$C28-1134-0
Fite No. S370-39

MVS/Extended Architecture
TSO Extensions

TSO Command Language
Reference

Program Number 5665-285

TNL SN28-1029 (December 14, 1984) to SC28-1134-0

First Edition (January, 1983)

See the Summary of Amendments following the Contents for a summary of the changes
made to this manual. Technical changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change.

This edition with Technical Newsletter SN28-1029 and SN28-0816 applies to TSO
Extensions (TSO/E) Program Number 5665-285 until otherwise indicated in new editions
or Technical Newsletters. Changes are periodically made to the information herein.
Before using this publication in connection with the operation of IBM systems, consult the
latest IBM System Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM’s program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982

Preface

This publication describes the syntax and function of the commands and
subcommands of the TSO command language. It is intended for use at a
terminal. The level of knowledge required for this publication depends
upon the command being used. Most commands require little knowledge of
TSO and of the operating system; however, some commands require a
greater knowledge of the system. As a general rule, the description of éach
command requires an understanding of those elements being manipulated
by the command.

The prerequisite publication, 7SO Terminal User’s Guide, describes the
commands used to perform the following functions:

Start and end a terminal session.
Enter and manipulate data.
Program at the terminal.

Test a program.

Write and use command procedures.

Once a user is familiar with the 7SO Terminal User’s Guide, he can use this
publication to code the TSO commands.

The appendixes in the 7SO Terminal User’s Guide describe how to use the
terminals supported by TSO.

The major divisions in this book are:
Introduction

« Basic Information for Using TSO
¢ The Commands

. Command Procedures

o Index

The Introduction describes the TSO command language. The section
entitled “Basic Information for Using TSO” contains general information
necessary to use TSO commands.

The section entitled “The Commands” describes the syntax and function of
each command, its operands and its subcommands. Examples are included.

The commands are presented in alphabetical order, except that the
foreground-initiated background (FIB) commands are in Appendix A, the
program product commands are in Appendix B, and the Access Method
Services commands are in Appendix C. Subcommands are presented in
alphabetical order following the command to which they apply. The END
and WHEN commands, which are used with command procedures, are
included in sequence instead of appearing in the Command Procedures
section. Statements, variables, functions, and operators are in the Command
Procedures section.

“Command Procedures” describes the control statements used in command
procedures.

Preface iii

Related Publications

iv TSO Command Language Reference

The publications referred to in this book are:

MVS/Extended Architecture Access Method Services, GC26-4091
MVS/Extended Architecture Message Library: System Messages, GC28-1156
MVS/Extended Architecture JCL, GC28-1148

MVS/Extended Architecture System Programming Library: System
Generation Reference, GC26-4009

MVS/Extended Architecture System Programming Library: TSO,
GC28-1173

IBM System/370 Reference Summary, GX20-1850

Assembler H Version 2 Application Programming: Language Reference,
GC26-4037

MVS/Extended Architecture Terminal Monitor Program and Service Routines
Logic

(OS/VS Terminal Monitor Program and Service Routines Logic,
SY28-0650-3, as amended by Supplement LD23-0262)

MVS/Extended Architecture Data Management Services Guide, GC26-4010

MVS/Extended Architecture System Programming Library: System Macros
and Facilities, GC28-1150

MVS/Extended Architecture Linkage Editor and Loader, GC26-4011

MVS/Extended Architecture System Programming Library: System
Moadifications, GC28-1152

TNL SN28-0816 (May 13, 1983) to SC28-1134-0

Contents

Summary of Amendments L L0 L L Xv
Introduction et et eereecee e PP |
Basic Information for Using TSO ettt O |
UsingaTerminal ittt 3
Entering Information at the Terminalt enn. 3
Correcting Typing EITors i i et i it e e it 3
Using TSO Commandsttt ennenannnnnnnanns 3
Positional Operandsttt itiinin i nneranannrenaann 3
Keyword Operands it iitiirtnrnnnenenanennn 4
Abbreviating Keyword Operandsttt iiimnnnannnnn 4
COMMENLS . ..ttt ettt ieeassanessenonanneeannneenanens 5
Delimiters e it e 5
Line Continuation ittt ttiiin ittt teanereneennnan 5
Subcommands e 5
Syntax Notation CONVENLIONSttt ittt eae e iannneenannns 6
Using System-Provided Aids ittt 7
The Attention Interruptionttt enneennennnn. 7
MESSaEESttt et e e e e 8
Mode MeSSaBESttt et et e e 8
Prompting MesSagescivit it iennioe et ittt 9
Informational MesSagesc.uiituineerrennnennnnnneeennnn 9
Broadcast Messagest e e i 10
Using the HELP Command ittt iennnnnnnnnnn. 10
Explanations of Commands ittt 10
Syntax Interpretation of HELP Information 10
Explanations of Subcommands i i, 10
Using Data Set Naming Conventionsc0tiiunarueeinnnann, 11
Data Set Namesin Generalt annnnn 11
TSO Data Set NAMES . . . o« vt i et ettt i iae s st tnneenannaeeennnn 11
Howto Enter Data Set Namesc.oiutiinnnuennnnneenaannnn 13
Specifying Data Set Passwords 0ttt iiiiennnrnnennns 14
Using Commands for VSAM and Non-VSAM Data Sets 15
The Commandsoeveveeeroseasseesssnnasosaosonaoanans S Vi
ALLOCATE Commandcccvvesnesancsasnnnsas D |
ATTRIBCommand0000. e etreerettaseasttsaaaannoan . 41

CALL Commandcovvviriuienraneonnsasesnacsssanansssseanssess 49

DELETE Commandc.o00eieevacsssoncsasaaas Chreceaeans 1 |
EDITCommandcciuivenuvnccancsosnnnnns et eseastieteanen . 58
Modes of Operationttt e 62
Input Mode i i i i e i e e e e 62
Edit Mode ittt ittt ieeneeeinneenns 64
Changing from One Mode to Another00viienenreennnenns 65
Data Set Disposition ittt 66
Tabulation Characterstiiuiereeruinrerenunnoseenaenenn. 66
Executing User-Written Programsccittiiiitrennnnennanneenns 67
Terminating the EDIT Commandc.00iiititiiinrnnnnnnenannns 67
Recovering Data after a Terminal Line Has Been Disconnected 67

ALLOCATE Subcommand of EDITcc00000.. teeterteeecasacsans . N
ATTRIB Subcommand of EDIT Cetseiasanan [& §
BOTTOM Subcommand of EDIT ttierecereeseeanna csecsesnseses 18

May 13, 1983

CHANGE Subcommand of EDIT0iiininerennnnnnnenans cereeeess 17
Quoted-String Notation0ttt 78
Combinations of Operandscivriruiunenennnnnnnn. 79

Examples Using Quoted Strings0, 81

CKPOINT Subcommand of EDIT et eer et eaaeaaae 83

COPY Subcommand of EDIT00titinnnneeenneceonnneanannes ceeeses 88
MBS . . ittt et et 87

DELETE Subcommand of EDIT cresaeancs et etersreeraees e .. 93
DOWN Subcommand of EDIT Cheeeiaeceaanann veve.. 95
END Subcommand of EDIT ettt ceeeens ceee. 97
EXEC Subcommand of EDIT stasscecsetactasenessaanes ceereeees 99
FIND Subcommand of EDIT Cheseteecteettaseeasecaostons 101
FREE Subcommand of EDITcccieiieienennnss D [x]
HELP Subcommand of EDIT et eereterreeseans cereseaee.. 108
INPUT Subcommand of EDIT00viutiunernrrconconsonnsenenons . 107
INSERT Subcommand of EDITccciitternnnnsannnnnnsans cera.. 109

Insert/Replace/Delete Function of EDIT ceececcacsnes . 8 1§ |
How the System Interprets the Operands:ccvivunennn 111

LIST Subcommand of EDIT cesessennanns ceseseesess 113

MOVE Subcommand of EDIT00ttierrrvncrenseccocrensansass 118
T (T 117

PROFILE Subcommand of EDITcv0veeennn Ceeeeenann ceeeraee 123
RENUM Subcommand of EDITciiiiuevinennennns cereeeses. 128
RUN Subcommand of EDIT 0vcetinnnetctrenosccnnnossnneesss 127
SAVE Subcommand of EDIT Ceessseeentsennens eeenenenn cee. 131
SCAN Subcommand of EDITce0tirenideceiecncnnans vevee... 133
SEND Subcommand of EDITc.ic0iiiiierrnnnnnneenens P k.
SUBMIT Subcommand of EDITcc0ttinrenniersnnnneccnccncannns 137
TOP Subcommand of EDITccivttiinrecerconcccccsccscaneaas 141
UNNUM Subcommand of EDITcc00nnen creieenenn ceeereees 143
UP Subcommand of EDITccoceeteeecennocncnnsoccacsccnacas ... 148

ENDCommandcoocveveecttoncocncnsossssnscsoncnsens ceessssess 149

vi TSO Comumand Langusge Reference

EXEC Command et sesaeseesasses e s eesesse s ssassenans veeo 151

FREE Commandc.tcoteeenneanesacaacssnsnsecsnsnnns veveesss 187

HELPCommand P 13 |

LINKCommandc.vceveeueeosescoasstsssscstosssssssassnsssss 168

LISTALCCommandco0ctevrecoscssessoscsscesssssssscsseass 173

LISTCAT Commandoeeteeeatoeeacasecnasssacanns ceseeesses 179
LISTDS Commandccoooneenveocsasncsssassssocssessscsanaaness 183
LOADGO Command S eessesescscsssosesaansasasesssscsnsasesean 187
LOGOFF Commandceoveetetetesotnsnsrssrsssssnsnsascscsasnanns 193
LOGON Command Ci e eeeet e . 195
PROFILECommandccoc0eeuvcnvene . 199
PROTECT Commandcoceueoessoossaassssssstosonsosnsnsnsss 205
Passwords i e i e e e i e 205
TyPes Of ACCESS i ittt ittt ittt ineeenneneenneennas 205
Password Data Setc.iiiniiiin ittt it e e 207
RENAME Command ctessecsescsesstseses et taacsesssaanse ceae. 209
RUN Command ceeeeseersessesessessesas s e s e esassnssnna 211
SEND Commando et et et eessaesasa s e esec s et esesesenn 218
TERMINAL Command e eseisssessssstssesseanan cheeean veerecaas 219
TEST Command ceeecescscecsteactcs sttt sasesesasennsrana . 223
When to Use TESTttt iiiitie it iiiitantnroneaonesnnonennnns 223
Addressing Conventions Associated with TESTccuvee.. 224
Restrictionson Use of Symbols0 ittt iiiiieennnn. 228
External Symbols e i e 228
Internal Symbols i i i i e i e e 229
Addressing Considerations ittt 229
Examples of Valid Addresses in TEST Subcommands 229
31-Bit Addressing Considerations Associated with TEST 230
Programming Considerations Associated with TEST When Using the Virtual Fetch
EIVICES . . . it e ettt e e e 230
Programming Considerations Associated with TEST for Use in a Cross-Memory
ENVIrONMeNt i ittt e e e e e 231
TEST Subcommandsc.ccoceoteoveascessessecnansoaaana ceeeeee. 233
ALLOCATE Subcommand of TEST P X ¥ |
AND Subcommand of TESTc0eveceeeccacans Ceeteeceeaaataaens 239
Assignment of Values Function of TESTcccevtevteeccoasnannnn ce.. 243
AT Subcommand of TEST0c0vveennns Cet ettt ettt 247
ATTRIB subcommand of TESTc0vtevverinnorensacannnns ceeea.. 251

Contents vii

viii TSO Command Language Reference

CANCEL Subcommand of TESTc.ciittiteinnrnnnnnnns e 255
COPY Subcommand of TEST00t tiiirereennnanssnnnsssannn 257
DELETE Subcommand of TEST0tiiiiiiiiiiiiinrrnccccnnas 261
DROP Subcommand of TEST teececseseessseasssseeasans 263
END Subcommand of TESTc0iiiitititeiirrenneoersnsssssnes 265
EQUATE Subcommand of TEST0tiiittiirrrennncrsnsnsesees 267
EXEC Subcommand of TEST0ttt tonnenrensssnsnss 271
FREEMAIN Subcommand of TESTccititiiiititrennnertrnnonsnns 273
GETMAIN Subcommand of TESTcccitiiiiiionnnnnnnnn N £
GO Subcommand of TEST000iteeeeeeeecssscecssssssssssssans 277
HELP Subcommand of TEST0titiiieeennnerorsnnssnnsens 279
LINK Subcommand of TEST Gesesccccsscasserssesnsasassssrsonnsense 281
LIST Subcommand of TESTc.iiiitiiiiiiiiiinirreeennaaeeennns 283
LISTALC Subcommand of TESTcoiittiiiineeennrenrennnsnsenes 289
LISTBC Subcommand of TESTc00tttteerseeeeoceccssssssssssssnes 291
LISTCAT Subcommand of TESTcciiittrrreeeeecannnssscesans 293
LISTDCB Subcommand of TESTc.0ttiiieteeeeneessroncencsnnne 295
LISTDEB Subcommand of TESTccciittettieeeeceecssncscccanns 297
LISTDS Subcommand of TEST ittt eiannnnnennn 299
LISTMAP Subcommand of TEST Seesscecscsssstesacsssssees 301
LISTPSW Subcommand of TESTcc0itttrerrrrsnnenccsnnssnnnnns 303
LISTTCB Subcommand of TESTiiiitereeriniineessssnsaanannes 308
LOAD Subcommand of TESTc0iiittitiieiititiieecrcrnnsosenns 309
OFF Subcommand of TESTttt iieeneetnasncanens in
OR Subcommand of TESTci0veeitnrrreenns feeauneosnasaasas 313
PROFILE Subcommand of TESTccottteereerereennonsssosnsnnns 317
PROTECT Subcommand of TESTc.0iettertcecaccasscssccnann 319
QUALIFY Subcommand of TESTcoiviiivineonnnennannnonnoonnns 321
RENAME Subcommand of TEST e 325

RUN Subcommand of TESTccvvtevrcrrscctccnsonscsssonscenses 327
SEND Subcommand of TESTccccceteccccscccsccsssnnnnnnnnse cees 329
STATUS Subcommand of TESTccoiteeeerncrensceccesannnas ... 331
SUBMIT Subcommand of TEST cescecccccccccvtcootrenenoncenas 333
TERMINAL Subcommand of TESTccvcveenecnecccocnosssncnnsonss 335
UNALLOC Subcommand of TESTccouvveveeenennrconans P X 14
WHERE Subcommand of TESTtttiiitittiinnancnnassoncassans 339
TIME Commandcccceueeeeneoscnocosssnscenssnscsacsnasesess 343
TSO/E Interactive Data Transmission Facilitycc000iuteeennnessnna.. 345
TRANSMIT Command ceeeeaeesaaieeeeeeeeaanaas Cesessananes 347

RECEIVE Command teecececceaasns Ceesesesesensecssssseassrnnns 351
NAMES DATA SETFUNCTION0t tttttttttttenssnnannennnnns 354
Control Section Tags viiii it iitiererrannasroeonnnessoeannes 355
TAGDEFINITIONS it iittiitittineernnnnennnsnnnnnns 355
Nicknames Section Ta8S vv vttt iininnneeenneessonnnnssseeaans 356
TAG DEFINITIONSttt iiiieieeorannnonnnnnnananns 357
DATA ENCRYPTION Function of TRANSMIT and RECEIVE 358
LOGGING Function of TRANSMITand RECEIVE 358

WHEN Commandccccoeveneosonsosssococncs teessesessssssenses 363

Command Proceduresccoceevsseesscsscsssscsssssssssossscscses 368
Functions Available for Command Proceduresccieieeuunnnnns 365
Expressions and Operatorsciiiitenanneeneernnneeneannns 368
Symbolic Variablesttt 368
Symbolic Substitution i i i i i i 369
Concatenation of Symbolic Variablest 369
Character Set Supported in Command Procedure Variables 370
Control Variablesoiituiiieiiuninenroenneeeneecanannnsnns 370
Built-In FUnctionsciiuiitiieeneeneroeenoenoeenanannns 372
Command Procedure Statementsuoituntennrinncaneannsanns 373

ATTN Statementccveereeeaecaasascoooooooonsssssssssssssnss 377
CLOSFILE Statementeeoeceeeeeeeccsssssssossssssasccscssccocee 379
CONTROL Statementcoeeeeeeacccaosoososossosscssssssssssesees 381
DATA-ENDDATA SeqUencecooeceevessccsossscsssscssscssaacaass 383
DO-WHILE-END Sequenceccceeeecescsossccsanscossoscssncsnoss 385
ERROR Statementccceveoeeeoecscsasssssascssssssscscsseess 387
EXIT Statement Ceecactaecsseteccsetttattaecsenenens 389
GETFILE Statement Ceeeeseceecersecsscsssttsanns ceeees ceeeeas 391
GLOBAL Statementcccoeeveeeeeccccacssssosssassesssssocssssas 393

