Systems

GC26-3875-1
File No. S370-30

OS/VS2 MVS Data Management
Services Guide

Release 3.8

P

N
This publication was produced using the
IBM Document Composition Facility
(program number 5768-XX9)
and the master was printed on the
IBM 3800 Printing Subsystem.
second Edition (October 1980)
This edition, as amended by technical newsletter GN26-0996, s
applies to Release 1.0 of Data Facility Device Support, Program N
Product 57640-AM7, as well as to Release 3.8 of 05/V52 MVS and to et

any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments” following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM Svstem/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

It is possible that this material may contain reference to, or

information about, IBM products (machines and programs), !
programming, or services that are not announced in vour country.

Such references or information must not be ¢construed to mean

that IBM intends to announce such IBM products, programming, or

services in your country.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving vour

locality.

A form for reader's comments is provided at the back of this

publication. If the form has been removed, comments may be

addressed to IBM Corporation, P.0. Box 50020, Programming 5
Publishing, San Jose, California, U.S.A. 95150. IBM may use or //\“
distribute any of the information you supply in any way it \
believes appropriate without incurring any obligation whatever. R
You may, of course, continue to use the information vou supply.

® Copyright International Business Machines Corporation 1976,
1980

PREFACE

This book describes all IBM data management except for VSAM
(virtual storage access method) and specialized applications
such as the time sharing option (TS0), graphics, teleprocessing,
optical character readers, optical reader-sorters, and magnetic
character readers. These specialized applications are described
in separate publications that are listed in IBM System/370
Bibliography,GC20-0001. To learn about VSAM or to write programs
that create and process VSAM data sets, refer to:

. Planning for Enhanced VSAM Under 0S5/VS, GC26-3842, which
introduces VYSAM and describes its concepts and functions.

. 05/VS Virtual Storage Access Method (VSAM) Programmer's
Guide, 6GC26-3838, which describes how to create VSAM data
sets and code the macro instructions required to process
them.

. 057VS2 Access Method Services, GC26-3841, describes the
service program commands used to manipulate VSAM data sets.

. 05/7YS Virtual Storage Access Method (VSAM) Options for
Advanced Applications, GC26-3819, which describes
applications not required in the normal use of VSAM.

If you know how to write assembler-language programs and use job
control statements, vou can use this book and 05/VS2 MVS Data
Management Macro Instructions, GC26-3873, to write programs that
create and process data sets. To use this book you must have
basic knowledge of the operating system as contained in 05/VS2
Release 3 Guide, GC28-0770; of assembler language as described
in 0S/VS—-D0S/VS—VM/370 Assembler Lanauage, G6GC33-4010; and of job
control language (JCL) as explained in 05/VS52 JCL, GC28-069%2.

This book has three parts: "Part 1: Introduction to Data
Management" introduces yvou to the characteristics of data sets,
how you name them, how the system catalogs them, and how you
format the records in them. The format of tracks on a
direct-access storage device is explained briefly.

Part 1 also describes the data control block (DCB) and the
information it supplies to the operating system. Special
processing routines that you specify in the DCB macro
instruction are also explained in this section.

In "Part 2: Data Management Processing Procedures" there is an
explanation of data-processing techniques that includes the
macro instructions for the queued access technique and the basic
access technique and the macro instructions for analyzing input
and output errors. The section on data-processing techniques
also tells how to select an access method and how to begin and
end processing of a data set.

The section "Buffer Acquisition and Control"™ in Part 2 explains
three different methods you can use to obtain buffers and the
macro instructions vou use with each method. This section also
describes ways to control buffers: simple buffering for the
queued access technique, direct buffering and dvynamic buffering
for the basic access technique. In addition, for the queued
access technique, there is an explanation of the four modes of
moving the records in virtual storage: move mode, data mode,
locate mode, and substitute mode. Macro instructions for
controlling buffers are described here, too.

The next four sections of Part 2 concern processing data sets of
four different types: a sequential data set, a partitioned data
set, an indexed sequential data set, and a direct data set. They
explain the organization of the data sets and the macro
instructions used to process them. In the examples the macro

Preface iii

iv

instructions are coded in just enough detail to make the
examples clear. For a complete description of the operands and
options available, see 0S5/VS2 MVS Data Management Macro
Instructions, 6C26-3873. "Part 3: Data Set Disposition and Space
Allocation" tells you how to figure the amount of space vou need
for a data set on a direct-access storage device and how to
request that space in your JCL DD statement. You are given
spacial directions for allocating space for a partitioned data
set and an indexed sequential data set. Part 3 also tells how to
indicate in the JCL DD statement the status of the data set at
the beginning of and during processing and how to indicate what
vou want the system to do with the data set when processing has
terminated. You also are told how to use the DD statement to
route the data set to a system output writer, to concatenate
gata sets, to catalog data sets, and to protect confidential

ata sets.

Appendix A describes data set labeling. Appendix B explains
control characters you can use to control card punches and
printers. A glossary of acronyms and abbreviations usaed in this
book and the index follow Appendix B.

The following manuals are referred to in the text.

. 0S/VS Message Library: V82 System Codes, GC38-1008

. 0S/VS Messaqe Library: V82 System Messaqes, 6C38-1002
. 05/7Vs2 JCL, GC28-0692
. 0S/VS2 MVYS CVOL Processor, GC26-3864

. 0S5/VS52 MVS Resource Access Control Facility (RACF): General
Information Manual, GC28-0722

. 05/VS2 Supervisor Services and Macro Instructions, GC28-0683

L 05/VS2 System Programming Library: Data Manaaement,
GC26-3830

. 0S/VS2 System Programming Library: Debugging Handbook,
Volume 1, GC28-0708

. 05/VS2 System Programming Librarv: Debugging Handbook,
Volume 2, GC28-0709

] 05/VS2 System Programming Library: Debugqing Handbook,
Volume 3, GC28-0710

. 0S/VS2 Svstem Programming Library: Initialization and Tuning
Guide, GC28-0681

. 0S5/VS2 System Programming Librarv: Service Aids, GC28-0633

. 0S/VYS52 Svystem Programming Librarv: Supervisor, GC28-0628

. 05/VS2 System Programming lLibrary: Svstem Generation
Reference, GC26-3792

. IBM 3800 Printing Subsystem Programmer's Guide, GC26-3846

. IBM 3890 Document Processor Machine and Programming
Description, GA24-3612

. 0S Data Management Sarvices and Macro Instructions for IBM
141971275, GC21-5006

. 0S_and 05/VS Programming Support for the IBM 3505 Card
Reader and IBM 3525 Card Punch, GC21-5097

U 0S/VS TIBM_3886 Optical Character Reader Model 1 Reference,
GC24-5101

05/VS2 Data Managément Services Guide

-

N

. 0S5/VS Mass Storage System (MSS) Planning Guide, GC35-0011

e 0S/VS Mass Storaqe System (MSS) Services: General
Information, GC35-0016

. 05/VS _Tape Labels, GC26-3795
. 0SsVs2 MVS Utilities, GC26-3902

In this manual, any references made to an IBM program product
are not intended to state or imply that only IBM's program
product may be used; any functionally equivalent program may be
used instead. This manual has references to the following IBM
program products:

. RACF-Resource Access Control Facility Program Number,
5760-XXH

Preface v

Page of GC26-38

75-1 as updated 3 April 1981 by TNL GN26-0996

SUMMARY OF AMENDMENTS

| DATA FACILITY D

0S/VS2 MVS DATA

SERVICE CHANGES

EVICE SUPPORT - 3375 SUPPORT

The information to support the IBM 3375 is included. For more
information, see Introduction to 3375 Direct Access Storage,
GA26-1666.

An entry for the 3375 has been added to the figures
"Direct-Access Storage Device Capacities" and "Direct-Access
Device Overhead Formulas."

FACILITY DEVICE SUPPORT (5760-AM7)

The information to support the IBM 3380 is included. For
additional information, see Introduction to 3380 Direct Access
Storaqe, GA26-1662.

An entry for the 3380 has been added to the figures
"Direct-Access Storage Device Capacities" and "Direct-Access
Device Overhead Formulas."

In "Basic Access Technique" the description of issuing the CHECK .
macro to check a READ or WRITE has successfully completed has ’
been updated. N

"Retrieving a Sequential Data Set"™ has been updated concerning
PURGE HALT I/0 not being used to terminate outstanding I/0.

In "Updating a Sequential Data Set" the description of
overlapping I/0 operations has been updated.

In "Indexed Sequential Buffer and Work Area Requirements" the
field HIRPD has been replaced by DS2HIRPR in the calculation of
SMSW.

In "Tape-to-disk update-direct data set" a qualification has
been added concerning updating variable length records.

"Routing ﬁata through the system input and output streams" has
been updated concerning SYSIN support for undefined records.

In "Concatenating sequential and partitioned data sets" the

maximum number of data sets has been updated. Also, the '
concatenation of unlike data sets with RPS considerations has

been updated.

0Sssvs2 MVS 3800 ENHANCEMENTS

Information to support the 3800 Enhancements is included in the
following sections: .

. Exits to Special Processing Routines
e SETPRT-Printer Setup <
. Routing Data Through the System Input and Output Streams

vi 05/7VS52 Data Management Services Guide

Page of GC26-3875-1 added 3 April 1981 by TNL GN26-0996

NEW PROGRAMMING SUPPORT

The information to support the IBM 3203 model 5 printer has been
included. For additional information about the IBM 3203 Printer,

see IBM 3203 Printer Component Description. and Operator's Guide,
GA33-1515.

Summary of Amendments vi.l

™~

SERVICE CHANGES

AUGUST,

1978

"Data Set Identification" has been updated concerning the
cataloging of data set names. "Basic Access Techniques" has been
updated concerning the overlapping of I/70 requests with BDAM.

A clarification has been added to "Chained Scheduling for I/0
Operations."

Another restriction when search direct cannot be used has been
added to the section "Search Direct for Input Operations (Except
5760-AM3)."

The section "Search Direct for Input Operations (5740-AM3)" has
been updated.

The restriction for chained scheduling has been updated under
"Determining the Length of a Record when using the BSAM READ
macro."

The section "FIND-Position to a Member" has been updated
concerning the requirement to close and reopen a data set.

A new section "Processing a Partitioned Data Set Residing an
MSS" has been added to "Processing a Partitioned Data Set."

The section "Indexed Sequential Buffer and Work Area
Requirements" has been updated concerning a high level index
greater than 65,535 bytes.

The section "Specifying Space Requirements" has been updated
concerning cylinder allocation.

The section "Absolute Generation and Version Numbers" has been
updated.

The section "Relative Generation Numbers" has been updated and
the section "Programming Considerations for Multiple Step Jobs"
has been added.

The information contained in the System Library Supplement
GC26-3892, 05/VS2°MVS System Security Support Selectable Unit:
Data Management Services-SU32 (5752-832) has been incorporated
into this publication by this Technical Newsletter.

A note has been added to the description of the DSORG operand
concerning the creation of a direct data set. This is in "Data
Set Organization (DSORG).™

Under "Synchronous Error Routine Exit (SYNAD),™ a note has been
added concerning EROPT and a physical block of data.

Under "Standard Usaer Label Exit," the specification of labels by
use of the LABEL= parameter in a DD statement has been updated
and the defer input trailer label exit 0C has been qualified.

Under "User Totaling (BSAM and QSAM only)," a note has been
added regarding the user totaling facility.

Under "End of Volume Exit," a note has been added concerning
concatenated data sets with unlike attributes.

Under "Opening and Closing a Data Set," the description of an
indeterminate error has been updated.

The description of RLSE under "CLOSE-Terminate Processing of a
Data Set" has been updated.

Summary of Amendments vii

The default value for BUFNO when using Q5AM has been updated.

A note bhas been added regarding the 4-byte buffer chain pointer
under "FREEPOOL-Free a Buffer Pool."

In the section "Chained Scheduling for I/0 Operations,” a new
item has been added to the chained scheduling restrictions. A
restriction for chained scheduling with printer channel control
tapes has also been added.

Under "Updating a Sequential Data Set," a new rule has been
added for Locate mode.

Under "Find-Position to a Member," a note has been added
regarding the search of a concatenated series of directories.

In the section "Creating an Indexed Sequential Data Set," the
paragraph concerning blocked records has been updated.

A paragraph has been added about subtasking under the heading
"Sharing a BISAM DCB between Related Tasks."

The figure, "Directly Updating an Indexed Sequential Data Set"
has been updated.

In the section "Processing a Direct Data Set," a paragraph has
been added concerning the DSORG parameter.

Under "Adding or Updating Records on a Direct Data Set," a note
has been added regarding extended search.

Under "Concatenating Sequential and Partitioned Data Sets," a
note has been added about spool data sets, and about data sets
with unlike attributes.

Under "Relative Generation Number," the description of skipping
absolute generation numbers has been expanded. Also the
paragraph concerning cataloging via JCL has been updated. The
paragraph concerning cataloging of new generation data groups
has been updated also.

SEQUENTIAL ACCESS METHOD-EXTENDED (SAM-E) RELEASE 1 (5740-AM3)

BPAM, BSAM, and QSAM support of direct-access storage davices
(except BSAM MACRF=lIL, create BDAM data set) has been modified
to internally use the EXCPVR interface to I0S. This modification
includes the functions of the chained scheduling option
(OPTCD=C) and the search-direct option OPTCD=Z). These options,
therefore, need not be requested and are ignored if requested.

viii 057VS2 Data Management Services Guide

TN

'/"\

-
N

/- ~
i

%

N

Part 1: Introduction to bData Hanagemﬂnt e s s s e s e s s s .

Data Set Characteristics e e e . e e e e e e e e e e e
Data Set Identification C e e e e e e e e e e e e e e e e
Data Set Storage . . e e e e P . .

Direct-Access Volumes e e e e e e e e e e e e e e e e
Magnetic-Tape Volumes e e e e e e e e e e e e e e e e e
Data Set Raecord Formats C e e e e e e e e e e e e .
Fixed-Length Records e e e e e e e e e e e e
Variable-Length Records e e e e e e e e e e e e e e e e
Undefined-Length Records e e e e e e e e e e e e e e e
Control Character . C e e e e e e .
3800 Table Reference Character‘ e e e e e e e e "
Direct-Access Device Characteristics .« . .
Track Format et e e e e e e e e e e e e e e e e e e e
Track Addressing et e e e e e e e e e e e e e e e e e
Track Overflow . e e e e e e e e e e e e e e
Write- Vahdxty*Check Optlon e e e e e e e e e e e e e
The Data Control Block . et e e e e e e e e e e e e e
Data Set Description N e e e e e e e e e e e e e

Processing Program Descri ptlon

Macro Instruction Form (MACRF) e e e e e e e e e e
Exits to Special Processing Routines e e e e e e e e
Modifying the Data Control Block C e e e e e e e e e
Sharing a Data Set N t e e e e e e e
Part 2: Dpata Managemant Processmg Procedures e v v v e
Data Processing Techniques . . e e e e e e e
Queued Access Technique C e e e e e e e e e e e e e e e
GET—Retrieve a Record e e e et e e e e e e e e e e
PUT—Write a Record . e e e e e e e e e e e

PUTX—Write an Updated Record . e e e e
Parallel Input Processing (QSAM Only) . e e
Basic Access Technique .. v e e e e
READ—Read a Block e e e e e e e
WRITE—MWrite a Block ..
CHECK—Test Completion of Read or l.dmte 0perat1on
WAIT—Wait for Completion of a Read or Write Operatlon
Data Event Control Block (DECB) e e e e e e e .
Error Handling . C e e e e e e e
SYNADAF—Perform SYNAD Analys1s Functlon . e e e
SYNADRLS—Release SYNADAF Message and Save Areas e
ATLAS—Perform Alternate Track Location Asslgnmen’c .
Selecting an Access Method e e e e e e e e c e e e e e
Opening and Closing a Data Set e e e e e e e e e e e
OPEN~—Prepare a Data Set for Pr‘ocessmg e e e e e e
CLOSE—Terminate Processing of a Data Set e e e e e

e o o o+ .
e e o o o

End-of-Volume Procassing e,
FEOV—Force End of Volume e e e e e e e e e e e e e e
Buffer Acquisition and Control C e e e e e e e e e e e e e

Buffer Pool Construction e e e e e e e e e e e e e
BUILD—Construct a Buffer Pool e e e e e e e e e e e
BUILDRCD—Build a Buffer Pool and a Record Area . .
GETPOOL—Get a Buffer Pool . e e e e e e e e e e
Automatic Buffer Pool Constructlon e e et e e e e e e e
FREEPOOL~—Free a Buffer Pool c e e e e e e e e e e

Buffer Control . e e e e e e e e e e e e
Simple Buffermg e e et e e e e e e e e e . .
Exhange Buffering . e

RELSE—Release an Input Buffer . . e N
TRUNC—Truncate an Qutput Buffer c e e e e e e e
GETBUF—Get a Buffer from a Pool v e e e e e e e e
FREEBUF—Return a Buffer to a Pool . v e e e
FREEDBUF—Return a Dynamic Buffer to a Pool
Processing a Sequential Data Set . e e e e
Data Format—Device Type Cons1derat1ons e e
Magnetic Tape (TA) e e e e e e e e e e e e e
Papaer-Tape Reader (PT) e e e e e e e e .
Card Reader and Punch (RD/PC) e e e e e e e e e e

e o o o o o o
e o o o o o o

o s e o .
s s e o e

Contents

e el e et o
VRO NOT OO DU =

ix

Printer (PR) e e e e e e e e e e ee e e e e e e e e 79
Direct-Access Device (DA) C e e e e e e e e e . . 80
Device Control . e e e e e e e e e e e e e 80
CNTRL—Cantrol an I/O D@v1c9 e e e e e e e e e . 80
PRTOV—Test for Printer Over‘flow e e e e e e e e . . 81
SETPRT—Printer Setup 81

BS5P—Backspace a Magnetic fape or Dxrect Access Voiume) 82
NOTE—Return the Relative Address of a Block e e e e e 82

POINT—Position to a Block . . e e . 82
Device Independence . e e e e e e e e e e e e 83
System Generation Consrderations e e e e e e e e e e e 83
Programming Considerations . e e e e 84
Chained Scheduling for I/0 Operat\ons (\ncludlng
Nondirect~Access Devices for 5740-AM3 only) . . 85
Search Direct for Input Operations (Except 5740- AMS) . 86
Search Direct for Input Operations (5740 AMS only) . v . 87
Creating a Sequential Data Set . . . N 87
Retrieving a Sequential Data Set e e e e e e e e e e s 88
Updating a Sequential Data Set e e e e e e e e e e e e s 89
Extending a Sequential Data Set . . 0. 90
Determining the Length of a Record Nhen U51ng the BSAM
READ Macro . . . 90
Writing a Short Block Nhen Usrng the BSAM NRITE Macr . 91
Processing a Partitioned Data Set e e e e e e e e e . 92

Partitioned Data Set Directory

Processing a Member of a Part1t1oned Data Set .
BLDL—Construct a Directory Entry List e e e e
FIND—Position to a Member e e v e e e e e e
STOW—Update the Directory e e e e e e e e e e e .

Creating a Partitioned Data Set . e e e e e e e 98

Retrieving-a Member of a Part\t\oned Data Set e e e

Updating a Member of a Partitioned Data Set
Updating in Place e e e e e e e e e e
Rewriting a Member ..

Processing a Partitioned Data Set ReSIdIng on MSS

« o o o o s o .
0
w

e o ¢ o o o
.

» e e o o

Overflow Areas . .
Adding Records to an Indexed Sequentlal Data Set
Inserting New Records into an Ex15t1ng Indexed
Sequential Data Set .
Adding New Records to the End of an Indexed Sequenttal

¢ o & & o o o o e o

Processing an Indexed Sequential Data Set e e e e e . e .
Indexed Sequential Data Set Organlzat1on e e e e . .
Prime Area e e e e e e e e e e e e e e e . .
Index Areas f e e e e e e e e e e e e e e e e e .

Data Set e e e e e e e e
Maintaining an Indexed Sequenttal Data Set . e . .
Indexed Sequential Buffer and Work Area Requ:rements .
Controlling an Indexed Sequential Data Set Device e e e

SETL—Specify Start of Sequential Retrieval e e e e e

ESETL—End Sequential Retrieval e e e e e e e e e e e
Creating an Indexed Sequential Data Set . .
Retrieving and Updating an Indexed Sequent1a1 Data Set

Sequential Retrieval and Update e e e e e e e .

Direct Retrieval and Update e e e e e e e e e e
Processing a Direct Data Set C e e e e e e e e e e

.
.

[P T e e B e e S e el

N e b OO O O0000O000O00

wWwolUIND PO ~ NP UHUHUWUNEEO

e o o o
.
.

Organizing a Direct Data Set . . : . 124
Referring to a Record in a D1rect Data Set e e e e e . 124
Creating a Direct Data Set . e e e e e . 126
Adding or Updating Records on a D1rect Data Set . e e 127
Part 3: Data set Disposition and Space Allocation . 130

Allocating Space on Direct-Access Volumes ..
Specifying Space Requirements e e e e e e e
Estimating Space Requirements .

-

e o o @
PR)
—
w
o

.

¢ e e
e o o o 8
« e o o @

Allocating Space for a Part1t10ned Data Set 133
Allocating Space for an Indexed Sequent1a1 Data Sat ... 134
Specifying a Prime Data Area . e . e e e e . 136
Specifying a Separate Index Area . . v e e e o« o . 137
Specifying an Independent Overflow Area e e e e . . 137
Calculating Space Requxrements for an Indexed
Sequential Data Set . O A ¥
Control and Disposition of Data Sets . . 141
Routing Data through the System Input and Output Streams 142
Concatenating Sequential and Partitioned Data Sets . .. 164

x 0S/7VS2 Data Management Services Guide

TN

'~

-

C

Rotational Position Sensing Considera’cions . . .

Cataloging Data Sets e e e s
Entering a Data Set Name ln the Catalog e e e e e e
Generation Data Groups . e e e e e e e
Absolute Generation and Verswn Numbers e e e e e e

Relative Generation Number .
Programming Considerations for Multiple Step Jobs .
Building a Generation Index in a CVOL e e e e e e e
Creating a New Generation C e e e e e e e e e e e e e
Allocating a Generation e e e e e e e .
Passing a Generation .

Creating an ISAM Data Set as Part of a Generatlon Data)

Group . e e e e e e e e s e e e e e e
Retrieving a Generat1on e e e e e e e e e e e e e e
Controlling Confidential Data . e

Password Protection for Non- VSAM Data Sets . .
RACF Protection for Non-VSAM DASD Data Sets and Tape

Volumes C e e e e e e e e v e . e e e e e
Appendix A. Direct-Access Labels e e e e e s e s s e .
Volume-Label Group . e e e o b e e e e e .

Initial Volume Label Format e e e e e e e e e e .
Data Set Control Block (DSCB) C e e e e e e e e .
User Label Groups e e e e o e . e

User Header and Traller Label Format e e . e .

Appendix B. control Characters .« « ¢« « ¢« ¢ ¢ ¢ o s o o &«
Machine Code . e
Extended Amerlcan Natlonal Standards Instltute Code

Glossary of Acronyms And Abbraviations e e s e o s s s

INDEX @ @ & o & & o6 o e & ° & & & 2 O » o & s s o & s+ s °

Contents

146
146
147
147
148
148
149
1580
150
150
151

151
151
152
152

153

155
155
156
157
157
158

159
159
161
le2

165

Xi

FIGURES

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure

Figura
Figure

"Figure

Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure

« o o

. .

o o o o o

UMD UN-OWVIN VT DUN-

[N Y

25.

26.
27.
28.
29.

300
31.

32.

33.
34,
35.
36.

37.
38.
39.

40,
61.

42.
43.
44 .
45,
G6.
47.

48.
49.

50.
51.
52.

Fixed-lLength Records . . .
Fixed-Length Records for ASCII Tapes .
Nonspanned, Variable-Length Records .
Spanned Variable-Length Records . . .
Segment Control Codes . . .
%pinned Variable-Length Records for BDAM Data
ets . . .
Variable- Length Records for ASCII Tapes . e
Undefined-Length Records
Undefined-Length Records for ASCII Tapes ..
2316 Disk Pack e . .« e
Direct—-Access Volume Track Formats c h e e e e s
Completing the Data Control Block e e e e e
Sources and Sequence of Operations for
Completing the Data Control Block e e e e e e
Data Management Exit Routines « . .
Format and Contents of an Exit Llst . e e
Parameter List Passed to User Label Exit Routine
System Response to a User Label Exit Routine

« s o 0
* e o o o

e o o+ o o

e o o o @

Return Code . . .
System Response to Block Count Exzt Return Code
Defining an FCB Image for a 3211 .

Parameter List Passed to DCB ABEND Exnt Routlne
Conditions for which Recovery Can Be Attempted
Recovery Work Area . e
Modifying a Field in the Data Control Block ..
JCL, Macro Instructions, and Procedures
%ggulred to Share a Data Set Using Multiple

s . . .
Macro Instruct1ons and Procedures Requ1red to
Share a Data Set U51ng a Single DCB e e e e
Parallel Processing of Three Data Sets e e e
Data Management Access Methods . . e e e
Opening Three Data Sets Slmultaneously . e
Record Processed When LEAVE or REREAD is
Specified for CLOSE TYPE=T .. e e e e e e e s
Closing Three Data Sets S1multaneously PO
Constructing a Buffer Pool From a Static
Storage Area . . vt e bt e e e e e e e e e e s
Constructing a Buffer Pool Us:ng GETPOOL and
FREEPOOL
Simple Bufferlng wnth MACRF GL and NACRF PM .
Simple Buffering with MACRF=GM and MACRF=PM ..
Simple Buffering with MACRF=GL and MACRF=FL
Simple Buffering with MACRF=GL and
MACRF=PM-UPDAT Mode
Buffering Technique and GET/PUT Proces;1ng Modes
Tape Density (DEN) Values . e e e e
Creating a Sequential Data Set——Move Mode,
Simple Buffering . . ¢ v ¢ v ¢« ¢ ¢ ¢ v o o o . W
Creating a Sequent1al Data Set——Locate Mode,
Simple Buffering
One Method of Determlnung the Length of the
Record When Using BSAM to Read Undefined-Length
Records e e s e e e e e e e e e e
A Part1t10ned Data Set . « e e e
A Partitioned Data Set Dzrectory Block e e e e
A Partitioned Data Set Directory Entry e e e
Build List Format .
Creating One Member of a Partltloned Data Set
Creating Members of a Part1t1oned Data Set
Using STOW RN .
Retrieving One Member of a Partlttoned Data Set
Retrieving Several Members of a Partitioned
Data Set Using BLDL, FIND, and POINT
Updating a Member of a Partitioned Data Set . e
Indexed Sequential Data Set Organization . e .
Format of Track Index Entries e e e e e e e e

xii 0S5/VS2 Data Management Services Guide

Ll el el el e
BN PHUWU N OO~

N
o

Figure
Figure

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

gdilng Records to an Indexed Sequential Data
e .
Deleting Records From an Indexed Sequent1a1
Data Set . . e e
Creating an Indexed Sequentlal Data Set . e
Sequentially Updating an Indexed Sequential
Data Set .
%lzectly Updat1ng an Indexed Sequentlal Data
e
Directly Updat1ng an Indexed Sequentlal Data
Set with Variable-Length Records e e e e e
Creating a Direct Data Set . e e
Adding Records to a Direct Data Set P
Updating a Direct Data Set . .
Direct-Access Storage Device Capac1t1e5
Direct-Access Device Overhead Formulas
Requests for Indexed Sequential Data Sets .
Reissuing a READ for Unlike Concatenated Data

.
.
.
.
.

Sets . C e e e e e e e e e e
MVS Catalog Structure e+ e e e e e e e .
Direct-Access Labeling v e e e e e e e e

Initial Volume Label “ e e . .
User Header and Trailer Labels e e e e e e

Figures

o o o s o o o

o ¢ ¢ o o

o o o v o

108

110
117

119
121

123
127
128
129
132
133
136

145
146
155
156
157

xiii

s
N

PART 1t INTRODUCTION TO DATA MANAGEMENT

DATA SET CHARACTERISTICS

The data management programs of the operating system help vou
achieve maximum efficiency in managing the mass of data
associated with the many programs that are processed at your
installation by providing systematic and effective means of
organizing, identifying, storing, cataloging, and retrieving all
data, including programs, processed by the operating system.

Data set storage control, along with an extensive catalog
system, makes it possible for you to retrieve data by symbolic
name alone, without specifying device types and volume serial
numbers. In freeing computer personnel from maintaining involved
volume serial number inventory lists of stored data and
programs, the catalog reduces manual intervention and the
likelihood of human error.

Data sets stored within the cataloging system can be classified
according to installation needs. For example, a sales department
could classify the data it uses by geographic area, by
individual salesman, or by any other logical plan.

The cataloging system also makes it possible for vou to classify
successive generations or updates of related data. These
generations can be given an identical name and subsequently be
referred to relative to the current generation. The system
automatically maintains a list of the most recent generations.

You can request data from a direct-access volume, a remote
terminal, or a tape volume, and data organized sequentially or
directly, in essentially the same way. In addition, data
management provides:

. Allocation of space on direct-access volumes. Flexibility
and efficiency of direct-access devices are improved through
greater use of available space.

. Automatic retrieval of data sets by name alone.

. Freedom to defer specifications such as buffer length, block
size, and device type until a job is submitted for
processing. This permits the creation of programs that are
in many ways independent of their operating environment.

Control of confidential data is provided by the data set
security part of the operating system. You can prevent
unauthorized access to payroll data, sales forecast data, and
all other data sets that require special security attention. An
individual can use a security-protected data set only after
furnishing a predefined passuword.

Input/output routines are provided to efficiently schedule and

control the transfer of data between storage and input/output

davices. Routines are available to:)

. Read data

L Write data

] Translate data from ASCII (American National Standard Code
for Information Interchange) to EBCDIC (Extended Binary
Coded Decimal Interchange Code) and back

. Block and deblock records

. Overlap reading, writing, and processing operations

Part 1: Introduction to Data Management 1

;2

. Read and verify volume and data set labels

° Write data set labels

. Automatically position and reposition volumes

* Detect error conditions and correct them when possible
. Provide exits to user-written error and label routines

0S/VS data management programs also provide for a variety of
methods for gaining access to a data set. The methods are based
on data set organization and data access technique.

0S8/VS data sets can be organized in four uways:

. Sequential: Records are placed in physical rather than
logical sequence. Given one record, the location of the next
record is determined by its physical position in the data
set. Sequential organization is used for all magnetic-tape
devices, and may be selected for direct-access devices.
Punched tape, punched cards, and printed ocutput are
sequentially organized. '

. Indexed Sequential: Records are arranged in sequence,
according to a key that is a part of every record, on the
tracks of direct-access volume. An index or set of indexes
maintained by the system gives the location of certain
principal records. This permits diract as well as sequential
access to any record.

. Direct: The records within the data set, which must be on a
direct-access volume, may be organized in any manner you
choose. All space allocated to the data set is available for
data records. No space is5 required for indexes. You specify
addresses by which records are stored and retrieved
directly.

. Partitioned: Independent groups of sequentially organized
records, called members, are in direct-access storage. Each
member has a simple name stored in a directory that is part
of the data set and contains the location of the member's
starting point. Partitioned data sets are generally used to
store programs. As a result, they are often referred to as
libraries.

Requests for input/output operations on data sets through macro
instructions employ two techniques: the technique for gueued
access and the technique for basic _access. Each technique is
identified according to its treatment of buffering and
synchronization of input and output with processing. The
combination of an access technique and a given data set
organization is called an access method. In choosing an access
method for a data set, therefore, you must consider not only its
organization, but also what vou need to specify through macro
instructions. Also, you may choose a data organization according
to the access techniques and processing capabilities available.

The code generated by the macro instructions for both techniques
is optionally reenterable depending on the form in which
parameters are expressed.

In addition to the access methods provided by the operating
system, an elementary access technique called execute channel
proaram (EXCP) is also provided. To use this technique, you must
establish your own system for organizing, storing, and
retrieving data. Its primary advantage is the complete
flexibility it allows you in using the computer directly.

An important feature of data management is that much of the
detailed information needed to store and retrieve data, such as
device type, buffer processing technique, and format of output
records need not be supplied until the job is ready to be
executed. This device independence permits changes to those

05/VS2 Data Management Services Guide

/\

specifications to be made without changes in the program.
Therefore, you may design and test a program without knowing the
exact input/output devices that will be used when it is
executed.

Device independence is a feature of both access techniques for
procaessing a sequential data set. To some extent, you determine
the degree of device independence achieved. Many useful
device-dependent features are available as part of certain macro
instructions, and achieving device independence requires some
selectivity in their use.

DATA SET IDENTIFICATION

Any information that is a named, organized collection of
logically related records can be classified as a data set. The
information is not restricted to a specific type, purpose, or
storage medium. A data set may be, for example, & source
program, a library of macro instructions, or a file of data
records used by a processing program.

Whenever you indicate that a new data set is to be created and
placed on auxiliary storage, vou (or the operating system) must
give the data set a name. The data set name identifies a group
of records as a data set. All data sets recognized by name
(referred to without volume identification) and all data sets
residing on a given volume must be distinguished from one
another by unicque names. To assist in this, the system provides
a means of qualifying data set names.

A data set name is one simple name or a series of simple names
joined together so that each represents a level of
qualification. For example, the data set name DEPT58.SMITH.DATA3
is composed of three simple names. Proceeding from the left,
each simple name is a category within which the next simple name
is a subcategory. The first name is referred to as the high
level index, the last as the low level index.

Each simple name consists of from 1 to 8 alphameric characters,
the first of which must be alphabetic. The special character
period (.) separates simple names from each other. Including all
simple names and periods, the length of the data set name must
not exceed %44 characters. Thus, a maximum of 22 simple names can
make up a data set name.

Data set names cannot be cataloged in a CVOL if a name is
already cataloged whosa levels match the highest or higher
levels of the specified name. For example, the qualified name
A.B.C.D cannot be cataloged if the name A.B. or A.B.C. is
already cataloged, but the name A.B.C.D can be cataloged if AB.C
or A.B.C.E is cataloged.

To permit different executions of a program to process different
data sets without program reassembly, the data set is not
referred to by name in the processing program. When the program
is executed, the data set name and other pertinent information
(such as unit type and volume serial number) are specified in a
job control statement called the data definition (DD) statement.
To gain access to the data set during processing, reference is
made to a data _control block (DCB) associated with the name of
the DD statement. Space for a data control block, which
specifies the particular data set to be used, is reserved by a
DCB macro instruction whan your program is assembled.

Part 1: Introduction to Data Management 3

DATA SET STORAGE

System/370 provides a variety of devices for collecting,
storing, and distributing data. Despite the variety, the devices
have many common characteristics. The generic term volume is
used to refer to a standard unit of auxiliary storage. A volume
may be a reel of magnetic tape, a disk pack, or a drum.

Each data set stored on a volume has its name, location,
organization, and other control information stored in the data
set label or volume table of contents (for direct-access volumes
only). Thus, when the name of the data set and the volume on
which it is stored are made known to the operating system, a
complete description of the data set, including its location on
the volume, can be retrieved. Then, the data itself can be
retrieved, or new data added to the data set.

Various groups of labels are used to identify magnetic-tape and
direct-access volumes, as well as the data sets they contain.
Magnetic-tape volumes can have standard or nonstandard labels,
or they can be unlabeled. Direct-access volumes must use
standard labels. Standard labels include a volume label, a data
set label for each data set, and optional user labels.

