Systems

SY28-0652-4
File No. §370-39

0OS/VS2 TSO
Command Processor
Logic Volume IV

(includes LOGON Scheduling)
VS2 Release 3.8

llan]|
||||I'
[4]

...i“

milly

Fifth Edition (December, 1984)

This is 2 major revision of and obsoletes SY28-0652-3. See the Summary of Amendments
following the Contents for a summary of the changes made to this manual. Technical

changes or additions to the text and illustrations are indicated by a vertical line to the left
of the change.

This edition with Supplement SD23-0299 applies to Version 2 of MVS/System Product
5740-XC6 or 5665-291 and Data Facility Product 5665-284 until otherwise indicated in
new editions or Technical Newsletters. Changes are periodically made to the information
herein; before using this publication in connection with the operation of IBM systems,

consult the latest /BM System/370 Bibliography, GC20-0001, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or services do not imply that [BM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM program product in this publication is not intended to state or imply that only IBM’s
program product may be used. Any functionally equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers’ comments has been provided at the back of this publication. If the form
has been removed, address comments to IBM Corporation, Information Development,
Department D58, Building 921, P.O. Box 390, Poughkeepsie, New York 12602. IBM may

nge or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright International Business Machines Corporation 1972, 1984

Page of SY28-06524
As Updated March 1, 1985
By Suppl. SD23-0299 for 5665-291, 5740-XC6

Preface

This publication describes the programs that handle the following TSO commands:

ALLOCATE LISTALC RENAME
ATTRIB LISTBC RUN

CALL LISTDS SEND
CANCEL/STATUS OPERATOR SUBMIT
EXEC OUTPUT TERMINAL
FREE PROFILE TIME

HELP PROTECT WHEN/END
LINK/LOADGO

In addition, LOGON Scheduling information is included.
DELETE and LISTCAT information is in Access Method Services Logic.

This publication describes program internal logic and organization. It is designed
to help the programmer follow the intemal operation of a program and determine
the location of a program malfunction. The book provides pointers for specific
functions; the programmer can use these pointers to access program listing
information without having to scan the listings for the data he wants.

The commands are described through the use of Method of Operation Diagrams,
a Directory, and a Data Area Usage chart.

The Directory contains a module cross reference for all of the commands
described in this book. It cross references load module, object module, entry point,
alias, and command name.

The Data Area Usage chart is organized by the data area acronym. The macro
name and common name are also listed. Under each data name is a list of modules,
by command processor, that alter or create the data area.

Data area descriptions can be found in Data Areas. The diagnostic aid

description of the TSO terminal messages can be found in Message Library: TSO
Terminal Messages.

Note that the titles for the TSO library for MVS/XA begin with the “MVS/
Extended Architecture” system prefix.

Preface 3

Page of SY28-06524
As Updated March 1, 1985
By Suppl. SD23-0299 for 5665-291, 5740-XC6

Associated Publications

MVS/Extended Architecture TSO Terminal Monitor Program and Service Routines

Logic
(OS/VS2 TSO Terminal Monitor Program and Service Routines Logic,
SY28-0650-3, as amended by Supplement LD23-0262)

MVS/Extended Architecture TSO Command Processor Logic Volume I: ACCOUNT
(OS{VS2 TSO Command Processor Logic Volume I: ACCOUNT,SY28-0651-2, as
amended by Supplement LD23-0270)

MVS/Extended Architecture TSO Command Processor Logic Volume II: EDIT
(OS/VS2 TSO Command Processor Logic Volume II: EDIT,SY33-8548-3, as
amended by Supplement LD23-0271)

Data Areas
(For MVS/SP - JES2 Version 2, LYB8-1191)

(For MVS/SP - JES3 Version 2, LYB8-1195)

Macro Usage Table
(For MVS/SP - JES2 Version 2, LYB8-1193)

(For MVS/SP - JES3 Version 2, LYB8-1197)

Symbol Usage Table
(For MVS/SP - JES2 Version 2, LYB8-1192)

(For MVS/SP - JES3 Version 2, LYB8-1196)
TSO Terminal Messages, GC28-1310
MVS/Extended Architecture Access Method Services Logic, LY26-3889

Referenced Products

1. All references to MVS System Product indicate either OS/VS2 MVS/System
Product-JES3 (5740-XYN) or OS/VS2 MVS/System Product-JES2 (5740-XYS)

4 TSO Command Processor Logic — Volume IV

March 1, 1985

Contents

SumumyotAmdmenu....................9
Introduction. . . . A1

Terminal Monitor Promm e e e e e e e e e . P § |
Service Routines. e e A § |
Attention Interruptions. e e . W12
TMP AttentionExitRoutine 12

Error TerminationProcedure ¢ .+ .+« . . . JA3
Method of Operation . O 1

EKBCCommmdProcmg()pmﬁon................45
Phase1Processing 45

DataAreaUsage. « « o« ¢« v o o « o « . o181

LogonScheduling 4 e e e e w . . . 159

Illustrations
Figures

Figure 1. LOGON Scheduling Module Flow. . . P (11}
Figure 2. LOGON Scheduling Control Block Overview S {2
Figure 3. Data Areas Containing LOGON User Information 181

Contents §

Page of SY28-06524
As Updated March 1, 1985
By Suppl. SD23-0299 for 5665-291, 5740-XC6

Diagrams

Diagram 9:3.

Diagram 9.5.
Diagram 9.6.
Diagram 10.1.
Diagram 10.2.
Diagram 10.3.
Diagram 11.1.
Disgram 11.2.
Diagram 11.3.
Diagram 11.4.
Diagram 11.5.
Diagram 11.6.
Diagram 12.
Diagram 13.
Diagram 14.
Diagram 15.
Diagram 16.
Diagram 17.1.
Diagram 17.2.
Diagram 18.1.
Diagram 18.2.
Diagram 18.3.
Diagram 19.1.
Diagram 19.2.
Diagram 20.
Diagram 21.
Diagram 22.

Hierarchy of M.O. Diagrams .

ALLOCATE Command Proeasor Ovezview
ALLOCATE Terminal Processing
ALLOCATE SYSOUT Data Set mens ..
ALLOCATE OLD or SHR Data Set Processing
ALLOCATE NEW Data SetProcessing.
ALLOCATE MOD Data Set Processing.
ALLOCATE DUMMY Request Processing.
ALLOCATE Concatenate Data Sethc&ning e e e .
ATTRIB Command Processing e e e e
CALL Command Processing . Ce e e e e e
CANCEL/STATUS Processing . .

Phase 1 EXEC Command Main Control (IKJCI‘430) . . .
Phase 1 EXEC Command Symbolic Parameter Definition (IIUC‘I‘431)
Phase 1 EXEC Command Record Scan Routine (IKIC‘NSZ) .

L S S S
L S S T S S)
.

e s e & o & » s o s s o

IFRoutine(IKJCT432) - e .
ELSE Routine(IKJCT432)
DO Routine (IKJCT432). . . e e e e 4 e e e e
ERROR/ATTN Routine ('IKJCT432) e e e e e e e e e
ENDRoutine(IKJCT432)
SETRoutine IKJCT432).
CONTROL Routine (IKJCT432). . . . e e

READ/READDVAL/GLOBAL Routine (IKJC'I'432) e e e e
Common Command Routine (IKJCT432) . e e e e
DATA to ENDDATA Routine (IKJCT432) c e e e e
FREE Command Processor . . . e e e e e

HELP Processing . .

Processmg HELP Data Set Member e e e e e e
LINK and LOADGO Procmsing . e e e e e
LISTALC DSAB Processing . . . e .
LISTALC HISTORY Processing (VSAM) . e
LISTALC HISTORY Processing (Non-VSAM) P
LISTALC STATUS Procemng e e e . ..
LISTBC NOTICES Messages Processing.
LISTBC MAIL Message Processing . . e e e e e
LISTDS Processing Overview. . .

LISTDS HISTORY Processing (V. SAM) e e e
LISTDS HISTORY Processing (Non-VSAM) . . .
LISTDS STATUS Procmng e e e e e e

« o a4 s e
.
e & s o s o

a e s s e e

OPERATOR Command Pmcmg e e e e e e
OUTPUT Processing e e e e e e .
PROFILE Processing . e e e e e e e e e e
PROTECT Command Pxocming. C e e e e e e
RENAME Command Processing.
RUN Command Processing Overview . e e e e
Building a RUN Command List . . . e e e e .
SEND OQverview and Operator Ptocessing e e e e e
SEND User Processing. . . e e e e s
Adding SEND ‘I’ext to the Broadcast Data Set. e e e e e e e
SUBMIT JCL Processing . . e e e e e e e e
TERMINAL Operational Charactensﬁcs e e e e e e e e
TIMECommand Processing « « .« .
WHEN/ENDProcessing « « « o « o« o« &

:
Il
E

a s e s e
.

08/VS2 TSO Command Processor Logic — Volume IV

Diagrams (continued)

Diagram 23.1.
Diagram 23.2.
Diagram 23.3.
Diagram 23.4.
Diagram 23.5.
Diagram 23.6.
Diagram 23.7.
Diagram 23.8.
Diagram 23.9.

Diagram 23.10.

LOGON Initialization .
LOGON Scheduling .

LOGON Initialization and Schedulmg Recovery Routme.

LOGON Monitor .

LOGOFF Processing . .
LOGON/LOGOFF Venﬁcatlon
LOGON Pre-prompt Exit Interface .
LOGON Monitor Recovery .
Pre-TMP Exit .

Post-TMP Exit .

164
166
168
170
174
. 176
. 182
184
. 186
. 188

Contents 7

8 0S/vS2 TSO Command Processor Logic — Volume IV
: 3 o :

Page of SY28-06524
As Updated March 1, 1985
By Suppl. SD23-0299 for 5665-291, §740-XC6

Summary of Amendments
for SY28-06524

as Updated March 1, 1985
by Supplement SD23-0299

This supplement was reissued because of the major revision to base SY28-0652. The parallel
TMP structure does not apply to the MVS/XA environment without TSO/E.

Summary of Amendments
for SY28-0652-2

as Updated January 14, 1983
by Supplement LD23-0273-0

This supplement supports MVS System Product Version 2. A note has been added to LINE
and LOADGO commands to remind readers of the AMODE and RMODE operands available
under MVS/Extended Architecture,

Summary of Amendments
for SY28-0652-3

as Updated by SN28-4928
OS/VS2 Release 3.8

This technical newsletter incorporates information for LOGON Scheduling.

Summary of Amendments 9

March 1, 1985

10 0S/VS2 TSO Command Processor Logic — Volume IV

Page of SY28-06524

As Updated March 1, 1985

By Suppl. SD23-0299 for 5665-291, 5740-XC6

This section contains information on processing that is
common to all the TSO command processors.

Terminal Monitor Program

The Terminal Monitor Program (TMP) handles the
interfaces between a terminal user and a command
processor. The TMP runs under the control program as
a subtask of (is ATTACHed by) the TSO
LOGON/LOGOFF Scheduler (via the Job Scheduling
Subroutine).

Before the TMP in turn attaches its own subtasks
(i.e., command processors), it:

e Constructs and initializes the data areas it requires.
e Loads the TIME command processor.

Sets up ESTAE and ESTAI exits.

Sets up attention interruption exits.

Initializes the input stack with a terminal element.

Issues the EXTRACT macro instruction to obtain
pointers to both the STOP/MODIFY ECB and to the
Protected Step Control Block (PSCB) that is built by
the LOGON/LOGOFF scheduler.

¢ Informs the terminal it is ‘ready’ for a command.

When a command processor completes its processing,
control is returned to the TMP. For more information on
the TMP, please refer to TSO Terminal Monitor
Program and Service Routines Logic.

Introduction

Service Routines

There are a number of service routines used selectively
by the different command processor packages. These
service routines, which are also used by the TMP (unless
otherwise noted), include:

o GETLINE, which obtains a line of input from an area
defined as its source of input. Normally, this area
contains input from the terminal.

e PUTLINE, which sends a line of cutput to the
terminal. :

e PUTGET, which sends a line of output to the terminal
and waits for a line of input as a response.

e STACK, which establishes the source of input as a
terminal; or (if not from a terminal) which places
lines of input into areas from which GETLINE or
PUTGET can obtain data.

o Command Scan, which checks the syntax of
designated data to see if it is syntactically valid.

o Parse (IKJPARS) (not used by the TMP), which
checks the syntax of parameters of TSO commands.
In certain cases, Parse is directed to take exits to
validity checking routines (provided by the
processors). The validity checking routines are
designed to dynamically assist the parse operation in
providing valid input to the command or
subcommand processor.

e Dynamic Allocation Interface Routine (IKJIDAIR)
(not used by the TMP), which provides information
to the control program dynamic allocation routines.
In turn, these routines allocate, free, and concatenate
data sets that relate to a TSO session.

These service routines are documented in full in 7SO
Terminal Monitor Program and Service Routines Logic.

Inttoduction 11

Page of SY28-06524
As Updated March 1, 1985

By Suppl SD23-0299 for 5665-291, 5740-XC6

Attention Interruptions

When an attention interrupt has been entered at a
terminal, an attention interrupt exit routine will receive
control. If a command processor is interrupted, control
will pass to the command processor’s attention exit
routine, if one exists. If not, then control will pass to
the TMP’s attention exit routine.

TMP Attention Exit Routine

The TMP issues the STAX macro during initialization to
place an entry in a control program queue called the Task
Attention Interrupt Exit queue. When the attention key
is struck during subsequent processing, the control
program attention interruption handling routines check
the queue, put out the mode message, and pass control

to the Attention Exit routine at the address provided
through the STAX macro (after obtaining input from

the terminal).

The Attention Exit routine issues a PUTGET macro
instruction to obtain the input following the attention.
Action is taken according to the type of input found, as
follows:

New command found
all previous entries are deleted from the input stack.
Control then returns to the TMP where the old
command processor is detached and the new one
attached.

Null line
control returns immediately to the task that was
operating when the attention key was struck. No
ECB is posted. No stack entries are deleted.

a PUTLINE exit is taken to put out second-level
messages, if any. (If none, a NO INFORMATION
AVAILABLE message is issued.) Then, the TMP
Attention Exit routine locks for a new command or
a null line as input. Then processing is performed as
for the applicable input type above.

Time command
the TIME command processor receives control. Upon
completion, TIME returns control to the TMP
Attention Exit routine, which then looks for either a
new command, or a null line, as input.

12 0S/VS2 TSO Command Processor Logic — Volume IV

ABEND Processing

When the TMP issues the ATTACH macro to activate a
command processor as a subtask, the ESTAI operand is
included as part of the ATTACH macro. The ESTAI
operand specifies the address of the TMP’s ESTAE Exit
routine. The main purpose of the ESTAI Exit routine —
in the command processor environment — is to intercept
an ABEND and thereby retain processing control. When
a command processor experiences an ABEND, the TMP’s
ESTAI Exit routine gets control to ensure the following:

o The user is notified that his command processor has
experienced an ABEND.

e The READY message is issued.

Action is taken according to the type of input found
(as a response to the READY message), as follows:

New command found (except TIME or TEST)
the command processor that has experienced the
ABEND is deleted via the DETACH macro, (thereby
restricting the ABEND), and the new command
processor is activated as a subtask.

Null line
control is returned to the point of interruption to
allow the ABEND to process (a dump will occur if a
SYSABEND or a SYSUDUMP has been specified on
a DD Card).

the second level message containing the ABEND code
is issued. The ESTAI Exit routine then looks for
either a new command, or a null line, as input.

Page of SY28-06524

As Updated March 1, 1985

By Suppl. SD23-0299 for 5665-291, 5§740-XC6

TIME command
the TIME command processor receives control.
Upon completion, TIME returns control to ESTAI,
which then looks for either a new command or a
null line as input.

Error Termination Procedure

When a command processor terminates with an error
condition, the input stack is flushed (via the STACK
service routine) and the terminal input queue is cleared
(with the TCLEARQ macro instruction).

Message Handling

Most TSO command processors have message CSECTs.
The address of a particular message is provided (by the
command processor) to the PUTLINE service routine —
which writes the message to the terminal.

A message can be either single or multi-level. Either
type may require that PUTLINE insert variables (such as
names, userids, etc.) to complete the message.

LOGON Scheduling

When a terminal user logs on or logs off TSO, the
LOGON scheduling routines are invoked to handle the
request. The routines interface with started task control
(STC) and the TMP.

Introduction 13

14 ° 0S/VS2 TSO Command Processor Logic — Volume IV

March 1, 1985

14 OS/VS2 TSO Command Processor Logic — Volume IV

uopesadQ Jo poyopW

L

Diagram 1. Hierarchy of M.O. Diagrams (Part 1 of 3)

7SO
Command
Processors
I
1.1 2. 3. 4. 5.1 5.2
Phase 1 EXEC
éuoc,:re ATTRIB CALL CANCEL/ Phase 1 EXEC Command
Pornrm'.m Command Command STATUS Command Symbolic
rocessor Processing Processing Processing Main Control Parameter
Overview
Definition
1.2 1.3 1.4 1.5 1.6 1.7 1.8
€ ALLOCATE ALLOCATE ALLOCATE ALLOCATE ALLOCATE ALLOCATE
ALI.(?CAT SYSOUT OLD or SHR NEW Data MOD Data DUMMY Concatenate
Termlmzl Dato Set Data Set Set Set Request Data Set
Processing Processing Processing Processing Processing Processing Processing

81

Al dwnjoA — 218077 10553014 puewwo) OSL ZSA/SO

Diagram 1. Hierarchy of M.O. Diagrams (Part 2 of 3)

oo

t
! 5.3 | 1 6. | 7.0 | |
~ For Phase 2—-l
Phose 1 EXEC Processing, FREE LINK and
Command | See M I Command HELP . LOADGO
Record Scan | ondService | Processor Processing Processin,
Routine (RSR) | Routines I g
L legle
5.3.1 | 5.3.3_] 5.3.5 5.3.7 | 5.3.9 | 7.2 | 7.3 |
Common .
END CONTROL Processing Reading
If Routine ?DOO gm;ne Routine Routine command HELP Dota HELP
IFRTN!
() (ENDRTN) (CONRTN) (COMCMD) Set Member Data Set
5.3.2 5.3.4 5.3.6 5.3.8 5.3.10
READ/ DATA
ELSE ERROR/ATTN SET READDVAL/ (DATARTN)
Routine Routine Routine GLOBAL to ENDDATA
(ELSERTN) (ERRRTN) (SETRTN) Routine (ENDARTN)
(READRTN) Routine
t [}
v L
9.1 10.1
LISTALC LISTBC
Processing Processing
Overview Overview
9.2 | 9.3 | 9.4 9.5 | 9.6 | 10.2 10.3 |
S
LISTALC LiSTALC LISTALC LISTALC LISTALC LISTBC LISTBC
SAB HISTORY BISTORY STATUS MEMBERS NOTICES MAIL
DsA . Processing Processing P . P A Messages Message
Processing (VSAM) (Non-VSAM) rocessing rocessing Processing Processing

uoneIadQ Jo poyap

61

Diagram 1. Hierarchy of M.O. Diagrams (Part 3 of 3)

€
¢
1.1 12. 13. 14. 15. 16.
LISTDS OPERATOR OUTPUT PROFILE PROTECT RENAME
Processing Command P . . Command Command
! rocessing Processing .
Overview Processing Processing Processing
11.2 1.3 114 116 11.6
HISTORY HISTORY LISTOS LISTOS LisToS
Processing Processing STATUS MEMBERS LABEL
i i Processin
(VSAM) (Non-VSAM) Processing Processing 9
C
P4
171 18.1 19.1 20. 21. 22.
RUN SEND
A TERMINAL TIME
gzmn:saind Overview 'S,UBMI:T Operational Command ?HEN,,END
roce s ng and Operator rocessing Characteristics Processing rocessing
Overview Processing
17.2 18.2 18.3 19.2
A~ Adding
Building
a RUN 3‘:::0 fE't\Ihce) Text suBMIT JcL LOGON
o . .
C?mmand Processing Broadcast Processing Scheduling
List
Data Set

0T 1

Al umjoA — 9807 108590034 PUEWWO) OSL ZSA/SO

Diagram 1.1, ALLOCATE Command Processor Overview (Part 1 of 2)

Input Process
Reg 1
L From
T™P
CPPL
)

Command Buffer

1 Check syntax of command.

2 Check data set status.

3 Check DATASET/DSNAME PDE for

list of data set names.

o If no list, allocate a data

set.
. Diag
Terminal
Diag
SYSOUT 13
OLD or Diag
Diag
NEW 16
Diag
MOD
Diag
DUMMY 1.7

o If yes, concatenate the
data set names to each other.

=0
-3
Q,

|IKJEFD37

Parse

IKJEFD32

IKJEFD34

uopesadg Jo poypel

1T

Diagram 1.1. ALLOCATE Command Processing Overview (Part 2 of 2)

1 Check the ALLOCATE command for correct syntax. Invoke module
IKJEFD37 to build a Parameter Control List (PCL). The PCL is passed
to Parse which syntax checks the command and returns a Parameter Description

List (PDL) with an entry for each parameter.

2 Check for data set status parameters {OLD, SHR, MOD, NEW, or SYSOUT). If no
status parameters were specified, set defaults or prompt user for status.

3 Check the DATASET/DSNAME PDE for a list of data set names.

o If there is no list of data set names, IKJEFD32 allocates a data set. (Types of
data sets: Terminal, SYSOUT, OLD, SHR, NEW, MOD, DUMMY)

o if there is a list of data set names, concatenate the data set names to each
other.

Object Module: IKJEFD30

(44

Al 2WnoA — 91807 J0ssa001d puewwo) OSL TSA/SO

Diagram 1.2. ALLOCATE Terminal Processing (Part 1 of 2)

Process

From

Diag
1.1

Ignore superfluous operands.

Translate parameters to text
format.

Allocate terminal.

Check Dynamic Allocation
return code.

If return code is:
o zero, terminal allocated.

o 410, file in use.

e non-zero and not 410,

unable to allocate terminal.

Issue error message.

GENTRANS

Dynamic Allocation

IKJEFD36

IKJEFD35

|

uoneradQ Jo poyIs|y

1 X4

Diagram 1.2. ALLOCATE Terminal Processing (Part 2 of 2)

1 Ignore all operands except DATASET/DSNAME, USING, FILE/DDNAME,
and BLOCK/BLKSIZE. (The BLOCK/BLKSIZE parameter is processed by
object module IKJEFD33.)

2 Set up the text unit specifying terminal allocation. Use GENTRANS to translate
the parameters to dynamic allocation text format. The pointer to the text units is
returned from GENTRANS in the IKJZB831 parameter list.

3 Use Dynamic Allocation to allocate the terminal. Register 1 points to a pointer to
the dynamic allocation request block.

4 Check the dynamic allocation return code.
o If the return code is zero, the terminal has been allocated.

o If the return code is 410, the file is in use. IKIJEFD36 prompts the user to
enter ‘FREE’, to free and reallocate the file, or ‘'END’ to terminate the
command.

o If the return code is non-zero and not 410, allocation of a terminal has failed.
IKJEFD35 uses DAIR failure message routine |KJEFF 18 to analyze the return
code and send the appropriate error message to the user.

Control is returned to IKJEFD30.

Object Module: IKJEFD32

Al dwnA — 218077 Jossa001g puewwo) OSL ZSA/SO #7

Diagram 1.3. ALLOCATE SYSOUT Data Set Processing (Part 1 of 2)

Process

1 Ignore superfluous operands.

2 Translate parameters to text
format.

3 Allocate SYSOUT data set.

4 Check Dynamic Allocation
return code.

If return code is:

o 410, file in use.

e non-zero and not 410,
unable to allocate data

GENTRANS

A

Dynamic Allocation

e zero, data set allocated.

set. lssue error message.

A

IKJEFD36

A

IKJEFD35

A

uoneIadQ Jo poylo

174

Diagram 1.3. ALLOCATE SYSOUT Data Set Processing (Part 2 of 2)

1

Ignore the following operands: DATASET/DSNAME, MSVGP, VOLUME,
PRIVATE, LABEL, POSITION, MAXVOL, DIR, VSEQ, and disposition.
{The BLOCK/BLKSIZE parameter is processed by object module IKJEFD33.)

Set up the text unit specifying SYSOUT data set allocation if necessary. Use
GENTRANS to translate the parameters to dynamic allocation text format. The
pointer to the text units is returned from GENTRANS in the IKJZB831 param-

eter list.

Use Dynamic Allocation to allocate the SYSOUT data set. Register 1 points to a
pointer to the dynamic allocation request block.

Check the dynamic allocation return code.
e if the return code is zero, the data set has been allocated.

o If the return code is 410, the file is in use. IKJEFD36 prompts the user to
enter ‘FREE’, to free and reallocate the file, or ‘END’ to terminate the
command.

e If the return code is non-zero and not 410, allocation of the SYSOUT data set

has failed. IKJEFD35 uses DAIR failure message routine IKJEFF18 to analyze
the return code and send the appropriate error message to the user.

Control is returned to IKJEFD30.

Object Module: IKJEFD32

9

Al awnjop — 28077 Iossadold puewuwo) OSL ZSA/SO

Diagram 1.4. ALLOCATE OLD or SHR Data Set Processing (Part 1 of 2)

Process

From

Diag
1.1

IKJEFD37

Prompt user if data set name
missing.

Ignore superfluous operands.

GENTRANS

Translate parameters to text
format.

Dynamic Allocat

ion

Allocate OLD or SHR data set.

Check Dynamic Allocation
return code.

If return code is:

e zero, data set allocated.

IKJEFD36

e 410, file in use.

IKJEFD37

e 1708, data set not found.

e non~zero and not 410 or
1708, unable to allocate

Y

IKJEFD35

dcota set. Issue error message.

uogeIadQ 3o porgeN

LT

Diagram 1.4. ALLOCATE OLD and SHR Data Set Processing (Part 2 of 2)

1

2

Check for data set name on the DATASET/DSNAME keyword. If the name is
missing use IKJEFD37 to prompt the user to supply one.

Ignore the following operands: SPACE, DIR, HOLD/NOHOLD, DEST,
RELEASE, ROUND, and BLOCK/BLKSIZE/AVBLOCK/TRACKS/CYLINDERS.

Use GENTRANS to translate the parameters to dynamic allocation text format.
The pointer to the text units is returned from GENTRANS in the IKJZB831
parameter list.

Use Dynamic Allocation to allocate the OLD or SHR data set. Register 1 points to
a pointer to the dynamic allocation request block.

5 Check the dynamic allocation return code.

o If the return code is zero, the data set has been allocated.

e If the return code is 410, the file is in use. IKJEFD36 prompts the user to
enter ‘FREE’, to free and realtocate the file, or ‘END’ to terminate the
command.

o |f the return code is 1708, the data set was not found. IKJEFD37 prompts the
user for a new data set name. Repeat step 3,4, and 5.

e |f return code is non-zero and not 410 or 1708, allocation of the OLD or SHR
data set has failed. IKJEFD35 uses the DAIR failure message routine
IKJEFD18 to analyze the return code and send the appropriate error message

to the user.

Control is returned to IKJEFD30.

Object Module: IKJEFD32

8T

Al swmoA — o1807T 105590014 puswiwo) OSL, ZSA/SO

Diagram 1.5. ALLOCATE NEW Data Set Processing (Part 1 of 2)

Process
‘Ftom
O —— 1
1.1
2
3
4
b

Ignore superfluous operands.

Process the SPACE, DIR and the
block parameters.

Translate parameters to text
formet.

Allocate NEW data set.

Check Dynamic Allocation
return code.

If return code is:

o zero, NEW dota set
ollocated.

o 410, file in use.
e non-zero and not 410,

unable to allocate data set.
Issue error message.

IKJEFD33

GENTRANS

Dynamic Allocation

IKJEFD3S

IKJEFD35

6T uoneradQ Jo poyol

Diagram 1.5. ALLOCATE NEW Data Sets Processing (Part 2 of 2)
Ignore the following operands: DEST and HOLD/NOHOLD.
Use IKJEFD33 to process the SPACE, DIR, and block parameters.
Use GENTRANS to translate the parameters to dynamic allocation text format.

The pointer to the text units is returned from GENTRANS in the IKJZB8831
parameter list.

4 Use Dynamic Allocation to allocate the NEW data set. Register 1 points to a

pointer to the dynamic allocation request block.

5 Check the dynamic allocation return code.

o If the return code is zero, the data set has been allocated.

o If the return code is 410, the file is in use. IKJEFD36 prompts the user to
enter ‘FREE’, to free and reallocate the file, or ‘END’ to terminate the
command.

o [f the return code is non-zero and not 410, allocation of the NEW data set has
failed. IKJEFD35 uses the DAIR failure message routine IKJEFF 18 to analyze
the return code and send the appropriate error message to the user.

Control! is returned to IKJEFD30.

Object Module: IKJEFD32

o€

Al 2uinjoA — 21807 108593013 puBwiwo) OSL ZSA/SO

Diagram 1.6. ALLOCATE MOD Data Set Processing (Part 1 of 2)

Process

From
Diag
1.1 S B

Prompt user if data set name is
missing.

Process space parometers.

Ignore superfluous operands.

Translate parameters to text
format.

Allocate MOD data set.

Check Dynamic Allocation
return code.

If return code is:
e zero, data set allocated.

o 410, file in use.

e non-zero and not 410,
unable to allocate data
set. Issue error message.

IKJEFD37

A

IKJEFD33

GENTRANS

Dynamic Allocation

IKJEFD36

IKJEFD35

A

uonwiadQ Jo poylo

1€

Diagram 1.6. ALLOCATE MOD Data Set Processing (Part 2 of 2)

1

Check for data set name on the DATASET/DSNAME keyword. If the name is
missing use |KJEFD37 to prompt the user to supply one.

Use IKJEFD33 to process space parameters.

Ignore the following operands: DEST and HOLD/NOHOLD.

Use GENTRANS to translate the parameters to dynamic allocation text format.

The pointer to the text units is returned from GENTRANS in the IKJZB831
parameter list.

Use Dynamic Allocation to allocate the MOD data set. Register 1 points to a
pointer to the dynamic allocation request block.

6 Check the Dynamic Allocation request code.

o |f the return code is zero, the data set has been allocated.

o If the return code is 410, the file is in use. IKJEFD36 prompts the user to
enter ‘FREE’, to reallocate the file, or ‘END’ to terminate the
command.

o If the return code is non-zero and not 410, allocation of the MOD data set
failed. IKJEFD35 uses the DAIR failure message routine IKJEFF18 to analyze
the return code and send the appropriate error message to the user.

Contro! is returned to IKJEFD32.

Object Module: IKJEFD32

(4>

Al owinpA — 91807] 108890014 puswwo) OSL ZSA/SO

Diagram 1.7. ALLOCATE DUMMY Request Processing (Part 1 of 2)

Process

From

Ignore superfluous operands.
Process the BLOCK/BLKSIZE

parameter.

Translate parameters to text
forma.

Allocate DUMMY request.

Check Dynamic Allocation
return code.

If return code is:

o zero, DUMMY request
allocated.

e 410, file in use.

e non=zero and not 410,
uncble to allocate request.
Issue error message.

IKJEFD33

GENTRANS

Dynamic Allocation

IKJEFD36

IKJEFD35

uoperadQ Jo poyIe

€€

Diagram 1.7. ALLOCATE DUMMY Request Processing (Part 2 of 2)

1 Ignore all operands except DUMMY, FILE/DDNAME, BLOCK/BLKSIZE, AVBLOCK,
TRACKS, CYLINDERS, and USING.

Use IKJEFD33 to process the BLOCK/BLKSIZE parameter.

Use GENTRANS to transiate the parameters to dynamic allocation text format.
The pointer to the text units is returned from GENTRANS in the IKJZB831
parameter list.

4 Use Dynamic Allocation to allocate the DUMMY request. Register 1 points to a
pointer to the dynamic allocation request block.