GOTO Statement Ceessecaccaresananan Ceesesessessseans 395

Contents ix

x TSO Command Language Reference

IF-THEN-ELSE Statement 00000000 cresesseteccssaccccaan 397

OPENFILE Statementccce000tecesocccas ceseseaane ceeean ceess 399
PROC Statementc0000teueeeccsancss teseessesserseecasannn 401
PUTFILE Statementccce0eevecccaaaanas ettt ecccerennn 403
READ Statementcc0teteteeeacaccsnnnns N .. 408
READDVAL Statementcoc0ceceesescacs Ceececacccaccaatasaaas 407
RETURN Statementccc00000etcescosconnnse ceescacnsassceaan 409
SET Statementc.cuceeeeeeencaseaaasasesasescsssscecacs ... 411
TERMIN Statementccooceeeeceocosencccacoaaassosssscsnsscsees 413
WRITE and WRITENR Statementscccceeeeeecccaaaasasoscacsnnses 415
Appendix A: Foreground-Initiated Background Commandsccc000neeencss 417
Using Foreground-Initiated Background (FIB) Commandscc00cveeeeencas 419
Processing Batch JObs i ittt 419
Submitting Batch Jobs i i i i i i 419
Displaying the Status of Jobs0ttt 421
Cancelling Batch Jobs ittt 421
Controlling the Output of Batch or Foreground Jobscc0ouu. 422
CANCEL Commandc00cueetensocsocnsnosnsnna ceseseseaes 427
OUTPUT Commandccviueenettonnsssenosnnsssnscsssssoscssas 429
CONTINUE Subcommand of OUTPUT e eeresiie e 435
END Subcommand of OUTPUTcci0ettnnocccnnaas Cedesieaeeas 437
HELP Subcommand of OUTPUTcccittterntntosncncnssosososes 439
SAVE Subcommand of OUTPUT Ceececesecnaanan ceseteererenes 441
STATUS Commandcoc000eveeeees teescecccsesaaans teesceacas 443
SUBMIT Command ceeereecsecaaas Ceesecacnsaneracaas 445
Appendix B: Program Product Commands N . 449
ASM Commandttt ittt it teee ettt e 449
COBOL Commanduiiitiunneeeecnneeeacaaossoannaasnnn 449
COPY Commandiiiiiuinnnenneeeeennneeenneennennnaeens 449
FORMAT Subcommand of EDITt iiiuneeeennnnnaanns 450
MERGE Subcommand of EDIT ittt iieminnennnnnns 450
FORMAT Commandcittiiiuineueeoeeeneennnenenonaaannnss 450
FORT Commandc.iiuitieinmeentneeneeneensanonneasannns 451
LISTCommanduiiiiiiuineeneeneennernennnennsonennneas 451
MERGE Command0uitniinninieeneeneennsnnenneens 451
PLICommand iuiimmnmieettieenennncansoneeneens 452
TESTCOB Commandi.tnittirnnmnnnneneensneaaenenns 452
TESTFORT Command000ituiiuenenneuaeneeennenneans 452
Appendix C: Access Method Services Commands Ceece ettt caecaenas 453
Appendix D: Support for Processing Batch Jobs Ceceeceesecesarnos ... 455

Executing TSO Commands in the Background, 455

Background Promptingc0iiinuetueitniiieeineeneennannn 455
Concurrent EXECULIONo iivit ittt reteanerernnesseeonnaassnns 456
Output Handlingttt iiiieineinnrnnennssneennennn 456
Submitting Commands Using the SUBMIT Command 457
Submitting Commands Usinga Card Deckc0civtiiinnennnn 460
Writing JCL for Command Executionc00iiiiiiiiuinnnnnn. 461
JOB Statementuuueueeeeeaeeeeennanaaeenencenanneees 461
EXEC Statementuiiiieunnnerennnnerocaneseonnonesss 461
SYSTSPRT DD Statementoveeeeunerenronneecoansssans 462
SYSTSIN DD Statement cccovtueeeetenneerosnnssssananonss 462
Command Behavior 0 iiiiiiiiiiiiieiiinnneronnaannnss 463
CALL Commandciiitemneneeeeeaeanononneannaaannnss 463
EDIT Commandcuuiiiinunnnnensnnnensoonenssennns ... 464
LOGON/LOGOFF Commandscceeeeeennnnnnnnnaaannnns 465
PROFILE Commandccotteueenocenanninseeeeeaaannsas 465
SUBMIT Command and Subcommand of EDIT 466
Error Condition Handling it iiiiiiiiiinennnns 472
Recovering an EDIT Workfile i i, 473
Checkpointing a Data SEtot iviiiuneoneeoennneeeeeeessaasann 473
Recovery AfteraSystem Failure i, 474
Recovery Afteran Abendt 475
Recovery After a Terminal Line Disconnectccitiiinnnnn. 476
Command Syntax and Operand Descriptioncciiteunnrennns 476
EDITCommanditiiiiienenrneeneenaeonsonnsnnennons 476
PROFILE Commandc.oiiiteunnenennnnneennnnnnsocans 477
Command Procedure Modificationscci ittt innrannns 477
Numeric Value Ranges i iiiiiiiiiiniiiiinnnnnnns 477
Built-In Function (&NRSTR)ittiiiiiinereerenennreannns 478
Control Variable (&8SYSENV) i iitiiiiiiiiiiiiteennnaanas 479
DATA PROMPT -- ENDDATA Sequencecccoceeeeueaeees 479
Index00. e sessssesesssessesassssssaasstetsesseassanas 481

Contents xi

1. Descriptive Qualifierscuiiiiiiiiieeeiiirnreeanaaeonnns 12
2. Default Names Supplied by the System0 iiiirnnn.. 14
3. Descriptive Qualifiers Supplied by Default 14
4. Commands Preferred for VSAM/Non-VSAM Data Sets 15
5. Default Values for LINE or LRECL and BLOCK or BLKSIZE Operands 61
6. How EDIT Subcommands Affect the Line Pointer Value 65
7. Subcommands of the EDIT Commandt nrrunnnn 70
8. Source Statement/Program Product Relationship 127
9. Default Tab Settingsciuiiiiiniiiiiiiiriiniiiineeeannnns 139
10. Information Available Through the HELP Command 164
11. System Defaults for Control Characterscouiieruneernnns 199
12. Source Statement/Program Product Relationship 211
13. Command Procedure Coding Reference oot 366
14. Arithmetic, Comparative, and Logical Operators 368
15. Control Variablesiiittiiiiiiiineeeaiieneennnneennnnnn 371
16. Built-In Functions ittt it 372
17. Command Procedure Statement Categoriesc.veuueunn.. 373
18. Command Procedure Statement Error Codes (Decimal) 374
19. Submitting a ProgramasaBatchJob 420
20. Handling Necessary Replies in the Background 456
21. Creating and Submitting Data Sets Containing Commands 457
22. The SUBMIT * FURCHONt itie i ttteeeeaaaeeseennannnns 458
23. The SUBMIT Process Using System-Generated JCL 459
24. The SUBMIT Process With User-Created JCL Statements 460
25. Card Deck Setup for Processing Commands in the Background 461
26. Allocating and Creating Input Data Setsciuiiiieeuniiannn 463
27. Entering Blank Lines Into Your Data Set, 464
28. UPT/PSCB Initialization Table in the Background 466
29. Operand Description for SUBMITiiiiieiiiiiinneennnn 468
30. USER/NOUSER, PASSWORD/NOPASSWORD, and NOTIFY/NONOTIFY
ProCesSingttt e e e e 471

31. Processing Considerations (RACF and Non-RACF Systems) 472
32. Sample Edit Session Using the CKPOINT Subcommand and the RECOVER Operand

Of EDIT ... i i e i i 475

Figures xiii

TNL SN28-1029 (December 14, 1984) to SC28-1134-0

Summary of Amendments

Summary of Amendments

for SC28-1134-0

as Updated December 14, 1984
by TNL SN28-1029

This technical newsletter contains service updates to the CANCEL, STATUS, and
SUBMIT commands.

Summary of Amendments
for SC28-1134-0

as Updated May 13, 1983
by TNL SN28-0816

This technical newsletter reflects the changes for packaging TSO/E as a licensed

program (Program Number 5665-285) that applies to both MVS/System Product
Version 1 and MVS/System Product Version 2.

Summary of Amendments XV

IR (1111

Introduction

TSO allows you and a number of other users to use the facilities of the
system concurrently and in a conversational manner. You can communicate
with the system by typing requests for work (commands) on a terminal,
which may be located far away from the system installation. The system
responds to your requests by performing the work and sending messages
back to your terminal. The messages tell you such things as what the status
of the system is with regard to your work and what input is needed to
allow the work to be done.

By using different commands, you can have different kinds of work
performed. You can store data in the system, change the data, and retrieve
it at your convenience. You can create programs, test them, have them
executed, and obtain the results at your terminal.

When you use a command to request work, the command establishes the
scope of the work to the system. To provide flexibility and greater ease of
use, the scope of some commands’ work encompasses several operations
that are identified separately. After entering the command, you may specify
one of the separately identified operations by typing a subcommand. A
subcommand, like a command, is a request for work; however, the work
requested by a subcommand is a particular operation within the scope
established by a command.

This reference manual describes what each command can do and how to
enter a command at your terminal.

Additional commands and subcommands are available for a license fee as
optional program products. Appendix B lists the program product
commands and subcommands.

Appendix C lists the Access Method Services commands that are available.

Introduction 1

Using a Terminal

Basic Information for Using TSO

Before using TSO you should know how to use:

e Terminals

¢ TSO commands
System-provided aids

« Data set naming conventions

A terminal session is designed to be an uncomplicated process for a
terminal user: he identifies himself to the system and then issues commands
to request work from the system. As the session progresses, the user has a
variety of aids available at the terminal which he can use if he encounters
any difficulties.

Entering Information at the Terminal

Correcting Typing Errors

Using TSO Commands

Positional Operands

All TSO terminals have a typewriter-like keyboard through which you enter
information into the system. The features of each keyboard vary from
terminal to terminal; for example, one terminal may not have a backspace
key, while another may not allow for lowercase letters. The features of
each terminal as they apply to TSO are described in TSO Terminal User’s
Guide. The examples in this book are addressed to a user of an IBM 3270
Display Station.

If you wish to correct typing errors, you must correct them before you
press the ENTER key. Move the cursor under the error and type the
correct character. To replace a character with a space, move the cursor
under the character and press the space bar.

A command consists of a command name followed, usually, by one or more
operands. Operands provide the specific information required for the
command to perform the requested operation. For instance, operands for
the RENAME command identify the data set to be renamed and specify
the new name:

RENAME OLDNAME NEWNAME
command name operand-1 operand-2
(old data-set-name) (new data-set-name)

Two types of operands are used with the commands: positional and
keyword,

Positional operands follow the command name in a prescribed sequence. In
the command descriptions within this manual, the positional operands are
shown in lowercase characters. A typical positional operand is:

data-set-name

You must replace “data-set-name” with an actual name when you enter the
command.

Basic Information for Using TSO 3

When you want to enter a positional operand that is a list of several names
or values, the list must be enclosed within parentheses. The names or
values must not include unmatched right parentheses.

Keyword Operands
Keywords are specific names or symbols that have a particular meaning to
the system. You can include keywords in any order following the positional
operands. In the command descriptions within this book, keywords are
shown in uppercase characters. A typical keyword is:
TEXT
You can specify values with some keywords. The value is entered within
parentheses following the keyword. The way a typical keyword with a value
appears in this book is:
LINESIZE (integer)
Continuing this example, you would select the number of characters that
you want to appear in a line and substitute that number for “integer” when
you enter the operand:
LINESIZE (80)
Note: If conflicting keywords are entered, the last keyword entered
overrides the previous ones.
Abbreviating Keyword Operands

4 TSO Command Language Reference

You can enter keywords spelled exactly as they are shown or you may use
an acceptable abbreviation. You may abbreviate any keyword by entering
only the significant characters; that is, you must type as much of the
keyword as is necessary to distinguish it from the other keywords of the
command or subcommand. For instance, the LISTBC command has four
keywords:

MAIL NOTICES

NOMAIL NONOTICES

The abbreviations are:

M for MAIL (also MA and MAI)

NOM for NOMAIL (also NOMA and NOMAI)

NOT for NOTICES (also NOTI, NOTIC, and NOTICE)

NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC,
and NONOTICE)

In addition, the DELETE and LISTCAT commands allow unique
abbreviations for some of their keywords. They are shown with the syntax
and operand descriptions of DELETE and LISTCAT.

Comments

Delimiters

Line Continuation

Subcommands

Comments may be added to a command anywhere a blank might appear.
Simply enter them within the comments delimiters /* and */. A comment
may be continued to the next line by using a line continuation character (+
or -) at the end of the line.

listd (data-set-list) /* my data sets */

or

listd (data-set-list) /* this is a list of my -
active data sets */

When you type a command, you must separate the command name from
the first operand by one or more blanks. You must separate operands by
one or more blanks or a comma. Do not use a semicolon as a delimiter
because the characters entered after a semicolon are ignored. Using a
blank or a comma as a delimiter, you can type the LISTBC command like
this:

LISTBC NOMAIL NONOTICES
or like this:

LISTBC NOMAIL,NONOTICES
or like this:

LISTBC NOMAIL NOTICES

Enter a blank by pressing the space bar at the bottom of your terminal
keyboard.

When it is necessary to continue to the next line, use a plus or minus sign
as the last character of the line being worked on. Caution: a plus sign will
cause leading delimiters to be removed from the continuation line.

list (data-set-list) /#* this is a list of my -
active data sets */

or

alloc dataset(out.data) file(output) new +
space(10,2) tracks release

The work done by some of the commands is divided into individual
operations. Each operation is defined and requested by a subcommand. To
request one of the individual operations, you must first enter the command.
You can then enter a subcommand to specify the particular operation that
you want performed. You can continue entering subcommands until you
enter the END subcommand.

The commands that have subcommands are EDIT, OUTPUT, and TEST.
When you enter the EDIT command, you can then enter the subcommands
for EDIT. Likewise, when you enter the OUTPUT or TEST commands,
you can enter the appropriate subcommands.

Basic Information for Using TSO §

Syntax Notation Conventions

The notation used to define the command syntax and format in this
publication is described in the following paragraphs.

1. The set of symbols listed below is used to define the format, but you
should never type them in the actual statement.

hyphen -
underscore —
braces {}
brackets 1]
ellipsis

The special uses of these symbols are explained in the following
paragraphs.

2. You should type uppercase letters, numbers, and the set of symbols
listed below in an actual command exactly as shown in the statement
definition.
apostrophe !
asterisk *
comma ’
equal sign =
parentheses [§)
period

3. Lowercase letters, and symbols appearing in a command definition
represent variables for which you should substitute specific information
in the actual command.

Example: If name appears in a command definition, you should
substitute a specific value (for example, ALPHA) for the variable
when you enter the command.

4. Hyphens join lower-case words and symbols to form a single variable.

Example: If member-name appears in the command syntax, you should
substitute a specific value (for example, BETA) for the variable in the
actual command.

5. An underscore indicates a default option. If you select an underscored
alternative, you need not specify it when you enter the command.

Example: The representation

A
B

o

indicates that you are to select A or B or C; however, if you select
B, you need not specify it because it is the default option.
6. Braces group related items, such as alternatives. '

Examples: The representation

A
ALPHA=({B} ,D)
C

indicates that you must choose one of the items enclosed within the
braces. If you select A, the result is ALPHA=(A,D).

6 TSO Command Language Reference

7. Brackets also group related items; however, everything within the
brackets is optional and may be omitted.

Example: The representation

A
ALPHA=(| B | ,D)
Cc

indicates that you may choose one of the items enclosed within the
brackets or that you may omit all of the items within the brackets. If
you select only D, you may specify ALPHA=(,D).

8. An ellipsis indicates that the preceding item or group of items can be
repeated more than once in succession.

Example:

ALPHA[,BETA...]

indicates that ALPHA can appear alone or can be followed by
,BETA any number of times in succession.

Using System-Provided Aids

The Attention Interruption

Several aids are available for your use at the terminal:

e The attention interruption allows you to interrupt processing so that
you can enter a command.

« The conversational messages guide you in your work at the terminal.

e The HELP command provides you with information about the
commands.

The attention interruption allows you to interrupt processing at any time so
that you can enter a command or subcommand. For instance, if you are
executing a program and the program gets in a loop, you can use the
attention interruption to halt execution. As another example, when you are
having the data listed at your terminal and the data that you need has been
listed, you may use the attention interruption to stop the listing operation
instead of waiting until the entire data set has been listed.

If, after causing an attention interruption, you want to continue with the
operation that you interrupted, you can do so by pressing the ENTER key
before typing anything else; however, input data that was being typed or
output data that was being displayed at the time of the attention
interruption may be lost. You can also request an attention interruption
while at the command level, enter the TIME command, and then resume
with the interrupted operation by pressing the ENTER key.