Keeping track of the volume on which a particular data set
resides can be a burden and a source of error. To alleviate this
problem, the system provides for automatic cataloging of data
sets. The system can retrieve a cataloged data set if given only
the name of the data set. If the name is qualified, each
qualifier corresponds to one of the indexes in the catalog. For
example, the system finds the data set DEPT58.SMITH.DATA3 by
searching a master index to determine the location of the index
name DEPT58, by searching that index to find the location of the
index SMITH, and by searching that index for DATA3 to find the
identification of the volume containing the data set.

By use of the catalog, collections of data sets related by a
common external name and the time sequence in which they were
cataloged (their generation) can be identified; they are called
generation data _groups. For example, a data set name
LAB.PAYROLL(D) refers to the most recent data set of the group:;
LAB.PAYROLL(-1) refers to the second most recent data set, etc.
The same data set names can be used repeatedly with no
requirement to keep track of the volume serial numbers used.

Direct-Access Volumes

4

Direct-access volumes are used to store executable programs,
including the operating system itself. Direct-access storage is
also used for data and for temporary working storage. One
direct-access storage volume may be used for many different data
sets, and space on it may be reallocated and reused. A volume
table of contents (VTOC) is used to account for each data set
and available space on the volume.

Each direct-access volume is identified by a volume label, which
is stored in track 0 of cylinder 0. You may specify up to seven
additional labels, located after the standard volume label, for
further identification.

The VT0C is a data set consisting of data set control blocks
(DSCBs) that describe the contents of the direct-access volume.
The VTOC can contain seven kinds of DSCBs, each with a different
purpose and a different format number. 05/VS52 System Programming
Library: Debugging Handbook describes the seven kinds of DSCBs,
their purposes, and their formats.

Each direct-access volume is initialized by a utility program
before being used on the system. The initialization program
generates the volume label and constructs the table of contents.
For additional information on direct-access labels, see
"Appendix A: Direct-Access lLabels."

0S/7VS2 Data Management Services Guide

ya

\/- h

N

When a data set is to be stored on a direct-access volume, you
must supply the operating system with the amount of space to be
allocated to the data set, expraessed in blocks, tracks, or
cvlinders. Space allocation can be independent of device type if
the request is expressed in blocks. If the request is made in
tracks or cylinders, you must be aware of such device
considerations as cylinder capacity and track size.

Magnetic~-Tape Volumes

Because data sets on magnhetic-tape devices must be organized
sequentially, the operating system does not require space
allocation procedures comparable to those for direct-access
devices. When a new data set is to be placed on a maghetic—-tape
volume, you must specify the data set sequence number if it is
not the first data set on the reel. The operating system
positions a volume with IBM standard labels, American National
Standard labels, or no labels so that the data set can be read
or written. If the data set has nonstandard labels, you must
provide for volume positioning in your
nonstandard-label-processing routines. All data sets stored on a
given magnetic-tape volume must be recorded in the same density.

When a data set is to be stored on an unlabeled tape volume and
vou have not specified a volume serial number, the system
assigns a serial number to that volume and to any additional
volumes required for the data set. Each such volume is assigned
a serial number of the form Lxxxyy where xxx indicates the data
sat sequence number from IPL to IPL and yy indicates the volume
sequence number for the data set. If you specify volume serial
numbers for unlabeled volumes on which a data set is to be
stored, the system assigns volume serial numbers to any
additional volumes required. If data sets residing on unlabeled
volumes are to be cataloged or passed, vou should specify the
volume serial numbhers for the volumes required. This will
prevent data sets residing on diffarent volumes from being
cataloged or passed under identical volume serial numbers.
Retrieval of such data sets could result in unpredictable
errors,

Each data set and each data set label group on magnetic tape
that is to be processed by the operating system must be followed
by a tapemark. Tapemarks cannot exist within a data set. When
the operating system is used to create a tape with standard
labels or no labels, all tapemarks are automatically written.
Two tapemarks are uritten after the last trailer label group on
a volume to indicate the last data set on the volume. 0On an
gntabel:d volume, the two tapemarks are written after the last
ata set.

When the operating system is used to create a tape data set with
nonstandard labels, the delimiting tapemarks are not written. If
the data set is to be retrieved by the operating system, those
tapemarks must be written by vour nonstandard-label-processing
routine. Otherwise, tapemarks are not required after nonstandard
labels since positioning of the tape volumes must be handled by
installation routines.

?or more information on labels for magnetic-tape volumes, refer
to 0S/VS Tape Labels.

The data on magnetic-tape volumes can be in either EBCDIC or
ASCII. ASCII is a 7-bit code consisting of 128 characters. It
permits data on magnetic tape to be transferred from one
computer to another even though the two computers may be
products of different manufacturers.

Data management support of ASCII and of American National
Standard tape labels is such that data management can translate
records on input tapes in ASCII into EBCDIC for internal
processing and translote the EBCDIC back into ASCII for output.
Records on such input tapes may be sorted into ASCII collating
sequence.

Part 1: Introduction to Data Management 5

DATA SET RECORD FORMATS

A data set is composed of a collection of records that normally
have some logical relation to one another. The record is the
basic unit of information used by a processing program. It might
be a single character, all information resulting from a given
business transaction, or measurements recorded at a given point
in an experiment. Much data processing consists of reading,
processing, and uriting individual records.

The process of grouping a number of records before wuriting them
on a volume is referred to as blocking. A block is made up of
the data betmween interrecord gaps (IRGs). Each block can consist
of one or more records. Blocking conserves storage space on the
volume because it reduces the number of IRGs in the data set. In
many cases, blocking also increases processing efficiency by
reducing the number of input/output operations required to
process a data set.

Records may be in one of four formats: fixed-length (format-F),
variable-length for data in EBCDIC (format-V), variable-length
for data to be translated to or from ASCII (format-D), or
undefined-length (format-U). The main consideration in the
selection of a record format is the nature of the data set
itself. You must know the type of input your program will
receive and the type of output it will produce. Selection of a
record format is based on this knowledge, as well as on an
understanding of the input/output devices that are used to
contain the data set and the access method used to read and
write the data records. The record format of a data set is
indicated in the data control block according to specifications
inbthe DCB macro instruction, the DD statement, or the data set
label.

For ASCII tapes, data can be in format-F, format-D, and format-U
with the restrictions noted under "Fixed-lLength Records, ASCII
tapes," "Variable-Length Records—Format D," and
"Undefined-Length Records." When data management reads records
from ASCII tapes, it translates the records into EBCDIC. Khen
data management writes records onto ASCII tapes, it translates
the records into ASCII. Because you use input records after they
are translated and because output records are translated when
vou ask data management to write them, you work only with
EBCDIC. Note@: There is no minimum requirement for block size;
however, if a data check occurs on a magnetic-tape device, any
block shorter than 12 bytes in a Read operation or 18 bytes in a
Write operation is treated as a noise record and lost. No check
for noise is made unless a data check occurs. The sort/merge
program does not accept physical blocks or logical records
shorter than 18 bytes from any device.

For the 3800 printer, the data in the record can contain two
optional bytes. The optional control character used for carriage
control, followed by an optional table reference character used
for dynamically selecting a character arrangement table during
printing. See the IBM 3800 Printing Subsystem Proarammer's Guide
for more information on the table reference character.

Fixed-Length Records

6

The size of fixed-length (format-F) records, shown in Figure 1,
is constant for all records in the data set. The number of
records within a block is constant for every block in the data
set, unless the data set contains truncated (short) blocks. If
the data set contains unblocked format-F records, one record
constitutes one block.

The system automatically performs physical length checking
(except for card readers) on blocked or unblocked format-F
records. Allowances are made for truncated blocks.

0S/7VS2 Data Management Services Guide

s

Format—-F records are shown in Figure 14 on page 2%4. The optional
control character (c), used for stacker selection or carriage
control, may be included in each record to be printed or
prunched.

Bleik Block
[N A ~
Blocked Records | Record A | Record B Record C Record D | Record E Record F
\\ S~ -
~
\, ~
\\ h S
\\ RS -
N Record ~ .
c Data

\{ Optional Control ,

\ Character - 1 Byte //
\

/

\ /

Block Block \\ / Block

Unblocked Records| Record A Record B Record C Record D

Figure 1. Fixed-Length Records

FIXED-LENGTH RECORDS, STANDARD FORMAT: During creation of a
sequential data set (to be processed by BSAM or QSAM) with
fixed-length records, the RECFM subparameter of-the DCB macro
instruction may specify a standard format (RECFM=FS or FBS). A
standard-format data set must conform to the following
specifications:

. All records in the data set are format-F records.

. No block except the last block is truncated. (With BSAM vou
must ensure that this specification is met.)

U Every track except the last one contains the same number of
blocks.

. Every track except the last one is filled to capacity as
determined by the track capacity formula established for the
device. (These formulas are presented in Part 3 of this book
under "Allocating Space on Direct-Access Volumes.")

. The data set organization is physical-sequential. A member
of a partitioned data set cannot be specified.

A sequential data set with fixed-length records having a
standard format can be read more efficiently than a data set
that doesn't specify a standard format. This efficiency is
possible because the system is able to determine the address of
each record to be read because each track contains the same
number of blocks.

You should never extend a data set of this type (by coding
DISP=MOD) if the last block is truncated, because the extension
will cause the data set to contain a truncated block that isn't
the last block. This type of data set on magnetic tape should
not be read backward, because then the data set would begin with
a truncated block. Consequently, you probably won't want to use

Part 1: Introduction to Data Management 7

this type of data set with magnetic tape. If vou use one of the
basic access techniques with this type of data set, you should
not specify that the track overflow feature is to be used with
the data set.

Standard format should not be used to read records from a data
set that was created using a RECFM other than standard since
other record formats may not create the precise format required
by standard.

If at any time the characteristics of vour data set are altered
from the specifications described above, then the data set
should no longer be processed with the standard format
specification.

FIXED-LENGTH RECORDS, ASCII TAPES: For ASCII tapes, format-F
records are the same as described above, with two exceptions:

. Control characters, if present, must be American National
Standards Institute (ANSI) control characters.

. Racords or blocks of records can contain block prefixes.
Figure 15 on page 29 shows the format of fixed-length records

for ASCII tapes and where control characters and block prefixes
go if they exist.

Blocked
Records »

Unblocked
Records

Figure 2.

Block Block
— A N - * N\
Optional Optional
B'°9" Record A Record B | Record C Block Record D Record E | Record F
Prefix Prefix
\\ ~- -
N ~ ~
\\ ~ -
~ Recfrd ~ -
g
c Data
LOptional Control /
Character-1 Byte /
Block Block \\ / Block
r —A —\ - ™ - A A
Optional Optional Optional Optional
Block | Record A Block | Record B Block [Record C Block | Record D
Prefix Prefix Prefix Prefix
Fixed~Length Records for ASCII Tapes

8

Thae block prefix can vary in length from 0 to 99 bytes but the
length must be constant for the data set being processed. For
blocked records, the block prefix precedes the first logical
record. For unblocked records, the block prefix precedes each
logical record.

Using QS5AM and BSAM to read records with block prefixes requires

that vou specify the BUFOFF operand in the DCB. UWhen using QSAM,
you cannot read the block prefix on input. When using BSAM, vou

must account for the block prefix on both input and output. When

using either Q5AM or BSAM, vou must account for the length of
the block prefix in the BLKSIZE and BUFL operands of the DCB.

05/VS2 Data Management Services Guide

.

N,
/

When vou use BSAM on output records, the operating system does
not recognize a block prefix. Therefore, if you want a block
prefix, it must be part of your record. Note that vou cannot
include block prefixes in QSAM output records.

The block prefix can contain any data you want, but you must
avoid using data types such as binary, packed decimal, and
floating-point that cannot be translated into ASCII.

For more information about control characters, refer to "Control
Character" and to "Appendix B: Control Characters."

Variahle-Length Records

The variable-length record formats are format-V and format-D.
Format-V records can be spanned; that is, records can be larger
than the blocksize, as described below. Format-D records are
used for ASCII tape data sets and cannot be spanned. Figure 3
shows blocked and unblocked variable-length records without

spanning.
Block
BDW - I:L —
Blocked Records | LL | 00 | Record A | Record B | Record C LL | 00] Record D | Record E | Record F
[=
LlReserved -2 Bytes \ T~
Block Length - T~
2 Bytes \\ 2{-’ T~
" RDW Data K
f—/“ —A

Record |4 |00 |c

LOptional Control Character /
L Reserved - 2 Bytes /

|
I Record Length- / 7
| 2 Bytes y;
Block l, 7 Block
! LL _ ,_EPW_ 7 " BOW Record
Unblocked Records| LL | 00 | Record B LL| 00 Record C LL [00 Record D

‘r LReserved -2 Bytes

Block Length - 2 Bytes

Figure 3. Nonspanned, Variable-Length Records

VARIABLE-LENGTH RECORDS—FORMAT V: Format V provides for
variable-length records, variable-length record segments, each
of which describes its own characteristics, and variable-length
blocks of such records or record segments. Except when
variable-length track overflow records are specified for volumes
on daevices with the rotational position sensing feature, the
control program performs length checking of the bhlock and uses
the record or segment length information in blocking and
deblocking. The first 4 bytes of each record, record segment, or
block make up a descriptor word containing contrel information.
You must allow for these additional 4 bytes in both your input
and output buffers.

Part 1: Introduction to Data Management 9

10

Block Descriptor Word: A variable-length block consists of a
block descriptor word (BDW) followed by one or more logical
records or record segments. The block descriptor word is a
4-byte field that describes the block. The first 2 bytes specify
the block length ('11')}—4 bytes for the BDW plus the total
length of all records or ‘segments within the block. This length
can be from 8 to 32,760 bytes or, when you are using WRITE with
tape, from 18 to 32,760. The third and fourth bytes are reserved
for future system use and must be 0. If the system does your
blocking—that is, when vou use the queued access technigque—the
operating system automatically provides the BDW when it writes
the data set. If vou do vour ouwn blocking—that is, when you use
the basic access technique—you must supply the BDW.

Record Descriptor Word: A variable-length logical record
consists of record descriptor word (RDW) followed by the data.
The record descriptor word is a 4-byte field describing the
record. The first 2 bytes contain the length ('11') of the
logical record (including the 4-byte RDW). The length can be
from 4 to 32,756. For information about processing a sequential
data set, see "Data Format—Device Type Considerations.”" All
bits of the third and fourth bytes must be 0, as other values
are used for spanned records. For output, vou must provide the
RDW except in data mode for spanned records (described under
"Buffer Control™). For output in data mode, yvou must provide the
total data length in the physical record length field (DCBPRECL)
of the DCB. For input, the operating system provides the RDW
except in data mode. In data mode, the system passes the record
length to your program in the logical record length field
(DCBLRECL) of the DCB. The optional control character (c) may be
specified as the fifth byte of each record and must be followed
by at least one byte of data (the length in the RDW, in this
case, would be six). The first byte of data is a table reference
character if OPTCD=J has been specified. The RDW, the optional
control character, and the optional table reference character
are not punched or printed.

spanned Variable-Length Records (Sequential Access Method): The
spanning feature of the queued and basic sequential access
methods enables you to create and process variable-length
logical records that are larger than one physical block and/or
to pack blocks with variable-length records by splitting the
records into segments so that they can be written into more than
one block, as shown in Figure % on page 11.

0S/VS2 Data Management Services Guide

)

Block
BDW 7 LL N
Last First Segment . Last First Segment
LL Segment | of | ogical LL '3}"’@3‘?&2""“38?0’:‘:"8‘ LL of Logical| of Logical
of Logical | Record B o9 Record B | Record C
Record A
L,Reservad - N\ \ A : N
2 Bytes N N \\ 1 N
Block Length - N \ \ AN
2 Bytes o \ \ [l \ 2 ~
A \ A .
7 spw Data ¥ spw Data ” spw pata
Inter-
First iat Last
Seamene (20| | ¢ mede {go Soament | 0
of Logical of Logical of Logical
Record 3 - Record Record
L Optional Control L——— Segment Control L—Segment Control
Character Code Code
Reserved - 1 Byte
Segment Control Code -
1 Byte (See Figure 5)
Segment Length - 2 bytes 20
4
RDW Data Portion ofLogical Record B h
/ A
; Data Portion Data Portion Data Portion
Lo?lcal F(kecord u c of of of Last
(In User’s Work Area) First Segment! Intermediate Segment Segment

t—Optional Control Character
b= Reserved - 2 Bytes
Record Length - 2 Bytes

Figure 4. Spanned VYariable-lLength Records

When spanning is specified for blocked records, the system tries
to fill all blocks. For unblocked records, a record larger than
blocksize is split and written in two or more blocks, each block
containing only one record or record segment. Thus the blocksize
may be set to the one that is best for a given davice or
processing situation. It is not restricted by the maximum record
length of a data set. A record may, therefore, span several
blocks, and may even span volumes. Note that a logical record
spanning three or more volumes cannot be processed in update
mode (described under "Buffer Control™) by QSAM. A block can
contain a combination of records and record segments, but not
multiple segments of the same record. When records are added to
or deleted from a data set, or uhen the data set is processed
again with different blocksize or record-size parameters, the
record segmenting will change.

considerations for Processing Spannad Record Data sets: When
spanned records span volumes, reading errors may occur wheaen
using QSAM if a volume which begins with a middle or last
segment i1s mounted first or if an FEOV macro instruction is
issued followed by another GET. QSAM cannot begin reading from
the middle of the record. The errors include duplicate records,

program checks in the user's program, and invalid input from the
spanned record data set.

When a spanned record data set is to be opened in UPDAT mode and

Q5AM is used, a record area must be provided by using the
BUILDRCD macro instruction or by specifying BFTEK=A in the DCB.

Part 1: Introduction to Data Managament 11

If vou issue the FEOV macro instruction when reading a data set
that spans volumes, or if a spanned multivolume data set is
opened to other than the first volume, make sure that each
volume begins with the first (or only) segment of a logical
record. Input routines cannot begin reading in the middle of a
logical record.

Segment Descriptor Word: Each record segment consists of a
segment descriptor word (SDW) followed by the data. The segment
descriptor word, similar to the record descriptor word, is a
G-byte field that describes the segment. The first 2 bytes
contain the length ('11') of the segment, including the 4-byte
SDW. The length can be from 5 to 32,756 bytes or, when you are
using WRITE with tape, from 18 to 32,756 bytes. The third byte
of the SDW contains the segment control code, which specifies
the relative position of the segment in the logical record. The
segment control code is in the rightmost 2 bits of the byte. The
segment control codes are shown in Figure 5. The remaining bits
of the third bvte and all of the fourth byte are reserved for
future system use and must be 0.

Binary Code Relative Position of Segment

00 Complete logical record

01 First segment of a multisegment record

10 Last segment of a multisegment record

11 Segment of a multisegment record other than the

first or last segment

Figure 5. Segment Control Codes

The SDW for the first segment replaces the RDW for the record
after the record has been segmented. You or the operating system
can build the SDW, depending on which mode of processing is
used. In the basic sequential access method, you must create and
interpret the spanned records yourself. In the queued sequential
access method move mode, complete logical records, including the
RDW, are processed in your uwork area. GET consolidates segments
into logical records and creates the RDW. PUT forms segments as
required and creates the SDW for each segment. Data mode is
similar to move mode, but allows reference only to the data
portion of the logical record in vour work area. The logical
record length is passed to you through the DCBLRECL field of the
-data control block. In locate mode, both GET and PUT process one
sagment at a time. However, in locate mode, if yvou provide your.
own record area using the BUILDRCD macro instruction or if you
ask the system to provide a record area by specifying BFTEK=A,
then GET, PUT, and PUTX process one logical record at a time.
(BFTEK=A or the BUILDRCD macro cannot be specified when logical
records exceaed 32,760 byvtes. To process logical records that
exceed 32,760 bytes, you must use locate mode and specify
LRECL=X in yvour DCB macro.)

A logical record spanning three or more volumes cannot be
processed when the data set is opened for update.

When unit-record devices are used with spanned records, the
system assumes that unblocked records are being processed and
the block size must be equivalent to the length of one print
line or one card. Records that span blocks are written one
segment at a time.

SYSIN and SYSOUT Restrictions: Spanned variable-length records
cannot be specified for a SYSIN data set. If vou're using QSAM

-

N~

12 05/VS2 Data Management Services Guide

to process a SYSOUT data set, move mode (see "Buffer Control")
is more efficient than locate mode.

Null segments: A 1 in bit position 0 of the SDW indicates a null
segment. A null segment means that there are no more segments in
the block. Bits 1-7 of the SDW and the remainder of the block
must be binary zeros. A null segment is not an
end-of-logical-record delimiter. (You do not have to be

concerned about null segments unless you have created a data set
using null segments.)

spanned Variable-Length Records (Basic Direct Access Mathod):
The spanning feature of the basic direct access method (BDAM)
enables you to create and process variable-length unblocked
logical records that are longer than one track. The feature also
enables you to pack tracks with variable-length records by
splitting the records into segments. These segments can then be
written onto more than one track, as shown in Figure 6.

Track 1 Track 2 Track 3
— ~A
r Al B'OCk hY r Al
BDW 7 LL :
First Sf}gment Intermediate Segment of LastSe'grant
LL of Logical LL cal d LL of Logical
Record A Logical Record A Record A
\ N LL = track size [
Reterved - AN N ! \ \\ [\\
2 Bytes S \\ \ N
Block Length - \\ \\\ ‘\ \\ \\
2 Bytes AN N \ \ \
\ M \\ \ \ M \\
\‘ N \\ & \ A \
7 sow Data ” spow Data ” spw Data
Intermediate
First Stfagment |s.ast .
Segment of Logical egmen
of%_ogical 20 Record 2 of Logical Ji)
Record Record R
L—Ségment Controt L—Segment Control
Code Code
——Reserved - 1 Byte
Segment Control Code -
1 Byte (See Figure 5)
Segment Length - 2 Bytes
LL
r ~ N
BDW Data Portion of Logical Record A
Logical Record Data Portion Data Portion Data Portion
{In User's Work of of of Last
Area) First Segment Intermediate Segrvient | Segment

Block Length - J A

2 Bytes

Reserved - cmmeemme Noté: Not All Segment and Block Combinations are Represented

2 Bytes

Figure 6. Spanned Variable-Length Records for BDAM Data Sets

When you specify spanned, unblocked record format for the basic
direct access method and when a complete logical record cannot
fit on the track, the system tries to fill the track with a
record segment. Thus the maximum record length of a data set is
not restricted by block size. Furthermore, segmenting records
allows a record to span several tracks, with each segment of the
racord on a different track. However, since the system does not

allow a record to span volumes, all segments of a logical record
in a direct data set are on the same volume.

Part 1: Introduction to Data Management 13

VARIABLE-LENGTH RECORDS—FORMAT D: For ASCII tapes,
variable-length records must be format-D records. Format-D
records are the same as format-V records, except:

. Control characters, if present, must be ANSI control
characters.

. Records or blocks of records can contain block prefixes.
Figure 7 shows the format of variable-length records for ASCII

tapes, where the record descriptor word (RDW) must go, and where
block prefixes and control characters can go when they exist.

Block Block

r

N\ 4 A

Optional

Blocked | Biock
Records | prefix

Note:

Optional

Record A | Record B Record C Block | Record D Record E Record F

Prefix

Unblocked
Records

Y~ \

[} c

7 ¢ LOptional Control Character —
Reserved - 2 Bytes - e

v b————— Record Length - —

/ 2 Bytes . —

—

/ - Block Block

/ P r N\ r N

Optional! Optional' Optional
Block Record C Block | Record D Block Record E
Prefix Prefix ll Prefix

Block prefixes on output records must be 4-bytes long.

Figure 7. Variable-Length Records for ASCII Tapes

14

To specify a block prefix, code the BUFOFF operand in the DCB
macro. The block prefix can vary in length from 0 to 99 bytes
but its length must remain constant for the data set being
processed. For blocked records, the block prefix precedes the
first logical record in each block. For unblocked records, the
block prefix precedes each logical record. If the block prefix
exists, it precedes the RDW.

To specify that the block prefix is to be treated as a BDW by
data management for format-D records on output, code BUFOFF=L as
a DCB operand. Your block prefix must be 4 bytes long, and it
must contain the length of the block, including the block
prefix. The maximum length of a format D, BUFOFF=L block is 9999
because the length (stated in binary by the user) is translated
to a four-byte zoned decimal field on the ASCII tape when the
tape is written, and is then converted back to a two-byte length
field in binary followed by two bytes of zeros when the block is
read. If vou use QSAM to write records, data management fills in
the block prefix for you. If you use BSAM to write records, you
must fill in the block prefix yvourself. If you are using chained
scheduling to read blocked format-D records, coding
BUFOFF=absolute expression in the DCB is not allowed. Instead,

057VS2 Data Management Services Guide

TN

BUFOFF=L is required, becausae the access method needs binary
RDWs and valid end-of-block addresses to unblock the records.

When using QSAM, you cannot read the block prefix on input. When
using BSAM, you must account for the block prefix on bhoth input
and output. When using either QSAM or BSAM, vou must account for
the length of the block prefix in the BLKSIZE and BUFL operands.

When vou use BSAM on output records, the operating system doaes
not recognize the block prefix. Therefore, if you want a block
prefix, it must be part of your record.

The block prefix can contain any data you want, but you must
avoid using data types, such as binary, packed decimal, and,
floating-point, that cannot be translated into ASCII. For
format-D records, the only time the block prefix can contain
binary data is when you have coded BUFOFF=L, which tells data
management that the prefix is a BDW. Unlike the block prefix,
the RDW must always be in binary.

If vou create variable-length records that are shorter than 18
bytes, data management pads each one up to a length of 18 bytes
when the records are written onto ASCII tape. The padding
character used is the ASCII circumflex. :

For more information about control characters, refer to "Control
Character” and to "Appendix B: Control Characters."

Undefined~Length Records

Format U permits processing of records that do not conform to
the F or V format. As shown in Figure 8, each block is treated
as a record; therefore, deblocking must be performed by vour
program. The optional control character may be used in the first
hyte of each record. Because the system does not perform length
checking on format-U records, your program may be designed to
read less than a complete block into virtual storage.

Record

c Data

\L ’
\ = Optional Control /
\\Character-1 Byte /

/

\
Block \ Block // Block
/

Record A Record B Record C

Figure 8. Undefined-lLength Records

For ASCII tapes, format-U records are the same as described
above, with the two exceptions described for format-F records on
ASCII tapes.

Figure 9 shows the format of undefined-length records for ASCII
tapes and where a control character and block prefix, if any,
go.

For format-U records, the user must specify the record length

when issuing the WRITE, PUT, or PUTX macro instruction. No
length checking is performed by the system, so no error

Part 1: Introduction to Data Management 15

Record
— A ~
Optional
Block | ¢ Data
Prefix
\\\ tOptional Control //
\ Character-1 Byte /’
A ’
AY
Block \ Block S Block
A \ - A A
- Al \ - N/ r ‘ - N
Optional Optional . Optional
Block | Record A Block | Record B Block . Record C
Prefix Prefix Prefix

Figure 9. Undefined-Length Records for ASCII Tapes

indication will be given it the specified length does not match
the buffer size or physical record size.

In update mode, you must issue a GET or READ macro before vou
issue a PUTX or WRITE macro to a data set on a direct-access
device. If you change the record length when yvou issue the PUTX
or WRITE macro, the record will be padded with zeros or
truncated to match the length of the record received when the
GET or READ macro was issued. No error indication will be given.

control character

You may specify in the DD statement, the DCB macro instruction,
or the data set label that an optional control character is part
of each record in the data set. The l-byte character is used to
indicate a carriage control channel when the data set is printed
or a stacker bin when the data set is punched. Although the
character is a part of the record in storage, it is never
printed or punched. For that reason, buffer areas must be large
enough to accommodate the character. If the immediate
destination of the record is a device, such as disk, that does
not recognize the control character, the system assumes that the
control character is the first byte of the data portion of the
record. If the destination of the record is a printer or punch
and yvou have not indicated the presence of a control character,
the system regards the control character as the first byte of
data. A list of the control characters is in "Appendix B:
Control Characters." :

3800 TABLE REFERENCE CHARACTER

16

The 3800 Table Reference Character is a numeric character
(0,1,2, or 3) corresponding to the order in which the character
arrangement table names have been specified with the CHARS
keyword. It is used for selection of a character arrangement
table during printing. See IBM 38008 Printing Subsystem
Programmer's Guide for more information on the table reference
character. '

05/VS2 Data Management Services Guide

o

DIRECT-ACCESS DEVICE CHARACTERISTICS

Regardless of organization, data sets created us1ng the
operating system can be stored on a direct~access volume. Each
block of data has a distinct location and a unique address,
making it possible to locate any record without extensive
searching. Thus, records can be stored and retrieved e\ther
dlrectly or sequentially.

Although direct-access devices differ in physical appearance,
capacity, and speed, they are similar in data recording, data
checking, data format, and programming. The recording.surface of
each volume is divided into many concentric tracks. The number
of tracks and their capacity. vary with the device. Each device
has some type of access mechanism, containing read/urite heads
that transfer data as the recording surface rotates past them.
Only one head at a time can transfer data.

The logical arrangement of related tracks is vertical rather
than horizontal. As shown in Figure 10, a cvlinder of a 2316
disk pack is composed of 20 tracks, one for each recording
surface. Because there are 203 tracks per recording surface,
there are 203 vertical cvlinders of 20 tracks each. If a data
set extends to more than 1 track, it is continued on the next
tragk in the cylinder, not the next track on the same recording
surface.

20 Tracks 202 S Track

Comb-Type
Access Assembly

Ten Access Arms

Twenty Read-Write Heads

lind
Disks Cylinder

Figure 10. 2316 Disk Pack

Part 1: Introduction to Data Management 17

TRACK FORMAT

~

Information is recorded on all direct-access volumes in a N
standard format. In addition to device data, each track contains

a track descriptor record (capacity record or R0) and data

records.

As shown in Figure 11, there are two possible data record
formats—count-data and count-key-data—only one of which can be
used for a particular data set.

Count-Data Format

Count Data

] -
Count Data [:}3 ‘ Count Data

Track Descriptor
Record (RO)

Data Record {R1) Data Record (Rn)

Count-Key-Data Format

Count Data

Count Key Data Bg Count Key Data

Track Descriptor
Record (RO)

Data Record (R1) Data Record (Rn)

Figure 11. Direct-Access Volume Track Formats

In addltlon to device data, the count area contains 8 bytes that /
identify the location of the record by cylinder, head, and N
record numbers, its key length (0 if no keys are used), and its

data length.

If the records are written with keys, the key area (1 to 255
bytes) contains a record key that specifies the data record by
part number, account numher, sequence number, or some other
identifier. In some cases, records are written with keys so that
they can be located quickly.

TRACK ADDRESSING

Two types of addresses can be used to store and retrieve data on
a direct-access volume: actual addresses and relative addresses.
The only advantage of using actual addresses is the elimination
of time required to convert from relative to actual addresses
and vice versa. When sequentially processing a multiple-volume
data set, you can refer only to records of the current voluma.

ACTUAL ADDRESSES: When the system returns the actual address of
a record on a direct-access volume to your program, it is in the
form MBBCCHHR, where:

M
is a l-byte binary number specifying the relative location
of an entry in a data extent block (DEB). The data extent
block is created by the system when the data set is opened.
Each extent entry describes a set of consecutive tracks
allocated for the data set.

BBCCHH
is three 2- byte binary numbers specifying the cell (bin),
cylinder, and head number for the record (its track /ah
address). The cylinder and head numbers are recorded in the __
count area for each record.)

18 057VS2 Data Management Services Guide

TRACK OVERFLOW

is a l1-byte binary number specifying the relative block
number on the track. The block number is also recorded in
tha count area.

If you use actual addresses in your program, the data sat must
be treated as unmovahlae.

RELATIVE ADDRESSES: Two kinds of relative addresses can be used
to refer to records in a direct-access data set: relative block
addresses and relative track addresses.

The relative block address is a 3-byte binary numbaer that
indicates the position of the block relative to the first block
of the data set. Allocation of noncontinuous sats of blocks does
not affect the number. The first block of a data set always has
a relative block address of 0.

The relative track address has the form TTR, where:

T
is a 2-bytae binary number specifying the position of tha
track relative to the first track allocated for the data
set. The TT for the first track is 0. Allocation of
noncontinuous sets of tracks does not affect the number.

is a 1-byte bihary number specifying the number of the
block relative to the first block on the track TT. The R
value for tha first block of data on a track is 1.

If the record overflow feature is available for the
direct-access davice being used, you can reduce the amount of
unused space on the volume by specifying the track overflow
option in the DD statement or the DCB macro instruction
associated with the data set. If the option is used, a block
that does not fit on the track is partially uritten on that
track and continued on the next track. (The track onto which the
record is continued must be physically next and must be part of
the same extent as the track that holds the first part of the
record.) Each segment (the portion written on one trackl) of an
overflow block has a count area. The data length field in the
count area specifies the length of that segment only. If the
block is written with a key, there is only one key area for tha
block. It is written with the first segment. If the track
zver:low option is not used, blocks are not split batween
racks.

WRITE~-VALIDITY-CHECK OPTION

You can spacify the wrvte~va11d1ty check option in elther the DD
statement or the DCB macro ro instruction. After a record is
transferred from main to secondary storage, the system reads the
stored record (without data transfer) and, by testing for'a data
check from the I/70 device, verifies that the record was uwritten
corraectly. This verification requires an additional revolution
of the device for each record that was written. Standard error
ge:ov:rg procedures are initiated if an error condition is
etected.

Part 1: Introduction to Data Management 19

THE DATA _CONTROL RLOCK

You must describe the characteristics of a data set, the volume
on which it resides, and its processing requirements before
processing can begin. During execution, the descriptive
information is made available to the operating system in the
data_control block (DCB). A DCB is required for each data set

and is created in a processing program by a DCB macro
instruction.

Primary sources of information to be placed in the data control
block are a DCB macro instruction, a data definition (DD)
statement, and a data set label. In addition, you can provide or
modify some of the information during execution by storing the
pertinent data in the appropriate field of the data control
block. The specifications neceded for input/output operations are
supplied during the initialization procedures of the OPEN macro
instruction. Therefore, the pertinent data can be provided when
your job is to be executed rather than when you write your
program (see Figure 12).

DCB Macro

DD Statement Data Set Label

BFGHI : cC D | A E

Figure 12.

Data Control Block

ABCDEFGHIJ

Completing the Data Control Block

20

control block (JFCB) by the operating system.

When the OPEN macro instruction is executed, the Open routine:
. Completes the data control block

. Loads all necessary access method routines not already in
virtual storage

. Initializes data sets by reading or writing labels and
" control information.

U Constructs the necessary system control blocks

Information from a DD statement is stored in the job_file

bihen the job is to
be executed, the JFCB is made available to the open routine. The
data control block is filled in with information from the DCB
macro instruction, the JFCB, or an existing data set label. If
more than one source specifies information for a particular
field, only one source is used. A DD statement takes precedence
over a data set label, and a DCB macro instruction over both.
However, you can modify most data control block fields either
before the data set is opened or when the operating system
returns control to vour program (at the data control block open
exit). Some fields can be modified during processing.

