX program.

The CMS command HELP REXX MENU displays a menu. You can then
display the description of any REXX instruction, REXX built-in function, or
RXSYSFN function from this menu.

Alternatively, any of these may be displayed directly by using:

Part 4: Debug Aids 121

Debug Aids

122 VM/SP System Product Interpreter Reference

Introduction

r , Parsing Words

("

Three instructions (ARG, PARSE, and PULL) allow a selected string to be
parsed (split up) into variables, under the control of a template. The
various mechanisms in the template allow a string to be split up into words
(delimited by blanks), or by explicit matching of patterns, or by selecting
absolute columns with numeric patterns - for example to extract data from
particular columns of a record read from a file.

This section first gives some informal examples of how the parsing template
can be used, then describes in more detail the mechanisms used.

Here are some examples that illustrate how parsing works.

The simplest form of a parsing template consists of a list of variable names.
The data being parsed is split up into words (characters delimited by
blanks), and each word from the data is assigned to a variable in sequence.
The final variable is treated differently in that it will be assigned whatever
is left of the original data and may therefore contain several words, and
possibly leading and trailing blanks.

Parse value 'This is a sentence.' with vl v2 v3
/* is equivalent to: */
vl = "This"; v2 = "is"; v3 = "a sentence."

In this example, vl would get the value This, v2 would get the value is,
and v3 would get a sentence.

Leading blanks and trailing blanks are removed from each word in the
string before it is assigned to a variable, except for the word or group of
words assigned to the last variable. Variables set in this manner (vl and
v2 in the example) will never have leading or trailing blanks. But the last
variable (v3 in the example) could have both leading and trailing blanks, if
extra blanks were specified before a or after sentence.

Part 5: Parsing for PARSE, ARG and PULL 123

Parsing

For example,

Parse value 'This is a sentence.' with vl v2 v3
/* is equivalent to: */
vI = "This"~ v2 = "is"~ v3 =" a sentence."

In this example, vl would get the value This, v2 would get the value is,
and v3 would get a sentence.

In addition, if PARSE UPPER (or the ARG or PULL instruction) is used,
the whole string is translated into uppercase before parsing begins.

Note that all variables mentioned in a template are always given a new
value, so if there are fewer words in the data than variables in the template,
the unused variables will be set to null.

Parsing Using String Patterns

A string may be used in a template to split up the data:

Parse value 'To be, or not to be?' with wl ',' w2
/* would cause the data to be scanned for the comma, */
/* then split at that point, thus: * /
wl = "To be"~ w2 = " or not to be?"

wl would be set to To be, and w2 is set to or not to be? A string used
in this way is called a pattern. Note that the pattern itself (and only the
pattern) is removed from the data. In fact each section is treated in just the
same way as the whole string was in the previous example, and so either
section may be split up into words.

Parse value 'To be, or not to be?' with wl ',' w2 w3 w4
/* is equivalent to: */
wl = "To be"~ w2 = "or"~ w3 = "not"~ w4 = "to be?"

w2 and w3 get the values or and not, and w4 would get the remainder: to
be? H UPPER was specified on the instruction, all the variables would be
translated to uppercase.

H the string in these examples did not contain a comma, the pattern would
effectively "match" the end of the string, so the variable to the left of the
pattern would get the entire input string, and the variables to the right
would be set to null. Note that a null string will never be found, and so
will always match the end of the string.

The pattern may be specified as a variable, by putting the variable name in
parentheses. The following instructions therefore have the same effect as
the last example:

comma=','
Parse value 'To be, or not to be?' with wl (comma) w2 w3 w4

124 VM/SP System Product Interpreter Reference

Parsing

Parsing Using Numeric Patterns

Parsing Arguments

The third type of parsing mechanism is the numeric pattern. This works in
the same way as the string pattern except that it specifies a column
number. So:

Parse value 'Flying pigs have wings' with xl 5 x2
/* would split the data at column 5. Equivalent to */
xl = "Flyi"; x2 = "ng pigs have wings"

would split the data at column 5, so xl would be Flyi and x2 would start
at column 5 and so be ng pigs have wings.

More than one pattern is allowed, so for example:

Parse value 'Flying pigs have wings' with xl 5 x2 10 x3
/* would split the data at columns 5 and 10. Equivalent to */
xl = "Flyi"; x2 = "ng pi"; x3 = "gs have wings"

would split the data at columns 5 and 10, so x2 would be ng pi and x3
would be gs have wings.

The numbers can be relative to the last number used, so

Parse value 'Flying pigs have wings' with xl 5 x2 +5 x3

would have exactly the same effect as the last example: here the +5 may be
thought of as specifying the length of the data to be assigned to x2.

String patterns and numeric patterns can be mixed (in effect the beginning
of a string pattern just specifies a variable column number) and some very
powerful things can be done with templates. The "Definition" section
(below) describes in more detail how the various mechanisms interact.

Finally, it is possible to parse more than one string. For example, an
internal function may have more than one argument string. To get at each
string in turn, you just put a comma in the parsing template. For example,
if the invocation of the function "FRED" was:

fred('This is the first string',2)

the instruction

PARSE ARG first, second
/* would be equivalent to */
first = "THIS IS THE FIRST STRING"; second = "2"

The variable first contains the string "This is the first string". The
variable second contains the string "2". Between the commas you can put
a normal template, with patterns, etc., to do more complex parsing on each
of the argument strings.

Part 5: Parsing for PARSE. ARG and PULL 125

Parsing

Definition

This section describes the rules that govern parsing.

In its most general form, a template consists of alternating pattern
specifications and variable names. The pattern specifications and variable
names are used strictly in sequence from left to right, and are used once
only. In practice, various simpler forms are used in which either variable
names or patterns may be omitted: we can therefore have variable names
without patterns in between, and patterns without intervening variable
names.

In general, the value assigned to a variable is that sequence of characters
in the input string between the point that is matched by the pattern on its
left and the point that is matched by the pattern on its right.

If the first item in a template is a variable, there is an implicit pattern on
the left that matches the start of the string, and similarly if the last item in
a template is a variable, there is an implicit pattern on the right that
matches the end of the string. Hence the simplest template consists of a
single variable name which in this case is assigned the entire input string.

Setting a variable during parsing is identical to setting a variable in an
assignment. It is therefore possible to set an entire collection of compound
variables during parsing. (See pages 13 and 14.)

The constructs that may appear as patterns fall into two categories:

• patterns that act by searching for a matching string
- literal patterns
- variable patterns

• numeric patterns that specify a position in the data
positional patterns

- relative patterns

For the following examples, assume that the following string is being
parsed (note that all blanks are significant):

'This is the data which, I think, is scanned.'

Parsing with Literal Patterns

Literal patterns cause scanning of the input data string to find a sequence
that matches the value of the literal. Literals are expressed as a quoted
string.

126 VM/SP System Product Interpreter Reference

/

',_/

,---

Parsing

When the template:

wl ',' w2 ',' rest

is used to parse the example string, the result is:

wl = "This is the data which"
w2 = "I think"
rest =" is scanned."

Here the string is parsed using a template that asks that each of the
variables receive a value corresponding to a portion of the original string
between commas; the commas are given as quoted strings. Note that the
patterns (in this example, the commas) themselves are removed from the
data being parsed.

A different parse would result with the template:

wl ',' w2 ',' w3 ',' rest

which would result in:

wl = "This is the data which"
w2 = "I think"
w3 =" is scanned."
rest ="" (null)

This illustrates an important rule. When a match for a pattern cannot be
found in the input string, it instead "matches" the end of the string. Thus,
no match was found for the third ',' in the template, and so w3 was assigned
the rest of the string. REST was assigned a null value because the pattern
on its left had already reached the end of the string.

A null pattern (a string of length 0) may be used to match the end of the
data explicitly. This is mainly useful with positional patterns (see below).

Note that all variables that appear in a template are assigned a new value.

If a variable is followed by another variable, a special action is taken. This
is similar to there being the pattern' '(a single blank) between them,
except that leading blanks at the current position in the input data are
skipped over before the search for the next blank takes place. This means
that the value assigned to the left-hand variable will be the next word in
the string, and will have neither leading nor trailing blanks.

Part 5: Parsing for PARSE, ARG and PULL 127

Parsing

Thus the template:

wl w2 w3 rest ' ,

would result in:

wl = "This"
w2 = "is"
w3 = "the"
rest = "data which"

Note that the final variable (rest in this example) could have had both
leading blanks and trailing blanks, since only the blank that delimits the
previous word is removed from the data.

Also observe that this example is not the same as specifying explicit blanks
as patterns, as the template:

wl , , w2 , , w3 , , rest , , ,

would in fact result in:

wl = "This"
w2 = "is"
w3 = " " (null)
rl;!st = "the data which"

since the third pattern would match the third blank in the data.

Note: Quotes are not part of the value. They are shown here and in
following examples only to indicate leading or trailing blanks.

In general then, when a variable is followed by another variable, parsing of
the input by tokenization into words is implied.

Parsing with Variable PaHerns

It is sometimes desirable to be able to specify a matching pattern by using a
variable instead of a literal string. This may be achieved by placing the
name of the variable to be used as the pattern in parentheses. The variable
may be one that has been set earlier in the parsing process, so for example:

input="L/look for/l 10"
parse var input verb 2 delim +1 string (delim) rest

will set:

verb = "L"
de1im = "I"
string "look for"
rest ="1 10"

128 VM/SP System Product Interpreter Reference

Parsing

Use of the Period as a Placeholder

The symbol consisting of a single period acts as a placeholder in a template.
It has exactly the same effect as a variable name, except that no variable is
set. It is especially useful as a "dummy variable" in a list of variables or to
collect unwanted information at the end of a string. Thus, when the
template:

. . . word4 .

is used to parse the same example string:

'This is the data which, I think, is scanned.'

the result is:

word4 = "data"

That is, the fourth word (data) is extracted from the string and placed in
the variable word4.

Parsing with Positional Patterns and Relative Patterns

Positional patterns may be used to cause the parsing to occur on the basis
of position within the string, rather than on its contents. They take .the
form of signed or unsigned whole numbers, and may cause the matching
operation to "back up" to an earlier position in the data string. "Backing
up" can only occur when positional patterns are used.

Unsigned numbers in a template refer to a particular character column in
the input: For example, the template

sl 10 s2 20 s3

results in

sl = "This is "
s2 = "the data w"
s3 = "hich, I think, is scanned."

Here sl is assigned characters from input through the ninth character, and
s2 receives input characters 10 through 19. The final variable, s3, is
assigned the remainder of the input.

Signed numbers may be used as patterns to indicate movement relative to
the character position at which the previous pattern match occurred.

If a signed number is specified, the position used for the next match is
calculated by adding or subtracting the number given to the last matched
position. The last matched position is the position of the first character
of the last match, whether specified numerically or by a string. For
example, the instructions:

Part 5: Parsing for PARSE, ARG and PULL 129

Parsing

a = '123456789'
parse var a 3 wI +3 w2 3 w3

result in:

wI = "345"
w2 = "6789"
w3 = "3456789"

The + 3 in this case is equivalent to the absolute number 6 in the same
position, and indeed may be considered as specifying the length of the data
to be assigned to the variable wl.

This example also illustrates the effects of a pattern that implies movement
to a character position to the left of, or to the point where matching has
already occurred. Movement is from column 6, the starting position for w2,
to column 3, the starting position for w3. The variable on the left is
assigned characters through the end of the input, and the variable on the
right is, as usual, assigned characters starting at the position dictated by
the pattern.

A useful effect of this is that multiple assignments can be made:

parse var x 1 wI 1 w2 1 w3

results in assigning the (entire) value of x to wI, w2, and w3. (The first "I"
here could be omitted as it is effectively the same as the implicit starting
pattern described at the beginning of this section.)

The following PARSE instruction assigns the same values to wI, w2, and w3
as above:

a = '123456789'
parse var a 3 wI +3 w2 -3 w3

3 specifies the starting position for wI, column 3. + 3 tells you to move 3
positions to the right of the starting position of wl. This is the starting
position of w2, column 6. -3 tells you to move 3 positions to the left of the
starting position of w2. This is the starting position of w3, column 3.

If a positional pattern specifies a column that is greater than the length of
the data, it is equivalent to specifying the end of the data (that is, no
padding takes place). Similarly, if a pattern specifies a column to the left of
the first column of the data, this is not an error but instead is taken to
specify the first column of the data.

Any pattern match sets the "last position" in a string to which a relative
positional pattern can refer. The "last position" set by a literal pattern is
the position at which the match occurred; that is, the position in the data of
the first character in the pattern. Thus the template:

',' -1 x +1

will:

130 VM/SP System Product Interpreter Reference

Parsing

1. Find the first comma in the input (or the end of the string if there is no
co~ma).

2. Back up one position.

3. Assign one character (the character immediately preceding the comma
or end of string) to the variable x.

A possible application of this is looking for abbreviations in a string. Thus
the instruction:

/* Ensure options have leading blank and are uppercase */
parse upper value' 'opts with' PR' +1 prword ' ,

will set the variable prword to the first word in opts that starts with PR or
will set it to null if no such word exists. Note that +0 is a valid positional
pattern.

When a literal pattern is followed by a signed(+ /-) positional pattern the
literal string WILL NOT BE REMOVED from the data being parsed.
Instead it will be parsed into the first variable following the literal pattern.
Thus the following two cases:

a='This is the data which, I think, is scanned.'

CASE 1:
CASE 2:

parse var a 'which' +5 y
parse var a 'which'x +5 y

would result in:

CASE 1: y =", I think is scanned"
CASE 2: x = "which"

Y =", I think is scanned."

Note: If a number in a template is preceded by a "+" or a "-," this is taken
to be a signed positional pattern. There may be blanks between the sign
and the number, since initial scanning removes blanks adjacent to special
characters.

Parsing Multiple Strings

A parsing template can parse multiple strings. This is effected by using
the special character comma (,) in the template. Each comma is an
instruction to the parser to move on to the next string. For each string a
normal template (with patterns, etc.) may be specified. The only time
multiple strings are available is in the ARG (or PARSE ARG) instruction.
When an internal function or subroutine is invoked it may have several
argument strings, and a comma is used to access each in turn. Thus the
template:

wordl string1, string2, num

Part 5: Parsing for PARSE, ARG and PULL 131

Parsing

;:

would put the first word of the first argument string into wordl, the rest of ("
that string into stringl, and the next two strings into str ing2 and num.
If insufficient strings were specified in the invocation, unused variables are
set to null, as usual.

(
I

',,---

132 VM/SP System Product Interpreter Reference

Introduction

REXX defines the usual arithm~tic operations (addition, subtrac~ion,
multiplication, and division) in as "natural" a way as possible. What this
really means is the rules followed are those that are conventionally taught
in schools and colleges.

During the design of these facilities, however, it was found that
unfortunately the rules used vary considerably (indeed much more than
generally appreciated) from person to person and from application to
application and in ways that are not always predictable. The arithmetic
described here is therefore a compromise that (although not the simplest)
should provide acceptable results in most applications.

Numbers (that is, character strings used as input to REXX arithmetic
operations) can be expressed very flexibly. Leading and trailing blanks are
permitted, and exponential notation may be used. Some valid numbers are:

12 /* an integer */
-76 /* signed integer */

12.76 /* decimal places */ , + 0.003 ,
1* blanks around the sign etc */

17 . /* same as "17" */
.5 /* same as "0.5" */

4E9 /* exponential notation */
0.73e-7 /* exponential notation */

(Exponential notation means that the number includes a power of ten
following an E that indicates how the decimal point should be shifted.
Thus 4E9 above is just a short way of writing 4000000000, and 0.7 3e-7 is
short for 0.000000073.)

The Arithmetic operators include addition (+), subtraction (.),
multiplication (*), exponentiation (**), and division (I). In addition, there
are two further division operators: integer divide (%) that divides and
returns the integer part, and remainder (II) that divides and returns the
remainder.

The result of an arithmetic operation is formatted as a character string
according to definite rules. The most important of these rules are as
follows (see the Definition section for full details):

• A number will be displayed with up to some maximum number of
significant digits (the default is 9, hut this may be altered with the

Part 6: NumerIcs and Arithmetic 133

Numerics and Arithmetic

Definition

NUMERIC DIGITS instruction to give whatever accuracy you need).
Thus if a result requires more than 9 digits, it would normally be
rounded to 9 digits. For example, the division of 2 by 3 would result in
0.666666667 (it would require an infinite number of digits for perfect
accuracy).

• Except for division and exponentiation, trailing zeros are preserved
(this is in contrast to most popular calculators, which remove all
trailing zeros). So, for example:

2.40 + 1
2.40 - 2
2.5 * 2

->
->
->

3.40
0.40
5.0

This behavior is desirable for most calculations (especially financial
calculations).

If necessary, trailing zeros may be easily removed with the STRIP
function (see page 94), or by division by 1.

• A zero result is always expressed as the single digit O.

• Exponential form is used for a result depending on the setting of
NUMERIC DIGITS (the default is 9). If the number of places needed
before the decimal point exceeds the NUMERIC DIGITS setting, or the
number of places after the point exceeds twice the NUMERIC DIGITS
setting, the number will be expressed in exponential notation:

1e6 * 1e6 -> 1E+12
/* not

1 / 3E10 ->
/* not

1000000000000 */
3.33333333E-ll

0.0000000000333333333 */

A precise definition of the arithmetic facilities of the REXX language is
given here.

Numbers

A number in REXX is a character string that includes one or
more decimal digits, with an optional decimal point. The decimal
point may be embedded in the number, or may be prefixed or
suffixed to it. The group of digits (and optional decimal point)
constructed this way may have leading or trailing blanks and an
optional sign (+ or -) that must come before any digits or
decimal point.

134 VM/SP System Product Interpreter Reference

Precision

Numerics and Arithmetic

In other words (in Backus-Naur like form, where :: = stands for
"is defined as," I stands for "or," and blanks are not significant
except where represented by the word "blank"):

sign : := + I -
digit : := 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
digits : := digit [digit] .••

numeric : := { digits }
{ digits.digits }
(.digits }
{ digits. }

number : := [blank] .•. [sign [blank] .••]
numeric [blank] ••.

Note that a single period alone is not a valid number.

The maximum number of significant digits that can result from
an operation is controlled by the instruction:

NUMERIC DIGITS [expression]

expression is evaluated and must result in a positive whole
number. This defines the precision (number of significant digits)
to which calculations are carried out. Results are rounded to
that precision.

If expression is not specified in this instruction, or if no
NUMERIC DIGITS instruction has been executed since the start
of a program, the default precision is used. The REXX standard
for the default precision is 9, and this is what is implemented by
the interpreter:

Arithmetic operators

The four basic operators + , - , * , and / (add, subtract, multiply,
and divide) produce results that are rounded if necessary to the
precision specified by the NUMERIC DIGITS instruction.