5 Check the dynamic allocation return cods.
o If the return code is zero, the DUMMY request has been allocated.

o If the return code is 410, the file is in use. IKJEFD36 prompts the user to
enter ‘FREE’, to free and reallocate the file, or ‘'END’ to terminate the
command.

o If the return code is non-zero and not 410, allocation of the DUMMY Trequest
has failed. IKJEFD35 uses the DAIR failure message routine IKJEFF18 to
analyze the return code and send the appropriate error message to the user.

Contro! is returned to IKJEFD30.

Object Module: IKJEFD32

143

Al aumjop — o80T 205590014 puBUIIO) OSL ZSA/SO

Diagram 1.8. ALLOCATE Concatenate Data Set Processing (Part 1 of 2)

Process

Prompt user if ddname missing.

Ignore superfluous operands.
Provide storage for ddnames.

Provide text units for ddname
and data set organization.

Translate parameters to text
format.

Allocate data sets.

Concatenate data sets.

Check Dynamic Allocation
return code. If return code is:

e zero, data sets concate-
nated.

@ non-zero, uncble to con~
catenate. Unallocate data
sets.

IKJEFD37

GENTRANS

CONCTDSN

Y

Dynamic Allocation

A

1

Dynamic Allocation

4

CONCTERR

Dynamic Allocation

A

uope1adQ Jo poyen

SE

Diagram 1.8. ALLOCATE Concatenate Data Set Names Processing (Part 2 of 2)

1

Check for ddname on the FILE/DDNAME keyword. If the name is missing, use
IKJEFD37 to prompt the user to supply one.

Ignore all operands except DATASET/DSNAME, FILE/DDNAME, and STATUS.
Provide the required amount of storage needed to save the ddnames.

Provide text units for the ddname and the data set organization to be returned by
Dynamic Allocation.

Use GENTRANS to translate the parameters to dynamic allocation text format.
The pointer to the text units is returned from GENTRANS in the IKJZB831
parameter list.

Use CONCTDSN to request Dynamic Allocation to allocate all of the data sets in
the list.

Use Dynamic Allocation to concatenate the data set names.

Check the Dynamic Allocation return code.
o If the return code is zero, the data set names have been concatenated.

o If the return code is non-zero, concatenation of the data set names has failed.
CONCTERR requests Dynamic Allocation to unaliocate the data sets.

Control is returned to IKJEFD30.

Object Module: IKJEFD34

9¢

Al swmnjoA — 91807 10889001 pUBWWO) OSL ZSA/SO

Diagram 2. ATTRIB Command Processing (Part 1 of 2)

Input Process
Reg 1
From

(T™P

CcpPL ~

>, Check syntax.
(Command Buffer Translate parameters to text
format.

Allocate DUMMY request with

specified attributes.

Check Dynamic Allocation
return code.

If return code is:

zero, list allocated.

non-zero, unable to
allocate list. Issue error
message.

Parse

GENTRANS

Dynamic Allocation

IKJEFF18

Le uopwad jo popol

Diagram 2. ATTRIB Command Processing (Part 2 of 2)

1

Use Parse to scan and syntax check the command. For those operands Parse can
not fully check (like LRECL), validity check exits in ATTRIB are used. The valid-
ity check exit for the name uses Dynamic Allocation to check the validity of the
attrlist-namo. If Parse failed, (non-zero return code) an error message will be
issued and control is returned to the TMP.

Use GENTRANS (IKJCB831) to translate the parameters from Parse output to
text format. For those parameters which GENTRANS can not transiate (DEN,
DSORG, LRECL, EXPDT, and BUFOFF), ATTRIB builds the text units. If
GENTRANS failed (non-zero return code), an error message is issusd, Parse out-
put is freed, and control is returned to the TMP.

Use Dynamic Allocation to allocate a DUMMY requasst with the specified attrib-
utes.

Check the Dynamic Allocation return code.

o |f the return cods is zero, the request has been allocated and control is
returned to the TMP.

¢ If the return code is non-zero, aflocation has feiled. Use the DAIRFAIL mes-
sage routine IKJEFF 18 to analyze the return code and send the appropriate
error message to the user. Control is returned to the TMP.

Objact Module: IKJEFATT

SB6T ‘T yorey

(€ 252319y ZSA) Al 2WM[OA ~ 5{807 10552301 pUBWWO) OSL ZSA/SO 8E

Diagram 3. CALL Command Processing (Part 1 of 2)

Input Process
Register 1
From
1 Syntax check
creL TP operands,
mp
2 Allocate the requested
Command Buffor data set,
3 Prompt for not found dato
sef,
4 lssue message for any other
DAIR failure,
8§ Open the data set if
DAIR successful,
6 Verify member
name for user's program,
T Anach user's am,
progi

Return to TMP,

PARSE

DAIR

PARSE

IKJEFF18

PARSE

S861 ‘1 WwiEK parepdn) sV
$-2S90-8ZAS Jo 98ed

9OX-0VLS ‘162-S99S 20} 6670-£2AS "1ddng Ag

6 uoneiadg JO POYIOW

Diagram 3. CALL Command Processing (Past 2 of 2)

Extended Description

1

IKJEFTOB8 uses Parse to scan and syntax check the command operands. Register 1
points to the Parse parameter list (PPL). Upon return from Parse, IKJEFTO8
checks to see if a member name has been supplied. If not, it re-uses Parse to
prompt the user to supply it. The operand information is placed in buffers.

IKJEFTO8 examines the data set name supplied as an operand to the CALL
processor, to see if it Is fully qualified. If it is not, it appends the word ‘.LOAD’
to the right of it. It then places the program member name, the password, if
any, and a painter to the fully qualified data set name in the DAIR parameter
block for a data set (DAPB08). IKJEFTO8 uses DAIR {(Dyanamic Allocation
Interface Routine). The X'0008’ operation code in the first field of the DAPB08
requests DAIR routine to allocate the data set to the user, if this has not
previously been done. The remaining fields are gither blaenked out or set to zero.

For further information about DAIR, see OS/VS2 Terminal Monitor Program
and Service Routines Logic.

if the DAIR return code indicates a not-found data set, IKJEFTO8 notifies the
user with a message. It then re-uses Parse to prompt the user to resupply the
data set name. |IKJEFTO8 then re-uses DAIR after the user supplies a name.

8

If any other non-zero return code is issued by DAIR, allocation faited. The
DAIR Failure Messags routine {IKJEFF18) analyzes DAIR's input and output
and sends an appropriate message to the user,

When DAIR is successful, IKJEFTO8 moves the ddname supplied by DAIR to
the DCB for the requested data set, and opens the data set.

IKJEFTOS8 issues a BLDL macro against the opened data set to verify the
member name of the program to be attached. If the return code is a 4, (member
name not found,) it uses Parse once more to prompt the user to resupply the
member name. The BLDL macro is again issued to verify the newly supplied
member name.

Once the BLDL macro has successfully verified the program member name, an
ATTACH macro is issued to attach and pass control to it. If a parameter list
was supplied, it will bs truncated if more than 100 characters.

Upon completion of the attached program, IKJEFDOO relgases all work and
parameter areas and returns control to the TMP.

Object Module: IKJEFTO08

+7S90-8TAS Jo o8ed

S861 ‘1 YPIEW parepdn) sV

90X-0bLS ‘162-5996 30} 6620-€2AS 1ddns Ag

Page of SY28-0652-4
As Updated March 1, 1985
By Suppl. SD23-0299 for §665-291, 5740-XC6

This page intentionally laft blank.

40 08/VS2 TSO Command Processor Logic — Volume IV

Page of SY28-0652-4
As Updated March 1, 1985
By Suppl. SD23-0299 for 5665-291, 5740-XC6

This page intentionally left blank.

Method of Operation 41

Al suinjop — 31807 J0ss3001d puTwwo) OSL Tv

Disgram 4. CANCEL/STATUS Processing (Part 1 of 2)

Input

Reg 1

CPPL

(

Command Buffer

From
T™MP

Process

-

Check user authorization.

Check command syntax.

Build a job list.

Use installation exit for
validity checking.

Use job entry subsystem for
required operation.

CANCEL—Cancel jobs.
STATUS==Get status of jobs.

SVC100

Parse

Subsystem

S86T ‘1 PIEN parepd() SV
+-ZS90-8TAS Jo 982g

9IX-0VLS *162-5995 30} 6670-€7AS 1ddns Ag

€y uohierddQ Jo poyrp

Diagram 4. CANCEL/STATUS Processing (Part 2 of 2)

1

Use SVC100 to check ths user’s guthorization to enter the command. Information
is passed to SVC100 in the FIBPARMS parameter list. if the user is not authorized
to enter the CANCEL or STATUS commands, an error message is issued and con-
tro! is returned to the TMP.

Object Modules: IKJEFF58 (CANCEL), IKJEFF56 (CANCEL), IKJEFF56
{STATUS).

Use Parse to check the command syntax.

For CANCEL, use the Parse validity check exit (IKJEFF49) to check the jobname
or jobname (jobid) and the STATUS interface to the job entry subsystem to valid-
ity check the command.

For STATUS, no exit is used. if no paramaters were specified on the STATUS
command, this step is skipped.
Object Modules: IKJEFF50 (STATUS), IKJEFF57 (CANCEL)

Build a list of jobs from the names indicated on the STATUS or CANCEL
command.
Object Modules: IKJEFFS0, (STATUS), IKJEFF57, (CANCEL)

Use installation exit IKJEFFS63 to validity check the list of jobs.
For STATUS commands with no parameters, this step is skipped.

For CANCEL commands, the IBM supplied exit will rejact jobnames that are not
userid plus one or more characters.

Objsct Module: IKJEFFS1

Use the job entry subsystem to perform the required operation. Information is
passed to the job entry subsystem via the SSOB paramater list.

For CANCEL, use IKJEFF54 to request the job entry subsystem to cancel the
requested jobs.

For STATUS, use the job entry subsystem to return the status of the requested
jobs. For a STATUS command with no operands, the subsystem uses the userid
plus ons character to search the system queuss for a job name.

Object Module: IKJEFF52

S861 ‘1 Yorel payepdp) sV
+-2590-8ZAS Jo a8

9IX-0YLS ‘162-599S 10} 6670-€2AS ‘1ddng Ag

March 1, 1985

44 0S/VS2 TSO Command Processor Logic ~ Volume IV

EXEC Command Processing Operation

EXEC command processing proceeds in separate
operations known as Phase 1 and Phase 2.

Phase 1 receives control from the TMP. The operation
includes reading the CLIST records from the input data
set, building the in-storage command procedure and the
Symbolic Name and Symbolic Value tables, then
placing the command procedure just built on the input
Stack. Phase 1 is described in this publication.

Phase 2, the statement executor, receives control
from the GETLINE function of the I/O Service Routines
as each record is removed from the command procedure
(provided that the procedure was built by EXEC Phase 1)
with a parameter list containing pointers to the UPT,
the ECT, the ECB, and the GTPB. Phase 2 is described
in OS/VS2 Terminal Monitor Program and Service
Routines Logic.

Phase 1 Processing

Phase 1 processing is done either explicitly or
implicitly.

The explicit form is defined when the user enters
‘EXEC’ with a data set name; optionally, a value list (in
quotes); and options. EXEC will open the data set,
explicitly named with the command, and read the
records (PROC statement and commands) into storage.

The implicit form is defined when the user enters
only a member name (optionally preceded by a percent
sign) of a partitioned command procedure library,
optionally followed by a value list. However, the com-
mand procedure library must have been previously
allocated to the file name ‘SYSPROC’ prior to the
implicit EXEC command. This could have been
accomplished either by step allocation at LOGON time or
or by using the TSO ALLOCATE command. When the
user enters an implicit EXEC command without the
percent sign, EXEC does not get control immediately;
the TMP will go through its normal routine of attaching
the implicit EXEC command as a TSO command, using
the LINK library data sets. If ATTACH fails (806
ABEND), the EXEC command is invoked implicitly,
Optionally, the user can precede the implicit EXEC
name with a percent sign which will signal the TMP
to bypass the ATTACH or the LINK library data sets
and to ATTACH the EXEC command implicitly. The
EXEC command will use DAIR to determine if filename
‘SYSPROC’ exists allocated. If there is no ‘SYSPROC’
data set allocated, the user gets “COMMAND name-
entered NOT FOUND”’; otherwise, the EXEC command
will OPEN/FIND the member name specified. If the
FIND fails, the message “COMMAND name-entered
NOT FOUND will be issued. If the FIND is successful,

the records (PROC statement and Commands) in that
member will be read into storage. If the EXEC command
has been attached by another command as an implicit
EXEC command and the member name entered could
not be found as described by the two cases above, then
the message will read “SUBCOMMAND name-entered
NOT FOUND".

A STAE routine is established initially to prevent
fragmenting subpool 78 storage in the event that EXEC
ABEND:s, by freeing any subpool 78 storage that had
been explicitly gotten.

The input data set is allocated using DAIR. If the
invocation is explicit, EXEC will use the entry code for
data set allocation. If the invocation is implicit, EXEC
will use the entry code for Information Retrieval to
determine if a command procedure library is presently
allocated.

The Dataset I/O function of the I/O Service Routines
is utilized to read records from the input data set. The
Service Routines will be loaded or addressed via a
Resident Service Routine Vector table, if available, then
GETLINE will be used for the input records.

A set of control variables are defined and initialized
for the immediate CLIST by placing the control
variable names in the Symbolic Name table (SNTAB)
and their values in the Symbolic Value table (SVTAB).
A flag byte in the SNTAB defines the entry as a
variable that can or can not be set by the user.

If the first record is a PROC statement, all the
symbolic parameters defined on the PROC statement
are syntax checked. The EXEC command saves the
names of the parameters in the Symbolic Name table
and any default values in the Symbolic Value table
located in subpool 78 storage. Next, the EXEC
command will build a PCL dynamically based on the
PROC statement definitions and then invoke Parse to
syntax check any replacement values in the value list.
Parse passes the values found in the value list back to
EXEC, which updates the Symbolic Value table
accordingly (updates positional parameters entries and
replaces keyword default values with those specified by
the user).

After the Symbol Name and Value tables have been
built, the EXEC command will get subpool 78 storage to
construct the in-storage command procedure. Each
record is then read from the input data set and identified
(scanned to determine the command name and whether
a label was present), and copied to the in-storage com-
mand procedure. All CLIST statements are uniquely
defined; any other statement is considered to be a TSO

Method of Operation 4§

command. Each in-storage command procedure record

will have the following format:
On Input:
Lfjrjoj}jo Command & Text
R Vet - ~ -’
2 2 Varigble «g——— No. of
00=0 Bytes
In CP Storage:
LjL]O]O}jo2102]0C] CLIST Command
PARMS & Text
R e Vi N
2 2 2 1 Variable Variable «g-
- 00 o
Offset to start of

command name

e f————— 0202
Offset to start of symbolic

substitution
f— LL
Total length of the record
OC = Opaeration code defining the command; defined
operation codes.
Code Description
00 TSO Command
01 GOTO Statement
02 IF Statement
03 ELSE Statement
04 WRITE Statement
0s WRITENR Statement
06 EXIT Statement
07 DO Statement
08 END Statement
09 CONTROL Statement
0A ERROR Statement
0B TERMIN Statement
ocC READ Statement
oD SET Statement
OE RETURN Statement
OF Intemal GOTO Statement
10 READDVAL Statement
11 ATTN Statement
12 OPENFILE Statement
13 CLOSFILE Statement
14 GETFILE Statement
15 PUTFILE Statement
FF Used internally to IKJCT432 for
GLOBAL Statement
46 0S/VS2 TSO Command Processor Logic — Volume IV

CLIST PARMS - some of the CLIST statements will
require immediate parsing or certain
addresses to be preserved as the
in-storage command procedure record
is being constructed. This area contains
information relevant to those CLIST
statements.

COMMAND TEXT - complete copy of the record
as it was read from the CLIST data set.

DATA/ENDDATA statements are not placed in the
in-storage command procedure. Statements between
DATA and ENDDATA statements are considered to
be TSO commands and are not syntax checked for
labels.

GLOBAL statements are removed by the Phase 1
EXEC command processing and are not placed in the
in-storage command procedures.

When all the records in the CLIST data set have been
processed as described above, the STACK macro is used
to place the command procedure on the input Stack
using the EXEC option in the Stack interface. An
existing but previously reserved field defined in the LSD
will be utilized to address the EXEC data area, which
will be used by EXEC Phase 2 to obtain the addresses of
the Symbol Name and Value tables. This EXEC data
area also will be used by the Stack service routine when
removing and freeing the space occupied by this
command procedure from the input Stack.

The in-storage command procedure record will be
different for each of the CLIST statements; however, all
TSO commands will result in the same basic command
procedure record.

The following is a description of the processing that
will occur, by command, as well as the description of
each command CLIST PARMS Area:

o The IF statement processing routine will be

reentrant and will invoke the Command Identifica-
tion process in IKJCT432 to identify the command
following the THEN clause; the IF statement will
be divided into two logical commands. The IF
routine will now generate an intemal GOTO with
a four-byte address in the CLIST PARMS area of
the next in-storage record to be created. Next,

the CLIST PARMS area is updated with a four-
byte address of the start of the false path. Next,
the IF routine will get the next input record from
the input CLIST data set and invoke the Com-
mand Identification process to identify the

record. This is done so that the correct relation-
ship will exist for IF and ELSE statements (if the
ELSE statement is used). Then, control is

returned to EXEC mainline for processing of the
next input CLIST record.

o The ELSE statement processing routine is

reentrant and will verify that the input parameter
list (IKJCT432) contains a flag indicating the
ELSE statement processing was invoked by an IF
statement; otherwise, the user has invalid syntax.
The Command Identification process (IKJCT432)
will be invoked to process the command
following the ELSE: the ELSE statement is
broken into two logical commands. Then the
ELSE routine will update the address in the
CLIST PARMS area of the intemal GOTO prior to
the ELSE in-storage record to the real end of the
false path and retumn to EXEC mainline for
processing of the next input record.

e The DO statement processing routine is reentrant

and will get a record from the input data set and
invoke the Command Identification process in
IKJCT432 as many times as necessary until an
END or an alternate END is processed. The DO
routine will set a flag byte in the CLIST PARMS
area to indicate the presence of a WHILE operand.
When the corresponding END has been processed
and the matching DO statement contained a
WHILE operand, an internal GOTO statement is
generated with the address of the corresponding
DO statement and the false path address in the
CLIST PARMS area is updated with address of
the next CLIST record to be created. No internal
GOTO is generated if the DO statement had no
WHILE operand. Control returns to EXEC
mainline for processing of the next input record.

The ERROR and ATTN statement processing is
reentrant and will invoke the Command
Identification process (IKJCT432) to identify the
command specified as the error action unless the
OFF operand was present, or if no operands were
found. When a command action is specified, the
ERROR or ATTN statement will be broken into

two logical in-storage Stack records; upon return
from Command Identification, a 4-byte address

in the CLIST PARMS area is initialized to the
address of the next in-storage record to be created.
A Flag byte in the CLIST PARMS area is used to
indicate whether NO operands were found, OFF
was specified, or a command was found. Then
control returns to EXEC to process the next input
record.

The SET statements use four bytes in the CLIST
PARMS area to store the address of the Symbolic Name
Element for the symbolic parameter specified on the
left of the equal sign.

The READ and READDVAL statements use a
variable amount of the CLIST PARMS area, depending
on the number of symbolic parameters that have been
specified. First are two bytes used as a counter, which
will contain the number of symbolic parameters that
were specified. Following the counter bytes is a four-
byte entry for each symbolic parameter specified, which
will contain the address of the corresponding element in
the Symbolic Name table.

The CONTROL statement uses two bytes of the
CLIST PARMS area for a flag area. The flag bytes will
contain indicators corresponding to the options specified
on the CONTROL statement. When an alternate END
was specified, the EXEC Phase 1 Common Data Area
(ECDA) fields will be updated to reflect those changes.

The Internal GOTO statement is used by the IF and
DO statement processors for controlling the flow around
false or conditional paths. It will use four bytes of the
CLIST PARMS area to save the target address.

The remainder of the statements have no CLIST
PARMS information and pass control to a common
in-storage stack build routine to place an op code in the
command procedure record and return to EXEC Main
Control.

Method of Operation 47

8y

Al 2umijoA — 51807 108500014 puswwo) OSL ZSA/SO

Diagram 5.1. Phase 1 EXEC Command Main Control (IKICT430) (Part 1 of 2)

Input bomTMPor PTOCESS Output Phase 1
f° EDIT or ECT SP78 Command Procedure Storage
rom
Reg} command TIOSEL lBll)k { To Next | Block Length
(]
CPPLPTR In Use LjL|O|O
J 1 Save address of input parms,
_ initialize work areas hond =
y IOSRL
CPPL 2 Establish STAE routine. } TOPELEMT LjL]O}O
4 Command Buffer L Oo| O
Y Ut 3 Validity check command
parameters.
t psce Input Stack
} UPT 4 Allocate the input data set. - "Pui " N:_CSD EXECDATA
~ ag)
A B o) Get arecord from the # First SNTAB
7 input data set. Lower 4 First SVTAB B
GEXECDAT
Command Buffer b) Call IKJCT431 for the Elements
LL IOOI Command Text I first input record.
(4 bytes each) Set and
::) Ge:’ a rea:rd from the 4 Error Action Start | || used by
input data set, —> 4 Error Action End Phase 21
d) Call Record Scan routine. Hrror Action Returr || Proces=ing:
INPUT LSD Flags
DATA e) Repeat process 5¢, d, e LSDADATA I L
SET until end-of-file. LSDRECLN [LSDTOTLN|
) LSDANEXT
© Free unassigned subpool 78 (4 Next to be read) _—J
storoge. (¥ EXECDATA
7 Place the command procedure
on the input stack.
8 Return to caller.
SVTAB
—
} Next SVTAB
SNTAB oo] [svIAB Length
} Next SNTAB ’ SVTAB Length in Use
to Caller Header SNTAB Length SVTAB Assigned Unused
Notes - Global Name Table Pointer (GEXECDAT) initialized to SNTAB SNTAB Length in Use [[Velue Longth]| Orginel
of previous nested level; if no previous nested level it is t VALPTR 7 g
o ey) v
initiolized to zero Name Flags] Name Length Value Elements < D:*:e Next
- ERROR Action pointer initialized to zeros. When ERROR CLIST * Name of Elements SNTDATA* : ! Element —
statement encountered then it will contain address of action. Symbolic ; ! Next Element_ _ _ Ll e -

Parameter e m = ——

uoneadp Jo poyIal

6V

Diagram 5.1. Phase 1 EXEC Command Main Control (IKJCT430) (Part 2 of 2)

1
2
3

Save input CPPLPTR. Initialize the common work area.
Establish a STAE routine.

Syntax check input parameters.

e For explicit EXEC commands, invoke Parse to obtain dataset name containing
the command procedure, determine if the value list was specified, and obtain
the CLIST options (LIST or PROMPT). Use IKJEFF19 to analyze any errors.

e For implicit EXEC commands, invoke Command Scan to obtain the member
name {Command Procedure Library) and to determine if any operands were
specified in the value list.

Retain Parse output with pointer to the value list.

Invoke IKJDAIR to allocate the input data set.

o For explicit EXEC commands, Data Set Allocation will be requested.

e For implicit EXEC commands, Information Retrieval will be requested to
determine whether ‘SYSPROC' is allocated.

Use IKJEFF 18 for any DAIR errors and use STAE routine to clean up and
return to TMP with RC=12.

Use 1/0 Service Routines Dataset 1/0 to read input data set.
e Load IKJGETL {IKJSTCK).

e Stack a dataset 1/0 element, using 1/0 Service Routines with the input ddname
specified as input with no output ddname, using the prompt option.

a) Issue GETLINE for an input record.

b) If this is first statement in the data set, then call Symbolic Parameter
Definition (IKJCT431).

If the return code is 4 proceed to Step SA. If the return code is > 4 then
use STAE Exit to cleanup and return to TMP, otherwise continue at C.

7

8

Return Code 0 — Indicates PROC statement was not present.
4 — Indicates PROC was present.

c) Call Record Scan routine IKJCT432. If the return code is greater than 4,
then use STAE Exit to clean up and return to the TMP.

If the return code is 4 from IKJCT432 (EOF) then proceed to Step 6 for
end-of-file cleanup.

d) Check for end of input file. If not end of file return to Step 5 for next
record.

For end of file on input, clean up unused storage for Name table, leave some
space in the Value Table, and place pointer to EXECDATA in LSD. Clean up any
SP78 storage not used for CLIST. If the procedure can not be executed due to
error then proceed to Step 2 of the STAE routine to clean up.

Issue STACK with options specified by user to make command procedure the
current input source.

Return to caller with RC=0 for normal completiof. For error, see below.

Error Processing (STAE)

1.
2,

Indicate entry to STAE routine via ABEND using a flag for ABEND entry.

Free all subpool 78 storage which had been explicitly gotten — EXECDATA,
SNTABI(s), SVTABIs), LSD, command procedure storage areals).

. lssue a TCLEARQ and a STACK macro with the DELETE=ALL option.

Return to caller. For ABENDs, return to ABEND with no retry requested.
For EXEC error situations, return to the TMP with a preset return code
{RC=12); command procedure is not executed.

0§

Al swnjop — 218077 Jossadorg puswiwio) OSL ZSA/SO

Diagram 5.2. Phase 1 EXEC Command Symbolic Parameter Definition (IKJCT43I:E:) (Part 1 of 3)

Input

Regl

ECDAPTR

ECDA (EXEC
Common Data Area)

— CPPLPTR

4 Current Record

1 First Input Record
tjoolrroc-- |

CPPL

~—1 $ Command Buffer

Command Buffer
VII.LIOO[Commund Value Lisrl

from
IKJCT430

\W

Process : Output
ECDA LSD SP78 Command Procedure Storage
4 Data Blk f
I To Next| Block Length
1 Issue GETMAIN for subpool | } Lso 10
78 storage for SNTAB,SVTAB, > 4 EXECDATA In Use L{L|{O|O
EXECDATA, Command
Procedure and LSD. = R
1 EXECDATA
2 Initiclize a set of control SNTAB | — 4 First SNTAB LIL]IOjO
variables.] gf::::/ ¥ First SVTAB . |L]L]O|O
3 When the first statement not } GEXECDAT
a PROC statement, proceed 4 Lost 7SO Command)
to Step 10. STACK
Pasms Reserved
> 4 SY’“?"“ ch?ck positional 4 Error Action Start Set and used
specification. 4 Error Action End - by Phose 2
processing
5 Syntax check any positional 4 Error Action Return |
parameters and use SNTAB/ -t Flags
SVTAB Update to place names
6 in SNTAB., > -~ SVTAB
Syntax check any keyword = ("% Next SVTA
parameters and use SNTAB/ ! S\j; AB L 8 h
SVTAB Update to place Head engt
in SNTAB ond values in the -/ W SVTAB Length in Use
SVTAB. L SVTAB Assigned Unused
7 Construct a PCL using the Value Lengtthrig‘inol Length
SNTAB and call Parse to Parse Val Valuve
syntax check the value Ef' ve Data I
list. ement | |
b Next Element I
e e -
8 Update the SNTAB and SVTAB 1 SNTAB)
with Parse output. Update
O Free PCL and PDL SNIAS
ree an storage. } Next SNTAB
1 0 Return. Header SNTAB Length
SNTAB Length in Use
} VALPTR
Neme Flags I Name Length
* Name of Elements SNTDATA*
\) Symbolic
Parameter L — L\le_x_t Eleﬂeri —_——

to Caller

1S uoneredQ jo poyIeN

Diagram 5.2. Phase 1 EXEC Command Symbolic Parameter Definition (IKJCT431) (Part 2 of 3)

1

Save input pointer to the Common Data Area {CDA). Get storage for the

Symbolic Name/Value tables, EXECDATA, LSD, and the command procedure
from subpoo! 78. Initiclize table header information for each block. If storage

is unaveilable, notify user and return with RC=16.

Initislize the contro! veriables for this command procedure.

NAME VAL

LASTCC 0

MAXCC 0

SYSPROC Logon Proc. from TIOT

SYSTIME Create entry; indicate eveluate immediately, initialize to a
null entry

SYSDATE Create entry; indicate evaluate immediately, initialize to a
null entry

SYSUID get from PSCE

SYSPREF Create entry, indicate immediate evaluation, initialize to 8
null entry

SYSSCAN initiglize to default

SYSDVAL initialize to null entry

SYSDIM initialize to 00

SYSNEST initialize to YES or NO depending on CLIST nesting

SYSICMD to implicit name or null if explicit EXEC

SYSPCMD initialize to null entry

SYSSCMD initialize to null entry

Determine if the first statement is a PROC statement. When first statement is
not a PROC statement then return with RC=0.

Syntax check positional specifications. Positiona! specifications must be
numeric. Find the next non-numeric — a non-numeric is considered to be 8
comma, blank or tab or start of comment. Any other characters will be
syntactically incorrect with user notified and “PROC not executable’ set,
then return.

Syntax check 8!l positiona! parameters and ptace name in SNTAB.
Accumulate a tota! number of positiona! parameters and the total length in

bytes.
— Skip separators.
— First charecter must be alphameric.

— Find next non-alphameric.

10

— If name less than 252 characters and correct® then call IKJCT431
SNTAB/SVTAB Update routine to place name in SNTAB. If the PROC is
not executable, then bypass adding to SNTAB.

— Repeat the above steps of S untl! all positionat parameters are processed.

* It parameters syntactically incorrect then notify user, set “PROC not
executable’”; continue syntax checking any remaining parameters.

Syntax check keywords specified on PROC statement.
— Skip separators.

-~ First character can be alphameric or left paren. If alphameric, it is start of a
new keyword so call IKJCT431 SNTAB/SVTAB to place previous keyword
in SNTAB. Upon return, continue syntax checking until end of keyword is
found {1-31 characters, the first of which is alphabetic and remainder
alphameric®). Repeat above steps of 6 until all keywords are processed.

If it was a left paren then syntax check the value for the current keyword.
Value can be a quoted string or a character string®. Repeat above steps of 6
until all keywords are processed.

* If parameters are syntactically incorrect then notify user, set “PROC not
executable”; continue syntax checking any remaining parameters.

tf errors have occurred at this point, return with any accumulated return code.
Otherwise, using the SNTAB dynamically construct a PCL representative of
the PROC statement parameters and call Parse to parse the value list. If Parse
fails then notify user and return. Use IKJEFF 1S to analyze Parse errors.

Update the SNTAB/SVTAB with the Parse output. Take values from the PDL
and place in the SVTAB. If operation runs out of storage, then get new blocks
of SNTAB/SVTAB. If necessary, copy SVTAB to new block and free first
block. If storage unavai.able, notify user and return (return code 16).

Free the PCL and PDL storage.

Return RC=0 First record not a PROC statement.
RC=4 First record was a PROC statement.
RC=16 Not enough storage (GETMAIN failure).

52 . 0S/VS2 Command Processor Logic — Volume IV (VS2 Release.3)

€5 uoneradQ Jo poIeN

Diagram 5.2. Phase 1 EXEC Command Symbolic Parameter Definition (IKJCT431) (Part 3 of 3)

SNTAB Element Update/Create Routine

1. Locate the SNTAB pointer in EXECDATA.

2. Search the SNTAB to see if name already defined.

If name already defined and the request was to create a labe! entry, then
this is an error situation. Notify user of duplicate label and set "PROC not
executable’ and return.

If name already exists and the request was to create a Symbolic Parameter
element, then notify user of multiply defined parameter and set ‘PROC not
executable” and return.

If name already exists and request was to locate, then return address of
element RC=0.

If name does not exist and request was to locate an element, then create a
new SNTAB element from the remaining storage. If storage remaining is
insufficient, then get storage for a new block and extend the SNTAB. Set
the last bit in the last element of previous SNTAB and create new entry in
next SNTAB (if GETMAIN error return RC=16).