0S/VS52 Data Management Services Guide

TN

™

Figure 13 illustrates the process and the sequence of filling in
the data control block from various sources. The primary source
is your program, that is, the DCB macro instruction. In general,
you should use only those DCB parameters that are needed to
ensure correct processing. The other parameters can be filled in
when vour program is to be executed. When a direct-accaess data
set is opaned (or a magnetic tape with standard labels is opened
for INPUT, RDBACK, or INOUT), any field in the JFCB not
completed by a DD statement is filled in from the data set label
(if one exists). When opening a magnhetic tape for output, the
tape label is assumed not to exist or to apply to the current
data set unless you specify DISP=MOD and a volume serial number
in the volume parameter of the DD statement. Any field not
completed in the DCB is filled in from the JFCB. Fields in tha
DCB can then be completed or modified by your own DCB exit
routine. Then all DCB fields are unconditionally merged into
corresponding JFCB fields if yvour data set is opened for output.
This is done by specifying OUTPUT, OQUTIN, EXTEND, or OUTINX in
the OPEN macro instruction. The DSORG field is not merged unless
this field contains zeros in the JFCB. If vour data set is
openad for input (INPUT, INOUT, RDBACK, or UPDAT is spacified in
the OPEN macro instruction), the DCB fields are not merged
unless the corresponding JFCB fields contain zeros.

DCB Data ‘ DQB
Macro ———@——h Control: q—@-———— Exit
Block Routine

DD Job File N\ New
Statement ——'—@—" Control \7/ P Di?bilet

Block

Oid
Data Set
Label

Figure 13. Sources and Sequence of Operations for Completing
the Data Control Block

When the data set is closed, the data control block is restored
to the condition it had before the data set was opened (the
buffar pool is not freed). The open and close routines also use
the updated JFCB to write the data set labels for output data
sets. If the data set is not closed when vour program
terminates, the operating system will close it automatically.

Part 1: Introduction to Data Management 21

DATA SET DESCRIPTION

For each data set you are going to process, there must be a
corraesponding DCB and DD statement. The characteristics of the
data set and device-dependent information can be supplied by
either source. In addition, the DD statement must supply data
sat identification, device charactaristics, space allocation
raequests, and related information as specified in 05/VS2 JCL.
You establish the logical connection between a DCB and a DD
statement by specifying the name of the DD statement in the
DDNAME field of the DCB macro instruction, or by completing the
field vourself hefore opening the data set.

Once the data set characteristics have been specified in the DCB
macro instruction, they can be changed only by modification of
the DCB during execution. The fields of the DCB discussed below
are common to most data organizations and access techniques,

DATA SET ORGANIZATION (DSORG): specifies the organization of the
data set as.physical sequential (PS), indexed sequential (IS),
partitioned (P0), or direct (DA). If the data set contains.
absolute rather than relative addresses, you must mark it as
unmovable by adding a U to the DSORG parameter (for example, by
coding DSORG=PSU). You must specify the data set organization in
the DCB macro instruction. When creating or processing an
indexed sequential organization data set or creating a direct
data set, you must also specify DSORG in the DD statement. Whaen
creating a direct data set, the DSORG in the DCB macro must
specify PS or PSU and the DD statement must specify DA or DAU.

RECORD FORMAT (RECFM): specifies the characteristics of the
records in the data set as fixed-length (F), variable-length
(V), or undefined-length (U). Blocked records are specified as
FB or VB. You may also specify the records as fixed-length
standard by using FS or FBS. You can request track overflow for
records other than standard format by adding a T to the RECFM
parameter (for example, by coding FBT).

RECORD LENGTH (LRECL): specifies the length, in bytes, of each
record in the data set. If the records are of variable length,
the maximum record length must be specified. For input, the
field should be omitted for format-U records.

BLOCKSIZE (BLKSIZE): specifies the maximum length, in bytes, of
a block. If the records are of format F, the blocksize must be
an integral multiple of the record length except for SYSOUT data
sats. (See "Routing Data Through the System Input and Output
Streams" in Part 3 of this book.) If the records are of format
V, the blocksize specified must be the maximum blocksize. If
records are unblocked, the blocksize must be % bytes greater
than the record length (LRECL). When spanned variable-length
records are specified, the blocksize is independent of the
record length.

KEY LENGTH (KEYLEN): specifies the length (0-255) in bytes of an
optional key which precedes each block on a direct-acctess
device. The value of KEYLEN is not included in BLKSIZE or LRECL
but must be included in BUFL if buffer length is specified.
Thus, BUFL=KEYLEN+BLKSIZE.

Each of the data set description fields of the data control
block, except as noted for data set organization, can be
specified when your job is to be executed. In addition, data set
identification and disposition, as well as device
characteristics, can be specified at that time. The parameters
of the DD statement discussed below are common to most data set
organizations and devices.

DATA DEFINITION NAME (DDNAME): is the name of the DD statement
and connects the DD statement to the data control block that
specifies tha same DDNAME.

DATA SET NAME (DSNAME): specifies the name of a newly defined
data set, or refers to a previously defined data set.

22 087VS2 Data Management Services Guide

C

DATA CONTROL BLOCK (DCB)}: provides, by means of subparameters,
information to be used to complete those fields of the data
control block that were not specified in the DCB macro
instruction. This parameter cannot be used to modify a data
control block.

CHANNEL SEPARATION AND AFFINITY (SEPRP/AFF): requests that

specified data sets use different channels during input/output
operations.

INPUT/0UTPUT DEVICE (UNIT): specifies the number and type of I/0
devices to be allocated for use by the data set.

SPACE ALLOCATION (SPACE): designates the amount of space on a
direct-access volume that should be allocated for the data set.
Unused space can be released when yvour job is finished.

VOLUME IDENTIFICATION (VOLUME): identifies the particular volume
or volumes, or the number of volumes, to be assigned to the data
set, or the volumes on which existing data sets reside.

DATA SET LABEL (LABEL): indicates the type and contents of the
label or labels associated with the data set. The operating
system verifies standard labels. Standard labels include those
specified in the DD statement as SL (standard labels), SUL
(standard user labels), AL (American National Standard labels),
and AUL (American National Standard user labels). Nonstandard
labels (NSL) can be specified only if vour installation has
incorporated into the operating system routines to write and
process nonstandard labels.

DATA SET DISPOSITION (DISP): describes the status of a data set

and indicates what is to be done with it at the end of the job
step.

PROCESSING PROGRAM DESCRIPTION

The operating system requires several types of processing
information to ensure proper control of your input/output
operations. The forms of macro instructions in the program,
buffering requirements, and the addresses of your special
processing routines must be specified during either the assembly
or the execution of yvour program. The DCB parameters specifying
buffer requirements are discussed in "Buffer Acquisition and
Control."

Because macro instructions are expanded during the assembly of
your program, you must supply the macro instruction forms that
are to be used in processing each data set in the associated DCB
macro instruction. You can supply buffering requirements and
related information in the DCB macro instruction, the DD
statement, or by storing the pertinent data in the appropriate
field of the data control block before the end of your DCB exit
routine. If the addresses of special processing routines are
omitted from the DCB macro instruction, you must complete them
in the DCB bhefore opening the data set.

Macro Instruction Form (MACRF)

The MACRF parameter of the DCB macro instruction specifies not
only the macro instructions used in your program, but also the
processing mode as discussed in the section "Buffer Control."
The organization of your data set, the macro instruction form,
and the processing mode determine which of the data access
routines will be used during execution.

Part 1: Introduction to Data Management 23

Exits to special Processing Routines

The DCB macro instruction can be used to identify the location
of:

. A routine that performs end-of-data procedures

. A routine that supplements the operating system's error
recovery routine

. A list that contains addresses of special exit routines

The exit addresses can be specified in the DCB macro instruction
or you can complete the DCB fields before opening the data set.
Figure 14 summarizes the exits that yvou can specify either
explicitly in the DCB, or implicitly by specifying the address
of an exit list in the DCB.

Exit Routine
End-of-Data-Set

Error Analysis

Khen Available

When no more sequential
records or blocks are
available

After an uncorrectable
input/Zoutput error

Where specified

EODAD operand

SYNAD operand

Standard User lLabel When opening, closing, EXLST operand and
(physical sequential or reaching the end of exit list
or direct organization) a data set, and when
. changing volumes
DCB Open When opening a data set EXLST operand and
exit list
JFCBE When opening a data set EXLST operand and
for the 3800 exit list
End-of-Volume When changing volumes EXLST operand and
‘ exit list
Block Count After unequal block count EXLST operand and
comparison by end-of-volume exit list
routine ‘
FCB Image When opening a data set or EXLST operand and
issuing a SETPRT macro exit list
DCB ABEND When an ABEND condition EXLST operand and

occurs in Open, Close, or
end-of-volume routine.

Figure 14. Data Management Exit Routines

exit list

END-OF-DATA-SET EXIT ROUTINE (EODAD): The EODAD parameter of the
DCB macro instruction specifies the address of your end-of-data
routine, which may perform any final processing on an input data
set. This routine is entered when an FEOV macro is issued or
when a CHECK or GET macro is issued and there are no more
records or blocks to be retrieved. (On a READ redquest, this
routine is entered when you issue a CHECK macro instruction to
check for completion of the read operation. For a BSAM data set
that is opened for UPDAT, this routine is entered at the end of
each volume. This allows you to issue WRITE macros before an
FEOV macro is issued.)

The EODAD routine is not a subroutine, but rather a continuation
of the routine which issued the CHECK, GET, or FEOV macro
instruction. Onca in your EODAD routine, you can continue normal

24 0S/VS2 Data Management Services Guide

N’

P
\

O

processing, such as reposition and resume processing of the data
set, close the data set, or process another data set.

For BSAM, vou must first reposition the data set that reached
end-of-data if you wish to issue a BSP, READ, or WRITE macro
instruction. You can reposition your data set by issuing a CLOSE
TYPE=T macro instruction. If a READ macro is issued before the
data set is repositioned, unpredictable results will occur.

For BPAM, vou may reposition the data set by issuing a FIND or
POINT macro instruction. (CLOSE TYPE=T with BPAM results in a no
operation performed.)

For QISAM, you can continue processing the input data set that
reached end-of-data by first issuing an ESETL macro to end the
sequential retrieval, then issuing a SETL macro to set the louwer
limit of sequential retrieval. You can then issue GET macros to
the data set.

Your task will be abnormally terminated under either of the
following conditions:

. No exit routine is provided.

. A GET macro instruction is issued in the EODAD routine to
the DCB which caused this routine to be entered (unless the
access method is QISAM).

When control is passed to the EODAD routine, the registers
contain the following information:

Register contents
0-1 Reserved

2-13 Contents before execution of CHECK, GET, or FEOV macro
instruction

14 Address of the instruction after the last issued GET,
CHECK, or FEOV macro instruction

15 Reserved

SYNCHRONOUS ERROR ROUTINE EXIT (SYNAD): The SYNAD parameter of
the DCB macro instruction specifies the address of an error
routine that is to be given control when an input/output error
occurs, This routine can be used to analyze exceptional
conditions or uncorrectable errors. The block being read or
vritten can be accepted or skipped, or processing can be
terminated.

If an input/Zoutput error occurs during data transmission,
standard error recovery procedures, provided by the operating
system, attempt to correct the error before returning control to
your program. An uncorrectable error usually causes an abnormal
termination of the task. However, if you specify in the DCB
macro instruction the address of an error analysis routine
(called a SYNAD routine), the routine is given control in the
event of an uncorrectable error.

You can write a SYNAD routine to determine the cause and type of
error that occurred by examining:

. The contents of the general registers

. The data event control block (discussed in Part 2 under

"Basic Access Technique'")
. The exceptional condition code

. The standard status and sense indicators

Part 1: Introduction to Data Manageoment 25

26

You can use the SYNADAF macro instruction to perform this
analysis automatically. This macro instruction produces an error
message that can be printed by a subsequent PUT or WRITE macro
instruction.

Aftter completing the analysis, you can return control to the
operating system or close the data set. If vou close the data
set, note that you mavy not use the temporary close (CLOSE
TYPE=T) option in the SYNAD routine. To continue processing the

. 'same data set, you must first return control to the control

program by a RETURN macro instruction. The control program then
transfers control to vour processing program, subject to the
conditions described below. In no case should you attempt to
reread or reuwrite the record, because the system has already
attempted to recover from the error.

When you are using GET and PUT to process a sequential data set,
the operating system provides three automatic error options
(EROPT) to be used if there is no SYMAD routine or if vou want
to return control to your program from the SYNAD routine:

. ACC accept the erroneous block
. SKP skip the erroneous block
. ABE abnormally terminate the task

These options are applicable only to data errors, as control
errors result in abnormal termination of the task. Data errors
affect only the validity of a block of data. Control errors
affect information or operations necessary for continued
processing of the data set. These options are not applicable to
output errors, except output errors on the printer. If the EROPT
and SYNAD fields are not completed, ABE is assumed.

Since EROPT applies to a physical block of data, and not to a
logical record, use of SKP or ACC may result in incorrect
assembly of spanned records.

When you use READ and WRITE macro instructions, errors are
detected when vou issue a CHECK macro instruction. If you are
processing a direct or sequential data set and you return to the
control program from your SYNAD routine, the operating system
assumes that you have accepted the bad record. If vou are
creating a direct data set and vou return to the control program
from your SYNAD routine, your task is abnormally terminated. In

“the case of processing a direct data set, the raeturn should be

made to the control program via register 14 in order to make a
controel block (the I0OB) available for reuse in a subsequent READ
or WRITE macro instruction.

For a detailed description of the register contents upon entry
to vour SYNAD routine, refer to the tables in 05/VY$2 MVS Data
Management Macro Instructions. The tables there describe
register contents for’ programs using QISAM, BISAM, BDAM, BPAM,
BSAM, and QSAM.

Your SYNAD routine can end by branchinog to another routine in

your program, such as a routine that closes the daota set. It can

also end by returning control to the control program, which then
returns control to the next sequential instruction (after the

macro) in your program. If your routihe returns control, the

goqzentrona for sav1ng and restoring register contents are as
ollows:

- The SYNAD routine must preserve the contents of registers 13
and 14. If required by the logic of your program, the
routine must also preserve the contents of registers 2
through 12. Upon return to vour program, the contents of
registers 2 through 12 will be the same as upon return to
the control program from the SYNAD routine.

0S/7VS2 Data Management Services Guide

. The SYNAD routine must not use the save area whose address
is in register 13, because this area is used by the control
program. If the routine saves and restores register
contents, it must provide its own save area.

. If the SYNAD routine calls another routine or issues
supervisor or data management macro instructions, it must
provide its own save area or issue a SYNADAF macro
instruction. The SYNADAF macro instruction provides a save
area for its own use, and then makes this area available to
the SYNAD routine. Such a save area must be removed from the
save area chain by a SYNADRLS macro instruction before
control is returned to the control program.

When you use QSAM to read and translate paper-tape characters,
vour SYNAD routine receives control when you request the record
preceding the record in error. Before giving control to vour
SYNAD routine, the system translates the requested record into

your buffer,

For example, suppose that you are using Q5AM to read and
translate a paper-tape data set and that you have specified, in
your DCB, SYNAD=(address) and EROPT=ACC. Suppose also that the
third record of the data set has a parity error. When you issue
a GET request for the second record, the system translates that
record into your buffer and, as a result of the error in the
third record, passes control to your SYNAD routine. Because vou
specified the accept option, the system returns control to your
program after your SYNAD error analysis routine completes its
processing. When vou issue a GET request for the third record,
all characters other than the erroneous one are translated into
yvour buffer; the erroneous character is moved, in normal
sequence, into your buffer without translation.

If the error analysis routine receives control from the Close
routine when indexed sequential data sets are being created (the
DCB is opened for QISAM load mode), bit 3 of the IOBFLAGS field
in the load mode buffer control table (IOBBCT) is set to one.
The DCBWKPT6 field in the DCB contains an address of a list of
work area pointers (ISLVPTRS). The pointer to the IOBBCT is at
offset 8 in this list as shown in the following diagram:

DCB quk Area

Pointers

(ISLVPTRS) 10BBCT

° L1]
T T 4 o4 1
<=8 8
DCBWKPT6 A (I0BBCT)
L IOBFLAGS

If the error analysis routine receives control from the Close
routine when indexed sequential data sets are being processed
using QISAM scan mode, bit 2 of the DCB field DCBEXCD2 is set to
one.

EXIT LIST (EXLST): The EXLST parameter of the DCB macro ,
instruction specifies the address of a list that contains the
addresses of special processing routines, a forms control buffer
(FCB) image, or a user totaling area. An exit list must be
created if user label, data control block, end-of-volume, block
count, JFCBE, or DCB ABEND exits are used, or if a PDAB macro or
FCB image is defined in the processing program.

Part 1: Introduction to Data Management 27

28

The exit list is constructed of 4-byte entries that must be
aligned on fullword boundaries. Each exit list entry is
identified by a code in the high-order byte, and the address of
the routine, image, or area is specified in the 3 low-order
bytes. Codes and addresses for the exit list entries are shoun
in Figure 15.

You can activate or deactivate any entry in the list by placing
the required code in the high-order byte. Care must be taken,
however, not to destroy the last entry indication. The operating
system routines scan the list from top to bottom, and the first
active entry found with the proper code is selected.

You can shorten the list during execution by setting the
Qigg-order bit to 1, and extend it by setting the high-order bit
o 0.

When control is passed to an exit routine, the registers contain
the following information:

Register contents
0 Variable; see exit routine description.

1 The three, low-order bytes contain the address of DCB
currently being processed, except when user-label
exits (X'01'-'04'), user totaling exit (X'0A'), or DCB
ABEND exit (X'11') is taken, when register 1 contains
the address of a parameter list. The contents of the
parameter list are described in each exit routine
description.

2-13 Contents before execution of the macro instruction.

14 Return address (must not be altered by the exit
routine).

15 Address of exit routine entry point.

The conventions for saving and restoring register contents are
as follows:

L The exit routine must preserve the contents of register 14.
It need not preserve the contents of other registers. The
control program restores the contents of registers 2-13
before returning control to yvour program.

. The exit routine must not use the save area whose address is
in register 13, because this area is used by the control
program, If the exit routine calls another routine or issues
supervisor or data management macro instructions, it must
provide the address of a new save area in register 13.

standard User Label Exit: When you create a data set with
physical sequential or direct organization, you can provide
routines to create your oun data set labels. You can also
provide routines to verify these labels when you use the data
set as input. Each label is 80 characters long with the first ¢
characters UHL1,UHL2,...,UHL8 for a header label or
UTL1,UTL2,...,UTL8 for a trailer label. User labels are not
allowed on indexed sequential data sets.

05/VS2 Data Management Services Guide

\

~

Entry Type

Inactive entry

Input header label exit

Hexadecimal
Code

00
01

Output header label exit 02

Input trailer label exit 03

Qutput trailer label exit 04

Data control block exit

End-of-volume exit

JFCB exit

User to{aling area
Block count exit
Defer input trailer

label

Defer nonstandard
input trailer label

FCB image
DCB ABEND exit

QSAM parallel input

JFCBE exit

Last entry

Figure 15.

05
06
07

08-09
. 0A

0B

ocC

0D

0E-OF
10
11

12

13-14

15

16-7F
80

3-byte Address—Purpose

Ignore the entry; it is not active.
Process a user input header label.
Create a user output header label.
Process a user input trailer label.
Create a user output trailer label.
Take a data control block exit.
Take an end-of-volume exit.

JFCB address for RDJFCB and
OPEN TYPE=J SVCs.

Reserved for future use

Address of beginning of user's
totaling area.

Take a block-count-unequal exit.

Defer processing of a user
input trailer label
from end-of-data until closing.

Defer processing a nonstandard input
trailer labelmagnetic tape unit from
end-of-data until closing
(ho exit routine address).

Reserved for future use
Define an FCB image.

Examine the ABEND condition and select
one of several options.

Address of the PDAB for which this DCB
is a member.

Reserved for future use

Take an exit during open to allow user
to examine JCl=specified setup
requirements for a 3800 printer.

Reserved for future use

Treat this entry as last

entry in list.

This code can be specified with

any of the above but must always be
specified with the last entry.

Format and Contents of an Exit List

The physical location of the labels on the data set depends on
the data set organization. For direct (BDAM) data sets, user
labels are placed on a separate user label track in the first
User label exits are taken only during execution of the

volume.
open and close routines.

Thus you may create or examine up to

eight user header labels only during execution of open and up to
eight trailer labels only during execution of close. Since the
trailer labels are on the same track as the header labels, the

Part 1: Introduction to Data Management 29

30

first volume of the data set must be mounted when the data set

is closed.

For physical sequential (BSAM or QSAM) data sets, you may create
or examine up to eight header labels and eight trailer labels on
For ASCII tape data sets, you may
and trailer labels.

each volume of the data set.
create an unlimited number of user header

The user label exits are taken during open,
end-of-volume processing.

To create or verify labels, you must specify the addresses of
yvour label exit routines in an exit list as shown in Figure 15.
Thus you may have separate routines for creating or verifying
header and trailer label groups.
magnetic tape is read backuward,
processed as header labels and the header label group is

processed as trailer labels.

When your routine receives control,
are unpredictable.

parameter list.

does not issue the CLOSE macro instruction,

terminates before issuing CLOSE,
will be issued by the contreol program, with control-program

information in these registers.

The parameter list pointed to by register 1

the area.

close, and

Care must be taken if a
since the trailer label group is

the contents of register
Register 1 contains the address of a

The contents of registers 2-13 are the same as
when the macro instruction was issued. However, if your program
or abnormally

the CLOSE macro instruction

is a 16-byte area
aligned on a fullword boundary. Figure 16 shows the contents of

0./

Address of 80-byte buffer area

4
/OF flag
/§66/

Address of DCB being processed
1 1

WL,

Error flags

466466/

/

Address of status information

"V

Address of user totaling image area
1 1

Figure 16.

Parameter List Passed to User Label Exit Routine

The first address in the parameter list points to an 80-byte
the control program reads a user
into this area before passing control to the label

the user label exit routine constructs
labels in this area and returns to the control program, which
When an input trailer label routine receives
the EOF flag (high-order byte of the second entry in
is set as follows:

label buffer area.

label

routine.

writes the label.
control,
the parameter list)

bit 0 = 0:
bit 0 = 1:

bits 1-7:

For output,

For input,

Entered at end-of-volume
Entered at end-of-file
Reserved

05/7V52 Data Management Services Guide

N

\, - '

When a user label exit routine receives control after an
uncorrectable I/0 error has occurred, the third entry of the
parameter list contains the address of the standard status
information. The error flag (high-order byte of the third entry
in the parameter list) is set as follows:

bit 0 1: Uncorrectable I/0 error

bit 1 = 1: Error occurred during writing of updated label
bits 2-7: Reserved

The fourth entry in the parameter list is the address of the
user totaling image area. This image area is the entry in the
user totaling save area that corresponds to the last record
physically written on the volume. The image area is discussed
further under "User Totaling."

Each routine must create or verify one label of a header or

trailer label group, place a return code in register 15, and
return control to the operating system. The operating system
responds to the decimal return code as shown in Figure 17.

You can create user labels only for data sets on magnetic-tape
volumes with IBM standard labels or American National Standard
labels and for data sets on direct-access volumes. When you
specify both user labels and IBM standard labels in a DD
statement by specifying LABEL=(,SUL) and there is an active
entry in the exit list, a label exit is always taken. Thus, a
label exit is taken even when an input data set does not contain
user labels, or when no user label track has been allocated for
writing labels on a direct-access volume. In either case, the
appropriate exit routine is entered with the buffer area address
parameter set to 0. On return from the exit routine, normal
processing is resumed; no return code is necessary.

Label exits are not taken for system output (S5YSOUT) data sets,
or for data sets on volumes that do not have standard labels.
For other data sets, exits are taken as follouws:

. When an input data set is opened, the input header label

exit 01 is taken. If the data set is on tape being opened
for RDBACK, user trailer labels will be processed.

Part 1: Introduction to Data Management 31

Routine Type Return code
Input header 0

or

trailer label

4
81
121
Output header 0
or trailer label
[
8

system Rasponsa

Normal processing is resumed.
If there are any remaining
labels in the label group, they
are ighored.

The next user label is read into
the label buffer area and control
is returned to the exit routine.
If there are no more labels in

the label group, normal processing
is resumed.

The label is written from the
label buffer area and normal
processing is resumed.

The label is written from the
label area, the next label is read
into the label buffer area, and
control is returned to the labhel
processing routine.

If¥ there are no more labels,
processing is resumed.

Normal processing is resumed;
no label is written from the label
buffer area.

User label is written

from the label buffer area.

Normal processing is resumed.

User label is written from the label
buffer area.

If fewer than eight labels have been
created, control is returned to the
exit routine, which then creates

the next label.

If eight labels have been created,
normal processing is resumed.

1Your input label routines can return these codes only when

vou are processing a physical sequential data set opened

for UPDAT or a direct data set opened for QUTPUT or UPDAT.

These return codes allow you to verify the existing labels, update
them if necessary, then request that the system uwrite

the updated labels.

Figure 17. System Response to a User Label Exit Routine Return Code

32 0S5/VS2 Data Managament Services Guide

TN

o

/“\

® When an output data set is opened, the output header label
exit 2 is taken. However, if the data sat already exists and
DISP=MOD is coded in the DD statement, the input trailer
label exit 03 is taken to process any existing trailer
labels. If the input trailer label exit 03 does not exist,
then the deferred input trailer label exit 0C is taken if it
exists; otherwise, no label exit is taken. For tape, these
trailer labels will be overwritten by the new output data or
by EOV or close processing when writing new standard trailer
labels. For direct-access devices, these trailer labels will
still exist unless rewritten by EOV or close processing in
an output trailer label exit.

. When an input data set reaches end-of-volume, the input
trailer label exit 03 is taken. If the data set is on tape
opened for RDBACK, header labels will be processed. The
input trailer label exit 03 is not taken if you issue an
FEOV macro instruction. If a defer input trailer label exit
0C is present, and an input trailer label exit 03 is not
present, the 0C exit is taken. After switching volumes, the
input header label exit 01 is taken. If the data set is on
tape opened for RDBACK, trailer labels will be processed.

. When an output data set reaches end-of-volume, the output
trailer label exit 04 is taken. After switching volumes,
output header label exit 02 is taken.

. When an input data set reaches end-of-data, the input
trailer label exit 03 is taken before the EODAD exit, unless
the DCB exit list contains a defer input trailer label exit
oC.

. When an input data set is closed, no exit is taken unless
the data set was previously read to end-of-data and the
defer input trailer label exit 0C is present. If so, the
defer input trailer label exit 0C is taken to process
trailer labels, or if the tape is opened for RDBACK, header
labels.

. When an output data set is closed, the output trailer label
exit ¢ is taken.

To process records in reverse order, a data set on magnetic tape
can be read backward. When you read backward, header label exits
are taken to process trailer labels, and trailer label exits are
taken to process header labels. The system presents labels from
a label group in ascending order by label number, which is the
order in which the labels were created. If necessary, an exit
routine can determine label type (UHL or UTL) and number by
examining the first four characters of each label. Tapes with
IBM standard labels and direct-access devices can have as many
as eight user labels. Tapes with American National Standard
labels can have unlimited user labels.

If an uncorrectable error occurs during reading or writing of a
user label, the system passes control to the appropriate exit
routine with the third word of the parameter list flagged and
pointing to status information.

After an input error, the exit routine must return control with
an appropriate return code (0 or 4). No return code is required
aftter an output error. If an output error occurs while the
system is opening a data set, the data set is not opened (DCB is
flagged) and control is returned to your program. If an output
error occurs at any other time, the system attempts to resume
normal processing.

User Totaling (BSAM and QSAM only): When creating or processing
a data set with user labels, you may develop control totals for
each volume of the data set and store this information in your
user labels. For example, control total that was accumulated as
the data set was created can be stored in your user label and
later compared with a total accumulated during processing of the
volume. User totaling assists vou by synchronizing the control

Part 1: Introduction to Data Management 33

34

data you create with records physically written on a volume. For
an output data set without user labels, you can also develop a
control total that will be available to your end-of-volume
routine.

To request user totaling, vou must specify OPTCD=T in the DCB
macro instruction or in the DCB parameter of the DD statement.
The area in which you accumulate the control data (the user
totaling area) must be identified to the control program by an
entry of hexadecimal 0A in the DCB exit list. OPTCD=T cannot be
specified for SYSIN or SYSOUT data sets.

The user totaling area, an area in storage that you provide,
must begin on a halfword boundary and be large enough to contain
your accumulated data plus a 2-byte length field. The length
field must be the first 2 bytes of the area and specify the
length of the entire area. A data set for which vou have
specified user totaling (OPTCD=T) will not be opened if either
the totaling area length or the address in the exit list is 0,
or if there is no X'0A' entry in the exit list.

The control program establishes a user totaling save area, in
which the control program preserves an image of your totaling
area, when an 1/0 operation is scheduled. When the output user
label exits are taken, the address of the save area entry (user
totaling image area) corresponding to the last record physically
written on a volume is passed to you in the fourth entry of the
user label parameter list. This parameter list is described in
the section "Standard User Label Exit." When an end-of-volume
exit is taken for an output data set and user totaling has been
specified, the address of the user totaling image area is in
register 0.

When using user totaling for an output data set, that is, when
creating the data set, you must update your control data in your
totaling area before issuing a PUT or a WRITE macro instruction.
The control program places an image of your totaling area in the
user totaling save area when an I/0 operation is scheduled. A
pointer to the save area entry (user totaling image area)
corresponding to the last record physically written on the
volume, is passed to you in your label processing routine. Thus
you can include the control total in your user labels. When
subsequently using this data set for input, you can accumulate
the same information as vou read each record and compare this
total with the one previously stored in the user trailer label.
If you have stored the total from the preceding volume in the
user header label of the current volume, you can process each
volume of a multivolume data set independently and still
maintain this system of control.

When variable-length records are specified with the totaling
facility for user labels, special considerations are necessary.
Since the control program determines whether a variable-length
record will fit in a buffer after a PUT or a WRITE has been
issued, the total vou have accumulated may include one more
record than is actually written on the volume. In the case of
variable-length spanned records, the accumulated total will
include the control data from the volume-spanning record
although only a segment of the record is on that volume.
However, when you process such a data set, the volume-spanning
record or the first record on the next volume will not be
available to you until after the volume switch and user label
processing are completed. Thus the totaling information in the
user label may not agree with that developed during processing
of the volume.

One way you can resolve this situation is to maintain, when you
are creating a data set, control data pertaining to each of the
last two records and include both totals in your user labels.
Then the total related to the last complete record on the volume
and the volume-spanning record or the first record on the next
volume would. be available to your user label routines. During
subsequent processing of the data set, your user label routines

05/VS52 Data Management Services Guide

can determine if there is agreement betuwean the generated
information and one of the two totals praeviously saved.

When the totaling facility for user labels is selected with DASD
devices and secondary space is specified, the total accumulated
may be one less than the actual written.

Data Control Block Open Exit: You can specify in an exit list
the address of a routine that completes or modifies a DCB and
does any additional processing required before the data set is
completely open. The routine is entered during the opening
process after the JFCB has been used to supply information for
the DCB. The routine can determine data set characteristics by
examining fields completed from the data set labels. When your
DCB exit routine receives control, the three, low-order bytes of
register 1 will contain the address of the DCB currently being
processed.

As with label processing routines, register 14's contents must
be preserved and restored if any macro instructions are used in
the routine. Control is returned to the operating system by a
RETURN macro instruction; no return code is required.

This exit is mutually exclusive with the JFCBE exit. If you need
both the JFCBE and data control block open exits, you must use
the JFCBE exit to pass control to vour routines.

QSAM Parallel Input Exit: A request for parallel input
processing is indicated by including the address of a parallel
data access block (PDAB) in the DCB exit list. The address must
be on a fullword boundary with the first byvte of the entry
containing X'12' or, if it is the last entry, X'92'. For more
information on parallel input processing, see "Parallel Input
Processing (QS5AM Only)."

JFCBE Exit: JClL-specified setup requirements for the 3800
printer cause a JFCB extension (JFCBE) to be created to reflect
those specifications. A JFCBE exits if BURST, MODIFY, CHARS, :
FLASH, or any copy group is coded on the DD statement. The JFCBE
exit can be used to examine or modify those specifications in
the JFCBE. You can provide a JFCBE exit routine to examine or
modify those specifications. The address of the routine should
bae placed in an exit list. The device allocated does not have to
be a 3800. This exit is taken during open processing and is
mutually exclusive with the data control block exit. If vou need
both the JFCBE and data control block exits, you must use the
JFCBE exit to pass control to vour routines.

With 3800 Enhancements, when you issue the SETPRT macro to a
SYSOUT data set the JFCBE is further updated from the
information in the SETPRT parameter list.

When control is passed to vour exit routine, the contents of
register and 1 will be:

Register CcContents

0 If a JFCBE exists, this register will point to an area
in unprotected storage into which a copy of the JFCBE
has been placed. If a JFCBE does not exist, this
register will be zero.

1 The address of the DCB being processed.

Registers 2-15 will contain the standard user exit contents.
The area pointed to by register 0 will also contain the 4-byte
FCB identification which is obtained from the JFCB. The FCB
identification is placed in the four bytes following the

176-byte JFCBE. If the FCB operand was not coded on the DD
statement, this FCB field will be binary zeros.

Part 1: Introduction to Data Management 35

36

If your copy of the JFCBE is modified during an exit routine,
you should indicate this fact by turning on bit JFCBEGPN (X'80°
in JFCBFLAG) in the JFCBE copy. On return to open, this bit
indicates whether the system copy is to be updated. The 4-byte
FCB identification in your area will be used to update the JFCB
regardless of the bit setting. Checkpoint/restart also
interrogates this bit to determine which version of the JFCBE
will be used at restart time. If this bit is not on, the JFCBE
generated by the restart JCL will be used.

End-of-volume Exit: You can specify in an exit list the address
of a routine that is entered when end-of-volume is reached in
processing of a physical sequential data set.

When you concatenate data sets with unlike attributes, no EOV
exits are taken.

When the end-of-volume routine is entered, register 0 contains 0
unless user totaling was specified. If vou specified user
totaling in the DCB macro instruction (by coding OPTCD=T) or in
the DD statement for an output data set, register 0 contains the
address of the user totaling image area. The routine is entered
aftfter a new volume has been mounted and all necessary label
processing has been completed. If the volume is a reel of
maghetic tape, the tape is positioned after the tapemark that
precaedes the beginning of the data.

You can use the end-of-volume (EOV) exit routine to take a
checkpoint by issuing the CHKPT macro instruction, which is
discussed in 05/VS2 Checkpoint/Restart; specifications for the
CHKPT macro are also included in 05/VS2 MVS Data Management
Macro Instructions. If a checkpointed job step terminates
abnormally, it can be restarted from the EOQV checkpoint. When
the job step is restarted, the volume is mounted and positioned
as upon entry to the routine. Restart becomes impossible if
changes are made to the link pack area (LPA) library between the
time the checkpoint is taken and the time the job step is
restarted. When the step is restarted, pointers to end-of-volume
modules must be the same as when the checkpoint was taken.

The end~of-volume exit routine returns control in the same
manner as the data control block exit routine. Register 1l4's
contents must bhe preserved and restored if any macro
instructions are used in the routine. Control is returned to the
operating system by a RETURN macro instruction; no return code
is required.