Every operation is carried out in such a way that no errors will
be introduced except during the final rounding of the result to
the specified significance. (That is, input data is first truncated
to the appropriate significance (NUMERIC DIGITS + 1) before
being used in the computation, and then divisions and
multiplications are carried out to double that precision, as
needed.)

Rounding is done in the "traditional" manner, in that the digit to
the right of the least significant digit in the result (the "guard
digit") is inspected and values of 5 through 9 are rounded up, and
values of 0 through 4 are rounded down. Even/odd rounding

Part 6: Numerics and Arithmetic 135

Numerics and Arithmetic

would require the ability to calculate to arbitrary precision at all
times and is therefore not the mechanism defined for REXX.

A conventional zero is supplied in front of the decimal point,
otherwise there would be no digit preceding it. Significant
trailing zeros are retained for addition, subtraction, and
multiplication, according to the rules given below, except that a
result of zero is always expressed as the single digit o. For
division, trailing zeros are removed after rounding.

The FORMAT built-in function is supplied (see page 85) to allow
a number to be represented in a particular format if the standard
result provided does not meet your requirements.

The precise rules for the operations are described below, but the
following examples illustrate the main implications of the rules:

/* With:
12+7.00
1.3-1.07
1.3-2.07
1.20*3
7*3
0.9*0.8
1/3
2/3
5/2
1/10
12/12
8.0/2

Numeric
->
->
->
->
->
->
->
->
->
->
->
->

digits 5 */
19.00
0.23

-0.77
3.60

21
0.72
0.33333
0.66667
2.5
0.1
1
4

The exponentiation operator (**), integer divide operator (%),
and remainder operator (/1) are also defined:

The ** (exponentiation) operator raises a number to a whole
power, which may be positive or negative. If negative,the
absolute value of the power is used, and then the result is
inverted (divided into 1). For calculating the result, the number
is effectively multiplied by itself for the number of times '"
expressed by the power, and finally trailing zeros are removed (as
though the result were divided by one). In practice (see note
below for rationale), the result is calculated by the process of
left-to-right binary reduction. For x**n: n is converted to
binary, and a temporary accumulator is set to 1. If n = 0 the
calculation is complete. Otherwise each bit (starting at the first
non-zero bit) is inspected from left to right. If the current bit is
1, the accumulator is multiplied by x. If all bits have now been
inspected the calculation is complete, otherwise the accumulator
is squared and the next bit is inspected for multiplication. When
the calculation is complete, the temporary result is ready for
division by or into 1 to provide the final answer. The
multiplications and division are done under the normal REXX
arithmetic combination rules, detailed below. (Note that a (
number is rounded to the current setting of NUMERIC DIGITS ~.~

136 VM/SP System Product Interpreter Reference

Numerics and Arithmetic

before the first mu~tiplication, and that intermediate results are
rounded after each subsequent multiplication.}

The % (integer divide) operator divides two numbers and
returns the integer part of the result, which will not be rounded
unless the integer has more digits than the current DIGITS
setting. The result returned is dermed to be that which would
result from repeatedly subtracting the divisor from the dividend
while the dividend is larger than the divisor. During this
subtraction, the absolute values of both the dividend and the
divisor are used: the sign of the final result is the same as that
which would result if normal division were used. Note that this
operator may not give the same result as truncating normal
division (which could be affected by rounding).

The II (remainder) operator will return the remainder from
integer division, and is defined such that:

a//b == a-(a%b)*b

Thus:

/* Again
2**3
2**-3
1. 7**8
2%3
2.1//3
10%3
10//3
-10//3
10.2//1
10//0.3

with:
->
->
->
->
->
->
->
->
->
->

Numeric
8
0.125

69.758
o
2.1
3
1

-1
0.2
0.1

digits 5 */

Note: A particular algorithm for calculating exponentiation is
used, since it is efficient (though not optimal) and considerably
reduces the number of actual multiplications performed. It
therefore gives better performance and can give higher accuracy
than the simpler definition of repeated multiplication. Since
results may differ from those of repeated multiplication, the
algorithm is defined here.

Arithmetic combination rules

The rules for combination of two numbers by the four basic
operators are as follows. All numbers have insignificant leading
zeros removed before being used in computation.

Addition and Subtraction

The numbers are extended on the right and left as necessary
and then added or subtracted as appropriate.

Part 6: Numerics and Arithmetic 137

Numerics and Arithmetic

Example:

becomes:

xxx. xxx

xxx.xxxOO
+ Oyy.yyyyy

zzz.zzzzz

+ yy.yyyyy

The result is then rounded to the current setting of
NUMERIC DIGITS if necessary, and any insignificant
leading zeros are removed.

Multiplication

The numbers are multiplied together ("long multiplication")
resulting in a number that may be as long as the sum of the
lengths of the two operands.

Example:

xxx. xxx * yy.yyyyy

becomes: zzzzz.zzzzzzzz

The result is then rounded to the current setting of
NUMERIC DIGITS.

Division

For the division:

yyy / xxxxx

the following steps are taken: First the number yyy is
extended to be at least as long as the number xxxxx (with
note being taken of the change in the power of ten that this
implies). Thus in this example, yyy becomes yyyOO.
Traditional long division then takes place, which might be
written:

zzzz

xxxxx) yyyOO

The length of the result (zzzz) is such that the rightmost z
will be at least as far right as the rightmost digit of the
(extended) y number in the example. During the division,
the y number will be extended further as necessary, and the
z number may increase up to NUMERIC DIGITS + 1 digits at
which point the division stops and the result is rounded.
Following completion of the division (and rounding if
necessary), insignificant trailing zeros are removed.

Note: In the above examples, the position of the decimal point is
arbitrary. In fact the operations may be carried out as integer

138 VM/SP System Product Interpreter Reference

(--

Numerics and Arithmetic

operations with the exponent being calculated and applied after.
Therefore none of the operations are in any way dependent on
the position of the decimal point and hence results are
completely independent of the number of decimal places.

Comparison Operators

The comparison operators are listed on page 8. Any of these may
be used for comparing numeric strings. However, = = and
-, = = , should not be used to compare numeric values because
leading/trailing blanks and leading zeroes are significant with
these two operators.

A comparison of numeric values is effected by subtracting the
two numbers (calculating the difference) and then comparing the
result with o. For example, the operation:

A ? B

where? is any numeric comparison operator, is identical to:

(A - B) ? '0'

It is therefore the difference between two numbers, when
subtracted under REXX subtraction rules, that determines their
equality.

Comparison of two numbers is affected by a quantity called
"fuzz," which is set by the instruction:

NUMERIC FUZZ [expression]

Here expression must result in a whole number that is zero or
positive. This FUZZ number controls the amount by which two
numbers may differ before being considered equal for the purpose
of comparison. The default is o.

The effect of FUZZ is to temporarily reduce the value of DIGITS
by the FUZZ value for each comparison operation. That is, the
numbers are subtracted under a precision of DIGITS-FUZZ digits
during the comparison. Clearly FUZZ must be less than DIGITS.

Thus if DIGITS = 9, and FUZZ = 1, the comparison will be
carried out to 8 significant digits, just as though NUMERIC
DIGITS 8 had been put in effect for the duration of the operation.
Example:

Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5 /* would display 0 */
say 4.9999 < 5 /* would display 1 */
Numeric fuzz 1
say 4.9999 5 /* would display 1 */
say 4.9999 < 5 1* would display 0 */

Part 6: Numerics and Arithmetic 139

Numerics and Arithmetic

Exponential notation

The description above describes "pure" numbers, in the sense
that the character strings that describe numbers could be very
long. For example:

10000000000 * 10000000000
could give 100000000000000000000

and

.00000000001 * .00000000001
could give 0.000000000000000000001

For both large and small numbers some form of exponential
notation is useful, both to make numbers morereadahle, and to
reduce execution time storage requirements. In addition,
exponential notation is used whenever the "simple" form would
give misleading information. For example

numeric digits 5
say 54321*54321

would display 2950800000 if long form were to be used. This is
clearly misleading, and SO the result is expressed as 2.950BE + 9
instead.

./'.

The definition of "numbers" (see above) is therefore extended as (
(note that blanks are shown below only for readability): \",-

numeric ::= {digits }
. dig~t~.digits [E [sign] digits)

. .d~g~ts

. digits.

the integer following the E represents a power of ten that is to be
applied to the number; and the E may be in uppercase or
lowercase.

Here are some examples:

12Ell =
12E-5 =
-12e4 =

1200000000000
0.00012
-120000

The above numbers are valid for input data at all times. The
results of calculations will be returned in either conventional or
exponential form depending on the setting of DIGITS. If the
number of places needed before the decimal point exceeds

. DIGITS, or the number of places after the point exceeds twice
DIGITS, exponential form will be used. The exponential form
generated by REXX always has a sign following the E in order to
improve readability. An exponential part of E +0 will never be
generated.

140 VM/SP System Product Interpreter Reference.

Numerics and Arithmetic

Numbers may be explicitly converted to exponential form, or
forced to be displayed in "long" form, by using the FORMAT
built-in function, described on page 85.

The user may control whether Scientific or Engineering notation
is to be used by using the instruction:

NUMER I C FORM [SC I ENTI FI C]
ENGINEERING

The default setting of FORM is SCIENTIFIC.

Scientific notation adjusts the power of ten so there is a single
non-zero digit to the left of the decimal point. Engineering
notation causes powers of ten to always be expressed as a
multiple of 3: the integer part may therefore range from 1
through 999.

/* after the instruction */
Numeric form scientific

123.45 * 1ell -> 1. 2345E+13

/* after the instruction */
Numeric form engineering

123.45 * 1ell -> 12.345E+12

Numeric Information

The current settings of the NUMERIC options may be found by
using the NUMERIC option of the PARSE instruction:

PARSE NUMERIC [template]

This will parse the current settings of the numeric parameters, in
the order: DIGITS, FUZZ, FORM. If the defaults were in effect,
for example, this would cause the following string to be parsed:

'9 0 SCIENTIFIC'

Use of Numbers by REXX

Errors

Whenever a character string is used as a number (for example as
an argument to a built-in function, or the expressions on a DO
clause), rounding may occur according to the setting of
NUMERIC DIGITS.

Various types of errors may occur in computation:

• Overflow/Underflow

Part 6: Numerics and Arithmetic 141

Numerics and Arithmetic

This error will occur if the exponential part of a result
becomes greater than 999999999 or becomes less than
-999999999. The exponential part of a result exceeds the
range that may be handled by the interpreter. Since this
allows for (very) large exponents, overflow or underflow is
treated as a terminating "syntax" error.

• Storage exception

Storage is needed for calculations and intermediate results,
and on occasion an arithmetic operation may fail due to lack
of storage. This is considered a terminating error as usual,
rather than an arithmetical error.

142 VM/SP System Product Interpreter Reference

Keywords may be used as ordinary symbols in many situations where there
is no ambiguity. The precise rules are given here.

There are three special variables: RC, RESULT and SIGL.

Reserved Keywords

The free syntax of REXX implies that some symbols are reserved for use by
the interpreter in certain contexts.

Within particular instructions, some symbols may be reserved to separate
the parts of the instruction: for example, the WHILE in a DO instruction,
or the THEN (which acts as a clause terminator in this case) following an
IF or WHEN clause.

Only non-compound symbols that are the first in a clause and that are not
followed by an = or : are checked to see if they are instruction keywords:
the symbols may be freely used elsewhere in clauses without being taken to
be keywords.

Therefore, keywords can only have an adverse affect if the user wants to
execute a host command or subcommand with the same name as a REXX
keyword (QUEUE, for example).

This is potentially a problem for any programmer whose REXX programs
might be used for some time and in circumstances outside his or her
control, and who wishes to make the programs absolutely "watertight."

In this case, a REXX program may be written with (at least) the first words
in command lines enclosed in quotes.

Example:

'ERASE' Fn Ft Fm

This also has an advantage in that it is more efficient; and with this style,
the SIGNAL ON NOVALUE condition may be used to check the integrity
of an EXEC.

An alternative strategy is to precede such command strings with two
adjacent quotes, which will have the effect of concatenating the null string
on to the front.

Part 7: Reserved Keywords and Special Variables 143

Keywords and Variables

Example:

, 'Erase Fn Ft Fm

A third option is to enclose the entire expression (or the first symbol) in
parentheses.

Example:

(Erase Fn Ft Fm)

More important, the choice of strategy (if it is to be done at all) is a
personal one by the programmer. It is not imposed by the REXX language.

Special Variables

There are three special variables that may be set automatically by the
interpreter:

RC is set to the return code from any executed host command (or
subcommand). Following the SIGNAL events, SYNTAX and
ERROR, RC is set to the code appropriate to the event: the
syntax error number (see appendix on error messages, page 177)
or the command return code. RC is unchanged following a
NOV ALUE or HALT event.

Note: Host commands executed manually from debug mode do
not cause the value of RC to change.

RESULT is set by a RETURN instruction in a subroutine that has been
CALLed if the RETURN instruction specifies an expression. If
the RETURN instruction has no expression on it, RESULT is
dropped (becomes uninitialized.)

SIGL contains the line number of the clause currently executing when
the last transfer of control to a label took place. (This coul~ be
caused by a SIGNAL, a CALL, an internal function invocation,
or a trapped error condition.)

None of these variables has an initial value. They may be altered by the
user, just like any other variable, and they may be accessed, via the "Direct
Interface to Current Variables" on page 159. The PROCEDURE and DROP
instructions also affect these variables in the usual way.

Certain other information is always available to a REXX program. This
includes the name by which the program was invoked and the source of the
program (which is available using the PARSE SOURCE instruction, see
page 47). The latter consists of the string CMS followed by the call type
and then the filename, file type, and filemode of the file being executed.
These are followed by the name by which the program was invoked and the ('
initial (default) command environment. ~j

144 VM/SP System Product Interpreter Reference

(' ". -'.

-_/

Keywords and Variables

In addition, PARSE VERSION (see page 48) makes available the version
and date of the interpreter code that is running. The built-in functions
TRACE and ADDRESS return the current trace setting and environment
name respectively.

Part 7: Reserved Keywords and Special Variables 145

Keywords and Variables

146 VMfSP System Product Interpreter Reference

There are a number of CMS commands that can be especially useful to
REXX programmers. Some can access and change REXX variables.

EXECDROP Purges storage-resident EXECs.

EXECIO Reads and writes CMS files. Issues CP commands, placing
the output that would normally appear on the screen in the
program stack. Reads from the virtual reader. Writes to
the virtual printer and virtual punch.

EXECLOAD Loads an EXEC into storage.

EXECMAP Lists storage-resident EXECs.

EXECOS Cleans up after OS,VSAM and Vector programs, and should
be used if more than one OS or VSAM program is called
between returns to CMS command level.

EXECSTAT Provides the status of a specified EXEC.

EXECUPDT An extension to the UPDATE command, EXECUPDT
modifies a REXX program file with one or more update
files. The input files must have fixed length, SO-column
records. The result is an executable, V-format program file.

GLOBALV Saves EXEC data (variables) from one invocation to the
next.

IDENTIFY Displays or stacks userid, nodeid, rscsid, date, time, time
zone, and day of the week.

LISTFILE Lists information about CMS disk files.

PARSECMD Parses and translates an exec's arguments.

QUERY See SET below. (See also the CMSFLAG function.)

SET ABBREV, IMPEX and IMPCP modify the search order;
CMSTYPE controls output to the screen (including output
generated by the SAY instruction); EXECTRAC controls
tracing.

Part 8: Some Useful CMS Commands 147

CMS Commands

XEDIT

XMITMSG

When used as an Editor, additional subcommands (macros)
may be written in REXX. XEDIT may also be used to write
and read menus (full screen displays). In both applications,
XEDIT variables may be assigned to REXX variables using
the EXTRACT subcommand of XEDIT.

Accesses messages from a repository file. These messages
can then be displayed. '

For more details on these CMS commands, refer to the VM/SP CMS
Command Reference.

148 VM/SP System Product Interpreter Reference

/
/

(.~ .•

This chapter is addressed mainly to assembler language programmers and
system programmers. It describes:

1. Calls to and from the interpreter. A general description of calls to and
from the REXX programs (from the eMS command line, from another
EXEC, and so on) with an indication of the type of parameter list used
in each case.

2. DMSEXI-the CMS interface module that receives calls to EXEC
programs and passes them to the appropriate processor or interpreter.

3. Parameter lists. Details, at assembler language level, of the parameter
lists used for calls to and from the interpreter.

4. Function Packages. How to write a function or subroutine that can be
called by the interpreter and how to put it into a Function Package.

5. The EXECCOMM subcommand, which allows other programs to read
and alter REXX variables and extract other information.

6. How the interpreter sets and tests the flags in the EXECFLAG control
byte so as to obey the CMS immediate commands HI (Halt Interpreter),
TS (Trace Start), and TE (Trace End).

Calls To and From the Interpreter

When called, the interpreter can process either the Tokenized Plist
(Parameter List) or an Extended Plist. When calling, the interpreter
generates both Plists. A special parameter list (subsequently referred to in
this manual as the six-word Extended Plist) is used by the interpreter for
function calls and subroutine calls. The contents of the General Register 1
high order byte (Byte 0) define the format of the Plist passed by the caller.

Note: The general formats for CMS Plists (parameter lists) are described
under "CMS SVC Handling" in the VM/SP eMS for System Programming.
The Extended Plist and the six-word Extended Plist are described below.

Part 9: System Interfaces 149

System Interfaces

Calls Originating from the eMS Command Line

To invoke a REXX language EXEC, the user may enter on the command
line:

• Just the name of the EXEC (execname) and the argument string. In
this case, if IMPEX is ON (the default) and if the file execname EXEC
exists, CMS issues the command EXEC, using the original command
line as the argument string. If IMPEX is OFF, the EXEC cannot be
invoked in this way, and the word EXEC must be given explicitly.

Note: If ABBREV is ON (the default) DMSINT will search the synonym
tables.

• The command EXEC followed by the name of the REXX language EXEC ,~
(and the argument string, if any).

Note: In this case synonyms are not recognieed.

In both cases CMS invokes SVC 202 with Register 0 pointing to the
Extended Plist, and Register 1 pointing to a Tokenized Plist. Register 1
byte 0 contains X'OB', which signifies that this is a CMS environment call,
that the full CMS search order was used, and that an Extended Plist is
available. Control is passed to the interpreter via the EXEC command
handler (DMSEXI, see below). ('

Calls Originating from the XEDIT Command Line

To invoke a REXX macro that is stored in a file with a file type of XEDIT,
the user may enter on the XEDIT command line:

• Just the name of the macro and the argument string (if any). In this
case, XEDIT executes the subcommand MACRO, using the original
command line as the argument string. Note that if the macro has the
same name as an XEDIT built-in command, it will not be invoked unless
MACRO is set ON (which is not the default),

• The command MACRO followed by the name of the REXX macro (and
the argument string, if any). This will always invoke the specified
macro, if it exists.

