Program Product

Licensed Material -- Property of IBM
File No. $370-36
Order No. LY20-0893-0

IBM Virtual
Machine/System Product:
System Logic and
Problem Determination
Guide Volume 2 - CMS

Program Number 5664-167

This publication is intended for the IBM system
hardware and software support personnel. [t
provides the following information for the CMS
component of VM/SP:

e Description of program logic

o Module descriptions and cross-references
o Abend codes

PREREQUISITE PUBLICATIONS

IBM Virtual Machine/System Product:
Introduction, Order No. GC19-6200
Operator’s Guide, Order No. SC19-6202
Terminal User’s Guide, Order No. GC19-6206

CMS Command and Macro Reference,
Order No. SC19-6209

System Programmer’s Guide, Order No. SC19-6203

: The term VM/SP, as used in this publication,
sed in conjunction with VM/370 Release 6.

-
refers to VM/SP|
|

First Edition (September 1980)

This first edition (LY20-0893 dated September 30, 1980) applies to the
IBM Virtual Machine/System Product and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Changes
are continually made to the information contained herein; before using
this publication in connection with the operation of 1IBM systenms,
consult the IBM System/370 and 4300 Processors Bibliography, GC20-0001,

for the editions that are applicable and current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), programming, or
services that are not annnounced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, Or services in your country.

Publications are not stocked at the address given below; requests for
copies of IBM publications should be amade to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments |is provided at the back of this
publication; if the form has been removed, comments may be addressed to
IBY Programming Publications, Dept. G60, P.0. Box 6, Endicott, New York,
7.S.A. 13760C. IBM may use or distribute any of the information you
supply in any way it believes appropriate without incurring any
sbligation whatever. You may, of course, continue to use the
information you supply.

e Copyright International Business Machines Corporation 1980

This publication provides the IBM systenm
hardware and software support personnel
with the information needed to analyze

problems that may occur on the IBM Virtual
Machine/System Product (VM/SP) when used in
conjunction with VM/370 Release 6.

HOW THIS MANUAL IS ORGANIZED

This manual comprises two volumes:
e YVolume 1. VM/SP Control Program (CP)

e YVolume 2.
(CMS)

Conversational Monitor Systenm

Fach volume contains logic descriptions for

the designated components of VM/SP. Each
of these volumes 1is divided into four
sections: Introduction, Method of

Operation, Directory, and Diagnostic Aids.

The method of operation and progranm
organization sections contain the functions
and relationships of the program routines
in VM/SP. They indicate the program
operation and organization in a general way
t6 serve as a guide in understanding VM/SP.
They are not meant to be a detailed
analysis of VM/SP programming and cannot be
used as such.

The directories contain
all the assemble modules in CP and CMS.
They aiso contain extensive
cross-references between modules and labels
within a VM/SP component.

descriptions of

The diagnostic aids sections contain
additional information useful for
determining the cause of a problenm.

Appendix A,
contains a description
library.

located in Volume 2,
of the CMS macro

Appendix B, also located in Volume 2,
describes the CMS/DOS macro library.

Appendix C, also located in Volume 2,
describes CMS/DOS support modules.

Preface

Information on the Remote
Communications Subsystem (RSCS), a
Release 6 component, is contained in:

Spooling
VM/370

VM/370 System Logic and Program
Determipation Guide, Yolume 3 Remote
Spooling Communications Subsyste

(RSCS) , Order No. SY20-(888

The control blocks supportive of the RSCS
Logic are contained in:

VM/SP Data Areas and Control Blocks,
Order No. LY20-0891

Information on the Interactive
Control System (IPCS), a VM/370
6 component is totally contained

Logic
Problen
Release
in:

VM/SP Service Routines
Order No. LY20-0890

Program Logic,

HOW TO

SE THIS MANUAL

e TIsolate the component of VM/370 in which
the problem occurred.

e Use the 1list of restrictions in YVM/SP
System Messages and Codes to be certain
that the operation that was being
performed was valid.

e Use the directories and wuse the YVM/SP

Data Areas and Controli Biock logic to
help you to isolate the problenm.

e Use the method of operation and program
organization sections, if necessary, to
understand the operation that was being
performed.

DEVICE TERMINOLOGY

The following terms in this publication
refer to the indicated support devices:

¢ "2305" refers to IBM 2305 Fixed Head

Storage, Models 1 and 2.

Preface iii

Licensed Material - Property of IEBM

"270x" refers to IBM 2701, 2702, and
2703 Transmission Control Units or the
Integrated Communications Adapter (ICA)
on the System/370 Model 135.

WFB-512" refers to those IBM DASD
devices implementing the fixed-block
(512-byte blocks) architecture.
specifically, they are the IBM 3310, and
the IBM 3370. Current IBM disk storage
devices are referred to as
count-key-data DASD when it is important
to distinquish between count-key-data
DASD and FB-512. Otherwise, they are
collectively referred to as DASD or
disk.

"3330" refers to the IBM 3330 Disk
Storage, Models 1, 2, or 11; the 1IBHNM
3333 Disk Storage and Control, Models 1
or 11; and the 3350 Direct Access
Storage operating in 3330/3333 Model 1
or 3330/3333 Model 11 compatibility
mode.

"3340" refers to the IBM 3340 Disk
Storage, Models A2, B1, and B2, and the
3344 Tirect Access Storage Model B2.

13350" refers to the 1IBM 3350 Direct
Access Storage Models A2 and B2 in
native mode.

"3380" refers to the 1IBM 3380 Storage
Facility. Information on the TIBM 3380
Storage Facility is for planning
purposes only until the availability of
the product.

n3704n, n3705", or "370X" refers to IBM
3704 and 3705 Communications
Controllers.

The term "3705" refers to the 3705 I and
the 3705 II unless otherwise noted.

"2741" refers to the IBM 2741 and the
3767, unless otherwise specified.

"3270" refers to a series of display
devices, namely the 1IBM 3275, 3276,
3277, 3278, and 3279 Display Stations.
A specific device type is used only when
a distinction is required between device
types.

The term, System/370 processors, is also
applicable to #4300 processors and 303x
series processors unless indicated
otherwise.

Information about display terminal usage
also applies to the IBM 3036, 3138,
3148, and 3158 Display Consoles when
used in display mode, wunless otherwise
noted.

Any information pertaining to the 1IBM
3284 or 3286 also pertains to the IEM
3287, 3288 and the 3289 printers, unless
otherwise noted.

"3262" refers to the IBM 3262 Printer,
Models 1 and 11. Information on the IBM
3262 Printer, Models ' and 11, 1is fcr
Planning purposes only, until the
availability of the product.

Unless otherwise noted, the term "VSE"
refers to the combination of the DOS/VSE
system control program and the
VSE/Advanced Functions program product.

In certain cases, the term DOS is still

used as a generic term. For example, disk
packs initialized for use with VSE or any
predecessor DOS or DOS/VS system may be
referred to as DOS disks.

The DOS 1like simulation environment

provided under the CMS component of the
VM/System Product, continues to be referred
to as CMS/LOS.

CHMS COMPONENT

PREREQUISITE PUBLICATIONS

IPM Virtual Machine/System Product

Introduction, Order No. GC19-6200

Terminal User's Guide, Order No.
GC19-6206

CMS Command and Macro Reference, Order

CMS User's Guide, Order No. SC19-6210

COREQUISITE PUBLICATIONS

IBM Virtual Machine/System Product

Operator's Guide, Order No. SC19-6202

CP cCommand Reference for General Users

Oorder No. SC19-6211

System Programmer's Guide, Order No.
SC19-6203
Systen Messages and Codes, Order No.
SC19-6204

IBM VM/SP System Logic and Problem Determination--Volume 2

Licensed Material - Property of IBN

OLTSEP and Error
No. SC19-6205

Recording Guide, Order

RELATED PUBLICATION

Operating Systems in a Virtual Machine, IBM Virtwal Machine Facility/370 Remote
Order No. GC19-6212 Spooling Communications Subsystem (RSCS)
User's Guide, Order No. GC20-1816
Service Routines Program Logic, Order
No. LY20-0890
Data Areas and Control Block Logic, MISCELLANEOUS INFORMATION
Order No. LY20-0891
In addition, for EREP processing the CMsS/DOS is part of the CHMS system and is
following OS/VS Library publications are not a separate system. The term CMS/DOS is
required: Qosy/¥s, DOS/VSE, vM/370 used in this publication as a concise way
Environmental Recording Editing and of stating that the DOS simulaticn mode cf
Printing (EREP) Progranm, Order No. CMS is currently active; that is, the CNMS
GC28-0772 command
0s/vs, DOS/VSE, yM/370 Environmental SET DOS ON
Recording Editing and Printing (EREP)
Program logic, Order No. SY28-0773 has been previously issued.
The phrase "CMS file system" refers to
disk files that are in CMS's 800-, 1024-,
SUPPLEMENTARY PUBLICATIONS 2048-, and 4096-byte block format; CMS's
VSAM data sets are not included.
IBM System/360 Principles -of Operation,
Order No. GA22-6821
IBM System/370 Principles of Operation,
order No. GA22-7000
IBM 0S/¥S, DOS/¥S, and VM/370 Assesmbler
Language, Order No. GC33-4010

IBM 0S/VS and VM/370 Assembler Programmer's
Guide, Order No. GC33-4021

Preface v

Licensed Material - Property of IBH

vi IBM VM/SP System Logic and Problem Determination--Volume 2

Licensed Material - Property of IBM

CONVERSATIONAL MONITOR SYSTEM (CHMS)

INTRODUCTION TO CMS. = o « o o« « =«
The CMS Command Languagde . « « « «
The File System. =« ¢ ¢« & o o = « «
Program Development.

INTERRUPT HANDLING IN CMS.
SVC Interruptions. . . « <« « « . =

Internal Linkage SVCs. « . . «

Other SVCs . . ¢ & ¢ o =« o o o =
Input/Output Interruptions
Terminal Interruptions . . . - e
Reader/Punch/Printer Interruptlons

User-Controlled Device Interruptions .

Program Interruptions. « . « « «
External Interruptions
Machine Check Interruptions. . . .

FUNCTIONAL INFORMATION . . . o« « .
Register Usage .« « o « o o o « o «
Structure of DMSNUC. « « « o o « «
USERSECT (User Area) « « « « «
DEVTAB (Device Table). «
Structure of CMS Storage . « « - .
Free Storage Management. -
GETMAIN Free Storage Management.
DMSFREE Free Storage Management.
Releasing Allocated Storage. . .
DMSFREE Service Routines . . .
Error Codes from DMSFRES,
and DMSFRET « a o
CMS Handling of PSW Keys o e e o
CMS SVC Handling . « « « o« « o «

DMSFREE,

o o

SVC Types and Linkage Conventions. .

Search Hierarchy for sSvC 202 . .
User and Transient Program Areas
Called Routine Start-Up Table. .
Returning to the Calling Routine
Dynamic Linkage/SUBCOM

CMS Interface for Display Terminals. .

0S MACRO SIMULATION UNDER CMS. . .
0S Data Management Simulation. . .
Handling Files that Reside on CHMS
DiskS « « .« - - - o e
Handling Files that Re51de on 0S
DOS DiSKS o 2 o o « o o « o o« =
Simulation Notes . . . <«
Access Method Support.
Reading 0S Data Sets and
Using OS MACIoS ¢ « o « o o« o «

VSE SUPPORT UNPDER CMS. . . « . . .
CMS support for OS and DOS VSAM
FUNCtionsS « « o o o o o o o « &

CMS METHOD OF OPERATION AND PROGRAM
ORGANIZATION. + v o o o o = o o o

INITIALIZATION OF THE CMS VIRTUAL
MACHINE ENVIKONMENT « . « « o o« «

.
[*]
i
-

Nl\l)t\)l\)
aAfFwWww

1] . .
NN
S bt
- OOWVWWVUWYwY

NN
(] I

-

-

(\.)N
- -
[Sy

Contents

Initialization: Loading a CMS Virtual
Machine from Card Reader. . . . - .
Initializes Storage Contents and
System Tables =« . « o o o o« = « « «
Processes IPL Command Line
Parameters. « « « « « . « . .
Initialize 0S SVC-Handling w1thout
the Use of the CMSSEG Segment . . .
Initializing a Named or Saved System .
Modifying a 3800 Named System.
Processing the IMAGEMOD Command. . .
Handling the First Command Line Passed
tO CMS.e & & o ¢ e ¢ o o o @ o« « o « «
Setting and Querying Virtual Machine
Environment Options « &« « v ¢ . & . .
DMSSET: SET DOS ON (VSAM) Processing
DMSSET: SET SYSNAME Processing . . .
PROCESSING AND EXECUTING CMS FILES . .
Maintaining an Interactive Console
Environment < « . . e e o =
Console Hanagement and Command
Handling in CMS . « & ¢ ¢ o o « o« o «
Maintaining an Interactive
Command/Response Session. -
Execute Commands Passed via DHSINS
Handle Commands Entered During a cns
Terminal Session. & & & . .
Method of Operation for DMSINT
Method of Operation for DMSITS
Types of SVCs and Llinkage
Conventions . . “ e e
Search Hierarchy for SVC 202 « o e o
User and Transient Program Areas . .
Called Routine Start-Up Table. . . .
Returning to the Caller.
System and User Save Area Formats. .
Load and Execute Text Files.

SLC Card Routine . . . « e s e o =
ICS card Routine - C2AE1 « e e e = @
ESD Type 0 Card Routine - C3AA3. . .
ESD Type 1 Card Routine - ENTESD . .
ESD Type 2 Card Routine - C3AH1. . .
ESD Type 4 Routine - PC. . . .« . . .
ESD Types 5 and 6 Card Routine -

PRVESD and COMESD « « & o« « . - .
ESD Type 10 Routine - WEAK EXTRN o .
TXT Card Routine - C4aA1
REP Card Routine - C4AA3
END Card Routine - C6AAT1
Control Card Routine - CTLCRD1 . . .
REFADR Routine (DMSLDRB) . . « . . .
PRSERCH Routine (DMSLDRD). . « . . «
Loader Data BaseS. « o« o« « « o o« «
ESIDTB Entry . . . - e e e e e e .
Patch Control Block (PCB). « s e e .
Loader Input Restrictions. . . .

Load and Execute Menmber of LOADLIBS. -
Processing Commands That Manipulate

the File System . . . « o o e e o =
Managing the CMS File System « o o @
Disk OrganizatioDe o « « « o o « « « «

Contents

Licensed Material -- Property of IBHM

2-71
2-72

2-72
2-73
2-74

2-75
2-78
2-78
2-79
2-80
2-80
2-81
2-82
2-83
2-83
2-84
2-85
2-86

2-86
2-87
2-87
2-88
2-90
2-91
2-92
2-92
2-93
2-93
2-95
2-95
2-95

2-96

2-96
2-96

vii

How CMS Files Are Organized in Storage

for an 800-Byte Record. « « « « « « . 2-97 Access Method . & & & o o o« &« « « « .2-138
File Status Tables o« o« o o« ¢ o o« « « 2-97 Creating the DOSCB Chain2-138
Chain Links. . . ¢ ¢ ¢ ¢ ¢ ¢« « & « « 2-98 Executing an AMSERV Function2-138
CMS Record Formats « « 2-99 Executing a VSAM Function for a VSE
Physical Organization of V1rtua1 USECe o o o o o o o « o o e o « o« «2=-140

Disks . . . e o o @ o o s o e o & 2-99 CMS/DOS SVC Handllng e s s « o o o« =22-140
The Master F11e Directory. . « . . . 2-99 Executing a VSAM Function for an OS
Keeping Track of Read/Write Disk USETe o o o o o o o« o s o« o o o o« « 22=-142
Storage: QMSK and QQMSK.2-101 Completion Processing for OS and
Dynamic Storage Management: Active VSE/VSAM ProgramsS « « « « « « « « «2-145
Disks and Files « o « « « « e « «2-103 0S Simulation by CMS2-146
CMS Routines Used To Access the Simulating a VSE Environment under
File System . « o ¢ o« ¢ o « = « « -2-103 CMS & 4 6 e o « o« o o o« s o = o o« « 2161
Access a Virtual Disk: DMSACC. . . .2-104 Initializing VSE and Processing VSE
How CMS Files Are Organized in System Control Commands2-162

Storage for 1K-, 2K-, or U4K-Byte Setting or Resetting Systenm
Records on Disk =« v & ¢ & & &« o « « «2-104 Environment Options . . . «2-163
File Status Tables « . . .2-104 Process CMS/DOS OPEN and CLOSE
Pointer Blocks ¢« . ¢ &« 4 o 4o o = « 22-107 Functions « o = « «2-166
CMS Block FormatsS. « o« « o « « « « «2-107 Contents of the CHSBAH DCSS. e o « «2-168
Physical Organization of Virtual Process CMS/DOS Execution-Related

DisSkS & & « o « o« . . « o « = «2=-108 Control CommandS. « « « « « « = - .2-169
The File Directory, the Allocatlon Simulate VSE SVC Functions2-171
Map, and the Disk Label2-111 Process CMS/DOS Service Commands . .2-183
Keeping Track of Read/Write Disk Terminate Processing the CMS/DOS
Storage: Allocation Map. . « . . .2-111 Environment . ¢ . « ¢« o <« + o « . 22-183
Dynamic Storage Management: Active
Disks and Files e o «2-112 PERFORMING MISCELLANEOUS CMS
CMS Routines Used to Access the FUNCTIONS o v v o o o o o « « = . «.2-185
File System .« « ¢ ¢ ¢ o« o o « = = «2-113 CMS Batch Facility2-185
Access a Virtual Disk: DMSACC . . .2-113 Error Printouts. « «2-189
Handling I/0 Operations.2-117 EXEC 2 Processing. . . « «2-189
Unit Record I/0 Processing2-117
The SETPRT ComMand « « « « « « « « «2-121 CMS DIRECTORIES. « « &« ¢ o o o « « «2-197
Handling Interruptions . . « &« « « . .2-122
Disk I/0 in CMS. v o ¢ o ¢ 2 o o« =« = .2-122 MODULE ENTRY POINT DIRECTORY . . . «2-199
Read or Write Disk I/02-122
Managing CMS Storage . . . < - «2-123 MODULE-TO-LABEL CROSS REFERENCE. . . .2-217
Types of Allocated Free Storaqe. - «2-124
GETMAIN Free Storage Management LABEL-TO-MODULE CROSS REFERENCE. . . .2-251
Pointers. . ¢ « « o o o o« « o « « -2=-124
DMSFREE Free Storage Pointers. . . .2-125 CMS DIAGNOSTIC AIDS. = « « « « « = o «2-335
DMSFRE Method of Operation2-128
Relative Efficiency of DMSFREE SUPPORTED DEVICESe . « « 2 o « « « « «2-337
Requests. « o o « « « «2-129
Releasing Allocated storage. e -« « «2-129 DMSFREX ERROR CODES. « « o « « « « « -2-339
DMSFRE Service Routines.2-130 Error Codes from DMSFREE, DMSFRES,
Storage Protection Keys.2-131%1 and DMSFRET . . = « « o « o « « « « 22-339
CMS System Handling of PSW Keys. . .2-131
CP Handling for Saved Systems. . . .2-132 ABEND CODES. « v o o o o = = « « « = «2=-341
Error Codes from DMSFREE, DMSFRES, Abend RECOVEILY o o « 2 « « o « = « « «2-341
and DMSPRET . =« o« ¢« o o « 2 « « « «2-134 Unrecoverable Termination -- The
The DMSFRES MacCcro. . . . « « « « « .2-135 HALT Option of DMSERR2-342
The DMSKEY Macro . . . « « « « - « .2-135 ’
The DMSEXS MAcCro « . -« + 2 4« « » « «2-136 APPENDIX A: CMS MACRO LIBRARY2-347
SIMULATE NON-CMS OPERATING APPENDIX B: CMS/DOS Macro Library. . .2-351
ENVIRONMENTS. . « .« . - . e o «2-137
Access Method Support for Non—CHS APPENDIX C: CMS/DOS Support Modules. .2-353

Operating Environments. . .« « « « . .2-137

0S Access Method Support2-137 INDEX. « o « =« « = = o« a o« = « = =» = «2-355

viii IBM VM/SP

CMS Support for the Virtual Storage

System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

FIGURES

Figure
Figure

Figure
Figure

Figure
Fiqure
Figure
Figure

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

10.
11.

12.

14.

15.

16.

17.

Module Flow for the VM/SP
System Product Editor.......2-5
File System For an 800-Byte
Record on DisSKeeceeceoaoseeaa2-7
CMS Storage MaPeaceceoceeses2-17
CMS Command (and Request)
ProCceSSiNgeccecceccccscncsess2—33
PSW Fields When

Called Routine Starts......2-35
Register Contents when

Called Routine Starts......2-35
Simulated 0OS Supervisor
CallS.ceecacococcccencnanass2—li3
An Overview of the

Functional Areas of CMS....2-58
Details of CMS System

Functions and the Routines

that Perform TheéMeeeececoees..2-59
PSW Fields when Called

Routine is Started.........2-79
Register Contents when

Called Routine is Started..2-79
How 800-Byte CMS File

Records are Chained
Togethereeeececcacncscaneesa2=97
Format of a File Status

Block; Format of a File

Status Table (for 800-Byte

Disk Format)ececececcecesees2-98
Format of the First Chain

Link and Nth Chain Links..2-100
Arrangement of Fixed-length
Records and variable-Length
Records in FileSeeeeecae..2-100
Structure of the Master

File DirectOoryYeeceececceeess.2-102
Disk Storage Allocation

Using the QMSK Data Block.2-102

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure

Figure

20.

21.

22.

23.

24,

25.

26.

27.
28.
29.

30.

How 1K-, 2K—-, or U4K-Byte CHMS
File Records are Chained
Togethéreeeeeceaeeaas cecans -2-105%
Format of a File Status Table
Block and File Status

Table (For 1K-, 2K-, and
4K-Byte Disk Format)......2-106
Format of Level 3 Pointer

Block Fixed-Length

Record Fil€e.ieeeccaaseaasaaa2=109
Format of Level Two Pointer
Block Variable-Length

Record Fil€eececenaaaeaaaa2-110
File System for a 1K-, 2K-,

or 4K-Byte Record on
DiSKeeecanacaaaan cesecaceaa2=114
Flow of Control for Unit

Record I/0O Processing.....2-118
Relationships in Storage

between the CMS 1Interface
Module DMSAMS and the

CMSAMS and CMSVSAM
DCSSSeecaccanaccsoncnacnacs 2-139

The Relationships in

Storage between the User
Program and the CMSDOS

and CMSVSAM DCSSSeeceecse-2-141
Relationship in Storage

between the User Progranm,

the 0S Simulation and

Interface Routines, and the
CMSDOS and CMSVSAM DCSSs..2-142
0S Functions that CHMS
SimulateS.ececccscecnnacssa2—147
SVC Support Routines

and Their Operation.......2-172
Devices Supported by a CHMS
Virtual Machine.e.eccc....2-337
CMS Abend CodeSeeceeccecee.2-343

Contents ix

Licensed Material -- Property of IBM

x IBM VM/SP System logic and Program Determination--Volume 2

Licensed Material -- Property cf IRY

Conversational Monitor System (CMS)

This section contains the following information:

Introduction to CMS
Interrupt Handling in CHMS
Functional Information

OS Macros Under CHMS

VSE Support Under CMS

CMS Introduction

T.icensed Material -- Property of IBM

2-1

2-2 IBM V¥/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Introduction to CMS

The Conversational Monitor System (CMS), the major subsystem of VM/SP,
provides a comprehensive set of conversational facilities +to the user.
Several copies of CMS may run under CP, thus providing several users
with their own time sharing systen. CMS is designed specifically for
the VM/SP virtual machine environment.

Each copy of CMS supports a single user. This means that the storage
area contains only the data pertaining to that user. Likewise, each CMS
user has his own machine configuration and his own files. Debugging is
simpler because the files and storage area are protected from other
users.

Programs can be detugged from the terminal. The terminal is used as

a printer to examine limited amounts of data. Rfter examining program
data, the terminal user can enter commands on the terminal that will
alter the progranm. This is the most comnmon method used to debug

programs that run in CHMS.

CMS, operating with the VM/SP Control ©Program, is a time sharing
systemn suitable for problem solving, program development, and general
work. It includes several programming language processors, file
manipulation commands, utilities, and debugging aids. Aadditionally, CHMS
provides facilities to simplify the operation of other operating systems
in a virtual machine environment when controlled from a remote terminal.
For example, CMS capabilities are used to create and modify job streanms,
and to analyze virtual grinter output.

Part of the CMS environment 3is related to the virtual machine
anvironment created by CP. Each user is completely isolated from the
activities of all other users, and each machine in which CMS executes
has virtual storage available to it and managed for it. The CP commands
are recognized by CHMS. For example, the commands allow messages to be
sent to the operator or +to other users, and virtual devices to be
dynamically detached from the virtual machine configuration.

The CMS Command Language

The CMS command 1lanquage offers terminal users a wide range of
functions. It supports a variety of programming languages, sService
functions, file manipulation, program execution control, and general
system control. For detailed information on CHMS commands, refer to the
yM/sp CMs Command and Macro Refererce.

Figure 4 describes CMS command processing.

CMS Introduction 2-3

Licensed Material -- Property of IBM

The File System

The Conversational Monitor System interfaces with virtual disks, tapes,
and unit record equipment. The CMS residence device 1is kept as a
read-only, shared, system disk. Permanent user files may be accessed
from up to 25 active disks. Logical access to those virtual disks is
controlled by CMS, while CP facilities manage the device sharing and
virtual-to-real mapping.

User files in CMS are identified with three designators. The first
is filenanme. The second 1is a filetype designator that may imply
specific file characteristics to the CMS file management routines. The
third is a filemode designator that describes the location and access
mode of the file.

The compilers available under CMS default to particular input
filetypes, such as ASSEMBLE, but the file manipulation and 1listing
commands do not. Files of a particular filetype form a 1logical data
library for a user; for example, the collection of all COBOL source
files, or of all object (TEXT) decks, or of all EXEC procedures. This
allows selective handling of specific groups of files with minimum input
by the user.

User files <can be created directly from the terminal with the CMS
EDIT facility. EDIT provides extensive context editing services. File
characteristics such as record 1length and format, tab 1locations, and
serialization options can be specified. The system includes standard
definitions for certain filetypes.

The new VM/SP System Product Editor provides full screen support for
3270 display stations. The new CMS editor coexists with the current
editor. The major highlights of the new editor include:

e Multiple views of the same or different files

e Selective column viewing

e Automatic wrapping of lines larger than the screen

e Ability to issue selected commands directly from the displayed line

e Ability to define screen format

¢ Fxtended string search functions

e Column pointing for intra line editing

Additionally, the new editor provides language expansions and
flexibility through the EXEC 2 processor. Figure 1 describes the
modules that perform the processing for the new editor.

CMS automatically allocates compiler work files at the beginning of
command execution on whichever active disk has the greatest amount of
availakle space, and deallocates them at completion. Compiler object
decks and listing files are normally allocated on the same disk as the
input source file or on the primary read/write disk, and are identified
by combining the input filename with the filetypes TEXT and LISTING.
Trtese disk locations may be overridden by the user.

CMS disk files contain records stored on disks as 800-, 1024-, 2048-,
or 4096-byte records. For disks with 800-byte records a single user
file is 1limited to a maximum of 65533 reccrds and must reside on one
virtual disk. The maximum number of files is 1limited by the file
management system to 3400. For disks with 1024-, 2048-, and U40%6-byte
2-4 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

DMSXUP
DMSXIN DMSXBG T — DMSXSG
Update
processing Load; process XEDIT Load XEDIT
command options entry point shared segment
DMSXDS [DMSXTE | EXECUTES IN
| | TRANSIENT AREA
Read OS | Filetype I
data set descriptor table |
|
L — 1
DMSXMA DMSXDC DMSXSU DMSX10 DMSXSC —l
Macro - P |
.. Decode Editing . Logicai screen
?g;f:sé;?g'c 2) Subcommands supervisor Terminal 1/0 { handling }
{— DMSXTB —: Q | DMSXSD ’
| i DMSXER l S I
Subcommand ‘ Butild logical :
| tabie | I and physical I
i | Format error screens
I message ’ |
| DMSXPX I
[—owsxre DMSXCG DMSXCM DMSXCT l [
I l I I Prefix
I subcommand |
l Editing ' [l *seeNote STACK, CMS, CP *seeNote2 || processing
functions I I I '
| l | | l DMSXSS |
I DMSXFD | DMSXGT DMSXPT DMSXHL | I I
l | l I | S0S I
|| Editina '—I;]—'I N GET PUT(D) HELP , |
l | I | SCREEN SUPPORT
I DMSXST I I DMSXMC DMSXMD DMSXML I
I | | BACKWARD, I
INPUT, ADD, BOTTOM, DOWN,
. | gt&fé'—fg; REPLACE, FORWARD, |
| Storage handling ’ ' CREPLACE, LOCATE, NEXT,
I RIGHT CINSERT ToP, UP, FIND | |
| I l family I
| DMSXCN I | DMSXSE DMSXED l
l Arrange 5 QUERY, SET, XEDIT ,
' compoun TRANSFER
characters I ,
BASIC FUNCTIONS SUBCOMMANDS

*Note 1. CDELETE, CHANGE, COMPRESS, COPY, COUNT, COVERLAY, DELETE, DUPLICAT,
EXPAND, LOWERCAS, MOVE, OVERLAY, UPPERCAS, RECOVER, SHIFT.

*Note 2. CMSG, CURSOR, EMSG, FILE, MSG, PRESERVE, PURGE, READ, RENUM, REPEAT,
RESET, RESTORE, SAVE, TYPE.

Figure 1. Module Flow for the VM/SP System Product Editor

CMS Introduction 2-5

Tir~anecad Mat+tarial —-- Prapertv of IBM

records a single user file is limited to a maximum of 231-1 CMS Lklocks
and must reside on one virtual disk. The maximum number of files on any
one disk 1is limited by the file management system to 231-1. However,
the actual number of files is limited by the available disk space and
the size of the user files.

All CMS disk files are written as 800-, 1024-, 2048-, or 4096-byte
records chained together by a specific master file entry that is stored
in a table called the file directory; a separate file directory is kept
for, and on, each virtual disk. The data records may be discontiguous,
and are allocated and deallocated automatically. A subset of the file
directory (called the wuser file directory) is made resident in virtual
storage when the disk directory is made available to CMS; it is updated
on the virtual disk at least once per CMS command if the status of any
£ile on that disk has been changed.

Virtual disks may be shared by CMS users; the facility is provided by
VM/SP to all virtual machines, although a user interface 1is directly
available in CMS commands. Specific files may be spooled between
virtual machines to accomplish file transfer between users. Commands
allow such file manipulations as writing from an entire disk or from a
specific disk file to a tape, printer, punch, or the terminal. Other
commands write from a tape or virtual card reader to disk, rename files,
copy files, and erase files. Special macro 1libraries and text or
program libraries are provided by CMS, and special commands are provided
to update and use them. CMS files can be written onto and restored from
unlabeled tapes via CMS commands.

g;;gg. Multiple write access wunder CMS can produce unpredictable
esults :

Problem programs which execute in CMS can create files on unlabeled
tape in any record and block size; the record format can be fixed,
variable, or undefined. Figure 2 describes the file system for an
R00-byte record on disk. Figure 22 shows the file system for 1K-, 2K-,

and U4X-byte reccrds on disk.

Program Development

The Conversational Monitor System includes commands to <create and
compile source programs, to modify and correct source programs, to build
test files, to execute test programs and to debug from the terminal.
The commands of CMS are especially useful for O0S and VSE program
development, but also may be used in combination with other operating
systems to provide a virtual machine program development tool.

CMS utilizes the 0S and VSE compilers via interface modules; the
compilers themselves normally are not changed. In order to provide
suitakle interfaces, CMS includes a certain degree of 0S and VSE
simulation. The sequential, direct, and partitioned access methods are
logically simulated; the data records are physically kept in the chained
fixed-length blccks, and are processed internally to simulate O0S data
set characteristics. CMS supports VSAM catalogs, data spaces, and files
on O0S and DOS disks using the Access Method Services portion of
VSE/VSAM. OS Supervisor Call functions such as GETMAIN/FREEMAIN and
TIME are simulated. The simulation restrictions concerning what types
of 0S object programs can be executed under CMS are primarily related to
the 0S/PCP, MFT, and MVT Indexed Sequential Access Method (ISAM) and the
telecommunicaticns access methods, while functions related to
multitasking in OS and VSE are ignored by CMS. For nuwmore information,
see "0S Macro Simulation under CMS"™ and "VSE Support under CMS."

2-6 IBM VM/SP System Logic and Program Determinaticn--Volume 2

Licensed Material -- Property of IBM

DMSNUC

DMSNUC Area of Storage

AFTSECT

ADTSECT ADTC

ADTD

ADTE

ADTF

ADTG

ADTS

ADTY

ADTZ

] Free Storage | Disk Storage
| MFD ~*~
Pointer to current |
chain link
ADTCLB Nt chain Link
AFTDBA
AFTPFST | Y o M Data BIk
%
M+1 Data Blk
| %
& M+2 Data Blk
&, I
s Data Block M+
| P RECT|RECZ
00/(’
i
AFT
continued
. FSTB,
ADTMFDA | ADTFDA Heador
ADTQQM | ADTMSK FST,
FST,

For Read/Write
disks only 1

OMSK

| Fite Name/| File Type

FSTFCL

There is one FST

™

for each file

QOMSK

|

Figure 2. File System for an 800-Byte Record on Disk

Tirancad Matarial -

CMS Introduction 2-7

Procertv of IBM

2-8 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property.of IBM

Interrupt Handling In CMS

CK¥S receives virtual SVC, input/output, program, machine, and external
interruptions and passes control to the appropriate handling progran.

SVC Interruptions

The Conversational Monitor System is SVC (supervisor call) driven. SVC
interruptions are handled by the DMSITS resident routines. Two types of
SVCs are processed by DMSITS: internal linkage SVC 202 and 203, and any
other SVCs. The internal linkage SVC is issued by the command and
function programs of the system when +they require the services of other
CMS programs. (Commands entered by the wuser from the terminal are
converted to the internal linkage SVC by DMSINT). The O0S SVCs are
issued by the processing programs (for example, the Assembler).

INTERNAL LINKAGE SVCS

When DMSITS receives control as a result of an internal linkage SVC (202
or 203), it saves the contents of the general registers, floating-point
registers, and the SVC o0ld PSW, establishes the normal and error return
addresses, and passes control to the specified routine. (The routine is
specified by the first 8 bytes of the parameter list whose address is
passed in register 1 for SVC 202, or by a halfword code following SVC
203.) '

For sSvVC 202, if +the called program is not found in the internal
function table of nucleus (resident) routines, then DMSITS attempts to
call in a module (a CMS file with filetype MODULE) of this name via the
LOADMOD command. .

If the program was not found in the function table, nor was a module
successfully loaded, DMSITS returns an error code to the caller.

To return from the called program, DMSITS restores the calling
program's registers, and makes the appropriate normal or error return as
defined by the calling progranm.

OTHER SVCS

The general approach taken by DMSITS to process other SVCs supported
under CMS is essentially the same as that taken for the internal linkage
SVCs. However, rather than passing control to a command or function
program, as is the case with the internal linkage SVC, DMSITS passes
control to the appropriate routine. The SVC number determines the
appropriate routine.

In handling non-CMS SVC calls, DMSITS refers first to a user-defined
SVC table (if one has been set up by the DMSHDS program). TIf the
user-defined SVC table is present, any SVC number (other than 202 or
203) is looked €for in that table. If it is found, control is
transferred to the routine at the specified address.

CMS Introduction 2-9

T3irancoA Material -- Pronertv of IBM

If the SVC number is not found in the user-defined SVC table (or if
the table is nonexistent), DMSITS either transfers control to the CMSDOS
shared segment (if SETDOS ON has been issued), or the standard systenm
table (contained in DMSSVT) of 0S calls is searched for that SVC number.
If the SVC number is found, control is transferred to the corresponding
address in the wusual manner. If the SVC is not in either table, then
the supervisor call is treated as an abend call.

The DMSHDS initialization program sets up the user-defined SVC table.
It is possible for a user to provide his own SVC routines.

Input/Output interruptions

All input/output interruptions are received by the 1I/0 interrupt
handler, DMSITI. DMSITI saves the TI/0 old PSW and the CSW (channel
status word). It then determines the status and requirements of the
device causing the interruption and passes control to the routine that
processes interruptions from that device. DMSITI scans the entries in
the device table until it finds the one containing the device address
that is the same as that of the interrupting device. The device table
(DEVTAB) contains an entry for each device in the system. Each entry
for a particular device contains, among other things, the address of the
program that processes interruptions from that device.

When the appropriate interrupt handling routine completes its
processing, it returns control to DMSITI. At this point, DMSITI tests
the wait bit in the saved I/0 o0ld PSW. If this bit is off, the
interruption was probably caused by a terminal (asynchronous) I/0
operation. DMSITI then returns control to the interrupted program by
loading the I/0 o0ld PSHW.

If the wait bit 1is on, the interruption was Fprobably caused by a
nonterminal (synchronous) I/O operation. The program that initiated the
operation most likely «called the DMSIOW function routine to wait for a
particular type of interruption (usually a device end). In this case,
DMSITI checks the pseudo-wait bit in the device table entry for the
interrupting device. If this bit is off, the system is waiting for some
event other than the interruption from the interrupting device; DMSITI
returns to the wait state by loading the saved I/0 o01d PSW. (This PSW
has the wait bit on.)

If the pseudo-wait bit is on, the system is waiting for an
interrupvtion from that particular device. If this interruption is not
the one being waited for, DMSITI loads the saved I/0 o0l1d PSW. This will
again place the machine in the wait state. Thus, the program that is
waiting for a particular interruption will be kept waiting wuntil that
interruption occurs.

If the interruption is the one being waited for, DMSITI resets both
the pseudo-wait bit in the device table entry and the wait bit in the
I/0 o0ld PSW. It +then loads that PSW. This causes control to be
returned to the DMSIOW function routine, which, in turn, returns ccntrol
to the program that called it to wait for the interruption.

Terminal Interruptions

Terminal input/output interruptions are handled by the DMSCIT mcdule.
A1l interrupticns other than those containing device end, channel end,
attention, or unit exception status are ignored. If device end status

2-10 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

is present with attention and a write CCW was terminated, its buffer is
unstacked. An attention interrupt causes a read to be issued to the
terminal, unless attention exits have been gqueued via the STAX macro.
The attention exit with the highest priority is given control at each
attention until the dueue is exhausted, then a read is issued. Device
end status indicates that the last I/0 operation has been completed. If
the last I/O operation was a write, the line is deleted from the output
buffer and the next write, if any, is started. If the 1last I/O
operation was a normal read, the buffer is put on the finished read list
and the next operation is started. If the read was caused by an
attention interrupt, the line is first checked for the commands RT, HO,
HT, or HX, and the appropriate flags are set if one is found. Unit
exception indicates a canceled read. The read is reissued, wunless it
had been issued with ATTREST=N¥O, in which case unit exception is treated
as device end.

Reader/Punch/Printer Interruptions

Interruptions from these devices are handled by the routines that
actually issue the corresponding I/0 operations. When an interruption
from any of these devices occurs, control passes to DMSITI. Then DMSITI
passes control to DMSIOW, which returns control to the routine that
issued the TI/O operation. This rcutine can then analyze the cause of
the interruption.

User-Controlled Device Interruptions

Interrupts from devices under user control are serviced the same as CMS
devices except that DMSIOW and DMSITI manipulate a user-created device
table, and DHNMSITI passes control to any user-written interrupt
processing routine that is specified in +the wuser device table.
Otherwise, the processing program regains control directly.

Program Interruptions

The program interruption handler, DMSITP, receives control when a
program interruption occurs. When DMSITP gets control, it stores the
program old PSW and the contents cf the registers 14, 15, 0, 1, and 2
into the program interruption element (PIE). (The routine that handles
the SPIE macro instruction has already placed the address of the program
interruption ccntrol area (PICA) into PIE.) DMSITP then determines
whether or not the event that caused the interruption was one of those
selected by a SPIE macro instruction. If it was not, DMSITP passes
control to the DMSABN abend recovery routine.

If the cause of the interruption was one of those selected in a SPIE
macro instruction, DMSITP picks up the exit routine address from the
PICA and passes contrcl to the exit routine. Upon return from the exit
routine, DMSITP returns to the interrupted program by loading the
original program check o0ld PSW. The address field of +the PSW was
modified by a SPIE exit routine in the PIE.

CMS Introduction 2-11

Licensed Material -- Property of IBM

External Interruptions

An external interruption causes control to be passed to the external
interrupt handler DMSITE. If the user has issued the HNDEXT macro to
trap external interrupts, DMSITE passes control to the usert's exit
routine, If the interrupt was caused by the timer, DMSITE resets the
timer and types the BLIP character at the terminal. The standard BLIP
timer setting 1is two seconds, and the standard BLIP character is
uppercase, followed by the lowercase (it moves the typeball without
printing). Otherwise, control is passed to the DEBUG routine.

Machine Check Interruptions

Hard machine check interruptions on the real processor are not reflected
to a CMS virtual user by CP. A message prints on the console indicating
the failure. The user is then disabled and must IPL CMS again in order
to continue.

2-12 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Functional Information

The most important thing to remember about CMS, from a debugging
standpoint, is that it 1is a one-user system. The supervisor manages
only one user and keeps track of only one user's file and storage
chains. Thus, everything in a dump of a particular machine relates omnly
to that virtual machine's activity.

You should be familiar with register usage, save area structuring,
and control block relationships before attempting to debug or alter CMS.

Register Usage

¥hen a CMS routine is called, R1 must point to a valid parameter list
(PLIST) for that progranm. On return, RO may or may not contain
meaningful information (for example, on return from a call +to FILEDEF
with no change, RO will contain a negative address if a new FCB has been
set up; otherwise, a positive address of the already existing FCBY. R15
will contain the return code, if any. The use of Registers 0 and 2
through 11 varies. :

On entry to a command or routine called by SVC 202 the following are
in effect:

Register Contents

1 The address of the PLIST supplied by the. caller.
12 The address entry point of the called routine.
13 The address of a work area (12 doublewords) supplied by
SVCINT.
14 The return address to the SVCINT routine.
15 The entry point (same as register 12).

On return from a routine, Register 15 contains:

Return
Code Meaning
0 No error occurred
<0 Called rcutine not found
>0 Errcr occurred

If a CMS routine is called by an SVC 202, registers 0 through 14 are
saved and restored by CHMS.

Most CMS routines use register 12 as a base register.

Structure of DMISNUC

DMSNUC is the portion of storage in a CMS virtual machine that contains
system control blocks, flags, constants, and pointers.

The CSECTs in DMSNUC contain only symbolic references. This means
that an update or modification to CMS, which changes a CSECT in DMSNUC,
does not automatically force all CMS modules to be recompiled. Only
those modules that refer to the area that was redefined must be
recompiled.

CMS Introduction 2-13

TimAanecnAd Matarial -« Dranart+v af TRM

JSERSECT (USER ARERA)

The USERSFCT CSECT defines space that is not wused by CMS. A
modification or update to CMS can use the 18 fullwords defined for
USERSECT. There is a pointer (AUSER) in the NUCON area to the user
space.

DEVTAB (DEVICE TABLE)

The DEVTAB CSECT is a table describing the devices available for the CMS
system. The table contains the following entries:

console
disks
reader
puanch
printer
tapes

£ ek ot cwd N a

® & ¢ o 0 O

You can change some existing entries in DEVTAB. ©Each device table
entry contains the following information:

Virtual device address

Device flags

Device types

Symbol device name

Address of the interrupt processing routine (for the console)

The virtual. address of the console is defined at IPL time. The
virtual address of the user disks can be altered dynamically with the
ACCESS command. The virtual address of the tapes can be altered in the
device table. Changing the virtual address of the reader, printer, or
punch will have no effect.

Structure of CMS Storage

Figure 3 describes how CMS wuses its virtual storage. The pointers
indicated (MAINSTRT, MAINHIGH, FREELOWE, and FREEUPPR) are all found in
NUCON (the nucleus constant area).

The sections of CMS storage have the following uses:

e DMSNUC (X'00000' to approximately X'04000%). This area contains
pointers, flags, and other data updated by the various systenm
routines.

e CMS Nucleus First Part (X'04000' +to approximately X'09000'). This
area contains the following CMS Nucleus routines: DMSALU, DMSCIO,
DMSVIB, DMSVSR, DMSDBD, DMSDBG, DMSFET, DMSTIO, DMSTLA, DMSTQQ,
DMSITP, DMSABN, DMSITE, DMSPNT, DMSPIO, DMSLIO and DMSCPF.

e Low-Storage DMSFREE Free Storage Area (Approximately X'09000*' to
X*'0E000'). This area is a free storage area, from which requests
from DMSFREE are allocated. The top part of this area contains the
file directory for the System Disk (SSTAT). If there is enough room
{(as there will be in most cases), the FREETAB table also occupies
this area, Jjust below the SSTAT.

2-14 IBM VM/SP System Logic and Program Determination--Vecliume 2

Licensed Material -- Property of IBM

e Transient Program Area (X'0FE000' to X'10000%). Since it is not
essential to keep all nucleus functions resident in storage all the
time, some of them are made "transient." This means that when they
are needed, they are loaded from the disk into the transient program
area. Such programs may not be longer than two pages, because that
is the size of the transient area. (2 page is 4096 bytes of virtual
storage.) All transient routines must be serially reusable since

they are not read in each time they are needed.

e CMS Nucleus (X'10000' to X'20000'). Segment 1 of storage contains
the reentrant code for the CMS Nucleus routines. In shared CMS
systems, this is the "protected segment," which must consist only of
reentrant code, and may not be modified under any circumstances.
Thus, such functions as DEBUG breakpcints or CP address stops cannot
be placed in Segment 1 when it is a protected segment in a saved
system.

» User Program Area (X'20000' +to Loader Tables). User programs are
loaded into this area by the LOAD command. Storage allocated by
means of the GETMAIN macro instruction is taken from this area,
starting from the high address of the wuser program. In addition,
this storage area can be allocated from the top down by DMSFREE, if
there is not enough storage available in the 1low DMSFREE storage
area. Thus, the usable size of the user program area is reduced by
the amount of free storage that has been allocated from it by
DMSFREE.

e Loader Tables (Top pages of storage). The top of storage is occupied
by the 1loader tables, which are required by the CMS 1loader. These
tables indicate which modules are currently loaded in the wuser
program area (and the transient program area after a LOAD command).
The size of the loader tables can be varied by the SET LDRTBLS
command. However, to successfully change the size of the 1loader
tables, the SET LDRTBLS command must be issued immediately after IPL.

Free Storage Management

Free storage can be allccated by issuing the GETMAIN or DMSFREE macros.
Storage allocated by the GETMAIN macro is taken from the user program
area, beginning after the high address of the user program.

Storage allocated by the DHSFREE macro can be taken from . several
areas.

If possible, DMSFREE requests are allocated from the low address free
storage area. Otherwise, DMSFREE requests are satisfied from the
storage above the user program area.

There are two types of DMSFREE requests for free storage: requests
for USER storage and NUCLEUS storage. Because these two types of
storage are kept in separate 4K pages, it is possible for storage of one
type to be available in low storage, while no storage of the other type
is available.

CMS Introduction 2-15

Licensed Material -- Property of IBM

GETMAIN FREE STORAGE MANAGEMENT

All GETMAIN storage is allocated in the user program area, starting
after the end of the user's actual program. Allocation begins at the
location pointed to by the NUCON pointer MAINSTRT. The location
MAINHIGH in NUCON is the "high extend" pointer for GETMAIN storage.

Before issuing any GETMAIN macros, user programs must use the STRINIT
macro to set ur user free storage pointers. The STRINIT macro is issued
only once, preceding the initial GETMAIN request. The format of the
STRINIT macro is: '

L L
	lr r 1				
[label]	STRINIT	[TYPCALL=	SVC		
	Pl IBALRY				
1	1t L 41				
L []					
where:					
r R					
TYPCALL=	SYC				
BALR]					
L E
indicates how control is passed to DMSSTG, the routine that
processes the STRINIT macro. Since DMSSTG is a

nucleus-resident routine, other nucleus-resident routines can
branch directly to it (TYPCALL=BALR) while routines that are
not nucleus-resident must use linkage SVC (TYPCALL=SVC). If no
operands are specified, the default is TYPCALL=SVC.

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH are
initialized to the end of the user's program, in the user program area.
In addition, a DIAGNOSE code X'10' instruction is sent to release these
pages between MAINHIGH and FREELOWE. As storage is allocated from the
user program area to satisfy GETMAIN requests, the MAINHIGH pointer is
adjusted wupward. Such ad justments are always in multiples of
doublewords, so that this pointer is always on a doubleword boundary.
As the allocated storage is returned, the MAINHIGH pointer is adjusted
downward, and the freed pages are released by issuing a DIAGNOSE code
X'10' instruction to CP.

The pointer MAINHIGH can never be higher than FREELOWE, the "low
extend" pointer for DMSFREE storage allocated in the user program area.
If a GETMAIN request cannot be satisfied without extending MAINHIGH
above FREELOWE, then GETMAIN will take an error exit, indicating that
insufficient storage is available to satisfy the request.

The area between MAINSTRT and MAINHIGH may contain blocks of storage
that are not allocated and that are, therefore, available for allocation
by a GETMAIN instruction. These blocks are chained together, with the
first one pointed to by the NUCON 1location MAINSTRT. Refer to Figure 2
for a description of CMS virtual storage usage.

2-16 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

END OF STORAGE

VIRTUAL
STORAGE

FREEUPPR

System Loader Table {Size determined

by set LDRTBLS command
Y s command) e Key = X'F"

FREELOWE:

MAINHIGH

MAINSTRT

X20000"

DMSFREE requests when
no more low storage available Storage
Key = X'F*

Unused portion of User
Program Area

-~

Storage Key = X'E’

GETMAIN requests

JL
Ly

Storage
Key = X'E’

Area

- — —

The User‘s Program
(program is loaded via the
LOAD command)

vy

Storage Key = X'E

X10000"

CMS Nucleus
In “’saved systems'’ this area
is a protected segment =
{that is, all code must be A
reentrant and cannot be
modified)
Storage Key = X'F’

X'E000°

Transient Program Area

Storage Key = X'E’ [£

X'9000"

Low Storage DMSFREE Free Storage Area
DMSFREE requests are filled from
this area. The upper part of this
area contains the System Disk MFD
followed by the FREETAB, if there is
enough room.

Storage Key = X‘E’ or X'F*
CMS Nucleus ’
First part

Storage Key = X‘F’

X0

DMSNUC
System Control Blocks, flags, constants,
and pointers

Storage Key = X'F'*

Figure 3.

*The half-page containing OPSECT and TSOBLOKS
has a storage key = X’E’

CMS Storage Map

Licensed Material

> Program

CONTROL BLOCKS
N FREE STORAGE

DECB LDRST AFT ADT

CMSSAVE CMSCB FSTB

DMSNUC
USERSECT
SUBSECT
TSOBLKS
QPSECT
DMSABW
DMSFRT
DMSERT

CVTSECT
FVS

DIOSECT
SVCSECT
PGMSECT

1OSECT
EXTSECT
AFTSECT
ADTSECT
DEVTAB
§ Terminal Buffer and Saveareas

SYSREF

MACDIRC and TXTDIRC .
NUCON

CMS Introduction

Property of IBHM

2-17

The format <¢cf an element on the GETMAIN free element chain is as
follows:

{ | i
Remainder of this free element

r v T T

| FREPTR -- pointer to next free
0(0) 1| element in the chain, or 0

| if there is no next element

| | | |

| FRELEN -- length, in bytes, of
4y | this element

|

|

|

0) e e - - — . —]

When issuing a variable-length GETMAIN, additional pages are reserved
for CMS usage; this 1is a design value. A user who needs additional
reserved pages (for example, for larger directories) should free up some
of the variable GETMAIN storage from the high end.