Block Count Exit: You can specify in an exit list the address of

. a routine that will allow you to abnormally terminate the task

or continue processing uhen the end-of-volume routine finds an
unequal block count condition. When vou are using standard
labeled input tapes, the block count in the trailer label is
compared by the end-of-volume routine with the block count in
the DCB. The count in the trailer label reflects the number of
blocks written when the data set was created. The number of
blocks read when the tape is used as input is contained in the
DCBBLKCT field of the DCB.

The routine is entered during end-of-volume processing. The
trailer label block count is passed in register 0. You may gain
access to the count field in the DCB by using the address passed
in register 1 plus the proper displacement, as given in 05/V52
System Programming Libraryv: Debugging Handbook. If the block
count in the DCB differs from that in the trailer label when no
exit routine is provided, the task is abnormally terminated. The
routine must terminate with a RETURN macro instruction and a
return code that indicates what action is to be taken by the
operating system, as shown in Figure 18. As with other exit
routines, register 14's contents must be saved and restored if
any macro instructions are used. '

08/VS52 Data Management Services Guide

N

-

N

C
'
/

Return Code System Action
0 The task is to be abnormally terminated.
4 Normal processing is to be resumed.

Figure 18, System Response to Block Count Exit Return Code

Defer Nonstandard Input Trailer Label Exit: In an exit list, you
can specify a code that indicates that you want to defer
nonstandard input trailer label processing from end-of-data
until the data set is closed. The address portion of the entry
is not used by the operating system.

An end-of-volume condition exists in several situations. Two
examples are: (1) when the system reads a filemark or tapemark
at the end of a volume of a multivolume data set but that volume
is not the last, and (2) when the system reads a filemark or
tapemark at the end of a data set. The first situation is
referred to here as an end-of-volume condition, and the second
as an end-of-data condition, although it, too, can occur at the
end of a volume.

For an end-of-volume (EQOV) condition, the EOQOV routine passes
control to your nonstandard input trailer label routine, whether
or not this exit code is specified. For an end-of-data condition
when this exit code is specified, the EOV routine does not pass
control to your nonstandard input trailer label routine.
Inszgad, the close routine passes control to your end-of-data
routine.

FCB Image Exit: You can specify in an exit list the address of a
forms control buffer (FCB) image. This FCB image can be loaded
into the forms control buffer of the printer control unit. The
FCB controls the movement of forms in printers that do not use a
carriage control tape.

Multiple exit list entries in the exit list can’ define FCBs. The
open and SETPRT routines search the exit list for requested FCBs
before searching SYS1.IMAGELIB.

The first 4 bytes of the FCB image contain the image identifier.
To load the FCB, this image identifier is specified in the FCB
parameter of the DD statement, by the SETPRT macro instruction,
ggc?§9ghe system operator in response to message IEC127D or

For a 3211 the image identifier is followed by the FCB image
described in 05/VS2 System Programming Library: Data Management.
For a 3800, see IBM 3800 Printing Subsystem Programmer's Guide.

You can use an exit list to define an FCB image only when
writing to an online printer. Figure 19 illustrates one way the
exit list can be used to define an FCB image.

Part 1: Introduction to Data Management 37

EXLIST

FCBIMG

//ddname
/%

Figure 19.

DCB .. EXLST=EXLIST

ps oF
DC X'io?* Flag code for FCB image
pC ALI(FCBIMG) Address of FCB image
DC X'80000000" End of EXLST and a null entry
DC CL&G'IMGL? FCB identifier
DC X'00" FCB is not a default
DC ALL1(67) Length of FCB
2] Xr9qQ? Offset print line
sitions to the right
DC X'00'? Spacing is 6 lines per inch
DC 5X'00" Lines 2-6 no channel codes
DC X'01°® Line 7 channel 1
DC 6X'00" Lines 8-13 no channel codes
DC Xro2r* Line (or Lines) 1% channel 2
DC 5X'00" Line (or Lines) 15-19 no channel codes
DC X'03" Line (or Lines) 20 channel 3
DC 9XxX'00" Line (or Lines) 21-29 no channel codes
DC X'04" Line (or Lines) 30 channel §
DC 19X'00Y Line (or Lines) 31-49 no channel codes
DC XTQ5" Line (or Lines) 50 channel 5
DC X'06" Line (or Lines) 51 channel 6
DC X'07°" Line (or Lines) 52 channel 7
DC X'08"' Line (or Lines) 53 channel 8
DC X'09°* Line (or Lines) 54 channel 9
DC XT0AT Line (or Lines) 55 channel 10
DC X'0B?' Line (or Lines) 56 channel 11
DC Xrgce Line (or Lines) 57 channel 12
DC 8X'00" Line (or Lines) 58-65 no channel codes
DC Xrio0?* End of FCB image
END
DD UNIT=3211,FCB=(IMG1,VERIFY)

Defining an FCB Image for a 3211

DCB ABEND Exit: The DCB ABEND exit is provided to give you some
options regarding the action you want the system to take when a
condition arises that may result in abnormal termination of vour
task. This exit can be taken any time an ABEND condition arises
during the process of opening, closing, or handling an
end-of-volume condition for a DCB associated with your task.

Whaen an ABEND condition arises, a uwrite-to-programmer message
about the ABEND is issued and vour DCB ABEND exit is given
control, provided there is an active DCB ABEND exit routine
address in the DCB being processed. If STOW called the
end-of-volume routines to get secondary space to write an
end-of-file mark for a partitioned data set, or if the DCB being
processed is for an indexed sequential data set, the DCB ABEND
exit routine will not be given control if an ABEND condition
occurs. The contents of the registers when your exit routine is
entered are the same as for other DCB exit list routines except
that the three, low-order bytes of register 1 contain the
address of the parameter list described in Figure 20. Your ABEND
exit routine can choose one of four options:

. to immediately terminate vour task,

. to delay the ABEND until all of the DCBs in the same OPEN or
CLOSE macro instruction are opened or closed,

. to ignore the ABEND condition and continue processing
without making reference to the DCB on which the ABEND
condition was encountered, or

. to try to recover from the error.

38 0S/VS2 Data Management Services Guide

N

T

'

Bit Meaning

03 Reserved for Future Use

4 OK to Recover

5 OK to Ignore

6 OK to Delay

7 Reserved for Future Use

Fullword Boundary

Displacement

0 System Completion Code”™ Return Code Option Mask

4 DCB Address

8 Open/Close/End-of-Volume Work Area Address

12 00

Recovery Work Area Address

*In the first 12 bits.

Figure 20. Parameter List Passed to DCB ABEND Exit Routine

Not all of these options are available for each ABEND condition.
Your DCB ABEND exit routine must determine which option is
available by examining the contents of the option mask byte
(byte 3) of the parameter list. The address of the parameter
list is passed in register 1. Figure 20 shows the contents of
the parameter list and the possible settings of the option mask
when your routine receives control. All information in the
paramater list is in binary.

When your DCBE ABEND exit routine returns control to the systenm
control program (this can be done using the RETURN macro
instruction), the option mask byte should contain the setting
that specifies the action you want to take. These actions and
the corresponding settings of the option mask byte are:

Part 1: Introduction to Data Managament 39

40

Bit setting Action

0 abnormally terminate the task immediately
4 ignore the ABEND condition
8 delay the ABEND until the other DCBs being

processed concurrently are opened or closed
12 make an attempt to recover

You must inspect bits 4, 5, and 6 of the option mask byte (byte
3 of the parameter list) to determine which options are
available. If a bit is set to 1, the corresponding option is
available. Indicate your choice by inserting the appropriate
value in byte 3 of the parameter list, overlaying the bits you
inspected. If vou use a value that specifies an option that is
not available, the ABEND is issued immadiately.

If the contents of the option mask are 0, you must request an
immediate ABEND by leaving the value of 0 in the option mask
unchanged.

If bit 5 of the option mask is set to 1, vou can ignore the
ABEND by placing a decimal value of 4 in byte 3 of the parameter
list. Processing on the current DCB stops. If you subsequently
attempt to use this DCB, the results are unpredictable. If you
ignore an error in end-of-volume, the data set will be closed
before control is returned to vour program at the point which
caused the end-of-volume condition (unless the end-of-volume
routines were called by the close routines). If the
end-of-volume routines were called by the close routines, an
ABENDtmgcro will be issued even though the ignore option was
selected.

If bit 6 of the option mask is set to 1, you can delay the ABEND

by placing a decimal value of 8 in byte 3 of the parameter list.
All other DCBs waiting for open or close processing will be
processed before the ABEND is issued. For end-of-volume,
however, you can't delay the ABEND because the end-of-voluma
routine never has more than one DCB to process.

If bit 4 of the option mask is set to 1, you can attempt to
recover. Place a decimal value of 12 in byte 3 of the parameter
list and provide information for the recovery attempt. Figure 21
lists the ABEND conditions for which recovery can be attempted.
For ABEND conditions which can be ignored or delayed, see 05/VS
Message Library: VS2 System Messages.

0S/VS2 Data Management Services Guide

I

System
completion
Code

213
237

413

613

713

717

813

Figure 21.

Return
Coda

04
04

18

08
0cC
10
14

04

10

04

Description of Error
DSCB was not found on volume specified.

Block count in DCB does not agree with block
count in trailer label.

Data set was opened for input and no volume
serial number was specified.

I/0 error occurred during reading of tape label.
Invalid tape label was read.
I/0 error occurred during writing of tape label.

I/0 error occurred during writing of
tapemark following header labels.

A data set on magnetic tape was opened

for INOUT, but the volume contained a data set
whose expiration date had not been reached and the
operator denied permission.

I/0 error occurred during reading of trailer
label 1 to update block count in DCB.

Data set name on header label does not match
data set name on DD statement.

Conditions for which Recovery Can Be Attempted

Recovery Requirements: For the recovery attempt, you should

supply a recovery work area (see Figure 22) with a new volume
serial number for each volume associated with an error. If no
new volumes are supplied, recovery will be attempted with the

existing volumes,

greatly reduced.

Part 1: Introduction to Data Management

but the likelihood of successful recovery is

41

Displacement

Bit Meaning
0 Free This Work Area
1 Volume Serial Numbers Are
Provided
2-7 Reserved for Future Use
Halfword Boundary
0 Length of This Work Area Option Byte Subpool Number
Number of
4 N:vT Veélzmes New Volume Serial Numbers (6 bytes each)
~ [
8]~ T

Figure 22. Recovery Work Area

62

If you request recovery for system completion code 213, return
code 0%, you must indicate in yvour job control language (JCL)
that the volumes are nonsharable by specifying unit affinity,
deferred mounting, or more volumes than units for the data set.

If you request recovery for system completion code 237, return
code 04, you don't neaed to supply new volumes or a work area.
The condition that caused the ABEND is the disagreement between
the block count in the DCB and that in the trailer label. This
disagreement is ignored to permit recovery.

If you request recovery for system completion code 717, return
code 10, you don't need to supply new volumes or a work area.
The ABEND is caused by an 170 error during updating of the DCB
block count. To permit recovery, the block count is not updated.
Consequently, an abnormal termination with system completion
code 237, return code 04, may result when you try to read from

the tape after recovery. You may attempt recovery from the ABEND

with system completion code 237, return code 04, as explained in

the preceding paragraph.

System completion codes and their associated return codes are
described in 05/VS Message Librarv: VS2 Svystem Codes.

05/VS2 Data Management Services Guide

P

A

/‘\

/, o

The work area that you supply for the recovery attempt must
begin on a halfword boundary and can contain the information
described in Figure 22. Place a pointer to the work area in the
last 3 bytes of the parameter list pointed to by register 1 and
described in Figure 20.

If you acquire the storage for the work area by using the
GETMAIN macro instruction, you can request that it be freed by a
FREEMAIN macro instruction after all information has been
extracted from it. Set the high-order bit of the option byte in
the work area to 1 and place the number of the subpool from
which the work area was requested in byte 3 of the recovery work
area.

Only one recovery attempt per data set is allowed during open,
close, or end-of-volume processing. If a recovery attempt is
unsuccessful, you may not request another recovery. The second
time through the exit routine you may request only one of the
other options (if allowed): issue the ABEND immediately, ignore
the ABEND, or delay the ABEND. If at any time you select an
option that is not allowed, the ABEND is issued immediately.

Note that if recovery is successful, vou still receive an ABEND
message on your listing. This message refers to the ABEND that
would have been issued if the recovery had not been successful.

MODIFYING THE DATA CONTROL BLOCK

You can complete or modify the DCB during execution of your
program. You can also determine data set characteristics from
information supplied by the data set labels. Changes or
additions can be made before opening of the data set, after
closing it, during the DCB exit routine, or while the data set
is opeg.dNaturally. any information must be supplied before it
is needed.

Because each DCB does not have a symbolic name for each field, a
DCBD macro instruction must be used to supply the symholic
names. By loading a base register with the address of the DCB to
be processed, you can refer to any field symbolically.

The DCBD macro instruction generates a dummy control section
(DSECT) named IHADCB. The name of each field consists of DCB
followed by the first five letters of the keyword operand that
represents the field in the DCB macro instruction. For example,
the field reserved for blocksize is referred to as DCBBLKSI. For
the names of other fields, including names of bits, see 05/VS2
System Programming lLibrarv: Debugqing Handbook.

The attributes of each DCB field are defined in the dummy
control section. Because each field in the DCB is not
necessarily aligned on a fullword boundary, care must be taken
when storing or moving data into the field. The length attribute
and the alignment of each field can be determined from an
assembly listing of the DCBD macro instruction.

The DCBD macro instruction can be coded once to describe all
DCBs even though their fields differ because of differences in
data set organization and access technique. It must not be coded
more than once for a single assembly. If it is coded before the
end of a control section, it must be followed by a CSECT or
DSECT statement to resume the original control section.

CHANGING AN ADDRESS IN THE DATA CONTROL BLOCK: Figure 23
illustrates how you can modify a field in the data control
blogk%.TTg DCBD macro instruction defines the symbolic name of
eac ield. . »

Part 1: Introduction to Data Management 43

OPEN ¢ TEXTDCB, INOUT)

EOFEXIT CLOSE (TEXTDCB,REREAD) , TYPE=T
LA 10, TEXTDCB
USING IHADCB,10
MVC DCBSYNAD+1(3),=AL3(OUTERROR)
' B OUTPUT
INERROR STM 14,12,5YNADSA+12
OUTERROR STM 16,12,5YNADSA+12
TEXTDCB DCB DSORG=PS,MACRF=(R, W), DDNAME=TEXTTAPE, c

EODAD=EOFEXIT,SYNAD=INERROR

DCBD DSORG=PS

Figure 23. Modifying a Field in the Data Control Block

SHARING A DATA

The data set defined by the data control block TEXTDCB is opened
for use as both an input and an output data set. When its use as
an input data set is completed, the EODAD routine closes the
data set temporarily to reposition the volume for output. The
EODAD routine then uses the dummy control section IHADCB to
change the error exit address (SYNAD) from INERROR to OUTERROR.

The EODAD routine loads the address TEXTDCB into register 10,
which it uses as a base register for IHADCB. It then moves the
address OUTERROR into the DCBSYNAD field of the DCB. This field
is a fullword, but contains information that must not be
disturbed in the high-order byte. For this reason, care must be
taken to change only the 3 low-order bytes of the field.’

All unused address fields in the DCB, except DCBEXLST, are set
to 1 during the DCB macro expansion. Many system routines
interpret a value of 1 in an address field to mean "no address
specified.” If you modify an address field and then want to
r:sit it to "mo address specified,”" you should set it to a value
o

SET

There are two conditions under which a data set on a
direct-access device can be shared by two or more tasks:

U Two or more DCBs are opened and used concurrently by the
tasks to refer to the same, shared data set (multiple DCBs).

. Only one DCB is opened and used concurrently by multiple
tasks in a single job step (a single, shared DCB).

Job contrel language (JCL).statements and macro instructions are
provided in the operating system to help you to ensure the
integrity of the data sets vou wish to share among the tasks
that process them. Figures 24 and 25 show which JCL and macro
instructions yvou should use, depending on the access method your
task is using and mode of access (input, output, or update).

Figure 24 describes the macro instructions, JCL, and processing
procedures you should use if more than one DCB has been opened
to the shared data set. The DCBs can be used by tasks in the
same or different job steps.

44 0S/VS2 Data Management Services Guide

N

MULTIPLE DCBs

Access Method
Access Mode

BSAH,BPAN, QS AN BhAM QISAM BISAM
BDAM Create
Input DISP = SHR |DISP = SHR DISP = SHR|DISP = SHR DISP = SHR
No Facility|No Facility DISP = SHR|No Facility |DISP = SHR
Qutput and ENQ on
Data Set

DISP = SHR |DISP = SHR DISP = SHR|DISP = SHR DISP = SHR
and ENQ on [and Guaranteej{and ENQ on|and ENQ on and ENQ on

Update Block Discrete Block Data Set and{Data Set and
Blocks Guarantee Guaranteea
Discrete Discrete
Blocks Blocks
DISP=SHR:

Each job step sharing an existing data set must code SHR as the
subparameter of the DISP parameter on the DD statement for the shared data
set to allow the steps to execute concurrently. For additional information
about ensuring data set integrity, see 05/VS2 JCL. If the tasks are in the
same job step, DISP=SHR is not required.

No Facility:

There are no facilities in the operating system for shar1ng a data set
under these conditions.

ENQ on Data Set:
In addition to coding DISP=SHR on the DD statement for the data set that
is to be shared, each task must issue ENQ and DEQ macro instructions
naming the data set as resource for which exclusive control is required.
The ENQ must be issued before the GET (READ); the DEQ macro should be
issued after the PUTX or CHECK macro that concludes the operation. See
05/VS2 Supervisor Services and Macro _Instructions for additional
information on the use of ENQ and DEQ macro instructions.

Guarantee Discrete Blocks:
When you are using the access methods that provide blocking and unblocking
of records (QSAM, QISAM, and BISAM), it is necessary that every task
updating the data set ensure that it is not updating a block that contains
a record being updated by any other task. There are no facilities in the

operating system for ensuring that discrete blocks are being processed by
different tasks.

ENQ on Block:
If vou are updating a shared data set (specified by coding DISP=SHR on the
DD statement) using BSAM or BPAM, your task and all other tasks must
serialize processing of each block of records by issuing an ENQ macro
instruction before the READ macro and a DEQ macro after the CHECK macro
that follows the WRITE macro you issued to update the record. If you are
using BDAM, the same procedure may be used; however, BDAM provides for
enqueuing on a block of records using the READ exclusive option, which is
requested by coding MACRF=X in the DCB and an X in the type operand of the
READ and WRITE macro instructions. See "Exclusive Control for Updating" in

the saction "Processing a Direct Data Set” of Part 2 for an example of the
use of the BDAM macros.

Figure 24. JCL, Macro Instructions, and Procedures Required to Share a Data
Set Using Multiple DCBs

Figure 25 describes the macros vou can use to serialize
processing of a shared data set when a single DCB is being
shared by several tasks in a job step. The DISP=SHR
specification on the DD statement is not required.

Part 1: Introduction to Data Management 45

46

Data sets can also be shared both ways at the same time:!: more
than one DCB can be opened for a shared data set, while more
than one task can be sharing one of the DCBs. Under this
condition, the serialization techniques specified for indexed
sequential and direct data sets in the Figure 24 satisfy the
requirement. For sequential and partitioned data sets, the
techniques specified in Figure 2% and Figure 25 must be used.

More information on opening and closing data sets by more than
on: task is contained in Part 2, "Opening and Closing a Data
Set."

SHARED DIRECT-ACCESS STORAGE DEVICES: At some installations, a
direct-access storage device is shared by two or more
independent computing systems. Tasks executed on these systems

can share data sets stored on the device. For details, refer to

05/VS2 System Programming Library: Supervisor.

05/VS2 Data Management Services Guide

«/’\

-
<_//

A SINGLE SHARED DCB

Access Mode

Access Method

BSAM, BPAM, QSAM BDAM QISAM BISAM
BDAM Create

Input ENQ ENQ No Action ENQ ENQ

’ Required
Output ENQ ENQ No Action ENQ and Key| ENQ
Required Saequence
Update ENQ ENQ ENQ on Block| ENQ ENQ
ENQ:

When a data set is being shared by two or more tasks in the same job step
(all of which must be using the same DCB), each task processing the data
set must issue an ENQ macro instruction on a predefined resource name
before issuing the macro or macros that begin the input/output operation.
Each task must also release exclusive control by issuing the DEQ macro
instruction at the next sequential instruction following the input/cutput
macro. If, however, you are processing an indexed sequential data set
sequentially using the SETL and ESETL macros, vou must issue the ENQ macro
before the SETL macro and the DEQ macro after the ESETL macro. Note also
that if two tasks are writing different members of a partitioned data set,
each task should issue the ENQ macro instruction before the FIND macro and
issue the DEQ macro after the STOW macro that completes processing of the
member. Additional reference information on the ENQ and DEQ macros is
presented in 0S5/VS2 Supervisor Services and Macro Instructions. For an

example of the use of ENQ and DEQ macro instructions with BISAM, see
Figure 59.

No Action Required:

Sharing a Direct Data Set: BDAM supports multiple task users of a single
DCB when working with existing data sets. When operating in load mode,
however, only one task may use the DCB at a time. The following

restrictions and comments apply when operating in a multitasking mode with
existing data sets:

. Subpool 0 must be shared.

. The user should insure that a WAIT or CHECK macro has been issued for
all outstanding BDAM requests before the task issuing the READ or
WRITE macro terminates. In case of abnormal termination this can be
done through a STAE/STAIL or ESTAE exit.

U FREEDBUF and/or RELEX macros should be issued to free any resources
that could still be held by the terminating task. This can be done
during or after task termination.

ENQ on Block:

When updating a shared BDAM data set, every task must use the BDAM
exclusive control option, which is requested by coding MACRF=X in the DCB
macro and an X in the type operand of the READ and WRITE macro
instructions. See "Exclusive Control for Updating"™ in this book for an
example of the use of BDAM macros. Note that all tasks sharing a data set
must share subpool 0 (see the ATTACH macro description in 0S/VS2
Supervisor Services and Macro Instructions).

Key Setuance:

Tasks sharing a QISAM load-mode DCB must ensure that the records to be
written are presented in ascending key sequence; otherwise, a sequence
check will result in (1) control being passed to the SYNAD routine

identified by the DCB, or (2) if there is no SYNAD routine, termination of
the task.

Figure 25. Macro Instructions and Procedures Required to Share a Data Sat

Using a Single DCB

Part 1: Introduction to Data Management 47

-

PART 2: DATA MANAGEMENT PROCESSING PROCEDURES

DATA PROCESSING TECHNIQUES

The operating system allows you to concentrate most of your
efforts on processing the records read or written by the data
management routines. To get the records read and written, your
main responsibilities are to describe the data set to be
processed, the buffering techniques to be used, and the access
method. An access method has been defined as the combination of
data set organization and the technique used to gain access to
the data. Data access techniques are discussed here in two
categories—queued and basic.” o

QUEUED ACCESS TECHNIQUE

The queued access technique provides GET and PUT macro
instructions for transmitting data within virtual storage. These
macro instructions cause automatic blocking and deblocking of
the records stored and retrieved. Anticipatory (look-ahead)
buffering and synchronization (overlap) of input and output
operations with central processing unit (CPU) processing are
automatic features of the queued access technique.

Because the operating system controls buffer processing, you can
use as many input/output (I/0) buffers as needed without
reissuing GET or PUT macro instructions to fill or empty
buffers. Usually, more than one input block is in storage at any
given time, so I/0 operations do not delay record processing.

Because the operating system synchronizes input/output with
processing, yvou need not test for completion, errors, or
exceptional conditions. After a GET or PUT macro instruction is
issued, control is not returned to your program until an input
area is filled or an output area is available. Exits to error
analysis (SYNAD) and end-of-volume or end-of-data (EODAD)
routines are automatically taken when necessary.

GET—Retrieve a Record

The GET macro instruction obtains a record from an input data
set. It operates in a logical sequential and device-independent
manner. As required, the GET macro instruction schedules the
filling of input buffers, deblocks records, and directs input
error recovery procedures. For sequential data sets, it also
merges record segments into logical records. After all records
have been processed and the GET macro instruction detects an
end-of-data indication, the system automatically checks labels
on sequential data sets and passes control to vour end-of-data
(EODAD) routine. If an end-of-volume condition is detected for a
sequential data set, the system provides automatic volume
switching if the data set extends across several volumes or if
concatenated data sets are being processed. If vou specify

OPTCD=Q in the DCB, GET causes input data to be translated from
ASCII to EBCDIC.

PUT—Urite a Record

The PUT macro instruction places a record into an output data
saet. Like the GET macro instruction, it operates in a logical
saquential and device-independent manner. As required, the PUT
macro instruction schedules the emptying of output buffers,
blocks records, and handles output error correction procedures.
For sequential data sets, it also initiates automatic volume
switching and label creation, and also segments records for

Part 2: Data Management Processing Procedures 49

PUTX—MUWrite an

Parallel Input

spanning. If vou specify OPTCD=Q in the DCB, PUT causes output
to be translated from EBCDIC to ASCII.

If the PUT macro instruction is directed to a card punch or
printer, the system automatically adjusts the number of records
or record segments per block of format-F or format-V blocks to
1. Thus, you can specify a record length (LRECL) and blocksize
(BLKSIZE) to provide an. optimum blocksize if the records are
temporarily placed on magnetic tape or a direct-access volume.

For spanned variable-length records, the blocksize must be
equivalent to the length of one card or one print line. Record
size may be greater than blocksize in this case.

Updated Record

The PUTX macro instruction is used to update a data set or to
create an output data set using records from an input data set.
as a base. PUTX updates, replaces, or inserts records from
existing data sets but does not create records.

When yvou use the PUTX macro instruction to update, each record
is returned to the data set referred to by a previous locate
mode GET macro instruction. The buffer containing the updated
record is flagged and written back to the same location on the
direct-access storage device from which it was read. The block
is not written until a GET macro instruction is issued for the
next buffer, except when a spanned record is to be updated. In
that case, the block is written with the next GET macro
instruction.

When the PUTX macro instruction is used to create an output data
set, vou can add new records by using the PUT macro instruction.
As required, the PUTX macro instruction blocks records,
schedules the writing of output buffers, and handles output
error correction procedures.

Processing (QSAM Only)

QSAM parallel input processing may be used to process two or
more input data sets concurrently, such as sorting or merging
several data sets at the same time. This eliminates the need for
issuing a separate GET macro instruction to each DCB processed.
The get routine for parallel input processing selects a DCB with
a ready record and then transfers control to the normal get
routine. If there is no DCB with a ready record, a multiple WAIT
macro instruction is issued.

Parallel input processing provides a logical input record from a
queue of data sets with equal priority. The function supports
QSAM with input processing, simple buffering, locate or move
mode, and fixed, variable, or undefined length records. Spanned
records, track-overflow records, dummy data sets, and SYSIN data
sets are not supported.

Parallel input processing can be interrupted at any time to
retrieve records from a specific data set, or to issue control
instructions to a specific data set. When the retrieval process
has been completed, parallel input processing may be resumed.

Data sets can be added to or deleted from the data set queue at
any time. It is important to note, however, that as each data
sat reaches an end-of-data condition, the data set must be
removed from the queue with the CLOSE macro instruction before a
subsequent GET macro instruction is issued for the queue;
otherwise, the task may be terminated abnormally.

A request for parallel input processing is indicated by
including the address of a parallel data access block (PDAB) in
the DCB exit list. For additional information on the DCB exit
list, see "Exit List (EXLST).™

50 0S/VS2 Data Managemant Services Guide

e

N

With the use of the PDAB macro instruction, you can create and
format a work area that identifies the maximum number of DCBs
that can be processed at any one time. If you exceed the maximum
number of entries indicated in the PDAB macro when adding a DCB
to the queue with the OPEN macro, the data set will not be
available for parallel input processing; however, it may be
available for sequential processing.

When issuing a parallel GET macro, register 1 must always point
to a PDAB. You may load the register or let the GET macro do it
for you. When control is returned to you, register 1 contains
the address of a logical record from one of the data sets in the
queue; registers 2-13 contain their original contents at the
time the GET macro was issued; registers 14, 15, and 0 are
changed. You can locate the data set from which the record was
retrieved through the PDAB. A. fullword address in the PDAB
(PDADCBEP) points to the address of the DCB. It should be noted
that this pointer may be invalid from the time a CLOSE macro is
issued to the issuing of the next parallel GET macro.

In Figure 26, not more than three data sets (MAXDCB=3 in the
PDAB operand) will be open for parallel processing at any given
time. Assuming that data definition statements and data sets are
supplied, DATASET1, DATASET2, and DATASET3 will be opened for
parallel input processing as specified in the input processing
OPEN macro instruction. Other attributes of each data set are
QSAM (MACRF=G), simple buffering by default, locate or move mode
(MACRF=L or M), fixed length records (RECFM=F), and exit list
entry for a PDAB (X'92'). Note that both locate and move modes
may be used in the same data set queue. The mapping macros, DCBD
and PDABD, are used to reference the DCBs and the PDAB
respectively.

Following the OPEN macro instruction, tests are made to
determine whether the DCBs were opened for parallel processing.
If not, the sequential processing routine is given control.

When one or more data sets are opened for parallel processing,
the get routine retrieves a record, saves the pointer in
register 10, processes the record, and writes it to DATASET4.
This process continues until an end~of-data condition is
detected on one of the input data sets; the end-of-data routine
locates the completed input data set and removes it from the
queue with the CLOSE macro instruction. A test i1s then made to
determine whether any data sets remain on the queue. Processing
continues in this manner until the queue is empty.

BASIC ACCESS TECHNIQUE

The basic access technique provides the READ and WRITE macro
instructions for transmitting data between virtual and auxiliary
storage. This technique is used when the operating system cannot
predict the sequence in which the records are to be processed or
when you do not want some or all of the automatic functions
performed by the queued access technique. Although the system
does not provide anticipatory buffering or synchronized
scheduling, macro instructions are provided to help vou program
these operations.

Part 2: Data Management Processing Procedures 51

GETRTN

EODRTN

DATASET1
DATASET2
DATASET3
DATASET4
DCBQUEUE

SET3IXLST
ZEROS

DCB
DCB
DCB
DCB

PDAB
DC
DC
DCBD
PDAB

..

(DATASET1, CINPUT),DATASET2, (INPUT),DATASETS, X
(INPUT),DATASET4, (OUTPUT))
DATASET1+DCBQSWS-IHADCB,DCBPOPEN Opened for parallel
processing
SEQRTN Branch on no to sequential routine
DATASET2+DCBQSWS-IHADCB,DCBPOPEN
SEQRTN
DATASET3+DCBQSWS-IHADCB,DCBPOPEN
SEQRTN
DCBQUEUE, BUFFERAD, TYPE=P
10,1 Save record pointer
Record updated in place

DATASET4,(10)
GETRTN
* , Close DCB which just reached EODAD
2,DCBQUEUE+PDADCBEP-IHAPDAB
2,0(0,2)

E (23
ZEROS(2),DCBQUEUE+PDANODCB-IHAPDAB Any DCBs left?
GETRTN Branch if ves
DDNAME=DDNAMEL , DSORG=PS,MACRF=GL,RECFM=FB, X
LRECL=80, EODAD=EODRTN,EXLST=SET3XLST
DDNAME=DDNAME2, DSORG=PS,MACRF=GL,RECFM=FB, X
LRECL=80, EODAD=EODRTN, EXLST=SET3IXLST
DDNAME=DDNAME3, DSORG=PS,MACRF=GMC,RECFM=FB, X
LRECL=80, EODAD=EODRTN, EXLST=SET3XLST
DDNAME=DDNAME%, DSORG=PS,MACRF=PM,RECFM=FB, X
LRECL=80
MAXDCB=3
OF'0',X'92',AL3(DCBQUEUE)
X'0000"

> DSORG=QS

Note: The number of bytes required for PDAB is equal to 2%4+8n, where n is the
value of the keyword, MAXDCB.

Figure 26.

Par

allel Processing of Three Data Sets

The READ and WRITE macro instructions process blocks, not
records. Thus, blocking and deblocking of records is vour
responsibility. Buffers, allocated by either you or the
operating system, are filled or emptied individually each time a
READ or WRITE macro instruction is issued. Moreover, the READ
and WRITE macro instructions only initiate input/output
operations. To ensure that the operation is completed
successfully, you must issue a CHECK macro instruction to test
the data event control block (DECB). (The only exception to this
is that when the SYNAD or EODAD routine is entered, a CHECK
macro instruction should not be issued to previously outstanding
READ or WRITE requests.) The number of READ or WRITE macro
instructions issued before a CHECK macro instruction is used

should not exceed the specified number of channel programs
(NCP).

GROUPING RELATED CONTROL BLOCKS IN A PAGING ENVIRONMENT: In an
0S57VS system, related control blocks (the DCB and DECB) and data
areas (buffers and key areas) should be coded so they assemble
in the same area of your program. This will reduce the number of
paging operations required to read from and write to your data
set.

52 05/VS52 Data Management Services Guide

C

USING OVERLAPPED I/0 WITH BSAM: When using BSAM with overlapped
I/0 (multiple 170 requests outstanding at one time), more than
one DECB must be used. A different DECB should be specified for
each channel program. For example, ifT you specify NCP=3 in vour
DCB for the data set and you are reading records from the data
set, you should code the following macros in your program:

READ DECBI,...
READ DECB2,...
READ DECB3,...
CHECK DECB1
CHECK DECB2
CHECK DECB3

..

USING OVERLAPPED I/0 WITH BDAM: When using BDAM with overlapped
I/0 requests, a different DECB must be used for each request
that will be outstanding when another request is issued. In
addition, consecutive requests for the same record (such as a
write followed by a read) must not be overlapped. In this case,
the completion of the write request must be tested prior to
issuance of the read request.

READ—Read a Block

The READ macro instruction retrieves a data block from an input
data set and places it in a designated area of virtual storaga.
To allow overlap of the input operation with processing, the
system returns control to your program before the read operation
is completed. The DECB created for the read operation must be
tested for successful completion before the record is processed
or the DECB is reused.

If an indexed sequential data set is being read, the block is
brought into virtual storage and the address of the record is
returned to you in the DECB.

When you use the READ macro instruction for BSAM to read a
direct data set with spanned records and keys and you specify
BFTEK=R in vour DCB, the data management routines displace
record segments after the first in a record by key length. Thus,
vou can expect the block descriptor word and the segment
descriptor word at the same locations in your buffer or buffers,
regardless of whether you read the first segment of a record,
which is preceded in the buffer by its key, or a subsequent
segment, which does not have a key. This procedure is called
offset reading.

You can specify variations of the READ macro instruction

according to the organization of the data set being processed

and the type of processing to be done by the system as follows:

sequential

SF Read the data set sequentially.

SB Read the data set backuward (magnetic tape, format-F and
format-U only). When RECFM=FBS, data sets with the last
block truncated cannot be read backward.

Indexed Sequential
K Read the data set.
KU Read for update. The system maintains the device address of

the record; thus, when a WRITE macro instruction returns
the record, no index search is required.

Direct

D Use the direct access method.

Part 2: Data Management Processing Procadures 53

Locate the block using a block identification.
Locate the block using a key.

Provide device position feedback.

Maintain exclusive control of the block.

Provide next address feedback.

c AW X M AN H

Next address can be a capacity record or logical record,
whichever occurred first.