When the request was to create a label entry, initialize the value pointer to the
current location in the CP SP (78) storage and label flag. Return with RC=0,
When the request was to create an element, set the appropriate type flags,
adjust the SNTAB amount in use, and check to see if a value is required. If
yes, call the SVTAB Update routine to create a value element. Return with
address of element (SNTAB) with return code of SVTAB updates.

3. Return RC =0 — Request performed address of element returned.

RC =16 — Not enough storage.

SVTAB Element Update/Create Routing

1.

If request was to update an element, then determine if value will fit in old
spot. If enough room then reuse the entry and return RC=0. If not enough room,
change request to a create. Add element space to the free space in SVTAB.

If entry was to create an element, then determine if enough storage available.
If not issue GETMAIN for a new block, copy all values from previous SVTAB,
table up to current SNTAB element (if GETMAIN error, return with RC=16).

Create the new element: update SNTAB-SNTVLPTR to new entry and adjust the
SVTAB amount in use.

. Return RC =0 — Request performed; the SNTVLPTR has the address

of the SVTAB element.
RC =16 — Not enough storage.

144

Al duinjoA — 918077 105593014 puBwWo) OSL ZSA/SO

Diagram 5.3. Phase 1 EXEC Command Record Scan Routine (IKJCT432) (Part 1 of 2)

Input
Reg 1 LSD
) PARMS
ECDAPTR
Flags 4EXECDATA
Current Input Record
ECDA LL | 0o]command Parms |
ECDALSD [EXECDATA
Ech'REC ~— ¥ First SNTAB
ECDACBLK ™) 4 FirstsvraB
ECDACPRE |——
ECDACNXT |— N
ECDALCTR SVTAB
L SNTAB
SP78 Command Procedure Storage
Bik 1D |4To Next| Block Length
In Use L]L]o]o
o’ v
o "
= L|JL]O]O
——fL]L]|O]O
~ ~
~o

from IKJCT430

or reentry from Process

IKJCT432

Validity check command

name and label.

Create label name entry in
SNTAB.

Route control to proper

phase 1 command sub-
routine based on command

length and name.

Common Exit from

Output
Updated Input
Parameters
= Control
< Command Scan
> SNTAB
Update
Control Command
Subroutine
>l Move
Routine

command subroutines —

Move current CLIST record
to SP78 command
procedure storage.

Special Exit from command

subroutines — No moving
of data required.

Return to caller with return
code from phase 1 command
subroutine.

Ry

to caller

§s uonendo Jo popel

Diagram 5.3. Phase 1 EXEC Command Record Scan Routine (IKJCT432) (Part 2 of 2)

1
2

Cali Control Command Scan.

If label was found and was syntactically correct, place name and record
address in the Symbolic Name table, Otherwise, if there is what appears to be a
label syntax but specified incorrect, then assume the record to be a TSO
command. When the return code from the SNTAB Update routine is non-zero,
then proceed to Step 4 with following return code —

0 when SNTAB Update RC not 16
16 when SNTAB Update RC=16

a) If not a syntactically correct command name and it contained a valid label,
then assume it to be a TSO command. If there was no label, then assume the

command is a TSO command in disguise.

If a label appears by itself, this is an error; notify user, set “PROC not
executable’’, RC=0 and return via Step 4.

If no label or command appears, then return with RC=0 via Step 4.

Determine command type.

a) -If the command was a TSO command in disquise, then call Common
Command routine with the TSO op code.

b

-

Determine if the command is an END or alternate END; if so, call ENDRTN.

Otherwise, use the length to index into branch table and go to proper length
routine. (COMCMD = Common Command Routine, OP = op code.)

Length=1
1. Call COMCMD OP{00).

Length=2
1. IF Command ? Call IFRTN
(IF Routine).

2. DO Command ? Call DORTN
(DO Routine).

3. Call COMCMD OP{00).

Length=3

1. SET Command ? Call SETRTN
{SET Routine).

2. Alternate END or END ? Check
for end specification. YES — Call
ENDRTN (END Routine).

3. Call COMCMD OP{00).

Length=4

1. GOTO Command ? Call
COMCMD OP(01).

2. ELSE Command ? Call ELSERTN
(ELSE Routine).

3. READ Command ? Call
READRTN (READ/
READDVAL/GLOBAL Routine).

4. EXIT Command ? Call
COMCMD OP{06).

5. DATA Command ? Call
DATARTN (DATA Routins).

6. ATTN Command ? Set OP{11).
Call ERRRTN {(ERROR/ATTN
Routine).

7. Call COMCMD OP(GO).
Length=5

1. ERROR Command ? Set OP(0A),
Call ERRRTN (ERROR/ATTN
Routine).

2, WRITE Command ? Call
COMCMD OP(05).

3. Call COMCMD OP(00).
Length=6

1. TERMIN Command ? Call
COMCMD OP(13).

2. GLOBAL Command ? Call
READRTN OP(FF) {READ/
READDVAL/GLOBAL Routine).

3. RETURN Command ? Call
COMCMD OP(OE).

4. Call COMCMD OP(G0).

Common Exit — Call Common Move routine to move CLIST record to subpool 78

using current line pointer.

Special Exit — No moving required.
'
Return RC=0

Length=7

1. CONTROL Command ? Call
CONRTN (CONTROL Routine).

2. WRITENR Command ? (Call
COMCMD QOP{04).

3. ENDDATA Command ? Call
ENDARTN (ENDDATA Routine).

4., GETFILE Command ? Call
COMCMD OP(14).

5. PUTFILE Command ? Call
COMCMD OP{14).

6. Call COMCMD OP{00).

Length=8

1. READDVAL Command ? Call
READRTN OP{10) {(READ/
READDVAL/GLOBAL Routine).

2. OPENFILE Command ? Call
COMCMD 0P(12).

3. CLOSFILE Command ? Call
COMCMD OP(13).

4. Call COMCMD OP(00).

Record processed successfully.

RC=4 End-of-file occurred.

RC=16
RC=20

Not enough storage (GETMAIN failure).
GETLINE error.

9¢

Al 2unjop — 91807 108590014 puBWWO) OSL ZSA/SO

Input

Diagram 5.3.1. IF Routine (IKJCT432) (Part 1 of 2)

From IKJCT432

Mainline for IF Process
A=B THEN
Reg 1 PARMS command
PARMPTR ECDAPTR
Flags
Special Use y 1 Initialize Record Scan

{ ECDA (EXEC Common Data Area)

L L

~ ~n

ECDAIREC
— ECDACPRE
ECDACNXT (4to next)

~ ~

T T

Current Input Record
[Lijoo] 1

SP78 Command Procedure Storage

f
y

L[t Jo]o]02[0]

routine parm list.

2 Initialize CPS record op code
and parm offset (O,).

3 Reserve 4 bytes of CLIST
parm area for FALSE path.

4 Locate the THEN clause.
5 Call Common Move routine.

6 Call Record Scan routine to
process action of THEN.

7 Build internal GOTO in next
input record. Call Common
Move.

8 Update FALSE entry to next
CLIST position.

9 Get the next input record.
10 invoke Record Scan routine.

11 Return via Special Exit.

Output

SP78 Command Procedure Storage

o] fo]ofosfo,]o]

—{F ALSE Path Ptr] IF A=B THEN
l ?
A DO A

. IF THEN action

o END 3

L l L I oo 102l02|0Fl Internal

GOTO Addr [»To end of ELSE action if present,

I

to Caller

3 otherwise to end of itself.

To start of ELSE command if present,
otherwise start of next record.

Using example shown:
IF

0,0, - Offset from start of OO field to the A
00 - Offset from start of OO field to the |

Generated Internal GOTO

0,0, - Offset to end the address {end of record)
00 - Same as 0202

LS uoneradQ jo poyleW

Diagram 5.3.1. IF Routine (IKJCT432) (Part2 of 2)

Save input pointer to the Common Data Area (CDA) pointer and flag area.

2 Initialize the command procedure op code to X'02’ and set the parameter offset
(02) equal to the offset of the first parameter of the command (offset to A).
Update LL of current CP record.

Reserve four bytes of CLIST Parm Area for the FALSE path address.

Locate the ending position of the THEN keyword by skipping separators and
operands until the THEN clause is found.

5 Call the Common Move routine to move the record starting with IF and ending
with THEN, to Command Procedure Storage Area. Respecify SP {78) command
base after move in case record would not fit in the current CP block. If return
code from Move non-zero then return with Move RC via Step 9.

6 Adijust offset in record to next position following N of THEN and call the
Record Scan routine to process the command following. {Preserve the original
input buffer address and length for correct freeing of buffer later.)

7 Upon return from the Record Scan routine construct an internal GOTO
CLIST statement with an address in CLIST parms of the next command
procedure record to be created and call the Common Move routine to place
in the CP Storage (if the RSR return code was not zero then return with RSR
RC via Step 9). Initialize the GOTO address to the next SP {78) command
procedure record to be created. If the Move Return code was non-zero then
return with Move RC via Step 9.

10

11

Update the FALSE path address in the |F CP Storage record to point to the
next record to be created in CP Storage. (Same address as in internal GOTO.)
If an END of DO loop was processed during the object of the ‘THEN'
processing then return via special EXIT to close the DO loop.

Call GETALINE to obtain the next input buffer (allows nesting of IF THEN...
ELSE relationships properly).

Call Record Scan routine (IKJCT432) to process record obtained in 9 if not
end of file.

Return via the Specia) Exit because no move is necessary with GETALINE
return code.

8¢S

Al 2unjoA — 318077 108800014 puBwIwIO) OS.L ZSA/SO

Diagram 5.3.2. ELSE Routine (IKJCT432) (Part1 of2)

Output

SP78 Command Procedure Storage

Initialize Record Scan routine parm
list.

Check the input parameter list
for a flag indicating the caller was
the IF command.

Place op code X'03’ in CP storage
record.

Call Common Move.

Adjust offset in current input
record past ELSE and call Record
Scan routine to process ELSE
object.

Update the internal GOTO prior to
ELSE with the address of the next
CP storage record to be created.

Input from Process

IKJCT432

Mainline for

ELSE

Reg 1 PARMS command
PARMPTR ECDAPTR
Flags

1
2

{E'CDA {EXEC Common Data Area)

+ 1 3
ECDAIREC 4
ECDACPRE 5
ECDACNXT (4 to next)

T i

6
Current Input Record
[itfod] | ;

SP78 Command Procedure Storage

y

Ljr]o]o]oylo,]

Return via Special Exit.

to Special Exit

tfcfue]o

o oo, oF

Internal GOTO Addr*

L L (o) o

0y [0y 03|

ELSE action <

L
i

*Previously built by IF routine.

Using example:

050, - Offset from 0O field to the end of the record
00 - Offset from OO field to the E

65 uonwadQ JO POYISW

Diagram 5.3.2. ELSE Routine (IKJCT432) (Part2 of 2)

Save input pointer to the COAPTR and flag area.

Make sure previous CP Storage record is an internal GOTO with an address the
same as that of the next command procedure record to be created. Save
address of the internal GOTO for later update; if this is not true then the user
has a syntax error; notify the user and set the PROC not executable switch-
continue command syntax check at Step 5.

Place the op code X‘03’ in the current CP storage record, update O2 offset and
LL of current CP record. (Preserve the original input buffer address and length
for correct freeing of input buffer, later.)

Call the Common Move routine to move ELSE to CP storage. If the Move
return code is non-zero, then return with Move RC via Step 7.

Update the offset in the current input record past the word ELSE and call the
Record Scan routine to process the object of the ELSE. |f RSR return code
non-zero return with RSR RC via Step 7.

Update the address in the internal GOTO prior to the ELSE to point to the
next CP storage record to be created.

Return via Specia! Exit.

09

Al ownjoA — 91807 30882001 puewwo) OSL ZSA/SO

Diagram 5.3.3. DO Routine (IKJCT432) (Part 1 of 2)

Input
Reg 1 PARMS
PARMPTR ECDAPTR
Flags

from IKJCT432
Mainline for
DO WHILE

Process

Output

SP78 Command Procedure Storage

A=B
command

{ECDA {EXEC Common Data Area)

1 1

L ad ~f

ECDAIREC
~— ECDACPRE
ECDACNXT (#1to next)

o~ >

T T

Current Input Record
ftfool |

SP78 Command Procedure Storage

\

- L] fofofosfo,f

1 [Initialize the Record Scan routine
parm list.

2 Place op codes and flag byte in CP
Storage record.

3 Check for WHILE operand; if

present reserve 4 bytes CLIST parm
for FALSE branch.

4 Call Common Move routine to

place DO command in CP storage.

5 Call GETALINE routine for next

input record.

6 Ca!l Record Scan rgutine

{IKJCT432) (Re-enter IKJCT432).

7 Repeat Steps 5 & 6 until END has

been processed.

8 For DO s with WHILE operand

build an internal GOTO to allow
checking the condition. Call
Common Move routine. Initialize
the 4 byte address in the DO
statement CLIST PARMS area.

9 Return via Special Exit.

to Special Exit

O.C.FLg
0, | 05 | 07 [xe0r
DO WHILE A=B

t[i]o]o
FALSE Path Addr

S}
143

- DO action statements -

2%
14

END [r]cr]o]o
Ozlm OF Ilnternal GOTO Addr

Using example shown:

0,0, - Offset from OO field to the A
00 - Offset from OO field to the D

19 uonemndQ jo popep

Diagram 5.3.3. DO Routine (IKJCT432) (Part 2 of 2)

Save pointer to the CDAPTR and flag area.

2 Place op code 07 and flag byte X‘00’ in the CLIST parm area. Update DO
Count. Update 0202 offset.

3 Determine if the WHILE operand was specified. If so reserve 4 bytes in the
CLIST parm area and set flag byte X'80’. This will be the address of FALSE
path. Adjust LL of current CP record. If there was no WHILE operand leave
flag type X'00°.

4 Call the Common Move routine to place the DO statement in the CP storage
area. Respecify SP (78) command base after move in case record would not
fit previous block. If return code from Move non-zero then return with Move
RC via Step 9.

5 Call the GETALINE routine to get the next record from the input data set.
If end of file has occurred then notify user of the open DO group, set PROC
not executable. For end of file and other errors return with the GETLINE
error via Step 9.

6 _Initialize a flag area and CDAPTR parm to be used as input to the Record
Sc¢an routine and call Record Scan routine. If the return code from RSR is
non-zero notify the user of the open DO group and return with RSR RC via
Step 7.

7 Repeat Steps 5 and 6 until an END CLIST statement has been processed
(this will be denoted by conditions in the flag area).

8 If the DO statement had a WHILE operand then build an internal GOTO with
the address initialized to that of the original DO statement. Call the
Common Move routine to place internal GOTO into CP storage. Update the
FALSE address in the original DO statement to the address of the next
record to be created.

9 Return via Special Exit.

9

Al dWn[oA — J1307 JOssad01d puewwo) OSL ISA/SO

Diagram 5.3.4. ERROR/ATTN Routine (IKICT432) (Part 1 of 2)

Input

Reg 1

PARMPTR

PARMS
ECDAPTR

Flags

-

ECDA (EXEC Common Data Area)

{C
—17

ECDAIREC

—

ECDACPRE

ECDACNXT (4to next)

-~

T

L

T

Current Input Record
[od]]

SP78 Command Procedure Storage

L]]ofologoy

from IKJCT432

Mainline for Process

ERROR or
ATTN action

Output

SP78 Command Procedure Storage

command

Initialize the Record Scan routine
parm list.

Place op code in CP storage and
flag byte X'00’.

When OFF specified set flag byte
and return via Common Exit.

Call Common Move to place
'ERROR’ or 'ATTN’ in CP storage.

Call Record Scan Routine to
process ERROR/ATTN action.

Return via Special Exit.

LLLlOIO

0y 0] « |Frag

&

to Special Exit

to next

ERROR (or ATTN)

|-

ERROR or ATTN action commands

~

{
77

*X'0A’ for ERROR or X'11’ for ATTN.

Using example shown:

0202 - Offset from QO field to end of buffer
00 - Offset from OO field to E

€9 uopeiedQ Jo poys

Diagram 5.3.4. ERROR/ATTN Routine (IKJCT432) (Part 2 of 2)

1 Save address of input parms — CDAPTR and flags.
Initialize a flag byte to zero; X‘00’. Adjust LL and 0202 of current CP record.
Determine if OF F was specified. If OF F was requested then set flag byte to

X80’ and return via Common Exit. If no operands specified set flag byte to
X'40' and return via Common Exit.

4 Reserve 4 bytes for the End of Action address. Adjust LL and 0202 of current

CP record. CALL the Common Move routine to place ‘ERROR’ in the CP
storage. If Move return code non-zero then return with Move RC via Step 6.

Call Record Scan routine to process the action following ‘ERROR’. Update
the End of Action address in the CLIST Parm Area. If RSR return code
non-zero, then return with RSR RC via Step 6.

Return via Special Exit.

Al swnjoA — 91807 Jossadold puewwo) OSL ZSA/SO +9

input
Reg 1 PARMS
PARMPTR ECDAPTR
Flags

{ECDA {(EXEC Common Data Area)
T T
ECDAIREC
— ECDACPRE
ECDACNXT {#to next)

T

Current Input Record
(o] |

SP78 Command Procedure Storage

f

t]foJoJoy o,

Diagram 5.3.5. END Routine (IKJCT432) (Part 1 of 2)

from

IKJCT432 Process
Mainline for

END or

Output

SP78 Command Procedure Storage

alternate
END

Reduce the open DO count.*

When DO count negative then call
Common Command with TSO op
code (No Return).

3 Place END op code in CP storage.
4 Set ENDFLAG in input flag area.

§ Return via Common Exit.

*END must have open DO or it
becomes an END command.

to Common Exit

L[t oJoJo,]o,] 08}

END

LR

1¢
LR
£ C

Using example shown:

0,0, - Offset from OO to end of record
00 - Offset from OO to E

§9 uonsiadQ Jo poyloN

Diagram 5.3.5. END Routine (IKJCT432) (Part 2 of 2)

Lower the open DO count by ONE.

2 If the DO count goes negative then there was no matching DO. If this was an
alternate end specification (ECDAEND field other than ‘END’) then it is an
error; notify the user and set the PROC not executable switch. Otherwise, zero
the DO count then treat as if it was a TSO command by invoking the COMCMD
routine with the TSO op code X'00°. COMCMD routine will return via Common
Exit.

3 Set END Flag in input parm flag area. Set op code to X'08’ and initialize 0202

and LL.

4 Return via Common Exit.

99

Al 2umjoA — 01807 105893014 puewWO) OSL ZSA/SO

Diagram 5.3.6. SET Routine (IKJCT432)

Input

PARMS
ECDAPTR
Fiags

Reg 1

PARMPTR

(ECDA {EXEC Common Data Area)

! 1

T T

ECDAIREC
~— ECDACPRE
ECDACNXT (#to next)

- -

T T

Current Input Record

[Lijoo] H

(Part 1 of 2)

from 1KJCT432
Mainline for SET

Process

Output

SP78 Command Procedure Storage

&A=B
command

SP78 Command Procedure Storage

. — L[L]o]0]050,]

1 Place op code OD in CP storage
area.

2 Find the beginning of the
symbolic variable.

3 Check first character for
ampersand. If so skip past. Set
00, 0505, and LL.

4 Return via Common Exit.

L] L] o] o]oy]0o,] oosnTas

to Common Exit

Element Address SET &A=B

£ L

1A)
{¢
LR]

Using example shown:

0202 - Offset from OO field to the A
00 - Offset from OO fieldto S

L9 uoneiedQ Jo POPON

Diagram 5.3.6. SET Routine (IKJCT432) (Part2 of 2)

Place op code ‘0D’ in CP storage area.

2 Locate the start of symbolic variable. If none exist, issue a message and return to
Special Exit with return code,

3 If the first character is an ampersand, skip past. Set 00, 0202, and LL.

Return via Common Exit.

89

Al 2umnjo — 21807 108529014 puewwo) OS.L ZSA/SO

Diagram 5.3.7. CONTROL Routine (IKJCT432) (Part 1 of 2)

ess
Input from IKJCT432 Maintine ' TOC Output
for CONROL NOFLUSH SP78 Command Procedure Storage
PROMPT
Reg 1 PARMS command
PARMPTR ECDAPTR
Flags Licr] o] o]09;]05] 09]rg
) 1 Write op code to CP storage and
reserve 2 flag bytes in CLIST Fig2 CONTROL NOFLUSH PROMPT
PARMS.
[ECDA (EXEC Common Data Area) 2 Validate the parameters
specified.
l L A
-
o -V. 3 Indicate options via the flag t
bytes.
ECDAIREC
4 Unpdate alternate END specifi-
—] ECDACPRE cation if present.
ECDACNXT ($to next)
5 Return via Common Exit. Using example shown:
- -
I I 05,05 - Offset from OO field to end of record
00 - Offset from OO fieldto C
Current Input Record
Lijoo] |
SP78 Command Procedure Storage
\ L|L]0]0]|05 0y

I

to Common Exit

69 uopexdQ Jo pool

Diagram 5.3.7. CONTROL Routine (IKJCT432) (Part 2 of 2)

1 Place op code X'09’ in the CP storage area. Reserve 2 bytes for flag options.
Update the 0202 and L.L fields.

2 Validate the parameters specified. Syntax checking will not invoke any
prompting situations. |f a paremeter is incorrect, notify the user and set the
“PROC not executable’’ switch and continue syntax check of operands. The
lowest unique number of characters are allowed for each keyword.

3 Indicate the options found on the CONTROL statement by setting or resetting
bits in flag bytes.

4 If an alternate ending sequence was specified then update the alternate END
field and length in the Common Data Area.

5 Return via Common Exit.

oL

Al SWnjo — 9807 108530014 puEWINIO) OSL ZSA/SO

Diagram 5.3.8. READ/READDVAL/GLOBAL Routine (IKJCT432) (Part 1 of 2)

Input

from IKJCT432
Mainline for

READ &A, &8B,
&C, &LAST

Process

Reg 1

PARMPTR ECDAPTR

PARMS

Flags

{ECDA (EXEC Common Data Area)

L
T

I\

T

ECDAIREC

— ECDACPRE

ECDACNXT ($to next)

i
T

-

T

Current Input Record
[tJoo]]

SP78 Command Procedure Storage

y

L [ofo]oafo,f

command

Place op code in CP storage and
reserve two bytes in CLIST
PARMS area for the parm count.

2 Syntax check a symbolic parm.

3 Call SNTAB Update to locate

SNTAB entry.

Up the parm count by 1; call
Common Move for a special
READ command 4 byte move
to place the SNTAB element
address in the CLIST PARMS
area.

Repeat Steps 2, 4 until all parms
processed.

If this is a GLOBAL statement
then return via Special Exit;
otherwise, return via Common
Exit.

Y

to Common Exit

Output
SP78 Command Procedure Storage

L] L] o] o]oy,]0,]oc [onTe
SNTAB Element for A | 4 SNTAB Element for B
[#sNTAB Element for Ci§SNTAB Element for LAST)|
READ &A, &B, &C, & LAST

1

P

T
*CNT is the number of variables; 4 in this example.

)Y

Using example shown:

0202 - Offset from OO field to end of record
00 - Offset from OO field to R

1L uopwsdQ Jo POl

Diagram 5.3.8. READ/READDVAL/GLOBAL Routine (IKJCT432) (Part 2 of 2)

1 If command is GLOBAL proceed to Step 2. Place op code in CP storage record
and reserve two bytes for a count field set to X'0000".

2 Syntax check a Symbolic Parameter Specification. Determine name and length.
If syntax incorrect notify user, set PROC not executable and continue syntax
check of any more paramaeters.

3 Call SNTAB Update routine to locate or create an element in SNTAB, If

command is GLOBAL, proceed to Step 2 to process next parameter name; if no
further parameters, return via Spacial Exit. Call Common Move to place

address of element’in CLIST Parm by indicating call by READ command. If the
return code from the SNTAB Update routine or Move routine is non-zero then
return with' SNTAB Update or Move RC via Step 6.

Add one to the parm count. Update 0202 and LL fields.

Repeat Steps 2-4 until all symbolic parameters have been syntax checked or
count exceeds 256. If count exceeds 256, notify user that PROC is not
executable and return.

If the command length was eight, then set the op code to 10. Return via
Common Exit.

(43

Al suImjoA — 98077 308330014 puswwIo) OS.L ZSA/SO

Diagram 5.3.9. Common Command Routine (IKJCT432) (Part 1 of 2)

Input

Reg 1

PARMPTR ECDAPTR

PARMS

Flags

‘?CDA (EXEC Common Data Area)

!

L

It

L o3

ECDAIREC

—1 ECDACPRE

ECDACNXT (1o next)

o

T

NS

T

Current Input Record

O —

SP78 Command Procedure Storage

i

L{L]ofojo,]o,]

17

Process Output
from
1IKJCT432 SP78 Command Procedure Storage
Mainline
L L o (o] (o) (o) XX
1 Initialization already placed op I l l J 2 | 2 '
code into the CP storage area. L _
2 Update CP storage record fields
0202 and LL.
3 Return via Common Exit.

Y

to Common Exit

XX = Op code for:
WRITE
WRITENR

050, - Offset from OO field to the position following
the command name, delimiter {(a Separator)

00 - Offset from OO field to first letter of the
command name

TSO Command

050, - Offset from OO field to first character of
command name
OO0 -Sameas 0,0,

Remaining Commands

050, - Offset from OO field to first parameter of
command

00 - Offset from OO to first letter of command
name

€L uonendQ jJo poyioW

Diagram 5.3.9. Common Command Routine (IKJCT432) (Part2 of 2)

1

2

Initialization already moved the op code to the current
CP record.

Update the 00, 0202 and the LL fields in the CP record
as follows:

— TSO commands: 0202 = offset to first position of
command name; OO = same as 0202.

— WRITE(NR) commands: 0202 = offset to separator
following last character of command name; OO = off-
set from OO field to the first letter of the command
name.

— All other: 0202 = offset to first operand following
the command name; OO = offset from OO to first
letter of command name.

Return via Common Exit.

vL

Al 2WnjoA — 1807 108500034 puBwwWO) OSL ZSA/SO

Diagram 5.3.10. DATA to ENDDATA Routine (IKJCT432) (Part 1 of 2)

Input

Reg 1

PARMS

l PARMPTR I—“" ECDAPTR

Flags

‘ECDA {EXEC Common Data Area)

!

R

T

ECDAIREC

~- ECDACPRE

ECDACNXT (4to next)

>

T

>

T

SP78 Command Procedure Storage

y

Current Input Record

fLLjoo] I

Process

from
1KJCT432
Mainline

Lit]ofoloyo,] |

6 Repeat Steps 1-5 until

Call GETALINE.

Call Control Command Scan
(part of Record Scan Routine).

Check command for ENDDATA
via Special Exit.

Place TSO op code in CP
storage.

Call Common Move.

ENDDATA processed.

i

to Special Exit

Output
SP78 Command Procedure Storage

L]jrt]o]o]9]0]]
First data

1t
LB]
{ ¢
1R}

Consecutive records until
ENDDATA is found.

Each record will be:

0,0, - Offset from OO field to the first record position
00 -Sameas 0202

SL uopwadQ Jo poyloN

Diagram 5.3.10. DATA to ENDDATA Routine (IKJCT432) (Part 2 of 2)

GETALINE
1. lIssue a FREEMAIN for the previous input record.

2. Issue a GETLINE for the next input record. If end of data occurs then
return with Return Code = 4. Other errors, notify user and return with
Return Code = 20,

3. Update the current input record pointer in the Common Data Area (CDA).
4. Return to caller.

Control Command Scan

1. Skip separators.

2. Validity check the first character for alphabetic.

.

If the first character is an ampersand or a percent sign it will be valid;
assume this is a TSO command.

1f the first character is not alphabetic, then assume this is a TSO
command.

(2]
’

Find the end of parameter by scanning to next non-alphameric.

4. 1f the non-alphameric was a colon and the routine has not already
processed a label, then update the label output area; length of
label can not exceed 8 characters. After updating the labe! out-
put area return to Step 1 to syntax check the command name
specification. If routine has already processed a label or the
length was greater than 8 characters then assume this is a
TSO command.

5. If the non-alphameric is not a colon, this is the end of the
command name. Validity check command length and update the command
output area,. If length not 8 or less then assume this is a TSO command.

6. Return.
ENDDATA Routine

The ENDDATA routine should never get control unless there is a missing data
statement. ENDDATA routine should notify user of error, set PROC not
executable and return with RC=0.

Call SNTAB Update routine to put TSO op code in CP storage.

CP Common Move Routine

1.

2.

4,

Locate the current offset into the current CP storage record by adding LL at
base of-record. I1f PROC not executable switch is on then return.

Determine if the amount of storage remaining in the command procedure
area is large enough to contain the data to be moved. If storage remaining
in the command procedure is insufficient then we must get an additional
block of Subpool 78 starage for the command procedure.

o Issue a GETMAIN (SP78) for at least 2K* block of storage for the
command procedure area. Initialize the 3 word header in beginning of
new Command Procedure Storage Block. 1f GETMAIN fails then notify
user, set PROC not executable and return RC=16.

*Or for an amount of storage that will contain the CP header area, the
current record, and an’internal GOTO (max prefix).

e Move the current prefix area from the old block of storage to the new
block of storage (from the LL to a length of LL).

o Free any excess storage over 8 bytes in the old block.

. Move the record to the CP storage block. The address of the data to be

moved and its length will be in the Common Data Area. Placement of data
in the command procedure area will start at the current value of LL into
the current command procedure record prefix (ECDACNXT address).

Then update the command procedure record LL field to the new length.
Update the available storage size in the command procedure block header.

. If this was a call by the READ Command then return; otherwise, update

the previous and next record pointers in the CDA and return.

Repeat steps 1 - 5 until ENDDATA is processed.

9L

Al ouinjo — 31807 108820014 PUBWIWO) OSA/SO

Diagram 6. FREE Command Processor (Part 1 of 2)

Input

Reg 1

CPPL

From
TMP

Command Buffer

Check command syntax.

Check for invalid disposition.

Prompt for dato set name.

Translate parameters to text
format.

Process ddnames, data set
names, or attribute names.

Check Dynamic Allocation
return codes.

Parse

Parse

GENTRANS

Frr

Dynamic Allocation

LL uopeadQ Jo poylel

Diagram 6. FREE Command Processor (Part 2 of 2)

1

2

Use Parse to syntax check the command. Check the Parse return code; if it is non-
zero return to the TMP.

Check to see if DEST, HOLD, or NOHOLD was specified with a data set disposi-
tion of KEEP, DELETE, CATALOG, or UNCATALOG. If yes, issue an error mes-
sage and return to the TMP,

Check to see if a data set name, file name, or attribute list name was entered. If
no, pass control to Parse and prompt the user for a data set name. When prompt-
ing is complete, overlay the original PDE with the new PDE from prompt.

Use GENTRANS to translate the parameters to text format. The pointer to the
text unit is returned from GENTRANS in the IKJZB831 parameter list. If the
return code is non-zero, return contro) to the TMP.

5 Use the unallocate function of Dynamic Allocation to unallocate files, data sets,
or attribute lists.

6 Check the Dynamic Allocation return code and information reason code.
e If both codes are zero, a file, data set, or attribute list was unallocated.

o If either code was non-zero, unable to unallocate. Use the DAIR
failure message routine IKJEFF18 to analyze the return code and send the
appropriate error message to the user.

Control is returned to the TMP.

Object Module: IKJEFD20

8L

Al 9Wn[oA — 1807 105530014 puEWIWO) OS.L ZSA/SO

Diagram 7.1. HELP Processing (Part 1 of 2)

Input Process

From TMP

or CP

Reg 1

CPPL CBUF

HELP dota set

T
|

Allocate HELP dato set.

Diognose Return Code.
Issue message if error,

Open HELP dato set.
Syntax check operands.

Diagnose Return Codes.
Issue message if error,

Find member of HELP dota set for operands
in command.

