
Systems

5Y28-0652-4
File No. 5370-39

OSNS2TSO
Command Processor
Logic Volume IV

(includes LOGON Scheduling)

VS2 Release 3.8

--- ---------------~- --------------_.-

Fifth Edition (December, 1984)

This is a major revision of and obsoletes SY28.()652·3. See the Summary of Amendments
fonowing the Contents for a summary of the changes made to this manual. Technical
changes or additions to the text and illustrations are indicated by a VQrticalline to the left
of the change.

This edition with Supplement SD23'()299 applies to Version 2 of MVS/System Product
5740·XC6 or 5665·291 and Data Facility Product 5665·284 until otherwise indicated in
new editions or Technical Newsletters. Changes are periodically made to the information
herein; before using this publication in connection with the operation of IBM systems,
consult the latest IBM Sy'tem/370 Bibliography, GC20'()OOI, for the editions that are
applicable and current.

References in this pUblication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
mM program product in this publication is not intended to state or imply that only IBM's
program product may be used. Any functionally equivaleDt program may be used iDstead.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers' comments has been provided at the back of this pUblication. If the form
has been ramoved, address comments to IBM Corporation, Information Development,
Department D58, Buildins 921, P.O. Box 390, Poughkeepsie, New York 12602. IBM may
',\Se or distribute any of the information you supply in any way it believes appropriate without
incurrins any obligation to you.

@ Copyright International Business Machines Corporation 1972, 1984

Paso of SYl&0652-4
~ Updated Man:h 1, 1985
By SuppL SD23-0299 for 5665-291, 5740-XC6

Preface

This publication describes the programs that handle the following TSO conunands:

ALLOCATE USTALC RENAME
ATI'RIB LISTBC RUN
CALL USTDS SEND
CANCEl/STATUS OPERATOR SUBMIT
EXEC OUTPUT TERMINAL
FREE PROFILE TIME
HElP PROTECT WHEN/END
LINK/LOADGO

In addition, LOGON ScheduUng information is included.

DELETE and USTCAT infonnation is in Access Method Se",ices Logic.

This publication describes program internal logic and organization. It is designed
to help the programmer follow the internal operation of a program and determine
the location of a program malfunction. The book provides pointers for specific
functions; the programmer can use these pointers to access program listing
information without having to scan the listings for the data he wants.

The commands ue described through the use of Method of Operation Diagrams,
a Directory, and a Data Area Usage chart.

The Directory contains a module cross reference for all of the commands
described in this book. It cross references load module. object module. entry point,
alias, and command name.

The Data Area Usage chart is organized by the data uea acronym. The macro
name and common name ue also listed. Under each data name is a list of modules,
by command processor. that alter or create the data uea.

Data uea descriptions can be found in Data Areas. The diagnostic aid
description of the TSO terminal messages can be found in Mesmge Library: TSO
Terminal Mmtlges.

Note that the titles for the TSO library for MVS/XA begin with the ''MVS/
Extended Architecture" system prefIX.

Preface 3

Pap of SY28.o652-4
As Updated March 1,1985
By SuppL 8D23-0299 fen 5665·291, 5740-XC6

Associated Publications

MVS/Extended Architecture TSO TenninaJ Monitor Program and Service Routines
Logic

(OS/VS2 TSO Terminlll Monitor Program and Service Routines Logic,
SY28~650.3, as amended by Supplement lD23~262)

MVS/Extended Architecture TSO Command Processor Logic Volume I: ACCOUNT
(OS/VS2 TSO Command Proce$SOr Logic Volume I: ACCOUNT, SY28-065 1.2, as
amended by Supplement LD23~270)

MVS/Extended Architecture TSO Command Proce$SOr Logic Volume 0: EDIT
(OS/VS2 TSO Command Processor Logic Volume II: EDIT, SY33-8S48·3, as
amended by Supplement LD23~71)

Data Areas
(For MVS/SP· JES2 Version 2, L YB8-1191)
(For MVS/SP·JES3 Version 2, LYB8·119S)

Macro Usage Table
(For MVS/SP· JES2 Version 2, L YB8-1193)
(For MVS/SP· JES3 Version 2, L YB8.1197)

Symbol Usage Table
(For MVS/SP· JES2 Version 2, L YB8.1192)
(For MVS/SP·JES3 Version 2, LYB8-1196)

TSO TerminalMessages, GC28·1310
MVS/Extended Architecture Access Method Services Logic, L Y26·3889

Referenced Products

1. All references to MVS System Product indicate either OS/VS2 MVS/System
Product.JES3 (5740.XYN) or OS/VS2 MVS/System Product.JES2 (S740·XYS)

4 TSO Command Processor Logic - Volume IV

Summay of Amendmclllts •
IDtlOCluctioa • • • • • •
TemUnal MoDitor Program •
Sonice Routines. • • •
AtteDtioa IDtem1ptioDs. •
TMP Attentioa Exit Routine
ABEND Processing. • •
Error TenniDation Procccluro •
Message Handling • • • •

Method of Operation • • •
EXEC Command ProcessiJIg Operation •

Phase 1 Processing

DirectoJy. • •

Data AreaU ...

Loaon ScheduUng

Index. . . •

Figures

Figure 1. LOGON SchecluUng Module Flow. . • • •
F'1gIIrO 2. LOGON Scheduling Control Block Ovetview •
Ffsure 3. Data Areas Containing LOGON US81' Infonnation •

March 1,1985

Contents

. 9

.11
• .11

.11
• .12

.12

.12

.13

.13

• .15
.45
.45

147

151

159

1-1

Illustrations

160
162

• 181

Contents 5

Page of SY21J.06524
Aa Updated March I, 1985
By SuppL SD23~299 for 5665·291, 5740.XC6

Diagrams

Diagram 1. Hierarchy of M.O. Diagmms. • • • •
Diagram 1.1. ALLOCATE Command Processor Overview
Diagram 1.2. ALLOCATE TenniDal Proc:essiDg • • •
Diapam 1.3. ALLOCATE SYSOUT Data Set Processing.
Diagram 1.4. ALLOCATE OLD or SHR Data Set Processing
Diagram 1.5. ALLOCATE NEW Data Set Processing. • •
DIapun 1.6. ALLOCATE MOD Data Set Processing. • •
Diagram 1.7. ALLOCATE DUMMY Request Processing • •
Diagram 1.8. ALLOCATE Concateuate Data Set ProcessiDg •
Diagram 2. AlTlUB Command Processing. • • • •
Diagram 3. CALL Command Processing. •
Diagram 4. CANCEL/STATUS Processing • • • . •
Diagram 5.1. Phase 1 EXEC Command Main Control (lIOcr430) •

.17
• .20

.22

.24

.26
• .28

.30
• .32

.34

.36
.38
.42

Diagram 5.2. Pbase 1 EXEC Command Symbolic Puameter Definition (lICJCf431).
.48
.50
.54 Diagram 5.3. Phase 1 EXEC Command Record Scan Routine (IKICf432).

Diagram 5.3.1. IF Routine (lICJcr432). • • •
Diagram 5.3.2. ELSE Routine (IKIcr432). • •
Diagram 5.3.3. DO Routine aKJCf432) • • • •
Diagram 5.3.4. ERROR! ATl'N Routine (lIOCI432)
Diagram 5.3.5. END Routine aKJCI432) • • •
Diagram 5.3.6. SET Routine aKJCI432). . . •
Diagram 5.3.7. CONTROL Routine aKJcr432). •
Diagram 5.3.8. READ/READDVAL/GLOBAL Routine (IKICf432).
Diagram 5.3.9. Common Command Routine aKJCI432) •
Diagram 5.3.10. DATA to ENDDATA Routine (lIOCI432)
Diagram 6; FREE Command Processor • . .
Diagram 7.1. HELP Processing. • • • • .
Diagram 7.2. Processing HELP Data Set Member .
Diagram 7.3. Reading HELP Data Set. . •
Diagram 8. LINK and LOADGO Processing • •
Diagram 9.1. LISTALC Processing Overview • •
Diagram 9.2. USTALC DSAB Processing. . •
Diagram 9.3. USTALC HISTORY Processing (VSAM)
Diagram 9.4. USTALC HISTORY Processing (Non·VSAM).
Diagram 9.5. USTALC STATUS Processing • • •
Diapam 9.6. USTALC MEMBERS Processing. • .
Diagram 10.1. LISTBC Processing Overview. . . •
Diagram 10.2. USTBC NorICES Messages Processing.
Diagram 10.3. USTBC MAIL Message Processing. •
Diagram l1.1. LISTDS Processing Overview. • • •
Diagram 11.2. LISTDS IUSTORY Processing (VSAM). •
Diagram 11.3. USTDS IUSTORY Processing (Non-VSAM)
Diagram 11.4. USTDS STATUS Processing. • •
Diagram 11.5. USTDS MEMBERS Processing. •
Diagram 11.6. USTDS LABEL Processing. • •
Diagram 12. OPERATOR Command Processing •
Diagram 13. OUTPUT Processing. • • •
Diagram 14. PROFILE Processing. . . . •
DIagram 15. PROTECI Command Processing. •
Diagram 16. RENAME Command Processing. • •
Diagram 17.1. RUN Command Processing Overview •
Diagram 17.2. Building a RUN Command list. .
Diagram 18.1. SEND Overview and Operator Processing
Diagram 18.2. SEND User Processing. • • • • •
DIagram 18.3. Adding SEND Text to the Broadcast Data Set.
Diagram 19.1. SUBMIT Processing • • • • • •
Diagram 19.2. SUBMIT JCL Processing. • • . .
Diagram 20. TERMINAL Opemtional Characteristics
Diagram 21. llME Command Processing. • • •
Diagram 22. WHEN/END Processing • • • • •

6 OS/VS2 TSO Command Processor Logic - Volume IV

• .56
• .58

.60

.62

.64
• .66

.68

.70

.72

.74

.76

.78

.80

.81

.84
• .86

.88

.90

.91

.94
• .96

.98
100
101
104
106

• 108
110
111
114

• 116
118
110
112

• 124
• 126
• 128

130
132

• 134
136
138
140
142
144

Diagrams (continued)

Diagram 23.1.
DiagIllm 23.2.
DiagIllm 23.3.
Diagram 23.4.
Diagram 23.S.
Diagram 23.6.
Diagram 23.7.
DiagIllm 23.8.
Diagmm 23.9.
Diagmm 23.10.

LOGON Initialization. • • • • • •
LOGON Scheduling • • . • • • . • • • •
LOGON Initialization and Scheduling Recovery Routine.
LOGON Monitor. • • . •
LOGOFF Processing. . • . •
LOGON/LOGOFF VerifICation. .
LOGON Pre-prompt Exit Interface •
LOGON Monitor Recovery
Pre·TMP Exit •
Post·TMP Exit. . • •

164
166
168
170
174
176
182
184
186
188

Contents 7

8 OS/VS2 TSO Coml1l8l1:d Processor LogIc - Volume IV . \ ' .

Pap of SY28-06S24
Aa Updated March I, 1985
By SuppL SD23-0299 for 5665-291, S740-XC6

Summary of Amendments
for SY28-0652-4
as Updated March I, 1985
by Supplement SD23-0299

This supjlIement was reissued because of the major revision to base SY28..Q6S2. 1be pua11c1
TMP structwe does not apply to the MVS/XA environment without TSO/E.

Summary of Amendments
for SY28-0652-2
as Updated January 14, 1983
by Supplement LD23-0273-O

This supplement supports MVS System Product Version 2. A note has been added to LIN.i-:
and LOADGO commands to remind readers of the AMODE and RMODE opemnds available
under MVS/Extended Architectwe.

Summary of Amendments
for SY28-0652·3
as Updated by SN28-4928
OS/VS2 Release 3.8

This technical newsletter incorporates information for LOGON Scheduling.

Summary of Amendments 9

Mudll,l985

. ":
.• r .• •

10 0S/VS2 1'80 Commaad ~ Logic - Volume IV

.. of SY28-06524
AI Updated Muehl. 1985
By SuppL SJn3.0299 for 5665-291. 5740-XC6

This section contains infoonation on processing that is
common to all the T50 command processors.

Terminal Monitor Program
The Teoninal Monitor Program (TMP) handles the
interfaces between a terminal user and a command
processor. The TMP runs under the control program as
a subtask of (is AITACHed by) the TSO
LOGON/LOGOFF Scheduler (via the Job Scheduling
Subroutine).

Before the TMP in tum attaches its own subtasks
(Le .. command processors). it:

• Constructs and initializes the data areas it requires.

• Loads the TIME command processor.

• Sets up ESTAE and ESTAI exits.

• Sets up attention interruption exits.

• Initializes the input stack with a teoninal element.

• Issues the EXTRACT macro instruction to obtain
pointers to both the STOP/MODIFY ECD and to the
Protected Step Control Block (PSCD) that is built by
the LOGON/LOGOFF scheduler.

• Informs the terminal it is 'ready' for a command.

When a command processor completes its processing,
control is retumed to the TMP. For more information on I the TMP, please refer to 180 Terminal Monito,.
Program and Service Routines Logic.

Introduction

Service Routines
There are a number of service routines used selectively
by the different command processor pacJcaaes. These
service routines, which are also used by the TMP (unless
otherwise noted), illclude:

• GETLlNE, which obtains a line of input from an area
derIDed as its source of input. Nonnally. this area
contains input from the tenninal.

• PUTLINE. which sends a line of output to the
terminal.

• PUTGET. which sends a Une of output to the teoninal
and waits for a Une of input as a response.

• STACK, which estabUshes the source of input as a
teoninal; or (if not from a terminal) which places
lines of input into areas from which GETLINE or
PUTGET can obtain data.

• Command Scan. which checks the syntax of
designated data to see if it is syntactically valid.

• Parse (IKJPARS) (not used by the TMP), which
checks the syntax of parameters of T50 commands.
In certain cases, Parse is directed to take exits to
vaUdity checking routines (provided by the
processors). The vaUdity checking routines are
designed to dynamically assist the parse operation in
prOviding valid input to the command or
subcommand processor.

• Dynamic Allocation Interface Routine (IKJDAIR)
(not used by the TMP). which provides information
to the control program dynamk: allocation routines.
In tum. these routines allocate, free. and concatenate
data sets that relate to a TSO session.

These service routines are documented in full in TSO
Tennirull Monito,. Program and Service Routines Logic.

InClOdacdon 11

Page of SY28-06S24
As Updated March I, 1985
By SuppL SD23-0199 for 5665·191, 574Q.XC6

Attention Interruptions

When an attention interrupt has been entered at a
terminal, an attention interrupt exit routine will receive
control If a command processor is interrupted, control
will pass to the command processor's attention exit
routine, if one exists. If not, then control will pass to
the TMP"s attention exit routine.

1MP Attention Exit Routine
The TMP issues the STAX macro during initialization to
place an entry in a control program queue called the Task
Attention Interrupt Exit queue. When the attention key
is struck during subsequent processing, the control
program attention interruption handling routines check
the queue, put out the mode message, and pass control
to the Attention Exit routine at the address provided
through the STAX macro (after obtaining input from
the terminal).

The Attention Exit routine issues a PUTGET macro
instruction to obtain the input following the attention.
Action is taken according to the type of input found, as
follows:

New command found
all previous entries are deleted from the input stack.
Control then returns to the TMP where the old
command processor is detached and the new one
attached.

NuUline

?

control returns immediately to the task that was
operating when the attention key was struck. No
ECB is posted. No stack entries are deleted.

a PUTUNE exit is taken to put out second-level
messages, if any. (If none, a NO INFORMATION
AVAILABLE message is issued.) Then, the TMP
Attention Exit routine looks for a new command or
a null line as input. Then processing is performed as
for the applicable input type above.

Time command
the TIME command processor receives control. Upon
completion, TIME returns control to the TMP
Attention Exit routine, which then looks for either a
new command, or a nuUline, as input.

11 OS/VS1 TSO Command Processor Logic - Volume iv

ABEND Processing

When the TMP issues the ATTACH macro to activate a
command processor as a subtask, the EST AI operand is
included as part of the ATTACH macro. The EST AI
operand specifies the address of the TMP's EST AE Exit
routine. The main purpose of the ESTAI Exit routine -
in the command processor enviromnent - is to intercept
an ABEND and thereby retain processing control. When
a command processor experiences an ABEND, the TMP's
EST AI Exit routine gets control to ensure the following:

• The user is notified that his command processor has
experienced an ABEND.

• The READY message is issued.

Action is taken according to the type of input found
(as a response to the READY message), as follows:

New command found (except TIME or TEST)
the command processor that has experienced the
ABEND is deleted via the DETACH macro, (thereby
restricting the ABEND), and the new command
processor is activated as a subtask.

Null line

?

control is returned to the point of interruption to
allow the ABEND to process (a dump will occur if a
SYSABEND or a SYSUDUMP has been specified on
aDDCard).

the second level message containing the ABEND code
is issued. The EST AI Exit routine then looks for
either a new command, or a null line, as input.

Pap of SY28-06S24
Aa Updated March I, 1985
By SuppL SD23-0299 for 5665-291, 574O-XC6

TIME command
the TIME command processor receives control.
Upon completion, TIME returns control to EST AI.
which then looks for either a new command or a
nuD One as input.

Error Temaination Procedure
When a command processor tenninates with an error
condition, the input stack is flushed (via the STACK
service routine) and the tenninal input queue is cleared
(with the TCLEARQ macro instnIction).

Message Handling

Most TSO command processors have message CSECTs.
The address of a particular message is provided (by the
command processor) to the PUTUNE service routine -
which writes the message to the tenninal.

A messase can be either single or multi-level. Either
type may require that PUTUNE insert variables (such as
names, userids, etc.) to complete the message.

LOGON Scheduling
When a tenninal user logs on or logs offTSO, the
LOGON scheduling routines are invoked to handle the
request. The routines interface with started task control
(STC) and the TMP.

IDtroducdcm 13

14 OS{VS2 TSO Command Processor Logic - Volume IV

March 1. 1985

14 OSIVSl.TSOCommand Processor Logic - Volume IV

Diagram 1. Hierarchy of M.O. Diagrams (part 1 of 3)

1.1 2.

ALLOCATE ATIRIB
Command Command
Processor Proeesslng
Overview

1.2 1.3 1.4 1.5

ALLOCATE ALLOCATE ALLOCATE
ALLOCATE SYSOUT OLD or SHR NEW Data
Terminal Data Set Data Set Set
Proeessing Processing Processing Processing

TSO
Commond
Processon

3.

CALL
Cammond
Processing

1.6

ALLOCATE
MOD Data
Set
Proeessing

4.

CANCEL/
STATUS
Processing

1.7

ALLOCATE
DUMMY
Request
Processing

I .

5.1 5.2

Phose 1 EXEC
Phase 1 EXEC Command
Command Symbolie
Main Control Po~ameter

Definition

1.8

ALLOCATE
Coneatenate
Data Set
Processing

....
(XI Diagram I. Hierarchy of M.O. Diagrams (Part 2 of 3)

, .
5.3 I r--1- -, 6.

For Phose 2
Phase 1 EXEC I Pracessi ng, I FREE
Command I See TMP I

Command
Record Scan I and Service I Processor
Routine (RSR) I Routines I L Logic _

-l
I

5.3.1 I 5.3.3 I 5.3.5 I 5.3.7 I 5.3.9 I

END CONTROL
Common

If Routine DO Routine Routine Routine
Command

(lFRTN) (DORTN) (ENDRTN) (CONRTN)
Routine
(COMCMD)

5.3.2 5.3.4 5.3.6 5.3.B 5.3.10

READ/ DATA
ELSE ERROR/ATTN SET READDVAL/ (DATARTN)
Routine Routine Routine GLOBAL to ENDDATA
(ELSERTN) (ERRRTN) (SETRTN) Routine (ENDARTN)

(READRTN) Routine

I .
9.1 I

lISTALC
Processing
Overview

I
9.2 I 9.3 I 9.4 I 9.5 I 9.6 I

lISTALC
lISTALC lISTALC

LlSTALC lISTALC HISTORY HISTORY
DSAB Processing Processing STATUS MEMBERS
Processing (VSAM) (Non-VSAM) Processing Processing

I

7.1 I B. I •

LINK and
HELP

LOADGO
Processing Processing

I
7.2 I 7.3 I

Processing Reading
HELP Data HELP
Set Member Doto Set

I

10.1 I .
lISTBC
Processing
Overview

I
10.2 I 10.3 I

LlSTBC USTBC
NOTICES MAIL
Messoges Message
Processing Processing

I
8.
o ...
f
J:t. g

-'"

Diagram 1. Hierarchy of M.O. Diagrams (Part 3 of 3)

,
T

I I 11.1 12.

LlSTDS OPERATOR
Processing Command
Overvlaw Processing

11.2 r 11.3 I 11.4 I 11.6 I
LISTDS LISTDS

LlSTDS LlSTDS
HISTORY HISTORY

STATUS MEMBERS
Processing Processing

Processing Processing
(VSAMI (Non·VSAMI

,
~

I 17.1 18.1

RUN SEND
Command Overview
Processing and Operator
Overview Processing

I
17.2 18.2 I 18.3 I

Building Adding

a RUN
SEND SENOText

Command
User to the

List
Processing Broadcast

Data Set

,
I I I I

..
13. 14. 16. 16.

OUTPUT PROFILE
PROTECT RENAME

Processing Processing Command Command
Processing Processing

11.6 I
LlSTDS
LABEL
Processing

19.1 20. 1 21. 1 22. I
TERMINAL TIME

SUBMIT
Operational Command WHEN/END

Processing
Characteristics Processing Processing

19.2

SUBMIT JCL LOGON
Processing I Scheduling

~ Diagram 1.1. ALLOCATE Command Processor Overview (Part I of 2)

Input Process

Reg 1

~CPPL I F,.mf KJEFD37 Parse
TMP

1 Check syntax of command. -
--I
~ ~

2 Check data set status.

Command Buffer 3 Check DATASET/DSNAME POE for

I I
list of data set names. IKJEFD32

• If no list, allocate a data -set. --
Terminal ----ID
~ SYSOUT Diag

1.3

OLDor ~ SHR 1.4

NEW ~ 1.5

MOD~

~ DUMMY ?;g IKJEFD34

• If yes, concatenate the ~ -data set names to each other. --
~ 1.8

I
2-
o

f g
N .-

Diagram 1.1. ALLOCATE Command Processing Overview (Part 2 of 2)

1 Check the ALLOCATE command for correct syntax. Invoke module
IKJEFD37 to build a Parameter Control List (PCll. The PCl is passed
to Parse which syntax checks the command and returns a Parameter Description
List (POLl with an entry for each parameter.

2 Check for data set status parameters (OLD, SHR, MOD, NEW, or SYSOUTI. If no
status parameters were specified, set defaults or prompt user for status.

3 Check the DATASET/DSNAME POE for a list of data set names.

• If there is no list of data set names, IKJEFD32 allocates a data set. (Types of
data sets: Terminal, SYSOUT, OLD, SHR, NEW, MOD, DUMMY.)

• If there is a list of data set names, concatenate the data set nemes to each
other.

Object Module: IKJEFD30

N
N

~
~
;I
o

I
I
i
I
<
So

i
<

Diagram 1.2. ALLOCATE Terminal Processing (Part 1 of2)

Process

From

Diag 1 1.1

2

3

4

Ignore superfluous operands.
GENTRANS

Translate parameters to text
format.

Dynamic Alloc at ion

Allocate terminal.

Check Dynamic Allocation
return code.

n return code is:

• zero, terminal allocated. IKJEFD36

• 410, file i,l use.

• nan-zero and not 410,
unable to allocate terminal.

IKJEFD35

I ssue error messoge.

Diagram 1.2. ALLOCATE Tenninal Processing (Part 2 of 2)

1 Ignore all operands except DATASET/DSNAME, USING, FILE/DDNAME,
and BLOCK/BLKSIZE. (The BLOCK/BLKSIZE parameter is processed by
object module IKJEFD33.1

2 Set up the text unit specifying terminal allocation. Use GENTRANS to translate
the parameters to dynamic allocation text format. The pointer to the text units is
returned from GENTRANS in the IKJZB831 parameter list.

3 Use Dynamic Allocation to allocate the terminal. Register 1 points to a pointer to
the dynamic allocation request block.

4 Check the dynamic allocation return code.

• If the return code is zero, the terminal has been allocated.

• If the return code is 410, the file is in use. IKJEFD36 prompts the user to
enter 'FREE', to free and reallocate the file, or 'END' to terminate the
command.

• If the return code is non·zero and not 410, allocation of a terminal has failed.
IKJEFD35 uses DAIR failure message routine IKJEFF18 to analyze the return
code and send the appropriate error message to the user.

Control is returned to IKJEFD30.

Object Module: IKJEF032

~ Diagram 1.3. ALLOCATE SYSOUT Data Set Processing (part I of 2)

Process
..

From
Diag
1.1 1 Ignore superfluous operands.

GENTRANS

2 Translate parameters to text I I format.

Dynamic Allocatj on

3 Allocate SYSOUT data set. I J
4 Check Dynamic Allocation

return code.

If return code is:

• zero, data set allocated. IKJEFD36

• 410, file in use. I I
• non-zero ond not 410,

IKJEFD35

unable to allocate data I I set. Issue error message.

Diagram 1.3. ALLOCATE SYSOUT Data Set Processing (Part 2 or 2)

1

2

3

Ignore the following operands: DATASET/DSNAME, MSVGP, VOLUME,
PRIVATE, LABEL, POSITION, MAXVOL, DIR, VSEQ, and disposition.
(The BLOCK/BLKSIZE parameter is processed by object module IKJEFD33.1

Set up the text unit specifying SYSOUT data set allocation if necessary. Use
GENTRANS to translate the parameters to dynamic allocation text format. The
pointer to the text units is returned from GENTP.ANS in the IKJZB831 param­
eter list.

Use Dynamic Allocation to allocate the SYSOUT data set. Register 1 points to a
pointer to the dynamic allocation request block.

4 Check the dynamic allocation return code.

• If the return code is zero, the data set has been allocated.

• If the return code is 410, the file is in use. IKJEFD36 prompts the user to
enter 'FREE', to free and reallocate the file, or 'END' to terminate the
command.

• If the return code is non-zero and not 410, allocation of tl;le SYSOUT data set
has failed. IKJEFD35 uses DAIR failure message routine IKJEFF18 to analyze
the return code and send the appropriate error message to the user.

Control is returned to IKJEFD30.

Object Module: IKJEFD32

~ Diagram 1.4. ALLOCATE OLD or SHR Data Set Processing (Part I of2)

Process

From

Di09 IKJEFD37
1.1 1 I Prompt user If data set nome

I missing.

2 Ignore superfl uous operands. GENTRANS

3 Translate parameters to text I I format.

Dynamic Allocati on

4 Allocate OLD or SHR data set. I I
5 Check Dynamic Allocation

return code.

If return code is:

• zero, data set allocated. IKJEFD36

• 410, file in use. I I
IKJEFD37

• 1708, data set not found. I I
• non "'Zero and not 410 or IKJEFD35

1708, unable to allocate

I J data set. Issue error message.

Diagram 1.4. ALLOCATE OW and SHR Data Set Processing (Part 2 of 2)

1

2

3

4

Check for data set name on the DATASET/DSNAME kevword.lf the name is
missing use I KJE FD37 to prompt the user to supplv one.

Ignore the following operands: SPACE, DIR, HOLD/NOHOLD, DEST,
RELEASE, ROUND, and BLOCK/BLKSIZE/AVBLOCKITRACKS/CYLINDERS.

Use GENTRANS to translate the parameters to dynamic allocation text format.
The pointer to the text units is returned from GENTRANS in the IKJZB831
parameter list.

Use Dvnamic Allocation to allocate the OLD or SHR data set. Register 1 points to
a pointer to the dynamic allocation request block.

5 Check the dynamic allocation return code.

• If the return code is zero, the data set has been allocated.

• If the return code is 410, the file is in use. IKJEFD36 prompts the user to
enter 'FREE', to free and reallocate the file, or 'END' to terminate the
command.

• If the return code is 1708, the data set was not found. IKJEFD37 prompts the
user for a new data set name. Repeat step 3, 4, and 5.

• If return code is non-zero and not 410 or 1708, allocation of the OLD or SHR
data set has failed. IKJEFD35 uses the DAIR failure message routine
IKJEFD18 to analvze the return code and send the appropriate error message
to the user.

Control is returned to IKJEFD30.

Object Module: IKJEFD32

N
CD Diagram 1.5. ALLOCATE NEW Data Set Processing (Part I of 2)

Process

From

Olag 1
1.1

2

3

4

5

Ignore superfluous operands.
IKJEF033

Process the SPACE, OIR and the
block parameters.

GENTRANS

Translate parameters to text
format.

Dynamic Allocatl on

Allocate NEW data set.

I

Chec:k Dynamic Allocation
return code.

If return code Is:

• zero, NEW data set
allocated.

IKJEF036

• 410, file In use.

• non-zero and not 410,
IKJEf035 unable to allocate data set.

Issue error message.

Diagram 1.5. ALLOCATE NEW Data Sets Processing (Part 2 of 2)

1 Ignore the following operands: oEST and HOLo/NOHOLo.

2 Use IKJEFo33 to process the SPACE, olR, and block parameters.

3 Use GENTRANS to translate the parameters to dynamic allocation text format.
The pointer to the text units is returned from GENTRANS in the IKJZB831
parameter list.

4 Use Dynamic Allocation to allocate the NEW data set. Register 1 points to a
pointer to the dynamic allocation request block.

5 Check the dynamic allocation return code.

• If the return code is zero, the data set has been allocated.

• If the return code is 410, the file is in use. IKJEFo36 prompts the user to
enter 'FREE', to free and reallocate the file, or 'END' to terminate the
command.

• If the return code is non-zero and not 410, allocation of the NEW data set has
failed. IKJEFo35 uses the oAIR failure message routine IKJEFF18 to analyze
tha return code and send the appropriate error massage to the user.

Control is returned to IKJEFo30.

Object Module: IKJEFD32

w = Diagram 1.6. ALLOCATE MOD Data Set Processing (Part 1 of2)

Process

From
Diag
1. I 1 Prompt user if dota set name is

missing.

2 Process space parameters.

3 Ignore superfluous operands.

4 T ranslote parameters to text
formot.

5 Allocote MOD dota set.

6 Check Dynamic Allocation
return code.

If return code is:

• zero, dota set allocoted.

• 410, file in use.

• non-zero and not 410,
unable to allocote dota
set. Issue error message.

IKJEFD37

J I
IKJEFD33

I I
GENTRANS

I I
Dynamic Allocati on

I I

IKJEFD36

I I
IKJEFD3S

-, I

w -

Diagram 1.6. ALLOCATE MOD Data Set Processing (Part 2 of 2)

1

2

3

4

5

Check for data set name on the DATASET/DSNAME keyword. If the name is
missing use IKJEFD37 to prompt the user to supply one.

Use IKJEFD33 to process space parameters.

Ignore the following operands: DEST and HOLD/NOHOLD.

Use GENTRANS to translate the parameters to dynamic allocation text format.
The pointer to the text units is returned from GENTRANS in the IKJZB831
parameter list.

Use Dynamic Allocation to allocate the MOD data set. Register 1 points to a
pointer to the dynamic allocation request block.