In both cases XEDIT checks to see if the macro is already loaded into
storage. If not, it loads the macro if it exists, constructing an Extended
Plist, a File Block, and a Program Descriptor List. Word 4 of the Extended
Plist points to the File Block. Register I byte 0 contains X'OI' (which
signifies that the Extended Plist is available). Control is passed to the
interpreter via the EXEC command handler (DMSEXI, see below).

If the user enters the name of the macro (macroname ...) on the XEDIT
command line and the file macroname XEDIT is not found and IMPCMSCP
is set ON, XEDIT assumes that an EXEC or aCMS command is being
invoked, and will try the normal full CMS search order for the command, as

150 VM/SP System Product Interpreter Reference

.~

System Interfaces

though the command had been entered from the CMS command line. In
this case, Register 1 byte 0 will be X'OB', as usual.

Calls Originating from CMS EXECs

Calls from CMS EXECs must be explicit invocations of EXEC. Only the
Tokenized Plist is available. If the called EXEC is written in REXX,
DMSEXI constructs an argument string from the tokenized Plist. The high
order byte of R1 is dependent upon the setting of the &CONTROL statement
- X'OD' if MSG was specified (default), and X'OE' if NOMSG was specified.

Calls Originating from EXEC 2 Programs

Calls originating from EXEC 2 programs must again be explicit invocations
of EXEC. However, EXEC 2 provides both the Tokenized Plist and the
Extended Plist. The high order byte of Register 1 is X'01', which signifies
that the Extended Plist is available.

Calls Originating from a Clause That Is an Expression

For a REXX clause that is an expression, the resulting string is issued as a
command to whichever environment is currently selected (See pages 16-22).
The Plist format used is dependent upon the environment selected (by
default or by the ADDRESS instruction).

If the environment for the command is CMS, the call is the same as from
the CMS command line (same search order, same Plist structure, and the
high order byte of Register 1 is set to X'OB').

If the environment is COMMAND (or null), the command is issued directly:
the high order byte of Register 1 is set to X'01' and CMS is called using
SVC 202. (Note to EXEC 2 users: this is the way in which EXEC 2 issues
commands.)

Note that (whether the environment is CMS or COMMAND) no cleanup is
performed by DMSINT after the command has been executed, interrupts are
not cancelled, and the LASTCMD field in NUCON is not updated.

When the environment is XEDIT (for calls from XEDIT macros, for
example), the subcommands are passed to XEDIT using the SUBCOM Plist.
The high order byte of Register 1 is X'02' indicating that the call is to a
CMS subcommand environment. Register 1 points to a Tokenized Plist that
gives the name of the subcommand entry point that is to receive control
(XEDIT in this case), and Register 0 points to the Extended Plist.

All other environment names are treated in the same way as XEDIT, that
is, the SUBCOM mechanism is used (unless the name is a valid PSW - see
page 158).

Part 9: System Interfaces 151

System Interfaces

Calls Originating from a CALL ,Instruction or a Function Call

A different interface is used when the interpreter calls an external
subroutine or function. The called routine may be a MODULE, a Nucleus
Extension, or a REXX program; all use the same Plist, but a FILEBLOK is
provided by the interpreter only when the routine is called via the EXEC
interface. The search order for external routines is described on page 71.

In all cases, Register 1 byte 0 contains X'05', indicating that the six-word
Extended Plist is used. Word 5 of this Plist points to the argument list (see
page 155). Word 6 points to a fullword location in USER storage, 'which is
zero on entry and will be used to store the address of an EV ALBLOK if a
result is returned. A routine that does not return a result must leave this
location unchanged. . ,

A routine called as a function must return a result, but a routine called as
a subroutine need not. The caller sets Register 0 Bit 0 to:

o if the routine is called as a function
1 if the routine is called as a subroutine

(If the called routine is an EXEC written in REXX this information can be
obtained using the PARSE SOURCE instruction, described on page 47.)

If the REXX program is being called as a function, it must end with a
RETURN or EXIT instruction with an expression, and the resulting string
is returned in the form of an EV ALBLOK.

Note: DMSEXI always passes control to the interpreter when a high order
byte of X'05' is found in Register 1.

Calls Originating from a MODULE

REXX may be called from a user MODULE using any of the standard forms
of Plist:

• Only the Tokenized Plist: Register 1 byte 0 contains 'OO'X. Register 0 is
not used.

• The Extended Plist: Register 1 byte 0 contains 'OI'X. Re'gister 1 must
point to a doubleword-aligned 16-byte field, containing

CL8'EXEC'
CL8'execname'

The rest of the Tokenized Plist will not be inspected. Register 0 must
point to an Extended Plist. The FILEBLOK may be provided if desired
(see page 155).

• The six-word Extended Plist: Register 1 byte 0 contains '05'X. Other
conditions are the same as for the Extended Plist. This form should be
used if more than one argument string is to be passed to the EXEC, or

152 VM/SP System Product Interpreter Reference

/

/

'" -'

DMSEXI

System Interfaces

the EXEC is being called as a function. (Note that if the EXEC returns
data in an EV ALBLOK, it is the responsibility of the caller to free that
storage.)

All calls to the CMS command EXEC are first processed by DMSEXI, which
builds any necessary argument strings and also selects the language
interpreter which is to process the program.

This selection is done by reading up to 255 bytes of the first line of the
program file (or Fileblock defined data) and scanning it until the first
non-blank character is met.

1. If the first non-blank characters are /* (that is, the start of a REXX
comment) or if Register 1 Byte 0 is X'05', the program is assumed to be
written in the REXX language.

2. If the first non-blank characters are &TRACE, (or if Register 1 Byte 0 is
X'Ol' or X'OB' and a FILEBLOK exists, indicating that the call cannot
be processed by CMS EXEC), the program is assumed to be written in
the EXEC 2 language.

3. Otherwise the program is assumed to be written in the CMS EXEC
language.

DMSEXI calls the appropriate interpreter.

The Extended Parameter list

The interpreter may be called with an Extended Plist (in addition to the
S-byte Tokenized Plist) that allows the following possibilities:

• One or more arbitrary parameter strings (mixed case and untokenized)
may be passed to the interpreter, and one string may be returned from it
when execution ends.

• A file other than that defined in the Tokenized Plist may be used. (The
filetype, for example, need not be EXEC).

• A default target for commands (other than CMS) can be specified. A
filetype other than EXEC or blanks will cause commands to go to the
environment with the name that matches the filetype.

• A program that exists in storage may be executed (instead of first being
read from a file). This in-storage execution option may be used for
improved performance when a REXX program is being executed
repeatedly.

Part 9: System Interfaces 153

System Interfaces

• A default target for commands may be specified that overrides the
default derived from the filetype.

Using the Extended Parameter List

To use the Extended Plist, both Register 1 and Register 0 are used.
Register 1 points to the Tokenized Plist. The first token of this Plist must
be CL8'EXEC', and the second token must contain the name of the EXEC or
macro to be processed unless a FILEBLOK that specifies the name is
provided.

Byte 0 of Register 1 may have the following values:

X'Ol' or X'OB' Extended Plist available. The argument string defined by
words 2 and 3 (BEGARGS and ENDARGS) of the Extended
Plist is used to find the called name of the program and the
argument string passed to the interpreter. The first two
tokens of the Tokenized Plist are used.

X'05' an interpreter call (for example, originating from a CALL
instruction or a function call to a REXX external routine).
The six-word Extended Plist is available. The argument list
pointed to by Word 5 of the Plist is used for the strings
accessed by the ARG instruction and the ARG function.
Only the first token of the Tokenized Plist is used. If the
argument list is specified, only the first word of the
BEGARGS/ENDARGS string is used (for the called name of
the program).

Any other value (for example, X'OO') Only the Tokenized Plist is available.

Register 0 points to the Extended Plist. The Extended Plist has the form:

EPLIST DS OF PLIST with pointers:
DC A{COMVERB) -> CL5'EXEC ,
DC A{BEGARGS) -> start of Argstring
DC A{ENDARGS) -> character after end of

* the Argstring
DC A{FBLOK) -> File Block, described below.

* (if there is no File Block,
* this pointer must be 0)

The six-word Extended Plist (which only exists if Register 1 byte 0 is X'05')
is the same four pointers followed by:

DC
*
*
*
*

DC
*
*

AL4{ARGLIST)

A{SYSFUNRT)

-> Argument list.
If there is no argument
list this pointer is 0,
and BEGARGS/ENDARGS are
used for the ARG string.

-> SYSFUNRT location, which:
* contains a zero on entry
* will be unchanged if

/

~.

*
*
*

* no result is returned (,
* will cont,:,-in the addr~ss of an '~ /
* EVALBLOK ~f a result ~s returned;

154 VM/SP System Product Interpreter Reference

The File Block

System Interfaces

The argument list consists of an Adlen (Address/Length) pair for each
argument string. The final value pair is followed by two fullwords
containing -I (that is, hex FFFFFFFF). There is no limit to the number of
strings when the interpreter is called, but note that the interpreter itself
will only provide from zero to ten argument strings.

If the argument list is given, the simple argument string (as defined by
BEGARGS and ENDARGS) is not used for the ARG instruction or the ARG
built-in function.

Note: The argument list and the strings it defines must be in privately
owned storage. This means that the interpreter need not copy the data
strings before using them (as has to be done for the BEGARGS/ENDARGS
string, when it is used).

The result of a subroutine or function call using the six-word Extended
Plist is returned in a block of USER storage allocated by DMSFREE and
which has the following storage assignments and values:

*-- OSECT for the
EVALBLOK OSECT

returned data block -----------------*
EVBPAOl os
EVSIZE os
EVLEN os
EVBPA02 os
EVOATA os

F
F
F
F
c ...

Reserved
Total block size in OW's
Length of Data (in bytes)
Reserved -- should be set to 0
The returned character string

A result may only be returned ifthe called routine ends cleanly, with a
Register 15 retum code of O.

This block is pointed to by word4 of the Extended Plist described above. It
is only needed if the interpreter is to execute a non-EXEC file or is to
execute from storage, or is to have an address environment that is not the
same as its filetype. If it is not required, word4 of the Extended Plist should
be set to O.

Part 9: System Interfaces 155

System Interfaces

FBLOK DS
DC

OF
CL8 'filename ,

** File block
logical name of program

(also physical name if not
in storage).

*
*
*
*
*
*

*
*->
*->
*
*

*
*->
*
*

*
*
*
*

DC

DC
DC

CL8'filetype'

CL2'filemode'
H'extlen'

logical type of program (also
default destination for
commands -- blanks or "EXEC"
cause commands to be
passed to CMS environment).

normally '* , or '
length of extension block

in fullwords (may be 0).
Extension block starts here.
In-storage program definition
Following two words should be 0 if ext len >= 2 and
in-storage program is not supplied.

DC AL4(PROG) -> Start of program
descriptor list.

DC AL4(PGEND-PROG) Length of same in bytes.
Initial Address environment (overrides default from
filetype) •
Should be set to 2F'0'

DC CL8 'environment ,

DC CL8'envname'

if not used and extlen = 4.
The initial environment.
May be a PSW for non-SVC
subcommand call.
Name of an initial environment
for non-SVC subcommand call.

*-> End of FILEBLOK

The descriptor list for an in-storage program looks like this:

** Descriptor list for in-storage program
PROG DS OF ** In storage program **

DC A(linel),F'lenl' Address, length of line 1
DC A(line2),F'len2' Address, length of line 2

DC A(lineN),F'lenN' Address, length of line N
PGEND EQU *

Notes:

1. The in-storage program lines need not be contiguous, since each is
separately defined in the descriptor list.

2. For in-store execution, the Filename is still required in the file block,
since this determines the logical program name. The Filetype similarly
sets the default command environment, unless it is explicitly overridden
by the name in the extension block.

3. If the extension length is > = 4 Fullwords, the 3rd and 4th fullwords
form an 8-character environment address that overrides the default
address set from the Filetype in the file block; and thus forms the initial
ADDRESS to which commands will be issued. This new address may be
all characters (for example, blank, CMS, or some other environment
name), or it may be a PSW for non-SVC subcommand execution -
described on page 158. It may be cleared to 8X'OO' if not required.

4. If the extension length is > = 6 Fullwords, the 5th and 6th full words
form an 8-character environment name that is used for the default

156 VM/SP System Product Interpreter Reference

Function Packages

SystelT! Interfaces

address. The 4th and 5th Fullwords are used as a PSW for non-SVC
subcommand execution - described on page 158. The environment name
will be returned by PARSE SOURCE and the ADDRESSO built-in
function and the PSW in the 4th and 5th Fullwords will be used to
invoke subcommands.

Functions and subroutines may be written in REXX, or in any other
language that has an interface that conforms to the six-word Extended Plist
described above. Those routines not written in REXX may be supplied
simply as a file with a filetype of MODULE. For a further improvement in
performance, routines which are called frequently may be loaded as
Nucleus Extensions, or placed in a Function Package.

A function package contains the code for functions that are candidates for
loading as nucleus extensions. The first time a function in one of the three
packages known to the interpreter (RXUSERFN and RXLOCFN and
RXSYSFN) is invoked, a call to the package with a LOAD request causes
the package to load itself as a Nucleus Extension (if it is not already in
storage). The entry point to the particular function required is then
declared as a Nucleus Extension by the package. On subsequent calls, the
code for the function is directly available using SVC 202 and the extra
processing for loading the package MODULE from disk is avoided. The
functions in a package will usually share common code and subroutines.
For an example of a function package, see "Appendix B: Example of a
Function Package" on page 169.

Refer to page 71 for the full search order of external routines.

All external routines are invoked using the six-word Extended Plist defined
above. If the called routine is not an EXEC or Macro (that is, will not be
processed by EXEC), then word4 is zero. Word5 points to the list of
arguments, and word6 points to a location that may be used to return the
address of an EV ALBLOK which will contain the result of the function or
subroutine. If the routine is being called as a subroutine (rather than as a
function), so that it need not return a result, then the top bit of RO will be
set to indicate this. Otherwise the routine should return a result - the
interpreter will raise an error if it does not.

During calculation of the result, the routine may use the argument strings
(which reside in USER storage owned by the interpreter) as work areas,
without fear of corrupting internal REXX values.

External function packages must be able to respond to a call of the form:

RXnameFN LOAD RXfname

(which is issued using just the Tokenized Plist, with Register 1 Byte 0 being
X'OO').

Part 9: System Interfaces 157

System Interfaces

If, when the package RXnameFN is invoked with this request, RXfname is
contained within the package, RXnameFN will:

• load itself, if necessary
• install the NUCEXT entry point for the function
• return with a return code 0;

otherwise, the return code will be 1. This allows the function packages and
entry points to be automatically loaded by the interpreter when necessary.

Non-SVC Subcommand Invocation

When a command is issued to an environment, there is an alternative
non-SVe fast path available for issuing commands. This mechanism may be
used if an environment wishes to support a minimum-overhead subcommand
call.

The fast path is used if the current eight character environment address has
the form of a PSW (signified by the fourth byte being X'OO'). This address
may be set using the Extended Plist (see above) or by normal use of the
ADDRESS instruction if the PSW has been made available to the EXEC in
some other way. Note that if a PSW is used for the default address, the
PARSE SOURCE string will use? as the name of the environment unless
an environment name has also been provided.

The definition of the interface follows:

1. the interpreter will pass control to the routine by executing an LPSW
instruction to load the eight-byte environment address. On entry to the
called program the following registers are defined:

Register 0 Extended Plist as per normal subcommand call. First word
contains a pointer to the PSW used, second and third
words define the beginning and end of the command string,!
and the fourth word is O. "'--

Register 1 Tokenized Plist. First doubleword will contain the PSW
used, second doubleword is 2F'-I'. Note that the top byte
of Register 1 does not have a flag.

Register 2 is the original Register 2 as encountered on the initial
entry to the interpreter's external interface. This register is
intended to allow for the passing of private information to
the subcommand entry point, typically the address of a
control block or data area. This register is only safe if the
EXEC is invoked via a BALR to the entry point contained
at label AEXEC in NUCON, otherwise this register is
altered by the SVC processor.

Register 13 points to an 18 Fullword save area.

158 VM/SP System Product Interpreter Reference

c

('.

/

System Interfaces

Register 14 contains the return address.

(All other registers are undefined.)

2. It is the called program's responsibility to save Registers 9 through 12
and to reetore them before returning to the interpreter. All other
registers may be used as work registers.

3. On return to the interpreter, Registers 9 through 12 must be unchanged
(see Item 2 above), and Register 15 should contain the return code
(which wiU be placed in the variable RC as normal). Contents of other
registers are undefined. The interpreter will set the storage key and
mask that it requires.

Note: . The EXECCOMM subcommand entry point is always set up when
execution of a REXX program begins, even if EXEC is called via BALR.
This results in a subcommand block being added to the SUBCOM chain.

Direct Interface to Current Variables

The interpreter provides an interface whereby called commands may easily
access and manipulate the current generation of REXX variables.
Variables may be inspected, set, or dropped; and if required all active
variables may be inspected in turn. The manipulation of internal work
areas is carried out by the interpreter's own routines: user programs do not
therefore need to know anything of the structure of the variables' access
method (which includes complex binary trees, etc.). Names are checked for
validity by the interface code, and optionally substitution into compound
symbols is carried out according to normal REXX rules. Certain other
information about the program that is running is also made available
through the interface.

The interface works as follows:

When the interpreter starts to interpret a new program it first sets up a
subcommand entry point called EXECCOMM. When a program
(Command, Subcommand, or external Routine) is invoked by the
interpreter, it may in turn use the current EXECCOMM entry point to Set,
Fetch, or Drop REXX variables, using the interpreter's internal
mechanisms. Part of the interpreter carries out all changes to pointers,
allocation of storage, substitution of variables in the name, etc. and hence
isolates user programs from the internal mechanisms of the interpreter.

To access variables, EXECCOMM is invoked using both the Tokenized and
the Extended Plist (see also page 153). SVC 202 is issued with R1 pointing
to the normal Tokenized Plist, and the high order ~yte of R1 set to X'02', as
this is a subcommand call.

The Rl Plist: Register 1 must point to a Plist which consists of the eight
byte string EXECCOMM .

Part 9: System Interfaces 159

System Interfaces

r
The RO Plist: Register 0 must point to an Extended Plist. The first word l_
of the Plist must contain the value of Register 1 (without the flag in the
high order byte). No argument string may be given, so the second and third
words must be identical (for example, both 0). The fourth word in the Plist
must point to the first of a chain of one or more request blocks, see below.