2-18 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

[MSFREE FREE STORAGE MANAGEMENT

The DMSFREE macro allocates CMS free storage. The format of the DMSFREE
macro is:

r ~ . |
| | | r a {
{ [label] { DMSFREE | DWORDS={ n } |,HIN={ n }l [
| | | 0f 1 (M |
| | | L 4 f
| | I r r 1 r r 11 {
f | | |,TYPE=|USER 11 1,ERR=11addr]| |
| | i INUCLEUS| | | (I | 1
i | | L L 24 L L) |
| | I r r " r r 11 i
! | | | AREA=|LOW || |,TYPCALL=|SYC I} !
| ! (I |HIGH{| | |BALR| | |
‘ l ‘ L L 44 L L 43 l
[i]
where:

label

is any valid assembler language label.

DWORDS={ n }
(0)
is the number of doublewords of free storage requested.
DWORDS=n specifies the number of doublewords directly and
DWORIDS=(0) indicates that register 0 contains the number of
doublewords requested.

MIN={(?)}

indicates a variable request for free storage. If the exact
number of doublewords indicated by the DWORDS operand is not
available, then the 1largest block of storage that is greater
than or equal to the minimum is returned. MIN=n specifies the
minimus number of doublewords of free storage directly while
MIN=(1) indicates that the minimum is in TrTegister 1. The
actual amount of free storage allocated is returned to the
requestor via general register 0.

r]
TYPE=|{USER |
| NUCLEUS|
L Jd

indicates the type of CMS storage with which this request for
free storage is filled: USER or NUCLEUS.

r A
ERR=|1laddr|

[

L 4
is the return address if any error occurs. "laddr" is any
address that can be referred tc in an LA (load address)
instruction. The error return is taken if there is a macro
coding error or if there is not enough free storage available
to fill the request. If the asterisk (¥) is specified for the
return address, the error return is the same as a normal
return. There is 1no default for this operand. If it is
omitted and an error occurs, the system will abend.

CMS Introduction 2-19

Licensed Material -- Property of IBM

r h
AREA=|LOW |
| HIGH]|
L E
indicates the area of CMS free storage from which this request
for free storage is filled. LOW indicates the 1low storage
area between DMSNUC and the transient program area. HIGH
indicates the area of storage between the user program area
and the CMS loader tables. If AREA is not specified, storage
is allocated wherever it is available.

r

TYPCALL=]SYC
| BALR
L

b e

indicates how control is passed +to DMSFRFE. Since DMSFREE is
a nucleus-resident routine, other nucleus-resident routines
can branch directly to it (TYPCALL=BALR) while routines that
are not nucleus-resident must use linkage SVC (TYPCALL=SVC).

The pointers FREEUPPR and FREELOWE in NUCON indicate the amount of
storage that DMSFREE has allocated from the high portion of the user
program area. These pointers are initialized to the beginning of the
loader tables.

The pointer FREELOWE is the "low extend" pointer cf DMSFREE storage
in the user program area. As storage is allocated from the user program
area to satisfy DMSFREE requests, this pointer will be adjusted
downward. Such adjustments are always in multiples of 4K bytes, so that
this pointer is always on a 4K boundary. As the allocated storage is
returned, this pointer 1is adjusted wupward, and the freed pages are
released by issuing a DIAGNOSE CODE X'10' instruction to CP.

The pointer FREELOWE can never be lower than MAINHIGH, the "high
extend" pointer for GETMAIN storage. If a DMSFREE request cannot be
satisfied without extending FREELOWE below MAINHIGH, then DMSFREE will
take an error exit, indicating that storage is insufficient to satisfy
the request. Figure 3 shows the relationship of these storage areas.

The FREETAB free storage table is kept in free storage, usually in
low storage, Jjust below the Master File Directory for the System Disk
(S-disk) . However, the FREETAB may be located at the top of the user
program area. This table contains one byte for each page of virtual
storage. Each such byte contains a code indicating the use of that page
of virtual storage. The codes in this table are as follows:

Code Meaning

USERCODE (X'01') The page is assigned to user storage.

NUCCODE (X'02') The page is assigned to nucleus storage.

TRNCODE (X'03'") The page is part of the transient program area.

USARCODE (X'0u4t') The page is part of the user program area.

SYSCODE (X'05") The page is none of the above. The page is assigned
to system storage, system code, or the loader
tables.

2-20 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Other DMSFREE storage pointers are maintained in the DMSFRT CSECT, in
The four chain header blocks are the most important fields in

NUCON.,
DMSFRT.
e The
e The
e The
e The
For eac

FLAGS

The four chains of unallocated elements are:

low storage nucleus chain
low storage user chain
high storage nucleus chain
high storage user chain

h of these chains of unallocated elements, there is a control
block consisting of four words, with the following format:

r

Ll v L
POINTER -- pointer to the first

{ byte | key

code |
4

-
| |

0(0) 1 free element on the chain, or |
| zero, if the chain is empty. i

| | l | |

| NUM -- the number of elements on |
4wy the chain. 1
{ |

| | { | |

| MAX -- a value equal to or greater|

8 (8) 1 than the size of the largest l
H elenment. !

| | | { |

| FLAGS- | SKEY - | TCODE -{ Unused {

12 (C) |Flag |Storage |FREETAB | i
| |

(])

points to the first element on this chain of free elements.
If there are no elements on this free chain, then the POINTER

field contains all zeros.

contains the number of elements on this chain of free
elements. If there are no elements on this free chain, then

this field contains all zeros.

is used to avoid searches that will fail. It contains

a

number not exceeding the size, in bytes, of the 1largest
element on the free chain. Thus, a search for an element of a

given size will not be made if that size exceeds the

MAX

field. However, this number may actually be 1larger than the

size c¢f the largest free element on the chain.

The following flags are used:

FLCLN (X'80') -- Clean-up flag. This flag is set if the chain
must be updated. This will be necessary in the following

circumstances:

e If one of the two high storage chains contains a 4K page to
which FREELOWE points, then that page can be removed from

the chain, and FREELOWE can be increased.

e All completely unallocated 4K pages are kept on the user
chain, by convention. - Thus, if one of the nucleus chains

(low storage or high storage) contains a full page,
this page must be transferred to the corresponding
chain.

CMS Introduction

Licensed Material -- Property of iIBX

then
user

2=-21

FLCLB (X'40') -- Destroyed flag. Set if the chain has been
destroyed.

FLHC (X'20') -- High storage chain. Set for both the nucleus
and user high-storage chains.

FLNU (X'10') -- ©Nucleus chain. Set for roth the low storage
and high storage nucleus chains.

FLPA (X'08') -- Page available. This flag is set if there is
a full 4K page available on the chain. This flag may Le set
even if there is no such page available.

SKEY contains the one-byte storage key assigned to storage on this
chain.

TCODE contains the one-byte FREETAB table code for storage on this
chain.

Allocating User Free Storage

When DMSFREE with TYPE=USER (the default) is called, one or more of the
following steps are taken in an attempt to satisfy the request. As soon
as one of the following steps succeeds, then user free storage
allocation processing terminates.

1. Search the low storage user chain for a block of the required size.

2. Search the high storage user chain €for a block of the required
size.

3. Extend high storage user storage downward into the user progranm
area, modifying FREELOWE in the process.

4. PFor a variable reqguest, put all available storage in the user
program area onto the high storage wuser chain, and then allocate
the largest block available on either the high storage user chain
or the 1low storage user chain. The allocated block will not be
satisfactory unless it is larger than the minimum requested size.

When DMSFREE with TYPE=NUCLEUS is called, the following steps are taken
in an attempt to satisfy the request, until one succeeds:

1. Search the 1low storage nucleus chain for a block of the required
size.

2. Get free pages from the 1low storage user chain, if ény are
available, and put them on the low storage nucleus chain.

3. Search the high storage nucleus chain for a block of the required
size.

4, Get free pages from the high storage user chain, if they are
available, and put them on the high storage nucleus chain.

5. Extend high storage nucleus storage downward into the User Progranm
Area, modifying FREELOWE in the process.
2-22 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

6. For variable requests, put all available pages frcm the user chains
and the user program area onto the nucleus chains, and allocate the
largest block available on either the low storage nucleus chains,
or the high storage nucleus chains.

The DMSFRET macro releases free storage previously allocated with the
DMSFREE macro. The format of the DMSFRET macro is:

r - R
| [label] | DMSFRET | DWORDS={ n },LOC={laddr} |
! | | () ol 1
! 1 l r r Ut o r 11 i
	{ {,ERR={1laddr({ {,TYPCALL=	SYVC				
	[R B		BALR		
' ' L	8 o 34 L L					
L |
where:

label is any valid Assembler language label.

DWORDS={ n is the number of doublewords of storage to be released.
{(O)} CLWORDS=n specifies the number of doublewords directly and
DWORDS=(0) indicates that register (contains the number

of doublewords being released.

LOC=(laddr is the address of the block of storage being released.
{ (@B } "laddr" is any address that can be referred to in an LA
(load address) instruction. LOC=1laddr specifies the
address directly while LOC=(1) indicates the address is

in register 1.

r 1

ERR=|1laddr| is the return address if an error occurs. "laddr" is any
Pox address that can be referred to by an LA (load address)
L 4 instruction. The error return is taken if there 1is a

macro coding error or if there is a problem returning the
storage. If an asterisk (*) is specified, the error
return address is the same as the normal return address.
There is no default for this operand. If it is omitted
and an error occurs, the system will abend.

-
TYPCALL=| indicates how control is passed to DMSFRET. Since DMSFRET

| is a nucleus-resident routine, other nucleus-resident
routines can branch directly to it (TYPCALL=BALR) while
routines that are not nucleus-resident mnust use SVC

linkage (TYPCALL=SVC).

SYC
BALR

[R |

L

When DMSFRET is called, the block being released is placed on the
appropriate chain. At that point, the £final wupdate operation is
performed, if necessary, to advance FREELOWE, or to move pages from the
nucleus chain to the corresponding user chain.

Similar update operations will be performed, when necessary, after
calls to DMSFREE, as well.

CMS Introduction 2-23

Licensed Material -- Property of IBM

RELEASING ALLOCATED STORAGE

Storage allocated by the GETMAIN macro instruction may be released in
any of the follcwing ways:

1. A specific block of such storage may be released by means of the
FREEMAIN macro instruction. A1l the corresponding full pages in
the freed blocks are released by issuing a DIAGNOSE code X'10!
instruction to CP.

2. The STRINIT macro instruction releases all storage allocated by
any previous GETMAIN requests. All corresponding full pages
between MAINHIGH and FREELOWE are released by issuing a DIAGNOSE
code X'10' instruction to CP.

3, Almost all CMS commands issue a STRINIT macro instruction. Thaus,
executing almost any CMS command will cause all GETMAIN storage to
be released.

Storage allocated by the DMSFREE macro instruction may be released in
any of the fcllcwing ways:

1. A specific block of such storage may be released by means of the
DMSFRET macro instruction.

2. Whenever any user routine or CMS command abnormally terminates (so
that the routine DMSABN 1is entered), and the abend recovery
facility of +the system 1is invoked, all DMSFREE storage with
TYPE=USER is released automatically.

Except in the <case of abend recovery, storage allocated by the
DMSFREE macro is never released automatically by the systenm. Thus,

storage allocated Lty means of this macro instruction should always be
released explicitly ty means of the DMSFRET macro instruction.

DMSFREE SERVICE ROUTINES

The DMSFRES macro instruction is used by the system to request certain
free storage management services.

The format of the DMSFRES macro is:

r]
1 | { INIT2 |,TYPCALL={SYC || i
		CHECK		BALR		
		CKON L L a4				
		CKOFF				
		UREC {				
{ I | CALOC |
L 3
where:
label is any valid Assembler language label.
INITH invokes the first free storage initialization routine, so
that free stcrage requests can be made to access the
system disk. Before INIT1 is invoked, no free storage

2-24 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

INIT2

CHECK

CKON

requests may be made. After INIT!1 has been invoked, free
storage requests may be made, but these are subject to
the fcllowing restraints until the second free storage
management initjalization routine has been invoked:

e All requests for USER type storage are changed to
requests for NUCLEUS type storage.

e Error checking is limited before initialization is
complete. In particular, it is sometimes possiktle to
release a block that was never allocated.

e All requests that are satisfied in high storage must
be of a temporary nature, since all storage allocated
in high storage 1is released when the second free
storage initialization routine is invoked.

When CP's saved system facility is used, the CMS system
is saved at the point -just after the A-Disk has been made
accessible. It is necessary for DMSFRE to be used before
the size of virtual storage is kncwn, since the saved
system can be used on any size virtual machine. Thus,
the first initialization routine initializes DMSFRE so
that limited functions can be requested, while the second
initialization routine performs the initialization
necessary to allow the full functions of DMSFRE to be
exercised.

invokes the second initialization routine. This routine
is invoked after the size of virtual storage is known,
and it performs initialization necessary to allow all the
functions of DMSFRE to be used. The second
initialization routine performs the following steps:

¢ Releases all storage that has been allocated in the
high storage area.

e Allocates the FREETAB free storage table. This table
contains one byte for each 4K page of virtual storage,
and so cannot be allocated until the size of virtual
storage is known.

e The FREETAB table is initialized, and all storage
protection keys are initialized.

e 211 completely unallocated 4K pages on the low storage
nucleus free storage chain are removed to the user
chain. Any other necessary operations are performed.

invokes a routine that checks all free storage chains for
consistency and correctness. Thus, it checks to see
whether or not any free storage pointers have been
destroyed. This option can be used at any time for
system debugging.

turns on a flag that causes the CHECK routine to be
invoked each time a call is made to DMSFREE or DMSFRET.
This can be wuseful for debugging purposes (for example,
when you wish to identify the routine that destroyed free
storage management pointers). Care should be taken when
using this option, since the CHECK routine is coded to be
thorough rather than efficient. Thus, after the CEKON
option has been invoked, each <call to DMSFREE or DMSFRET
will take much longer to be completed than before.

CMS Introduction 2-25

Licensed Material -- Property of IBM

CKOFF

UREC

CALOC

-

TYPCALL=

w ln

-

ERROR CODE

A nonzero

turns off the flag that was turned on by the CKON option.

is used by DMSABN during the abend recovery process to
release all user storage.

is used by DMSABN after the abend recovery process has
teen completed. It invokes a routine which returns, in
register 0, the number of doublewords of free storage
that have been allocated. This number is used by DMSABN
to determine whether or not the abend recovery has been

successful.
1
V¥C | indicates how control is passed to DMSFES. Since DMSFRES
ALR| is a nucleus-resident routine, other nucleus-resident
J

routines can branch directly to it, (TYPCALL=BALR) while
routines that are not nucleus-resident must use SVC
linkage (TYPCALL=SVC). '

S FROM CMSFRES, DMSFREE, AND DMSFRET

return code upon return from DMSFRES, DMSFREE, or DMSFRET

indicates that the request could not be satisfied. Register 15 contains

this retur
codes appl

Code

n code, indicating which error has occurred. The following
y to the DMSFRES, DMSFREE, and DMSFRET macros.

Error

1

2-26 IBM

(DMSFREE) Insufficient storage space is available to satisfy
the request for free storage. In the case of a variable
request, even the minimum request could nct be satisfied.

(DMSFREE or DMSFRET) User storage pointers destroyed.

(DMSFREE, DMSFRET, or DMSFRES) Nucleus storage pointers
destroyed.

(DMSFREE) An invalid size was requested. This error exit is
taken if the requested size is not greater than zero. In the
case of variable requests, this error exit is taken if the
minimum request is greater than the maximum Tequest.
(However, the latter error is not detected if DMSFREE is able
to satisfy the maximum request.)

(DMSFRET) An invalid size was passed to the DMSFRET macro.
This error exit is taken if the specified 1length is not
positive.

(DMSFRET) The block of storage that is being released was
never allocated by DMSFREE. Such an error is detected if one
of the following errors is found:

e The block does not 1lie entirely inside either the 1low
storage free storage area or the user program area between
FREELOWE and FREEUPPR.

e The block crosses a page boundary ¢that separates a page
allocated for USER storage from a page allocated for
NUCLEUS type storage.

e The block overlaps another block already on the free
storage chain.

V¥/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

7 (DMSFRET) The address given for the block being released is
not doubleword aligned.

8 (DMSFRES) An invalid request code was passed to the DMSFRES
routine. Since all request codes are generated by the DMSFRES
macro, this error code should never appear.

9 (DMSFREE, DMSFRET, or DMSFRES) OUnexpected and unexplained
error in the free storage management routine.

CMS HANDLING OF PSW KEYS

The purpose of the CMS Nucleus protection scheme is to protect the CMS
nucleus from inadvertent destruction by a user program. Without it, it
would be possible, for example, for a FORTRAN user who accidentally
assigns an incorrectly subscripted array element to destroy nucleus
code, wipe out a crucial table or constant area, or even destroy an
entire disk by destroying the contents of the master file directory.

In general, user programs and disk-resident CMS commands are executed
with a PSW key of X'E', while nucleus code is executed with a PSW key of
Xtor.,

There are, however, some exceptions to this rule. Certain
disk-resident CMS commands run with a PSW key of X'0', since they have a
constant mneed to modify nucleus pointers and storage. The nucleus
routines called by the GET, PUT, READ, and WRITE macros run with a user
PSW key of X'E', to increase efficiency.

Two macros are available to any routine that wishes to change its PSW
key for some special purpose. These are the DMSKEY macro and the DMSEXS
macro.

The DMSKEY macroc may be used to change the PSW key to the user value
or the nucleus value. The DMSKEY NUCLEUS option causes the current PSW
key to be placed in a stack, and a value of 0 to ke placed in the PSW
key. The DMSKEY USER option causes the current PSW key to be placed in
a stack, and a value of X'E' to be placed in the PSW key. The DMSKEY
RESET option causes the top value in the TMSKEY stack to be removed and
re-inserted into the PSH.

I+ is a requirement of the CMS system that when a routine terminates,
+he DMSKEY stack must be empty. This means that a routine should
execute a DMSKEY RESET opticn for each DMSKEY NUCLEUS option and each
DMSKEY USER option executed by the routine.

The DMSKEY key stack has a current maximum depth of seven for each
routine. In this context, a "routine"™ is anything invoked by an SVC
call.

The DMSKEY LASTUSER option causes the current PSW key to be placed in
the stack, and a new key inserted into the PSW, determined as follows:
*he SVC system save area stack is searched in reverse order (top to
bottom) for the first save area corresponding to a user routine. The
DSW key that was in effect in that routine is then taken for the new PSW
key. (If no user routine is fcund in the search, then LASTUSER has the
same effect as USER.) This option is used by OS macro simulation
routines when they wish to enter a user-supplied exit routine; the exit
routine is entered with the PSW key of the last user routine on the SVC
system save area stack.

CMS Introduction 2-27

Licensed Material -- Property of IBM

The NOSTACK option of DMSKEY may be wused with NUCLEUS, USER, or
LASTUSER (as in, for example, DMSKEY NUCLEUS,NOSTACK) if the current key
is not to be placed on the DMSKEY stack. If this option is used, then
no corresponding DMSKEY RESET should he issued.

The DMSEXS ("execute in system mode") macro instruction is useful in
situations where a routine is being executed with a user protect key,
tut wishes to execute a single instruction that, for example, sets a bit
in the NUCON area. The single instruction may be specified as the
argument to the DMSEXS macro, and that instruction will be executed with
a system PSW key.

Whenever possible, CMS commands are executed with a user protect key.
This protects the CMS Nucleus in cases where there is an error in the
systemn command that would otherwise destroy the nucleus. If the command
must execute a single instruction or small group cf instructions that
nodify nucleus storage, then the DMSKEY or DMSEXS macros are used, so
that the system PSW key will be used for as short a period of time as is
possible.

CMS SVC HANDLING
DMSITS (INTSVC) 1is the CMS system SVC handling routine. The general
operation of DMSITS is as follows:

1. The SVC new PSW (low storage location X'60') contains, in the
address field, the address of DMSITS1. The DHMSITS module will be
entered whenever a supervisor call is executed.

2. DMSITS allocates a system and user save area. The user save area
is used as a register save area (or work area) by the called
routine.

3. The called routine is called (via a LPSW or BALR).

4., Upon return from the called routine, the save areas are released.

5. Control is returned to the caller (the routine that originally made
the SVC call).

SVC TYPES AND LINKAGE CONVENTIONS

SVC conventions are important to any discussion of CMS because the
system is driven by SVCs (supervisor calls). SVCs 202 and 203 are the
most common CMS S5VCs.

SVC 202

SVC 202 is used both for calling nucleus-resident routines, and for
calling routines written as commands (for example, disk resident
modules) .

2-28 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

A typical coding sequence for an SVC 202 call is the following:

LA R1,PLIST
SVC 202
DC AL4 (ERRADD)

The "DC ALY4 (address)™ instruction following the SVC 202 is optional,
and may be omitted if the programmer does not expect any errors to occur
in the routine or command being called. If included, an error return is
made to the address specified in the DC. DMSITS determines whether this
DC was inserted by examining the byte following the SVC call inline. A
nonzero byte indicates an instruction, a zero value indicates that "DC
ALY faddress)" follows.

Whenever SVC 202 is called, a tokenized cr untokenized parameter list
(PLIST) can be specified. In both cases, register 1 points to an
eight-character =string defining the symbolic name of the routine or
command being called. The SVC handler will examine only the name and
the high-order byte of register 1.

Tokenized PLIST: TFor a tokenized parameter list, +the symtolic name
of the function being called (8 character string, padded with blank
characters on the right if needed) will be followed by extra arguments
depending on the actual routine or command being called. These
arquments must be "tokenized" (that is, have a maximum length of eight
characters, padded on the right with blank characters if shorter than
eight characters). Extra information on +the origin of the call is
provided by the high-order byte of register 1. 1If the contents of this
kyte is equal to:

X'0E!' - the call is the result of a command invoked from an EXEC file
with the "ECONTROL NOMSG™".

X'0D' - the call is the result of a command invoked from an EXEC with
"SCONTROL MSG" (that is, messages are to be displayed).

X¥'0C' - the command is called as a result of it's name being typed at
the terminal. This flag byte may be used, for example, to
recognize the need for human readable messages instead of return
codes.

! - the call did not originate from an EXEC file or a command typed
at the terminal.

>
(o]
D

Untokenized PLIST: For an untokenized parameter iist, no restriction
is put on the structure of the arguments 1list passed to the called
routine or command. The high-order byte of register 1 contains X'0%1' or
X'02', X'01' means a normal hierarchy search is done in the manner
descrited under the "“SEARCH HIERARCHY FOR SVC 202" section of this
manual. TIf it ccntains X'02', the search for the called routine is
limited to the SUBCOM 1list (see the section entitled "Dynamic

CMS Introduction 2-29

Licensed Material -- Property of IBM

Linkage/SUBCOM" in this manual). Register 0 points to the untokenized
PLIST which is constituted of four consecutive words:

1DC A ("Reserved Word")
2DC A (CMDBEG)

3DC & (CMDEND)

4DC A (0)

where the last two addresses are defined by:

CMDBEG EQU *
DC C'QUERY INPUT'
CMDEND EQU *

CMDBEG EQU * indicates the beginning of the argument list and CMDEND EQU
¥ indicates the end of the argument list.

Sve 203

SVC 203 is <called by CMS macros to perform various internal systenm
functions. It is used to define SVC calls for which no parameter list
is provided. For example, DMSFREE parameters are passed in registers 0
and 1.

A typical calling sequence for an SVC 203 call is as follows:

SvcC 203
DC Hi'code!

The halfword decimal code following the SVC 203 indicates the
specific routine being called. DMSITS examines this halfword code,
taking the absolute value of the code by an LPR instruction. The first
byte of the result 1is ignored, and the second byte of the resulting
halfword i€ used as an index to a branch table. The address of the
correct routine is loaded, and control is transferred to it.

It is possible for the address in the SVC 203 index table to be zero.
In this case, the index entry will contain an 8-byte routine or command
name, which will be handled in the same way as the 8-byte name passed in
the parameter list to an SVC 202.

The programmer indicates an error return by the sign of the halfword
code. If an error return is desired, then the code is negative. 1If the
code 1is positive, then no error return is made. The sign of the
halfword code has no effect on determining the routine that is to be
called, since DMSITS takes the absolute value of the code to determine
the routine called.

Since only the second -byte of the absolute value of the code is
examined by DMSITS, seven bits (bits 1-7) are available as flags or for
other uses. Thus, for example, DMSFREE uses these seven bits to
indicate such things as conditional requests and variable requests.

1The first word is reserved.

2The second gives the beginning address of the argument list.

3The third gives the address of the byte immediately following the end
of the argument list.

4The fourth word is optional. Any words following this word are
available for passing information between the calling program and the
program being called.

2-30 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

When an SVC 203 is invoked, DMSITS stores the halfword code into the
NUCON location CODE203, so that the called routine can examine the seven
bits made available to it.

A1l calls made by means of SVC 203 should be made by macros, with the
macro expansion computing and specifying the correct halfword code.

User-Handled SVCs

The programmer may use the HNDSVC macro to specify the address of a
routine that will handle any SVC call other than for SVC 202 and SVC
203.

In this case, the 1linkage conventions are as required by the
user-specified SVC-handling routine.

S and VSE Macro Simulation SVC Calls

CMS supports selected SVC calls generated by O0S and VSE macros, by
simulating the effect of these macro calls. DMSITS is the initial SVC
interrupt handler. TIf the SET DOS command has been issued, a flag in
NUCON will indicate that VSE macro simulation is to be used. Control is
then passed to DMSDOS. Otherwise, 0S macro simulation is assumed and
DMSITS passes control to the appropriate OS simulation routine.

Invalid SVC Calls

There are several types of invalid SVC calls recognized by DMSITS.

1. 1Invalid SVC number. If the SVC number does not fit into any of the
four classes described above, then it is not handled by DMSITS. An
appropriate error message is displayed at the terminal, and control
is returned directly to the caller.

2. Invalid routine mname in SVYC 202 parameter 1l1list. If the routine
named in the SVC 202 parameter list is invalid or cannot be found,
DMSITS handles the situation in the same way as it handles an error
return from a legitimate SVC routine. The error code is -3.

3. Invalid SVC 203 <code. If an invalid code follows SVC 203 inline,

then an error message is displayed, and the abend routine is called
to terminate execution.

SEARCH HIERARCHY FOR SVC 202

When a program issues SVC 202, passing a routine or command name in the
parameter list, then DMSITS must be searched for the specified routine
or command. (In the case of SVC 203 with a zero in the table entry for
the specified index, the same logic must be applied.)

CMS Introduction 2-31

Licensed Material -- Property of IBM

The search algorithm is as follows:

1. A check is made to see if there is a routine with the specified
name currently occupying the system transient area. If this is the
case, then control is transferred there.

2. The system function name table is searched, to see if a command by
this name 1is a nucleus-resident command. If the search is
successful, ccntrol goes to the specified nucleus routine.

3. A search is then made for a disk file with the specified name as
the filenare, and MODULE as the filetype. The search is made in
the standard disk search order. If this search is successful, then
the specified module is 1loaded (via the LCADMOL command), and
control passes to the storage location now occupied by the command.

4, TIf all searches so far have failed, then DMSINA (ABBREV) is called,
to see if the specified rcutine name is a valid system abbreviation
for a system command or function. User-defined abbreviations and
synonyms are also checked. TIf this search 1is successful, then
steps 2 through 4 are repeated with the full function name.

5. If all searches fail, then an error code of -3 is issued.

Commands Entered from the Terminal

When a command 1is entered from the terminal, TIMSINT processes the
command line, and calls the scan routine to convert it into a parameter
list consisting of eight-byte entries. The following search is
performed:

1. DMSINT searches for a disk file whose filename is the command name,
and whose filetype is EXEC. If this search is successful, EXEC is
invoked to process the EXEC file.

If not found, the command name 1is considered to be an abbreviation
and the appropriate tables are examined. If found, the abbreviation
is replaced by its full equivalent and the search for an EXEC file
is repeated.

2. TIf there 1is no EXEC file, DMSINT executes SVC 202, passing the
scanned parameter 1list, with the command name in the first eight
bytes. DMSITS will perform the search described for SVC 202 in an
effort to execute the command.

3. If DMSITS returns to DMSINT with a return code of -3, indicating
that the search was unsuccessful, then DMSINT uses the CP DIAGNOSE
facility to attempt to execute the command as a CP command.

4, TIf all of these searches fail, then DMSINT displays the error
message UNKNOWN CP/CMS COMMAND.

See Figure U4 for a description of this search for a command name.

USER AND TRANSIENT PROGRAM AREAS

Two areas can hold programs that are loaded from disk. These are called
the user program area and the transient program area. (See Fiqure 3 for
a description of CMS storage usage.) A summary of CP, CMS. IPCS, and

2-32 IBM VM/SP System Logic and Program Determination--vVolume 2

Licensed Material -- Property of IBY

User enters
name at terminal

Read line
from terminal
(“name. ..")

Implied
EXEC

Now in Effect
{Note 1)

Name is now
the real name
froma
Synonym
Table

Figure 4,

) Expand Line by
Does file inserting the
““name EXEC" command name
exist EXEC to
EXEC name
name a
Synonym or
abbreviation
for some real name,
No| Y
4
Issue SVC 202
(See the SVC 202
Subroutine}

Display
UNKNOWN
CP CMS
COMMAND

CMS Command

T2 mamarm~AAd Madarial

Display Ready
message with
error code if
RC=0

(SVC 202 name ’

Name is now the
real name from the
Synonym Table

Pass line
to CP
for processing

Was
command
found and
executed

©

(and Request) Processing

name
now in transient

Attempt to execute
LOADMOD name
MODULE from disk

the LOADMOD N Yes

Y

Pass control to the
routine (in the nucleus,
transient area, or

user area) to execute
the command

an abbreviation
or Synonym for
some real name

Yes

Y

Upon completion,
return to SVC routine

|

Set RC=3

Y

Return to routine that'
issued the SVC 202

Notes:

1. If the terminal line was actually from an EXEC
file, or if the command SET IMPEX OFF has
been executed, implied EXEC is not in effect.

2. A —3 return code indicates SVC 202 processing
did not find the command.

3. if the terminal line was actually from an EXEC
file, or if the command SET IMPEX OFF has
been executed, implied CP is not in effect.

CMS Introduction 2-33

-= Pranertv of TRM

RSCS modules and their attributes, including whether they reside in the
user program area or the transient area 1is contained in the ¥M/370
Release S5 Guide.

The user program area starts at location X*20000' and extends upward
to the loader tables. Generally, all user programs and certain system
commands (such as EDIT, and COPYFILE) are executed in the user progran
area. Since only one program can be executing in the user program area
at any one time, it is impossible (without unpredictable results) for
one program being executed in the user program area to invoke, by means
of SVC 202, a module that is also intended to be executed in the user
program area.

The transient program area is two pages long, extending from location
X'EQ00' to 1location X'PFFF'. It provides an area for system commands
that may also be 1invoked from the user program area by means of an SVC
202 call. When a transient module is called by an SVC, it is normally
executed with the PSW system mask disabled for I/0 and external
interrupts.

The transient program area is also used to handle certain OS macro
simulation SVC <calls. OS SVC calls are handled by the O0S simulation
routines located either in the CMSSEG discontiguous shared segment or in
the user program area, as close to the loader tables as possible. 1If
DMSITS cannot find the address of a supported 0S SVC handling routine,
then it loads the file DMSSVT MODULE into the transient area, and lets
that routine handle the SVC.

A program being executed in the transient program area may not invoke
another program intended for execution in the transient program area,
including O0S macro simulation SVC calls that are handled by DMSSVI. For
example, a program being executed in the transient program area may not
invoke the RENAME command. In addition, it may not invoke the 0S macro
WTO, which generates an SVC 35, which is handled by DMSSVT.

DMSITS starts the programs to be executed in the user program area
enabled for all interrupts but starts the programs to be executed in the
transient program area disabled for all interrupts. The individual

program may have to use the SSM (Set System Mask) instruction to change
the current status of its system mask.

CALLED ROUTINE START-UP TABLE

Figures 5 and 6 show how the PSW and registers are set up when the
called routine is entered.

2-34 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

"Called" Type System Mask Storage Key Problem Bit

SVC 202 or 203
~ Nucleus
resident

Disabled Systenm Off

SVC 202 or 203
- Transient
area MODULE

Disabled User off

|
|
|
|
|
|
|
|
|
|
SVC 202 or 203 | Enabled User Off

- User area |

|

I

|

|

|

|

|

|

|

|

User-handled Enabled User off

0S - VYSE
Nucleus
resident

Disabled Systenm off

0S - VSE
Transient
area module

Disabled off

1
|
!
|
|
|
|
|
i
|
|
|
|
|
|
|
1
|
|
Systen |
|
1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
1
1
1
|
l

. ——— s D " s - — —— . o . —]
e o e —— — — —— —— — —— - — — ———— o — o)

Figure 5. PSW Fields When Called Routine Starts

v Rl
| |Registers|Registers|Register|Register|Register|Register|
| Type | 0 -1 | 2 - 11| 12 | 13 i 14 | 15 |
| t 1 | | | | {
{SVC 202|Same as |Unpre- {Address |User |Return |Address |
{ or 203\ caller | dictablel of | save | address| of |
| | | | called | area | to | called |
| | | | routine] | DMSITS | routine]
Other	Same as	Same as	Address	User	Return	Same as
	caller	caller	of	save	address	caller
i		caller	area	to {		
		{		DMSITS	1	
[1

Figure 6. Register Contents When Called Routine Starts
RETURNING TO THE CALLING ROUTINE
When the called routine finishes processing, control is returned to

DMSITS, which in turn returns control to the calling routine..

Return Location

The return 1is accomplished by loading +the original SVC old PSW (which
was saved at the time DMSITS was first entered), after possibly
modifying the address field. The address field modification depends
upon the type of S¥C call, and upor-whether or not the called routine
indicated an error return.

For SVC 202 and 203, the called routine indicates a normal return by

placing a zero in register 15 and an error return by placing a nonzero
code in register 15. If the called routine indicates a normal return,

CMS Introduction 2-35

TLoenmnd Mat~Arial —-- DrAanoTtv of TBM

then DMSITS makes a normal return to the calling routine. If the called
routine indicates an error return, DMSITS passes the error return to the
calling routine, if one was specified, and abnormally terminates if none
was specified.

For an SVC 202 nct followed by "DC AL4 (address) ", a normal return is
made to the instruction following the SVC instruction, and an error
return causes an abend. For an SVC 202 followed by "DC ALY (address)", a
normal return is made to the instruction following the DC, and an error
return is made to the address specified in the ©IC. 1In either case,
register 15 contains the return code passed back by the called routine.

For an SVC 203 with a positive halfword code, a normal return is made
to the instruction following the halfword code, and an error return
causes an abend. For an SVC 203 with a negative halfword code, both
normal and errcr returns are made to the instruction following the
halfword code. In any case, register 15 contains the return code passed
back by the called routine.

For macro simulation SVC calls, and for user-handled SVC calls, no
error return is recognized by DMSITS. As a result, DMSITS always
returns to the calling routine by loading the SVC old PSW, which was
saved when DMSITS was first entered.

Upon entry to DMSITS, all registers are saved as they were when the SVC
instruction was first executed. Upon exiting from DMSITS, all registers
are restored from the area in which they were saved at entry.

The exception to this is register 15 in the case of SVC 202 and 203.
Upon return to the calling routine, register 15 always contains the
value that was in register 15 when the called routine returned to DMSITS
after it had completed processing.

Called Routine Modifications to System Area

If the called routine has system status, so that it runs with a PSW
storage protect key of 0, then it may store new values into the Systen
Save Area.

If the called routine wishes to modify the location to which control
is to be returned, it must modify the following fields:

e For SVC 202 and 203, it must modify the NUMRET and ERRET (normal and
error return address) fields.

e TFor other SVCs, it must modify the address field of OLDPSW.

To modify the registers that are to be returned to the calling routine,
+he fields EGPR1, EGPR2, ..., EGPR15 must be modified.

If this action is taken by the called routine, then the SVCTRACE
facility may print misleading information, since SVCTRACE assumes that
these fields are exactly as they were when DMSITS was first entered.
Whenever an SVC call is made, DMSITS allocates two save areas for that
particular SVC call. Save areas are allocated as needed. For each SVC
call, a system and user save area are needed.

2-36 1IBM VM/SP System Logic and Program Determination--vVolume 2

Licensed Material -- Property of IBM

When the SVC-called routine returns, the save areas are not released,
but are kept for the next SVC. At the completion of each command, all
SVC save areas allocated by that ccmmand are released.

The System Save Area is used by DMSITS to save the value of the SVC
0old PSW at the time of the SVC call, the calling routine's registers at
the time of the call, and any other necessary control information.
Since SVC calls can be nested, there <can be several of these save areas
at one time. The system save area is allocated in protected free
storage.

The user save area contains 12 doublewords (24 words), allocated in
unprotected free storage. DMSITS does not use this area at all, but
simply passes a pointer to this area (via register 13.) The called
routine can wuse this area as a temporary work area, or as a register
save area. There is one user save area for each system save area. The
USAVEPTR field in the system save area points to the user save area.

The exact format of the system save area can be found in the VM/SP
Data Areas and Control Block logic. The most important fields, and
their uses, are as follows:

Field Usage

CALLER {(Fullword) The address of the SVC instruction that resulted in
this call.

CALLEE (Doubleword) Eight-byte symbolic name of the called routine.

For O0S and wuser-handled SVC calls, this field contains a
character string of the form SVC nnn, where nnn is +the SVC
number in decimal.

CODE (Halfword) For SVC 203, this field contains the halfword code
following the SVC instruction line.

OLDPSW (Doubleword) The SVC o0ld PSW at the time that DMSITS was
entered.

NRMRET (Fullword) The address of the calling routine to which control
is to be passed in the case of a normal return from the called
routine.

ERRET (Fullword) The address of the calling routine to which contreol
is to be passed in the case of an error return from the called
routine.

EGPRS (16 Fullwords, separately labeled EGPRO, EGPR1, EGPR2, EGPR3,

..+, EGPR15) The entry registers. The contents of the
general registers at entry to DMSITS are stored in these
fields.

EFPRS (4 Doublewords, separately labeled EFPRO, EFPR2, EFPR4, EFPR6)
The entry floating-point registers. The contents of the
floating-point registers at entry to DMSITS are stored in
these fields.

SSAVENXT (Fullword) The address of the next system save area in the
chain. This points to the system save area that is being
used, or will be used, for any SVC call nested in relaticn to
the current one.

SSAVEPRV (Fullword) The address of the previous system save area in
the chain. This points to the system save area for the SVC
call in relation to which the current call is nested.

USAVEPTR (Fullword) Pointer to the user save area for this SVC call.

CMS Introduction 2-37

Licensed Material -- Property of IBM

DYNAMIC LINKAGE/SUBCOM

It is possible for programs that are already loaded to becone
dynamically known by name and callable via SVC 202. These programs can
also make other programs dynamically known if the entry points of these
other programs are known. To do this, a program or routine must invoke
the create function of SUBCOM. This is done by issuing the following
calling sequence from an assembler program (Register 1 must point to
this calling sequence):

DS OF

DC CLS8'SUBCOM!

DC Cl8'[program or routine name]’

DC 4X'00' reserved

DC A ("entry point")

DC U4X 'available for user information'

This sequence makes the program or routine known to CMS.

SUBCOM creates an SCBLOCK control block containing the information
you specified. SVC 202 uses this control block to make the
communication. See the publication VM/SP Data Areas and Control Block
Logic for a description of the SCBLOCK control block.

Note: When a transfer to the specified entry point takes place, register
2 points to the SCBLOCK.

Future SVC 202 calls to the program or routine with the high-order
byte of register 1 equal to X'02' will branch to the previously loaded
copy of the program or routine at an address specified by the program or
routine when it called SUBCOM.

You <can also wuse SUBCOM to delete this potential 1linkage to the
program or routine's SCBLOCK or to query if an SCBLOCK exists for a
program or routine. To delete a program or routine's SCBLOCK, you
issue:

DC CL8'SUBCOM!
DC CL8'[program or routine namel}'
DC 8Xx'00!'

To query if a SCBLOCK exists for a program or routine, you issue:

DC CL8'SUBCOM!

DC CL'8!'[program or routine name]

DC A(0) SCBLOCK address as a returned value
DC 4X*'FF!

Return Codes from SUBCOM are:

0 - Successful return code. Means new SCBLOCK was created, or
specified SCBLOCK was deleted, or specified program or routine
has an SCBLOCK.

1 - No SCBLOCK exists for the specified program or routine. This
is the return code for a delete or a query.

25 - No more free storage available. SCBLOCK cannot be created for
specified program or routine.

Note: If you set up SCBLOCKs for several programs or routines with the
same name, SUBCOM will use the last submitted.

2-38 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

CMS Interface for Display Terminals

CHMS has an interface that allows it to display large amounts of data in
a very rapid fashion. This interface for 3270 display terminals (alsc
3138, 3148, and 3158) is much faster and has 1less overhead than the
normal write because it displays up to 1760 characters in one operation,
instead of issuing 22 individual writes of 80 characters each (that is
one write per 1limne on a display terminal). Data that is displayed in
the screen output area with this interface is not rlaced in the console
spool file.

The DISPW macro allows you to use this display terminal interface.
It generates a calling sequence for the CMS display terminal interface
module, DMSGIO. DMSGIO creates a channel ¢grogram and issues a DIAGNOSE
instruction (Code X'58!') to display the data. DMSGIO is a TEXT file
which must be loaded in order to use DISPW. The format of the CMS DISPW
macro is:

r 1

| | | r T 2] |

! [label] t DISPHW ! bufad {,LINE=n| |,BYITES=bbbb]| |

| \ | {.LINE=0}! |,BYTES=1760]| 1

‘ | | L 3 L J |

| | i [ERASE=YES] [CANCEL=YES] |

L]

where: ‘

label is an optional macro statement label.

bufad is the address of a buffer containing the data to be
written to the display terminal.

r |

|LINE=n| is the number of the line, 0 to 23, on the

{LINE=0\ display terminal that is to be written. Line

L 4 nunber 0 is the default.

%BYTES=bbbbi is the number of bytes (0 to 1760) to be written
{BYTES=1760| on the display terminal. 1760 bytes is the default.

L 2

[ERASE=YES] specifies that the display screen is to be erased kefore
the current data 1is written. The screen is erased
regardless of the 1line or number of bytes to be
displayed. Specifying ERASE=YES causes the screen to go
into "MORE"™ status.

[CANCEL=YES] causes the CANCEL operation to be performed: the output
area is erased.

Note: I* is advisable for the user to save registers before issuing the

DISPW macro and to restore them after the macro, because neither the
macrce nor its called modules save the user's registers.

CMS Introduction 2-39

Licensed Material ~- Property of IBM

2-4C IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -~ Property of IBM

OS Macro Simulation Under CMS

When a language processcr or a user-written program is executing in the
CMS environment and using OS-type functions, it is not executing OS
code. Instead, CMS provides routines that simulate the 0S functioms
required to support 0S language processors and their generated object
code.

CMS functionally simulates the 0OS macros in a way that presents
equivalent results to programs executing under CMS. The OS macros are
supported only to +the extent stated in the publications for the
supported language processors, and then only to the extent necessary to
successfully satisfy the specific requirement of +the supervisory
function.

The restrictions for COBOL and PL/I program execution listed in
"Executing a Program that Uses 0S5 Macros" in the ¥M/SP Planning and
System Generation Guide exist because of the limited CMS simulation of
the 0S macros.

Figure 7 shows the 0S macro functions that are partially or
completely simulated, as defined by SVC number.

OS Data Management Simulation

The disk format and data base organization of CMS are different from
those of 0S. A CMS file produced by an 0S program running under CHMS and
written on a CMS disk, has a different format from that of an 0S data
set produced by the same 0S program running under 0S and written on an
0S disk. The data is exactly the same, but its format is different. (2n
0Ss disk is one that has been formatted by an 0S program, such as
IBCDASDI.)

HANDLING FILES THAT RESIDE ON CMS DISKS

CMS can read, write, or update any 0S data that resides on a CMS disk.
By simulating 0S macros, CMS simulates the following access methods so
that 0S data organized by these access methods can reside on CMS disks:

direct identifying a record by a key or by its relative
position within the data set.

partitioned seeking a named member within the data set.

sequential accessing a 7rTecord in a sequence in relation to

preceding or following items in the data set.

Refer to Figure 7 and the "Simulation Notes," then read "Access
Method Support" to see how CMS handles these access methods.

Since CMS does not simulate the indexed sequential access method

(ISaM), no O0S program that uses ISAM can execute under CMS. Therefore,
no program can write an indexed sequential data set on a CMS disk.

CMS Introduction 2-41

Timoancod Matorial -- Propertv of IBM

HANLCLING FILES THAT RESIDE ON OS OR DOS DISKS

By simulating OS macros, CMS can read, but not write or update, OS
sequential and partitioned data sets that reside on 0S disks. Using the
same simulated OS macros, CMS can read DOS sequential files that reside
on DOS disks. The 0OS macros handle the DOS data as if it were 0S datae.
Thus, a DOS sequential file can be used as input to an O0S progranm
runhing under CMS.

However, an OS sequential or partitioned data set that resides on an
0Ss disk can be written or wupdated only by an OS program running in a
real 0S machine.

CHMS can execute programs that vread and write VSaM files from OS
programs written in the VS BASIC, COBOL, or PL/I programming languagese.
This CMS support is based on the DOS/VSE Access Method Services and
VSE/VSAM and, therefore, the 0OS user 1is limited to those VSAM functions
that are available under DOS/VSE.

2-42 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

r il
| Macro SvC 1
| Name Number Function 1
| XDapP1? 00 Read or write direct access volumes |
| WAIT 01 Wait for an I/O completion i
| POST 02 Post the I/0 completion i
! EXIT/RETURN 03 Return from a called phase i
| GETMAIN 04 Conditionally acquire user storage |
| FREEMAIN 05 Release user-acquired storage |
| GETPOOL - Simulate as SVC 10 |
| FREEPOOL - Simulate as SVC 10 {
! LINK 06 Link contrcl tc another phase |
| XCTL 07 Delete, then link control to another |
t load phase 1
| LOAD 08 Read a phase into storage 1
| DELETE 09 Delete a loaded phase |
i GETMAIN/ 10 Manipulate user free storage |
{ FREEMAIN) |
| TIME? 1" Get the time of day |
| ABEND 13 Terminate processing |
| SPIE1 14 Allow processing program to |
| handle program interrupts |
| RESTORE! 17 Effective NOP |
| BLDL/FIND? 18 Manipulate simulated partitioned !
| data files i
| OPEN 19 Activate a data file {
| CLOSE 20 Deactivate a data file {
| STOW1 21 Manipulate partitioned directories |
{ OPENJ 22 Activate a data file |
| TCLOSE 23 Temporarily deactivate a data file |
| DEVTYPE! 24 Obtain device-type physical |
| characteristics |
| TRKBAL 25 Nop \
| FEOV 31 Set forced EOV error code }
| WTO/WTOR?! 35 Communicate with the terminal |
} EXTRACT1 40 Effective NOP |
} IDENTIFY! 41 Add entry to locader table |
| ATTACH!? 42 Effective LINK |
| CHaAP! 44 Effective NOP |
| TTIMER! 46 Access or cancel timer |
| STIMER® 47 Set timer |
| DEQ! 48 Effective NOP |
| SNAP1! 51 Dump specified areas of storage {
| ENQ? 56 Effective NOP !
| FREEDBUF 57 Release a free storage buffer |
| STAE 60 Allow processing program to {
| decipher abend conditions l
| DETACH!? 62 Effective NOP |
| CHKPT! 63 Effective NOP |
| RDJFCB! 64 Obtain information from FILEDEF command |
] SYNaD? 68 Handle data set error conditions |
| BSP1 69 Back up a record on a tape or disk |
| GET/PUT - Access system-blocked data {
| REAL/WRITE - Access system-record data i
| NOTE/POINT - Manage data set positioning i
| CHECK - Verify READ/WRITE completion |
| TGET/TPUT 93 Read or write a terminal line |
| TCLEARQ 94 Clear terminal input queue t
| STaX 96 Create an attention exit block |
| PGRLSE! 112 Release storage contents |
| i
{1Simulated in the routine DMSSVT. Other simulation routines reside |
! in the nucleus. |
L |]
Figure 7.

Simulated 0S Supervisor Calls

CMS Introduction 2-43

- . - LI RIS |

—— MNerAannrd+e AF TRM

SIMULATION NOTES

Because CMS has its own file system and is a single-user systen
operating in a virtual machine with virtual storage, there are certain
restrictions for the simulated 0S function in CMS. For example, HIARCHY
options and options that are used only by 0S multitasking systems are
ignored by CHMS.

Due to the design of the CMS 1loader, an XCTL from the explicitly
loaded phase, followed by a LINK by succeeding phases, may cause
unpredictable results.

Listed below are descriptions of all the 0S macro functions that are
simulated by CMS as seen by the programmer. Implementation and program
results that differ from those given in 0S Data Management Macro
Instructions and 0S Supervisor Services and Macro Instructions are
stated. HIARCHY options and those used only by OS multitasking systems
are ignored by CMS. Validity checking is not performed within the
simulation routines. The entry point name in LINK, XCTL, and LOAD (SVC
6, 7, 8) must be a member name or alias in a LOADLIB directory or in a
TXTLIB directory unless the COMPSWT is set to on. If the COMPSWT is on,
SVC 6, 7, and 8 must specify a module name. This switch is turned on
and off by using the COMPSWT macro. See the VM/SP CMS Command and Macro
Reference for descriptions of all CMS user macros.

Macro-sSVC No. Differences_in Implementation

XDAP-SVCO The TYPE cption must be R or W; the Vv, I, and K
options are not supported. The BLKREF-ADDR must point
to an item number acquired by a NOTE macro. Other
options associated with V, I, or K are not supported.

WAIT-SVCH All options of WAIT are supported. The WAIT routine
waits for the completion bit to be set in the
specified ECBs.

POST-SVC2 211 options of POST are supported. POST sets a
completion code and a completion bit in the specified
ECB.

EXIT/RETURN Post ECB, execute end of task routines, release

-SVvC3 phase storage, unchain and free latest request tlock,

and restore registers depending upon whether this is
an exit or return from a linked or an attached
routine.

GETMAIN-SVCU All options of GETMAIN are supported except SP and
HIARCHY, which are ignored by CMS, and LC and 1V,
which will result in abnormal termination if wused.
GETMAIN gets blocks of free storage.

FREEMAIN-SVCS All options of FREEMAIN are supported except SP, which
is ignored by CMS, and L, which will result in
abnormal termination if used. FREEMAIN frees blocks
of storage acquired by GETMAIN.