WRITE—MWrite a Block

. The WRITE macro instruction places a data block in an output
data set from a designated area of virtual storage. The WRITE
macro instruction can also be used to return an updated record
to a data set. To allow overlap of output operations with
processing, the system returns control to vour program before
the write operation is completed. The DECB created for the write
operation must be tested for successful completion before the
DECB can be reused. For ASCII tape data sets, do not issue more
than one WRITE on the same record, because the WRITE macro
instruction causes the data in the record area to be translated
from EBCDIC to ASCII.

As with the READ macro instruction, vou can specify variations
of the WRITE macro instruction according to the organization of
the data set and the type of processing to be done by the system
as follows:

Sequential
SF Write the data set sequentially.
SFR Write the data set sequentially with next-address

feedback.
Indexed Sequential

K Write a block containing an updated record, or replace a
record with a fixed, unblocked record having the same
key. The record to be replaced need not have been read
into virtual storage.

KN Write a new record or change the length of a
variable~length record.

Direct

SD Write a dummy fixed-length record.

¥4 Write a capacity record (RO).‘The system supplies the
data, writes the capacity record, and advances to the
next track.

D Use the direct access method,

I Search argument identifies a block.

K Search argument is a key.

A Add a new block.

F Provide record location data (feedback).

X Release exclusive control.

54. 05/VS2 Data Management Services Guide

I

CHECK—Tast Completion of Read or Hrite Operation

WAIT—Hait for

When processing a data set, you can test for completion of a
READ or WRITE request by issuing a CHECK macro instruction. The
system tests for errors and exceptional conditions in the data
event control block (DECB). Successive CHECK macro instructions
issued for the same data set must be issued in the same order as
the associated READ and WRITE macro instructions.

The check routine passes control to the appropriate exit
routines specified in the DCB for error analysis (SYNAD) or, for
sequential data sets, end-of-data (EODAD). It also automatically
initiates end-of-volume procedures (volume switching or
extending output data sets).

If you specify OPTCD=Q in the DCB, CHECK causes input data to be
translated from ASCII to EBCDIC.

Completion of a Read or Urite Operation

When processing a data set, you can test for completion of any
READ or WRITE request by issuing a WAIT macro instruction. The
input/output operation is synchronized with processing, but the
DECB is not checked for errors or exceptional conditions, nor
are end-of-volume procedures initiated. Your program must
perform these operations.

. For BDAM and BISAM, a WAIT macro must be issued for each READ or

WRITE macro if MACRF=C is not coded in the associated DCB. When
MACRF=C is coded, and at all times for BSAM and BPAM, a CHECK
macro must be issued for each READ or WRITE macro. Since the
CHECK macro incorporates the function of the WAIT macro, a WAIT
is normally redundant for those access methods. The ECBLIST form
of the WAIT macro may be useful, though, in selecting which of a
number of outstanding events should be checked first.

The WAIT macro instruction can be used to await completion of
multiple read and write operations. Each operation must then be
checked or tested separately. Example: You have opened an input
DCB for BSAM with NCP=2, and an output DCB for BISAM with NCP=1
and without specifying MACRF=C. You have issued two BSAM READ
macros and one BISAM WRITE macro. You now issue the WAIT macro
with ECBLIST pointing to the BISAM DECB and the first BSAM DECB.
(Since BSAM requests are serialized, the first request must
execute before the second one.) When you regain control, you
will inspect the DECBs to see which has completed (second bit
on). If it was BISAM, vou will issue another WRITE macro. If it
was BSAM, you will issue a CHECK macro and then another READ
macro.

Data Event Control Block (DECE)

A data event control block is a 16- to 32-byte area reserved by
each READ or WRITE macro instruction. It contains control
information and pointers to standard status indicators. It is
described in detail in Appendix A of 05,/VS2 MVS Data Managemaent
Macro Instructions.

The DECB is examined by the check routine when the I/0 operation
is completed to determine if an uncorrectable error or
exceptional condition exists. If it does, control is passed to
yvour SYNAD routine. If you have no SYNAD routine, the task is
abnormally terminated.

Part 2: Data Management Processing Procedures 55

ERROR HANDLING

-
The basic and queued access techniques both provide special (,
macro instructions for analyzing input/output errors. These N
macro instructions can be used in SYNAD routines and in error

analysis routines that are entered directly when you use the

basic access technique with indexed sequential data sets.

SYNADAF—Pearform SYNAD Analysis Function

The SYNADAF macro instruction analyzes the status, sense, and
exceptional condition code data that is available to your error
analysis routine. It produces an error message that vour routine

.can write into any appropriate data set. The message is in the

form of an unblocked variable-length record, but you can wurite
it as a fixed-length record by omitting the block length and
record length fields that precede the message text.

The text of the message is 120 characters long, and begins with
a field of 36 or 42 blanks; vou can use the blank field to add

vour own remarks to the message. Following is a typical message
with the blank field omitted:

»TESTJOBb, STEP2bbb,283, TA,MASTERbb,READb, DATA CHECKbbbbb,
0000015,BSAM

Note: In the above example, a b indicates a blank.

This message indicates that a data check occurred during reading
of the fifteenth block of a data set. The data set was
identified by a DD statement named MASTER, and was on a
maghetic-tape volume on unit 283. The name of the job was
TESTJOB; the name of the job step was STEP2.

If¥ the error analysis routine is entered because of an input P
error, the first 6 bytes of the message (bytes 8-13) contain {
binary information. If no data was transmitted or if the access N

method is QISAM, the first 6 bytes are blanks or binary =zeros.
If the error did not prevent data transmission, the first 6
bytes contain the address of the input buffer and the number of
bytes read. You can use this information to process records from
the block; for example, you might print each record after
printing the error message. Before printing the message,
however, you should replace this binary information with EBCDIC
characters.

The SYNADAF macro instruction provides its ouwn save area and
makes this area available to your error analysis routine. When
used at the entry point of a SYNAD routine, it fulfills the
routine's responsibility for providing a save area.

SYNADRLS—Release SYNADAF Message and Save Areas

ATLAS—Pearform

The SYNADRLS macro instruction releases the message and save
areas provided by the SYNADAF macro instruction. You must issue
this macro instruction before returning from the error analysis
routine.

Alternate Track Location Assignment

The ATLAS macro instruction enables your program to recover from
permanent input/output errors when processing a data set in
direct-access storage. After a data check, or in certain
missing-address-marker conditions, you can issue ATLAS to assign
an alternate track to replace the error track or transfer data
from the error track to the alternate track.

programming. A detailed description of the macro instruction and
its use 1s included in 05/VS2 Svstem Programming Librarv: Data
Management.

The use of this macro requires a knouwledge of channel (;

56 05/7VS2 Data Management Services Guide

If you do not use the ATLAS macro instruction, you can use the
IEHATLAS utility program to perform the same function. The
principal difference between the macro instruction and the
utility program is that the latter provides error recovery only
after your ouwn program has been completed. For a detailed
description of IEHATLAS, refer to 0S/VS Utilities.

SELECTING AN ACCESS METHOD

Access methods are identified primarily by the data set
organization to which they apply. For instance, BDAM is the
basic access method for direct organization. Nevertheless, there
are times when an access method identified with one organization
can be used to pracess data set usually thought of as organized
in a different manner. Thus, a data set created by the basic
access method for sequential organization (BSAM) may be
processed by the basic direct access method (BDAM). If the-
queued access technique is used to process a sequential data
set, the access method is referred to as the queued sequential
access method (QSAM).

Basic access methods are used for all data organizations, uwhile
queued access methods apply only to sequential and indexed
sequential data sets as shown in Figure 27.

Data Set .

Organization Access Technique
Basic Queued

Sequential BSAM QSAM

Partitioned BPAM

Indexed Sequential BISAM QISAM

Direct BDAM

Figure 27. Data Management Access Methods

It is possible to control an I/0 device directly while
processing a data set with any data organization without using a
specific access method. The execute channel program (EXCP) macro
instruction uses the system programs that provide for scheduling
and queuing I/0 requests, efficient use of channels and devices,
data protection, interruption procedures, error recognition and
retry. Complete details about the EXCP macro are in 05/VS2
System Programming Library: Data Management.

Temporary data sets can be handled by a facility called virtual
I/0 (VID). Data sets for which VIO is specified are located in
external page storage. However, to the access methods (BDAM,
BPAM, BSAM, QSAM, and EXCP), the data sets appear to reside on a
real direct-access storage device. VIO provides these
advantages:

. Elimination of some of the usual I/70 device allocation and
data management overhead for temporary data sets.

U Generally more efficient use of direct-access storage space.

To use VIO, vou must specify VIO=YES in the UNITNAME macro
during system generation, and you must specify a unit name
(defined in the UNITNAME macro) on the DD statement for your
data set. For additional information on VIO, see 05/VS32 Svystem
Programming Librarv: Initialization and Tuning Guide. For
information on the UNITNAME macro, see 05/VS2 System Programming
Library: System Generation Reference. For information on changes
to the DD statement, see 0S/VS$2 JCL.

Part 2: Data Management Processing Procedures 57

OPENING AND CLOSING A DATA SET

58

Althouah your program has been assembled, the various data
management routines required for I1/0 operations are not a part
of the object code. In other words, your program is not
completely assembled until the DCBs are initialized for
execution. You accomplish initialization by issuing the OPEN
macro instruction. After all DCBs have been completed, the
system ensures that all required access method routines are
loaded and ready for use and that all channel command word lists
and buffer areas are ready.

Access method routines are selected and loaded according to data
control fields that indicate:

. Data organization

. Buffering technique

. Access technique

. I/0 unit characteristics

This information is used by the system to allocate
virtual-storage space and load the appropriate routines. These
routines, the channel command word (CCW) lists, and buffer areas
created automatically by the system remain in virtual storage
until the close routine signals that they are no longer needed
by the DCB that was using them.

When 170 operations for a data set are completed, you should
issue a CLOSE macro instruction to return the DCB to its
original status, handle volume disposition, create data set
labels, complete writing of queued output buffers, and free
virtual and auxiliary storage.

MANAGING BUFFER POOLS WHEN CLOSING DATA SETS: After closing the
data set, you should issue a FREEPOOL macro instruction to .
release the virtual storage used for the buffer pool. If vou
plan to process other data sets, use FREEFOOL to regain the
buffer pool storage space. If vou expect to reopen a data set
using the same DCB, use FREEPQOL unless the buffer pool created
the first time the data set was opened will meet your needs when
yvou reopen the data set. FREEPOOL is discussed in more detail in
the section "Buffer Pool Construction."

After the data set has been closed, the DCB can be used for
another data set. If yvou do not close the data set before a task
terminates, the operating system closes it automatically. If the
DCB is not available to the system at that time, the operating
system abnormally terminates the task, and data results can be
unpredictable. Note, however, that the operating system cannot
automatically close any open data sets after the normal
termination of a program that was brought into virtual storage
by the loader. Therefore, loaded programs must include CLOSE
macro instructions for all open data sets.

SIMULTANEQUS OPENING AND CLOSING OF MULTIPLE DATA SETS: An OPEN
or CLOSE macro instruction can be used to initiate or terminate
processing of more than one data set. Simultaneous opening or
closing is faster than issuing separate macro instructions;
however, additional storage space is required for each data set
specified. The coding examples in Figures 28 and 29 show the
macro expansions for simultaneous open and close operations.

OPENING AND CLOSING DATA SETS SHARED BY MORE THAN ONE TASK: When
more than one task is sharing a data set, the following
restrictions must be recognized. Failure to adhere to these
restrictions endangers the integrity of the shared data set.

. All tasks sharing a DCB must be in the job step that Openéd
the DCB (see "Sharing a Data Set").

05/VS2 Data Management Services Guide.

C

a

. Each task sharing a DCB must ensure that all of the input
and output operations it initiated using a given DCB are
complete, before the task terminates., A CLOSE macro
instruction issued for the DCB will ensure termination of
all input and output operations.

. A DCB can be closed only by the task that opened it.
considerations for Opening and Closing Data Sets:

. Two or more DCBs should never be concurrently open for
output to the same data set on a direct-access device,
except with the basic indexed sequential access method
(BISAM). Otheruwise the end-of-file record written by CLOSE
for one DCB may overlay data associated with another DCB.

. If one DCB is concurrently open for input and one for output
to the same data set on a direct-access device, the input
DCB may be unable to read what the ocutput DCB wrote 1f the
output DCB extended the data set.

U If vou want to use the same DD statement for two or more
DCBs, yvou cannot specify parameters for fields in the first
DCB and then be assured of obtaining the default parameters
for the same fialds in any subsequent DCB using the same DD
statement. This is true for both input and output and is
especially important when you are using more than one access
method. Any action on one DCB that alters the JFCB affects
the other DCB(s) and thus can cause unpredictable results.
Therefore, unless the parameters of all DCBs using one DD
statement are the same, you should use separate DD
statements.

. Associated data sets for the 3525 Card Punch can be opened
in any order, but all data sets must be opened before any
processing can begin. Associated data sets can be closed in
any order, but once a data set has been closed, I/0
operations cannot be performed on any of the associated data
sets. See 0S5 _and 0S/VS Programming Support for the IBM 3505
Card Reader and IBM 3525 Card Punch for more information.

U Volume disposition specified in the OPEN or CLOSE macro
instruction can be overridden by the system if necessary.
However, yvou need not be concerned; the system automatically
requests the mounting and demounting of volumes, depending
upon the availability of devices at a particular time.
Additional information on volume disposition is provided in
0ssvs2 JcL.

There are two classes of errors that can occur during open,
close, and end-of-volume processing; determinate and
indeterminate errors. Determinate errors are errors associated
with a system completion code. For example, a condition
associated with the 213 completion code with a return code of 04
might be detected during open processing, indicating that a
format-1 DSCB could not be found for a data set being opened.
Indeterminate errors are errors that cannot be anticipated, such
as a program check.

If a determinate error occurs during the processing resulting
from a concurrent OPEN or CLOSE macro instruction, an attempt
will be made to complete open or close processing of the DCBs
that are not associated with the DCB in error. Note that you can
also choose to abnormally terminate the task immediately by
coding a DCB ABEND exit routine that indicates the "immediate
termination" option (see "DCB ABEND Exit"). When all open or
close processing is completed, abnormal termination processing
is begun. Abnormal termination involves forcing all DCBs
associated with a given OPEN or CLOSE macro to close status,
thereby freeing all storage, devices, and other system resources
related to the DCBs.

Part 2: Data Management Processing Procedures 59

If an indeterminate error (such as a program check) occurs

during open, close, or EOV processing, no attempt is made by the

system control program to complete concurrent open or close TN
processing. The DCBs associated with the OPEN or CLOSE macro are \\ .
forced to close status if possible, and the resources related to -
each DCB are freed.

To determine the status of any DCB after an indeterminate error,
the OPEN (CLOSE) return code in register 15 must be interrogated
for the following values:

0 All entries in the parameter list opened successfully.

4 All entries in the parameter list have successfully

completed open, but one or more entries have a warning
message.

8 One or more entries in the parameter list were not opened
successfully. The entries with errors were restored to their
pre-open status.

12 One or more entries in the parameter list were not opened
successfully. The entries with errors were not restored, and
cannot be reopened without restoration.

For more information on error processing and system recovery,
see 05/VS2 Svstem Programming Library: Supervisor.

. During task termination the system issues a CLOSE macro for
each data set which is still open. If this is an abnormal
termination, the Q5AM close routines (which would normally
finish processing buffers) are bypassed. Any outstanding I/0
requests are purged. Thus, your last data records may be
lost for a Q5AM output data set.

. It is a good procedure to close an ISAM data set before task
termination because, if an I/0 error is detected, the ISAM
close routines cannot return the problem program registers
to the SYNAD routine, causing unpredictable results.

)

OPEN~—Prepare a Data Sset for Processing

60

The OPEN macro instruction is used to complete a data control
block for an associated data set. The method of processing and
the volume positioning instruction in the event of an
end-of-volume condition can be specified.

PROCESSING METHOD: You can process a data set as either input or

output. This is done by coding INPUT, OUTPUT, or EXTEND as the

processing method operand of the OPEN macro. For BSAM, code

INOUT, QUTIN, or OUTINX. If the data set resides on a

direct-access volume, you can code UPDAT in the processing

method operand to indicate that records can be updated. By

coding RDBACK in this operand, vou can specify that a

magnetic-tape volume containing format-F or format-U records is

to be read backward. Variable-length records cannot be read

backward. If the processing method operand is omitted from the

OPEN macro instruction, INPUT is assumed. The operand is ignored ;
by the basic indexed sequential access method (BISAM); it must

be specified as OUTPUT or EXTEND when you are using the queued

indexed sequential access method (QISAM) to create an indexed

sequential data set. You can override the INOUT, OUTIN, UPDAT, N
or OUTINX at execution by using the LABEL parameter of the DD

statement, as discussed in 05/VS52 JCL.

SYSIN and SYSOUT data sets must be opened for INPUT and OUTPUT,
respectively. INOUT is treated as INPUT, OUTIN, EXTEND, or
OUTINX is treated as OUTPUT. UPDAT and RDBACK cannot be used.

In Figure 28, the data sets associated with three DCBs are to be
opened simultaneously. (:j\

0S/VS2 Data Management Services Guide

OPEN . (TEXTDCB, ,CONVDCB, (OUTPUT),PRINTDCB,
(QUTPUT)) '
+ CNOP 0,4 Align list to fullword
+ BAL 1,%+16 Load regl w/list address
+ DC AL1C0) Option byte
+ DC AL3(TEXTDCB) DCB address
+ DC AL1(C15) Option byte
+ DC AL3(CONVDCB) DCB address
+ DC AL1(143) Option byte
+ DC AL3I(PRINTDCB) DCB address
+ SVC 19 Issue open SVC

Figure 28. Opening Three Data Sets Simultaneously

Since no processing method operand is specified for TEXTDCB, the
system assumes INPUT. Buth CONVDCB and PRINTDCB are opened for
output. No volume positioning options are specified; thus, the
disposition indicated by the DD statement DISP parameter is
used.

At execution, the SVC 19 instruction passes control to the Open
routine, which then initializes the three DCBs and loads the
appropriate access method routines.

CLOSE—Terminate Processing of a Data set

The CLOSE macro instruction is used to terminate processing of a
data set and release it from a DCB. The volume positioning that
is to result from closing the data set can also be specified.
Volume positioning options are the same as those that can be
specified for end-of-volume conditions in the OPEN macro
instruction or the DD statement. An additional volume
positioning option, REWIND, is available and can be specified by
the CLOSE macro instruction for magnetic-tape volumes. REWIND
positions the tape at the load point regardless of the direction
of processing.

You can code CLOSE TYPE=T and perform some close functions for
sequential data sets on magnetic tape and direct-access volumes
processed with BSAM. When you use TYPE=T, the DCB used to
process the data set maintains its open status, and you should
not issue another OPEN macro instruction to continue processing
thetgame data set. This option cannot be used in a SYNAD
routine.

The TYPE=T operand causes the system control program to process
labels, modify some of the fields in the system control blocks
for that data set, and reposition the volume (or current volume
in the case of multivolume data sets) in much the same way that
the normal CLOSE macro does. When you code TYPE=T, you can
specify that the volume either be positioned at the end of data
(the LEAVE option) or be repositioned at the beginning of data
(the REREAD option). Magnetic-tape volumes are repositioned
either immediately before the first data record or immediately
after the last data record; the presence of tape labels has no
effect on repositioning. Figure 29, which assumes a sample data
set containing 1000 records, illustrates the relationship
between each positioning option and the point at which you
r?sume processing the data set after issuing the temporary
close.

If you code the release (RLSE) operand on the DD statement for
an output data set, it is ignored by temporary close (CLOSE
TYPE=T). If the last operation occurring prior to closing the
data set was a write, any unused space will be released when you
finally issue the normal CLOSE macro instruction.

Part 2: Data Management Processing Procedures 61

62

C
Begin processing T

rocessin tape data set
G ’ {open for read

data set
/ backward) \

Record Record Record Record Record
1 2 3 999 1000

Begin

~A
~

~
"

After temporary close, you will

If you CLOSE TYPE =T and specify resume processing

LEAVE Immediately after record 1000

LEAVE (with tape data set open

Immediately before record 1
for read backward)

REREAD Immediately before record 1

REREAD (with tape data set open

Immediately after record 1000
for read backward)

Figure 29. Record Processed When LEAVE or REREAD is Specified
for CLOSE TYPE=T ya

It is possible to use BSAM to process a data set that is not
physical-sequential; if vou use CLOSE TYPE=T for them, the
following restrictions apply:

. The DCB for the data set you are processing on a
direct~access device must specify either DSORG=PS or
DSORG=PSU for input processing, and either DSORG=PS,
DSORG=PSU, DSORG=P0, or DSORG=PQU for output processing.

. The DCB must not be open for input to a member of a
partitioned data set.

. If you open a data set on a direct-access device for output
and issue CLOSE TYPE=T, the volume will be repositioned only
if the data set was created with DSORG=PS, DSORG=PSU,
DSORG=P0, or DSORG=POU (you cannot specify the REREAD option
if DSORG=P0O or DSORG=POU is specified). (This restriction
prohibits the use of temporary close following or during the
building of a BDAM data set that is created by specifvying N
BSAM MACRF=WL).

. If you open the data set for input and issue CLOSE TYPE=T
with the LEAVE option, the volume will be repositioned only
if the data set specifies DSORG=PS or DSORG=PO.

Note: When a data control block is shared among multiple tasks,
only the task that opened the data set can close it unless
TYPE=T is specified.

Before issuing the CLOSE macro, a CHECK macro must be issued for
all DECBs that have outstanding I/0 from WRITE macro
instructions. When CLOSE TYPE=T is specified, a CHECK macro must
be issued for all DECBs that have outstanding I/0 from either
WRITE or READ macro instructions.

)

05/7VS52 Data Management Services Guide

N

In Figure 30, the data sets associated with three DCBs are to be
closed simultaneously.

CLOSE
CNOP
BAL
DC

DC

DC

DC

DC

DC
Sve

R Figure 30. Clo

AT o S

(TEXTDCB, ,CONVDCB, ,PRINTDCB)

0,4 Align list to fullword
1,%+16 Load regl w/list addr
AL1CO) Option byte
AL3CTEXTDCB) DCB address

AL1CO) Option byte
AL3I(CONVDCBRB) DCB address

ALL1(128) Option byte
AL3(PRINTDCB) DCB address

20 Issue close SVC

sing Three Data Sets Simultaneously

End-of-Volume P

C

Because no volume positioning operands are specified, tha
position indicated by the DD statement DISP parameter is used.

At execution, the S5VC 20 instruction passes control to the Close
routine, which terminates processing of the three data sets and
returns the three DCBs to their original status.

RELEASING DATA SETS AND VOLUMES: You are offered the option of
being able to release data sets and the volumes the data sets
reside on when your task is no longer using them. Assuming that
you are not sharing data sets, these data sets and the volumes
on which they reside, would otherwise remain unavailable for use
by other tasks until the job step that opened them is
terminated.

There are two ways to code the CLOSE macro instruction that can
result in releasing a data set and the volume on which it
resides at the time the data set is closed:

In conjunction with the FREE=CLOSE parameter of the DD statement
you can code:

CLOSE (DCB1,DISP) or
CLOSE (DCB1,REWIND)}

If you do not code FREE=CLOSE on the DD statement, you can code:
CLOSE (DCB1, FREE)

See 05/VS2 JCL for information about how to use and code the
FREE=CLOSE parameter of the DD statement.

In either case, tape data sets and the volume on which the tape
is mounted will be freed for use by another job step. Data sets
on direct-access devices will be freed and the volumes on which
they reside will be freed if no other data sets on the volume
are open. Additional information on volume disposition is
provided in 0S7VYS2 JCL.

Data sets being temporarily closed (using CLOSE TYPE=T) cannot
be released at the time the data set is closed. They will be
released at termination of the job step.

Refer to 05/VS Data Management Macro Instructions for additional
information and coding restrictions.

rocessing

Control is passed automatically to the data management
end-of-volume routine when any of the following conditions is
detected:

Part 2: Data Management Processing Procedures 63

66

L Tapemark (input tape volume)
. Filemark or end of last extent (input direct-access volume)

. End-of-data indicator (input device other than magnetic tape
or direct-access volume). An example of this would be the
last card read on a card reader.

. End of reel (output tape volume)
. End of extent (output direct-access volume)

You may issue a force end-of-volume (FEOV) macro 1nstruct1on
before the end-of-volume condition is detected. h

If the LABEL prarameter of the associated DD statement indicates
standard labels, the end-of-volume routine checks or creates
standard trailer labels. If SUL or AUL is specified, control is
passed to the appropriate user label routine if it is specified
in your exit list.

If multiple~-volume data sets are specified in your DD statement,
automatic volume switching is accomplished by the end-of-volume
routine. When an end-of-volume condition exists on an output
data set, additional space is allocated as indicated in your DD
statement. If no more volumes are specified or if more than
specified are required, the storage is obtained from any
available volume on a device of the same type. If no such volume
is available, your job is terminated.

VOLUME POSITIONING: When an end-of-volume condition is detected,
the system positions the volume according to the disposition
specified in the DD statement unless the volume disposition is
specified in the OPEN macro instruction. Volume positioning
instructions for a sequential data set on magnetic tape can be
specified as LEAVE or REREAD.

LEAVE
positions a labeled tape to the point following the tape
mark that follows the data set trailer label group, and an
unlabeled volume to the point following the tape mark that
follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data
set header label group, and an unlabeled tape to the point
preceding the first block of the data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data
set header label group, and an unlabeled tape to the point
preceding the first block of the data set.

REREAD
positions a labeled tape to the point following the tape
mark that follows the data set trailer label group, and an
unlabeled tape to the point following the tape mark that
follows the last block of the data set.

If, houever, you want to position the current volume according
to the option specified in the DISP parameter of the DD
statement, you code DISP in the OPEN macro instruction.

DISP
specifies that a tape volume is to be disposed of in the
manner implied by the DD statement associated with the data
set. Direct-access volume positioning and disposition are
not affected by this parameter of the OPEN macro
instruction. There are several dispositions that can be
specified in the DISP parameter of the DD statement; DISP
can be PASS, DELETE, KEEP, CATLG, or UNCATLG.

05/7VS52 Data Managemant Services Guide

(f‘\

C

N

&

The resultant action at the time an end-of-volume condition
arises depends on (1) how many tape units are allocated to
the data set and (2) how many volumes are specified for the
data set in the DD statement. This is determined by the
UNIT and VOLUME parameters of the DD statement associated
with the data set. If the number of volumes is greater than
the number of units allocated, the current volume will be
rewound and unloaded. If the number of volumes is less than
or equal to the number of units, the current volume is
merely rewound.

A volume positioning instruction can be specified only if
the processing method operand has been specified. It is
ignored if devices other than magnetic-tape and
direct-access are used, or if the number of volumes exceeds
the number of available units.

For magnetic-tape volumes that are not being unloaded,
positioning varies according to the direction of the last
input operation and the existence of tape labels.

If the tape was last read forward:

LEAVE
positions a labeled tape to the point following the
tapemark that follows the data set trailer label group, and
an unlabeled volume to the point following the tapemark
that follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data
set header label group, and an unlabeled tape to the point
preceding the first block of the data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data
set header label group, and an unlabeled tape to the point
preceding the first block of the data set.

REREAD
positions a labeled tape to the point following the
tapemark that follows the data set trajiler label group, and
an unlabeled tape to the point following the tapemark that
follows the last block of the data set.

FEOV—Force End of Volume

The FEOV macro instruction directs the operating system to
initiate end-of-volume processing before the physical end of the
current volume is reached. If another volume has been specified
for the data set, volume switching takes place automatically.
The volume positioning options REWIND and LEAVE are available.

If an FEQOV macro is issued for a spanned multivolume data set
which is being read using QS5AM, errors may occur uwhen the next
GET macro is issued. These errors are documented in the section,
"Spanned Variable-Length Records" in "Part 1: Introduction to
Data Managemaent.®

The FEOV macro instruction can only be used when you are using

BSAM or QSAM. FEOV is ignored if issued for a SYSIN or SYSOUT
data set.

Part 2: Data Management Processing Procaduraes 65

BUFFER ACQUISITION AND CONTROL

TN

The operating system provides several methods of buffer
acquisition and control. Each buffer (virtual-storage area used
for intermediate storage of input/output data) usually
corresponds in length to the size of a block in the data set
being processed. When you use the queued access technique, any
reference to a buffer actually refers to the next record (buffer
seagment).

You can assign more than one buffer to a data set by associating
the buffer with a buffer pool. A buffer pool must be constructed
in a virtual-storage area allocated for a given number of
buffers of a given length.

The number of buffers you assign to a data set should be a
tradeoff against the frequency with which vou refer to each
buffer. A buffer that is not referred to for a relatively long
period of time may be paged out. If this were allowed to happen
to any considerable degree, it could result in a greater number
of buffers actually decreasing throughput.

Buffer segments and buffers within the buffer pool are
controlled automatically by the system when the queued access
technique is used. However, you can terminate processing of a
buffer by issuing a release (RELSE) macro instruction for input
or a truncate (TRUNC) macro instruction for output. Two
buffering techniques, simple and exchange, can be used to
process a sequential data set. Only simple buffering can be used
to process an indexed sequential data set.

If you use the basic access technique, you can use buffers as
work areas rather than as intermediate storage areas. You can
control them directly, by using the GETBUF and FREEBUF macro

instructions, or dynamically for BDAM and BISAM, by requesting /’\\
dynamic buffering in vour DCB macro instruction and your READ or -
WRITE macro instruction. If vou request dynamic buffering, the N

system will automatically provide a buffer each time a READ
macro instruction is issued. That buffer will be freed when vou
issue a WRITE or FREEDBUF macro instruction.

BUFFER POOL CONSTRUCTION

66

Buffer pool construction can be accomplished in any of three
Wways:

. Statically using the BUILD macro instruction
. Explicitly using the GETPOOL macro instruction
L Automatically by the system when the data set is opened

If Q5AM simple buffering is used, the buffers are automatically
returned to the pool when the data set is closed. If the buffer
pool is constructed explicitly or automatically, the virtual
storage area must be returned to the system by the FREEPOOL
macro instruction. :

In many applications, fullword or doubleword alignment of a
block within a buffer is important. You can specify in the DCB
that buffers are to start on either a doubleword boundary or a
fullword boundary that is not also a doubleword boundary (by
coding BFALN=D or F). If doubleword alignment is specified for
format-V records, the fifth byte of the first record in the
block is so aligned. For that reason, fullwoerd alignment must be
requested to align the first byte of the variable-length record
on a doubleword boundary. The alignment of the records following
the férst in the block depends on the length of the previous (:T\
records.

OS/VSé Data Management Services Guide

VN

Note that buffer alignment provides alignment only for the
buffer. If records from ASCII magnetic tape are read and the
records use the block prefix, the boundary alignment of logical
records within the buffer depends on the length of the block
prefix. If the length is 4, logical records are on fullword
boundaries. If the length is 8, logical records are on
doubleword boundaries.

If the BUILD macro instruction is used to construct the buffer
pool, alignment depends on the alignment of the first byte of
the reserved storage area.

When you process multiple QISAM data sets, you can use a common
buffer pool. To do this, however, you must use the BUILD macro
instruction to reformat the buffer pool before opening each data
set.

BUILD—Construct a Buffer Pool

When vou know, before program assembly, both the number and the
size of the buffers required for a given data set, you can
reserve an area of appropriate size to be used as a buffer pool.
Any tvpe of area can be used—for example, a predefined storage
area or an area of coding no longer needed.

A BUILD macro instruction, issued during execution of your
program, structures the reserved storage area into a buffer
pool. The address of the buffer pool must be the same as that
specified for the buffer pool control block (BUFCB) in your DCB.
The buffer pool control block is an 8-byte field preceding the
buffers in the buffer pool. The number (BUFNO) and length (BUFL)
of the buffers must also be specified. For Q5AM, the length of
BUFL must be at least the blocksiza.

When the data set using the buffer pool is closed, you can reuse
the area as required. You can also reissue the BUILD macro
instruction to reconstruct the area into a new buffer pool to be
used by another data set.

You can assign the buffer pool to two or more data sets that
require buffers of the same length. To do this, you must
construct an area large enough to accommodate the total number
of buffers required at any one time during execution. That is,
if each of two data sets requires five buffers (BUFN0=5), the
BUILD macro instruction should specify ten buffers. The area
must also be large enough to contain the 8-byte buffer pool
control block.

BUILDRCD—Build a8 Buffer Pool and a Record Area

The BUILDRCD macro instruction, like the BUILD macro
instruction, causes a buffer pool to be constructed in an area
of virtual storage you provide. In addition, BUILDRCD makes it
possible for you to access variable-length, spanned records as
complete logical records, rather than as segments.

You must be processing with QSAM in the locate mode and you must
be processing eithaer VS5 or VBS records, if vou want to access
the variable-length, spanned records as logical records. If you
issue the BUILDRCD macro before the data set is opened, or
during vour DCB exit routine, vou automatically get logical
records rather than segments of spanned records.

Only one logical record storage area is built, no matter how
many buffers are specified; therefore, you can't share the
buffer pool with other data sets that may be open at the same
time.

Part 2: Data Manacament Processinag Preocedures 67

GETPOOL—Get a

Buffer Pool

If a specified area is not reserved for use as a buffer pool, or
vou want to defer specifying the number and length of the
buffers until execution of your program, vou should use the
GETPOOL macro instruction. It enables you to vary the size and
number of buffers according to the needs of the data set being
processed.

The GETPOOL macro instruction structures a virtual-storage area
allocated by the system into a buffer pool, assigns a buffer
pool control block, and associates the pool with a specific data
set. The GETPOOL macro instruction should be issued either
before opening of the data set or during your DCB exit routine.

When using GETPOOL with QSAM, specify a buffer length (BUFL) of
at least as large as the blocksize.

Automatic Buffer Pool Construction

FREEPCOL—Free

If you have requested a buffer pool and have not used an
appropriate macro instruction by the end of yvour DCB exit
routine, the system automatically allocates virtual-storage
space for a buffer pool. The buffer pool control block is also
assigned and the pool is associated with a specific DCB. For
BSAM, a buffer pool is requested by specifying BUFNO. For QSAM,
BUFNO can be specified or allowed to default to 5. If you are
using the basic access technique to process an indexed
sequential or direct data set, you must indicate dynamic buffer
control. Otherwise, the system does not construct the buffer
pool automatically.

Because a buffer pool obtained automatically is not freed
automatically when vou issue a CLOSE macro instruction, you
should also issue a FREEPOOL or FREEMAIN macro instruction,
which is discussed in the next section.

a Buffer Pool

Any buffer pool assigned to a DCB either automatically by the
OPEN macro instruction (except when dynamic buffer control is
used) or explicitly by the GETPOOL macro instruction should be
released before vour program is terminated. The FREEPOQOL macro
instruction should be issued to release the virtual-storage area
as soon as the buffers are no longer needed. When you are using
the queued access technique, a data set must be closed first.
When vou are using exchange buffering, the buffer pool must not
be released until all the data sets have been closed.

If the OPEN macro was issued while running under a protect key
of zero, a buffer pool which was obtained by OPEN should be
released by issuing the FREEMAIN macro instead of the FREEPOOL
macro. This is necessary because the huffer pool acquired under
these conditions will be in storage assigned to subpool 252.

CONSTRUCTING A BUFFER POOL: Figures 31 and 32 illustrate several
possible methods of constructing a buffer pool. They do not take
into account the method of processing or controlling the buffers
in the pool.