If processing subcommand

information, read records Diag
of members until section o ____17.3
for requested subcommand

is located.
Issue message if error.

Process member, —-—J Diag

-~7.2

Close HELP data set.
Return to caller,

DAIR

Parse

6L uonwadQ Jo poe

Diagram 7.1. HELP Processing (Part 2 of 2)

Extended Description

1

2

Using DAIR, (The Dynamic Allocation Interface Routine), allocate the HELP
data set.

Check return code:

a) If non-zero, use IKJEFF18 (DAIRFAIL) to diagnose error and send message to
user, return to caller.

b) If zero and DSORG is not PO (partitioned), issue message to user, return to
caller.

Open HELP data set. |If Open fails, issue message and return to caller.

Use Parse to check syntax of command.

If Parse was unsuccessful, issue messages and return to caller,

FIND member of HELP data set.

a) If not in subcommand mode (command attached by the TMP is HELP or H),
and HELP entered with no operands, find member ‘COMMANDS’.

b) If not in subcommand mode and HELP entered with operands, use first
operand as member name.

c) If in subcommand mode and HELP is first operand, find member ‘"HELP'.

d) If in subcommand mode and HELP is not first operand, use the name of the
name of the command attached by TMP (from ECT) as the member name.

If case d) of step 6, read record from member of HELP data set. See Diagram 7.3.
Search each record for subcommandname indicator ‘=’ and then for subcom-
mandname requested on command. Keep reading records until end-of-file (error}
or subcommand name found.

Process the HELP data set member. See Diagram 7.2.

Close the HELP data set. Return to caller.

Object Module: IKJEFHO1

08

Al 3o — 918077 0853001 puBWIO) OSL ZSA/SO

Diagram 7.2. Processing HELP Data Set Member (Part 1 of 2)

Input

Process
1 Read o card image from
HELP member.
-
2 Scan image to determine action,

Reg 1
Common
1Cord Image
Card Image
P—
|
PARSE TAB

\Y%

Keyword search - scan

Parse output for key
words on card image,

Control character search =

scan Parse output for
control characters on
card image,

PUTLINE

Display card image to user,
LOORP to step 1 till all

images displayed.

Return to caller,

I8 uonwadQ jo poypop

Diagram 7.2. Processing HELP Data Set Member (Part 2 of 2)

Extendad Description

1 Obtain a card image from the HELP data set member. See Diagram 7.3.

2 Parse output calls for either keyword or contro! character information. Scan card
to find match for Parse output.

3 if scan finds match, use PUTLINE via IKJEFFO02 to display card image to user.

4 If all information has been displayed, return to caller, else process step 1 again.

Object Module: IKJEFHO2

8

Al SunjoA — 21807] 108890014 pueunuo) OSL ZSA/SO

Diagram 7.3. Reading HELP Data Set (Part 1 of 2)

Input

Reg 1

\

|t common

]

COMMON

f READ DCB

Process
From HELP
or process
member
:> 1 Read block or deblock record.
2 Return to caller,

TOTALEX I

DCB

HELP DATA SET

Output

Vv

COMMON

SWITCHES

} cARD IMAGE

} reapocB

TOTALEX J

€8 uonendp jo poyol

Diagram 7.3. Reading HELP Data Set (Part 2 of 2)

Extended Description

1 The HELP data set is blocked. Read a block and deblock a record or deblock a
card image record. In case of 1/O error or end of data, set switches.

2 Return to caller,

Object Module: IKJEFHO3

Al swinjoA — 91807 J0sse001g puswiwo) OSL ZSA/SO 8

Diagram 8. LINK and LOADGO Processing (Part 1 of 2)

Input

Reg 1
CPPL

~_CBUF

Process
From
T™P Parse
~ 1 Analyze command and check data +
] set name validity.
f DAIR
2 Allocate data sets, ~
Ploce data set names in DDNAME list, -+ DDNAME
: >
3 Concatenate names in DDNAME list, —
OPTION LIST

Process command options,

Linkage Edit or Loed depending on
command,

Separate concatenated data sets,

]

uopeIadQ Jo POy

§8

Diagram 8. LINK and LOADGO Processing (Part 2 of 2)

Extended Description

1 Use Parse to analyze syntax of commands. Check data set names for valid quali-
fiers. Set LKLD to indicate whether command is LINK or LOADGO.

2 Usa DAIR to allocate data sets. Place each data set name in DDNAME list.
Use DAIR to concatenate ddnames in ddname list. (DDNMS)

4 Using Parse output, process command options. Prompt for missing operends, set
defaults. Piace results in option list. (OPLEN)
Nate that the LINK and LOADGO commands have been updated with
AMODE and RMODE options to support the MVS/XA environment.

1) Link to either the Linkage Editor or the Loader depending on LKLD switch pass-
ing the option list and ddname list through OUTPARM.

6 On return, separate concatenated data sets and return to the TMP.

+-7590-8TAS Jo o8ed

S861 *1 yrey parepdn sV

90X-0VLS ‘162-599S 30} 6670-£TAS 1ddns Ag

Al umjoA — 91807 Jossa001g prewrwio) OSL ZSA/SO 98

Diagram 9.1. LISTALC Processing Overview (Part 1 of 2)
Process

Input

Register 1

CPPL

From
T™P

Command Buffer

[usrac

JFCB

DsCs

CvT

U

A4

Output

Informative message.

Gives a count of all
blocks available for
dynamic data set
allocation.

Data set names are

included.

Additional Information.

HISTORY, STATUS,
and MEMBERS keywords
cause odditional
information to be given
for those data sets
whose names are listed.

Parse
Syntax check,
Initialize.
DSAB Blocks
—_—— e — — —]
Find and Process _J Diag (
DSAB. 9.2 |
\
Was HISTORY Diag :
specified 2 YSAM ™ 53 i
non-Vsam —s| 299
9.4 PUTLINE
Used for
Was STATUS o] Diog :> I/0
specified ? 9.5
Was MEMBERS __o| Diag
specified ? 9.6

Select next DSAB.
Repeat from step 3 until all
have been processed.

Wrap up. Return to TMP.

L8 uonewndQ jo poylol

Diagram 9.1. LISTALC Processing Overview (Part 2 of 2)

1

The Parse routine syntax checks the command. Upon return, the Parse return code
is checked.
Possible messages: 1KJ583041, IKJ583051

Set option byte to reflect options selected by user. If HISTORY, MEMBERS, or
SYSNAMES were specified, get workarea and place address in OBTWA. Store
JFCB work area address. Store DCB address.

Possible message: 1KJ583031

Obtain a pointer to the Data Set Attribute Block DSAB chain through SVC99.
After the DSAB is located, check for HISTORY and STATUS and print applicable
headings. Then check the DSAB to see if it is available for allocation. The

DSAB is considered available if the data set is not in use and not permanently
allocated. This condition is indicated on the output line by an asterisk (*)
preceding the data set name.

After basic processing of a DSAB, chack to see if HISTORY was requested. If yes,
process HISTORY information. See Diagram 9.3 (VSAM) or 9.4 (Non-VSAM).

If STATUS was specified, process STATUS information, see Diagram 9.5.

Write HISTORY and/or STATUS information, if applicable.
Possible messages: 1KJ583011, 1KJ583001

After all processing of the DSAB is complete, process the next DSAB. If no
DSABs remain to be processed, return control to the TMP.

Object Module: IKJEHAL1

88

Al sunjoA — 91807 108830014 puewwo) 0§ ZSA/SO

Diagram 9.2. LISTALC DSAB Processing (Part 1 of 2)

Input

Dynamic Allocotion
Retrieval Text Units

From
Diag

DSAB

Process

7

Check parameter list.

Get requested information from
the DSAB.

Move dato set name to output
buffer.

Return to Diag

Output

Dynamic Allocation

AV

Qutput
Buffer

68 uonendQ jo poipey

Diagram 9.2. LISTALC DSAB Processing (Part 2 of 2)

1 Check the dynamic allocation parameter list (IEFZB4DO0) to see if it has been
initialized for use by Dynamic Allocation. If it is initialized continue processing.
If not, build dynamic allocation text units describing the data to be returned
about each allocated data set.

2 Use Dynamic Allocation to get information requested by the text units from the
DSAB.

3 Get data set name from the DSAB and move it to the output buffer. If a data set
name is not available, put the appropriate message in the output buffer,

Object Module: IKJEHAL1

06

Al swnjoA — 91807 108590014 pueunuo) OSL ZSA/SO

Diagram 9.3. LISTALC HISTORY Processing (VSAM) (Part 1 of 2)

Input

Format 1 DSCB

Creation date

Expiration date

Process

Entry type

HWIN =

Build o catalog parameter list.
Locate required fields.
Turn on "Write" switch.

Process creation and expiration
dates and entry type.

Return to Diag
9.1

Output
YY/MM/DD
=l
Entry type vhier

16 uoneradQ jo poypop

Diagram 9.3. LISTALC HISTORY Processing (VSAM) (Part 2 of 2)

1 Build a catalog parameter list using information and the data set name obtained
from the DSAB by SVC99. The parameter list specifies the named data set to be
retrieved from the VSAM catalog, the entry type (indicates VSAM or non-VSAM
data set) and the expiration and creation dates for the data set are to be returned

in the work area.

2 Locate the required fields in the CTGPL and the CTGFL to return expiration date,
creation date, and entry type.

3 Pass control to IKJEHVHS, the VSAM HISTORY processing routine, which turns
on the “Write” switch to indicate that the buffer should be written when all
options have been processed.

4 Convert creation and expiration dates into MM/DD/YY format and move them
and the entry type to the output buffer.

Object Module: 1KJEHAL 1
CSECT: IKJEHHST

[43

Al swinjoA — 91807 08530014 PuEMILO) OS.L ZSA/SO

Diagram 9.4. LISTALC HISTORY Processing (Non-VSAM) (Part 1 of 2)

From

Diag
9.1

Process

7

1 OBTAIN DSCB. 4

2 Turnon *Write’* switch.

Process DSORG.

3 Process creation and

expiration dates.

Output
JFCB
p— 4
~+4 VOLID K >
T — Output Buffer
~
Dscs
OBTWORKA AN
Ak)
PO, PS, IS, etc. Also, U if applicable.
-
MM/DD/YY
—_
‘PROTECTED’, "'WRITE’, or 'NONE’
J

4 Indicate protection, if

applicable.
Then return.

y

Diag
9.1

DS1CREDT
DS1EXPDT

DS1DSORG

DS1DSIND

Format 1 DSCB
(DSECT IECSDSL1)

Creation date

Expiration date

Data Set Organization

Protect indicators

£6 uopendQ Jo poeN

Diagram 9.4. LISTALC HISTORY Processing (Non-VSAM) (Part 2 of 2)

1 Check the DSADDNAM field in the DSAB for blanks. If the field contains blanks, it
is part of a concatenation. Issue LOCATE to find the volume serial for the
OBTAIN; otherwise, issue a RDJFCB to find the volume serial of the volume con-
taining the DSCB.

Issue an OBTAIN macro instruction,

2 Then pass control to IKJEHHST, the HISTORY processing routine, which turns
on the ‘Write’ switch and checks for data set organization.

The organization indicator (PO, PS, etc.) is then placed in the buffer, along with
the unmovable indicator (U), if applicable.

3 Creation and expiration date are converted into MM/DD/YY format and placed in
the buffer.

4 A check is made for password protection. if none, a check is made for write pro-
tection. The applicable indication is placed in the buffer.

Control is then returned to IKJEHAL1, where a check is made for STATUS proc-
essing. {If none, the write switch is checked and found ‘on’, then the buffer is
written via PUTLINE; if STATUS processing is applicable, the STATUS informa-
tion is placed in the buffer prior to checking the write switch.)

Object Module: IKJEHAL 1
CSECT: IKJEHHST

v6

Al 3umjop — 21807 Iosseooiq puewno) OS.L ZSA/SO

Diagram 9.5. LISTALC STATUS Processing (Part 1 of 2)

Input

DSAB

DSADDNAM
|

l

From

Process

Diag
9.1

DSANDISP*
|

DSAADISP*

pa

\/?

l

1

2

3

Move ddname to buffer,

Indicate
- Normal disposition

~ Abnormal disposition

Set "Write * switch on and refurn,

Output

Output Buffer

L A

Output is
subsequently
written to
terminal .

E—

§6 uonendQ jo poyop

Diagram 9.5. LISTALC STATUS Processing (Part 2 of 2)

1

A check is made to see if HISTORY information is contained in the output buffer
area. If so, this will affect the pointer to the proper location in the buffer,

The ddname in field DSADDNAM is moved to the output buffer area. The
ddname can be blanks if the data set was concatenated.

Then a test is made for normal disposition. The appropriate indication is placed
in the output buffer. The output-buffer pointer is then updated to point to the
next location.

A test is now made for disposition in the event of an abnormal termination.

The appropriate disposition is moved to the buffer,

The ‘Write’ Switch is turned on and control is returned to IKJEHAL1.

96

Al 2Wn[0A — 31807 108895014 pueWWO) OSL ZSA/SO

LISTALC MEMBERS Processing (Part 1 of 2)

Output

Diagram 9.6.
input
From
>
9.1
DsCB
L |
DSAB
L |
JFCB
I |

Process
Register 1
J Output Buffer
1 Processing applicable ? I J
CALLIST A
4 ostwaAD
2 Build CALLIST parameter list, ¥ Output buffer
f Write routine
> OBTWAD -
PDS to be
read
Call IKJEHMEM, < 1 PDS]
3 Read PDS directory,
Build True and J
Alias Name tables, J
J
Y,
4 Compare TTRs for match,
Write output,
Diag

uoReradQ jo popejy

L6

Diagram 9.6. LISTALC MEMBERS Processing (Part 2 of 2)

1

IKJEHMMR makes a number of checks, prior to passing control to IKJEHMEM,
to ensure that processing is applicable.

e DSORG in the DSCB is checked to ensure that it is PO.
o This user’s userid must be the first qualifier in the data set name.
e The ddname cannot be blank (which would indicate concatenation).

o The dynamic concatenation bit in the DSAB is checked. If on, DSADDNAM is
compared to DCBDDNAM. If unequal, MEMBERS processing can continue. (If
equal, this is at least the second data set of a concatenation cluster.)

A RDJFCB is issued {unless HISTORY was also specified, in which case it is not
required), the CALLIST parameter list for IKJEHMEM is constructed, and contro!
is passed to 1KJEHMEM.

IKJEHMEM initializes the True and Alias Name tables, then reads the PDS direc-
tory into them. Name blocks are obtained and chained dynamically, as required.

A true name is moved to the output buffer. The true name TTR is compared with
all of the alias name TTRs. Applicable aliases are moved to the buffer. (The calling
routine’s write routine is used to write the buffer.) This action is repeated until all
true names have been processed. Alias names that do not match any true name are
then grouped by TTR and written. A message is provided to indicate that no true
name exists for them,

Contro! then returns to IKIEHMMR, where the return code is checked and control
is passed to IKJEHALA1.
Possible message: 1KJ583011

Object Module: IKJEHMEM
CSECT: IKJEHMMR

86

Al suinjop — 918077 108890014 puewwio) OSL ZSA/SO

Diagram 10.1.

LISTBC Processing Overview (Part 1 of 2)

Command Buffer

LOGON).

IKJPARS

al

IKJDAIR

IKJEFF18

Input Process
From LOGON
Reg | From
LOGON 1 Check ECT for MAIL or NOTICES
~| requests from LOGON. Set LOGON
v entry bits ond go to Step 5.
From
CPPL TMP 2 Syntax check LISTBC operands
S -
ECT 3 Obtain ddname for SYSI.
BRODCAST data set. -
4 Issue messages if allocation error,
5 Open and enque on SYS1.BRODCAST. =
From TMP
Reg ! 6 Process records.
— NOTICES ?(;f’;
Diag
cepL MAIL IO.3>
7 Return control to caller (TMP or

66 uonedQ Jo poipol

Diagram 10.1. LISTBC Processing Overview (Part 2 of 2)

1
2

Entry point IKJEES73 is used to bypass the use of Parse.

A check is made to determine if explicit operands have been supplied for LISTBC.
If they exist, the Parse parameter list (PPL) is created with Register 1 pointing to
it. Parse is then used to syntax check the LISTBC operands. If the NOMAIL and
NONOTICES bits are both set, control is returned to the TMP. If Parse fails, it
returns a non-zero return code. When LISTBC detects this, it issues an error mes-
sage and returns control to the TMP.

If Parse was successful or was not required, LISTBC proceeds to create a DAIR
parameter list (DAPL) which is pointed to by register 1. The DAPL contains a
pointer to an X'08‘ type DAIR parameter block {(DAPBO08). DAIR is then used to
obtain a ddname. |If DAIR is successful, the ddname it returns is placed in the DCB
which describes the SYS1.BRODCAST data set located on a direct access device.

If allocation of a ddname is not successful, DAIR returns a non zero return code.
In this case, the common DAIR failure message routine (IKJEFF18) is used to
issue an error message. Contro! is returned to the TMP.

5 If there are no errors, LISTBC does an enqueue for record 1 (gname ‘SYSIKJBC’,
rname ‘000000’ X) and opens SYS1.BRODCAST for output.

6 Processing of NOTICES messages and MAIL user messages is done as shown in
Diagrams 10.2 and 10.3. The user is informed if there are no messages of the types
requested.

7 If entry was from the TMP, dequeueing is done from SYS1.BRODCAST and it is
closed. Control is then returned to the TMP,

If entry was from LOGON, contro! is returned to LOGON.

Object Module: 1KJEES70, IKJEES75

Al suinjoA — 918077 105800014 puewrio) OSL ZSA/SO 001

Diagram 10.2. LISTBC NOTICES Message Processing (Part 1 of 2)

Input

SYS1.BRODCAST

>

From

Process

Diag
10.1

Read Record 1 of the
SYS1.8RODCAST Data Set to get
address of first NOTICES directory

Read NOTICES directory
records for analysis.,

Read NOTICES messages and print
ot terminals,

When all NOTICES are
printed, processing
continues with
MAIL records
Diag
10.3

Output

e NOTICES
messages
broedcast
to terminals

IKJPUTL

10T uonexdQ Jo poys

Diagram 10.2. LISTBC NOTICES Message Processing (Part 2 of 2)

1

Read record 1 of the SYS1.BRODCAST data set to check for proper format (level
indicator is 2) and get the pointer to the first NOTICES directory record. If there
is a format error an error message is issued and contro! is returned to the caller. If
NONOTICES was specified, processing of NOTICE records is bypassed and proc-
essing continues with MAIL records.

Read the first NOTICES directory record into a buffer and scan the buffer for
active NOTICES.

Broadcast the message if the high order bit of the message number is set to zero.
The message text is read into a buffer which is pointed to by an entry in the |10
Parameter List (IOPL). The PUTLINE service routine (IKJPUTL) is used with
register 1 pointing to the IOPL. IKJPUTL transmits the active NOTICES message
to the terminal.

Examine the RBA for the next NOTICES directory record. If the RBA is non-zero,
that RBA is used to locate the next NOTICES directory record. The record is read
into the buffer and processed as in step 2. If the RBA is zero, no more directory
records exist. Control is passed to the MAIL message processing routine.

Object Module: IKJEES70, IKIEES75

Al swmjoA — 2807 108830014 pueunuo) OSL ZSA/SO ZOT

Diagram 10.3.
Input

SYS1.BRODCAST

>

LISTBC MAIL Message Processing (Part 1 of 2)

r, Process
om
Diog
10.1
—n Read First Record for
user MAIL directory pointer.
>

Read MAIL directory to
check messages for specific
users,

Read user MAIL message ond
print it at terminol,

Delete transmitted user
MAIL messages.

Return to main

line Step 7
processing.

Output

® MAIL messages
transmitted to
specific users

IKJPUTL

€01 uopeIdQ JO poyIeN

Diagram 10.3. LISTBC MAIL Message Processing (Part 2 of 2)

1

Check if the NOMAIL bit was set on. If it was set, branch to the LISTBC exit
procedure described in step 7 of diagram 10.1. Read Record 1 of the
SYS1.BRODCAST Data Set to obtain the pointer to the relative block address
(RBA) of the initial user MAIL directory record.

The first MAIL directory record is read into a buffer where the user identification
{userids) can be examined. The userid in the PSCB created by LOGON is succes-
sively compared to all userids in the first MAIL directory record. If a match is
found in this record, processing continues as described in step 3 below. If a X'7F’
is found in scanning the record, it indicates that an end of record condition has
been reached. The RBA pointer to the next directory record is examined. If it is
not zero, it is used by BDAM to read that next MAIL directory record into a
buffer. It is then scanned for the matching userid in the same manner as above.
The final MAIL directory record has all zeros as its RBA for the next directory. If
this condition is reached, it means all userids in the entire chain of MAIL direc-
tory records have been searched without finding a matching userid. In this case,
no messages are transmitted to the requésting user.

5

When the matching userid is found in the MAIL directory, its associated RBA
pointer to its message chain, is used to read the message text record into a buffer.
PUTLINE is invoked with its IOPL containing a pointer to the message text buffer.
The user MAIL message is transmitted to the user by PUTLINE. The RBA pointer
to additional MAIL messages for that same user is checked. If the RBA pointer is
not zero, it is used to read in the next MAIL message, which is again transmitted
by PUTLINE. This process continues until the zero RBA message pointer is
reached.

Each MAIL message record sent to the requesting userid is then deleted. The mes-
sage record itself is written back with a X'FF’ key, which tells BDAM that this is
an inactive record which can be used for incoming messages.

Upon completion of MAIL message processing, a branch is taken to the LISTBC
exit procedure described in step 7 of diagram 10.1.

Object Module: IKJEES70, IKJEES75

Al ounjoA — 51807 208830014 puBwUIo) OSL ZSA/SO #01

Diagram 11.1. LISTDS Processing Overview (Part 1 of 2)

Input Process Output
Register From
e PARSE
cheL ™S 1 Syntax Check. Then initialize.

[

Move to buffer and write: I — 7

[LISTDS command | 2 Process dsname. Basic heading; HISTORY and STATUS
headings, if applicable; RECFM, LRECL,
&KSIZE, DSORG, U -~ if applicable,

DSCB JFCB HISTORY?
VSAM o1 Fﬂove to buffer: |
i - L
""’g Creation date; expiration date; P
I entry type. I
Output
buffer
HISTORY ? WDVC to buffer :
non-VSAM Crection date; expiration date; applicable >
cvT DSAB Chein @ Eotechon -=PROTECTED, WRITE or NONE_'

] =
m‘:. STATUS ? J—I\7ove to buffer : 1

R
Diag |_DDNAME and DISP_| >
n.4 PUTLINE {\

3 Write buffer,

4 Process volume serial(s), l |
MEMBERS, and LABEL, if applicable,
Move serial(s) and write, J
) I Move and write : L

MEMBERS ?
| VOLUME heading and seriul(s)_]
I Diag
1.5
[_Move and write : |
LABEL ? MEMBERS heading; member and alias
| Iﬁmes I
Process next dsname

Diog
[_Move and write : -—l_._—_g

(step 2). 1.6

When oll are processed,
return, | l uABELS heading and DSCB information _[—d

. — To TMP

SOT uonessd(Jo powpely

Diagram 11.1. LISTDS Processing Overview (Part 2 of 2)

1

The Parse routine receives control to check the command buffer for incorrect or
unspecified parameters upon return from Parse, the return code is checked, and
then appropriate option bits are set to reflect the specified options. If MEMBERS
is requested, load module IKJEHMEM is loaded into storage. If STATUS is speci-
fied, the DSAB is located. The LEVEL keyword or an ’*’ indicates that the data
set name is generic.

Possible messages: 1KJ585111, 1IKJ585121

The first entry in the dsname list is pointed to. The NXDSNAME subroutine
examines the dsname and fully qualifies it, if necessary.
Possible messages: 1KJ585031, IKJ585091, IKJ585021, 1IKJ585131

Then the fully-qualified name is moved to the output buffer and written.

Non-VSAM Data Sets: The LOCATE macro is used in an attempt to locate the
dsname through the catalog. If LOCATE passes back a non-zero return code,
DAIR is used (with an X'08° operation code) in an attempt to see if the data set is
otherwise accessable. If the data set cannot be located, the user is informed and
processing continues with the next dsname.

Possible messages: 1KJ585031, 1KJ585061, 1KJ585071, 1KJ585081, 1IKJ58510I,
1KJ585121

Depending on which way the data set was found {using LOCATE or DAIR), set up
is performed prior to issuing an OBTAIN. If LOCATE found the data set, the
LOCATE switch is set. if DAIR found the data set, the DDNAME is moved to a
DCB and the RDJFCB macro is issued to get the JFCB.

34

5

Then the OBTAIN macro is issued to bring the DSCB into storage. |f the return
cods is not equal zero, processing continues with the next dsname in the list.
Otherwise, heading information is moved to the buffer and written.

VSAM Data Sets: The Catalog Information Routine is used to supply a list of
names. VSAM LOCATE is used to indicate whether the data set is VSAM or not.
LOCATE also supplies the required attributes if the data set is VSAM.
Possible message: 1KJ585041
HISTORY is processed, if applicable. See Diagram 11.2 (VSAM) or 11.3 (non-
VSAM)
STATUS is processed, if applicable. See Diagram 11.4

First the buffer is written, then volume serials are placed, one by one, in the buffer
and printed.
Possible message: 1KJ585041

Then a check is made for MEMBERS and LABEL processing.

See Diagrams 11.5 and 11.6 respectively.

After MEMBERS and/or LABEL have been processed, additional dsnames, if any,
are processed. When all have been processed, control returns to the TMP.

Object Module: IKJEHDS1
CSECT: IKJEHBSC

Al sumjop — 91807 108530014 puewiwo) OSL ZSA/SO 901

Diagram 11.2. LISTDS HISTORY Processing (VSAM) (Part 1 of 2)

Input Process Output
From
Format 1 DSCB Diag
(located in OBTWORKA) 11.1
/_M_,-/*"\ Output Buffer

4‘> 1 Build catalog parameter list,

DS1CREDT Creation data

DS1EXPDT Expiration date

Process creation and expiration
dates and entry type.

DS1DSIND Entry type

Return

fr

MM/DD/YY, Entry type

M‘

Diag
11.1

L01 uopneRdQ Jo poylel

Diagram 11.2. LISTDS HISTORY Processing (VSAM) (Part 2 of 2)

1 Build a catalog parameter list using information and the data set name
obtained from the DSAB by SVC99. The parameter list specifies the data set
name to be retrieved from the VSAM catalog, the entry type, creation and
expiration dates, logical record length, volume serials, and physical blocksize
for the data set.

2 Upon entry from the IKJEHDS1 routine, IKJEHHIS gets a save area, then sets
up to convert the creation date from YMMDD format to MM/DD/YY.

The creation date is converted and placed in the buffer. If no date was found,
a default of 00/00/00 is placed in the buffer. This process is repeated for the
expiration date. The entry type code is also moved into the output buffer,

Object Module: IKJEHDS1
CSECT: IKJEHHIS

Al 2wnjoA — 918077 10852001 puewuio) OSL ZSA/SO 801

Diagram 11.3. LISTDS HISTORY Processing (Non-VSAM) (Part 1 of 2)

Input

DS1CREDT
DS1EXPDT

DS1DSIND

Format 1 DSCB
(located in OBTWORKA)

PNV\

Creation date

From
Diag

Process

) 1 Process creation and expiration

Expiration date

Protect indicators

SRS

dates.

2 Check for protection.

Return

MM/DD/YY

Output

Output Buffer

‘NONE’

j\
]

‘PROTECTED’, ‘WRITE’, or l

Diag

601 uopendQ jo poyel

Diagram 11.3. LISTDS HISTORY Processing (Non-VSAM) (Part 2 of 2)

1

Upon entry from the |KJEHDS1 routine, IKJEHHIS gets a save area, then sets
up to convert the creation date from YMMDD format to MM/DD/YY.

The creation date is converted and placed in the buffer. If no date was found,
a default of 00/00/00 is placed in the buffer. This process is repeated for the
expiration date.

Then a check is made for password protection. If password protection applies,
‘PROTECTED’ is placed in the buffer. Otherwise, a check is made for WRITE
protection. |If WRITE protection applies, ‘WRITE’ is placed in the buffer.
Otherwise ‘NONE’ is placed in the buffer,

Then the space obtained for the save area is freed and contro! returns to the
IKJEHDS1 routine. See Diagram 11.1.

Object Module: IKJEHDS1
CSECT: IKJEHHIS

Al ouInjop — 91807 108800034 puBWWO) OSL ZSA/SO OT1

Diagram 11.4. LISTDS STATUS Processing (Part 1 of 2)

Input Process Output
Applicable DSAB From
DDNAME Diag Output buffer
11.1
Normal
. . Search DSAB chain for applicable
t 1 A
Disposition N DSAB. ¢
Abnormal
Disposition
DDNAME
B
2 Move DDNAME and DISP to buffer.
Normal DISP J
Abnorma) DISP
Return
Output buffer is subsequently
written to terminsl by IKJEHDS1
Diag

111 uopexdQ jo pops

Diagram 11.4. LISTDS STATUS Processing (Part 2 of 2)

1

SVC99 searches the DSAB chain for a data set name that matches the name in
the data set list. The search is done to obtain allocation information about the
date set name. |f no match is found, control is returned to IKJEHDS1.

When a dsname match is found, a check is made to see if HISTORY is also
specified (in which case, the buffer is filled partially with HISTORY informa-
tion that has not yet been written). if yes, the offset to the output buffer area
is adjusted accordingly.

Then the DDNAME is moved to the output buffer.

The status bits are then tested for normal disposition, and the appropriate
word (KEEP, DELETE, CATLG, or UNCATLG) is placed in the buffer.

After the output buffer offset is adjusted, the status bits are tested for
disposition in the event of an abnormal termination. The appropriate
disposition is placed in the buffer.

Control returns to the IKJEHDS1 routine. See Diagram 11.1.

Object Module: IKJEHDS1
CSECT: IKJEHSTA

Al 2wnjoA — B0 108523014 puewuwo) OSL TSA/SO ZIT

Diagram 11.5. LISTDS MEMBERS Processing (Part 1 of 2)

Input

DscB

JFCB

From

Diag
1.1

Process

PDS to be
listed

Was dsname a member name?

If yes, list

Output

Write member name;

Convert and write TTR,

MEMBERS specified ?

TTRN, user data.

Output Buffer

If no, go to
DSORG = PO.
Step 5 I :
If no, go to Diag

If yes, print heading and set

1.1
" _MEMBERS——'

AN

up to read PDS directory

Read PDS directory.

Build True and Alias name

True and Alias Name Tables

tables.
Compare TTRs ——
Write output L

Return

Diag
11

|-

€11 uonendQ jo popop

Diagram 11.5. LISTDS MEMBERS Processing (Part 2 of 2)

1

After volume information has been printed, a check is made to see whether the
current dsname is a member name. If not a member name, a check for label proc-
essing is first made, then a check is made to see if the MEMBERS keyword is speci-
fied (step 2).

If the dsname was a member name, routine MNAMROUT is given control to print
specific information for the member. I necessary, MNAMROUT issues a RDJFCB
and passes control to DAIR to allocate the data set.

Then LABEL processing takes place, if applicable (see Diagram 11.6). After this,
a check is made to see if MEMBERS was specified. If no, processing continues
from step 5 of Diagram 11.1. Otherwise control is passed to the MEMBERS inter-
face routine, MEMROUT.

A check is made to ensure that the organization is partitioned. If not, contro)
returns to step 5 of Diagram 11.1. Otherwise the MEMBERS heading is written,
Then a check is made to see if the JFCB has already been read. If yes, processing
continues from step 4, below. Otherwise, DAIR is used to allocate the data set.
Then the DDNAME is placed in DCBDDNAM of OBTDCB and an RDJFCB is
issued prior to reading the PDS directory. Then control passes to IKJEHMEM.
Possible messages: 1KJ585021, 1KJ585 141

IKJEHMEM initializes tables to contain the true and alias names, then reads the
PDS directory into the tables. Name blocks are obtained and chained dynamically,
as required.