LINK-SVC6 The DCB and HIARCHY options are ignored by CMS. all
other options of LINK are supported. LINK 1loads the

specified program into storage (if necessary) and
passes control to the specified entry point.

2-44 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Macro-sve No.
XCTL-SVC?

LOAD-S5VCS8

GETPOOL/
FREEPOOL

DELETE-SVC9

GETMAIN/
FREEMAIN-
SVC10

TIME-SVCI11

ABEND-SVC13

SPIE-SVC14

RESTORE-SVC17

BLDL-SVC18

PIND-SVC18

The DCB and HIARCHY options are ignored by CMS. 1ll
other options of XCTL are supported. XCTL 1loads the
specified program into storage (if necessary) and
passes control to the specified entry point.

The DCB and HIARCHY options are ignored by CMS. 1all
other options of LOAD are supported. LOAD 1loads the
specified program into storage (if necessary) and
returns the address of the specified entry point in
register zero. However, if the specified entry point
is mnot in core when SVC 8 is issued, and the
subroutine contains VCONs that cannot be resolved
within that TXTLIB member, CMS will attempt to resolve
these references, and may return another entry point
address. To insure a correct address in register zero,
the wuser should bring such subroutines into core
either by the CHS LOAD/INCLUDE commands or by a VCON
in the user program.

All the options of GETPOOL and FREEPOOL are supported.
GETPOOL constructs a buffer pool and stores the
address of a buffer ©pool control block in the DCB.
FREEPOOL frees a buffer pool constructed by GETPOOL.

A11 the options of DELETE are supported. DELETE
decreases the use count by one and, if the result is
zero, frees the corresponding virtual storage. Code 4
is returned in register 15 if the phase is not found.

A1l the options of GETMAIN and FREEMAIN are supported
except SP and HIARCHY, which are ignored by CHMS.

A1l the options of TIME except MIC are supported.
TIME returns the time of day to the calling program.

The completion code parameter 1is supported. The DUMP
parameter is not. If a STAE request is outstanding,
control is given tc the proper STAE routine. If a
STAE routine is not outstanding, a message indicating
that an abend has occurred is printed on the terminal
along with the completion code.

A1l the options of SPIE are supported. The SPIE
routine specifies interruption exit routines and
program interruption types that will cause the exit
routine to receive control.

The RESTORE routine din CMS is a ©NOP. It returns
control to the user.

BLDL is an effective ©NOP for LINKLIBs and JOBLIBs.
For TXTLIBs and MACLIBs, item numbers are filled in
the TTR field of the BLDL list; the K, Z, and user
data fields, as described in 0S/VS Data Management
Macro Instructions, are set to zeros. The "alias" bit
of the C field is supported, and the remaining bits in
the C field are set to zero.

All the options of FIND are supported. FIND sets the
read/write pointer to the item number of the specified
member.

CMS Introduction 2-u5

Tirmrancad Mat+tarial —-—- Drarertv aof TRM

Macro-sVC No.
STOW-SVC21

OPEN/OPENJ -

SvVC19/22

CLOSE/TCLOSE-
SVC20/23

DEVTYPE-SVC24

FEOV-SVC31

WTO/WTOR-SVC35

EXTRACT-SVCU0

IDENTIFY-SVC41

ATTACH-SVCHY2

CHAP-SVCHL

TTIMER-SVCU6

Differences in Implementation
211 the options of STOW are supported. The "alias"
bit is supported, but the user data field is not
stored in the MACLIB directory since CMS MACLIBs do
not contain user data fields.

All the options of OPEN and OPENJ are supported except
for the DISP and RDBACK options, which are ignored.
OPEN creates a CMSCB (if necessary), completes the
DCB, and merges necessary fields of the DCB and CMSCB.

A1l the options of CLOSE and TCLOSE are supported
except for the DISP option, which is ignored. The DCB
is restored to 1its condition before OPEN. TIf the
device type is disk, the file 1is <closed. TIf the
device type is tape, the REREAD option is treated as a
REWIND. For TCLOSE, the REREAL option is REWIND,
followed by a forward space file for tapes with
standard labels.

A1l the options of DEVTYPE are supported except for
the RPS option, which is ignored. DEVTYPE moves
device characteristic information for a specified data
set into a specified user area.

Control is returned to CMS with an error code of 4 in
register 15.

A1l options of WTO and WTOR are supported except those
options concerned with multiple console support. WTO
displays a message at the operator's console. WTOR
displays a message at the operator's console, waits
for a reply, moves the reply to the specified area,
sets a completion bit in the specified ECB, and
returns.

The EXTRACT routine in CMS 1is essentially a NOP. The
user-provided answer area is set to zeros and control
is returned +to the user with a return code of & in
register 15.

The IDENTIFY -routine in CMS adds a RPQUEST block to
the 1load request chain for the reguested name and
address.

All the options of ATTACH are supported in CMS as in
0S PCP. The following ortions are ignored by CMS:
pcs, LpMOD, DPMOD, HIARCHY, GSPV, GSPL, SHSPV, SHSPL,
SZERO, PURGE, ASYNCH, and TASKLIB. ATTACH passes
control to the routine specified, £ills in an ECB
completion bit if an ECB is specified, passes control
to an exit routine if one is specified, and returns
control to the instruction following the ATTACH.

Since CHMS 1is not a multitasking system, a phase
requested by the ATTACH macro must return to CHS.

The CHAP routine in CMS is a NOP. It returns control
to the user.

A1l the options of TTIMER are supprorted.

2-46 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Hacro-SVC No.
STIMER-SVCU7

DEQ-SVC48

SNAP-SVC51

ENQ-SVC56

FREEDBUF-SVC57

STAE-SVC60

DETACH-SVC62
CHKPT-SVC63

RDS FCB-SVC64

SYNADAF-SVCES8

SYNADRLS-SVC68

BSP-SVC69

TGET/TPUT-
SVC93

TCLEARQ-SVCIu

A1l options of STIMER are supported except for TASK
and WAIT. The TASK option is treated as if the REAL
option had been specified, and the WAIT option is
treated as a NOP; it returns control to the user.

The DEQ routine in CMS is a NOP. It returns control
to the user.

Except for SDATA, PDATA, and DCB, all options of the
SNAP macro are processed normally. SDATA and PDATA
are 1ignored. Processing for the DCB option is as
follows. The DBC address specified with SNAP is used
to verify that the file associated with the ©DCB is
open. If it 1is not open, control is returned to the
caller with a return code of 4. If the file is open,
then storage is dumped (unless the FCB indicates a
DUMMY device type). SNAP always dumps output to the
printer. The dump contains the PSW, the registers,
and the storage specified.

The ENQ routine in CMS is a NOP. It returns control
to the user.

A1l the options of FREEDBUF are supported. FREEDBUF
returns a buffer to the buffer pool assigned to the
specified DCB.

A1l the options of STAE are supported except for the
XCTL option, which 1is set +to XCTL=YES; +the PURGE
option, which is set to HALT; and the ASYNCH option,
which 1is set to NO. STAE creates, overlays, or
cancels a STAE control block as requested. STAE retry
is not supported.

The DETACH routine in CMS 1is a NOP. It returns
control to the user.

The CHKPT routine is a NOP. It returns control to the
user.

211 the options of RDJFCB are supported. RDJFCB
causes a Job File Control Block (JFCB) to be read from
a CMS Control Block (CMSCB) into real storage for each
data control block specified. CMSCBs are created by
FILEDEF commands.

All the options of SYNADAF are supported. SINADAF
analyzes an I/0 error and creates an error message in
a work buffer.

211 the options of SYNADRLS are supported. SYNADRLS
frees the work area acquired by SYNAD and deletes the
work area from the save area chain.

All the options of BSP are supported. BSP decrements
the item pointer by one block. '

TGET and@ TPUT ofperate as if EDIT and WAIT were coded.
TGET reads a terminal 1line. TPUT writes a terminal

TCLEARQ in CMS clears the input terminal queue and
returns control to the user.

CMS Introduction 2-47

Licensed Material -- Property of IBM

Macro-sv¥C No. Differences in Implementation
STAX-SVC96 Updates a queue of CMTAXEs each of which defines an
attention exit level.

PGRLSE-SVC112 Release all complete pages (UK bytes) associated with
the area of storage specified.

NOTE All the options of NOTE are supported. NOTE returns
the item number of the last block read or written.

POINT 211 the options of POINT are supported. POINT causes
the control program to start processing the next read
or write operation at the specified item number. The
TTR field 1in the block address 1is used as an itenm

nunmnber.

CHECK A1l the options of CHECK are supported. CHECK tests
the I/0 operation for errors and exceptional
conditions.

DCR The following fields of a DCB may be specified,
relative to the particular access method indicated:

Operand BDAM BPAM BSAM QSAM
BFALN F,D F,D F,D F,D
BLKSIZF n (number) n n n

BUFCB a (address) a a a

BUFL n n n n

BUOFNO n n n n
DLCNAME s (symbol) s S s

DSORG DA PO pS PS
EODAD - a a a

EXLST a a a a
KEYLEN n - n -

LINMNCT n - - -

LRECL - n n n

MACRF R, W R, W R, W, P G,P,L, M
OPTCD A,E,F,R - J J

RECFM F,V,0 F,V,U F,V,B,S,A,M,0 F,v,B,U0,4,M,S
SYNAD a a a a

NCP - n n -

ACCESS METHCD SUPPORT

The manipulation of data is governed by an access method. To facilitate
the execution of 0S Ccde under CMS, the processing rrogram must see data
as 0S would present it. For instance, when the processors expect an
access method to acquire input source cards sequentially, CMS invokes
specially written routines that simulate the 0S sequential access method
and pass data to the processors in the format that the 0S access methods
would have produced. Therefore, data appears in storage as if it had
been manipulated using an O0S access method. For example, block
descriptor words (BDW), buffer pool management, and variable records are
updated in storage as if an 0S access method had processed the data.
The actual writing to and reading from the I/0 device is handled by CMS
file management. Note that the character string X'61FFFF61' is
interpreted by CMS as an end of file indicator.

The essential wcrk of the volume table of contents (VTOC) and the
data set control blcck (DSCB) is done in CMS by a master file directory

2-48 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

(MFT) which wupdates the disk contents, and a file status table (FST)
(one for each data file). All disks are formatted in physical blocks of
800 bytes.

CMS continues to update the 0S format, within its own format, on the
auxiliary device, for files whose filemode number is #. That is, the
block and record descriptor words (BDW and RDW) are written along with
the data. If a data set consists of blocked records, the data is
written to, and read from, the I/0 device in physical blocks, rather
than 1logical records. CMS also simulates the specific methods of
manipulating data sets.

To accomplish this simulation, CMS suprports certain essential macros
for the following access methods:

e BDAM (direct) -- identifying a record by a key or by its
relative position within the data set.

e BPAM (partitioned) -- seeking a named member within data set.

e BSAM/QSAM (sequential) -- accessing a record in a sequence in

relaticn to preceding or following records.

s VSAM (direct or sequential) -- accessing a record sequentially
or directly by key or address.

Note: CMS support of 0S VSAM files is based on VSE/VSaM.
See the section "CMS Support for OS and DOS VSAM
Functions" for details.

CMS also updates those portions of the 0S control blocks +that are
needed by the 0S simulation routines to support a program during
execution. Most of the simulated supervisory OS control blocks are
contained in the following two CMS control blocks:

CMSCVT
simulates the communication vector table. Location 16 contains
the address of the CVT control section.

CMSCB
is allccated from systém free storage whenever a FILEDEF ccmmand
or an OPEN (SVC 19) is issued for a data set. The CMS Control
Block consists of a file control block (FCB) for the data file,
and partial simulation of the job file comtrocl block (JFCB),
input/output block (IOB), and data extent block (DEB).

The data control block (DCB) and the data event control block (DECB)
are used by the access method simulation routines of CMS.

Note: The results may be unpredictable if +two DCBs access the same data
set at the same time.

The GET and PUT macros are not supported for use with spanned
records. READ and WRITE are supported for spanned records, provided the
filemode number is #, and the data set is physical sequential (BSAMN)
format.

GET (QSAM)
All the QSAM options of GET are surported. Substitute mode is
handled .the same as move mode. If the DCBRECFM is FB, the filemode
number is 4, and the last block is a short block, an ECF indicator
(X'61FFFF61') must be present 1in the 1last block after the last
record.

CMS Introduction 2-49

Licensed Material -- Property of IBM

GET (QIsaM)
QISAM is not supported in CHS.

PUT (QSAM)
A1l the QSAM options of PUT are supported. Substitute mode is
handled the same as move mode. If the DCBRECFM is FB, the filemode
number is 4, and the last block is a short block, an EOF indicator is
written in the last block after the last record.

PUT (QISAM)
QISAM is not supported in CHS.

PUTX
PUTX support 1is provided only for dJata sets opened for QSAM-UPDATE
with simple buffering.

READ/WRITE (BISAM)
BISAM is not supported in CMS.

READ/WRITE (BSAM and BPAM)
A1l the BSAM and BPAM options of READ and WRITE are supported except
for the SE cption (read backwards).

READ (Offset Read of Keyed BDAM dataset)
This type of READ is not supported because it is used only for
spanned records.

READ/WRITE (BDAM)
A11 the BDAM and BSAM (create) options of READ and WRITE are
supported except for the R and RU options.

When an input or output error occurs, do not depend on O0S sense
bytes. An error code is supplied by CMS in the ECPR in place of the
sense bytes. These error codes differ for1 various types of devices and
their meaning can be found in the IBM VM/SP System Messages and Codes,
under DMS message 120S.

Note: If OPTCD J is specified in the FILEDEF command, the proper flag is
set in the JFCOPTCD byte of the FCBSECT (simulated OS control block).
During simulation of the 0S OPEN macro, the FILEDEF value will be merged
into DCBOPTCD. After DCBOPTCD is set, the first data byte of output
lines presented to the PUT (QSAM) and WRITE (BSAM) macros is interpreted
as a table reference character (TRC) byte. CP uses the TRC byte to
select translate tables when printing on a 3800. The +translate table
determines the font type at real print time. 1If the virtual printer is
not a 3800, the TRC byte is stripped off and the line is printed in the
usual manner.

BDAM Restrictions

The four methods of accessing BDAM records are:

1. Relative Block RRR

2. Relative Track TIR

3. Relative Track and Key TTKey
4. Actual Address MBBCCHHR

The restrictions on these access methods are as follows:

to

e Only the BDAM identifiers underlined above can be used r
p byt
yte

to re
records, since the CMS simulation of BDAM files uses a thre

fe
-

2-50 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

record identifier on 1K, 2K, and 4K format CMS minidisks. For
R00-byte disks, only the last two identifiers are used.

e CMS BDAM files are always created with 255 records on the first
logical +track, and 256 records on all other 1logical tracks,
regardless of the block size. 1If BDAM methods 2, 3, or 4 are used
and the RECFM is U or Vv, the BDAM user must either write 255 records
on the first track and 256 records on every track thereafter, or he
must not update the track indicator until a NO SPACE FOUND message is
returned on a write. For method 3 (WRITE ADD), +this message occurs
when no more dummy recocrds can be found on a WRITE request. For
methods 2 and 4, this will not occur, and the track indicator will be
updated only when the record indicator reaches 256 and overflows into
the track indicator.

e Two files of the same filetype, bcth of which use keys, cannot be
open at the same +time. TIf a program that is updating keys does not
close the file it 1is updating for some reason, such as a systen
failure or another IPL operation, the original keys for files that
are not fixed format are saved in a temporary file with +the same
filetype and a <filename of $KEYSAVE. To finish the wupdate, runm the
program again.

e Once a file is created using keys, additions to the file must not be
made without using keys and specifying the original length.

¢ The number of records in the data set extent must be specified using
the FILEDEF command. The default size is 50 records.

e The minimum LRECL for a CMS BDAM file with keys is eight bytes.

READING OS DATA SETS AND DOS FILES USING OS MACROCS

CMS users can read 0S sequential and partitioned data sets that reside
on 0S disks. The CMS MOVEFILE command can be used to manipulate those
data sets, and the 0S QSAM, BPAM, and BSAM macros can be executed under
CMS to read then.

The CMS MOVEFILE command and the same 0S macros can also ke used to
manipulate and read DOS sequential files that reside con DOS disks. The
0S macros handle the DOS data as if it were 0S data.

The following 0S Release 20.0 BSAM, BPAM, and QSAM macros can be used
with CMS to read 0S data sets and DOS files:

BLDL ENQ RDJFCB
BSP FIND READ
CHECK GET SYNADAF
CLOSE NOTE SYNADRLS
DEQ POINT WAIT

DEVTYPE POST

CMS supports the following disk formats for the 0S and O0S/VsS
seguential and partitioned access methods:

Split cylinders
User labels
Track overflow
Alternate tracks

¢ o o O

As in 0S, the CMS support of the BSP macro produces a return ccde of
4 when attempting to backspace over a tape mark or vwhen a beginning of

CMS Introduction 2-51

Licensed Material -- Property cf IBM

an extent is found on an 0S data set or a DOS file. If the data set or
file contains split cylinders, an attempt to backspace within an extent,
resulting in a cylinder switch, also produces a return code of 4.

Before CMS can read an 0S data set or DOS file that resides on a non-CMS
disk, you must issue the CMS ACCESS command to make the disk on which it
resides available to CHS.

The format of the ACCESS command is:
ACCESS cuu mode[/ext]

You must not specify options or file identification when accessing an 0S
or DOS disk.

The FILEDEF Command

You then issue the FILEDEF command to assign a CMS file identification
to the 0S data set or DOS file so that CMS can read it. The format of
the FILEDEF command used for this purpose is:

I A\
| I r r o or] |
| FIledef | (ddname IDISK fn £t |(fm|| |DSN ? | i
| | nn { JA111 YDSN gt [g2...]1 |
| ‘ %* L L 44 L 4 '
[| r roan |
] | DISK |fn ft 1fml | |
| | |{FILE ddname [A1]| |
| ' L L 33 '
| | |
| | DUMMY i
	r]		
	Related Option:	MEMBER membernamef	
		CONCAT	
! | L 4 {
L]

If you are issuing a FILEDEF for a DOS file, note that the 0S progranm
that will use the DOS file must have a DCB for it. For "ddname"™ in the
FILEDEF command line, use the ddname in that DCB. With the DSN operand,
enter the file-id of the DOS file.

Sometimes, CMS issues the FILEDEF command for you. Although the CMS
MOVEFILE command, the supported CMS program product interfaces, and the
CMS OPEN routine each issue a default FILEDEF, you should issue the
FILEDEF command yourself to ensure the appropriate file is defined.

After you have issued the ACCESS and FILEDEF commands for an OS
sequential or partitioned data set or DOS sequential file, CMS commands
(such as ASSEMBLE and STATE) can refer to the 0S data set or DOS file
just as if it were a CHMS file.

Several other CMS commands can be used with 0S data sets and DOS
files that do not reside on CMS disks. See the VM/SP CMS Command angd
2-52 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Macro Reference for a complete description of the CMS ACCESS, FILEDEF,
LISTDS, LKED, MOVEFILE, OSRUN, QUERY, RELEASE, and STATE commands.

For restrictions on reading 0S data sets and DOS files under CMS, see

RAITA-S SN T

The CMS FILEDEF command allows you to specify the I/0 device and the
file characteristics to be wused by a program at execution +time. 1In
conjunction with +the O0S simulation scheme, FILEDEF simulates the
functicns of the data definition JCL statement.

FILEDEF may e used only with programs using 0S macros and functions.
For example:

filedef filet disk precga data a1l

After issuing this command, your program referring to FILE1 would access
PROGR DATA on your A-disk.

If you wished to supply data from your terminal for FILEl, you could
issue the command:

filedef filel terminal
and enter the data for your program without recompiling.

£fi tapein tap2 (recfm £fb 1lrecl 50 bleck 100 9track den 800)
After issuing this command, programs referring to TAPEIN will access a
tape at virtual address 182. (Each tape unit in the CMS environment has

a symbolic name associated with it.) The tape must have been previously
attached to the virtual machine by the VM/SP operator.

The AUYPROC Option of the FILEDEF Command

The AUXPROC option can only be used by a program call to FILEDEF and not
from the terminal. The CMS language interface programs use this feature
for special I/O handling of certain (utility) data sets.

The AUXPROC option, followed by a fullword address of an auxiliary
processing routine, allows that routine to receive control from DMSSEB
before any device I/0 is performed. At the completion of its processing,
the auxiliary routine returns control to DMSSEB signaling whether or not
I/0 has been performed. If it has not been done, DMSSEB performs the
appropriate device I/0.

When control is received from DMSSEB, the general-purpose registers
contain the following information:

GPR2 = Data Control Block (DCB) address
GPR3 = Base register fcr DMSSEB

GPR8 = CMS OPSECT address

GPR11 = File Control Blocck (FCB) address
GPR14 = Return address in DMSSEB

GPR15 = Auxiliary processing routine address

all other registers Work registers

The auxiliary processing routine must provide a save area in which to
save the general registers; this routine must also perform the save
operation. DMSSEB does not provide the address of a save area in
general register 13, as is usually the case. When ccntrol returns to
DMSSEB, the general registers must be restored to their original values.

CMS Introduction 2-53

Licensed Material -~ Property of IBM

Control is returned to DMSSEB by branching to the address contained in
general register 14.

GPR15 is used by the auxiliary processing routine to inform to DMSSEB
of the action that has been or should be taken with the data block as
follows:

Register Content Acticn
GPR15=0 No I/0 performed by AUXPROC routine; DMSSEB will perform I/O.

GPR15<0 I/0 performed by AUXPROC routine and error was encountered.
DMSSEB will take error action.

GPR15>0 I/0 performed by AUXPROC routine with residual count in GPR15;
DMSSEB returns normally.

GPR15=6U4K I/O performed by AUXPROC routine with zero residual count.

2-54 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

VSE Support Under CMS

CMS supports interactive program development for VSE. This includes
creating, compiling, testing, debugging, and executing commercial
application programs. The VSE programs can be executed in a CMS virtual
machine or in a CMS Batch Facility virtual machine.

VSE files and libraries can be read under CMS. VSAM data sets can be
read and written under CHMS.

The CMS VSE environment (called CMS/DOS) provides many of +the sanme
facilities that are available in VSE. However, CMS/DOS supports only
those facilities that are supported by a single (background) partition.
The VSE facilities supported by CMS/DCS are:

e VSE linkage editor

Fetch support

VSE Supervisor and I/O macros

VSE Supervisor control block. surport
Transient area support

VSE/VSAHN macros

¢ o ¢ o0

This environment is entered each time the CMS SET TOS ON command is
issued; VSAM functions are available in CMS/DOS only if the SET DOS ON
(VSAM) command is issued. 1In the CMS/DOS environment, CMS supports many
VSE facilities, but does not support OS simulation. When you no longer
need VSE support under CMS, you issue the SET DOS OFF command and VSE
facilities are no longer available.

CMS/D0OS can execute programs that use the sequential access method
(SAM) and VSE/VSAM, and can access VSE libraries.

CMS/DOS cannot execute programs that have execution-time
restrictions, such as programs that use sort exits, +teleprocessing
access methods, or multitasking. DOS/VS COBCL, DOS PL/I, DOS/VS RPG IT
and Assembler language programs are executable under CMS/DOS.

211 of the CP and CMS online debugging and +testing facilities (such
as the CP ADSTOP and STORE commands and the CMS DEBUG environment) are
supported in the CMS/DOS environment. Also, CP disk error recording and
recovery is supported in CMS/DOS.

With its support of a CMS/DOS environment, CMS becomes an important
tool for VSE application program development. Because CMS/DOS is a VSE
program development tool, it assumes that a VSE system exists, and uses
it. The following sections describe what is supported, and what is not.

CMS SUPPORT FOR OS AND DOS VSAM FUNCTIONS

CMS supports interactive program development for OS and VSE programs
using VSE/VSAM CMS supports VSAM for OS rrograms written in VS BASIC,
0S/VS COBOL, or OS PL/I programming languages; or VSE programs written
in DOS/VS COBOL, DOS PL/I, DOS/VS RPG 1II programming languages. CHMS
does not support ¥SAM for 0OS or VSE assembler language programs.

CMS also supports Access Method Services to manipulate 0S and DOS
VSAM and SAM data sets.

CMS Introduction 2-55

Licensed Material -- Property of IBHM

Under CMS, VSAM data sets can span up to nine DASD volumes. CMS does
not support VSAM data set sharing; however, CMS already supports the
sharing of minidisks or full pack minidisks.

VSAM data sets <created in CMS are not in the CMS file format.
Therefore, CMS commands currently used to manipulate CMS files cannot be
used for VSAM data sets which are read or written in CMS. A VSAM data
set created in CMS has a file format that is compatible with 0S and DOS
VSAM data sets. Thus a VSAM data set created in CMS can later be read
or updated by 0S or DOS. This compatibility with 0S is limited to VSAM
data sets created with physical record sizes of .5k, 1k, 2k, and 8k
bytes. TFor further information on compatibility between 0S/VS VSAM and
VSE/VSAM, please refer to the VSE/VSAM General Information Manual.

Because VSAM data sets in CMS are not a part of the CMS file systen,
CMS file size, record length, and minidisk size restrictions do not
apply. The VSAM data sets are manipulated with Access Method Services
programs executed wunder CMS, instead of with the CMS file system
commands. Also, all VSAM minidisks and full packs used in CMS must be
initialized with the IBCDASDI program or INITDISK (for FB-512 disks);
the CMS FORMAT command must not be used.

CMS supports VSAM control blocks with the GENCB, MODCB, TESTCB, and
SHOWCB macros.

In its support of VSAM data sets, CMS uses RPS (rotational position

sensing) wherever possible. CMS does not use RPS for 2314/2319 devices,
or for 3340 devices that do not have the feature.

Hardware Devices Suprorted

Because CMS support of VSAM data sets is based on VSE/VSAM, only disks
supported by DOS/VSE can be used for VSAM data sets in CMS. These disks
are:

e TIBM 2314 Direct Access Storage Facility

e TIBM 2319 Disk Storage

e TIBM 3310 Direct Access Storage

e TIBM 3330 Disk Storage, Models 1 and 2

e TIBM 3330 Disk Storage, Model 11

e TIBM 3340 Direct Access Storage Facility

s IBM 3344 Direct Access Storage

» TIBM 3350 Direct Access Storage

e TIBM 3370 Direct Access Storage

2-56 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

CMS Method of Operation and Program
Organization

This section contains the following information:
e TInitialization of the CMS Virtual Machine Environment
e DProcessing and Executing CMS Files
e Handling I/O Operations
e Simulating Non-CMS Operating Environments
e Dperforming Miscellaneous CMS Functions

The CMS description is in two parts. The first part contains figures
showing the functional organization cf CMS. The second part contains
general information about the internal structure of CMS programs and
their interaction with cne another.

CMS program organization is in two figures. Figure 8 is an overview

of the functional areas of CHS. Each block is numlered and corresponds
to a more detailed outline of the function found in Figure 9.

CMS Method of Operation and Program Organization 2-57

Licensed Material -- Property of IBM

©

@ Manage @
the CMS
Process File
System Handle
Commands 1/0
that Manlpulate Operations
the File System
Process
And Handle @
CMS
@ Execute Interruptions
CMS Files
Initialize the Manage
CMS Virtual 9
. CMS
Machine .
Environment Simulate Storage
nvironmen Non-CMS
Operating
@ Environments @

Perform
@ Miscellaneous
CMS Functions

Figure 8. An Overview of the Functional Areas of CMS

2-58 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Initialize the Pr d
CMS Virtual E‘:‘ef:t‘:"
Machine N
Environment CMS Files
intai P
Maintain an Process Load and Process L?;::(“
lcnteraz':ttve and Execute Execute MODULE Support
onsoie o " "
Environment EXEC Files TEXT Files Files Functions
DMSINi DMSINT DMSEXC DMSLOA DMSMOD DMSLBM
Interpret Load a disk Process the Generate and
Read the CMS commands version of LOAD and S:ADS?JLE update MACLIG
nucleus entered at the EXEC INCLUDE file files
the console processor commands
DMSINS DMSINA DMSEXI DMSLDR DMSMOD DMSLBT
tnitialize Generate
Handle . Begin execution Load a
storage constants
and virtual disks synonyms and Determine 1 of programs MODULE and update
L EXEC or EXEC2 N - aTXTLIB
for avirtual abbreviations in storage file library
machine
DMSINT DMSSCN DMSEXT DMSEXE DMSLSB
Handle first Process a
Jentivl ommand line Perform CMS Perform EXEC 2 .P;:::;s
entered at and create EXEC Processing Processing options
the console aPLIST
DMSSET DMSCPF DMSLIO
Set virtual Passa Create a
machine command foad map
environment line to CP and perform
options for execution loader 1/0
DMSQRY DMSITS DMSMDP
Query the Process Type a load
virtual machine command map ata
environment functions
option settings via SVC calls console
DMSGLB
Define libraries
10 be searched
during execution
and assembly
DMSLGT
Create a chain
of TXTLIB
blocks for use
during execution;
release the chain
DMSLIB
Search TXTLIB
libraries for
undefined symbols;
close TXTLIB
libraries
Figure 9. Details of CMS System Functions and the Routines that

Perform Them (Part 1 of 4)

CMS Method of Operation and Program Organization 2-59

Licensed Material -- Property of IBM

Process M
Commands hanéﬁl‘les
that Manipulate L‘e Gyat
the File System tle System
T
Perform Perform DMSPR Locate Perform
General File Data) Manage Datain File
Support Manipulation Printa V{”‘””' the CMS Update
Functions Functions record Disk Data File System Funetions
T T T "
I | | I |
DMSSTT gxgggl [')JI\:IASSEEDD): DMSPUN DMSACC DMSLAD DMSARE
ve_”fy the Punch Access data Find an Clear an
exf_:xence L Create and 2 record on avirtual active disk active
3 e o ddress update files disk table disk table
DMSLST DMSXBG DMSTYP DMSACM DMSLAF DMSFNS
List the Create . .
Type a Build an Find an Close a'nv
;}?;:e::; z:ga(e reg)rd active disk active file opeq files
CMS disk files table table on disk
DMSSYN DMSUPD DMSASM DMSACF DMSLFS DMSALU
tnterface Build file N Clear tables
C:“:;""‘?"Y’“S ;Joz"r:;e with the status table Find a file and free storage
? pa reviations Hiles assembler to biocks for a status table associated
or afile name assemble files virtual disk with a disk
DMSRNM DMSCPY DMSDSK DMSLAF
Rename Manipulate Load card-to- 5’7;'9 orﬂ e
afile disk file disk, dump e
records disk-to-card et
entries
DMSERS DMSCMP DMSTPE
Erase Compare Process
afile vewr(js in TAPE command
two files functions
DMSSRT DMSMVE
B Move data
Sor:r:;r‘ange from one
“”a n device to
afile another
DMSRDC DMGSH LB, DMSHL]
DOMSHLD,DMSHLP
DMSHLE,DMSHLS
Read a Displays
record HELP description
files
DMSSPR
Initialize
23800 -
printer

Details of CMS System Functions and the Routines that

Figure 9.
Perform Them (Part 2 of 4)

2-60 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBHM

Handle Handle Manage
Vo ;i Interrupts CMS
Operations Storage
Perform Perform f;:{tmm Perform Write to Wait for
Console Disk Record Tape a Display 1/0 to
1/0 110 1/0 1/0 Terminal Complete
DMSCIT ' DMSDIO DMSPIO DMSTPD DMSSCR DMSIOW DMSCIT DMSFRE
Read or Load display Wait far T Allocate and
Startan write one or Perform print Read a buffers to be :'na:(/éoévent ;::s[ili release free
1/O operation more blocks 1/0 functions PDS tape displayed on to take place interrupts system and
of disk data a screen user storage
DMSCWT DMSTQQ, DMSTRK| DMSCIO DMSTIO DMSGIO DMSITS DMSHDS DMSSMN
Wait for a Manipulate Perform read Read or Issue a Set up and handle Asl(l;?cs:;e ar;dum;ese
consoie event storage card and punch write a tape display to :::rfpst;lc user-defined SVC ?equest ?3 e
to o card 1/0 record ;":Ze(;‘NOSE interrupts 0S GETMAIN/
FREEMAN macros
DMSCAT DMSBRD,DMSBWR DMSCWR DMSTMA DMSITI DMSHDI
Stack aline Read or write one Write a Read an unloaded Set up and handle
of console or more items to & line to the PDS from tape Handle /0 - user‘:;efined 10
input for disk file 800-byte console and place it in interrupts interrupts
DMSCRD record format aMACLIB
DMSCRD DMSERD DMSITE
Read of write one
Read a line of Zirskm?iI;: '1!;'_“52?() 2 Handie external
lei + 2K, i
console input or 4K-byte record interrupts
format
DMSCWR DMSPNT DMSITP
Set the read
Write a line or write pointer Handle program
to the console forafiletoa check interrupts
given file item
Figure 9. Details of CMS System Functions and the Routines that

verform Them (Part 3 of W)

CMS Method of Operation and Program Organization

Licensed Material -- Property of IBM

2-61

Simulate
Non-CMS
Operating
Environments

]

-

1

®

Perform
Miscellaneous
CMS Functions

1

[

[

DMSIFC DMSBTB DMSDBG DMSGND DMSABN
Provide Simulate Simutate
Access 0s oS Checks and passes Load the CMS perform Generate Handle
Method Functions Functions CPEREP operands Batch Virtual DEBUG an auxiliary abnormal
Support EIOFE:EEPEPU Machine functions directory termination
DMSSQS DMSFLD DMSREA DMSBTP DMSOVR DMSASD DMSERR
Support Interpret OS ;’:gi’fﬁ;:‘:;:s w© Perform batch ;33:‘;“ Provide an Generate
QSAM JCL parameters VM/370 error processing module, auxiliary error
functi i irect ssage:
for use by CMS recording cylinders unetiens DMSOVS diretory mesages
DMSSBS DMSSVT,DMSSOP, DMSOVS DMSLAD
DMSSCT DMSSMA!
Support DMSSVN,DMSSLN, Per tnclude an
BSAM and DMSSAB,DMSLOS, SVCTRACE auxiliary
BPAM DMSSFF, DMSSVU functions directory on
Simulate OS macros the FST chain
DMSSBD DMSSEB [I r [j
s Perform
B‘BP:;" 1/0 functions initialize Process Process
for 0S DOS and Process DOS Exacution Provide DOS, Terminate Provide VSE
Process DOS DOS I/0 DOS SVC the DOS System
T T System Controf Functions gj:f:f;ns Simutation g’;’(‘:\'ﬁa" s Environment Functions
Commands
DMSVIB DMSROS
Load the Allow CMS to L L i
CMS/VSAM ACCESS, STATE, DMSSET DMSBOP DMSDLK DMSDOS DMSSRV DMSBAB DMSLAB
shared system READ, NOTE, Pass control to
for 05 VSAM and BACKSPAC itialize Simulate the Link edit Handle all Copy books from an abnormal LABEL
programs on 08 disks the CMS/DOS VSE OPEN DOS/VSE CMS/DOS SVC 2 source Statement || ermination macro
T emvironment function {non phases in requests tibrary 0 an rourtine via support
disk files) storage output device STXIT AB macro
DMSViP DMSLDS
Interface with List i T I
VSAM programs h DMSOPT DMSOR1, DMSOR2] [DMSFET, DMSFCH DMSRRV DMSITP DMSCVH
bt sbout 05 SUSORS Load a ohase: Copy modules Pracess program Simulate
0OS VSAM programs ta sets Set compiler Locate a 10 @ phase; " imerrupts vToC
N € . begin program relocatable d SPIE far
[l optians specified file execution library to an ane requests fo
output device exits CMS disks
DMSVSR DMSUTL
Reset fields | J
set during VSAM List, copy. or DMSASN DMSOPL DMSPRY DMSDMP DMSDAS
processing and compress Simulate 1
purge the CMS/ LOADLIBs Associate system Copy procedures ASSGN
VSAM DCSS or programmer Access a VSE from a procedure SSDUMP and macro
" N source statement " $SPDUMP; issue
r logical units librar fibrary to an CP DUMP support
with physical units M output device DIAGNOSE
DMSAMS DMSOSR
Support Invoke a load
VSAM module from a CMS DMSLLU DMSCLS |——|
Access Method LOADLIB or 03 Simutate the DMSDSV
Services module [ibrary List assignments VSE CLOSE [
of logical units function {non List the
disk files) DMSXCP DMSETR DMSLCK Girectories
DMSLKD of libraries
Link. CcMS Handle scncds‘;ea :\i’éd:elo
ink-edit a CM sveo
TEXT file or 0S DMSDLB CMSBAM DCSS (EXTRACT) {LOCK/UNLOCK)
object module into Simulate VSE
; D
aCMS LOADLIB Brrociates OPEN/CLOSE, MSDSL
5 Togic module, Delete, compress,
filename with VTOC, and source "
a logical unit ! o [list phases of
statement library aDOSLIB
functions library
DMSVLT
Handle return
from CMSBAM
DCSS
Figure 9. Details of CMS System Functions and the Routines that

Perform Them

(Part 4 of u)

2-62 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBX

Initialization of the CMS Virtual Machine
Environment

There are four steps involved in initializing a CMS virtual machine:
e Processing the IPL command for a virtual card reader.

e DProcessing the IPL command for a disk device or a named or saved
systen.

e Processing the first command line entered at the CMS virtual console.
e Setting up the options for the virtual machine operating environment.

DMSINTI and DMSINS are the twc routines that are mainly responsible
for the one-time initialization process in which the virtual card reader
is initial program loaded. DHMSINI also handles the IPL process when a
named or saved system is loaded. The CMS command interpreter, DMSINT,
processes the first line entered from the console as a special case; the
processing performed by this code is a part of the initialization
process. DMSSET sets up the user-specified virtual machine environment
features; DMSQRY allows the user to query the status of these settings.

Initialization: Loading a CMS Virtual Machine from
Card Reader

When a virtual card reader is specified by the IPL command, for example
00Cc, initialization processing begins. TInitializaticn refers to the
process of loading from a card reader as opposed to reading a nucleus
from a cylinder of a CMS minidisk or reading a named or shared systen
(description follows).

IPL O00C invokes +the CMS module DMSINI, which —requests that the
operatcr enter information such as the address of the DASD where the
nucleus is to ke written, the cylinder address where the write operation
is to begin, and which version of CMS is to be written (if there is more
than one to choose from).

When all guestions are answered, the requested nucleus is written to
the DASD,

Once written on the DASD, a copy of the nucleus is read into virtual
machine storage. One track at a time is read from the disk-resident
nucleus 1into virtual storage. DMSINS is then invoked to initialize
storage constants and to set up the disks and storage space required by
this virtual machine.

CMSINS performs three general functions:

e TInitializes storage constants and system tables.
e Processes IPL command line parameters (SEG= and EATCH).

¢ TInitializes for OS SVC processing, in the case where a saved segment
is not.available for use in processing 0S simulation requests.

CHS Method of Operation and Program Organization 2-63

Licensed Material -- Property of IBM

INITIALIZES STORAGE CONTENTS AND SYSTEM TABLES

ocates free storage to be used during initialization.

MSFRE
Allocates all low free storage so that the system status table
(SSTAT) will be built in high free storage.

Reads the S-disk ADT entry and builds the SSTAT.

DMSFRE

Releases the 1low free storage allocated above (to force SSTAT into
high storage) so that it can be used again.

Sorts the entries in the SSTAT.

PROCESSES IPL COMMAND LINE PARAMETERS

DMSINS
Checks for parameters BATCH, SEG=, ZER=, or AUTOCR. If BATCH is
specified, DMSINS sets the flag BATFLAGS. If SEG= is specified,
DMSINS loops through again to read the segment name. If ZER= is
specified, DMSINS 1locates the CMSZER segment name. At this point,
all the parameters on the command line have been scanned.

If SEG= is specified, the DIAGNOSE 64 FINDSYS function is issued
to determine whether the segment specified on the command 1line
exists. If it does, the DCSSAVAL flag is temporarily set.

If AUTOCR is specified, a local flag is set so that the subsequent
console read may te bypassed and the null line input simulated. This
action causes a PROFILE EXEC to be executed.

DMSINS

Issues DIAGNOSE 24 to obtain the device type of the comnsole.
DMSCHR

Writes the system id message to the console.
DMSCRD

s the IPL command line in PLIST format.

If the FINDSYS DIAGNOSE validated the segment name specified cn the
IPL command 1line, DMSINS issues a DIAGNOSE 64 SAVESYS function for
that segment.

2-64 IBM VM/SP Svstem Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

DMSINS
Clears DCSSAVAL and ensures that all the parameters on the ccmmand
line are valid; branches back to 1label INITLOOP to reprocess for the
segment just saved.

DMSINS
If BATCH 1is specified, sets BATFLAGS and BATFLAG2 in NUCON. Saves
the name of the BATCH saved system in SYSNAME in NUCON.

DMSACC
Issues ACCESS 195 A to access the batch virtual machine A-disk.
DMSINS
Issues DIAGNOSE 60 to get the size of the virtual machine; sets up
enough storage for this virtual machine.
DMSINS

If the DCSSAVAL flag is set, sees if the size of the CMSSEG segment
overlaps the size of the virtual machine. If this is the case,
DMSINS sets the flag DCSSOVLP and continues the injitialization
procedure for a CMS virtual machine running without the use of the
CMSSEG segment, that 1is, performs time-of-day processing and OS
initialization.

If the CMSSEG segment can be used, DMSINS issues +the DIAGNOSE 64
LOADSYS function as the final check to see if the segment is usable.
If the segment is loaded successfully, it can be used whenever one of
the functions contained in it is requested. Because it is not
required immediately, DMSINS issues the DIAGNOSE 64 PURGESYS function
to purge the segment.

If the segment cannot be successfully loaded, DMSINS turns off the
DCSSAVAL flag.

If ZER= has been specified, the DIAGNOSE 64 FINDSYS function is
issued to determine whether the CMSZER segment specified exists, and
does not overlap the size of the virtual machine. TIf it exists and
can be used, a DIAGNOSE 64 ©LOADSYS is issued and the segment is
checked for validity, along with the ©optional saved shared SSTAT and
YSTAT. If the segment can be used, the appropriate pointers in
DMSNUC are relocated to point to the CMSZER segment. If the segment
cannot be found, CMSZER cannot be used.

INITIALIZE OS SVC-HANDLING WITHOUT THE USE OF THE CMSSEG SEGMENT

DMSINS
Checks for the availability of CMSSEG.
DMSSTT
Finds and returns the address of DMSSVT, the CMS 0S SVC-handler.
DMSFRE
Acquires enough free storage to contain DMSSVT.
DHSLOA
Loads DMSSVT.
DMSINS
Sets the flag DCSSVTLD.

CMS Method of Oreration and Program Organization 2-65

Licensed Material -- Property of IBM

DMSINS
If the BATCH virtual machine is not being loaded, determines whether
there is a PROFILE EXEC or a first command line to be handled. If
so, issues SVC 202's to process these commands and passes control to
DMSINT, the CMS console manager.
MSACC

If the BATCH wvirtual machine is being initial program 1loaded,
accesses the D-disk and passes control +to TMSINT, the console
manager.

Initializing a Named or Saved Systems

A named system is a copy of the nucleus that has been saved and named
with the CP SAVESYS command. It is faster to IPL a named system than to
IPL by disk address because CP maintains the named system in page format
instead of CMS disk format. That is, the saved system is on disk in
U096-byte blocks instead of 800-byte Dblocks. The initialization of a
saved system is also faster because the SSTAT is already built.

The shared system 1is a variant of the saved system. 1In the shared
system, reentrant portions of the nucleus are placed in storage pages
that are available to all users of the shared system. Fach user has his
own copy of nonreentrant portions of the nucleus. The shared pages are
protected by CP, and may not be altered by any virtual machine.

During DMSINI processing, the virtual machine operator is asked if
the nucleus must be written (via message DMSINI607R). If the operator
answers no, control passes directly tc DMSINS to initialize the named or
saved system specified by the operator in his answer to message
DMSINIEO06R.

Modifying a 3800 Named System

The IMAGEMOD command allows an installation to modify an existing 3800
named system without the need for generating from scratch a completely
new one. Before, with +the IMAGELIB command, a user had to construct a
3800 named system from a control file that listed all the members to be
included. The IMAGELIB command contained no means for modifying an
existing 3R00 named system. Therefore, a system with, for example, 150
members, had to be totally reconstructed each time a member was added,
deleted, or replaced. The IMAGEMOD command eliminates this problem by
manipulating only the specific members of a 3800 named system that
require changing. The format of the command is:

L L
IMAGEMOD {GEN | ADD | REP | DEL | MAP}
libname

rcdname [modname ...

[TERM{PRINT|DISK]

!
|
1
!

For further informaticn, refer to the VM/SP Operator's Guide.

2-66 IBYM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Profperty of IBM

PROCESSING THE IMAGEMOD COMMAND

Module DMSIMA performs the following steps when processing the IMAGEMOD
command:

‘C

Analyze the input PLIST for syntax. If there is an error, exit
with a return ccde of 2 and issue the appropriate message:

e DMSIMAOO1E = NO MODULE NAME SPECIFIED

e DMSIMAQO3E = INVALID OPTION 'option'

e DMSIMAO14E = INVALID FUNCTION 'function!
e DMSIMAOUGE = NO LIBRARY NAME SPECIFIED

e DMSIMAQUTE = NO FUNCTION SPECIFIED

Obtain maximum storage area (via GETMAIN macro).

Unless the GEN function is specified, read named system into
storage just obtained with DIAGNOSE code X'74'. 1leave the first 10
pages of storage empty. This permits later expansion Lty 10
members.

Determine the type of function requested:

e MaAP
e DEL
e GEN
e ADD
e REP

If the function requested is MAP, scan the named system directory
and format the following information about each member:

e VName
e Relative displacement
e Total size

Determine the option requested. If the option is TERM, PRINT or
DISK, place the formatted information on the wuser's terminal,
virtual printer, or in the CMS file named ‘'libname MAP AS'
respectively.

If the function requested is DEL, delete the member from the
directory and +the data area of the named system. Compress the
named system by moving up the remaining members to take up the
space vacated by the deletion. If the member is not found, issue
message DMSIMAO13E.

If the function requested is GEN, construct a skeleton named systenm
in virtual storage. This skeleton system has no members initially.
Then proceed as if the function were ADD.

If the function requested is ADD, 1load the member into the CMS
transient area. If a load error occurs, issue DMSIMA346E and exit
with return code of 6. Add the new member entry to the end of the
named system directory. If virtual capacity were exceeded by this
addition, issue DMSIMA109E and exit with return code of 2. During
this process, the directory is moved back in storage one page to
prevent nevw data from overlaying existing data. Move the new
member data to the end of the named system residing in user virtual
storage. Modify the directory entries after this move takes place.
If the member already exists, issue message DMSIMA751E and exit
with return code of 4.

CMS Method of Operation and Program Organization 2-67

Licensed Material -- Property of IBM

9. If the function requested is REP, concatenate the DEL and ADD
functions. In other words, perform the DEL function and then the
ADD functicn for the specified member.

10. Scan the input command line for more members to be processed. If
there are no more members, or if the number of members has reached
the maximum (10), write the changed named system back to disk via
DIAGNOSE code X'74' (unless this was a MAP function request) and
exit. Otherwise, process the next member according to the function
requested.

Handling the First Command Line Passed to CMS

DMSINT, the CMS console manager, contains the code to handle commands
stacked by module DMSINS during initialization processing. DMSINT
checks for the presence of a stacked command line, and if there is one
to process, processes it just as it would a command entered during a
terpinal session. That is, DMSINT calls the WAITREAD subroutine and
issues an SVC 202 to execute the command. When first ccmmand processing
completes, DMSINT receives control to handle commands entered at the
console for the duration of the session.

Setting and Querying Virtual Machine Environment
Options

DMSSET sets up the virtual machine environment options, as outlined in
the publication ¥M/SP CMS Command and Macro Reference. DMSQRY displays
these settings at the user console. Both of these mnodules are
structured and relatively easy to follow, except for some sections of
DMSSET.

DMSSET: SET DOS ON (VSAM) PROCESSING

DMSSET
(label DOS) If a disk mode is specified on the command line, ensure
that it is valid.

DMSLAD
If the disk mode specified is valid, locates and returns the address
of the disk.

DMSSET
Issues DIAGNOSE 64 FINDSYS to locate the CMSDOS or CMSBAM segments.
If the segment is not already loaded, issues DIAGNOSE 64 LOADSYS to
load it.

LMSSET
Sets up the $$B-transient area for use by VSE routines.

LMSSET
Sets up the ILOCK/UNLOCK resource table.
LMSSET
If SET DOS OFF has been specified, issues the LIAGNOSE 64 PURGESYS

function for the CMSDOS and CMSBAM segments and, if VSAM has been
loaded, for the CMSVSAM segment.

2-68 IBM V¥/SP System Logic and Program Determination--volume 2

Licensed Material -- Property of IBM

DMSSET: SET SYSNAME PROCESSING

CMSSET

Determines whether the name of the CMSSEG segment is being change

DMSSET
Determines whether NONSHARE is specified. If so, the segment ma
loaded and kept. If NONSHARE is not specified, the segment is pur
because it is needed only on demand.

LMSSET
Once a new name is placed in the SYSNAMES table replacing CMSSEG,
DIAGNOSE 64 FINDSYS function is issued to determine whether the
name has been entered correctly. If the FINDSYS is successful,
size of the virtual machine is compared to beginning address of
segment to determine whether +the segment overlays virtual mac
storage.

CMSSET

d.

y be
ged,

the
new
the
the
hine

If the segment can be used (i.e. does not overlay the virtual machine

storage) the DIAGNOSE 64 ©LOADSYS function is performed. 1If
LOADSYS executes successfully, control passes to DMSINT, where
segment is purged (because it is only needed on demand).

CMS Method of Operation and Program Organization

Licensed Material -- Property of IBM

the
the

2-69

2-70 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Processing and Executing CMS Files

As shown in Part 2 of Figqure 9, +the five general topics form the
category "Process and Execute CHS Files." Two of these topics are
discussed in this section: "Maintaining an Interactive Console
Environment" and "Loading and Executing TEXT files."

Maintaining an Interactive Console Environment

Two levels of information are discussed in the ~following section. The
first level is a general discussion ¢f how CMS maintains an interactive
console environment. The second level is a more detailed discussion of
the methods of operation mainly responsible for this function.

Console Management and Command Handling in CMS

There are two major functions concerned with maintaining an interactive
terminal environment for CMS: console management and command processing.
The CMS module that manages the virtual machine console is DMSINT. The
module responsible for command processing is DMSITS. Many CMS modules
are called in support of these two functions but the modules in the
following list are primarily responsible for supporting the functions:

DMSCRD
Reads a line from the console.
DMSCHR
Writes a line to the console.
DMSSCN
Converts a command line to PLIST format.
DMSINA
Converts abbreviated commands to their full names.
DMSCRE
Passes a comrand line to CP for execution.

Maintaining an Interactive Command/Response
Session

Three main lines of control maintain the continuity for an interactive
CMS session: (1) handling of commands passed to DMSINT by the
initialization module, DMSINS (2) handling of commands entered at the
console during a session, and (3) handling of commands entered as subset
commands. The following 1lists show the main logic paths for first two
functions.

CMS Method of Operation and Program Organization 2-71

Licensed Material -- Property of IBM

EXECUTE COMMANDS PASSED VIA DMSINS

On entry from DMSINA, processes any commands passed via the console
read put on the user's console by that routine; that is processes
any commands the user stacks on the 1line as the first read that
DMSINT processes. In handling the first read, if that read is null,
control passes to the main loop of the program, which is described
in the following section.