Note: One output record from the interrupted program may be displayed at
the terminal after you enter your next command. This is normal for some
programs.

If your terminal has an interruption facility, you can request an attention
interruption by pressing the appropriate key. You can use the TERMINAL
command to specify particular operating conditions that the system is to
interpret as a request for an attention interruption. More specifically, you
can specify a sequence of characters that the system is to interpret as a
request for an attention interruption. In addition, you can request the

Basic Information for Using TSO 7

Messages

Mode Messages

8 TSO Command Language Reference

system to pause after a certain number of seconds of processing time has
elapsed or after a certain number of lines of output has been displayed at
your terminal. When the system pauses, you can enter the sequence of
characters that you define as a request for an attention interruption.

There are four types of messages:

e Mode messages

e Prompting messages

« Informational messages
o Broadcast messages

A mode message tells you when the system is ready to accept a new
command or subcommand. When the system is ready to accept a new
command it displays:

READY

When you enter a command that has subcommands and the system is ready
to accept that command’s subcommands, it displays the name of the
command, which can be one of the following:

EDIT
OUTPUT
TEST

You can then enter the subcommands you want to use. The TEST message
also appears after each TEST subcommand has been processed. If the
system has to display any output or other messages, as a result of the
previous command or TEST subcommand, it does so before displaying the
mode message.

Sometimes you can save a little time by entering two or more commands in
succession without waiting for the intervening READY message. The
system then prints the READY messages in succession after the commands.
If you enter the following commands without waiting for the intervening
mode messages, your display will be:

READY
delete...
free...
rename. ..
READY
READY
READY

There is a drawback to entering commands without waiting for the
intervening mode messages. If you make a mistake in one of the
commands, the system sends you messages telling you of your mistake, and
then it cancels the remaining commands you have entered. After you
correct the error, you have to reenter the other commands.

Unless you are sure that there are no mistakes in your input, you should
wait for a READY message before entering a new command.

Note: Some terminals “lock” the keyboard after you enter a command, and
therefore you cannot enter commands without waiting for the intervening
READY message. Terminals which do not lock the keyboard may

Prompting Messages

Informational Messages

occasionally do so, for example when all buffers allocated to the terminal
are used. See TSO Terminal User’s Guide for information on your terminal.

A prompting message tells you that required information is missing or that
information you supplied was incorrectly specified. A prompting message
asks you to supply or correct that information. For example,
partitioned-data-set-name is a required operand of the CALL command; if
you enter the CALL command without that operand the system will
prompt you for the data-set-name and your display will look as follows:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested operand, in this case the
data set name, and by pressing the ENTER key to enter it. For example, if
the data set name is ALPHA.DATA, you would complete the prompting
message as follows:

ENTER DATA SET NAME-
alpha.data

If you wish, you will receive prompting messages when appropriate.
However, the PROFILE command can be used to suppress prompting.

Sometimes you can request another message that explains the initial
message more fully. If the second message is not enough, you can request a
further message to give you more detailed information. An indication that
a second or additional message level is available is a plus sign (+) at the
end of the message.

To request an additional level of message:

1. Type a question mark(?) in the first position of the line.
2. Press the ENTER key.

If you enter a question mark, and there are no messages to provide further
detail, you receive the following message:

NO INFORMATION AVAILABLE

You can stop a prompting sequence by entering the requested information
or by requesting an attention interruption to cancel the command. When
unsure of how to respond to a message, you should continue requesting
additional messages regardless of whether or not the previous message
ended with a plus sign (+).

An informational message tells you about the status of the system and your
terminal session. For example, an informational message can tell you how
much time you have used. Informational messages do not require a
response.

If an informational message ends with a plus sign (+), you can request an
additional message by entering a question mark (?) after READY, as

described in “Prompting Messages.” Informational messages have only one
second level message, while prompting messages may have more than one.

Basic Information for Using TSO 9

Broadcast Messages

Broadcast messages are messages of general interest to users of the system.
Both the system operator and any user of the system can send broadcast
messages. The system operator can send messages to all users of the system
or to individual users. For example, he may send the following message to
all users:

DO NOT USE TERMINALS #4, 5 AND 6 ON 6/30. THEY ARE
RESERVED FOR DEPARTMENT 791.

You, or any other user, can send messages to other users or to the system
operator. For example, you may send, or receive, the following message:

DEPARTMENT NO. 4672 WILL BE CHANGED TO 4675 on 8/15

A message sent by another user will show his user identification so you will
know who sent you the message.

Using the HELP Command

Explanations of Commands

The HELP command can be used by a terminal user to receive all the
information necessary to use any TSO command. The information
requested will be displayed at the user’s terminal.

To receive a list of all the TSO commands in the SYS1.HELP data set
along with a description of each, enter the HELP command as follows:

help

Information about installation-written commands may be placed in the
SYS1.HELP data set. You can also get all the information available on a
specific command in SYS1.HELP by entering the specific command name
as an operand on the HELP command, as follows:

help command-name

Syntax Interpretation of HELP Information

The syntax notation used to present HELP information is different from
the syntax notation used in this publication because it is restricted to
characters that can be printed by your terminal. You can get the syntax
interpretation by entering the HELP command as follows:

READY
help help

Explanations of Subcommands

10 TSO Command Language Reference

When HELP exists as a subcommand, you may use it to obtain a list of
subcommands or additional information about a particular subcommand.
The syntax of HELP as a subcommand is the same as the HELP command.

Using Data Set Naming Conventions

Data Set Names in General

TSO Data Set Names

A data set is a collection of related data. Each data set stored in the
system is identified by a unique data set name. The data set name allows
the data to be retrieved and helps protect the data from unauthorized use.

The data set naming conventions for TSO simplify the use of data set
names. When a data set name conforms to the conventions, you can refer
to the data set by its fully qualified name or by an abbreviated version of
the name. The following topics:

1. Describe data set names in general.
2. Define the names that conform to the naming conventions for TSO.

3. Tell how to enter a complete data set name, and how to enter the
abbreviated version of a name that conforms to the TSO data set
naming conventions.

A data set name consists of one or more fields. Each field consists of one
through eight alphameric characters and must begin with an alphabetic (or
national) character.

Caution: The national characters $, @, and # are accepted as the first
character in a data set name. The characters hyphen (-) and
ampersand-zero (12-0 punch) are not accepted in a data set name.

A simple data set name with only one field may be:
PARTS

A data set name that consists of more than one field is a “qualified” data
set name. The fields in a qualified data set name are separated by penods
A qualified data set name may be:

PARTS.OBJ
or
PARTS.DATA

Partitioned Data Sets: A partitioned data set is simply a data set with the
data divided into one or more independent groups called members. Each
member is identified by a member name and can be referred to separately.
The member name is enclosed within parentheses and appended to the end
of the data set name:

PARTS.DATA(PART14)
ember name

A data set name must be qualified in order to conform to the TSO data set
naming conventions. The qualified name must consist of at least the two
required fields of the following three:

1. Your user-prefix (required; defaults to userid; may be redefined using
PROFILE command).

2. A user-supplied name (optional for a partitioned data set).
3. A descriptive qualifier (required).

Basic Information for Using TSO 11

Normally all three names are used:

USER-PREFIX.USER-SUPPLIED-NAME.DESCRIPTIVE
QUALIFIER

The total length of the data set name must not exceed 44 characters,
including periods. A typical TSO data set name is:

WRRID.PARTS.DATA
user-prefix - WRRID
user-supplied name - PARTS
descriptive qualifier - DATA

The TSO data set naming conventions also apply to partitioned data sets.
A typical TSO name for a member of a partitioned data set is:

WRRID.PARTS.DATA(PART14)

User-Prefix: The user-prefix is always the leftmost qualifier of the full
data set name. For TSO, this qualifier is the prefix selected in the
PROFILE command. If no prefix has been selected, the userid assigned to
you by your installation will be used.

User-Supplied Name: You choose a name for the data sets that you want
to identify. It can be a simple name or several simple names separated by
periods.

Descriptive Qualifier: The descriptive qualifier is always the rightmost
qualifier of the full data set name. To conform to the data set naming
conventions, this qualifier must be one of the qualifiers listed in Figure 1.

Descriptive Qualifier Data Set Contents

ASM Assembler (F) input

CLIST TSO commands

CNTL JCL and SYSIN for SUBMIT command

COBOL American National Standard COBOL statements

DATA Uppercase text

FORT FORTRAN (G1, H)
statements

LINKLIST Output listing from linkage editor

LIST Listings

LOAD Load module

LOADLIST Output listing from loader

OBJ Object module

OUTLIST Output listing from OUTPUT command

PLI1 PL/I(F), PL/1 Checkout, or PL/I Optimizing
compiler statements

TESTLIST Output listing from TEST command

TEXT Uppercase and lowercase text

VSBASIC VSBASIC statements

12 TSO Command Language Reference

Figure 1. Descriptive Qualifiers

How to Enter Data Set Names

The data set naming conventions simplify the use of data set names. If the
data set name conforms to the conventions, you need specify only the
user-supplied name field (in most cases) when you refer to the data set.
The system will add the necessary qualifiers to the beginning and to the
end of the name that you specify. In some cases, however, the system will
prompt you for a descriptive qualifier. Until you learn to anticipate these
exceptions to the naming conventions, you may wish to specify both the
user-supplied name and the descriptive qualifier when referring to a data
set. When you are using the LINK command, for example, the system will
add both the user identification and the descriptive qualifier, allowing you
to specify only the user-supplied name. For instance, you may refer to the
data set named USERID.PARTS.OBJ by specifying only PARTS (when
you are using LINK) or by specifying PARTS.OBJ (when you are using
other commands). You may refer to a member of a partitioned data set
USERID.PARTS.OBJ(PART14) by specifying PARTS(PART14) when you
are using LINK or by specifying PARTS.OBJ(PART14) when you are
using other commands.

When you specify an entire fully qualified data set name, as you must do if
the name does not conform to the TSO data set naming conventions, you

must enclose the entire name within apostrophes, as follows:
‘WRRID.PROG.LIST’ where WRRID is not your user identification
or
‘WRRID.PROG.FIRST’ where FIRST is not a valid descriptive qualifier.

The system will not append qualifiers to any name enclosed in apostrophes.

Defaults for Data Set Names: When you specify only the user-supplied
name, the system adds your user identification and, whenever possible, a
descriptive qualifier. The system attempts to derive the descriptive qualifier
from available information. For instance, if you specified ASM as an
operand for the EDIT command, the system will assign ASM as the
descriptive qualifier. If the information is insufficient, the system will issue
a message at your terminal requesting the required information. If you
specify the name of a partitioned data set and do not include a required
member name, the system will use TEMPNAME as the default member
name. (If you are creating a new member, the member name will become
TEMPNAME. If you are modifying an existing partitioned data set, the
system will search for a member named TEMPNAME.) Figure 2 illustrates
the default names supplied by the system.

Basic Information for Using TSO 13

If you specify: The input data The output data set

set name is: name will be:
EDIT PARTS ASM UID.PARTS.ASM UID.PARTS.ASM
LINK PARTS or
LINK (PARTS) UID.PARTS.OBJ UID.PARTS.LOAD

(TEMPNAME)

CALL PARTS UID.PARTS.LOAD

(TEMPNAME) -—
EDIT PARTS(JAN) ASM UID.PARTS.ASM(JAN) UID.PARTS.ASM(JAN)
LINK PARTS(JAN) or
LINK (PARTS(JAN)) UID.PARTS.OBJ(JAN) UID.PARTS.LOAD(JAN)
CALL PARTS(JAN) UID.PARTS.LOAD(JAN) -
EDIT (PARTS) ASM UID.ASM(PARTS) UID.ASM(PARTS)
LINK ((PARTS)) UID.OBJ(PARTS) UID.LOAD(PARTS)
CALL (PARTS) UID.LOAD(PARTS) ---

Note: Member names must be enclosed in parentheses to distinguish
them from data set names.

Figure 2. Default Names Supplied by the System

Descriptive Qualifiers
Command Input Output Listing
ASM ASM OBJ LIST
CALL LOAD - -
COBOL COBOL OBJ LIST
CONVERT FORT FORT -
EXEC CLIST - -
FORMAT TEXT - LIST
FORT FORT OBIJ LIST
LINK OBJ LOAD LINKLIST
LOAD --- --
LOADGO OBJ - LOADLIST
LOAD - -
OUTPUT - - OUTLIST
RUN ASM - ---
FORT - -
COBOL - -
SUBMIT CNTL ——- —
TEST OBIJ - TESTLIST
LOAD --- --

Figure 3. Descriptive Qualifiers Supplied by Default

Specifying Data Set Passwords

14 TSO Command Language Reference

When referencing password protected data sets, you must specify the
password as part of the data set name or you will be prompted for it. The
password is separated from the data set name by a slash (/) and optionally,
by one or more standard delimiters (tab, blank, or comma). See the
discussion on “Password Data Set” that appears under the PROTECT
command for non-VSAM data sets. For VSAM data sets, see DEFINE and
ALTER in Access Method Services.

Using Commands for VSAM and Non-VSAM Data Sets

Figure 4 gives recommended commands, by function, for VSAM and
non-VSAM data sets. Numbers in parentheses after the commands indicate
order of preference. Program product commands are identified with an
asterisk (*). Refer to Access Method Services for commands not covered in

this document.

Function

Build lists of attributes
Allocate new DASD space
Connect data set to terminal
List names of allocated
(connected) data sets
Modify passwords
List attributes of one or
more objects
List names of cataloged data sets
Limit by type
Limit by naming convention
Catalog data sets

List contents
Rename
Delete

Copy data set

Non-VSAM

ATTRIB
ALLOCATE
ALLOCATE
LISTALC

PROTECT
LISTDS (1)
LISTCAT (2)

LISTCAT
LISTDS
DEFINE (1)
ALLOCATE (2)
EDIT,LIST*
RENAME
DELETE
COPY*

VSAM

(None)
DEFINE
ALLOCATE
LISTALC

DEFINE,ALTER
LISTCAT (1)
LISTDS (2)

LISTCAT
LISTDS
DEFINE

PRINT
ALTER
DELETE
REPRO

Figure 4. Commands Preferred for VSAM/Non-VSAM Data Sets

Basic Information for Using TSO 15

The Commands

This section contains descriptions of the TSO commands. The commands
are presented in alphabetical order. Subcommands are presented in
alphabetical order following the command to which they apply.

The Commands 17

ALLOCATE Command

Use the ALLOCATE command or the ALLOCATE subcommand of EDIT
(the subcommand’s function and syntax are identical to the ALLOCATE
command) to dynamically allocate the data sets required by a program that
you intend to execute. There are several ways that you can specify data set
attributes for non-VSAM data sets that you intend to allocate dynamically.

You may use the LIKE keyword to obtain the attributes from an’
existing model data set (a data set that must be cataloged) whose data
set attributes you wish to use. You may override model data set
attributes by specifying them explicitly on the ALLOCATE command.

You can identify a data set and describe its attributes explicitly on the
ALLOCATE command.

You may use the ATTRIB command to build a list of attributes.
During the remainder of your terminal session, you can have the
system refer to this list for data set attributes by specifying the
USING keyword when you enter the ALLOCATE command. The
ALLOCATE command will convert the attributes into the DCB
parameters for data sets being allocated. When you specify the
USING keyword, you cannot override attributes obtained via the
attribute list. Any DCB attributes (those found on ATTRIB) will be
ignored on ALLOCATE and an appropriate message will be issued.

ALLOCATE Command 19

ALLOCATE DATASET (*) [FILE (name)
ALLOC DSNAME (dsname-list) DDNAME (name)
DUMMY
FILE (name) DATASET (*)
DDNAME (name) SNAME (dsname-1list)

D
DUMMY

OLD
SHR
MOD
NEW
SYSOUT [(class)]

VOLUME (serial-list)
MSVGP (identifier)

SPACE (quantity [,increment]) BLOCK (value)
AVBLOCK (value)
TRACKS
CYLINDERS

{BLKSIZE (blocksize)]
[DIR (integer)]
[ALTFILE (name)]
[DEST (stationid)]
{REUSE]

HOLD
NOHOLD

[UNIT (type)]

UNCOUNT (count)
PARALLEL

(LABEL (type)]
[POSITION (sequence-no.)]
[MAXVOL (count)
[PRIVATE]

[VSEQ (vol-seqg-no)]
LIKE (model-dsname)
pSING (attr-list-name)
[RELEASE]

[ROUND]

KEEP

DELETE

CATALOG

UNCATALOG

[BUFL (buffer-length)]

20 TSO Command Language Reference

[BUFNO (number-of-buffers)]

[LRECL ogical- record-length})]
| X

[NCP (no.-of-channel-programs)]

[INPUT

| OUTPUT

[EXPDT (year-day)
|[RETPD (no.-of-days)

BFALN t‘
L - D
(opTCD (A,B,C,E,F,H,Q,R,T,W,and/or 2)]

EROPT ({ ACC }
SKP)
ABE

T H)

[RECFM (A,B,D,F,M,S,T,U,and/ox V)]
[DIAGNS (TRACE)]
LIMCT (search-number)]

[BUFOFF block—pref ix- length})]
DSORG
DAU
’ POU ‘
| PSU
FDEN

1

2

3
- 4
FI‘RTCH C

E

(ET
T

| KEYLEN (key-length)

[PROTECT])

[COPIES (number)]

{PCB (image-id [,ALIGN])]
,VERIFY

DATASET(dsname-list or *) or DSNAME(dsname-list or *)
specifies the name of the data set that is to be allocated. If a list of
data set names is entered, ALLOCATE will allocate and concatenate
non-VSAM data sets. The data set name must include the
descriptive (rightmost) qualifier and may contain a member name in
parentheses.