6 Check the Dynamic Allocation request code.

o If the return code is zero, the data set has been allocated.

8 If the return code is 410, the file is in use. IKJEFD36 prompts the user to
enter 'FREE', to reallocate the file, or 'END' to terminate the
command.

o If the return code is non·zero and not 410, allocation of the MOD data set
failed. IKJEFD35 uses the DAIR failure message routine IKJEFF18 to analyze
the return code and send the appropriate error message to the user.

Control is returned to IKJEFD32.

Object Module: IKJEF032

~ Diagram 1.7. ALLOCATE DUMMY Request Processing (Part I of2)

Process

From

Diog
1.1

1 Ignore superfluous operands.
IKJ~FD33

2 Process the BlOCK/BlKSIZE

I I parameter.

GENTRANS

3 T ransl at'!! parameters to text

I I formal' .
..

DynamIc Allocatl an

4 Allocate DUMMY request.

I I
5 Check Dynamic Allocation

return code.

If return code Is:

• zero, DUMMY request
allocated.

IKJEFD36
• 410, file in use.

I I
• nan"'Zera and not 410, IKJEFD35

unable to allocate request.

J I Issue error message.

w
w

Diagram 1.7. ALLOCATE DUMMY Request Processing (Part 2 of 2)

1 Ignore all operands except DUMMY, FILE/DDNAME, BLOCK/BLKSIZE, AVBLOCK,
TRACKS, CYLINDERS, and USING.

2 Use IKJEFD33 to process the BLOCK/BLKSIZE parameter.

3 Use GENTRANS to translate the parameters to dynamic allocation text format.
The pointer to the text units is returned from GENTRANS in the IKJZB831
parameter list.

4 Use Dynamic Allocation to allocate the DUMMY request. Register 1 points to a
pointer to the dynamic allocation request block.

5 Check the dynamic allocation return code.

• If the return code is zero, tha DUMMY request has been allocated.

• If the return code is 410, the file is in use. IKJEFD36 prompts the user to
enter 'FREE', to free and reallocate the file, or 'END' to terminate the
command.

• If the return code is non-zero and not 410, allocation of the DUMMY 'request
has failed. IKJEFD35 uses the DAIR failure message routine IKJEFF18 to
analvze the return code and send the appropriate error massage to the user.

Control is returned to IKJEFD30.

Object Module: IKJEFD32

~ Diagram 1.8. ALLOCATE Concatenate Data Set Processing (Part 1 of2)

o Process
~
~
~
o

~
i
i
~
2

i
n
I

i

From

Diag
1.1 1 Prompt user if ddname missing.

2 Ignore superFl uous operands.

3 Provide storage for ddnames.

4 Provide text units for ddname
and data set organization.

5 Translate parameten to text
format.

IKJEFD37

I 1

GENTRANS

J I
m on CONCTDSN Dynamic Allocatl
:(

6 Allocate data sets. I I I I
Dynamic AliocatiDn

7 Concatenate data sets. I I
8 Check Dynamic Allocation

return code. If return code is:

• zero, data sets concate-
nated.

CONCTERR Dynamic Allocati on
• non-zero, unable to con-

I I I I catenate. Unallocate data
sets.

Diagram 1.8. ALLOCATE Concatenate Data Set Names Processing (Part 2 of 2)

1

2

3

4

5

Check for ddname on the FILE/DDNAME keyword. If the name is missing, use
IKJEFD37 to prompt the user to supply one.

Ignore all operands except DATASET/DSNAME, FILE/DDNAME, and STATUS.

Provide the required amount of storage needed to save the ddnames.

Provide text units for the ddname and the data set organization to be returned by
Dynamic Allocation.

Use GENTRANS to translate the parameters to dynamic allocation text format.
The pointer to the text units is returned from GENTRANS in the IKJZB831
parameter list.

6 Use CONCTDSN to request Dynamic Allocation to allocate all of the data sets in
the list.

7 Use Dynamic Allocation to concatenate the data set names.

8 Check the Dynamic Allocation return code.

• If the return code is zero, the data set names have been concatenated.

• If the return code is non-zero, concatenation of the data set names has failed.
CONCTERR requests Dynamic Allocation to unellocete the data sets.

Control is returned to IKJEFD30.

Object Module: IKJEFD34

:s: Diagram 2. A TIRIB Command Processing (Part 1 of 2)

Input Process

Reg 1

J I F~.
(CPPl

TMP Parse

1 Check syntax. I I I J
(Command Buffer

GENTRANS
2 Tronslate parometers to text

I I I I format.

Dynamic Allocati on

3 Allocate DUMMY request with I I specified attributes.

4 Check Dynamic Allocation
return code.

If return code is:

• zero, list ollocated.
IKJEFF18

• non-zero, unable to

I I ollocote list. Issue error
message.

Diagram 1. A ITRIB Command Processing (part 2 or 2)

1

2

Use Parse to scan and IYntax check the command. For those operand. Parse can
not fully check (like LRECU, validity check exits In ATTRIB are used. The valid·
Ity check exit for the name UI8I Dynamic Allocation to check the validity of the
attr.Jllt-name. If Parse fallad, (non·zero return codel an error mell8ge will be
blUed and control il returned to the TMP.

Use GENTRANS UKJCB831) to translate the parameter. from Parl8 output to
text format. For those parameter. which GENTRANS can not translate (DEN,
DSORG, LRECL, EXPDT. and BUFOFF), ATTRIB builds the text unit •• If
GENTRANS failed (non·zero return codel, en error mellll98 II issued, Parse out·
put II freed, and control b returned to the TMP.

3

4

Use Dynamic Allocation to allocate a DUMMY request with the spec:ified aurib­
utes.

Check tho Dynamic Allocation return coda.

• If tha return coda i. zero, the request hili been allocated and control I.
returned to the TMP.

• If the return code i. non·zero, allocation hal failed. UN the DAIRFAtL mill·
Slga routine IKJEFF18 to analyze the return coda lind sand thollPproprleto
arror melllllle to the user. Control II raturned to the TMP.

Object ModulB: IKJEFA TT

:r: Diagram 3. CALL Command Processina (Para I of 1)

... -

Input

Regllter I

CPPL

(
\. Command Buffer

I

I

I

I

Process

f_~ TMP 1

2

3

4

5

6

7

8

PARSE

Syntax chOGk opera".
DAIR

AlioGat. the rlque.tad
data set.

PARSE

Prompt lID' found data
let.

IIC IfFfl8

luue m~ge for any other
DAIR fallur ••

Open the data .et if
DAIR IUccaufui.

PARSE

Verify mambar
name far uler'l program.

AHach usa,', f'OIJI'am.

Return to TMP.

Diagram 3. CALL Command Processing (Pa.t 2 of 1)

Extended Description

1

2

3

IKJEFTOS uses Parse to scan and syntax check the command operands. Register 1
points to the Parse parameter list CPPLI. Upon return from Parse, IKJEFTOS
checks to see if a member name has been supplied. If not, it re·uses Parse to
prompt the user to supplV it. The operand information is placed in buffers.

IKJEFT08 examines the data set name supplied 05 an operand to the CALL
procassor, to see if it is fuliV qualified. If it is not,lt appends the word '.LOAO'
to the right of it. It then places the program member name, the password, if
any, and a pointer to the fuliV qualified data lot nama in the OAIR parameter
block for a data set CDAPBOSI. IKJEFT08 uses DAIR CDvanamic Allocation
l.aterface Routlnel. The X'OOOS' operation code In the first field of the DAPBOS
rfQuests OAIR routine to allocate the data set to the user,lf this has not
PTBViouslV been dona. The remaining fields ara either blanked out or set to zero.

For further Information about DAIR, see OS/VS2 Terminal Monitor Program
and Service Routines Logic.

If tha DAIR return code indicates I! not-found detl! lat, IKJEFT08 notifies the
user with a message. It then re·uses Parse to prompt the user to resupplv the
data set name. IKJEFT08 then re·uses OAIR after the user supplias a name.

4 If anv other non-zero return code is Issued bV OAIR, allocation failed. The
DAIR Failure Message routine UKJEFF1B) analvzes DAIR's Input and output
and sends an appropriate message to the uliBr.

5 When OAIR is successful, IKJEFTOS moves the ddname suppllad bV DAIR to
the DCB for the requested data set, and opens the data set.

6 IKJEFTOS issues a BLDL macro against the opened data set to verify the
member name of tha program to be attached. If the return coda is a 4, Cmembar
name not found,) it uses Parse onca more to prompt the user to resupply the
mamber name. The B LD L macro is again issued to verlfv the newlv supplied
member name.

7 Onca the BLDL macro has successfullv verified the program membar name, an
ATTACH macro is issued to attach and pass control to It. If a parameter list
was supplied, it will be truncated if more than 100 characters.

8 Upon completion of the atteched program,lKJEFDOO relaases all work and
paramater araas and returns control to the TMP.

Object Module: IKJEFTOB

Pap of SY28-0652-4
AI Updated March 1, 1985
By SuppL SD23-0299 for 5665-291, 5740-XC6

This page intentionally laft blank.

40 OS/VS2 TSO Command ProC8SllOr Logic - Volume IV

Pap of SY28-06S1-4
As Updated March I, 1985
By SuppL SD23-0299 for 5665·291, 51400XC6

This page intentionally left blank.

Method of Operation 41

Diagram 4. CANCEL/STATUS ProeessIDI (Part 1 of 1)

Input Process

FR>m
TMP SVClllO

1 Check user CNthorlzatlon.

Pene
2 Check command syntCIK.

3 Build a lob list.

4 Use Installation exit for
validity checking.

5 Use lob entry subsystem for
required operation.

CANCEL-Cancel lobs.

STATUS-Get status of lobs.

f
2.

f
I'

Diagram 4. CANCEL/STATUS Processing (Part 2012)

1 Use SVCI00 to check the usar'1 authorization to enter the command. Information
il paned to SVC100 In the FIBPARMS parameter list. If the user II not authorized
to enter the CANCEL or STATUS commencb, an error 1'n8II89II11 laued and con·
trol II returned to the TMP.
ObiBct Modullll: IKJEFF68ICANCELJ. IKJEFF66ICANCEL}.IKJEFF66
ISTATUS}.

2 Use Pene to check the command syntex.

For CANCEL, usa the Pane validity check exit (lKJEFF49) to check the lobname
or Jobname Cjobld) end the STATUS Interface to the lob entry subsystem to valid­
Ity check the command.

For STATUS, no exit II used. If no parameteR were specified on the STATUS
command, this ltep II skipped.
ObJect Modllla: IKJEFF60 ISTATUS}. IKJEFF67 ICANCEL}

3 Build a list of lobs from the names Indicated on the STATUS or CANCEL
command.
ObJect Modula: IKJEFF60.ISTATUSJ.IKJEFF67. {CANCEL}

4

6

Usa Instellation exit IKJEFF63 to validity check the list of lobs.

For STATUS commancb with no paremeteR, this ltap II skipped.

For CANCEL cornmancb, the IBM lupplled exit will reject lobnelnlll that are not
usarld plus one or more characteR.

Ob~t Module: IKJEFF6'

Usa the lob entry lubsystem to perform the required operation. Information II
pusad to the job entry subsystem via the SSOB parameter lilt.

For CANCEL, usa IKJEFF64 to request the lob entry subsystem to cancel the
requested jabl.

For STATUS, usa the lob entry subsystem to return the ItetUI of the requested
lobi. For a STATUS command with no operencb, the subsystem UI8I the usarld
plus one charectar to search the svstem queues for e lob name.
Object Module: IKJEFF62

Much 1, 1985

44 OS!VS2 TSO Command Pzocessor Logic - Volume IV

EXEC Command Processing Operation

EXEC command processing proceeds in separate
operations known as Phase 1 and Phase 2.

Phase 1 receives control from the TMP. The operation
includes reading the CLIST records from the input data
set, building the in-storage command procedure and the
Symbolic Name and Symbolic Value tables, then
placing the command procedure just built on the input
Stack. Phase 1 is described in this publication.

Phase 2, the statement executor, receives control
from the GETLINE function of the I/O Service Routines
as each record is removed from the command procedure
(provided that the procedure was built by EXEC Phase 1)
with a parameter list containing pointers to the UPT,
the ECT, the ECB, and the GTPB. Phase 2 is described
in OS/VS2 Terminal Monitor Program and Service
Routines Logic.

Phase I Processing

Phase I processing is done either explicitly or
implicitly.

The explicit form is defined when the user enters
'EXEC' with a data set name; optionally, a value list (in
quotes); and options. EXEC will open the data set,
explicitly named with the command, and read the
records (PROC statement and commands) into storage.

The impliCit form is defined when the user enters
only a member name (optionally preceded by a percent
sign) of a partitioned command procedure library,
optionally followed by a value list. However, the com­
mand procedure library must have been previously
allocated to the file name 'SYSPROC' prior to the
implicit EXEC command. This could have been
accomplished either by step allocation at LOGON time or
or by using the TSO ALLOCATE command. When the
user enters an implicit EXEC command without the
percent sign, EXEC does not get control immediately;
the TMP will go through its normal routine of attaching
the implicit EXEC command as a TSO command, using
the LINK library data sets. If ATTACH fails (806
ABEND), the EXEC command is invoked implicitly,
Optionally, the user can precede the implicit EXEC
name with a percent sign which will signal the TMP
to bypass the ATTACH or the LINK library data sets
and to ATTACH the EXEC command implicitly. The
EXEC command will use DAIR to determine if filename
'SYSPROC' exists allocated. If there is no 'SYSPROC'
data set allocated, the user gets "COMMAND name­
entered NOT FOUND"; otherwise, the EXEC command
will OPEN/FIND the member name specified. If the
FIND fails, the message "COMMAND name-entered
NOT FOUND" will be issued. If the FIND is successful,

the records (PROC statement and Commands) in that
member will be read into storage. If the EXEC command
has been attached by another command as an impliCit
EXEC command and the member name entered could
not be found as described by the two cases above, then
the message will read "SUBCOMMAND name-entered
NOT FOUND".

A ST AE routine is established initially to prevent
fragmenting subpool 78 storage in the event that EXEC
ABENDs, by freeing any subpool 78 storage that had
been explicitly gotten.

The input data set is allocated using DAIR. If the
invocation is explicit, EXEC will use the entry code for
data set allocation. If the invocation is impliCit, EXEC
will use the entry code for Information Retrieval to
determine if a command procedure library is presently
allocated.

The Dataset I/O function of the I/O Service Routines
is utilized to read records from the input data set. The
Service Routines will be loaded or addressed via a
Resident Service Routine Vector table, if available, then
GETLINE will be used for the input records.

A set of control variables are defined and initialized
for the immediate CLIST by placing the control
variable names in the Symbolic Name table (SNT AB)
and their values in the Symbolic Value table (SVTAB).
A flag byte in the SNT AB defines the entry as a
variable that can or can not be set by the user.

If the first record is a PROC statement, all the
symbolic parameters defined on the PROC statement
are syntax checked. The EXEC command saves the
names of the parameters in the Symbolic Name table
and any default values in the Symbolic Value table
located in subpool 78 storage. Next, the EXEC
command will build a PCl dynamically based on the
PROC statement definitions and then invoke Parse to
syntax check any replacement values in the value list.
Parse passes the values found in the value list back to
EXEC, which updates the Symbolic Value table
accordingly (updates positional parameters entries and
replaces keyword default values with those specified by
the user).

After the Symbol Name and Value tables have been
built, the EXEC command will get subpool 78 storage to
construct the in-storage command procedure. Each
record is then read from the input data set and identified
(scanned to determine the command name and whether
a label was present), and copied to the in-storage com­
mand procedure. All CLIST statements are uniquely
defined; any other statement is considered to be a TSO

Method of Operation 45

command. Each in.storage command procedure record
will have the following format:

On Input:

>
I

2 2 Variable "'41--- No. of
00=0 Bytes ---

In CP Storage:

CLiST I Command I
PARMS . & Text .

'-v---1'-v-"'-v-" -~ '-v-"
2 2 2 1 V _I V",

~--- 00
Offset to start of
command name

1+---- 0202
Offset to start of symbolic
substitution

~---------LL
Total length of the record

OC .. Operation code defining the command; defined
operation codes.

Code Description

00 TSOCommand

01 GOTO Statement

02 IF Statement

03 ELSE Statement

04 WRITE Statement

OS WRITENR Statement

06 EXIT Statement

07 DO Statement

08 END Statement

09 CONTROL Statement

OA ERROR Statement

OB TERMIN Statement

OC READ Statement

00 SET Statement

OE RETURN Statement

OF Internal GOTO Statement

10 READDV AL Statement

11 ATTN Statement

12 OPENFILE Statement

13 CLOSFILE Statement

14 GETFILE Statement

IS PUTFILE Statement

FF Used internally to IKJCT432 for
GLOBAL Statement

46 OS{VSl TSO Command Processor Logic - Volume IV

CLiST PARMS - some of the CLiST statements will
require immediate parsing Oi' certain
addresses to be preserved as the
in-storage command procedure record
is being constructed. This area contains
information relevant to those CLIST
statements.

COMMAND TEXT - complete copy of the record
as it was read from the CLIST data set.

DATA/ENDDATA statements are not placed in the
in·storage command procedure. Statements between
DATA and ENDDATA statements are considered to
be TSO commands and are not syntax checked for
labels.

GLOBAL statements are removed by the Phase 1
EXEC command processing and are not placed in the
in-storage command procedures.

When all the records in the CLiST data set have been
processed as described above, the STACK macro is used
to place the command procedure on the input Stack
using the EXEC option in the Stack interface. An
existing but previously reserved field defined in the LSD
will be utilized to address the EXEC data area, which
will be used by EXEC Phase 2 to obtain the addresses of
the Symbol Name and Value tables. This EXEC data -
area also will be used by the Stack service routine when
removing and freeing the space occupied by this
command procedure from the input Stack.

The in·storage command procedure record will be
different for each of the CLiST statements; however, all
TSO commands will result in the same basic command
procedure record.

The following is a deSCription of the processing that
will occur, by command, as well as the description of
each command CLIST PARMS Area:

• The IF statement proceSSing routine will be
reentrant and will invoke the Command Identifica­
tion process in IKJCT432 to identify the command
following the THEN clause; the IF statement will
be divided into two logical commands. The IF
routine will now generate an internal GOTO with
a four.byte address in the CLIST PARMS area of
the next in·storage record to be created. Next,
the CLiST PARMS area is updated with a four·
byte address of the start of the false path. Next,
the IF routine will get the next input record from
the input CLIST data set and invoke the Com·
mand Identification process to identify the
record. This is done so that the correct relation­
ship will exist for IF and ELSE statements (if the
ELSE statement is used). Then, control is
returned to EXEC mainline for proceSSing of the
next input CLiST record.

• The ELSE statement processing routine is
reentrant and will verify that the input parameter
list (IKJCT432) contains a flag indicating the
ELSE statement processing was invoked by an IF
statement; otherwise, the user has invalid syntax.
The Command Identification process (IKJCT432)
will be invoked to process the command
following the ELSE: the ELSE statement is
broken into two logical commands. Then the
ELSE routine will update the address in the
CLIST PARMS area of the internal GOTO prior to
the ELSE in-storage record to the real end of the
false path and return to EXEC mainline for
processing of the next input record.

• The DO statement processing routine is reentrant
and will get a record from the input data set and
invoke the Command Identification process in
IKJCT432 as many times as necessary until an
END or an alternate END is processed. The DO
routine will set a flag byte in the CLIST PARMS
area to indicate the presence of a WHILE operand.
When the corresponding END has been processed
and the matching DO statement contained a
WHILE operand, an internal GOTO statement is
generated with the address of the corresponding
DO statement and the false path address in the
CLIST PARMS area is updated with address of
the next CLIST record to be created. No internal
GOTO is generated if the DO statement had no
WHILE operand. Control returns to EXEC
mainline for proceSSing of the next input record.

• The ERROR and ATTN statement processing is
reentrant and will invoke the Command
Identification process (IKJCT432) to identify the
command specified as the error action unless the
OFF operand was present, or if no operands were
found. When a command action is specified, the
ERROR or ATTN statement will be broken into

two logical in-storage Stack records; upon return
from Command Identification, a 4-byte address
in the CLIST P ARMS area is initialized to the
address of the next in-storage record to be created.
A Flag byte in the CLIST PARMS area is used to
indicate whether NO operands were found, OFF
was specified, or a command was found. Then
control returns to EXEC to process the next input
record.

The SET statements use four bytes in the CLIST
PARMS area to store the address of the Symbolic Name
Element for the symbolic parameter specified on the
left of the equal sign.

The READ and READDV AL statements use a
variable amount of the CLIST PARMS area, depending
on the number of symbolic parameters that have been
specified. First are two bytes used as a counter, which
will c.ontain the number of symbolic parameters that
were specified. Following the counter bytes is a four­
byte entry for each symbolic parameter specified, which
will contain the address of the corresponding element in
the Symbolic Name table.

The CONTROL statement uses two bytes of the
CLIST P ARMS area for a flag area. The flag bytes will
contain indicators corresponding to the options specified
on the CONTROL statement. When an alternate END
was specified, the EXEC Phase 1 Common Data Area
(ECDA) fields will be updated to reflect those changes.

The Internal GOTO statement is used by the IF and
DO statement processors for controlling the flow around
false or conditional paths. It will use four bytes of the
CLIST PARMS area to save the target address.

The remainder of the statements have no CLIST
PARMS information and pass control to a common
in-storage stack build routine to place an op code in the
command procedure record and return to EXEC Main
Control.

Method of Operation 47

Diagram 5.1. Phase 1 EXEC Command Main Control (IKJCf430) (Part J of2)

I n put from TMP or Process
from EDIT

Regl

CPPLPTR

CPPL

t Command Buffer I--­

t UPT

t PSCB

t UPT

Command Buffer

LLJool Command Text

~
i'-.-

INPUT
DATA

........ SET ./

command

1

2
3

4
5

6

7

8
'--

Save address of input parms,
Inltiolize work areas

Establish ST AE routine.

Validity check command
parameters •

Allocate the input data set.

a) Get a record from the
input data set.

b) Coli I KJCT 431 for the
Rrst Input record.

c) Get a recard from the
I nput data set.

d) Call Record Scan routine.

e) Repeat pracess Sc, d, e
until end-of-file •

Free unassigned subpaol 78
storage.

Place the command procedure
an the input stack.

Retum to caller.

Output Phase 1
ECT SP78 Command Procedure Storage

+ 10SRL

10SRL

t TOPELEMT

Input Stack

... Flag It LSD ~

Lower

Elements

(4 bytes each)

LSD
LSDADATA

LSDRECLN ILSDTOTLN

LSDANEXT

.-

.~

(t Next to be read) -r + EXECDATA

Blk
10 t To Next Block Length

In Use

J
L I L 010
L I L 010

EXEC DATA
r- t First SNTAB

t First SVTAB
GEXECDAT

L

t Error Action Start
t Error Action End
tError Action Returr

Flags

L\olo

:.

Set and
used by
Phase 2
processIng.

SVTAB
~~----~~----~ t Next SVTAB

SNTAB
,- t Next SNTAB

SVT AB Length
Header

SVT AB Length in Use
to er

Header S NT AB Length SVT AB Assigned Unused

Notes - Global Name Table Pointer (GEXECDAn initiolized to SNTAB
of previaus nested level; if no previous nested level it is
initiolized to zero.

- ERROR Action pointer initialized to zeros. When ERROR CLiST
statement encountered then it will contain address of action.

* Name of
Symbolic
Parameter

SNTAB Length in Use
~ t VALPTR

Name Flags I Name Length

Elements SNTDATA·
I I Next Element _ _
l_L --- ----

Value Elements

Value Length

Value
Data

Original
Length

Next

: : Ele,,:n~ ______ ..l
l_l-- -

Diagram 5.1. Phase 1 EXEC Command Main Control (IKJCT430) (part 2 of 2)

1

2

3

4

Save input CPPLPTR·. Initialize the common work area.

Establish a STAE routine.

Syntax check input parameters.

• For explicit EXEC commands, invoke Parse to obtain dataset name containing
the command procedure, determine if the value list was specified, and obtain
the CLiST options ILiST or PROMPT). Use IKJEFF19 to analyze any errors.

• For implicit EXEC commands, invoke Command Scan to obtain tha member
name ICommand Procedure Libraryl and to determine if any operands were
specified in the value list.

Retain Parse output with pointer to the value list.

Invoke IKJDAIR to allocate the input data set.

• For explicit EXEC commands, Data Set Allocation will be requested.

• For implicit EXEC commands, Information Retrieval will be requested to
determine whether 'SYSPROC' is allocated.

Use IKJEFF18 for any DAIR errors and usa STAE routine to clean up and
return to TMP with RC=12.

5 Use 1/0 Service Routines Dataset 1/0 to read input data set.

• Load IKJGETL IIKJSTCK).

• Stack a dataset 1/0 element, using 1/0 Service Routines with the input ddname
specified as input with no output ddname, using the prompt option.

al Issue GETLINE for an input record.

bl If this is first statement in the data set, then call Symbolic Parameter
Definition II KJCT431I.

If the return code is 4 proceed to Step SA. If the return code is > 4 then
use STAE Exit to cleanup and return to TMP, otherwise continue at C.

6

'7

8

Return Code 0 - Indicates PROC statement was not present.

4 - Indicates PROC was present.

cl Call Record Scan routine IKJCT432. If the return coda is greater than 4,
then use STAE Exit to clean up and return to the TMP.

If the return code is 4 from I KJCT432 IEOFI then proceed to Step 6 for
end·of-file cleanup.

d) Check for end of input file. If not end of file return to Step S for next
record.

For end of file on input, clean up unused storage for Name table, leave some
space in the Value Table, and place pointer to EXECDATA in LSD. Clean up any
SP78 storage not used for CLIST. If the procedure can not be executed due to
error then proceed to Step 2 of the STAE routine to clean up.

Issue STACK with options specified bV user to make command procedure the
current input sou rce.

Return to caller with RC=Q for normal completioh. For error, see below.

Error Processing ISTAE)

1. Indicate entry to STAE routine via ABEND using a flag for ABEND entry.

2. Free all subpool 78 storage which had been explicitly gotten - EXECDATA.
SNTABlsl, SVTAB(s), LSD, command procedure storage areals).

3. Issue a TCLEARQ and a STACK macro with the DELETE=ALL option.

4. Return to caller. For ABENDs. return to ABEND with no retry requested.
For EXEC error situations, return to the TMP with a preset return code
(RC=12); command procedure is not executed.

Diagram 5.2.

Input

Phase t EXEC Command Symbolic Parameter Definition (lKJCT43 t~ (Part t of 3)

,.-

,.-

Reg I

ECDAPTR

ECDA (EXEC
Common Data Area)

CPPLPTR

t Current Record r-

First Input Record

LLloolpROC- - I

CPPL

tCommand Buff .. r

Command Buffer

LLIOOICommand Value list I

from
IKJCT430

Process 1

1 Issue GETMAIN for subpool => 78 storage for SNTAB,SVTAB,
EXECDATA, Command
Procedure and LS D •

2 Initialize a set of control SNTAB
variables.

1- Update/

3 Create
When the first statement not
a PROC statement, proceed
to Step 10.

4 , Syntax check positional
specification.

5 Syntax check any positional
parameters and use SNTAB/ '-SVT AB Update to place namOS
in SNTAB.

6 Syntax check any keyword
parameters and ,use SNTAB/
SVTAB Update to place names
in SNTAB and values in the -SVTAB.

7 Construct a PCL using the
SNTAB and call Parse to I Parse
syntax check the value I
list.

8 Update the SNTAB and SVTAB r SNTAB

wi th Parse output. Update

9 Free PCL and P DL storage.

10 Return.

to Caller

Output

ECDA LSD SP78 Command Procedure Stora ge

I I t Data Blk It Block Length It LSD
ID To Next

L I L 10 + EXECDATA In Use o

11~1~1~1
EXEC DATA

r- t First SNTAB

t First SVTAB

t GEXECDAT

t Last TS 0 Command
I-

STACKI
Parms Reserved

+ Error Action Start Set and used

t Error Action End by Phase 2
processing

+ Error Action Return '-.

Flags

SVTAB . 'r
t Next SVTAB

Header
SVTAB Length

SVTAB Length in Use

SVTAB Assigned Unused
~

Value LengthlOriglnol Length

Value
Value I

Element ",
Data I

I I
I I Next Element I , '-_L _________ -'

SNTAB

t Next SNTAB

Header 5 NT AB Length

~
SNTAB Length in Use

t VALPTR

Name Flags I Name Length

* Name of Elements SNTDATA*
Symbolic

...... L _ .!:'~ !!e~e~ __ ..: Parameter

CIa ...

Diagram S.l. Phase 1 EXEC Command Symbolic Parameter De6nition (IKJCf431) (part 2 of 3)

1 Save Input pointer to the Comrnon Dete Aree (CDAI. Get storage for the
Symbolic NarneNalue tables, EXECDAT A, LSD. and the comrnand procedure
from subpool 78. Initialize table heeder information for each block. If storage
is unavailable. notify user and return with RC .. 16.

2

3

4

InltleUze the control variables for this commend procedure.

NAME

LASTCC
MAXCC
SYSPROC
SYSTIME

SYSDATE

SYSUID
SYSPREF

SYSSCAN
SYSDVAL
SYSDIM
SYSNEST
SYSICMD
SYSPCMD
SYSSCMD

VAL

o
o
Logon Proc. from TIOT
Create entry; indicate evaluete Irnrnediately. initialize to e
null entry
Create entry; indicate evaluete immediataly. initialize to a
null entry
gat from PSCE
Creete entry. indicate irnrnldiete evaluation. initialize to e
null entry
Initialize to default
initialize to null entry
initiallza to 00
initialize to YES or NO depending on CllST nesting
to implicit narne or null if explicit EXEC
initialize to null entry
initialize to null entry

Determ ine if the first statement is a PROC statement. When first statement is
not a PROC stetement then return with RC,.O.

Syntax check pOSitional specifications. Positionel specifications must be
numeric. Find the next non·numeric - a non·numeric is considerld to be a
comma. blenk or tab or start of comment. Any other characters will be
syntactically incorrect with user notified and "PROC not executable" set.
then return.

5 Syntex check all positional parameters and place name in SNT AB.
Accumulate e total number of pOSitional perameters and the total length in
bytes.

Skip sep8l'ators.

First character must be alphameric.

Find next non-alphemeric.

6

7

8

If name less than 262 characters end correct- then caIlIKJCT431
SNTABISVTAB Update routine to place name in SNTAB. If the PROC II
not executeble, then bypass adding to SNTAB.

Repeet the above steps of 5 until all positional parameters are processed.

" If parameters syntactically Incorrect then notify user, set ''PROC not
executable"; continue syntex checking any remaining parameten.

Syntax check keywords specified on PROC statement.

Skip separaton.

First charecter can be alphameric or left paran. If alphemeric. it is start of a
new keyword so caIlIKJCT431 SNTAB/SVTAB to pleca previous keyword
in SNTAB. Upon retum. continua syntax checking until end of keyword is
found (1·31 characters. the first of which is elphabetic and remainder
alphameric-). Repeat above stePs of 6 until all kavwords ere processed.