Then a true name is moved to the output buffer. The true name TTR is compared
to all of the alias name TTRs. Applicable aliases are moved to the buffer.
{MEMROUT's write routine, which uses PUTLINE, is used to write the buffer.)
This action is repeated until all true names have been processed. Alias names not
matching any true name are then grouped by TTR and written. A message is
provided to indicate that no true name exists for them. Contro! returns to
MEMROUT.

Possible message: 1KJ585011

MEMROUT checks the return code, then returns control to step 5 of Diagram 11.1
to process the next name in the list.

Object Modules: IKJEHDS1, IKJEHMEM

Al ownoA — 91807 Jossaso1g puewwo) OSL ZSA/SO HIT

Diagram 11.6. LISTDS LABEL Processing (Part 1 of 2)

Input
DSCB
DS1FMTID ——
DSIPTRDS ———f+ |

From

Diag
11.1

Write heading.

Format and write the DSCB.

Another DSCB in chain ?

If no, return to

Diag
MAINLINE 1.4

If yes, OBTAIN it.

Format 3 DSCB ?

For Format 3, convert

and write
Then return Diag
11.1

For other than
Format 3, write

Then repeat from step 3.
If no more DSCBs, return

Output

P Output Buffer

\
I Heading; converted and formatted (each

H

Putline is used
to write the
buffer.
A
7/ \
rd

DSCB field, after conversion, is delimited

E a blank) h\exadecimal label information.

ﬁ-l—eading, including 1D;

Diag
11.6

> T
LlExadecimal label——unformatt?il—J

SIT uoperadQ jo popeyy

Diagram 11.6. LISTDS LABEL Processing (Part 2 of 2)

1

2

After getting a save area, IKJEHLBL uses PUTLINE to write the heading for the
Dscs.

IKJEHLBL refers to DS1FMTID for the address of the DSCB information to be
converted. The DSCB information is then converted from binary to hexadecimal
and written one line at a time. Formatting consists of separating each field by a
blank.

DS1PTRDS is then checked to determine if any DSCBs are chained to the format
1 DSCB just processed. If none, control returns to MEMBCHK in the IKJEHDS1

routine.

If another DSCB is found, an OBTAIN is issued for it.
Possible message: 1KJ58505/

A check for 8 Format 3 DSCB is made. {A Format 3 DSCB is formatted as in
step 2 and 3, above. If a Format 3 DSCB is found, control returns to the
IKJEHDS1 routine after the DSCB is processed.

If the DSCB is other than a Format 3 DSCB, no formatting takes place. That is,
the information is converted to hexadacima! and dumped 36 bytes at a time. Then
a check is made for another DSCB. If none, storage is freed and control returns to
MEMBCHK in the IKJEHDS1 routine.

Object Module: IKJEHDS 1
CSECT: IKJEHLBL

Al swnjoA — 91807 10859901g puBWWIO) OSL ZSA/SO 911

Diagram 12. OPERATOR Command Processing (Part 1 of 2)

Process

Input
Reg 1
From
T™MP
CPPL ~
Command Buffer r—j

Input Line

Terminal

SVC100

Check user authorization,

Get line of input.

IKJSCAN

Scan the input line for valid syntax.

Process subcommand.

-

SVC100

SVC34

END

e Terminate processing.

HELP
o Issue HELP information.

HELP CP

e Mark HELP data set allocatable.

DAIR

Other
o Check for valid subcommand
names and translate operands.

o Send console operator
subcommand.

o Validity check and execute
subcommand.

SvC100

A

SVC34

L11 uopendQ jo poyeN

Diagram 12. OPERATOR Command Processing (Part 2 of 2)

1

After the STAE and ATTEN exits are set up, SVC100 checks the user’s authority
to enter the OPERATOR command. Information is passed to SVC100 in the
FIBPARMS parameter list. If the user is not authorized, OPERATOR will issue an
error message and return control to the TMP.

Use PUTGET to get a line of input from the terminal and to issue the command
mode message if required.

Scan the input line with IKJSCAN for valid syntax. If the subcommand syntax
was invalid an error message is issued and PUTGET gets another line of input.

Process OPERATOR subcommands.
END

o This routine is used to terminate processing due to an error or when an END
subcommand is issued by the terminal user to terminate OPERATOR com-
mand processing. SVC100 is used to stop active monitors and to issue SVC34
to schedule executions of the subcommand. All buffers are freed and service
routines are deleted. Control is returned to the TMP.

HELP

ATTACH the HELP command processor to send the terminal user the HELP
information. {f the ATTACH failed control is passed to step 4-END.

When HELP is finished, use DAIR to mark data sets used by HELP as available
for allocation. If DAIR fails, contro! is passed to step 4-END.

Processing continues with step 2.

Other

Check the subcommand name against a list of allowable names (DISPLAY,
MONITOR, SEND, CANCEL, and STOPMN). If parameters were specified on
the DISPLAY, MONITOR, CANCEL, or STOPMN subcommands, translate the
operands to upper case for use by SVC100.

Sond the console operator a message with the subcommand that was entered.

Initialize the FIBPARMS parameter list and use SVC100 to validity check and
to issue SVC34 to schedule executions of the subcommand. If the validity
check fails, an error message is issued to the terminal user. Processing continues
with step 3. If there is an error other than validity, processing continues with
step 4-END.

Object Modules: IKJEE100, IKJIEE1AOD, and IKJEET150

Al swnjoA — 21807 108830014 puswwo) OSL ZSA/SO 811

Diagram 13. OUTPUT Processing (Part 1 of 2)

Input

Reg 1

(cPPL

From
TMP

(Command Buffer

Processing
. SVC100
>, 1 Check user authority to use the
OUTPUT command. _
2 Check command syntax.
3 Check user’s authority to use the
requested function, .
4 Process requested output.

@ Use subsystem to delete and
change a destination,

e To print a data set:

a. Allocate print data set.

b. Get SYSOUT data set name,

c. Allocate SYSOUT data set.

d. Process cutput.

IKJEFF76

Parse

Installation
Exit

DAIR

Dynamic
Allocation

Subsystem

Dynamic Alloca

tion

611 uonwadQ Jo porpojy

Diagram 13. OUTPUT Processing Summary (Part 2 of 2)

1

Use SVC100 1o post the TMP (I KJEFTSC) requesting IKJEFF76 be attached
under a parallel task structure. Information is passed to IKJEFF76 in the
FIBPARMS parameter list. IKJEFF76 checks the user’s authorization to
enter the command. If the user is not authorized to enter foreground initiated
background commands, the system issues an error message and returns control
to the TMP.

Object Module: IKJCT466

Use Parse to check the syntax of the command.
Object Module: 1KJCT469

Use an installation exit to check the userid for authorization to use the
requested function on the job specified. If there is no installation exit
the IBM supplied exit IKJEFF53 is used.

Object Module: IKJECT469

Determine the operation to be performed: print, delete, or change the destin-
ation (station or class) of a data set,

o To delete or change the destination of a data set, set up an interface to the
subsystem and request the subsystem to perform the requested operation.
Return control to the TMP,

Object Modules: 1KJCT469, IKJCT462

e To print a data set:

a. Use Dynamic Allocation to allocate a PRINT data set via the DAIR
interface.
Object Module: I1KJCT469, IKICT473

b. Use the job entry subsystem to select all system output data sets for a
specific jobname and class.
Object Module: 1KJCT462

c. Use Dynamic Allocation to allocate a system output data set by data
set name.
Object Module: 1KJCT462

d. Process the system output data set until an end-of-file condition or an
attention,

For an end-of-file condition, check for more data sets, If there are no
more, return control to the TMP.

For an attention, process the requested subcommand and all remaining
data sets and return control to the TMP.
Object Modules: 1KJCT462, IKJCT470, IKJCT471, IKICT463

Al dWn[oA — 518077 108590014 puewwo) OSL ISA/SO 0TI

Diagram 14. PROFILE Processing (Part 1 of 2)

Input

Reg 1

CPPL

CBUF

ECT

From
TMP

Process
'> 1 Check for no operands. If none,
v return to TMP,
: Check syntax.
2 Check Parse output —
if invalid syntax
return to TMP.
3 Set UPT to match operands.
4 Check for character or line deletion
change.
§ IfLISTis specified, list users

profile.

Return to TMP,

Parse

UPT

uoneiadg Jo poytel

12

Diagram 14. PROFILE Processing (Part 2 of 2)

Extended Description

1

Check the ECT for the presence of operands in CBUF {The Command Buffer). If
there are nane, issue a message to the user and return to the TMP.

Invoke Parse to check the syntax of the operands.

Check the Parse return code.

non-zero—means an operand was not valid and prompting failed. Issue an error
message unless the return code indicates the user was in noprompt mode.
Return to the caller in any case.

zero—means Parse was successful.

Set the UPT (The User Profile Table) to conform to the user options, checked by
Parse.

if a new line or character deletion character was among the operands, issue a STCC
macro to change the terminal line or character deletion characters. Check the
return.code.

® non-zero—means reissue a STCC macro with the former line or character
delete characters, and issue an error message.

® zero—means issue SVC100 to update the PSCB with the new line-delete and
character-delete change requests.

5 If the operand LIST has been specified, list the users profile.

6 Free storage, set the return code, and return to the TMP.
zero—means successful processing.

non-zero—means unsuccessful processing.

Object Module: IKJEFT82

Al swmjoA — 31807 308590014 puBuuo) OSL ZSA/SO TTI

Diagram 15. PROTECT Command Processing (Part 1 of 2)

Input

Reg 1
CPPL

\ CBUF

From
TMP

Process

_

Check syntax.

Check return code.

Validate data name.

Process password function.

Parse

Default Service Routine

SvCcos

€Z1 uoneradQ jo POyl

Diagram 15. PROTECT Command Processing (Part 2 of 2)

1

2

Use Parse to scan and check the command for proper syntax.
Possible messages: 1KJ581021, 1KJ58112]

After checking the Parse return code, move the contro) password, if one was
specified, to the SVC98 buffer.
Possible message: 1KJ581081

1f the data set name was not fully qualified, it is fully qualified using IKJEHDEF
{The Default Service Routine).
Possible messages: 1KJ581031, IKJ581111, IKJ581121

4 Check the function to be performed, and fill in the paramster list (SVCPARMS)
for SVC 98 accordingly. The first byte of the parameter list contains a hexadeci-
mal value indicating the function, as follows.

X'01°
X'02°
X'03'
X'04’

ADD an entry to the password data set.

REPLACE an entry in the password data set.

DELETE an entry from the password data set.

LIST protection, security counter, and optiona! data information of
a protected data set. (The last 80 bytes of the password data set
entry for this data set password is placed in the 80 byte buffer
pointed to by the SVC parameter list.)

Issue SVC 98 return contro! to the TMP issuing error messages, depending on the
return code provided by SVC 98.

Possible messages: 1KJ581011, 1KJ581011, IKJ581041, IKJ581051, 1KJ581061,
IKJ581071, IKJ581101, IKJ581121

Object Module: IKJEHPRO

Al dumjoA — 91807 105890014 pUewwo) OSL ZSA/SO T

Diagram 16. RENAME Command Processing (Part 1 of 2)

Input

Register |

1 CcPPL

Entry from
T™MP

Process

Parse

Command Bulfer

RENAME

Check command syntox.

Scon for asterisks and validity
check asterisks,

Build catalog information
parameter list,

Build new data set names,

Allocate data set, |s this rename
member or rename data set ?

PDS Member

Syntax Check

Default Routine

—

Fully qualifies dato set name

Catalog Information Routine

Provide data
set names or
indexes

)

Allocation ~Free Routine

Data Set

6
7

8

a Open and verify

a Assign olias or replace
member name, Then
close and free,

o Process next step (2).
Return when all
processed.

6
7

8

b Rename dato set.

b Catalog new;
uncatalog old,
Free,

b Process next data
set. Return when all
processed,

STI uonersdQ Jo poylop

Diagram 16. RENAME Command Processing (Part 2 of 2)

1

The Parse subroutine syntax checks the command.
Possible messages: 1KJ582021, 1KJ582231

Storage is obtained for work areas.

A user id is prefixed if nacessary. The data set name is scanned for asterisks. If
none, prompting is done for any necessary qualification of data set names by the
default routine. Then operation continues from step 4. If asterisks are found,
they are checked to ensure that they occur in the same relative position within
the fully qualified data set names.

Possible messages: 1KJ582061, IKJ582081, 1KJ582091, 1KJ58218!, 1KJ582251,
1KJ582271

If asterisks were found, the catalog information routine is used to look up candi-
dates for renaming.
Possible messages: 1KJ582011, 1KJ582191

The new data set names are built in preparation for the renaming operation.
Possible messages: 1KJ582051, 1KJ582081

Allocation is done to make use of the system enqueueing facility which ensures that

the data set is not renamed while some other user is using it. {Also, this enables
the OPEN and CLOSE operation for partitioned members.}
Possible messages: 1KJ582011, 1KJ582021, IKJ582111, 1IKJ582121, IKJ582131,
IKJ582141, IKJ582151, 1K J582291, IKJ582251, 1KJ582291

6a

7a

6b
7b

8b

OPEN and BLDL are used to open the PDS.
Possible messages: IKJ582031, 1KJ582041, 1KJ582071, 1IKJ582171

STOW is used to assign the alias or new member name.
Possible messages: 1KJ582071, 1IKJ582171, 1KJ582231, 1KJ582261

The data set is closed and unallocated.
Possible messages: 1KJ582011, IKJ582071, IKJ582161, 1KJ582221, 1KJ582241

RENAME is used to rename the data set.

CATALOG is used to catalog new and uncatalog old.
Possible messages: 1KJ582101, 1IKJ582271, 1KJ582281

Repeat from step 4, if applicable.
Possible messages: 1KJ582101, 1KJ582271, IKJ582281

Object Module: IKJEHREN

Al swnjoA — 91807 10882001 pUBWIWOD OSL ZSA/SO 9TT

Diagram 17.1. RUN Command Processing Overview (Part 1 of 2)

Input

Register 1

]
e

PPL

y

From
T™MP

Process

1 Scan for command,
Syntax check,

Command Buffer

RUN Command

Standard TMP = Processor Interface

Parse

J

{

2 Determine dsname and verify,

Determine data set type,

Fill in WORKAREA

U

3 Build command
list and List Source
Descriptor.

T

Diag.

17.2

S

4 Place list on input stack,
Then return to TMP,

Output
Input Stack
logut Stock___

LZ1 uonexadQ jo popol

Diagram 17.1. RUN Command Processing Overview (Part 2 of 2)

Extended Description

1

IKJEFROD uses Parse to scan and syntax check the RUN command. Prompting
occurs if required parameters are missing or if syntactically incorrect parameters
are present,

Upon return from Parse, the return code is checked. If an error was encountered, a
message is issued to the user; otherwise, processing continues.

Control passes to a routing that examines the specified data set or member name
and places applicable information into a buffer in WORKAREA. If the data set is
fully qualified, an indicator is set. If a password is specified, the password and
length are placed in WORKAREA.

Then the data set type {ASM, etc) is determined and placed in the data set type
buffer of WORKAREA. Parse is again used, if necessary, to prompt for the data
set type.

DAIR is then given control to search for a data set having the specified name. First
the set of currently aliocated data sets is searched; then if necessary, the system
catalog. |f the data set is found, processing continues; otherwise, the user is
prompted for a respecification, and another search is made.

When a data set is verified as existing, storage is obtained in shared subpool 78
for an in-storage command list and a table (the List Source Descriptor) describing
the list. See Diagram 17.2 for details of this operation.

After the in-storage command list and List Source Descriptor are built, the address
of the List Source Descriptor is placed in the STACK parameter list and control is
passed to Stack. This routine places the command list on the input stack.

Then control returns to the TMP. The TMP will select the next command from the
top of the input stack.

Object Module: IKJEFROO

awnjoA — 21807 10853001 purWIWO) OSL TSA/SO 8T1

Diagram 17.2. Building a RUN Command List (Part 1 of 2)

Input Process Output

WORKAREA List Source Descriptor Command List Buffers
—1
From ? Various buffers for
b c
See below. % i 1 Calculate amount of storage [commands,
required. d parameters, etc.
Reserved
>' 7al For example;
CMDNAME, DSNPARM,
etc.
AN
a-- ’ command list.
b -- indicates variable
recorder.
¢ -- command list length.
d=-- ’ next byte.
2 Build Command list and List)
Source Descriptor. F l I] J J
WORKAREA
%] Parse parameter list information.
A
Set to value by STACK } STACK parameter list.

| List Source Descriptor

Note: Shaded arcas were previously filled in by DSNRTE
(if applicable) from information found through the DSNBUF
POL. (Sce Diagram 17.1) DSLENG D

Communication ECB

Service routine parameter list.

} DAIR porameter list.

MBRBUF MBRLENG
‘ —————— Buffer for member name, if any, and length.

MBRNAME >]
_
PASSBUF l g:g:ﬁ:lMG[[Buffer for password, if any, and length.
QUALBUF ol Buffer for right=hand qualifier

of data set name.

6271 uonerdQ jo poyto

Diagram 17.2. Building a RUN Command List (Part 2 of 2)

Extended Description

1

WORKAREA fields and parse information previously located through the PDL
are examined to calculate the amount of storage required for the command list.
Included in the calculation are:

o The length of the List Source Descriptor (16 bytes).
@ The size of the compiler command.

e The length of the data set name.

e Compiler parameters, if any.

o LOADGO command size {(for ASM, FORT, PLI with OPT operand, or
COBOL). This size includes control information length; LOADGO length;
LOADGO data set name length; the length of the WHEN/END command,
which is used to prevent execution of the program in the event the compiler
does not complete successfully; parameter information, if any; COBLIB,
PLIBASE, and FORTLIB length (for COBOL, PLI with OPT operand, and
FORT data sets, LIB operand length, including the length of the data set list
contained within parentheses).

The parameters are checked for validity with compiler types. Issue a message if
they are invalid.

The command list and List Descriptor are built. The List Source Descriptor is
filled in as the command list is constructed.

First, the compiler command (type) is built. Control information consists of a
two-byte length field followed by two bytes containing 0. The compiler command
is moved to-the appropriate buffer (CMDNAME).

Then the data set name is moved to the command list buffer (DSNPARM).

If a compiler parameter is specified (for BASIC, IPLI, or GOFORT), it is placed
in the buffer, along with the parameter length.

If the compiler is ASM, FORT, PLI with OPT operand, or COBOL, the WHEN
command is built and placed in the list. Then the LOADGO command is created.
This consists of placing in the buffer the proper data set name, applicable param-
eters, and for the FORT, PLIBASE, and COBOL data sets, FORTLIB or COBLIB,
respectively. The length of the LOADGO command is placed in the control field.

After the command list is complete, it is placed on the input stack (Sea step 4 of
Diagram 17.1)

Object Module: IKJEFROO

Al SWnjoA — 91807 10583001 puBWIWO) OSL ZSA/SO OFT

Diagram 18.1. SEND Overview and Operator Processing (Part 1 of 2)

Input

Reg 1
(ACPPI. N CBUF

Parse

WTO

Process
> 1 Syntax check op d
2 If send command type
is USER, process
Diag
18.2
3 Send ge to op
4 Return to caller,

uonendQ Jo powey

T€1

Diagram 18.1. SEND Overview and Operator Processing (Part 2 of 2)

Use Parse to syntax check cperands.

2 If Parse output of command operands shows the command type is USER, process.
See Diagram 18.2.

3 Otherwise command typae is Operator or console id. issue a WTO macro
instruction.

4 Return control to the TMP.

Object Module: IKJEES10

Al swinjoA — 91807 Josssoolg puewwo) OSL ZSA/SO Z€T

Diagram 18.2. SEND User Processing (Part 1 of 2)

Input Process
From
Diag
PSCB 18.1
Check for SAVE parameter,
> Check for **' userid.

Send message to specified users.

Identify specified users not receiv-

ing messages or at a busy terminal.

For a specified user not logged on
the system, see

Diag
18.3

TPUT

I Y

€€1 uonwadQ Jo poylol

Diagram 18.2. SEND User Processing (Part 2 of 2)

1 Check SEND command for 8 SAVE parameter. If the SAVE parameter was used,
see Diagram 18.3.

2 Check for an *** used as a userid. If an '*’ was used, get the userid from the Pro-
tected Step Contro! Block {PSCB).

3 Use TPUT (SVC93) 1o send a message to all users specified in the SEND
command.

4 Send a warning message to the issuer of the SEND command identifying all speci-
fied users not receiving messages or at a busy terminal.

For users specified in the SEND command but not logged on the system, see
Diagram 18.3.

Object Module: IKJEEST1

Al Jwinjop — 21807T J0ss23014 puswiwio) OSL ZSA/SO +€1

Diagram 18.3. Adding SEND Text to the Broadcast Data Set (Part I of 2)

DAIR

Input Process
From
Diag
18.2
1 Allocate SYS1.BRODCAST.
Broadcast 2 Open.
Dota Set
T L "> 3 Find userid,
> 4 Mail is queved, Add new mail
to end of queue,
5 Process next userid,

(Step 3)

Return to caller,

Output

V

SYS1.BRODCAST

uoneradQ jo poygoly

SET

Diagram 18.3. Adding SEND Text to the Broadcast Data Set (Part 2 of 2)

Allocate SYS1.BRODCAST Using DAIR.

On successful completion, open SYS1.BRODCAST and enqueue on record 1.

Search the directory to find an entry for the userid.

Continue processing all userids.

1
2
3
4 Messages are queued in the data set. Put the SEND message text on the queuse.
5
6 Close SYS1.BRODCAST and free it using DAIR. Return to the caller.

Al dwnjoA — 213077 108590014 puBWWO) OS.L ZSA/SO 9€1

Diagram 19.1. SUBMIT Processing (Part 1 of 2)

Input

Reg 1

CPPL

From
TMP

Process

Command Buffer

Check user authorization.

Check command syntax.

Allocate data set containing JCL.

Allocate job entry subsystem
internal reader,

Process JCL.

At EOF process next data set.

SVC100

IKJEFF76

Parse

DAIR

Dynamic Allocation

LET uoneid(Jo poe

Diagram 19.1. SUBMIT Processing (Part 2 of 2)

1

Use SVC100 to post the TMP (IKJEFTSC) requesting IKJEFF76 be attached
under a parallel task structure. Information is passed to IKJEFF76 in the
FIBPARMS parameter list. IKJEFF76 checks the user’s authorization to
enter the command. If the user is not authorized to enter foreground initiated
background commands, the system issues an error message and returns control
to the TMP.

Object Module: IKJEFFO1

Use Parse to check the command syntax. Parse validity check exit IKJEFF16
is entered to get the fully qualified data set name from the Default Service
Routine.

Object Module: IKJEFF04

Allocate, using DAIR, input data sets containing JCL. Also build control
and history tables for JCL processing.
Object Module: IKJEFF04

Use Dynamic Allocation to allocate a job entry subsystem internal reader and
open the internal reader,
Object Module: IKJEFF15

For an attention or ABEND, the internal reader will be closed and the last
job submitted will be flushed.
Object Modules: IKJEFF20, IKJEFF15

Read JCL statement and process.
Object Module: IKJEFFO05. See Diagram 19.2

Process the next data set when an end-of-file is encountered. After the last file
is processed, control is returned to the TMP.
Object Module: IKJEFFO05

Al 2uInjop — 91807 105535014 puswwo) OSL ZSA/SO 8€1

Diagram 19.2,

SUBMIT JCL Processing (Part 1 of 2)

Input Process
Reg | :-)r.om
10!
| %
—>

CONTAB

{

Current Stotement

Identify statement type.

a. First record of first data set.

b. JOB statement.

c. JCL statement that requires
user exit.

Write JCL or data statement.

Check for end-of~job.

Return to @

Output
INTRDR
Data Set

>

6€1 uonewndQ jo poylal

Diagram 19.2. SUBMIT JCL Processing (Past 2 of 2)

1 Identify the statement as data or type of JCL.
Object Module: IKJEFFO7

® First record that is not a subsystem control card for first data set and not a JOB
statement, create a JOB statement.
Object Module: IKJEFF08

o JOB statement. Verify that the job name is not equal to the userid. If it is
equal, the user is prompted for an identifying character.
Object Module: IKJEFF13

e JCL statement that requires user exit (IKJEFF10) for installation required
processing.
Object Module: IKJEFF09, IKJEFF10

2 Write JCL or data statement to job entry subsystem internal reader data set.

3 Check for end-of-job. If an end-of-job, get a jobid from the job entry subsystem
for the ‘job submitted’ message. |f not end-of-job get the next statement.
{See Diagram 19.1.)

Object Module: |KJEFFO5

Al JumjoA — 31807 105820014 puBWWO) OSL ZSA/SO OF1

Diagram 20. TERMINAL Operational Characteristics (Part 1 of 2)

Input Process Input Resultant
Keyword Macro Output Area
Register 1 Erom TSB
TMP
LINES
CPPL 1 Check for options. NOLINES STATTN :> TSBATNLC
~) If none, return. SECONDS
v C
PARSE Noseconps STATTN—> TSBATNTC
INPUT
} ect 2 Syntax check. noinpuT | STATIN —/> TSBATNCC
Validity check.
Command Buffer T12260—
TERMINAL] 's-":':;?;z: STSIZE % TSBLNSZ
TSBLNNO
ECT 3 Check Parse output. 2260—"
ECTNOPD
CLEAR
T AR
S q STCLEAR —2 TSBERSDS
Macro [: :
4 Setupandissue Processing. Qcs
appropriate macros.
BREAK
NOBREAk STBREAK ——2 QCBFLAG
b ™™
LCB
5 Free storage and return.
TIMEOUT gsTTIMEOU
omeous —> LCBINHBN
e
TVWA
TRAN j TVWATRAN
NOTRAN STTRAN TVWATRDF
TVWATRNM
TVWATABI
TVWATABO
CHAR
STTRAN
NOCHAR —>

I#1 uogeradQ Jo poysol

Diagram 20. TERMINAL Operational Characteristics (Past 2 of 2)

Extended Description

1

Check the ECTNOPD bit of the ECT to see if there are any TERMINAL keywords.
If none, the command is ignored, a message is printed and contro! returns to the
T™MP,

if LINE or SECOND keywords are provided, Parse will temporarily pass contro!
back to the appropriate routine for validity checking. When Parse returns control
to IKJEFTBO for mainline processing.'h provides a return code that informs
IKJEFTB80 of the results of the validity checks.

IKJEF T80 checks the PDL pointer (PDEPTR) to see if the PDL is zeros. If it is,
the terminal command is ignored, a message is written and control returns to the
TMP.

4

The TERMINAL status macros are set up and issued according to the specified
keyword vatues. The end result is the placing of values in output fields, as shown
at the right of this diagram.

TERMINAL frees main storage, sets return codes and returns contro! to the TMP.
zero means successful processing.

non-zero {'12') means unsuccessful processjng.

Object Module: IKJEFT80

Al SuinjoA — 5807 305533019 PUBWILIO) OSL ZSA/SO THT

Diagram 21. TIME Command Processing (Part 1 of 2)

Input

Process

Reg 1

Command Buffer

From
T™P

UPT

4 psce

ECT

Command Buffer

TIME

ASCB

| cPU Time

PSCB

| LOGON Time

Get present time and date.

Convert the present time

of day, month, day, and year.

Convert cumulative CPU time.

Obtain cumulative service
units.

Calculate total ion time.

Send time message to terminal
user.

Timing
Services

System Resources
Manager

—

€b1 uonendQ jo poypol

Diagram 21. TIME Command Processing (Part 2 of 2)

1

The TIME macro obtains the present time of day and date. If Timing Services
indicates the hardware clock is inoperative, control is passed to TIMERR and an
error message is issued, Control is then returned to the TMP.

Convert the time and date returned by the TIME macro to printable format and
save in a message buffer.

Convert the cumulative CPU time to printable format and save in a message buffer.
The CPU time is maintained in the ASCB in store-clock units.

Use SVC95 {SYSEVENT), issued with code 38, to obtain cumulative service units
from the System Resources Manager. Convert the returned data to a printable
format and save in a message buffer.

Calculate total session time by subtracting the LOGON time of day from the pres-
ent time. The LOGON time of day is maintained in the PSCB. Convert the session
time to printable format and save in a message buffer.

Use the PUTLINE service routine to send the TIME message to the terminal.
Control is returned to the TMP.

Object Module: IKJEFT25

AT ouWnjoA — 1807 108se001g puEwINIo) OSL ZSA/SO +¥1

Diagram 22. WHEN/END Processing (Part 1 of 2)

From TMP
or Terminal

Process

Input
Reg 1
CPPL
\ CBUF
o
ECT

Return Code

Test for abend of prior C,P, or END
command,

Check syntax,

If parse not successful,
issue message and

return to caller,

Compare relational operand and
completion code,

If condition not met, return to caller.

Delete top entry in stack,
stack action command

Output
INPUT STACK
r—)
PARSE
STACK Macro
I—J__J

Return to caller.

Sy1 uomendQ jo poyopN

Diagram 22. WHEN/END Processing (Part 2 of 2)

Extended Description

1

Test for previous command processor abend. If abend occurred, issue message and
return to caller. If the command is END, delete the top element from the stack
and return to the caller.

Use Parse to check the syntax of the WHEN command.

Check Parse return code, if non-zero Parse was unsuccessful. Issue a message and
return to the caller,

Compare the WHEN relational operator with the completion code of the previous
command processor.

If condition is not met, return to the caller.
if condition is met, use STACK to delete the top entry in the input stack and add

the action command to the stack if it is not the END command. Return to the
caller.