DMSINHM
Get the current time.

DMSCRD
Branch to the waitread subroutine to read a command 1line at the
console.

DMSSCN

Waitread then calls DMSSCN to convert the line just read into PLIST
format. Once converted to PLIST format, an SVC 202 is issued (at
label INIT1A) to execute the functicn. This cycle is repeated until
all stacked commands are executed.

DMSFNS
When command execution ccmpletes, calls DMSFNS (at label UPDAT) to
close any files that may have remained open during the ccmmand
processing.

DMSVSR
Ensures that any fields set by VSAM processing are reset for CHMS.
Also ensures that the VSAM discontiquous shared segment is purged.

DMSINT
Sets up an appropriate status message (CMS, CMS SUBSET, CMS/DOS,
etc.) .

DMSCHR
Writes the status message to the console.

HANDLE COMMANDS ENTERED DURING A CMS TERMINAL SESSION

DMSINT
Branches (from 1label INLOOP2) to the waitread subroutine to read a
line entered at the console.

DMSCRD

Reads a line entered at the console (subroutine waitread).
DMSSCN

Converts the command line to PLIST format (subroutine waitread).
DMSINT

Tf the command line is neither a command 1line nor a conmment,
determines whether the command is an EXEC file.

INR
Determines whether +the ccmmand 1s an abbreviation and, if it is,
ret

2-72 IBM V¥/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

DMSITS
Passes the command line to DMSITS via an SVC 202. DMSITS is the CMS
SVC handler. For a detailed description of the SVC handler, see
"Method of Operation for DMSITS.®

If the command could not be executed by the SVC handler, passes the
command to CP to see if CP can execute it.

MSFNS
On return from prccessing the command 1line (label UPDAT), closes any
files that may have been opened during processing.

D¥SSEN
Resets any flags or fields that may have been set during OS
processing.

DHSVSR

Ensures that any fields set for VSAM processing are reset for CHMS.
Also ensures that the VSAM discontiquous shared segment is purged.

MSINT
When the c¢command line has been successfully executed, builds a CHMS
Teady message for the user (label PRNREADY).

tes the ready message to the console.

DMSINT
Returns control to DMSINT at label INLOOP2 to continue monitoring the
CHMS terminal session.

Method of Operation for DMISINT

DMSINT, the console manager, maintains the continuity of operation of
the CMS command environment. The main control 1loop of DMSINT is
initiated by a call to DMSCRD to get the next command. When the ccmmand
is entered, DMSINT calls DMSINM to initialize the CPU time for the new
command and then puts it in standard parameter list form by caliing the
scan function program DMSSCN. After calling DMSSCN, DMSINT checks to
see if an EXEC filetype exists with a filename of the typed-in command.
(For exanple, if ABC was typed in, it checks to see if ABC EXEC exists.)
1f the EXEC file does exist, DMSINT adjusts register 1 to point to the
same command as set up by DMSSCN, but preceded by CL8'EXEC', and then
issues an SVC 202 to call the corresponding EXEC procedure (*'ABC EXEC'
in the example).

If no such EXEC file exists for the first word typed in, DMSINT makes
a further check using the CMS abbreviation-check routine, DMSINA. 1If,
for example, the first word typed in had been *E', DMSINT looks up 'E?
via the DMSINA routine. If an equivalent is found for 'E', DMSINT looks
for an EXEC file with the name of the equivalent word (for example, EDIT
EXEC); if such a file is found, DMSINT adjusts register 1 as described
above to call EXEC and substitutes the equivalent word, EDIT, for the
first word typed in. Thus, if 'E' is a valid abbreviation for 'EDIT'
and the user has an EXEC file called EDIT EXEC, he invokes this when he
merely types in 'E' from the terminal.

If no EXEC file is found either for the entered command name or for
any equivalent found by DMSINA, DMSINT leaves the terminal command as
processed by DMSSCN and then issues an SVC 202 to pass control to DMSITS
wvhich, in turn, passes control to the appropriate command program.

CHS Method of Operation and Program Organization 2-73

Licensed Material -- Property of IBM

When the command terminates execution, or if DMSITS cannot execute it,
the return code is passed in register 15.

A zero return code indicates successful completion of the ccmmand.

A positive return code indicates that the command was completed, but
with an apparent error; and a negative code returned by DMSITS indicates
that the typed in command could not be found or executed at all.

In the last case, DMSINT assumes that the command is a CP command and
issues a DIAGNOSE instruction to pass the command 1line to the CP
environment. If the command is not a CP ccmmand, DMSINT calls DMSCWR to
type a message indicating that the command is unknown and the main
control loop of DMSINT is entered at the beginning.

If the return code from DMSITS is positive or zero, LCMSINT saves the
return code briefly and calls module DMSAUD to update the master file
directory (MFD) on the appropriate user's disk for the 800-byte records
on disk, or to update the file directory and the allocation map, or the
appropriate user's disk for the 1K-, 2K-, or 4K-byte records on disk.
DMSINT alsc frees the TXTLIB chain and releases pages of storage if
required.

After updating the file directory, DMSINT checks the return code that
was passed back. If the code is zero, DMSINT types a ready message and
the processor time used by the given command. Control is passed to the
beginning of the main contrcl loop of DMSINT. If the return code is
positive, an error message is typed, along with the processor time used.
The command caused the +typing of an error message of the format:
DMSxxxnnnt *'text' where DMSxxx is the module name, nnn is the message
identification number, t is the message type, and 'text'! is the message
explaining the error. Control is then passed to the beginning of the
main control loop.

Method of Operation for DMSITS

DMSITS (INTSVC) 1is the CMS system SVC handling routine. Since CHMS is
SVC driven, the SVC interruption processor is more complex than the
other interruption processors.

The general operation of DMSITS is as follows:

1. The SVC new PSW (low-storage location X'60') contains, in the
address field, the address of DMSITS1. Thus, the DMSITS routine is
entered whenever a supervisor call is executed.

2. DMSITS allocates a system and user save area, as described below.
The user save area is a register save area used by the routine,
which is invoked later as a result of the SVC call.

3. The called routine is invoked.

4. Upon return from the <called routine, the save areas are
deallocated.

5. Control is returned to the caller (the routine which originally
made the SVC call).

The following expands upon various features of the general operation
that has just been described.

2-74 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

TYPES OF SVCS AND LINKAGE CONVENTIONS

The types of SVC calls recognized by DMSITS, and the linkage conventions
for each are as follocws:

SVC 201: When a called routine returns control to DMSITS, the wuser
storage key may be in the PSW. Because the called routine may also have
turned on the problem kit in the PSW, the most convenient way for DMSITS
to restore the system PSW is to cause another interruption, rather than
to attempt the privileged Load PSW instruction. DMSITS does this by
issuing SVC 201, which causes a recursive entry into DMSITS. DMSITS
determines if the interruption was caused by SvVC 201, and if so,
determines if the SVC 201 was from within DMSITS. 1If both conditions
are met, control returns to the instruction following the SVC 20t with a
PSW that has the prchblem bit off and the system key restored.

SVC 202: SVC 202 is the most commonly used SVC in the CHKS system. It is
used for calling nucleus resident rcutines and for calling routines
written as commands.

A typical coding sequence for an SVC 202 call is the following:

LA R1,PLIST
svc 202
DC ALL (ERRADD)

The DC ALY (address) following the SVC 202 is optional, and may be
omitted if the programmer does not expect any errors to occur in the
routine or command teing called. DMSITS can determine whether this DC
was inserted Ly examining the byte following the SVC call. If it is
nonzero, then it is an instruction; if it is zero, then it is a "DC
ALY (address) ™.

Whenever SVC 202 is called, a tokenized cr untokenized parameter list
(PLISTY <can be specified. In both cases, register 1 points to an
eight-character =string defining the symbolic name of the routine or
command being called. The SVC handler will examine only the name and
the high-order tyte of register 1.

Tokenized PLIST: For a tokenized parameter list, the symtolic name
of the function being called (8 character string, padded with blank
characters on the right if needed) will be followed by extra arguments
depending on +the actual routine or command being called. These
arguments must te "tokenized" (that is, have a maximum length of eight
characters, padded on the right with blank characters if shorter than
eight characters). ©Extra information on the origin of the call is
provided by the high-order byte of register 1. If the contents of this
tyte is equal tc:

X'0E' - the call is the result of a command invoked from an EXEC file
with the "ECONTROL NOMSG™".

X*'0D' - the call is the result of a command invoked from an EXEC with
"SCONTROL MSG" (that is, messages are to be displayed).

X'0C' - the command is called as a result of it's name being typed at
the terminal. This £flag byte may be used, for example, to
recognize the need for human readable messages instead of return
codes.

X'00' - the call did not originate from an EXEC file or a command typed

at the terminal.

CMS Method of Operation and Program Organization 2-75

Licensed Material -- Property of IBM

Untokenized PLIST: For an untokenized parameter list, no restriction
is put on the structure of the argumentes 1list passed to the <called
routine or command. The high-order byte of register 1 contains X'01' or
X*02'. X'01' means a normal hierarchy search is done in the manner
descrited under the "SEARCH HIERARCHY FOR SVC 202" section of this
manual. If it ccntains X'02', the search for the called routine is
limited to the SUBCOM 1list (see the section entitled "Dynamic
Linkage/SUBCOM" in this manual). Register 0 points to the untokenized
PLIST which is constituted of four consecutive words:

1DC A ("Reserved Word")
2DC A (CMDBEG)

3pC A (CMDEND)

4DC A (0)

where the last two addresses are defined by:

CMDBEG EQU *
DC C'QUERY INPUT'
CMDEND EQU =*

CMDBEG EQU * indicates the beginning cf the arqument list and CMDEND EQU
* indicates the end of the argument list.

SVYC 203: SVC 203 is used by CMS macros tc perform various internal
system functions. SVC 203 is an SVC call for which no parameter list is
provided. An example is DMSFREE, for which the parameters are passed in
registers 0 and 1.

A typical sequence for an SVC 203 call follows:

SVC 203
DC H'code!

The halfword decimal code following the SVC 203 indicates the
specific routine being called. DMSITS examines this halfword code as
follows: (1) the absolute value of +the code 1is taken, wusing an LPR
instruction, (2) the first byte of the result is ignored, and the second
byte of the resulting halfword is an index into a ktranch table, (3) the
address of the correct routine is loaded, and control is transferred
there, as the called routine.

It is possible for the address in the SVC 203 index table to be zero.
In this <case, the index entry contains an 8-byte routine or command
name, which is processed in the same way as the 8-byte name passed in
the parameter list passed to SVC 202.

The sign of the halfword code indicates whether the programmer
expects an error return; if so, the code is negative: if not, the code
is positive. ©Note that +the sign of the halfword code has no effect on
determining the routine which is to be called, because DMSITS takes the
absolute value of the code to determine the called routine.

Because only the second byte of the absolute value of the code is
examined by DMSITS, seven bits (bits 1-7) are available as flags or for

1The first word is reserved.

2The second gives the beginning address of the argument list.

3The third gives the address of the byte immediately following the end
of the argument list.

4The fourth word is optional. Any words following this word are
available for passing information between the calling program and the
program being called.

2-76 IBM VM/SP System Logic and Program Determination--volume 2

Licensed Material -- Property of IBM

other uses. For example, DMSFREE uses these seven bits to indicate such
things as conditional requests and variable requests. Therefore, DMSITS
considers the <codes H'3' and H'259' +to be identical, and handles them
the same as H'-3' and H'-259%, except for error returns.

When an SVC 203 is invoked, DMSITS stores the halfword code into the
NUCO¥ location CODE203, so that the called routine can interrogate the
seven tits made available to it.

USER-HANDLED SV¥Cs: The programmer may use the HNDSVC macro to specify
the address of a routine that processes any SVC call for SVC numkers 0
through 200 and 206 through 255.

If the HNDSVC macro is used, the linkage conventions are as required
by the user specified SVC-handling routine.

There is no way to specify a normal or error return from a
user-handled SVC routine.

0OS MACRO SIMULATION SVC CALLS: CMS supports certain of the SVC calls

generated by 0S macros, by simulating the effect of these macro calls.

The proper linkages are set up by the 0S macro generations. DMSITS
does not recognize any way to specify a normal or error return from an
0S macro simulation SVC call.

VSE SYC CALLS: All SVC functions supported for CMS/DOS are handled by
the CMS module DMSDOS. DMSDOS receives control from DMSITS (the CMS SVC
handler) when that routine intercepts a VSE SVC code and finds that the

DOSSVC flag in DOSFLAGS is set in NUCON.

DMSDOS acquires the specified SVC code from the OLDPSW field cf the
current SVC save area. Using this code, DMSDOS computes the address of
the routine where the SVC is to be handled.

Many CMS/DOS routines (including DMSDOS) are contained in a
discontiguous shared segment (DCSS). Most SVC codes are executed within
DMSDOS, but some are in separate modules external to DMSDOS. If the SVC
code reguested is external to DMSDOS, its address is computed using a
table called DCSSTAB; if the code requested is executed within DMSDOS,
the table SVCTAB is used to compute +the address of the code to handle
the SVC.

DOS SVC calls are discussed in more detail in "Simulating a DOS
Environment Under CMS" in this section.

INVALID SVC CALLS: There are several types of invalid SVC calls
recognized by DMSITS. These are:

¢ Invalid SVC number. If the SVC number does not fit 1into any of the
classes described above, it is rnot handled by DMSITS. An error
message is displayed at the terminal, and control 1is returned
directly to the caller.

e 1Invalid routine name in SVC 202 parameter list. If the routine named
in the SVC 202 parameter 1list is invalid or cannot be found, then
DMSITS handles the situation in the same way it handles an error
return from a legitimate SVC routine. The error code is -3.

e Invalid SVC 203 code. If an illegal code follows SVC 203, an error

message is displayed, and the ABEND routine is called to terminate
execution.

CMS Method of Operation and Program Organization 2-77

Licensed Material -- Property of IBM

SFARCH HIERARRCHY FOR SVC 202

Wwhen a program issues SVC 202, and passes a routine c¢r command name in
the parameter 1list, DMSITS must search for the <specified routine or
command. (In the case of SVC 203 with a zero in the tatle entry for the
specified index, the same logic must be applied.)

The search order is as follows:

1. A check 1is made to see if there is a routine with the specified
name currently in the system transient area. If so, then control
is transferred there.

2. The system function name table is searched to see if a command by
this name is nucleus resident. If successful, control goes to the
specified nucleus routine.

3. A search is made for a disk file with the specified name as the
filename, and MODULE as the filetype. The search is made in the
standard disk search order. If this search is successful, then the
specified module 1is loaded by LOADMOD and ccntrol passes to the
storage locaticn now occupied by the ccmmand.

4, TIf all searches so far have failed, then DMSINA (ABBREV) is called
to see if the specified routine name is a valid system abbreviation
for a system command or function. User-defined abbreviations and
synonyms are checked at the same time. If this search is
successful, then steps 2 through 4 are repeated with the full
nonabbreviated name.

5. If all searches fail, then an error code of -3 is forced.

USER AND TRANSIENT PROGRAM AREAS

There are two areas which can hold program modules which are loaded by
LOADMOD from the disk. These are called the user fprogram area and the
transient program area.

The user program area starts at location X'20000' and extends upward
to the loader tables. However, the high-address end of that area can be
allocated as free storage by DMSFREE. Generally, all wuser programs and
certain system commands, such as EDIT and COPYFILE, execute in the user
program area. Because only one program can be executing in the user
program area at one time, unless it is an overlay structure, it is
impossible for one program in the user program area to invoke, by means
of SVC 202, a module which is also intended to execute the user progranm
area.

The transient program area is two ©pages, running from location
X'EQ00' to location X'10000'. It provides an area for system commands
that may also be 1invoked frcm the user program area by means of an SVC
202 call. For example, a programn in +the user program area may invoke
the RENAME command, because this command is loaded into the transient
program area.

The transient program area also handles certain OS macro simulation
SVC calls. If DMSITS cannot find the address of a supported O0OS macro
simulation SVC handling routine, it calls LOADMOD to 1load the file
DMSSVT module into the transient area, and lets that routine handle the
SvC.

2-78 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Progperty of IBM

A program in

example, a

progra

RENAME command. I

There is one further

program areas. D

transient progranm

the transient program area may nct invoke another
program intended to execute in the transient program area, including OS
macro simulation SVC calls +that are handled by DMSSVT. Thus,
m in the +transient program area may not invoke the
n addition, it may not invoke the 0S macro WTO, which
generates an SVC 35, which is handled by DMSSVT.

for

functional difference between the use of the two

MSITS starts a program in the user program area so
that it is enabled for all interruptions. It starts a program in the
area so that it is disabled for all interruptions.
Thus, the individual program may have to use the SSM (Set System Mask)
instruction to change the current status of its system mask.

CALLED ROUTINE START-UP TABLE -

Figures 10

and 11

show how the PSW and registers are set up when the
called routine is entered.

r 1

i | System i Storage | Problem f}

| Called Type | Mask | Key | Bit |

|— : i

|SVC 202 or 203 | Disabled | System | Ooff |

| - Nuc resident]| | | |

| {

|SVC 202 or 203 | Disabled | User | Off |

| - Transient { | | |

| area MODULE | | | |

| |

1SVC 202 or 203 | Enabled | User | Off |

| - User Area | i { |

| |

|User-handled | Enabled | User { Off |

| {

|0S - Nuc res | Disabled | System | off |

| |

{CS - in DMSSYT | Disabled ! System ! Off]

[(]
Figure 10. PSW Fields when Called Routine is Started
r T A
| Type f0-1 ¢ 2-11 | 12 | 13 | 14 | 18 !
| | i | | 1 | (
SVC 202	Same	Unpredict-	Address	User	Return	Address
or 203	as	able	of	save	address	of
	caller		called	area	to	called
			routine		DMSITS	routine
Other	Same	Same	Address	User	Return	Same
	as	as] of	save	address	as	
	caller	<caller	called	area	to	caller
			routine		DMSITS	i
1 J
Fiqure 11. Regist

er Contents when Called Routine is Started

CMS Method of Operation and Program Organization

Licensed Material -- Property of 1IBM

2-79

RETURNING TO THE CALLER

When the <called routine 1is finished processing it returns control to
DMSITS, which then must return control to the caller.

EETURN LOCATION: The return is effected by loading the original SVC old
PSW (which was saved at the time DMSITS was first entered), after
possibly modifying the address field. How the address field is modified
depends upon the type of SVC call, and on whether the called routine
indicated an error return address.

For SVC 202 and 203, the called routine indicates a normal return by
means of a zero returned in register 15, and an error return by means of
a nonzero in register 15. TIf the called routine indicates a normal
return, then DMSITS makes a normal return to the caller. If the called
routine indicates an error return, then DMSITS returns to the caller's
error return address, if one was specified, and abnormally terminates if
none was specified.

For SVC 202 not followed by "DC AllU(address)", a normal return is
made to the instruction following the SVC instruction, and an error
return causes an abnormal termination. For SVC 202 followed by "DC
ALU (address) ", a normal return is made to the instruction following the
DC, and an error return is made to the address specified in the DC. 1In
either case, register 15 contains the return code passed by the called
routine.

For SVC 203 with a positive halfword code, a ncrmal return is made
to the instruction following the halfword code, and an error return
causes an abncrmal termination. For SVC 203 with a negative halfword
code, both normal and error returns are made to the instruction
following the halfword code. In any case, register 15 contains the
return code passed back by the called routine.

For 0S macro simulation SVC calls, and for user-handled SVC calls, no
error return is reccgnized by DMSITS. As a result, DMSITS always
returns to the caller by loading the SVC old PSW that was saved when
DMSITS was first entered.

REGISTER RESTORATION: Upon entry to DMSITS, all registers are saved as
they were when the SVC instruction was first executed. Upon exiting
from DMSITS, all registers are restored to the values that were saved at
entry.

The exception to this is register 15 for SVC 202 and 203. Upon
return to the caller, register 15 contains the value that was in
register 15 when the <called routine returned to DMSITS after it had
completed processing.

SYSTEM AND USER SAVE AREA FORMATS

Whenever an SVC call is made, DMSITS allocates two save areas for that
particular SVC call.

DMSITS uses the system save area (DSECT SSAVE) to save the value of
the SVC old PSW at the time of the SVC call, the caller's registers at
the time of the call, and any other necessary control information.
Since SVC calls can ke nested, there can be several of these save areas
at one time. The system save area is allocated in protected free
storage.

2-80 IBM VM/SP System Logic and Prcgram Determination--Volume 2

Licensed Material -- Property of IBM

The wuser save area contains (DSECT EXTUAREA) 12 doublewords (24
fullwords), allocated in unprotected free storage. DMSITS does not use
this area at all, but simply passes to the called routine a pointer to
this area in register 13. Thus, the called routine can use this area as
a temporary work area, or as a register save area. There 1is one user
save area for each system save area, and the latter contains a pointer
to the former in the USAVEPTR field.

Loading and Executing Text Files

The CMS 1loader consists of a nucleus resident loader (DMSLDR), a file
and message handler program (DMSLIO), a library search program (DMSLIB),
and other subroutine programs. DMSLDR starts loading at the user first
location (AUSRAREA) specified in NUCON or at a user specified location.
Wwhen performing an INCLUDE function, lcading resumes at +the next
available location after the previous LOAD, INCLUDE, or LOADMOD.

The loader reads in the entire wuser's program, which consists of one
or more control sections, each defined by a type 0 ESD record ("card").
Each control section contains a type 1 ESD card for each entry point and
may contain other control cards.

Once the user's program is in storage, the loader begins to search
his files for library subprograms called by the progranm. The loader
reads the library subprograms into storage, relocating and linking them
as required. To relocate programs, the loader analyzes information on
the SLC, ICS, ESD, TXT, and REP cards. To establish linkages, it
operates on ESD, and RLD cards. Informaticn for end-of-load transfer of
control is provided by the END and LDT cards, the ENTRY control card,
START command, or RESET option.

The loader also analyzes the options specified on the LOAD and
INCLUDE commands. In response to specified options, the loader can:

e Set the load area to zeros before loading (CLEAR option).
s Load the program at a specified location (ORIGIN option).
e Suppress creation of the load-map file on disk (NOMAP optiomnj.

e Suppress the printing of invalid card images in the 1load map (NOINV
option).

e Suppress the printing of REP card images in the 1lo0ad map (NOREP
option).

e TLoad program into "transient area" (ORIGIN TRANS optiomn).
e Suppress TXTLIB search (NOLIBE option).

e Suppress text file search (NOAUTO cption).

e Execute the loaded program (START option).

e Type the load map (TYPE option).

e Set the program entry point (RESET option).

During its operation, the loader uses a loader table (REFTBL), and
external symbol identification table (ESIDTB), and a location counter
(LOCCNT) . The loader table contains the names of control sections and
entry points, their current location, and the relocation factor. (The

CMS Method of Operation and Program Organization 2-81

Licensed Material -- Property of IBM

relocation factor is the difference between the compiler-assigned
address of a control section and the address of the storage location
where it is actually loaded.) The ESIDTB contains pointers to the
entries in REFTBL for the control section currently being processed by
the loader. The loader uses the location counter to determine where the
control section is to be loaded. TInitially, the loader obtains from the
nucleus constant area the address (LOCCNT) of the next location at
which to start 1loading. This value is subsequently incremented bty the
length indicated on an ESD (type0), END, or ICS card, or it may be reset
by an SLC card.

The loader contains a distinct routine for each type of input card.
These routines perform calculations using information contained in the
nucleus constant area, the location counter, the ESIDTB, the 1locader
table, and the input cards. Other 1loader routines perform
initialization, read <cards into storage, handle error conditions,
provide disk and typewritten output, search libraries, convert
hexadecimal characters to binary, process end-of-file conditions, and
tegin execution of programs in core.

Following are descriptions of the individual subprocessors with LDR.

SLC CARD ROUTINE

Function
This routine sets the 1location counter (LOCCT) to the address
specified on an SLC card, or to the address assigned (in the REFTBL)

to a specified symbolic name.

Entry
The routine 4is entered at the first instruction when it receives
control from the 1initial and resume loading routine. It is entered
at ORG2 whenever a loader routine requires the current address of a
symbolic location specified on an SLC card.

Operation

This routine determines which of the following situations exists, and
takes the indicated action:

1. The SLC card does not contain an address or a symbolic nanme.
The SLC card routine branches, via BADCRD in the reference table
search routine, to the disk and type output routine (DMSLIO),
which generates an error message.

2. The SLC card contains an address only. The SLC card routine
sets the location counter (LOCCT) to that address and returns to
RD, in the initial and resume loading routine, to read another
card.

3. The SLC <card contains a name only, and there is a reference
table entry for that name. The SLC card routine sets LOCCT to
the current address of that name (at ORG2) and returns to the
initial and resume loading routine to get another card.

4, The SLC card contains a name only, and there is no reference
table entry for that name. The SLC card routine branches via
ERRSLC to the Disk and Type Output routine (DMSLIO), which
generates an error message for that nanme.

5. The SLC card contains both an address and a name. If there is a
REFTBL entry for the name, the sum of the current address of the
name and the address specified on the SLC card is placed in

2-82 IBM VM/SP System Logic and Program Determination--vVveolume 2

Licensed Material -- Property of IBM

LOCCT; control returns to the initial and resume loading routine
to get another card. If there is no REFTBL entry for the nanme,
the SLC card routine branches via ERRSLC to the Disk and Type
Output routine, which generates an error message for the name.

ICS CARD ROUTINE - C2AE\1

Function

This routine establishes a reference table entry for the
control-segment name on the ICS card if no entry for that name
exists, adjusts the location counter to a fullword boundary, if
necessary, and adds the card-specified control-segment length to the
location counter if necessary.

Entry

op

er

This routine has one entry point, named C2AE1l. The routine is
entered from the initial and resume loading routine when it finds an
ICS card.

The routine begins its operation with a test of card type. 1If
the <card being processed is =not an ICS card, the routine
branches to the ESD card analysis routine; ctherwvise, processing
continues in this routine.

2. The routine tests for a hexadecimal address on the ICS card. If
an address 1is present, the routine 1links to the DMSLSBA
subroutine to convert the address to binary, otherwise the
routine branches via BADCRD to the disk and type output routine
(DMSLIO) .

3. The routine next 1links to the REFTBL search routine, which
determines whether there is a reference table entry for the
card-specified control-segment name. If such an entry is found,
the REFTBL search routine branches to the initial and resume
loading routine; otherwise, the REFTBL search routine places the
control-segment name in the reference table, and processing
continues.

4. The routine determines whether the card-specified
control-segment length is zero or greater than zero. If the
length is zero, the routine places the current location counter
value in the reference table entry as the control segment's
starting address (ORG2), and branches to the initial and resume
loading routine. If the 1length 1is greater than <zero, the
routine sets the current location counter value at a fullword
boundary address. The routine then places this adjusted current
location counter value in the reference table entry, adjusts the
location counter by adding the specified control-segment length
to it, and branches to RD in the 1initial and resume loading
routine to get another card.

ESD TYPE O CARC ROUTINE - C3ARA3

Phis routine- creates loader table and ESID table entries for the
card-specified control section.

CMS Method of Operation and Program Organization 2-83

Licensed Material -- Property of IBH

Entry

This routine has one entry point, location C32A3. The routine is
entered from the ESD card analysis routine.

— e s S

1.

2.

If this is the first section definition, its ESDID is proved.

This rcutine first determines whether a locader table (REFTBL)
entry has already been established for the card-specified
control section. To do this, the routine links to the REFTBL
search routine. The ESD type 0 card routine's subsequent
operation depends on whether there already is a REFTBL entry for
this control section. If there is such an entry, processing
continues with operation 5, below; if there is not, the REFTBL
search routine places the name of this control section in
REFTRL, and processing continues with operation 3.

The routine obtains the card-specified control section length
and performs operation 4.

The routine links to location C28J1 in the ICS card routine and
returns to C3AD4 to obtain the current storage address of the
control section from the REFTBL entry, inserts the REFTBL entry
position (N - where this 1is the Nth REFTBL entry) in the
card-specified ESID table location, and calculates the
difference ©between the current (relocated) address of the
control section and its card-specified (assembled) address.
This difference is the relocation factor; it is placed in the
REFTBL entry for this ccntrol section. If previous ESD's have
been waiting for +this CSECT, a branch is taken to SDDEF, where
the waiting elements are processed. A flag is set in the REFTBL
entry to indicate a section definition.

The entry found in the REFTBL is examined to determine whether
it had been defined by a COMMON. If so, it is converted from a
COMMON to a CSECT and performs operation 3.

If the entry had not been defined previously by an ESD type O,
processing continues at 3.

If the entry had been defined previously as other than COMMON,
DMSLIO is called via ERRORM to print a warning message,
"DUPLICATE IDENTIFIER"™. The entry in the ESID table is set
negative so that the CSECT will be skipped (that is, not loaded)
by the TXT and RLD processing routines.

ESD TYPE 1 CARD ROUTINE - ENTESD

————

This routine establishes a 1loader table entry for the entry point
specified on the ESD card, unless such an entry already exists.

Entry

This routine is entered from the ESD card analysis routine.

1.

2-84

Branches and 1links to REFADR to find loader table entry for
first section definition of the text deck saved by the ESD 0
routine.

The routine then adds the relocation factor and the address of
the ESD found in operation 1 or the address in LOCCNT if an ESD

IBM VM/SP System lLogic and Program Determination--Volume 2

Licensed Material -- Property of IBM

has not yet been encountered. The sum is the <current storage
address of the entry point.

The routine links to the REFTBL search routine to find whether
there is already a BREFTBL entry for the card-specified entry
point name. If such an entry exists, the routine performs
operation 4. If +there is no entry, the routine performs
operation 5.

Upon finding a REFTBL entry that has been previously defined for
the card-specified name, the routine then conpares the
REFTBL-specified current storage address with the address
computed in operation 2. TIf the addresses are different, the
routine branches and 1links to the DMSLIO routine (duplicate
symbol warning); if the addresses are the same, the routine
branches to 1location RD in +the initial and resume loading
routine to read another card. Otherwise, it is assumed that the
REFTBL entry was <created as a result «cf previously encountered
external references to the entry. The DMSLSBC routine is called
to resolve the previous external references and adjust the
REFTBL entry. The entry point name and address are printed by
calling DMSLIO.

If there is no REFTBL entry for the card-specified entry point
name, the routine makes such an entry and branches to the DMSLIIC
routine,

ESD TYPE 2 CARD ROUTINE - C3AH1

Function
This

routine creates the proper ESID table entry for the

card-specified external name and places the name's assigned address
(ORG2) in the reference table relocation factor for that name.

Entry

This routine has two entry points: location C3RH1 and location ESDOO.
Location C3AH1 is entered from the ESD card analysis routine; this
occurs when an ESD type 2 card is being processed. Location ESDOO is
entered from:

1.

The ESD card analysis routine, when the card being processed is an
ESD type 2, and an absolute loading process is indicated.

The ESD type O card routine and ESD type 1 card routine, as the
last operation in each of these routines.

When this routine is entered at location C3AH1, it first links
to the REFTRL search routine to determine whether there 1is a
REFTBL entry for the card-specified external name. If none is
found, the RFFTBL search routine sets the undefined flag for the
new loader table entry.

CMS Method of Operation and Program Organization 2-85

Licensed Material -- Property of IBM

2. The routine resets a possible WEAK EXTRN flag. The routine next
places the REFTBL entry's position-key in the ESID table. 1If
the entry has already been defined by means of an ESD type 0, 1,
5, or 6, processing continues at operation 4. Otherwise, it
continues at operation 3.

3. The relocated address 1is placed in the RELFAC entry in the
external name's REFTBL entry.

4. The EST type 2 card routine then determines (at location ESDOO0)
whether there is another entry on the EST card. If there is
another entry, the routine branches to location CA3a1 in the ESD
card analysis routine for further processing of this card;
otherwise, the routine branches to 1location RD in the initial
and resume loading routine.

Exits
This routine exits to location CA3A1 in the ESD card analysis routine
if there is another entry on the ESD card being processed, and exits
to location RD in the initial and resume loading routine if the ESD

card requires no further processing.

ESD TYPE 4 ROUTINE - PC

This routine makes loader table and ESIDTAB entries for private code
CSECT.

The ESD Type 4 Card Routine:

1. The routine LDRSYM is called to generate a unique character
string number of the form 00000001, which is left in the
external data area NXTSYM; it is greater in value than
previously generated symbol.

2. The CSECT is then processed as a normal type O ESD with the
above assigned name.

ESD TYPES 5 ANI 6 CARD ROUTINE - PRVESD AND COMESD

This routine creates reference table and ESIDTAB entries for common and
pseudo-register ESDs.

D type 5 and 6 card routine:

1. Links to ESIDINC in the ESD type 0 card routine, to wupdate the
number of ESIDTB entries.

2. Links to the REFTBL search routine to determine whether a
reference table (REFTBL) entry has already been created. TIf there
is no entry, the REFTBL search routine places the name of the itenm
in the REFTBL.

3. If the REFTBL search routine had to create an entry for the itenm,
the ESD type 5 and 6 card routine indexes it in the ESIDTB, enters
the length and alignment in the entry, indicates whether it is a

2-R% IBM VM/SP System Logic and Program Determination--vVolume 2

Licensed Material -- Property of IBM

PR or common, and branches tc ESDOO in the EST type 2 card routine
to determine whether +the card contains additional ESD's to be
processed. If the entry is a PR, the ESD +type 5 and 6 card
routine enters its displacement and length in the REFTBL Ltefore
tranching to ESDOO.

4. If the REFTBL already contained an entry, the ESD type 5 and 6
card routine indexes it in the ©ESIDTB, checks alignment and
tranches to ESDOO.

Note: The PR alignment is coded and placed into the REFTBL. It is an

error to encounter more restrictive alignment PR than previously
defined. A blank alignment factor is translated to fullword alignment.

ESD TYPE 10 ROUTINE - WEAK EXTRN

The WEAK EXTRN routine calls the search routine to find the EXTRN name
in the loader table. If not found, set the WEAK EXTRN flag in the new
loader table entry. Exit to ESDOO.

TXT CARD ROUTINE - CUARA1

Function
This routine has two functions: address inspection and placing text
in storage.

Entry
This routine has three entry pcints: location C4AA1, which is

entered from the ESD card analysis routine, and locations REPENT and
APR1, which are entered from the REP <card routine for address
inspection.

1. This routine begins its operation with a test of card type. If
the card being processed is not a TXT card, the routine branches
to the REP card routine; ctherwise, processing continues in this
routine.

2. The routine then determines how many bytes of text are to be
placed in storage, and finds whether the 1loading process is
absolute or relocating. If the loading process is absolute, the
routine performs operation 4, below; if relocating, the routine
performs operation 3.

3. TIf the ESIDTB entry was negative, this is a duplicate to CSECT
and processing branches to RD. Otherwise, the routine links to
the REFADR routine to obtain the relocaticn factor of the
current control segment.

4, The routine then adds the relocation factor (0, if the locading
process 1is absolute) and the card-specified storage address.
The result 1is the address at which the text must be stored.
This routine also determines whether the address is such that
the text, when loaded starting at that address, overlays the

loader or the reference -table. If- a loader-overlay or a
reference table overlay is found, +the routine branches to the
LDRIO routine. If neither condition is detected, the routine

proceeds with address inspection.

CMS Method of Oreraticn and Program Organization 2-87

Licensed Material -- Property of IBM

The routine then determines whether an address has already been
saved for possible use as the end-of-load branch address. If an
address has leen saved, the routine performs operation 7; if
not, the routine performs operation 6.

The routine determines whether the text address is below
location 128. If +the address is below location 128, it should
not be saved for use as a possible end-of-load branch address,
and the routine performs operation 7; otherwise the routine
saves the address and then performs operation 7.

The routine then stores the text at the address specified
(absolute or relocated) and branches to 1location RD in the
initial and resume loading routine to read another card.

e toutine exits to two locations, as follows:

The routine exits to location RD in the initial and resume
loading routine if it is being used to process a TXT card.

The routine exits to location APRIL in the REP card routine if
it is being used for REP card address inspection.

REP CARC ROUTINE - Cu4aA3

Function

This routine places text corrections in storage.

Entry
This routine has cne entry point, location CU#3A3. The routine is
entered from the TXT card routine.

Operation

2-88

1.

This routine begins its operation with a test of card type. If
the card being processed is not a REP card, the routine branches
to the RLD card routine; otherwise, processing continues in this
routine.

The routine then links to the HEXB conversion routine to convert
the REP card-specified correction address from hexadecimal to
binary.

The routine then 1links to the HEXB conversion routine again to
convert the REP card-specified ESID from hexadecimal to binary.

The routine then determines whether the 2-byte correction being
processed is the first such correction on the REP card. If it
is the first correction, the routine performs operation 5;
otherwise, the routine performs operation 6.

When the routine is processing the first correction, it links to
location REPENT in the TXT card routine, where the REP
card-specified correction address is inspected for 1loader
overlay and for end-of-load branch address saving; in addition,
if the loading process is relocating, the relocated address is
calculated and checked for reference table overlay. The rocutine
then performs operation 7.

When the correction being processed is not the first such
correction on the REP card, the routine branches to location
APR1 in the TXT card routine for address inspection.

IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

. The routine then links to the HEXB conversion routine to convert
the correction from hexadecimal to binary, places the correction
in storage at the absolute (card-specified) or relocated
address, and determines whether +there is another <correction
entry on the REP card. If there is another entry, the routine
repeats its processing from operation 4, above; otherwise, the
routine branches to location BRD in the initial and resume
loading routine.

Exits
When all the REP-card corrections have been processed, this routine

Ent

exits to location RD in the initial and resume loading routine.

D Card Routine - C5AAL

This routine processes RLD cards, which are produced by the assembler
when it -encounters address constants within the program being
assembled. This routine places the current storage address (absolute
or relocated) of a given defined symbol or expression into the
storage 1location indicated by the assembler. The routine mnust
calculate the proper value of the defined symbol or expressiocn and
the proper address at which to store that value.

Ly
This routine has two entry points, locations C5AR1 and PASSTWO.

peration
. Location C5AA1 writes each RLD card into a work file (DMSLDR
CMSUT1). Exit to RD to process the next card.

Location PASSTWO reads an RLD card from the work file. At EOF
got to C6AB6 to finish this file.

2. The routine uses the relocation header (RH ESID) on the card to
obtain the current address (absolute or relocated) of the symbol
referred to by the RLD card. This address is found in the
relocation factor section of the proper reference table entry.
If the RH ESID 1is O, the routine branches to the LDRIC routine

(invalid ESD).

3. The routine wuses the positicn header (PH ESID) on the card to
obtain the relocation factor of the control segment in which the
DEFINE CONSTANT assembler instruction occurred. If the PH ESID
is 0, the routine branches to BADCRL in the REFTBL search
routine (invalid ESID). If the ESIDTAB entry is negative
(duplicate CSECT), the RLD entry is skipped.

4, The routine next decrements the card-specified byte count by U4
and tests it for 0. TIf the count is now 0, the routine branches
to 1location RD in the initial and resume 1loading routine;
otherwise, processing continues in this routine.

5. The routine determines the length, in bytes, of the address
constant referred to in the RLD card. This length is specified
on the RLD card.

6. The routine then adds the relocation factor obtained in
operation 3 (relocation factor of the control segment in which
the current address of the symbol must be stored), and the
card-specified address. The sum is the current address of the
location at which the symbol address must be stored.

CMS Method of Operation and Program Organization 2-89

Licensed Material -- Property of IBM

7. The routine then computes the arithmetic value (symbcl address
or expression value) that must be placed in storage at the
address calculated in operation 6, above, and places that value
at the 1indicated address. If +the value is wundefined, the
routine branches to 1location DMSLSBB, where the constant is
added to a string of constants that are to te defined later.

8. The routine again decrements the byte count of information on
the RLD card and tests the result for zero. If the result is
zero, gc to operation 2; otherwise, processing continues in this
routine.

9. The routine next checks the continuvatiocn flag, a part of the
data placed on the RLD card by the assembler. If the flag is
on, the routine repeats its processing for a new address only;
the processing 1is repeated from operation 4. If the flag is
off, the routine repeats its processing for a new symbol; the
processing is repeated from operation 2.

Exits

This routine exits to location RD in the initial and resume lcading
routine.

END CARC ROUTINE - C6AA1

routine saves the END card address under certain circumstances,
and initializes the loader to load another control segment.

Entry
This routine has one entry point, location C6AA1. The routine is
entered from the RLD card routine.

Operation

1. This routine begins its operation with a test of card type. If
the card being processed is not an ENT card, the routine
branches to the 1LDT card routine;g othervise, processing
continues in this routine.

2. The routine then determines whether the END card contains an
address, If the card contains no address, the routine performs
operation 7, below; otherwise, the routine performs operation 3.

3. The routine next checks the end-address-saved switch. If this
switch is on, an address has already been saved, and the routine
performs operation 7. If the switch 1is off, +the routine

performs operation 4.

4. The routine determines whether loading is absolute or relocated.
If the 1loading process 1is absoclute, the routine performs
operation 6; otherwise, the routine performs operation 5.

5. The routine 1links to the REFADR routine to obtain the current
relocation factor, and adds this factor to the card-specified
address.

6. The routine stores the address (absolute or relocated) in area

BRAD, for possible use at the end-of-load transfer of control to
the prcbiem frogram.

2-90 IBM VM/SP System Logic and Program Determination--vVolume 2

Licensed Material -- Property of IBM

Entr

Y

Goes to location PASSTWO {in RLD routine) to process RLD cards.

The routine then clears the ESID table, sets the absolute load
flag on, and branches to the location specified in a general
register (see "Exits").

routine exits to the location specified in a general register.
may be either of twc locations:

Location RD in the dinitial and resume loading routine. This
exit occurs when the END card routine is processing an END card.

The location in the LDT card routine that is specified by that
routine's linkage +to the END card routine. This exit occurs

when the LDT card routine entered this routine to clear the ESID
table and set the absolute load flag on.

CARD ROUTINE - CTLCRD1

routine handles the ENTRY and LIBRARY control cards.

This routine has one entry point, location CTLCRDI. The routine is
entered from the LDT card routine.

1.

The CMS function SCAN is called to parse the card.

2. If +the card is not an ENTRY or LIBRARY card, the routine
determines whether the NOINV option (no printing of invalid card
images) was specified. If printing 1is suppressed, control
passes to RD in the initial and resume loading routine, where
another card is read. If printing is not suppressed, control
passes to the disk and type output routine (DMSLIO), where the
invalid card image is printed in the load map. If the card is a
valid control card, processing continues.

ENTRY Card

3. If +the ENTRY name is already defined in REFTBL, its REFTBL
address is placed in ENTADR. Otherwise, a new entry is made in
REFTBL, indicating an undefined external reference (to be
resolved by later input or 1library search), and this REFTBL
entry's address is placed in ENTADR.

4. The contrcl card is printed by calling DMSLIO via CTLCRD; it
then exits to RD.

LIBRARY Card

5. Only nonobligatory reference LIBRARY cards are handled; any
others are considered invalid.

6. Each entry-point name is individually isolated and is searched
for in the REFTBL. If it has already been 1loaded and defined,
nothing 1is done and the next entry-point name is processed.
Otherwise, the nonobligatory bit is set in the flag byte of the
REFTBL entry.

7 .

Processing continues at operation 4.

CMS Method of Operation and Program Organization 2-91

Licensed Material -- Property of IBM

REFADR ROUTINE (DMSLDRB)

This routine computes the storage address of a given entry in the
reference table.

Entry

This routine has one entry point, 1location REFADR. The routine is
entered for several of the routines within the lcader.

1. Checks to see if requested ESDID is zero. If so, uses LOCCNT as
requested 1location; branches to the return location + 44;
otherwise continues this routine.

2. The routine first obtains, from the indicated ESID table entry,
the position (n) of the given entry within the reference table
(where the given entry is the nth REFTBL entry).

3. The rontine then multiplies n by 16 (the number of bytes in each
REFTBL entry) and subtracts this result from the starting
address of the reference table. The starting address of the
reference table 1is held in area TBLREF; this address is the
highest address in storage, and the reference table is always
built downward from that address.

4, The result of the subtraction in operation 2, above, is the
storage address of the given reference table entry. If there is
no ESD for the entry, goes to operation 5; otherwise, this
routine returns to the 1location specified by the calling
routine.

5. Adds an element to the chain of waiting elements. The element
contains the ESD data item information to be resolved when the
requested ESDID is encountered.

PRSERCH ROUTINE (DMSLDRD)

Function
This routine compares each reference table entry name with the given
name determining (1) whether there is an entry for that name and (2)

what the storage address of that entry is.

Entry :
This routine 1is initially entered at PRSERCH, and subsequently at
location SERCH. The routine is entered from several routines within
the loader.

'. This routine begins its oreration by obtaining the numter of
entries currently in the reference table (this number is
contained in area TBLCT), the size of a reference table entry
(16 bytes), and the starting address of the reference takle
(always tlke highest address in storage, contained in area
TBLREF) .

2. The routine then checks the number of entries in the reference

table. 1If the number is zero, the routine performs operation 5;
otherwise, the routine performs operation 3.

2-92 IBRM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

3. The routine next determines the address of the <first (or next)
reference table entry to have its name checked, increments by
one the <count it is keeping of name comparisons, and compares
the given name with the name contained in that entry. If the
names are identical, PRSERCH hranches to the location specified
in the routine that 1linked to it. PRSERCH then returns the
address of the REFTBL entry; else PRSERCH performs operation 4.

4. The routine then determines whether there is another reference
table entry to be <checked. If there is none, the routine
performs operation 5; if there 1is ancther, the routine
decrements by one the number of entries remaining and repeats
its operation starting with operation 3.

5. If all the entries have been checked, and none contains the
given name for which this routine is searching, the routine
increments by one the count it is keeping of name comparisonms,
places that new value in area TBLCT, moves the given name to
form a new reference table entry, and returns to the calling
program.

Exits

This routine exits to either of +two locations, both of which are
specified by the routine that linked to this routine. The first
location is that specified in the event that an entry for the given
name is found; the second 1location is that specified in the event
that such as entry is not found.

LOADER DATA BASES

ESD Card Codes (col. 25...)

Code Meaning

00 SD (CSECT or START)
01 LD (ENTRY)

02 ER (EXTRN)

ou PC (Private code)

05 CM (COMMON)

06 XD (Pseudo-register)
0oa WX (WEAK EXTERN)

ESTIDTB ENTRY

The ESD ID table (ESIDTB) is constructed separately for each text deck
processed by the 1loader. The ESIDTB produces a correspondence between
ESD ID numbers (used on RLD cards) and entries in the loader reference
table (REFTBL) as specified by the ESD cards. Thus, the ESIDIB is
constructed while processing the ESD cards. It is then used to process
the TXT and RLD cards in the text deck.

The ESIDTB is treated as an array and is accessed by using the ID
number as an index. Each ESIDTB entry is 16 bits long.

CMS Method of Operation and Program Organization 2-93

Licensed Material -- Property of IBM

Bits Meaning

0 If 1, this entry corresponds to a CSECT that has been previously
defined. All TXT cards and RLD cards referring to this CSECT in
this text deck should be ignored.

1 If 1, this entry corresponds to a CSECT definition (SD).
2 Waiting ESD items exist for this ESDID.

3 Unused.

4-15 REFTBL entry nﬁmber (for example 1, 2, 3, etc.)

Bit 1 is very crucial because it 1is necessary to use the VALUE field
of the REFTBL if the ID corresponds to an ER, CM, or PR; but, the INFO
field of the REFTBL entry must be used in the ID corresponds to an SD.

REFTBL Entry

1 3 1
10 (0) |
I Ut NAME — — — — = — — — — — |
f |
{ |
18 (8) 19 (9) i
] FLAG1 | INFO l
| | |
112 (C) 113(D) |
I NOTE1 | VALUE |
- | |
116 (10) 117 (11) I
| FLAG2 I ADDRESS I
L]

A REFTBL entry is 20 bytes. The fields have the following uses:

AME Field: Contains the symbolic name from the ESD data iten.

FLAG! BYTE

Loader ESD Routine

Code Code Latel Meaning
7C 00 XBYTE PR - byte alignment
7D 01 XHALF PR - halfword alignment
TE 03 XFULL PR - fullword alignment
7F 07 XDBL PR - doubleword alignment
80 05 XUNDEF Undefined symbol
81 0oy XCXD Resolve CXD
82 02 XCOMSET Define common area
83 05 WEAKEXT Weak external reference
90 06 CTLLIB TXTLIBs not to be used to resolve names

INFO Field: Depends upon the type of the ESD item.

ESD ITtem INFO Field

Iype Meaning

SD (CSECT or START) Relocation factor
LD (ENTRY) zZero

CM (COMMON) Maximue length

PR (Pseudo Register) -

2-94 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

VALUE Field: depends upon the type of the ESD item, as does the INFO
field.

ESD Ttem VALUE Field

Iype Meaning

SD (CSECT or START) Absolute address
LD (ENTRY) Absolute address
CM (COMMON) Absolute address
PR (Pseudo register) Assigned value

(starting from 0)

FLAG2 Byte
Bit Meaning Bit Meaning
0 Jnused 4 Unused
1 Unused 5 Name was located in a TXTLIB
2 Unused 6 Section definition entry
3 Unused 7 Wame specifically loaded from command line.

ADDRESS Field: Unused

Entries may be created in the loader reference tabie prior to the
actual defining of the symbol. TFor example, an entry is created for a
symbol if it is referenced by means of an EXTRN (ER) even if the symbol
has not yet been defined or its tyre kncwn. Furthermore, common {CH} is
not assigned absclute addresses until prior to the start of execution by
the START command.

These circumstances are determined by the setting of the flag byte;

if +the symbol's value has not yet been defined, the value field
specifies the address of a patch control block (PCB).

PATCH CONTROL BLOCK (PCB)

These are allocated frcm free storage and pointed at from REFTBL entries
or other PCBs.

Byte Meaning

0-3 Address of next PCB

5=7 Location of ADCON in storage
4 Flag byte

A1l address constant 1locations in lcaded program for undefined symbols
are placed on PCB chains.

LCADER INPUT RESTRICTIONS

A1l restrictions which apply to object files for the 0S linkage editor
apply to CMS loader input files.

Load and Execute Member of LOADLIBS

The OS relocating 1lcader support consists of two members of the CHMSSEG
discontiguous shared segment. The members are the relocating program

CMS Method of Operation and Program Organization 2-95

Licensed Material -- Property of IBM

(DMSLOS) and the overlay rprogram (DMSSFF). In addition, the OSRON
command (DMSOSR) allows the user to invoke directly from the console a
program residing in a CMS LOADLIB or an O0S module library. DMSOSR
executes in user storage.

When a wuser program invokes the LINK, LOAL, XCTL, or ATTACH SVC,
DMSSLN calls DMSLOS to search the libraries in the LOADLIB global list
for the specified member name. If found, DMSLOS loads and relocates the
requested program from either an 0S module 1library (for example,
SYS1.LINKLIB) or a CMS LOADLIB (created by the LKED command). If the
member is not found, return is made to DMSSLN to search for a TEXT file
or a member of a TXTLIB by that name.

The program exists in the library as text records, directly followed
(when required) by control, relocation, and position records. DMSLOS
obtains, via the BLDL macro, the information necessary to start loading
the prcgram from the PDS directory entry for the rrogram. Then, text
records and contrcl records are read alternately, the proper addresses
are modified, and return is made to DMSSLN.