If it was a left paren then syntax check the value for the current keyword.
Value can be a Quoted string or a character string-. Repaat above steps of 8
until all keywords are processed.

• If parameters are syntactically incorrect then notify user. set "PROC not
executable"; continue syntax checking eny remaining parameters.

If errors have occurred at this point. retum with any accumulated retum coda.
Otherwise. using the SNTAB dynamlcallv construct a PCl representative of
the PROC statement parameters and call Parse to parse the value list. If Parse
fails then notify user and return. Use IKJEFF1S to analyze Parse errors.

Update the SNT AB/SVTAB with the Parse output. Take values frorn the POL
and place in the SVT AB. I f operation runs out of storage, then get new blocks
of SNT AB/SVT AB. If necessary. copy SVTAB to new block and free first
block. If storage unavaLabie, notify user and return (return code 16).

9 Free the PCl and PDl storage.

10 Return RCeD First record not a PROe statement.
RC,.4 First record was a PROC statement.
RC-16 Not enough storage (GETMAIN fallurel.

52 OSjVS2 Command Processor Logic - Volume IV (VS2 Release-3)

Diagram S.2. Phase 1 EXEC Command Symbolic Parameter Definition (IKJCT431) (part 3 of3)

SNTAS Element Update/Create Routine

1. Locate the SNTAB pointer in EXECDATA.

2. Search the SNTAB to see if name already defined.

If name already defined and the request was to creata e label entry, then
this is an error situation. Notify user of duplicate label and set "PROC not
executable" and return.

If name already exists and the request was to create a Symbolic Paremeter
element, then notify user of multiply defined parameter and set "PROC not
executable" and return.

If name already exists and request was to locate, then return address of
element RC"O.

If name does not exist and request was to locate an element, then create a
new SNTAB element from the remaining storage. If storage remaining is
insufficient, then get storage for a new block and extend the SNTAB. Set
the iast bit in the last element of previous SNTAB and create new entry in
next SNTAB lif GETMAIN error return RC=161.

When the request was to create a label entry, initial ize the value pointer to the
current location in the CP SP 1781 storage and label flag. Return with RC"O.
Whan the request was to create an element, set the appropriate type flags,
adjust the SNTAB amount In use, and check to see if a value is required. If
yes, call the SVTAB Update routine to create a value element. Return with
address of element ISNTABI with return code of SVTAB updates.

3. Return RC = 0
RC" 16

Request performed address of element returned.
Not enough storage.

SVT AS Element Update/Create Routine

1. I f request was to update an element, then determine if value will fit in old
spot. If enough room than reuse the entry and return RC=O. If not enough room,
change request to a create. Add element space to the free space in SVT AB.

2. If entry was to create an element, then determine if enough storage available.
If not issue GETMAIN for a new block, copy aU values from previous SVTAB.
table up to current SNTAB element lif GETMAIN error, return with RC=161.

3. Create the new element: update SNTAB·SNTVLPTR to new entry and adjust the
SVT AB amount In use.

4. Return RC .. 0

RC =16

Request performed; the SNTVLPTR has the address
of the SVT AB element.

Not enough storege.

~ Diagram 5.3. Phase 1 EXEC Command Record Scan Routine (IKJCT432) (part 1 of 2)

from IKJCT430

Input

Reg 1 LSD

* PARMS

r-I ECDAPTR

Flags 'EXECDATA t--,

Current Input Record

ECDA ~LLIOO Comm, ... "~.I

ECDALSD
EXECDATA

ECDAIREC ,..- t First SNTAB
ECDACBLK t ECDACPRE '"""-

First SVTAB

ECDACNXT h
... '"

ECDALCTR SVTAB

-l 1
SNTAB

I I
SP78 Command Procedure Storage

Blk ID TtTo Nextl Block Length

In Use LLiLlolo

~~ '~

I...,. L I L 10 10 I
~ LI L 10 10 I

,." ,."
T T

Process

1 Validity check command
name and label.

2 Create label name entry in
SNTAB.

3 Route control to proper
phase 1 command sub·
routine based on command
length and name.

4 Common Exit from
command subroutines -
Move current CLIST
to SP78 command
procedure storage.

5 Special Exit from command
subroutines - No moving
of data required.

6 Return to caller with return
code from phase 1 command
subroutine.

to caller

Output

Updated Input
Parameters

Control Command
SUbroutine

Diagram 5.3. Phase I EXEC Command Record Scan Routine (IKJCT432) (Part 2 of 2)

1 Call Control Command Scan.

2 If label was found and was syntactically correct. place name and record
address In the Symbolic Name table. Otherwise. if there is what appears to be a
label syntax but specified incorrect. then assume the record to be a TSO
command. When the return code from the SNTAB Update routine is non-zero,
then proceed to Step 4 with following return code -

o when SNTAB Update RC not 16
16 when SNTAB Update RC=16

a) If not a syntactically correct command name and it contained a valid label.
then assume it to be a TSO command. If there was no label. then assume the
command is a TSO command In disguise.

If a label appears by itself. this is an error; notify user, set "PROC not
executable". RC=O and return via Step 4.

If no label or command appears. then return with RC=O via Step 4.

3 Determine command type.

a) ·I·f·the command was a TSO command in disguise. then call Common
Command routine with the TSO op code.

b) Determine if the command is an END or alternate END; it so, call ENORTN.
Otherwise. use the length to index into branch table and go to proper length
routine. (COMCMD ., Common Command Routine, OP " op code.)

Length=1

1. Call COMCMD OP(Oa).

Length=2

1. IF Command '1 Call IFRTN
(IF Routine).

2. DO Command '1 Call DORTN
(DO Routine).

3. Call COMCMD OP(OOI.

Length=3

1. SET Command '1 Call SETRTN
(SET Routine).

2. Alternate END or END '1 Check
for end specification. YES - Call
ENDRTN (END Routine).

3. Call COMCMD OP(OOI.

Length"'4

1. GOTO Command '1 Call
COMCMD OP(01).

2. ELSE Command '1 Call ELSERTN
(ELSE Routine).

3. READ Command '1 Call
READRTN (READ/
READDVAL/GLOBAL Routine).

4

5

6

4. EX IT Command '1 Call Length~7

COMCMD OP(06). 1. CONTROL Command '1 Call
CONRTN (CONTROL Routinel.

5. DATA Command '1 Call
DATARTN (DATA Routine). 2. WRITENR Command '1 (Call

COMCMD OP(041.
6. ATTN Command? Set OP(11).

Call ERRRTN (ERROR/ATTN 3. ENDDATA Command '1 Call
Routine). ENDARTN (ENDDATA Routine).

7. Call COMCMD OPIOOI. 4. GETFILE Command '1 Call

Length=5 COMCMD OP(141.

1. ERROR Command '1 Set OPIOA). 5. PUTFILE Command 7 Call
Call ERRRTN (ERROR/ATTN COMCMD OP(14).
Routine).

6. Call COMCMD OP(OOI.
2. WRITE Command '1 Call

COMCMD OP(05). Length=8

3. Call COMCMD OP(OOI. 1. READDVAL Command '1 Call
READRTN OP(10) (READ!

Length=6 READDVALlGL08AL Routine).

1. TERMIN Command '1 Call 2. OPENFILE Command 7 Call
COMCMD OP(13). COMCMD OP(121.

2. GLOBAL Command '1 Call 3. CLOSFILE Command 7 Call
READRTN OP(FF) (READ/ COMCMD OP(13).
READDVALIGLOBAL Routinel.

4. Call COMCMD OP(OOI.
3. RETURN Command? Call

COMCMD OP(OE).

4. Call COMCMD OP(OOI.

Common Exit - Call Common Move routine to move CLIST record to subpool 78
using current line pointer.

Special Exit - No moving required.
I

Return RC=O
RC=4
RC=16
RC=20

Record processed successfully.
End-ot-file occurred.
Not enough storage IGETMAIN failure).
GETLINE error.

~ Diagram 5.3.1. IF Routine (IKJCT432) (part loU)

Input

Reg 1 PARMS

PARMPTR ECDAPTR I--

Flags
Special Use

1 ECDA (EXEC Common Data Area)

~ ~~

ECDAIREC

1\ ,.- ECDACPRE

ECDACNXT (+to next! \
,L, "
T J

~ent Input Record

LLloo 1
SP78 Command Procedure Stora ge

~ LIL 0101 0 21°2

Process

1 Initialize Record Scan
routine parm list.

2 Initialize CPS record op code
and parm offset (°2),

3 Reserve 4 bytes of CLiST
parm area for FALSE path.

4 Locate the THEN clause.

5 Call Common Move routine.

6 Call Record Scan routine to
process action of THEN.

7 Build internal GOTO in next
input record. Call Common
Move.

8 Update FALSE entry to next
CLiST position.

9 Get the next input record.

10 Invoke Record Scan routine.

11 Return via Special Exit.

to Caller

Output

SP78 Command Procedure Storage

. IF THEN action

To start of ELSE command if present,
otherwise start of next record.

Using example shown:

IF

°202 - Offset from start of 00 field to the A

00 - Offset from start of 00 field to the I

Generated Internal GOTO

O2°2 - Offset to end the address (end of record)

00 - Same as 0 20 2

Diagram 5.3.1. IF Routine (IKJCT432) (part 2 of 2)

1 Save input pointer to the Common Data Area (COAl pointer and flag area.

2 Initialize the command procedure op code to X'02' and set the parameter offset
(021 equal to the offset of the first parameter of the command (offset to AI.
Update LL of current CP record.

3 Reserve four bytes of CLIST Parm Area for the FALSE path address.

4 Locate the ending position of the THEN keyword by skipping separators and
operands until tha TH EN clause is found.

5 Call the Common Move routine to move the record starting with I F and ending
with THEN, to Command Procedure Storage Area. Respecify SP (781 command
base after move in case record would not fit in the current CP block. If retum
code from Move non-zero then return with Move RC via Step 9.

6 Adjust offset in record to next pOSition following N of THEN and call the
Record Scan routine to process the command following. (Preserve the original
input buffer address and length for correct freeing of buffer later.1

7 Upon return from the Record Scan routine construct an internal GOTO
CLIST statement with an address in CLiST parms of the next command
procedure record to be created and call the Common Move routina to place
in the CP Storage (if the RSR return code was not zero then return with RSR
RC via Step 91. Initialize the GOTO address to the next SP (781 command
procedure record to be created. If the Move Return code was non-zero then
return with Move RC via Step 9.

8 Update the FALSE path address in the IF CP Storage record to point to the
next record to be created in CP Storage. (Same address as in internal GOTO.)
If an END of DO loop was processed during the object of the 'THEN'
processing then return via special EXIT to close the DO loop.

9 Call GETALINE to obtain the next input buffer (allows nesting of IF THEN ..•
ELSE relationships properly I.

10 Call Record Scan routine IIKJCT4321 to process record obtained in 9 if not
end of file.

11 Return via the Special Exit because no move is necessary with GETALINE
return code.

~ Diagnun 5.3.2. ELSE Routine (IKJcr432) (part 1 of 2)

Input from Process
IKJCT432
Mainline for

~----------------------------------~ELSE ~----------------------------~

PARMS

ECDAPTR

Flags

ECDA (EXEC Common Data Area)

ECDAIREC

ECDACPRE

ECDACNXT (+ to next)

T

1

2

3

4

5

6

7

Initialize Record Scan routine parm
list.

Check the input parameter list
for a flag indicating the caller was
the IF command.

Place op code X'03' in CP storage
record.

Call Common Move.

Adjust offset in current input
record past ELSE and call Record
Scan routine to process ELSE
object.

Update the internal GOTO prior to
ELSE with the address of the next
CP storage record to be created.

Return via Special Exit.

to Exit

Output

SP78 Command Procedure Storage

·Previously built by IF routine.

Using example:

02~ • Offset from 00 field to the end of the record

00 • Offset from 00 field to the E

Diagram 5.3.2. ELSE Routine (IKJCT432) (part 2 of 2)

1 Save input pointer to the CDAPTR and flag area.

2 Make sure previous CP Storage record is an internal GOTO with an address the
same as that of the next command procedure record to be created. Save
eddress of the internal GOTO for later update; if this is not true then the user
has a syntax error; notify the user and set the PROe not executable switch­
continue command syntax check at Step 5.

3 Place the op code X'03' in the current CP storage record, update 02 offset and
LL of current CP record. (Preserve the original input buffer eddress and length
for correct freeing of input buffer, later.l

4 Call the Common Move routine to move ELSE to CP storage. If the Move
return code is non-zero, then return with Move RC via Step 7.

5 Update the offset in the current input record past the word ELSE and call the
Record Scan routine to process the object of the ELSE. If RSR return code
non-zero return With RSR RC via Step 7.

6 Update the address in the internal GOTO prior to the ELSE to point to the
next CP storage record to be created.

7 Return via Special Exit.

$ Diagram 5.3.3. DO Routine (IKJCT432) (Part 1 of 2)

Input

.,..

,-

-"" T

Reg 1 PARMS

PARMPTR r----- ECDAPTR

Flags

ECDA (EXEC Common Data Area)

.r-

ECDAIREC 1\
ECDACPRE

ECDACNXT (ho nextl

f Current Input Record

ILLIOOI I
SP78 Command Procedure Stora

L L 1 0 1 0 10210J

ge

from IKJCT432
Mainline for
DOWHILE

Process Output

SP78 Command Procedure Storaga

1 Initialize the Record Scan routine
parm list.

2 Place op codes and flag byte in CP
Storage record.

3 Check for WHI LE operand; if
present reserve 4 bytes CLIST parm
for FALSE branch.

4 Call Common Move routine to
place DO command in CP storage.

5 Call GETALINE routine for next
input record. Using example shown:

6 Call Record Scan r.qutine 0 20 2 - Offset from 00 field to the A

(IKJCT432) (Re-enter IKJCT432). 00 - Offset from 00 field to the 0

7 Repeat Steps 5 & 6 until END has
been processed.

8 For DO s with WHILE operand
build an internal GOTO to allow
checking the condition. Call
Common Move routine. Initialize
the 4 byte address in the DO
statement CLIST PARMS area.

g Return via Special Exit.

to Special Exit

Diagram 5.3.3. DO Routine (IKJCf432) (part 2 of 2)

1 Save pointer to the CDAPTR and flag area.

2 Place op code 07 and flag byte X'OO' in the CLiST parm area. Update DO
Count. Update 0202 offset.

3 Determine if the WHILE operand was specified. If so reserve 4 bytes in the
CLiST parm area and set flag byte X'SO'. This will be the address of FALSE
path. Adjust LL of current CP record. If there was no WHILE operand leave
flag type X'OO'.

4 Call the Common Move routine to place the DO statement in the CP storage
area. Respecify SP (7S) command base after move in case record would not
fit previous block. It return code from Move non-zero then return with Move
RC via Step 9.

5 Call the GETALINE routine to get the next record from the input data set.

6

If end of tile has occurred then notify user ot the open DO group, set PROC
not axecutable. For end of file and other errors return with the GETLINE
error via Step 9.

Initialize a flag area and CDAPTR parm to be used as input to the Record
. S'can routine and call Record Scan routine. If the return code from RSR is
non-zero notify the user of the open DO group and return with RSR RC via
Step 7.

7 Repellt Steps 5 and 6 until lin END CLIST statement has been processed
/this will be denoted by conditions in the flag areal.

8 If the DO statement had a WH ILE operand then build an internal GOTO with
the address initialized to that of the original DO statement. Call the
Common Move routine to place internal GOTO into CP storage. Update the
FALSE address in the original DO statement to the address of the next
record to be created.

9 Return via Special Exit.

Diagram 5.3.4. ERROR/A TIN Routine (IKJCT432) (part 1 of 2)
from I KJCT432

Input

Reg 1 PARMS

I PARMPTR r-- ECDAPTR ~

Flags

~ ECDA (EXEC Common Data Area)

... 1
~

ECDAIREC 1\
,.-- ECDACPRE

ECDACNXT (ftc next)

..

f T T
Current Input Record

LL 001 I
SP78 Command Procedure Stora

L L 1 0 1 0 10 21 0 21

ge

Mainline for Process
ERROR or

1 Initialize the Record Scan routine

parm list.

2 Place op code in CP storage alld
flag byte X '00'.

3 When OFF specified set flag byte

and return via Common Exit.

4 Call Common Move to place
'ERROR' or 'ATTN' in CP storage.

5 Call Record Scan Routine to

process ERROR/ATTN action.

6 Return via Special Ex it.

to Special Exit

Output

SP78 Command Procedure Sto

• X'OA' for ER ROR or X'11' for ATTN.

Using example shown:

0 2 0 2 - Offset from 00 field to end of buffer

00 - Offset from 00 field to E

Diagram S.3.4. ERROR/ATTN Routine (IKJCT432) (partlof2)

1

2

3

Save address of input parms - CDAPTR and flags.

Initialize a flag byte to zero; X'OO'. Adjust LL and 0202 of current CP record.

Determine if OFF was specified. If OFF was requested then set flag byte to
X'SO' and return via Common Exit. If no operands specified set flag byte to
X'40' and return via Common Exit.

4 Reserve 4 bytes for the End of Action address. Adjust LL and 0202 of current
CP record. CALL the Common Mova routina to place 'ERROR' in the CP
storaga. If Move return code non-zero then return with Move RC via Step 6.

5

6

Call Record Scan routine to process the action following 'ERROR'. Update
the End of Action address in the CLiST Parm Area. If RSR return code
non·zero, then return with RSR RC via Step 6.

Return via Special Exit.

~ Diagram 5.3.5. END Routine (IKJCT432) (part 1 of 2)

Input

Reg 1 PARMS

PARMPTR ECDAPTR --.

Flags

ECDA {EXEC Common Data Area}

I
:: :1:

i
11>

ECDAIREC ,
..-- ECDACPRE

< ECDACNXT {+to next}

;- f Current Input Record

LL 001 I
SP78 Command Procedure Storag

L L 1 0 1 0 10 2 0 21

e

from
IKJCT432 Process
Mainline for
ENDor

1 Reduce the open DO count. *

2 When DO count negative then call
Common Command with TSO op
code (No Return).

3 Place END op code in CP storage.

4 Set ENDF LAG in input flag area.

5 Return via Common Exit.

*END must have open DO or it
becomes an END command.

to Common Exit

Output

SP78 Command Procedure

1 J
Using example shown:

0 20 2 - Offset from 00 to end of record

00 • Offset from 00 to E

Diagram S.3.S. END Routine (IKJCT432) (part 2 of 2)

1 Lowvr the open DO count bV ONE.

2 If the DO count goes negative then there was no matching DO. If this was an
alternate end specification (ECDAEND field othvr than 'END') then it is an
error; notify the user and set the PAOC not executable switch. Otherwise, zvro
the DO count then treat as if it was a TSO command by invoking the COMCMD
routine with the TSO op code X'OO'. COMCMD routine will return via Common
Exit.

3 Set END Flag in input parm flag area. Set op code to X'OS' and initialize 0202
and LL.

4 Aeturn via Common Exit.

Diagram 5.3.6. SET Routine (IKJCT432) (Part 1 of 2)

Input Process
from I KJC'r432
Mainline for SeT

r------------------------------------,&A=B r---------------------------~

Reg 1 PARMS

PARMPTR ECOAPTR t--.

Flags

1 Place op code 00 in CP storage
area.

2 Find the beginning of the

eCOA (EXEC Common Data Area)
symbolic variable.

~ 1 3 Check first character for
ampersand. If so skip past. Set
00, 0 20 2, and LL.

ECOAIREC

4 Return via Common Exit.

ECOACNXT (+to nextl

T

SP78 Command Procedure Storage

to Common Exit

Output

SP78 Command Procedure

T T

Using example shown:

0 20 2 • Offset from 00 field to the A

00 • Offset from 00 field to S

Diagram 5.3.6. SET Routine (IKJCT432) (part 2 of 2)

1 Place op code '00' in CP storage area.

2 Locate the start of symbolic variable. If none exist, issue a message and return to
Special Exit with return code.

3 If the first charac~r is an ampersand, skip past. Set 00, 0202, and LL.

4 Return via Common Exit.

m Diagram 5.3.7. CONTROL Routine (lKJCT432) (part 1 012)

Input Process
from IKJCT432 Mainline
for CONROL NOFLUSH

~------------------------------------'PROMPT~---------------------------'

Reg 1 PARMS
~

PARMPTR ECDAPTR I----

Output

SP78 Command Procedure

Flags
1 Write op code to CP storage and :::~==::>I-i::;-1-:""~~:;!;;~;:':~~;;i~~~:L:.':':':1

ECDA (EXEC Common Data Area)

_100. 1
ECDAIREC

ECDACPRE

ECDACNXT !+to nextl

T

SP78 Command Procedure Storage

reserve 2 flag bytes in CLiST
PARMS.

2 Validate the parameters
specified.

3 Indicate options via the flag
bytes.

4 Update alternate END specifi­
cation if present.

5 Return via Common EXit.

to Common Exit

Using example shown:

0 20 2 - Offset from 00 field to end of record

00 - Offset from 00 field to C

Diagram 5.3.7. CONTROL Routine (lKJCT432) (Part 1 of 1)

1 Place op code X'OS' in the CP storage area. Reserve 2 bytes for flag options.
Update the 0202 and LL fields.

2 Validate the parameters specified. Syntax checking will not invoke any
prompting situations. If a parameter is incorrect, notify the user and set the
"PROC not executable" switch and continue syntax check of operands. The
lowest unique number of characters are allowed for each keyword.

3 Indicate the options found on the CONTROL statement by setting or resetting
bits in flag bytes.

4 If an alternate ending sequence was specified then update the alternate END
field and length in the Common Data Area.

5 Return via Common Exit.

c:l Diagram S.3.8. READ/READDVAL/GLOBAL Routine (IKJCT432) (part 1 of 2)
from IKJCT432

Input Mainline for Process
READ &A. &B.

Reg 1 PARMS

I PARMPTR ~ ECDAPTR I-

Flags

1 Place op code in CP storage and
reserve two bytes in CLIST
PARMS area for the parm

ECDA (EXEC Common Data Area) 2 Syntax check a symbolic parm.

~~ A 3 Call SNT AS Update to locate
SNTAB entry.

ECDAIREC
~ -- ECDACPRE

4 Up the parm count by 1; call
Common Move for a special
READ command 4 byte move

ECDACNXT (tto next! to place the SNTAB element

f f Current Input Record

LLOOI 1

address in the CLIST PARMS
area.

5 Repeat Steps 2, 4 until all parms
processed.

6 If this is a GLOBAL statement
then return via Special Exit;

SP7S Command Procedure Storag e otherwise, return via Common
EXit.

L L 101010 2 O2

to Common Exit

Output

SP78 Command Procedure Storage

·CNT is the number of variables; 4 in this axample.

Using example shown:

0 2 0 2 • Offset from 00 field to end of record
00 . Offset from 00 field to R

Diagram S.3.8. READ/READDV AL/GLOBAL Routine (lKJCT432) (part 2 or 2)

1

2

3

If command is GLOBAL proceed to Step 2. Place op code in CP storage record
and reserve two bytes for e count field set to X'OOOO'.

Syntax check a Symbolic Parameter Specification. Determine neme and length.
If syntax incorrect notify user, set PROC not executable and continue syntex
check of any more parameters.

Call SNT AB Update routine to locete or create an element in SNTAB. If
commend is GLOBAL, proceed to Step 2 to process next parameter name; if no
further parameters, return via SpeCial Exit. CaU Common Move to place
address of element'in CLIST Parm by indicating call by READ command. If the
retum code from the SNTAB Update routine or Move routine is non-zero then
retum with 'SNT AB Update or Move RC via Step 6.

4

5

6

Add one to the parm count. Update 0202 and LL fields.

Repeat Steps 24 until all symbolic parameters have been syntax checked or
count exceeds 256. If count exceeds 256, notify user that PROC is not
executable and return.

If the command length was eight, then set the op code to 10. Return via
Common Exit.

jj Diagram 5.3.9. Common Command Routine (lKJCT432) (part 10(2)

Input

Reg 1 PARMS

I PARMPTR ~ ECDAPTR ~

Flags

ECDA (EXEC Common Data Area)

:~ !
ECDAIREC 1\

,.- ECDACPRE

ECDACNXT (tto nexd

T f Current Input Record

LLOol 1

SP78 Command Procedure Storage

L L 10101°2 O2

Process
from
IKJCT432

~;i+.

If' 1

2

3

Output

SP78 Command Procedura Storage

... L J L 1 0 1 0 1 O2 1 O2 1 XX
Initialization already placed op
code into the CP storage area.

I"

t r Update CP storage record fields
02~and LL

Return via Common Exit.

XX .. Op code for:
WRITE
WRITENR

0 20 2 • Offset from 00 field to the position following
the command name, delimiter (a Separator)

00 • Offset from 00 field to first letter of the
command name

TSO Command

°202 • Offset from 00 field to first character of
command name

00 • Same as °202

Remaining Commands

0202 • Offset from 00 field to first parameter of
command

00 • Offset from 00 to first lettar of command
name

to Common Exit

Diagram 5.3.9. Common Command Routine (IKJCf432) (part 2 of 2)

1 Initialization already moved the op code to the current
CP record

2 Update the ~O, 0202 and the LL fields in the CP record
as follows:

TSO commands: 0202 c offset to first position of
command name; 00 = same as 0202.

WRITE(NR) commands: 0202 c offset to separator
following last character of command name; 00 co off­
set from 00 field to the first letter of the command
name.

All other: 0202 co offset to first operand following
the command name; 00 = offset from 00 to first
letter of command name.

3 Return via Common Exit.

~ DiagramS.3.10. DATA toENDDATA Routine (IKJCT432) (part! o(2)

Input Process

Reg 1 PARMS

I PARMPTR r---- ECDAPTR I--.

Flags
1 Call GETALINE.

2 Call Control Command Scan
(part of Record Scan Routine).

ECDA (EXEC Common Data Area)

... 1 3 Check command for ENDDATA
via Special Exit .

4 Place TSO op code in CP

ECDAIREC storage.

ECDACPRE

ECDACNXT (ho next)
5 Call Common Move.

6 Repeat Steps 1-5 until
ENDDATA processed.

T

SP78 Command Procedure Storage

to Special Exit

Output

SP78 Command Procedure

1
Consecutive records until
ENDDATA is found.

Each record will be:

1
0202 - Offset from 00 field to the first record position

00 . Same as 0202

Diagram S.3.10. DATA to ENDDATA Routine (1IOCf432) (Part2of 2)

1

2

3

GETALINE

1. Issue a FREEMAIN for the previous input record.

2. Issue a GETLINE for the next input record. If end of data occurs then
return with Return Code = 4. Other errors, notify user and return with
Return Code = 20.

3. Update the current input record pointer in the Common Data Area (COAl.

4. Return to caller.

Control Command Scan

1. Skip separators.

2. Validity check the first character for alphabetic.

If the first character is an ampersand or a percent sign it will be valid;
assume this is a TSO command.

If the first character is not alphabetic, then assume this is a TSO
command.

3. Find the end of parameter by scanning to next non-alphameric.

4. If the non-alphameric was a colon and the routine has not already
processed a label, then update the label output area; length of
label can not exceed 8 characters. After updating the label out-
put area return to Step 1 to syntax check the command name
specification. If routine has already processed a label or the
length was greater than 8 characters then assume this is a
TSO command.

5. If the non-alphameric is not a colon, this is the end of the
command name. Validity check command length and update the command
output area. If length not 8 or less then assume this is a TSO command.

6. Return.

ENDDATA Routine

The ENDDATA routine should never get control unless there is a missing data
statement. ENDDATA routine should notify user of error, set PROC not
executable and return with RC=O.

4 Call SNTAB Update routine to put TSO op code in CP storege.

5 CP Common Move Routine

1. Locate the current offset into the current CP storage record by adding LL at
base of· record. If PROC not executable switch is on then return.

2. Determine if the amount of storage remaining in the command procedure
area is large enough to contain the data to be moved. If storage remaining
in the command procedure is insufficient then we must get an additional
block of Subpool 78 storage for the command procedure.

• Issue a GETMAIN (SP78) for at least 2K· block of storage for the
command procedure area. Initialize the 3 word header In beginning of
new Command Procedure Storage Block. If GETMAIN fails then notify
user, set PROC not executable and return RC=16.

·Or for an amount of storage that will contain the CP header area, the
current record, and an"internal GOTO (max prefix).

• Move the current prefix area from the old block of storage to the new
block of storage (from the LL to a length of LLl.

• Free any excess storage over 8 bytes in the old block.

3. Move the record to the CP storage block. The address of the data to be
moved and its length will be in the Common Data Area. Placement of data
i~ the command procedure area will start at the current value of LL Into
the current command procedure record prefix (ECDACNXT address).

4. Then update the command procedure record LL field to the new length.
Update the available storage size in the command procedure block header.

5. If this was a call by the READ Command then return; otherwise, update
the previous and next record pointers in the CDA and return.

6 Repeat steps 1 - 5 until EN DDA TA is processed.

~ Diagram 6. FREE Command Processor (Part I of 2)

Input Process

Reg 1

tcP~ F~ •• Parse

TMP

1 Cheek command syntax. ,
~ 2 Check for invalid disposition. Parse

3 Prompt for data set nome.
Command Buffer

4 Translate porameters to text GENTRANS
format.

1..-
5 Process ddnames, data set L-

names, or attribute names.

Dynamic Allocati on

6 Check Dynamic Allocation
return codes. ~

Diagram 6. FREE Command Processor (Part 2 of 2)

1

2

3

4

Use Parse to syntax check the command. Check the Parse return code; if it is non·
zero return to the TMP.

Check to see if DEST, HOLD, or NOHOLD was specified with a data set disposi·
tion of KEEP, DELETE, CATALOG, or UNCATALOG. If yes, issue an error mes­
sage and return to the TMP.

Check to see if a deta set name, file name, or attribute list name was entered. If
no, pass control to Parse and prompt the user for a data set name. When prompt·
ing is complete, overlay the original POE with the new POE from prompt.

Use GENTAANS to translate the parameters to text format. The pointer to the
text unit is returned from GENTAANS in the IKJZB831 parameter list. If the
return code is non-zero, return control to the TMP.

5

6

Use the unallocate function of Dynamic Allocation to unallocate files, data sets,
or attribute lists.

Check the Dynamic Allocation return code and information reason code.

• If both codes are zero, a file, data set, or attribute list was unallocated.

• If either code was non-zero, unable to unallocate. Use the DAIA
failure message routine IKJEFF18 to analyze the return code and send the
appropriate error message to the user.

Control is returned to the TMP.

Object Module: IKJEFD20

Diagram 7.1. HELP Processing (Part 1 of 2)

Input Process

F~TMP_
or CP DAIR

1 Allocate HELP doto set.

2 Diagnose Return Code.
I ssue message if error.

Reg 1 3 Open HELP data set.

CPPL CBUF Parse

4 Syntax check operands.

5 Diagnose Return Codes.
f 5sue message if error.

HELP data set

I
6 Find member of HELP data set for operands

in command.

7 If processing subcommand

-~ information, read records
of members until section •
for requested subcommand

7.3

is located.
Issue message if error.

-[V 8 Process member.