68 0S5/VS2 Data Management Services Guide

/’\\

BUI

OPE
ENDJOB CcLO

RET
INDCB DCB
QUTDCB DCB
CNOP 0,8
INPOOL DS

Figure 31. Con

Procaessing

LD INPOOL,10,52 Structure a buffer pool
N (INDCB, ,0UTDCB, (OUTPUT))
Processing
SE (INDCB,,0UTDCB)
Processing
URN Return to system control

BUFNO=5,BUFCB=INPOOL, EODAD=ENDJOB, -—~
BUFNO=5,BUFCB=INPQOOL,-~--

Force boundary alignment
cL528 Buffer pool

structing a Buffer Pool From a Static Storage Area

In Figure 31, a static storage area named INPOOL is allocated
during program assembly. The BUILD macro instruction, issued
during execution, arranges the buffer pool inte ten buffers,
each 52 bytes long. Five buffers are assigned to INDCB and five
to QUTDCB, as specified in the DCB macro instruction for each.
The two data sets share the buffer pool because both specify
INPOOL as the buffer pool control block. Notice that an
additional 8 bytes have been allocated for the buffer pool to
contain the buffer pool control block. The 4-byte chain pointer
which occupies the first four bytes of the buffer is included in
the buffer, so no allowance need be made for this field.

In Figure 32, two buffer pools are constructed explicitly by the
GETPOCL macro instructions. Ten input buffers are provided, each
52 bytes long, to contain one fixed-length record; five output
buffaers are provided, each 112 bytes long, to contain two
blocked records plus an 8-byte count field (required by ISAM).
Notice that both data sets are closed before the buffer pools
are released by the FREEPOOL macro instructions. The same
procedure should be used if the buffer pools were constructed
automatically by the OPEN macro instruction.

GETPO
GETPG
OPEN

ENDJOB CLOSE
FREEP

" FREEP

RETUR
INDCB DCB
OUTDCB DCB

Figure 32. Con

oL INDCB, 10,52 Construct a 10-buffer pool

oL OUTDCB, 5,112 Construct a 5-buffer pool
(INDCB, ,0UTDCB, (OUTPUT))
(INDCB, ,0UTDCB)

oo0L INDCB Release buffer pools after all

I70 is complete

ooL oUTDCB

N Return to system control
DSORG=PS, BFALN=F,LRECL=52,RECFM=F, EODAD=ENDJOB,~---
DSORG=I5,BFALN=D,LRECL=52,KEYLEN=10,BLKSIZE=104%, C

RKP=0,RECFM=FB, -~
structing a Buffer Pool Using GETPOOL and FREEPOOL

BUFFER CONTROL

Your program can use four techniques to control the buffers used
by vour program. The advantages of each depend to a great extent
upon the type of job vou are doing. Simple and exchange
buffering are provided for the queued access techniqua. The
basic access technique provides for either direct or dynamic
buffer control.

Although only simple buffering can be used to process an indexed

sequential data set, buffer segments and buffers within a buffer
pool are controlled automatically by the operating system.

Part 2: Data Management Processing Procedures 69

In addition, the queued access technique provides four
processing modes that determine the extent of data movement in
virtual storage. Move, data, locate, or substitute mode
processing can be specified for either the GET or PUT macro
instruction. The buffer processing mode is specified in the
MACRF field of the DCB macro instruction. The movement of a
record is determined as follows:

. Move mode: The record is moved from an input buffer to your
work area, or from your work area to an output buffer.

. Data mode (QS5AM _format-V spanned records onlv): The same as
the move mode except only the data portion of the record is
moved.

. Locate mode: The record is not moved. Instead, the address

of the next input or output buffer is placed in register 1.
For QSAM format-V spanned records, if vou have specified
logical records by specifying BFTEK=A or by issuing the
BUILDRCD macro instruction, the address returned in register
1l points to a record area where the spanned record is
assembled or segmented.

The PUT-locate routine uses the value in the DCBLRECL field
to determine whether another record will fit into vour
buffer. Therefore, uhen you uwurite a short record, vou can

maximize the number of records per block by modifying the

DCBLRECL field before you issue a PUT-locate to get a buffer
?e?Tent for the short record. The processing sequence
ollows:

1. Register 1 is returned to you with the address of the
next buffer segment.

2. Move the record into the output buffer segment.

3. Put the length of the next (short) recdrd into DCBLRECL.
4 Issue PUT-locate.

5. Move the short record into the buffer segment.

° Substitute mode: Move mode is used when substitute mode is
requested 1n MVS.

Two processing modes of the PUTX macro instruction can be used
in conjunction wWwith a GET-locate macro instruction. The update
mode returns an updated record to the data set from which it uwas
read; the output mode transfers an updated record to an output
data set. There is no actual movement of data in virtual
storage. The processing mode is specified by the operand of the
PUTX macro instruction, as explained in 0S5/V52 MVS Data
Management Macro Instructions.

If you use the hasic access technique, you canh control buffers
in one of two ways:

] Directly, using the GETBUF macro instruction to retrieve a
buffer constructed as described above. A buffer can then be
returned to the pool by the FREEBUF macro instruction.

. Dynamically, by requesting a dynamic buffer in vour READ or
WRITE macro instruction. This technique can be used only
when you are using BISAM or BDAM. If vou request dynamic
buffering, the system automatically provides a buffer each
time a READ macro instruction is issued. The buffer is
supplied from a buffer pool that is created by the system
when the data set is opened. The buffer is released
{returned to the pool) upon completion of a WRITE macro
instruction when you are updating. If yvou do not update the
record in the buffer and thus release the buffer when the
record is written, the FREEDBUF macro instruction may be
used. If you are processing an indexed sequential data set,
the buffer is automatically released upon the next issuance

70 05/VS2 Data Management Services Guide

of the READ macro instruction if there has been no
intervening WRITE or FREEDBUF macro instruction.

simple Buffering

The term simple buffering refers to the relationship of segments
within the buffer. All segments in a simple buffer are together
in storage and are always associated with the same data set.
When the buffer pool is constructed, the system creates a
channel command word (CCW) for each buffer in the buffer pool.
For this reason, each record must be physically moved from an
input buffer segment to an output buffer segment. It can be
processed within eithar segment or in a work area.

If you use simple buffering, records of any format can be
processed. New records can be inserted and old records deleted
as required to create a new data set. A record can be moved and
processed as follows:

. Processed in an input buffer and then moved to an output
buffer (GET-locate, PUT-move/PUTX-output)

U Moved from an input buffer to an output buffer where it can
be processed (GET-move, PUT-locate)

. Moved from an input buffer to a work area where it can be
grocessed and then moved to an output buffer (GET-move,
UT-move) ‘.

. Procassed in an input buffer and returned to the data set
(GET-locate, PUTX-update)

The following examples illustrate the control of simple buffers
and the processing modes that can be used. The buffer pools may
have been constructed in any way previously dqscribed.

Simple Buffering—GET~locate, PUT-moves/PUTX-output: The GET
macro instruction (step A, Figure 33) locates the next input
record to be processed. Its address is returned in register 1 by
the system. The address is passed to the PUT macro instruction
in register 0.

Part 2: Data Management'Processing Procedures 71

Figure 33.

OUTPUT | OUTPUT

NEXTREC GET . INDCB

LR = 0,1
PUT OUTDCB, (0)

B NEXTREC
OUTPUT OUTPUT INDCB . DCB MACRF=(GL),-—--

OUTDCB DCB MACRF=(PM),--~

Simple Buffering with MACRF=GL and MACRF=PM

72

The PUT macro instruction (step B, Figure 33) specifies the
address of the record in register 0. The system then moves the
record to the next output buffer.

Note: The PUTX-output macro instruction can be used in place of
the PUT-move macro instruction. However, processing will be as
described under exchange buffering (see PUT-substitute).

Simple Buffering—GET-move, PUT-locate: The PUT macro
instruction locates the address of the next available output
buffer. Its address is returned in register 1 and is passed to
the GET macro instruction in register 0.

The GET macro instruction specifies the address of the output
buffer into which the system moves the next input record.

A filled output buffer is not written until the next PUT macro
instruction is issued.

simple Buffering—GET-move, PUT-move: The GET macro instruction
(step A, Figure 34¢) specifies the address of a work area into
which the system moves the next record from the input buffer.

0S5/VS2 Data Management Services Guide

I/- ™~

e~

P

OUTPUT | OUTPUT

NEXTREC GET INDCB,WORKAREA

PUT OUTDCB,WORKAREA
B NEXTREC
WORKAREA DS CL50
INDCB DCB MACRF=(GM),---

! -

OUTDCB DCB MACRF=(PM),---

Figure 34. Simple Buffering with MACRF=GM and MACRF=PM
The PUT macro instruction (step B, Figure 34) specifies the
address of a work area from which the system moves the record
into the next output buffer.
Simple Buffering—GET-locate, PUT-locate: The GET macro
instruction (step A, Figure 35) locates the address of the next
available input buffer. The address is returned in register 1.
GET
A INPUT OUTPUT | OUTPUT | NEXTREC GET INDCB
PUT QUTDCB
LR 6,1
PUT LA 5, INDCB
///’ USING IHADCB,5
LH 4 ,DCBLRECL
B INPUT QUTPUT QUTPUT SH 4,=H'1"
- EX 4 ,MOVEREC
é.. NEXTREC
MOVEREC MVC 0(1,6),0(7)
c | INPUT INPUT ouTpuT | INDCB DCB MACRF=(GL),
. . EODAD=EOF , ——--
i OUTDCB DCB MACRF=(PL),---
DCBD DSORG=(LR)
Program EOF
Figure 35. Simple Buffering with MACRF=GL and MACRF=PL

The PUT macro instruction (step B, Figure 35) locates the
address of the next available output buffer. Its address is
returned in register 1. You must then move the record from the
input buffer to the output buffer (step C, Figure 35).

Part 2: Data Management Processing Procedures 73

Processing can be done either before or after the move
operation.

A filled output buffer is not written until the next PUT macro
instruction is issued. The CLOSE and FEOV macro instructions
write the last record of your data set by issuing TRUNC and PUT
macro instructions. Be careful not to issue an extra PUT before
issuing CLOSE or FEOV. Otherwise, when the CLOSE or FEOV macro
instruction tries to write vour last record, the extra PUT will
write a meaningless record or produce a sequence error.

Note that if records other than format-F records are being
moved, the length attribute of the MVC instruction must be
changed as shown by the code beginning with the USING statement
in Figure 35. If the record is more than 256 bytes, you can code
a move routine or use a MVCL instruction to process the complete
record. :

SIMPLE BUFFERING-UPDAT MODE: When a data set is opened with
UPDAT specified (Figure 36), only GET-locate and PUTX-update are
supported. The GET macro locates the next input record to be
processed and its address is returned in register 1 by the
system. The user may update the record and issue a PUTX macro
which wWwill cause the block to be written back in its original
location in the data set after all the logical records in that
block have been processed.

NPT/ \NPUT/ OPEN (UPDCB, (UPDAT))
OUTPUT OUTPUT NEXTREC GET UPDCB
PUTX UPDCB
PUTX B NEXTREC

UPDCB DCB MACRF=(GL,PM}), ---

(No movement of data takes place)

Figure 36. Simple Buffering with MACRF=GL and MACRF=PM-UPDAT Mode

Exhange Buffering

74

Exchange buffering is not supported in MVS. Its request is
ighored by the system and move mode is used instead.

BUFFERING TECHNIQUES AND GET/PUT PROCESSING MODES: As vou can
see from the previous examples, the most efficient code is
achieved by use of automatic buffer pool construction, and
GET-locate and PUTX-output with simple buffering. Figure 37
summarizes the combinations of buffering techniques and
processing modes that can be used.

057VS2 Data Management Services Guide

N

N

-

C

~

e

RELSE—Release

Q
§le| &2
ole| 2|k
: =
Input 5% 515 =
Buffering: —» | & |& | & || E
Simple @ g % g %Eﬁ%
[e] e} Ol |lo >0
ElE| 22|22
i N TN SN FT-E
Actions {'u‘ E i E 8,)5
¢ Ol 0|0|u=2
Program must move X X
record
System moves record | X | X X
System moves record X
segment
Work area required X
PUTX - output can X
be used

Figure 37. Buffering Technique and GET/PUT Processing Modes

an Input Buffer

When using the queued access technique to process a sequential
or indexed sequential data set, vou can direct the system to
ignore the remaining records in the input buffer being
processed. The next GET macro instruction retrieves a record
from another buffer. If format-V spanned records are being used,
the next logical record obtained may begin on any segment in any
subsequent block.

If yvyou are using move mode, the buffer is made available for
refilling as soon as the RELSE macro instruction is issued. When
vou are using locate mode, the system does not refill the buffer
until the next GET macro instruction is issued. If a PUTX macro
instruction has been used, the block is written before the
buffer 1s refilled.

TRUNC—Truncate an Qutput Buffer

When using the queued access technique to process a sequential
data set, you can direct the system to write a short block. The
first record in the next buffer is the next record processed by
a PUT-output or PUTX-output mode.

If the locate mode is being used, the system assumes that a

record has been placed in the buffer segment pointed to by the
last PUT macro instruction.

Part 2: Data Management Processing Procedures 75

The last block of a data set is truncated by the Close routine.
Note that a data set containing format-F records with truncated
blocks cannot be read from direct-access storage as efficiently
as a standard format-F data set.

GETBUF—Get a Buffer from a Pool

The GETBUF macro instruction can be used with the basic access
technique to request a buffer from a buffer pool constructed by
the BUILD, GETPOOL, or OPEN macro instruction. The address of
the buffer is returned by the system in a register you specify
when vou issue the macro instruction. If no buffer is available,
the register contains 0 instead of an address.

FREEBUF—Return a Buffer to a Pool

The FREEBUF macro instruction is used with the basic access
technique to return a buffer to the buffer pool from which it
was obtained by a GETBUF macro instruction. Although the buffers
need not be returned in the order in which they were obtained,
they must be returned when they are ho longer needed.

FREEDBUF—Return a Dynamic Buffer to a Pool

Any buffer obtained through the dynamic buffer option must be
released before it can be used again. When vou are processing a
direct data set, if yvou do not update the block in the buffer
and thus free the buffer when the block is written, you must use
the FREEDBUF macro instruction. If there is an uncorrectable
input/output error, the control program releases the buffer.
When you are processing an indexed sequential data set, if you
do not update the block in the buffer or if there is an
uncorrectable input error, the control program releases the
buffer when the next READ macro instruction is issued on the
same DECB, unless vou use the FREEDBUF macro instruction.

To effect the release, you must specify the address of the DECB
that was used when the block was read using the dynamic
buffering option, as well as the address of the DCB associated
with the data set being processed.

PROCESSING A SEQUENTIAL DATA SET

76

Data sets residinog on all volumes other than direct-access
volumes must be processed sequentially. In addition, a data set
residing on a direct-access volume, regardless of organization,
can be processed sequentially. This includes data sets created
using ISAM or a similar access method. Since the entire data set
(prime, index, and overflow areas) will be processed, care
should be taken to determine the type of records being
processed. This feature of the operating system allows vou to
write vour program with little regard for the type of device to
be used when the program is executed, except for restrictions on
the use of certain device-dependent macro instructions and
processing options.

Either the queued or the basic access technique may be used to
store and retrieve the records of a sequential data set.
Additionally, a technique called chained scheduling can be used
to accelerate the input/output operations required for a

sequential data set (residing on nondirect-access devices for
5740-AM3) .

0S/7VS2 Data Management Services Guide

P

//‘\
N

—
(\‘
|

-,

DATA FORMAT—DEVICE TYPE CONSIDERATIONS

Before execution of your program, you must supply the operating
system with both the record format (RECFM) and device-dependent
(DEVD) information in a DCB macro instruction, a DD statement,
or a data set label. The DCB subparameters for the DD statement
differ slightly from those described here. A complete
description of the DD statement and a glossary of DCB
subparameters are contained in 05/VS2 JCL.

The record format (RECFM) parameter of the DCB macro instruction
specifies the characteristics of the records in the data set as
fixed-length (RECFM=F), variable-length (RECFM=V or D), or
undefined-length (RECFM=U). Fixed-length blocked records
(RECFM=FB) can be specified as standard (RECFM=FBS), which means
there are no truncated (short) blocks or unfilled tracks within
the data set, with the possible exception of the last block or
track. Data sets with a fixed-length, standard format were
gescrlb%d previously under "Fixed-Length Records, Standard
ormat.’

As an optional feature, a control character can be contained in
each record. This control character will be recognized and
processed if the data set is printed or punched. The control
characters are transmitted on both tapes and direct-access
volumes. The presence of a control character is indicated by M
or A in the RECFM field of the data control block. M denotes
machine code; A denotes American National Standards Institute
(ANSI) code. If either M or A is specified, the character must
be present in every record; the printer space (PRTSP) or stacker
select (STACK) field of the DCB is ignored. The optional control
character must be in the first byte of format-F and format-U
records and in the fifth byte of format-V records and format-D
records where BUFOFF=L. Control character codes are listed in
"Appendix B: Control Characters." The device-dependent (DEVD)
parameter of the DCB macro instruction specifies the type of
device on which the data set's volume resides:

TA magnetic tape
PT paper tape reader
PR printer
PC card punch
RD card reader
DA direct-access device or
Mass Storage System (MSS) virtual volumes

Magnetic Tape (TA)

Format-F, V, D, and U records are acceptable for magnetic tape.
Format-V records are not acceptable on 7-track tape if the data
conversion feature is not available. ASCII records are not
acceptable on 7-track tape.

When you create a tape data set with variable-length record
format (V or D), the control program pads any data block shorter
than 18 bytes. For format-V records, it pads to the right with
binary zeros so that the data block length equals 18 bytes. For
format-D (ASCII) records, the padding consists of ASCII
circumflex characters which are equivalent to X'5E's.

Note that there is no minimum requirement for blocksize;
houwever, if data check occurs on a magnetic—-tape device, any
record shorter than 12 bytes in a read operation or 18 bytes in
a write operation will be treated as a noise record and lost. No
check for noise will be made unless a data check occurs.

Tape density (DEN) specifies the recording density in bits per

inch per track, as shown in Figure 38. If this information is
not supplied, the highest applicable density is assumed.

Part 2: Data Management Processing Procedures 77

Recording Density

DEN 7-Track Tape 9-Track Tape
0 200 -——

1 556 -

2 300 800 (NRZID

3 -—— 1600 (PE)

4 -—— 6250 (GCR)

NRZI is for non-return-to-zero-inverted mode
PE is for phase encoded mode
GCR is for group coded recording mode

Specifying DEN=0 for a 7-track 3420 tape attached to a 3803-1
Wwill result in 556 bits per inch recording, but corresponding
messages and tape labels will indicate 200 bits per inch
recording density.

Figure 38. Tape Density (DEN) Values

The track recording technique (TRTCH) for 7-track tape can be
specified as:

C Data conversion is to be used. Data conversion makaes it
possible to write 8 binary bits of data on 7 tracks.
Otheruwise, only 6 bits of an 8-bit byte are recorded. The
length field of format-V records contains binary data and is
not recorded correctly without data conversion.

E Even parity is to be used; if E is omitted, odd parity is
assumed.

T BCDIC to EBCDIC translation is required.

Paper-Tape Reader (PT)

The paper-tape reader accepts format-F and format-U records. If
vou use Q5AM, you should not specify the records as blocked.
Each format-U record is followed by an end-of-record character.
Data read from paper tape may optionally be converted into the
Svstem/370 internal representation of one of six standard
paper-tape codes. Any character found to have a parity error
will not be converted when the record is transferred into the
input area. Characters deleted in the conversion process are not
counted in determining the block size.

The following symbols indicate the code in which the data was
punched. If this information is omitted, I is assumed.

IBM BCD perforated tape and transmission code (8 tracks)
Friden (8 tracks)

Burroughs (7 tracks)

National Cash Register (8 tracks)

ASCII (8 tracks)

Teletypel! (5 tracks)

No conversion

Z~HD> O M

Note that when you are using QS5AM, the processing mode must bea
move mode.

1 Trademark of the Teletype Corporation

78 0S5/V52 Data Management Services Guide

&
v,
p—

TN

/G

card Reader and Punch (RD/PC)

Printer (PR)

Format-F and U records are acceptable to both the reader and
punch; format-V records are acceptable to the punch only. The
device control character, if specified in the RECFM parameter,
is used to select the stacker; 1t is not punched. The first ¢
bytes (record descriptor word or segment descriptor word) of
format-V records or record segments are not punched. For
format-V records, at least 1 byte of data must follow the record
or segment descriptor word or the carriage control character.

Each punched card corresponds to one physical record. Therefore,
you should restrict the maximum record size to 80 (EBCDIC mode)
or 160 (column binary mode) data bytes. When mode (C) is used
for the card punch, BLKSIZE must be 160 unless yvou are using
PUT. Then you can specify BLKSIZE as 160 or a multiple of 160,
and the system handles this as described earlier under
"PUT—UWrite a Record" in the section "Queued Access Techniques."”
You can specify the read/punch mode of operation (MODE)
parameter as either card image (column binary) mode (C) or
EBCDIC mode (E). If this information is omitted, E is assumed.
The stacker selection parameter (STACK) can be specified as
either 1 or 2 to indicate which bin is to receive the card. If
it is not specified, 1 is assumed.

For all QSAM, RECFM=FB, card punch data sets, the block size in
the DCB will be adjusted by the system to equal the logical
record length. This data set will be treated as RECFM=F. If the
system builds the buffers for this data set, the buffer length
will be determined by the BUFL parameter. If the BUFL parameter
was not specified, the adjusted block size i1s used for the
buffer length.

If the DCB is to be reused with a block size larger than the
logical record length, vou must reset DCBBLKSI in the DCB and
ensure that the buffers are large enough to contain the largest
block size expected. You may ensure the buffer size by
specifying the BUFL parameter before the first time the data set
is opened or by issuing the FREEPOOL macro instruction after
each CLOSE macro so the system will build a new buffer pool of
the correct size each time the data set is opened.

Punch error correction on the IBM 2540 Card Read Punch is not
performed when using MVS.

The 3525 Card Punch accepts only format-F records for print data
sets and for associated data sets. Other record formats are
allowed for the read data set, the punch data set, and the
interpret punch data set. See 0S _and 05/VS Programming Support
for_the IBM 3505 Card Reader and IBM 3525 Card Punch for more
information on programming for the 3525 Card Punch.

Records of format-F, V, and U are acceptable to the printer. The
first ¢ bytes (record descriptor word or segment descriptor
word) of format-V records or record segments are not printed.
For format-V records, at least 1 byte of data must follow the
record or segment descriptor word or the carriage control
character. The carriage control character, ifT specified in the
RECFM parameter, is not printed. The system does not position
the printer to channel 1 for the first record unless specified
by a carriage control character.

Because each line of print corresponds to one record, the record
length should not exceed the length of one line on the printer.
For variable-length spanned records, each line corresponds to
one record segment, and blocksize should not exceed the length
of one line on the printer.

If carriage control characters are not specified, you can

indicate printer spacing (PRTSP) as 0, 1, 2, or 3. If it is not
specified, 1 is assumed.

Part 2: Data Management Processing Procedures 79

For all QSAM, RECFM=FB, printer data sets, the block size in the
DCB will be adjusted by the system to equal the logical record
length. This data set will be treated as RECFM=F. If the system
builds the buffers for this data set, the buffer length will be
determined by the BUFL parameter. If the BUFL parameter was not
fpeclzied, the adjusted block size is used for the buffer

ength.

If the DCB is to be reused with a block size larger than the
logical record length, you must reset DCBBLKSI in the DCB and
insure that the buffers are large enough to contain the largest
block size expected. You may insure the buffer size by
specifying the BUFL parameter before the first time the data set
is opened or by issuing the FREEPOOL macro instruction after
each CLOSE macro so the system will build a new buffer pool of
the correct size each time the data set is opened.

Direct-Access Device (DA)

Direct-access devices accept records of format-F, V, or U. If
the records are to be read or written with keys, the key length
(KEYLEN) must be specified. In addition, the operating system
has a standard track format for all direct access volumes. Each
track contains data information as well as certain control
information such as:

. The address of the track

. The address of each record
. The length of each record
. Gaps betuween areas

A complete description of track format is contained in the
section "Direct-Access Device Characteristics." Your only
concern in creating a sequential data set is to allow for an
8-byte track descriptor record (capacity record or R0) when
requesting space on a direct-access volume. In addition, device
overhead, which varies with the device, must be allocated for
each block on the track.

DEVICE CONTROL
The operating system provides you with six macro instructions
for controlling input/output devices. Each is, to varying
degrees, device-dependent. Therefore, you must exercise some
care if you wish to achieve device independence.
When vou use the queued access technique, only unit record
equipment can be controlled directly. When using the basic
access teehnique, limited device independence can be achieved
between magnetic-tape and direct-access devices. You must check
all read or write operations before issuing a device control
macro instruction.

CNTRL—cControl an I/0 Device

The CNTRL macro instruction performs these device-dependent
control functions:

. Card reader stacker selection (55)
. Printer line spacing (SP)
. Printer carriage control (SK)

U Magnetic-tape backspace (BSR) over a specified number of
blocks .

80 0SrVS2 Data Management Services Guide

\\, —

. Magnetic-tape backspace (BSM) past a tapemark and forward
space over the tapemark

. Magnetic-tape forward space (FSR) over a specified number of
blocks

L Magnetic-tape forward space (FSM) past a tapemark and a
backspace over the tapemark

Backspacing moves the tape toward the load point; forward
spacing moves the tape away from the load point.

Note that the CNTRL macro instruction cannot be used with an
input data set containing variable-length records on the card
reader.

You can use the CNTRL macro instruction to position DOS tapes
that contain embedded DOS checkpoint records if you specify
OPTCD=H in the DCB parameter field of the DD statement. The
CNTRL macro instruction cannot be used to backspace D0S 7-track
tapes that are written in data convert mode and contain embedded
checkpoint records.

PRTOV—Test for Printer oOverflow

The PRTOV macro instruction tests for channel 9 or 12 of the
printer carriage control tape or the forms control buffer (FCB).
An overflow condition causes either an automatic skip to channel
1 or, if specified, transfer of control to vour routine for
overflow processing. If you specify an overflow exit routine,
set DCBIFLGS to X'00' before issuing another PRTOV.

If the data set specified in the DCB is not for a printer, no
action is taken.

SETPRT—Printer Setup

The SETPRT macro instruction is used to initially set or
dynamically change the specifications of the 3800 Printing
Subsystem. The SETPRT macro instruction is also used to
dynamically change the specifications of the 3203 or 3211
printers or the 1403 printer with UCS. For additional
information on how to use the SETPRT macro with the 3800
printer, see IBM 3800 Printing Subsystem Programmer's Guide.

For printers that have a universal character set (UCS) buffer or
a forms control buffer (FCB), the SETPRT macro instruction is
used to fetch UCS and FCB images from the image library
(SYS1.IMAGELIB) and load them into their respective buffers.
Note that FCB images for the 3203, 3211, and 3800 are not
compatible. The universal character sets for the 1403, 3203, or
3211 and the character arrangement tables for the 3800 are also
incompatible.

The SETPRT macro allows you to request the operator to verify
loading of the buffer. For the 1403, 3203, and 3211 printers,
the SETPRT macro allows you to specify the printing of louwercase
EBCDIC characters in uppercase when no uppercase/lowercase print
chain or train is available.

For a printer that has no carriage control tape, vou can use the
SETPRT macro instruction to load the FCB, to request operator
verification of buffer loading, and to allow the operator to
align the paper in the printer.

The FCB contents can be fetched from the system library or
defined in your program through the exit list of the DCB macro
instruction, as discussed under "Exit List (EXLST).™

When issued, the SETPRT macro instruction can load the UCS

buffer from the system library. The library contains images of
standard IBM character sets and of vour ouwn special character

Part 2: Data Manacgemaent Processing Procedures 31

BSP—Backspace

sets. The operator can be requestgd to verify the loaded image
after mounting the appropriate print chain or train.

With 3800 Eﬁhancements, the SETPRT macro can be used to fetch
3800 load modules from SYS1.IMAGELIB or from an alternate
library that you specify.

The SETPRT macro instruction can be used to block or unblock
printer data checks. When data checks are blocked, unprintable
characters are treated as blanks and do not cause an error
condition.

Except for the 3800, if the specified UCS or FCB image is not
found in the image library (or DCB exit list for an FCB image),
the operator is requested to specify a different one (message
IEC127D is issued). If the operator is unable to supply a valid
name, or the device is a 3800, the SETPRT macro will give an
error return code. »

a Magnetic Tape or Direct-Access Volume

The BSP macro instruction backspaces one block on the magnetic
tape or direct-access volume being processed. The block can then
be reread or rewritten. An attempt to rewrite the block destroys
the contents of the remainder of the tape or track.

The direction of movement is toward the load point or beginning
of the extent. You may not use the BSP macro instruction if the
track overflow option was specified or if the CNTRL, NOTE, or
POINT macro instruction is used. The BSP macro instruction
should be used only when other device control macro instructions
could not be used for backspacing.

Any attempt to backspace across a file mark will result in a
return code of X'04' and your tape or direct-access volume will
be positioned after the file mark. This means you canhot issue a
successful backspace command once your EODAD routine is entered
unless vou first reposition the tape or direct-access volume
into your data set. (CLOSE TYPE=T can get vou positioned at the
end of vour data set.)

You can use the BSP macro instruction to backspace D0OS tapes
containing embedded D0OS checkpoint records. If you use this
means of backspacing, you must test for and bypass the embedded
checkpoint records. You cannot use the BSP macro instruction for
D0S 7-track tapes written in translate mode.

NOTE—Return the Relative Address of a Block

The NOTE macro instruction requests the relative address of the
block just read or written. In a multivolume data set, the
address is relative to the beginning of the volume currently
being processed.

The address provided by the operating system is returned in
register 1. The address is in the form of a 4-byte relative
block address for magnetic tape; for a direct-access device, it
is a 9-byte relative track address. The amount of unused space
available on the track of the direct-access device is returned
in register 0.

POINT—Position to a Block

The POINT macro instruction causes repositioning of a magnetic
tape or direct-access volume to a specified block. The next read
or write operation begins at this block. In a multivolume data
set, you must ensure that the volume referred to is the volume
currently being processed. If a write operation follows the
POINT macro instruction, all of the track following the write
operation is erased unless the data set is opened for UPDAT.
POINT is not meant to be used before a WRITE macro instruction

82 05/VS2 Data Management Services Guide

when a data set is opened for UPDAT. You can use the POINT macro
instruction to position DOS tapes that contain embedded
checkpoint records if you specify OPTCD=H in the DCB parameter
field of the DD statement. The POINT macro instruction cannot be
used to backspace D0S 7-track tapes that are written in data
convert mode and contain embedded checkpoint records.

When using the POINT macro for a direct-access device that is
opened for OUTPUT, OUTIN, or INOUT, and the record format is not
standard, the number of blocks per track may vary slightly.

DEVICE INDEPENDENCE

The ability to request input/output operations without regard
for the physical characteristics of the I/0 devices makes it
possible for you to write one program that will fulfill a
variety of needs. Device independence may be useful for:

. Accepting data from a number of recording devices, such as a
disk pack, 7- or 9-track magnetic tape, or unit-record
equipment. This situation could arise when several types of
data-acquisition devices are feeding.a centralized complex.

. Observing constraints imposed by the availability of
input/output devices (for example, when devices on order
have not been installed).

. Assembling, testing, and debugging on one System/370
configuration and processing on a different configuration.
For example, a 2314 drive can be used as a substitute for
several magnetic-tape units.

Device independence is not difficult to achieve, but requires
some planning and forethought. There are two areas of planning
necessary to achieve device independence—system generation
considerations and programming considerations.

system Generation Considerations

You can provide for device independence when the system is
generated by generating a system that not only meets the current
input/output configuration requirements but includes anticipated
device attachments. Creating such a system entails looking ahead
at expected delivery of input/output devices and, during system
generation, constructing the necessary control blocks and
tables. Thus, when the devices are delivered, they need only be
physically attached. The operating system recognizes the devices
without modification. However, until the devices are physically
connected, the operator must designate them as being offline,
using the VARY command, unless OPTIONS=DEVSTAT was specified on
the CTRLPROG macro during system generation. For information on
the CTRLPROG macro, see 05/VS2 System Programming Library:
System Generation Reference.

When new device attachments cannot be fully anticipated, you can
add new devices by performing an I/0 device generation. This is
a limited type of system generation that enables you to change
youz I/0 configuration without regenerating other parts of the
system. :

System generation techniques for effecting a smooth transition
to new input/output devices deo not include addition of new
device types. When support for new devices is provided, a new
system must be generated. A complete description of system
generation techniques is contained in 05/VS2 Svstem Programming
Library: System Generation Reference.

Part 2: Data Management Processing Procedures 83

Programming Considearations

Each of three data set organizations—partitioned, indexed
sequential, and direct—requires the use of a direct-access
device. Device independence is meaningful, then, only for a
sequentially organized data set, that is, a data set where one
block of data follows another, thus allowing input or output to
be on a magnetic tape drive, a direct-access device, a card
read/punch, a printer, or a spooled data set.

Your program will be device-independent if vou do two things:

. Omit all device-dependent macro instructions and macro
instruction parameters from your program.

. Defer specifying any required device-dependent parameters
until the program is ready for execution. That is, supply
the parameters on your data definition (DD) statement or
during the open exit routine.

In examining the following list of macro instructions, consider
only the logical layout of your data record without regard for
the type-of device used. Also, consider that any reference to a
direct-access volume is to be treated like a reference to
magnetic tape, that is, vou must create a new data set rather
than attempt to update.

OPEN
Specify INPUT, OUTPUT, INOUT, OUTIN, OUTINX, or EXTEND.
The parameters RDBACK and UPDAT are device-dependent and
cause an abnormal termination if directed to a device of
the wrong type.

READ
Specify forward reading (SF) only.

WRITE
Specify forward writing (5F) only; use only to create new
records.

PUTX
Use only output mode.

NOTE/POINT

These macros are valid for both magnetic-tape and
direct~access volumes.

BSP
This macro is valid for magnetic-tape or direct-access
volumes. However, its use would be an attempt to perform
device-dependent action.

CNTRL/PRTOV
These macros are device-dependent.

DCB Subparamaters

MACRF
Specify R/W or G/P. Processing mode can also be indicated.

DEVD
Specify DA if any direct-access device may be used.
Magnetic-tape and unit-record equipment DCBs will fit in
the area provided during assembly. Specify unit-record
devices only if you expect never to change to tape or
direct-access devices. Key length (KEYLEN) can be specified
on the DD statement if necessary.

RECFM, LRECL, BLKSIZE
These can be specified in the DD statement. However, you
must consider maximum record size for specific devices, and
track overflow cannot be specified unless supported.

84 05/VS2 Data Management Services Guide

DSORG
Specify sequential organization (PS or PSU).

OPTCD
This subparameter is device-dependent; specify it in the DD
statement.

SYNAD
Any device-dependent error checking is automatic.
Generalize your routine so that no device-dependent
information is required.

CHAINED SCHEDULING FOR I/0 OPERATIONS (INCLUDING NONDIRECT-ACCESS DEVICES FOR

5740-AM3 ONLY)

To accelerate the input/output operations required for a data
set, the operating system provides a technique called chained
scheduling. When requested, the system bypasses the normal I/0
routines and dynamically chains several input/output operations
together. A series of separate read or write operations,
functioning with chained scheduling, is issued to the computing
system as one continuous operation. In a nonpageable partition
or address space, the program-controlled interruption (PCI) flag
in the CCWs is used for synchronization of the I/0 operations.