If you specify a password, you will not be prompted for it when you
open a non-VSAM data set. For additional information on VSAM
data sets see, Access Method Services, under the section “Data
Security and Integrity.”

ALLOCATE Command 21

22 TSO Command Language Reference

You may substitute an asterisk (*) for the data set name to indicate
that you want to have your terminal allocated for input and output.
If you use an asterisk (*), only the FILE or DDNAME, BLOCK or
BLKSIZE, and USING operands should be entered. All other
operands are ignored. No message is issued to notify the user.

Notes:

1.

If you allocate more than one data set to your terminal, the blocksize

and other data set characteristics which default on the first usage will

also be used for all other data sets. This happens for input or output.

The ATTRIB command and the USING keyword of ALLOCATE can
be used to control the data set characteristics being used.

The system generates names for SYSOUT data sets; therefore, you
should not specify a data set name when you allocate a SYSOUT data
set. If you do, the system ignores it.

Data sets residing on the same physical tape volume cannot be
allocated concurrently.

The following items should be noted when using the concatenate
function:

o The data sets specified in the list must be cataloged. You may
use the CATALOG operand of either ALLOCATE or FREE to
catalog a data set.

o The maximum number of data sets that can be concatenated is
255 for both sequential and partitioned data sets. The data sets
to be concatenated must be either all sequential or all partitioned.

o The data set group will be permanently concatenated. The group
must be freed in order to be deconcatenated. The filename
specified for the FILE or DDNAME operand on ALLOCATE
must be specified for the FILE or DDNAME operand on FREE.

e All operands are ignored except for the following:
DATASET/DSNAME, FILE/DDNAME, and status operands.

To allocate a member of a generation data group, specify the fully
qualified data set name, including the generation number.

DUMMY

specifies that no devices or external storage space is to be allocated
to the data set, and no disposition processing is to be performed on
the data set. Entering the DUMMY keyword will have the same
effect as specifying NULLFILE as the data set name on the
DATASET or DSNAME operand. If DUMMY is specified, only the
FILE or DDNAME, BLOCK or BLKSIZE, and USING operands
should be entered. All other operands are ignored.

FILE(name) or DDNAME (name)

specifies the name to be associated with the data set. It may contain
no more than eight characters. (This name corresponds to the name
on the data definition (DD) statement in job control language and
must match the ddname in the data control block (DCB) that is
associated with the data set.) For PL/I, this name is the file name in
a DECLARE statement and has the form “DCL file name FILE”;
for instance, DCL MASTER FILE. For COBOL, this name is the
external-name used in the ASSIGN TO clause. For FORTRAN, this

name is the data set reference number that identifies a data set and
has the form “FTxxFyyy;” for instance FTO6F002.

If you omit this operand, the system assigns an available file name
(ddname) from a data definition statement in the procedure that is
invoked when you enter the LOGON command.

OLD
indicates that the data set currently exists and that you require
exclusive use of the data set. The data set should be cataloged. If it
is not, you must specify the VOLUME operand. OLD data sets are
retained by the system when you free them from allocation. The
DATASET or DSNAME parameter is required.

SHR
indicates that the data set currently exists but that you do not require
exclusive use of the data set. Other tasks may use it concurrently.
ALLOCATE assumes the data set is cataloged if the VOLUME
operand is not entered. SHR data sets are retained by the system
when you free them. The DATASET or DSNAME parameter is
required.

MOD
indicates that you want to append data to the end of the data set. If
the data set does not exist, a new data set is created. MOD data sets
will be retained by the system when you free them. The DATASET
or DSNAME parameter is required.

NEW
(non-VSAM only) indicates that the data set does not exist and that
it is to be created. For new partitioned data sets you must specify
the DIR operand. A NEW data set will be kept and cataloged if you
specify a data set name. If you do not specify a data set name, it
will be deleted when you free it or log off.

SYSOUT](class)]
indicates that the data set is to be a system output data set. An
optional subfield may be defined giving the output class of the data
set. Output data will be initially directed to the job entry subsystem
and may later be transcribed to a final output device. The final
output device is associated with output class by the installation.
After transcription by the job entry subsystem, SYSOUT data sets
are deleted.

Note: If you do not specify OLD, SHR, MOD, NEW or SYSOUT, a
default value is assigned, or a value is prompted for, depending on the
other operands specified:

e If the LIKE keyword or any space parameters (SPACE, DIR,
BLOCK, BLKSIZE, AVBLOCK, TRACKS or CYLINDERS) are
specified, then the status defaults to NEW.

« If the COPIES keyword is specified, then the status defaults to
SYSOUT.

o If the DATASET/DSNAME parameter is entered without the LIKE
parameter or any space parameters, then the status defaults to OLD.

o If the LIKE parameter, the DATASET/DSNAME parameter, and the
space parameters are all omitted, you are prompted to enter a status
value.

ALLOCATE Command 23

VOLUME(serial-list)

specifies the serial number(s) of an eligible direct access volume(s)
on which a new data set is to reside or on which an old data set is
located. If VOLUME is specified for an old data set, the data set
must be on the specified volume(s) for allocation to take place. If
you do not specify VOLUME, new data sets are allocated to any
eligible direct access volume. Eligibility is determined by the UNIT
information in your procedure entry in the user attribute data set
(UADS).

MSVGP(identifier)
specifies an installation-defined group of MSS volumes to be used for
system selection of 2 volume or volumes to be mounted. This
keyword is used for new data set allocation on MSS (3330V) devices
only. It is ignored for old data sets, DUMMY, SYSOUT and
terminal data sets. The user’s UADS data set must contain the
MOUNT attribute. Use of this keyword implies PRIVATE.

SPACE(quantity, increment)
specifies the amount of space to be allocated for a new data set. If
this parameter or the primary space quantity is omitted, the default
space is (10,50) AVBLOCK (1000). To indicate the unit of space
for allocation, you must specify one of the following: BLOCK (value)
or BLKSIZE(value), AVBLOCK(value), TRACKS, or CYLINDERS.
The amount of space requested is determined as follows:

BLOCK(value) or BLKSIZE(value)
Multiply the value of the BLOCK/BLKSIZE operand by the
“quantity” value of the SPACE operand.

AVBLOCK(value)
Multiply the value of the AVBLOCK operand by the
“quantity” value of the SPACE operand.
TRACKS
The “quantity” value of the SPACE operand is the number of
tracks you are requesting.
CYLINDERS
The “quantity” value of the SPACE operand is the number of
cylinders you are requesting.
SPACE may be specified for SYSOUT, NEW, and MOD data
sets. You must specify a unit of space when you use the
SPACE operand.
quantity
specifies the number of units of space to be allocated initially for a
data set.
increment

specifies the number of units of space to be added to the data set
each time the previously allocated space has been filled.

24 TSO Command Language Reference

BLOCK(value)
specifies the average length (in bytes) of the records that will be
written to the data set. The maximum block value used to determine
space to be allocated is 65,535. The block value will be the unit of
space used by the SPACE operand. The unit of space value is
determined in one of the following ways:

¢ From the default value of (10,50) AVBLOCK(1000) if no
space operands (that is, SPACE, BLOCK, TRACKS,
AVBLOCK, or CYLINDERS) are specified.

« From the BLOCK operand if specified.

« From the model data set if the LIKE operand is specified and
BLOCK, TRACKS, AVBLOCK, or CYLINDERS are not
specified on ALLOCATE

e« From the BLKSIZE operand if BLOCK is not specified

AVBLOCK(value)
specifies only the average length (in bytes) of the records that will be
written to the data set.

TRACKS
specifies that the unit of space is to be a track.

CYLINDERS
specifies that the unit of space is to be a cylinder.

BLKSIZE(blocksize)
specifies the data control block (DCB) block size for the data set.
The maximum allowable decimal value for block size recorded in the
DCB is 32,760. The DCB block size is determined in one of the
following ways:

« From the attribute list if USING is specified. The BLKSIZE
keyword on ALLOCATE will not be used for DCB blocksize

+ From the BLKSIZE operand specified on the ALLOCATE
command.

« From the model data set if LIKE is specified and BLKSIZE is
not specified on ALLOCATE

¢« From the BLOCK operand if neither USING, BLKSIZE, nor
LIKE is specified

The block size that you specify to be recorded in the data control
block (DCB) must be consistent with the requirements of the
RECFM operand. If you specify:

+« RECFM(F), then the block size must be equal to or greater
}han the logical record length.

« /RECFM(F,B), then the block size must be an integral multiple
of the logical record length.

« RECFM(V), then the block size must be equal to or greater
than the largest block in the data set. (Note: For unblocked
variable-length records, the size of the largest block must allow
space for the four byte block descriptor word in addition to the
largest logical record length. The logical record length must
allow space for a four-byte record descriptor word.)

ALLOCATE Command 25

26 TSO Command Language Reference

« RECFM(V,B), then the block size must be equal to or greater
than the largest block in the data set. (Note: For block variable
length records, the size of the largest block must allow space for
the four byte block descriptor word in addition to the sum of
the logical record lengths that will go into the block. Each
logical record length must allow space for a four-byte record
descriptor word.) Since the number of logical records can vary,
you must estimate the optimum block size (and the average
number of records for each block) based on your knowledge of
the application that requires the 1/0.

« RECFM(U) and BLKSIZE(80), then one character will be
truncated from the line, that character (the last byte) is reserved
for an attribute character.

Note: The keywords BLOCK, BLKSIZE, AVBLOCK, TRACKS and
CYLINDERS may be specified for SYSOUT, NEW or MOD data sets.
The keywords BLOCK or BLKSIZE can also be specified for dummy or
terminal data sets.

DIR(integer)
specifies the number of 256 byte records that are to be allocated for
the directory of a new partitioned data set. This operand must be
specified if you are allocating a new partitioned data set.

ALTFILE(name)
specifies the name associated with the SYSIN subsystem data set that
is to be allocated. It can contain a maximum of eight characters.
This parameter is used primarily in the background.

DEST (stationid)
specifies a remote work station to which SYSOUT data sets will be
directed upon unallocation. The stationid is the one to eight
character name of the remote work station receiving the SYSOUT
data set.

REUSE
specifies that the filename being allocated is to be freed and
reallocated if it is currently in use.

HOLD
specifies that the data set is to be placed on a HOLD queue upon
unallocation.

NOHOLD
specifies that processing of the output should be determined via the
HOLD/NOHOLD specification associated with the particular
SYSOUT class specified. However, the specification associated with
the SYSOUT class may be overridden by using the NOHOLD
keyword on the FREE command.

UNIT(type)
specifies the unit type to which a file or data set is to be allocated.
You may specify an installation-defined group name, a generic device
type, or a specific device address. If volume information is not
supplied, (volume and unit information is retrieved from a catalog)
the unit type that is coded will override the unit type from the
catalog. This condition exists only if the coded type and class are the
same as the cataloged type and class.

UCOUNT(count)
specifies the maximum number of devices to be allocated, where
count is a value from 1-59,

PARALLEL
specifies that one device is to be mounted for each volume specified
on the VOLUME operand or in the catalog.

LABEL(type)
specifies the kind of label processing to be done. Type may be one
of the following:

SL, SUL, AL, AUL, NSL, NL, LTM, or BLP. These types
correspond to the present JCL label-type values.

POSITION(sequence-no.)
specifies the relative position (1-9999) of the data set on a multiple
data set tape. The sequence number corresponds to the data set
sequence number field of the label parameter in JCL.

MAXVOL(count)
specifies the maximum number (1-255) of volumes a data set can
use. This number corresponds to the count field on the VOLUME
parameter in JCL.

PRIVATE
specifies that the private volume use attribute be assigned to a
volume that is not reserved or permanently resident. This operand
corresponds to the PRIVATE keyword of the VOLUME parameter
in JCL.

Note: If VOLUME and PRIVATE operands are not specified and the value
specified for MAXVOL exceeds the value specified for UCOUNT, the
system will not demount any volumes when all of the mounted volumes
have been used, causing abnormal termination of your job. If PRIVATE is
specified, the system will demount one of the volumes and mount another
volume in its place so that processing can continue.
VSEQ(vol-seq-no.)
specifies at which volume (1-255) of a multi-volume data set
processing is to begin. This operand corresponds to the volume
sequence number on the VOLUME parameter in JCL. VSEQ should
only be specified when the data set is cataloged.

LIKE(model-dsname)
specifies the name of an existing model data set whose attributes are
to be used as the attributes of the new data set being allocated. This
data set must be cataloged and must reside on a direct access device.
The volume must be mounted when you issue the ALLOCATE
command.

ALLOCATE Command 27

28 TSO Command Language Reference

When ALLOCATE command processing assigns attributes to a new
data set, it copies all of the following attributes from the model data
set:

Primary space quantity (SPACE)

Secondary space quantity (SPACE)

Space unit (BLOCK, AVBLOCK, TRACKS, CYLINDERS)
Directory space quantity (DIR)

Data set organization (DSORG)

Record format (RECFM)

Optional services code (OPTCD) - for ISAM data sets only
Logical record length (LRECL)

Key length (KEYLEN)

Block size (BLKSIZE)

Volume sequence number (VSEQ)

Data set expiration date (EXPDT)

You may use the LIKE operand even if none of your existing data
sets have the exact attribute values you want to use for a new data
set. You may override attributes copied from a model data set by
specifying the LIKE operand as well as the operands corresponding
to the attributes you want to override on the ALLOCATE command.

Note: The following items should be considered when using the LIKE
keyword:

The LIKE and USING keywords are mutually exclusive.

NEW is the only valid data set status that can be specified with the
LIKE keyword.

The LIKE keyword must be specified with the DATASET keyword.

Only one data set name can be specified on the
DATASET/DSNAME parameter.

If the new data set to be allocated is specified with a member name,
indicating a partitioned data set (PDS), then you will be prompted for
directory blocks unless that quantity is explicitly specified on the
ALLOCATE command. If the new data set name is specified with a
member name, but the model data set is sequential and you have not
explicitly specified the quantity for directory blocks, then you will be
prompted for directory blocks.

USING(attr-list-name)

specifies the name of a list of attributes that you want to have
assigned to the data set that you are allocating. The attributes in the
list correspond to, and will be used for, data control block (DCB)
parameters. (Note to users familiar with conventional batch
processing: these DCB parameters are the same as those normally
specified by JCL and data management macro instructions.)

An attribute list must be stored in the system before you use this
operand. You can build and name an attribute list by using the
ATTRIB command. The ATTRIB command allocates a file with the
name being the (attr-list-name) specified in the ATTRIB command.
The name that you specify for the list when you use the ATTRIB
command is the name that you must specify for this

USING (attr-list-name) operand.

Note: The DCB operands (operands that are also on the ATTRIB
command) cannot be specified with the USING keyword.

RELEASE
specifies that unused space is to be deleted when the data set is
freed.

Note: If RELEASE is used with a new data set with the BLOCK or
BLKSIZE parameter, then the SPACE parameter must be used.

ROUND
specifies that the allocated space be equal to one or more cylinders.
This operand should be specified only when space is requested in
units of blocks. This operand corresponds to the ROUND keyword
on the SPACE parameter in JCL.

Note: The final disposition of the following operands can be modified by a
command processor.

KEEP
specifies that the data set is to be retained by the system after it is
freed.

DELETE
specifies that the data set is to be deleted after it is freed.

CATALOG
specifies that the data set is to be retained by the system in a catalog
after it is freed.

UNCATALOG
specifies that the data set is to be removed from the catalog after it
is freed. The data set is still retained by the system.

BUFL (buffer-length)
specifies the length, in bytes, of each buffer in the buffer pool.
Substitute a decimal number for buffer-length. The number must not
exceed 32,760.

If you omit this operand and the system acquires buffers
automatically, the BLKSIZE and KEYLEN operands will be used to
supply the information needed to establish buffer length.

BUFNO(number-of-buffers)
specifies the number of buffers to be assigned for data control
blocks. Substitute a decimal number for number-of-buffers. The
number must never exceed 255, and you may be limited to a smaller
number of buffers depending on the limit established when the
operating system was generated. The following table shows the
condition that requires you to include this operand.