The OSRUN ccmmand generates a LINK SVC and therefore follows the same
path described in the preceding paragraphs. However, if the requested
member is not found in searching the libraries specified in the LOADLIB
global list, a search is made for a default 1library ($SYSLIB LOADLIB);
TEXT files and TXTLIB members are not searched.

For detailed infcrmation on the library record formats, see the 0S/VS
Linkage Editor Logic, SY26-3815.

Processing Commands that Manipulate the File
System

Figure 9 lists the CMS modules that perform either general file system
support functions or that perform data manipulation.

Managing the CMS File System

A description cf the structure of the CMS file system and the flow of
routines that access and update the file system follows.

Disk Organization

CMS virtual disks (also referred to as minidisks) are blocks of data
designed to externally parallel the function of real disks. Several
virtual disks may reside on one real disk.

B CMS virtual machine may have up to 26 virtual disks accessed during
a terminal session, depending on user specifications. Some disks, such

as the S-disk, are accessed during CMS initialization; however, most
are accessed dynamically as they are needed during a terminal session.

2-96 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

How CMS Files Are Organized in Storage for an
800-byte Record

CMS files are organized in storage by three types of data blocks: the
file status table (FST), chain links, and file records. Figqgure 12 shows
how these types of data blocks relate +to each other; the following text
and figures describe these relationships and the individual data Eklocks
in more detail.

FILE STATUS TABLES

CMS files consist of 800-byte records whose attributes are described in
the file status table (FST). The file status table is defined by DSECT
FSTSECT. The FST consists of such information as the filename,
filetype, and filemode of the file, the date on which the file was last
written, and whether the file is in fixed-length or variable format.
Also, the FST contains a pointer to the first chain link. The first
chain link is a block that contains addresses of the data blocks that
contain the actual data for the file.

The FSTs are grouped into 800-byte blocks called FST Blocks (these
are sometimes referred to in listings as hyperblocks). Each FST block
contains 20 FST entries, each describing +the attributes of a separate
file. Figure 13 shows the structure of an FST bleck and the fields
defined in the FST.

Master File Status File Status First Chain Nth'Chain
File Directory Table Block (FSTB) Table Entry Link (FCL) Link (NCL)
NeL ||
Address of Addr
FSTB ‘ :
ECL Address of
| an 800-byte
CMS Record _‘]

—
o

-’r Record 1 l Record 2 l Record 3 | L T Record n
l‘—SOO-byte CMS Record Containing File Data ltems —3»

Figure 12. How 800-Byte CMS File Records Are Chained Together

CMS Method of Operaticn and Program Organization 2-97

Licensed Material -- Property of IBM

File Status

Table Block Fields in a File
Status Table Entry
FST 1 0
FILE
- e = = = = — ————— — =]
FST 2 NAME
8
N FILE
‘\ D Gmn Gwmn G CED D M) TR GE TED GED G Gup GND AID GRS TR GRS MR GED GED Gus e o
TYPE
FST 4 16
DATE LAST WRITTEN
FST5 120 write Pointer 22 Read Pointer
, (Number of Item) (Number of Item)
2 Filemode 26 Number of
FST6 Items in File
| 28 Disk Address 30 Fixed 31 Flag
Jd of 1st Chain Link Variable Byte
b Y ' 32 Item Length (F)
Max. Item Length (V)
FST 20 136 Number of y
800-Byte Data Bliocks ear

Figure 13. Format of a File Status Block; Format of a File Status Table
(for 800-Byte Disk Format)

CHAIN LINKS

Chain 1links are 200- or 800-byte blocks of storage that chain the
records of a file in storage. There are two types of chain links: first
chain links and Nth chain links.

The first chain link points to two kinds of data. The first 80 bytes
of the first chain link contain the halfword addresses of the remaining
40 chain 1links used to chain the records of the file. The next 120
bytes of the file are the halfword addresses of the first 60 records of
the file.

The Nth chain links contain only halfword addresses of the records
contained in the file.

Because there are 41 chain 1links (of which the first contains

addresses for only 60 records), the maximum size for any CMS file is
16,060 800-byte records.

2-98 IBM VM/SP System Logic and Program Determination--vVolume 2

Licensed Material -- Property of IBM

CMS RECORD FORMATS

CMS records are 800-byte blocks containing the data that comprises the
file. Por example, the CMS record may contain several card images or
print images, each of which is referred to a record itenm. Figure 14
shows how chain links are chained together.

CMS records can be stored on disk in either <fixed-length or
variable-length format. However, the two formats may not be mixed in a
single file.

Regardless of their format, the items of a file are stored by CMS in
sequential order in as many 800-byte 7records as are required to
accommodate thenm. Each record (except the last) is completely filled
and items that begin in one record can end on the next record. Figqure
15 shows the arrangement of records in files for files containing
fixed-length records and files containing variable-length records.

The location of any item in a file containing fixed-length records is
determined by the formula:

{Item Number - 1) x Record Length
locations = ==--------- s e e
where the quotient is the number of the item and the remainder is the

displacement of the item into the file.

For variable-length records, each record 1is preceded by a 2-byte
field specifying the length of the record.

PHYSTICAL ORGANIZATION OF VIRTUAL DISKS

Virtual disks are physically organized in 800-byte records. Records 1
and 2 of each user disk are reserved for IPL. Record 3 contains the disk
label. Record 4 contains the master file directory. The remaining
records on the disk contain user file-related information such as the
FSTs, chain links, and the individual file records discussed above.

THE MASTER FILE DIRECTORY

The master file directory (MFD) is the major file management table for a
virtual disk. As mentioned earlier, it resides on cylinder 0, track O,
record 4 of each virtual disk. Six types of information contained in
the master file directory:

e The disk addresses of the FST entries describing user files on that
disk.

e A U-byte "sentinel," which can be either FFFD or FFFF. FFFD
specifies that extensions of the QMSK (described below) follow. FFFF
specifies that no QMSK extensions follow.

e Extensions to the QMSK, if any.

e General informaticn describing the status of the disk:

- ADTNUM -- The total number of 800-byte blocks on the user's disk.

CMS Method of Operation and Program Organization 2-99

Licensed Material -- Property of IBM

Disk Address of
2nd Chain Link

Disk Address of
3rd Chain Link

))
LY

L Chain

Linkage
Directory

-)
A 99

: ‘

Disk Address of
40th Chain Link

Disk Address of
41st Chain Link

Disk Address of
1st Data Block

Disk Address of
2nd Data Block

2)
L9

-)
\$

Disk Address of
59th Data Block

Disk Address of
60th Data Block

Figure 14.

Data block structure for file consisting of fixed-length records Data block structure for file consisting of variable-length records

Disk Address of
A+ 0th Data Block

Disk Address of
A+ 1st Data Block

))
A0

[§)

3

Disk Address of
A+ 398th Data Block

Disk Address of
A+ 399th Data Block

A=(n-2) e 400 + 61
where n = Chain Link Number

Format of the First Chain Link and Nth Chain Links

1st record L
S g —— e o o % _.Ll 1st record
800k ~~ = ~~ 800 800 = o p——pemm—m e — ~ ——=~-1800
I
—m—m—m e m e L L e = 2nd record
2nd record
J i 3rd record
3rd record B TTTTT
800k = ==~ = ——m————————- -I-—-—‘SOO 800 800
________ 4th record
4th record
5th record E -------- TTTTTETTTTTETTT
80f=-==-—=——— - — === ————--—-4800 800 5th record 800
rm == T ¢ | auibn e s ===
]
L
Figure 15. Arrangement of Fixed-Length Records and Variable-Length
Records in Files
2-100 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

- ADTUSED -- The number of blocks currently in use on the disk.

- ADTLEFT -- Number of blocks remaining for use (ADTNUM - ADTUSED).

- ADTLAST -- Relative byte address of the 1last record in use on the
disk.

- ADTCYL -- Numker of cylinders on the user's disk.

- Unit Type -- A 1-byte field describing the type of the disk: 08

for a 2314, 09 for a 3330.

- A bit mask called the QMSK, which keeps track of the status of the
records on disk. The QMSK is described in more detail below.

- Another bit map, called the QQMSK, which is used only for 2314
disks and performs a function similar to that of QMSK.

Figure 16 shows the structure of the master file directory. Figure
12 shows the relationship of the Master File Directory, which resides on
disk, to data blocks brought into stcrage for file management purtoses,
for example, FSTs and chain links.

KEEPING TRACK OF READ/WRITE DISK STORAGE: QMSK AND QQMSK

Because large areas of disk space need not be contiquous in CMS, but are
composed of 800-byte blocks chain-linked together, disk space management
needs to determine cnly the availability of blocks, not extents. The
status of the blocks on any read/write disk (which blocks are available
and which are currently in use) is stored in a table called QMSK. The
term QMSK is derived from the fact that a 2311 dicsk drive has four
R00-byte blocks per track. One block is a "quarter-track", or QTRK, and
a 200-byte area is a "guarter-quarter-track", or QQTRRK. The bit mask
for 2314, 2319, 3340, or 3330 records 1is called the QMSK, although each
800-byte block represents 1less than a quarter of a track on these
devices.

On a 2314 or 2319 4disk, the blccks are actually grouped fifteen
800-byte blocks per evens/odd pair of tracks. An even/0dd pair of tracks
is called a track group. On a 3330 disk, the blocks are grouped
fourteen 800-byte blocks per track. On a 3340 disk, the blocks are
grouped into eight 800-byte blocks per track.

When the system is not in use, a user's QMSK resides on the Master
File Directory; during a session it 1is maintained on disk, but also
resides in main storage. OQWMSK is of variable length, depending on how
many cylinders exist on the disk.

Each bit 1is associated with a particular block on the disk. The
first bit in QMSK corresponds to the first block, the second bit to the
second block, and so forth, as shown in Figure 17.

When a bit in QMSK is set to 1, it 1indicates that the corresponding
block is in use and not available for allocation. A O0-bit indicates
that the corresponding block is available. The data blocks are referred
to by relative block numbers thrcughout disk space management, and the
disk I/0 routine, DMSDIO, finally converts this number to a CCHHR disk
address.

B table «called QQMSK indicates which 200 byte segments (QQTRK) are
available for allocation and which are currently in use. QQMSK contains
100 entries, which are used to indicate the status of up to 100 QQTRK

CMS Method of Oreration and Program Organization 2-101

Licensed Material -- Property of IBM

-— 2 Bytes P
Disk Address of 1st FST Block
Disk Address of 2nd FST Block {if any)
Byte O
®
.
.
Disk Address of Nth FST Block (if any)
Sentinel
Disk Address of 1st QMSK extension {if any)
L]
[]
L]
Disk Address of Nth QMSK extension (if any)
[
®
L * T
Not used — Zero filled
.
L]
)
A4 ADTNUM, ADTUSED, ADTLEFT, ADTLAST ~
T (4 bytes each)
Byte 364
\% / Not used (zero)
Y
Byte 380 ADTCYL
-~ First 215 Bytes of QMSK -~
Byte 382
UNIT-TYPE
Byte 384 ,L -
Byte 599 Entire 200-Byte QQMSK Table P
T (for 2314 only) T’
Byte 600
Figure 16. Structure of the Master File Directory
1 bit
QMSK for 2314 or 2319 * 'l 1+ bit QMSK for 3330
oJoJofloJlolololo —t ocJolofJoloJlolo]o
ojoflojojlofolo]o]| |1bit [g ololo|lojolojojo
112) 34| 5]86|7]8 H | |1bit 112 3| 4| 5|6{7]8
olojojolojo]|o]o R ololojojoflolo]o
(O S IR TR T T O O O IO T where: ojlojolojojo]1]1
9 |10 |11]12]13 |14 |15 | 1 C = Cylinder g 10|11]12f13f1a] 1] 2
H = Head
ojlojojolololo]o R = Record ofloflolo]j]olo|o]oO
2|2 2y2|2{2|2]3 IR A RN R
23| 4als]e|7]8]09 Bit Value Meaning. 314|586 7]8]9]0
= - [0} Bilock avaiiable ~ -
1 Block in use T
Number of QMSK Extensions Number of Cylinders on Disk
Required (if any) 2314 or 2319 3330 3340 3350
0 111 1-6
1 12 — 54 7 — 30
2 55 — 96 31— 54
3 97 —139 55 — 78
2 140 — 182 79 — 102
5 183 — 203 103 — 126
6 — 127 — 150
7 — 151 — 174
8 — 175 — 198
) — 199 — 223
10 — 224 — 246
Figure 17. Disk Storage Allocation Using the QMSK Data Block
2-102 TIEBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

records. An entry in QQMSK contains either a disk address, pointing to
a QQTRK record that is available for allocation, or zero. QQMSK is used
only for 2314 files; for 3330, 3340, and 3350, the first chain link
occupies the first 200-byte area of an 800-byte block.

The QMSK and QQMSK tables for read-only disks are not brought into
storage, since no space allocation 1is done for a disk while it is
read-only. They remain, as is, on the disk until the disk is accessed
as a read/write disk.

DYNAMIC STORAGFE MANAGEMENT: ACTIVE DISKS AND FILES

CMS disks and files contained on disk are physically mapped wusing the
data blocks described above: for disks, the QMSK, QQMSK, and the MFD;
for files, the FST, chain links, and 800-byte file records. In storage,
all of this data is accessed by means of two DSECTs whose addresses are
defined in the DSECT NUCON, ADTSECT and AFTSECT.

Managing Active Disks: The Active Disk Table

The ADTSECT DSECT maps information in the active disk table (ADT). This
information includes data ccntained in the MFD, FST blocks, the QMSK,
and QQMSK. The DSECT comprises of ten "slots," each representing one
CMS virtual disk. A slot contains significant information about the
disk such as a pointer to the MFD for the disk, a pointer to the first
FST block and pointers to the QOMSK and QQMSK, if the disk is a R/W disk.
Also contained in ADTSECT is information such as the number of cylinders
on the disk, the numter of records on the disk.

Fach open file is represented in storage by an active file table (AFT).
The APT (defined by the AFTSECT DSECT) contains data found on disk in
FSTs, chain links, and data records. Also contained in the AFT is such
information as +the address of the first chain 1link for the £file, the
current chain link for the file, the address of the current data Lblock,
the fileid information for the file. Figure 2 shows the relationship
between the AFT and cther CMS data blocks.

CMS ROUTINES USED TO ACCESS THE FILE SYSTEM

DMSACC is the control routine used to access a virtual disk. In
conjunction with DMSACM and DMSACF, DMSACC builds, in virtual storage,
the tables CMS requires for processing files contained on the disk. The
list below shows the logical flow of the main function of DMSACC.

CMS Method of Oreration and Program Organization 2-103

Licensed Material -- Property of IBM

ACCESS A VIRTUAL DISK: DMSACC

DMSACC: Scans the command line to determine which disk is specified.

: Looks up the address of the ADT for the disk specified cn the
d line.

DMSACC: Determines whether an extension to a disk has been specified on

the command line and ensures that it is correctly specified.

DMSLAD: In the case where an extension has been specified, calls DMSLAD
to ensure that the extension disk exists.

AD: Ensures that the specified disk is not already accessed as a R/W

: In the case where the specified disk is replacing a currently
ed disk, closes any open files belonging to the duplicate disk.

DMSACC: Verifies the parameters remaining on the command line.

MSALU: Releases any free storage belonging +to the duplicate disk via a
call to DMSFRE. Also, clears appropriate entries in the ADT for use by
the new disk.

DMSACM: (Called as the first instruction by DMSACPF) Reads, from the
Master File Directory, QMSK, and the QQMSK for the specified disk; also,
DMSACM updates the ADT for the specified disk using information from the
MFD.

MSACF: Reads into storage all the PFST blocks associated with the
specified disk.

DMSACC: Handles error processing or processing required to return
control to DMSINT.

How CMS Files Are Organized in Storage for 1K-,
2K-, or 4K-Byte Records on Disk

CMS files are organized by three types of blocks; the file status table
(FST), pointer blocks, and file records. Figure 18 shows how these
types of blocks relate to each other. The following text and figures
descrite these relationships and the individual data blocks in more
detail.

FILE STATUS TABLES

CMS files consist of 1K-, 2K-, or U4K-byte CMS blocks whose attributes
are described in the file status table (FST). The file status tatle is
defined by DSECT FSTSECT. The FST consists of such information as the
filename, filetype, and filemode of the file, the date on which the file
was last written, and whether the file is in fixed-length or variable
format. Also, the FST contains a pointer to the highest level pointer
block or only data block. If it is a pointer block, this block contains
addresses of the next lower level pcinter blocks or the data blocks that
contain the actual data for the file.

The FSTs are grouped into 1K-, 2K-, or U4K-byte CMS blocks called FST
blocks (these are soretimes referred to in listings as hyperblocks).
2-104 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Each FST block contains 16, 32, or 64 FST entries respectively (an FST
is 64 bytes long), €ach describing the attributes of a separate file.
Figure 19 shows the structure of an FST block and the fields defined in

the FST.

File Directory File Status Highest Level Lower Pointer Lower
Table Entry Pointer Biock Block (LPB) Pointer Block
(FOP)
LPB
Addr
FST
' LPB Addr of a 1K
FOP g
Addr 2K, or 4K
record
>
item 1 [1tem 2 | Item 3 :}3 [1temn

lat—— 1K-, 2K-, or 4K-byte Record
Containing File Data Items

Figure 18, How 1K-, 2K-, or #K-Byte CHS TFile Records Are Chained
Together

CMS Method of Operation and Program Organization 2-105

Licensed Material -- Property of IBM

Fields in a File Status Table Entry

0 .
File Status Table Block File
FST Name
8
FST File
L L prr o ——_— e = e —
— -y
— _ Type
16
FST Reserved
20
FST Reserved
24 26
FST Filemode Reserved
28 30 g 31
-~ Minad Reserved le?d Flag
8 ot T Variable Byte
EsT 32 Item Length (F)
Max. Item Length (V)
36
Reserved
40
File Origin Pointer (FOP)
44
Number of 1K, 2K, 4K Blocks
48
Number of Items In File
52 Highest |53 po 54
Level of ointer Date Last Written
Poi Entry
ointer Si
Blocks z¢
56
(YY MM DD HH MM SS)
60
Reserved

Figure 19.

2-106

Format of a File Status Table Block and

(For 1K-, 2K-, and 4K-Byte Disk Format)

File Status Table

IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

POINTER BLOCKS

Pointer blocks are 1K-, 2K-, or #4K-byte blocks of storage that chain the
records of a file. There are up to five levels of pointer blocks. 1ll
but the first level cf pointer blocks contain the fullword disk address
of the next lower 1level pointer block. The level-one pointer tlocks
contain the fullword disk addresses of the data blocks of the file (see
Figures 20 and 21).

There are two types of pointer blocks; pointer blocks for fixed
files which are as described above, and pointer blocks for variable
files. For the varialtle files, each pcinter block entry is three
fullwords long. The first fullword holds the disk address of the next
lower level pointer block, +the next fullword holds the highest iten
number contained in this 1lcwer corresponding pointer block, and the
last fullword holds the displacement, at +the data level, to the first
identified item contained in a lower corresponding pointer block. CMS
blocks are not shared by files.

Each entry of a level-one pointer block is composed of one fullword
containing the disk address of the corresponding data block, one
fullword containing the highest iter number contained in this data
block, and one fullword containing the displacement, in bytes, of the
first identified item (if any) contained 1in this data block. This last
fullword of +the entry may hold the hexadecimal value X'FF...F',
indicating that the item is spanned.

The last fullword of a pointer block holds the displacement, in
bytes, of the 1last used entry, if one exists, in the block. This
structure permits the creation of very large files. This file
management system 1limits the maximum size for any CMS file +to
approximately 231-1 +times 1K-, 2K-, or UK-byte records. The maximum
size for an item is 231-1 bytes for a fixed file, and 64K for a variable
file.

Fach pointer block or data block 1is prefixed in virtual storage with
a header. This header holds an entry called DCHTRUNK that points to the
upper level pointer block. Associated with the TLCHTRUNK value is a
displacement that indicates the corresponding entry in this upper level
pointer block.

In virtual storage, each level of pointer block and the data block
have an anchor in the corresponding Active File Table (AFT) and are
forward and backward chained by the prefix.

CMS BLOCK FORMATS

CMS blocks are 1K-, 2K-, or UK-byte disk records containing +the data
that conprises the file. For example, the CMS record may contain
several card images or print images, each of which is referred to a
record item. Fiqure 20 shows how pointer blocks are chained together.

CMS file items <can be stored on disk in either fixed-length or
variable-length format. However, the two formats may not be mixed in a
single file.

Regardless of their format, the items of a file are stored by CHMS in
sequential order in as many K-, 2K-, or UK-byte records as are required

to accommodate +them. Each CMS block (except the last) is completely
filled and 1items that begin in one CMS block can end in the next CHMS

CMS Method of Operation and Program Organization 2-107

Licensed Material -- Property of IBM

block. Figure 20 shows the arrangement of items in files containing
fixed-length items and files containing variable-length items.

The location of any item in a file containing fixed-length items is
determined by the formula:

(Item Number - 1) x Record Length
location = -=------c-mmmmm e

where the quotient 1is the sequential number of the data block and the
remainder is the displacement of the item into the data block.

For variable-length files, each item is preceded by a 2-byte field
specifying the length of the itenm.

PHYSICAL ORGANIZATION OF VIRTUAL DISKS

Virtual disks are physically organized in 1K-, 2K-, or U4K-byte disk
records. Records 1 and 2 of each wuser disk are reserved for IPL.
Record 3 contains the disk label. The first block of the file directory
is alternately exchanged between record 4 and record 5 when the
directory is rewritten to disk. The remaining records on the disk
contain information such as allocation map blocks, PFSTBs, pointer
blocks, and the individual file records as discussed above.

CMsS disk structures that reside on FB-512 devices are 1024-, 20u48-,
or U4096-byte CMS block format. The required number of 512-byte physical
FB-512 disk records are logically concatenated together to form each CHMS
block. For example; on a 1024-byte format disk, FBE-512 physical record
numbers 0 and 1 (origin 0) are used together to form CMS block 1t (origin
1. The FB-512 label occupies FB-512 block 1 (origin 0) leaving CMS
blocks 2 and 3 available for general use.

2-108 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBH

P3(0)

Disk Addr P2(0)

Level 3 Pointer Block

Disk Addr P2(1)

)

CMS Method of Oreration and Program Organization

Licensed Material -- Property of IBM

Y P2(0) P2(1)
Disk Addr P1(0) Disk Addr P1(256)
’,"1: - — Disk Addr P1{1) Disk Addr P1(257)
Disk Addr P1(258) Level 2
r Pointer
: —— Disk Addr P1(259) Blocks
~ M ~
~-— o ta
‘ Lo -~~~
: L L
. ~+ ~
Disk Addr P1(255)
Y P1(0) y P P1(259)
— Disk Addr DB{(0) Disk Addr DB{256) Disk Addr DB(66304)
Disk Addr DB(1) | Disk Addr DB(257) Disk Addr DB(66305) [
Level 1
(X N N] .
Pointer
. . Block
ny . L . L L A ocks
T . TIT . T 7T T
[] ®
Disk Addr DB(255) Disk Addr DB(b11)
¥ DB(0) DB(1) DB(2) DB(3) Y DB(66305)
ltem 1 Item n+1 ltem Item Item M
Item 2 Item Item [tem jeoeescossssvsces
® [] [}
. § ~L ~ ¢ 4L L 7 L L ~ ~ ~L
— : ~ 8 ud : Tr./ ar, : ~ T.., ~+~ ~~ ~—
[] e []
[] [] []
[] L] []
[] L] ®
Iltem n Item ltem Item
Figure 20. Format of Level 3 Pointer Block Fixed-length Record File

2-109

P2(0)

; Disk Addr P1(0) —
dp1 — = '1-2;' - Level 2
+ P — —0— —_ - Pointer
Block
Disk Addr P1(1)
126
1K +d125
A A
e 4 Le o4
dp1
4 P1(0) P1(1)
A_ Disk Addr DB(0) * Disk Addr DB(86)
- — — e e — — —
3 dp87 124 Level 1
——————1] | pP—— ——— .
4085 d1=0 + X'FFFFFFFF’ | Pointer
i Disk Addr DB(1) Disk Addr DB(87) |2 0¢ks
6 126
d4 d125
A A
L v d AH
' e o~
Disk Addr DB (85) — -
124
d112
dp85 dp87
Data Block Data Block Data Block Data Block Data Block
VDB@) DB(1) DB(92) *DB@& VDBBH
di
L1] A
tem1 | 94| tem3 d125 | 1tem 124
L4 L125
* —J Iltem6 |eesseoeeeee] [tem 124 ? “—-J
47 Item 125
ltem 4
L126
L2] 4 L Adtem 126,
T T Ao ~ g
'tem 2 f'p L
AU ’Ju ~
o~ ’.V L 04
L5|
Item 5
L3|
L6l
|
tem 3 weme | y| []
Figure 21. Format of Level Twc Pointer Block Variable-Length Record
File

2-1172 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

THE FILE DIRECTORY, THE ALLOCATION MAP, AND THE DISK LABEL

The file directory and the allocation map have the same organization as
files. The directory contains FSTs and the first block resides on
cylinder 0, track 0, record 4 or record 5 of each virtual disk. The
record number (4 or 5) is maintained in the field disk origin pointer of
the disk 1label.

The directory itself is described by an FST that is the first PST in
the first block; the filename for the directory is binary zero (except
for byte 4 which is binary 1) and a filetype of "DIRECTOR".

The allocation map is described by an FST that is +the second FST in
the first block of the directory; the filename is binary zero (except
for byte 4 which is binary 2) and a filetype of "ALLOCMAP".

The disk label resides on cylinder 0, track 0, record 3; it is
80-bytes long and contains the following information: . ’

ADTIDENT CMS1 is the label identifier.
ADTID Six characters given by the user are the volume identifier.

ADTDBSIZ One fullword; contains the disk block size +that the user
chooses at format disk time (1K, 2K, or U#K).

ADTDOP One fullword; contains records U4 or 5 depending upon the
actual directory first data block address.

ADTCYL ore fullword; contains the number of formatted cylinders
available for CMS files.

ADTMCYL One fullword; contains the maximum number of formatted
cylinders, that is, the size of the disk.

ADTNUM One fullword; the total number of 1K-, 2K-, or UK-byte Lklocks
on the user's disk.

ADTUSED One fullword; the number of blocks currently in use on the
disk.

ADTFSTSZ One fullword; the size of the FST (64 bytes).
ADTNFST One fullword; the number of PFSTs per block.

ADTCRED Six characters; the disk creation date (YYMMDDHHMMSS).

KEEPING TRACK OF READ/WRITE DISK STORAGE: ALLOCATION MAP

In CMS, disk space is composed of 1K-, 2K-, or UK-byte blocks chained
together. Because disk space management only determines the
availability of blocks, not extents, it need not allocate disk space
contiquously. The status of the blccks on any read/write disk (which
blocks are available and which are currently in wuse) 1is stored in a
table called the allocation map. The allocation mafp contains bits, each
of which 1is associated with a particular CMS block. The first
corresponds to “the first CMS block, the g€cond bit corresponds to the
second CMS block, and so forth.

When a bit in the allocation map is set to 1, it indicates that the
corresponding block is in use and not available for allocation. A 0-bit

CMS Method of Orperation and Program Organization 2-111

Licensed Material -- Property of IBM

indicates that the corresponding block is available. The data blocks
are referred to by relative block numbers through disk space management,
and the disk I/0 routine, DMSDIO, finally converts this number to a
CCHHR disk address or FB-512 block number.

When the system is not in use, a user's allocation may resides on the
corresponding disk. During a session, it is maintained on disk but also
resides in real storage. The allocation map is variable in 1length,
depending on hcew many cylinders exist on the disk. The CMS disk may
reside on the entire physical disk pack and is limited only by the
physical limit of the disk pack.

R deallocation map exists in real storage when CMS disk Llocks are
deallocated. During a terminal session a block 1is recorded as
deallocated by turning on its corresponding bit in the deallocation map.

When the disk is wupdated by rewriting the file directory and the
allocation map, the current allocation map is formed by combining the
allocation map and the deallocation map. In fact, a deallocation map
block is created only for those allocation map blocks in which a CMS
block is deallocated.

The allocation maps for read-only disks are not brought into storage
because no space allocation is performed for a disk while it is in
read-only status. They remain, as 1is, on the disk until the disk is
accessed as a read-write disk.

Selective Directory Update

The file directory and the allocation map are built with CMS Llocks
(K-, 2K-, or U4K-bytes). The selective directory update function takes
place when the file directory and the allocation map must be updated on
the corresponding disk. It writes on disk only the wmodified blocks of
the directory (including required pointer blocks) and the entire
allocation map. .

DYNAMIC STORAGE MANAGEMENT: ACTIVE DISKS AND FILES

CMS disks are physically mapped in CMS blocks containing the file
directory and the allccation map. CMS files on disk are mapped using
FST blocks, pointer blocks, and 1K-, 2K-, or U4R-byte file data blocks.

In real storage all of this data is accessed by means of two DSECTs
whose addresses are defined in DMSNUC, ADTSECT, and AFTSECT. 10
ADTSECTs reside in DMSNUC and the others (11 through 26) reside in free
storage when the are used. Five AFTs reside in DMSNUC and the others
reside in free storage. (See Figure 22).

Managing Active Disks: The Active Disk Table

The ADTSECT DSECT maps information in the active disk table (ADT). Aan
ADT contains significant information about the CMS disk such as the
anchors for pointer block 1levels and the data block for the file
directory, the anchors for pointer block levels and the data block for
the allocation map (if the disk is a read-write disk). The ADTISECT also
contains disk label information.

2~112 1IBM VM/SP System Logic and Program Petermination--Volume 2

Licensed Material -- Property of IBM

Managing Active Files: The Active File Table

Each open file is represented in storage by an active file table (AFT).
The AFT (defined by AFTSECT DSECT) contains data found on disk in FSTs,
the anchors for pointer block levels and the data block for the file.
The AFT also contains such information as the read pointer and write
pointer of the file, +the number of entries in a pointer block, the
number of pointer block levels, and the length of a pointer block entry.
Figure 22 shows the relationship between the AFT and other CMS blocks.

CMS ROUTINES USED TO ACCESS THE FILE SYSTEM

DMSACC 1is the <control routine used to access a virtual disk. In
conjunction with DMSACX and DMSACF, DMSACC builds, in virtual storage,
the tables CMS requires for processing files contained on the disk. The
list below shows the logical flow of the main function of DMSACC.

ACCESS A VIRTUAL DISK: DMSACC

ACC: Scans the command line to determine which disk is specified.

CJ
!3
192}

LAD Looks up the address of the ADT for the disk specified cn the
mmand line.

CMSACC: Determines whether an extension to a disk has been specified on
the command line and ensures that it is correctly specified.

DMSLAD: In the case where an extension has been specified, calls DMSLAD

to ensure that the extension disk exists.

AD: Ensures that the specified disk is not already accessed as a R/W

DMSFNS: In the case where the specified disk is replacing a currently
accessed disk, closes any open files belonging to the duplicate disk.

DMSACC: Verifies the parameters remaining on the command line.

DMSALU: Releases any free storage belonging to the duplicate disk via a

call to DMSFRE. Also, clears appropriate entries in the ADT for use by
the new disk.

DMSACM: (Called as the first instruction by TMSACF) Reads, from the
file directory, and the allccation map for the specified disk; also,
DMSACHM updates the ADT for the specified disk using information from the

file directory and disk label.

DMSACF: Reads into storage all the FST blocks associated with the
specified disk.

CMSACC: Handles error processing or processing required to return
control to DMSINT.

CMS Method of Oreration and Program Organization 2-113

Licensed Material -- Property of IBM

DMSNUC Area of Storage

DMSNUC

AFTSECT

ADTSECT

Figure 22.

2=114

DATA BLOCK n+1

DATA BLOCK n+2

DATA BLOCK n+k

DATA BLOCK 2n+1

Free Storage
AFT
POINTER LEVEL 2
) ZSRRENT HEADER
CEVEL 2 LEVEL 1 POINTER
BLOCK LEVEL 1 POINTER
AETUEPS LEVEL 1 POINTER
AFTUFP4
POINTER TO
AFTFOP AFTUFP3 CURRENT
AFTUFP2 LEVEL 1
ADT e BLOCK
ADTA AFTOBA LEVEL 1
ADTB — HEADER
ADTC copy
OF FST
ADTD
DATA BLOCK n+k
ADTE .
POINTER TO HEADER
D
\ ADTF CURRENT DATA [~ ——— \
\\apTG BLOCK ' ,
]
\ ADTS ITEM i+1 i
ADTY T
T 1
_ADTZ ITEMp
ADT AFT
CONTINUED CONTINUED
ADTDFP3
ADTAMP2 ADTDFP2
ADTAMP1 ADTDFP1 ‘\\
ADTMSK ADTFDA ~ <\\
P
voLLageL | ARTRO
] 4 I
f 40R5
/
LEVEL 1 POINTER ALLOCMAP BLK ‘\\\\ALLOCMAPBLK
HEADER HEADER —— HEADER
ALLOCMAP BLK 1111 1 11100
ALLOCMAP BLK 1otoo0 !
|
: 10000
| 00000
01100 00000 lA |l B] c

File System for a 1K-, 2K-, or
1 of 3)

Licensed Material -- Property of IBM

4K -Byte Record on Disk (Part

IBM VM/SP System Logic and Program Determination--volume 2

A

| HEADER
/ LEVEL 1 POINTER

LEVEL 2 POINTER

LEVEL 1 POINTER

LEVEL 1 POINTER LEVEL 1 POINTER
HEADER HEADER
FSTB1 POINTER FSTB n+1 POINTER
FSTB2 POINTER FSTB n+2 POINTER

FSTB n+3 POINTER '\

T
(N EST
]
NAME
FESTBn POINTER FILENA
FILETYPE
[FsTroP \
FSTB1 FSTB2 FSTB n+3
HEADER HEADER HEADER
FST DIRECTOR FSTi+1 USER FSTUSER—
FST ALLOCMAP FSTi+2 USER FST USER
T THERE IS ONE
FST1 USER I FSTFOREACHFILE | D
EST2 USER !
: |
1 i
FSTi USER FST USER

Figure 22. File System for a 1K-, 2K-, or 4K-Byte Record on Disk (Part
2 of 3)

CMS Method of Orperation and Program Organization 2-115

Licensed Material -- Property of IBM

Disk Storage CKD — DEVICE

<l T

VOLUME DIRECTORY”| DIRECTORY
LAB}L
cylo CcYLO CYLO
L HEAD 0 HEAD 0 HEADO
REC3 J REC4 REC5
LEVEL2
ESTE! LEVEL1 POINTER
FST DIRECTOR LEVEL1 POINTER
FST ALLOCMAP
FST1 USER
FST2 USER
1 LEVEL1 LEVEL1
1 FSTB1 POINTER FSTBn+1 POINTER
FSTi USER FSTB2 POINTER FSTBn+2 POINTER
FSTBn+3 POINTER
T
i
FSTB2 FSTBn !
| | FSTBn POINTER
LEVEL2 FSTBn+3
__‘/ LEVEL1 POINTER
LEVEL1 POINTER
LEVEL1 POINTER
LEVEL1
LEVEL1 LEVEL1 DATA BLOCK m-2
DATA BLOCK 1 DATA BLOCK n+1 DATA BLOCK m-1
DATA BLOCK 2 DATA BLOCK n+2 DATA BLOCK m
1
|
i
1
DATA BLOCK n DATA BLOCK 2n+1
DATA BLOCK 1 DATA BLOCK 2 DATA BLOCK m
ITEM 1 ITEM ITEM
ITEM 2 ITEM
| v
] !
ITEM ITEM

SN— S

Figure 22. File System for a 1K-, 2K-, or UK-Byte Record on Disk (Part
3 of 3)

2~-116 1IBM VM/SP System lLogic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Handling I/0 Operations

CMS input/output operations for disk, tape, and unit record devices are
always synchronous. Disk and tape I/O0 is initiated via a privileged
instruction, DIAGNOSE, whose function cecde requests CP to perform
necessary error recovery. Control is not vreturned to CMS until +the
operation is complete, except for tape rewind or rewind and unload
operations, which return control immediately after the operation is
started. No interruption is ever received as the result of DIAGNOSE
I/0. The CSW is stored only in the event of an error.

Input/output operations to a card reader, card punch, or printer are
initiated via a normal START I/0 instruction. After starting the
operation, CMS enters the wait state wuntil a device end interruption is
received from the started device. Because the I/0O is spooled by CP, CMS
does not handle any exceptional conditions other +than not ready,
end-of-file, or forms overflow.

CMS input/output operations to the terminal may be either synchronous
or asynchronous. Output to the terminal is always asynchronous, but a
program may wait for all terminal input/output operations to complete by
calling the <console wait routine. TInput from the terminal is usually
synchronous but a user may cause CMS to issue a read by pressing the
attention key. A program may also asynchronously stack data to be read
by calling the console attention routine.

ONIT RECORD I/0 PROCESSING

Seven routines handle I/0 processing for CMS: DMSRDC, DMSPUN, and DMSPRT
handle the REATLCARD, PUNCH, and PRINT commands and pass control to te
actual I/0 processors, DMSCIO (for READCARD and PUNCH) or DMSPIC (for
PRINT) . DMSCIO and DMSPIO issue the SIO instructions that cause 1/0 to
take place. TWO other routines, DMSIOW and DMSITI, handle
synchronization processing for I/0 operations. Figure 23 shows the
overall flow of control for I/O operationmns.

CMS Method of Orperation and Program Organization 2-117

Licensed Material -- Property of IBM

DMSRDC

DMSPUN
DMSPRT Channel
DMSCIO
DMSPID
T
~ '
DMSIOW
SIo A~
L —
- DMSITI
D
-

Figure 23. Flow cf Control for Unit Record I/0 Processing

The following are more detailed descriptions of the flow of control for
the read, punch, and print unit record control functions.

DCMSRDC: Initializes block length and unit record size.
DMSCIO: Initializes areas to read records.

DMSCIO: Issues an SIO command to read a record.

MSIOW: Sets the wait bit for the virtual card reader and load the I/O
old pSW from NUCON. This causes CMS to enter a wait state until the
read I/0 is complete.

DMSITI: Ensures that this interrupt is for the virtual reader. If not,
the I/0 old PSW is loaded, returning CMS to a wait state. If the
interrupt is for the reader, DMSITI resets the wait bit in the I/0 old
PSW and loads it, causing control to return to DMSIOW.

DMSIOW: Places the symbolic name of the interrupting device in the PLIST
and passes control tc the calling routine. '

DMSCI0: Checks for SENSE information and handle 1I/0 errors, if
necessary.

{=)

MSCWR: Displays a ccntrol record at the console.

2-118 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

MSSCN: If another ccntrol record is encountered, formats it via DMSSCN.
MSCWR: Displays the new control record at the console.
MSFNS: Closes the file when end-of-file occurs.

LCMSRDR: Issues a CP CLOSE command to close the card reader.

DPunch a Card

DMSPUN: Ensures that a virtual punch 1is available; processes PUNCH
comnand options.

DMSSTT: Verifies the existence of the £file and returns its starting
address.

DMSPUN: If requested, sets up a header record and calls DMSCWR to write
it to the comnsole.

DMSBRD: Reads a block of data into the read buffer; continues reading
until the buffer is filled.

DMSBWR: Writes a block of data on disk.

MSCIO: Initializes areas to punch records.

DMSCIO: Issues the SIO instruction to punch the contents of the buffer.
DMSCI0O: Issues a call to DMSIOW to wait fcr completion of the punch I/0
DMSIOW: Sets the wait bit on for the virtual punch device and loads the
I/0 0ld PS¥ from NUCON. This causes CMS to enter a wait state until the
punch operation ccmpletes.

DMSITI: Ensures that this interrupt is for the punch. If not, the I/0
01d PSW is loaded returning CMS to a wait state. If the interrupt is for
the punch, DMSITI resets the wait bit in the I/0 01d PSW and then loads
the PSW, returning ccntrol to DMSIOW.

DMSIOW: Places the symbolic name of the interrupting device in the PLIST
and passes contrcl to DMSCIO.

DMSCIO: Checks for SENSE information and handles I/0 errors, if any.

DMSPUN: Handles -error returns and resets constants for the next punch
operation.

DMSFNS: Closes the file and returns control to the command handler,
DMSINT.

(=}

MSPRT: Determines the device type of the printer. Checks out the

specified fileid. Checks out the options specified on the PRINT ccmmand
line, and calls DMSPIO to print the designated file.

(=

MS
ad

CN

CN: Verifies the existence of the file and returns its starting
ess.

S
T

foT}

CMs Method of Ogeration and Program Organization 2-119

Licensed Material -- Property of IBM

DMSPRT: Determines the record size to be printed and sets up an
appropriate buffer area via a call to DMSFRE.
DMSFRE: Obtains storage space to be used as a buffer.

DMSPRT: Determines whether the file to be printed is a library memker or

an input file.

DMSBRD: Reads a record; continues reading until the buffer is filled.
When the buffer is filled, calls DMSPIO to issue the SI0O instruction to
begin the print operation.

DMSPIO: Builds appropriate printer CCW chain. TIssues the print SIO
instruction and then calls DMSIOW to wait until the the 1I/O operation
completes.

DMSIOW: Sets the wait bit for the virtual printer device and 1load the
I/0 old PSW from NUCON. This causes CMS to enter a wait state until the
print operation completes.

DMSITI: Ensures that the interrupt is for the printer. TIf not, the I/0
0ld PSW is reloaded, returning CMS to a wait state. If the interrupt is
for the printer, DMSITI resets the WAIT bit in the I/0 o0ld PSW and loads
that PSW, returning ccntrol to DMSIOW.

DMSIOW: Places the symbolic name of the device in the last word of the
PLIST and passes control to DMSPIOC.

DMSPIO: Performs channel testing and handles errors. TIO instructions
and sense SIO instructions are issued during the test processing. These
operations are synchronized using DMSIOW and DMSITI in the @manner
described above. When the I/0O completes successfully, control returns
to DMSPRT.

DMSPRT: Determines whether all file records have been printed. If so,

control returns to the caller. Otherwise, the address of the buffer is
updated and more print operations are performed.

Printer Carriage Control Characters Used by DMSPIO

CMS supports the use of ASCII control characters and machine carriage
control characters for the printed output. Part of the CHMS
implementation depends upon the fact that the set of ASCII control
characters has almost nothing in ccommon with the set of machine control
characters. There are two exceptions to this, the characters X'C1' and
X'C3e, These two characters, when interpreted as ASCII control
characters, have the following meanings:

C1 = Skip to channel 10 before print.
C3 = Skip to channel 12 before print.

The same characters, when interpreted as machine ccntrol characters,
have the following meanings:

C1 = Write, then skip to channel 8 after print.

C3 = Do not write, but skip to channel 8 immediately.

In printing lines containing carriage control characters, CMS has the
capability of operating in two modes. In the first mode, which may be
called ASCIT control characters or machine control characters of either

2-120 IBM VM/SP System LlLogic and Program Determination--Volume 2

Licensed Material -- Property of IBM

type are recognized and properly interpreted, except that the two
conflicting characters are always interpreted as ASCITI control
characters. 1In the second mode, which may be called machine-only, only
machine control characters are recognized, and the two conflicting
characters are treated as machine.

The DMSPIO function uses a bit in +the PLIST to indicate which of the
two modes is in effect for printing.

The PRINTL macro always uses ASA control character or machine control
character mode.

The PRINT ccmmand with the CC option always runs in ASCII control
character or machine control character mode.

0S simalaticn output, which 1is used, for example, by the MOVEFILE
command, uses the RECFM field in the DCB or in the FILEDEF command to
determine which mode is to be used. If FA, VA, or UA is specified, then
ASCIT control character or machine control character mode is used. 1If
FM, V¥, or UM 1is specified, then machine-only mode is wused. 1If no
control character specification 3is included with the RECFM, then it is
assumed that the output line begins with a valid data character, rather
than with a control character, and single spacing is always used.

THE SETPRT COMMAND

The CMS SETPRT command allows a CMS wuser to control the facilities of a
virtual 3800 device defined for his virtual machine. The SETPRT command
is similar in functicn to the 0S SETPRT macro, allowing the wuser to
request multiple character arrangement tables, 1loading of copy
modifications, etc. The command uses the current CMS search order for
locating disk files. Therefcore, users can create their own character
arrangement tables, copy modifications, etc. and print files with user
defined characteristics. The SETPRT command writes 3800 CCWs and data
to a virtual 3800 spool file to set up the real 3800 for the data to
follow. If a file is created on a virtual 3800 and printed on a real
printer of a different type, the 3800 load CCWs imbedded within the file
are 1ignored and printing takes rlace as normal. However, this may
create output that does not appear as originally intended. The format
cf the command is:

r Ll
| SETPRT | [CHARS [(cccc ... D11 |
| | [COPIES [(] nnn [)]] !
! | [CORPYNR [(] nnn [) 1] |
| | [ECB [(] f££f [))] !
| | [ELASH [(] id nnn [)]] |
| | [(INTT) |
! ! [MODIFY [(] mmmm [)]] |
L []
DMSSPR process the SETPRT ccmmand in the following manner:
1. Accept 1input PLIST and analyze. If there are errors, issue a

message to the user and exit.

2. Select the correct character set modules and load these modules
into free storage.

CMS Method of Operation and Program Organization 2-121%

Licensed Material -- Property of IBHM

3. Assign writeable character generation modules (WCGMs) and change
the translate tables if necessary.

4, Issue SIOs to the wvirtual 3800 printer. 1In the case of an error,
terminate processing and issue a message and appropriate return
code.

5. Exit with a zero return code if the operation completes
successfully.

Handling Interruptions

Figure 9 lists the CMS modules that process interruptions for CMS. CMS
modules are described briefly in "CMS Module Description."® svC 9
interruption processing is described in "Maintaining an Interactive
Console Environment."

Disk 1/0 in CMS

Files residing on disk are read and written using DMSDIO. DMSDIO has
two entry points: DMSDIOR, which is entered for a read I/O operation,
and DMSDIOW, which is entered for a write operation.

The actual disk I/0 operation is performed using the DIAGNOSE ccde 18
instruction. A return code of 0 from CP indicates a successful
completion of +the I/0 operation. If the I/0 is not successful, CP

per forms error recording, retry, recovery, or ABENL ©procedures for the
virtual machine.

READ OR WRITE DISK I/O

DMSDIO: Initializes the CCW to perform read operatioms.

DMSLAD: Obtains the address c¢f the disk from which to read or write.
MSDIO: Determines the size of the record to be read or written.

: Gets enough storage to contain the record if the request is for
ord longer than 800 bytes.

DMSDIO: Reads records continually until all records for the £file have
keen read.

DMSFRE: Returns the tuffer to free storage if the record was longer than

DMSLBD: Allows the user to specify tape label information that will be

used by a program at execution time.

2-122 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

DMSTLB: Processes IBM standard tape labels for OS simulation, CMS/DOS,
CMS commands, and the TAPESL macro. It also provides 1linkage to
nonstandard user label routines for O0S simulation and CMS commands.
There are common tape label <checking routines for input header and
trailer labels and common tape label writing routines for output header
and trailer labels. These common routines are used for all IBM standard

label processing regardless of what operating system is being simulated.

=)

MSTIO: Reads or writes a tape record. also performs tape control
operations. Functions by issuing diagnose code X'20'.

Managing CMS Storage

DMSFRE handles requests for CMS free storage. The sections of CMS
storage have the following uses:

e DMSNUC (X'00000' to approximately X'04000') - This is the nucleus
constant area. It contains pointers, flags, and other data
maintained by the various system routines.

e CMS Yucleus First Part (X'04000' to approximately X'9000') - This
area contains the following CHS ©HNucleus routines: DMSALU, DHSCIOC,
DMSVIB, DMSVSR, DMSDBD, DMSDBG, DMSFET, DMSTIO, CMSTLA, DMSTQQ,
DMSITP, DMSABN, DMSITE, DMSPNT, DMSPIO, DMSLIO and DMSCPF.

e Low-core DMSFREE free storage area (approximately X'09000' to
X'0EO0Q00') - This area is a free =storage area, from which requests
from DMSFREE are allocated. The top part of this area contains the
file directory for the system disk (SSTAT). If there is enough room
(as there will be in most cases), the FREETAB table also occupies
this area, Jjust below the SSTAT.

e Transient program area (X'0E000' to X'10000') - BRecause it is not
essential to keep all nucleus functions resident in storage all the
time, some of them are made "transient." This means that when they
are needed, they are loaded from the disk into the transient program
area. Such programs may not be longer than two pages, because that
is the size of the transient area. (2 page is U096 bytes of virtual
storage.j

s CMS nucleus (X'10000' to X'20000') - Segment 1 of storage contains
the reentrant code for the CMS nucleus routines. In shared CMS
systems, this is +the protected segment. That is, +this segment must
consist only c¢f reentrant code, and may not be modified under any
circumstances. This fact implies certain system restrictions for
functions which require that storage be modified, such as the fact
that DEBUG Ltreakpoints or CP ADSTOP commands cannot be placed in this
segment, in a saved system.

e TUser program area (X'20000' to loader tables) - User programs are
loaded into this area by the LOAD command. Storage allocated by
means of the GETMAIN macro instruction is taken from this area,
starting from the high address of the user progranm. In addition,
this storage area can be allocated from the top down by DMSFREE, if
not enough storage is available in the low-core L[MSFREE storage area.
Thus, the effective size of the user program area is reduced by the
amount of free storage which has been allocated from it by DMSFREE.

e Loader tables (top pages of storage) - The top of storage is occupied
by the 1loader tables, which are reguired by the CMS 1loader. These
tables indicate which modules are currently 1loaded in the user
program area (and the transient program area after a LOAD command).

CMS Method of Operation and Program Organization 2-123

Licensed Material -- Property of IBM

The size of the loader tables can be varied by the SET LDRTBLS
command.

TYPES OF ALLOCATED FREE STORAGE

Free storage can be allocated by means of the GETMAIN or DMSFREE macrose.

Storage allocated by means of +the GETMAIN macro is taken from the
user program area, beginning with the high address of the user program.

Storage allocated by means of the DMSFREE macro can be taken from
several areas.

First, DMSFREE requests are allocated from the 1low-address free
storage area. If requests cannot be satisfied from there, they will be
satisfied from the user program area.

In addition, requests are further broken down tetween requests for
user storage and nucleus storage, as specified in the TYPE parameter of
the DMSFREE macro. These two types of storage are kept in separate 4K
pages. It is possible, if there are nc UK pages completely free in low
storage, for nc storage of one type to be available in 1low storage,
while there is storage of the other type available there.

GETMAIN FREE STORAGE MANAGEMENT POINTERS

All GETMAIN storage is allocated in the user program area, starting from
the end of the user's actual program. Allocation begins at the location
pointed to by NUCON pointer MAINSTRT. The location MAINHIGH in NUCON is
the pointer to the highest address of GETMAIN storage.

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH are
initialized to the end of the user's program, in the user program area.
In addition, a DIAGNOSE code X'10' instruction is sent to CP to release
these pages between MAINHIGH and FREELOWE. As storage is allocated from
the user program area to satisfy GETMAIN requests, the MAINHIGH pointer
is adjusted upward. Such adjustments are always in multiples of
doublewords, so that this pointer is always on a doubleword boundary.
As the allocated storage is returned, this pointer is adjusted downward
and the freed pages are released by issuing a DIAGNOSE code X'10!
instruction to CP.