The I/0 performance is improved by reduction in both the CPU
time and the channel start/stop time required to transfer data
within virtual storage. Some factors that affect performance
improvement are:

. Address space type (real or virtual)

. BUFNO for QSAM

. The number of overlapped requests for BSAM
. Other activity on the CPU and channel

The effects of rotational delay are also reduced, since several
successive blocks, requested separately, can be retrieved in a
single rotation. Chained scheduling can be used only with simple
buffering. Each data set for which chained scheduling is
specified must be assigned at least two and preferably three
buffers with Q5AM, or must have a value of at least two and
preferably three for NCP with BSAM or BPAM.

Chained scheduling will be used by MVS whether it is requested
or not (except for printers and format-U input records). Chained
scheduling will not be used where it is not allowed.

For 5740-AM3 the following two paragraphs replace the paragraph
above:

The system will default to chained scheduling for
nondirect-access devices (other than printers and format-U
records on nondirect—-access devices) except for thosa cases in

which it is not allowed.

A request for exchange buffering in MVS is not honored, but
compatibly defaults to move mode and therefore has no effect on
either a request for chained scheduling or a default te chained
scheduling.

A request for chained scheduling will be ignored and normal
schedul1ng used if any of the following are encountered when the
data set is opened:

U Direct Access Device (5740-AM3 only)

L

. Search Direct (This llne is deleted by 5740~ AMS)

Part 2: Data Management Processing Procedures 85

. BDAM CREATE, that is, MACRF=(UWL) (This line is deleted by
5740-AM3)

. Track overflow

. UPDAT in the operand of the OPEN macro instruction
. CNTRL macro instruction to be used

. Device type is paper tape reader

. Bypassing of embedded D0S checkpoint records on tape input
data setsv

. Spooled data sets (SYSIN or SYSOUT)

. A print data set or any associated data set for the 3525
Card Punch. (See 0S _and 0S/VYS Programming Support for the
IBM 3505 Card Reader and IBM 3525 Card Punch for more
information on programming for the 3525.)

The number of channel program segments that can be chained is
limited to the value specified in the NCP operand of BSAM and
BPAM DCBs, and to the value specified in the BUFNO operand of
QS5AM DCBs.

Chained scheduling should not be specified (DCB=0PTCD=C) when
channel 9 or channel 12 is in the carriage control tape.

When chained scheduling is being used, the automatic skip
feature of the PRTOV macro instruction for the printer will not
function. Format control must be achieved by ANSI or machine
control characters. (Control characters are discussed in more
detail in Part 1 under "Control Character,™ in Part 2 under
"Data Format—Device Type Considerations," and in "Appendix B:
Control Characters.") When you read undefined-length records
with Q5AM, the DCBLRECL field is equal to the BLKSIZE field, not
the actual record length. The entire block is moved to your work
area in the move mode. When you are using Q5AM under chained
scheduling to read variable-length, blocked, ASCII tape records
(fgrmat-DB). vou must code BUFOFF=L in the DCB, for that data
set.

Note also that if you are using BSAM with the chained scheduling
option to read format-DB records and have coded a value for the
BUFOFF operand other than BUFOFF=L, the input buffers will be
converted from ASCII to EBCDIC as usual, but the record length
returned to the DCBLRECL field will equal the block size, not
the actual length of the record read in; the record descriptor
:org.(RDN), if present, will not have been converted from ASCII
o binary.

'A request for the chained scheduling technique overrides a

request for the search direct technique. If vou request both
techniques, or if chained scheduling is defaulted and search
direct is requested, then chained scheduling is used.

Chained scheduling is most valuable for programs that require
extensive input and output operations. Because a data set using
chained scheduling may monopolize available time on a channel in
a V=R region, separate channels should be assignhed; if possible,
when more than one data set is to be processed.

SEARCH DIRECT FOR INPUT OPERATIONS (EXCEPT 5740-AM3)

86

To accelerate the input operations required for a data set on
DASD, the operating system provides a technique called search
direct. Search direct reads in the requested record and the
count field of the second record. This allows the operation to
get the next record directly, along with the count field of the
following record. Search direct can be used with all record
formats except format-UT, format-FBT, format-FS, format-FBS, and
spanned. You request search direct by coding OPTCD=Z in the DCB

0S/vVs2 Data Management Services Guide

e

macro instruction. For F$S and FBS records, the access method
routines always use a form of search-direct processing. Search
direct cannot be used under the following conditions:

. In conjunction with the NOTE and POINT macro instructions

. When you specify the UPDAT option of the OPEN macro
instruction

. For partitioned data sets

. When chained scheduling is used

SEARCH DIRECT FOR INPUT OPERATIONS (5740-AM3 ONLY)

To accelerate the input operations required for a data set on
DASD, the operating system provides a technique called search
direct. Search direct reads in the requested record and the

count field of the second record. This allows the operation to

get the next record directly, along with the count field of the
following record.

The function provided by the search-direct option is supplied
whether or not it is requested. OPTCD=Z need not be coded and if
used is ignored.

Except under the following conditions:
. In conjunction with the NOTE and POINT macro instructions

. When yvou specify the UPDAT option of the OPEN macro
instruction

. For partitioned data sets
. When chained scheduling is used

you may receive unpredictable results when your application runs
on a system with the Sequential Access Method-Extended (SAM-E)
installed and your application has a dependency that prevents
the use of search direct. For example, you may receive
unpredictable results when multiple DCBs are open for a file and
one of the applications is updating or adding records.

CREATING A SEQUENTIAL DATA SET

As discussed earlier, a processing program should be developed
using, as much as possible, factors that are constant, with
variable factors specified at execution. For that reason, the
following examples are generalized as much as possible. They are
neither exhaustive nor intended as complete examples. Rather,
they are presented as introductory sequences.

Ip creating a sequential data set on a magnetic tape or
direct-access device, yvou must do the following:

. Code DSORG=PS or PSU in the DCB macro instruction

. Code a DD statement to describe the data set (See 05/VS2
JCL.)

. Process the data set with an OPEHN macro instruction (data
set is opened for output or OUTIN), a series of PUT or WRITE
and CHECK macros, and then a CLOSE macro

TAPE~-TO-PRINT, MOVE MODE—SIMPLE BUFFERING: In Figure 39, the
GET-move and PUT-move require two movements of the data records.
If the record length (LRECL) does not change in processing, only
one move is necessary; you can process the record in the input
buffer segment. A GET-locate can be used to provide a pointer to
the current segment.

Part 2: Data Management Processing Procedures 87

NEXTREC

TAPERROR

ENDJOB

WORKAREA
COUNT
NUMBER
SAVEl4
INDATA

OUTDATA

OPEN
GET
AP
UNPK

PUT

B
SYNAD
LA

ST
PUT
EYNAD

RETUR
CLOSE
DS’
DS

DC

DS
DCB

DCB

(INDATA,,QUTDATA, (QUTPUT))

INDATA,WORKAREA Move mode

NUMBER,=P'1"

COUNT,NUMBER Record count adds 6

OUTDATA, COUNT bytes to each record

NEXTREC
AF ACSMETH=QSAM Control program returns

0,68(0,1) message address in register 1.

14,5AVELlG SYNAD routine prints part of

OUTDATA, (0) the message (beginning with
RLS the unit number) as a 56-byte

14,S5AVElS fixed-length record. It then
N returns to the control

(INDATA, ,OUTDATA) program.

CL50

CL6

PL4'0"

F.

DDNAME=INPUTDD, DSORG=PS,MACRF=(GM), EROPT=ACC, C

SYNAD=TAPERROR, EODAD=ENDJOB

DDNAME=0UTPUTDD, DSORG=PS, MACRF=(PM), EROPT=ACC

Figure 39. Creating a Sequential Data Set—Move Mode, Simple Buffering

TAPE-TO-PRINT, LOCATE MODE—SIMPLE BUFFERING: This example
(Figure 40) is similar to that in Figure 39. However, since
there is no change in the record length, the records can be

processed in the input buffer.
is required.

RETRIEVING A SEQUENTIAL DATA SET

Only one move of each data record

In retrieving a sequential data set on a magnetic tape or
direct-access device, you must do the following:

. Code DSORG=PS or PSU in the DCB macro instruction

L Tell the system where your data set is located (by coding a
DD statement; see 0S/VS2 JCL).

U Process the data set with an OPEN macro instruction (data
set is opened for input, INOUT, RDBACK, or UPDAT), a series
of GET or READ macros and then a CLOSE macro.

. PURGE HALT I/0 should not be used to terminate outstanding
I70 from READ or GET macros if you intend to continue
reading records from the data set after the PURGE. The
results are unpredictable and can result in a wait state if
you are using chained scheduling or Sequential Access
Method-Extended (SAM-E), 5740-AM3.

88 05/VS52 Data Management Services Guide

N

‘.\-,/

C

N

OPEN (INDATA, ,OUTDATA, (OUTPUT), ERRORDCB, (OUTPUT))
NEXTREC GET INDATA Locate mode
LR 2,1 Save pointer
AP NUMBER,=P'1"
UNPK 0(6,2),NUMBER Process in input area
PUT OUTDATA Locate mode
MVC 0(50,1),0(2) Move record to output buffer
B NEXTREC
TAPERROR SYNADAF ACSMETH=QSAM Message address in register 1
ST 2,SAVE2 Save register 2 contents
L 2,8(0,1) Load pointer to input buffer
MVC 8(70,1),50(1) Shift nonblank message fields
MVI 78(1),C* ' Blank end of message
MVC 79(49,1),78(1)
ST 2,128(1) Save address for debugging
CH 0,=H'4"' Test SYNADAF return code
BE MOVERCD Branch if data read
BL PRINTIT Branch if data not read
CLI 128(1),C? See if data read anvway.
. BE PRINTIT Branch if definitely no data
MOVERCD MVC 78(50,1),0(2) Add input record to message
PRINTIT LA 0,4(1) Load address of message
LR 2,14 Save return address
PUT ERRORDCB, (0) Print message (move mode)
SYNADRLS Release message and save area
LR 14,2 Restore return address
L 2,SAVE2 Restore register 2 contents
RETURN Return to control program
ENDJOB CLOSE (INDATA, ,OUTDATA, , ERRORDCB)
NUMBER DC PLG'0"
INDATA DCB DDNAME=INPUTDD, DSORG=PS,MACRF=(GL), EROPT=ACC, C
SYNAD=TAPERROR, EODAD=ENDJOB
OUTDATA DCB DDNAME=0UTPUTDD,DSORG=PSyMACRF=(PL)
ERRORDCB DCB DDNAME=SYSOUTDD, DSORG=PS,MACRF=(PM),RECFM=V, c
BLKSIZE=128,LRECL=124%
SAVE2 DS F
Figure 40. Creating a Sequential Data Set—Llocate Mode, Simple Buffering

UPDATING A SEQUENTIAL DATA SET

When you update in place, you read records, process them, and
write them back to their original positions without destroving
the remaining records on the track. The following rules apply:

. You must specify the update option (UPDAT)
instruction. To perform the update,
READ, WRITE, CHECK, NOTE, POINT,
instructions.

in the OPEN macro
vou can use only the
GET, and PUTX macro

. You cannot use chained scheduling.

. You cannot delete any record or change its length; you
cannot add new records.

. The data set must be on a direct-access device.

A record must be retrieved by a READ or GET macro instruction
before it can be. updated by a WRITE or PUTX macro instruction. A
WRITE or PUTX macro instruction does not need to be issued after
each READ or GET macro instruction. The READ and WRITE macro
instructions must be execute forms that refer to the same DECB;
the DECB must be provided by the list forms of the READ or WRITE
macro instructions. (The execute and list forms of the READ and
WRITE macro instructions are described in 05/VS52 MVS Data
Management Macro_ Instructions.)

Part 2: Data Management Processing Procedures 89

UPDATING WITH OVERLAPPED OPERATIONS: To overlap input/output and
CPU activity, vou can start several read or write operations
before checking the first for completion. You cannot overlap
read with write operations, however, as operations of one type
must be checked for completion before operations of the other
type are started or resumed. Note that each concurrent read or
write operation requires a separate channel program and a
separate DECB. If a single DECB were used for successive read
operations, only the last record read could be updated.

In Figure 50, overlap is achieved by having a read or write
request outstanding while each record is being processed. Note
the use of the execute and list forms of the READ and WRITE
macro instructions, identified by the operands MF=E and MF=L.

EXTENDING A SEQUENTIAL DATA SET

If you want to add records at the end of your data set, you must
open the data set for output with DISP=MOD specified in the DD
statement or specify the EXTEND option of the OPEN macro. You
can then issue PUT or WRITE macros to the data set.

DETERMINING THE LENGTH OF A RECORD WHEN USING THE BSAM READ MACRO

When you read a sequential data set, you can determine the
length of the record in one of the following four ways,
depending upon the record format of the data set:

. For fixed-length, unblocked records, the length of all
records is the value in the DCBBLKSI field of the DCB.

. For variable-length records, the block descriptor word in
the record contains the length of the record.

. For fixed-length blocked or undefined-length records, the
following method can be used to calculate the block length.
(This method should not -be used when reading track overflow
records on a device with the rotational position sensing
(RPS) feature or when using chained scheduling with format U
records. In these cases, the length of a record cannot be
determined.) (For 5740-AM3 only, this method should not be
used for chained scheduling on non-direct access devices.
The length of a record cannot be determined when using
chained scheduling.) After checking the DECB for the READ
request but before issuing any subsequent data management
macro instructions that specify the DCB for the READ
request, obtain the I0B address from the DECB. The I10B
address can be loaded from the location 16 bytes from the
start of the DECB.

Obtain the residual count from the channel status word (CSW)
that has been stored in the input/output block (I0OB). The
residual count is in the halfword 14 bytes from the start of
the I0OB. Subtract this residual count from the number of
data bytes requested to be read by the READ macro
instruction. If YS" was coded as the length parameter of the
READ macro instruction, the number of bytes requested is the
value of DCBBLKSI at the time the READ was issued. If the
length was coded in the READ macro instruction, this value
is the number of data bytes and it is contained in the
halfword 6 bytes from the beginning of the DECB. The result
of the subtraction is the length of the block read. See
Figure 41.

05/V52 Data Management Services Guide

TN

N

)

OPEN

LA

USING

READ

READ

CRECK

LH

L

SH

CHECK

LH

L

SH

MVC

READ

CHECK

LH

L

SH
DCB DCB

DCBD

(DCB, (INPUT))
DCBR,DCB
IHADCB,DCBR

DECB1,SF,DCB,AREAL, 'S’
DECB2,5F,DCB,AREA2,50

DECB1

WORK1,DCBBLKSI
WORK2,DECB1+16
WORK1, 14 (WORK2)

DECB2
WORK1,DECB2+6
WORK2,DECB2+16
WORK1,14(WORKZ)

DCBBLKSI,LENGTH3
DECB3,S5F,DCB, AREA3

DECB3

WORK1, LENGTH3
WORK2,DECB+16
WORK1, 14 (WORK2)

.. .RECFM=U,NCP=2, ..

Block size at time of READ
I0B address
WORK1 has block length

Length requested
I0B address
WORK1 has block length

Length to be read

Block size at time of READ
I0B address
WORK1 has block length

Figure 41. One Method of Determining the Length of the Record When Using BSAM

to Read Undefined-Length Records

Except for 5740-AM3, for undefined-length records, the LRECL

operand should be omitted;

the actual length can be supplied

dynamically in a READ/ZWRITE macro instruction. (This method
should not be used when reading track overflow records on a
device with the rotational position sensing (RPS) feature or
when using chained scheduling on any device.) When an
undefined-length record is read, the actual length of the
record is returned by the system in the DCBLRECL field of

the data control block.

For 57640-AM3, when an undefined-length record is read, the
actual length of the record is returned in the DCBLRECL
field of the data control block. Because of this use of
DCBLRECL, the LRECL operand should be omitted. The length to

be read or written can be supplied dynamically in a
READ/WRITE macro instruction using BSAM. This method cannot
be used when using chained scheduling on any non-direct
access device.

HRITING A SHORT BLOCK WHEN USING THE BSAM WRITE MACRO

When you are writing blocks for a sequential data set, you can
change the length of a block if vou have fixed-blocked record
format. The DCB block size field (DCBBLKSI) can be changed to
specify a block size that is shorter than what was originally
specified for the data set. The DCBBLKSI field must be changed
before issuing the WRITE macro instruction and must be a
multiple of the LRECL parameter in the DCB. Any subsequent WRITE
macro instructions issued will write records with the new block
length until the block size is changed again. The DCB block size
field should not be changed to specify a block size that is
greater than what was originally specified for the data set.

Part 2: Data Management Processing Procedures 91

PROCESSING A PARTITIONED DATA SET

A partitioned data set can be stored only on a direct-access
device. It is divided into sequentially organized members, each
made up of one or more records (see Figure 42). Each member has
a unique name, 1 to 8 characters long, stored in a directory
that is part of the data set. The records of a given member are
stored or retrieved sequentially.

T T T T T
Directory Entry for | Entry for : Entry for : Entry for : I
Records Member A | Member B | Member C | Member K | |
i L | I I
Space from
«+—1—Deleted
Member
— Available
...... Area

Figure 62.

A Partitioned Data Set

The main advantage of using a partitioned data set is that you
can retrieve any individual member once the data set is opened
without searching the entire data set. For example, a program
library can be stored as a partitioned data set, each member of
which is a separate program or subroutine. The individual
members can be added or deleted as required. When a member is
deleted, the member name is removed from the directory, but the
space used by the member cannot be reused until the data set is
reorganized.

The directory, a series of records at the beginning of the data
set, contains an entry for each member. Each directory entry
contains the member name and the starting location of the member
within the data set, as shown in Figure 42. In addition, vou can
specify up to 62 characters of information in the entry. The

directory entries are arranged in alphameric collating sequence
by name.

The track address of each member is recorded by the system as a
relative track address within the data set rather than as an
absolute track address. Thus, an entire data set can be moved
without changing the relative track addresses in the directory.
The data set can be considered as one continuous set of tracks
regardless of how the space was actually allocated.

If there is not sufficient space available in the directory for
an additional entry, or not enough space available within the
data set for an additional member, no new members can be stored.

92 0S/VS52 Data Management Services Guide

=

PARTITIONED DATA SET DIRECTORY

77N

The directory of a partitioned data set occupies the beginning
of the area allocated to the data set on a direct-access volume.
It is searched and maintained by the FIND and STOW macro
instructions. The directory consists of member entries arranged

in ascending order according to the binary value of the member
name or alias.

Member entries vary in length and are blocked into 256-~byte
blocks. Each block contains as many complete entries as will fit
in a maximum of 254 bytes; any remaining bytes are left unused
and are ignored. Each directory block contains a 2-byte count
field that specifies the number of active bytes in a block
(including the count field). As shown in Figure 43, each block
is preceded by a hardware-defined key field containing the name
of the last member entry in the block, that is, the member name
with the highest binary value.

Count Key Data
Name of Number of T
Emt ﬁ%wsde Member Member Member
ntry in aximum Entry A Entry B
Bloc{ i) ntry ny8 | Entry N
~—— —— — ~
Bytes 8 2 254
Figure 43. A Partitioned Data Set Directory Block

Each member entry contains a member name or alias. Each entry
also contains the relative track address of the member and a
count field, as shown in Figure 44. In addition, it may contain
a user data field. The last entry in the last directory block
has a name field of maximum binary value—all ls.

Part 2: Data Management Processing Procedures 93

Member TTR c Optional User Data
Name TTRN l TTRN | TTRN |
|
8 3 | ~ -~
| T~o - 0-31 halfwords
I ~ {Maximum 62 bytes)
Pointer to I ~o -
First Record |' S~ -
of Member I ~
| S~ -
| ~
Nan:elifs an leég:t:;;tzf Number of User
Alias TTRNs Data Halfwords
Bits 0 1-2 3-7

Figure 44. A Partitioned Data Set Directory Entry

NAME

TTR

specifies the member name or alias. It contains up to 8
alphameric characters, left-justified and padded with
blanks if necessary.

is a pointer to the first block of the member; TT is the
number of the track, relative to the beginning of the data
set, and R is the number of the block, relative to the
beginning of that track.

Note: This pointer is created by adding 1 to the TTR for
the last block of the previous member (Which is an
end-of-file mark). If track TT is full, the next block will
begin at record 1 of track TT + 1, and the pointer will be
updated accordingly. The control program finds the block by
searching in multitrack mode using TT(R-1) as a search
argument.

specifies the number of halfwords contained in the user
data field. It may also contain additional information
about the user data field, as shown below:

Bits 0 1-2 3-7

0 when set to 1, indicates that the NAME field contains
an alias.

1-2 specifies the number of pointers to locations within
the member.

A maximum of three pointers is allowed in the user
data field. Additional pointers may be contained in a
record referred to as a note list, discussed below.
The pointers can be updated automatically if the data
set is moved or copied by a utility program such as
IEHMOVE. The data set must be marked unmovable under
the following conditions:

%6 (0S/VY52 Data Management Services Guide

5

~.

U More than three pointers are used in the user data
field.

. The pointers in the user data field or note list
do not conform to the standard format.

U The pointers are not placed first in the user data
field.

. Any direct access address (absolute or relative)
is embedded in any data blocks or in another data
set that refers to this data set.

3-7 contains a binary value indicating the number of
halfwords of user data. This number must include the
space used by pointers in the user data field.

You can use the user data field to provide variable data as
input to the STOW macro instruction. If pointers to locations
within the member are provided, they must be 4 bytes long and
placed first in the user data field. The user data field format
is as follows:

User Data

TTRN TTRN TTRN Optional

TT is the relative track address of the note list or area to
which you are pointing.

R is the relative block number on that track.

N is a binary value that indicates the number of additional
pointers contained in a note list pointed to by the TTR. If
the pointer is not to a note list, N=0.

A note list consists of additional pointers to blocks within the
same member of a partitioned data set. You can divide a member
into subgroups and store a pointer to the beginning of each
subgroup in the note list. The member may be a load module
containing many control sections (CSECTs), each CSECT being a
subgroup pointed to by an entry in the note list. You get the
pointer to the beginning of the subgroup by using the NOTE macro
instruction after you uwrite the first record of the subgroup.
Remamber that the pointer to the first record of the member is
stored in the directory entry by the system.

If the existence of a note list was indicated as shown above,
the list can be updated automatically when the data set is moved
or copied by a utility program such as IEHMOVE. Each 4-byte
entry in the note list has the following format:

TTRX

TT is the relative track address of the area to which you are
pointing.

R is the relative block number on that track.

X is available for any use.

To place the note list in the partitioned data set, you must use
the WRITE macro instruction. After checking the write operation,
use the NOTE macro instruction to determine the address of the

list and place that address in the user data field of the
directory entry.

Part 2: Data Management Processing Procedures 95

PROCESSING A MEMBER OF A PARTITIONED DATA SET

Because a member of a partitioned data set is sequentially
organized, it is processed in the same manner as a sequential
data set. Either the basic or queued access technigque can be
used. However, you cannot alter the directory when using the
queued technique.

To locate a member or to process the directory, several macro
instructions are provided by the operating system. The BLDL
macro instruction can be used to structure a list of directory
entries in virtual storage; the FIND macro instruction locates a
member of the data set for subsequent processing; the STOW macro
instruction adds, deletes, replaces, or changes a member name in
the directory. To use these macro instructions, you must specify
DSORG=PO or POU in the DCB macro instruction. Before issuing
FIND, BLDL, or STOW macro instruction, you must check all
precaeding input/output operations for completion.

BLDL—Construct a Directory Entry List

FIND—Position

The BLDL macro instruction is used to place directory
information in virtual storage. The data is placed in a build
list, which you construct before the BLDL macro instruction is
issued. The format of the list is similar to that of the
directory. For each member name in the list, the system supplies
the address of the member and any additional information
contained in the directory entry. Note that if there is more
than one member name in the list, the member names must be in
collating sequence regardless of whether the members are from
the same library or from different libraries.

You can optimize retrieval time by directing a subsequent FIND
macro instruction to the build list rather than the directory to
locate the member to be processed.

The build list, as shown in Figure 45, must be preceded by a
4-byte list description that indicates the number of entries in
the list and the length of each entry (12 to 76 bytes). The
first 8 bytes of each entry contain the member name or alias.
The next 6 plus some control data. If there is no user data
entry, only the TTR and C fields are required. If additional
information is to be supplied from the directory, up to 62 bytes
can be reserved.

to a Member

To determine the starting address of a specific member, you must
issue a FIND macro instruction. The system places the correct
address in the data control block so that a subsequent input or
output operation begins processing at that point.

There are two ways you can direct the system to the right member
when you use the FIND macro instruction: specify the address of
an area containing the name of the member or specify the address
of the TTR field of the entry in a build list you have created
by using the BLDL macro instruction. In the first case, the
system searches the directory of the data set for the relative
track address; in the second case, no search is required because
the relative track address is in the build list entry.

96 05/VS52 Data Management Services Guide

@

(Each entry starts on halfword boundary)

List Filled in by BLDL
Description FFLL I - - N

17
Member TTR | K | 2 Cc User Data
Name (C) @) [mlm] @ {C Halfwords)
] L

Programmer Supplies:
FF Number of member entries in list.
LL Even number giving byte length of each entry {minimum of 12).

Member name

BLDL Supplies:

Eight bytes, left-justified.

TTR Member starting location.

K
p4

Cc
User data

C

If only data set = 0. If concatenation = number.

Not required if no user data.

Source of directory entry. Private library = 0.

Link library = 1. Job or step library = 2.

Not required if no user data.

Same C field from directory. Gives number of user data halfwords.

As much as will fit in entry,

Figure 45. Build List Format

The system will also search a concatenated series of directories
when (1) a DCB is supplied that is opened for a concatenated
partitioned data set of (2) a DCB is not supplied, in which case
either JOBLIB or STEPLIB (themselves perhaps concatenated)
followed by LINKLIB is searched.

If vou want to process only one member, you can process it as a
sequential data set (DSORG=PS) using either BSAM or QSAM. You
indicate the name of the member you want to process and the name
of the partitioned data set in the DSNAME parameter of the DD
statement. When you open the data set, the system places the
starting address in the data control block so that a subsequent
GET or READ macro instruction begins processing at that point.
You cannot use the FIND, BLDL, or STOW macro instructions when
you are processing one member as a sequential data set.

Since the DCBRELAD address in the data control block is updated
when the FIND macro is used, you should not issue the FIND macro
after WRITE and STOW processing without first closing the data
set and reopening it for INPUT processing.

STOW—Update the Directory

When you add several members to a partitioned data set, yvou must
issue a STOW macro instruction after writing each member so that
an entry for each one will be added to the directory. To use the
STOW macro instructicn, DSORG=PO or POU must be specified in the
DCB macro instruction.

Part 2: Data Management Processing Procedures 97

You can also use the STOW macro instruction to delete, replace,
or change a member name in the directory, as well as to store
additional information with the directory entry. Since an alias
can also be stored in the directory the same way, yvou should be
consistent in altering all names associated with a given member.
For example, if you replace a member, vou must delete related
alias entries or change them so that they point to the new
member.

If you add only one member to a partitioned data set and
indicate the member name in the DSNAME parameter of the DD
statement, it is not necessary for you to use BPAM and a STOW
macro instruction in vour program. If you wish to do so, vou may
use BPAM and STOW, or BSAM or QSAM. If you use a sequential
access method, or if you use BPAM and issue a CLOSE macro
instruction without issuing a STOW macro instruction, the system
will issue a STOW macro instruction using the member name you
have specified on the DD statement. When the system issues the
STOW, the directory entry that is added is the minimum length
(12 bytes). This automatic STOW macro instruction will not be
issued if the CLOSE macro instruction is a TYPE=T or if the TCB
indicates the task is being abnormally terminated when the DCB
is being closed. The DISP parameter on the DD statement
determines what directory action parameter will be chosen by the
system for the STOW macro instruction.

If DISP=NEW or MOD was specified, a STOW macro instruction with
the add option will be issued. If the member name on the DD
statement is not present in the data set directory, it will be
added. If the member name is already present in the directory,
the task will be abnormally terminated.

If DISP=0OLD was specified, a STOW macro instruction with the
replace option will be issued. The member name will be inserted
into the directory, either as an addition if the name is not
already present or as a replacement if the name is present.

Thus, with an existing data set, you should use DISP=0LD to
force a member into the data set; you should use DISP=MOD to add
members with protection against the accidental destruction of an
existing member.

CREATING A PARTITIONED DATA SET

If vou have no need to add entries to the directory, that is,
the STOW and BLDL macro instructions will not be used, you can
create a new data set and write the first member as follows (see
Figure 46 on page 99):

. Code DSORG=PS or DSORG=PSU in the DCB macro instruction.

. Indicate in the DD statement that the data is to be stored
as a member of a new partitioned data set, that is,
DSNAME=name (membername) and DISP=NEW.

. Request space for the member and the directory in the DD
statement.

. Process the member mith an OPEN macro instruction, a series
of PUT or WRITE macro instructions, and then a CLOSE macro
instruction. A STOW macro instruction is issued
automatically when the data set is closed.

As a result of these steps, the data set and its directory are
created, the records of the member are written, and a 12-bvte
entry is made in the directory.

To add additional members to the data set, follow the same
procedure. However, a separate DD statement (with the space
request omitted) is required for each member. The disposition
should be specified as modify, DISP=MOD. The data set must be
closed and reopened each time new member is specified.

98 0S5/VS2 Data Management Services Guide

To take full advantage of the STOW macro instruction, and thus
the BLDL and FIND macro instructions in future processing, you
can provide additional information with each directory entry.
You do this by using the basic access technique, which also
allows vou to process more than one member without closing and
reopening the data set, as follows (see Figure 47).

. Request space in the DD statement for the members and the
directory.

. Define DSORG=P0O or DSORG=POU in the DCB macro instruction.
. Use WRITE and CHECK to write and check the member records.

. Use NOTE to note the location of any note list written
within the member, if there is a note list.

//PDSDD

OUTDCB

Figure 46.

DD ---,DSNAME=MASTFILE(MEMBERK) ,SPACE=C(TRK, (100,5,7)), ¢
DISP=(NEW, KEEP)

DCB --,DSORG=PS,DDNAME=PDSDD,--~

OPEN (QUTDCB, (BUTPUT))

PUTLor WRITE]

CLOSE (OUTDCB) Automatic Stow

Creating One Member of a Partitioned Data Set

//7PDSDD
OUTDCB

%%

*
*

ﬁb. --,DSNAME=MASTFILE,SPACE=(TRK,(100,5,7)),DISP=MOD
DCB --,DSORG=PO, DDNAME=PDSDD, -~
OPEN (OUTDCB, (OUTPUT))
WRITE Write and check first record of member.
CHECK The system will supply the relative

track address for the directory entry.
WRITE Write and check remaining records of
CHECK member.
NOTE If you are dividing the member into
ST subgroups, note the location of the first

record in subgroup, storing pointer
in note list.

WRITE Write note list at end of member.
CHECK

NOTE Note location of note list, storing
ST pointer in list for STOW.

STOW Enter information in directory for

this member after all records and note
lists are written.

Repeat from xx for each additional member

Figure 47.

CLOSE (QUTDCB))
Creating Members of a Partitioned Data Set Using STOW

. When all the member records have been written, issue a STOW
macro instruction to enter the member name, its location
pointer, and any additional data in the directory.

. Continue to write, check, note, and stow until all the

members of the data set and the directory entries have been
written.

Part 2: Data Management Processing Procedures 39

RETRIEVING A MEMBER OF A PARTITIONED DATA SET

To retrieve a specific member from a partitioned data set,

either the basic or queued access technique can be used as
follows (see Figure 48):

Code DSORG=PS or DSORG=PSU in the DCB macro instruction.

Indicate in the DD statement that the data is a member of an
existing partitioned data set by coding
DSNAME=name(membername) and DISP=0LD.

Process the member with an OPEN macro instruction, a series

of GET and READ macro instructions, and then a CLOSE macro
instruction.

7/PDSDD DD

INDCB

Figure 48.

DCB

--,DSNAME=MASTFILE(MEMBERK),DISP=0LD
--,DSORG=PS, DDNAME=PDSDD, -~

OPEN (INDCB) Automatic Find
GET (or READ)
CLOSE (INDCB)

..

Retrieving One Member of a Partitioned Data Set

100

When your program is executed, the directory is searched
automatically and the location of the member is placed in the

DCB.

To process several members without closing and reopening, or to
take advantage of additional data in the directory, this
technique should be used (see Figure 49):

Code DSORG=P0 or POU in the DCB macro instruction.

Build a list (BLDL) of needed member entries from the
directory.

Indicate in the DD statement the data set name of the
partitioned data set by coding DSNAME=name and DISP=0LD.

Use the FIND or POINT macro instruction to prepare for
reading the member records.

The records may be read from the beginning of the member, or
a note list may be read first, to obtain additional
locations that point to subcategories within the member.

Read (and check) the records until all those required have
been processed.

Point to additional categories, if required, and read the
records.

Repeat this procedure for each member to be retrieved.

05/VS52 Data Management Services Guide

/\

N

®

//PDSDD DD --,DSNAME=MASTFILE,DISP=0LD
INDCB DCB ~-,DSORG=PO, DDNAME=PDSDD, ——
OPEN (INDCB)>
BLDL Build a list of selected member names

in virtual storaoge.
FIND (or POINT)
¥%Read note list.
READ
CHECK
EgigT Locate subgroup by using note list.
CHECK .. .Read member records.
Repeat from xx for each additional member.
CLOSE (INDCB)

.

Figure 49. Retrieving Several Members of a Partitioned Data Set Using BLDL,
FIND, and POINT

UPDATING A MEMBER OF A PARTITIONED DATA SET

A member of a partitioned data set can be updated in place, or
can be deleted and rewritten as a new member.

Updating in Place

When you update in place, vou read records, process them, and
write them back to their original positions without destroying
the remaining records on the track. The following rules apply:

. You must specify the update option (UPDAT) in the OPEN macro
instruction. To perform the update, you can use only the
READ, WRITE, CHECK, NOTE, POINT, FIND, and BLDL macro
instructions.

. You cannot update concatenated partitioned data sets.
. You cannot use chained scheduling.

. You cannot delete anv record or change its length; you
cannot add new records.

A record must be retrieved by a READ macro instruction before it
can be updated by a WRITE wmacro instruction. Both macro
instructions must be execute forms that refer to the same DECB;
the DECB must be provided by a list form. (The execute and list
forms of the READ and WRITE macro instructions are described in
0S5/VS2 MVS Data Management Macre Instructions.)

UPDATING HITH QSAM: You can update a member of a partitioned
data set using the locate mode of QSAM (DCB specifies MACRF=PL)
and using the PUTX macro instruction. The DD statement must
specify the data set and member name in the DSNAME parameter.
This method allows only the updating of the member specified in
the DD statement.

UPDATING HWITH OVERLAPPED OPERATIONS: To overlap input/output and
CPU activity, you can start several read or write operations
before checking the first for completion. You cannot overlap
read and uwrite operations, however, as operations of one type
must be checked for completion before operations of the other
type are started or resumed. Note that each concurrent read or
write operation requires a separate channel program and a
separate DECB. If a single DECB were used for successive read
operations, only the last record read could be updated.

Part 2: Data Management Processing Procedures 101

In Figure 50, overlap is achieved by having a read or write
request outstanding while each record is being processed. Note
the use of the execute and list forms of the READ.and WRITE
macro instructions, identified by the operands MF=E and MF=L.