On return from the SVC, Register 15 will contain the return code from the
entire set of requests. The possible return codes are:

o (Positive). Entire Plist was processed. Register 15 is the composite OR
of Bits 0-5 of the SHVRET bytes (see below.)

-1 Invalid entry conditions (for example, BEGARGS -, = ENDARGS, or
EXECCOMM is being called when the interpreter is active).

-2 Insufficient storage was available for a requested SET. Processing was
aborted (some of the request blocks may remain unprocessed - their
SHVRET bytes will be unchanged).

-3 (from SUBCOM). No EXECCOMM entry point found; for example, not
called from inside a REXX program.

The Request Block (SHVBLOCK)

Each request block in the chain must be structured as follows:

**
* SHVBLOCK: layout of shared-variable Plist element
**
SHVBLOCK OSECT
SHVNEXT OS
SHVUSER DS
*
SHVCOOE
SHVRET

SHVBUFL
SHVNAMA
SHVNAML
SHVVALA
SHVVALL
SHVBLEN

OS
OS
OS
OS
OS
OS
OS
OS
EQU
SPACE

A Chain pointer (0 if last block)
F Available for private use, except

during "Fetch Next",
CLI Individual function code
XLI Individual return code flags
H'O' Not used, should be zero
F Length of 'fetch' value buffer
A Address of variable name
F Length of variable name
A Address of value buffer
F Length of value
*-SHVBLOCK (length of this block = 32)

Figure 3 (Part 1 of 2). Request block(SHVBLOCK)

160 VM/SP System Product Interpreter Reference

c

System Interfaces

* * Function Codes (SHVCODE):
* * (Note that the
SHVSET EQU C'S'
SHVFETCH EQU e'F'
SHVDROPV EQU C'D'
SHVSYSET EQU C's'
SHVSYFET EQU C'f'
SHVSYDRO EQU C'd'
SHVNEXTV EQU C'N'
SHVPRIV EQU C'P'

SPACE
*

symbolic name codes are lowercase)
Set variable from given value
Copy value of variable to buffer
Drop variable
Symbolic name Set variable
Symbolic name Fetch variable
Symbolic name Drop variable
Fetch "next" variable
Fetch private information

* Return Code Flags (SHVRET):
*
SHVCLEAN EQU X'OO' Execution was OK
SHVNEWV EQU X'Ol' Variable did not exist
SHVLVAR EQU X'02' Last variable transferred (for "N")
SHVTRUNC EQU X'04' Truncation occurred during "Fetch"
SHVBADN EQU X'08' Invalid variable name
SHVBADV EQU X'lO' Value too long (EXEC 2 only)
SHVBADF EQU X'80' Invalid function code (SHVCODE)

*---
Figure 3 (Part 2 of 2). Request block(SHVBLOCK)

A typical calling sequence using fully relocatable (NUCXLOADable) and
read-only code might be:

LA RO,EPLIST -> Extended Plist, as above
LA Rl,=CL8'EXECCOMM' (normal Plist)
ICM Rl,B'lOOO',=X'02' Insert "subcommand call" flag
SVC 202 Issue SVC
DC AL4(1) Always return to next instruction
LTR R15,R15 Test return code
BM DISASTER Where to go if bad return code

* Execution was OK (RC>=O)

Function Codes (SHVCODE)

Three function codes (S, F, and D) may be given either in lowercase or in
uppercase:

Lowercase (The Symbolic interface). The names must be valid REXX
symbols (in mixed case if desired), and normal REXX
substitution will occur in compound variables.

Uppercase (The Direct interface). No substitution or case translation
takes place. Simple symbols must be valid REXX variable
names (that is, in uppercase, and not starting with a digit or a
period), but in compound symbols any characters (including
lowercase, blanks, etc.) are permitted fol.lowing a valid REXX
stem.

Part 9: System Interfaces 161

System Interfaces

Note: The Direct interface, which is also provided (in part) by EXEC 2, (
should be used in preference to the Symbolic interface whenever generality
is desired.

The other function codes, Nand P, must always be given in uppercase. The
specific actions for each function code are as follows:

Sand 8 Set variable. The SHVNAMA/SHVNAML adlen describes the
name of the variable to be set, and SHVV ALA/SHVV ALL

. describes the value which is to be assigned to it. The name is
validated to ensure that it does not contain invalid characters,
and the variable is then set from the value given. If the name is a
stem, all variables with that stem are set, just as though this was
a REXX assignment. SHVNEWV is set if the variable did not
exist before the operation.

F and r Fetch variable. The SHVNAMA/SHVNAML adlen describes the ."
name of the variable to be fetched. SHVV ALA specifies the
address of a buffer into which the data is to be copied, and
SHVBUFL contains the length of the buffer. The name is
validated to ensure that it does not contain invalid characters,
and the variable is then located and copied to the buffer. The
total length of the variable is put into SHVV ALL, and if the value
was truncated (because the buffer was not big enough) the
SHVTRUNC bit is set. If the variable is shorter than the length
of the buffer, no padding takes place. If the name is a stem, the (
initial value of that stem (if any) is returned. ~

SHVNEWV is set if the variable did not exist before the
operation, and in this case the value copied to the buffer is the
derived name of the variable (after substitution etc.) - see page 13.

D and d Drop variable. The SHVNAMA/SHVNAML adlen describes the
name of the variable to be dropped. SHVVALA/SHVV ALL are
not used. The name is validated to ensure that it does not contain
invalid characters, and the variable is then dropped, if it exists. If
the name given is a stem, all variables starting with that stem are
dropped. SHVNEWV is set if no variables were affected by the
operation.

N Fetch Next variable. This function may be used to search
through all the variables known to the interpreter (that is , all
those of the current generation, excluding those "hidden" by
PROCEDURE instructions). The order in which the variables are
revealed is not specified.

The interpreter maintains a pointer to its list of variables: this is
reset to point to the first variable in the list whenever 1) a host
command is issued, or 2) any function other than "N" is executed
via the EXECCOMM interface.

162 VM/SP System Product Interpreter Reference

('
\,---

System Interfaces

Whenever an N (Next) function is executed the name and value of
the next variable available are copied to two buffers supplied by
the caller.

SHVNAMA specifies the address of a buffer into which the name
is to be copied, and SHVUSER contains the length of that buffer.
The total length of the name is put into SHVNAML, and if the
name was truncated (because the buffer was not big enough) the
SHVTRUNC bit is set. If the name is shorter than the length of
the buffer, no padding takes place. The value of the variable is
copied to the users buffer area using exactly the same protocol as
for the Fetch operation.

If SHVRET has SHVL V AR set, the end of the list of known
variables has been found, the internal pointers have been reset,
and no valid data has been copied to the user buffers. If
SHVTRUNC is set, either the name or the value has been
truncated.

By repeatedly executing the N function (until the SHVL V AR flag
is set) a user program may locate all the REXX variables of the
current generation.

P Fetch private information. This interface is identical to the F
fetch interface, except that the name refers to certain fixed
information items that are available. Only the first letter of each
name is checked (though callers should supply the whole name),
and the following names are recognized:

Notes:

ARG Fetch primary argument string. The first argument
string that would be parsed by the ARG instruction is
copied to the user's buffer.

SOURCE Fetch source string. The source string, as described
for PARSE SOURCE on page 47, is copied to the
user's buffer.

VERSION Fetch version string. The version string, as
described for PARSE VERSION on page 48, is copied
to the user's buffer.

1. Only the S (Set) and F (Fetch) functions are supported by EXEC 2.
Other requests will be rejected.

2. The interface is only enabled during the execution of commands
(including CMS subcommands) and external routines (functions and
subroutines). An attempt to call the EXECCOMM entry point
asynchronously will result in a return code of -1 (Invalid entry
conditions).

Part 9: System Interfaces 163

System Interfaces

3. While the EXECCOMM request is being serviced, interrupts will be
enabled for most of the time.

EXECFLAG External Control Byte

The interpreter is affected by and may alter the global flags held in the
EXECFLAG byte in NUCON (page 0 of your CMS system). These are used
for external control of tracing and also to permit interrupting execution.
The following equates are defined:

*****~***
* Equates for EXECFLAG in NUCON *

EXECFLAG DC lX'OO' EXEC FLAGS
EXECRUN EQU X'SO' EXEC COMMANO RUNNING
EXECSTOP EQU X'40' HALT interpreter HAS BEEN RECOGNIZED.
EXECMASK EQU X'20' HALT interpreter ENABLED.
EXECHALT EQU X'lO' HALT interpreter HAS BEEN ISSUED.
EXECTRST EQU X'OS' TRACE CAN BE RESET BY XEDIT.
EXECFL04 EQU X'04' (reserved)
EXECTMSK EQU X'02' TRACE START ENABLED.
EXECTRAC EQU X'Ol' EXEC TRACE REQUESTED.

Details of the use of each flag by the interpreter 'are as follows:

EXECRUN This flag is defined only for CMS EXEC programs, and
therefore is neither inspected nor altered by the interpreter
or its interface.

EXECSTOP This flag is set by the REXX interface (DMSEXI) when an
EXECHALT request is detected and has been honored. On
exit from the interpreter, this bit indicates that the program
stack should be cleared, as the interpreter was halted
(probably asynchronously). On re-entry to DMSEXI this bit
indicates that the EXECHAL T flag has been used
previously and may now be cleared (together with the
EXECSTOP bit). (Interlock for EXECHALT.)

EXECMASK Mask for EXECHALT. EXECHALT takes effect only if this
bit is set. This bit is set on entry to DMSEXI.

EXECHALT Request to halt execution of all active REXX programs.
Takes effect only if EXECMASK is 1. This bit is cleared on
entry to DMSEXI if EXECSTOP is set, and also if detected
normally but SIGNAL ON HALT is enabled. This bit is
cleared by the interpreter if SIGNAL ON HALT is enabled
and takes effect.

EXECTRST EXECTRAC has been accepted. On return to command
level, CMS and XEDIT will only turn off EXECTRAC if this

/

bit is ON. (Interlock for EXECTRAC.) (' "
'~_/

164 VM/SP System Product Interpreter Reference

f

System Interfaces

EXECTMSK Mask for EXECTRAC. EXECTRAC takes effect only if this
bit is set. This bit is set on entry to DMSEXI.

EXECTRAC If this bit changes from 0 to 1 or from 1 to 0, the interpreter
will force interactive tracing on or all tracing off
respectively. See page 119 for further details. This bit is
neither set nor reset by the interpreter, except that the bit
is cleared on return to CMS or XEDIT command level after
it has been acknowledged by the setting of EXECTRST.

Part 9: System Interfaces 165

166 VM/SP System Product Interpreter Reference

Appendix A. Performance Considerations

REXX is unusual in being an interpreted structured language. Because of
this REXX has required some fairly complicated coding techniques to
improve performance. These include:

• Variable names are held in a two-level binary tree to provide fast
lookup and an efficient implementation of the PROCEDURE EXPOSE
function.

• The position in the data of all labels is saved in a look-aside buffer
arranged in most-recently-used order: this considerably improves the
performance of subroutine and internal function calls. Accesses to
built-in and external routines are similarly recorded and reordered for
improved performance.

• The internal form of all clauses is saved in a second look-aside buffer to
save the need for parsing each clause each time it is executed, giving
speed improvements of a factor of two in many loops. This look-aside is
not started until the fIrst CALL, INTERPRET, repetitive DO, or label is
found. This look-aside also means that the overhead of including
comments on a line with an instruction is negligible except for the
storage they take up and the initial read-in time. Comments on a
separate line mat affect performance, but these may be removed in the
executable form by EXECUPDT.

• Special look-aside information is kept for DO-loops to minimize loop
overhead.

• Parsing is optimized for mixed case data. PARSE ARG and PARSE·
PULL are therefore slightly faster than ARG and PULL.

Where possible, the executable form of REXX programs should be in
V-format. This minimizes execution time, main storage use (paging), and
disk space. (Note: if EXECUPDT is used, the library mes are F-format but
the executable me is V-format.)

Wherever possible, REXX programs should be written in mixed case
(especially comments). This maximizes reading speed and minimizes human
errors due to misreading data, and so improves the performance of the
human side of the REXX programming operation.

There is no particular area in the interpreter that can be described as a
bottleneck. However, any external call may incur signifIcant system
overheads. High precision numbers should be avoided unless truly needed.

Appendix A. Performance Considerations 167

(

',,-

168 VM/SP System Product Interpreter Reference

*
*
*
*
*
*
*
*
*
*
*
*

Appendix B. Example of a Function Package

TITLE 'USERFN: Sample model for user function package'

The first part of this example deals with obtaining free
storage and moving the rest of the program into that storage
as a nucleus extension. The code just loaded (from FREEGO
label to the table before FUNCl) then responds to the
original call and successive calls to RXUSERFN. Calls to
load a user function are handled by setting up their entry
points as nucleus extensions.
In order to set up new user functions, the user must add an
entry in the FUNLIST table and add the code following the
other functions.

USERFN CSECT *

*

*
*
*-> LOAD

CHECK

*

USING *,Rl2
USING NUCON,O
LR RlO,Rl4
SLR R2,R2

Save return address
Assume it's NUCEXT
"RXUSERFN" only.

CLI
BE
CLC
BNE
Note:

ARG1(Rl),X'FF' Any arguments?

SPACE

GOLOAD Br if not - go install
ARG1(8,Rl),=CL8'LOAD' Is this explicit load?
BADPL Br if not - go complain

We do not have to handle RESET because the
package has not yet been loaded

1
request, so check function name against FUNLIST
SPACE 1
LA R4,LENTRY
LA R2,FUNLIST
LA R5,EFUNLIST
EQU *

Length of FUNLIST entry
Start of function table
End of function table

CLC ARG2(,Rl),FUNLNAME(R2) Names match?
BE GOLOAD Br if yes - go do

BXLE
LA
BR
SPACE

R2,R4,CHECK
Rl5,1
RlO
1

appropriate NUCEXTing.
Continue testing if more
Indicate function not found
Not in list - return

*=>
*

NUCEXT "RXUSERFN" as well as specific function (e.g. if
LOAD specified on invocation).

GOLOAD

*

SPACE 1
EQU *
LA RO,FREELEND Length of code in DWs

Get the storage
DMSFREE DWORDS=(O),TYPE=NUCLEUS,ERR=NOSTORE
LA R8,FREEGO Start of free storage code
L R9,=A(FREELEN) Get length in bytes
LR R7,R9 Copy length for MVCL
LR R4,R9 Save for later use
LR R3,Rl II ..

LR R6,Rl Free storage area start
SPKA 0 Set nucleus key
MVCL R6,R8 Move code to free storage
ST R3,NLADDR Entry point address

Appendix B. Example of a Function Package 169

ST R3,NLSTART Start address
MVI NLFLAG,SYSTEM+SERVICE Request service call
ST R4,NLLEN Length
LA Rl,NLIST -> PLIST
SVC CMS202
DC AL4(l)
LTR Rl5,Rl5
BNZR RlO

Fall through if error
Did everything go smoothly?
No, return directly.

*-> See if we have a function .•..

*

LTR R2,R2
BZR RlO
Rl5 already 0 from
ST Rl5,NLSTART
ST Rl5,NLLEN
MVI NLFLAG,SYSTEM
SPACE 1

Install "RXUSERFN" only?
Br if yes - return to caller

above Use to clear fields
.. start address
•. length
.• no service calls!

* R2 points to FUNLIST entry to be installed.
* R3 points to start of NUCXLOADed

*

A R3,FUNOFFS(,R2)
ST R3,NLADDR
MVC NLNAME,FUNLNAME(R2)

Issue SVC ...
SVC CMS202
DC AL4(l)
BR RlO
DROP Rl2
SPACE 3
LTORG ,

area.
Calculate true start address
Add to startup PSW
Copy startup name

Immediate exit on error
Return to caller

TITLE 'USERFN: Code residing in free storage'

* The following code resides in free storage, and is capable *
* of replying to LOAD or RESET. *
* A LOAD call results in the identifying of the functions *
* passed as param~ters following LOAD as entry points in *
* RXUSERFN. *
* A RESET service call from NUCXDROP will turn the functions *
* OFF. A PURGE service call is ignored. *

FREEGO
*

SPACE 2
DS OD

USING *,Rl2
B STARTCOD

Force doubleword alignment
of free-loaded code.