The pointer MAINHIGH can never be higher than FREELOWE, the pointer
to the lowest address of DMSFREE storage allocated in the user progranm
area. If a GETMAIN request cannot be satisfied without extending
MAINHIGH above FREELOWE, GETMAIN takes an error exit, 1indicating that
insufficient storage is available to satisfy the request.

The area between MAINSTRT and MAINHIGH may contain blocks of storage
that are not allocated, and that are therefore available for allocation

by a GETMAIN instruction. These blocks are chained together, with the
first one pointed to by the NUCON location MAINLIST.

2-124 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

The format «¢f an element on the GETMAIN free element chain 1is as
follows:

4 bytes

<

—

| FREPTR -- pointer tc next free
0 (0) | element in the chain, or 0

P if there is no next element

|

!

|

|

!

|

FRELEN -- length, in bytes, of

4 () this element

Remainder of this free element

§ e e

IMSFREE FREE STORAGE POINTERS

The pointers FREEUPPR and FREELOWE in NUCON indicate +the amount of
storage which DMSFREE has aliocated from the high portion of <the user
program area. These pointers are initialized to the beginning of the
system loader tables.

The pointer FREELOWE is the pointer to the lowest address of DMSFREE
storage in the user program area. As storage is allocated from the user
program area to satisfy DMSFREE requests, this pointer is adjusted
Aownward. Such adjustments are always in multiples of 4K, so that this
pointer is always c¢cn a U4K boundary. As the allocated storage is
returned, this pointer is adjusted upward when whole UK pages are
completely free and the freed pages are released by issuing a DIAGNOSE
code X'10' instruction to CP.

The pointer FREELOWE can never be lower than MAINHIGH, the pointer to
*+he highest address cf GETMAIN storage. If a DMSFREE request cannot be
satisfied without extending FREELOWE below MAINHIGH, then DMSFREE takes
an error exit, indicating that insufficient storage 1is available to
satisfy the request.

The FREETAB free storage table is kept in free storage, usually just
below the master file directory for the system disk. If there was no
space available there, then FREETAB was allocated from the top c¢f the
user program are€a. This table contains one byte for each page of
virtual storage. Each such byte contains a code indicating the use of
that page of virtual storage. The codes in this table are as follows:

JSERCODE (1): If the page is assigned to user storage.

NUCCODE (2): If the page is assigned to nucleus storage.

TENCODE (3): If the page is part of the transient program area.

JSARCODE (4): If the page is part of the user program area.
SYSCODE (5): If the page is none cf the above.

In these cases, the page is assigned to system storage, system code,
or the loader tables.

CMS Method of Ofperation and Program Organization 2-125

Licensed Material -- Property of IBM

Other DMSFREE storage pointers are maintained in the DMSFRT control

section, in NUCON. The most important fields there are the four chain
header blocks.

Four <chains of elements are not allocated to be associated with
DMSFREE storage: The low-storage nucleus chain, the Jlow-storage user
chain, the bigh-storage nucleus chain, and the high-storage user chain.
For each of these chains, exists a control block consisting of four
words, with the following format:

POINTER -- pointer to the first
free element on the chain, or
zero, if the chain is empty.

0 (0)

NUM -- the number of elements on

4(4) the chain.

MAX -- the value in this word is
the size of the largest free
element on the chain.

8 (8)

FLAGS- | SKEY - | TCODE -| Unused
Flag |Storage |FREETAB |
byte | key | code |

12 (0)

(o o — o — - —— 4"
e o o o . e o v o — o —— — —]

These fields have the following meanings and uses:

POINTER This field points to the first element on this chain of free
elements. JIf there are no elements on this free chain, then
the POINTER field contains a zero.

NUM This field ccntains the number of elements on this chain of
free elements. If there are no elements on this free chain,
then this field contains a zero.

MaxX This field is used for the purpose of avoiding searches which
will fail. It contains the size, in bytes, of the 1largest
element on the free chain. Thus, a search for an element of a
given size will not be made if that size exceeds the MAX field.

FLAGS The following flags are used:

FLCLN (X'80")
Clean-up flag - This flag is set if the chain must be cleaned up.
This is necessary in the following circumstances:

- If one of the two high-core chains contains a 4K page that is
pointed to by FREELOWE, then that page can be removed from the
chain, and FREELOWE can be increased.

- Aall completely non-allocated 4K pages are kept on the user
chain, by convention. Thus, if one of the nucleus chains
(low-ccre or high-core) contains a full page, then this page
must be transferred to the corresponding user chain.

FLCLB (X'40")
Clobbered flag - Set if the chain has been destroyed.

2-126 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

FLHC (X'20%)
High-core chain - Set for both the nucleus and user high-core
chains.

FLND (X*10%
Nucleus chain - Set for both the low-core and high-core nucleus
chains.

FLPA (X'08")
Page available - This flag is set if there is a full UK page
available on the chain. ©Note that this flag may be set even if
there is no such page available.

SKEY This one-byte field contains the storage key assigned to storage
on this chain.

TCODE This one-byte field contains the FREETAB table code for storage on
this chain.

Each element on the free chain has the following format:

POINTER -- pointer to the next

0 (0) element in the free chain

SIZE -- size of this free

4 (u) element, in bytes

Remainder of this free element

. ——— i ey i o)
L YN P |

When the user issues a variable length GETMAIN, the control progranm
reserves 6 1/2 pages for CMS usage; this is a designed and set value.
If the user wants more space, for example, £for more directories. he
should free (from the high end of storage) some of the variable GETMAIN
area.

As indicated in the illustration above, the POINTER field points to
the next element in the chain, or contains the value zero if there is no
next element. The SIZE field contains the size of this element, in
bytes.

All elements within a given chain are chained together in order of
descending storage address. This is done for two reasons:

1. Because the allocation search 1is =satisfied by the first free
element that is large enough, the allocated elements are grouped
together at the top of the storage area, and prevent storage
fragmentation. This is particularly important for high-storage
free storage allocations, because it 1is desirable to keep FREELCWE
as high as possible.

2. If free storage does become =somewhat fragmented, the search causes
as few page faults as possible.

As a matter of convention, completely nonallocated 4K pages are kept
on the user <chain rather than the nucleus chain. This is because
CMS Method of Operation and Program Organization 2-127

Licensed Material -- Property of IBM

requests for large blocks of storage are made, most of the time, from
user storage rather than from nucleus storage. Nucleus requests need to
break up a full page less frequently than user requests.

DMSFRE METHOD OF OPERATION

34 description of the algorithms which allocate and release Ltlocks
follows. The descriptions are based on the assumption that neither
AREA=LOY nor ARFA=HIGH was specified in the DMSFREE macro call. If
2ither was specified, then the algorithm must be appropriately modified.

ALLOCATING USER FREE STORAGE: When DMSFREE with TYPE=USFR (the default)
is called, the following steps are taken to satisfy the request. As
soon as one of the steps succeeds, then processing can terminate.

DMSFRE:

1. Searches low-storage user chain for a block of the required size.

2. Searches the high-storage user chain for a block of the required
size.

3, Extends high-storage user storage downward into the wuser program
area, modifying FREELOWE in the process.

4. For fixed requests, there 1is nothing more to try. For variable
requests, DMSFRE puts all available storage in the wuser program
area onto the high-storage wuser chain, and then allocates the
largest block available on either the high-storage user chain or
the 1low-storage user chain. The allocated block is not
satisfactory, if it is not larger then the minimum requested size.

ALLCCATING NUCLEUS FREE STORAGE: When DMSFREE with TYPE=NUCLEUS is

called, the follewing steps are +taken in an attempt +to satisfy the
request, until one succeeds. DMSFREE:

1. Searches the low-storage nucleus chain for a block of the required
size.

2. Gets free pages frcm low-storage user chain, if any are availakble,
and removes them to the low-storage nucleus chain.

3. Searches the high-storage nucleus chain for a block of the required
size.

4, Gets free pages from the high-storage wuser chain, if they are
available, and removes them to the highstorage nucleus chain.

5. Extends high-storage nucleus storage downward into the user program
area, modifying FREELOWE in the process.

6. For fixed requests, there 1is nothing more to try. For variable
requests, DMSFRE puts all available pages from the user chains and
the user program area onto the nucleus chains, and allocates the
largest block available on either the low-storage nucleus chains or
the high-storage nucleus chains.

RELEASING STORAGE: When DMSFRET is called, the block being released is
placed on the appropriate chain. At that point, the cleanup operation
is performed, if necessary, to advance FREELOWE, or to move pages from
the nucleus chain to the corresponding user chain.

2-128 TBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Similar cleanup operations are performed, when necessary, after calls
to DMSFREE, as well. When FREELOWE is adjusted upward, the
corresponding pages are released by issuing' a LCIAGNOSE code X'10!
instruction to CP.

RELATIVE EFFICIENCY OF DMSFREE REQUESTS
The types of DMSFREE request in decreasing order of efficiency, are as
follows:

1. User fixed storage reguests, any size.

2. Nucleus fixed storage requests, for small blocks (less than one
page in size).

3. Nucleus fixed storage request, for large blocks.

4, User variable storage requests. (variable requests are no less
efficient than fixed requests, if the maximum block size requested
can be allocated.)

5. Fixed variable storage requests, ifi the maximum block size
requested cannot be allocated.

RELEASING ALLOCATED STORAGE

STORAGE ALLOCATED BRY GETMAIN: Storage allocated by the GETMAIN macro
instruction may be released in any of the following ways:

e 1A specific klock of such storage may be released by means of the
FREEMAIN macro instruction. All the corresponding full pages
contained in the freed block are released by issuing a DIAGNOSE code
X'10*' instruction to CP.

e The STRINIT macro instruction releases all storage allocated by any
previous GETMAIN requests. A1l the «correspending full pages between
MAINHIGH and FREELOWE are released by issuing a DIAGNOSE code X'10!
instruction to CP.

e Almost all CMS commands call +the STRINIT routine. Thus, executing
almost any CMS command causes all GETMAIN storage to be released.

STORAGE ALLOCATED BY DMSFREE: Storage allocated by the DMSFREE macro
i

R
instruction may be released in either of the following ways:

e A specific tlock of such storage may be released by means of the
DMSFRET macro instruction.

e VWhenever any user routine or CMS command abends (so that the routine
DMSABN is entered), and the ABEND recovery facility of the system is
invoked, all DMSFREE storage with TYPE=USER is released
automatically.

Except in the case of ABEND recovery, storage allocated by the DMSFREE
macro 1is never released automatically by the system. -Thus, . storage

allocated by means of this macro instruction should always be released
explicitly by means of the DMSFRET macro instruction.

CMS Method of Operation and Program Organization 2-129

Licensed Material -- Property of IBM

DMSFRE SERVICE ROUTINES

The system uses the DMSFRES macro instruction to request certain free
storage management services. The options and their meanings are as
follows:

INIT1--DMSINS <calls this option to 1invoke the first free storage
initialization routine, to allow free storage requests to access the
system disk. Before this routine is invoked, no free storage
requests may be made. After this routine has been invoked, free
storage requests may be made, but these are subject to the following
restraints until the second free storage management initialization
routine has tkeen invoked:

-- A11 requests for user storage are changed to requests for nucleus
storage.

-- Only partial error <checking is performed by the DMSFRET routine.
In particular, it is possible to release a block that was never
allocated.

-- BAll requests that are satisfied in high storage must be temporary,
because all high storage allocated is released when the second
free storage initialization routine is invoked.

When CP's saved system facility is used, the CMS system is saved
at the point just after the system disk has been accessed. This
means that it is necessary for DMSFRE to be used before the size of
virtual storage is known, because the saved system can be used on any

size virtual machine. Thus, the first initialization routine
initializes DMSFRE so that limited functions can be requested, while
the second initialization routine performs the initialization

necessary to allow the full functions of DMSFRE to be requested.

INIT2--This option 1is <called by DMSINS to 1invoke the second
initialization routine. This routine is invoked after the size of
virtual storage 1is known, and it performs the initialization
necessary to allow all the functions of DMSFRE to be used. The
saecond initialization routine performs the following steps:

-~ Releases all storage that has been allocated in +the highstorage
area.

-- Bllocates the FREETAB free storage table. This table contains one
byte for each #4096-byte page of virtual storage, and so cannot be
allocated until the size of virtual storage is known. It is
allocated in the low-address free storage area, if there is enough
room available. If not, then it is allocated in the higher free
storage area. For a 256K virtual machine, FREETAB contains 64
bytes; for a 16 million byte machine, it contains 4096 bytes.

-~ The FREETAB taltle is initialized, and all storage protection keys
are initialized.

-- A1l completely non-allocated 4K rages on the nucleus free storage
chain are removed to the user chain. Any other necessary cleaning
up operations are performed.

CHECK--This option can be <called at any time for system debugging
purposes. It invokes a routine that performs a thorough check of all
free storage chains for consistency and correctness. Thus, it checks
+to see whether any free storage pointers have been destroved.

2-130 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

e CKON--This option turns on a flag which causes the CHECK routine
described in the preceding paragraph to be invoked each time any call
is made to DMSFREE or DMSFRET. This can be wuseful to pinpoint a
problem that is, for example, dJdestroying free storage management
pointers. Care should be taken when using this option, because the
CHECK routine is coded to be thorough rather than efficient.
Thus, after the CKON option has been invoked, each call to DMSFREE or
DMSFRET takes many times as long to be completed as before. This can
impact the efficiency of system functions.

e CKOFF--Use of this option turns off the flag that was turned by the
CKON option, described in the preceding paragraph.

e UREC--This option is called by DMSABN during the ABEND recovery
process to release all USER storage.

e CALOC--This option is called by DMSABN after +the ABEND recovery
process has been completed. It invokes a routine that returns, in
register 0, the number of doublewords of free storage that have been
allocated. This figure is used by DMSABN to determine whether ABEND
recovery has teen successful.

STORAGE PROTECTION KEYS

In general, the following rule applies: system storage is assigned the
storage key of X'F', while user storage is assigned the key of X'E'.
This is the storage key associated with the protected areas of storage,
not to be confused with the PSW or CAW key used to access that storage.

The specific key assignments are as follows:

e The NTJCON area is assigned the key of X'F', with the exception of a
half-page containing the OPSECT and TSOBLOKS areas, which has a key
of X'E'.

e Free storage allocated by DMSFREE is broken up into user storage and
nucleus storage. The user storage has a protection key of X'E',
while the nucleus storage has a key of X'F'.

*» The transient program area has a key of X'E'.

e The CMS nucleus first part has a nucleus storage key of X'F!'.

e The CMS nucleus code has a storage key of X'F°*. In saved systenms,
this entire segment is protected by CP from modification even by the
CMS system, and so must be entirely reentrant.

s The user program area is assigned the storage key of X'E', except for
those pages which contain Nucleus DMSFREE storage. These Jlatter
pages are assigned the key of X'Ft.

¢ The loader tables are assigned the key of X'F'.

CMS SYSTEM HANDLING OF PSW KEYS

The CMS nucleus protection scheme protects the CMS nucleus fronm
inadvertent destruction by a user program. This mechanism, however,
does not prevent a user from writing in system storage intentionally.
Because a CMS user can execute privileged instructions, he can issue a

CMS Method of Operation and Program Organization 2-131

Licensed Material -- Property of IBM

LOAD PSW (LPSW) instruction and load any PSW key he wishes. 1If a user
defeats nucleus protection in this way there is nothing to prevent his
program from:

e Modifying nucleus code
e Modifying a table or constant area
e Losing files by modifying a CMS file directory

In general, user programs and disk-resident CMS commands run with a
PSW key of X'E', while nucleus code runs with PSW key of X'0°'.

There are, however, some exceptions to this rule. Certain
disk-resident CMS commands run with a PSW key of X'0', because they need
to modify nucleus pointers and storage. On the other hand, the nucleus
routines called by the GET, PUT, READ and WRITE macros run with a user
DSW key of X'E', to increase efficiency.

Two macros, DMSKEY and DMSEXS, are available for changing the PSW
key. The DMSKEY macro changes the PSW key to the wuser value or the
nucleus value. DMSKEY NUCLEUS causes the current PSW key to be placed
in a stack, and a value of 0 to be placed in the PSW key. DMSKEY USER
causes the current PSW key to be placed 1in a stack, and a value of X'E'
to be placed in the PSW key. DMSKEY RESET causes the top value in the
DMSKEY stack to be removed and re-inserted into the PSW.

It is a CMS requirement when a routine terminates, that the CMSKEY
stack must be empty. This means that a routine should execute a DMSKEY
RESET macro instructicn for each DMSKEY NUCLEUS macro instruction and
each DMSKEY USER macro instruction executed by the routine.

The DMSKEY key stack has a maximum depth of seven for each routine.
In this context, a "routine" is anything invoked by an SVC call. The
DMSEXS ("execute in system mode") macro instruction is wuseful in
situations where a routine is running with a user PSW key, but wishes to
execute a single instruction with the nucleus PSW key. The single
instruction may be specified as the argument to the DMSEXS macro, and
that instruction is executed with a system PSW key.

CP HANLCLING FOR SAVED SYSTEMS

The explanation of saved system nucleus protection depends on the VSK,
RSK, VEK and RPK:

1. Virtuwal Storage Key (VSK) - This is the storage key assigned Lby the
virtual machine using the virtual SSK instruction.

2. Real Storage Key (RSK) - This is the actual storage key assigned
by CP to the 2K page.

3. Virtual PSW Key (VPK) - This is the PSW storage key assigned Ly the
virtual machine, by means of an instruction such as LPSW (Load
PsSw).

4L, Real PSW Key (RPK) - This is the DPSW storage key assigned Ly cCpP,
which is in the real hardware PSW when the virtual machine is
running.

Vhen there are no shared segments in the virtual machine, then
storage protection works as it dces on a real machine. RSK=VSK for all
pages, and RPK=VPK fcr the PSW.

2-132 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IRM

However, when there is a shared segment (as in the case of segment 1
of CMS 1in the saved system), it is necessary for CP to protect the

shared segment. Fer non-CMS shared systems, it does this by,
essentially, ignoring the values of the VSKs and VPK, and assigning the
real values as follcws: RSK=0 for each page of the shared segment,

RSK=F for all other pages, and RPK=F, always, for the real PSW. The SSK
instruction is ignored, except to save the key value in a table in case
the virtual machine later does an ISK to get it back.

For the CMS saved system, the RSKs and RPK are initialized as before,
but resetting the virtual keys has the following effects:

e¢ Tf the virtual machine uses an SSK instruction +to reset a VSK, CP
does the following: If the new VSK is nonzero, CP resets the RSK to
the value of the VSK; if the new VSK is zero, CP resets RSK to F.

e TIf the wvirtual machine uses a LPSW (or cther) instruction to reset
the VPK, CP does the following: If the new VPK is zero, CP resets the
RPK to the value c¢f the VPK; if the new VPK is zero, CP resets RPK to
F.

e TIf +the VPK=0 and the RPK=F, storage protection may be handled
differently. In a real machine, a PSW key of 0 would allow the
program to store into any storage 1location, no matter what the
storage key. But under CP, the program gets a protection violation,
unless the RPK of the page happens to be F.

Because of this, there is extra code in the CP program check handling
routine. Whenever a protection violation occurs, CP checks to see if
the following conditions hold:

-- The virtual machine running is the saved CMS system, running
with a shared segment.

-- The VPK = 0. The virtual machine is operating as though its PSW
key is 0.

-- The BRSK of the page into which the store was attempted is
nonzero, and different from the RPK.

If any one of these three conditions fails to hold, then the
protection violation is reflected back to the virtual machine.

If all three of these conditions hold, then the RPK (the real
protection key in the real PSW) 1is reset to the RSK of the page into
which the store was attempted.

EFFECT ON CMS: 1In CMS, this works as follows: CMS keeps its system
storage in protect key F (RSK = VSK = F), and user storage in protect
key E (RSK = VSK = E).

When the CMS supervisor is running, it runs in PSW key 0 (VPK = O,
RPK = F), so that CMS gets a protection violation the first time it
tries to store into user storage (VSK = RSK = E). At that point, CP
changes the RPK to E, and 1lets the virtual machine re-execute the
instruction which caused the protection violation. There is not another
protection violation until the supervisor goes back to storing into
system-protected storage.

RESTRICTIONS ON CMS: There are several coding restrictions which must
te imposed on CMS if it is to rum as a saved systenm.

The first and most obvious one is that CMS may never modify segment
1, the shared segment, which runs with a RSK of 0, although the VSK = F.

CMS Method of Oreration and Program Organization 2-133

Licensed Material -- Property of IBM

A less obvious, but just as important, restriction, is that CMS may
never modify with a single machine instruction (except MVCL) a section
of storage which crosses the boundary between two pages with different
storage keys, This restriction applies not only to SS instructions,
such as MVC and ZAP, but also to RS instructions, such as STM, and to RX
instructions, such as ST and STD, which may have nonaligned addresses on
the System/370. An exception is the MVCL instruction which can be
restarted after crossing a page boundary because the registers are
updated when the paging exception occurs.

This restriction also applies tc I/0 instructions. If the key
specified in the CCW is zero, then the data area for input may not cross
the boundary between two pages with different storage keys.

OVERHEAD: It can be seen that this system is most inefficient when

"storage-key thrashing" occurs -- when the virtual machine with a VPK of
0 jumps around, storing into pages with different VSK's.

ERRCR CODES FROM DMSFREE, DMSFRES, AND DMSFRET

A nonzero return code, wupon return from DMSFRES, DMSFREE or DMSFRET,
indicates that the request could not be satisfied. Register 15 contains
this return code, indicating which error has occurred. The codes helow
apply to the DMSFRES, DMSFREE and DMSFRET macros.

Code Error
1 DMSFREE -- Insufficient storage space is available to satisfy the
request for free storage . In the case of a variable request,

even the minimum request could not be satisfied.

2 DMSFREE or DMSFRET -- User storage pointers destroyed.

3 DMSFREE or DMSFRET -- Nucleus storage pointers destroyed.

4 DMSFREE -~ An invalid size was requested. This error exit is
taken if the requested size 1is not greater than zero. In the

case of variable requests, this error exit is taken if the
minimum request is greater than the maximum request. However,
the error is not detected if DMSPREE is able to satisfy the
maximum request.

5 DMSFRET -- An invalid size was passed to the DMSFRET macro. This
error exit is taken if the specified length is not positive.

6 DMSFRET -- The block of storage which is being released was never
allocated by DMSFREE. Such an error is detected if one of the
following errors is found:

a. The block is not entirely inside either the free storage area
in low storage or the user rrogram area between FREELOWE and
FREEUPPR.

b. The tlock crosses a page-boundary which separates a page
allocated for user storage from a page allocated for nucleus
type storage.

c. The block coverlaps another block already on the free storage
chain.

7 DMSFRET -- The address given for the block being released is not
a doubleword boundary.

2-134 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

3 DMSFRES -- An illegal request code was passed to the DMSFRES
routine. Because all request codes are generated by the DMSFRES
macro, this error code should never appear.

g DMSFRE, DMSFRET, or DMSFRES -- BAn unexpected internal error
occurred.

THE DMSFRES MACRO

CMS uses the DMSFRES macro to request special internal free storage
management services. Use of this macro by non-system routines causes
unpredictable results. The format is:

i label | DMSFRES | option

where "option" is cne of the following:
INIT1 Performs the CMS system first initialization routine.
INIT2 Performs the CMS system second initialization routine.

CHECK 1Invokes a routine that checks the validity of all current free
storage management pointers.

CKON Sets a flag that causes the CHECK to be invoked for each call to
DMSFREE or DMSFRET.

CKOFF Turns off the above flag.

JREC Assists ABEND recovery, by releasing all USER—type DMSFREE
storage allocations.

CALOC Assist ABEND recovery, by computing the total amount of allocated
storage, excluding the system disk MFD and the FREETAB table.

For a full discussicn of the meanings of these c¢ptions, refer to
"DMSFRE Service Routines.®

THE DMSKEY MACRO

CMS uses the DMSKEY macro to modify the PSW storage protection key so
that the nucleus code can store data into protected storage. The format
is:

Bl
[latel] | DMSKEY { {NUCLEUS[,NOSTACK]]| \
| USER[,NOSTACK]| |
| LASTUSER[, NOSTACK]| |
| t

—

RESET}

NUCLEUS The nucleus storage protection key is placed in the PSW, and
the 0l1ld contents of the second byte of the PSW is saved in a
stack. Use of this option allows the program to store into
system storage, which is ordinarily protected.

CMS Method of Orperation and Program Organization 2-135

Licensed Material -- Property of IBM

USER The user storage protection key is placed in the PSW, and the
0ld contents of the second byte of the PSW is saved in a
stack. Use of this option prevents the program from
inadvertently modifying nucleus storage, which is protected.

LASTUSER The SVC handler traces back through its system save areas for
the active user routine closest to the tcp of the stack, and
the storage key in effect for that routine is placed in the
PSW. The o0ld contents of the second byte of the PSW is saved
in a stack. This option should be wused only by systenm
routines that should enter a user exit routine.

NOSTACK This option may be used with any of the above options to
prevent the system from saving the second byte of the current
PSW in a stack. If this is done, then no DMSKEY RESET need be
issued later.

RESET The second byte of the PSW is changed to the value at the top
of the PSW key stack, and removed from the stack. Thus, the
effect of the last DMSKEY NUCLEUS or USER or LASTUSER request
is reversed. This option should may not be used to reverse
the effect of a DMSKEY macro for which the NOSTACK option was
specified. A DMSKEY RESET macro must be executed for each
DMSKEY NUCLEUS, USER or LASTUSER macro that was executed and
that did not specify the NOSTACK option. Failure to observe
this rule results in program abnormal termination.

THE DMSEXS MACRO

System commands running in user protect status use the DMSEXS macro to
execute a single instruction with a system protect key in the PSW. This
macro instruction can be used in lieu of two DMSKEY macros. The format
is:

r 1
| [label] | DMSEXS | cp-code,operands

L J

The op-code and the operands of the instruction to be executed must
be given as arquments to the DMSEXS macro.

For example, executicn of the sequence,

USING NUCON,O
DMSEXS OI,O0SSFLAGS,COMPSHT

would cause the OI instruction to be executed with a zero protect key in
the PSW. This sequence would turn on the COMPSWT flag in the nucleus.
It would be reset with

DMSEXS NI,OSSFLAGS,255-COMPSWT

The instruction to be executed may be an EX instruction.

Register 1 cannot be wused in any way in the instruction being
executed.

2-136 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Simulate Non-CMS Operating Environments

The following contains descriptions for: access method support for
non-CMS operating systems, CMS simulation of OS functions, and CHMS
implementation of VSE functiomns.

Access Method Support for Non-CMS
Operating Environments

0S ACCESS METHOD SUPPORT

An access methocd governs the manipulation of data. To make the
execution of 0S generated code easier under CMS, the processing program
must see data as 0S would present it. For instance, when the processors
expect an access method to acquire input source records sequentially,
CMS invokes its sequential access method and rasses data to the
processors in the format that the 0S access methods would have produced.
Therefore, data appears in storage as if it had been manipulated using
an 0S access method. For example, block descriptor words (BDW), tuffer
pool management, and variable records are maintained in storage as if an
0S access method had processed the data. The actual writing +o and
reading from the I/0 device is handled by CMS file management.

The work of the volume table of contents (VTOC) and the data set
control block (DSCB)Y is done by a master file directory (MFD) to
maintain disk contents and a file status table (FST) for each data file.
a1l disks are formatted in physical blocks of 800, 1024, 2048, or 4096
bytes.

CMS continues to maintain the 0S format, within its own format, on
the auxiliary device, for files whose filemode number is 4. That is,
the block and record descriptor words (BDW and RDW) are written along
with the data. If a data set consists of blocked records, the data is
written to and read from the I/0 device in physical biocks, rather than
logical records. CMS also simulates the specific methods of
manipulating data sets.

To accomplish this simulation, CMS supports certain essential macros
for the following access methods:

e BDAM (direct)--identifying a record by a key or by its relative
position within the data set.

e BPAM (partitioned)--seeking a named member within an entire data set.
e BDAM/QSAM (sequential)--accessing a record in a sequence relative to
e VSAM (direct or sequential)--accessing a record sequentially or

directly by key or address. CMS support of 0S VSAM files is

based on VSE/VSAM. Therefore, the O0S user is restricted to
those services available under VSE/VSAM.

CMS Method of Operation and Program Organization 2-137

Licensed Material -- Property of IBM

CMS Support for the Virtual Storage
Access Method

CMS simulation of 0S and DOS includes support for the virtual storage
access method (VsSaM). The description of this support is in three
parts:

e A description of the access method services program (AMSERV), which
allows you to create and update VSAM files. :

e 1A description of support for VSAM functions under CMS/DOS.

e A description of support for VSAM functions for the CMS 0S simulation
routines.

The routines that support VSAM reside in four discontiguous shared
segments (DCSSs).

-- The CMSAMS DCSS, which contains the VSE/VSAM code to support
AMSERV prccessing.

-- The CMSVSAM DCSS, which contains actual VSE/VSAM code, and the
CMS/VSAM OS interface program for processing 0S VSAM requests.

-- The CMSDOS DCSS, which contains the code that supports VSE
requests under CHMS.

-- The CMSBAM DCSS, which contains the SAM modules required in order
for AMS to access SAM files.

Note: DMSVSR, which performs completicn processing for CMS/VSAM support,
resides in the CMS nucleus.

CREATING THE DOSCB CHAIN

The DLBL command creates a control block called a DOSCB in CMS free
storage. The ddname specified in this DLBL command is associated with
the ddname parawmeter in the program's ACB.

The DOSCEB contains information defining the file for the system. The
information in the DOSCB parallels the information written on the label
information area of a real DOS SYSRES wunit, e.g. the name, and mode
(volume serial number) of the data set, its logical unit specification,
and its data set type (SAM or VSAM). The anchor for this chain is at
location DOSFIRST in NUCON.

Executing an AMSERYV Function

The CMS AMSERV command invokes the module DMSAMS, which is the CHMS
interface to the VSE/VSAM access method services (2MS) program. Module
DMSAMS loads VSE/VSAM AMS code contained in the CMSAMS LCSS by means of
the LOADSYS DIAGNOSE 64. The AMS code requires the services of VSE/VSAM
code that resides in the CMSVSAM DCSS so that DCSS is also loaded via
LOADSYS DIAGNOSE 64 when the VSAM master catalog is opened. Figure 24
shows the relationship in storage between the interface module DMSAMS
and the CMSAMS and CMSVSAM DCSSs.

2-138 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBH

CMSAMS DCSS

A-disk
AMSERV MODULE Q“

N\ v
y DEFINV1 AMSERV
D
AMS Root | A EFINVT LISTING
Phase | &

IR | S
— ~

e ——
BALR IDCAMS ——»1 |DCAMS: _-‘

CMSVSAM DCSS

B-disk

h—- %sz;___—_—_—‘,’/for
VSAM Master Cat. 0S or

DOS
¢ > User

VSAMF E

~

Figure 24. Relationship in Storage between the CMS Interface Module
DMSAMS and the CMSAMS and CMSVSAM DCSSs

The following is a general descripticn of +the DMSAMS method of
operation.

DMSAMS first determines whether the user is in the CMS/DOS
environment. If not, a SET DOS ON (VSAM) command is issued to load the
CMSDOS segment and initialize the CMS/DOS environment. In this case,
DMSAMS must also issue ASSGN commands for the disk modes in the DOSCB
chain created by the O0S user's DLBL ccmmands. An ASSGN is also issued
for SYSCAT, the VSAM master catalog.

DMSAMS then issues the ASSGN ccmmand for the SYSIPT and SYSLST files,
assigning them to the wuser's A-disk. DLBL commands are then issued
associating these units with files on the usert's A-disk. Input to the
AMSERV processor 1is the SYSIPT file, which has the filetype AMSERV.
Output from AMSFRV processing is placed in the SYSLST file, which has a
filetype of LISTING.

DIAGNOSE 64 (LOADSYS) is then issued to load the CMSAMS DCSS, which
contains the VSF/VSAM code. A VSE SVC 65 is issued to find the address
of the VSE/VSAM root phase, IDCAMS. When the SVC returns with the
address of IDCAMS, a branch is made to IDCAMS, giving control to "live"
VSE/VSAM routines. :

IDCAMS expects parameters to be passed to it when it Treceives
control. DMSAMS passes dummy parameters in the list labeled AMSPARMS.

CMs Method of Oreration and Program Organization 2-139

Licensed Material -- Property of IBM.

After the root phase IDCAMS receives control, the functions in the
file specified by the filename on the AMSERV command are executed.

In performing the functions requested in this file, AMS may require
execution of VSE/VSAM phases located in the CMSVSAM TICSS. The CMSVSAM
DCSS is loaded when AMS opens the VSAM catalog for processing.

On return from VSE/VSAM code€, DMSAMS purges the CMSAMS DCSS, and
issues DLBL commands for the SYSIPT and SYSLST files +to clear the
DOSCB's for these ddnames.

Control is then passed to DMSVSR, which purges the CMSVSAM DCSS. If
the user program was not in the CMS/DOS environment when DMSAMS was
entered, the SET DOS OFF command is issued by DMSVSR. Upon return from
DMSVSR, DMSAMS performs minor housekeeping tasks and returmns control to
CcMS.

Executinga VSAM Function fora VSE User

When a VSAM function, such as an OPEN or CLOSE macro, is requested from
a VSE program, CMS routes control through the CMSDOS DCSS to the CMSVSAM
DCSS, thus giving ccntrol to VSE/VSAM phases. Figure 25 shows the
relationships in storage between the user program, the CMSDOS DCSS, and
the CMSVSAM DCSS. The description below illustrates the overall logic
of that control flow.

CMS/DOS SVC HANDLING

There are four CMS/DOS routines that handle VSAM requests: DMSDOS,
DMSBOP, DMSCLS, and DMSXCP. Within DMSDOS, several SVC functions
support VSAM requests. These are described in "Simulating a VSE
Environment Under CMS."

DMSDOS VSAM processing involves handling of SVC 65 (CDLOAD), which
returns the address of a specified phase to the caller. DMSDOS searches
both the shared segment table and the nonshared segment table for the
CMSDOS and CMSVSAM segments, because both could be in use. Both of
these segment tables contain the name of each phase comprising that
segment followed by +the fullword address of that phase within the
segment.

During SVC 65 processing, DMSDOS checks to see if the IJBLKMD is
being requested. IJBLKMD is the VSE lookaside function that VSE/VSAM
uses to gain information from the partition anchor tables. If this is
the case, DMSDOS returns the address of the IJBLKMI that resides in the
CMSBAM DCSS.

If VSAM has not been 1loaded, a DIAGNOSE 64 (LOADSYS) is issued to
load the CMSVSAM DCSs.

2-140 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

DOS VSAM DOS Transient

Program CMSDOS DCSs Area CMSVSAM DCSS
DMSDOS _J—P $$BOVSAM
OPEN ACB1 ‘ > Dbmssor L o e —
——— — — = IKQVOPEN
—_——_-j $$BCVSAM
CLOSE ACB1 3| DMSCLS .
$$BACLOS IKQVCLS

S

VSAM Master Cat.

N VSAMFILE '

Figure 25. The Relationships in Storage between the User Program and
the CMSDOS and CMSVSAM DCSSs

DMSBOP VSAM Processing

When DMSBOP is entered to process ACBs, it checks to see if CMSVSAM is
loaded. If VSAM has not been loaded, DIAGNOSE 684 is issued to load the
CMSVSAM DCSS. DMSBOP then 1initializes the +transient work area and
issues a VSE OPEN via SVC 2 +to bring the VSAM OPEN $$BOVSAM transient
into the VSE transient area.

When VSAY processing completes, control returns to the user progran
directly.

DMSCLS processing 1is nearly the same as processing for DMSBOP. When
DMSCLS is entered, it checks for an ACB to process. If there is one,
the $$BCVSAM transient work area is initialized and SVC 2 is issued to
FETCH the VSAM CLOSE transient $$BCVSAM into the VSE transient area.
When the VSAM CLOSE routines complete processing, control returns to the
user program, as in the case of OPEN.

Note: Since VSE does nct support the 3380, CMS/DOS and CMS/VSAM cannot
access a 3380 when minidisks are formatted as 0S/DOS disks.

CMS Method of Oreration and Program Organization 2-141

Licensed Material -- Property of IBM

Executing a VSAM Function foran OS User

0S user requests for VSAM services are handled by VSE/VSAM code that
resides in the CMSVSAM DCSS. To access this code, OS VSAM requests are
intercepted by the CMS module DMSVIP, the interface between the 0S VSaAM
requests and the CMS/DOS and VSE/VSAM routines.

Recause DMSVIP is in the CMSVSAM segment, it is available only when
that segment is loaded. Module DMSVIB, which resides in the CMS
nucleus, is a tcotstrap routine to 1load the CMSVSAM segment and pass
control to DMSVIP.

DMSVIP receives control from VSAM request macros in three ways: via
SVC (e.g. OPEN and CLOSE), via a direct branch wusing the address of
DMSVIP in the ACB, and via a direct branch +to the location of DMSVIP
whose address 1is 256 bytes into the CMSCVT (CMSCVT is a CMS control
block that simulates the 0S CVT control block).

This last technique is used by the code generated from the O0S VSaAM
control btlock manipulation macros (GENCB, SHCWCEB, TESTCB, MODCB). That
is, the address at 256 into CVT is assumed to be that of a control block
that is at displacement X'12' has the address of the VSAM control block
manipulation routine. To ensure that DMSVIP receives control from these
requests, the address of DMSVIP is stored at 256 bytes into CMSCVT.
However, until the CMSVSAM segment is loaded, the address at CMSCVT+256
is the address cf module DMSVIB rather than the address of DMSVIP. The
address of DMSVIP replaces that of DMSVIB when CMSVSAM is loaded. Both
DMSVIB and DMSVIP have pointers tc themselves at 12 bytes into
themselves to ensure that this technique works.

Figure 26 shows the relationships in storage between the user
program, the O0S simulation and interface routines, and the CMSDOS and
CMSVSAM DCSSs.

B-disk

for OS
or DOS
0S VSAM CMS Module DOS Transient CMSVSAM User
Program DMSSOP DMSVIP CMSDOS DCSS Area DCSS
o DMSDOS $SBOVSAM <
OPEN ACB1 grf:(ﬁﬁ; . DOSQPEN : L] VAN Mastor cor.
g : DMSBOP SoBCVEAN 1KQVOPEN
CLOSE ACB1 DMSS0P20 POSGLOSE DMS?CLS M .
: > DM3 IKWVCLS VSAMFILE
BALR 14,15 . . $$BACLOS

Figure 26. Relationship in Storage between the User Program, the O0S
Simulation and 1Interface Routines, and the CMSDOS and
CMSVSAM DCSSs

The follcwing description illustrates the overall logic of that
control flow.

2-142 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBY

DMSVIP gains

TYPE=T)} is issued.

VSAM function,

ccntrol from

DMSSOFP when an 0S SVC 19, 20 or 23 (CLOSE

It also gains control on return from execution of a

as described below. DMSYIP performs five main functions:

e TInitializes the CMS/DOS environment for 0S VSAM processing.

e Simulates an 0S VSAM OPEN macro.

e Simulates an 0S VSAM CLOSE macro.

e Simulates an 0S VSAM control block manipulation macro (GENCB, MODCB,

SHOWCB,

or TESTC

B).

e Processes 0S VSAM I/0 macros.

Initializing the CMS/DOS Environment for OS VSAM Processing

DMSVIP gets control when the first VSAM macro is encountered in the user

progran.

Initialization

processing begins at this time. The CMSDOS

.DCSS is loaded by issuing the command SET DOS ON (VSAM). ASSGN commands
this time according to the user-issued DLBL'S as

are also
indicated

issued at
in the

DOSCB

chain. Once this initialization completes,

DMSVIP processes the VSAM request.

After the initialization, DMSVIP first checks to determine which VSAM
g requested, OPEN, CLOSE, or a control block

function

is tein

manipulation macro.

For OPEN
passes to

processing, the

imulate an OS VSAM OPEN

DOSSVC bit in NUCON is set on and control

DMSBOP via SVC 2. Once the CMS/DOS routines are in control,

execution of the VSAM function is the same as for the VSE/VSANM functions

described

On return

above.

entry point to DMS

data set
passed to

entry point for
phase TKQVSHM.

just open
DMSSoP,

vip,
ed,

that, once opened, the
PUT operation.

When the

from executing +the OPEN routine, the address of another
at label DMSVIP2, is placed in the ACB for the
the DOSSVC bit is turned off, and control is
which returns to the wuser program. DMSVIP2 is the

code that performs linkage to the VSAM data management
This is done after the first OPEN Lecause it is assumed
user performs I/0 for the phase, e.g., a GET or

linkage routine is entered, the DOSSVC it is set on and

control is given to the VSAM data management routine IKQVSM. On return
from IKQVSM DMSVIP turns

user progranm.

Simulate a

Ith
et :
(1)
[E]
=

nQ

off the DOSSVC bit and returns control to the

(Refer to Simulate 0S VSAM I/0 Macros in this section.)

For CLOSE processing, the DOSSVC bit is set on and control is passed to

the CMS/DOS

routine DMSCLS via SVC 2. As in the <case of OPEN, once

CMS Method of Operation and Program Organization 2-143

Licensed Material -- Property of IBM

control passes to the CMS/DOS routine, execution of the VSAM function is
the same as for the VSE/VSAM functions described above.

On return from executing the VSAM CLOSE, the DOSSVC bit is turned off
and control passes to DMSSOP, which returns to the user program.

Simulate OS VSAM Control Block Manipulation Macros

DMSVIP simulates the GENCB, MODCB, SHOWCB, and TESTCB control block
manipulation macros.

GENCB PROCESSING: When a GENCB macro is issued with BLK=ACB or BLK=EXLST
specified, the GENCB PLIST is passed unmodified to IKQGEN for execution.
If GENCB is issued with BLK=RPL and ECB=address specified, the PLIST is
rearranged to exclude the ECB specification, because CMS/DOS does not
support ECB processing. The GENCB PLIST is then passed to IKQGEN for
execution.

MODCB, SHOWCB, AND TESTCB PROCESSING: When MODCEB, SHOWCB, or TESICB is
issued, the 0S ACB, RPL, and EXLST control blocks are reformatted, if
necessary, to ccnform to VSE/VSAM formats.

For MODCB and SHOWCB, the requests are passed to IKQTMS for
processing. When MODCB is issued with EXLST= specified, ensure that the
exit routines return control to entry point DMSVIP3.

For TESTCB, check for any errcr routines the user may have specified.
If the TESTCB specified RPL= and TO=COMPLETE, a not equal result is
passed to the user. All other TESTCB requests are passed to DOS and the
new PSW condition code indicates the results of the test.

If an error return is provided for TESTCB, the address of DMSVIP4 is
substituted in the PLIST. This allows DMSVIP to regain contrecl from
VSAM so that the DOSSVC bit can be turned off. The error routine is
then given control after the address is returned to the PLIST.

Simulate OS VSAM I/O Macros

DMSVIP simulates +the 0OS GET, PUT, POINT, ENDREQ, ERASE, and CHECK I/O
macros. :

GET, PUT, POINT, ENDREQ, and ERASE Processing: ,

First, the O0S request code in register 0 is mapped to a VSE request
code. The RPL or chain of RPLs is rearranged to VSE fecrmat (unless that
has already been done).

If there is an ECB address in the 0S RPL, a flag is set in the new
VSE RPL and the ECB address is saved at the end of the RPL.

Asynchronous I/0 processing is simulated by setting active exit
returns inactive in the user EXLST. The exception to this is the JRNAD
exit which need not be set inactive since it is not an error exit.
Setting error exits to be inactive prevents VSAM from taking an error
exit, thus allcwing such an exit tc be deferred wuntil a CHECK can be
issued for it.

2-144 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

The VSE macro is then issued via a BALR to IKQVSHM.

VSE error codes returned in the RPL FDBK field that do not exist in
0S are mapped to their 0S equivalents. If the user has specified
synchronous processing, this return code is passed unchanged in register
15.

For asynchronous processing, return codes are cleared before return
and any exit routines set inactive are reactivated in the EXLST. Also,
all ECBs are set to WAITING status.

CHECK PROCESSING: For CHECK processing, return codes in the RPL FDBK
field are checked to determine the results of the I/0 operation. 1If
there is an active exit routine provided for the return code, control is
passed to that routine. 1Also, all WAITING ECBs are posted with an
equivalent completicn code.

If no active exit routine is prcvided or if the exit routine returns
to VSAM, the return code is placed in register 15 and control is
returned to the instruction following the CHECK.

CMS/VSAM Error Return Processing

Two types of support for errvror routine processing are provided in
DMSVIP. Entry point DMSVIP3 provides support for user exit routines;
entry point DMSVIPU4 provides support for ERET error returns.

USER EXIT ROUTINE PROCESSING: DMSVIP provides support for 0S VSAM I/O
error exits at entry point DMSVIP3. At this entry point the DOSSVC bit
is turned off and the user storage key is restored.

The address of the user routine 1is recovered from VIP's saved exit
list (either the primary exit 1list in the work area or the overflow exit
list, OEXLSR).

Control then passes to the appropriate exit routine. If the routine
is one that returns to VSAM, the DOSSVC flag is set ON and VSaM
processing continues.

DMSVIP can save the addresses of up to 128 exit routines during
execution of a user program.

ERET ERROR ROUTINE PROCESSING: DMSVIP provides support for OS VSAM ERET
2xit routines used 1in conjunction with the TESTCB macro. This support
is located at entry point DMSVIP4. At DMSVIPH, the DOSSVC bit is turned
off and the user storage key is restored. The address of the ERET
routine 1is recovered from the work area and control passes to that
routine.

The ERET routine may not return contrcl to VSAM.

COMPLETION PROCESSING FOR OS AND VSE/VSAM PROGRAMS

When an O0S or VSE/VSAM program completes, control is passed to module

DMSVSR, which "cleans wup"™ after VSAM. DMSVSR can te «called from three

routines after 0S prccessing:

e DMSINT, if processing completes without system errors or serious user
errors.

CMS Method of Oreration and Program Organization 2-145

Licensed Material -- Property of IBM

¢ DMSEXT, if the user program is used as part of an EXEC file.

e DMSABN, if there are system errors or the user program abnormally
terminates.

After VSE/VSAM processing completes, DMSVSR is called by DMSDOS.

DMSVSR issues an SVC 2 to execute the DOS transient routine $$BACLOS.
$$BACLOS first checks for any OPEN VSAM files. If any are open, SVC 2 is
issued to $$BCLOSE (DMSCLS) to close the files.

If there are no open files or if all ACB's have been closed, $$BACLOS
issues SVC 2 to $$BEOJU, an entry point in DMSVSR. At $$BEOJY, a
PURGESYS TIAGNOSE 64 1is issued to purge the CMSVSAM DCSS. DMSVSR then
checks to see if an O0S program has completed processing. If this is the
case, the SET DOS OFF command is issued and control returns to the
caller.

OS Simulation by CMS

When in a CMS environment, a processor or a user-written program is
executing and utilizing OS-type functions, O0S is not controlling this
action, CMS is in control. Consequently, it is not 0S code that is in
CMS, but routines to simulate, in terms of CMS, certain O0S functions
essential to the support of 0S language processors and their generated
code.

These functions are simulated to yield the same results as seen from
the processing program, as specified by O0S program logic manuals.
However, they are supported only to the extent stated in CHMS
documentation and to the extent necessary to successfully execute 0S
language processors. The user should be aware that restrictions to 0S
functions as viewed from OS exist in CHMS.

Certain TSO Service routines are provided to allow the Progranm
Products to run under CMS. The routines are the Ccmmand Scan and Parse
Service Routines and the Terminal I/0 Service Routines. In addition the
user must provide some initialization as documented in TSO TMP Service
Routine initialization. The O0S functions that CMS simulates are shown
in Figure 27.

TSO Service Routine Support

TSO macros that support the use of the terminal monitor program (TMP)
service routines are contained in TSQMAC MACLIB. The macro functions are
as described in the TSO TMP documentation with the exception of PUTLINE,
GETLINE, PUTGET, and TCLEARQ.

Before using the TSO service routines, the calling program performs
the following initialization:

1. Stores the address of the ccmmand line as the first word in the
command proccessor parameter list (CPPL). The TSOGET macro puts the
address of the CPPL in register 1.

2. 1Initializes CMS storage using the STRINIT macro.

3, Clears the ECT field that contains the address of the I/0 work area
(ECTIOWA) .

2-146 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

4, TIssues the STACK macro to define the terminal as the primary source

69 BACKSPACE DMSSVT Backs up to the beginning of the

previous record

of input.

| SVC |0S Macro | Simulation | |
| Number|Function | Routine | Comments 1
| {
00 XDAP DMSSVT	Reads or writes direct access volumes
01 WAIT DMSSVN	Waits for an I/0 completion
02 POST DMSSVN	Posts the I/0 completion
03 EXIT DMSSLN	Returns from linked phase {
1 04 GETMAIN DMSSHN	Conditionally acquires user free
(N	storage {
1Y 05 FREEMAIN DMSSMN	Releases user—acquired free storage 1
06 LINK DMSSLY¥ { Links control to another load phase	
07 XCTL DMSSLN	Deletes, then links control to anotherf
! ! load phase

| 08 LOAD DMSSLN | Reads another load phase into storage |
| 09 DELETE DMSSLN | Deletes a loaded phase |
| a 10 GETMAIN/ DMSSMN | Manipulates free user storage]
| FREEMAIN | |
| GETPOOL DMSSHN { Simulates an SVC10 |
1% 11 TIME DMSSVT | Gets the time of day |
ig 13 ABEND DMSSAB i Terminates processing §
A SPIE DMSSVT | Processes program interruptions {
ire 17 RESTORE DMSSYVT | Effective NOP {
! 18 BLDL/FIND DMSSVT | Manipulates simulated partitioned datal
! ! files |
| 19 OPEN DMSSOP | Activates a data file i
| 20 CLOSE DMSSOP | Deactivates a data file 1
| 21 STOW DMSSVT | Manipulates partitioned directories 1
22 OPENJ DMSSOP	Activates a data file
23 TCLOSE DMSSOP	Temporarily deactivates a data file
24 DEVTYPE DMSSVT	Ottains device-type physical
	characteristics {
25 TRKBAL DMSSVT	Effective NOP
31 FEOV DMSSVT	Set forced EOV error code
35 WTO/WTOR DMSSVT	Communicates with the terminal
40 EXTRACT DMSSVT	Effective NOP {
u1 IDENTIFY DMSSVT	Adds entry to loader table
i 42 ATTACH DMSSYVT i ffective LINK H	
l uy CHAP DMSSVT	Effective NOP
46 TTIMER DMSSVT	Accesses or cancels timer
47 STIMER CMSSVT	Sets timer interval and timer exit [
i	routine {
48 DEQ DMSSVT	Effective NOP i
51 SNAP DMSSVT	Dumps specified storage areas
56 ENQ DMSSVT	Effective NOP
57 FREEDBUF DMSSVT	Releases a free storage buffer
60 STAE DMSSVT	Allows processing program to decipher
	abend condition i
62 DETACH DMSSVT	Effective NOP \
63 CHKPT DMSSVT	Effective NOP
6l RDJFCB DMSSVT	Obtains information from FILEDEF
] ! command	
68 SYNAD DMSSVT	Handles data set error conditions
!	
[} [

Figure 27. OS Functicnes that CMS Simulates (Part 1 of 2)

CMS Method of Operation and Program Organization 2-147

Licensed Material -- Property of IBM

sSVcC 10S Macro | Simulation |
Number|Function | Routine | Comments

- GET/PUT DMSSQA
- READ/WRITE DMSSBS
- NOTE/POINT DMSSCT

Manipulates data records

Manipulates data blocks

Accesses or changes relative track
address

—— —— — —— — o — o —

- CHECK DMSSCT Tests ECB for completion and errors

93 TGET/TPUT DMSSVN Terminal processing

9y TCLEARQ DMSSVN Clears input queue

96 STAX DMSSVT Adds or deletes an attention exit
level

112 PGRLSE DMSSVT Release storage contents

I I

Figure 27, O0S Functions that CMS Simulates (Part 2 of 2)

CMS sSimulation of 0S Ccntrol Block Functions

Most of the simulated supervisory OS control blccks are contained in the
following two CMS control blocks:

CMSCVT simulates the communication vector table (CVT). Locaticn 16
contains the address of the CVT control section.