When you use one of the following methods of obtaining the buffer pool... then:

(1) BUILD macro instruction (1) You must specify BUFNO.

(2) GETPOOL macro instruction (2) The system uses the number
that you specify for
GETPOOL.

(3) Automatically with BPAM or BSAM (3) You must specify BUFNO.

(4) Automatically with QSAM (4) You may omit BUFNO and

accept two buffers.

ALLOCATE Command 29

30 TSO Command Language Reference

LRECL(logical-record-length)
specifies the length, in bytes, of the largest logical record in the data
set. You must specify this operand for data sets that consist of either
fixed-length or variable-length records.

Omit this operand if the data set contains undefined-length records.

The logical record length must be consistent with the requirements of
the RECFM operand and must not exceed the block size (BLKSIZE
operand) except for variable-length-spanned records. If you specify:

« RECFM(V) or RECFM(V B), then the logical record length is
the sum of the length of the actual data fields plus four bytes
for a record descriptor word.

« RECFM(F) or RECFM(F B), then the logical record length is
the length of the actual data fields.

« RECFM(U), then you should omit the LRECL operand.

Note: For variable-length spanned records (VS or VBS) processed by
QSAM (locate mode) or BSAM, specify LRECL (X) when the logical
record exceeds 32,756 bytes.

NCP(number-of-channel-programs)
specifies the maximum number of READ or WRITE macro
instructions allowed before a CHECK macro instruction is issued.
The maximum number must not exceed 99 and must be less than 99
if a lower limit was established when the operating system was
generated. If you are using chained scheduling, you must specify an
NCP value greater than 1. If you omit the NCP operand, the default
value is 1.

INPUT
specifies that a BSAM data set opened for INOUT or a BDAM data
set opened for UPDAT is to be processed for input only. This
parameter overrides the INOUT (BSAM) option or UPDAT
(BDAM) option in the OPEN macro instruction to INPUT.

OUTPUT
specifies that a BSAM data set opened for OUTIN or OUTINX is to
be processed for output only. This parameter overrides the OUTIN
option in the OPEN macro instruction to OUTPUT or the OUTINX
option in the OPEN macro instruction to EXTEND.

EXPDT(year-day)
specifies the data set expiration date. You must specify the year and
day in the form ‘yyddd:’, where ‘yy’ is a two digit decimal number
for the year and ‘ddd’ is a three digit decimal number for the day of
the year. For example, January 1, 1974 is 74001 and December 31,
1975 is 75365.

RETPD(number-of-days)
specifies the data set retention period in days. The value may be a
one to four digit decimal number.

BFALN(§ F))
D
specifies the boundary alignment of each buffer as follows:
F each buffer starts on a fullword boundary that is not a
doubleword boundary.

D each buffer starts on a doubleword boundary.

If you do not specify this operand and it is not available from any
other source, data management routines assign a doubleword
boundary.

OPTCD(A,B,C,E,F,H,Q,R,T,W and/or Z)
specifies the following optional services that you want the system to
perform. (See also the OPTCD subparameter of the DCB parameter
in JCL for a detailed discussion of these services.)

A specifies that actual device addresses be presented in READ and
WRITE macro instructions.

B specifies that end-of-file (EOF) recognition be disregarded for
tapes.

C specifies the use of chained scheduling.

E requests an extended search for block or available space.

F specifies that feedback from a READ or WRITE macro
instruction should return the device address in the form it is
presented to the control program.

H requests the system to check for and bypass.

Q requests the system to translate a magnetic tape from ASCII to
EBCDIC or from EBCDIC to ASCIL

R requests the use of relative block addressing.

T requests the use of the user totaling facility.

W requests the system to perform a validity check when data is

written on a direct access device.
Z requests the control program to shorten its normal error
recovery procedure for input on magnetic tape.

(You can request any or all of the services by combining the values
for this operand. You may combine the characters in any sequence,
being sure to separate them with blanks or commas.)

EROPT(ACC})
SKP
ABE
specifies the option that you want executed if an error occurs when a
record is read or written. The options are:

ACC to accept the block of records in which the error was found.
SKP - to skip the block of records in which the error was found.
ABE to end the task abnormally.

ALLOCATE Command 31

BFTEK((S)

E.
A
R

specifies the type of buffering that you want the system to use. The
types that you can specify are:

S

E
A
R

simple buffering

exchange buffering

automatic record area buffering
record buffering

RECFM(A,B,D,F,M,S,T,U, and/or V)
specifies the format and characteristics of the records in the data set.
The format and characteristics must be completely described by one
source only. If they are not available from any source, the default
will be an undefined-length record. (See also the RECFM
subparameter of the DCB parameter in JCL for a detailed discussion
of the formats and characteristics.)

Use the following values with the RECFM operand.

A indicates that the record contains ASCII printer control
characters.

B indicates that the records are blocked.

D indicates variable-length ASCII records.

F indicates that the records are of fixed-length.

M indicates that the records contain machine code control
characters.

S indicates that, for fixed-length records, the records are written
as standard blocks (there must be no truncated blocks or
unfilled tracks except for the last block or track). For
variable-length records, a record may span more than one block.
Exchange buffering, BFTEK(E), must not be used.

T indicates that the records may be written onto overflow tracks if
required. Exchange buffering, BFTEK(E), or chained
scheduling, OPTCD(C), cannot be used.

U indicates that the records are of undefined length.

V indicates that the records are of variable length.

You may specify one or more values for this operand (at least one is

required).

DIAGNS(TRACE)

specifies the Open/Close/EOV trace option that gives a
module-by-module trace of the Open/Close/EOV work area and the
user’s DCB.

LIMCT(search-number)
specifies the number of blocks or tracks to be searched for a block
or available space. The number must not exceed 32,760.

32 TSO Command Language Reference

BUFOFF({

block-prefix-length|)
L

specifies the buffer offset. The block prefix length must not exceed
99. “L” is specified if the block prefix field is four bytes long and
contains the block length.

DSORG([DA)
DAU
PO
POU
PS
PSU
specifies the data set organization as follows:
DA - direct access
DAU - direct access unmovable
PO - partitioned organization
POU - partitioned organization unmovable
PS - physical sequential
PSU - physical sequential unmovable
DEN({0})
1
2
3
4
specifies the magnetic tape density as follows:
0- 200 bpi/7 track
1- 556 bpi/7 track
2- 800 bpi/7 and 9 track
3- 1600 bpi/9 track
4 - 6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or
equivalent)
TRTCH(; C \)
E
T
ET
specifies the recording technique for 7-track tape as follows:
C data conversion with odd parity and no translation
E even parity with no translation and no conversion
T odd parity and no conversion; BCD to EBCDIC translation
when reading and EBCDIC to BCD translation when writing
ET even parity and no conversion; BCD to EBCDIC translation

when reading and EBCDIC to BCD translation when writing

ALLOCATE Command 33

34 TSO Command Language Reference

KEYLEN(key-length)
specifies the length in bytes of each of the keys used to locate blocks
of records in the data set when the data set resides on a direct access
device. The key length must not exceed 255 bytes. If an existing
data set has standard labels, you can omit this operand and let the
system retrieve the key length from the standard label. If a key
length is not supplied by any source before you issue an OPEN
macro instruction, a length of zero (no keys) is assumed. This
keyword is mutually exclusive with TRTCH.

PROTECT
specifies that the DASD data set or the first data set on a tape
volume is to be RACF protected.

e For a new permanent DASD data set, the specified status must
be NEW or MOD treated as NEW; the disposition must be
either KEEP, CATALOG, or UNCATALOG.

o For a tape volume, the tape must have an SL, SUL, AL, AUL,
or NSL label. The file sequence number and volume sequence
number must be one (except for NSL), and PRIVATE must be
assigned as the tape volume use attribute.

Note: The PROTECT keyword is invalid if a data set name is not specified
or if the FCB parameter or status other than NEW or MOD is specified.

COPIES(number)
specifies the total number of copies of the data set to be printed,
subject to an installation limit. (Refer to the JCL manual for more

information.)
e The COPIES keyword cannot be specified with the DATASET
keyword.

e« SYSOUT is the only valid data set status that can be specified
with the COPIES keyword.

FCB(image-id [,ALIGN])
+VERIFY

specifies a forms control Gaffer (FCB) that is used to store vertical
formatting information for printing, each position corresponding to a
line on the form. The buffer determines the operations of the
printer. It specifies the forms control image to be used to print an
output data set on a 3800 printer or a 3211 printer. The FCB also
specifies the data protection image to be used for the 3525 card
punch. The FCB parameter is ignored for sysout data sets on the
3525 card punch.

For further information on the forms control buffer, see System
Programming Library: Data Management, Programming Support for
the IBM 3505 Card Reader and IBM 3525 Card Punch, or IBM
3800 Printing Subsystem Programmer’s Guide,.

image-id
specifies 1-4 alphameric or national characters that identify the image
to be loaded into the forms control buffer (FCB).

e For a 3211 printer, IBM provides two standard FCB images,
STD1 and STD2. STD1 specifies that 6 lines per inch are to be
printed on an 8.5 inch form. STD2 specifies that 6 lines per
inch are to be printed on a 11 inch form.

o For a 3800 Printing Subsystem, IBM provides another standard
FCB image, STD3, which specifies output of 80 lines per page
at 8 lines per inch on 11 inch long paper.

Default: If the image-id information is incorrectly coded, the default for
the 3211 printer is the image currently in the buffer. If there is no image
in the buffer, the operator is requested to specify an image. For the 3800
printer, the machine default is 6 lines per inch for any size form that is on
the printer.

Note: STD1 and STD2 (standard FCB images) should not be used as
image-ids for sysout unless established by your installation at system
generation time.

ALIGN
specifies that the operator should check the alignment of the printer
forms before the data set is printed. The ALIGN subparameter is
ignored for sysout data sets and is not used by the 3800 printer.

VERIFY
specifies that the operator should verify that the image displayed on
the printer is the desired one. The VERIFY subparameter is ignored
for sysout data sets.

Example 1

Operation: Allocate your terminal as a temporary input data set.

allocate da(*) file(£ft01£001)

Example 2

Operation: Allocate an existing cataloged data set.
Known:
The name of the data set: MOSER7.INPUT.DATA

allocate da(input.data) old

Example 3

Operation: Allocate an existing data set that is not cataloged.
Known:

The data set name: SYS1.PTIMAC.AM
The volume serial number: B99RS2
The DD name: SYSLIB

alloc dataset('sysl.ptimac.am') file(syslib) +
volume (b99rs2) shr

ALLOCATE Command 35

Example 4

Operation: Allocate a new data set with the attributes of an existing model
data set.

Known:

The name that you want to give the new data set:
MOSER7.NEW.DATA

The name of the model data set: MOSER7.MODEL.DATA
alloc da(new.data) like(model.data)

Example 5

Operation: Allocate a new data set that differs from an existing model
data set only in its space allocation.

Known:

The name that you want to give the new data set:
MOSER7.NEW2.DATA

The name of the model data set: MOSER7.MODEL.DATA

The desired space attributes for the new data set: Primary 10 TRKS
Secondary 5 TRKS

alloc da(new2.data) space(10,5)TRKS like(model.data)

Example 6

Operation: Allocate a new sequential data set with space allocated in
tracks.

Known:
The new data set name: MOSER7.EX1.DATA
The number of tracks: 2
The logical record length: 80
The DCB block size: 8000
The record format: Fixed Block

alloc da(ex1.data) dsorg(ps) space(2,0) trks lrecl(80) +
blksize (8000) recfm(£f,b) new

Example 7

Operation: Allocate a new partitioned data set with space allocated in
blocks.

Known:

The new data set name: MOSER7.EX2.DATA
The block length: 1000 bytes

The DCB block size: 200

The number of directory blocks: 2

The record format: Fixed Block

alloc da(ex2.data) dsorg(po) block(1000) space(10,10) +
lrecl (100) blksize(200) dir(2) recfm(f,b) new

36 TSO Command Language Reference

Example 8

Operation: Allocate a new sequential data set with default space quantities.
Known:

The new data set name: MOSER7.EX3.DATA
The block length: 800 bytes

The logical record length: 80

The record format: Fixed Block

alloc da(ex3.data) block(800) lrecl(80) dsorg(ps) +
recfm(f,b) new

Example 9

Operation: Allocate a new sequential data set using an attribute list.
Known:

The name that you want to give the new data set:
MOSER7.EX4.DATA

The number of tracks expected to be used: 10

DCB parameters are in an attribute list named: ATRLST1

attrib atrlstl1 dsorg(ps) lrecl(80) blksize(3200)
alloc da(ex4.data) new space(10,2) trks using(atrlstl)

Example 10

Operation: Allocate a new sequential data set with space allocated in
blocks and using an attribute list.

Known:

The new data set name: MOSER7.EX5.DATA
The block length: 1000 bytes
The DCB attributes taken from attribute list: ATRLST3

attrib atrlst3 dsorg(ps) lrecl(80) blksize(3200)
alloc da(ex5.data) using(atrlst3) block(1000) +
space(20,10) new

Example 11

Operation: Allocate a new sequential data set with default space quantities
and using an attribute list.

Known:

The new data set name: MOSER7.EX6.DATA
The DCB attributes taken from attribute list: ATRLSTS

attrib atrlst5 dsorg(ps) lrecl(80) blksize(3200)
alloc da(ex6.data) using(atrlst5) new

ALLOCATE Command 37

Example 12

Operation: Allocate a new data set to contain the output from a program.
Known:

The data set name: MOSER7.OUT.DATA
The file name: OUTPUT
You do not want to hold unused space.

alloc dataset(out.data) file(output) new space(10,2) +
tracks release

Example 13

Operation: Allocate an existing multi-volume data set to SYSDA, with one
device mounted for each volume.

Known:
Data set name - MOSER7.MULTIVOL.DATA
volumes - D95VL1
D95VL2
D95VL3
filename - SYSLIB

alloc dataset('moser7.multivol.data') old parallel +
file(syslib) volume (d95v11,395v12,d95v13) +
unit (sysda)

Example 14

Operation: Allocate an existing data set as the second file of a
standard-label tape.

Known:

Data set name - MOSER7.TAPE1.DATA
volume - TAPEVL

unit - 2400

alloc dataset('moser7.tapel.data') label(sl) +
unit (2400) volume (tapevl) position(2)

Example 15

Operation: Allocate an output data set using the FCB and COPIES
operands to request formatted copies of an output data set.

Known:

The data set name: OUTPUT
The FCB image desired: STD1
The number of copies: 10

alloc file(output) sysout fcb(stdl) copies(10)

38 TSO Command Language Reference

Example 16

Operation: Allocate a new tape data set using the PROTECT operand to
request RACF protection.

Known:

The data set name: MOSER7.TAPE2.DATA
The volume: TAPEV2
The unit: 2400

alloc da(tape2.data) unit(2400) label(sl) position(1) +
volume (tapev2) protect new

Example 17

Operation: Allocate a new DASD data set using the PROTECT operand
to request RACF protection:

Known:

The data set name: MOSER7.DISK.DATA
The logical record length: 80

The DCB block size: 8000

The record format: Fixed Block

The number of tracks: 2

alloc da(disk.data) dsorg(ps) space(2,0) trks lrecl(80) +
blksize(8000) recfm(f,b) protect new

ALLOCATE Command 39

ATTRIB Command

Use the ATTRIB command to build a list of attributes for non-VSAM data
sets that you intend to allocate dynamically. During the remainder of your
terminal session you can have the system refer to this list for data set
attributes when you enter the ALLOCATE command. The ALLOCATE
command will convert the attributes into DCB parameters and LABEL
parameters for data sets being allocated. See also the subparameters of the
DCB parameter in JCL.

The ATTRIB command allocates a file with the same name as your
attribute-list-name. You can use the LISTALC command with the
STATUS keyword to list your active attribute lists. The data set name is
NULLFILE which is also the data set name for files allocated with the
DUMMY keyword of the ALLOCATE command. Note that, since this is a
NULLFILE allocation, it is subject to use and modification by other
commands. Therefore, it is advisable to allocate those data sets for which
the attribute list was built before you issue any commands that may cause
NULLFILE allocation, such as LINK or RUN.

With the LIKE keyword and the DCB operands on the ALLOCATE
command, you do not have to use the ATTRIB command.

ATTRIB Command 41

42 TSO Command Language Reference

ATTRIB attr-list-name
ATTR

[BLKSIZE(blocksize)])
[BUFL (buffer-length)]
[BUFNO (number-of-buffers)]

ELRECL ({logical-record—length})]
X

[NCP (no.-of-channel-programs)]
INPUT
OUTPUT

EXPDT (year-day)
RETPD (no.-of-days)

= (f]

(oPTCD(A,B,C,E,F,H,Q,R,T,W,and/or 2Z)]

[ErROPT /(ACC
SKP
ABE

FBFTEK s
E
A

- R
[RECFM(A,B,D,F,M,S,T,U,and/or V)]
[DIAGNS (TRACE}]

[LIMCT (search-number)]

BUFOFF block-prefix-length
L

[DsorG DA
DAU
PO
POU
PS
L PSU
[DEN 0
]
2
3
L 4
" TRTCH c
E
ET
A T

KEYLEN (key-length)

attr-list-name
specifies the name for the attribute list. This name can be specified
later as a parameter of the ALLOCATE command. The name must
consist of one through eight alphameric and/or national characters,
must begin with an alphabetic or national character, and must be
different from all other attr-list-names and ddnames that are in
existence for your terminal session.