Object Module: IKJEFE1TT

146 085/VS2 TSO Command Processor Logic — Volume IV

Name
AKJLKLO1

AKJLKLO02

AKJLKMSG
ALLOC
ALLOCATE

ATTR
ATTRIB
CALL
CANCEL
END

EXEC

FREE

HELP

IEEVSDIO
IGC0010{
({=x"'C0")

IKJCT430

IKJCT431
IKJCT432
IKJCT435
IKJCT460
IKJCT462
IKJCT463
IKJICT464
IKJCT466

IKJCT467
IKJCT469

Type

Object
Entry
Object
Entry
Object
Alias
Load

Alias
Load
Alias
Load
Alias
Alias
Load

Load
Alias
Load

Object
Load

Object
Entry
Object
Object
Object
Object
Object
Object
Object
Object
Entry
Object
Alias
Load

Object
Entry

Load

AKJLKLO1
AKJLKLO1
AKJLKLO2
AKJLKLO2
AKJLKLO1
ALLOCATE

ATTRIB
IKJEFTO02

IKJEFE11l
EXEC

HELP

SEND

EXEC
EXEC
EXEC
EXEC
EXEC
IKJCT469
IKJCT469
IKJCT469
IKJCT469
OUTPUT
OUTPUT
IKJCT469
IKJCT469

IKJCT469
IKJCT469

Object

AKJLKLO1
AKJLKLO02

IKJEFD30
IKJEFD30
IKJEFD31
IKJEFD32
IKJEFD33
IKJEFD34
IKJEFD35
IKJEFD36
IKJEFD37
IKJEFATT
IKJEFATT
IKJEFTO8
IKJEFF58
IKJEFEl1l
IKJCT430
IKJCT430
IKJCT431
IKJCT432
IKJCT435
IKJEFD20
IKJEFHO1
IKJEFHO0O
IKJEFHO1
IKJEFHO02
IKJEFHO3

IKJEFF00
IKJEFF20

IKJCT430

IKJCT466

IKJCT467
IKJCT460
IKJCT462
IKJCT463
IKJCT464
IKJCT469
IKJCTA470
IKJCT471
IKJCT472
IKJCT473

IKJCT469

Entry
AKJLKLO1

AKJLKLO02

IKJEFD30
IKJEFD30

IKJEFATT
IKJEFATT
IKJEFTO8
IKJEFFS8
IKJEFEll
IKJCT430
IKJCT430

IKJEFD20
IKJEFHO1

IKJEFHO1

IKJEFF00

IKJCT430

IKJCT466

IKJCT469

IKJCT469

ALLOC

ATTR

EX

ouT
ouTr
IKJCT467

Note: CANCEL/OPERATOR/OUTPUT/PROFILE/STATUS/SUBMIT

cp

LINK/LOADGO
LINK/LOADGO
LINK/LOADGO
LINK/LOADGO
LINK/LOADGO
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCCATE
ALLOCATE
ATTRIB
ATTRIB

CALL

Directory

CANCEL/STATUS

WHEN/END
EXEC
EXEC
EXEC
EXEC
EXEC
FREE
HELP
HELP
HELP
HELP
HELP
SEND
See Note

See Note
EXEC
EXEC
EXEC
EXEC
EXEC
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

Directory

147

Name

IKJCT470
IKJCT471
IKJCT472
IKJCT473

IKJEES10

IKJEES1l
IKJEES20
IKJEES70

IKJEES73

IKJEES74
IKJEES75

IKJEE1A0Q
IKJEE100

IKJEE1l01
IKJEE150
IKJEFATT

IKJEFD20
IKJEFD30

IKJEFD31
IKJEFD32
IKJEFD33
IKJEFD34
IKJEFD35
IKJEFD36
IKJEFD37
IKJEFEll

IRKJEFELS
IKJEFEl6
IKJEFFCA
IKJEFF00

IKJEFFO1

IKJEFFO02

IKJEFFO03

IKJEFF04

‘Type
Jdbject
Object
Object
Object
Object
Entry
Object
Object
Object

Entry
Load

Entry
Object

Object

Object
Object

Entry
Entry
Object
Object
Entry
Object
Entry
Object
Entry
Object
Object
Object
Object
Object
Nbject
Object
Load

Object
Entry

Object
Object
Alias

Nbject

Entry

Object
Entry
Load
Object
Entry
Object
Alias
Load

Load
IKJCT469
IKJCT469
IKJCT469
IKJCT469
SEND
SEND
SEND
SEND
IKJEES73
LISTBC
LISTBC

IKJEES73
IKJEES73
LISTBC

IKJEES?73
LISTBC

OPERATOR
OPERATOR

OPERATOR
OPERATOR
OPERATOR
ATTRIB
ATTRIB
FREE
FREE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE

IKJEFELl
IKJEFELll

IKJEFE1l
IKJEFE1l
STATUS
1G6c0010 {
({=x'co")
16c0010{
({=x'co0")
SUBMIT
SUBMIT

IKJEFF02
IKJEFF02
IKJEFF04
IKJEFF04

Obiject

IKJEES10

IKJEES70
IKJEES70
IKJEES74
IKJEES7S
IKJEES70

IKJEEl100
IKJEEl100
IKJEFATT
IKJEFD20

IKJEFD30

IKJEFEll
IKJEFE1S
IKJEFEl6

IKJEFEll

IKJEFFS6
IKJEFF00

IKJEFFOl
IKJEFF02

IKJEFF02

IKJEFF03
IKJEFF02
IKJEFFO03
IKJEFF04
IKJEFFO0S
IKJEFF07

Entry

IKJEES10

IKJEES73
IKJEES70

IKJEES73

IKJEE101
IKJEE100

IKJEFATT

IKJEFD20

IKJEFD30

IKJEFEll

IKJEFEll

IKJEFFS56
IKJEFF00

IKJEFFOl

IKJEFF02
IKJEFF02

IKJEFF04

Alias

SE
SE

LISTB
LISTB

OPER
OPER

ATTR
ATTR

ALLOC
ALLOC

WHEN
END

WHEN
END
WHEN
END

SUB
SuB

IKJEFF03

IKJEFF03

Note: CANCEL/OPERATOR/OUTPUT/PROFILE/STATUS/SUBMIT

148 0S/VS2 TSO Command Processor Logic — Volume IV

CP

OUTPUT
OUTPUT
OUTPUT
OUTPUT

SEND
SEND
SEND
SEND
LISTBC
LISTBC
LISTBC
LISTBC
LISTBC
LISTBC
LISTBC
LISTBC
LISTBC
LISTBC
LISTBC
OPERATOR
OPERATOR
OPERATOR
OPERATOR
OPERATOR
OPERATOR
ATTRIB
ATTRIB
FREE
FREE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
WHEN/END
WHEN/END
WHEN/END
WHEN/END
WHEN/END
WHEN/END
WHEN/END
WHEN/END
WHEN/END
WHEN/END
CANCEL/STATUS
See Note

See Note

SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT

Name

IKJEFFO05
IKJEFFO07
IKJEFF08
IKJEFFO09
IKJEFF10

IKJEFF13
IKJEFF15
IKJEFF16
IKJEFF19
IKJEFF20

IKJEFF49
IKJEFF50

IKJEFF51

IKJEFFS52
IKJEFF53

IKJEFF54
IKJEFF55

IKJEFF56

IKJEFF57

IKJEFF58
IKJEFF76
IKJEFF77
IKJEFTO8
IKJEFHOO
IKJEFHO1
IKJEFHO02

IKJEFHO3
IKJEFROO

Type

Object
Entry
Object
Object
Object
Object
Load
Object
Entry
Object
Object
Object
Load
Object
Entry
Object

Object
Load

Object
Entry
Load

Object
Entry
Object
Load
Object
Entry
Object
Object
Alias
Object

Entry
Load

Object
Entry
Object
Entry
Object

Object

Load
Object
Entry
Object
Object
Entry
Object
Object
Load

IKJEFF04
IKJEFF04
IKJEFF04
IKJEFF04
IKJEFF04
IKJEFF04

IKJEFF10
IKJEFF1l0
IKJEFF04
IKJEFFO04
IKJEFF04

IKJEFF19
IKJEFF19
1GC0010{
({=x'c0")
IKJEFF57

IKJEFF50
IKJEFF50

IKJEFF51
IKJEFFS51
IKJEFFS1

IKJEFFS3
IKJEFFS3
IKJEFF51
IKJEFF50
IKJEFF50
STATUS

STATUS

IKJEFFS7
IKJEFF57
CANCEL
CANCEL
1G6C0010¢
({=x'Co0")
IGC0010{
({=x'Cc0")

IKJEFTO02
IKJEFTO02
HELP
HELP
HELP
HELP
HELP

Object

IKJEFFO08
IKJEFF09
IKJEFF13
IKJEFF15
IKJEFF16

IKJEFF04

IKJEFF10

IKJEFF10

IKJEFF19

IKJEFF19

IKJEFF02
IKJEFFS0
IKJEFFS5
IKJEFF50
IKJEFF51
IKJEFFS52
IKJEFF54
IKJEFFS1
IKJEFF53

IKJEFF53
IKJEFFS55

IKJEFF56

IKJEFF59
IKJEFF57

IKJEFFS57

IKJEFF58

IKJEFTO8
IKJEFTO8

IKJEFHO1

Entry

IKJEFF04

IKJEFF10
IKJEFF10

IKJEFF19
IKJEFF19

IKJEFF50
IKJEFF50
IKJEFF51

IKJEFF51

IKJEFF53
IKJEFF53

IKJEFF56

IKJEFF57
IKJEFFS57

IKJEFF58
IKJEFF76
IKJEFF77
IKJEFTO08
IKJEFTO08

IKJEFHO1

IKJEFF55

IKJEFFS55

ST
IKJEFFCA
ST
IKJEFFCA

CALL
CALL
CALL

H
H

IKJEFRO0 IKJEFROO RUN

R

Note: CANCEL/OPERATOR/OUTPUT/PROFILE/STATUS/SUBMIT

cp

SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
SUBMIT
See Note

CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS

CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS

CANCEL/STATUS

CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
See Note

See Note

CALL
CALL
CALL
HELP
HELP
HELP
HELP
HELP
RUN

RUN

Directory

149

Name

IKJEFT25

IKJEFT80
IKJEFT82

IKJEHAL1L

IKJEHDS1

IKJEHMEM

IKJEHPRO

IKJEHREN

LINK

LISTA
LISTB
LISTBC

LISTDS
LOAD
LOADGO

OPER
OPERATOR

our
OUTPUT
PROF
PROFILE
PROTECT

RENAME
RUN

SEND

ST
STATUS

SUB
SUBMIT
TERM
TERMINAL
TIME
WHEN

Type
Object

Entry
Load
Object
Entry
Object
Entry
Object
Entry
Load
Object
Entry
Load
Object
Entry
Load
Object
Entry
Load
Object
Entry
Load
Object
Entry
Load
Object
Entry
Alias
Alias
Load

Alias
Alias
Load
Object
Entry
Alias
Load

Alias
Load

Alias
Load

Alias
Alias
Alias
Alias
Alias
Load

Alias
Load

Alias
Load
Alias
Load
Alias
Alias

Load
IKJEFROO

IKJEFROO

IKJEFT25
IKJEFT25
TERMINAL
TERMINAL
PROFILE
PROFILE

IKJEHAL1
IKJEHAL1L

IKJEHDS1
IKJEHDS1

IKJEHMEM
IKJEHMEM

IKJEHPRO
IKJEHPRO

IKJEHREN
IKJEHREN

LINK
LINK
IKJEHAL1
LISTBC

IKJEHDS1
LOADGO

LOADGO

LOADGO
OPERATOR

OUTPUT
PROFILE
IKJEHPRO
IKJEFROO
IKJEHREN

IKJEFROO
SEND

STATUS

SUBMIT
TERMINAL

IKJEFT25
IKJEFE1l1l

Object

IKJEFROO
IKJEFT2S

IKJEFT25
IKJEFT80

IKJEFT82
IKJEHALl

IKJEHALl
IKJEHDS1

IKJEHDS1
IKJEHMEM

IKJEHMEM
IKJEHPRO

IKJEHPRO
IKJEHREN

IKJEHREN
LINK

LINK
IKJEHAL1
IKJEES70
IKJEES70
IKJEES74
IKJEES75
IKJEHDS1
LOADGO
LOADGO

LOADGO

IKJEE100
IKJEE1AOQ
IKJEE100

IKJEE150
IKJCT466
IKJCT466
IKJEFT82
IKJEFT82
IKJEHPRO
IKJEFROO
IKJEHREN
IKJEFROO
IKJEES10
IEEVSDIO
IKJEES10
IKJEES11
IKJEES20
IKJEFF56
IKJEFF56

IKJEFFO01
IKJEFF01
IKJEFT80
IKJEFT80
IKJEFT25
IKJEFE11l

150 OS/VS2 TSO Command Processor Logic — Volume IV

Entry
IKJEFROO

IKJEFT25
IKJEFT25

IKJEFT80
IKJEFT82

IKJEHAL1l
IKJEHALl

IKJEHDS1
IKJEHDS1

IKJEHMEM
IKJEHMEM

IKJEHPRO
IKHEHPRO
IKJEHPRO
IKJEHREN
IKJEHREN

LINK
LINK

IKJEHALl
IKJEES70
IKJEES70

IKJEHDS1
LOADGO
LOADGO
LOADGO

IKJEE100

IKJEE101
IKJEE100

IKJCT466
IKJCT466
IKJEFT82
IKJEFT82
IKJEHPRO

IKJEHREN
IKJEFROO
IKJEES10

IKJEES10

IKJEFF56
IKJEFF56

IKJEFF01
IKJEFFO01
IKJEFT80
IKJEFT80
IKJEFT25
IKJEFE1ll

Alias
RUN

R

RUN
TIME
TIME
TIME
TERM
TERM
PROF
PROF
LISTA
LISTA
LISTA
LISTDS
LISTDS
LISTDS

PROTECT
PROTECT
PROTECT
RENAME
RENAME
RENAME

LISTB

LOAD
LOAD
LOAD

OPER

ouT

PROF

SE

ST
IKJEFFCA

SUB
TERM

Ccp

RUN

RUN

RUN

TIME

TIME

TIME
TERMINAL
TERMINAL
PROFILE
PROFILE
LISTALC
LISTALC
LISTALC
LISTDS
LISTDS
LISTDS
LISTDS/LISTALC
LISTDS/LISTALC
LISTDS/LISTALC
PROTECT
PROTECT
PROTECT
RENAME
RENAME
RENAME
LINK/LOADGO
LINK/LOADGO
LINK/LOADGO
LISTALC
LISTBC
LISTBC
LISTBC
LISTBC
LISTDS
LINK/LOADGO
LINK/LOADGO
LINK/LOADGO
LINK/LOADGO
OPERATOR
OPERATOR
OPERATOR
OPERATOR
OPERATOR
OUTPUT
OUTPUT
PROFILE
PROFILE
PROTECT

RUN

RENAME

RUN

SEND

SEND

SEND

SEND

SEND
CANCEL/STATUS
CANCEL/STATUS
CANCEL/STATUS
SUBMIT
SUBMIT
TERMINAL
TERMINAL
TIME
WHEN/END

Acronym

ACB

ALLOCWA

COMPROC

CONTAB

CPPL

CSOA

CSPL

CTGFL

CTGPL

DAPBGO

DAPBO4

DAPB08

Macro

IFGACB

IKJZT430

IKJEXEC

IKJEFFCT

IKJCPPL

IKJCSOA

IKJCSPL

1EZCTCFL

{EZCTGPL

IKJDAPGO

IKJDAPO4

IKJDAPOS

Common Name

VSAM Access Method
Control Block

ALLOCATE Work Area

Command Procedurs Storage Block

SUBMIT Internal Control Table

Command Processor Parameter List

Command Scan Output Area

Command Scan Parameter List

VSAM Catalog Control Field List

VSAM Catalog Parameter List

DAIR Parameter Biock 00

DAIR Parameter Block 04

DAIR Parameter Block 08

Command Processor

OUTPUT
SuUBMIT

ALLOCATE

EXEC

SUBMIT

OUTPUT

ALLOCATE
EXEC
OPERATOR

ALLOCATE
EXEC
OPERATOR

OUTPUT

LISTALC
LISTDS
RENAME

LISTALC
LISTDS
RENAME

EXEC

ALLOCATE
LINK/LOADGO
OUTPUT

RUN

CALL

EXEC
LINK/LOADGO
LISTDS
OuUTPUT
RENAME
susMIT

Data Area Usage

Module/Access

IKJCT462 (create)
IKJEFF15 (create)

IKJEFD30 (create)
IKJEFD32 (alter)
IKJEFD33 (alter)
IKJEFD34 (alter)
IKJEFD3S (alter)
IKJEFD36 (alter)
IKJEFD37 (alter)

IKJCT431 {(create)
IKJCTA430 (alter)
IKJCT432 (alter)

IKJEFFO04 (create)
IKJEFF15 (alter)

IKJCT463 (create)

IKJEFD36 (create)
IKJCT430 (create)
IKJEE 100 (create)
IKJEE150 (create)

IKJEFD36 (create)
1KJCT430 (create)
IKJEE 100 (create)
IKJEE150 (create)
IKJCT463 (create)

IKJEHAL1 (create)
IKJEHDS1 (create)
IKJEHCIR (create)

IKJEHAL1 {(create)
IKJEHDS1 (create)
IXJEHCIR (create)

IKJCT430 (create)

IKJEFD32 (create)
AKJLKLO1 (create)
IKJCT473 {(create)

IKJEFRGO (create)

IKJEFGOO (create)
IKJCT430 (create)
AKJLKLO1 (create)
IKJEHDS1 (create)
IKJCTA473 (create)
IKJEHREN (create)
IKJEFFO4 (alter)
IKJEFF16 (create)

Data Area Usage 151

Acronym
DAPBCC

DAPB10

DAPB18

DAPB1C

DAPB24

DAPD28

DAPB2C

DAPB34

DAPL

DFPARMS

Macro

IKJDAPCC

IKJDAP10

IKJDAP18

IKJIDAP1C

IKIDAP24

IKJDAP28

IKJDAP2C

IKJDAP34

IKJDAPL

bceD

IKJEFFDF

Common Name
DAIR Parameter Block 0C

DAIR Parameter Block 10

DAIR Parameter Block 18

DAIR Parameter Block 1C

DAIR Parameter Block 24

DAIR Parameter Block 28

DAIR Parameter Block 2C

DAIR Parameter Block 34

DAIR Parameter List

Data Control Block DSECT

DAIRFAIL (IKJEFF18) Parameter
List

152 0S/VS2 TSO Command Processor Logic — Volume IV

Command Processor
LINK/LOADGO

LINK/LOADGO

EXEC
LINK/LOADGO
OUTPUT
PROTECT
RENAME

LINK/LOADGO
QUTPUT

HELP

LINK/LOADGO
SUBMIT

LISTDS
OPERATOR
OUTPUT

LINK/LOADGO

ALLOCATE
CALL

EXEC

HELP
LINK/LOADGO

LISTALC
LISTDS
OPERATOR
OUTPUT

PROTECT
RENAME
RUN
SUBMIT

HELP
LISTBC
OUTPUT

SEND
SUBMIT

ALLOCATE
ATTRIB
EXEC
OouUTPUT
SUBMIT

Maodule/Access
AKJLKLO1 (create)

AKJLKLO1 (create)
AKJLKLO2 (creats)

IKJCTA430 (create)
AKJLKLO1 (create)
IKJCT473 (create)
IKJEHPRO (create)
IKJEHREN (create)

AKJLKLO1 {(create)
IKJCT473 (create)

IKJEFHO1

AKJLKLO1 (create)
IKJEFFO04 (create)

IKJEHDS1 (create)
IKJEE100 (create)
IKJCT463 (create)

AKJLKLO1 (create)

IKJEFD32 (create)
IKJEFGOO (create)
IKJCT430 (create)
IKJEFHO1 (create)
AKJLKLO1 (create)
AKJLKLO2 (create)
IKJEHALT?1 (create)
IKJEHDS1 (create)
IKJEE100 (create)
IKJCT463 (create)
IKJCT473 (create)
IKJEHPRO (create)
IKJEHREN (create)
IKJEFROO (create)
IKJEFFO04 (create)

IKJEFHO1 {create)

IKJEES75 (create)
IKJCT463 {create)
IKJCT469 (create)
IKJCT471 (alter)

IEEVSDIO (create)
IKJEF FO5 (create)

IKJEFD32 (create)
IKJEFATT (create)
IKJCT430 (create)
IKJCT467 (create)
IKJEFFO04 (create)
IKJEFF15 (create)

DFPB

DFPL

DOS8ADDED

ECB

ECDA

ECT

EXECDATA

ESTAEWA

EXITL

FFB2

FFIB

GFPARMS

GTPB

IKJDFPB

IKJDFPL

IKJEFFD8

IHAECB

IKJEXEC

IKJECT

IKJEXEC

IKJEFFIE

IKJEFFB2

IKJEFFIB

IKJEFFGF

IKIGTPB

Common Name

Default Parameter Block

Default Parameter List

SUBMIT Extension to DAPB08

Event Control Block

Phase 1 Exit Common Data Area

Environment Control Table

EXEC Command Control Data Area

ESTAE Exit Work Area

F1B Installation Exit Parameter List

F1B Module’s Parameter List

from SVC 100

Parameter List to SVC 100

GNRLFAIL and VSAMFAIL
(IKJEFF19) Parameter List

GETLINE Parm Block

Command Processor
LISTDS

PROTECT
RENAME

LISTDS

PROTECT
RENAME

sUBMIT

CANCEL/STATUS

OUTPUT

SUBMIT

EXEC

CALL
LINK/LOADGO
OPERATOR
OUTPUT

EXEC

OQUTPUT

SUBMIT

SUBMIT

CANCEL/STATUS
OPERATOR
OUTPUT
PROFILE
SUBMIT

EXEC

OUTPUT
SUBMIT

EXEC
LINK/LOADGO
OPERATOR

Module/Access

IKJEHDS1 (create)
IKJEHPRO (create)
IKJEHREN (create)

IKJEHDS1 (create)
IKJEHPRO (create)
IKJEHREN (create)

IKJEFFO04 (alter)
IKJEFF16 (create)

IKJEFFS50 (create)
IKJEFF66 (create)
IKJEFF57 (create)
IKJCT463 (create)
IKJCT469 {create)
IKJEFFO1 (create)
IKJEFFO04 (create)
IKJEFF19 (create)

IKJCTA30 (create)
IKJCT431 (alter)
IKJCT432 (alter)

IKJEFGOO (alter)
AKJLKLO2 (alter)
IKJEE150 (alter)
1KJCT460 (alter)

IKJCT431 (create)

IKJCT460 (alter)
1KJCT464 (alter)
IKJCT469 (create)

IKJEFFQ9 (create)
IKJEFF10 (alter)

IKJEFF04 (create)

IKJEFF56 (create)
IKJEE100 (create)
IKJCT466 (create)
IKJEFT82 (create)
IKJEFFO1 (create)

1KJCT430 (create)
IKJCT431 (create)
IKJCT432 (create)
IKJCT467 {create)
IKJEFFQ5 (create)
IKJEFF15 (create)

IKJCT430 (create)
AKJLKMSG {create)
IKJEE 150 {creats)

Data Area Usage 153

Acronym

HISTORY

IKJWHEN

10PL

LSD

Macro

IKJEFFHT

IKIWHEN

IKJIOPL

IKJLSD

Common Name

SUBMIT iInternal History Table

WHEN Common Data Area

1/0 Service Routine Parameter List

List Source Descriptor

154 O0S/VS2 TSO Command Processor Logic — Volume IV

Command Processor

SUBMIT

WHEN/END

ATTRIB

CALL

EXEC

FREE

HELP
LINK/LOADGO
LISTBC
OPERATOR

OUTPUT

PROFILE
PROTECT
RENAME
RUN

SEND
SUBMIT
TERMINAL
WHEN/END

EXEC
RUN
WHEN/END

Modute/Access

IKJEFFO04 (create)
IKJEFFQS5 (alter)
IKJEFFQ7 (alter)
IKJEFFO8 (alter)
IKJEFFQ9 (alter)
IKJEFF13 (alter)
IKJEFF15 (alter)
IKJEFF20 (alter)

IKJEFE11 (create)
IKJEFE15 (alter)

IKJEFATT (create)
IKJEFGOO (create)
IKJCT430 (create)
IKJEFD20 (create)
IKJEFHO1 (create)
AKJLKLO1{create)
IKJEES70 (create)
IKJEE100 (create)
1KJEE150 (create)
IKJEE1AO (create)
1KJCT460 (create)
IKJCT466 (croate)
1KJCT467 (create)
IKJCT469 (create)
IKJCT472 (create)
IKJEFT82 (create)
IKJEHPRO (create)
IKJEHREN (create)
IKJEFROO (create)
IKJEES10 (create)
IKJEFFO02 (create)
IKJEFT8O0 (create)
IKJEFE11 (create)
IKJEFE15 (create)

IKJCT431 (create)
IKJEFROO (create)
IKJEFE11 (create)

Acronym

MSGTABLE

OLDMAP

ouTcomTe

PAPL

Macro

IKJEFFMT

IKJOLD

IKJOCMTB

IKJPPL

Common Nameé

Message Issuer (IKJEFF0Q2)

Parameter List

Output Line Descriptor

Output Communications Table

Parse Parameter List

Command Processor

ALLOCATE

CANCEL/STATUS

EXEC

HELP

SUBMIT

CALL
OUTPUT

RUN
susmIT
WHEN/END

OUTPUT

ALLOCATE

ATTRIB
CALL
CANCEL/STATUS

EXEC

FREE

HELP
LINK/LOADGO
LISTALC
LISTBC
LISTDS

Module/Access

IKJEFD30 (create)
IKJEFD34 (alter)
IKJEFD3S (alter)
IKJEFD36 (alter)
IKJEFD37 (alter)
IKJEFF49 (alter)
IKJEFFS50 {create)
IKJEFF51 (alter)
IKJEFFS52 (alter)
IKJEFF54 (alter)
IKJEFFS56 (create)
IKJEFFS7 (create)
1KJCTA430 (create)
IKICT431 (create)
IKJCTA32 (create)
IKJEFHO1 (create)
IKJEFHO02 (alter)
IKJEFHO3 (alter)
IKJEFFO1 (create)
IKJEFFO2 (alter)
IKJEFFOQ4 (create)
IKJEFFO5 (alter)
IKJEFFO8 (alter)
IKJEFFO9 (alter)
IKJEFF13 (alter)
IKJEFF1S (alter)
IKJEFF16 l(alter)
IKJEFF 19 (create)
IKJEFF20 (alter)

IKJEFGOO (create)
IKJCT467 (create)
IKJCT472 (create)
IKJEFROO {create)
IKJEFFO2 (create)
IKJEFF15 (create)

IKJCT460 (alter)
IKJCT462 (alter)
IKJCT463 (alter)
1KJCT464 (alter)
IKJCT466 (create)
IKJCT487 (alter)
1KJCT469 (create)
IKJCT470 (alter)
IKJCT471 (atter)
1IKJCT472 (alter)
IKJCT473 (alter)

IKJEFD30 (create)
IKJEFD37 (create)
IKJEFATT (create)
IKJEFGOO (create)
IKJEFFS50 (create)
IKJEFFS7 {create)
IKJCT430 (create)
1KJCT431 (create)
IKJEFD20 (create)
IKJEFHO1 (create)
AKJLKLO1 (create)
IKJEHAL1 (croate)
IKJEES70 (create)
IKJEHDS1 (create)

Data Area Usage 155

Acronym

PAPL (Continued)

PARML

PARMLIST

PGPB

PTPB

RPL

SDWA

SNTAB

SsOB

sTPB

Macro

IKJEFFIE

IKJEFFPT

IKJPGPB

IKIPTPB

IFGRPL

IHASDWA

IKJEXEC

IEFJSSOB

IKJSTPB

Common Name

FIB Installation Exit Parameter List

CANCEL/STATUS Internal

Parameter List

PUTGET Parameter Block

PUTLINE Parm Block

VSAM Request Parameter List

System Diagnostic Work Area

Symbolic Name Table

Subsystem Options Block

Stack Parameter Block

156 0S/VS2 TSO Command Processor Logic — Volume IV

Command Processor

OUTPUT

PROFILE
PROTECT
RENAME
RUN

SEND
SUBMIT
TERMINAL
WHEN/END

CANCEL/STATUS
OUTPUT

CANCEL/STATUS

LINK/LOADGO
OPERATOR
OUTPUT
susmIT

OPERATOR
SUBMIT
TERMINAL
WHEN/END
OUTPUT
SUBMIT
OUTPUT
SUBMIT

EXEC

CANCEL/STATUS

OUTPUT

ATTRIB

CALL
CANCEL/STATUS
EXEC

HELP
LINK/LOADGO
LISTBC
OPERATOR

OUTPUT

Modute/Access

IKJCT463 (create)
IKJCT469 (create)
IKJEFT82 (create)
IKJEHPRO (create)
IKJEHREN (create)
IKJEFROO (create)
IKJEES10 (create)
IKJEFFO04 (create)
IKJEFT80 (create)
tKJEFE11 (create)

IKJEFFS1 (create)
IKJEFFS3 (alter)
IKJCT469 (create)

{KJEFF50 {create)
IKJEFF51 (alter)
IKJEFF52 (alter)
IKJEFF54 (alter)
IKJEFF57 {create)

AKJILKMSG (create)
1KJEE100 (create)
IKJCT467 (create)
IKJEFFO2 (create)

IKJEE100 (create)
IKJEE 150 (create)
IKJEE1AOQ (create)
IKJEFFO2 (create)
IKJEFTS80 (create)
IKJEFE15 (create)

1KJCT462 (create)
IKJCT470 (alter)
IKJEFFOS (aiter)
IKJEFF15 (create)

IKJCT460 (alter)
IKJEFFO2 (alter)

IKJCT431 (create)
1KJCT432 (alter)

IKJEFF49 (create)
IKJEFF52 (create)
IKJEFF54 (create)
IKJCT462 (alter)
IKJCT464 (alter)
IKJCTA4869 (create)

IKJEFATT (create)
IKJEFGOO {(create)
IKJEFF56 (create)
1KJCT430 (create)
IKJEFHO1 (create)
AKJLKLO2 (create)
IKJEES70 (create)
IKJEE100 (create)
IKJEE 150 (create)
IKJCT466 (create)
IKJCT472 (create)

Acronym

STPB (Continued)

STPL

SVTAB

SWAEPA

TC8
UPT

WPL

28831

Macro

IKJISTPL

{KJEXEC

IEFZB505

IEFZB4D0

IKJTCB

IKJUPT

IEZWPL

IEFZB831

Common Name

Stack Parameter List

Symbolic Value Table
SWA Manager Parameter List

Dynamic Allocation Request Block

Task Control Block
User Profile Table

WTO/WTOR/MLWTO/WTP
Parameter List

GENTRANS Parameter List

Command Processor

PROTECT
RENAME
RUN

SEND
susMIT
TERMINAL
WHEN/END

ALLOCATE
ATTRIB

CALL
CANCEL/STATUS
EXEC

HELP
LINK/LOADGO

OUTPUT

RUN
SUBMIT
WHEN/END
EXEC
SUBMIT

ALLOCATE

ATTRIB
FREE
QUTPUT
SUBMIT
CUTPUT
PROFILE

susMIT

ALLOCATE

ATTRIB
FREE

Module/Access

IKJEHPRO (create)
IKJEHREN {(create)
1KJEFROO (creats)
IKJEES10 (create)
IKJEFFO1 (create)
IKJEF T80 (create)
IKJEFE11 (create)

IKJEFD30 (create)
IKJEFATT (create)
IKJEFRGO (create)
IKJEFF56 {create)
IKJCTA430 (create)
IKJEFHO1 (create)
AKJLKLO2 {create)
AKJLKMSG (create)
IKJCT460 (create)
IKJCT466 (create)
IKJCTA67 (create)
IKJCTA469 {(create)
1KJCT472 (create)
IKJEFROO (create)
IKJEFFO1 {create)
IKJEFE11 (create)

IKJCT431 (create)
IKJEFFO4 (create)

IKJEFD30 (create)
IKJEFD32 (alter)
IKJEFD34 (alter)
IKJEFD36 (alter)
IKJEFATT (create)
IKJEF D20 (create)
1KJCT462 (create)
1KJCT464 (create)
IKJEFF15 (create)

1KJCT463 (alter)
IKJEFT82 (alter)
IKJEFFO2 (create)
IKJEFD30 (create)
IKJEFD32 (alter)
IKJEFD34 (alter)

IKJEFATT (create)
IKJEFD20 (create)

Data Area Usage 157

+158 0S/VS2 TSO Command Processor Logic —~ Volume IV

Started Task Control (STC), passes control to
LOGON Initialization, IKJEFLA. Here, the various
control blocks required for LOGON and the
terminal session are initialized, the ESTAE recovery
routine, IKJEFLS, is established, Master Scheduler
JCL, MSTRICL, is searched to ensure that SYSLBC,
System Broadcast Dataset, and SYSUADS, System
User Attribute Dataset, are available to LOGON
and the subsequent terminal session, and then

LOGON Scheduler, IKJEFLB, is called.

IKJEFLB receives control from IKJEFLA during a
LOGON, and receives control from the Job
Scheduling Subroutine, JSS, during a re-LOGON and
a LOGOFF. IKJEFLB invokes the LOGON Prompting
Monitor, IKJEFLC, and then waits for notification
to either continue with the LOGON by passing
control to JSS, or in the case of a LOGOFF, IKJEFLB
will terminate and pass control back to STC.

IKJEFLC passes control to the LOGOFF
processor, IKJEFLL, in the case of a LOGOFF or a
re-LOGON. Then IKJEFLC passes control to LOGON
Verification, IKJEFLE, who parses the command to
obtain the LOGON data and verify this data against

LOGON Scheduling

the UADS, User Attribute Dataset. In the case of a
LOGOFF, IKJEFLC, notifies IKJEFLB that LOGON
should terminate and then IKJEFLC terminates. For
a LOGON or a re-LOGON, IKJEFLC notifies IKJEFLB
that it should pass control to JSS and then IKJEFLC
passes control to IKJEFLH, the routine that invokes
LISTBC, List Broadcast Dataset.