CMSCB allocated from system free storage whenever a FILEDEF command or
an OPEN (SVC 19) is issued for a data set. The CMS control block
consists of the CMS file Control bleck (FCB) for the data file
management under CMS, and simulation of the Jjob file <control
block (JFCB), input/output block (IOB), and data extent block
(DEB) . The name of the data set is contained in the FCB, and is
obtained from the FILEDEF argument 1list, or from a predetermined
file name supplied by the processing problem progranm.

CMS also utilizes portions of the supplied data control block (DCB) and
the data event control block (DECB). The TSO control blocks utilized
are the command program parameters list (CPPL), wuser profile table
(UPT), protected step control block (PSCB), and environment control
table (ECT).

Operating System Simulation Routines

CMS provides a number of routines to simulate certain operating system
functions used by programs such as the Assembler and the FORTRAN and
PL/I compilers. Some of the SVC simulaticon routines are located in the
disk resident transient module DMSSVT. Whenever one of the SVC routines
in DMSSVT or is invoked, that routine is loaded into the transient area.
The following paragraphs describe how these simulation routines work.

XDAP-SVC_0: Writes and reads the source code spill file, SYSUTY, during
language compilation for PL/I Optimizer and ANS COBOL Compilers.

HAIT-SVC 1: Causes the active task to wait wuntil one of more event
control blocks (ECBs) have been posted. For each specified ECB that has
been posted one is subtracted from the number of events specified in the
WAIT macro. If the number of events is zero by the time the last ECB is

checked control is returned to the user. TIf the number of events is not

2-148 TBM VM/S? System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

zero after the last ECB is checked and the number of events 1is not
greater than the number of ECBs, the active task is put into a wait
state until enough ECBs are pcsted to set the number of events at zero.
When the event count reaches zero the wait bits are turn off in any ECBs
that have not been ©posted and control is returned to the user. If the
number of events specified is greater than the number of ECBs the systenm
abnormally terminates with an error message. A1l options of WAIT are
supported.

POST-SVC_2: Causes the specified event control block (ECB) to be set to
indicate the «c¢ccurrence of an event. This event satisfies the
requirements of a WAIT macro instruction. A1l options of POST are

supported. The bits in the ECB are set as follows:

Bit Setting
0 0
1 1
2-7 Value of specified completion code

EXIT-SVC 3: This SVC is for CMS internal use only. It is used by the
C¥S routine DMSSLN to acquire an SVC SAVEAREA on return from an
executing program that had been given control by LINK (SVC 6), XTCL (SVC

7) or ATTACH (SVC 42).

GETMAIN-SVC #4: Control is passed +to the GETMAIN entry point in the

DMSSMN storage resident routine. The mode is determined: vu, VC, EC.
A call is made to GETBLK to obtain the block of storage. Control blocks
of two fullwords precede each section of available storage: (1) the

address of the next block, (2) the size of this block. The head cf the
rointer string 1is located at the words MAINSTRT - initial' free tlock,
and MAINLIST - address of first link in chain of free block pointers.
311 options of GETMAIN are supported.

FREEMAIN-SVC 5: Releases a block of free storage. If the block is part
of segmented storage, a control blcck of +twe fullwords is placed at the
beginning of the released area. BAdjustment is made to include this
block in +the chain of available areas. All options of FREEMAIN are
supported.

LINK-SVC 6: Program transfer 1is controlled by the nucleus routine,
DMSSLN, The LINK macro causes prograh control to be passed to a
designated phase. If the COMPSWT bit within the byte OSSFLAGS 1is on,
loading is done by <calling LOADMOD to bring a CMS MODULE file into
storage. If this flag is off, dynamic loading is initiated by calling
LOAD. TIf the routine is already in storage, determined by scanning the
load request chain, no LOAD or LOADMOD is done. Control is passed
directly to the routine. CMS ignores the DCB and HIARCHY options; all

other options of LINK are supported.

XCTL-SVC_7: XCTL first deletes the current phase from storage.
Processing then continues as for LINK-SVC 6, as previously described.
CMS ignores The DCB and HIARCHY options; all other options of XCTL are

supported.

LOAD-SVC_8: Control is passed to DMSSLN8 located in DMSSLN when a LOAD
macro is issued. If the requested phase is not in storage, a LOAD or
LOADMOL is issued to bring it in. Control is then returned to the
caller. CMS ignores the DCB and HIARCHY options; all other options of

LOAD are supported.

DELETE-SVC 9: Control 1is passed +to DMSSLN9 located in DMSSIN when a
DELETE macro is issued. Upon entry, DELETE checks to see whether the
module specified was loaded using LOADMOD or dynamically loaded by LOAD
or INCLUDE. If it was loaded by LOADMOD control is returned to the
user. If it was dynamically loaded, the responsibility count is

CMS Method of Operation and Program Organization 2-149

Licensed Material -- Property of IBM

decremented by one and if it reaches zero, the storage is released using
FREEMAIN, and control is returned to the user. All options of DELETE
are supported. Code U4 is returned in register 15 if the phase is not
found.

GETMAIN/FREEMAIN-SVC_10: Control is passed to the SVC 10 entry point in
DMSSMN. Storage management is analogous to SVC 4 and 5, respectively.
All options of GETMAIN and FREEMAIN are supported. Subpool
specifications are ignored.

GETPOOL: Gets control via am O0S LINK macro to IECQBFGI. IECQBFGI
allocates an area of free storage wusing GETMAIN, sets wup a tuffer
control block in the free storage, stores the address of the Luffer

control block in the DCB, and then returns control to the caller.

TIME-SVC 11: This routine (TIME) 1located in DMSSVT receives control
when a TIME macro instruction is issued. A call is wmade (by SIO or
DIAGNOSE) to the RPQ software chronological timer device, X'OFF'. The
real time of day and date are returned to the <calling program in a
specified form: decimal (DEC) binary (BIN), or timer wunits (TO). All

options of TIME except hundredths of a second MIC are supported.

ABEND-SVC_13: This routine (DMSSAB) receives control when either an
ABEND macro or an unsupported 0S5/360 SVC is issued. 1If an SVC 13 was
issued with the DUMP option and either a SYSUDUMP or SYSABEND ddname had
been defined via a call to DMSFLD (FILEDEF), a SNAP (SVC S51) specifying
PDATA=ALL is issued to dump user storage to the defined file. 1A check
is made to see if there are any outstanding STAE requests. If not, or
if an unsupported SVC was issued, DMSCWR is called to type a descriptive
error message at the terminal. Next, DMSCWT is called to wait until all
terminal activity has ceased, and then, control is passed to the ABEND
recovery routine. If a STAE macro was issued, a STAE work area is built
and control is passed to the STAE exit routine. After the exit routine
is complete, a test is made to see if a retry routine was specified. 1If
so, control is passed to the retry routine. Otherwise, control rpasses
to DMSABN wunless the task that had the ABEND was a subtask. In that
case, the resume PSW in the link block for the subtask is adjusted to
point to an EXIT instruction (SVC 3). The EXIT frees the subtask, and
the attaching task is redispatched.

SPIE-SVC_14: This routine (SPIE) receives control when a SPIE macro
instruction is issued. When it gets control, SPIE inserts the new
program interruption control area (PICA) address into the progranm
interruption element (PIE). The program interruption element resides in
the program interruption handler (DMSITP). It then returns the address
of the o01d PICA to the calling program, sets the program mask in the
calling program's PSW, and returns to the calling program. All options
of SPIE are supported.

BRESTORE-SVC 17: RESTORE is a NOP located in DMSSVT.

BLDL/FIND(Type D)-SVC_18: SVC to entry points in DMSSOP. If an OS disk
is specified, DMSSVT branches and links to DMSROS. See BLDL and FIND
under description of BPAM routines in DMSSVT.

SVC_21: sSee STOW under description of BPAM routines in DMSSVI.

OPEN/OPENJ-SVC_19/22: OPEN simulates the data management function of
opening one or more files. It is a nucleus routine and receives control
from DMSITS when an executing program issues an OPEN macro instruction.
The OPEN macro causes an SVC to DMSSOP. DMSSOP simulates the OPEN
macro. The DISP and RDBACK options are ignored by CMS; all other
options of OPEN and OPENJ are supported.

2-150 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

CLOSE/TCLOSE-SVC 20/23: CLOSE and TCLOSE are simulated in the nucleus
routine DMSSOP. It receives contrcl whenever a CLOSE or TCLOSE macro
instruction is issued. The CLOSE macro causes an SVC to DMSSOP. DMSSOP
simulates the CLOSE macro. CMS ignores the DISP option; all other
options of CLOSE and TCLOSE are supported.

DEVTYPE-SVC 24: This routine (DEVTYPE), located in DMSSVT, receives
control when a DEVTYPE macro is issued. Upon entry, DEVTYPE noves
Device Characteristic Information for the requested data set into a user
specified area, and then returns control +to the user. All options of
DEVTYPE are supported, except RPS, which is ignored.

SVC_25: TRKBAL is a NOP located in DMSSVT.

31: Returns control to CMS with an error code of 4 in register

WTO/HWTOR-SVC 35: This routine (WTO), 1located in DMSSVT, receives
control when either a WTO or a WTOR macro instruction is issued. For a
WTO, it constructs a calling sequence to the DMSCWR function program to
type the message at the terminal. (The address of the message and its
length are provided in the parameter 1list that results from the
expansion of the WTO macro instruction.) It then calls the DMSCWT
function program to wait wuntil all terminal I/O activity has ceased.
- Next, it calls the DMSCWR function program to type the message at the
terminal and returns to the calling progran. 211 options of WTO and
WTOR are supported except those concerned with multiple comsole support.

For a WTOR macro instruction, this routine proceeds as described for
WTC. However, after it has typed the message at the terminal it calls
the DMSCRD function program to read the user's reply from the terminal.
When the user replies with a message, it moves the message to the tuffer
specified in the WTOR parameter 1list, sets the completion bit in the
ECB, and returns to the calling progran.

EXTRACT-SVC_40: This routine (EXTRACT), located in DMSSVT receives
control when an EXTRACT macro is issued. Upon entry, EXTRACT clears the
user provided answer area and returns control to the user with a return
code of 4 in register 15.

IDENTIFY-SVC 41: Located in DMSSVT, +this routine creates a new load
request block with the requested name and address if both are valid. The
new entry is chained from the existing locad request chain. The new name
may be used in a LINK or ATTACH macro.

ATTACH-SVC 42: Located in DMSSLN, ATTACH operates 1like a LINK (SVC 6),
with additional capabilities. The user is allowed to specify an exit
address to te taken upon return from the attached phase; also, an ECB is
posted when the attached phase has completed; and a STAI routine can be
specified in case the attached phase abends. The DCR, LPMOD, DPMCD,
HIARCHY, GSPV, GspPL, SHSPV, SHSPL, SZERO, PURGE, ASYNCH, and TASKLIB
options are ignored; all other options of ATTACH are supported. Because
CMS is not a multitasking operating system, a phase requested Ly the
ATTACH macro must return to CHMS.

CHAP-SVC 4l: CHAP is a NOP located in DMSSVT.

TTIMER-SVYC_U46: Checks to ensure that the wvalue in the timer (hex
location 50) was set by an STIMER macroc. If it was, the value is
converted to an unsigned 32 bit binary number specifying 26 microsecond
units and is returned in register 0. If the timer was not set by an
STIMER macro a zero is returned in register 0, after setting register 0,
the CANCEL option is checked. If it is not specified, control is

returned to the user. If it is specified, the timer value and exit

CMS Method of Operation and Program Organization 2-151

Licensed Material -- Property of IBH

routine set by the STIMER macro are cancelled and control is returned to
the user. All cptions of TTIMER are supported.

ER-SVC_47: Checks to see if the WAIT option is specified. 1If so,

M

control is returned to the user. If not, the specified timer interval
i converted to 13 microsecond units and stored in the timer (hex
location 50). If a timer completion exit routine is specified, it is
scheduled to be given control after completion of the specified time
interval. If not, no indication of the completion of the time interval
is scheduled. After checking and handling any specified exit routine
address, control 1is returned to the user. A1l options of STIMER are
supported. The TASK option is +treated as though the REAL option had
been specified.

STI
is

DEQ-SVC_48: DEQ is a NOP located in DMSSVT.

SNAP-SVC_51: Ccntrol is passed to SNAP in DMSSVT when a SNAP macro is
issued. SNAP fills in a PLIST with a beginning and ending address and
calls DMPEXEC. DMPEXEC dumps the specified storage along with the
registers and low storage to the printer. Control is then returned to
SNAP and SNAP checks to see if any more addresses are specified. It
continues calling DMPEXEC until all the specified addresses have been
dumped to the printer. Control is then returned to the user. Except
for SDATA, PDATA, and DCB, all options of the SNAP macro are processed
normally. SDATA and PDATA are ignored. Processing for the DCB option
is as follows: The DCB address specified with SNAP is used to verify
that the file associated with the DCB is open. If it is not open,
control returns to the caller with a return code of 4. If the file is
open, the FCB associated with the file is checked for a device type of
DUMMY. If the device type is DUMMY, <control returns to the caller with
a return code of 0 and storage is not dumped.

ENQ-SVC _56: ENQ is a NOP located in DMSSVT.

FREEDBUF-SVC_57: This routine (FREEDBUF) located in DMSSVT receives
control when a FREEDBUF macro is issued. Upon entry, FREEDBUF sets up
the correct DSECT registers and calls the FREEDBUF routine in DMSSBD.
This routine returns the dynamically obtained buffer (BDAM) specified in
+he DECB to the DCB buffer control block chain. Control is then
returned to the DMSSVT routine which returns control to the user. All
+he options of FREEDBUF are supported.

STAE-SVC_60: This rocutine (STAE) 1located in DMSSVT receives control
when a STAE macro 1is issued. Upon entry, STAE creates, overlays or
cancels a STAE control block (SCB) as requested. Control is then
returned to the user with one of the following return codes in register

15:

Code Meaning

00 An SCB is successfully created, overlaid or cancelled.

0Rr The user is attempting to cancel or overlay a nonexistent
SCB.

0(0)

r a
10 or pcinter to next SCB|
44 F q
lexit address |
8(8) 4
iparameter list address |
12(C) ¢ '

2-152 1IBM VM/SP System Logic and Program Cetermination--Volume 2

Licensed Material -- Property of IBM

DETACH-SVC_62: DETACH is a NOP located in DMSSVT.

SVC 63: CHKPT is a NOP located in DMSSVT.

RDJFCB-SVC_6U4: This routine (RDJFCB) receives control when a RDJFCB
macro instruction is issued. When it gets control, RDJFCB oktains the
address of the JFCB from the DCBEXLST field in the TCB and sets the JFCB
to zero. It then reads the simulated JFCB 1located in CMSCB that was
produced by issuing a FILEDEF into the closed area. RDJFCB calls the
STATE function program to determine if the associated file exists. 1If
it does, RDJFCB returns to the calling program. If the file does not
exist, RDJFCB sets a switch in the DCB to indicate this and then returns
to the calling program. RDJFCB is located in DMSSVT. 211l the options
of RDJFCB are supported.

Note: The switch set by the RDJFCB is tested by the FORTRAN object-time
direct-access handler (DIOCS) to determine whether or not a referenced
disk file exists. If it does not, DIOCS initializes the direct access
file.

SYNAD-SVC_68: Located in DMSSVT, SYNAD attempts to simulate the
functions SYNADAF and SYNADRLS. SYNADAF expansion includes an SVC 68
and a high-order byte in register 15 denoting an access method. SYNAD
prepares an error message line, swap save areas and register 13
pointers. The message buffer is 120 bytes: bytes 1-50, 84-1%19 klank;
bytes 51-120, 120S INPUT/CUTPUT ERROR nnn ON FILE: "dsname"; where
nnn is the CMS RDBUF/WRBUF error code. All the options of SYNAD are
supported.

SYNADRLS expansion includes SVC 68 and a high order byte of X'FF'! in
register 15. The save area is returned, and the message buffer is
returned to free storage.

BACKSPACE-SVC 69: Also in DMSSVT. For a tape, a BSR command is issued
to the tape. For a direct access data set, the CMS write and read
pointers are decremented by one. Ccntrol is passed +to BACKSPACE in
DMSSVT when a BACKSPACE macro is issued. BACKSPACE decrements the read
write pointer by one and returns control to the user. No physical tape
or disk adjustments are made until the next REAL or WRITE macro is
issued. All the options of BACKSPACE are supported.

T/TPUT-SVC_S3: Located in DMSSVN, this routine receives control when
a TGET or TPUT macro is issued. It is provided to support TSO service
routines needed by program products. TGET reads a terminal line; TPUT
writes a terminal line. The return code is =zero if the operation was
successful and a four if an error was encountered.

TCLEARQ-SVC_S94: TCLEARQ is located in DMSSVN and causes the terminal
input queue to ke cleared via a call to DESBUF. At completion a return
is made to the user.

STAX-SVC_96: Located in DMSSVT, STAX gets and chains a CMSTAXE control
block for each STAX SVC issued with an exit routine address specified.
The chain is anchored by TAXEADDR in DMSNUC. If no exit address is
specified the mcst recently added CMSTAXE is cleared from the chain. If
an error occurs during STAX SVC processing, a return code of eight is
placed in register 15. The only option of STAX which may be specified is
EXIT ADDRESS.

PGRLSE-SVC 112: Located in DMSSVT, PGRLSE receives control when a PGRLSE
macro instruction 1is issued. The routine checks the validity of the
beginning and end addresses of the area to be freed, or forces the right
values (AUSRAREA to the beginning, or FREELOWE to the end). Then the
routine checks the length of the area to find out if at least 1 page (4K
bytes) has to Le released and issues a DIAGNOSE code X'10' instruction

CMS Method of Oreration and Program Organization 2-153

Licensed Material -- Property of IBM

to CP. The return code will set to zero in register 15 if the PGRLSE
operation is successful, or to four if only a portion of the area is
released.

GET/PUT: See the DMSSQS prolcg for description.

READ/WRITE: OS READ and WRITE macrcs branch and link to DMSSBS. DMSSBS

kranches and 1links to DMSSEB and, if the disks is an 0S disk, DMSSEB
tranches and link to DMSROS. See DMSSBS for descrirtion.

NOTE/POINT/FIND (type C): 0S NOTE, ©POINT, and FIND (type c¢) macros
tranch and link to entry points in DMSSCT. If the disk is an 0S disk,
DMSSCT branches and links to DMSROS. See DMSSCT for descriptions.

HECK: See the DMSSCT prolog for description.
Notes on using the 0S simulaticn routines:

e CMS files are physically blocked in 800-byte blocks, and logically
blocked according to a logical record length. If the filemode of the
file is neot U, the logicel record length is equal to the DCBLRECL and
the file must always be referenced with the same DCRBLRECL, whether or
not the file is blocked. If the filemode of the file is U4, the
logical record 1length is equal to the DCBBLKSI and the file must
always be referenced with the same DCBBLKSI.

e When writing CMS files with a filemode number other than four, the 0S
simulation routines deblock the output and write it on a disk in
unblocked records. The simulation routines delete each 4-tyte block
descriptor word (BDW) and each 4-byte record descriptor word (RDW) of
variable length records. This makes the 0S-created files compatible
with CMS-created files and CMS utilities. When CMS reads a CHMS file
with a filemcde number other than four, CMS blocks the record input
as specifies and restores the BDW and RDW control words of variable
length records.

If the CMS filemode number is four, CMS does not unblock or delete
BDWs or RDWs on output. CMS assumes on input that the file is
blocked as specified and that variable length reccrds contain block
descriptor wecrds and record descriptor words.

e To set the READ/WRITE pointers €or a file at the end of the file, a
FILEDEF command must be issued for the file specifying the MOD
cption.

e A file is erased and a new one created if the file is opened and all
the following conditions exist:

-- The OUTPUT or OUTIN option of OPEN is specified.
-~ The TYPE option of OPEN is not J.

-- The dataset organization option of the DCB is not direct access or
partitioned.

-- A FILEDEF command has not been issued for data set specifying the
MOD option.

e The results are unpredictable if twc DCBs read and write to the same
data set at the same time.

2-154 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Command Flow of Commands Inveclving OS Access

ACCESS COMMAND FLOW: The module DMSACC gets control first when vyou
invoke the ACCESS ccmmand. DMSACC verifies parameter 1list validity and
sets the necessary internal flags for later use. Tf the disk you access
specifies a target mode of another disk currently accessed, DMSACC calls
DMSALU to clear all pertinert information in the old active disk tatle.
DMSACC then calls DMSACF to bring in the user file directory of the
disk. As soon as DMSACF gets control, DMSACF calls DMSACM to read in
the master file directory of the disk. Once DMSACM reads the lakel of
the disk, and determines that it is an 0S disk, DMSACM <calls DMSROS
(ROSACC) to <complete the access of the 0S disk. Upon returning fron
DMSROS, DMSACM returns immediately to DMSACF, bypassing the master file
directory logic for CMS disks. DMSACF then checks to determine if the
accessed disk is an 0S disk. If it is an 0S disk, DMSACF returns
immediately to DMSACC, bypassing all the user file directory logic for
0S disks. DMSACC checks to determine if the accessed disk is an OS
disk; if it 1is, another check determines if the accessed disk rerplaces
another disk to issue an information message to that effect. Another
check determines if you specified any options or fileid and, if you d4igd,
a warning message appears on the terminal. Control ncw returns to the
calling routine.

FILEDEF COMMAND FLOW: DMSFLD gets control first «hen you issue a CHS
FILEDEF command. DMSFLD adds, changes, or deletes a FILEDEF control
block (CMSCB) ard returns control to the calling routine.

LISTDS COMMAND FLOW: The module DMSLDS gets control first when you
invoke the LISTDS ccmmand. DMSLDS verifies parameter list validity and
calls module DMSLAD to get the active disk table associated with the
specified mode. DMSLDS reads all format 1 DSCB and if you specified the
PDS option and the data set is partitioned, TMSLDS <calls DMSROS
(ROSFIND) to get the members of the data set. After displaying the DSCB
{or DSCB) on you console, DMSLDS returns to the calling routine.

OSRUN COMMAND FLOW: The module DMSOSR gets control first when 7you
invoke the OSRUN ccmmand. DMSOSR checks the ccmmand syntax. The
PARM=parameter, if specified, is set up according to O0S convention and a
LINK (SVC 6) 1is issued for the member specified in the OSRUN command.
DMSITS (the SVC FLIH) passes control to DMSSVT which in turn goes to
DMSSLN for processing of the LINK SVC. DMSSLN passes contrcl toc DMSILOS.
DMSLOS loads, relocates, and executes the member specified. When the
member completes execution and returns control to DMSLOS, DMSLOS returns
to DMSSLN for some cleanup; DMSSLN goes through the normal SVC returm to
DMSOSR. DMSOSR goes through its termination and returns to CHMS.

MOVEFILE COMMAND FLOW: The module DMSMVE gets control first when you
issue a CMS MOVEFILE command. DMSMVE calls DMSFLD to get an input and
output CMSCB and, if the input DMSCB is for a disk file, DMSMVE calls
DMSSTT to verify the existence of the input file and get default DCB
parameters in absence of CMSCB DCB parameters. CMSMVE uses O0S OPEN,
FIND, GET, PUT, and CLOSE macros to move data from the input file to the
output file. After moving the specified data, control returns to the
calling routine.

LEKED CCMMAND FLOW: The module DMSLKD gets control first when you invoke
a CMS LKED ccmmand. DMSLKD generates the necessary FILEDEFs for
execution of +the 0S 1linkage editor and calls the 1linkage editor
(HEWLFROU) . When the link-edit is complete, DMSLKT receives control to
do some clean up pricr to returning to CHS.

QUERY COMMAND FLOW: The module DMSQRY gets control first when you invoke
the QUERY command. DMSQRY verifies parameter list validity and calls
DMSLAD to get the active disk table associated with the specified mode.

CMS Method of Oreration and Program Organization 2-155

Licensed Material -- Property of IBM

DMSQRY displays all the information that you requested on your console.
When DMSQRY finishes, control returns to the calling routine.

RELEASE COMMAND FLOW: The module DMSARE gets control first when you
invoke the RELEASE ccmmand. DMSARE verifies parameter list validity and
checks to determine if the disk you want to release is accessed. If the
disk you want to release 1is currently active, DMSARFE calls DMSALU to
clear all pertinent infcrmation associated with the active disk. DMSALU
first checks the active disk table for any existing CMS tables kept in
free storage. If the disk you want to release is an 0S disk, LCMSALU
does not find any tables associated with a CMS disk. If the disk is an
0S disk, DMSALU releases the 0S FST blocks (if any) and clears any OS
FST pointers in the O0S file control blocks. DMSALU then clears the
active disk table and returns to DMSARE. DMSARE then clears the device
table address for the specified disk and returns to the calling routine.

STATE COMMAND FLOW: The module DMSSTT gets control first when you invoke
the STATE command. DMSSTT verifies the parameter 1list validity and
calls module DMSLAD to get the active disk table associated with the
specified mode. Upon return from DMSLAD, DMSSTT calls DMSLFS +to find
the file status table (FST) asscciated with the file you specified.
Once DMSLFS finds the associated FST, it checks to determine if the file
resides on an O0S disk. If it does, DMSLFS calls DMSROS (ROSSTT) to read
the extents of the data set. Upon return from DMSROS, DMSLFS returns to
DMSSTT. DMSSTT then copies the FST (or 0S FST) to the FST copy in
statefst and returns to the calling routine.

0S Access Method Modules--logic Descrirtion

DMSACC MODULE: Once DMSACC determines that the disk you want to access
is an 0S disk, it bypasses the routines that perform LOGIN UFD and LOGIN
ERASE.

If the disk you want to access replaces an 0S disk, message DMSACC724I
appears at your terminal.

If you specified any options or fileid in the ACCESS command +to an OS
disk, a warning message, DMSACC230W, appears to notify you that such
options or fileid were ignored. DMSACC returns to the calling routine
with a warning code of 4.

=

E: TMSACF verifies that the disk you want to access is an 0S
it is, exits immediately.

DMSACFE MODU
isk i

¥ODUL
and, if

Qu

DMSACM MODULE: DMSACM saves the disk label and VTOC address in the ADT
block 1if the disk is an 0S disk. DMSACM <checks to determine if a
previous access to an 0S disk loaded DMSROS. If not, DMSACM calls
DMSSTT to verify +that DMSROS text exists. Upon successful return from
STATE, DMSACM loads DMSROS text into the high storage area with the same
protect key and calls the OS access routine (ROSACC) of DMSROS to read
the format 4 DSCB of the disk. Upcn successful return from DMSROS,
control returns to the calling routine. Any other errors are treated as
general logon errors.

DMSALU MODULE: 1If the disk is an 0S disk, DMSFRET returns the 0S FST
klocks (if any) to free storage. DMSALU <clears the 0S FST pointer in
all active 0S file control blocks, decrements +the DMSROS usage count
and, if the usage count 1is zero, clears the address of DMSROS in the
nucleus area. TLMSALU also calls DMSFRET to returns to free storage the
area which DMSROS occupies.

2-156 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

DMSARE MODULE: DMSARE ensures that the disk you want to release is an 0OS
disk. DMSARE calls DMSALU to release all O0S FST blocks and, if
necessary, to free +the area DMSROS occupies. Upon return from DMSALU,

DMSARE clears the common CMS and OS active disk table.

DMSFLD MODULE

e DSN -- If you specify the parameter DSN as a gquestion mark (?),
FILEDEF displays the message DMSFLD220R to request you to type in an
0S data set name with the format Q1.Q2.QN. Q1, 02, and QN are the
qualifiers of an 0S data set name. If you specify the parameter DSN
as 01.Q02.0N, FILEDEF assumes that ¢1, Q2, and QN are the qualifiers
of an O0S data set name, and stores the qualifiers with the format
01.Q02.0N in a free storage block and chains the block to the FCB.

e CONCAT -- If you specify the CONCAT option, FILEDEF assumes that the
specified FILEDEF is unique unless a filedef is outstanding with a
matching ddname, filename, and filetype. This allows you to specify
more than one FILEDEF for a particular ddname. The CONCAT option
also sets the FCBCATML bit in the FCB to allcw the OS simulation
routine to know the FCB is for a concatenated MACLIBR.

e MEMBER -- If you specify the member option, filedef stores the member
name in FCBMEMBR in the FCB to indicate that the 0S simulation
routine should set the read/write pointer to point to the specified
BPAM file member when OPEN occurs.

DMSLDS MODULE: TCMSLDS saves the return register, sets itself with the
nucleus protection key, clears the dsname key, and initializes its
internal flag.

CMSLDS verifies parameter list validity. The data set name must not
exceed 44 characters, and the disk mode (the last parameter before the
options) must te valid. DMSLDS djoins the qualifiers with dots (.) to
form valid data set names. If you specify the data set name as a
question mark (?), DMSLDS prompts you to enter the dsname in exactly the
same form as the dsname which appears on the disk.

DMSLDS calls DMSLAD to find the active disk table block. If you
specify filemode as an asterisk (*), DMSLAD searches for all ADT blocks.
If you specify the filemode as alphabetic, DMSLATL finds only the ADT
block for the specified filemode.

If you specify the dsname (which is optional), ©DMSLDS sets the

channel programs to read by key. If you did not specify a dsname,
DMSLDS searches the whole VTOC for format 1 DSCBS and displays all the
requested information contained in the DSCB on your console. If you

specify the format option, the RECFM, LRECL, BLKSI, DSORG, DATE, LABEL,
FMODE, and data set name appear on you console; otherwise, only the
FMODE and data set name appear.

If vyou specify +the PDS option, DMSLDS calls the 'find' routine
(rosfind) in DMSROS to read the member directory and pass back, one at a
time, in the fctmembr field of CMSCB the name of each rember of the data
set. This occurs if the data set is partitioned.

After processing £finishes, DMSLDS resets the nucleus key to the same
value as the user key, puts the return code in register 15, and returns
to the calling routine.

DMSLFS MODULE: LMSLFS verifies that the PST being searched for has an OS
disk associated with it. DMSLFS calls the DMSROS state routine (ROSSTT)
to verify that the data set exists and CMS supports the data set
attributes. Upon return from DMSROS, a return code of 88 indicates that
the data set was not found, and DMSLDS starts the search again using the

CMS Method of Operation and Program Organization 2-157

Licensed Material -- Property of IBM

next disk in sequence. Any cther errors, such as a return code 80,
cause DMSLFS to exit immediately. 2 return code of O from DMSROS
indicates that the data set is on the specified disk. From this point
on, execution occurs common to both CMS and 0S disks.

DMSMVE MODULE: 1If you specify the PDS option and the input is from a
disk, DMSMVE sets the FCBMVPDS bit and issues an OS FIND macro tkefore
opening an output DCB to position the input file at the next member.
DMSMVE then stores the input member name in the output CMSCB for use as
the output filename. After reaching end-of-file c¢n a member, the
message DMSMVE225I appears, DMSMVE closes the output DCB, and passes
control to find the next member. After moving all the members to
separate CMS files, movefile displays message DMSMVE226I, closes the
input and output DCBS, and returns control to the calling routine.

DMSROS MODULE:

ROSACC Routine -- ROSACC gets control from LCMSACHM after TLCMSACM
determines that +the label of the disk belongs to an 0S disk. The
ROSACC routine reads the format 4 DSCB of the disk to further verify
the validity of the O0S disk. ROSACC updates the ADT to contain the
address of the high extent of the VTOC (if the disk is a DOS disk) or
the address of the last active format 1 DSCB (if the disk is an OS
disk), and the number of cylinders in the disk. If the disk is a DOS
disk, ROSACC sets a flag in the ADT. Informaticn messages appear to
notify you that the disk was accessed in read-only mode. TIf the disk
is already accessed as another disk, another information message
appears to that effect. Finally ROSACC zeroes cut the ADTFLG1 flag
in the ADT, sets the ADRFLG2 flag to reflect that an 0S disk was
accessed, and returns control to the calling routine.

e ROSSTT PRoutine -- Verifies the existence of an 0S data set and
verifies the support of the data set attributes.

Note: Within the ROSSTT description, any reference to FCB or CMSCB
implies a DOSCB if DOS is active.

ROSSTT gets control from DMSSTT after DMSSTT determines that the
STATE operation 1is to an 0S disk. The ROSSTT routine searches for
the correct FCB which a previous FILEDEF associated with the data
set. If the DOS environment is active, ROSSTT locates the correct
DOSCB that defines a data set described by a previous DLBIL. If
ROSSTT finds an active FST, control passes to ROSSTRET; otherwvise,
ROSSTT acquires the dsname block, places its address in the FCB, and
moves the dsname in the FCB to the acquired block. ROSSTT acquires
an FST block, chains it to the FST chain, and £fills all general
fields (dsname, disk address, and disk mode). ROSSTT now reads the
format 1 DSCE for the data set and checks for unsupported options
(RDAM, ISAM, VSAM, and read protect).

Errors pass contrcl back to the calling routine with an error code.
ROSSTT groups together all the extents of the data set (by reading
the format 3 CSCB if necessary) and checks them for validity. ROSSTT
bypasses any user labels that may exist and displays a message to
that effect. Next, ROSSTT moves the DSCB1 BLKSIZE, LRECL, and RECFM
parameters to the 0S FST and passes control to rcsstret.

e ROSSTRET Routine -- TIf the disk is not a DOS disk, rosstret passes
control back to the caller. If the specified disk is a DOS disk,
rosstret fills in the 0S FST BLKSIZE, LRECL, and RECFM. fields that
were not specified in the DSCB1. If the CMSCB fields are =zero,
rosstret defaults them to BLKSIZE=32760, LRECL=32670, and RECFM=U.
Control then returns to the calling routine.

2-158 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

ROSRPS Routine -- ROSRPS reads the next record of an 0S data set.
Upon entry to the ROSRPS entry point, ROSRPS calls CHKXTNT and, if
the current CCHHR is zero, SETXTNT to ensure the CCHHR and extent
toundaries are correctly set. ROSRPS then calls T[CISKIO andg, if
necessary, CHKSENSE and GETALT to read the next record. If no errors
exist or an unrecoverable error occurred, control returns to the user
with either a zero (I/0 OK) or an 80 (I/0 error) in register 15. If
an unrecoverable error occurs, ROCSRPS updates the CCWS and tuffer
pointers as necessary and recalls CHKXTNT and DISKIO to read the next
record.

ROSFIND Routine -- ROSFIND sets the CCHHR to point to a wmember
specified in FCBMEMBR or, if the FCBMVPDS bit is on, sets the CCHHR
to point to the next member higher than FCBMEMBR and sets a new
member name in FCEMEMBR.

Upon entry at the ROSFND entry point, ROSFNT sets up a CCW to search
for a higher member name if the FCBHVPDS bit is on, or an equal
membter name if +the FCBMVPDS bit is off. It then calls SETIXINT,
DISKIO and, if needed, CHKSENSE and GETALT to read in the directory
block that contains the wmember name requested. After reading the
block, it is searched for the requested member name. If the member
name is not found, an error code 4 returns to the «calling routine.
If an I/0 error occurs while trying to read the PDS block, an error
code B returns to the calling routine. If the member name is found,
TTRCNVRT is called to convert the relative track address to a CCHH
and pass the address of the member entry to the calling routine.

ROSNTPTB Routine -- ROSNTPTB gets the current TTR, sets the current
CCHHR to the value of the TTR, and backspaces to the previous record.

Upon entry at the ROSNTPTB entry point, ROSNTPTR checks to determine
if a NOTE, PCINT, or BSP operation was requested.

If register 0 is zero, NOTE is assumed. The note routine calls
CHRCNVRT to convert the CCHH to a relative track and returns control
to the calling routine with the TTR in register 0.

If register 0 is positive upon entry into DMSROS, POINT is assumed
and ROSNTPTB loads a TTR from the address in register 0 and calls
TTRCNVRT and SETXTNT to convert the TTR to a CCHHR. Then control
returns to the calling routine.

If register 0 is negative upon entry into DMSROS, BSP (BACKSPACE) is
assumed. The backspace code checks to determine if the current
position is the beginning of a track. If not, the backspace code
decrements the record number by one and control then returns to the
calling routine. TIf the current position is the beginning of a
track, the tackspace code calls CHRCNVRT to get the current CCHH.
The backspace code then calls rdcnt to get the current record number
of the 1last record on the new track, calls setxtnt to set the new
extent boundaries, and returns control to the calling routine.

DMSSCT MODULE:

NOTE Routine -- Upon entry to note, DMSSCT checks to determine if the
LCB refers tc an 0S disk. If it does, DMSSCT calls DMSROS (ROSNTPIB)
to get the current TTR. Ccntrol then returns to the user.

POINT Routine -- Upon entry to point, DMSSCT checks to determine if
the DCB refers +to an 0S disk. If it does, DMSSCT callgs DMSROS

(ROSNTPTB) to reset the <current TTR, calls CKCONCAT and returmns
control to the calling routine.

CMS Method of Operation and Program Organization 2-159

Licensed Material -- Property of IBM

e CKCONCAT Routine -- Upon entry to CKCONCAT, DMSSCT checks to
determine if the FCB MACLIB CONCAT bit is on. If it is on,
DCBRELAD+3 sets the correct 0S FST pointer in the FCB and returns
control to the calling routine. If the FCB MACLIB CONCAT bit is off,
control returns to the calling routine.

e FIND (type_C) Routine -- TIf the DCB refers to an 0S disk, DMSSCT
calls DMSROS (ROSNTPTB) to update the TTR and control returns to the
calling routine.

IMSSFB MODULE:

» EOBROUTN Routine -- If the FCB 0S bit is on, control passes to
OSREAD. Otherwise, if no special I/0 routine 1is specified 1in
FCBPROC, control passes to EOB2 in LMSSEB.

e OSREAD Routine -- DMSSEB calls DMSROS to perform a read or write and
then control passes to EOBRETRN which, in turn, passes control tack
to LMSSBS. DMSSBS passes control back to the routine calling the
read or write macro operation.

DMSSOP MODULE -- If the MACLIB CONCAT option is on in the CMSCB, OPEN
checks the MACLIPR names in the global list and fills in the addresses of
0S FSTS for any MACLIBS on OS disks. The CMSCB of the first MACIIB in
the global list merges and initializes CMSCBS.

If the CMSCB refers to a data set on an 0S disk, DMSSOP checks to ensure
that the data set is accessible and the DCB does not specify output,
BDAM, or a key length. If any errors occur, error message DMSSOPO36E
appears and DMSSOP does not open the DCB. DMSSOP fills them in from the
0S FST for the data set.

If the CMSCB fcbmembr field contains a member name (filled in by FILEDEF
with the member option), DMSSOP issues an O0S FIND macro to position the
file pointer to the correct member. If an error occurs on the call to
the FIND wmacro, error message DMSSOP0O36E appears and DMSSOP does not
open the DCB.

DMSSVT MODULE:

BSP (backspace) Routine ~-- Upon entry, backspace checks for the FCB
0S bit. If it is on, the BSP routine <calls TMSROS (ROSNTPTB) to
backspace the TTR and control returns to the calling routine.

e FIND (type_D) Routine -- Upon entry to find, the find routine checks
the FCB 0S Lbit. If it is on, the FIND routine takes the 0S FST
address from the CMSCB or, if the CONCAT bit is on, from the glotal
MACLIB list. The FIND routine then calls DMSROS (ROSFIND) to find
the member name and TTR. DMSROS searches for a matching member name
or, if the FCBMVPDS option is specified, a higher member name. TIf
the DMSROS return code is 0 c¢cr 8, or if the FCBCATML bit is not on,
control returns to the <calling routine with the return code from
DMSROS, If the return code is 4 and the FCRCATML bit is on, LCMSSVT
checks to determine if all the global MACLIBS were searched. TIf they
were, control returns to the calling routine with the DMSROS return
code. If they were not, DMSSVT issues the FIND on the next MACLIB in
the global list.

* BLDL Routine--BLDL list = FF LL NAME TTR KZC DATR

If the DCB refers +to an 0S disk, the BLDL routine fills in the TTR,
C-byte and data field from the 0S data set.

2-160 TIBM V¥/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

DMSORY MODULE:

e SEARCH Routine -- The search routine ensures that any 0S disk
currently active is included in the search order of all disks
currently accessible.

e DISK Routine -- The disk routine displays the status of any or all OS
disks using the following form:

'MODE (CUU): (NO. CYLS.), TYPE R/C - OS.!

DMSSTT MODULE -- DMSSTT verifies that the disk being searched is an OS
disk. DMSSTT calls DMSLFS to get the FST associated with the data set.
Upon return from DMSLFS, DMSSTT checks the return code to ensure that
CMS supports the data set attributes. A return code of 81 or 82
indicates that CMS does not support the data set and message DMSSTT229E
occurs to that effect. DMSSTT then clears the FST copy with binary
zeros, and moves the <filename, <filetype, filemode, BLKSIZE, LRECL,
RECFM, and flag byte +to the FST copy. From this point on, common code
execution occurs for both CMS and 0S disks.

Routines Common to All of DMSROS

e CHRCNVRT Routine -- The CHRNCVRT routine converts a CCHH address to a
relative track address.

e CHKSENSE Routine -- CHKSENSE checks sense bits to determine the
recoverability of a unit check error if one occurs.

¢ CHKXTNT Routine -- CHKXTNT checks to determine if the end of split
cylinder or the end of extent occurred, and, if so, updates to'the
next split cylinder or extent.

e DISKIO Routine -- DISKIO starts I/0O operation on a CCW string via a
DIAGNOSE X'20°.

e GETALT Routine -- GETALT switches reading from alternate track to
prime track, and from prime track to alternate track.

e RDCNT Routine -- RDCNT reads ccunt fields on the +track to determine
the last record number on the track.

e SETXTNT Routine -- SETXTNT sets OSFSTEND to the value of the end of
the extent and, if a new extent is specified, sets CCHHR to the value
of the start of the extent.

Simulating a VSE Environment under CMS

CMS/DOS 1is a functional enhancement to CHMS that provides VSE
installations with the interactive capabilities of a VM/SP virtual
machine. CMS/DOS operates as the backgrcund VSE partition; other VSE
partitions are unnecessary, since the CMS/DOS virtual machine is a
one-user machine.

CMS/DOS provides read access to real VSE data sets, but not write or
update access. Real VSE private and system relocatable, source
statement, and core-image 1libraries can be reagd. This read capakility
is supported to the extent 7rTequired to support the CMS/DOS 1linkage
editor, the DOS/PLI, DOS/VS COBOL, and the DOS/VS RKPG II compilers, the

CMS Method of Oreration and Program Organization 2-161

Licensed Material -- Property of IBM

FETCH routine, and the RSERV, SSERV, and ESERV commands. No read or
write capability exists for the VSE procedure library, except for
copying procedures from the procedure library (via the PSERV command) or
displaying the prccedure library (via the DSERV command).

CMS/DOS does ncot support the standard label area.

INITIALIZING VSE AND PROCESSING VSE SYSTEM CONTROL COMMANDS

Initialization of the CMS/DOS operating environment requires the setting
of flags and the <creation of certain data areas in storage. Once
initialized, these flags and data areas may then be changed by routines
invoked by the system contrcl commands.

Five modules are described in this section:

e DMSSET Activates the CMS/DOS environment control blocks to be used
during CMS/DOS processing.

e DMSOPT Sets or resets compiler execution-time options.
e DMSASN Relates logical units to physical units.
e DMSLLU Lists the assignments cf CMS/DOS physical units.

e DMSDLB Associates a DTF with a logical unit for CMS/DOS processing.

CMSSET--Initializing the CMS/DOS Operating Environment

DMSSET initializes the CMS/DOS operating environment as follows:

e Verifies that the mode, if specified, is for a DOS formatted disk.

e Stores appropriate data in the SYSRES LUB and PUE.

e Locates and loads the CMS/DOS discontiguous shared segment. Saves
(in NUCON) the addresses of the two major CMS/DOS data blocks,
SYSCOM, BGCOM,and the address of the CMS/DOS discontiquous shared
segment (CMSDOS).

* Locates and loads the CMSBAM shared segment if available. This
segment contains the following:

- Simulated VSE OPEN/CLOSE and 1logic module routines for the VSE
sequential access method

- LTFSL support for the DOS PL/I and DOS/VS COBOL compilers

- LBROPEN, LBRFIND, and LBRGET macro simulation as required Lty the
VSE ESERV program

- VSE lookaside function support as required by VSE/VSaM

s Obtains free storage and initializes the LOCK/UNLOCK resource control
table.

2-162 TBM V¥/SP System lLogic and Program Determination--Volume 2

Licensed Material -- Property of IBM

e Sets the DOSMODE, DOSSVC and CMSBAM bits in DOSFLAGS in NUCON.

e Assigns (via ASSGN) the SYSLOG logical unit as the CMS virtual
console,

The CMS/DOS operating environment is entered when the CMS SET DOS ON
command is issued, invoking the module DMSSET.

Data Areas Prepared for Processing during CMS/DOS Ipitialization

Several data areas are prepared for processing during initializationm.
The main CMS data area, NUCON, is mnodified to contain the addresses of
two VSE data areas, SYSCOM and BGCOM. NUCON also contains the address
of the TCB.

The SYSCOM DSECT is the VSE system communications region. It
consists mainly of address constants, including the addresses of the
boundary box, the PUB cwnership table, and the FETCH table. It also
includes such information as the number of partitions (always one for
CMS/DOS) and the length of the PUB table.

The BGCOM DSECT is the partiticn communication regionm. It includes
such information as the date, the 1location of +the end of supervisor
storage, the end address of the last phase loaded, the end address of
the longest phase loaded, bytes used to set the language translator and
supervisor options, and the addresses of many other VSE data areas such
as the LUB, PUB, NICL, FICL, PIB, and PIB2TAB.

The Task Control Block (TCB) contains the addresses of the PC and AB
exit routines. The TCB also contains the addresses cf the related PC
and AR exit save areas.

The LUB and PUB talkles are also made available during initialization.
The 1LUB is the logical wunit block table. It acts as an interface
between the user's program and the CMS/DOS thysical units. It contains
an entry for each syrmbolic device available in the systen.

Each of the symbclic names in the 1LUB is mapped into an element in
the PUB, the physical unit block table. The PUB table contains an entry
for each channel and device address for all devices physically available
to the system and also contains such information as device type code,
CMS disk mode, tape mode setting, and 7-track indicator.

Three bits are set in DOSFLAGS in NUCON, DOSMODE, TOSSVC and CMSBaM.
DOSMODE specifies that this virtual machine is running in +the CMS/DOS
operating environment. DOSSVC indicates whether OS or VSE SVCs are
operative in the operating envircnment. CMSBAM indicates that various
VSE functions are supported and available. If DOSSVC is set, VSE SVCs
are used; otherwise, 0S SVCs are operative.

SETTING OR RESETTING SYSTEM ENVIRCNMENT OPTIONS

Once the CMS/DOS environment is initialized, the flags and control
blocks set during initialization can be modified and manipulated to
perform the functions specified by commands entered at the console.
This section describes the modules that set and reset the system
environment options. That is, +they set those cptions that cocntrol
compiler execution and that control the ccnfiguration of 1logical and
physical units in the systen.

CMS Method of Oreraticn and Prcaram Organization 2-163

Licensed Material -- Progperty of IBM

CMSOPT--Setting and Resetting Compiler Options

The CMS/DOS OPTION command invokes module DMSOPT, which sets either the
default options for the compiler or the options specified on the command
line. The nonstandard language translator options switch and the job
duration indicator byte are altered. Options are set using two control
words located in the partition communication regicn (BGCOM). Bits in
bytes JCSW3 or JCSW4 are set, depending on the opticns specified.

DMSASN--Associate System or Progragmer Logical Units with Physical Units

Module DMSASN is invoked when the ASSGN command is entered. DMSASN
first scans the ccmmand line to ensure that the 1logical unit being
assigned is valid for the physical unit specified (for example, SYSLOG
must be assigned to either the wvirtual conscle or the virtual printer).
Once the command 1line is checked, PUB and LUB entries are modified to
reflect the specified assignment.

A check is made to ensure that the logical units SYSRLR or SYSIPT are
not being assigned to a DOS formatted FB-512 DASD. This is not
supported in the CMS/DOS environment because SVC 103 (SYSFIL support) is
not available.

For the PUB <entry, the device type 1is determined (via DIAG 24) and
the device type code is placed in the PUB. Other mcdifications are made
to the PUB depending on the specified assignment. The LUB entry is then
mapped to its corresponding PUB.

DMSDAS--LCynamically Associated Programmer Logical Units with Physical
Units

The function of DMSDAS is to assign a disk device with address X'cuu' to
a programmer logical unit (SYS000 - SYsau4t).

The dynamic assign function supports assigning a DASD unit either
permanently or temporarily, changing a DASD unit temporary assign to
permanent, or unassigning a DASD. Temporary assigns are cleared either
at end-of-job or when the program is canceled.

DMSDAS first searches the Active Disk Table (ADT) chain to ensure
that the X'cuu' supplied is accessed. If the X'cuu' exists, DMSDAS
ensures the device is a DASD unit. The programmer LUB table is then
searched backwards to find the first available entry. A CMS PLIST is
built using the fcund LUB entry to call DMSASN to actually do the
assign.

DMSDAS updates the appropriate LUB entry directly when performing the
unassign and change functiomns.

DMSLLU--List the Assignments of CMS/DOS Logical Units

The function of DMSLLU is to request a 1list of the physical units
assigned to logical units. It performs this function by referencing

2-164 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

information located in the CMS/DOS data blocks, specifically SYSCOM,
LUB, and PUB. Another data block, the next in class (NICL) tatle is
also referenced.

The information on the command line is scanned and the approrriate
items are displaved at the user's «console. If an option (EXEC or
APPEND) is specified, an EXEC file is created ($LISTIO EXEC A1) to
contain the output. If EXEC is specified, any existing $LISTIO EXEC afl
file is erased and a new one 1is created. TIf APPEND 1is specified, the
new file is appended to the existing file.

DMSDLB--Associate a DTF Table Filename with a Logical Unit

DMSDLB is invoked when the CMS/DOS DLBL command is entered. DMSDLB
associates a DTF (Define The File) table filename with a logical unit.
This function is performed by creating a control block called a DOSCE,
which contains information defining a VSE file wused during job
execution. DLBL is valid only for sequential or VSAM disk devices.