DC CL8'>USERFN<' Eye-catcher for storage dump
STARTCOD EQU *

LR RIO,R14 Save return address
CLC ARG1(8,Rl),=CL8'LOAD' Is this a load?
BE CHK4ARGS Yes, check for any args
CLC ARG1(8,Rl),=CL8'RESET' Reset?
BE DOOFF Yes, turn off functions
SLR R15,R15 In case of service call
CLM Rl,B'lOOO',=X'FF' Is it an abend call?
BER R14 Br if yes - quick quit
LA R15,4 No, set error RC
BR R14 .. and return
SPACE 1

CHK4ARGS EQU *
LA R15, 1 Set possible return code
CLI ARG2(Rl),X'FF' Any arguments passed?
BER R14 No, error (already loaded)

* AUTOLOAD: switch on selected function *
---~---
* * * 'LOAD' request. Check function name against FUNLIST. *

170 VM/SP System Product Interpreter Reference

(

(
I

"'-

* * * Only turn on the requested (autoload) function. *

SPACE 1
PUSH USING
USING DNUCX ,R13

Save USING status
Use save area for PLIST

AUTOLOAD EQU *
MVC DNLIST(LNLIST),NLIST Move skeleton to work area
LR R3,R1 Save old plist pointer
LA R4,LENTRY Length of FUNLIST entry
LA R5,EFUNLIST End of function table
LA R2,FUNLIST Start of function table
LA R15,1 Set error return code

CHECK1 EQU *
CLC ARG2{,R3),FUNLNAME{R2) Check against name
BE TURNON Found - turn function on
BXLE R2,R4,CHECK1 Loop for another check
BR RIO Return with RC = 1
SPACE 1

TURNON EQU *
MVC DNLNAME,FUNLNAME{R2) Copy startup name
LA R1,DNLIST -> PLIST

* See if function is already a nucleus extension

*

LNR R15,R15 -1
ST R15,DNLADDR Query form of NUCEXT plist
SVC CMS202
DC AL4(1)
LTR R15,R15
BZR RIO
L R6,FUNOFFS(,R2)
ALR R6,R12
ST R6,DNLADDR

Issue SVC ...
SVC CMS202
DC AL4(1)
BR RIO
POP USING
SPACE 1

Fall through if error
Exists?
Yes, immediate return
Load address offset
True start address
Add to startup PSW

Ignore errors
Return
Restore USING status

* RESET call: switch off functions *

DOOFF EQU *

LA R5,FUNLIST -> to list
LA R1,NLIST -> PLIST

FUNLOOP EQU *
LT R15,FUNOFFS(R5) Any more to cancel?
BZR RIO 0 = all done ... Get out
MVC NLNAME(8),FUNLNAME(R5) Copy startup name

* Issue SVC ...
SVC CMS202
DC AL4 (1) Ignore errors

* (we ignore errors e.g.: function already cancelled)
LA R5,LENTRY(,R5) -> next item in FUNLIST
B FUNLOOP
EJECT

* PLIST for invoking 'NUCEXT' (also used directly as the
* the CANCEL plist)
NLIST DS OD

NLNAME

NLKEY
NLFLAG

NLADDR

DC CL8'NUCEXT'
DC CL8'RXUSERFN'
DC X'FF'
DC X'04'
DC ALI (SYSTEM)
DC X'OO'
DC A(O)

NUCEXT Plist
Name
Function name
System mask enabled
System key
NUCEXT Flag
Spare flags
Entry point address

Appendix B. Example of a Function Package 171

NLS'rART
NLLEN
LNLIST

DC
DC
DC
EQU
SPACE

AL4(*-*)
A(O)
F'O'
*-NLIST
5

private
Start address
Length
Length of list

* List of functions included in this pack, with their offsets
FUNLNAME EQU 4,S Offset & length of name
FUNOFFS EQU 0,4 Offset to the routine
FUNLIST DC A(FUNC1-FREEGO),CLS'RXUSER1'
LENTRY EQU *-FUNLIST Length of a single entry

DC A(FUNC2-FREEGO),CLS'RXUSER2'
DC A(FUNC3-FREEGOY,CLS'RXUSER3'

EFUNLIST EQU* End of the fun list proper
DC A(*-*). End fence

-------------------------_._----------------------------------
EJECT

*+-+-+-+-+-+-+-+-+-+-+~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* A sample user written function is shown below. As many
* other functions can be added as the user desires. The only
* restriction is that the module must fit in the transient
* area (where it runs before loading itself as a nucleus
* extension) .
* The normal order is to obtain an EVALBLOK (here done by
* the GETBLOK routine), do the function and put the result
* in the EVALBLOK, and finally to complete the EVALBLOK and
* return (here done by the EBLOCK routine).
*+-+

SPACE 2
* 'USERFN: USER1 - User function l'
*
FUNC1

This function simply returns the first passed parameter!
EQU *
USING *,R12 Tell assembler of base
LR R10,R14 Save return address
LR R13,RO Get copy of RO
USING EFPLIST,R13 Addressing for the plist
L R11,EARGLIST Get pointer to arg list
MVC SAVEFRET,EFUNRET Save function return addr
DROP R13 Done with this for now
USING PARMBLOK,R1l Tell assembler
L R1,PARM1LEN Returned data length
LR R3,R1 Save it for later
BAL R14,GETBLOK Go get EVALBLOK
USING EVALBLOK,RS Tell assembler

*
* other processing for function 1 would be here

*
*
* *

MOVE IT

L RlS,PARMlADR
EX R3,MOVEIT
LA RlS,O
B EBLOCK
MVC EVDATA(O),0(R1S)
SPACE 2

Move the
Set good
Complete
Move user

* 'USERFN: USER2 - User function 2'
FUNC2 EQU *

data
return code
EVALBLOK & return

parm to eval block

* *
* code for user function 2 goes here!
*

*
*

SPACE 2

* 'USERFN: USER3 - User function 3'

172 VM/SP System Product Interpreter Reference

r-'

FUNC3 EQU *

*
* code for user function 3 goes here!
*

* *
*

TITLE 'USERFN: Common get EVALBLOK subroutine'

* This subroutine obtains an EVALBLOK. *
* The assumed input is: *
* - Rl: length of EVDATA (return data length) *
* - Rl4: return address *
*
* The output is:
*
*
*
*
*

- RO, Rl, & R2 undefined
R4: number of doublewords in entire EVALBLOK
RS: address of the EVALBLOK
RlS: undefined
other registers are unchanged.

*
*
*
*
*
*
*

* *
* If storage is not available, an error message is displayed *
* and return is taken to the caller with a non-zero return *
* code. *

GETBLOK

*

*

*
SPACE 2
EQU
BALR
USING
LA

R2,0
*,R2
RO,EVCTLEN+7(,Rl)
RO,3 SRL

LR R4,RO

Establish base register
Tell assembler

. Add in overhead + rounding
Make it doublewords
Return number of doublewords
in entire EVALBLOK.

DMSFREE DWORDS=(O),ERR=NOSTORE Get the storage
LR RS,Rl Save A(EVALBLOK)

Now clear the storage block
LR RlS,R3 Save R3
LR RO,RS Addr of storage block in RO
LR Rl,R4 Length of storage in Rl
SLL Rl,3 Make it bytes!
LA R3,0 length to 0, pad of 'OO'x
MVCL RO,R2 Clear the block
LR R3,RlS Restore R3
BR Rl4 Return to caller
DROP R2 Done with this guy
TITLE 'USERFN: Common complete EVALBLOK routine'

* At this point the EVALBLOK is filled in. The registers *
* are assumed to be as follows: *
* R3 - the number of bytes of data to be returned
* R4 - the size (in doublewords) of the entire EVALBLOK *
* RS - the address of the EVALBLOK *

EBLOCK

SPACE 1
EQU *
BALR Rl2,0
USING *,Rl2
USING EVALBLOK,RS
ST R4,EVSIZE
L R4,SAVEFRET
ST RS,0(R4)
ST R3,EVLEN
BR RlO
DROP R5

Set base register
Tell assembler
Addressing for EVALBLOK
Total block size (DW's)
Get back return address
Pass address back to caller
Set it in EVALBLOK
Abandon ship

TITLE 'Common Error Processing Routines'
--- * Error handling routines. *

Appendix B. Example of a Function Package 173

* Note that in order to avoid the generation of relocatable * (.'
* address constants, the TYPLIN PLIST is "hand built" rather *
* than using WRTERM. *

BADPL

NOS TORE

DISPMSG

NODISPL1

SPACE 3
EQU *
BALR R12,0
USING *,R12
LA R1,MSG1
LA R2,L'MSG1
B DISPMSG
SPACE 1
'EQU *
BALR R12,0
USING *,R12
LA R1,MSG2
LA R2,L'MSG2
EQU *
BALR R12,0
USING *,R12
STCM R1,B'0111',TYPBUFF
STH R2,TYPLEN
01 TYPLIN+13,X'40'
LA R1,TYPLIN
SVC CMS202
DC AL4(1)
EQU *
LA R15,4
BR R10
SPACE 1

Something's wrong with PLIST
Load base for this code
Tell assembler of this
Get message address
Get message length
Go display the message

DMSFREE not successful
Load base for this code
Tell assembler of this
Get message address
Get message length

Load base for this code
Tell assembler of this
Set it in PLIST
Set it in PLIST
Request error message edit
Point at PLIST
Give it to CMS
Ignore errors

Set non-zero return code
Return

TYPLIN
TYPBUFF
TYPLEN
MSG1
MSG2

DC CL8'TYPLIN',X'01' ,AL3(0),C'B',X'OO',AL2(0)
EQU TYPLIN+9,3
EQU TYPLIN+14,2
DC C'DMSRUF070E Invalid parameter'
DC C'DMSRUF450E Machine storage exhausted'

SAVEFRET
SPACE 2
DS F
ORG ,
SPACE 2

Function return address

LTORG Literal pool
TITLE 'USERFN: Common symbolic assignments'
SPACE 1

CMS202
ARG1
ARG2

FREELEN
FREELEND
*
* NUCEXT
SERVICE
SYSTEM

EQU 202
EQU 8,8
EQU 16,8
REGEQU
DS OD
EQU *-FREEGO
EQU (*-FREEGO+7)/8

SPACE 1
PLIST Flags:
EQU X'40'

.EQU X'80'
SPACE 2

*-- DSECT for the function plist
EFPLIST DSECT
ECOMVERB DS F
EBEGARGS DS F
EENDARGS DS F
EFBLOCK DS F
EARGLIST DS F
EFUNRET DS F
*-- DSECT for the returned data
EVALBLOK DSECT

174 VM/SP System Product Interpreter Reference

CMS SVC 202
First argument
Second argument

Get to doubleword boundary
Bytes of free store code.
Doublewords of, free store
code.

COMVERB pointer
pointer to argument string
pointer to arg string end
fileblock pointer (0)
pointer to function args
location of return data

block -----~-------------------

EVBPAD1
EVSIZE
EVLEN
EVBPA02
EVCTLEN
EVDATA
EVDATAW1
EVDATAW2
EVDATAW3
EVDATAW4
EVOATAWS

DS F
DS F
DS F
DS F
EQU *-EVALBLOK
OS OD
OS F
DS F
DS F
DS F
DS F
SPACE 3

*-- DSECT for NUCEXT plist
ONUCX DSECT

Reserved
Total block size in DW's
Length of Data (in bytes)
Reserved
Length of preceding section
First byte of data
First word of data
Second word of data
Third word of data
Fourth word of data
Fifth word of data

-----------------------------------*
Overlayed by register 13

DNLIST DS
DNLNAME DS
DNLMASK DS
DNLKEY OS

CL8 'NUCEXT' Name
CL8 'RXUSERFN' Function name
X '00' Mask
X '04' SYSTEM for RXUSERFN Key (04 - system,

*
DNLFLAG OS

OS
DS

ALl (SYSTEM)
X '00'

DNLADDR
*

A

DS AL4
OLSTART OS A
DLNLLEN OS AL4

SPACE 3
*-- OSECT for input
PARMBLOK OSECT

F

(*-*)
(FREELEN)

parameters

PARM1AOR DS
PARM1LEN DS
PARMNTRY EQU
PARM2ADR DS
PARM2LEN DS
PARM3ADR DS
PARM3LEN DS
PARM4ADR DS
PARM4LEN DS
PARMSADR DS
PARMSLEN DS

F
*-PARMBLOK
F
F
F
F
F
F
F
F

PADR EQU 0,4
*
PLEN
*

EQU 4,4

SPACE 3
NUCON
END

E4 - user)
NUCEXT Flag
Spare flags
Entry point address
(CANCEL = 0)
private
Start address
Length

------------------------------*
Address of parameter 1
Length of parameter 1
Length of table entry
Address of parameter 2
Length of parameter 2
Address of parameter 3
Length of parameter 3
Address of parameter 4
Length of parameter 4
Address of parameter 5
Length of parameter 5
Offset in each pair to
parameter's address.
Offset in each pair to
parameter's length.

Appendix B. Example of a Function Package 175

I

./

176 VM/SP System Product Interpreter Reference

Appendix C. Error Numbers and Messages

The error numbers produced by syntax errors during interpretation of
REXX programs are all in the range 3-49 (and this is the value placed in the
variable RC when SIGNAL ON SYNTAX event is trapped). The interpreter
adds 20000 to these error return codes before leaving an EXEC in order to
provide a different range of codes than those used by CMS EXEC and
EXEC 2. When the interpreter displays an error message, it first sets the
CMSTYPE indicator to 'RT', ensuring that the message will be seen by the
user, even if 'HT' was in effect when the error occurred.

Three of the error messages may be generated by the external interfaces to
the interpreter either before the interpreter gains control, or after control
has left the interpreter. Therefore these errors cannot be trapped by
SIGNAL ON SYNTAX. The error numbers involved are: 3 and 5 (if the
initial requirements for storage could not be met) and 26 (if on exit the
returned string could not be converted to form a valid return code).
Similarly, Error 4 can be trapped only by SIGNAL ON HALT.

The CP command SET EMSG ON causes error messages to be prefixed with
a CMS error code. The full form of the message, including this error code,
is given below. Each message is followed by an explanation giving possible
causes for the error. The same explanation can be obtained from CMS
using the following command:

HELP MSG DMSnnnE (where nnn is the eMS error number and error
type is either 'E' or'T')

In addition to the following error messages, the System Product Interpreter
issues this terminal(unrecoverable) message:

DMSREX255T Insufficient storage for Exec interpreter

Explanation: There is insufficient storage for the System Product
Interpreter to initialize itself.

System Action: Execution is terminated at the point of the error.

User Response: Redefine storage and reissue the command.

Appendix C. Error Numbers and Messages 177

DMSREX449E Error 22 running fn ft, line nn: Invalid character
string

Explanation: A character string that has unmatched SO-SI pairs (that is,
an SO without an SI) or an odd number of bytes between the SO-SI
characters was scanned with OPTIONS ETMODE in effect.

System Action: Execution stops.

User Response: Correct the invalid character string in the EXEC file.

DMSREX450E Error 5 running fn ft, line nn: Machine storage
exhausted

(

\

/"

Explanation: While attempting to interpret a program, the System Product "-
Interpreter was unable to get the space needed for its work areas and
variables. This may have occurred because the program (such as the
Editor) that invoked the System Product Interpreter has already used up
most of the available storage itself, or because a program that issued
NUCXLOAD did not terminate properly, but instead, went into a loop.

System Action: Execution stops.

User Response: Run the EXEC or macro on its own, or check a program
issuing NUCXLOAD for a possible loop that has not terminated properly.
More free storage may be obtained by releasing a disk (to recover the space
used for the file directory) or deleting a nucleus extension. Alternatively,
re-IPL CMS after defining a larger virtual storage size for the virtual
machine.

DMSREX451E Error 3 running fn ft, line nn Program is unreadable

Explanation: The REXX program could not be read from the disk. This
problem almost always occurs only when you are attempting to execute an
EXEC or program from someone's disk for which you have Read/Only
access, while someone with Read/Write access to the disk has altered the
program so that it no longer exists in the same place on the disk.

System Action: Execution stops.

User Response: Reaccess the disk on which the EXEC or program resides.

178 VM/SP System Product Interpreter Reference

('

DMSREX452E Error 4 running fn ft, line nn: Program interrupted

Explanation: The system interrupted execution of your REXX program.
Usually this is due to your issuing the HI (halt interpretation) immediate
command. Certain utility modules may force this condition if they detect a
disastrous error condition.

System Action: Execution stops.

User Response: If you issued an HI command, continue as planned.
Otherwise, look for a problem with a Utility Module called in your EXEC
or macro.

DMSREX453E Error 6 running fn ft, line nn: Unmatched" /*" or quote

Explanation: The System Product Interpreter reached the end of the fJle
(or the end of data in an INTERPRET statement) without rmding the
ending "*j" for a comment or quote for a literal string.

System Action: Execution stops.

User Response: Edit the EXEC and add the closing "*/" or quote. You can
also insert a TRACE SCAN statement at the top of your program and rerun
it. The resulting output should show where the error exists.

DMSREX454E Error 7 running fn ft, line nn: WHEN or OTHERWISE
expected

Explanation: The System Product Interpreter expects a series of WHENs
and an OTHERWISE within a SELECT statement. This message is issued
when any other instruction is found. This situation is often caused by
forgetting the DO and END instructions around the list of instructions
following a WHEN. For example,

WRONG RIGHT

Select Select
When a=b then When a=b then DO

Say 'A equals B' Say 'A equals B'
exit exit

Otherwise nop end
end Otherwise nop

end

System Action: Execution stops.

User Response: Make the necessary corrections.

Appendix C. Error Numbers and Messages 179

DMSREX455E Error 8 running fn ft, line nn: Unexpe~ted THEN or
ELSE

Explanation: The System Product Interpreter has found a THEN or an
ELSE that does not match a corresponding IF clause. This situation is
often caused by forgetting to put an END or DO END in the THEN part of
a complex IF THEN ELSE construction. For example,

WRONG

If a=b then do;
Say EQUALS
e.xit

else
Say NOT EQUALS

RIGHT

If a=b then do;
Say EQUALS
exit
end

else
Say NOT EQUALS

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX456E Error 9 running fn ft, line nn: Unexpected WHEN or
OTHERWISE

Explanation: The System Product Interpreter has found a WHEN or
OTHERWISE instruction outside of a SELECT construction. You may
have accidentally enclosed the instruction in a DO END construction by
leaving off an END instruction, or you may have tried to branch to it with
a SIGNAL statement (which cannot work because the SELECT is then
terminated).

System Action: Execution stops.

User Response: Make the necessary correction.

DMSREX457E Error 10 running fn ft, line nn: Unexpected or
unmatched END

Explanation: The System Product Interpreter has found more ENDs in
your program than DOs or SELECTs, or the ENDs were placed so that they
did not match the DOs or SELECTs.

This message can be caused if you try to signal into the middle of a loop.
In this case, the END will be unexpected because the previous DO will not
have been executed. Remember also, that SIGNAL terminates any current
loops, so it can not be used to jump from one place inside a loop to another.

This message can also be caused if you place an END immediately after a
THEN OR ELSE construction.

180 VM/SP System Product Interpreter Reference

System Action: Execution stops.

User Response: Make the necessary corrections. It may be helpful to use
"TRACE Scan" to show the structure of the program and make it more
obvious where the error is. Putting the name of the control variable on
ENDs that close repetitive loops can also help locate this kind of error.

DMSREX458E Error 11 running fn ft, line nn: Control stack full

Explanation: This message is issued if you exceed the limit of 250 levels of
nesting of control structures (DO-END, IF-THEN-ELSE, etc.).

This message could be caused by a looping INTERPRET instruction, such
as:

line='INTERPRET line'
INTERPRET line

These lines would loop until they exceeded the nesting level limit and this
message would be issued. Similarly, a recursive subroutine that does not
terminate correctly could loop until it causes this message.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX459E Error 12 running fn ft, line nn: Clause > 500 characters

Explanation: You have exceeded the limit of 500 characters for the length
of the internal representation of a clause.

If the cause of this message is not obvious to you, it may be due to a
missing quote, that has caused a number of lines to be included in one long
string. In this case, the error probably occurred at the start of the data
included in the clause traceback (flagged by + + + on the console).

The internal representation of a clause does not include comments or
multiple blanks that are outside of strings. Note also that any symbol
(name) gains two characters in length in the internal representation.

System Action: Execution stops.

User Response: Make the necessary corrections.

Appendix C. Error Numbers and Messages 181

DMSREX460E Error 13 running fn ft, line nn:
Invalid character in data

Explanation: The System Product Interpreter found an invalid character
outside of a literal (quoted) string. Valid characters are:

A-Z a-z 0-9 (Alphamerics)

@ # $ ¢ . ? (Name Characters)

& * - + = , , " ; : < , > / (Special Characters)

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX46IE Error 14 running fn ft, line nn: Incomplete
DO/SELECT/IF

Explanation: The System Product Interpreter has reached the end of the
file (or end of data for an INTERPRET instruction) and has found that
there is a DO or SELECT without a matching END, or an IF that is not
followed by a THEN clause.

System Action: Execution stops.