• 7.2

9 Close HELP data set.
Return to co II er •

Diagram 7.1. HELP Processing (Part 20fl)

Extended Description

1

2

3

4

5

Using DAIR, (The Dynamic Allocation Interface Routine), allocate the HELP
data set.

Check return code:
al If non-zero, use IKJEFF18 (DAIRFAIL) to diagnose error and send message to

user, return to caller.
bl If zero and DSORG is not PO (partitioned), issue message to user, return to

caller.

Open HELP data set. If Open fails, issue message and return to caller.

Use Parse to check syntax of command.

If Parse was unsuccessful, issue massages and return to caller.

6

7

8

FIND member of HELP data set.
al If not in subcommand mode (command attached by the TMP is HELP or H),

and HELP entered with no oparands, find member 'COMMANDS'.
b) If not in subcommand mode and HELP entered with operands, use first

operand as membar name.
c) If in subcommand mode and HELP Is first operand, find member 'HELP'.
dl If in subcommand mode and HELP is not first operand, use the name of the

name of the command attached by TMP (from ECTI as the member name.

If case d) of step 6, read record from member of HELP data set. See Diagram 7.3.
Search each record for subcommandname indicator ' .. ' and then for subcom­
mandname requested on command. Keep reading records until end-of-flle (error)
or subcommand name found.

Procass the HELP data set member. See Diagram 7.2.

9 Close the HELP data set. Return to caller.

Object Module: IKJEFH01

~ Diagram 7.2. Processing HELP Data Set Member (Part 1 of 2)

Input Process

Reg I

I

Cornman 1 Read a card image from --§> 7.3
HELP member.

..
'Card Image ~ Cord Image 2 Scan image to determine action.

I Keyword search - scan

Parse output for key
words on card image.

PARSE TAB Control character search -

I scan Parse output for
> control characters on

I card image.

PUTLINE

3 o i sp lay card image to user.

LOOP to step I till all
images displayed.

4 Return to co II er •

00 ...

Diagram 7.2. Processing HELP Data Set Member fPart 2 of 2)

Extended Description

1 Obtain a card image from the HELP data set member. See Diagram 7.3.

2 Parse output calls for either keyword or control character information. Scan card
to find match for Parse output.

3 If scan finds match, use PUTLINE via I KJEFF02 to display card image to user.

4 If all information has been displayed, return to caller, else process step 1 again.

Object Module: IKJEFH02

~ Diagram 7.3. Reading HELP Data Set (Part I of 2)

Input Process Output

Reg 1 From HELP .- COMMON
~ or process

t COMMON member

(COMMON 1 Read block or deblock record.
SWITCHES

.>
t CARD IMAGE

t READ DCB

I
t READ DeB 2 Return to co lIer •

TOTALEX I
TOTALEX I

\.DeB

• HELP DATA SET

Diagram 7.3. Reading HELP Data Set (part 2 of 2)

Extended Description

1 The HE LP data set is blocked. Read a block and deblock a record or deblock a
card image record. I n case of 1/0 error or end of data, set switches.

2 Return to caller.

Object Module: IKJEFH03

~ Diagram 8. LINK and LOADGO Processing (Part 1 of 2)

Input Process

Reg 1

)CPPL ,-+ TMP Parse

CBUF 1 Analyze command and check data

I I set nome validity.

DAIR

2 A 1I0cat e data sets.

Place data set names in DDNAME list. DDNAME

3 Concatenate names in DDNAME list. r--

OPTION LIST

4 Process command options.

5 J
Linkage Edit or Load depending on
command.

6 Separate concatenated data sets.

Diagram 8. LINK and LOADGO Processiq (Put 1 of 1)

Extended Deacrlptlon

1 Use Pane to 8RalvzB Iyntall of commands. Check dIIt. set namBI fOl valid quail·
flen. Set LKLD to Indicate whether command II LINK or LOADGO.

2 Use DAIR to allocata data sell. Piece each data set name In DDNAME lilt.

3 Use DAIR to concatanata ddnamesln ddname lilt. CDDNMS.

4 Ualng Parse output. prOCBll command optiON. Prompt for mi.lng operands, set
defauili. Place r&lulliin option list. COPLEN.

6

6

Note that the LINK and LOADGO commandl haw been updated with
AMODE and RMODE options to lupport the MVS/XA environment.

Unk to either the Unkege Editor or the Loader depending on LKLD .witch Pall'
ing the option lilt and ddname lilt through OUTPARM.

On return,l8parata concatenatBd data sell and return to the TMP.

: Diagram 9. t. LlSTALC Processing Overview (Part 1 of 2)

Input Process Output

Register I

I F~-+: Parse

'CPPl
TMP

1 Syntax check.
0- • Informative message.

Gives a count of all

I 2 Initialize. blocks available for
dynamic data set

\. Command Buffer allocation.

lISTAlC
OSAB Blocks Data set names are

included. ---- I- - -3 Find ond Process

~ I OSAB. 9.2 • Additional Information.

HISTORY, STATUS,

4 Was HISTORY
VSAM--(!V

I and MEMBERS keywords

JFCB I I specified ? • couse additional
9.3 • information to be given • for those data sets

I I " whose names are listed.
osce -l!V non-V SAM 9.4 PUTlINE

CVT I I Used for
5 Was STATUS -{!) I/O

spec if;;!'? 9.5

6 Was MEMBERS -{V specified ? 9.6

7 Select next OSAB.
Repeat from step 3 until 011
have been processed.

8 Wrop up. Return to TMP.

co

Diagram 9.1. LIST ALe Processing Overview (Part 2 of 2)

1

2

3

The Parse routine syntax checks the command. Upon return, the Parse return code
is checked.
Possible messages: IKJ58304I, IKJ583051

Set option byte to reflect options selected by user. If HISTORY, MEMBERS, or
SYSNAMES were specified, get workarea and place address in OBTWA. Store
JFCB work area address. Store DCB address.
Possible message: IKJ583031

Obtain a pointer to the Data Set Attribute Block DSAB chain through SVC99.
After the DSAB is located, check for HISTORY and STATUS and print applicable
headings. Then check the DSAB to see if it is available for allocation. The
DSAB is considered available if the data set is not in use and not parmanently
allocated. This condition is indicated on the output line by an asterisk (*1
preceding the data set name.

4 After basic processing of a DSAB, check to see if HISTORY was requested. If yes,
process HISTORY information. See Diagram 9.3 (VSAMI or 9.4 (Non-VSAMI.

5 If STATUS was specified, process STATUS information, see Diagram 9.5.

6 Write HISTORY and/or STATUS information, if applicable.
Possible messages: IKJ58301l,IKJ583001

7 After all processing of the DSAB is complete, process the next DSAB. If no
DSABs remein to be processed, return control to the TMP.

Object Module: IKJEHAL'

gg Diagram 9.2. LIST ALe DSAB Processing (Part 1 of 2)

Input Process Output

Dynomic Allocotion
From

Retrieval Text Units

I I Di09
9.1

1 Check parometer list. Dynomic Allocotio n
DSAB

I I 2 Get requested information from
the DSAB.

3 Move data set nome to output

I Output I buffer. Buffer

Return to -ID 9.1

Diagram 9.2. UST ALC DSAB Processing (Part 2 of 2)

1 Check the dynamic ellocation parameter list (JEFZB4DO) to see if it has been
initielized for use by Dynamic Allocation. If it is initialized continue processing.
If not, build dynamic allocation text units describing the data to be returned
about each allocated data set.

2 Use Dynamic Allocation to get information requested by the text units from the
DSAB.

3 Get data set name from the DSAB and move it to the output buffer. If a data set
nsme is not available, put the appropriate messege in the output buffer.

Object Module: IKJEHAL 1

:g Diagram 9.3. LlSTALC HISTORY Processing (VSAM) (Part I of 2)

Input Process Output

Formot 1 DSCB

From
Creotion date Oiag

9.1 1 Build a catalog parameter list.

Expi rat ion date
2 locate required fields.

Entry type 3 Turn on "Write" switch.

4 Process creation and expiration YY/MM/OD Output
dates and entry type.

Entry type Buffer

Returnta~
9.1

\0 ...

Diagram 9.3. LIST ALe HISTORY Processing (VSAM) (put 2 or 2)

1 Build a catalog parameter list using information and the data set name obtained
from the DSAB by SVC99. The parameter list specifies the named data set to be
retrieved from the VSAM catalog, the entry type (indicates VSAM or nonaVSAM
data set) and the expiration and creation dates for the data sat are to be returned
in the work area.

2 Locate the required fields in the CTGPL and the CTGFL to return expiration date,
creation date, and entry type.

3 Pass control to IKJEHVHS, the VSAM HISTORY processing routine, which turns
on the "Write" switch to indicate that the buffer should be written when all
options have been processed.

4 Convert creation and expiration dates into MM/DD/YY format and move them
and the entry type to the output buffer.

Object Module: IKJEHAL'
CSECT: IKJEHHST

~ Diagram 9.4. LIS TALC HISTORY Processing (Non-VSAM) (part 1 of 2)

Process
JFCB

Output

From - --- VOLID
,,- -.......

~ I +- r--
/' 1--.. Output Buffer

t/ OBTAIN DSCB. /
.......
~ OSCB

.A I I 1 J
OBTWORKA <Ii ~

'----
_

A

A
A

(
~ y

PO, PS, IS. etc. Also, U if applicable.

2 Turn on "Write" switch.
Process DSORG. I I) MM/DD/YY

3 Process creation end

I I) expiration dates.
'PROTECTED', 'WRITE'. or 'NONE'

4 Indicate protection, if
applicable.
Then return. A Formet 1 DSCB

(DSECT IECSDSL1)

OS1CREDT Creation date

DS1EXPDT Expiration date

~ 9.1

DS10S0RG Dete Set Organization

DS1DSIND Protect indicators

Diagram 9.4. LIST ALe HISTORY Processing (Non-VSAM) (Part 2 or 2)

1 Check the DSADDNAM field in the DSAB for blanks. If the field contains blanks. it
is part of a concatenation. Issue LOCATE to find the volume serial for the
OBTAIN; otherwise, issue a RDJFCB to find the volume serial of the volume con­
taining the DSCB.

Issue an OBTAIN macro instruction.

2 Then pass control to IKJEHHST, the HISTORY processing routine, which turns
on the 'Write' switch and checks for data set organization.

The organization indicator IPO, PS, etc.l is then placed in the buffer, along with
the unmovable indicator lUI, if applicable.

3 Creation and expiration date are converted into MM/DD/YY format and placed in
the buffer.

4 A check is made for password protection. If none, a check is made for write pro­
tection. The applicable indication is placed in the buffer.

Control is then returned to IKJEHAL1, where a check is made for STATUS proc­
essing. IIf none, the write switch is checked and found 'on', then the buffer is
written via PUTLlNE; if STATUS processing is applicable, the STATUS informa­
tion is placed in the buffer prior to checking the write switch.l

Object Module: IKJEHALt
CSECT: IKJEHHST

: Diagram 9.5. LlSTALC STATUS Processing (Part 1 of2)

Input Process Output

From Output is

DSAB ~
subsequent I y
written to

lY Output Buffer terminal.
DSADDNAM 1 Move ddnome to buffer. >I >
I
~

"' y

DSANDISP* DSAADISp· 2 Indicate
I

! I -'1 - Nannal disposition

I I)
- Abnormal disposition

3 Set "Write" switch on and return.

To

9.1 cz;?

Diagram 9.5. LIST ALe STATUS Processing (Part 2 of 2)

1 A check is made to see if HISTORY information is contained in the output buffer
area. If so, this will affect the pointer to the proper location in the buffer.

The ddname in field DSADDNAM is moved to the output buffer area. The
ddname can be blanks if the data set was concatenated.

2 Then a test is made for normal disposition. The appropriate indication is placed
in the output buffer. The output-buffer pointer is then updated to point to the
next location.

A test is now made for disposition in the event of an abnormal termination.

The appropriate disposition is moved to the buffer.

3 The 'Write' Switch is turned on and control is returned to IKJEHAL 1.

~ Diagram 9.6. LISTALC MEMBERS Processing (Part I of2)

Input Process Output

From Register 1

~ 1 Output Buffer

~ 1 Processing applicable ? l CALLIST
I I

+ OBTWAD

DSCB
2 Build CALLIST parameter list. + Output buffer I I + Write routine

DSAB

I I ~ OBTWAD

JFCB
~

.......,

I I
I'-... ./

/~DS to be

1 PDS
read

Call IKJEHMEM. <:
'- .-/

3 Read PDS directory.

Build True and

J Alias Name tables.

4 Compare TTRs for match.
Wri te output.

9.1 ~

Diagram 9.6. LIST ALe MEMBERS Processing (Part 2 of 2)

1

2

IKJEHMMR makes a number of checks, prior to passing control to I KJEHMEM,
to ensure that processing is applicable.

• OSORG in tha OSCB is checked to ensure that it is PO.

• This user's userid must be the first qualifier in the data set name.

• The ddname cannot ba blank (which would indicate concatenation I.

• The dynamic concatenation bit in the OSAB is checkad. If on, OSAOONAM is
compared to OCBDDNAM. If unequal, MEMBERS processing can continue. (If
equal, this is at least the second data set of a concatenation clusted

A RDJFCB is issued (unless HISTORY was also specified, in which case it is not
requiredl, the CALLIST parameter list for IKJEHMEM is constructed, and control
is passed to IKJEHMEM.

3 IKJEHMEM initializes the True and Alias Nama tables, then reads the POS direc·
tory into them. Name blocks are obtained and chained dynamically, as required.

4 A true name is moved to the output buffer. The true name TTR is compared with
all of the alias name TTRs. Applicable aliases are moved to the buffer. (The calling
routine's write routine is used to write the buffed This action is repeated until all
true names have been processed. Alias names that do not match any true name are
then grouped by TTR and written. A message is provided to indicate that no true
name exists for them.

Control then returns to IKJEHMMR, where the return code is checked and control
is passed to IKJEHAL1.
Possible message: IKJ583011

Object Module: IKJEHMEM
CSECT: IKJEHMMR

:: Diagram 10.1. L1STBC Processing Overview (Part 1 of 2)

Input

From LOGON

From lMP

Reg I

CPPL

Commond Buffer

From
LOGON

From
lMP

Process

1

2

3

4
5

6

7

Check ECl for MAIL or NOTICES
requests from LOGON. Set LOGON
entry bits and go to Step 5.

Syntax check LISlBC operands

Obtain ddname for SYS 1.
BRODCASl data set.

Issue messages if allocation error.

Open and enque on SYSI.BRODCASl.

Process records.

NOTICES -------.,~
~

MAIL~
~

Return control to caller (TMP or
LOGON).

IKJPARS

IKJDAIR

IKJEFFIB

Diagram 10.1. L1STBC Processing Overview (Part 2 of 2)

1

2

3

Entry point IKJEES73 is used to bypass the use of Parse.

A check is made to determine if explicit operands have been supplied for LISTBC.
If they exist, the Parse parameter list (PPLI is created with Register 1 pointing to
it. Parse is then used to syntax check the LlSTBC operands. If the NOMAIL and
NONOTICES bits are both set. control is returned to the TMP. If Parse fails, it
returns a non-zero return code. When LlSTBC detects this, it issues an error mes­
sage and returns control to the TMP.

If Parse was successful or was not required, LISTBC proceeds to create aDAIR
parameter list (DAPLI which is pointed to by register 1. The DAPL contains a
pointer to an X'OS' type DAIR parameter block (DAPB08I. DAIR is then used to
obtain a ddname. If DAIR is successful, the ddname it returns is placed in the DCB
which describes the SYS1.BRODCAST data set located on a direct access device.

4 If allocation of a ddname is not successful, DAIR returns a non zero return code.
In this case, the common DAIR failure message routine (lKJEFF1S1 is used to
issue an error message. Control is returned to the TMP.

5

6

7

If there are no errors, LISTBC does an enqueue for record 1 Iqnama'SYSIKJBC',
rname 'OOOOOO'XI and opens SYS1.BRODCAST for output.

Processing of NOTICES messages and MAl L user messages is done as shown in
Diagrams 10.2 and 10.3. The user is informed if there are no messages of the tYpes
requested.

If entry was from the TMP, dequeueing is done from SYS1.BRODCAST and it is
closed. Control is then returned to the TMP.

If entry was from LOGON, control is returned to LOGON.

Object Module: IKJEES70,IKJEES75

8 Diagram 10.2. LlSTBC NOTICES Message Processing (Part 1 of 2)

Input Process Output

SYSJ.BRODCAST From

~ 1 Read Record 1 of the

'-- / EY SYS1.BRODCAST Doto Set to get
NOTICES address of first NOTICES directory •
messages
broadcast
to terminals

2 Read NOTICES directory
records for anolysi s.

IKJPUTL

I
3 Read NOTICES messages and print

I at termi nals.

4 When all NOTICES are
printed, processing
conti nues with
MAl L records ---@V 10.3

...
~ ...

Diagram 10.2. LISTBC NOTICES Message Processing (Put 2 of 2)

1 Read record 1 of the SYS1.BRODCAST data set to check for proper format (level
indicator is 2) and get the pointer to the first NOTICES directory record. If there
is a format error an error message is issued and control is returned to the caller. If
NONOTICES was specified, processing of NOTICE records is bypassed and proc·
essing continues with MAIL records.

2 Read the first NOTICES directory record into a buffer and scan the buffer for
active NOTICES.

3 Broadcast the message if the high order bit of the message number is set to zero.
The message text is read into a buffer which is pointed to by an entry in the 10
Parameter List (lOPL). The PUTLINE service routine UKJPUTLI is used with
register 1 pointing to the 10PL. IKJPUTL transmits the active NOTICES message
to the termi nal.

4 Examine the RBA for the next NOTICES directory record. If the RBA is non·zero,
that RBA is used to locate the next NOTICES directory record. The record is read
into the buffer and processed as in step 2. If the RBA is zero, no more directory
records exist. Control is passed to the MAIL message processing routine.

Object Module: IKJEES70, IKJEES75

... a Diagram 10.3 .

Input
LISTBC MAIL Message Processing (Part I of 2)

From Process

~ 10.1
SYS1.BRODCAST

'-- .-/
1

2

3

4

5

Output

Read First Record for
user MAIL directory pointer.

• MAIL messages
transmitted to
specific users

Read MAl L directory to
check messages for specific
users.

IKJPUTL

Read user MAl L message and
print it at terminal.

Delete transmitted user
MAIL messages.

Return to main
line Step 7 ~ processi ng. 10.1

..
e
w

Diagram 10.3. LISTBC MAIL Message Processing (Part 2 of 2)

1

2

Check if the NOMAI L bit was set on. If it was set, branch to the LISTBC exit
procedure described in step 7 of diagram 10.1. Read Record 1 of the
SYS1.BRODCAST Data Set to obtain the pointer to the relative block address
IRBA) of the initial user MAl L directory record.

The first MAl L directory record is read into a buffer where the user identification
luserids) can be examined. The userid in the PSCB created by LOGON is succes­
sively compared to all userids in the first MAl L directory record. If a match is
found in this record, processing continues as described in step 3 below. If a X'7F'
is found in scanning the record, it indicates that an end of record condition has
been reached. The RBA pointer to the next directory record is examined. If it is
not zero, it is used by BDAM to read that next MAl L directory record into a
buffer. It is then scanned for the matching use rid in the same manner as above.
The final MAIL directory record has all zeros as its RBA for the next directory. If
this condition is reached, it means all userids in the entire chain of MAIL direc­
tory records have been searched without finding a matching userid. In this case,
no messages are transmitted to the requllsting user •

3

4

5

When the matching userid is found in the MAl L directory, its associated RBA
pointer to its message chain, is used to read the message text record into a buffer.
PUTLINE is invoked with its IOPL containing a pointer to the message text buffer.
The user MAIL message is transmitted to the user by PUTLINE. The RBA pointer
to additional MAIL messages for that same user is checked. If the RBA pointer is
not zero, it is used to read in the next MAIL message, which is again transmitted
by PUTLINE. This process continues until the zero RBA message pointer is
reached.

Each MAIL message record sent to the requesting userid is then deleted. The mes­
sage record itself is written back with a X'FF' key, which tells BDAM that this is
en inactive record which can be used for incoming messages.

Upon completion of MAl L message processing, a branch is taken to the LlSTBC
exit procedure described in step 7 of diagram 10.1.

Object Module: IKJEES10, IKJEES15

Diagram 11.1.

nput

Register 1

I CPPL

L1STDS Processing Overview (Part I of 2)

Process

~om" ™Pi.
1 Syntox Check. Then initialize.

(IL------J
r LISTDS command J 2 Process dsnome.

HISTORY?

VStM~
11.2

HISTORY?
non-v~AM Diag I 11.3 DSAB Chain

r:Jo:: ~==~~::!:======:::» STATUS?

CVT

... J ~iag
11. 4

L-______________ ~

3
4

5

Wri te buffer.

Process volume serial(s),
MEMBERS, and LABEL, if applicoble.

Move serial(s) and write.

MEMBERS?

~
~

LABEL ?

~.
Process next dsname 1;1
(step 2).
When all are processed,

PARSE

Move to buffer and write:

~=~=====~ Basic heading; HISTORY and STATUS
: headings if applicable; RECFM, LRECL,

BLKSI ZE: OSORG, U -- if appl icable.

Move to buffer:

========~~creation dale; expiration dote;

I I
entry type.

Move to buffer:

:::::::::::::::::::: C 'on dote; expiration date; applicable

I I ~'io"--'ROTEC"D, W"''' ~ NONE

L. =~.~=====~rMove to buffer:
- ODNAME and OISP

PUTLINE

Output

Move and write:

1
= ::::!::I =======:\.ccOlUM£ ''''''' "'" ''''''<.)j 1
. . Gove and write: I~====~
=1 ~I ===~~Moa~Mv·~,"Sh~""" m~""", ." .. ~ 1

return.

r.;=e and write: ~~======~ LABELS heading ond OSCB information
I J L-----------------t::::::::::::::~---_t~TOTMP

Diagram 11.1. L1STDS Processing Overview (Part 2 of 2)

1

2

The Parse routine receives control to check the command buffer for incorrect or
unspecified parameters upon raturn from Parse, the return coda is checked, and
then appropriate OPtion bits are set to reflect the specified options. If MEMBERS
is requested, load module IKJEHMEM is loaded into storage. If STATUS is speci·
fied, the DSAB is located. The LEVEL keyword or an .• ' indicates that the data
set name is generic.
Possible messages: IKJ585111,IKJ585121

The first entry in the dsname list is pointed to. The NXDSNAME subroutine
examines the dsname and fully qualifies it, if necessary.
Possible messages: IKJ585031, IKJ585091, IKJ585021, IKJ585131

Then the fullv-qualified name is moved to the output buffer and written.

Non·VSAM Data Sets: The LOCATE macro is used in an attempt to locate the
dsname through the catalog. If LOCATE passes back a non·zero return code,
CAIR is used (with an X'OS' operation codel inan attempt to see if the data set is
otherwise accessable. If the data set cannot be located, the user is informed and
processing continues with the next dsname.
Possible messages: IKJ585031, IKJ585061, IKJ58501l,IKJ58508I,IKJ585tOI,
IKJ585121

Depending on which way the data set was found (using LOCATE or DAIRI, set up
is performed prior to issuing an OBTAIN. If LOCATE found the data set, the
LOCATE switch is set. If DAIR found the data set, the DDNAME is moved to a
DCB and the RDJFCB macro is issued to get the JFCB.

Then the OBTAIN macro is issued to bring the DSCB into storage, If the return
code is not equal zero, processing continues with the next dsname in the list.
Otherwise, heading information is moved to the buffer and written.

VSAM Data Sets: The Catalog Information Routine is used to supply a list of
names. VSAM LOCATE is used to indicate whether the data set is VSAM or not.
LOCATE also supplies the required attributes if the data set is VSAM.
Possible message: IKJ585041

HISTORY is processed, if applicable. See Diagram 11.2 (VSAMI or 11.3 (non·
VSAM)

STATUS is processed, if applicable. See Diagram 11.4

3-4 First the buffer is written, then volume serials are placed, one bV one, in the buffer
and printed.
Possible message: IKJ585041

Then e check is made for MEMBERS and LABEL processing.
See Diagrams 11.5 and 11.6 respectively.

5 After MEMBERS and lor LABEL have been processed, additional dsnames, if any,
are processed. When all have been processed, control returns to the TMP.

Object Module: IKJEHDS 1
CSECT: IKJEHBSC

Diagram 11.2. USTDS HISTORY Processing (VSAM) (part 1 of 2)

Process Output Input
From

Format 1 OSCB 7 lIocated in OBTWORKA) 11.1
Output Buffer - I I

~

1 Build catalog parameter list.

OS1CREOT Creation data

OS1EXPOT Expiration date

MM/OO/YY. Entry type

2 Process creation and expiration
dates and entry type.

OS10SINO Entry type
Return

,---

c;J 11.1

...
S

Diagram 11.2. LISTDS HISTORY Processing (VSAM) (Part 2 of 2)

1 Build a catalog parameter list using information and the data set name
obtained from the DSAB by SVC99. The parameter list specifies the data set
name to be retrieved from the VSAM catalog, the entry type, creation and
eltpiretion dates,logical record length, volume serials, and physical blocksize
for the data set.

2 Upon entry from the IKJEHDS1 routine, IKJEHHIS gets a save erea, then sets
up to convert the creation date from YMMDD format to MM/DD/YY.

The creation date is converted and placed in the buffer. If no date was found,
a default of 00/00/00 is placed in the buffer. This process is repeated for the
eltpiration dete. The entry type code is also moved into the output buffer.

Object Module: IKJEHDSt
CSECT: IKJEHHIS

i Diagram 11.3. LISTDS HISTORY Processing (Non-VSAM) (Part 1 of 2)

Input Process Output

Format 1 DSCB From
(located in OBTWOR KAI Output Buffer

"-
Diag

I I 11.1

MM/DD/YY
1 Process creation and expiration DS1CREDT Creation date

dates.
DS1EXPDT Expiration date

'PROTECTED', 'WR ITE', or

Check for protection.
'NONE'

DStDSIND Protect indicators 2

Return --

Diag
11.

I
e.
o

I ..
i

Diagram 11.3. USTDS HISTORY Processing (Non·VSAM) (Part 2 of 2)

1 Upon entry from the IKJEHDS1 routine, IKJEHHIS gets a save area, then sets
up to convert the creation date from YMMDD format to MM/DD/YY.

The creation date is converted and placed in the buffer. If no date was found,
a default of 00/00/00 is placed in the buffer. This process is repeated for the
expiration date.

2 Then a check is made for password protection. If password protection applies,
'PROTECTED' Is placed In the buffer. Otherwise, a check is made for WR ITE
protection. If WRITE protection applies, 'WRITE' Is placed in the buffer.
Otherwise 'NONE' Is placed In the buffer.

Then the spece obtained for the save area is fread and control returns to the
I KJEHDS1 routine. See Diagram 11.1.

Object Module: IKJEHDS1
CSECT: IKJEHHIS

....
CI

Diagram 11.4. USTDS STATUS Processing (Part lofl)

Input Process

Applicable DSAB
From

DDNAME Diag
11.1

Normal
Disposition

Abnormel
Disposition

1

2

Output

Output buffer

Search DSAB chain for applicable I I
DSAB.

DDNAME

Move DDNAME and DISP to buffer. I INormal DISP 11
I I Abnormal DISP) J

Return

Output buffer is subsequently
written to terminal by IKJEHDS1

Diag
11.1

...

Diagram 11.4. LlSTDS STATUS Processing (Part 2 of 2)

1 SVC99 searches the DSAB chain for a data set name that matches the name in
tha data set list. The search Is dona to obtain allocation information about the
date set name. If no match is found. control is returned to I KJEHDS1.

2 When a dsname match Is found, a check Is made to see if HISTORY is also
speclfiad (in which case, the buffer is filled partially with HISTORY Informa­
tion that has not yet baen written). If yes, the offset to the output buffer area
is adjusted accordingly.

Then the DDNAME is moved to the output buffer.

The status bits are then tested for normal disposition, and the appropriate
word (KEEP, DELETE, CATLG, or UNCATLGI is placed in the buffer.

After the output buffer offset is adjusted, the status bits are tested for
disposition in the event of an abnormal termination. Tha appropriate
disposition is placed in the buffar.

Control raturns to the IKJEHDS1 routina. See Diagram 11.1.

Object Module: IKJEHDS1
CSECT: IKJEHSTA

--N

b
0Cl <S.

I
< o
C
:3
'" :<

Diagram 11.5. LISTDS MEMBERS Processing (Part 1 of 2)

Input Process
From

DSCB

I I
Diag
11 .1

JFCB

I I 1

r
r-....

PDS to be 2
listed

'-.

3

4

5

Output

Was dsname a member name?

r- r~ If yes, list
Write member name;

Convert and write TTy Output Buffer
TTRN, user data.

'---
M EMBERS specified?

If no, go to

DSORG; po.

If no, go to '"p5 :;>
11.1

If yes, print heading and set
'--MEMBERS--

up to read PDS directory

True and Alias Name Tables

Read PDS directory.

CJ Build True and Alias name
tables.

Compare TTRs --

Write output -~~~--~ -- I I ~/
Return

Diag CJ
11 .1

... -IN

Diagram 11.S. LlSTDS MEMBERS Processing (Pari 2 of 2)

1

2

3

After volume information has been printed, a check is made to see whether the
current dsname is a member name. If not a member name, a check for label proc·
essing is first made, then a check is made to see if the MEMBERS keyword is speci­
fied (step 21.

If the dsname was a member name, routine MNAMROUT is given control to print
specific information for the member. Ii necessary, MNAMROUT issues a RDJFCB
and passes control to DAIR to allocate the data set.

Then LABEL processing takes place, if applicable (see Diagram 11.61. After this,
a check is made to see if MEMBERS was specified. If no, processing continues
from step 5 of Diagram 11.1. Otherwise control is passed to the MEMBERS inter­
face routine, MEMROUT.

A check is made to ensure that the organization is partitioned. If not, control
returns to step 5 of Diagram 11.1. Otherwise the MEMBERS heading is written.
Then a check is made to see if the JFCB has already been read. If yes, processing
continues from step 4, below. Otherwise, DAI R is used to allocate the data set.
Then the DDNAME is placed in DCBDDNAM of OBTDCB and an RDJFCB is
issued prior to reading the PDS directory. Then control passes to IKJEHMEM.
Possible messages: IKJ585021, IKJ585141

4

5

IKJEHMEM initializes tables to contain the true and alias names, then reads the
PDS directory into the tables. Name blocks ~re obtained and chained dvnamically,
as required.

Then a true name is moved to the output buffer. The true name TTR is compared
to all of the alias name TTRs. Applicable aliases are moved to the buffer.
(MEMROUT's write routine, which uses PUTLlNE, is used to write the buffer.1
This action is repeated until all true names have been processed. Alias names not
matching any true name are then grouped by TTR and written. A message is
provided to indicate that no true name exists for them. Control returns to
MEMROUT.
Possible message: IKJ585011

MEMROUT checks the return code, then returns control to step 5 of Diagram 11.1
to process the next name in the list.