BLKSIZE((blocksize)
specifies the block size for the data sets. The block size must be a
decimal number and must not exceed 32,760 bytes.

The block size that you specify must be consistent with the
requirements of the RECFM operand. If you specify:

* RECFM(F), then the block size must be equal to or greater
than the logical record length.

« RECFM(F B), then the block size must be an integral multiple
of the logical record length.

« RECFM(YV), then the block size must be equal to or greater
than the largest block in the data set. (Note: For unblocked
variable-length records, the size of the largest block must allow
space for the four byte block descriptor word in addition to the
largest logical record length. The logical record length must
allow space for a four-byte record descriptor word.)

« RECFM(V B), then the block size must be equal to or greater
than the largest block in the data set. (Note: For block
variable length records, the size of the largest block must allow
space for the four byte block descriptor word in addition to the
sum of the logical record lengths that will go into the block.
Each logical record length must allow space for a four-byte
record descriptor word.) Since the number of logical records
can vary, you must estimate the optimum block size (and the
average number of records for each block) based on your
knowledge of the application that requires the I/O.

« RECFM(U) and BLKSIZE(80), then one character will be
truncated from the line, that character (the last byte) is reserved
for an attribute character.

BUFL(buffer-length)
specifies the length, in bytes, of each buffer in the buffer pool.
Substitute a decimal number for buffer-length. The number must not
exceed 32,760.

If you omit this operand and the system acquires buffers
automatically, the BLKSIZE and KEYLEN operands will be used to
supply the information needed to establish buffer length.

BUFNO(number-of-buffers)
specifies the number of buffers to be assigned for data control
blocks. Substitute a decimal number for number-of-buffers. The
number must never exceed 255, and you may be limited to a smaller
number of buffers depending on the limit established when the
operating system was generated. The following table shows the
condition that requires you to include this operand.

When you use one of the following methods of obtaining the buffer pool... then:

(1) BUILD macro instruction (1) You must specify BUFNO.

(2) GETPOOL macro instruction (2) The system uses the number
that you specify for
GETPOOL.

(3) Automatically with BPAM or BSAM (3) You must specify BUFNO.

(4) Automatically with QSAM (4) You may omit BUFNO and

accept two buffers.

ATTRIB Command 43

44 TSO Command Language Reference

LRECL(logical-record-length)
specifies the length, in bytes, of the largest logical record in the data
set. You must specify this operand for data sets that consist of either
fixed-length or variable-length records.

Omit this operand if the data set contains undefined-length records.

The logical record length must be consistent with the requirements of
the RECFM operand and must not exceed the block size (BLKSIZE
operand) except for variable-length-spanned records. If you specify:

« RECFM(V) or RECFM(V B), then the logical record length is
the sum of the length of the actual data fields plus four bytes
for a record descriptor word.

« RECFM(F) or RECFM(F B), then the logical record length is
the length of the actual data fields.

« RECFM(U), then you should omit the LRECL operand.

Note: For variable-length spanned records (VS or VBS) processed by
QSAM (locate mode) or BSAM, specify LRECL (X) when the logical
record exceeds 32,756 bytes.

NCP(number-of-channel-programs)
specifies the maximum number of READ or WRITE macro
instructions allowed before a CHECK macro instruction is issued.
The maximum number must not exceed 99 and must be less than 99
if a lower limit was established when the operating system was
generated. If you are using chained scheduling, you must specify an
NCP value greater than 1. If you omit the NCP operand, the default
value is 1.

INPUT
specifies that a BSAM data set opened for INOUT or a BDAM data
set opened for UPDAT is to be processed for input only. This
parameter overrides the INOUT (BSAM) option or UPDAT
(BDAM) option in the OPEN macro instruction to INPUT.

OUTPUT
specifies that a BSAM data set opened for OUTIN Or OUTINX is to
be processed for output only. This parameter overrides the OUTIN
option in the OPEN macro instruction to OUTPUT or the OQUTINX
option in the OPEN macro instruction to EXTEND.

EXPDT(year-day)
specifies the data set expiration date. You must specify the year and
day in the form ‘yyddd’, where ‘yy’ is a two digit decimal number for
the year and ‘ddd’ is a three digit decimal number for the day of the
year. For example, January 1, 1974 is 74001 and December 31,
1975 is 75365.

RETPD(number-of-days)
specifies the data set retention period in days. The value may be a
one to four digit decimal number.

D
specifies the boundary alignment of each buffer as follows:

BFALN({F})

F each buffer starts on a fullword boundary that is not a
doubleword boundary.

D each buffer starts on a doubleword boundary.

If you do not specify this operand and it is not available from any
other source, data management routines assign a doubleword
boundary.

OPTCD(A,B,C,E,F,H,Q,R,T,W and/or Z)
specifies the following optional services that you want the system to
perform. (See also the OPTCD subparameter of the DCB parameter
in JCL for a detailed discussion of these services.)

A specifies that actual device addresses be presented in READ and
WRITE macro instructions.

B specifies that end-of-file (EOF) recognition be disregarded for
tapes.

C specifies the use of chained scheduling.

E requests an extended search for block or available space.

F specifies that feedback from a READ or WRITE macro
instruction should return the device address in the form it is
presented to the control program.

H requests the system to check for and bypass.

Q requests the system to translate a magnetic tape from ASCII to
EBCDIC or from EBCDIC to ASCII.

R requests the use of relative block addressing.

T requests the use of the user totaling facility.

W requests the system to perform a validity check when data is

written on a direct access device.

Z requests the control program to shorten its normal error
recovery procedure for input on magnetic tape.

(You can request any or all of the services by combining the values
for this operand. You may combine the characters in any sequence,
being sure to separate them with blanks or commas.)

EROPT((ACC))
H
ABE
specifies the option that you want executed if an error occurs when a
record is read or written. The options are:

ACC to accept the block of records in which the error was found.
SKP to skip the block of records in which the error was found.
ABE to end the task abnormally.

ATTRIB Command 45

BFTEK((S \)
E
A
R
specifies the type of buffering that you want the system to use. The
types that you can specify are:

S simple buffering

E exchange buffering

A automatic record area buffering
R record buffering

RECFM(A,B,D,F,M,S,T,U, and/or V)
specifies the format and characteristics of the records in the data set.
The format and characteristics must be completely described by one
source only. If they are not available from any source, the default
will be an undefined-length record. (See also the RECFM
subparameter of the DCB parameter in JCL for a detailed discussion
of the formats and characteristics.)

Use the following values with the RECFM operand.

A indicates that the record contains ASCII printer control
characters.

indicates that the records are blocked.
indicates variable-length ASCII records.
indicates that the records are of fixed-length.

2 mMU w

indicates that the records contain machine code control
characters.

(7]

indicates that, for fixed-length records, the records are written
as standard blocks (there must be no truncated blocks or
unfilled tracks except for the last block or track). For
variable-length records, a record may span more than one block.
Exchange buffering, BFTEK(E), must not be used.

T indicates that the records may be written onto overflow tracks if
required. Exchange buffering, BFTEK(E), or chained
scheduling, OPTCD(C), cannot be used.

U indicates that the records are of undefined length.

V indicates that the records are of variable length.

You may specify one or more values for this operand (at least one is
required).

DIAGNS(TRACE)
specifies the Open/Close/EOV trace option that gives a
module-by-module trace of the Open/Close/EOV work area and the
user’s DCB.

LIMCT (search-number)
specifies the number of blocks or tracks to be searched for a block
or available space. The number must not exceed 32,760.

46 TSO Command Language Reference

BUFOFF(f block-prefix-length))

L

specifies the buffer offset. The block prefix length must not exceed
99. “L” is specified if the block prefix field is four bytes long and
contains the block length.

DSORG(

DA)
DAU

PO

POU

PS

PSU

specifies the data set organization as follows:

DA - direct access

DAU - direct access unmovable

PO - partitioned organization
POU - partitioned organization unmovable
PS - physical sequential
PSU - physical sequential unmovable
DEN({0})
1
2
3
4
specifies the magnetic tape density as follows:
0- 200 bpi/7 track
1- 556 bpi/7 track
2 - 800 bpi/7 and 9 track
3- 1600 bpi/9 track
4 - - 6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or
equivalent)
TRTCH({ C })
E
T
ET
specifies the recording technique for 7-track tape as follows:
C data conversion with odd parity and no translation
E even parity with no translation and no conversion
T odd parity and no conversion; BCD to EBCDIC translation
when reading and EBCDIC to BCD translation when writing
ET even parity and no conversion; BCD to EBCDIC translation

when reading and EBCDIC to BCD translation when writing

ATTRIB Command 47

48 TSO Commsand Language Reference

\

KEYLEN(key-length)
specifies the length in bytes of each of the keys used to locate blocks
of records in the data set when the data set resides on a direct access
device. The key length must not exceed 255 bytes. If an existing
data set has standard labels, you can omit this operand and let the
system retrieve the key length from the standard label. If a key
length is not supplied by any source before you issue an OPEN
macro instruction, a length of zero (no keys) is assumed. This
keyword is mutually exclusive with TRTCH.

Example 1

Operation: Create a list of attributes to be assigned to a data set when the
data set is allocated.

Known:

The following attributes correspond to the DCB parameters that you want
assigned to a data set.

Optional services: chained-scheduling, user totaling.
Expiration date: Dec. 31, 1977.

Record format: variable-length spanned records.

Error option: abend when READ or WRITE error occurs.
Buffering: simple buffering.

Boundary alignment: doubleword boundary.

Logical record length: records may be larger than 32,756 bytes. The
name for this attribute list is DCBPARMS.

attr dcbparms optcd(c t) expdt(77365) recfm(v s) -
eropt (abe) bftek(s) bfaln(d) lrecl(x)

Example 2

Operation: This example shows how to create an attribute list, how to use
the list when allocating two data sets, and how to delete the list so that it
cannot be used again.

Known:

The name for the attribute list: DSATTRS

The attributes: EXPDT(99365) BLKSIZE(24000) BFTEK(A)
The name for the first data set: FORMAT.INPUT

The name of the second data set: TRAJECT.INPUT

attrib dsattrs expdt(99365) blksize(24000) -
bftek(a)

allocate dataset(format.input) new block(80) -
space(1,1) volume(111111) using(dsattrs)

alloc da(traject.input) old bl(80) volume(111111) -
using(dsattrs)

free attrlist (dsattrs)

CALL Command

Use the CALL command to load and execute a program that exists in
executable (load module) form. The program may be user-written, or it
may be a system module such as a compiler, sort, or utility program.

You must specify the name of the program (load module) to be processed.
It must be a member of a partitioned data set.

You may specify a list of parameters to be passed to the specified program.
The system formats this data so that when the program receives control,
register one contains the address of a fullword. The three low order bytes
of this fullword contain the address of a halfword field. This halfword field
is the count of the number of bytes of information contained in the
parameter list. The parameters immediately follow the halfword field.

If the program terminates abnormally, you are notified of the condition and
may enter a TEST command to examine the failing program.

CALL dsname
dsname (membername)

['parameter-string']

dsname(membername)
specifies the name of a partitioned data set and the membername
(program name) to be executed. The membername must be enclosed
in parentheses.

Note: A temporary tasklib is established when programs are invoked
via the CALL command. The tasklib is effective for the execution of
the CALL command and the tasklib data set is the same as the
dsname specified on the invocation of the CALL command.

If the name of the partitioned data set does not conform to the data
set naming conventions, it must include the member name in the
following manner:

dsname (membername)

If you specify a fully qualified name, enclose it in apostrophes
(single quotes) in the following manner:

'wrrid.myprogs.loadmod(a) '
'sys1.linklib(ieuasm) '

parameter string
specifies up to 100 characters of information that you want to pass

to the program as a parameter list. When passing parameters to a
program, you should use the standard linkage conventions.

CALL Command 49

50 TSO Command Language Reference

Example 1°

Operation: Execute a load module.

Known:

The name of the load module:

Parameters: 10,18,23
call pearl '10,18,23"

Example 2

Operation: Execute a load module.

Known:

The name of the load module:

call mylib{(cos1)

Example 3

Operation: Execute a load module.

Known:

The name of the load module:

call (sin1)

JUDAL.PEARL.LOAD(TEMPNAME)

JUDAL.MYLIB.LOAD(COS1)

JUDAL.LOAD(SIN1)

DELETE Command

Use the DELETE command to delete one or more data set entries or one
or more members of a partitioned data set.

The catalog entry for a partitioned data set is removed only when the
entire partitioned data set is deleted. The system deletes a member of a
partitioned data set by removing the member name from the directory of
the partitioned data set.

Members of a partitioned data set and aliases for any members must each
be deleted explicitly. That is, when you delete a member, the system does
not remove any alias names of the member; likewise, when you delete an

alias name, the member itself is not deleted.

If a generation-data-group entry is to be deleted, any generation data sets
that belong to it must have been deleted.

For MVS, the original TSO DELETE command has been replaced by the
Access Method Services command with the same name. The explanations
given below provide the information required to use these services for
normal TSO operations. The TSO user who wants to manipulate VSAM
objects or who wants to use the other Access Method Services from his
terminal should refer to Access Method Services. For error message
information, refer to Message Library: System Messages.

The DELETE command supports unique operand abbreviations in addition
to the usual abbreviations produced by truncation. The syntax and operand
explanations show these unique cases.

Before you delete a protected non-VSAM data set, you should use the
PROTECT command to delete the password from the password data set.
This will prevent your having insufficient space for future entries.

DELETE Command 51

52 TSO Command Language Reference

DELETE} (entryname(/password] [...])
DEL

[CATALOG (catname [/password])]

[FILE(ddname)]

[{purGE

PRG

NOPURGE
NPRG |

[ERASE
NOERASE
NERRS f
SCRATCH
NOSCRATCH
NSCR

(CLUSTER
USERCATALOG
UCAT

SPACE

SPC
NONVSAM
NVSAM
ALIAS ,
GENERATIONDATAGROUP
GDG

PAGESPACE}

| \pGspC

entryname[/password][...]

is a required parameter that names the entries to be deleted. When
more than one entry is to be deleted, the list of entry names must be
enclosed in parentheses. This parameter must be the first parameter
following DELETE.

If you want to delete several data set entries having similar names,
you may insert an asterisk into the data set name at the point of
dissimilarity. That is, all data set entries whose names match except
at the position where the asterisk is placed will be deleted. However,
you may use only one asterisk per data set name, and you must not
place it in the first position. TSO does not prefix the userid when an
asterisk appears in the first position.

For instance, suppose that you have several data set entries named:

VACOT.SOURCE.PLI
VACOT.SOURCE2.PLI
VACOT.SOURCE2.TEXT
VACOT.SOURCE2.DATA

If you specify:
delete source2.*

the only data set entry remaining will be
VACOT.SOURCE.PLI

password
specifies a password for a password-protected entry.
Passwords may be specified for each entry name or the
catalog’s password may be specified through the CATALOG
parameter for the catalog that contains the entries to be
deleted.

CATALOG(catname(/password])
specifies the name of the catalog that contains the entries to be
deleted.

catname
identifies the catalog that contains the entry to be deleted.

password
specifies the master password of the catalog that contains the
entries to be deleted.

FILE(ddname)
specifies the name of the DD statement that identifies the volume

that contains the data set to be deleted or identifies the entry to be
deleted.

PURGE or PRG
specifies that the entry is to be deleted even if the retention period,
specified in the TO or FOR parameter, has not expired.

NOPURGE or NPRG
specifies that the entry is not to be deleted if the retention period has
not expired. When NOPURGE is coded and the retention period has
not expired, the entry is not deleted. If neither PURGE nor
NOPURGE is coded, NOPURGE is the default.

ERASE
specifies that the data component of a cluster (VSAM only) is to be
overwritten with binary zeros when the cluster is deleted. If ERASE
is specified, the volume that contains the data component must be
mounted.

NOERASE or NERAS
specifies that the data component of a cluster (VSAM only) is not to
be overwritten with binary zeros when the cluster is deleted.

SCRATCH
specifies that a non-VSAM data set is to be scratched (removed)
from the volume table of contents (VTOC) of the volume on which
it resides. SCRATCH is the default if neither SCRATCH nor
NOSCRATCH is specified.

NOSCRATCH or NSCR
specifies that a non-VSAM data set is not to be scratched (removed)
from the VTOC of the volume on which it resides.

CLUSTER
specifies that the entry to be deleted is a cluster entry for a VSAM
data set.