User Response: Make the necessary corrections. You can use "TRACE
Scan" to show the structure of the program, thereby making it easier to
find where the missing END should be. Putting the name of the control
variable on ENDs that close repetitive loops can also help locate this kind
of error;

DMSREX462E Error 15 running fn ft, line nn:
Invalid hex constant

Explanation: For the System Product Interpreter, hexadecimal constants
may not have leading or trailing blanks and may have imbedded blanks at
byte boundaries only. The following are all valid hexadecimal constants:

'13'x
'A3C2 lc34'x
'lde8'x

You may have mistyped one of the digits, for example typing a letter 0

instead of a o. This message can also be caused if you follow a string by the
I-character symbol X (the name of the variable X), when the string is not
intended to be taken as a hexadecimal specification. In this case, use the
explicit concatenation operator (II) to concatenate the string to the value of
the symbol.

182 VM/SP System Product Interpreter Reference.

(

\

.."

c

c

("

"'",

!

" -~/

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX463E Error 16 running In It, line nn: Label not found

Explanation: The System Product Interpreter could not find the label
specified by a SIGNAL instruction or a label matching an enabled condition
when the corresponding (trapped) event occurred. You may have mistyped
the label or forgotten to include it.

System Action: Execution stops. The name of the missing label is
included in the error traceback.

User Response: Make the necessary corrections.

DMSREX464E Error 21 running In It, line nn: Invalid data on end of
clause

Explanation: You have followed a clause, such as SELECT or NOP, by
some data other than a comment.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX465E Error 17 running In ft, line nn: Unexpected
PROCEDURE

Explanation: The System Product Interpreter encountered a
PROCEDURE instruction in an invalid position, either because no internal
routines are active, or because a PROCEDURE instruction has already
been encountered in the internal routine. This error can be caused by
"dropping through" to an internal routine, rather than invoking it' with a
CALL or a function call.

System Action: Execution stops.

User Response: Make the necessary corrections.

Appendix C. Error Numbers and Messages 183

DMSREX466E Error 26 running fn ft, line nn:
Invalid whole number

Explanation: The System Product Interpreter found an expression in the
NUMERIC instruction, a parsing positional pattern, or the right hand term
of the exponentiation (**) operator that did not evaluate to a whole number,
or was greater than the limit, for these uses, of 999999999.

This message can also be issued if the return code passed back from an
EXIT or RETURN instruction (when a REXX program is called as a
command) is not a whole number or will not fit in a System/370 register.
This error may be due to mistyping the name of a symbol so that is is not
the name of a variable in the expression on any of these statements. This
might be true, for example, if you entered "EXIT CR" instead of "EXIT RC."

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX467E Error 27 running fn ft, line nn: Invalid DO syntax

Explanation: The System Product Interpreter found a syntax error in the
DO instruction. You might have used BY or TO twice, or used BY, TO, or
FOR when you didn't specify a control variable.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX468E Error 30 running fn ft, line nn: Name or string> 250
characters

Explanation: The System Product Interpreter found a variable or a literal
(quoted) string that is longer than the limit.

The limit for names is 250 characters, following any substitutions. A
possible cause of this error is the use of a period (.) in a name, causing an
unexpected substitution.

The limit for a literal string is 250 characters. This error can be caused by
ieaving off an ending quote (or putting a single quote in a string) because
several clauses may be included in the string. For example, the string
I don I t I should be written as I don I I t I or "don 't" .

System Action: Execution stops.

User Response: Make the necessary corrections.

184 VM/SP System Product Interpreter Reference

(,

~/

DMSREX469E Error 31 running fn ft, line nn: Name starts with
numeric or "."

Explanation: The System Product Interpreter found a variable whose
name begins with a numeric digit or a period (.). The REXX language rules
do not allow not allow you to assign a value to a variable whose name
begins with a numeric digit or a period, because you could then redefine
numeric constants which would be catastrophic.

System Action: Execution stops.

User Response: Rename the variable correctly. It is best to start a
variable name with an alphabetic character, but some other characters are
allowed.

DMSREX470E Error 34 running fn ft, line nn: Logical value not 0 or 1

Explanation: The System Product Interpreter found an expression in an
IF, WHEN, DO WHILE, or DO UNTIL phrase that did not result in a 0 or
1. Any value operated on by a logical operator C-" I, &, or &&) must result
in a 0 or 1. For example, the phrase "If result then exit rc" will fail if
Result has a value other than 0 or 1. Thus, the phrase would be better
written as If result--,=Q then exit rc .

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX471E Error 35 running fn ft, line nn: Invalid expression

Explanation: The System Product Interpreter found a grammatical error
in an expression. You might have ended an expression with an operator, or
had two adjacent operators with no data in between, or included special
characters (such as operators) in an intended character expression without
enclosing them in quotes. For example LISTFILE * * * should be written as
LISTFILE '* * *' (if LISTFILE is not a variable) or even as 'LISTFILE

* * *'

System Action: Execution stops.

User Response: Make the necessary corrections.

Appendix C. Error Numbers and Messages 185

DMSREX472E Error 36 running fn ft, line nn:
Unmatched "(" in expression

Explanation: The System Product Interpreter found an unmatched
parenthesis within an expression. You will get this message if you include
a single parenthesis in a command without enclosing it in quotes. For
example, COpy ABC A B D (REP should be written as COPY ABC A B
o '('REP.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX473E Error 37 running fn ft, line nn: Unexpected "," or ")"

Explanation: The System Product Interpreter found a comma (,) outside a
routine invocation or too many right parentheses in an expression. You
will get this message if you include a comma in a character expression
without enclosing it in quotes. For example, the instruction:

Say Enter A, B, or C

should be written as:

Say 'Enter A, B, or C'

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX474E Error 39 running fn ft, line nn: Evaluation stack
overflow

Explanation: The System Product Interpreter was not able to evaluate the
expression because it is W<> complex (many nested parentheses, functions,
etc.).

System Action: Execution stops.

User Response: Break up the expressions by assigning sub-expressions to
temporary variables.

186 VM/SP System Product Interpreter Reference

(

\

DMSREX475E Error 40 running fn ft, line nn: Incorrect call to routine

Explanation: The System Product Interpreter encountered an incorrectly
used call to a built-in or external routine. Some possible causes are:

• you passed invalid data (arguments) to the routine. This is the most
common possible cause and is dependent on the actual routine. If a
routine returns a non-zero return code, the System Product Interpreter
issues this message and passes back its return code of 20040.

• the module invoked was not compatible with the System Product
Interpreter.

If you were not trying to invoke a routine, you may have a symbol or a
string adjacent to a "(" when you meant it to be separated by a space or an
operator. This causes it to be seen as a function call. For example,
TIME(4+5) should probably be written as TIME* (4+5).

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX476E Error 41 running fn rt, line nn: Bad arithmetic
conversion

Explanation: The System Product Interpreter found a term in an
arithmetic expression that was not a valid number or that had an exponent
outside the allowed range of -999999999 to + 999999999.

You may have mistyped a variable name, or included an arithmetic operator
in a character expression without putting it in quotes. For example, the
command MSG * Hi! should be written as • MSG * Hi!', otherwise the
System Product Interpreter will try to multiply "MSG" by "Hi!."

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX477E Error 42 running fn rt, line nn: Arithmetic
overflow/underflow

Explanation: The System Product Interpreter encountered the result of an
arithmetic operation that required an exponent greater than the limit of 9
digits (more than 999999999 or less than -999999999).

This error can occur during evaluation of an expression (often as a result of
trying to divide a number by 0), or during the stepping of a DO loop control
variable.

Appendix C. Error Numbers and Messages 187

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX478E Error 43 running In It, line nn: Routine not found

Explanation: The System Product Interpreter was unable to find a routine
called in your program. You invoked a function within an expression, or in
a subroutine invoked by CALL, but the specified label is not in the
program, or is not the name of a built-in function, and CMS is unable to
locate it externally.

The simplest, and probably most common, cause of this error is mistyping
the name. Another possibility may be that one of the standard function
packages is not available.

If you were not trying to invoke a routine, you may have put a symbol or
string adjacent to a "(" when you meant it to be separated by a space or
operator. The System Product Interpreter would see that as a function
invocation. For example, the string 3(4+5) should be written as 3* (4+5).

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX479E Error 44 running In ft, line nn: Function did not return
data

Explanation: The System Product Interpreter invoked an external routine
within an expression. The routine seemed to end without error, but it did
not return data for use in the expression.

This may be due to specifying the name of a CMS module that is not
intended for use as a System Product Interpreter function. It should be
called as a command or subroutine.

System Action: Execution stops.

User Response: Make the necessary corrections.

188 VM/SP System Product Interpreter Reference

r
I

~

(.-

DMSREX480E Error 45 running fn ft, line nn: No data specified on
function RETURN

Explanation: A REXX program has been called as a function, but an
attempt is being made to return (by a RETURN; instruction) without
passing back any data. Similarly, an internal routine, called as a function,
must end with a RETURN statement specifying an expression.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX481E Error 49 running fn ft, line nn: Interpreter failure

Explanation: The System Product Interpreter carries out numerous
internal self-consistency checks. It issues this message if it encounters a
severe error.

System Action: Execution stops.

User Response: Report any occurrence of this message to your IBM
representative.

DMSREX482E Error 19 running fn ft, line nn: String or symbol
expected

Explanation: The System Product Interpreter expected a symbol following
the keywords CALL, SIGNAL, SIGNAL ON, or SIGNAL OFF but none was
found. You may have omitted the string or symbol, or you may have
inserted a special character (such as a parenthesis) in it.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX483E Error 20 running fn ft, line nn: Symbol expected

Explanation: The System Product Interpreter may expect a symbol
following the END, ITERATE, LEAVE, NUMERIC, PARSE, or
PROCEDURE keywords or expected a list of symbols following the DROP,
UPPER, or PROCEDURE (with EXPOSE option) keywords. Either there
was no symbol when one was required or some other characters were found.

System Action: Execution stops.

Appendix C. Error Numbers and Messages 189

I
!I
ii
i1

r;

I

User Response: Make the necessary corrections.

DMSREX484E Error 24 running in it, line nn: Invalid TRACE request

Explanation: The System Product Interpreter issues this message when:

• the action specified on a TRACE instruction, or the argument to the
built-in function, starts with a letter that does not match one valid
alphabetic character options.' The valid options are A, C, E, I, L, N, 0,
R,orS.

• an attempt is made to request "TRACE Scan" when inside any control
construction or while in interactive debug.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX485E Error 25 running in it, line nn: Invalid sub-keyword
found

Explanation: The System Product Interpreter expected a particular
sub-keyword at this position in an instruction and something else was
found. For example, the NUMERIC instruction must be followed by the
sub-keyword DIGITS, FUZZ, or FORM. If NUMERIC is followed by
anything else, this message is issued.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX486E Error 28 running in it, line nn: Invalid LEA VE or
ITERATE

Explanation: The System Product Interpreter encountered an invalid
LEAVE or ITERATE instruction. The instruction was invalid because:

• no loop is active, or

• the name specified on the instruction does not match the control
variable of any active loop.

/
(

~.

Note that internal routine calls and the INTERPRET instruction protect C -,
DO loops by making them inactive. Therefore, for example, a LEA VE
instruction in a subroutine cannot affect a DO loop in the calling routine.

190 VM/SP System Product Interpreter Reference

You can cause this message to be issued if you use the SIGNAL instruction
to transfer control within or into a loop. A SIGNAL instruction terminates
all active loops, and any ITERATE or LEAVE instruction issued then
would cause this message to be issued.

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX487E Error 29 running fn ft, line nn: Environment name too
long

Explanation: The System Product Interpreter encountered an environment
name specified on an ADDRESS instruction that is longer than the limit of
8 characters.

System Action: Execution stops.

User Response: Specify the environment name correctly.

DMSREX488E Error 33 running fn ft, line nn: Invalid expression
result

Explanation: The System Product Interpreter encountered an expression
result that is invalid in its particular context. The result may be invalid
because an illegal FUZZ or DIGITS value was used in a NUMERIC
instruction (FUZZ may not become larger that DIGITS).

System Action: Execution stops.

User Response: Make the necessary corrections.

DMSREX489E Error 38 running fn ft, line nn: Invalid template or
pattern

Explanation: The System Product Interpreter found an invalid special
character, for example %, within a parsing template, or the syntax of a
variable trigger was incorrect (no symbol was found after a left
parenthesis). This message is also issued if the WITH sub-keyword is
omitted in a PARSE VALUE instruction.

System Action: Execution stops.

User Response: Make the necessary corrections.

Appendix C. Error Numbers and Messages 191

DMSREX490E Error 48 running rn rt, line nn: Failure in system
service

Explanation: The System Product Interpreter halts execution of the
program because some system service, such as user input or output or
manipulation of the console stack has failed to work correctly.

System Action: Execution stops.

User Response: Ensure that your input is correct and that your program
is working correctly. If the problem persists, notify your system support
personnel.

DMSREX491E Error 18 running rn rt, line nn: THEN expected

Explanation: All REXX IF and WHEN clauses must be followed by a
THEN clause. Another clause was found before a THEN statement was
found.

System Action: Execution stops.

User Response: Insert a THEN clause between the IF or WHEN clause
and the following clause.

DMSREX492E Error 32 running rn rt, line nn: Invalid use of stem

Explanation: The REXX program attempted to change the value of a
symbol that is a stem. (A stem is that part of a symbol up to the first
period. You use a stem when you want to affect all variables beginning
with that stem.) This may be in the UPPER instruction where the action in
this case is unknown, and therefore in error.

System Action: Execution stops.

User Response: Change the program so that it does not attempt to change
the value of a stem.

192 VM/SP System Product Interpreter Reference

('
\

(/

Appendix D. The System Produd Interpreter in the GeS
Environment

Most REXX capabilities available in the CMS environment are also
available in the GCS environment. You can use the REXX instructions,

. functions, expressions, operators, etc. There are, however, some differences
between writing REXX programs for the GCS environment and writing
REXX programs for the CMS environment.

The differences in the GCS environment are as follows:

1. EXECs normally reside in CMS formatted disk files and have a filetype
of GCS. The GCS filetype can be overridden by using the FILEBLK.

2. GCS does not support the following immediate commands: TS, TE, and
HI.

3. An EXEC written for the GCS environment should not have the same
name as an immediate command. Immediate commands are higher in
the search order, therefore, an immediate command would be executed
before an EXEC. An EXEC written for the GCS environment with the
same name as an immediate command would never get executed.

4. GCS does not support the external function libraries: RXSYSFN,
RXLOCFN, and RXUSERFN. However, GCS does support external
function calls. These functions and subroutines must be written in the
REXX language.

5. The GCS CMDSI macro can be used to invoke REXX programs from
Assembler language programs. The FILEBLK parameter on the CMDSI
macro contains the address of the file block. FILEBLK is useful for
executing in-storage EXECs, executing EXECs with filetypes other than
GCS, and establishing an initial subcommand environment.

6. The default ADDRESS environment of REXX is GCS.

ADDRESS GCS specifies that full command resolution is in effect.
With full command resolution, first search for an EXEC with the given
name. If such an EXEC does not exist, then invoke the given name
using SVC 202. If the above fails, search for a CP command with the
given name.

ADDRESS COMMAND searches for host commands (GCS commands).

7. GCS does not have a terminal input buffer. If you issue a PULL
instruction and the program stack is empty, the WTOR macro generates
a read to the console.

Appendix D. The System Product Interpreter in the GCS Environment 193

8. Each task has its own program stack. Therefore, data in a program
stack can be shared among EXECs running in the. same task.

9. To specify other subcommand environments in GCS you must use
LOADCMD. LOADCMD defines a command name to the requested
module of a CMS load library and 'loads this command module into
storage. Therefore, GCS can call rthe requested command module when
a command is entered at the console or submitted by a program with the
CMDSI macro.

GCS does not support non-SVC fast path subcommand invocation.

10. The SIGNAL ON HALT instruction has no effect in GCS.

Processing EXECs in GCS (CSIREX module)

The Extended Plist

All EXEC processing in GCS is routed to the GCS module, CSIREX.
CSIREX is the external interface for the System Product Interpreter
(CSIRIN).

SVC 202 calls CSIREX with the contents of the registers as follows:

RO Address of the extended parameter list

Rl Address of the standard tokenized parameter list

R12 Address of the entry point

R13 Address of a register savearea

.R14 Return address

R15 Address of the entry point (same as R12)

The extended plist has the following format:

EPLIST OSECT
EPLCMO OS A Address of command token
EPLARGBG OS A Address of beginning of arguments
EPLARGNO OS A Address of byte following the end
* of arguments
EPFBL OS A Address of the file block
EPARGLST OS A Address of function argument list
* for EXEC
EPFUNRET OS A Address for return of function data
* for EXEC

194 VM/SP System Product Interpreter Reference

(

c

EPLIND. DS X Indicator
EPLPGM EQU X'OO' Program issued command
EPLACMD EQU X'Ol' Call from System Product Interpreter
* when ADDRESS COMMAND is specified
EPLFNC EQU X'05' Subroutine/function call
EPLCONS EQU X'OB' Console command
EPLRESVD DS 3X Reserved

The Standard Tokenlzed Plist

The File Block

The standard tokenized plist has the following format:

DC CL8'EXEC'
DC CL8'execname'
DC XL8'FF'

The file block has the following format:

FBLOCK
FBLNAME
FBLTYPE
*

DSECT
DS
DS

CL8
CL8

Program name (usually EXEC filename)
Program type/default prefix
(usually GCS filetype)

CL2 Program filemode
H Extension block length in fullwords
* Extension block starts here

FBLMODE DS
FBLEXTL DS
FBLEXT EQU
* The next 2
* and end of
FBLDLS DS
FBLDLE DS
FBLPREF DS

words represent the start
in-storage EXECs

AL4 Descriptor list starts here
AL4 Descriptor length
CL8 Explicit initial prefix

EXECCOMM Processing (Sharing Variables)

The EXECCOMM macro allows programs to access and manipulate the
current generation of REXX variables. These variables may be inspected,
set, or dropped. To use the EXECCOMM capability, a REXX program must
be active on the current task.

The (ormat of the EXECCOMM macro is:

[label) EXECCOMM REQLIST=addr

where:

REQLIST is a RX·type address or register. addr specifies the address of
the shared variable request block chain. Each caller is
responsible (or setting up their its variable request block chain.

The internal REXX work areas are manipullited by the System Product
Interpreter's own routines. Therefore, the user's program does not need to
know the structure of the variable's access method.