IKJEFLB passes control to JSS for the LOGON or
the re-LOGON, and JSS eventually passes control to
the Pre-TMP Exit, IKJEFLJ. IKJEFLJ notifies
IKJEFLH that once LISTBC has completed, IKJEFLH
and then IKJEFLC should terminate. After IKJEFLJ
terminates, the TMP is invoked for the users
terminal session.

When a LOGON command, referred to as
re-LOGON, or a LOGOFF command is entered, the
TMP terminates. JSS then passes control to the
Post-TMP Exit, IKJEFLK, for some housekeeping.
After JSS has completed its work it passes control
to IKJEFLB who inturn invokes IKJEFLE to handle
the LOGOFF or the re-LOGON.

Method of Operation 159

[_—' -/ ="
IKJEFLA IKJEFLS STC
| SsTC | ABEND ———
— ———xcrL | Locon ESTAE IxcTL)
|EEPRWI2 XCTL | Initialization | ABEND :‘:dug:{ry | IEEPRTN |
L IEEPRTN _} (error) L= d
CALL
CicrxiNiT
() R
lvrioc |
| Initiatization |
| I
CALL
\
IKJEFLB IKJEFLGB
LOGON
Scheduler IKIEFLC | m] Rotovery IKJEFLG
ATTACH LOGON and Retry
® Attach Monitor Attention [
LOGON i " Processor |—
monitor and Attention Interrup! >l
issue WAIT.
IKJEFLGH
Message -text
{From Part 2)
IKJEFLL IKJEFLPA
For CALL | | 0GoOFF CALL ;::\: and
LOGOFF or |~ Processor P
re-LOGON rocessor
only.
IKJEFLE IKJEFLEA
C! ALLi ~ CALL Parse/Scan
tngON, - Interface
re-LOGON,
ﬁ or LOGOFF.
IKJEFLI
LOGON/ Installation
XCTL] o Terminate - PosT For LOGOFF cALL Exit
and return LOGOFF Verification Interface
to STC. only — issue
POST to
terminate IKJEFLPA
scheduler, CALL Time and
Date
Processor
[xixioc]
CALL | Extended i
| LOGON I
e — —
IKJEFLH
® Schedule POST Forelﬁ?gg‘N CALL i\TTACH
terminal - ORIy — issue LOGON LISTBC
session, only — issu information
:ghgut': Routine
terminal POST/WAIT
session
and call
{To Part 2) IKJEFLH. (To Part 2)

Figure 1. LOGON Scheduling Module Flow (Part 1 of 2)

160 0S/VS2 TSO Command Processor Logic — Volume IV

i ios]
CALL| LoGgON
Reconnect

!
1
—_d

(From Part 1)

{From Part

1)

POST ——— ——n o Issue POST to terminate
XeTL bM—/—m/m/—/———— LOGON information routine.
@ Schedule ——>»| |EESB60S | o Issue WAIT for termination.
terminal Job
sassion,
: Scheduling |
Subroutine | IKJEFLS
CALL
| 1EFsD263 Pre-TMP
= I Exit
(See ““Job |
I Scheduling”) |
I | ——
| Terminal
| | ATTACH| Monitor |<—-| TCAM Terminal
| > | Program l
l : | @ Terminate |
’ I | following l
LOGON or
{To Part 1) | le— tocorr |
| l L command. _|
| |
| I IKJEF LK
CALL
e Reattach |
| — TMP
IKJEFLC to | | pon ™
process E—
re-LOGON < | Legend
or LOGOFF L] :
—_———— - T T T T/
a’ o'::‘m"d :_ Dashed - line boxes surround |
. — T routines that are not
terminal. [_ikTocrF | } documented with the LOGON :
e For TSO/ CALL | Extended | i modules. 1
VTAM logoff | Logoff | -
|

Figure 1. LOGON Schedute Module Flow (Part 2 of 2)

Method of Operation 161

+10

+18

+1C

+20

+34

+3C

+80

+8C

+80

JCLS (n)

\\---“ =S,

LWA ASCB TSB
Communications Info about Info about
area passed to address space terminal status
LOGON modules +38 ’ cscB +58 Passord

+3c |4 Ts8
ASXB
ASX
’ ASCB *6c * 8 Additional info-
+80 { userid address space
+14 (4§ LWA
PSCB
¥ rsce Info from UADS HHLGB
+30 f RLGB / Relogon Buffer
+34 |4 vprt
1 JSEL Info for Job User Profile
Scheduling
Subroutine
JSOL
ECT +4 |4 JsoL |
Options for
f ECT - Inft{ for user's 8 ’ csco Scheduling job
session +C f JCLS \
+10 |} usxo csca
+14 |} ascs p—
DCB for ocs Scheduling
SYS1.UADS D Control Block
TCB
info JcLs (1)
n
Lo%oo'; JCL cards to
— Monitor Task schedule job
or
+ J
IKJEFLC +84 [F ysce 0|4 JcLs @
TCB JSXL
Info for Job
TCB f LoooN Scheduling
aor ti it
IKJEFLA Scheduler Task Subroutine Exits
} wa
+84 |4 Jscs

Work area for
LOGON ESTAI

ESTAI Work Area

Work area for
LOGON ESTAE

ESTAE Work Area

Figure 2. LOGON Scheduling Control Block Overview

162 0S/VS2 TSO Command Processor Logic — Volume IV

JSCB

+1

4 cscs

JSCB8

+108

{ psce

Al SWInjoA — 918077 108800014 pUBWIWO) OSL ZSA/SO 91

Diagram 23.1 LOGON Initialization (IKJEFLA) (Part 1 of 2)

Input

From STC for initial

LOGON (IEEPRWI2) process

Output

l.scvrcrcs
TCB

QDB

CcvT TsB
D | TSBVTAM -:
scv

LOGON Initialization

—> 1

PR

TIOT

TIOT entries

—— e ——

DD name

DSAB
queue

Perform VTIOC initialization

LOGON -terminated messages

%

if the LOGON request was IKJ564521
made to TSO/VTAM. IKJ809I1
> 2 Check that the required data Missing IKJ604! operator
sets are defined: >
e SYS1.UADS
e SYS1.BRODCAST
Missing Return 1
to STC ASCB
Set up the ESTAE. 4 ASXB
ESTAE error messages: PSCB UPT
® IKJ5645621 for terminal. ASXB
o |KJ608I for operator. 1e-LOGON user profile
’ buffer information
Obain and initialize th N A dOPT .
tain and initialize the
control blocks for LOGON. Y[|4 wwa UPT length
c’'LWA’
} Ascs JSXL
} Psce JSEL JSXL length
To LOGON] code=
scheduling 4 JsEL -—>I§Ascs e 9
(IKJEFLB) ECT -
A ACscs T WA
= JSXL Ny
LWAILGN=1 A'IKJEFLY
BLOL list pa_nr)ets of it ATKJEFLK’
tiator
} TCB for tiner A'IKJEFLB’
IKJEFLA A'IKILMY’
ENQ/DEQ RLGB (re-LOGON buffer)
arameter lists
P [length fo| 2520ytes |

§91 uoperadQ Jo popoW

Diagram 23.1 LOGON Initialization (IKJEFLA) (Part 2 of 2)
Extended Description Module ‘Label

LOGON initialization receives contro! from started task con- KJEFLA
tro! {STC) to process an initial LOGON command from a

terminal. The initialization functions are bypassed for a

LOGOFF or reLOGON.

1 IKTXINIT initializes VTAM control blocks and the IKTXINIT
TVWA, and transfers control (OPNDST PASS) of

the terminal user's address space. An OPNDST RPL exit

Is then dispatched by VTAM to verify that the OPNDST

was successful,

2 Two TSO data sets—SYS1.UADS and IKJEELA
SYS1.BRODCAST-—must have been defined by

master scheduler’s JCL (MSTRJCL member of

SYS1.LINKLIB). LOGON initialization checks for these

data sets by searching the master scheduler’s TIOT for the

DD names SYSUADS and SYSLBC. If either of the names is

missing, error messages are issued and LOGON is

terminated.

3 IKJEFLS is used as the ESTAE routine to protect IKJEFLA
and IKJEFLB.

4 LOGON initialization creates the control blocks that IKJEFLA
contain LOGON information needed by the various

LOGON routines. LOGON initialization turns on the initial-

LOGON bit (LWALILGN) to indicate that this is the first

LOGON command to be processed for the current address

space.

Al 2umjoA — 9807 308590014 PUBWUIO) OSL ZSA/SO 99T

Diagram 23.2 LOGON Scheduling (IKJEFLB) (Part 1 of 2)

Input

From LOGON initialization (IKJEFLA) for initial LOGON
or from initiator for LOGOFF or re-LOGON (IEF9D161).

Process

JSEL JSXL

3

ASCB LWA

k

1

ATTACH ECB

LWA
R15

IKJEFLGB

ESTAI
exit

ATTACH
parameter
list

LWA

LOGON monitor ECB

(LWAPECB)

TSB

TSBVTAM

= 4

LOGON Scheduling

If not the initial LOGON, then
detach IKJEFLC if it is still
executing.

Issue an ATTACH for the
LOGON monitor, See Diagram
LOGON Monitor.

Issue a WAIT for
notification to perform
one of two functions:

Output

@ Schedule a terminal

R1
JSEL

A JsXL

session,

o Terminate for a LOGOFF,

Perform VTIOC logoff processing
if the logoff request was made -
from a TSO/VTAM terminal.

Return to

STC
{IEEPRTN)

To
IEESB605

} JcLs

JCLS chain
for LOGON

JSOL

4 Jsor

} csce

scheduling option flags

input to IEESB605

L91 uopendQ jo pogop

Diagram 23.2 LOGON Scheduling (IKJEFLB) (Part 2 of 2)
Extended Description Module Label

LOGON scheduling receives control from LOGON initializa-
tion or from the initiator at the end of the terminal session
{tor LOGOFF or re-LOGON). The new terminal session that
is scheduled following a re-LOGON operates in the same
address space as the initial terminal session.

LOGON scheduling invokes the job scheduling subroutine.
This subroutine interprets the JCL card images that define
the terminal session and attaches the terminal monitor pro-
gram (TMP), which processes commands from the terminal.
The TMP remains active until it intercepts a LOGOFF ora
re-LOGON command from the terminal. At that time, the
TMP terminates and the initiator passes contro! back to
LOGON scheduling to process the command.

1 Upon receiving control from STC for.a LOGOFF or IKJEFLB
re-LOGON, LOGON scheduling ensures that the

LOGON monitor has already terminated. 1f the monitor

is yet active, LOGON scheduling notifies the monitor

{ILWASECB-post code 20} to terminate. Once the

monitor has terminated (LWAPECB-post code 24)

LOGON scheduling detaches it and sets the attach ECB

(LWAAECB) to zero. LOGON scheduling then performs

the attach of the LOGON monitor (Step 2} as usual.

If the LOGON monitor posts LWAPECB with an invalid IKJEFLB WAITUST
post code {(other than 16 and 24), LOGON scheduling
terminates as follows:

@ Detaches the LOGON monitor.

@ Cancels the ESTAE environment. BEXIT
® Places the address of the ASCB in register 1.

@ Returns to STC (IEEPRTN) for CSCB clean-up.

But, if the LOGON monitor has caused an ABEND and

recovery is to be attempted (LWABEND=1), LOGON

scheduling does not terminate; it reissues the ATTACH

of the LOGON monitor {returns to Step 2). LCRESTRT

. Expnded Description Modute

2 LOGON scheduling handles the initial LOGON, a IKJEFLB
LOGOFF, or a re-LOGON. First, it issues an ATTACH

macro instruction to invoke the LOGON monitor {see Dia-

gram “LOGON Monitor’’). The monitor routine executes

until it requires a function that LOGON scheduling

performs. At that time, the monitor notifies LOGON

scheduling via the LOGON monitor ECB (LWAPECB).

3 When notified by the LOGON monitor, LOGON IKJEFLB
scheduling performs one of two functions; the

function performed is determined by the post code located

in the monitor's ECB: (LWAPECB).

post function performed by
code LOGON scheduling

16 Schedules a terminal session as follows: IKJEFLB

o Notifies the LOGON monitor (LWASECB—post
code 16) to invoke the LOGON information
routine IKJEFLH,

o Creates the job scheduling option list {JSOL)
and chains it to the JSEL. The JSOL contains
option flags that affect the scheduling of this
terminal session,

® Moves the JCL card image chain {created by

either the LOGON monitor or the preprompt
exit) from subpool 1 to subpool 253.

o Invokes the initiator routine IEESB605 to
schedule the terminal session.

24 Terminates LOGON scheduling as follows (per- IKJEFLB
formed following a LOGOFF command):

o Notifies the LOGON monitor to terminate
{LWASECB—post code 24).

o Issues 8 DETACH macro instruction for the
LOGON monitor.

o Cancels the ESTAE environment protecting
LOGON scheduling.

o Transfers contro! to STC routing IEEPRTN
for CSCB clean-up.

4 VTIOC logoff processing is performed by IKTLOGFF, IKTLOGFF

Labs!

WAITLIST

ENDJOB

Diagram 23.3 LOGON Initialization and Scheduling Recovery Routine (IKJEFLS) (Part 1 of 2)

From ABEND processing for either
LOGON initialization (IKJEFLA) or
LOGON scheduling (IKJEFLB)

Al ownjoA — 31807 108830014 puBWIWO) OSL ZSA/SO 891

Input Process Output
csce LOGON Initialization and Scheduling
wserid Routine
CHKEY
1 Issue the appropriate] Console and
procname messages. Y| terminal
CHCLS
LWA
user-id *\ 2 Dequeue from the user-id and
LWARNM v detach the LOGON MONITOR.
3 Issue the RACINIT macro to delete
LWAPTID the security contro! blocks.
SDWA
program check .
SDWAPCHK > 4 Schedule a dump, if necessary.
PSW restart SDWA
SDWARKEY SDWARCDE=4
5 If step not entered before, 5
request a retry. v| SDWARTYA=
Address of IKJEFLS1

From ABEND

processing for 6 Return to ABEND processing
RETRY without retry.

(IKJEFLS1)

8 Transfer control to started task
control,

7 Cancel the ESTAE routine, Return to
IKJEFLS. ABEND
processing

Started task control

{IEEPRTN)

691 uonendQ jo poyle

Diagram 23.3 LOGON Initialization and Scheduling Recovery Routine (IKJEFLS) (Part 2 of 2)

Extended Description Module

LOGON Initialization creates an ESTAE environment IKJEFLA
that handles abends that can occur during initialization
and scheduling.

1 Message 1KJE011 is sent to the operator and message IKJEFLS
IKJ56452] is sent to the terminal.

2 Dequeue from the user-id and detach the LOGON
MONITOR. (The LWAPTID is the LOGON monitor
TCB8 pointer.)

3 If the user was in the RACF environment, IKJEFLS
issues the RACINIT macro to delete the security
related control blocks.

4 Obtain a dump for a program check or PSW restart.

5 If not a recursive abend. then indicate “RETRY"” in
the SDWA with the retry routine, IKJEFLS.

6 Return to ABEND processing {IKJEFLS1) to
possibly schedule a retry (see step 4).

7 Cancel the ESTAE environment. IKJEFLS1

8 Transfer control to started task control, IEEPRTN,
by using XCTL.

Label

Al swnjoA — 980T 108500014 puewswo) OSL ZSA/SO OLI

Diagram 23.4 LOGON Monitor (IKJEFLC) (Part 1 of 4)

From LOGON
|nput scheduling (IKJEFLB) Process output
TCB for
cvT LOGON Monitor R1 LWA monitor
CcVvTTCBQ
storage
protect key
current EcY =8(TCBPXF)
TCB > 1 Determine the LOGON environment
monitor’s environment. control
table
LWA defined as.
input source
LWAILGN=0 €< — — — —-]
LWABEND=0 Ja— — —— — ' — — > 2 For LOGOFF or re-LOGON, o
perform LOGOFF processing.
See LOGOFF Processing upda;ef SYS1.UADS
(IKJEFLL). \ user entry
JSEL CSCB
3 Obtain a new command 7\)
scheduling contro! block for -1 ASID (CHASID)
LOGON.
job flags
ASCB -
address step/modify
1 ECB (CHECB)
LOGON verb code
{CHVCD)
4 Establish the attention N IKJEFLG
interrupt exit. v ,
attention
exit

ILT uoperedQ jo poyoy

Diagram 23.4 LOGON Monitor (IKJEFLC) (Part 2 of 4)
Module
IKJEFLC

Extended Description

The LOGON monitor controls the processing that verifies
the LOGON or LOGOF¥F command, and the processing that
issues informational and prompting messages to the termi-
nal, It notifies LOGON scheduling to schedule a terminal
session or, in the case of a LOGOFF, to terminate the
LOGON scheduling task. Some of the informational mes-
sages (that is, mail, notices, and LOGON-proceeding mes-
sages) are issued in parallel with the scheduling of the
terminal session. All LOGON monitor messages are issued
by the message handler IKJEFLGM.

1 The LOGON monitor creates the environment control IKJEFLC
table (ECT), which contains information about 1/0

service routines the monitor will use. Also, the monitor sets

its own storage protection key to 8. This allows the storage

obtained by the monitor to be referenced by programs not

executing in privileged state {for example, LISTBC and the

pre-prompt exit). Finally, the monitor issues a STACK

macro instruction to define the terminal as the first source

of input for time-sharing commands.

Label

INITWKAR

STACK

Module
IKJEFLL

Extended Description

2 LOGOFF processing updates the terminal user's entry
in SYS1.UADS and analyzes the return codes from the
job scheduling subroutine and from the terminal session.
LOGOFF processing is not performed for an initial LOGON
(LWAILGN=1) or for recovery processing (LWABEND=1).
For more detail, refer to the Diagram LOGOFF Processing.

3 The LOGON monitor builds a new CSCB that contains IKJEFLC
the verb code for the LOGON command. This new

CSCB replaces the one built for address space creation proc-

essing (START/LOGON/MOUNT) or, if this LOGON is a

re-LOGON, replaces the CSCB previously created by the

LOGON monitor. (It is important that LOGON establish

a full size CSCB for all logons and re-logons before passing

it to the initiator. The initiator, assuming the full size

CSCB is passed, frees the second portion and uses only

the first portion of the CSCB.)

4 The LOGON monitor issues a STAX macro instruction IKJEFLC
to establish a routine {IKJEFLG) that receives contro!

when the termina! user causes an attention interruption by

pressing the terminal’s attention key. After causing the

interruption, the terminal user may enter a question mark

(?) to request second-level messages or may enter a new

LOGON command to replace the one currently being

processed.

Label

CSCBINIT

TERMINAL

Al uImjoA — 91807 108593014 puswiwo) OSL ZSA/SO ZLI

Diagram 23.4 LOGON Monitor (IKJEFLC) (Part 3 of 4)

Input

Process

LWA

Y PscB

initial LOGON

command

OR

re-LOGON buffer containing

LOGOFF or LOGON command

LWA LWA

attention
interrupt flag

j JSEL LWATNBT = 1

termination
flag
LWADISC =1

cscs

cancel flag

(CHDISC) | —_°0 _ _ _ _ _| —_

LWATNBT =0

LWADISC =0

LOGON monitor
ECB (LWAPECB)

_’8

ECB (LWASECB)

LOGON scheduling

| LWAPPOO

e -

_n

-
N

IKJEFLPO

LOGON -proceeding message
interval {LPOMWAT)

Y

Verify the command.
See Diagram
LOGON/LOGOFF
Verification,

Output

LWA

reset attention-

Return to step 5 to process

AV4

occurred flag

the newly-entered command
if attention interrupt occurred,

(LWATNBT-0)

termination flag

Cancel the terminal session, if

(LWADISC=1)

7

requested. Notify LOGON
scheduling.

Schedule the terminal session, if
requested,

o Notify LOGON scheduling.

(JCLS chain
JSEL deleted)

N[} JcLs=0

o LISTBC—
mail and notices.

o Issue the LOGON information.

o LOGON -

To system (the task

terminates and the mother
task (IKJEFLB) schedules

the foreground job)

proceeding
messages.

€L1 uonewnd(Jo popel

Diagram 23.4 LOGON Monitor (IKJEFLC) (Part 4 of 4)

Extended Description

B The LOGON monitor invokes LOGON/LOGOFF veri-

fication (IKJEFLE) to scan and parse the LOGON or
LOGOFF command. For a LOGOFF or a re-:LOGON, the
command text is found in the re-LOGON buffer; otherwise,
the command is obtained from the terminal. LOGON veri-
fication checks the user’s authorization and LOGON param-
eters against the user information in SYS1,UADS (user
attribute data set) and prompts the user to replace invalid
or missing information, See Diagram “LOGON/LOGOFF
Verification.”

6 If the user presses the terminal’s attention key during
LOGON processing, he may re-enter the LOGON

command. In this case, the LOGON monitor re-invokes

LOGON verification to analyze the newly-entered com-

mand. The attention interrupt flag is reset to zero to

indicate that the interrupt has been completely

processed.

7 If the system operator cancels the terminal user, if
the user has entered a LOGOFF command, or if the

user has failed to enter a valid LOGON command, the

LOGON monitor ends the terminal session as follows:

@ Issues an error messages (1KJ564531) to the
terminal for an operator cancel.

@ Issues a null STAX macro instruction to cancel the
LOGON attention exit.

@ Frees the environment contro} table (ECT).

o Notifies LOGON scheduling to terminate (LWAPECB—
post code 24).

@ Waits for notification from LOGON scheduling to termi-
nate (LWASECB—post code 24).

@ Returns to the operating system via SVC 3.

8 o After LOGON verification has processed a valid
LOGON command, the LOGON monitor notifies
LOGON scheduling to schedule the terminal session
(LWAPECB—post code 16). LOGON scheduling invokes
the job scheduling subroutine of the initiator which
attaches the terminal monitor program (TMP).
eWhen LOGON scheduling is ready to invoke the job sched-
uling subroutine, it notifies the LOGON monitor to con-
tinue its operation. (LWASECB—post code 16). At that

Module

IKJEFLE
IKJEFLEA

IKJEFLC

IKJEFLC

IKJEFLGM

IKJEFLC

IKJEFLC

Labe!

GOTOLE

GOTOLE

Extended Description

time, the LOGON monitor calls the LOGON information
routine, allowing it to execute in paralle! with the sched-
uling of the terminal session. The information routine
attaches the LISTBC processor to issue mail and notices
to the terminal user. Then the routine sets the timer to
expire at the interval specified in the module IKJEFLPO.
The LOGON-proceeding message is issued repeatedly to
the terminal at this timed interval until the initiator is
ready to attach the TMP, At that time, the pre-TMP exit
(IKJEFLJ) notifies the information routine (LWASECB—
post code 20) that the LOGON scheduling process is com-
plete. The routine then cancels the timer and notifies the
pre-TMP exit that LISTBC processing is completed
(LWAPECB—post code 20).

Finally, the LOGON monitor terminates as follows:
—Issues a null STAX macro instruction to cancel the
LOGON attention exit. (Pressing the terminal attention
key no longer has any effect on LOGON processing.)
—Deletes the environment control table (ECT).
—Returns to the operating system via SVC 3.

Error Processing

LOGON scheduling establishes the LOGON monitor’s
ESTAI environment via a parameter on the ATTACH macro
instruction. Since the LISTBC command processor is
attached by the LOGON monitor task, it too is protected
by the ESTAI environment. If the LOGON monitor task or
the LISTBC task terminates abnormally, the ESTAI routine
IKJEFLGB receives control. See Diagram ““LOGON Monitor
Recovery.

The LOGON monitor issues the STACK macro instruction
to initialize the terminal as the source of input for com-
mands. If this process encounters any errors, the LOGON
monitor invokes the message handler to issue appropriate
error messages to the terminal {IKJ56454l) or to the
operator {IKJ608I). Also, the monitor turns on the
LOGON-termination bit (LWADISC).

The LOGON monitor issues the MGCR macro instruction
to chain a new CSCB. If this routine passes back a non-
zero return code, the monitor issues error messages
{IKJ564541) to the terminal via the message handler. If
the cancel bit is on (CHDISC field of the CSCB), a session-
cancelled message (1KJ56453I) is issued by the message
handler. In any case, the monitor ends the terminal
session as in Step 6 of this diagram,

Module Label

IKJEFLH

IKIEFLC CLEANUP

IKJEFLB

IKJEFLGB

IKJEFLC

IKJEFLGM

IKJEFLC

IKJEFLGM

Al PWnjoA — 918077 108530014 puBuIwo) OSL ZSA/SO LI

Diagram 23.5 LOGOFF Processing (IKJEFLL) (Part 1 of 2)

From LOGON
monitor {IKJEFLC), .
lnput Step 2 Processing Output

R1 | ' LOGOFF Processing

LWA ——————————— | = 1 Update the user attribute data set C___SYS1.UADS >
| as follows: user mermbe
r m r
LWANOPR =0 ﬁ PSCB i
LWANUAD =0 |ae » e Update the system attributes. N vapsiBMT
PSCBATR1 I I Y I J v
LWAPSCS PSCBATR2 , > @ Update the user attributes. | | 9 UADSINGT |
/
- PSCBUPT UPT > ® Update the UPT image. > UPT image
accounting | | I I —~—
information 3 ® Update the accounting information. y
account number data block
\J
LWA ~—~—
LWANOPR=0 [€ T ——————— ——t ———— -3 2 Issue the DEQ from the user
_} identification, if necessary.
= second-level
LWANUAD=0 |< | LOGON-failed messages
LWANONQ=0 |- 3 Issue the RACINIT to delete message describing
{ the security control blocks. : error
JSEL JISXL
job scheduling subroutine

{initiator) return code N 4 For an initiator error, issue the
L 4

(JSXL RCOD) error messages. 2nd level message
part of initiator :::r:\::tli’:ion
encountering error > B Analyze the completion code from code

USXL RCXT) the last step of the terminal session. message

LWA Invalidate the LOGOFF/re-LOGON ——

command if there was a system error,

LWARTCD PSCB 2nd level message

6 Issue the LOGOFF terminal message. ¢ re-LOGON buffer “LOGON
information

j")length 0| blanks | | not available”

')I terminal
L4)

Return to LOGON monitor
{IKJEFLC), Step 2

SL1 uonendQ jo poylel

Diagram 23.5 LOGOFF Processing (IKJEFLL) (Part 2 of 2)

Extended Description Module

LOGOFF processing updates the termina! user’s entry in IKJEFLL
SYS1.UADS and analyzes the return codes from the job

scheduling subroutine (initiator) and from the last step of

the terminal session. LOGOF F processing is performed for

a LOGOFF command and for a re-LOGON. it is not per-

formed for an initial LOGON (LWAILGN=1) or for recovery

processing {LWABEND=1).

1 Using the PROFILE command, the terminal user is IKJEFLL
able to change the attributes associated with his user

identification. These attributes are supplied by a member of

SYS1.UADS. LOGOFF processing must update this member

at the end of the terminal session to reflect the changes

made by the user. If the installation has supplied all of the

LOGON information normally supplied by SYS1.UADS

(LWANOPR=1 and LWANUAD=1}, it is not necessary to

update the user’s member of SYS1.UADS.

if any of the three bits LWAATR1, LWAATRZ2, and
LWABUPT are off, the corresponding information (system
attributes, user attributes, and the user profile, respectively)
was not supplied by the installation. The information not
supplied by the instatlation (and, therefore, subject to
changes made via the PROFILE command) is updated by
LOGOFF processing.

If LWAACCT#0, the user’s accounting information in

SYS1.UADS is also updated. Accounting information con-

sists of the following items: the length of the terminal ses-

sion, the amount of processor time used, and the number

of service units used,

2 LOGOFF processing must release the user identifica- IKJEFLL
tion resource that was obtained during LOGON veri-

fication. LOGOFF issues the DEQ macro instruction, |f

the three bits LWANOPR, LWANUAD, and LWANONQ

sre turned off, an ENQ was never issued on the user

identification. In this case, a DEQ is not necessary.

3 If the user was in the RACF environment, IKJEFLL
issues the RACINIT macro to delete the security
related contrcl blocks.

Label

UPDTUADS

DEQUSER

Extended Description Module

4 If the job scheduling subroutine encountered an error IKJEFLL
{(LWARTCD#0), LOGOFF processing examines the

field JSSXLRCXT to determine what part of job scheduling

failed. Next, it examines the fields JSXLRCOD and

LWARCDE to determine the nature of the error. Finally,

LOGOFF informs the message handler {(IKJEFLGM) to

build the appropriate second-level message (IKJ564571 to

terminal).

5 LOGOFF analyzes the return code from the last step IKJEFLL
of the terminal session (LWARTCD) and builds an

appropriate second-level message (IKJ56470I to terminal)

via the message handler. |f the code is a system return

code, the re-LOGON buffer is considered to be unusable

and is filled with blanks. In this case, LOGON/LOGOFF

verification must prompt the user for a LOGON or LOGOFF

command. (See Diagram LOGON/LOGOFF Verification.)

The exception is a system return code that was generated
by attention exit processing {indicated by LWATNBT=1).
The attention exit posts the cancel ECB in the CSCB with
a system code of 622, so that the job scheduling subroutine
terminates in the same way as for an operator cance!. In this
case, there is no reason why the re-LOGON buffer would be
unusable; therefore, the contents of the buffer are retained.

6 LOGOFF calls the LOGON time and date processor IKJEFLL
(IKJEFLPA) to set up the date and time-of-day

buffers for the logged-off message. Then LOGOFF invokes

the message handler to issue the logged-off message to the

terminal (IKJ564701).

Error Processing

If, at any time, LOGOFF processing encounters an 1/O
error, an OPEN error, or a service routine error, it issues an
error message {1KJ564541) to the terminal via the message
handler and turns on the LOGON-termination bit.

IKJEFLL

Label

LGMSETUP

Al 2umjoA — 807 108830014 puBwIo) OSL ZSA/SO 9.1

step 5

Diagram 23.6 LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) (Part 1 of 4)
From LOGON monitor
Input (IKJEFLC),sten 5 Process Output
TSB
ﬂ 1 Perform v-_r:?hc :°9°" R1 {for pre-prompt exit)
I TSBVTAM !—‘ processing if the logon request
:> was an initial logon request to ;SraGrroueh:ef buffers 4 Lwa
TSONTAM. for LOGON 4 LOGON parm. buffers
2 Indi hether in LOGON or For installation
R1 ndicate whether in values for + command input buffer
mode or SUBMIT mode. LOGON
T E @ Invoke the pre-prompt exit parameters
I if in LOGON mode. See LOGON
Pre-prompt Exit Interface
LWA LWA
40 : O(OI:?BEfviI;L)'cominue for LOGOFF
pre-prompt g— |- — — < J‘> termination flag (LWADISC = 1)
exit fla —
(LWABQLR) 3 Prepare for re-LOGON. > initial-LOGON flag {LWAILGN = 0)
LWANUAD =1 |t— —
LWANOPR =1 |t —|—— — 4 » 4 LOGON verification not
necessary: skip to Step 8.
(Means installation has re-entered
supplied user data) command
LWA l}
initial LOGON 1’> 5 Obtain the command:
command
PScCB
e [f neither LOGON or
OR LOGOFF — prompt Y
terminal user to re-enter
command.
re-LOGON buffer LWA
oo:gglct)\a o * LOGOFF — indicate termination flag
re- command termination; bypass
verification. > (LWADISC = 1)
return to
o LOGON — continue LOGON
verification. monitor
(IKJEFLC),

uoneradQ jo poypey

LLt

Diagram 23.6 LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) (Part 2 of 4)

Extended Description Module Label

LOGON/LOGOFF verification scans the LOGON or IKJEFLE
LOGOFF command and checks the LOGON parameters

against the information in the user’'s member of the

SYS1.UADS data set. As the verification process is checking

LOGON parameters, it records valid LOGON information in

various control blocks. An optional installation exit

{pre-prompt exit IKJEF LD) can replace any part or all of the
verification processing. If the LOGON is valid, JCL card

images {JOB and EXEC) that define the terminal session

are built.