Object Modules: IKJEHDSt,IKJEHMEM

too Diagram 11.6. USTDS LABEL Processing (part I of 2)
~

Input

oseB

DS1 FMTIO--+~"

OS1 PTROS ---!-"+;-'J

Fro",

l~~~:J
~

Process

1

2

3

4

Write heading.

Format and write the OSeB.

Another OSeB in chain 7

If no, return t~o.
MAINLINE lag

11.1

If yes, OBTAIN it.

Format 3 OSeB 7

For Format 3, convert
and write

Then return ~1g
~

For other then
Format 3, write

Then repeat from step 3.
If no more OSeBs, return

l ?!a~ J
~

Putline is used
to write the
buffer.

A
I \

Output

Output Buffer

j

Hea~ng; c~nverted and formatted (each.:-i
'---....... OSeB field, after conversion. is delimited

~ •• , .. k) h~;-;""""" ;"fo"""'~
UrHeading, including 10; '-::===~
......----. hexadecimallabel--unformatted.r-

... ...
UI

Diagram 11.6. LlSTDS LABEL Processing (Part 2 of 2)

1

2

3

After getting a save area, IKJEHLSL uses PUTLINE to write the heading for the
OSCS.

IKJEHlSL refers to OS1 FMTID for the address of the oses information to be
converted. The osee information is then converted from binary to hexadecimal
and written one line at a time. Formatting consists of separating each field bV a
blank.

OS1PTRDS is then checked to determine if any osess ere chained to the format
1 osee just processed. If none, control returns to MEMSCHK in the IKJEHOSI
routine.

If another oses is found, an OBTAIN is issued for it.
Possible message: IKJ585051

4 A check for a Format 3 osee is made. (A Format 3 OSCS is formatted as in
step 2 and 3, above. If a Format 3 oses is found, control returns to the
IKJEHOSI routine after the oses is processed.

If the osce is other than a Format 3 osee, no formatting tekes place. Thet is,
the information is converted to hexadecimal and dumped 36 bytes at a time. Then
a check is made for another osee. If none, storage is freed and control returns to
MEMeCHK in the IKJEHOSI routine.

Object Module: IKJEHDS1
CSECT: IKJEHLBL

... ...
CI'I

Diagram 12. OPERATOR Command Processing (Part 1 of 2)

Input

Reg 1

Command Buffer

Input Line

Terminal

From
TMP

Process

SVC100

1 Check user authorization.

2 Get line of input.

IKJSCAN

3 Scan the input line for valid

4 Process subcommand. SVC100

END
• Terminate processing.

HELP CP

HELP
• Issue HELP information.

• Mark HELP data set alioccltel)le .. _-4 __ I-__ ~..r;";";';';";"-----'

Other
• Check for valid subcommand

names and translate operands.

• Send console operator
subcommand.

• Validity check and execute
subcommand.

SVC100

I
e.

I
... ...
~

Diagram 12. OPERATOR Command Processing (Part 2 of 2)

1

2

3

4

After the STAE and ATTEN exits are set up, SVC100 checks the user's authority
to enter the OPERATOR command. Information is passed to SVC100 in the
FIBPARMS parameter list. If the user is not authorized, OPERATOR will issue an
error message and return control to the TMP.

Use PUTGET to get a line of input from the terminal and to issue the command
mode message if required.

Scan the input line with IKJSCAN for valid syntax. If the subcommand syntax
was invalid an error message is issued and PUTGET gets another line of input.

Process OPERA TOR subcommands.

END

• This routine is used to terminate processing due to an error or when an END
subcommand is issued by the terminal user to terminate OPERATOR com·
mand processing. SVC100 is used 10 stop active monitors and to issue SVC34
to schedule executions of the subcommand. All buffers are freed and service
routines are deleted. Control is returned to the TMP.

HELP

• ATTACH the HELP command processor to sand the terminal user the HELP
information. If the ATTACH failed control is passed to step 4·END.

• When HELP is finished, use DAIR to mark date sets used by HELP es available
for allocation. If DAIR fails, control is passed to step 4·END.

• Processing continues with step 2.

Other

• Check the subcommand neme against a list of allowable names (DISPLAY,
MONITOR, SEND, CANCEL, and STOPMNI. If parameters were specified on
the DISPLAY, MONITOR, CANCEL, or STOPMN subcoml1lands, translate the
operands to upper cese for use by SVC100.

• Send the console operator a message with the subcommand that was entered.

• Initialize the FIBPARMS parameter list and use SVC100 to validity check and
to issue SVC34 to schedule executions of the subcommand. If the validity
check failS, an error message is issued to the terminal user. Processing continues
with step 3. If there is an error other than validity, processing continues with
step4·END.

Object Modules: IKJEE100, IKJEEIAO, and IKJEE150

; Diagram 13. OUTPUT Processing (Part 1 of 2)

Input Processing

Reg 1

J I F'~. LC100 TMP

I (CPPL

IKJEFF76

1 Check user authority to use the 1 ,
] I

OUTPUT command.

Parse

(Command Buffer 2 Check command syntax. I 1
1 I Installation

Exit

3 Check user's authority to use the
I 1 requested function.

4 Process requested output.

• Use subsystem to delete and
change a destination.

Dynamic

• To print a data set: DAIR Allocation

I -- I a. Allocate print data set. I -,
...

b. Get SVSOUT data set nama. 1 1
Dynamic Allocation

c. Allocate SVSOUT data set. 1 1 ,

d. Process output.

--\0

Diagram 13. OUTPUT Processing Summary (part 2 of 2)

1

2

3

4

Use SVC100 to post the TMP IiKJEt=TSC) requesting IKJEFF76 be attached
under a parallel task structure. Information is passed to IKJEFF76 in the
F IBPARMS parameter list. I KJEFF76 checks the user's authorization to
enter the command. If the user is not authorized to enter foreground initiated
background commands, the system issues an error message and returns control
to the TMP.
Object Module: IKJCT466

Use Parse to check the syntax of the command.
Object Module: IKJCT469

Use an installation exit to check the userld for authorization to use the
requested function on the job specified. If there Is no installation exit
the IBM supplied exit IKJEFF53 is used.
Object Module: IKJECT469

Determine the operation to be performed: print, delete. or change the destin·
ation (station or class) of a data set.

• To delete or change the destination of a data set, set up an interface to the
subsystem and request the subsystem to perform the requested operation.
Return control to the TMP.
Object Modules: IKJCT469, IKJCT462

• To print a data set:
a. Use Dynamic Allocation to allocate a PRINT data set via the CAIR

interface.
Object Module: IKJCT469, IKJCT473

b. Use the job entry subsystem to select all system output data sets for a
specific jobname and class.
Object Module: IKJCT462

c. Use Dynamic Allocation to allocate a system output data set by data
set nama.
Object Module: IKJCT462

d. Process the system output data set until an end-of·file condition or an
attention.

For an end-of·file condition, check for more data sets. If there are no
more, return control to the TMP.

For an attention, process the requested subcommand and all remaining
data sets and return control to the TMP.
Object Modules: IKJCT462, IKJCT470, IKJCT471, IKJCT463

:::; Diagram 14. PROFILE Processing (Part 1 of 2)
o

Input Process

Fcom
Reg 1 CBUF

TMP

.. 1 Check for no operands. If none, Parse

return to TMP.
.. Check syntax .

CPPL

2 Check Parse output -
if invalid syntax
return to TMP.

ECT

-VI UPT

CJ 3 Set UPT to match operands.
y

4 Check for character or line deletion
change.

5 If LIST is specified, list users
profile.

6 Return to TMP.

...
tool ...

Diagram 14. PROFILE Processing (I>arl 2 of 2)

Extended Description

1

2

Check the ECT for the presence of operands in CBUF IThe Command Buffer). If
there are none, issue a message to the user and return to the TMP.

Invoke Parse to check the syntax of the operands.

Check the Parse return code.

non·zero-means an operand was nOt valid and prompting failed. Issue an error
message unless the return code indicates Ihe user was in noprompt mode.
Return to the caller in any case.

zero-means Parse was successful.

3 Set the UPT IThe User Profile Table) to conform to the user options, checked by
Parse.

4 If a new line or character deletion character was among the operands, issue a STCC
macro to change the terminal line or character defetion characters. Check the
return-COde.

• non·zero-means reissue a STCC macro with the former line or character
delete characters, and issue an error message.

• zero-means issue SVC100 to update the PSCB with the new line-delete and
character-delete change requests .

5 If the operand LIST has been spel:ified, list the users profile.

6 Free storage, set the return code, and return to the TMP.

zero-means successful processing.

non·zero-means unsuccessful processing.

Object Module: IKJEFT82

N Diagram 15. PROTECT Command Processing (Part 1 of 2)
N

Input Process

Reg 1

(CPPL From

r\ TMP

Parse
CBUF

I 1 Check syntax.

2 Check return code.

Default Service Rou tine

3 Validate data name.

SVC9B

4 Process password function.

Diagram 1 S. PROTECT Command Processing (Part 2 or 2)

1

2

3

Use Parse to scan and check the command for proper syntalC.
Possible meS$lJ(Jf!s: II<J581021, II<J58 I 121

After checking the Parse return code, move the control password, if one was
specified, to the SVC98 buffer.
Possible message: II<J581081

If the data set name was not fully qualified, it is fully qualified using IKJEHDEF
IThe Default Service Routine).
Possible messages: II<J5S103I, II<J5S1 1 11, II<J581121

4 Check the function to be performed, end fill in the peremeter lil~ ISVCPARMSt
for SVC 98 accordingly. The first byte of the parameter lilt contains a hexadeci·
mal value indicating the function, es follows.

X'01' ADD an entry to tha password data set.
X'02' REPLACE an entry in the password deta set,
X'03' DELETE en entry from the password data set.
X '04' LIST protection, security counter, and optional data information of

a protected data set. ITha lest 80 bytes of the password data set
entry for this data set password is placed in the 80 byte buffer
pointed to by the SVC parameter list.)

Issue SVC 98 return control to the TMP issuing error messages, depending on the
return code provided by SVC 98.
Possible messages: II<J58101l, IKJ58101l,IKJ581041, IKJ5BIOSI,IKJ581D6I,
IKJ581071. II<J581 101, IKJ581 121

Object Module: IKJEHPRO

~ Diagram 16. RENAME Command Processing (Part I ofl)

~ Input Process
r;j
N

~
i a
l

(
i
I

f
CD

<

(

Register I

t CPPl

Command Buffer

RENAME

~'~~t TMP 1 Check command syntax.

2 Scan for a$lerisks and validity
check asterisks.

3 Build catalog information
parameter list.

4 Build new dola set names.

5 Allocole data set. 15 Ihis rename
member or rename dolo sel ?

PDS Member Data Set

6 0 Open and verify 6

7 a Assign olios or replace
7 member name. Then

c lose and free.

S 0 Proc ess nex I sl ep (2).
8 Return when all

processed.

Parse

Syntox Check

J
Default Routine

Fu lIy quali fj es data set name I
Cotalog Information Routine

Provide data
sel names or
indexes

I

)
Allocation -Free Routine

b Rename data set.

b Calolog new i
uncotolog old.
Free.

b Process next dolo
set. Return when all
processed.

Diagram 16. RENAME Command Processing (Part 2 of 2)

1

2

3

4

The Parse subroutine syntax checks the command.
Possible messages: IKJS82021. IKJ582231

Storage is obtained for work areas.

A user id is prefixed if necessary. The data set name is scanned for asterisks. If
none, prompting is done for any necessary qualification of data set names by the
default routine. Then operation continues from step 4. If asterisks are found,
they are checked to ensure that they occur in the same relative position within
the fully qualified date set names.
Possible messages: IKJS82061. IKJ582081.IKJS82091. IKJS82181. IKJ5822SI.
IKJ582271

If asterisks were found. the catalog information routine is used to look up candi·
dates for renaming.
Possible messages: IKJ58201l.IKJ582191

The new data set names are built in preparation for the renaming operation.
Possible messages: IKJS82051. IKJ582081

6 Allocation is done to make use of the system enqueueing facility which ensures that
the data set is not renamed while some other user is using it. (Also. this enables
the OPEN and CLOSE operation for partitioned members.!
Possible messages: IKJ58201l.IKJS82021. IKJ582ttl. IKJ582121.IKJ582131.
IKJ582141. IKJ5821SI. IKJ582291. IKJ582251, IKJ582291

6a OPEN and BLDL are used to open the PDS.
Possible messages: IKJ58203I, IKJ582041. IKJ58207l, IKJS8217,

7a STOW is used to assign the alias or new member name.
Possible messages: IKJS8201l.IKJ582171.IKJ58223I,IKJ582261

8a The data set is closed and unallocated.
Possible messages: IKJ58201l.1KJ58201l,IKJ582161,IKJ582221, IKJ582241

6b RENAME is used to rename the data sut.

7b CATALOG is used to catalog new and uncatalog old.
Possible messages: IKJ58210I, IKJ5B2211. IKJ582281

8b Repeat from step 4. if applicable.
Possible messages: IKJ58210l, IKJ582211, IKJ582281

Object Module: IKJEHREN

Diagram I 7. I .

Input
RUN Command Processing Overview (Part I of 2)

Process

RUN Commond

Stondord TMP - Proce .. or Interfoce

From
TMP

1 Scon for commond.
Syntox c:hec:k.

2 Determine dsnome ond verify.

Determine doto set type.

3 Build commond
list ond List Source
Desc:ri plor •

Fi II in WORKAREA

4 Ploc:e list on input stoc:k.
Then return to TMP.

Pone

Output

Stock ----,
I
I

tj

-w

Diagram 17.1. RUN Command Processing Overview (Part 2 or 2)

Extended Description

1

2

IKJEFROO uses Parse to scan and syntax check the RUN command. Prompting
occurs if required parameters are missing or if syntactically incorrect parameters
are present.

Upon return from Parse, the return code is checked. If an error was encountered, a
message is issued to the user; otherwise, processing continues.

Control passes to a routine that examines the specified data set or member name
and places applicable information into a buffer in WORKAREA. If the data set is
fully qualified, an indicator is set. If a password is specified, the password and
length are placed in WORKAREA.

Then the data set type (ASM, etcl is determined and placed in the deta set typa
buffer of WORKAREA. Parse is again used, if necessary, to prompt for the data
set type.

DAIR is then given control to search for a data set having the specified name. First
the set of currently allocated data sets is searched; then if necessary, tha system
catalog. II the data set is found, processing continues; otherwise, the user is
prompted for a respecification, and another search is made.

3

4

When a data set is verified as existing, storage is obtained in shared subpool 78
for an in-storage command list and a table !the List Source Descriptorl describing
the list. See Diagram 17.2 for details of this operation.

After the in-storage command list and List Source Descriptor are built, the address
of the List Source Descriptor is placed in the STACK parameter list and control is
passed to Stack. This routine places the command list on the input stack_

Then control returns to the TMP. The TMP will select the next command from the
top of the input stack.

Object Module: IKJEFROO

~ l)iagralll 17.2. Building LJ RUN COllllnand List (Part 1 of 2)
00

Input

WORKAREA

From

Diog
Sec Lt.:!0W. 17. I

I I

Nole: Shaded arem were previously filled in by DSNRTE
(if opplicablL") £10111 infolrnatioll fvund through the

PDL. (See DiaJrolTl 17.11

Process

1

2

MBRBUF

PASSBUF

QUALBUF

Output

List Source Descriptor Command List Buffers

a ~

Various buffers for
c

Colcu latc amount of ~toragc
b I command~,

ff:q'Jired. d parameters, ctc.

Reserved
For examplcj

CMDNAME, DSNPARM,
etc.

a -- + command Ii.t.
b -- indi cotes vor ioble

recorder.

c -- command list length.
d -- + next byte.

Build Command Iht and List
Source De)cr iptor.

Diag
17.1

DSNBUF
DSLENG

MBRLENG
MBRNAME
PASSLENG
PASS NAME

I I J

WORKAREA

\--- Parse parameter list information.

Set to value by STACK
\--- STACK parameter li.t .

} DAIR porameter I i.t.

• List Source Descriptor

Communicotion ECB

} Service routine parameter list.

r----------;::I-~--- Buffer for member nome, if any, and length.

..... t-----Buffer for password, if any, and length.

1--------1 Buffer for right-hand qual ifier

of data .et nome.

a:
S.
8-
e.
o
1 g

Diagram 17 .2. Building a RUN Command List (Part 2 or 2)

Extended Description

1 WORKAREA fields and parse information previously located through the POL
are examined to calculate the amount of storage required for the command list.
Included in the calculation are:

• The length of the List Source Descriptor (16 bytesl.

• The size of the compiler command:

• The length of the data set name.

• Compiler parameters, if any.

o LOADGO command size Itor ASM, FORT, PLI with OPT operand, or
COBOLI. This size includes control information length; LOADGO length;
LOADGO data set name length; the length of the WHEN/END command,
which is used to prevent execution of the program in the event the compiler
does not complete successfullv; parameter information, if any; COBLlB,
PLiBASE, and FORTLIB length (for COBOL, PLI with OPT operand, and
FORT data sets, LIB operand length, including the length of the data set list
contained within parenthesesl.

2 The parameters are checked for validity with compiler types. Issue a message if
they are invalid.

The command list and List Descriptor are built. The List Source Descriptor is
filled in as the command list is constructed.

First, the compiler command (typel is built. Control information consists of a
two·byte length field followed by two bytes containing O. The compiler command
is moved to the appropriate buffer (CMDNAME).

Then the data set name is moved to the command list buffer (DSNPARMI.

If a compiler parameter is specified lIor BASIC, IPLI, or GO FORT), it is placed
in the buffer, along with the parameter length.

If the compiler is ASM, FORT, PLI with OPT operand, or COBOL, the WHEN
command is built and placed in the list. Then the LOADGO commend is created.
This consists of placing in the buffer the proper data set name, applicable param­
eters, and for the FORT, PLiBASE, and COBOL data sets, FORT LIB or COBLlB,
respectively. The length of the LOADGO command is placed in the control field. '

After the command list is complete, it is placed on the input stack (See step 4 of
Diagram 17.11

Object Module: IKJEFROO

is Diagram IS.I. SEND Overview and Operator Processing (ParI I of 2)

o Input Process
~

~ w

~
~ a
i
l
I
i
1

~
[
110

<

Reg 1

CPPL CBUF

I 1

2

3

4

Syntax check operands.

1 f send command type
is USER, process

@Y 18.2

Send message to operator.

Return to caller.

Parse

WTO

Diagram 18.1. SEND Overview and Operator Processing (Part 2 of 2)

1 Use Parse to syntax check operands.

2 If Parse output of command operands shows the command type is USER, process.
See Diagram 18.2.

3 Otherwise command type is Operator or console id. Issue a WTO macro
instruction.

4 Return control to the TMP.

Object Module: IKJEES10

:: Diagram 18.2. SEND User Processing (Part 1 0(2)
N

Input Process

From
Diag

PSCB
18.1

I I 1 Check for SAVE parameter.

2 Check for '.' userid. TPUT

3 Send message to specified users.

4 Identify specified users not receiv-
ing messages or at a busy terminal.

For a specified user not logged on
the system, see

~ 18.3

Diagram 18.2. SEND User Processing (Part 2 of 2)

1 Check SEND command for a SAVE parameter. If the SAVE parameter was used,
see Diagram 18.3.

2 Check for an '.' used as a userid. If an '.' was used, get the userid from the Pro­
tected Step Control Block {PSCBJ.

3 Use TPUT {SVC931 to send a massage to all users specified in the SEND
command.

4 Send a warning message to the issuer of the SEND command identifying all speci­
fied users nOI receiving messages or al a busy terminal.

For users specified in the SEND command but not logged on the system, see
Diagram 18.3.

Object Module: IKJEESI'

i Diagram 18.3. Adding SEND Text to the Broadcast Data Set (Part I of 2)

Input Process Output

From
DAIR

Diag
lB.2

1 Allocote SYS1.BRODCAST.

2
Broodcost

Open.

Doto Set

EJ
3 Fi nd userid.

l
SYS1.BRODCAST

4 Moil is queued. Add new moil
/' -.....
r-..

to end of queue.

5 Process next userid.
(Step 3) '-..

6 Return to coller.

Diagram 18.3. Adding SEND Text to the Broadcast Data Set (Part 2 of 2)

1 Allocate SYS1.BRODCAST Using DAIR.

2 On successful completion, open SYS1.BRODCAST and enqueue on record 1.

3 Search the directory to find an entry for the userid.

4 Messages are queued in the data set. Put the SEND message text on the queue.

5 Continue processing all userids.

6 Close SYS1.BRODCAST and free it using DAIR. Return to the caller.

o
til

"<
til
IV
>-j
til o
g
3
3
'" = C-

Diagram 19.1. SUBMIT Processing (part 1 of 2)

Input

Reg 1

Comm<Jnd Buffer

From

TMP

Process

1 Check user authorization.

2 Check comm<Jnd synt<lx.

3 Allocate data set containing JCL.

4 Allocate job entry subsystem

internal re<Jder.

5 Process JC L.

~
See~

6 At EOF process next data set.

DAIR

Dynamic Allocation

Diagram 19.1. SUBMIT Processing (Part 2 of 2)

1

2

3

Use SVC100 to post the TMP (JKJEFTSC) requesting IKJEFF76 be attached
under a parallel task structure. Information Is passed to IKJEFF76 in the
FIBPARMS parameter list. IKJEFF76 checks the user's authorization to
enter the command. If the user is not authorized to enter foreground initiated
background commands, the system issues an error message and returns control
to the TMP.
Object Module: IKJEFFOt

Use Parse to check tha command syntax. Parse validity check exit IKJEFF16
is entered to get the fully qualified data set name from the Default Service
Routine.
Ob~tMOduro: IKJEFF04

Allocate. using DAIR. input data sets containing JCL. Also build control
and history tables for JCL processing.
Object MOdule: IKJEFF04

4

5

6

Use Dynamic Allocation to allocate a job entry subsystem internel reader and
open the internal reader.
Ob~ctModuro: IKJEFF15

For an attention or ABEND. the internal reader will be closed and the last
job submitted will ba flushed.
Object Modules: IKJEFF20. IKJEFF15

Read JCL statement and process.
Object Module: IKJEFF05. See Diagram 19.2

Process the next data set when an end-of-file Is encountered. Aftar the last fila
is processed. control is raturned to the TMP.
Ob~ct Module: IKJEFF05

...
~ l>iagr:ull 19.2. SUUl\IlT JCl Processing (Part I of 2)

Input Process Output

Reg I From

J I ~ \9.1

(CONTAB
1 Identify .totement type.

1 I o. F inl record or fint data set.

(Currenl ~totemenl
b. JOB .tatement.

INTRDR
c. JCL .tatemenl that requires Dolo Set

I I user exit.

§§ 2 Write JCL or dolo .Ialement.

3 Check ror end-or-job.

Relurnlo~
\9.\

-W
\Q

Diagram 19.2. SUBMIT JeL Processing (Put 20(2)

1 Identify the statement as data or type of JCL.
Object Module: IKJEFFOl

• First record thet is not a subsystem control Cl!rd for first data set and not a JOB
statement, create a JOB stetement.
Object Module: IKJEFF08

• JOB statement. Verify that the job name is not equal to the userid. If it is
equal, the user is prompted for an identifying character.
Object Module: IKJEFF'3

• JCL statemant that requiras user exit IIKJEFF10) for installation required
processing.
Object Module: IKJEFF09, IKJEFF,O

2 Write JCL or data stalement to job entry subsystem internal reader data set.

3 Check for end·of·job. If an end-of-job, gat a jobid from the job entry subsystem
for the 'job submitted' message. If nOI end-of-job get the next statement.
ISee Diagram 19_1.1

Object Module: IKJEFF05

Diagram 20. TERMINAL Operational Characteristics (Part 1 of 2)

Input Process

Register 1

1
lCPPL

/1--------1

t ECT

/\ Command Buffer

TERMINAL

Check for options.
If none, return.

2 Syntax check.
Valldltv check.

PARSE

3 Check Parse output. ~--+----'

ECTNOPD

I I

4 Set up and issue
appropriate macros.

5 Free storage and return.

Macro
Processing,

L..----'-"""-..J

Input
Keyword

Resultant
Macro Output Area

TSB

LINES ICr NOLINES STATTN _ r--__ -lTSBATNLC

SECONDS".
NOSECONDS STA I :g __ -f[TSBATNTC

INPUT STATTN L----l T C
NOINPUT 'r--__ -ITSBA NC

-,2260 __

LlNESIZE STSIZE ~ TSBLNSZ
SCRSIZE , ~ ----I TSBLNNO

2260~

CLEAR STCLEAR
NOCLEAR r-----l TSBERSDS

r

aCB

BR EAK -------"'.1------1
NOBREAK STBREAK r--v" aCBFLAG

LCB

TIMEOUT STTIMEOUr_...Jo.),..... __ -I LCBINHBN
NOTIMEOUT

TRAN
NOTRAN

CHAR
NOCHAR

~

TVWA

STTRAN ~ I----l TVWATRAN
TVWATRDF

I-_~ TVWATRNM
TVWATABI

\-----1 TVWATABO

STTRAN rL::::::::=.J

: ...

Diagram 10. TERMINAL Operational Characteristics (Pull or 1)

Extended Description

1

2

3

Check the ECTNOPD bit of the ECT to lee if there are any TERMINAL keywords.
If none. the command is ignored, a message is printed and control returns to the
TMP.

If LINE or SECOND keywords are provided, Parse will tamporarily pass control
back to the appropriate routine for validity checking. When Parse returns control
to IKJEFTBO for mainline procassing:1t provides a return code that Informs
IKJEFTBO of the results of the validity checks.

IKJEFTBO checks the POL pointer (PDEPTRI to see if the POL Is zeros. If it is,
the terminal command Is ignored, a message is written and control returns to the
TMP.

4

6

The TERMI NAL status macrol are set up and Issued according to the spaclfled
keyword values. The end result Is the placing of values In output fields, as shown
at the right of this diagram.

TERMINAL frees main storage, sets return codes and returns control to the TMP.

zero means successful processing.

non-zero ('12'1 means unsuccessful processing.

Object Module: IKJEFTBO

S Diagram 21. TIME Command Processing (Part I 0(2)

o Input Process

~
~

~
g
§
~

r
b
~.
I

~ ;:
~
<

Reg I

~
Command Buffer

UPT

PSCB

Eel

\ Commond Buffer

TIME

ASCB

I CPU Time

PSCB

I LOGON Time

.. I
From
TMP

1

2

3

4

L--,..

I 5

6

I

Timing
Services

Get present time and date.

Convert the present ti me
of day, month, day, and year.

System Resources
Convert cumulative CPU time. Manager

Obtain cumulative service
units.

Calculate total session time.

Send time message to terminal
user.

Diagram 21. TIME Command Processing (Part 2 of 2)

1 The TIME macro obtains the present time of day and date. If Timing Services
indieates the hardware clock is inoperative, control is passed to TIMERR and an
error message is issued. Control is then returned to the TMP.

2 Convert the time and date returned by the TIME macro to printable format and
save in a message buffer.

3 Convert the cumulative CPU time to printable format and save in a message buffer.
The CPU time is maintained in the ASCe in store·clock units.

4 Use SVC95 ISYSEVENTI, issued with code 38, to obtain cumulative service units
from the System Resources Manager. Conllert tho raturned data to a printable
format and salle in a mes~ge buffer. .

5 Calculate total session time by subtracting the LOGON tima of day from the pres·
ant time. The LOGON time of day is maintained in the PSCB. Conllert the session
time to printable format and save in a message buffer.

6 Use the PUTlINE service routine to send the TIME message to the terminal.
Control is returned to the TMP.

Object Module: IKJEFT25

t Diagram 22. WHEN/END Processing (part 1 of 2)

Input Process Output

Reg 1 F,~TMP ..
CPPL or Terminal

INPUT STACK

1 Test for abend of prior C. P. or END

'\CBUF

command.

PARSE

CECT

I 2 Check syntax.

Return Code I 3 If parse not successfu I,
issue message and
return to caller.

4 Compare relational operand ond
completion code.

5 If condition not met, return to caller.

STACK Macro

6 Delete top entry in stack, L dock action command
Return to c .. ller.

Diagram 22. WHEN/END Processing (Put 2 of 2)

Extended Description

1 Test for previous command procossor abend. If abend occurred. issue message and
return to caller. If the command is END. delete the top element from the stack
and return to the caller.

2 Use Parse to check the syntax of the WHEN command.

3 Check Parse return code, if non·zero Parse was unsuccessful. Issue a message and
return to the caller,

4 Compare the WHEN relational operator with the completion code of the previous
command processor.

5 If condition is not met, return to the caller.

6 If condition is met, use STACK to delete the top entry in the input stack and add
the action command to the stack if it is not the END command. Return to the
caller.