Appendix D. The System Product Interpreter in the GCS Environment 195

The EXECCOMM macro generates an SYC 203, and the register input for
EXECCOMM processing is as follows:

RO Shared variable request block chain pointer

R12 Entry point address

R13 Save area address

R14 Return address

R15 Entry point address

On return from the SYC 203, register 15 contains the return codes. The
possible return codes are:

o or positive Entire request list was processed

·1 Invalid entry condition (no REXX program active on this
task)

·2 Insufficient storage available to process the request

Shared Variable Request Block

c

If the address of the shared variable request block passed in register 0 is (~

mE' vahlid, the tabslk iskt.ermhinatehd. with abbend code FCdB anfidlreason code OD01. .~.
ac request oc m t e c am must e structure as 0 lows:

c
196 VM/SP System Product Interpreter Reference

**
SHVBLOCK
SHVNEXT
SHVUSER
SHVCODE
SHVRET

SHVBUFL
SHVNAMA
SHVNAML
SHVVALA
SHVVALL
*

DSECT
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

A
F
CLl
XLl
H'O'
F
A
F
A
F

Chain pointer to next element or 0
Used during "Fetch Next"
Individual function code
Individual return code flags
Not used
Length of 'Fetch' value buffer
Address of variable name
Length of variable name
Address of value buffer
Length of value (set on 'Fetch')

* Function Codes (SHVCODE):
*
SHVSET
SHVFETCH
SHVDROPV
SHVSYSET
SHVSYFET
SHVSYDRO
SHVNEXTV
SHVPRIV
*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

C'S'
C'F'
C'D'
C's'
C'f'
C'd'
C'N'
C'P'

Set variable from given value
Copy value of variable to buffer
Drop variable
Symbolic name Set variable
Symbolic name Fetch variable
Symbolic name Drop variable
Fetch 'Next' variable
Fetch private information

* Return Codes (SHVRET)
*
SHVCLEAN EQU X'OO' Execution was OK
SHVNEWV EQU X'Ol' Variable did not exist
SHVLVAR EQU X'02' Last variable transferred (for 'N')
SHVTRUNC EQU X'04' Truncation occurred during 'Fetch'
SHVBADN EQU X'OS' Invalid variable name
SHVBADV EQU X'lO' Reserved in REXX
SHVBADF EQU X'SO' Invalid function code (SHVCODE)
**

A typical calling sequence using the EXECCOMM macro is:

EXECCOMM REQLIST=(S)

where register 5 points to the rU'st of a chain of one or more request blocks.

Function codes (SHYCODE)

Three function codes (S, F, and D) may be given either in lowercase or in
uppercase:

Lowercase (The symbolic interface). The names must be valid REXX
symbols (in mixed case if desired), and normal REXX
substitution will occur in compound variables.

Uppercase (The direct interface). No substitution or case translation
takes place. Simple symbols must be valid REXX variable
names (that is, in uppercase, and not starting with a digit or a
period). Compound symbols must contain a valid REXX stem.
However, any characters are permitted (including lowercase,
blanks, etc.) following this valid stem.

Note: The direct interface should be used in preference to the symbolic
interface whenever generality is desired.

Appendix D. The System Product Interpreter in the GCS Environment 197

The other function codes, Nand P, must always be given in uppercase. The
specific actions for each function code are as follows:

Sand s Set variable. The SHVNAMA/SHVNAML adlen describes the
name of the variable to be set, and SHVV ALA/SHVV ALL
describes the value that is to be assigned to it. The name is
validated to ensure that it does not contain invalid characters.
The variable is then set from the value given. If the name is a
stem, all variables with that stem are set, just as though this were
a REXX assignment. SHVNEWV is set if the variable did not
exist before the operation.

F and f Fetch variable. The SHVNAMA/SHVNAML adlen describes the
name of the variable to be fetched. SHVV ALA specifies the
address of a buffer into which the data is to be copied, and
SHVBUFL contains the length of the buffer. The name is
validated to ensure that it does not 'contain invalid characters,
and the variable is then located and copied to the buffer. The
total length of the variable is put into SHVV ALL, and, if the
value was truncated (because the buffer was not big enough), the
SHVTRUNC bit is set. If the variable is shorter than the length
of the buffer, no padding takes place. If the name is a stem, the
initial value of that stem (if any) is returned.

SHVNEWV is set if the variable did not exist before the
operation, and in this case the value copied to the buffer is the
derived name of the variable (after substitution etc.). See page 13. ,'/~

D and d Drop variable. The SHVNAMA/SHVNAML adlen describes the
name of the variable t9 be dropped. SHVV ALA/SHVVALL are
not used. The name is validated to ensure that it does not contain
invalid characters, and the variable is then dropped, if it exists. If
the name given is a stem, all variables starting with that' stem are
dropped. SHVNEWV is set if no variables were affected by the
operation.

N Fetch Next variable. This function may be used to search
through all the variables known to the interpreter (that is, all
those of the current generation, excluding those "hidden" by
PROCEDURE instructions). The order in which the variables are
revealed is not specified.

The interpreter maintains a pointer to its list of variables: this is
reset to point to the first variable in the list whenever 1) a host
command is issued, or 2) any function other than "N" is executed
via EXECCOMM.

Whenever an N (Next) function is executed, the name and value
of the next variable available are copied to two buffers supplied by
the caller.

~ ..

I
I

'"

SHVNAMA specifies the address of a buffer into which the name C' -.. :
is to be copied, and SHVUSER contains the length of that buffer. _
The total length of the name is put into SHVNAML, and, if the

198 VM/SP System Product Interpreter Reference

name was truncated (because the buffer was not big enough), the
SHVTRUNC bit is set. If the name is shorter than the length of
the buffer, no padding takes place. The value of the variable is
copied to the user's buffer area using exactly the same protocol as
for the fetch operation.

If SHVRET has SHYLY AR set, the end of the list of known
variables has been found, the internal pointers have been reset,
and no valid data has been copied to the user buffers. If
SHVTRUNC is set, either the name or the value has been
truncated.

By repeatedly executing the N function (until the SHYLV AR flag
is set), a user program can locate all the REXX variables of the
current generation.

P Fetch private information. This function is identical to the F
fetch function, except that the name refers to certain fixed
information items that are available. Only the first letter of each
name is checked (though callers should supply the whole name).
The following names are recognized:

ARG Fetch primary argument string. The first argument
string that would be parsed by the ARG instruction is
copied to the user's buffer.

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 47, is copied to the user's
buffer.

VERSION Fetch version string. The source string, as described
for PARSE VERSION on page 48, is copied to the user's
buffer.

Appendix D. The System Product Interpreter in the GCS Environment 199

200 VM/SP System Product Interpreter Reference

-. r.----

Summary of Changes
for SC24-5239-2
for VM/SP Release I)

Summary of Changes

How to Obtain the Release 4 of this Publication

To obtain the edition of this publication that pertains to Release 4 of VM/SP,

order SQ24-5239

New DATE Function option

A new option, Basedate (B) has been added.

New DIAG Function

DIAG(C8), DIAGRC(C8), DIAG(CC) and DIAGR(CC) returns information related to
CP language repository.

Miscellaneous

Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes
for SC24-1)239-1
for VM/SP Release 4

GCS Environment

A new appendix, Appendix D, has been added to describe REXX in the GCS
environment.

New OPTIONS Instruction

The OPTIONS instruction specifies whether double byte character set (DBCS)
strings can be manipulated.

New DIAG Function

DIAG(8C) and DIAGRC(8C) returns device-dependent information about the
virtual console.

Summary of Changes 201

Miscellaneous

Minor technical and editorial changes have been made throughout this
publication.

202 VM/SP System Product Interpreter Reference

/

\

/

Related Publications

Bibliography

The reader may al~o need to refer to:

The VM/SP System Product Interpreter Reference Summary, SX24·5126

The VM/SP CMS Command Reference, SC19-6209

The VM/SP CMS Macros and Functions Reference, SC24·5284

The VM/SP CP Command Reference, SC19-6211

The VM/SP System Product Editor Command and Macro Reference, SC24·5221

The VM/SP System Messages and Codes, SC19-6204

The VM/SP System Messages Cross·Reference, SC24·5264

Tutorial books which may be useful are:

The VM/SP System Product Interpreter User's Guide, SC24·5238

The VM/SP eMS Primer, SC24·5236

The VM/SP CMS Primer for Line·Oriented Terminals, SC24·5242

The VM/SP CMS User's Guide, SC19-6210

The VM/SP System Product Editor User's Guide, SC24-5220.

Bibliography 203

The YMI8PLlbrary (Part 1 of 3)

Evaluation

General
Information

GC20-1838

Planning

Planning
Guide and
Reference

SC19-6201

Applications

Application
Development
Guide

SC24-5247

Introduction

GC19-6200

Running
Guest
Operating
Systems

GC19-6212

Programmer's
Guide to the
SRPI
forVM/SP

SC24-5291

Release 5
Guide

SC24-5290

Distributed
Data
Processing
Guide

SC24-5241

Index
z
Library
Guide,
Glossary, and
Master Index

GC19-6207

Installation

Installation
Guide

SC24-5237

Operation

Operator's
Guide

SC19-6202

Reference Summaries To order all of the Reference Summari •• , u .. order number SBOF-J242

Commands
(General User)

SX20-4401

CMS Primer
Summary of
Commands

SX24-5151

Commands
(Other than
General User)

SX20-4402

CMS Primer
Line-Oriented
Summary of
Commands

SX24-5159

SP Editor
Command
Reference
Summary·

SX24-5122

Problem
Reporting
Summary
(Poster)

SX24-5171

204 VM/SP System Product Interpreter Reference

EXEC 2 Sys.Prod
Reference Interpreter
Summary R.ference

Summary

SX24-5124 SX24-5126

Summary of
End Use
Tasks and
Commands
(Poster)

SX24-5173

(~

\" .

The VIl/SP Llbr.r, (P.rt 2 of 3)

End Use

Terminal CMS CMS Primer CMS CMS CMS
Reference Primer for Line- User's Command Macros and

Oriented Guide Reference Functions
Terminals Reference

GC19-6lO6 SC2-4-5236 SC24-5242 SC19-6210 SC19-6lO9 SC24-5284

System System System System EXEC 2 CP
Product Product Product Product Reference Command
Editor Editor Interpreter Interpreter Reference
User's Guide Command and User's Guide Reference

Macro
Reference

SC2-4-52lO SC2-4-5221 SC24-5238 SC2-4-5239 SC2-4-5219 SC19-8211

Quick
Reference

SXlO-4-400

Diagnosis

System System Service Problem VM GCS
Messages Messages Routines Reporting Diagnosis Diagnosis
and Codes Cross- Program Guide Guide Reference

Reference Logic

SC19-620-4 SC2-4-5264 LY20-0890 SC2-4-5282 LY2-4-52-41 LY24-5239

Problem Data Areas Problem Data Areas OLTSEP VM
Determination and Control Determination and Control and Error Problem
Vol. 1 (CP) Blocks Vol. 2 (CMS) Blocks Recording Determination

Vol. 1 (CP) Vol. 2 (CMS) Guide Reference
Information

LYlO-0892 LY24-5220 LY20-0893 LY24-5221 SC19-6205 LX23-0347

VM
CP Internal
Trace Table
(Poster)

LX24-5202

-, ["'-

Bibliography 205

The YII/SP Library (Part 3 of 3)

Administration

VM
System
Facilities
for
Programming

SC24-5288 v

CP for
System
Programming

SC24-5285

CMS for
System
Programming

SC24-5286

Auxiliary Communication Support

VTAM
Installation
and Resource
Definition

SC23-0111

VTAM
Programming

SC23-0115

RSCS
Networking
Version 2
General
Information

GH24-5055

VM/Pass-
Through
Facility
General
Information

GC24-5206

VTAM
Customization

SC23-0112

VTAM
Diagnosis
Guide

SC23-0116

RSCS
Networking
Version 2
Planning and
Installation

SH24-5057

VM/Pass-
Through
Facility
Guide and
Reference

SC24-5208

VTAM
Operation

SC23-0113

VTAM
Diagnosis
Reference

LY30-5582

z

RSCS
Networking
Version 2
Operation
and Use

SH24-5058

VM/Pass-
Through
Facility
Logic

LY24-5208

206 VM/SP System Product Interpreter Reference

TSAF
Reference

SC24-5287

VTAM
Messages
and Codes

SC23-0114

VTAM
Data
Areas (VM)

LY30-5583

RSCS
Networking
Version 2
Diagnosis
Reference

LY24-5228

GCS
Command
and Macro
Reference

SC24-5250

VTAM
Reference
Summary

SC23-0135

RSCS
Networking
Version 2

Ref. Summary

SX24-5135

('

.",

r-'

Special Characters I
. (period)

as placeholder in parsing 129
causing substitution in variable names 13
in numbers 135

< (less than operator) 8
< > (less than or greater than operator) 8
< = (less than or equal operator) 8
+ (addition operator) 7, 135
+ + + tracing flag 66
I (inclusive OR operator) 9
II (concatenation operator) 7
& (AND operator) 9
&& (exclusive OR operator) 9
! prefix on TRACE instruction 64
* (multiplication operator) 7, 135
** (exponentiation operator) 7, 136
. tracing flag 66
-. (NOT operator) 9

-. < (not less than operator) 8

-. > (not greater than operator) 8

-.= (not equal operator) 8

-. = = (not exactly equal operator) 8
. (subtraction operator) 7, 135
I (division operator) 7, 135
1/ (remainder operator) 7, 136
I = (not equal operator) 8
/-= = (not exactly equal operator) 8
% (integer division operator) 7, 136
> (greater than operator) 8
> . > tracing flag 66
> < (greater than or less than operator) 8
> > > tracing flag 66
> = (greater than or equal operator) 8
> C > tracing flag 66
> F > tracing flag 66
> L > tracing flag 66
> 0 > tracing flag 66
> P > tracing flag 66
> V > tracing flag 66
? prefix on TRACE instruction 64
= (equal sign)

assignment indicator 12
equal operator 8
immediate debug command 117
in DO instruction 31

= = (exactly equal operator) 8
"HT" flag

cleared before error messages 177

ABBREV function
description 73
using to select a default 73

abbreviations
looking for one in a string 131
testing with ABBREV function 73

abnormal change in flow of control 58
ABS function 74
absolute value

finding using ABS function 74
used with exponentiation 136

active loops 41
addition

definition 135
operator 7

ADDRESS
function 74
instruction 24

Index

settings saved during subroutine calls 29
algebraic precedence 9
alphabetics

checking with DATATYPE 80
used as symbols 3

alphanumeric checking with DATATYPE 80
altering

flow within a repetitive DO loop 41
REXX variables 16

AND operator 9
AND, logical 9
AND'ing character strings together 76
ARG function 75
ARG instruction 26
ARG option of PARSE instruction 46
arguments

checking with ARG function 75
of EXECs 26
of functions 26, 69
of subroutines 26, 28
passing to EXECs 153
passing to functions 69
retrieving with ARG function 75
retrieving with ARG instruction 26
retrieving with the PARSE ARG instruction 46

arithmetic
combination rules 137

Index 207

comparisons 139
errors 141
NUMERIC settings 44
operators 7, 133, 135
overflow 141
precision 135
underflow 141

array
initialization of 14
setting up 13

assigning data to variables 46
assignment

description of 12
of compound variables 13, 14

assignment indicator (=) 12
associative storage 13

BASEDATE option of DATE function 81
BIT AND function 76
BITOR function 76
bits checked using DATATYPE 80
BITXOR function 77
blank removal with STRIP function 94
blanks

adjacent to special character 2
as concatenation operator 7

boolean operations 9
bottom of program reached during execution 37
built-in function invoking 28
built-in functions

ABBREV 73
ABS 74
ADDRESS 74
ARG 75
BITAND 76
BITOR 76
BITXOR 77
CENTER 77
CENTRE 77
COMPARE 78
COPIES 78
C2D 78
C2X 79
DATATYPE 80
DATE 81
DELSTR 82
DELWORD 82
description of 70
D2C 83
D2X 84
ERRORTEXT 84
EXTERNALS 85
FIND 85
FORMAT 85
INDEX 86

208 VM/SP System Product Interpreter Reference

INSERT 87
JUSTIFY 87
LASTPOS 88
LEFT 88
LENGTH 88
LINESIZE 89
MAX 89
MIN 89
OVERLAY 90
POS 90
QUEUED 91
RANDOM 91
REVERSE 92
RIGHT 92
SIGN 93
SOURCELINE 93
SPACE 93
STRIP 94
SUBSTR 94
SUBWORD 95
SYMBOL 95
TIME 96
TRACE 97
TRANSLATE 98
TRUNe 98
USERID 99
VALUE 99
VERIFY 100
WORD 100
WORDINDEX 101
WORDLENGTH 101
WORDS 101
XRANGE 102
X2C 102
X2D 102

BY phrase of DO instruction 31

CALL instruction 28
CENTER function 77
centering a string using CENTER function 77
centering a string using CENTRE function 77
CENTRE function 77
CENTURY option of DATE function 81
changing destination of commands 24
character position of a string 88
character position using INDEX 86
character removal with STRIP function 94
character to decimal conversion 78
character to hexadecimal conversion 79
clause

as labels 11
assignment 11, 12
continuation of 5
description of 2
null 11

(

\

(

r
\

CMS (Conversational Monitor System)
COMMAND environment 20
environment name 17,25
issuing commands to 16, 17,24,25
search order 17
unique functions 104

CMS (Conversational Monitor System) commands
EXECDROP 147
EXECIO 147
EXECLOAD 147
EXECMAP 147
EXECOS 147
EXECSTAT 147
EXECUPDT 147
GLOBALV 147
IDENTIFY 147
LISTFILE 147
PARSECMD 147
QUERY 147
SET 147
XEDIT 147
XMITMSG 147

codes, error 177-192
collating sequence using XRANGE 102
colon as label terminators 11
combination, arithmetic 137
COMMAND as an environment name 20, 25
command environments

See environments
command errors, trapping

See SIGNAL instruction
command inhibition

See TRACE instruction
commands

alternative destinations 16
destination of 24
inhibiting with TRACE instruction 64
issuing to host 16

comments
description of 2
to identify program language 149

COMPARE function 78
comparisons

of numbers 8, 139
of strings 8

using COMPARE 78
compound variable

description of 13
setting new value 14

concatenation of strings 7
concatenation operator

II 7
blank 7

conditional loops 31
conditions

ERROR 58
HALT 58
NOVALUE 58
saved during subroutine calls 29
SYNTAX 58

conditions, trapping of
See SIGNAL instruction

console
reading from with PULL 51
writing to with SAY 55

constant symbols 12
content addressable storage 13
continuation

character 5
of clauses 5
of data for display 55

Control Program (CP)
issuing commands to 17

control variable 33
controlled loops 33
Conversational Monitor System (CMS)

COMMAND environment 20
environment name 17,25
issuing commands to 16, 17, 24
search order 17
unique functions 104

conversion
character to decimal 78
character to hexadecimal 79
decimal to character 83
decimal to hexadecimal 84
formatting numbers 85
hexadecimal to character 102
hexadecimal to decimal 102

conversion functions 73-103
COPIES function 78
copying a string using COPIES 78
counting words in a string 101
CP (Control Program)

issuing commands to 17
current terminal line width 89
C2D function 78
C2X function 79

data length 6
data terms 6
DATATYPE function 80
date and version of the interpreter 48
DATE function 81
DBCS (Double-Byte Character Set) strings 45
debug, interactive 62, 117
debugging programs