USERCATALOG or UCAT
specifies that the entry to be deleted is a user-catalog entry. This

parameter must be specified if a user catalog is to be deleted. A user
catalog can be deleted only if it is empty.

DELETE Command 53

54 TSO Command Language Reference

SPACE
specifies that the entry to be deleted is a data-space entry. This
parameter is required if a data space is to be deleted. A data space
can be deleted only if it is empty.

NONVSAM or NVSAM
specifies that the entry to be deleted is a non-VSAM data set entry.

ALIAS
specifies that the entry to be deleted is an alias entry.

GENERATIONDATAGROUP or GDG
specifies that the entry to be deleted is a generation-data-group
entry. A generation-data-group base can be deleted only if it is
empty.

PAGESPACE or PGSPC
specifies that a page space is to be deleted. A page space can be
deleted only if it is inactive.

If the FILE parameter is omitted, the entryname is dynamically
allocated in the following cases:

e A non-VSAM entry is to be deleted and scratched.

e« An entry is to be deleted and erased.

« An entry that resides in a data space of its own is to be deleted.
Example

Operation: Delete an entry. In this example, a non-VSAM data set is
deleted.

Known:

The prefix in the user’s profile is D27UCAT.
Your userid is D27UCAT.

delete example.nonvsam scratch nonvsam

The DELETE command deletes the non-VSAM data set
(D27UCAT.EXAMPLE.NONVSAM). Because the catalog in which
the entry resides is assumed not to be password protected, the
CATALOG parameter is not required to delete the non-VSAM entry.

SCRATCH removes the VTOC entry of the non-VSAM data set.
Because FILE is not coded, the volume that contains
D27UCAT.EXAMPLE.NONVSAM is dynamically allocated.

NONVSAM ensures that the entry being deleted is a non-VSAM data
set. However, DELETE can still find and delete a non-VSAM data
set if NONVSAM is omitted.

EDIT Command

The EDIT command is the primary facility for entering data into the
system. Therefore, almost every application involves some use of EDIT.
With EDIT and its subcommands, you can create, modify, store, submit,
retrieve, and delete data sets with sequential or partitioned data set
organization. The data sets may contain:

e Source programs composed of program language statements (PL/I,
COBOL, FORTRAN, etc.)

« Data used as input to a program

¢ Text used for information storage and retrieval

« Commands, subcommands, and/or data (command procedure)
« Job control language (JCL) statements for background jobs

The EDIT command will support only data sets that have one of the
following formats:

o Fixed blocked, unblocked, or standard block; with or without ASCII
and machine record formats

e Variable blocked or unblocked; without ASCII or machine control
characters

EDIT support of print control data sets is “read only.” Whenever a SAVE
subcommand is entered for an EDIT data set originally containing print
control characters, the ability to print the data set on the printer with
appropriate spaces and ejects is lost. If you enter SAVE without operands
for a data set containing control characters, you will be warned that the
data set will be saved without control characters, and you can elect to
either save into the original data set or enter a new data set name. If the
data set specified on the EDIT command is partitioned and contains print
control characters, a save into it will not be allowed.

EDIT Command 55

56 TSO Command Language Reference

e}

data-set-name[/password]

'EMODE
IMODE

RECOVER
| NORECOVER

[NEW
| oLD

rPLI

PLIF

integer 1
2

integer 2
72

ASM

integer 1 [integer 2
2 12]

CHARG60
CHAR48

CHAR60
CHARA48

COBOL
FORTGI
FORTH
TEXT
DATA
CLIST
CNTL

| VSBASIC

[scan]

NOSCAN
.

[NUM

[(integer1[integer2]}]
| NoNUM

FBLOCK(integer)
BLKSIZE (integer)

LINE(integer)
LRECL (integer)

[
Ed

data-set-name

specifies the name of the data set that you want to create or edit.

password

specifies the password associated with the data-set-name. If the
password is omitted and the data set is password protected, you will
be prompted for the data set’s password. Read protected partitioned
data sets will cause a prompt for the password twice, provided it is
not entered on the EDIT command, or is not the same password as
your LOGON userid password.

EMODE

specifies that the initial mode of entry is edit mode. This is the
default for OLD data sets.

IMODE

specifies that the initial mode of entry is input mode. This is the
default for NEW or empty data sets.

RECOVER

specifies that the user intends to recover an EDIT workfile containing
the data set named on the EDIT command as the data set to be

edited. The user is placed in edit mode. This operand is valid only
when the user’s profile has the RECOVER attribute.

NORECOVER

NEW

OLD

Note:

specifies that the user does not want to recover a workfile, even if a
recoverable workfile exists.

specifies that the data set named by the first operand does not exist.
If an existing cataloged data set already has the data set name that
you specified, the system notifies you when you try to save it;
otherwise, the system allocates your data set when you save it. If
you specify NEW without specifying a member name, a sequential
data set is allocated for you when you save it. If you specify NEW
and include a member name the system allocates a partitioned data
set and creates the indicated member when you try to save it.

specifies that the data set named on the EDIT command already
exists. When you specify OLD and the system is unable to locate
the data set, you will be notified and you will have to reenter the
EDIT command. If you specify OLD without specifying a member
name, the system will assume that your data set is sequential; if the
data set is in fact a partitioned data set, the system will assume that
the member name is TEMPNAME. If you specify OLD and include
a member name, the system will notify you if your data set is not
partitioned. '

If you do not specify OLD or NEW, the system uses a tentative
default of OLD. If the data set name or member name that you
specified, cannot be located, the system defaults to NEW.

Any user-defined data set type (specified at system generation) is

also a valid data-set-type keyword and may have subfield parameters
defined by the user’s installation (see Figure 5, note 4).

PLI

PLIF

specifies that the data identified by the first operand is for PL/I
statements that are to be held as V-format records with a maximum
length of 104 bytes. The statements may be for the PL/I Optimizing
compiler or the PL/I Checkout compiler.

specifies that the data set identified by the first operand is for PL/I
statements that are to be held as fixed format records 80 bytes long.
The statements may be for the PL/I Optimizing compiler or the
PL/1 Checkout compiler.

integerl and integer2

specify the column boundaries for your input statements. These
values are applicable only when you request syntax checking of a
data set for which the PLIF operand has been specified. The
position of the first character of a line, as determined by the left
margin adjustment on your terminal, is column 1. The value for
integer1 specifies the column where each input statement is to begin.
The statement can extend from the column specified by integerl up
to and including the column specified as a value for integer2. If you
omit integerl you must omit integer2, and the default values are

EDIT Command 57

58 TSO Command Language Reference

columns 2 and 72; however, you can omit integer2 without omitting
integerl.

CHAR4S or CHAR60
CHARA4S8 specifies that the PL/I source statements are written using
the character set that consists of 48 characters. CHARG60 specifies
that the source statements are written using the character set that

consists of 60 characters. If no value is entered, the default value is
CHARG6O.

ASM
specifies that the data set identified by the first operand is for
assemblerklanguage statements.

COBOL
specifies that the data set identified by the first operand is for
COBOL statements.

CLIST
specifies that the data set identified by the first operand is for a
command procedure and will contain TSO commands and
subcommands as statements or records in the data set. The data set
will be assigned line numbers.

CNTL
specifies that the data set identified by the first operand is for job
control language (JCL) statements and SYSIN data to be used with
the SUBMIT command or subcommand.

TEXT
specifies that the data set identified by the first operand is for text
that may consist of both uppercase and lowercase characters.

DATA
specifies that the data set identified by the first operand is for data
that may be subsequently retrieved or used as input data for
processing by an application program.

FORTGI
specifies that the data set identified by the first operand is for
FORTRAN IV (G1) statements. '

FORTH
specifies that the data set identified by the first operand is for
FORTRAN IV (H) EXTCOMP statements.

VSBASIC

specifies that the data set identified by the first operand is for
VSBASIC statements.

Note: The ASM, CLIST, CNTL, COBOL, DATA, FORTGI,
FORTH, PLI, PLIF, TEXT, and VSBASIC operands specify the type
of data set you want to edit or create. You must specify one of
these whenever:

o The data-set-name operand does not follow data set naming
conventions (that is, it is enclosed in quotes).

+ The data-set-name operand is a member name only (that is, it is
enclosed in parentheses).

e The data-set-name operand does not include a descriptive
qualifier; or the descriptive qualifier is such that EDIT cannot

determine the data set type. (See Figure 1 for a list of valid
descriptive qualifiers.)

The system prompts the user for data set type whenever the type
cannot be determined from the descriptive qualifier (as in the 3 cases
above), or whenever the user forgets to specify a descriptive qualifier
on the EDIT command.

Note: If PLI is the descriptive qualifier, the data set type default is
PLI. To use data set types FORTGI or FORTH you must enter the
data set type keyword to save it.

SCAN
specifies that each line of data you enter in input mode is to be
checked statement by statement for proper syntax. Syntax checking
is available only for statements written in FORTGI and FORTH.

Note: User-defined data set types can also use this keyword if a
syntax checker name was specified at system generation time.

NOSCAN
specifies that syntax checking is not to be performed. This is the
default value if neither SCAN nor NOSCAN is specified.

NUM(integer1 integer2)
specifies that the lines of the data set records are numbered. You
may specify integerl and integer2 for ASM type data sets only.
Integer1 specifies, in decimal, the starting column (73-80) of the line
number. Integer2 specifies, in decimal, the length (8 or less) of the
line number. Integerl plus integer2 cannot exceed 81. If integerl
and integer2 are not specified, the line numbers will assume
appropriate default values.

NONUM
specifies that your data set records do not contain line numbers. Do
not specify this keyword for the VSBASIC and CLIST data set
types, since they must always have line numbers. The default is
NUM.

BLOCK((integer) or BLKSIZE(integer)
specifies the maximum length, in bytes, for blocks of records of a
new data set. Specify this operand only when creating a new data
set or editing an empty old data set. You cannot change the block
size of an existing data set except if the data set is empty. If you
omit this operand, it will default according to the type of data set
being created. Default block sizes are described in Figure 5. If
different defaults are established at system generation (SYSGEN)
time, Figure 5 values may not be applicable. The block size
(BLOCK or BLKSIZE), for data sets that contain fixed-length
records must be a multiple of the record length (LINE or LRECL);
for variable-length records, the block size must be a multiple of the
record length plus 4.

Note: If BLKSIZE (80) is coded with RECFM(U), then the line will be
truncated by 1 character. This byte (the last one) is reserved for an
attribute character..

EDIT Command 59

60 TSO Command Language Reference

LINE(integer) or LRECL(integer)

specifies the length of the records to be created for a new data set.
Specify this operand only when creating a new data set or editing an
empty old data set. The new data set will be composed of
fixed-length records with a logical record length equal to the
specified integer. You cannot change the logical record size of an
existing data set unless the data set is empty. If you specify this
operand and the data set type is ASM, FORTGI, FORTH, COBOL
or CNTL the integer must be 80. If this operand is omitted, the line
size defaults according to the type of data set being created. Default
line sizes for each data set type may be found in Figure 5. This
operand is used in conjunction with the BLOCK or BLKSIZE
operand.

specifies that all input data and data on modified lines is to be
converted to uppercase characters. If you omit both CAPS and
ASIS, CAPS is the default except when the data set type is TEXT.

specifies that input and output data is to retain the same form
(uppercase and lowercase) as entered. ASIS is the default for TEXT
only.

Data LRECL | Block Size Line Numbers

Set DSORG LINE(n) BLOCK(n) NUM(n,m) CAPS/ASIS

Type default specif. default specif. default(n,m) spec. default CAPS

(Note 1) . Required

ASM PS/PO 80 =80 3120 <default Last 8 73<n<80 CAPS Yes
CLIST PS/PO 255 (Note 2) 3120 <default (Note 3) CAPS Yes
CNTL PS/PO 80 =80 3120 <default Last 8 CAPS Yes
COBOL PS/PO 80 =80 400 <default First 6 CAPS Yes
DATA PS/PO 80 <255 3120 <default Last 8 CAPS No
FORTGI PS/PO 255 =80 400 <default Last 8 CAPS Yes
FORTH PS/PO 255 =80 400 <default Last 8 CAPS Yes
(or user supplied data set type - See Note 4)
PLI PS/PO 104 <100 400 <default (Note 3) CAPS No
PLIF PS/PO 80 <100 400 <default Last 8 CAPS Yes
TEXT PS/PO 255 (Note 2) 3120 <default (Note 3) ASIS No
VSBASIC | PS/PO 255 =80 3120 _£=32,760 First 5 CAPS Yes
Notes:

1. The default or maximum allowable block size may be
specified at SYSGEN time.

2. Specifying a LINE value results in fixed length records with
a LRECL equal to the specified value. The specified value
must always be equal to or less than the defauit. If the
LINE keyword is omitted, variable length records will be
created.

3. The line numbers will be contained in the last eight bytes
of all fixed length records and in the first eight bytes of all
variable length records.

4. A user can have additional data set types recognized by the
EDIT command processor. These user-defined data set
types, along with any of the data set types shown above,
can be defined at system generation time by using the EDIT
macro. The EDIT macro causes a table of constants to be
built which describes the data set attributes. For more
F type: Last 8 characters.

information on how to specify the EDIT macro at system
generation time, refer to SPL: System Generation

Reference.

When a user wants to edit a data set type that he has defined
himself, the data set type is used as the descriptor (right-
most) qualifier. The use cannot override any data set types
that have been defined by IBM. The EDIT command
processor will support data sets that have the following

attributes.

Data Set Organization: Must be either sequential or

Record formats:
Logical Record Size:
Block Sizes:

Sequence Numbers:

partitioned

Fixed or Variable

Less than or equal to 255 characters
User specified--must be less than or
equal to track length

V type: First 8 characters

+ Figure 5. Default Values for LINE or LRECL and BLOCK or BLKSIZE Operands

EDIT Command 61

Modes of Operation

Input Mode

62 TSO Command Language Reference

The EDIT command has two modes of operation: input mode and edit
mode. You enter data into a data set when you are in input mode. You
enter subcommands and their operands when you are in edit mode.

You must specify a data set name when you enter the EDIT command. If
you specify the NEW keyword, the system places you in the input mode.
If you do not specify the NEW keyword, you are placed in the edit mode if
your specified data set is not empty; if the data set is empty, you will be
placed in input mode.

If you have limited access to your data set, by assigning a password, you
can enter a slash (/) followed by the password of your choice after the
data set name operand of the EDIT command.

In input mode, you type a line of data and then enter it into the data set
by pressing your terminal’s carrier return key. You can enter lines of data
as long as you are in input mode. One typed line of input becomes one
record in the data set.

Caution: If you enter a command or subcommand while you are in input
mode, the system will add it to the data set as input data. Enter a null-line
to return to edit mode before entering any subcommands.

Line Numbers: Unless you specify otherwise, the system assigns a line
number to each line as it is entered. The default is an interval of 10. Line
numbers make editing much easier, because you can refer to each line by
its own number.

Each line number consists of not more than eight digits, with the significant
digits justified on the right and preceded by zeros. Line numbers are
placed at the beginning of variable-length records and at the end of
fixed-length records (exception: line numbers for COBOL fixed-length
records are placed in the first six positions at the beginning of the record).
When you are working with a data set that has line numbers, you can have
the new line number listed at the start of each new input line. If you are
creating a data set without line numbers, you can request that a prompting
character be displayed at the terminal before each line is entered.
Otherwise, none will be issued.

All input records will be converted to uppercase characters, except when
you specify the ASIS or TEXT operand. The TEXT operand also specifies
that character-deleting indicators and tabulation characters will be
recognized, but all other characters will be added to the data set
unchanged.

All assembler source data sets must consist of fixed-length records 80
characters in length. These records may or may not have line numbers. If
the records are line-numbered, the number can be located anywhere within
columns 73 to 80 of the stored record (the printed line number always
appears at the left margin).

You can create a variety of FORTRAN data sets: FORTGI and FORTH.

Syntax Checking: You can have each line of input checked for proper
syntax. The system will check the syntax of statements for data sets having

FORT descriptive qualifiers. Input lines will be collected within the system
until a complete statement is available for checking.

When an error is found during syntax checking, an appropriate error
message is issued and edit mode is entered. You can then take corrective
action, using the subcommands. When you wish to resume input
operations, press your terminal’s carrier return key without typing any
input. Input mode is then entered and you can continue where you left off.
Whenever statements are being checked for syntax during input mode, the
system will prompt you for each line to be entered unless you specify the
NOPROMPT operand for the INPUT subcommand.

Continuation of a Line in Input Mode: In input mode there are two
independent situations that require you to indicate the continuation of a
line by ending it with a hyphen or plus sign (that is, a hyphen or plus sign
followed immediately by pressing the ENTER key). The situations are:

« The syntax checking facility is being used.
e The data set type is CLIST (variable-length records).

If none of these situations apply, avoid ending a line with a hyphen (minus
sign) since it will be removed by the system before storing the line in your
data set.