This information ©parallels the label informaticn written on a real
VSE SYSRES unit wunder VSE. The DOSCB contains such information as the
name, type, and mode of the referenced dataset, its device type code,
its logical unit specification, and its dataset type (SAM or VSaM).

A DOSCB 1is created for each file specified by the wuser during a
terminal session. The DOSCBs are chained to each other and are anchored
in NUCON at the field DOSFIRST. The chain remains intact for the entire
session, unless an abend occurs or the user specifically clears an entry
in the the DOSCB chain. A given DOSCB is accessed when an OPEN macro is
issued from an executing user program.

The overall logic flcw for DMSDLIB is as fcllows:

1. Scans the command line to ensvure that any opticns entered are valid
(that is, anything to the right of the open parenthesis).

2. Processes the first operand (ddname or % . When ddname is
specified, loop through the DOSCB chain to find a matching ddname.
If none is found, DMSDLB calls DMSFRE to get storage to create a
new DOSCB for this file. The 01d copy of the DOSCB is then saved
so that, in case of errors during processing, it can be retrieved
intact. The new copy of +the DOSCB contains wupdates and DOSCB
replaces the 0ld ccpy if there are no errors.

3. The mode specification is checked to ensure that it is a valid mode
letter; if the file is a CMS file, the mode 1letter must specify a
CMS disk. 1If DSN has teen specified, the mode letter must be for a
non-CMS disk.

4, ©Process each option on the command line aprropriately.

5. If EXTENT or MULT is specified, a separate block c¢f free storage is
obtained tc contain information about +the extent, for examgle, a
block is obtained to contain the VSE data set name.

6. Check for errors. If there are errors, any blocks created during
processing are purged and an error message is issued. If there are

nc errors, restore the 014 block, which has been modified to
reflect current processing, and return control to TMSITS.

CMS Method of Oreration and Program Organization 2-165

Licensed Material -- Property of IBM

EROCESS CMS/DOS OPEN AND CLOSE FUNCTIONS

The CMS/DOS OPEN routines are invoked in response to VSE OPEN macros.
They operate on DTF (define the file) tables and ACB (access method
control block) talkles created when the DTFxx and ACB macros are issued
from an executing user program. These tables contain information such
as the 1logical unit specificaticn fcr the file, the LTF type of the
tfile, the device code for the file, and so forth. The information in
the talkles varies depending upon the type of DTF specified (that is, the
table generated by a unit record DTF macro is slightly different from
the table generated ty a DTF disk macro).

Five routines are invoked to perform OPEN functions, DMSOPL, DMSORI,
DMSOR2, DMSOR3, and TCMSBOP. DMSCLS performs the CLOSE function.

OPEN/CLOSE processing in the CMS/DOS environment depends upon the DTF
type:

s For DTFCP (disk), DTFDI (disk), and DTFSD DTF types, actual
is

OPEN/CLOSE precessing performed by the simulated VSE SAM routines
in the CMSBAM [LCSS.

e TFor all other supported DTF types, OPEN/CLOSE prccessing is performed
totally within the CMS/DOS modules mentioned above.

Cpening Files Associated With DTF Tables

Depending on the type of OPEN macro issued from a user program, one of
five CMS/DOS OPEN routines could be invoked. OPENR macros give control
to DMSOR1!1 and, depending on the DTF type specified, DMSOR2 or DMSOR3 may
te invoked. These three routines (DMSOR1,DMSOR2, and DMSOR3) request
the relocation of a specified file. DMSOPL is invoked by the VSE
compilers when they need access to a source statement 1library. These
routines are mainly interface routines to DMSBOP, which performs the
main function of opening the specified file. Each of the routines calls
DMSBOP.

CMSROP is the CMS/DOS routine that simulates the VSE OPEN function
for nondisk DTFs. The basic function cf DMSBOP for nondisk DTFs is the
initialization of DTF tables (that is, setting fields in specified DTFs
for use by the VSE LIOCS routines). For disk [TFs, DMSBOP services as
an interface routine and passes ccntrol the the CMSEAM DCSS.

When a VSE probtlem program is compiling, a list of ©DTFs and ACBs is
built. At execution time, this 1list is passed to DMSBOP. The logic
flow of LCMSBOP is as follows:

1. Scans the list cof DTF and ACB addresses, handling each item in the
list in 1line. When the OPEN macro expands, register 1 points to
the name of the $$B transient to receive control ($$BOPEN) and
register 0 points to the list of DTF/ACB addresses to be opened.

2. When an ACBR is encountered in the table, contrcl is passed directly
to the VSAM OPEN routine, $$BOVSAM. The VSAM routine is
responsible for opening the file and returning control to DMSEOP.

3. When a DTF is encountered in the table for ncondisk files, DMSBOP
itself handles the OPEN:

a. For reader/punch files (DTFCD), the OPEN kit in the DTF table
is turned on.
2-166 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

b. For printer files (DTFPR), if +two IOAREAsS are specified, the
IOREG is loaded with the address of the appropriate IOAREA.
Next, the PUB index byte associated with the logical unit
specified in the DTF is checked to ensure that a physical
device has been assigned and the PUB device code is then
analyzed. The OPEN bit in the DTF table is then turned on.

c. For console files (DTFCN), no OPEN logic is required.

d. For tape files (DTFMT), the PUB device type code must specify
TAPE. If an IOREG is specified (for output tapes only), the
address of the appropriate IOAREA is placed in it. For input
files, there is separate processing for tapes with standard
label, nonstandard label, and no label. For output tapes, both
tape data files and work tape files are treated as no label
tapes.

4. For disk files, DMSBOP simulates the function of the VSE transient
$$BOSFBL. DMSBOP sets wup in the CMSBAM DCSS the input parameters
and data areas required by the simulated VSE SAM routines. Control
is then passed to the CHSBAM DCSS by placing the address of
$IJIGTOP (the SAM OPEN/CLOSE phase) in the problem program save
area PSW and exiting via SVC 11.

5. DTFDI and DTFCP are device-independent DTFs. Processing is as
atove depending upon the type of physical unit to which the DTFs
are assignegd.

6. If no disk DTFs are encountered, DMSBOP opens all files in the
table and returns control to the problem program via SVC 11. If a
disk DTF is enccuntered, DMSBOP exits as described above in step &4
for disk files.

7. If errors are encountered during DMSBOP processing, an error
message is issued and return is made via SVC 6.

Closing Files Associated With DTFs

The CMS/DOS routine that processes CLOSE requests is DMSCLS, whose logic
is analogous to that of DMSBOP, +the OPEN routine described above: when
CLOSE expands, register 1 points to $BCLOSE and register 0 points to the
list of DTF/ACB addresses. The same table ccntaining DTFs and ACBs used
to open files is also used to close those files. Each entry in the
table is processed as it occurs, with control passing to a VSAM CLOSE
routine ($$BCVSAM) when an ACB is encountered. The OPEN bit is then
turned off.

The OPEN and CLOSE functions for disk DTFs are performed by the
simulated VSE SAM routines located in the CMSBAM DCSS.

These routines ncrmally issue the LABEL macrc to obtain DLBL/EXTENT
information from +the VSE label area, and issue the OVTOC, PYVTOC, and
CVTOC macros to obtain VTOC infctmation. These macros require special
handling in CMS/DOS. Processing is as follows:

1. DMSLAB (LRBEL macro support) - CMS/DOS does nct support the label
information area in the same manner as VSE. CMS/DOS keeps similar

CMS Method of Operation and Program Organization 2-167

Licensed Material -- Property of IBM

information in the DOSCB for the file. CMS/DOS intercepts
invocations of the LABEL macro and passes control to DMSLAB.
DMSLAB obtains the appropriate information <£from the DOSCB and
builds the BLDL/EXTENT record. The DLBL/EXTENT record is then
returned to the SAM routines in CMSBAM. Only the GETLBL and GETNXL
functions of +the LABEL macro are sugported. All other functions
result in an error return code to the SAM routines in CMSBAM.

DMSCVH (OVIOC, PVTOC, and CVTOC macrc support) - 1In VSE these
macros are normally handled by the Common VTOC Handler routines.
These routines are simulated in CMSBAM and are used when accessinag
the VTOC on an OS or DOS formatted disk. However, when these
macros are issued for a file on a CMS formatted disk, DMSCVH must
simulate the appropriate function because CMS formatted disks do
not contain a VTOC. VIOC functions simulated by DMSCVH are as
follows:

OVTOC - open VTOC

PVTOC - read format 1 label by name
PVTOC - read format 1 label by address
PVTOC - write format 1 label in any slot
PVTOC - write format 1 label by address
PVTOC - check for file cverlap

PVTOC - scratch file

CVTOC - close VTOC

Any other requested VTOC functions is regarded as an error and the
program is canceled via SVC 6.

When the SAM routines in CMSBAM complete processing, they exit via
an SVC 2 to $$BOSVLT. The functions of this transient are
simulated within CMS/DOS by the DMSVLT mcdule. Obtained storage
areas are returned and other clean-up functions are performed.
DMSVLT exits in one of two different ways:

e If there are nc more DTFs to process, contrcl is returned to the
problem program via SVC 11.

s If there are more DTFs to prccess, an SVC 2 is issued to the
appropriate $$B transient. Then, DMSBOP or DMSCLS is eventually
invoked to process the remaining DTFs.

CONTENTS OF THE CMSBAM DCSS

Sever
VSE
follo

2-168

al VSE functions are supported within the CMSEAM DCSS as simulated
phases. The simulated VSE phases and their functions are as
WS

$1JIGTCP - performs OPEN and CLOSE functions fcr all disk DTFs
(LTFSD, DTFLI, and DTFCP).

$IJJHCVH - performs VTOC access functions for all disks in DOS
format.

$1JBLBSL - performs I/O operations to the VSE source statement

library for the VSE compilers and the ESERV utility program. The
compilers invoke this phase via the DTFSL macro. ESERV invokes
this phase indirectly via the LBRFIND and LBRGET macros.

IBM VM/SP System Logic and Program Determination--Veolume 2

Licensed Material -- Froperty of IBH

DMSLBE - simulates the VSE internal macros LEROFEN, LBRFIND, and
LBRGET to the extent required by the VSE ESFRV wutility program.
$IJBLBSL is invoked to perform I/0 operations to the VSE source

statement litrary when approrriate.

- performs the VSE lookaside function as required by

Eight VSE 1logic modules and two VSE SAM service routines are also
simulated as VSE phases. The logic modules handle I/0O macros (GET, PUT,
POINT, etc.) for SAM files as issued by the user's program. The logic .
modules and the specific type of SAM file they are associated with are
as follows: :

$IJGXSDF - CTFSD fixed length record data files on DOS formatted

FB-512 devices assigned to nonSYSFIL logical units.

$1JGXSDU - DTFST wundefined record data files on DOS formatted and

CMS formatted disks assigned to nonSYSFIL logical units.

$IJGXSDV - DTFSL variable length record data files on DOS formatted
FB-512 devices assigned to nonSYSFIL logical units.

$IJGXSDW - DTFSD work files on DOS formatted and CMS formatted

disks assigned to nonSYSFIL logical units.

3IJGXSVI - DIFSD variable length record data files on CMS formatted
FB-512 and DOS, or CMS formatted CKD devices assigned to nonSYSFIL
logical units.

$IJGXSFI - DTFSD fixed length record data files on CMS formatted
FB-512 and DOS, or CMS formatted CKD devices.

$IJGXCP - DTFCP files except for files on [0S formatted FB=-512
devices assigned to SYSFIL logical units.

$1JGXDI - DTFDI files except for files on TI0OS formatted FB-512

devices assigned to SYSFIL logical units.
SYSFIL logical units are not supported for use with DOS formatted
FB-512 devices in CMS/DOS. SYSFIL 1logical units refers collectively to
logical units SYSRDR, SYSIPT, SYSLST, and SYSPCH.

The SAY service routines issue the actual I/0 channel prograns for
SAM files. The functions they perform are as fcllows:

$IJGXSSR - issues I/0 operations for DOS formatted FB-512 devices.

I - issues I/0 operations for all CMS formatted disks
or CKD) and for DOS formatted CKD devices.

PROCESS CMS/TDOS EXECUTION-RELATED CONTROL COMMANDS

The CMS/DOS FETCH and DOSLKED commands simulate the operation of the VSE
fetch routines and the VSE Linkage Editor. The three CMS modules that
perform this simulation are:

e DMSFET--Provide an interface tc interpret the DOS FETCH command line
and execute the phase, if START is specified on the command line.

e DMSFCH--Bring into storage a specified phase from a system or private
core-image library or from a CMS DOSLIB library.
CMS Method of Operatiocn and Program Organization 2-169

Licensed Material -- Property of IBM

e DMSDLK--Link edit the relocatable output of the CMS/DCS 1language
translators to create executable progranms.

CMSFET and DMSFCH--Bring a Phase into Storage for Execution

The VSE FETCH function is simulated by CMS modules DMSFET and DMSFCH.
The main control block used during a FETCH operation is PCHSECT, which
contains addressing infcrmation required for I/0 operations.

The FETCH ccmmand 1line invokes module DMSFET. This module first
validates the command line and issues a PILEDEF for the COSLIB file. It
then issues a FILEDEF for a DOSLIB file. DMSFET then issues a VSE SVC
4, which invokes the module DMSFCHE to perform the actual FETCH
operation.

DMSFCH first determines where the phase to be fetched resides. The
search order is private core-image 1library, DOSLIE, system core-image
library. If the ©phase is nct found 4in any of these 1libraries, DMSFCH
assumes that the FETCH is for a phase in a system or private core-image
library. To find a DOSLIB library member, 0S OPEN and FIND macrcs are
issued (SVC 19 and 18).

When the member is found, 0S READ and CHECK macros are issued toc read
the first record of the file (the member directory). This record
contains the number of text blocks and the length of the member.

A1l addressing infcrmation is stored in FCHSECT and the text Lklocks
that the phase are read into storage. If the read is from a CMS disk,
issue the O0S REAT and CHECK macros to read the data. If the read is
from a DOS disk, first determine whether this is the first read for the
CMS/DO0S discontiguous shared segment (DCSS). If this is the case, CCW
information is relocated to ensure that the DCSS code is reentrant. For
all reads for a DOS disk, a CP READ DIAG instruction is issued. When
the entire file is read, it is relccated (if it is relocatable).

If a DOSLIB is open, close it using an 0S SVC 20 and return control
to DMSFET. DMSFET then checks to see whether START is specified and, if
s0, an SVC 202 is issued for the CMS START ccmmand to execute the loaded
file.

When all FETCH processing is complete, control returns to the CMS
command handler, DMSITS.

Simulate the Functions of the VSE linkage Editor: DMSDLK

CMS simulation of the VSE Linkage Editor function directly parallels the
Release 1 implementation of that function. For detailed information on
the logic of the function, see the publication DOS/VSE Linkage Editor
Logic, Order No. SY33-8556.

The modules that comprise the VSE Linkage Editor are prefixed ty the
letters IJB and are separate CSECTs. ALL of +these CSECTs have
counterparts contained within the one CMS module, DMSDLK. They are
treated as subroutines within that module, but perform +the same
functions as their independent VSE counterparts and have been named
using the same naming conventions as for the VSE CSECTs. For example,
the IJBRESD CSECT in VSE is paralleled by +the CMS DMSDLK subroutine
DLKESD.

2-170 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

A Lrief description of the 1logic follows. The CHS/DOS DOCSLKED
command invokes the module DMSDLK, which 1is entered at subroutine
DLKINL. DLKINL performs initialization and is later overlaid Ly the
text buffer and the linkage editor tables. DLRINL starts to read from a
DOSLNK file and processes ACTION statements, if there are any.

On encountering the first non-ACTION card (or if there is no DOSLNK
file), the main flow is entered. Depending on the input on the DOSLNK
or the TEXT file, records from either of those files may be read or
records from a relocatable library may be read. The type of card image
read determines the subroutine to which ccntrol is given for further
processing.

An ENTRY card indicates +the end of the input to the linkage editor.
At this point, a map is produced by subroutine DLKMAP. DLKRLD is then
entered to finish +the editing c¢f object modules by relocating the
address constants. If the phases are to be relocatable, relocation
information 1is added to the output on the DOSLIE. Updating of the
DOSLIB library is performed by DLKCAT using the 0S STOW macroe.

A significant deviation from VSE code is the wuse 0f 0S macros, in
some instances, rather than VSE pacros. To take advantage of CMS
support of partitioned data sets, the O0S OPEN, FIND, READ, CHECK, and
CLOSE macros are issued rather then their VSE counterparts.

STMULATE VSE SVC FUNCTIONS

a11 SVC functicns supported for CMS/DOS are handled by the CHMS module
DMSDOS. DMSDOS receives control from DMSITS (the CMS SVC handler) when
that routine intercepts a DOS SVC code and finds that the DOSSVC flag in
DOSFLAGS is set in NUCON.

DMSTOS acquires the specified SVC ccde from the OLDPSW field of the
current SVC save area. Using this code, DMSDOS computes the address of
the routine where the SVC is to ke handled.

Many CMS/DOS routines (including DMSDOS) are contained in a
discontiquous shared segment (DCSS). Most SVC codes are executed within
DMSDOS, but some are in separate modules external to DHSTOS. 3If the SVC
code requested is external to DMSDOS, its address is computed using a
table called DCSSTAB; if the code regquested is executed within DMSDOS,
the table SVCTAB 1is used to compute the address of the code to handle
the SVC.

Figure 28 shows the VSE SVCs and their support in CMS/DOS simulation

routines, the name cf the macro that invokes a given SVC code, and a
trief statement describing how the SVC function is performed.

CMS Method of Oreration and Program Organization 2-171

Licensed Material -- Property of IBM

r
|Function/

| Macro

-

.
| SVC No.|

| Dec Hexl| Support

K|

td
>4
O
-]

— - —— — — —

r

0

+

0tUsed to read from CMS or DOS/0S formatted disk.
|
| The CCW's are converted to appropriate CMS I/Of
| requests (ex., RDBUF/WRBUF, CARDRD/CARDPH, etc.).l|
|The CCB or IORB is posted according to the CHMS|
|return information. DMSDOS will call CMSXCP|
|routine to perform the I/0 operation. If al
fnon-zero return code is returned from DMSXCP, a|
|cancel 1is done. I/0 requests to DOS disks arej
|handled using CP DIAGNOSE instructions. |
[

_d

rzi
]
3
(@]
o]

P ot oo At ik o ol o e 8 ot A i mm amm e

1

T B
1{Used to bring a prcblem program phase into user|
{storage, and to start execution of the phase if the|
| phase was found. |
| |
|If the user did specify a directory list, a call toj|
|DMSPCH is made. Othervwise, DMSDOS will build al
|directory 1list using the specified phase name.}|
fOnce the directory 1list is prepared, a call tojf
|DMSFCH is made. Upon return from DMSFCH, if the|
{phase was found, the entry point address of the|
|phase is saved in the 'SVC' save area oldpsw soj
|that upon return to CMS, DMSITS will then give|
fcontrol to the —rhase just loaded. If upon return|
|from DMSFCH there were any errors, a cancel is|
|done. If the phase was not found, a message is]|

| issued and a cancel is done. |
i |]

:

)

ETCH

!
|
!
!
|
|
|
|
!
!
|
[
!
!
!
|
;

2

Ll .
21Used to bring a $$B-transient phase into the CMS|
|transient area (or if the ©phase is in the CMSDOS|
| segment, not to load it), and start execution of}
|the phase if the phase was found. |
l I
|A search is made through the lcaded segment(s) inj|
lan attempt to locate the specified transient. If|
|the phase is fcund in one of the segments, a calll
|to DMSFCH is not needed. If the phase was not|
| found, a call to DMSFCH is made in a similar way as|
{in SVC 1 above. Once the transient entry point isj
|ottained (from storage or loaded), the address is|
{saved in the SVC save area (as above SVC 1) so that|
|CMSITS gives immediate control to the phase wanted.|
|Errors or not found conditions are handled as above|
lin svC 1.

1_

| FORCE
| DEQUEUE
L

3

__._q;-__-.———_—___.—_—_.—-4.-._.—-—-—___._...—-.._—_._._...-1}-_—_.—_..__———.-

+
3|Not supported, see note 2.
|

1 4

Figure 28.

SVC Support Routines and Their Operation (Part 1 of 11)

2-172 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

r

|

|Function/|

| Macro
N

|Dec

Bl
SVC No.|
Bex| Support

L]

L
|LOAD

u

T

41Used to bring a problem program phase into userj|
{storage, and return the <caller the entry point|
|address of the rhase just loaded. |
1 |
|Loading cf the requested phase is done exactly as|
{FETCH (SVC 1) calling DMSFCH. Any errors returned]
{from DMSFCH are processed exactly as in fetch. 1Al
|difference between FETCH (SVC 1) and LOAD (SVC W),1{
|is that upon return from DMSFCH, assuming there arel
Ino errors, the user's registers 0 and 1 are updated|
|to contain the address of the directory 1list (forl|
|the user to test if the phase was found), and the|
lentry pcint address of the phase, respectively. TIf|
| IIJBSIA is being loaded, the address of DMSLAB is|
| returned. If $IJJHCVA (Common VTOC handler) is|
| teing loaded, the address of DMSCVH is returned. |
'}

5

T L
51{Provides the user with a nmeans of alteringl|
| positions 12 through 23 cf the partition|
{communications region (BGCOM). |
| 1
| Before moving the specified inforwmation, a test is|
|made +to ensure that the range (user's start|
{address, plus 1length of field to move) will not|
|exceed the allowed range. Once the specified rangei
{is found to be within the allowed 1limits, thej|
luser's specified infcrmation is moved to thel

|partition communications region. |
4+ 4

6

Bl 3
6|Cancels a VSE session either by a VSE progranm|

|request, or by request from any of the CMS routines|
lhandling CMS/DCS. |
| |
|Cancel will issue the message 'JOB CANCELLED DUE TO|
| PROGRAM REQUEST!'. A test will be made to see if|
{the value of register 15 upon entry to «cancel is}
lbelow 256. TIf belcw, the value in register 15 will]
|te the return code to CHMS. If equal or greater, al
jspecial return code of 101 will be used to denote]
jthat +the cancel +was issued £f£rom a user progranl
| (return code of 101 is not wused for CMS error|
| nessages). Processing then continues wusing thej
| YEOJ' code. {

1 J

—-—-—————-—-ﬂ-——-———-———-————-—-—-———«1——-——-——-—--—--———--———-»—-———-——-———‘-—-—-—-—-

7

T A

7|Used to wait cn a CCB, IORB, ECB, or TECB (notel
{that CMS/DOS does not surport ECBs or TECBs). CCBs|
{are always posted by the DMSXCP routine before]
|returning to the caller. |
| |
|The WAIT support under CMS/DOS will effectively bel
la tranch to the CMS/DOS POST routine. i
i

Figure 28.

SVC Support Routines and Their Operation (Part 2 of 11)

CMS Method of Operation and Prcgram Organization 2-173

Tironasd Material -- Prorertv of IBM

—

-

|Function/|

| Macro
1

|Dec

-+

SVC No.|
Hex| Suprert

N |

—
|CONTROL
|

l__

-+

8| Temporarily return ccntrcl from a $$B-transient tol

|the problem rrcgran. [
| ' |
|If a $$B-transient has to temporarily give controlj
|to the problem program, the $$B-transient will}|
{issue an SVC 8 passing in register 0 the address of)
|the problem program gaining control. SVC 8 routinel
[will store this address in the SVC work areaj
|cldpsw, and return back to CMS SVC handler|
| (DMSITS). |
4

4

|
|
|
|
|
|
|
|
}
|LBRET
|
|
{
|
]
|
1

L Ll
9|Return to a $$B-transient after an SVC 8 was issued|

|to give control to the problem fprogram. |
| |
| The address saved before (SVC 8 above) is stored in|
|the SVC work area oldpsw, so that when DMSDOS|

-jreturns to the CHS SVC handler, control is given to}

|the $$B-transient that issued the SVC 8. i
1

L

| SET
|TIMER

e

|TRANS.
| RETURN

!
|
|
|
|
|
|
1
i
|
|
1
|
|
!
i
|
1
!

Ll 1

A{No operation, successful return code of 0 1is given]

lin register 15. See note 1. |
1 5

+

-
B{Return from a $$B-transient to the calling problenm|

| program. |
| |
|The address saved when the initial SVC 2 (fetch al
|$$B-transient) was issued, is stored in the CMS's]|
{SVC work area oldpsw. Now, when DMSDOS returns tol
|the CMS's SVC handler, control will return to the]|
|problem program that issued the SVC 2 calling the|

|$$B-transient. |
1 1

JOB CTL.
"AND'

LB 1
C]Resets flags to 0 in the 1linkage control byte in|

| BGCOM (communication region). If register 1 equals]|
10, SVC 12 has another meaning. Bit 5 of JCsW4|
| (COMREG byte 59) is turned off. |
| |
{If register 1 contains a nonzero value, the|
| function depends on bit 8 of this register. TIf bit]|
18 is 0, this SVC supplies supervisory support to]|
|reset flags in the linkage control bytel
| (displacement 57 in BGCOM - communication region).|
|The user has provided the address of a mask (1]
{byte) in register 1. An 'AND' operation of thel
{mask with +the linkage control byte is performed.|
|If bit 8 of register 1 1is one, this SVC supplies|

.{the supervisory suppcrt to reset flags in al

{specified byte of BGCOM (communication region).]|
|The user has provided a displacement in byte 2 andj|
la mask in byte 3 of register 1. An 'AND' operation|
{of the mask byte with the specified displacement in|
fthe partition communication region is performed.
i

W —— — — — i o —— o — v ot

{JC FLAGS

L

A e e N it

DINot supported. See note 2.
AL

+

b o e —

Figure 28.

SVC Support Routines and Their Oreration (Part 3 of 11)

2-174 TIBM VM/SP System Logic and Program Determination--vVolume 2

Licensed Material -- Property of IBM

r

| Macro |Dec

Hex| Support

14

L il n
|Function/{ SVC V¥No.| |
|

]

4

+
EiNormally terminates execution of a problem program.|
| |
|The last SVC save work . area is unstacked. Cleanup|
jis done by: '

1. Clearing the CMS DOSLIB CMSCE
2. Resetting the JOBNAME in RBGCOM
3. Unassigning all temporary device assignment

n

| The latest return code is 1loaded into register 1t5,
land control returns to DMSITS (CMSRET).
[

15

s e Ghee - — o —— —— —

+
F|Not supported. See note 2.
1

16

¥
101 Establish or terminate linkage +to a user's program|

|check routine. |
| : |
|Locate the appropriate PC cption table entry. If|
{the contents of register 0 is zero (terminate|
|linkage), determine if PC routine is active. If|
jthe PC routine address in PC option table is
|negative, terminate 1linkage by storing =zero int
{routine address field of PC option table. If thel
|routine is not active presently, store zeros in PC|{
|routine address field and savearea address field in|
|PC option table. If register 0 is not =zero, the]
|address of the PC routine and the savearea address|
|is passed to the STXIT macro. If a STXIT PC|
|routine is active, the <ccoplement of the new|
Jroutine address is placed in the PC option table.|
{If no STXIT PC routine 1is active, the new PC|
|toutine address and savearea address are stored in|
{the PC option table. |

a

1 H

17

T B A
11| Used to provide supervisory support for the EXIT|

|macro. SVC 17 provides a return from the user's PC|
|routine to the next sequential instruction in thel
iprogram that was interrupted due to a progran!
| check. . - |
| [
|Locates the appropriate PC option table entry andj
|restores user's registers and PSW. Stores thel
faddress of the PC routine in the PC option tablef
|returns to the next sequential instruction in thel

{program that was interrugted. |
1 i

18

-+ N L}
12| No operation, successful return code of 0 is given]|

|in register 15. See note 1.
A1

19

T
13| Not supported. See note 2.
1

20

L]
14| No operation, successful return code of 0 is given

— ke vl —

lin register 15. See note 1.
]

21

+
15|Not supported. See note 2.
41

L d

22

b e e e e e e e e e e e e e o e = = = o = - o o —— - ——— -

T
16{No operation, successful return code of 0 is given

bt ot e

lin register 15. See note 1.
A

Figure 28. SVC Support Routines and Their Operation (Part 4 of 11)

CMS Method of Oreraticn and Program Organization 2-175

Licensed Material -- Property of IBM

L

|

¥
SVC No.|

L]

{Function/ |
| Macro | Dec Hex| Support |
F { + —
|LOAD | 23 17]Not supported. See note 2. {
|HEADER | I |
[1 [N 1 1
L 1 1 .)
|SETIME | 24 18{No operation, successful return code of 0 is given]|
| i {in R15. See note 1. |
F + + 4
[HALT I/0 | 25 19| Not supported. See note 2. |
L L] K |
v L] v i
| | 26 1A|Validate address limits. The upper address must bel
		specified in general register 2 and the lower
		address must be specified in general register 1.
{ [First the lower address must nct be negative. Anl		
		error message DMSDOSO00SE is issued if it is.
		Second, the high address cannot be negative. If it
		is, the same error messages 1is issued. If the low
!	lor high address is greater than the end off	
		partition address in BGCOM, the same error message
		is issued. Otherwise, contrcl returns to thel
		caller. i
= + 4 4		
TP HALT	27 1B	Not supported. See note 2. {
11/0]		
— t + 1		
MR EXIT	28 1C{Not supported. See note 2.	
— + + —		
WAITHM	29 1D	Not supported. See note 2. {
b — i .		
QWAIT { 30 1E	Not supported. See note 2.	
F + 4 —i		
QPOST I 31 1F	Not supported. See note 2.	
+ + {		
i	32 20	Reserved.
— +— { 4		
COMRG	33 21	Used to provide the caller with the address of thej
		partition communications region.
		l
		DMSDOS will provide the caller with the address of{
	fthe partition communications region, in the user's	
		register 1.
— 4— +		
GETIME	34 22	Provides support for the GETIME macro. SVC 34
{	updates the date field in the communications	
{		region. Upon return, general register 1 contains]
	{the time of day in timer units (1/300 sec). Thel	
		GMT operand is nct supported.
F +— + —		
{HOLD	35 23	¥o operation, successful return code of 0 is given]
!	t{in register 15. See note 1.	
F + + 1		
FREE	36 24	No operation. Successful return ccde of 0 is givenl
		in register 15. See note 1.
L A L y]

Figure 28.

SVC Support Routines and Their Operation (Part 5 of 11)

2-176 IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Prorerty of IEM

L n R T B
|Function/| SVC No.l| |
| Macro |Dec Hexl| Support |
- { -—+ =
|AB STXIT | 37 25| Establish or terminate linkage to a user's abnormalj
1 | |terminaticn routine. 1
| | | I
| | |Locate the appropriate AB opticn table entry. Ifj
| { fregister 0 is zero, terminate 1linkage; if AB|{
{ i |routine is active (ab routine address in AB option|
1 | |table is negative), terminate 1linkage by storingj
| | |zero in routine address field of AB option table.}
| 1 |If routine is not active ©presently, store zercs inj| |
| | |AB routine address field and savearea address field|
| | {in AB option table. If register 0 is not zero,|
| | |pass the routine and savearea addresses to thej}
| | |STXIT AB macro. The 1limits of the savearea arej|
i { fvalidated and cannct be less than 20000 or greater|
| | {than partition end. If a STXIT AB routine is|
| | factive, the conplement cf the new routine addressj|
| 1 lis placed in the AB ortion table. If no STXIT AB|
| | [routine is active, +the new AB routine address and|
| | | savearea address are stcred in the AB option table.|
1 1 1 []
r L) T —
| ATTACH | 38 26| Note supported. See note 2. i
k +- 1 —
| DETACH | 39 27|Not supported. See note 2. |
1]] i
— T L4 I
| POST | 40 28|Used to post an ECB, IORB, TECB or CCB. Byte 2,1
| | {bit 0 of the specified ccntrcl block will be turned|
{ | |*on' by DMSDOS. |
L +— —+ —
IDEQ | 41 291 No operation, successful return code of 0 is given|
| { lin register 15. See note 1. |
— ! + -
|ENQ | 42 2A|No operation, successful return code of 0 is given|
| | lin register 15. See note 1. |
— + +—- .
| | 43 2BlReserved. |
F { + -
[ONIT | 44 2C|{Not supported. See note 2. |
| CHECKS | i i
— { + -
|EMULATOR | 45 2D{Not supported. See note 2. i
| INTERF, | | |
— + + +
{OLTEP | 46 2E|Not supported. See note 2. |
— t + ~
|WAITF | 47 2F| Yot supported. See note 2. |
+ +— { —
|CRT TRANS| u48 30{Not supported. See note 2. |
— +— + |
|CHANNEL |} 49 31{Not supported. See note 2. |
| PROG. | | |
+ + 4 =
|LIOCS | 50 32|Issued by a logical IOCS routine when the LIOCS isl|
|DIAG. | l|called to perform an operation the LIOCS |
{ | |was not generated to perform. |
| | | I
| | |The error message 'unsupported function in a LIOCS|
|] froutine' will be issued, and the session will thent-
| | | te terminated. |
1 1 A |
Figure 28, SVC Support Routines and Their Operation (Part 6 of 11)

CMS Method of Operation and Prcgram Organization 2-177

Licen

sed Material -- Property of IBM

— B

Ll L)
|Function/{ SVC No.| i
| Macro |Dec Hex| Support |
— + + —
| RETURN | 51 33| Not supported. See note 2. |
| HEADER { i |
— t + 4
[TTIMER | 52 34{No operation. Successful return code of 0 is given|
| f In register 15. See note 1. Register 0 is alsol|
| | {cleared. i
— + + ~
VTAM EXIT| S3 35f{Not supported. See note 2. {
+ +- + —q
|FREEREAL | 54 36 Not supported. See note 2. |
- + + —
|GETREAL | 55 37| Not supported. See note 2. !
— { + —
| POWER { 56 38| Not supported. See note 2. |
— + ¢ —
| POVER { 57 391 Not supported. See note 2. 1
— + + —
|SUPVR. | 58 3A|Not supported. See note 2. |
| INTERF. i | |
— +— + —
| EOJ | 59 3B|Not supported. See note 2. |
| INTERF. | | i
— { { 2|
| GETADR | 60 3C|Not supported. See note 2. {
i 1 18]
r T T A
|GETVIS 1 61 3D|Used by VSAM to obtain free storage for scratch usel
| | |or for obtaining an area into which a relocatable]
| | | VSAM program may be loaded. |
| | | |
| | |A free storage subroutine similar to that in the}
| | |"DMSSMN" routine is called to oktain the neceded|
1 | |space (from the user area). If successful, the]l
1 | laddress is returned in register 1, and register 15}
| { |is cleared. If he request cannot be satisfied, al
| | |return code of 12 is passed back in register 1S. {
| | | |
| | | The 'PAGE?', *POOLY, and 'SVA' GETVIS options arel
} 1 {ignored. |
+ +- + |
|FREEVIS | 62 3E{Used to return the free storage obtained via an|
| | {earlier GETVIS call. {
| { | |
| | {The free storage subroutine similar +to that in the|
| | |"DMSSMN" routine is called to return the areaj
| | | designated by register 1. All complete pages (UK|{
| | |bytes) associated with the returned storage arel
| | |released by issuing a DIAGNOSE code X*10y
! | {instruction to CP. 1
— + + —
|USE | 63 3F|The USE/RELEASE function has been replaced by SVC|
| | 1110 (LOCK/UNLOCK) for serially controlling system|
| | | tesources. All SVC 63 and 64 requests are mappedl|
| | linto SVC 110 requests respectively. Return code]l
] | | previously associated with USE/RELEASE under|
| | |CMS/DOS are maintained. |
¢ + + —
|RELEASF | 64 40|Reference SVC 63. |
L € 4]

Figure 28. SVC Support Routines and Their Oreration (Part 7 of 11)

2-178 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

r

-

|Function/} SVC No

| Macro

| Dec He

-
-
x| Suppert

i

@]
[w]
]
o
T
]

o o - — . - —— - ——— S > . o — - ——— = - -

o)}
(%]

u

[SRE—

1

Used to 1lcad a relocatable VSAM phase into storagej
unless the program has already been loaded. |

|
{If an anchor table is available, it is searched for|
{the given phase; if found, its load point, entry|
|point, and length are returned in the caller's|
|register O, 1, and 14 respectively, with register|
115 set to 0. |
| |
{If not, DHSFCH 1is called tc find the given phase;|
fif found in a discontinuous shared ' segment, |
|register 0, 1, and 14 are 1l1lcaded as above andj
freturn made. |
i |
|If the phase was found but is not loaded, storage]
|is obtained (if available) frcm the GETVIS SVC;|
|DMSFCH is called again to lcad the program into -the|
| storage area just obtained. Arn anchor table is|
{built in the user area (unless cne already exists),|
fthe appropriate entries made, and registers 0, 1,1
fand 14 locaded as abcve, with return to calier. i
| l
1If the rprogram cannot be found, or if storage isj
lunavailable for either loading the program or for{
ltuilding the anchor table, an error code 22 (X'16')|

|is returned to the caller in register 15. : I
1 (]

o]

oo]
a

NMODE

o)}
o))

4

Ll Al
2|Used by a problem prcgram +to find out if thel
jprogram is running in real or virtual mode. |
| {
|The caller's reqgister 0 will be zeroed to indicate]

fthat the program is running in virtual mode. |
A4 d

)
=

-

»e

[

(o)}
~

u

T Rl
3|No operation, successful return code of 0 is given|

|in register 15. See note 1.
(]

g

FREE

[e))
@

4

— ke —

T
4| No operation. Successful return code of 0 is given

lin register i15. See note i.
1

REALAD

[o)}
O

4

L
5|Not supported. See note 2.
[}

——— . — —

VIRTAT

~
[}

u

[SRS S

+
6| Not supported. See note 2.
1

T

0

ETPFA

~
N

+
47| No operation. Successful return code of 0 is given

— e

|in register 15. See note 1.
4

!

F
GETCBUF/
FREECEUF

~
A8}

1
48| Not supported. See note 2.

4

~
w

L

49iNot supported. See note 2.
[l

!

|

1

F
|SETAPP
=7

|PAGE FIX
i

ek e s e e e e e e S it
~
&

+
4pr|Not supported. See note 2.
L

-_J-_d—_——d-.—

Figure 28.

SVC Support Routines and Their Operation (Part 8 of 11)

CMS Method of Operation and Program Organization 2-179

Licensed Material -- Prorerty of IBM

| S— B LA hl
{Function/| SVC No.| |
| Macro |Dec Hex| Support |
L 1 i]
L B 1 1 B J
|SECTVAL | 75 4B} Used by VSAM I/O0 routines (ex., IKQIOA) to obtain al
{ 1 | sector number for a 3330, 3330-11, 3340, or 3350}
| | |device. |
| | | |
| | | The appropriate sector value is calculated from the]
| | {input data supplied by the user's register 0 and 1.|
| { 1If the calculation is successful, the sector number|
1 | | (from 0 to 127) is returned in register 0. 1
] | | l
{ | |If any errors were detected, the no-op set-sector|
1 | {value of 255 (X'FF') is returned. |
S + + .
|SYSREC | 76 4CiNot supported. See note 2. |
+ + + —
| TRANSCCW | 77 4D{Not supported. See note 2. |
L i 1]
g L) L] 1
[CHAPD i 78 4E{Not supported. See note 2. {
— + + {
|SYNCH { 79 4F|Not supported. See note 2. |
— 4 -+)
| SETT | 80 S0{Not supported. See note 2. |
L 1 1 (]
r t -+ o
|TESTT | 81 51|Not supported. See note 2. {
[i 1]
- 1 v I
ILINKAGE | 82 52| Not supported. See note 2. {
L . i]
| L LE il
| ALLOCATE | 83 53{Not supported. See note 2. |
r + + —q
|SET LIMIT{ 84 S4|Not supported. See note 2. |
1 L i]
v B Ll A
|RELPAGE | 85 55|Provides support for the RELPAG macro. At entryl
| | | register 1 points to list of 8-byte storage|
| { |description areas. Each entry contains thel
| | | teginning address and the length 1 of an area to bej|
| ! |released. A non zero byte following an entryl
| | {indicates the end of the list. An area is released|
| l Jonly if it contains at least a full CP page (U4K|
I | | bytes). Pages are released when the virtualj
| | fmachine <calls CP via DIAGNOSE code X'10°'. onj
| | | return register 15 holds the return code as]|
| | {follows: |
| | | |
| | | register 15 = 0 all areas have been released |
| | | register 15 = 2 one Oor more negative areal|
| | | lengths were specified. |
| | | register 15 = 4 one or more tages to be released|
| | 1 were outside the user storage area.|
I | | register 15 = 16 at 1least one entry contains al
| | | beginning address outside the user|
| | | storage area. {
+ + + —
| FCEPGOUT | 86 56{No operation. Successful return code of 0 is given|
| | |in register 15. See note 1. |
3 1 i | J
L) R L] T |
| PAGFIN | 87 57{No operation. Successful return code of 0 is given|
| | lin register 15. See note 1. {
— + + —
|TPIN | 88 58|Not supported. See note 2. |
L " i 3
FPigure 28. SVC Support Routines and Their Ogperation (Part 9 of 11)
2-180 TIBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

r R X B
|Function/| SVC No.| |
| Macro |Dec Hex| Sugpport |
1 L] i /]
r T T 1
[TPOUT | 89 59| Not supported. See note 2.]
L] 1 d
T L]] i]
{PUTACCT | 90 5a{Nct supported. See note 2. |
F +— { 4
| POWVER | 9t 5B|Not supported. See note 2. |
— + + —
|XECBTAB | 92 5C|Not suppcrted. See note 2. I
L []]
L T T Ll
| XPOST { 93 5D|Not supported. See note 2. |
— i + |
IXWAIT | 9u 5E|Not supported. See note 2. |
L 1l R J
r t T R
|AB EXIT | 95 5F|Exit from abnormal task termination routine andl
i ! l{continue the task. !
| 1 | |
! i |The linkage to either the PC or AB routine is]|
| | Ireestablished, and the cancel ccndition is reset Lyl
| | |clearing the ABEND indication in the partition PIB|
| | {extension. Control is returned to the instruction]
| | |following the exit AB macro. |
— + + —
|TT EXIT | 96 60| Not supported. See note 2. |
F 4 + — 4
|TT STXIT | 97 61|Not supported. See note 2. |
1 i 1]
| e 1 T L]
|EXTRACT | 98 62| Support for EXTRACT macro of VSE. The callerl|
{ | | requests PUB information, CPUIT or, storagel
| | | boundary informatiocn. Register 1 on entry pointsi
| | |[to a parm list. Output is ©placed in an areal
| | | provided by caller. |
k +— + !
|GETVCE | 99 63|Caller requests device information about a specifici
| | | DASD. Information is returned in an output areal
| | |pointed to from the parmlist. Register 1 contains|
] | |la pointer to the parmlist on entry. |
F } + —
| 1100 64| Reserved. |
b 4 + - i
| MODVCE {101 65|No operation. Successful return code of 0 is given|
| | lin register 15. See note 1. |
F i —+ i
| 1102 66| Reserved.]
F) + —
|SYSFIL 1103 67| Not supported. See note 2. |
1 5N N | 1
r L] Rl 1
| EXTENT 1104 68| No operation. Successful return code of 0 is given|
i | lin register 15. See note 1. {
L i 1 (]
r 1 T L]
SUBSID 1105 69	SUBSID.. the 'INQUIRY' function is supported forl	
	{the supervisor subsystenm. Information returned is	
	described by the SUPSSID control block. The SUBSID	
		*NOTIFY' and 'REMOVE! functions are not supported.
t + + —
ILINKAGE |106 hA|Not supported. See note 2. |
L N | 1 J

Figure 28. SVC Support Routines and Their Operation (Part 10 of 11)

CMS Method of Ogeration and Program Organization 2-181

Licensed Material -- Property of IBM

r

-

L A
|Function/| SVC No.l|]
| Macro {Dec Hex| Support |
1 L o | []
| T L) n
TASK 1107 6B	Provides macro interface support for system infor-	
INTERF.	imation retrieval. The parameters supported are:	
]		GETFLD: i
	I field=ppsavar - returns problenm programl	
		save area address.
1		=savar - returns current save areal
1		address. {
		=aclose - return in register 1, 0 if
		in process, 1 if not.]
!	MODFLD:	
		=vsamopen - set bix X*'08* in tchl
\	tcbflags byte.	
		=aclose - set bit X*10* in tchbi
		tcbflags byte.
1		
	1311 other GETFLD/MODFLD requests are treated as al	
		NOP and a return code of 0 is placed in register
	115.	
		1
		A11 other SVC107 macro calls are unsupported. Thel
		error message DMSDOS121S will be issued and thel
		program is canceled. See note 2. i
H + + —		
DATA 1108 6C	Not supported. See note 2. {	
SECURE i	!	
- +— + |
|PAGESTAT | 109 6D|Not supported. See note 2. |
1 1 4]
L v Rl AJ
|LOCK/ 1110 6E|Used by VSAM to control access to resources.|
JUNLOCK | |Access 1is maintained in either a ‘'shared' or|
| | |*exclusive' contrcl environment. When DOS is SET|
| | |ON, counters are maintained as well as the type of|
| | |control for each rescurce in a table (LOCKTAB)|
| | lbuilt in free storage. All entries not unlocked byl
| | |the program are cleared at both normal and abnormall
| | |end-of-job. |
| | | |
| | 1311 requests for resource contrcl are passed to SVC|
| | 1110 through the DTL macro (Define the Lock). SVC|
| | 163 requests are mapped into a dummy DTL andl
| | | processed by SVC 110. |
- + + 1
|Notes: |
1 1
| 1. ©No operation: 1
| 1
| In each case, register 15 1is cleared tc simulate successful|
| operation, and all other registers are returned unchanged,tl
| unless otherwise noted. |
| |
| 2. Not supported: |
| |
| For unsupported SVCs, an error message will be given, and thel
| SVC will be treated as a "cancel." |
L (]
Figure 28. SVC Support Routines and Their Operation (Part 11 of 11)
2-182 1IBM VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Prorerty of IBM

PROCESS CMS/DOS SERVICE COMMANDS
DMSSRV--Copies books from a system or private source statement library
to a specified output device.

DMSPRV-~Copies VSE procedures from a VSE system procedure library to a
specified output device.

CMSRRV--Copies modules from a system or private relccatable library to a
specified output device.

DESDSV--Lists the directories c¢f VSE private or system libraries.

DMSDSL--Deletes members (phases) of a DOSLIB likrary; compresses a
DOSLIB library; lists the members (phases) of a DOSLIB library.

ESERV--De-edits, disrlays or ©punches, verifies, and updates edit
assembler macros from the source statement library.

TERMINATE PROCESSING THE CMS/DOS ENVIRONMENT

DMSBAB--Gives control to an abnormal termination routine once linkage to
such a routine has been established via the STXIT BB macro.
DMSITP--Processes program interrupts and SPIE exits.

DMSDMP-~Simulates the $$BDUMP and $$BEDUMP routines; issues a CE DUMP
command directing the dump to an offline printer.

CMS Method of Operation and Program Organization 2-183

Licensed Material -- Property of IBM

2-184 IBY VM/SP System Logic and Program Determination--Volume 2

Licensed Material -- Property of IBM

Performing Miscellaneous CMS Functions

CMS EBEATCH FACILITY

The CMS Batch Facility is a function of CMS. It provides a way of
entering individual user jobs through an active CMS machine from the
virtual card reader rather than from the console. The batch facility
reissues the IPL command after each job.

The CMS Batch Facility consists of two modules: LMSRBRTB, the bootstrap

routine (a nonrelocatable CMS module file) and DMSBTP, the processor
routine (a relocatable CMS text file that runs free storage).

General Operaticn of DMSBTB

The bootstrap module, DMSBTB, loads the processor routine DMSBTP and the
user exit rcutines BATEXIT1 and BATEXIT2 (if they exist) into free
storage.

DMSBTB first ensures that DMSINS (CMS initialization) has set the
BATRUN and BATLOAD flags on in the CMS nucleus constant area indicating
that either an explicit batch initial program load command has been
issued or that the CMSBATCH command has been issued immediately after
initial program load has taken place. If not, error message DMSBTB101E
is typed and the batch console returns to a normal CMS interactive
environment. STATE (DESSTT) is then called to confirm the existence of
the ©processor file DMSBTP TEXT. If the file does not exist, error
message DMSTBT100E 1is typed and the batch console returns to the CMS
interactive environment.

Using the "state" copy of the file status table (¥ST) for DMSBTP,
DMSBTB computes the size of DMSBTP TEXT file by multiplying the lcgical
record length by the number of lcgical records (mno DS constants). A
free storage request is made for the size of DMSBTP and the address of
the routine 1is then stored at ABATPROC in the NUCON area of the CMS
nucleus.

The existence of +the user exit rcutines is determined by STATE. If
they exist, their sizes are included in the request for free storage.

The free storage address is translated into graphic hexadecimal
format and the CMS LOAD command is issued to load the DMSBTP TEXT file
into the reserved free storage area. The user exit routines, BATEXITt
TEXT and BATEXIT2 TEXT are also loaded at this time. If these files do
not exist, an unresolved external reference error code is returned by
the 1loader, but is ignored by DMSBTB because these routines are
optional. If an error (other than unresoclved names) occurs, error
message DMSBTB101E is typed and the batch console returns to the CMS
interactive environment.

The loader tables are searched for the address of the ABEND entry
point DMSBTPAB in the loaded batch processor. When the entry is found,
its address and that of entry DMSBTPLM are stored in ABATABND and the
ABATLIMT respectively, in the NUCON area of the CMS nucleus. 1f the

CMS Method cf Oreraticn and Program Organization 2-185

ABEND entry point is not found in the tables, error message DMSBTB101E
is typed and the batch console returns to the CMS interactive
environment.

The BATLOAD flag is set off to show that DMSBTP has been loaded, the
BATNOEX flag is set on to prevent user job execution until DMSBTP
encounters a /JOB card and finally, control is returned to the command
processor DMSINT.

If an error message is issued, DMSERR is called to type the message,

and the BATRUN and BATLOAD flags are set off before control is returned
to CMS. This allows the normal CMS interaction to resunme.

General Operaticn of DMSBTP

The batch processor module DMSBTP simulates the function of the CMS
console read module DMSCRD. This is accomplished by issuing reads to
the virtual card reader, formatting the card-image record to resemble a
console record and returning control to CMS to process the command (or
data) request. DMSBTP also performs reads to the console stack if the
stack is not empty, checks for and processes the /JOB card, ensuring
that it is the first record in the user job, traps all CP commands to
maintain system integrity and performs Jjob initialization, cleanup, and
job recovery.

Upon receiving control, DMSBTP checks the BATCPEX flag in NUCON. If
the flag is set on, control was received from DMSCPF and a branch is
made to the CP trap routine to verify that the command is allowable
under batch. The function of that routine is described 1later. 1If the
BATCPEX flag is off, contrcl was received from I[MSCRD (console read
module) and DMSBTP checks for finished reads in the real batch console
stack. If the number of finished reads is not zero, ccntrol is returned
to DMSCRD to process the real console finished (stacked) reads. 1If the
number of finished reads is zero, a rtecord is read from the Latch
virtual card reader into the CARD buffer via an SVC call to CARDRD
(DMSCIO) . The record in the CARD buffer is typed on the console via the
WRTERM macro. If the BATMOVE flag is set on (MOVEFILE executing from
the console), the records in the file are not typed on the console.

The record in the reader buffer is scanned to compute its length with
tra