See interactive debug
See TRACE instruction

decimal arithmetic 133-142
decimal to character conversion 83
decimal to hexidecimal conversion 84
default environment 16
deleting part of a string 82
deleting words from a string 82

Index 209

delimiters in a clause
See?
See semicolons

DELSTR function 82
DELWORD function 82
derived name 13
derived names of variables 13
DIAG function 105
DIAGRC function 106
DIGITS option of NUMERIC instruction 44, 135
direct interface to variables 159
displaying data

See SAY (REXX instruction)
division

definition 135
operator 7

DO instruction 31, 35
See also loops

Double-Byte Character Set (DBCS) strings 45
DROP instruction 36
dummy instruction

See NOP instruction
D2C function 83
D2X function 84

editor macros 24
elapsed time calculator 96
elapsed time saved during subroutine calls 29
ELSE keyword

See IF instruction
END clause

See also DO instruction
See also SELECT instruction
specifying control variable 33

engineering notation 141
environments

addressing of 24
default 25, 47, 153
determining current using ADDRESS

function 74
temporary change of 24

equal operator (=) 8
equality, testing of 8
error codes 177-192
ERROR condition of SIGNAL instruction 58
error messages

retrieving with ERRORTEXT 84
error messages and codes 177-192
errors

during execution of functions 73
from host commands 16

210 VM/SP System Product Interpreter Reference

syntax 177-192
traceback after 66

errors, trapping
See SIGNAL instruction

ERRORTEXT function 84
EUROPEAN option of DATE function 81
EVALBLOK format 155
evaluation of expressions 6
exactly equal operator (= =) 8
exception conditions saved during subroutine
calls 29

exclusive OR operator 9
exclusive ORing character strings together 77
EXECCOMM

interface to variables 159
subcommand entry point 159

EXECFLAG byte in NUCON 164
EXECs

arguments to 26
calling as functions 70, 157
in-store execution of 153
invoking 149
plist for 149
retrieving name of 47

EXECTRAC flag
external control of tracing 120

execution by interpreter 1
execution of data 39
EXIT instruction 37
exponential notation

definition 140
description of 133
usage 4

exponentiation
definition 136
operator 7

EXPOSE option of PROCEDURE instruction 49
expressions

evaluation 6
examples 10
parsing of 48
results of 6
tracing results of 62

extended plist 153
external functions

description of 70
interface 157

EXTERNAL option of PARSE instruction 46
external routine invoking 28
external subroutines

interface 157
external trace bit 120

in EXECFLAG 164
EXTERNALS function 85
extracting a substring 94
extracting words from a string 95

(
\

FIFO (first-in/first-out) stacking 53
file name, type, mode of program 47
FIND function 85
finding a mismatch using COMPARE 78
finding a string in another string 86, 90
finding the length of a string 88
flow control

abnormal, with SIGNAL 58
with CALL/RETURN 28
with DO construct 31
wjth IF construct 38
with SELECT construct 56

FOR phrase of DO instruction 31
FOREVER repetitor on DO instruction 31
FORM option of NUMERIC instruction 44, 141
FORMAT function 85
formatting

numbers for display 85
numbers with TRUNC 98
of output during tracing 66
text centering 77
text justification 87
text left justification 88
text right justification 92
text spacing 93

function, built-in
See built-in functions

functions
built-in 70, 73
calling EXECs as 157
description of 69
external 70
external interface 157
external packages 103-116
for VM/SP information 104
forcing built-in or external reference 71
internal 70
invocation of 69, 153
numeric arguments of 141
return from 54
variables in 49

FUZZ
controlling numeric comparison 139
option of NUMERIC instruction 44, 139

GCS (Group Control System) environment 193
GOTO, abnormal

See SIGNAL instruction
greater than operator (>) 8
greater than or equal operator (> =) 8
greater than or less than operator (> <) 8

Group Control System (GCS) environment 193
group, DO 32

. grouping instructions to execute repetitively 31

HALT condition of SIGNAL instruction 58
Halt Interpretation (HI) immediate command 117
halt, trapping

See SIGNAL instruction
halting a looping program 119
hexadecimal

See also conversion
checking with DA1'ATYPE 80

hexadecimal strings 3
HI (Halt Interpretation) immediate command 119
host commands 16
hours calculated from midnight 96

identifying users 99
IF instruction 38
immediate commands

HI (Halt Interpretation) 119
TE (Trace End) 119
TS (Trace Start) 119

implementation details 167
implied semicolons 5
imprecise numeric comparison 139
in-store execution of EXECs 153
inclusive OR operator 9
indefinite loops 31.

See also looping program
indentation during tracing 66
INDEX function 86
indirect evaluation of data 39
inequality, testing of 8
infinite loops 31

See also looping program
inhibition of commands with TRACE
instruction 64

initialization
of arrays 14
of compound variables 14

INSERT function 87
inserting a string into another 87
instructions

ADDRESS 24
ARG 26
CALL 28
DO 31
DROP 36
EXIT 37
IF 38

~ndex 211

INTERPRET 39'
ITERATE 41
LEAVE 42
NOP 43
NUMERIC 44
OPTIONS 45
PARSE 46
PROCEDURE 49
PULL 51
PUSH 52
QUEUE 53
RETURN 54
SAY 55
SELECT 56
SIGNAL 58
TRACE 62
UPPER 68

integer arithmetic 133-142
integer division

definition 136
description of 133
operator 7

interactive debug 62, 117
See also TRACE instruction

interfaces
system 149
to external routines 157
to variables 159

internal functions
description of 70
return from 54
variables in 49

internal routine invoking 28
INTERPRET instruction 39
interpreter date and version 48
interpretive execution of data 39
interrupting program execution 119
invoking

built-in functions 28
routines 28

ITERATE instruction
See also DO instruction
description 41
use of variable on 41

JULIAN option of DATE function 81
JUSTIFY function 87

212 VM/SP System Product Interpreter Reference

keywords
See also instructions
conflict with commands 143
mixed case 23
reservation of 143

label
as targets of CALL 28
as targets of SIGNAL 58
description of 11
duplicate 58
in INTERPRET instruction 39
search algorithm 58

language structure and syntax 2
LASTPOS function 88
leading blank removal with STRIP function 94
leading zeros

adding with the RIGHT function 92
removal with STRIP function 94

LEAVE instruction
See also DO instruction
description of 42
use of variable on 42

leaving your program 37
LEFT function 88
LENGTH function 88
less than operator (<) 8
less than or equal operator « =) 8
less than or greater than operator « » 8
LIFO (last-in/first-out) stacking 52
line length of terminal 89
line width of terminal 89
lines from a program retrieved with
SOURCELINE 93

LINESIZE function 89
list 13
locating a phrase in a string 85
locating a string in another string 86, 90
logical bit operations

BITAND 76
BITOR 76
BITXOR 77

logical operations 9
lookaside buffering 167
looping program

halting 119
tracing 119

loops
See also DO instruction
See also looping program
active 41

(
\

~.

execution model 35
modification of 41
repetitive 31
termination of 42

lower case symbols 3

macros, editor 24
MAX function 89
memory

accessing 116
finding upper limit of 116

messages, error 177-192
MIN function 89
minutes calculated from midnight 96
MONTH option of DATE function 81
multiple

argument passing 153
string parsing 131

multiplication
definition 135
operator 7

names
of EXECs 47
of functions 70
of programs 47
of subroutines 28
of variables 4

negation
of logical values 9
of numbers 7

nesting of control structures 30
NOP instruction 43
not equal operator (.... =) 8
not equal operator (/ =) 8
not exactly equal operator (.... = =) 8
not exactly equal operator (/ = =) 8
not greater than operator (.... >) 8
not less than operator (.... <) 8
NOT operator 9
notation

engineering 141
scientific 141

NOTYPING flag cleared before error messages 177
NOVALUE condition

on SIGNAL instruction 58
use of 143

NUCON holds EXECFLAG byte 164
null clauses 11

null instruction
See NOP instruction

null strings 3, 6
numbers

arithmetic on 7, 133, 135
checking with DATATYPE 80
comparison of 8, 139
definition 134
description of 4, 133
formatting for display 85
in DO instruction 31
truncating 98
use in the language 141

NUMERIC
instruction 44
option of PARSE instruction 47, 141
settings saved during subroutine calls 29

operation tracing results 62
operator

arithmetic 7, 133, 135
as special characters 4
comparitive 8, 139
concatenation 7
logical 9
precedence (priorities) of 9

OPTIONS instruction 45
OR, logical

exclusive 9
inclusive 9

ORDERED option of DATE function 81
ORing character strings together 76
OTHERWISE clause

See SELECT instruction
overflow, arithmetic 141
OVERLAY function 90
overlaying a string onto another 90

packing a string with X2C 102
parameter list

extended 17
tokenized 17

parentheses
adjacent to blanks 5
in expressions 6
in function calls 69
in parsing templates 128

PARSE instruction 46
parsing 123-132

definition 125
general rules 123, 126

Index 213

introduction 123
literal patterns 126
multiple strings 131
patterns 126
positional patterns 129
selecting words 127
variable patterns 128

parsing templates
in ARG instruction 26
in PARSE instruction 46
in PULL instruction 61

patterns in parsing 126
performance considerations 167
period

causing substitution in variable names 13
in numbers 136

period as placeholder in parsing 129
permanent command destination change 24
plist

extended 163
for accessing variables 169
for invoking EXECs 149
for invoking external routines 157

POS function 90
position

last occurrence of a string 88
of character using INDEX 86

powers of ten in numbers 4
precedence of operators 9
precision
precision of arithmetic 135
presumed command destinations 24
PROCEDURE instruction 49
programming restrictions 1
programming style 143, 167
programs

retrieving lines with SOURCELINE 93
retrieving name of 47

protecting variables 49
pseudo random number function of RANDOM 91
PULL instruction 51
PULL option of PARSE instruction 47
pure number

See numbers
purging storage resident EXECs 147
PUSH instruction 52

QUERY EXECTRAC conpnand. 120
queue

counting lines in 91
reading from with PULL 51
writing to with PUSH 52
writing to with QUEUE 53

QUEUE instruction 53
QUEUED function 91

214 VM/SP System Product Interpreter Reference

RANDOM function 91
random number function of RANDOM 91
RC (return code)

not set during interactive debug 118
set by host commands 16
set to 0 if commands inhibited 64
special variable 144

reading CMS files 147
reading the stack and console 61
remainder

definition 136
description of 133
operator 7

reordering data with TRANSLATE function 98
repeating a string with COPIES 78
repetitive loops

altering flow 42
controlled repetitive loops 33
exiting 42
simple do group 32
simple repetitive loops 32

request block
for accessing variables 160

reservation of keywords 143
restoring variables 36
restrictions

embedded blanks in numbers 4
first character of variable name 12
maximum length of results 6

restrictions in programming 1
Restructured Extended Executor language (REXX)

interpreter structure 167
RESULT

set by RETURN instruction 29, 54
special variable 144

results
length of 6

retrieving argument strings with ARG 26
return codes

as set by host commands 16
setting on exit 37

RETURN instruction 54
return string

setting on exit 37
returning control from REXX program 54
REVERSE function 92
REXX (Restructured Extended Executor) language

interpreter structure 167
RIGHT function 92
rounding

definition 135
using a character string as a number 4

routines
See functions

See subroutines
running off the end of a program 37
RX prefix on external routines 157
RXSYSFN description 104

SAY (REXX instruction) 55
scientific notation 141
search order

for commands 17
for functions 71
for subroutines 28

searching a string for a phrase 85
seconds calculated from midnight 96
SELECT instruction 56
semicolons

implied 5
omission of 23
within a clause 2

SET EXECTRAC command
external control of tracing 120

shift-in (SI) characters 45
shift-out (SO) characters 45
SHVBLOCK format 160
SI (shift-in) characters 45
SIGL

set by CALL instruction 29
set by SIGNAL instruction 60
special variable 144

SIGN function 93
SIGNAL

execution of in subroutines 29
in INTERPRET instruction 39, 61

SIGNAL instruction 58-61
significant digits in arithmetic 135
simple number

See numbers
simple symbols 13
single stepping

See interactive debug
six-word extended plist 153
SO (shift-out) characters 45
SORTED option of DATE function 81
source of the program and retrieval of

information 47
SOURCE option of PARSE instruction 47
SOURCELINE function 93
SPACE function 93
special characters 5
special variables

RC 144
RESULT 144
SIGL 144

SPOOL EXEC, avoiding 19
SPOOL MODULE, avoiding 19
stack

counting lines in 91
reading from with PULL 51
writing to with PUSH 52
writing to with QUEUE 53

stem of a variable
assignment to 14
description of 13
used in DROP instruction 36
used in PROCEDURE instruction 49

stepping through programs
See interactive debug

storage
accessing 116
finding upper limit of 116

STORAGE function 116
storage, execution from 153
string

as literal constants 3
as names of functions 3
as names of subroutines 30
comparison of 8
concatenation of 7
description of 3
hexadecimal specification of 3
interpretation of 39
length of 6
null 3,6
quotes in 3
verifying contents of 100

STRIP function 94
structure and syntax 2
style of programming 143, 167
SUBCOM function 21
subcommand destinations 24
subcommands

addressing of 24
concept 20

subroutines
calling of 28
external interface 157
forcing built-in or external reference 28
naming of 30
passing back values from 54
return from 54
use of labels 28
variables in 49

substitution
in expressions 6
in variable names 13

SUBSTR function 94
subtraction

definition 135
operator 7

SUBWORD function 95
symbol

assigning values to 12
classifying 12
constant 12
description of 3
simple 13

Index 215

uppercase translation 3
use of 12
valid names 4

SYMBOL function 95
. syntax checking

See TRACE instruction
SYNTAX condition of SIGNAL instruction 58
syntax error

traceback after 66
trapping with SIGNAL instruction 58

syntax, general 2
system interfaces 149
system trace bit 120

TE (Trace End) immediate command 119
templates, parsing

general rules 123
in ARG instruction 26
in PARSE instruction 46
in PULL instruction 51

temporary command destination change 24
ten, powers of 140
terminals

finding width with LINESIZE 89
reading from with PULL 51
writing to with SAY 55

terms and data 6
text formatting

See formatting
See word

THEN
as free standing clause 23
following IF clause 38
following WHEN clause 56

TIME function 96
TO phrase of DO instruction 31
toke~, classes of 2
trace bit, external 120
Trace End (TE) immediate command 117
TRACE function 97
TRACE instruction 62

See also interactive debug
TRACE setting

altering with TRACE function 97
. altering with TRACE instruction 62
querying 97

Trace Start (TS) immediate command 117
trace tags 66
traceback, on syntax error 66
tracing

action saved during subroutine calls 29

216 VM/SP System Product Interpreter Reference

by interactive debug 117
data identifiers 66
execution of programs 62
external control of 119, 120
looping programs 119

tracing flags
+++ 66
. 66
>.> 66
»> 66
>C> 66
>F> 66
>L> 66
>0> 66
>P> 66
>V> 66

trailing blank removed using STRIP function 94
trailing zeros 137
TRANSLATE function 98
translation

See also uppercase translation
with TRANSLATE function 98
with UPPER instruction 68

trapping of conditions
See SIGNAL instruction

TRUNC function 98
truncating numbers 98
TS (Trace Start) immediate command 119
type of data checking with DATATYPE 80
type·ahead line counting with EXTERNALS 85
typing data

See SAY (REXX instruction)

unassigning variables 36
unconditionally leaving your program 37
underflow, arithmetic 141
unpacking a string with C2X 79
UNTIL phrase of DO instruction 31
UPPER instruction 68
UPPER option of PARSE instruction 46
uppercase translation

during ARG instruction 26
during PULL instruction 51
of symbols 3
with PARSE UPPER 46
with TRANSLATE function 98
with UPPER instruction 68

USA option of DATE function 81
USERID function 99
utility functions 73-103

function packages 103

.",--.

V ALUE function 99
VALUE option of PARSE instruction 48
V AR option of PARSE instruction 48
variable names 4
variables

compound 13
controlling loops 33
description of 12
direct interface to 159
dropping of 36
exposing to caller 49
getting value with VALUE 99
in internal functions 49
in subroutines 49
new level of 49
parsing of 48
resetting of 36
setting new value 12
simple 13
special

RC 144
RESULT 144
SIGL 144

testing for initialization 95
translation to uppercase 68
valid names 12

VERIFY function 100
VERSION option of PARSE instruction 48
VM/SP unique functions 104

WEEKDAY option of DATE function 81
WHEN clause

See SELECT instruction
WHILE phrase of DO instruction 31
whole numbers

checking with DATATYPE 80
description of 4

word
counting in a string 101
deleting from a string 82
extracting from a string 95, 100
finding in a string 85
finding length of 101
in parsing 127
locating in a string 101

WORD function 100
word processing

See formatting
See word

WORDINDEX function 101
WORDLENGTH function 101
WORDS function 101
writing CMS files 147
writing to the stack

with PUSH 52
with QUEUE 53

XEDIT macro interface 20
XOR, logical 9
XORing character string together 77
XRANGE function 102
X2C function 102
X2D function 102

zeros added on the left 92
zeros removal with STRIP function 94

Index 217

I
I

InIemaUo
MacIII CorponIUon
P.O
EndIcaII, York 13710

,.Ie No.IS7OI
PrI lnU ... A.

SC24-S239-2

-~------- ----- -- -. ---- -- _ .. ------_-...._.-
®

(

('

Virtual Machine/System Product
System Pro~.uct Interpreter Reference
Order No. SC24-5239-2

Is there anything you especially like or dislike about this book? Feel free to
comment on specific errors or omissions, accuracy, organization, or
completeness of this book.

If you use this form to comment on the online HELP facility, please copy the
top line of the HELP screen.

READER'S
COMMENT
FORM

___ Help Information line __ of __

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you, and all such information will be considered nonconfidential.

Note: Do not use this form to report system problems or to request copies of publications. Instead,
contact your IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

IBM Branch Office serving you:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

SC24-5239-2

Reader's Comment Form

Fold and tape Please Do Not Staple

IIIII
BUSINESS REPLY MAIL
FIRST·CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

----lEi,!:
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

111.111111.1 ••• 1.11 •• 11 ••• 1.1 •• 1.1 •• 1 •• 1.111.11111.1

Fold and tape Please Do Not Staple

--.- ------ --------- -. ---- - - --------------, -
CI!>

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

(

.~ ..

.. :.

SC24-5239-2

SC24-5239-02