You must use the hyphen when the syntax checking facility is active to
indicate that the logical line to be syntax checked consists of multiple input
lines. The editor will then collect these lines (removing the hyphens) and
pass them as one logical line to the syntax scanner. However, each
individual input line (with its hyphen removed) is also stored separately in
your data set.

The hyphen is used to indicate logical line continuation in command
procedures. If the command procedure is in variable-length record format
(the default), the hyphen is not removed by EDIT but becomes part of the
stored line in your data set and will be recognized when executed by the
EXEC command processor. If the command procedure is in fixed-length
record format, a hyphen, placed eight character positions before the end of
the record and followed by a blank, will be recognized as a continuation
when executed by the EXEC command processor. (This assumes that the
line number field is defined to occupy the last eight positions of the stored
record.) For example, if the parameter LINE(80) was specified on the
EDIT command when defining the command procedure data set, the
hyphen must be placed in data position 72 of the input line followed
immediately by a blank. (Location of a particular input data column is
described under the TABSET subcommand of EDIT.)

Note that these rules apply only when entering data in input mode. When
you use a subcommand (for example, CHANGE or INSERT) to enter data,
a hyphen at the end of the line indicates subcommand continuation; the
system will append the continuation data to the subcommand.

To insert a line of data ending in a hyphen in situations where the system
would remove the hyphen (that is, while in subcommand mode or in input
mode for other than a command procedure data set), enter a hyphen in the
next-to-last column, a blank in the last column, and immediately press the
ENTER key.

EDIT Command 63

Edit Mode

64 TSO Command Language Reference

You can enter subcommands to edit data sets when you are in edit mode.
You can edit data sets that have line numbers by referring to the number
of the line that you want to edit. This is called /ine-number editing. You
can also edit data by referring to specific items of text within the lines.
This is called context editing. A data set having no line numbers may be
edited only by context. Context editing is performed by using
subcommands that refer to the current line value or a character
combination, such as with the FIND or CHANGE subcommands. There is
a pointer within the system that points to a line within the data set.
Normally, this pointer points to the last line that you referred to. You can
use subcommands to change the pointer so that it points to any line of data
that you choose. You may then refer to the line that it points to by
specifying an asterisk (*) instead of a line number. Figure 6shows where
the pointer points at completion of each subcommand.

Note: A current-line pointer value of zero refers to the position before the
first record, if the data set does not contain a record zero.

When you edit data sets with line numbers, the line number field will not
be involved in any modifications made to the record except during
renumbering. Also, the only editing operations that will be performed
across record boundaries will be the CHANGE and FIND subcommands,
when the TEXT and NONUM operands have been specified for the EDIT
command. In CHANGE and FIND, an editing operation will be performed
across only one record boundary at a time.

EDIT Subcommands
ALLOCATE
BOTTOM'
CHANGE

COPY

DELETE

DOWN

END

EXEC

FIND

FORMAT (a program product)
HELP

INPUT

INSERT
INSERT/REPLACE/DELETE

LIST

MERGE (a program product)
MOVE

PROFILE

RENUM

RUN

SAVE

SCAN

SEND No change
SUBMIT

TABSET

TOP

UNNUM

UP

VERIFY

Value of the Pointer at Completion of Subcommand

No change

Last line (or zero for empty data sets)

Last line changed
Last line copied

Line preceding deleted line (or zero if the first line

of the data set has been deleted)

Line n relative lines below the last line referred to,
where n is the value of the ‘count’ parameter, or
bottom of the data set (or line zero for empty data sets)

No change
No change

Line containing specified string, if any; else, no change

No change
No change
Last line entered
Last line entered

Inserted line or replaced line or line preceding the deleted
line if any (or zero, if no preceding line exists)

Last line listed

Last line

Last line moved

No change

Same relative line

No change

No change or same relative line
Last line scanned, if any
No change

No change

No change

Zero value

Same relative line

Line n relative lines above the last line referred to, where
n is the value of the ‘count’ parameter, (or line zero for

empty data sets).
No change

Figure 6. How EDIT Subcommands Affect the Line Pointer Value

Changing from One Mode to Another

If you specify an existing data set name as an operand for the EDIT

command, you begin processing in-edit mode. If you specify a new data
set name or an old data set with no records as an operand for the EDIT
command, you will begin processing in input mode.

You will change from edit mode to input mode when:
* You press the ENTER key before typing anything.

EDIT Command 65

Data Set Disposition

Tabulation Characters

66 TSO Command Language Reference

Note: If this is the first time during your current usage of EDIT that input
mode is entered, input will begin at the line after the last line of the data
set (for data sets which are not empty) or at the first line of the data set
(for empty data sets). If this is not the first time during your current usage
of EDIT that input mode is entered, input will begin at the point following
the data entered when last in input mode.

+ You enter the INPUT subcommand.

Note: If you use the INPUT subcommand without the R keyword and the
line is null (that is, it contains no data), input begins at the specified line; if
the specified line contains data, input begins at the first increment past that
line. If you use the INPUT subcommand with the R keyword, input begins
at the specified line, replacing existing data, if any.

e« You enter the INSERT subcommand with no operands.
You will switch from input mode to edit mode when:

¢« You press the ENTER key before typing anything.

« You cause an attention interruption.

o There is no more space for records to be inserted into the data set
and resequencing is not allowed.

e An error is discovered by the syntax checker.

The system assumes a disposition of (NEW,CATLG) for new data sets and
(OLD.KEEP) for existing data sets.

When you enter the EDIT command into the system, the system establishes
a list of tab setting values for you, depending on the data set type. (See
TSO Terminal User’s Guide to determine if your terminal supports tab
setting.) These are logical tab setting values and may or may not represent
the actual tab setting on your terminal. You can establish your own tab
settings for input by using the TABSET subcommand. A list of the default
tab setting values for each data set type is presented in the TABSET
subcommand description. The system will scan each input line for
tabulation characters (the characters produced by pressing the TAB key on
the terminal). The system will replace each tabulation character by as
many blanks as are necessary to position the next character at the
appropriate logical tab setting.

When tab settings are not in use, each tabulation character encountered in
all input data will be replaced by a single blank. You can also use the
tabulation character to separate subcommands from their operands.

Executing User-Written Programs

You can compile and execute the source statements contained in certain
data set types by using the RUN subcommand. The RUN subcommand
makes use of optional program products; the specific requirements are
discussed in the description of the RUN subcommand.

Terminating the EDIT Command

You can terminate the EDIT operation at any time by switching to edit
mode (if you are not already in edit mode) and entering the END
subcommand. Before terminating the EDIT command, you should be sure
to store all data that you want to save. You can use the SAVE
subcommand or the SAVE operand of the END subcommand for this
purpose.

Recovering Data after a Terminal Line Has Been Disconnected

If a terminal is disconnected during an EDIT session, the system will
attempt to save a copy of the edited data set (with all changes) into
another data set. The data set used for saving is named by applying data
set naming conventions to an intermediate qualifier name of EDITSAVE.
This data set can be edited when you log on again.

Example 1

Operation: Create a data set to contain a COBOL program.
Known:

The user-supplied name for the new data set: PARTS
The fully qualified name will be: WRRO05.PARTS.COBOL
Line numbers are to be assigned.

edit parts new cobol

Example 2

Operation: Create a data set to contain a program written in FORTRAN
to be processed by the FORTRAN (G1) compiler.

Known:

The user-supplied name for the new data set: HYDRLICS
The fully qualified name will be: WRRO5.HYDRLICS.FORT
The input statements are not to be numbered.

Syntax checking is desired.

Block size: 400

Line length must be: 80

The data is to be changed to all upper case.

edit hydrlics new fortgi nonum scan

EDIT Command 67

68 TSO Command Language Reference

Example 3

Operation: Add data to an existing data set containing input data for a
program.

Known:

The name of the data set: WRR05.MANHRS.DATA
Block size: 3120

Line length: 80

Line numbers are desired.

The data is to be upper case.

Syntax checking is not applicable.

e manhrs.data
Example 4
Operation: Create a data set for a command procedure.
Known:
The user supplied name for the data set: CMDPROC

e cmdproc new clist

Subcommands for EDIT

Use the subcommands while in edit mode to edit and manipulate data and
to communicate with the system operator and with other terminal users.
The format of each subcommand is similar to the format of all the
commands. Each subcommand, therefore, is presented and explained in a
manner similar to that for a command. Figure 7 contains a summary of
each subcommand’s function.

Note: For a complete description of the syntax and function of the
ALLOCATE, EXEC, HELP, PROFILE, SEND, and SUBMIT
subcommands, refer to the description of the TSO command with the same
name.

Subcommands for EDIT 69

70 TSO Command Language Reference

ALLOCATE
BOTTOM

CHANGE
CorPY
DELETE
DOWN

END
EXEC
FIND

FORMAT (available as an
optional
program product)

HELP

INPUT

INSERT
INSERT/REPLACE/DELETE
LIST

MERGE (available as an

optional
program product)

MOVE
PROFILE

RENUM
RUN

SAVE
SCAN
SEND

SUBMIT

TABSET
TOP
UNNUM
UP

VERIFY

Allocates data sets and filenames.

Moves the pointer to the last record in
the data set.

Alters the contents of a data set.
Copies records within the data set.
Removes records.

Moves the pointer toward the end of
the data.

Terminates the EDIT command.
Executes a command procedure.
Locates a character string.
Formats and lists data.

Explains available subcommands.
Prepares the system for data input.
Inserts records.

Inserts, replaces, or deletes a line.
Prints out specific lines of data.
Combines all or parts of data sets.

Moves records within a data set.

Specifies characteristics of your
user profile.

Numbers or renumbers lines of data.

Causes compilation and execution of
data set.

Retains the data set.
Controls syntax checking.

Allows you to communicate with the
system operator and with other
terminal users.

Submits a job for execution in the
background.

Sets the tabs.
Sets the pointer to zero value.
Removes line numbers from records.

Moves the pointer toward the start
of data set.

Causes current line to be listed
whenever the current line pointer
changes or the text of the current
line is modified.

Figure 7. Subcommands of the EDIT Command

ALLOCATE Subcommand of EDIT

Use the ALLOCATE subcommand to dynamically allocate the data sets
required by a program that you intend to execute. Refer to the
ALLOCATE command for the description of the syntax and function of
the ALLOCATE subcommand.

ALLOCATE Subcommand of EDIT 71

ATTRIB Subcommand of EDIT

The ATTRIB subcommand of EDIT performs the same function as the
ATTRIB command without leaving edit mode. Refer to the ATTRIB
command for a description of the syntax and function of the ATTRIB
subcommand.

ATTRIB Subcommand of EDIT 73

BOTTOM Subcommand of EDIT

Use the BOTTOM subcommand to change the current line pointer so that
it points to the last line of the data set being edited or so that it contains a
zero value, if the data set is empty. This subcommand may be useful when
subsequent subcommands such as INPUT or MERGE must begin at the
end of the data set.

BOTTOM
B

BOTTOM Subcommand of EDIT 75

CHANGE Subcommand of EDIT

Use the CHANGE subcommand to modify a sequence of characters in a
line or in a range of lines. Either the first occurrence or all occurrences of
the sequence can be modified.

CHANGE *
C line-number-1 [line-numbex-2])
* [count 1)

stringl [string2 [ALL]]
count2

line-number-~1
specifies the number of a line you want to change. When used with
line-number-2, it specifies the first line of a range of lines.

line-number-2
specifies the last line of a range of lines that you want to change.
The specified lines are scanned for first occurrence of the sequence
of characters specified for stringl.

specifies that the line pointed to by the line pointer in the system is
to be used. If you do not specify a line number or an asterisk, the
current line will be the default value.

countl
specifies the number of lines that you want to change, starting at the
position indicated by the asterisk (*).

stringl
specifies a sequence of characters that you want to change. The
sequence must be (1) enclosed within single quotes, or (2) preceded
by an extra character which serves as a special delimiter. The extra
character may be any printable character other than a single quote
(apostrophe), number, blank, tab, comma, semicolon, parenthesis, or
asterisk. The hyphen (-) and plus (+) signs can be used but should
be avoided due to possible confusion with their use in continuation.
If the first character in the character string is an asterisk (*), do not
use a slash (/) as the extra character. (TSO interprets the /* as the
beginning of a comment.) The extra character must not appear in
the character string. Do not put a standard delimiter between the
extra character and the string of characters unless you intend the
delimiter to be treated as a character in the character string.

If stringl is specified and string2 is not, the specified characters are
displayed at your terminal up to (but not including) the sequence of
characters that you specified for stringl. You can then complete the
line as you please.

string2
specifies a sequence of characters that you want to use as a
replacement for stringl. Like stringl, string2 must be (1) enclosed
within single quotes, or (2) preceded by a special delimiter. This
delimiter must be the same as the extra character used for stringl.
(Optionally, this delimiter can also immediately follow string2.)

CHANGE Subcommand of EDIT 77

Quoted-String Notation

78 TSO Command Language Reference

specifies that every occurrence of stringl within the specified line or
range of lines will be replaced by string2. If this operand is omitted,
only the first occurrence of stringl will be replaced with string 2.

If you cause an attention interruption during the CHANGE
subcommand when using the ALL keyword, your data set may only
be partially changed. It is good practice to list the affected area of
your data set before continuing.

If the special delimiter form is used, string2 must be terminated by
the delimiter before typing the ALL operand.

count2
specifies a number of characters to be displayed at your terminal,
starting at the beginning of each specified line.

As indicated above, instead of using special delimiters to indicate a
character string, you can use paired single quotes (apostrophes) to
accomplish the same function with the CHANGE subcommand. The use of
single quotes as delimiters for a character string is called quoted-string
notation. Following are the rules for quoted-string notation for the stringl
and string2 operands:

¢ You cannot use both special-delimiter and quoted-string notation in
the same subcommand.

o Each string must be enclosed with single quotes, for example, ‘This is
stringl’ “This is string2.’ Quoted strings must be separated with a
blank.

« A single quote within a character string is represented by two single
quotes, for example, ‘pilgrim”s progress’.

« A null string is represented by two single quotes, for example,".

You can specify quoted-string notation in place of special-delimiter notation

to accomplish any of the functions of the CHANGE subcommand as
follows:

*Special-Delimiter Quoted-String
Function Notation Notation
Replace lablcde! ‘ab™cde’
Delete fabllorlab! ‘ab’ "
Print up to fab ‘ab’
Place in
front of Hede! " ccde’

* - using the exclamation point (!) as the delimiter.

Note: Choose the form that best suits you (either special-delimiter or
quoted-string) and use it consistently. It will help you use the
subcommand.

Note: If you cause an attention interruption during the CHANGE
subcommand your data set might not be completely changed. You should
list the affected part of your data set before entering other subcommands.

Combinations of Operands

You can enter several different combinations of these operands. The
system interprets the operands that you enter according to the following
rules:

When you enter a single number and no other operands, the system
assumes that you are accepting the default value of the asterisk (*)
and that the number is a value for the count2 operand.

« When you enter two numbers and no other operands, the system
assumes that they are line-number-1 and count2 respectively.

« When you enter two operands and the first is a number and the
second begins with a character that is not a number, the system
assumes that they are line-number-1 and stringl.

« When you enter three operands and they are all numbers, the system
assumes that they are line-number-1, line-number-2 and count2.

e« When you enter three operands and the first two are numbers but the
last begins with a character that is not a number, the system assumes
that they are line-number-1, line-number-2 and stringl.

Example 1

Operation: Change a sequence of characters in a particular line of a
line-numbered data set.

Known:

The line number: 57
The old sequence of characters: parameter
The new sequence of characters: operand

change 57 XparameterXoperand

Example 2

Operation: Change a sequence of characters wherever it appears in several
lines of a line-numbered data set.

change 24 82 !'i.e. le.g. ! all
The blanks following the stringl and string2 examples (i.e. and e.g.) are
treated as characters.
Example 3

Operation: Change part of a line in a line-numbered data set.
Known:
The line number: 143

The number of characters in the line preceding the characters to be
changed: 18

change 143 18
This form of the subcommand causes the first 18 characters of line number
143 to be displayed at your terminal. You complete the line by typing the

new information and enter the line by pressing the ENTER key. All of
your changes will be incorporated into the data set.

CHANGE Subcommand of EDIT 79

80 TSO Command Language Reference

Example 4

Operation: Change part of a particular line of a line-numbered data set.
Known:

The line number: 103
A string of characters to be changed: 315 h.p. at 2400

change 103 m315 h.p. at 2400
This form of the subcommand causes line number 103 to be searched until
the characters “315 h.p. at 2400” are found. The line is displayed at your

terminal up to the string of characters. You can then complete the line and
enter the new version into the data set.

Example 5

Operation: Change the values in a table.
Known:

The line number of the first line in the table: 387
The line number of the last line in the table: 406
The number of the column containing the values: 53

change 387 406 52
Each line in the table is displayed at your terminal up to the column
containing the value. As each line is displayed, you can type in the new

value. The next line will not be displayed until you complete the current
line and enter <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>