Object Module: IKJEFE11

i46 OS/VS2 TSO Command Processor Logic - Volume IV

Directory

Name Type Load Object Entry Alias CP
AKJLKLOl Object AKJLKLOl AKJLKLOl LINK/LOADGO

Entry AKJLKLOl AKJLKLOl LINK/LOADGO
AKJLKL02 Object AKJLKL02 AKJLKL02 LINK/LOADGO

Entry AKJLKL02 AKJLKL02 LINK/LOADGO
AKJLKMSG Object AKJLKLOl LINK/LOADGO
ALLOC Alias ALLOCATE IKJEFDJO IKJEFDJO ALLOCATE
ALLOCATE Load IKJEFD30 IKJEFD30 ALLOC ALLOCATE

IKJEFD31 ALLOCATE
IKJEFD32 ALLOCATE
IKJEFD33 ALLOCATE
IKJEFD34 ALLOCATE
IKJEFD35 ALLOCATE
IKJEFD36 ALLOCATE
IKJEFD37 ALLOCATE

ATTR Alias ATTRIB IKJEFATT IKJEFATT ATTRIB
ATTRIB Load IKJEFATT IKJEFATT ATTR ATTRIB
CALL Alias IKJEFT02 IKJEFT08 IKJEFT08 CALL
CANCEL Load IKJEFF58 IKJEFF58 CANCEL/STATUS
END Alias IKJEFEll IKJEFEll IKJEFEll WHEN/END
EX Alias EXEC IKJCT4JO IKJCT430 EXEC
EXEC Load IKJCT430 IKJCT4JO EX EXEC

IKJCT431 EXEC
IKJCT432 EXEC
IKJCT435 EXEC

FREE Load IKJEFD20 IKJEFD20 FREE
H Alias HELP IKJEFHOl IKJEFHOl HELP
HELP Load IKJEFHOO HELP

IKJEFHOI IKJEFHOl H HELP
IKJEFH02 HELP
IKJEFH03 HELP

IEEVSDIO Object SEND SEND
IGCOOIO{ Load IKJEFFOO IKJEFFOO See Note
({ =x'CO')

IKJEFF20 See Note
IKJCT430 Object EXEC IKJCT430 EXEC

Entry EXEC IKJCT430 EXEC
IKJCT431 Object EXEC EXEC
IKJCT432 Object EXEC EXEC
IKJCT435 Object EXEC EXEC
IKJCT460 Object IKJCT469 OUTPUT
IKJCT462 Object IKJCT469 OUTPUT
IKJCT463 Object IKJCT469 OUTPUT
IKJCT464 Object IKJCT469 OUTPUT
IKJCT466 Object OUTPUT IKJCT466 OUT OUTPUT

Entry OUTPUT IKJCT466 OUT OUTPUT
IKJCT467 Object IKJCT469 IKJCT467

Alias IKJCT469 IKJCT467
IKJCT469 Load IKJCT460 OUTPUT

IKJCT462 OUTPUT
IKJCT463 OUTPUT
IKJCT464 OUTPUT
IKJCT469 IKJCT469 OUTPUT
IKJCT470 OUTPUT
IKJCT471 OUTPUT
IKJCT472 OUTPUT
IKJCT473 OUTPUT

Object IKJCT469 IKJCT469 OUTPUT
Entry IKJCT469 IKJCT469 OUTPUT

Note: CANCEL/OPERATOR/OUTPUT/PROFILE/STATUS/SUBMIT

Directoly 147

Name 'Type Load Object Entry Alias CP
IKJCT470 'Jbject IKJCT469 OUTPUT
IKJCT471 Object IKJCT469 OUTPUT
IKJCT472 Object IKJCT469 OUTPUT
IKJCT473 Object IKJCT469 OUTPUT
IKJEES10 Object SEND IKJEES10 SE SEND

Entry SEND IKJEESIO SE SEND
IKJEESll Object SEND SEND
IKJEES20 Object SEND SEND
IKJEES70 Object IKJEES73 IKJEES73 LISTBC

LISTBC IKJEES70 LISTB LISTBC
Entry LISTBC IKJEES70 LISTB LISTBC

IKJEES73 Load IKJEES70 IKJEES73 LISTBC
IKJEES74 LISTBC
IKJEES75 LISTBC

Entry IKJEES73 IKJEES70 LISTBC
IKJEES74 Object IKJEES73 LISTBC

LISTBC LISTBC
IKJEES75 Object IKJEES73 LISTBC

LISTBC LISTBC
I KJEE lAO Object OPERATOR OPERATOR
IKJEEIOO Object OPERATOR IKJEEIOI OPERATOR

IKJEEIOO OPER OPERATOR
Entry OPERATOR IKJEEIOO OPER OPERATOR

IKJEE10l Entry OPERATOR IKJEEIOO OPERATOR
IKJEE1SO Object OPERATOR OPERATOR
IKJEFATT Object ATTRIB IKJEFATT ATTR ATTRIB

Entry ATTRIB IKJEFATT ATTR ATTRIB
IKJEFD20 Object FREE IKJEFD20 FREE

Entry FREE IKJEFD20 FREE
IKJEFD30 Object ALLOCATE IKJEFD30 ALLOC ALLOCATE

Entry ALLOCATE IKJEFD30 ALLOC ALLOCATE
IKJEFD31 Object ALLOCATE ALLOCATE
IKJEFD32 Object ALLOCATE ALLOCATE
IKJEFD33 Object ALLOCATE ALLOCATE
IKJEFD34 Object ALLOCATE 'ALLOCATE
IKJEFD3S Object ALLOCATE ALLOCATE
IKJEFD36 Object ALLOCATE ALLOCATE
IKJEFD37 Object ALLOCATE ALLOCATE
IKJEFEll Load IKJEFEll IKJEFEll WHEN WHEN/END

END WHEN/END
IKJEFE15 WHEN/END
I KJEFEl 6 WHEN/END

Object IKJEFEll IKJEFEll WHEN WHEN/END
END WHEN/END

Entry IKJEFEll IKJEFEll WHEN WHEN/END
END WHEN/END

IKJEFElS Object IKJEFEll WHEN/END
IKJEFE16 Object IKJEFEll WHEN/END
IKJEFFCA Alias STATUS IKJEFF56 IKJEFF56 CANCEL/STATUS
IKJEFFOO Object IGCOOIO(IKJEFFOO See Note

«=X'CO')
Entry IGCOOIO(IKJEFFOO See Note

({ =X'CO')
IKJEFFOl Object SUBMIT IKJEFFOI SUB SUBMIT

Entry SUBMIT IKJEFFOl SUB SUBMIT
IKJEFF02 Load IKJEFF02 IKJEFF02 SUBMIT

Object IKJEFF02 IKJEFF02 SUBMIT
Entry IKJEFF02 IKJEFF02 SUBMIT

IKJEFF03 Object IKJEFF04 IKJEFF03 SUBMIT
Alias IKJEFF04 IKJEFF03 SUBMIT

IKJEFF04 Load IKJEFF02 SUBMIT
IKJEFF03 IKJEFF03 SUBMIT
IKJEFF04 IKJEFF04 SUBMIT
IKJEFFOS SUBMIT
IKJEFF07 SUBMIT

Note: C~~CEL/OPERATOR/OUTPUT/PROFILE/STATUS/SUB~IT

148 OS/VS2 TSO Command Processor Lop: - Volume IV

Name Type Load Object Entry Alias CP
IKJEFF08 SUBMIT
IKJEFF09 SUBMIT
IKJEFF13 SUBMIT
IKJEFF1S SUBMIT
IKJEFF16 SUBMIT

Object IKJEFF04 IKJEFF04 SUBMIT
Entry IKJEFF04 IKJEFF04 SUBMIT

IKJEFFOS Object IKJEFF04 SUBMIT
IKJEFF07 Object IKJEFF04 SUBMIT
IKJEFF08 Object IKJEFF04 SUBMIT
IKJEFF09 Object IKJEFF04 SUBMIT
IKJEFFIO Load IKJEFFIO IKJEFFIO SUBMIT

Object IKJEFFIO IKJEFFIO SUBMIT
Entry IKJEFFIO IKJEFFIO SUBMIT

IKJEFF13 Object IKJEFF04 SUBMIT
IKJEFF1S Object IKJEFF04 SUBMIT
IKJEFF16 Object IKJEFF04 SUBMIT
IKJEFF19 Load IKJEFF19 IKJEFF19 SUBMIT

Object IKJEFF19 IKJEFF19 SUBMIT
Entry IKJEFF19 IKJEFF19 SUBMIT

IKJEFF20 Object IGCOOIO{ See Note
({=x'CO')

IKJEFF49 Object IKJEFFS7 CANCEL/STATUS
IKJEFFSO Load IKJEFF02 CANCEL/STATUS

IKJEFFSO IKJEFFSO CANCEL/STATUS
IKJEFFSS IKJEFFSS CANCEL/STATUS

Object IKJEFFSO IKJEFFSO CANCEL/STATUS
Entry IKJEFFSO IKJEFFSO CANCEL/STATUS

IKJEFFSl Load IKJEFFSl IKJEFFSl CANCEL/STATUS
IKJEFFS2 CANCEL/STATUS
IKJEFFS4 CANCEL/STATUS

Object IKJEFFSl IKJEFFSl CANCEL/STATUS
Entry IKJEFF5l IKJEFF5l CANCEL/STATUS

IKJEFFS2 Object IKJEFFSl CANCEL/STATUS
IKJEFF53 Load IKJEFF53 IKJEFF53 CANCEL/STATUS

Object IKJEFFS3 IKJEFF53
Entry IKJEFFS3 IKJEFFS3

IKJEFFS4 Object IKJEFFSl CANCEL/STATUS
IKJEFFSS Object IKJEFFSO IKJEFF5S CANCEL/STATUS

Alias IKJEFFSO IKJEFFSS CANCEL/STATUS
IKJEFFS6 Object STATUS IKJEFFS6 ST CANCEL/STATUS

IKJEFFCA
Entry STATUS IKJEFF56 ST CANCEL/STATUS

IKJEFFCA
IKJEFF57 Load IKJEFFS9 CANCEL/STATUS

IKJEFFS7 IKJEFFS7 CANCEL/STATUS
Object IKJEFF57 IKJEFF57 CANCEL/STATUS
Entry IKJEFFS7 IKJEFFS7 CANCEL/STATUS

IKJEFFS8 Object CANCEL IKJEFFS8 CANCEL/STATUS
Entry CANCEL IKJEFFS8 CANCEL/STATUS

IKJEFF76 Object IGCOOIO{ IKJEFF76 See Note
({=x'CO')

IKJEFF77 Object IGCOOIO{ IKJEFF77 See Note
({ =x'CO')

IKJEFT08 Load IKJEFT08 IKJEFT08 CALL CALL
Object IKJEFT02 IKJEFT08 CALL CALL
Entry IKJEFT02 IKJEFT08 CALL CALL

IKJEFHOO Object HELP HELP
IKJEFHOI Object HELP IKJEFHOl H HELP

Entry HELP IKJEFHOl H HELP
IKJEFH02 Object HELP HELP
IKJEFH03 Object HELP HELP
IKJEFROO Load IKJEFROO IKJEFROO RUN RUN

R RUN

Note: CANCEL/OPERATOR/OUTPUT/PROFILE/STATUS/SUBMIT

DlrectOl)' 149

Name Type Load Object EDny Alias CP
Object IKJEFROO IKJEFROO RUN RUN

R RUN
Entry IKJEFROO IKJEFROO RUN RUN

IKJEFT25 Load IKJEFT25 IKJEFT25 TIME TIME
Object IKJEFT25 IKJEFT25 TIME TIME
Entry IKJEFT25 IKJEFT25 TIME TIME

IKJEFT80 Object TERMINAL IKJEFT80 TERM TERMINAL
Entry TERMINAL IKJEFT80 TERM TERMINAL

IKJEFT82 Object PROFILE IKJEFT82 PROF PROFILE
Entry PROFILE IKJEFT82 PROF PROFILE

IKJEHALl Load IKJEHALl IKJEHALl LISTA LISTALC
Object IKJEHALl IKJEHALl LISTA LISTALC
Entry IKJEHALl IKJEHALl LISTA LISTALC

IKJEHDSl Load IKJEHDSl IKJEHDSl LISTDS LISTDS
Object IKJEHDSl IKJEHDSl LISTDS LISTDS
Entry IKJEHDSl IKJEHDSl LISTDS LISTDS

IKJEHMEM Load IKJEHMEM IKJEHMEM LISTDS/LISTALC
Object IKJEHMEM IKJEHMEM LISTDS/LISTALC
Entry IKJEHMEM IKJEHMEM LISTDS/LISTALC

IKJEHPRO Load IKJEHPRO IKJEHPRO PROTECT PROTECT
Object IKJEHPRO IKHEHPRO PROTECT PROTECT
Entry IKJEHPRO IKJEHPRO IKJEHPRO PROTECT PROTECT

IKJEHREN Load IKJEHREN IKJEHREN RENAME RENAME
Object IKJEHREN IKJEHREN RENAME RENAME
Entry IKJEHREN IKJEHREN RENAME RENAME

LINK Load LINK LINK LINK/LOADGO
Object LINK LINK LINK/LOADGO
Entry LINK LINK LINK/LOADGO

LISTA Alias IKJEHALl IKJEHALl IKJEHALl LISTALC
LISTB Alias LISTBC IKJEES70 IKJEES70 LISTBC
LISTBC Load IKJEES70 IKJEES70 LISTB LISTBC

IKJEES74 LISTBC
IKJEES75 LISTBC

LISTDS Alias IKJEHDSl IKJEHDSl IKJEHDSl LISTDS
LOAD Alias LOADGO LOADGO LOADGO LINK/LOADGO
LOADGO Load LOADGO LOADGO LOAD LINK/LOADGO

Object LOADGO LOADGO LOAD LINK/LOADGO
Entry LOADGO LOADGO LOAD LINK/LOADGO

OPER Alias OPERATOR IKJEE100 IKJEE100 OPERATOR
OPERATOR Load IKJEE1AO OPERATOR

IKJEE100 IKJEE10l OPERATOR
IKJEE100 OPER OPERATOR

IKJEE150 OPERATOR
OUT Alias OUTPUT IKJCT466 IKJCT466 OUTPUT
OUTPUT Load IKJCT466 IKJCT466 OUT OUTPUT
PROF Alias PROFILE IKJEFT82 IKJEFT82 PROFILE
PROFILE Load IKJEFT82 IKJEFT82 PROF PROFILE
PROTECT Alias IKJEHPRO IKJEHPRO IKJEHPRO PROTECT
R Alias IKJEFROO IKJEFROO RUN
RENAME Alias IKJEHREN IKJEHREN IKJEHREN RENAME
RUN Alias IKJEFROO IKJEFROO IKJEFROO RUN
SE Alias SEND IKJEES10 IKJEES10 SEND
SEND Load IEEVSDIO SEND

IKJEES10 IKJEES10 SE SEND
IKJEESll SEND
IKJEES20 SEND

ST Alias STATUS IKJEFF56 IKJEFF56 CANCEL/STATUS
STATUS Load IKJEFF56 IKJEFF56 ST CANCEL/STATUS

IKJEFFCA CANCEL/STATUS
SUB Alias SUBMIT IKJEFFOl IKJEFFOl SUBMIT
SUBMIT Load IKJEFFOl IKJEFFOl SUB SUBMIT
TERM Alias TERMINAL IKJEFT80 IKJEFT80 TERMINAL
TERMINAL Load IKJEFT80 IKJEFT80 TERM TERMINAL
TIME Alias IKJEFT25 IKJEFT25 IKJEFT25 TIME
WHEN Alias IKJEFEll IKJEFEll IKJEFEll WHEN/END

ISO OS/VS2 TSO Command Processor Logic - Volume IV

Data Area Usage

Acronym Macro Common Name Command Procaaor Modulel Access

ACB IFGACB VSAM Access Method OUTPUT IKJCT462 (create)
Control Block SUBMIT IKJEFF15 (create)

ALLOCWA IKJZT430 ALLOCATE Work Area ALLOCATE IKJEFD30 (create)
IKJEFD32 (alter)
IKJEFD33 (alter)
IKJEFD34 (alter)
IKJEFD3S (alter)
IKJEFD36 (alter)
IKJEFD37 (alter)

COMPROC IKJEXEC Command Procedure Storage Block EXEC IKJCT431 (create)
IKJCT430 (alter)
IKJCT432 (alter)

CONTAB IKJEFFCT SUBMIT Intemal Control Table SUBMIT IKJEFF04 (create)
IKJEFF15 (alter)

CPPL IKJCPPL Command Processor Parameter List OUTPUT IKJCT463 (create)

CSOA IKJCSOA Command Scan Output Area ALLOCATE IKJEFD36 (create)
EXEC IKJCT430 (create)
OPERATOR IKJEE100 (create)

IKJEEl50 (create)

CSPL IKJCSPL Command Scan Parameter List ALLOCATE IKJEFD36 (create)
EXEC IKJCT430 (create)
OPERATOR IKJEE100 (create)

IKJEE150 (create)
OUTPUT IKJCT463 (create)

CTGFL I EZCTCFL VSAM Catalog Control Field List LISTALC IKJEHALl (create)
LISTDS IKJEHDSl (create)
RENAME IKJEHCIR (create)

CTGPL I EZCTGPL VSAM Catalog Parameter List LISTALC IKJEHALl (create)
LISTDS IKJEHDSl (create)
RENAME IKJEHCIR (create)

DAPBOO IKJDAPOO DAIR Parameter Block 00 EXEC IKJCT430 (create)

OAPB04 IKJDAP04 DAIR Parameter Block 04 ALLOCATE IKJEFD32 (create)
LINK/LOADGO AKJLKLOl (create)
OUTPUT IKJCT473 (create)
RUN IKJEFROO (create)

DAPB08 IKJDAP08 DAIR Parameter Block 08 CALL IKJEFGOO (create)
EXEC IKJCT430 (create)
LINK/LOADGO AKJLKLOl (create)
LISTDS IKJEHDSl (create)
OUTPUT IKJCT473 (create)
RENAME IKJEHREN (create)
SUBMIT IKJEFF04 (alter!

IKJEFF16 (create)

Data AIea Usage IS 1

Acronym Macro Common Name Command Processor Module/Access

DAPBOC IKJDAPOC DAIR Parameter Block OC LlNK/LOADGO AKJLKL01 (create)

DAPB10 IKJDAP10 DAJR Parameter Block 10 LlNK/LOADGO AKJLKL01 (create)
AKJLKL02 (create)

DAPB18 IKJDAP18 DAIR Parameter Block 18 EXEC IKJCT430 (create)
LINK/LOADGO AKJLKL01 (create)
OUTPUT IKJCT473 (create)
PROTECT IKJEHPRO (create)
RENAME IKJEHREN (create)

DAPB1C IKJDAP1C DAIR Parameter Block 1C LINK/LOADGO AKJLKL01 (create)
OUTPUT IKJCT473 (create)

DAPB24 IKJDAP24 DAIR Parameter Block 24 HELP IKJEFH01

DAPD28 IKJDAP28 DAIR Paremeter Block 28 LINK/LOADGO AKJLKL01 (create)
SUBMIT IKJEFF04 (create)

DAPB2C IKJDAP2C DAIR Parameter Block 2C LISTDS IKJEHDS1 (create)
OPERATOR IKJEE100 (create)
OUTPUT IKJCT463 (create)

DAPB34 IKJDAP34 DAIR Parameter Block 34 LlNK/LOADGO AKJLKL01 (create)

DAPL IKJDAPL DAIR Parameter List ALLOCATE IKJEFD32 (create)
CALL IKJEFGOO (create)
EXEC IKJCT430 (create)
HELP IKJEFH01 (create)
LINK/LOADGO AKJLKL01 (create)

AKJLKL02 (create)
LISTALC IKJEHAL1 (create)
LlSTDS IKJEHDS1 (create)
OPERATOR IKJEE100 (create)
OUTPUT IKJCT463 (create)

IKJCT473 (create)
PROTECT IKJEHPRO (create)
RENAME IKJEHREN (create)
RUN IKJEFROO (create)
SUBMIT IKJEFF04 (create)

DCB DCBD Data Control Block DSECT HELP IKJEFH01 (create)
LlSTBC IKJEES75 (create)
OUTPUT IKJCT463 (create)

IKJCT469 (create)
IKJCT471 (alter)

SEND IEEVSDIO (create)
SUBMIT IKJEFF05 (create)

DFPARMS IKJEFFDF DAIRFAIL IIKJEFF18) Parameter ALLOCATE IKJEFD32 (create)
List ATTRIB IKJEFATT (create)

EXEC IKJCT430 (create)
OUTPUT IKJCT467 (create)
SUBMIT IKJEFF04 (create)

IKJEFF15 (create)

ISl OS/VSl TSO Command Processor Losfc - Volume IV

Acronym Macro Common Name Command Proceaor Module/Accesa

OF PI IKJDFPB Default Parameter Block LISTDS IKJEHDS1 (create)
PROTECT IKJEHPRO (create)
RENAME IKJEHREN (create)

DFPL IKJDFPL Default Pal8mater List LISTDS IKJEHDS1 (create)
PROTECT IKJEHPRO (create)
RENAME IKJEHREN (create)

DOBADDED IKJEFFDS SUBMIT Extension to DAPBOS SUBMIT IKJEFF04 (alter)
IKJEFF16 (create)

ECI IHAECB Event COntrol Block CANCEUSTATUS IKJEFF50 (create)
IKJEFF56 (create)
IKJEFF67 (create)

OUTPUT IKJCT463 (create)
IKJCT469 (create)

SUBMIT IKJEFF01 (create)
IKJEFF04 (create)
IKJEFF19 (create)

ECDA IKJEXEC Phase 1 Exit Common Data Area EXEC IKJCT430 (create)
IKJCT431 (alter)
IKJCT432 (alter) .

ECT IKJECT Environment COntrol Table CALL IKJEFGOO (alter)
LINK/LOADGO AKJLKL02 (aiter)
OPERATOR IKJEE150 (alter)
OUTPUT IKJCT460 (alter)

EXECDATA IKJEXEC EXEC Command cOntrOl Data Area EXEC II<JCT431 (create)

ESTAEWA ESTAE Exit Work Area OUTPUT IKJCT460 (alter)
IKJCT464 (alter)
IKJCT469 (create)

EXITL IKJEFFIE FIB Installation Exit Parameter List SUBMIT IKJEFF09 (create)
IKJEFF10 (alter)

FFB2 IKJEFFB2 FIB Module's Parameter list SUBMIT IKJEFF04 (create)
from SVC 100

FFIB IKJEFFIB Parameter Lilt to SVC 100 CANCEL/STATUS IKJEFF66 (create)
OPERATOR IKJEE100 (create)
OUTPUT IKJCT466 (create)
PROFILE I KJEFT82 (create)
SUBMIT IKJEFF01 (create)

GFPARMS IKJEFFGF GNRLFAILand VSAMFAIL EXEC IKJCT430 (create)
liKJEFF19) Paramater list IKJCT431 (create)

IKJCT432 (create)
OUTPUT IKJCT467 (create)
SUBMIT IKJEFF06 (create)

IKJEFF16 (create)

GTPB IKJGTPB GETLINE Parm Block EXEC IKJCT430 (create)
LINK/LOADGO AKJLKMSG (create)
OPERATOR IKJEE150 (create)

Data Area Usap 153

Acronym Macro Common Name Command Processor Module/Access

HISTORY IKJEFFHT SUBMIT Internal History Table SUBMIT IKJEFF04 (create)
IKJEFF05 (alter)
IKJEFF07 (alter)
IKJEFF08 (alter)
IKJEFF09 (alter)
IKJEFF13 (alter)
IKJEFF15 (alter)
IKJEFF20 (alter)

IKJWHEN IKJWHEN WH EN Common Data Area WHEN/END IKJEFE11 (create)
IKJEFE15 (alter)

10PL IKJIOPL I/O Service Routine Parameter List ATTRIB IKJEFATT (create)
CALL IKJEFGOO (create)
EXEC IKJCT430 (create)
FREE IKJEFD20 (create)
HELP IKJEFH01 (create)
LlNK/LOADGO AKJLKL01,(create)
LISTBC IKJEES70 (create)
OPERATOR IKJEE100 (create)

IKJEE150 (create)
IKJEE1AO (create)

OUTPUT IKJCT460 (create)
IKJCT466 (create)
IKJCT467 (create)
IKJCT469 (create)
IKJCT472 (create)

PROFILE IKJEFT82 (create)
PROTECT IKJEHPRO (create)
RENAME IKJEHREN (create)
RUN IKJEFROO (create)
SEND IKJEES10 (create)
SUBMIT IKJEFF02 (create)
TERMINAL IKJEFTSO (create)
WHEN/END IKJEFE11 (create)

IKJEFE15 (create)

LSD IKJLSD List Source Descriptor EXEC IKJCT431 (create)
RUN IKJEFROO (create)
WHEN/END IKJEFE11 (create)

154 OS/VSl TSO Command Processor Logk: - Volume IV

Acronym Macro Common Name Command Processor Module/Access

MSGTABLE IKJEFFMT Message Issuer UKJEFF02} ALLOCATE IKJEFD30 (create)
Parameter List IKJEFD34 (alter)

IKJEFD35 (alter)
IKJEFD36 (alter)
IKJEFD37 (alter)

CANCEL/STATUS IKJEFF49 (alter)
IKJEFF50 (create)
IKJEFF51 (alter)
IKJEFF52 (alter)
IKJEFF54 (alter)
IKJEFF56 (create)
IKJEFF57 (create)

EXEC IKJCT430 (create)
IKJCT431 (create)
IKJCT432 (create)

HELP IKJEFH01 (create)
IKJEFH02 (alter)
IKJEFH03 (alter)

SUBMIT IKJEFF01 (create)
IKJEFF02 (alter)
IKJEFF04 (create)
IKJEFF05 (alter)
IKJEFF08 (alter)
IKJEFF09 (alter)
IKJEFF13 (alter)
IKJEFF15 (alter)
IKJEFF16 (alter)
IKJEFF19 (create)
IKJEFF20 (alter)

OLDMAP IKJOLD Output Line Descriptor CALL IKJEFGOO (create)
OUTPUT IKJCT467 (create)

IKJCT472 (create)
RUN IKJEFROO (create)
SUBMIT IKJEFF02 (create)
WHEN/END IKJEFF15 (create)

OUTCOMTB IKJOCMTB Output Communications Table OUTPUT IKJCT460 (alter)
IKJCT462 (alter)
IKJCT463 (alter)
IKJCT464 (alter)
IKJCT466 (create)
IKJCT467 (alter)
IKJCT469 (create)
IKJCT470 (alter)
IKJCT471 (alter)
IKJCT472 (alter)
IKJCT473 (alter)

PAPL IKJPPL Parse Para mater List ALLOCATE IKJEFD30 (create)
IKJEFD37 (create)

ATTRIB IKJEFATT (create)
CALL IKJEFGOO (create)
CANCEL/STATUS IKJEFF50 (create)

IKJEFF57 (create)
EXEC IKJCT430 (create)

IKJCT431 (create)
FREE IKJEFD20 (create)
HELP IKJEFH01 (create)
LINK/LOADGO AKJLKL01 (create)
LlSTALC I KJEHAL 1 (create)
LISTBC IKJEES70 (create)
LISTDS IKJEHDS1 (create)

Data Area Usage ISS

Acronym Macro Common Nama Command Processor Module/Access

PAPL (Continued) OUTPUT IKJCT463 (create)
IKJCT469 (create)

PROFILE IKJEFT82 (create)
PROTECT IKJEHPRO (creata)
RENAME IKJEHREN (create)
RUN IKJEFROO (create)
SEND IKJEES10 (create)
SUBMIT IKJEFF04 (create)
TERMINAL IKJEFT80 (create)
WHEN/END IKJEFE11 (create)

PARML IKJEFFIE FIB Installation Exit Parameter List CANCEL/STATUS IKJEFF51 (create)
IKJEfF53 (alter)

OUTPUT IKJ:::T469 (create)

PARMLIST IKJEFFPT CANCEL/STATUS Internal CANCEL/STATUS IKJEFF50 (create)
Parameter list IKJEFF51 (alter)

IKJEFF52 (alter)
IKJEFF54 (alter)
IKJEFF57 (create)

PGPB IKJPGPB PUTGET Parameter Block LIN K/LOADGO AKJLKMSG (create)
OPERATOR IKJEE100 (create)
OUTPUT IKJCT467 (craate)
SUBMIT IKJEFF02 (create)

PTPB IKJPTPB PUTLINE Parm Block OPERATOR IKJEE100 (craate)
IKJEE150 (create)
IKJEE1AO (create)

SUBMIT IKJEFF02 (create)
TERMINAL IKJEFT80 (create)
WHEN/END IKJEFE15 (create)

RPL IFGRPL VSAM Request Paramater List OUTPUT IKJCT462 (create)
IKJCT470 (alter)

SUBMIT IKJEFF05 (alter)
IKJEFF15 (create)

SDWA IHASDWA System Diagnostic Work Area OUTPUT IKJCT460 (alter)
SUBMIT IKJEFF02 (alter)

SNTAB IKJEXEC Symbolic Name Table EXEC IKJCT431 (create)
IKJCT432 (alter)

SSOB IEFJSSOB Subsystem Options Block CANCEL/STATUS IKJEFF49 (create)
IKJEFF52 (create)
IKJEFF54 (create)

OUTPUT IKJCT462 (alter)
IKJCT464 (alter)
IKJCT469 (create)

STPB IKJSTPB Stack Parameter Block ATTRIB IKJEFATT (create)
CALL IKJEFGOO (create)
CANCE L/STA TUS IKJEFF56 (create)
EXEC IKJCT430 (create)
HELP IKJEFH01 (create)
LINK/LOADGO AKJLKL02 (create)
LlSTBC IKJEES70 (create)
OPERATOR IKJEE100 (create)

IKJEE150 (create)
OUTPUT IKJCT466 (create)

IKJCT472 (create)

156 OS/VS2 TSO Command Processor Logic - Volume IV

Acronym Macro Common Name Command Processor Module/Access

STPB (Continued) PROTECT IKJEHPRO (create)
RENAME IKJEHREN (create)
RUN IKJEFROO (create)
SENO IKJEES10 (create)
SUBMIT IKJEFF01 (create)
TERMINAL IKJEFTSO (create)
WHEN/END IKJEFE11 (create)

STPL IKJSTPL Stack Parameter List ALLOCATE IKJEFD30 (create)
ATTRIB IKJEFATT (create)
CALL IKJEFROO (create)
CANCEL/STATUS IKJEFF56 (create)
EXEC IKJCT430 (create)
HELP IKJEFH01 (create)
LINK/LOADGO AKJLKL02 (create)

AKJLKMSG (create)
OUTPUT IKJCT460 (create)

IKJCT466 (create)
IKJCT467 (create)
IKJCT469 (create)
IKJCT472 (create)

RUN IKJEFROO (create)
SUBMIT IKJEFF01 (create)
WHEN/END IKJEFE11 (create)

SVTAB IKJEXEC Symbolic Value Table EXEC IKJCT431 (create)

SWAEPA IEFZB605 SWA Manager Parameter List SUBMIT IKJEFF04 (create)

S99RB IEFZB4DO Dynamic Allocation Request Block ALLOCATE IKJEFD30 (create)
IKJEFD32 (alter)
IKJEFD34 (alter)
IKJEFD36 (alter)

ATTRIB IKJEFATT (create)
FREE IKJEFD20 (create)
OUTPUT IKJCT462 (create)

IKJCT464 (create)
SUBMIT IKJEFF15 (create)

TCB IKJTCB Task Control Block OUTPUT IKJCT463 (alter)

UPT IKJUPT User Profile Table PROFILE IKJEFT82 (alter)

WPL IEZWPL WTO/WTOR/MLWTO/WTP SUBMIT IKJEFF02 (create)
Parameter List

ZB831 IEFZBB31 GENTRANS Parameter List ALLOCATE IKJEFD30 (create)
IKJEFD32 (alter)
IKJEFD34 (alter)

ATTRIB IKJEFATT (create)
FREE IKJEFD20 (create)

Data Alea Usage IS 7

·158 OS/VSl TSO Command Processor Logic - Volume W

Started Task Control (STC), passes control to
LOGON Initialization, IKJEFLA. Here, the various
control blocks required for LOGON and the
terminal session are initialized, the EST AE recovery
routine, IKJEFLS, is established, Master Scheduler
JCL, MSTRJCL, is searched to ensure that SYSLBC,
System Broadcast Dataset, and SYSUADS, System
User Attribute Dataset, are available to LOGON
and the subsequent terminal session, and then
LOGON Scheduler, IKJEFLB, is called.

IKJEFLB receives control from IKJEFLA during a
LOGON, and receives control from the Job
Scheduling Subroutine, JSS, during a re-LOGON and
a LOGOFF. lKJEFLB invokes the LOGON Prompting
Monitor, IKJEFLC, and then waits for notification
to either continue with the LOGON by passing
control to JSS, or in the case of a LOGOFF, lKJEFLB
will terminate and pass control back to STC.

IKJEFLC passes control to the LOGOFF
processor, IKJEFLL, in the case of a LOGOFF or a
re-LOGON. Then lKJEFLC passes control to LOGON
Verification, IKJEFLE, who parses the command to
obtain the LOGON data and verify this data against

LOGON Scheduling

the UADS, User Attribute Dataset. In the case of a
LOGOFF, IKJEFLC, notifies IKJEFLB that LOGON
should terminate and then IKJEFLC terminates. For
a LOGON or are-LOGON, IKJEFLC notifies IKJEFLB
that it should pass control to JSS and then IKJEFLC
passes control to IKJEFLH, the routine that invokes
LISTBC, List Broadcast Dataset.