When SUBMIT enters LOGON verification, the LOGON
command is parsed and the results are returned to SUBMIT
(IKJEFFO8). SUBMIT then builds JCL statements to
execute commands in the background. The pre-prompt exit
interface will not be invoked.

VTIOC logon processing is done only for an initial IKTXLOG

logon to TSO/VTAM, not for a relogon or a logoff.
2 If the VCON for the installation exit {IKJEFLD) is IKJEFLE GOTOIER
non zero (indicating an installation exit is present
and link-edited into the LOGON load module}, the
interface routine IKJEF L1 is invoked to initialize a
parameter list for the exit. (See Diagram LOGON
Pre-prompt Exit Interface.) The interface does not pass
control to the pre-prompt exit {IKJEFLD) if the command
isa LOGOFF or if LOGON is invoked from SUBMIT
The initial-LOGON flag is turned off following the IKJEFLE
first GETLINE macro instruction issued by
LOGON/LOGOFF verification. Any subsequent LOGON
command entered by the terminal user for the current
address space is considered to be a re-LOGON.

Extended Description

4 LOGON/LOGOFF verification returns to the LOGON
monitor if the termination flag is on (LWADISC) or if
the cance! flag is on (CHDISC). If the pre-prompt exit has
supplied all the LOGON information and indicates that no
verification is necessary, the normal verification is bypassed.

After the command scan service routine (IKJSCAN)
scans the command for LOGON or LOGOFF, the veri-
fication process continues as follows:

e If neither command was found, the terminal user is
prompted to enter LOGON or LOGOFF and the scan

is repeated.

o If the command was a LOGOFF, the verification process
returns control to the caller, the LOGON monitor. Fora
LOGOFF HOLD (TSBHLDL=1), terminal input/output
control (TIOC) for TSO/VTAM keeps a line open
to the terminal.

If at any time a terminal line is accidentally disconnected
TI0C or VTIOC retains, for a time specified in IKJPRMOO
of SYS1.PARMLIB, the control blocks and the address
space used for the current terminal session. If the termina!
user then enters a LOGON RECONNECT command with
the same user identification as the retained address space,
TI0C or VTIOC reinstates the user in that address space.

o If the command was a LOGON, the verification process
continues (see Step 5).

Module

IKJEFLE

IKJEFLEA

Labe!

LOGONOFF

Al 2wnjoA — 91807 05390014 puswwo) OSL ZSA/SO 8.1

Diagram 23.6 LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) (Part 3 of 4)

Input

user member

SYS1.UADS

5

N

descriptive data

Process

6 Parse the LOGON command

for parameters.

e |t SUBMIT has invoked
LOGON, return to SUBMIT,

o Otherwise, continue.

> 7 Check the user authorization; issue

an ENQ on the user idenfication.

8 Interface with RACF to create
the security related control blocks.

> 9 Validate the LOGON information
supplied by the user and record it
in the system contro! biocks.

cvT
old new
Tce |1 Tee
LWA JSEL TCB
4 pscs -] 4 cscs _I } ssce
LWA
LWAJCL=0 |&— — — — — — —

—®» 10 Build the JCLS chain to define the
terminal session.

Return to

Output
LOGON parameter buffers
>| parameter values 1
susmIT
{IKJEFFO08)
ASCB cscs
JSCB ECT PSCB
JSEL LWA
EXEC I
’> Jos
V| process message
LOGON

monitor (IKJEFLC),

step 6

6L1 uopendQ Jo poylol

Diagram 23.6 LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) (Part 4 of 4)

Extended Description Module Labe!

6 The verification process invokes the parse service IKJEFLE
routine {IKJPARSE) to check the syntax of the

LOGON command. If the command contains the

RECONNECT parameter, LOGON determines whether

the user identification is already assigned to an address

space (one that TIOC or VTIOC retained following a

disconnected line). If the user identification has an

address space assigned to it, RACF is called to verify

user and terminal access security and TIOC or VTIOC

reinstates the user in the retained address space. |f

the user identification has no address space assigned

to it, the LOGON RECONNECT is rejected.

7 LOGON verification opens the SYS1.UADS data IKJEFLE OPEN
set {user attribute data set) and copies into real

storage the member associated with the user identification

on the LOGON command and then ensures that the user

identification is authorized. The user identification and

its length are stored in the PSCB (protected step control

block). Then LOGON issues an ENQ on the user

identification resource. If the resource has already been

obtained, LOGON verification reinvokes the pre-prompt

exit if it exists. The installation can choose to authorize

the user or to cancel the LOGON process.

8 The RACINIT macro is issued by IKJEFLE
causing RACF to create security related

control blocks associated with the user identification

and password.

TSBSRCH

Extended Description Module

O LOGON verification compares the LOGON parameter IKJEFLE

values with the user information in SYS1.UADS to
check for the validity of the LOGON parameters. |f param-
eters are invalid or missing, LOGON verification prompts
the user for correct parameters. The user’s reply is re-parsed
and verified. Verification checks the user’s password,
account number, procedure name, region size, and perfor-
mance group. The system resources manager checks that the
group can be used at this time. The job entry subsystem
verifies that the destination choice (DEST parameter)
defines a valid device for SYSOUT data sets.

If the user is RACF defined, then password verification

with the UADS is bypassed. Both the password and

group identification are verified by RACF. The

remaining LOGON data is verified against the UADS.

10 f LWAJJCL=I, the pre-prompt exit has supplied the IKJEFLEA
JCL card images that define the terminal session.

Otherwise, LOGON processing constructs the JCL card

images as follows:

/luserid JOB ‘account #*, REGION=region size
//procname EXEC procname,PERFORM=performance
group
where the userid (user identification), account # region
size, and performance group are obtained form the LOGON
parameters, from the user’s member of SYS1.UADS, or
from the pre-prompt exit.

Error Processing

If the LOGON is an initial LOGON (LWAILGN=1), and the
address of the terminal input line is zero, LOGON verifica-
tion obtains a line from the terminal (issues a GETLINE for
the terminal). LOGON verification is part of the LOGON
monitor task and, therefore, is protected by the monitor’s
ESTAI environment in case of an ABEND.

IKJEFLE

IKJEFLGB

Label

BUILDJCL

180 OS/VS2 TSO Command Processor Logic — Volume IV

181 uopesd(JO poIoW

The following data areas contain TSO user information supplied by the SYS1.UADS
data set, by the installation, or by the LOGON parameters:

Data Area Name Field Name Contents
ASCB ASCBJBNS Address of user identification.
cscs CHCLS Procedure name for this LOGON,
CHKEY User identification.
ECT ECT Flags that control LISTBC processing.
EXEC card image Procedure name for this LOGON.
Performance group number,
JOB card image Account number,
Region size,
JSEL JSEL Address of JCL card images.
JSOL JSOLDEST Default destination for SYSOUT data sets.
LWA LWACTLS Control switches set by the installation exit.

LWADEST2 Default destination for SYSOUT data sets.

LWAACCT Offset of accounting information in SYS1.UADS.

LWATCPU Total CPU time used.

LWATSRU Total service units used.

LWATCON Total time connected to the system.

LWARTCD Completion code for the last step of the terminal session.

PSCB PSCBUSER User identification,

PSCBUSRL Length of user identification,

PSCBATR1 System attributes: switches that control use of OPERATOR, ACCOUNT, and SUBMIT
commands, that indicate volume and mount authorization, and that define the attention
key as the line-delete key.

PSCBATR2 User attributes — reserved for installation use.

PSCBGPNM Generic unit name,

PSCBRSZ Region size.

TSB TSBPSWD Password.
UPT UPTSWS Environmental switches,

UPTNPRM No-prompting switch,

UPTMID Switch that controls printing of message identifiers,

UPTNCOM Switch that controls SEND command authorization.

UPTPAUS Switch that indicates whether to pause for a **?’.

UPTALD Switch that defines the attention key as the line-delete key.

UPTMODE Switch that controls printing of mode messages.

UPTWTP Switch that allows the user to receive WTP messages,

UPTCDEL Character-delete character.

UPTLDEL Line-delete character.

UPTPREFX Data set name prefix,

UPTPREFL Length of data set name prefix.

Figure 3. Data Areas Containing LOGON User Information

Al oumjoA — 518077 105590014 puBwwio) OSL ZSA/SO 81

Diagram 23.7 LOGON Pre-prompt Exit Interface (IKJEFLI) (Part 1 of 2)

From LOGON/LOGOFF
verification (IKJEFLE),

Input step 1 Processing Output
ma—A"m"‘e‘ef list LOGON Pre-prompt Exit Interface
A wwa
1 For LOGOFF, bypass the
* parameters ﬁ,> pre-prompt exit,
) Return
parameters for
IKJEFLGM parameter
descriptors
]
parameter list parameters
R1 ,\descriptors
[]
\Q ") 2 Invoke the pre-prompt .
[v exit, .
. IKJEFLD
: :)| ')

. installation- L
written LOGON N / /
processing LOGON user

CvT Input to < information
1" [foatce + new TCB step 3
L 3 Check the information provided by
TCB the pre-prompt exit.
LWA . ASCB TSB CSCcB
4 Jsce > Copy the information into the -
LWA JSEL LOGON control blocks. > + PSCB 1
1 |A csce
Jscs ECT UPT PSCB
4 Issue an ENQ on the user identification N\
resource, if necessary.

Reinvoke the pre-prompt exit if the
user identification is in use.

See Figure 2-8.

Return to LOGON/LOGOFF

verification (|
step 1

KJEFLE),

€81 uoneadQ JOo poyIs|

Diagram 23.7 LOGON Pre-prompt Exit Interface (IKJEFLI) (Part 2 of 2)

Extended Description Module Label

The LOGON pre-prompt exit interface invokes the LOGON IKJEFLI
pre-prompt exit which is a routine written by the installa-
tion. The pre-prompt exit can provide LOGON information
on behalf of the terminal user, verify the user's LOGON
command, and collect accounting information. Any user
information provided by the pre-prompt exit overrides the
information stored in the user's member of the SYS1.UADS
data set. In fact, an installation can, if it wishes, replace all
of the normal LOGON verification processing. For direc-
tions on writing the exit routine, refer to the topic, Writing
a LOGON Pre-prompt Exit in the publication 0S/VS2
System Programming Library: TSO, GC28-0629.

1 The pre-prompt exit interface uses the command scan IKJEFLI
service routine {IKJSCAN) to determine if the com-

mand is a LOGON or LOGOFF. If itis a LOGOFF, the

interface does not invoke the pre-prompt exit. Instead, it

returns to its caller.

2 The interface builds and passes to the pre-prompt exit LI0100
a parameter list that defines those parameters the pre-

prompt exit needs to verify the LOGON command and to

provide LOGON information. Most of the addresses in the

parameter list point to two-word descriptors. The first word

of the descriptor contains the address of the actual param-

eter, The second word contains both the maximum length

for the parameter and the actual length.

Extended Description

3 After invoking the pre-prompt exit, the interface rou-
tine checks the parameter list for validity:

o Ensures the parameter list is unchanged.

o Ensures the parameter descriptors are unchanged, except
for the field containing the actual length of the parameter.

® Checks that the actual length of each parameter does not
exceed the maximum length for the parameter.

if errors are discovered, the interface invokes the message
handler (IKJEFLGM) to issue error messages and terminates
the terminal session (LWADISC=1). If no errors are found,
the interface copies into the appropriate control blocks all
user information provided by the pre-prompt exit. A con-
trol field in the LOGON work area (LWACTLS) contains
bits that indicate what information the installation has
provided.

4 If the pre-prompt exit has specified in the LOGON

work area that the terminal user is not to be prompted
(LWANOPR=1), that all LOGON information has been veri-
fied (LWANUAD=1), and that an ENQ is to be issued
(LWANONQ=0), then the interface issues an ENQ on the
user identification resource. If the resource is already in use,
the pre-prompt exit is re-invoked to determine a course of
action. The installation may choose to allow more than one
user with the same user identification to be logged-on simul-
taneously (LWANONQ-=1). In this case, the interface does
not issue an ENQ on the user identification resource. Or,
the installation may, instead, choose to terminate the ses-
sion (LWADISC=1).

Error Processing

If either the LOGON pre-prompt exit interface (IKJEFLI)
or the pre-prompt exit {IKJEFLD) cause an ABEND, the
LOGON monitor’s ESTAI routine IKJEFLGB is invoked by
ABEND processing. In certain cases, the ESTAI routine
schedules a re-attach of the LOGON monitor task. See Dia-
gram, LOGON Monitor Recovery.

Module

IKJEFLI

IKJEFLI

IKJEFLGB

Label

L1800

v81

Al dunjop — 21307 108530014 puewWIWO) OS.L ZSA/SO

Diagram 23.8 LOGON Monitor Recovery (IKJEFLGB) (Part 1 of 2)

Input

From ABEND
processing for the

LOGON monitor Processing

SDWA

R1

parameter hst

JSEL

CscCsB

cancel flag
(CHDISC)

flags indicating
type of
program check

j>'|

ABEND code

* parameter hist

LWA

flag indicating that
LOGON verification
caused ABEND
(LWAPHASE =0)

I > 2 Forauser ABEND, bypass

LOGON termination
flag (LWADISC)

recovery counter
(LWALPCNT)

type-of-ABEND flags
(LWAPSW, LWAPCK,
LWAMCK)

Mubpoots 0, 1

LWA

flag indicating that
LOGON information
routine caused ABEND
(LWAPHASE = 1)

LISTBC flag
(LWALTCB)

| — — — — — — 3
14

[

l

e} —]
5

address of UADS DCB
(LWAPDCB)

e

I'1,and 78 —

LOGON Monitor Recovery

Output

SDWA

Sciedule a dump, 1 necessary.

recovery.

For a LOGON/LOGOFF
verification error, determine if

ﬁ

dump indicator

recovery is possible; issue the

appropriate messages.

For an error during LOGON
information routine, issue the

appropriate messages.

Prepare for a return to ABEND
processing:

o Close the SYS1.UADS data set.

e Cancel the attention exit.

e Delete the unneeded storage areas.

o Issue the RACINIT to delete the
security related control blocks.

continue
ABEND
processing
LWA internal work area
ABEND recovery
indicator indicator
(LWABEND)
recovery
counter + 1
(LWALPGNT +1)
> console and
terminal
J'> console and/or
terminal
Return to

ABEND processing

§81 uwonendQ jo poylo

Diagram 23.8 LOGON Monitor Recovery (IKJEFLGB) (Part 2 of 2)
Extended Description Module Label

The LOGON monitor recovery routine receives control from IKJEFLGB
ABEND processing following the abnormal termination of

the LOGON monitor task. LOGON monitor recovery is an

ESTAI routine that was specified on the ATTACH macro

instruction when the LOGON monitor was attached by the

LOGON scheduling task. If possible, a retry of the LOGON

monitor is attempted by informing the LOGON scheduling

task to re-attach the LOGON monitor (LWABEND = ‘1’ B).

1 A dump is scheduled if the abnorma!l termination was IKJEFLGB
the result of a program check or a PSW restart (an

external interrupt from the operator).

2 1f the ABEND code represents a user completion code, IKJEFLGB
then recovery of the LOGON monitor task is not

attempted. LOGON monitor recovery issues no error mes-

sages and passes control back to ABEND processing to con-

tinue the abnormal termination.

3 1f the LOGON monitor abnormally terminated during IKJEFLGB PHASE1
LOGON/LOGOFF verification, recovery of the

LOGON monitor task is scheduled {LWABEND=1).
Recovery is not attempted in the following cases:

o The system or the operator has canceled the terminal
session (CHDISC=1),

o The terminal session is scheduled for termination
(LWADISC=1),

e Four recoveries have already been attempted
(LWALPCNT=4).

o The current ABEND is the same type as the previous one
(determined by checking bit settings in the LOGON work
area: fields LWAPSW, LWAPCK, and LWAMCHK).

LOGON monitor recovery builds and issues appropriate
messages to the terminal and to the system operator. One
set (1IKJ564511 for the terminal and 1KJ603) for the
operator) is issued if the LOGON pre-prompt exit terminated
abnormally (LWAINX1=1). Another set (IKJ56452| for the
terminal and IKJ6011 for the operator) is issued if
LOGON/LOGOFF verification itself terminated abnormally
{LWAINX1=0).

MSGINIT

Extended Description Module Label

4 \f the ABEND occurred after the user’'s LOGON infor- IKJEFLGB
mation has been processed and the terminal session has

been scheduled (that is, LWAPHASE=1), recovery may not

be necessary. If LWAPHASE=1, the ABEND occurred either

during LISTBC command processing or during the issuing of

the LOGON-proceeding messages (issued by LOGON mod-

ule IKJEFLH). If LISTBC caused the ABEND

{(LWALTCB=1), LOGON monitor recovery issues an error

message to the terminal (1KJ564061) and the LISTBC task

terminates. In this case, the scheduling of the terminal

session proceeds normally. If the LOGON module IKJEFLH

caused the ABEND, LOGON monitor recovery does not

schedule a re-attach of the monitor (LWABEND=0) but does

issue error messages to the terminal (IKJ56452) and to the

operator (IKJ601).

PHASE2

5 LOGON monitor recovery performs exit processing IKJEFLGB

as follows:

@ Closes the SYS1.UADS data set using the DCB address
in the LOGON work area. If this address is zero, recovery
does not issue the CLOSE macro instruction. Recovery
also issues a DEQ on the SYS1.UADS directory resource.

CLOSUADS

@ Issues a null STAX macro instruction to cancel the
attention exit. Pressing the terminal attention key no
longer has any effect on LOGON processing.

o Frees the storage allocated to subpools 0, 1, and 78. FREECORE

o If the user was running in the RACF environment, the
RACINIT macro is issued to delete security related
control blocks.

Al JumjoA — 3807 108890014 puEwWO) OSL ZSA/SO 981

Diagram 23.9

Pre-TMP Exit (IKJEFLJ) (Part 1 of 2)

From the initiator (IEFSD263)
before it attaches the terminal

Process

Pre-TMP Exit

> 1 Pre-FREEPART processing:

o If the LOGON monitor is
active, notify it to terminate.

e Detach the LOGON monitor
{IKJEFLC).

) 2 Post-FREEPART processing:

Input monitor program (TMP)
. 1EL
(1] WA
IEL Exits [| LWAAECB
} LcT LWASECB
JSEL addresses
of ugility
JSXL routines
LeT } pscs
4 usce
UPT
PSCB

® Initialize and chain the PSCB.

> e Move the UPT and the re-LOGON

\
\ RLGB

[re-LOGON bufter

1
1

buffer to allow access by
command processors.

Move the PSCB.

Return to
initiator
(IEFSD263)

Output
Jscs
PSCB
user’s region
size
5 (PSCBRSZ)
current time
{PSCBLTIM)
SPO SP 252
>"- _______ = :’ I |
I |
1 re-LOGON | | ! |
| buffer : : 1
|) |
o o e - = — ——— N S |

L81 uoperadQ Jo POyl

Diagram 23.9 Pre-TMP Exit (IKJEFLJ) (Part 2 of 2)

Extended Description Module Label

The initiator (|IEFSD263) invokes the pre-TMP exit before
attaching the terminal monitor program (TMP}; it invokes
the post-TMP exit after the TMP terminates. The pre-TMP
exit prepares for the terminal session to begin by notifying
the LOGON monitor task to terminate. The pre-TMP exit
has two parts; an entry point name is assigned to each part.
The first part is invoked before the initiator issues the
FREEPART macro instruction (pre-FREEPART process-
ing). The second part is invoked following the FREEPART
{post-FREEPART processing).

IKJEFL)

1 This step represents pre-FREEPART processing. It is IKJEFLJ IKJLM1
performed before the initiator issues the FREEPART

macro instruction. Since the LOGON monitor task may still

be active, the data areas it uses must not be deleted {by

FREEPART) until the task is notified to terminate.

e Pre-FREEPART processing notifies the LOGON monitor
task to terminate (LWASECB—post code 20). When the
monitor task terminates, it notifies pre-FREEPART proc-
essing to continue (LWAPECB—post code 20). See
LOGON Monitor (IKJEFLC).

o The System Initiated Cancel (SIC) is notified that
the TMP was executing when the line dropped or
the user canceled. SIC will then notify the Post-
TMP exit to free other users who are waiting on
this memory. For example, SEND W/WAIT
option sent to a canceled memory can cause the
sender to wait forever unless the Post-TMP exit
frees the sender.

Extended Description Module

2 This step represents post-FREEPART processing. It is IKJEFLJ
performed after the initiator issues the FREEPART

macro instruction. Post-FREEPART processing now can

move the UPT and the re-LOGON buffer to subpool 0

(which is deleted by the FREEPART).

o Post-FREEPART processing invokes the SWA manager to
obtain the user's region size from the step control block
(SCB). The region size is stored in the protected step con-
trol block {PSCB). If the SCT indicates that the terminal
session is a job’'with more than one step, post-FREEPART
processing passes a non-zero return code back to the initi-
ator, which then terminates the job, The current time of
day is also stored in the PSCB for later use in computing
the length of the terminal session.

o The UPT and the re-LOGON buffer are moved to sub-
pool O (a non-protected subpool) so that the command
processors may alter them during the terminal session.
The PSCB is moved to subpool 252; the command proc-
essors cannot alter data areas in subpool 252,

Label
IKJLI

Al 3wnjoA — 21807 108530014 puBWWO) OSL ZSA/SO 881

Diagram 23.10 Post-TMP Exit (IKJEFLK) (Part 1 of 2)

From the initiator (IEFSD263)

|
|
1¢-LOGON
>: uPT buffer pPsca
|

LWA

> Lwarcoe

total processor time
(LWATCPU)

Input after TMP terminates Process
Post-TMP Exit
1 Move the UPT and the re-LOGON
LCT buffer to protect them from being
deleted. Move the PSCB.

last-step

cgcrjncpletlon > 2 Save the completion code from the

?LCTPARMQ) last step of the terminal session.

LWA
ASCB
1 -

?:;:Jsssrgg:sed for 3 Update the terminal user’s
accounting - - J]> accounting information.
information service units used

for this session

PSCB
LOGON time of day
(PSCBLTIM) Return to

the initiator

(IEFSD263)

> total service units
(LWATSRU)

total user connect time
(LWATCON)

681 uonendQ jo poeon

Diagram 23.10 Post-TMP Exit (IKJEFLK) (Part 2 of 2)
Extended Description Module

The initiator (IEFSD263) invokes the post-TMP exit after
the TMP terminates. The post-TMP exit saves the comple-
tion code from the last step of the terminal session and
updates the user’s accounting information in the LOGON
work area. Then, the initiator performs termination process-
ing and passes control back to the LOGON scheduling task.

1 The post-TMP exit moves the UPT and the re-LOGON IKJEFLK
buffer from subpool 0 to subpool 230 to prevent job

scheduling from deleting them during job termination. The

PSCB is.also moved to subpoo! 230.

2 The post-TMP exit saves the completion code from the IKJEFLK
last step of the terminal session, obtaining it from the

linkage control table (LCT). The completion code is later

analyzed by LOGOFF processing to determine if the terminal

session terminated abnormally. See Diagram LOGOFF

Processing.

3 The post-TMP exit updates the accounting information IKJEFLK
in the LOGON work area to account for the system

resources used during the terminal session that is now

terminating.

Error Processing IKJEFLJK

If either the pre-TMP exit or the post-TMP exit causes an
ABEND, LOGON scheduling’s ESTAE routine IKJEFLS
is invoked by ABEND processing. The function of this
ESTAE routine is described under Error Processing in the
diagram LOGON Initialization and Scheduling.

Label

IKJLK1

IKJLK1

190 OS/VS2 TSO Command Processor Logic — Volume IV

ABEND processing 12
ALLOCATE
command processing overview 20-21
concatenate Data Set processing 34-35
DUMMY request processing 32-33
MOD Data Set processing 30-31
NEW Data Set processing 28-29
OLD or SHR Data Set processing 26-27
SYSOUT Data processing 24-25
Terminal processing 22-23
ASCB (address space control block)
in LOGON
initialization 164
monitor 170
post-TMP exit 188
scheduling 166
in LOGON/LOGOFF verification 178
ASXB (address space extension block)
in LOGON initialization 164
ATTENTION interruptions 12
ATTRIB command processing 37

CALL command processing 38-41
CANCEL/STATUS processing 4243
Common command routine (IKJCT432) 72-73
COMMAND SCAN 11
CONTROL routine (IKJCT432) 68-69
CSCB (command scheduling control block)
in LOGON
monitor 170
monitor recovery 184
pre-prompt exit interface 182
recovery routine 168
in LOGON/LOGOFF verification 178
CVT (communications vector table)
in LOGON
initialization 164
monitor 170
pre-prompt exit interface 182
in LOGON/LOGOFF verification 178

DAIR Dynamic Allocation Interface Routine 11
Data area usage 151

DATA to ENDDATA routine (IKJCT432) 74-75
DO routine (IKJCT432) 60-61

ECT (environment control table)
in LOGON
monitor 170
pre-prompt exit interface 182
in LOGON/LOGOFF verification 178
ELSE routine (IKJCT432) 58-59
END
WHEN/END processing 144
END routine (IKJCT432) 64-65

Index

ERROR/ATTN routine (IKJCT432) 62-63
Error termination
procedure 13
EXEC
command main control (IKJCT430) 4849
Command processing operation 4547
Command Record Scan routine (IKJCT432) 54-55
COMMAND Symbolic Parameter definition
(IKJCT431) 50-53
EXTRACT 11

FREE command processing 76-79
GETLINE 11

HELP
processing 78-79
processing HELP Data Set member 80-81
reading HELP Data Set 82-83

Hierarchy of M.O. Diagrams 17-19

IF routine 56-57

IKJEF]J, function 186
IKJEFLA, function 164
IKJEFLB, function 168
IKJEFLC, function 170
IKJEFLE, function 176
IKJEFLEA, function 176
IKJEFLGB, function 184
IKJEFL], function 182
IKJEFLK, function 188
IKJEFLL, function 174
IKJEFLS, function 168

JSCB (job step control block)
in LOGON
pre-prompt exit interface 182
pre-TMP exit 186
JSEL (job scheduling entrance list)
in LOGOFF processing 174
in LOGON
initialization 164
monitor 170
monitor recovery 184
pre-prompt exit interface 182
scheduling 166
in LOGON/LOGOFF verification 178
JSOL (job scheduling options list)
in LOGOFF processing 166
JXSL (job scheduling exit list)
in LOGOFF processing 174
in LOGON
initialization = 164
scheduling 166

Index

I-1

LINK and LOADGO processing ~ 84-85 PSCB (TSO protected step control block)

LISTALC in LOGOFF processing 174
processing overview 86-87 in LOGON
DSAB processing 88-89 initialization 164
monitor 170
LISTALC (continued) post-TMP exit 188
HISTORY processing pre-prompt exit interface 182
VSAM 9091 preTMPexit 186
NON-VSAM 92-93 in LOGON/LOGOFF verification 176
STATUS processing 94-95 PUTGET 11
MEMBERS processing 96-97 PUTLINE 11
LISTBC
processing overview 98-99 READ/READDVAL/GLOBAL routine 70-71
NOTICES message processing 100-101 RENAME command processing 124-125
MAIL message processing 102-103 RUN
LISTDS command processing overview 126-127
processing overview 104-105 building a RUN command list 128-129
HISTORY processing
VSAM 106-107 SEND
NON-VSAM 108-109 overview and operator processing 130-131
STATUS processing 110-111 user processing 132-133
MEMBERS processing 112-113 adding SEND text to the Broadcast Data Set 134-135
LABEL processing 114-115 SET routine 66-67
LOADGO processing 84-85 SCAN 11
LOGOFF processing 174 SERVICE routine 11
LOGON STACK 11
data areas with user information 181 SUBMIT
initialization 164 processing 136-137
monitor 170 JCL processing 138-139
post-TMP exit 188
pre-prompt exit interface 182 TCB (task control block)
pre-TMPexit 186 in LOGON
recovery monitor 184 initialization 164
recovery routine 168 pre-prompt exit interface 182
scheduling module flow 160 in LOGON/LOGOFF verification 178
scheduling processing 166 TEST command 12-13
LOGON scheduling, control block overview 162 Terminal Monitor Program 11
LOGON scheduling, introduction 159 TERMINAL operational characteristics 140-141
LOGON/LOGOFTF verification 176 TIME command processing 12-13, 142-143
LWA (LOGON work area) TIOT (task 1/O table)
in LOGOFF processing 174 in LOGON initialization 164
in LOGON TMP
initialization 164 attention exit routine 12
monitor 170 TSB
monitor recovery 184 in LOGON
post-TMP exit 188 initialization 164
pre-prompt exit interface 182 pre-prompt exit interface 182
pre-TMP exit 186 scheduling 166
recovery routine 168 in LOGON/LOGOFF verification 178
scheduling 166
in LOGON/LOGOFF verification 176 UPT (user profile table)
in LOGOFF processing 174
Message handling 13 in LOGON
pre-prompt exit interface 182
OPERATOR command processing 116-117 pre-TMP exit 186
OUTPUT processing 118-119 in LOGON/LOGOFF verification 178
PROTECT command processing 122123 WHEN/END processing 144-145

PROFILE processing 120-121

I-2 0S/VS2 TSO Command Processor Logic — Volume IV

ted moil sorting equipment.

Pleose use pressure sensitive or other gummed tape to seal this form.

with

Note: Staples can cause probl

Cut or Fold Along Line

OS/VS2 TSO READER’S

Command Processor COMMENT
Logic Volume IV FORM
SY28-0652-4

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

0S/VS2 TSO Command Processor Logic Volume IV

SY28-0652-4

Reader's Comment Form

Fold and tope

$370-39

Please Do Not Staple

auy buopy pjo4 40 Y - me

Fold and tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

international Business Machines Corporation
Department D58, Building 921-2

PO Box 390

Poughkeepsie, New York 12602

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

L |
11K
II|||||I
<'|l

||||l|||

Please Do Not Stapie

Fold and tape

Printed in U.S.A.

File No.

For Base Publication

Prevrequisites

System Library
Supplement

SD23-0299-0
March 1, 1985

$370-39

SY28-0652-4, 0S/VS2 TSO Command Processor Logic Volume IV
© Copyright IBM Corp. 1972, 1984

None

This supplement contains replacement pages for CP Logic Volume IV. It replaces Supplement LD23-0273-0.

Before inserting any of the attached pages into CP Logic Volume IV, read carefully the instructions on this
cover. They indicate when and how you should insert pages.

Pages to Attached Pages
be Removed to be Inserted*
Cover - Edition Notice Cover - Edition Notice
3-6 3-6

9-14 9-14

37-44 37-44

85-86 85-86
117-120 117 -120
135-138 ‘ 135-138

149 - 150 149 - 150

155 -156 155 -156
n-12 I1-12

*If you are inserting pages from different Newsletters/Supplements and identical page numbers are involved,
always use the page with the latest date (shown in the slug at the top of the page). The page with the latest
date contains the most complete information.

A change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

This supplement was reissued because of the major revision to base SY28-0652. The parallel TMP structure
does not apply to the MVS/XA environment without TSO/E.

Note: Please file this cover letter at the back of the publication to provide a record of changes.

IBM Corporation, Information Development, Dept. D58, Building 921-2,
P.O. Box 390, Poughkeepsie, New York 12602

Printed in U S.A,

0S/VS2 TSO Command Processor Logic Volume IV

FARITAREEA

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	I-01
	I-02
	replyA
	replyB
	upd
	xBack