IKJEFLB passes control to JSS for the LOGON or
the re-LOGON, and JSS eventually passes control to
the Pre-TMP Exit, IKJEFU. IKJEFU notifies
IKJEFLH that once LISTBC has completed, IKJEFLH
and then IKJEFLC should terminate. After IKJEFU
terminates, the TMP is invoked for the users
terminal session.

When a LOGON command, referred to as
re-LOGON, or a LOGOFF command is entered, the
TMP terminates. JSS then passes control to the
Post-TMP Exit, lKJEFLK, for some housekeeping.
After JSS has completed its work it passes control
to IKJEFLB who intum invokes IKJEFL€ to handle
the LOGOFF or the re-LOGON.

Method of Opemtion 159

r----,
I src I
'----~XCTL
I IEEPRWI2
~ IEEPRTN XCTL
L_~_ ~(err~or)"\"-~...J

[.i<TXiNrr-
B ,----I

I VTIOC I
I Initialization I
L ___ ...J

~CALL

IKJEFLB
LOGON
Scheduler

~--------~ATTACH

r ·~~~~N
monitor and

A issue WAIT.

(From Part 21

• Terminate
and return
toSTC.

• Schedule
terminal
session.

T
ITo Part 2)

POST

POST

IKJEFLC
LOGON
Monitor

IKJEFLGB

ABEND ESTAI
Recovery
and Retry

Attention Interrupt

IKJEFLL

• For CALL LOGOFF CALL
LOGOFF or Processor
re-LOGON
only.

• For
LOGON,
re·LOGON,
or LOGOFF.

• For
LOGOFF
only - issue
POST to
terminate
scheduler.

• For LOGON
or re·LOGON
only - issue
POST to
schedule
terminal
session
and call
IKJEFLH.

CALL

CALL

IKJEFLE

LOGON/
LOGOFF
Verific:ation

IKJEFLH

LOGON
Information
Routine

CALL

CALL

CALL

ATTACH

~FOSTJWAIT

(To Part 2)

Figure I. LOGON Scheduling Module Flow (Part 1 of 2)

160 OSNS2 TSO Command Processor Logic - Volume IV

IKJEFLG

Attention ~
Processor ~

IKJEFLGH
Message -text

IKJEFLPA

Time and
Date
Processor

IKJEFLEA

Parse/Scan
Interface

IKJEFLI

Installation
Exit
Interface

IKJEFLPA

Time and
Date
Processor

LISTBC

rlKTLOGAI
I----~

CALLI LOGON I h Reconnect I
L ___ .J

(To Part 11

(From Part 11

• Schedule
terminal
session.

'-----I. Re-ettach
IKJEFLC to
process
re·LOGON
or LOGOFF
c:om ncI
from
terminal.

• ForTSO/
VTAM logoff

XCTL

CALL

(From Part 11

r----'
I I

IEESB605 I

• Issue POST to terminate
LOGON information routine.

• Issue WAIT for termination.

Job
Scheduling
Subroutine

IEFSD263

(See "Job
Scheduling")

I
I
I

IKJEFLJ
CALL

Pre·TMP
Exit

I r------, ~ I Terminal I
I ATTACH I Monitor Ioo ~---ll TCAMI ~ --l~~ ~
I ~ I Program I
I I . I I • Terminate

I I following I
LOGON or ,-. I LOGOFF I

I L~m~~-1
I
I
I CALL

I ,
L ___ ---1

[IKTLOOFFI
I I

Extended I
I Logoff I
L ____ ...J

IKJEFLK

Post·TMP
Exit

Legend:

I, DaShed.lin::~ ::;;':-~i
routines that are not I

I documented with the LOGON I
, modules. L _______ ---1

Figure 1. LOGON Schedule Module Flow (part 2 of 2)

Method of Opemtion 161

LWA .-.a.. ASCB TSB

Communimtions Info about v: Info about
area passed to address space terminal status
LOGON modules +38 t CSCB Password

+3C + TSB

+10 + ASXB
ASXB

+ ASCB
+6C - Additional info-
+BO + userid address space

+14 + LWA
.... PSCB

ALGB
t PSCB

Info from UADS

V +30 t ALGB
Aelogon Buffer

+18

+34 tUPT

--a.,. JSEL UPT

t JSEL :-- Info for Job User Profile +1C

Scheduling
Subroutine

+4 • JSOL
.... JSOL

ECT -
+ CSCB

Options for t ECT rllnf~ for user's I -+8

~ t JCLS
Scheduling job

session +C

+10 t JSXL
CSCB

+ ASCB +14
Command DCB t DCB for Scheduling

M j SYS1.UADS Control Block

+20

+34
JCLS In)

TCB
..... JCLS 111 ,

Info for I
JCL cards to \

LOGON
Monitor Task schedule job t TCB for

t JCLS (2) .~ IKJEFLC +B4 + JSCB
+0

) JSXL
..... TCB

Info for Job
Info for Scheduling t TCB for LOGON Subroutine Exits

IKJEFLA Scheduler Task (+4 + LWA + JSCB +B4

+3C

+80

B
I

JSCB

EST A I Work Area t CSCB +100 t Work area for
--+i J LOGON ESTAI

+8C

... JSCB

+108 + PSCB
ESTAE Work Area t Work area for
~ I LOGON ESTAE

+90

Figure 2. LOGON Scheduling Control Block Overview

162 OS/VS2 TSO Command Processor Logic - Volume IV

t Diagram 23.1 LOGON Initialization (IKJEFLA) (Part 1 of 2)

From STC for initial
Input LOGON EPRWI21 Process
~-------------------, ~------------------------~

CVT

TIOT

00 name ----

TSB LOGON Initialization

TSBVT AM 1 Perform VTIOC initialization
if the LOGON request was
made to TSO/VTAM.

2 Check that the required data
sets are defined:

• SYS1.UADS
• SVS1.BROOCAST

3 Set up the ESTAE.
ESTAE error messages:
• IKJ564521 for terminal.
• I KJ6081 for operator.

4 Obtain and initialize the
control blocks for LOGON.

Missing

To LOGON
scheduling
(lKJEFLB)

Output

LOGON -terminated messages

I KJ56452 I

I KJ609 I

IKJ6041

~ ASCB

,. ASXB'

ASXB
PSCB UPT

t re·LOGON /l user pro I e I buffer information

LWA • UPT

+ LWA UPT length

c'LWA' I
• ASCB ~ JSXL

• PSCB II JSEL

If
JSXL length

• JSEL f-+- +ASCB
return code=O

rcext. = 0 + ECT +CSCB
.LWA

LWAILGN=1 JSXL

{
A'IKJEFLJ'

BLDL list names of A'IKJEFLK'

TCB for
initiator exit

A'IKJEFLB' t IKJEFLA
routines

A'IKJLM1'

ENO/DEO RLGB (re·LOGON bufferl
parameter lists I length 10 I 252 bytes I

Diagram 23.1 LOGON Initialization (IKJEFLA) (part 2 of 2)

Extended Description Module

LOGON initialization receives control from started task con· IKJEFLA
trol (STC) to process an initial LOGON command from a
terminal. The initialization functions are bypassed for a
LOGOFF or reLOGON.

1 IKTXINIT initializes VTAM control blocks and the IKTXINIT
TVWA, and transfers controllOPNDST PASS) of

the terminal user's address space. An OPNDST RPL exit
Is then dispatched by VTAM to verify that the OPNDST
was successful.

2 Two TSO data sets-SYS1.UADS and
SYS1.BRODCAST -must have been defined by

master scheduler's JCL IMSTRJCL member of
SYS1.LlNKLIB). LOGON initialization checks for these
data sets by searching the master scheduler's TIOT for the
DO names SYSUADS and SYSLBC. If either of the names is
missing. error messages are issued and LOGON is
terminated.

IKJEFLA

3 IKJEFLS is used as the ESTAE routine to protect IKJEFLA
and IKJEFLB.

4 LOGON initialization creates the control blocks that
contain LOGON information needed by the various

LOGON routines. LOGON initialization turns on the initial·
LOGON bit ILWAILGN) to indicate that this is the first
LOGON command to be processed for the current address
space.

IKJEFLA

Label

i Diagram 23.2 LOGON Scheduling (IKJEFLB) (Part I or 2)

From LOGON initialization (lKJEFLAI for initial LOGON
or from initiator for LOGOFF or re·LOGON (I EF9D1611.

Input

JSEL

~ ~-LJ
LWA

§]-""I ATTACH ECB

LWA

~

LWA

IKJEFLGB

ESTAI
exit

LOGON monitor ECB
(LWAPECBI

ATTACH
parameter
list

TSB

TSBVTAM

LOGON Scheduling

1 If not the initial LOGON. then
detach IKJEFLC if it is still
executing.

2 Issue an ATTACH for the
LOGON monitor. See Diagram
LOGON Monitor.

3 Issue a WAIT for
notification to perform
one of two functions:

• Schedule a terminel
session •

• Terminate for a LOGOFF.

4 Perform VTIOC logoff processing
if the logoff request was made·
from a TSO/VT AM terminal.

Return to
STC
(lEEPRTN)

To
IEESB605

Output

t===::::j Inputto IEESB605

Diagram 23.2 LOGON Scheduling (IKJEFLB) (part 2 of 2)

Extended Dasct'lptlon Module Label .. Ex~ncled Dascription Module Label

LOGON scheduling receives control from LOGON initialize· 2 LOGON scheduling handles the initial LOGON, a IKJEFLB
tion or from the initiator at the end of the terminal session LOGOFF, or a re-LOGON. First, it issues an ATTACH
Ifor LOGOFF or re-LOGONI. The new terminal session that macro Instruction to invoke the LOGON monitor Isee Dia·
is scheduled following a re·LOGON operates in the same gram "LOGON Monitor"). The monitor routine executes
address space as the initial terminal session. until it requires a function that LOGON scheduling

LOGON scheduling invokes the job scheduling subroutine.
performs. At that time, the monitor notifies LOGON

This subroutine interprets the JCL card images that define scheduling via the LOGON monitor ECB ILWAPECBI.

the terminal sassion and attaches the terminal monitor pro· 3 When notified by the LOGON monitor, LOGON IKJEFLB WAITLIST
gram ITMPI, which processes commands from the terminal. scheduling performs one of two functions; the
The TMP remains active until it intercepts a LOGOFF or a function performed is determined bv the post code located
re-LOGON command from the terminal. At that time, the in the monitor's ECB: I LWAPECB).
TMP terminates and the initiator passes control back to

function performed by LOGON scheduling to process the command. post
coda LOGON scheduling

1 Upon receiving control from STC fO~:!I. LOGOFF or IKJEFLB 16 Schedules a terminal session as follows: IKJEFLB
re-LOGON, LOGON scheduling ensures that the

• Notifies the LOGON monitor ILWASECB-post LOGON monitor has already terminated. If the monitor
is vet active, LOGON scheduling notifies the monitor code 161 to invoke the LOGON information

IILWASECB-post code 20) to terminate. Once the routine IKJEFLH.

monitor has terminated ILWAPECB-post code 24) • Creates the job scheduling option list (JSOLI
LOGON scheduling datechas it and sets the attach ECB and chains it to the JSEL. The JSOLcontains
(LWAAECB) to zero. LOGON sc~ullng then performs option flags that affact tha scheduling of this
the attach of the LOGON monitor IStep 2) as usual. terminal session.

If the LOGON monitor posts LWAPECB with an invalid IKJEFLB WAITUST • Moves the JCL card image chain (created by
post code (other then 16 and 24), LOGON scheduling either tha LOGON monitor or the preprompt
terminates as follows: exld from subpool 1 to subpool 253.

• Detaches the LOGON monitor. • Invokes the initiator routine IEESB605 to

• Cancels the EST AE environment. BEXIT schedule the terminal session.

• Places the address of the ASCB in register 1. 24 Terminates LOGON scheduling as follows (per· IKJEFLB ENDJOB

• Returns to STC UEEPRTN) for CSCB clean-up.
formed following a LOGOFF command):

• Notifies the LOGON monitor to terminate
But, If the LOGON monitor has caused an ABEND and (LWASECB-post code 24).
recovery is to be attempted (LWABEND"U, LOGON

I scheduling does not tarminate; It reissues the ATTACH • Issues a DETACH macro instruction for the

of the LOGON monitor (returns to Step 2). LCRESTRT LOGON monitor.

• Cancels the ESTAE environment protecting e. LOGON scheduling.

i • 'rransfers control to STC routine IEEPRTN

I for CSCB clean-up.

4 VTIOC logoff processing Is performed by IKTLOGFF. IKTLOGFF -~

:;: Diagram 23.3 LOGON Initialization and Scheduling Recovery Routine (IKJEFLS) (part I of 2)
OIl

CSCB

user-id
CHKEY

procname
CHCLS

user-id
LWARNM

LWAPTID

From ABEND processing for either
LOGON initialization (lKJEFLAI or
LOGON scheduling (lKJEFLBI

From ABEND
processing for
RETRY
(JKJEFLSll

Process

LOGON Initialization and Scheduling
Routine

1 Issue the appropriate
messages.

2 Dequeue from the user-id and
detach the LOGON MaN ITOR.

3 Issue the RACINIT macro to delete
the security control blocks.

4 Schedule a dump, if necessary.

5 If step not entered before,
request a retry.

6 Return to ABEND processing
without retry.

7 Cancel the ESTAE routine,
IKJEFLS.

8 Transfer control to started task
control.

Return to
ABEND
processing

Started task control
(IEEPRTNI

SDWARCDE=4

SDWARTYA=
Address of IKJEFLS1

Diagram 23.3 LOGON Initialization and Scheduling Recovery Routine (IKJEFLS) (Part 2 of 2)

Extended Description

LOGON Initialization creates an ESTAE environment
that handles abends that can occur during initialization
and scheduling.

1 Message I KJ6011 is sent to the operator and message
I KJ564521 is sent to the terminal.

2 Dequeue from the user·id and detach the LOGON
MONITOR. (The LWAPTIO is the LOGON monitor

TCB pointer.)

3 If the user was in the RACF environment, IKJEFLS
issues the RACINIT macro to delete the security

related control blocks.

4 Obtain a dump for a progrem check or PSW restart.

5 If not a recursive abend .. then indicate "RETRY" in
the SOWA with the retry routine, IKJEFLS.

6 Return to ABEND processing (lKJEFLS11 to
possibly schedule a retry (see step 41.

7 Cancel the ESTAE environment.

8 Transfer contra' to started task control. IEEPRTN,
by using XCTL.

Module Label

IKJEFLA

IKJEFLS

IKJEFLSl

~ Diagram 23.4 LOGON Monitor (IKJEFLC) (Part 1 of 4)

Input

CVT

I

f
<

LWA

! current
'I TCB

LWAILGN=O

LWABEND"O

From LOGON
scheduling IIKJEFLB)

-C' -------,
I

-C _L_

Process

LOGON Monitor

1 Determine the LOGON
monitor's environment.

• 2 For LOGOFF or re-LOGON.
perform LOGOFF processing.
See LOGOF F Processing
IIKJEFLL).

3 Obtain a new command
scheduling control block for
LOGON,

4 Establish the attention
interrupt exit.

Output

At

JSEL

TeB for
monitor

storage
protect key
"8(TCBPXF)

defined as.
input source

SYSt.UADS

LOGON verb COde
(CHVCDI

attention
exit

...
-.I ...

Diagram 23.4 LOGON Monitor (IKJEFLC) (Part 2 of 4)

Extended Description Module

The LOGON monitor controls the processing that verifies IKJEF LC
the LOGON or LOGOFF command, and the processing that
issues informational and prompting messages to the termi·
nal. It notifies LOGON scheduling to schedule a terminal
session or, in the case of a LOGOFF, to terminate the
LOGON scheduling task. Some of the informational mes-
sages !that is, mail, notices, and LOGON-proceeding mes-
sages) are issued in parallel with the scheduling of the
terminal session. All LOGON monitor messages are issued
by the message handler IKJEFLGM.

1 The LOGON monitor creates the environment control IKJEFLC
table (ECTI, which contains information about 110

service routines the monitor will use. Also, the monitor sets
its own storage protection key to 8. This allows the storage
obtained by the monitor to be referenced by programs not
executing in privileged state (for example, LlSTBC and the
pre-prompt exit!. Finally, the monitor issues a STACK
macro instruction to define the terminal as the first source
of input for time-lOharing commands.

Label

INITWKAR

STACK

Extended Description

2 LOGOFF processing updates the terminal user's entry
in SYS1.UADS and analyzes the return codes from the

job scheduling subroutine and from the terminal session.
LOGOFF processing is not performed for an initial LOGON
(LWAILGN g 1) or for recovery processing (LWABEND=lI.
For more detail, refer to the Diagram LOGOFF Processing.

3 The LOGON monitor builds a new CSCB that contains
the verb code for the LOGON command. This new

CSCB replaces the one built for address space creation proc­
essing (START/LOGON/MOUNT) or, if this LOGON is a
re-LOGON, replaces the CSCB previously created by the
LOGON monitor. (It is important that LOGON establish
a full size CSCB for all logons and re·logons before passing
it to the initiator. The initiator, assuming the full size
CSCB is passed, frees the second portion and uses only
the first portion of the CSCB.I

4 The LOGON monitor issues a STAX macro instruction
to establish a routine (lKJEFLG) that receives control

when the terminal user causes an attention interruption by
pressing the terminal's attention key. After "ausing the
interruption, the terminal user may enter a question mark
m to request second-level messages or may enter a new
LOGON command to replace the one currently being
processed .

Module Label

IKJEFLL

IKJEFLC CSCBINIT

IKJEFLC TERMINAL

a Diagram 23.4 LOGON Monitor (IKJEFLC) (Part 3 of 4)

Input Process

~t::==~=:;-;==~;::::>") 5 Verify the command. I ~~~~a~~GON See Diagram

OR

re-LOGON buffer containing It::===!:=~
LOGOFF or LOGON command I

LWA

LOGON/LOGOFF
Verification.

Output

LWA

attention
interrupt flag
LWATNBT = 1

~ . ~ - - - - ~ 6 Return to step 5 to process
the newly-entered command

:==::::.===~::::~ reset attention. occu rred flag
(LWATNBT~O)

if attention interrupt occurred. ;tj termination
flag
LWADISC = 1

~ I- -,- - ~ 7 Cancel the terminal session. if
termination flag

==~===;-;::::::!:=.,...!>I (LWAD ISC ~ 11

"CSCB
OR

II _L-_,,") requested. Notify LOGON
scheduling.

I
cancel flag ~ - -= .!.. - - - - - _...J

t=(=CH=D=I=SC=)::::j~LWA -= ..Q.. - - - - - -,

I
LWATNBT '0 f*- I- 1- . - --.. 8 Schedule the terminal session. if

LWADISC '0 f*- I- -.J requested.

/--­
, IKJEFLPO

LOGON monitor
ECB (LWAPECB) r

LOGON scheduling posted • __
ECB (LWASECBl I-+- I- - - - I- ~

I ,., A DDnn r>

LOGON-proceeding message
interval (LPOMWAT)

• Notify LOGON scheduling.
• LlSTBC-

.. mail and notices.
• Issue the LOGON information. ==!=====:!=~ • LOGON­

proceeding
messages.

To system (the task
terminates and the mother
task (lKJEFLB) schedules
the foreground job)

(JCLS chain
JSEL deleted)

"I + JCLS '0

Diagram 23.4 LOGON Monitor (IKJEFLC) (Part 4 of 4)

Extended Description

5 The LOGON monitor invokes LOGON/LOGOFF veri·
fication (lKJEFLEI to scan and parse the LOGON or

LOGOFF command. For a LOGOFF or a re-LOGON, the
command text is found in the re-LOGON buffer; otherwise,
the command is obtained from the terminal. LOGON veri­
fication checks the user's authorization and LOGON param­
eters against the user information in SYS1.UADS (user
attribute data setl and prompts the user to replace invalid
or missing information. See Diagram "LOGON/LOGOFF
Verification."

6 If the user presses the terminal's attention key during
LOGON processing, he may re-enter the LOGON

command. In this case, the LOGON monitor re-invokes
LOGON verification to analyze the newly-entered com­
mand. The attention interrupt flag is reset to zero to
indicate that the interrupt has been completely
processed.

7 If the system operator cancels the terminal user, if
the user has entered a LOGOFF command, or if the

user has failed to enter a valid LOGON command, the
LOGON monitor ends the terminal session as follows:

• Issues an error messages II KJ5645311 to the
terminal for an operator cancel.

• Issues a null ST AX macro instruction to cancel the
LOGON attention exit.

• Frees the environment control table fECTI.

• Notifies LOGON scheduling to terminate (LWAPECB­
post code 241.

• Waits for notification from LOGON schedul ing to termi­
nate (LWASECB-post code 241.

• Returns to the operating system via SVC 3.

Module Label

IKJEFLE
IKJEFLEA

IKJEFLC GOTOLE

IKJEFLC GOTOLE

IKJEFLGM

IKJEFLC

8 • After LOGON verification has processed a valid IKJEFLC
LOGON command, the LOGON monitor notifies

LOGON scheduling to schedule the terminal session
(LWAPECB-postcode 161. LOGON scheduling invokes
the job scheduling subroutine of the initiator which
attaches the terminal monitor program (TMPI.

.When LOGON scheduling is ready to invoke the job sched­
uling subroutine, it notifies the LOGON monitor to con­
tinue its operation. (LWASECB-post coda 161. At that

Extended Description Module Label

time, the LOGON monitor calls the LOGON information
routine, allowing it to execute in perellal with the sched- IKJEFLH
uling of the terminal session. The information routine
attaches the LlSTBC processor to issue mail and notices
to the terminal user. Then the routine sets the timer to
expire at the interval specified in the module IKJEFLPO_
The LOGON-proceeding message is issued repeatedly to
the terminal at this timed interval until the initiator is
ready to attach the TMP_ At that time, the pre-TMP exit
(lKJEFLJ) notifies the information routina (LWASECB-
post code 201 that the LOGON scheduling process is com-
plete. The routine then cancels the timer and notifies the
pra-TMP exit that LISTBC processing is completed
(LWAPECB-post code 20).

Finally, the LOGON monitor terminates as follows:
-Issues a null STAX macro instruction to cancel the IKJEFLC CLEANUP

LOGON attention exit. (Pressing the terminal attention
key no longer has any effect on LOGON processing.)

-Deletes the environment control table (ECT).
-Returns to the operating system via SVC 3.

Error Processing

LOGON scheduling establishes the LOGON monitor'S IKJEFLB
EST A I environment via a parameter on the ATTACH macro
instruction. Since the LlSTBC command processor is
attached by the LOGON monitor task, it too is protected
by the ESTAI environment. If the LOGON monitor task or
the LlSTBC task terminates abnormally, the ESTAI routine IKJEFLGB
IKJEFLGB receives control. See Diagram "LOGON Monitor
Recovary. IKJEFLC

The LOGON monitor issues the STACK macro instruction
to initialize the terminal as the source of input for com-
mands. If this process encounters any errors, the LOGON
monitor invokes the message handler to issue appropriate
error messages to the terminal (lKJ5645411 or to tha
operator (lKJ60B1l. Also, the monitor turns on the
LOGON-termination bit (LWADISCI.

The LOGON monitor issues the MGCR macro instruction
to chain a new CSCB. If this routine passes back a non·
zero return code, the monitor issues error messages
(lKJ564541l to the terminal via the message handler_ If
the cancel bit is on (CHDISC field of the CSCBI, a session­
cancelied message (I KJ5645311 is issued by the message
handler. In eny case, the monitor ends the terminal
session as in Step 6 of this diagram.

IKJEFLGM

IKJEFLC

IKJEFLGM

~ Diagram 23.S LOGOFF Processing (IKJEFLL) (part I or 2)

From LOGON
monitor (lKJEFLC).

Input Step 2 Processing

--~WA LOGOFF Processing

r----------- ----~1 Update the user attribute data set
I as follows:

lINA.NOPR '0 ~ PSCB
~

lWANUAO=O) • Update the system attributes. V ::~:ATR1 I "'AD"",D) • Update the user attributes. ' ~ .. "
ht. ..

PSCBUPT a " Update the UPT image.) •
accounting ...
information :) • Update the accounting information.

lWA

lWANOPR=O ~ T'"" - - - - - ---- ---- -..2 Issue the oeo from the user
I identification, if necessary.

I WANLJAD,'O '~-J
I

IANONO"O ~.J 3 Issue the RACINIT to delete
the securitY control blocks.

JSXL "CY job scheduling subroutine
)4 For an initiator error. issue the -(initiatorl return code

(JSXL RCOO) erro r messages.

part of initiator
encountering error } 5 Analyze the completion code from
(JSXLRCXT) .. the last step of the terminal session .

LWA
Invalidate the LOGOFF/re·LOGON

LWARTCO command if there was a system error. ~

6 Issue the LOGOFF terminal message. _

Return to LOGON monitor
(IKJEFLCI. Step 2

Output

SYS1 -......
r--. --user member

... r-
------UAOSIBMT

r-
UAOSINST

r-- ---UPT image
... r-- ---account number data block
t-- --""-- --

... LOGON·failed
second·level
messages

"
message describing

~ ~-
r terminal I

2nd level message

last step
CQmpletion .. code

......... message -
S 2nd level message

, re·1 nr.nN buffer "LOGON

~~ i length I I blanks
information
not available"

ter~ -.r
)I

Diagram 23.S LOGOFF Processing (IKJEFLL) (Part 2 of 2)

Extended Description Module

LOGOFF processing updates the terminal user's entry in IKJEFLL
SYS1.UADS and analyzes the return codes from the job
scheduling subroutine linitiatorl and from the last step of
the terminal session. LOGOFF processing is performed for
a LOGOFF command and for a re·LOGON.1t is not per·
formed for an initial LOGON (LWAILGN=ll or for recovery
processing (LWABEND=11.

1 Using the PROFI LE command, the terminal user is IKJEFLL
able to change the anributes associated with his user

identification. These attributes are supplied by a member of
SYS1.UADS. LOGOFF processing must update this member
at the end of the terminal session to reflect the changes
made by the user. If the installation has supplied all of the
LOGON information normally supplied by SYS1.UADS
(LWANOPR=1 and LWANUAD"ll, it is not necessary to
update the user.'s member of SYS1.UADS.

If any of the three bits LWAATR1, LWAATR2, and
LWABUPT are off, the corresponding information (system
attributes, user attributes, and the user profile, respectively I
was not supplied by the installation. The information not
supplied by the installation (and, therefore, subject to
changes made via the PRO FILE commandl is updated by
LOGOFF processing.

If LWAACCT+O, the user's accounting information in
SYS1.UADS is also updated. Accounting information can·
sists of the following items: the length of the terminal ses·
sian, the amount of processor time used, and the number
of service units used.

2 LOGOFF processing must release the user identifica-
tion resource that was obtained during LOGON veri·

fication. LOGOFF issues the DEQ macro instruction. If
the three bits LWANOPR. LWANUAD, and LWANONQ
Ire turned off, en ENQ was never issued on the user
identificatioil. In this case, a DEQ is not necessary.

3 If the user was in the RACF environment, IKJEFLL
issues the RACINIT macro to delete the security

related control blocks.

IKJEFLL

Label

UPDTUADS

DEQUSER

Extended Description

4 If the job scheduling subroutine encountered an error
(LWARTCDI-Ol, LOGOFF procesSing examines the

field JSXLRCXT to determine what part of job scheduling
failed. Next, it examines the fields JSXLRCOD and
LWARCDE to determine the nature of the error. Finally,
LOGOFF informs the message handler IIKJEFLGMI to
build the appropriate second-level message 1/ KJ564571 to
terminall.

Module

IKJEFLL

5 LOGOFF analyzes the return code from the last step IKJEFLL
of the terminal session (LWARTCDI and builds an

appropriate second·level message (lKJ564701 to terminan
via the message handler. If the code is a system return
code, the re-LOGON buffer is considered to be unusable
and is filled with blanks. In this case, LOGON/LOGOFF
verification must prompt the usef for a LOGON or LOGOFF
command. (See Diagram LOGON/LOGOFF Verification.l

The exception is a system return code that was generated
by attention exit processing (indicated by LWATNBT=11.
The attention exit posts the cancel ECB in the CSCB with
a system code of 622, so that the job scheduling subroutine
terminates in the same way as for an operator cancel. In this
case, there is no reason why the re-LOGON buffer would be
unusable; therefore, the contents of the buffer are retained.

6 LOGOFF calls the LOGON time and date processor
IIKJEFLPAI to set up the date and time·of-day

buffers for the logged-off message. Then LOGOFF invokes
the message hendler to issue the 1099ed-off message to the
terminalllKJ564701l.

Error Processing

If, at any time, LOGOFF processing encounters an I/O
error, an OPEN error, or a service routine error, it issues an
error message 1/ KJ56454Jl to the terminal via the message
handler and turns on the LOGON-termination bit.

IKJEFLL

IKJEFLL

Label

LGMSETUP

~ Diagram 23.6 LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) (Part 1 of 4)

From LOGON monitor
Input (JKJEFLCI, step 5 Process
~----------------~ ~~~------------------,

TSB

TSBVTAM

LWA

pre-prompt
exit flag
(LWABLRI

(LM ;"'"'."0. "",
supplied user datal

LWA

OR

re-LOGON buffer
containing LOGOFF or
re·LOGON command

r
I
I

"'0 I __ oJ

1 Perform VTlOC logon
processing if the logon request
was an initial logon request to
TSOIVTAM.

2 Indicate whether in LOGON
mode or SUBMIT mode.
• Invoke the pre·prompt exit

If in LOGON mode. See
Pre·prompt Exit Interface
(lKJEFLII.

• Otherwise, continue.

3 Prepare for re-LOGON.

.... 4 LOGON verification not
necessary: skip to Step 8.

5 Obtain the command:

• If neither LOGON or
LOGOFF - prompt
termi nal user to re·enter
command.

• LOGOFF - indicate
termination; bypass
verification.

• LOGON - continue
verification.

for LOGON

for LOGOFF

re-entered
command

return to
LOGON
monitor
(JKJEFLCI,
step 5

LOGON
parameter buffers

For installation
values for
LOGON
parameters

LWA

command input buffer

termination flag
(LWADISC '" 11

Diagram 23.6 LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) (part 2 of 4)

Extended Description Module Label

LOGON/LOGOFF verification scans the LOGON or IKJEFLE
LOGOFF command and checks the LOGON parameters
against the information in the user's member of the
SYS1. UADS data set. As the verification process !s checki ng
LOGON parameters, it records valid LOGON information in
various control blocks. An oPtional installation exit
(pre-prompt exit IKJEF LD) can replace any part or all of the
verification processing. If the LOGON is valid, JCL card
images (JOB and EXEC) that define the terminal session
are built.

When SUBM IT enters LOGON verification, the LOGON
command is parsed and the resulu are returned to SUBM IT
(iKJEFF08). SUBMIT then builds JCL statements to
execute commands in the background. The pre-prompt exit
interface will not be invoked.

1 VTIOC logon processing is done only for an initial
logon to TSO/VT AM, not for a relogon or a logoff.

2 If the VCON for the installation exit (JKJEFLD) is
non zero (indicating an installation exit is present

and link·edited into the LOGON load module), the
interface routine IKJEF LI is invoked to initialize a
parameter list for the exit. (See Diagram LOGON
Pre-prompt Exit Interface.) The interface does not pass
control to the pre·prompt exit (IKJEFLD) if the command
is a LOGOFF or if LOGON is invoked from SUBMIT

3 The initial· LOGON flag is turned off following the
first GETLINE macro instruction issued by

LOGON/LOGOFF verification. Any subsequent LOGON
command entered by the terminal user for the current
address space is considered to be a reo LOGON.

IKTXLOG

IKJEFLE GOTOIER

IKJEFLE

Extended Description Module

4 LOGON/LOGOFF verification returns to the LOGON IKJEF LE
monitor if the termination flag is on (LWADISC) or if

the cancel flag is on (CHDISC). If the pre-prompt exit has
supplied all the LOGON information and indicates that no
verification is necessary, the normal verification is bypassed.

5 After the command scan service routine (IKJSCAN)
scans the command for LOGON or LOGOFF, the veri·

fication process continues as follows:

• If neither command was found, the terminal user is
prompted to enter LOGON or LOGOFF and the scan
is repeated.

• If the command was a LOG OF F. the verification process
returns control to the caller, the LOGON monitor. For a
LOGOFF HOLD (TSBHLDL=1), terminal input/output
control (T laC) for TSO/VT AM keeps a line open
to the terminal.

If at any time a terminal line is accidentally disconnected
TIOe or VTlOC retains, for a time specified in IKJPRMOO
of SYS1.PARMLIB, the control blocks and the address
space used for the current terminal session. If the terminal
user then enters a LOGON RECONNECT command with
the same user identification as the retained address space,
TlOC or VTlOC reinstates the user in that address space.

• If the command was a LOGON, the verification process
continues (see Step 5).

IKJEFLEA

Label

LOGONOFF

~ Diagram 23.6 LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) (Part 3 o(4)

Input Process

SVS1.UADS LOGON buffers

6 Parse the LOGON command
for parameters •

parameter values

user member

CVT

LWA

I-L_W_A_J_J_C_L_=_O_-Ir- - -

• If SUBMIT has invoked
LOGON. return to SUBMIT •

• Otherwise. continue.

7 Check the user authorization; issue
an ENQ on the user Idenficatlon.

8 Interface with RACF to create
the security related control blocks.

9 Validate the LOGON information
supplied bV the user and record It
In the system control blocks.

SUBMIT
(lKJEFFOBI

~ 10 Build the JCLS chain to define the ==:~::::;-;:=::::~

LWA ASCB

JSCB

D

terminal session. '-------

Return to LOGON
monitor (lKJEFLCI.
step 6

L=~:::::~ LOGON·in-
process message

TSB CSCB

o
UPT PSCB

D"'EJ

Diagram 23.6 LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) (part 4 of 4)

Extended Description

6 The verification process invo kes the parse service
routine (IKJPARSEI to check the syntax of the

LOGON commend. If the command contains the
RECONNECT parameter, LOGON determines whether
the user identification is already assigned to an address
space (one that TIOC or VTIOC retained following a
disconnected Iinel. If the user identification has an
address space assigned to it, RACF is called to verify
user and terminal access securitY and TIOC or VTIOC
reinstates the user in the retained address space. If
the user identification has no address space assigned
to it, the LOGON RECONNECT is rejectad.

7 LOGON verification opens the SYS1.UADS data
set (user attribute data set! and copies into real

storage the member associated with the user identification
on the LOGON command and then ensures that the user
identification is authorized. The user identification and
its length are stored in the PSCB (protected step control
blockl. Then LOGON issues an ENQ on the user
identification resource. If the resource has already been
obtained, LOGON verification reinvokes the pre-prompt
exit if it exists. The installation can choose to authorize
the user or to cancel the LOGON process.

8 The RACINIT macro is issued by IKJEFLE
causing RACF to create security related

control blocks associated with the user identification
and password.

Module Label

IKJEFLE TSBSRCH

IKJEFLE OPEN

Extended Description Module Label

9 LOGON verification compares the LOGON parameter IKJEFLE
values with the user information in SYS1. UADS to

check for the validity of the LOGON parameters. If param­
eters are invalid or missing, LOGON verification prompts
the user for correct parameters. The user's reply is re-parsed
and verified. Verification checks the user's password,
account number, procedure name, region size, and perfor­
mance group. The system resources manager checks that the
group can be used at this time. The job entry subsystem
verifies that the destination choice (DEST parameter)
defines a valid device for SYSOUT data sets.

If the user is RACF defined, then password verification
with the UADS is bypassed. Both the password and
group identification are verified by RACF. The
remaining LOGON data is verified against the UADS.

10 If LWAJJCL=I, the pre-prompt exit has supplied the
JCL card images that define the terminal session.

Otherwise, LOGON processing constructs the JCL card
images as follows:

lIuserid JOB 'account #', REGION=region size
I/procname EXEC procname,PERFORM=performance

group

where the userid (user identification I, account #. region
size, and performance group are obtained form the LOGON
parameters, from the user's member of SYS1. UADS, or
from the pre-prompt exit.

Error Processing

If the LOGON is an initial LOGON (LWA I LG N= II, and the
address of the terminal input line is zero, LOGON verifica­
tion obtains a line from the terminal (issues a GETLINE for
the terminal). LOGON verification is part of the LOGON
monitor task and, therefore, is protected by the monitor's
ESTAI environment in case of an ABEND.

IKJEFLEA BUILDJCL

IKJEFLE

IKJEFLGB

-180 OS{VS2 TSO Command Processor Logic - Volume IV

s:
i
Q.

e.
o
'" 9

The following data areas contain TSO user information supplied by the SYS1.UADS
data set, by the installation, or by the LOGON parameters:

Data Area Name Field Name Contents

ASCB ASCBJBNS Address of user identification.

CSCB CHCLS Procedure name for this LOGON.
CHKEY User identification.

ECT ECT Flags that control L ISTBC processing.

EXEC card image Procedure name for this LOGON.
Performance group number.

JOB card image Account number,
Region size.

JSEL JSEL Address of JCL card images,

JSOL JSOLDEST Default destination for SYSOUT data sets.

LWA LWACTLS Control switches set by the installation exit.
LWADEST2 Default destination for SYSOUT data sets.
LWAACCT Offset of accounting information in SYS1.UADS.
LWATCPU Total CPU time used.
LWATSRU Total service units used.
LWATCON Total time connected to the system.
LWARTCD Completion code for the last step of the terminal session.

PSCB PSCBUSER User identification,
PSCBUSRL Length of user identification.
PSCBATR1 System attributes: switches that control use of OPERATOR, ACCOUNT, and SUBMIT

commands, that indicate volume and mount authorization, and that define the attention
key as the I ine-delete key.

PSCBATR2 User attributes - reserved for installation use.
PSCBGPNM Generic unit name.
PSCBRSZ Region size.

TSB TSBPSWD Password.

UPT UPTSWS Environmental switches.
UPTNPRM NO'prompting switch.
UPTMID Switch that controls printing of message identifiers.
UPTNCOM Switch that controls SEND command authorization.
UPTPAUS Switch that indicates whether to pause for a"?".
UPTALD Switch that defines the attention key as the line-delete key.
UPTMODE Switch that controls printing of mode messages.
UPTWTP Switch that allows the user to receive WTP messages.
UPTCDEL Character-delete character.
UPTLDEL Line-delete character.
UPTPREFX Data set name prefix.
UPTPREFL Length of data set name prefix.

g Figure 3. Data Areas Containing LOGON User Information

...
00 ...

S Diagram 23.7 LOGON Pre-prompt Exit Interface (IKJEFLI) (Part 1 of 2)

From LOGON/LOGOFF
verification (lKJEFLE),

Input step 1 Processing

para meter list -- LOGON Pre-prompt Exit Interface
A1

I~ LWA

+ parameters ..) 1 For LOGOFF, bypass the
pre-prompt exit. ~

Aeturn
I + parameters for r

IKJEFLGM

parameter list parameters

~
~ descriptors)2 Invoke the pre·prompt

• r exit. • • IKJEFLD

• • insta lIation-
..... written LOGON processing

CVT

"" 51+ oldTCB It newTCB J Input
step 3

3 Check the information provided by

\... TCB the pre·prompt exit.

+ JSCB) Copy the information into the
LWA

1
" LOGON control blocks. JSEL

l'
I l+ CSCB

4 Issue an ENQ on the user identificetion
resou rce, if necessa rv .

Aeinvoke the pre·prompt exit if the
user identification is in use.

Return to LOGON/LOGOFF
verification (lKJEFLE),
step 1

Output

parameter
descriptors

~ • • • OP
)I

r LOGON user
'A information

LWA ASCB TSB CSCB

,V" D "" +PSCB ..
- -

JSCB ECT UPT PSCB

D
r---

[JO
'---

See Figure 2-8.

...
00
\01

Diagram.23.7 LOGON Pre-prompt Exit Interface (IKJEFLI) (Part 2 of 2)

Extended Description Module

The LOGON pre-prompt exit interface invokes the LOGON IKJEFLI
pre-prompt exit which is a routine written by the installa-
tion. The pre-prompt exit can provide LOGON information
on behalf of the terminal user, verify the user's LOGON
command, and collect accounting information. Any user
information provided by the pre·prompt exit overrides the
information stored in the user's member of the SYS1.UADS
data set. In fact, an installation can, if it wishes, raplace all
of the normal LOGON verification processing, For direc-
tions on writing the exit routine, refer to the topic, Writing
a LOGON Pre-prompt Exit in the publication OSNS2
Svstem Programming Librarv: TSO, GC28-0629,

1 The pre·prompt exit interface uses the command scan IKJEFLI
service routine (lKJSCANI to determine if the com­

mand is a LOGON or LOGOFF. If it is a LOGOFF, the
interface does not invoke the pre-prompt exit. Instead, it
returns to its caller.

2 The interface builds and passes to the pre-prompt exit
a parameter list that defines those parameters the pre­

prompt exit needs to verify the LOGON command and to
provide LOGON information. Most of the addresses in the
parameter list point to two-word descriptors, The first word
of the descriptor contains the address of the actual param­
eter, The second word contains both the maximum length
for the parameter and the actual length.

Label

Ll0100

extended Description Module

3 After invoking the pre-prompt exit, the interface rou- IKJEF LI
tine checks the parameter list for validity:

• Ensures the parameter list is unchanged.

• Ensures the parameter descriptors are unchanged, except
for the field containing the actual length of the parameter.

• Checks that the actual length of each parameter does not
exceed the maximum length for the parameter.

If errors are discovered, the interface invokes the message
handler IIKJEFLGMI to issue error messages and terminates
the terminal session (LWADISC=1). If no errors are found,
the interface copies into the appropriate control blocks all
user information provided by the pre-prompt exit. A con­
trol field in the LOGON work area (LWACTLS) contains
bits that indicate what information the installation has
provided.

4 If the pre-prompt exit has specified in the LOG0t:-t IKJEFLI
work area that the terminal user is not to be prompted

(LWANOPR=ll, that all LOGON information has been veri­
fied (LWANUADc ll, and that an ENQ is to be issued
I LWANONQ=OI, then the interface issues an ENQ on the
user identification resource. If the resource is already in use,
the pre-prompt exit is re-invoked to determine a course of
action. The installation may choose to allow more than one
user with the same user identification to be logged-on simul­
taneously (LWANONQ=lI. In this case, the interface does
not issue an ENQ on the user identification resource. Or,
the installation may, instead, choose to terminate the ses­
sion (LWADISC=11.

Error Processing

If either the LOGON pre-prompt exit interface IIKJEFLII IKJEFLGB
or the pre-prompt exit IIKJEFLD) cause an ABEND, the
LOGON monitor's ESTAI routine IKJEFLGB is invoked by
ABEND processing. In certain cases, the EST AI routine
schedules a re-attach of the LOGON monitor task. See Dia-
gram, LOGON Monitor Recovery .

Label

LlSOO

0; Diagram 23.8 LOGON Monitor Recovery (IKJEFLGB) (Part I of 2)
.;.

o
~

~
N
....j
til
C
(j
o
3
3
~
:0
p..

-= o ...,
~ o ...

I

B
CO
3
'" <

Input

SDWA

Rl flags Indlc.atin!l
type of
program check

ABEND code

t parameter list

parameter list

I T"'LWA 7 flag indicating that
LOGON ve"ficatlon

JSEL caused ABEND ;9 (lWAPHASE ~~OI

LOGON termination
CSCB flag (LWADISC)

cancel flag recovery counter

(CHDISC) (LWALPCNTI

type·of·ABEND flags
(LWAPSW. LWAPCK,
LWAMCKI

LWA

flag indicating that
LOGON information
routine caused ABEND
(LWAPHASE ; 11

lISTBC flag
(LWALTCBI

address of UADS DCB
(LWAPDCBI

~bpools 0.-
~,and.2.8 _-.J

From ABEND
processing for the
LOGON mOnitor --
~ -----

1
I

r---
I
I

..- _-1

Processing

LOGON Monitor Recovery

" 1 Schedule a dump, If necessary.)

"- 2 For a user ABEND, bypass
recovery.

~ 3 For a LOGON/LOGOFF
verification error, determine if
recovery is possible; issue the
appropriate messages.

-.4 For an error during LOGON

'>
information routine, issue the
appropriate messages.

5 Prepare for a return to ABEND
processing:

.. • Close the SYS1.UADS data set.
) • Cancel the attention exit.

• Delete the unneeded storage areas.

') • Issue the RACINIT to delete the
securitY related control blocks.

Output

SDWA

")I dump indicator ..
continue
ABEND
processing

LWA internal work area

~Jo..
ABEND recovery
indicator indicator
(LWABEND)

,,,,"vv'" Y

COUI + 1
LPGNT+1)

~ terminal

~ terminal

Return to
ABEND processing

...
00
III

Diagram 23.8 LOGON Monitor Recovery (IKJEFLGB) (Part 2 of 2)

Extended Description Module

The LOGON monitor recovery routine receives control from IKJEF LGB
ABEND processing following the abnormal termination of
the LOGON monitor task. LOGON monitor recovery is an
ESTAI routine that was specified on the ATTACH macro
instruction when the LOGON monitor was attached by the
LOGON scheduling task. If possible, a retry of the LOGON
monitor is attempted by informing the LOGON scheduling
task to re-attach the LOGON monitor (LWABEND = '1' BI.

1 A dump is scheduled if the abnormal termination was IKJEFLGB
the result of a program check or a PSW restart (an

external interrupt from the operator).

2 If the ABEND code represents a user completion code. IKJEFLGB
then recovery of the LOGON monitor task is not

attempted. LOGON monitor recovery issues no error meso
sages and passes control back to ABEND processing to can·
tinue the abnormal termination.

Label

3 If the LOGON monitor abnormally terminated during IKJEFLGB PHASEl
LOGON/LOGOFF verification, recovery of the

LOGON monitor task is scheduled (LWABEND=ll.

Recovery is not attempted in the following cases:

• The system or the operator has canceled the terminal
session (CHDISC=1).

• The terminal session is scheduled for termination
(LWADISC=11.

• Four recoveries have already been attempted
(LWALPCNT=41.

• The current ABEND is the same type as the previous one
(determined by checking bit settings in the LOGON work
area: fields LWAPSW, LWAPCK, and LWAMCHKI.

LOGON monitor recovery builds and issues appropriate
messages to the terminal and to the system operator. One
set (lKJ56451I for the terminal and IKJ6031 for the
operator! is issued if the LOGON pre·prompt exit terminated
abnormally (LWAINX1=1). Another set (lKJ564521 for the
terminal and I KJ6011 for the operator) is issued if
LOGON/LOGOFF verification itself terminated abnormally
(LWAINX1=OI.

MSGINIT

Extended Description Module

4 If the ABEND occurred after the user's LOGON infor· IKJEFLGB
mati on has be~n processed and the terminal session has

been scheduled !that is, LWAPHASE=1!. recovery may not

Label

be necessary. If LWAPHASE=l. the ABEND occurred either PHASE2
during LlSTBC command processing or during the issuing of
the LOGON·proceeding messages !issued by LOGON mod·
ule IKJEFLHI. If LlSTBC caused the ABEND
(LWAL TCB=l!. LOGON monitor recovery issues an error
message to the terminal (lKJ5640611 and the LlSTBC task
terminates. In this case. the scheduling of the terminal
session proceeds normally. If the LOGON module IKJEFLH
caused the ABEND, LOGON monitor recovery does not
schedule a re·attach of the monitor (LWABEND=O) but does
issue error messages to the terminal (lKJ56452) and to the
operator (I KJ6011.

5 LOGON monitor recovery performs exit processing IKJEFLGB
as follows:

• Closes the SYS1.UADS data set using the DCB address
in the LOGON work area. If this address is zero, recovery
does not issue the CLOSE macro instruction. Recovery
also issues a DEQ on the SYS1.UADS directory resource.

• Issues a null ST AX macro instruction to cancel the
attention exit. Pressing the terminal attention ke'/ no
longer has any effect on LOGON processing.

• Frees the storage allocated to subpools 0, 1, and 78.

• If the user was running in the RACF environment, the
RACINIT macro is issued to delete security related
control blocks.

CLOSUADS

FREECORE

i Diagram 23.9 Pre-TMP Exit (IKJEFU) (Part I of 2)

I

i
CD

<

From the initiator (lEFSD263)
before it attaches the terminal
monitor program !TMP)

Pre -TMP Exit

1 Pre-FR EEPART processing:
• If the LOGON monitor is

active, notify it to terminate.

• Detach the LOGON monitor
(lKJEFLC).

2 Post-FR EEPART processing:
• Initialize and chain the PSCB.

• Move the UPT and the re-LOGON
buffer to allow access by

Output

JSCB

PSCB

user's region
size
!PSCBRSZ)

current time
!PSCBLTlM)

SPO command processors.
Move the PSCB. =~====::=~r--------~

Return to
initiator
(lEFSD263)

: I UPT I :
I I
'"---------~

SP 252
r - --,
I I
I
I I PSCB I:
I I L ___ .J

Diagram 23.9 Pre·TMP Exit (IKJEFU) (Part 2 of 2)

Extended Description

The initiator II EFSD263) invokes the pre·TMP exit before
attaching the terminal monitor program (TMP); it invokes
the post-TMP exit after the TMP terminates. The pre·TMP
exit prepares for the terminal session to begin by notifying
the LOGON monitor task to terminate. The pre·TMP exit
has two parts; an entry point name is assigned to each part.
The first part is invoked before the initiator issues the
FREEPART macro instruction (pre·FREEPART process·
ing). The second part is invoked following the FREEPART
(post-FREEPART processing).

Module

IKJEFU

1 This step represents pre·FREEPART processing. It is IKJEFLJ
performed before the initiator issues the FREEPART

macro instruction. Since the LOGON monitor task may still
be active, the data areas it uses must not be deleted (by
FREEPART) until the task is notified to terminate.

• Pre-FREEPART processing notifies the LOGON monitor
task to terminate (LWASECB-post code 20). When the
monitor task terminates, it notifies pre·FREEPART proc·
essing to continue ILWAPECB-post code 20). See
LOGON Monitor IIKJEFLC)'

• The System Initiated Cancel (SIC) is notified that
the TMP was executing when the line dropped or
the user canceled. SIC will then notify the Post·
TMP exit to free other users who are waiting on
this memory. For example, SEND W/WAIT
option sent to a canceled memory can cause the
sender to wait forever unless the Post·TMP exit
frees the sender.

Label

IKJLM1

Extended Description

2 This step represents post·FREEPART processing. It is
performed after the initiator issues the FREEPART

macro instruction. Post-FREEPART processing now can
move the UPT and the re-LOGON buffer to subpool 0
(which Is deleted by the FREEPARTI.

• Post·FR EEPART processing invokes the SWA manager to
obtain the user's region size from the step control block
(SCBI. The region size is stored in the protected step con·
trol block (PSCBI. If the SCT indicates that the terminal
session is a job'with more than one step, post·FREEPART
processing passes a non·zero return code back to the initio
ator, which then terminates the job. The current time of
day is also stored in the PSCB for later use in computing
the length of the terminal session.

• The UPT and the re·LOGON buffer are moved to sub·
pool 0 (a non-protected subpooll so that the command
processors may alter them during the terminal session.
The PSCB is moved to subpool 252; the command proc·
essors cannot alter data areas in subpool 252.

Module Label

IKJEFU IKJU1

C;; Diagram 23.10 Post-TMP Exit (IKJEFLK) (Part I of 2)
00

From the initiator (IEFSD263)
Input after TMP terminates Process

I
<:
g,
c
3
tI)

<:

LCT

last ·step
completion
code
(LCTPARM4)

LWA

r----... ASCB

CPU time used for
thIs sessIon

'''"""''"9 ~ informatIon service units used
for this session

,PSCB

LOGON time of day
(PSCBLTIM)

lilt Post- TMP Exit

1 Move the UPT and the re-LOGON
bu fter to protect them from being
deleted. Move the PSCB.

.. :> 2 Save the completion code from the
last step of the terminal session.

3 Update the terminal user's

> accounting information.

Return to
the initiator
(IEFSD263)

Output

SP 230
~-- ----- - -- ---,
I I
I r le·LOGON 1 I: ~~ I PSCB buffer
I
I I
'- - -- --- __ _ --l

LWA

" v LWAICDE

total processor time
(LWATCPU)

;>J total servi~ units
(LWATSRU)

I total user connect time
(LWATCON)

Diagram 23.1 0 Post·TMP Exit (IKJEFLK) (Part 2 of 2)

Extended Description

The initiator (JEFSD263) invokes the post-TMP exit after
the TMP terminates. The post-TMP exit saves the comple­
tion code from the last step of the terminal session and
updates the user's accounting information in the LOGON
work area. Then, the initiator performs termination process·
ing and passes control back to the LOGON scheduling task.

Module

1 The post-TMP exit moves the UPT and the re-LOGON IKJEFLK
buffer from subpool 0 to subpool 230 to prevent job

scheduling from deleting them during job termination_ The
PSCB is.also moved to subpool 230.

2 The post-TMP exit saves the completion code from the IKJEFLK
last step of the terminal session, obtaining it from the

linkage control table I LCT!. The completion code is later
analyzed by LOGOFF processing to determine if the terminal
session terminated abnormally. See Oiagram LOGOFF
Processing.

3 The post-TMP exit updates the accounting information
in the LOGON work area to account for the system

resources used during the terminal session that is now
terminating.

Error Processing

If either the pre-TMP exit or the post-TMP exit causes an
ABEND, LOGON scheduling's ESTAE routine IKJEFLS
is invoked by ABEND processing. The function of this
ESTAE routine is described under Error Processing in the
diagram LOGON Initialization and Scheduling.

IKJEFLK

IKJEFW,K

Label

IKJLK1

IKJLK1

196 OS/VS2 TSO Command Processor Logic - Volume IV

ABEND processing 12
ALLOCATE

command processing overview 20-21
concatenate Data Set processing 34-35
DUMMY request processing 32-33
MOD Data Set processing 30-31
NEW Data Set processing 28-29
OLD or SHR Data Set processing 26-27
SYSOUT Data processing 24-25
Terminal processing 22-23

ASCB (address space control block)
in LOGON

initialization 164
monitor 170
post-TMP exit 188
scheduling 166

in LOGON/LOGOFF verification 178
ASXB (address space extension block)

in LOGON initialization 164
ATTENTION interruptions 12
ATTRIB command processing 37

CALL command processing 3841
CANCEL/STATUS processing 4243
Common command routine (IKJCT432) 72-73
COMMAND SCAN 11
CONTROL routine (IKJCT432) 68-69
CSCB (command scheduHng control block)

in LOGON
monitor 170
monitor recovery 184
pre-prompt exit interface 182
recovery routine 168

in LOGON/LOGOFF verification 178
CVT (communications vector table)

in LOGON
initialization 164
monitor 170
pre-prompt exit interface 182

in LOGON/LOGOFF verification 178

DAIR Dynamic Allocation Interface Routine
Data area usage 151
DATA to ENDDATA routine (IKJCT432)
DO routine (lKJCT432) 60-61

ECT (environment control table)
in LOGON

monitor 170
pre-prompt exit interface 182

in LOGON/LOGOFF verification 178
ELSE routine (IKJCT432) 58-59
END

WHEN/END processing 144
END routine (IKJCT432) 64-65

11

74-75

ERROR/ATTN routine (lKJCT432) 62-63
Error termination

procedure 13
EXEC

command main control (lKJCT430) 4849
Command processing operation 4547

Index

Command Record Scan routine (IKJCT432) 54-55
COMMAND Symbolic Parameter definition

(IKJCT431) SO-53
EXTRACT 11

FREE command processing 76-79

GETLINE 11

HELP
processing 78-79
processing HELP Data Set member 80-81
reading HELP Data Set 82-83

Hierarchy of M.O. Diagrams 17-19

IF routine 56-57
lKJEFJ, function 186
IKJEFLA, function 164
IKJEFLB, function 168
IKJEFLC, function 170
IKJEFLE, function 176
IKJEFLEA, function 176
IKJEFLGB, function 184
IKJEFLl, function 182
IKJEFLK, function 188
IKJEFLL, function 174
IKJEFLS, function 168

JSCB (job step control block)
in LOGON

pre-prompt exit interface 182
pre-TMP exit 186

JSEL (job scheduling entrance list)
in LOGOFF processing 174
in LOGON

initializa tion 164
monitor 170
monitor recovery 184
pre-prompt exit interface 182
scheduling 166

in LOGON/LOGOFF verification
JSOL (job scheduling options list)

in LOGOFF processing 166
JXSL (job scheduling exit list)

in LOGOFF processing 174
in LOGON

initialization 164
scheduling 166

178

Index I-I

LINK and LOADGO processing 84-85
L1STALC

processing overview 86-87
DSAB processing 88-89

LlSTALC (continued)
HISTORY processing

VSAM 90-91
NON-VSAM 92-93

STATUS processing 94-95
MEMBERS processing 96-97

L1STBC
processing overview 98-99
NOTICES message processing 100-101
MAIL message processing 102-103

L1STDS
processing overview 104-105
HISTORY processing

VSAM 106-107
NON-VSAM 108-109

STATUS processing 110-111
MEMBERS processing 112-113
LABEL processing 114-115

LOADGO processing 84-85
LOGOFF processing 174
LOGON

data areas with user information 181
initialization 164
monitor 170
post-TMP exit 188
pre-prompt exit interface 182
pre-TMP exit 186
recovery monitor 184
recovery routine 168
scheduling module flow 160
scheduling processing 166

LOGON scheduling, control block overview
LOGON scheduling, introduction 159
LOGON/LOGOFF verification 176
LWA (LOGON work area)

in LOGOFF processing 174
in LOGON

initialization 164
monitor 170
monitor recovery 184
post-TMP exit 188
pre-prompt exit interface 182
pre-TMP exit 186
recovery routine 168
scheduling 166

in LOGON/LOGOFF verification 176

Message handling 13

OPERATOR command processing 116-117
OUTPUT processing 118-119

PROTECT command processing 122-123
PROFILE processing 120-121

162

1-2 OS/VS2 TSO Command Processor Logic - Volume IV

PSCB (TSO protected step control block)
in LOGOFF processing 174
in LOGON

initialization 164
monitor 170
post-TMP exit 188
pre-prompt exit interface 182
pre-TMP exit 186

in LOGON/LOGOFF verification 176
PUTGET 11
PUTLINE 11

READ/READDVAL/GLOBAL routine 70-71
RENAME command processing 124-125
RUN

command processing overview
building a RUN command list

SEND

126-127
128-129

overview and operator processing 130-131
user processing 132-133
adding SEND text to the Broadcast Data Set

SET routine 66-67
SCAN 11
SERVICE routine 11
STACK 11
SUBMIT

processing 136-137
JCL processing 138-139

TCB (task control block)
in LOGON

initializa tion 164
pre-prompt exit interface 182

in LOGON/LOGOFF verification 178
TEST command 12-13
Terminal Monitor Program 11
TERMINAL operational characteristics 140-141
TIME command processing 12-13,142-143
TIOT (task I/O table)

in LOGON initialization 164
TMP

attention exit routine 12
TSB

in LOGON
initialization 164
pre-prompt exit interface 182
scheduling 166

in LOGON/LOGOFF verification 178

UPT (user profile table)
In LOGOFF processing 174
in LOGON

pre-prompt exit interface 182
pre-TMP exit 186

in LOGON/LOGOFF verification 178

WHEN/END processing 144-145

134-135

· ~ e.g
~.!
.9-:S

h
","

.5.2
18. a = ...
01
EE
lE
-::I C a",
Eo.. ::J
~1 '" c
ali a
~o.. Of
_0 "D -.. ~ cn.~
E~ 0 :05 -e" ::I ... ~ U

01::1

!li 8 ...
5:
U::I

.111 ... 0 a ..
C:;;iL

.!
0 z

OS/VS2 TSO
Command Processor
Logic Volume IV

SY28-0652-4

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization. or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

OS/VS2 TSO Command Processor Logic Volume IV

SY28-0652-4 5370-39

Reader's Comment Form

i
Fold and tope Please Do Not Staple Fold and tope !
---~

Fold and tope

--- ----.-. - --------. -.-,-- --. -~-==-="':'=®

IIIIII
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO Box 390
Poughkeepsie. New York 12602

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tope

Printed in U.S.A.

--------- -------- ----- -- -------------•

This Supplement No.

D ..

FileNo.

For Ball Publication

~stenn Library
Supplement

SD23'()299'()

March I, 1985

S370-39

SY28-06524, OS/VS2 TSO Command Processor Logic Volume IV
<5> Copyright IBM Corp. 1972, 1984

None

This supplement contains replacement pages for CP Logic Volume IV. It replaces Supplement LD23'()273'().

Before inserting any of the attached pages into CP Logic Volume IV, read Ctuf!{uJly the instructions on this
cover. They indicate when and how you should insert pages.

Pages to
be Removed

Cover· Edition Notice
3·6
9 ·14
37 ·44
85 ·86
117 ·120
135·138
149· ISO
155·156
11 ·12

Attached Pages
to be Inserted*

Cover· Edition Notice
3·6
9 ·14
37 ·44
S5 ·86
117 ·120
135·138
149· ISO
ISS ·156
11 ·12

*If you are inserting pages from different Newsletters/Supplements and identiclll page numbers are involved,
always use the page with the latest date (shown in the slug at the top of the page). The page with the latest
date contains the most complete information.

A change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

This supplement was reissued because of the major revision to base SY2S'()652. The parallel TMP structure
does not apply to the MVS/XA environment without TSO/E.

Note: Please file this cover letter at the back of the publication to provide a record of changes.

IBM Corporation, Information Devetopment, Dept. 058, Building 921.2,
P.O. Box 390, Poughkeepsie, New York 12602

Printed in U.S.A.

05/V52 T50 Command Processor Logic Volume IV

SY28-0652-4 S370-39

Printed in U.S.A.
--..-. ...
--~ .-- ---....-- ---.~ - -.. ---...-- ----------~---_ .. -®

SY28-065Z-04

".

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	I-01
	I-02
	replyA
	replyB
	upd
	xBack