//PDSDD DD

UPDATDCB DCB
READ
READ
AREAA DS
AREAB DS
OPEN
LA
LA
READRECD READ
NEXTRECD READ
CHECK
(If update
LR
LR
LR

DSNAME=MASTFILE(MEMBERK),DISP=0LD,~~-~-
DSORG=PS, DDNAME=PDSDD,MACRF=(R,W),NCP=2, EODAD=FINISH

DECBA,SF,UPDATDCB, AREAA,MF=L Define DECBA

DECBB,SF,UPDATDCB, AREAB,MF=L Define DECBB

- Define buffers

(UPDATDCB,UPDAT) Open for update

2,DECBA Load DECB addresses

3,DECBB

(2),S5F,MF=E Read a record

(3),SF,MF=E Read the next record
2 Check previous read operation
is required, branch to R2UPDATE]

4,3 If no update is required,

3,2 switch DECB addresses in

2,4 registers 2 and 3

NEXTRECD and loop

In the follow1ng statements, "R2" and "R3" refer to the records

that were read

using the DECBs whose addresses are in registers 2 and 3,

respectively. Either register may point to either DECBA or DECBB.

R2UPDATE CALL UPDATE, ((2)) Call routine to update R2
CHECK (3) Check read for next record
WRITE (2),5F,MF=E (R3) Write updated R2

(If R3 requires an update, hranch to RIUPDATE)

CHECK (2) If R3 requires no update,
B READRECD check write for R2 and loop

R3UPDATE CALL UPDATE, ((3)) Call routine to update R3
WRITE €3),SF,MF=E Write updated R3
CHECK 2) Check urite for R2
CHECK (3) Check write for R3
B READRECD Loop

FINISH CLOSE (UPDATDCB) End-of-Data exit routine

Figure 50. Updating a Member of a Partitioned Data Set

Reuwriting a Member

There is no actual update option that can be used to add or
extend records in a partitioned data set. If yvou want to extend
or add a record within a member, you must rewrite the complete

member in another area of the data set. Since space is allocated

when the data set is created, there is no need to request
additional space. Note, however, that a partitioned data set
must be contained on one volume. If sufficient space has not
been allocated, the data set must be reorganized by the IEBCOPY
utility program.

When vou rewrite the member, you must provide two DCBs, one for
input and one for output. Both DCB macro instructions can refer
to the same data set, that is, only one DD statement is
required.

You can reflect the change in location of the member either
automatically, by indicating a disposition of OLD, or by using
the STOW macro instruction. Although the old member is, in

effect, deleted, its space cannot be reused until the data set
is reorganized.

If an out-of-space condition occurs when updating a PDS member,
the error recovery procedure will STOW the PDS member as
'TEMPNAME'. The original member will remain intact.

102 QS57VS2 Data Management Services Guide

e -—\\.

PROCESSING A PARTITIONED DATA SET RESIDING ON MSS

If OPTCD=H is specified in the DCB subparameter of a DD
statement, it specifies that, if a Partitioned Data set is being
opened for input and resides on an MSS device, then at OPEN time
the data set is staged to EOF on the virtual DASD device. If the
option is not specified, only the directory is staged at OPEN
time and cylinder faults occur during processing. This option
might be used with the IEBCOPY utility program opening the PDS
to reorganize and compress the data space. This BPAM option,
OPTCD=H, may only be coded on the DD statement.

PROCESSING AN INDEXED SEQUENTIAL DATA SET

The organization of an indexed sequential data set allows you a
great deal of flexibility 1in the operations you can perform. The
data set can be read or written sequentially, individual records
can be processed in any order, records can be deleted, and new
records can be added. The system automatically locates the
proper position in the data set for new records and makes any
necessary adjustments when records are deleted.

The queued access technique must be used to create an indexed
sequential data set. It can also be used to sequentially process
or update the data set and to add records to the end of the data
set. The basic access technique can be used to insert new
records between records already in the data set and to update
the data set directly.

INDEXED SEQUENTIAL DATA SET ORGANIZATION

The records in an indexed sequential data set are arranged
according to collating sequance by a key field in each record.
Each block of records is preceded by a key fTield that
corrasponds to the key of the last record in the block.

An indexed sequential data set resides on direct-access storage
devices and can occupy up to three different areas:

. Prime Area—This area, also called the prime data area,
contains data records and related track indexes. It exists
for all indexed sequential data sets.

. Overflow Area—This area contains records that overflow from
the prime area when new data records are added. It is
optional.

. Index Area—This area contains master and cylinder indexes
associated with the data set. It exists for a data set that
has a prime area occupying more than one cylinder.

The indexes of an indexed sequential data set are analogous
to the card catalog in a library. For example, if the
library user khows the name of the book or the author, he
can look in the card catalog and obtain a catalog number
that will enable him to locate the book in the book files.
He would then go to the shelves and proceed through rous
until he found the shelf containing the book. Usually each
row contains a sign to indicate the beginning and ending
numbers of all books in that particular row. Thus, as he
proceeded through the rouws, he would compare the catalog
number obtained from the index with the numbers posted on
each row. Upon locating the proper row, he would then search
that row for the shelf that contained the book. Then he
would look at the individual book numbers on that shelf
until he found the particular book.

ISAM uses the indexes in much the same way to locate records
in an indexed sequential data set.

Part 2: Data Management Processing Procedures 103

As the records are written in the prime area of the data
set, the system accounts for the records contained on.each
track in a track index area. Each entry in the track index
identifies the key of the last record on each track. There
is a track index for each cylinder in the data set. If more
than one cylinder is used, the system develops a
higher-level index called a cvlinder index. Each entry in
the cvlinder index identifies the key of the last record in
the cylinder. To increase the speed of searching the
cylinder index, vou can request that a master index be
developed for a specified number of cylinders, as shown in
Figure 51.

Rather than reorganize the whole data set when records are
added, vou can request that space be allocated for
additional records in an overflow area.

Prime Area
Records are written in the prime area when the data set is
created or updated. The last track of prime data is reserved for
an end-of-file mark. The portion of Figure 51 labeled Cylinder 1
jllustrates the initial structure of the prime area. Although
the prime area can extend across several nhoncontiguous areas of
the volume, all the records are written in key sequence. Each
record must contain a key; the system automatically writes the
key of the highest record before each block.
Master Index
450 | 900 | 2000
® [[
Cylinder Index
@ 200| 300 | 375 | 450 |Gt
500| 600 | 700 | 900 (g
1200 | 1500 | 2000 [¢
1000 o8
Cylinder 1 Cylinder 11
—! 100 | 100 | 200 | 200 '{;3‘;‘; 1500 — 2000
Data | Data| Data | Data | Prime
10 20 40 100 | Data
Data | Data | Data | Data | Prime
150 | 1756 | 190 | 200 | Data
Overflow
Figure 51. Indexed Sequential Data Set Organization

104 0S/VS2 Data Management Services Guide

7N

N\

N

N

Index Areas

When the ABSTR option of the SPACE parameter of the DD statement
is used to generate a multivolume prime area, the VI0C of the
second volume and on all succeeding volumes must be contained
within cylinder 0 of the volume.

The operating system generates track and cylinder indexes
automatically. Up to three levels of master indexes are created
if requested.

TRACK INDEX: This is the lowest level of index and is always
present. There is one track index for each cvlinder in the prime
area; it is written on the first track(s) of the cylinder that
it indexes.

The index consists of a series of paired entries, that is, of a
normal entry and an overflow entry for each prime track. For
fixed-length records, each normal entry (and also DCBFIRSH)
points to either record 0 or the first prime record on a shared
track. For variable-length records, the normal entry contains
the key of the highest record on the track and the address of
the last record on the track. The overflow entry is originally
the same as the normal entry. (This is why 100 appears twice on
the track index for cylinder 1 in Figure 51 on page 104). The
overflow entry is changed when records are added to the data
set. Then the overflow entry contains the key of the highest
overflow record and the address of the lowest overflow record
logically associated with the track. Figure 52 on page 106 shows
the format of a track index.

If all the tracks allocated for the prime data area are not
used, the index entries for the unused ones are flagged as
inactive. The last entry of each track index is a dummy entry
indicating the end of the index. When fixed-length record format
has been specified, the remainder of the last track of each
cvlinder used for a track index contains prime data records if
there is room for them.

Each index entry has the same format. It is an unblocked,
fixed-length record consisting of a count, a key, and a data
area. The length of the kev corresponds to the length of the key
area in the record to which it points. The data area is always
10 bytes long. It contains the full address of the track or
record to which the index points, as well as the level of the
index and the entry type.

CYLINDER INDEX: For every track index created, the system
generates a cylinder index entry. There is one cylinder index
for a data set, each entry of which points to a track index.
Since there is one track index per cylinder, there is one
cylinder index entry for each cvlinder in the prime data area,
except in the case of a l-cylinder prime area. As with track
indexes, inactive entries are creataed for any unused cylinders
in the prime data area.

MASTER INDEX: As an optional feature, the operating system
creates, at vour request, a master index. The presence of this
index makes long, serial searches through a large, cylinder
index unnecessary.

Part 2: Data Management Processing Procedures 105

Normal/Overflow Normal/Overflow
Pair Pair

r % Y4 0 »

Normal Overflow Normal Overflow

Entry Entry ‘Entry Entry

Ay A A, A
/ N N AL 2
Key1 Data2 Key3 Data4 Key1 Data? Key3 Data4

1Normal key = key of the highest record on the prime data track
2Normal data = address of the prime data track

30verflow key

key of the highest overflow record logically associated with the prime data track

4Overflow data = address of the lowest overflow record logically associated with the prime data track

Notes:

e If there are no overflow records, overflow key and data entries are the same as normal key and data entries.
® This figure is a logical representation only; that is, it makes no attempt to show the physical size of track index entries.

Figure 52. Format of Track Index Entries

Overflow Areas

You can specify the conditions under which you want a master
index created. For example, if you have specified NTM=3 and
OPTCD=M in your DCB macro instruction, a master index is created
when the cylinder index exceeds 3 tracks. The master index
consists of one entry for each track of cvlinder index. If your
data set is extremely large, a higher-level master index is
created when the first-level master index exceeds three tracks.
This higher-level master index consists of one entry for each
track of the first-level master index. This procedure can be
repeated for as many as three levels of master index.

As records are added to an indexed sequential data set, space is
required to contain those records that will not fit on the prime
data track on which they belong. You can request that a number
of tracks be set aside as a cvlinder overflow area to contain
overflows from prime tracks in each cylinder. An advantage of
using cylinder overflow areas is a reduction of search time
required to locate overflow records. A disadvantage is that
there will be unused space if the additions are unevenly
distributed throughout the data set.

Instead of, or in addition to, cylinder overflow areas, you can
request an independent overflow area. Overflow from anyuwhere in
the prime data area is placed in a specified number of cylinders
reserved solely for overflow records. An advantage of having an
independent overflow area is a reduction in unused space
reserved for overflow. A disadvantage is the increased search
time required to locate overflow records in an independent area.

If you request both cylinder overflow and independent overflow,
the cylinder overflow area is used first. It is a good practice
to request cvlinder overflow areas large enough to contain a
reasonable number of additional records and an independent

overflow area to be used as the cylinder overflow areas are
filled.

106 057VS2 Data Management Services Guide

7

N

~

ADDING RECORDS TO AN INDEXED SEQUENTIAL DATA SET

Either the queued access technique or the basic access technique
may be used to add records to an indexed sequential data set. A
record to be inserted between records already in the data set
must be inserted by the basic access method using WRITE KN (key
new). Records added to the end of a data set, that is, records
with successively higher keys, may be added to the prime data
area or the overflow area by the basic access method using WRITE
KN, or they may be added to the prime data area by the queued
access technique using the PUT macro instruction.

Inserting New Records into an Existing Indexed Sequential Data Set

As you add records to an indexed sequential data set, the system
inserts each record in its proper sequence according to the
record key. The remaining records on the track are then moved up
one position each. If the last record does not fit on the track,
it is written in the first available location in the overflow
area. A 1l0-byte link field is added to the record put in the
overflow area to connect it logically to the correct track. The
proper adjustments are made to the track index entries. This
This procedure is illustrated in Figure 53 on page 108.

Subsequent additions are written either on the prime track or as
part of the overflow chain from that track. If the addition
belongs after the last prime record on a track but before a
praevious overflow record from that track, it is written in the
first available location in the overflow area. Its link field
contains the address of the next record in the chain.

Adding New Records to the End of an Indexed Sequential Data Set

Records added to the end of a data set, that is, records with
successively higher keys, may be added by the basic access
method using WRITE KN (key new), or by the queued access method
using the PUT macro instruction (resume load). In either case
records may be added to the prime data area.

When you use the WRITE KN macro instruction, the record being
added is placed in the prime data area only if there is room for
it on the prime data track containing the record with the
highest key currently in the data set. If there is not
sufficient room on that track, the racord is placed in the
overflow area and linked to that prime track even though
ad?itional prime data tracks originally allocated have not been
filled.

When you use the PUT macro instruction (resume load), records
are added to the prime data area until the space originally
allocated is filled. Once this allocated prime area is filled,
you can add records to the data set using WRITE KN, in which
case they will be placed in the overflow area. Resume load is
discussed in more detail later under "Creating an Indexed
Sequential Data Set."

Part 2: Data Management Processing Procedures 107

Normal Entry

Overflow Entry

1 T T T
.. k T Track
Initial Format | 100 1 T2k | q09 | Trac 200 | Track | g9 | Track | Freck
1 1 1 1
10 20 40 100
Prime
Data
160 175 190 200
Overflow
Add Records 40 ﬁu Track 100 : Track 3 190 | Track 200 } Track 3 Track
25 and 101 {1 | Record 1 ! 2 - !'Record 2 | |ndex
10 20 25 40
Prime
Data
101 150 175 190
1 {
100 | TTCk 200 : T?Ck Overflow
} 1
T T T T
Track 1 Track 3 1 Track i Track 3 Track
Add Records 2% | 100 | 190 | 200 |
26 and 199 i 1 ! Record 3 O 2 ! Record 4 | Index
10 20 25 26
Prime
Data
101 150 175 190
‘/fiy—”—" ‘/’:”’7 - T
Track i Track | Track 3 I Track 3
100 1 200 L2 40 ! Record 1 199 ! Record 2 | Overflow
Figure 53. Adding Records to an Indexed Sequential Data Set

108 0S/VS2 Data Management Services Guide

In order to add records with successively higher keys using the

PUT macro

instruction (resume load):

. The key of any record to be added must be higher than the

highest key currently in the data set.

. The DD statement must specify DISP=MOD or the EXTEND option
is specified in the OPEN macro.

. The data set must have been successfully closed when it was
created or when records were previously added using the PUT

macro

instruction.

//-_~\
Y

MAINTAINING AN

You may continue to add fixed-length records in this manner
until the original space allocated for prime data is exhausted.

When you add records to an indexed sequential data set using thae
PUT macro instruction (resume load), new entries are also made
in the indexes. During resume load on a data set with a
partially filled track and/or a partially filled cylinder, the
track index entry and/or the cylinder index entry is overlaid
when the track or cylinder is filled. If resume load abnormally
terminates after these index entries have been overlaid, a
subsequent resume load will get a sequence check when adding a
key that is higher than the highest key at the last successful
CLOSE but lower than the key in the overlaid index entry. When
the SYNAD exit is taken for a sequence check, register 0
contains the address of the highest key of the data set.

INDEXED SEQUENTIAL DATA SET

An indexed sequential data set must be reorganized occasionally
for two reasons:

. The overflow area will eventually be filled.

. Additions increase the time required to locate records
directly.

The frequency of reorganization depends on the activity of the
data set and on your timing and storage requirements. There are
two ways you can accomplish reorganization:

. You can reorganize the data set in two passes by uwriting it
sequentially into another area of direct-access storage or
magnetic tape and then recreating it in the original area.

U You can reorganize the data set in one pass by writing it
directly directly into another area of direct-access
storage. In this case, the area occupied by the original
data set cannot be used by the reorganized data set.

The operating system maintains statistics that are pertinent to
reorganization. The statistics, written on the direct-access
volume and available in the DCB for checking, include the number
of cylinder overflow areas, the number of unused tracks in the
independent overflow area, and the number of references to
overflow records other than the first. They appear in the RORG1,
RORG2, and RORG3 fields of the DCB.

If you indicate when creating or updating the data set that you
want to be able to flag records for deletion during updating,
you can set the delete code (the first byte of a fixed-length
record or the fifth byte of a variable~-length record) to X'FF'.
If a flagged record is forced off its prime track during a
subsequent update, it will not be rewritten in the overflow
area, as shown in Figure 54 on page 110 unless it has the
highest key on that cylinder. Similarly, when you process
sequentially, flagged records are not retrieved for processing.
During direct processing, flagged records are retrieved like any
other records, and you should check them for the delete code.

Note that a WRITE KN (key new) to a data set containing
variable-length records removes all of the deleted records from
that prime data track.

Note that to use the delete option, RKP must be greater than 0

for fixed-length records and greater than % for variable-length
records.

Part 2: Data Management Processing Procadures 109

Key Data
T
Fixed Length X‘FF*|
1
Delete Code
BDW DW
Key R Data
. T T T
Variable LLOO | £200 | X'FF’| 2200 |
Length ! i L
Delete Code
T T T |
Initial Format 100 | Track 1 100 ! Track 1 200 | Track 2 200 | Track 2
| | 1 1
10 20 40 100
150 175 190 200
- T T T T
Record 100 is ‘ 40 : Track 1 40 | Track 1 200 | Track 2 200 { Track 2
marked for deletion L X | |
and record 25 is
added to the
data set 10 20 . % 40
150 175 190 200
Figure 54. Deleting Records From an Indexed Seéuential Data Set

110 0S5/VS2 Data Management Services Guide

INDEXED SEQUENTIAL BUFFER AND WORK AREA REQUIREMENTS

The qnly case in which you will ever have to compute the buffer
length (BUFL) requirements for your program is when you use the
BUILD or GETPOOL macro instruction to construct the buffer area.
If you are creating an indexed sequential data set (using the
PUT macro instruction), each buffer must be 8 bytes longer than
the blocksize to allow for the hardware count field, that is:

Buffer length = 8 + Blocksize

(8} Data
(BLKSIZE)

One exception to this formula arises when yvou are dealing with

an unblocked format-F record whose key field precedes the data

field; its relative key position is 0 (RKP=0). In that case the
key length must also be added, that is:

Buffer length = 8 + Key length + Record length
(8)

Key Data
(KEYLEN) (LRECL)

The buffer requirements for using the queued access technique to
read or update (using the GET or PUTX macro instruction) an
indexed sequential cdata set are discussed below.

For fixed-length unblocked records when both the key and data
are to be read and for variable-length unblocked records,
padding is added so that the data will be on a doubleword
boundary, that is:

Buffer length = Key length + Padding + 10 + Blocksize

Key

Link Data
(KEYLEN) Padding (10)

(BLKSIZE)

For fixed-length unblocked records when only data is to be read:

Buffer length = 16 + LRECL

Padding L
(

k Data
(6))

i
1 (LRECL)

For fixed-length blocked records:
Buffer length = 16 + Blocksize

Padding L
(6) (

ink Data
100 (BLKSIZE)

For variable~-length blocked records, padding is 2 if the buffer
starts on a fullword boundary that is not also a doubleword
boundary or 6 if the buffer starts on a doubleword boundary,
that is:

Buffer length = 12 or 16 + Blocksize

Padding Link Data
(10> (BLKSIZE)

-

Part 2: Data Management Processing Procedures 111

112

If you are using the input data set with fixed-length, unblocked
records as a basis for creating a new data set, a work area is
required. '

The size of the work area is given by:

Work area = Key length %+ Record length

Key Data
- (LRECL)

If vou are reading only the data portion of fixed-length
unblocked records or variable-length records, the work area is
the same size as the record, that is:

Work area = Record length

Data
(LRECL)

When you use the basic access technique to update records in an
indexed sequential data set, the key length field need not be
considered in determining your buffer requirements. The area for
fixed-length records must be:

Buffer length = 16 + Blocksize

Padding Link Data
(6) (10) (BLKSIZE)

For variable-length records, padding is 2 if the buffer starts
on a fullword boundary that is not also a doubleword boundary or
6 iz a buffer starts on a doubleword boundary. Thus, the area
must be:

Buffer length = 12 or 16 + Blocksize

k Data
) (BLKSIZE)

Padding

You can speed up the process of adding fixed-length or
variable~-length records to a data set by using the MSWA
parameter of the DCB macro instruction to provide a special work
area for the operating system. The size of the work area (SMSW
parameter in the DCB) must be large enough to contain a full
track of data, the count fields of each block, and the work
space for inserting the new record.

The size of the work area needed varies according to the record
format and the device type. You can calculate it during
execution using device-dependent information obtained with the
DEVTYPE macro instruction and data set information from the DSCB
obtained with the OBTAIN macro instruction. The DEVTYPE and
OBTAIN macro instructions are discussed in 05/VS2 System
Programming Library: Data Management.

Note that you can use the DEVTYPE macro instruction only if the
index and prime areas are on devices of the same type or if the
index area is on a device with a larger track capacity than that
of the device containing the prime area. If you are not trying
to maintain device independence, you may precalculate the size
of the work area needed and specify it in the SMSW field of the
DCB macro instruction. The maximum value for SMSW is 65,535.

0S/7VS2 Data Management Services Guide

N

N

N

For calculating the size of the work area, refer to the storage
device capacities shown in Figure 62 on page 132 under
"Estimating Space Requirements" and the device overhead formulas
given in the same section.

For fixed-length blocked records, SMSW is calculated as follows:
SMSW = DS2HIRPR(BLKSIZE+8)+LRECL+KEYLEN

The formula for fixed-length unblocked records is

SMSW = DS2HIRPR(KEYLEN+LRECL+8)+2

The value for DS2HIRPR is in the index (format-2) DSCB. 0S/VS2
System Programming Librarv: Debugging Handkook shows the exact
location of this field in the index DSCB. If you don't use the

MSWA and SMSW parameters, the control program supplies a work
area using the formula BLKSIZE + LRECL + KEYLEN.

For variable-length records, SMSW may be calculated by one of
two methods. The first method may lead to faster processing
although it may require more storage than the second method.

The first method is as follows:

SMSW = DS2HIRPR(BLKSIZE+8)+LRECL+KEYLEN+10
The second method is as follows:

SMSUW=

(Irk Cap—-Bn+1)(BLKSIZE)+8(DS2HIRPR}+LRECL+KEYLEN+10+(REM-N-KEYLEN)
Bi

In all of the above formulas, the terms BLKSIZE, LRECL, KEYLEN,
and SMSW are the same as the parameters in the DCB macro
instruction (Trk Cap=track capacity). REM is the remainder of
the division operation in the formula and N is the first
constant in the Bi formulas described in Figure 63 on page 133
(REM~-N-KEYLEN) is added only if it is positive. The second
method yields a minimum value for SMSW. Therefore, the first
method is valid only if its application results in a value
higher than the value that would be derived from the second
method. If neither MSWA nor SMSW is specified, the control
program supplies the work area for variable-length records,
using the second method to calculate the size.

Another technique to increase the speed of processing is to
provide space in virtual storage for the highest-level index. To-
specify the address of this area, use the MSHI operand of the
DCB. When the address of this area is specified, you must also
specify its size, which vou can do by using the SMSI operand of
the DCB. The maximum value for SMSI is 65,535. If you do not use
this technique, the index on the volume must be searched. If the
high~level index is greater than 65,535 bytes in length, your
request for the high-level index in storage is ignored.

The size of the storage area (SMSI parameter) varies. To
allocate that space during execution, vou can find the size of
the high-level index in the DCBNCRHI field of the DCB during
yvour DCB exit routine or after the data set is open. Use the
DCBD macro instruction to gain access to the DCBNCRHI field (see
"Modifying the Data Control Block"™ in Part 1). You can also find
the size of the high-level index in the DS2NOBYT field of the
index (format 2) DSCB, but yvou must use the utility program
IEHLIST to print the information in the DSCB. You can calculate
the size of the storage area required for the high-level index
by using the formula

SMSI = (Number of Tracks Number of Entries <Key Length + 10)
in High-Level Index per Track

The formula for calculating the number of tracks in the

high~level index is in the section "Calculating Space
Requiraements for an Indexed Sequential Data Set" in Part 3. When

Part 2: Data Management Processing Procedures 113

CONTROLLING AN

a data set is shared and has the DCB integrity feature
(DISP=SHR), the high-level index in storage is not updated when
DCB fields are changed.

INDEXED SEQUENTIAL DATA SET DEVICE

An indexed sequential data set is processed sequentially or
directly. Direct processing is accomplished by the basic access
technique. Because you provide the key for the record you want
read or written, all device control is handled automatically by
the system. If yvou are processing the data set sequentially,
using the queued access technique, the device is automatically
positioned at the beginning of the data set.

In some cases, you may wish to process only a section or several
separate sections of the data set. You do this by using the SETL
macro instruction, which directs the system to begin sequential
retrieval at the record having a specific key. The processing of
succeeding records is the same as for normal sequential
processing, except that vou must recognize when the last desired
record has been processed. At this point, issue the ESETL macro
instruction to terminate sequential processing. You can then
begin processing at another point in the data set.

SETL—Specify start of Sequential Retrieval

The SETL macro instruction enables vou to retrieve records
starting at the beginning of an indexed sequential data set or
at any point in the data set. Processing that is to start at a
point other than the beginning can be requested in the form of a
record key, a key class (key prefix), or an actual address of a
prime data record.

The key class concept is useful because yvou do not have to know
the whole key of the first record to be processed. A key class
comprises all of the keys that begin with identical characters.
The key class is defined by specifying the desired characters of
the key class at the address specified in the lower-limit
operand of the SETL macro and setting the remaining characters
to the right of the key class to binary =zeros.

To use actual addresses, you must keep an account of where the
records were written when the data set was created. The device
address of the block containing the record just processed by a
PUT-move macro in&truction is available in the 8-byte data
control block field DCBLPDA. For blocked records the address is
the same for each record in the block.

Normally, when a data set is created with the delete option
specified, deleted records cannot be retrieved using the QISAM
retrieval mode. When the delete option is not specified in the
DCB, the SETL macro options function as follows:

SETL B Start at first record in the data set
SETL K Start with record having the specified key

SETL KH Start with record whose key is equal to or higher than
the specified key

SETL KC Start with first record having a key that falls into
the specified key class

SETL I Start with the record found at the specified
direct-access address in the prime area of the data set

Because the DCBOPTCD field in the DCB can be changed after the
data set is created (by respecifying the OPTCD in the DCB or DD
card), it is possible to retrieve deleted records. In this case,
SETL functions as noted above.

114 05/VS52 Data Management Services Guide

C

P

When the delete option is specified in the DCB, the SETL macro
options function as follows:

SETL B Start retrieval at first nondeleted record in the data
set

SETL K Start retrieval at record matching the specified key if
that record is not deleted. If the record is deleted,
an NRF (no record found) indication is set in the
DCBEXCD field of the DCB, and SYNAD is given control

SETL KH Start with first nondeleted record whose key is equal
to or higher than the specified key

SETL KC Start with first nondeleted record having a key that
falls into the specified key class or follows the
specified key class

SETL I Start with first nondeleted record following the
specified direct-access address

With the delete option not specified, QISAM retrieves and
handles records marked for deletion like nondeleted records.

Note: Regardless of the SETL or delete option specified, the NRF
condition will be posted in the DCBEXCD field of the DCB, and
SYNAD is given control if the key or key class:

. Is higher than any key or key class in the data set

. Does not have a matching key or key class in the data set

ESETL—End Sequential Retrieval

The ESETL macro instruction directs the system to stop
raetrieving records from an indexed sequential data set. A new
scan limit can then be set, or processing terminated. An
end-of-data-set indication automatically terminates retrieval.
An ESETL macro instruction must be executed before another SETL
macro instruction (described above) using the same DCB is
executed.

Nota: An ESETL macro instruction should be executed before
another SETL macro instruction if the previous SETL macro
instruction completed with an error.

CREATING AN INDEXED SEQUENTIAL DATA SET

You can create an indexed sequential data set in one step or in
several steps. You can create the data set either by writing all
records in a single step or by writing one group of records in
one step and writing additional groups of records in subsequent
steps. Writing records in subsequent steps is resume loading.
When using either one step or several steps, vou must present
the records for writing in ascending order by key.

To create an indexed sequential data set by the one-step method,
vou should proceed as follouws:

. Code DSORG=IS or DSORG=ISU and MACRF=PM or MACRF=PL in the
DCB macro instruction.

. Specify in the DD statement the DCB attributes DSORG=IS or
DSORG=ISU, record length (LRECL), blocksize (BLKSIZE),
record format (RECFM), key length (KEYLEN), relative key
position (RKP), options required (OPTCD), cylinder overflow
(CYLOFL), and the number of tracks for a master index (NTM).
Specify space requirements with the SPACE parameter. To
reuse praviously allocated space, omit the SPACE parameter
and code DISP=(0OLD, KEEP).

Part 2: Data Management Processing Procedures 115

116

. Open the data set for output.

. Use the PUT macro instruction to place all the records or
blocks on the direct-access volume.

. Close the data set.

The records that compose a newly created data set must be
presented for writing in ascending order by key. You can merge
two or more input data sets. If vou want a data set with no
records (a null data set), you must write at least one record
when vou create the data set. You can subsequently delete this
record to achieve the null data set.

If the records are blocked, you should not write a record with a
hexadecimal value of FF and a key of hexadecimal value FF, This
value is used for padding. If it occurs as the last record of a
block, the record cannot be retrieved. If the record is moved to
the overflow area, it is lost.

When creating an indexed sequential data set, a procedure called
loading, vou can improve performance by using the ,
full-track-index-urite option. You do this by specifying 0PTCD=U
in the DCB. This causes the operating system to accumulate
track-index entries in virtual storage. Note that the
full-track-index-write option can be used only for fixed-length
records.

If you da not specify this option, the operating system writes
each normal-overflow pair of entries for the track index after
the associated prime data track has been written. If you speacify
this option, the operating system accumulates track-index
entries in virtual storage until either there are enough entries
to fill a track or end-of-data or end-of-cvlinder is reached.
Then the operating system writes these entries as a group,
writing one group for each track of track index. This option
requires allocation of more storage space (the space in which
the track-index entries are gathered), but the number of I/0
operations required to write the index can be significantly
decreased.

Whan you specify the full-track-index-write option, the track
index entries are uwritten as fixed-length unblocked records. If
a large enough area of virtual storage is not available, the
entries are written as they are created, that is, in
normal-overflow pairs.

Once an indexed sequential data set has been created, its
characteristics cannot be changed. However, for added
flexibility, the system allows you to retrieve records using
either the queued access technique with simple buffering, or the
basic access technique with dynamic buffering.

TAPE-TO-DISK—INDEXED SEQUENTIAL DATA SET: The example in
Figure 55 on page 117 shows the creation of an indexed
sequential data set from an input tape containing 60-charactar
records. The key by which the data setis organized is in
positions 20-29. The output records will be an exact image of
the input, except that the records will be blocked. One track
per cylinder is to be reserved for cylinder overflow. Master
indexes are to be built when the cylinder index exceeds six
tracks. Reorganization information about the status of the
cylinder overflow areas is to be maintained by the system. The
delete option will be used during any future updating.

05/7VS52 Data Management Services Guide

AY

//INDEXDD DD
/7

/7/INPUTDD DD

START

DSNAME=SLATE.DICT(PRIME),DCB=(BLKSIZE=240,CYLOFL=1, C
DSORG=IS,0PTCD=MYLR,RECFM=FB,LRECL=60,NTM=6,RKP=19, c
KEYLEN=10),UNIT=3330,SPACE=(CYL,25,,CONTIG),—~~

ISLOAD]
DCBD DSORG=IS
ISLGOAD CSECT
OPEN (IPDATA, ,ISDATA, (QUTPUT))
NEXTREC GET IPDATA Locate mode
LR 0,1 Address of record in register 1
PUT ISDATA,(0) Move mode
B NEXTREC
CHECKERR L 3,=ACISDATA) Initialize base for errors
USING TIHADCB,3
™ DCBEXCDL1,X'04"
BO OPERR Uncorrectable error
™ DCBEXCDL1,X'20"
BO NOSPACE Space not found
™ DCBEXCD2,X'80"
BO SEQCHK Record out of sequence

Rest of error checking

Error routine

End of job routine (EODAD FOR IPDATA)

IPDATA DCB
ISDATA DCB

Figure 55.

DDNAME=INDEXDD,DSORG=IS,MACRF=(PM), SYNAD=CHECKERR

Creating an Indexed Sequential Data Set

To create an indexed sequential data set in more than one step,
create the first group of records using the one step method
described above. This first section must contain at least one
data record. The remaining records can then be added to the end
of the data set in subsequent steps using resume load. Each
group to be added must contain records with successively higher
keys. This method allows you to create the indexed sequential
data set in several short time periods rather than in a single
long one.)

This method also allows you to provide limited recovery from
uncorrectable output errors. When an uncorrectable output error
is detected, do not attempt to continue processing or to close
the data set. If you have provided a SYNAD routine, it should
issue the ABEND macro instruction to terminate processing. If no
SYNAD routine is provided, the control program will terminate
vour processing. If the error shows that space in which to add
the record was not found, you must close the data set; issuing
subsequent PUT macro instructions can cause unpredictable
results. You should begin recovery at the record following the
end of the data as of the last successful close. The rerun time
is limited to that necessary to add the new records, rather than
to that necessary to recreate the whole data set.

When you extend an indexed sequential data set with resume load,
the disposition parameter of the DD statement must specify MOD.
To ensure that the necessary control information is in the DSCB
before attempting to add records, you should at least open and
close the data set successfully on a version of the system that
includes resume load. This need be done only if the data set was
created on a previous version of the system. Records may be
added to the data set by resume load until the space allocated
for prime data in the first step has been filled.

During resume load on a data set with a partially filled track
and/or a partially filled cvlinder, the track index entry and/or
the cylinder index entry is overlaid when the track or cylinder
is filled. Resume load for variable-length records begins at the

Part 2: Data Management Processing Procedures 117

next sequential track of the prime data set. If resume load
abnormally terminates after these index entries have been
overlaid, a subsequent resume load will result in a sequence
check when it adds a key that is higher than the highest at the
last successful CLOSE but lower than the key in the overlaid
index entry. blhen the SYNAD exit is taken for a sequence check, -
register 0 contains the address of the high key of the data set.
However, if the SYNAD exit is taken during CLOSE, register 0
Wwill contain the I0B address.

RETRIEVING AND UPDATING AN INDEXED SEQUENTIAL DATA SET

sequential Retrieval and Update

118

To sequentially retrieve and update records in an indexed
sequential data set:

. Code DSORG=IS or DSORG=ISU to agree with what you specified
when you created the data set, and MACRF=GL, MACRF=S5K, or
MACRF=PU in the DCB macro instruction.

L Code a DD statement for retrieving the data set. The data
set characteristics and options are as defined when the data
set was created.

U Open the data set.
U Set the beginning of sequential retrieval (SETL).

. Retrieve records and process as required, marking records
for deletion as required.

. Return records to the data set.

. Use ESETL to end sequential retrieval as required and reset
the starting point.

. Close the data set to end all retrieval.

SEQUENTIAL UPDATES—INDEXED SEQUENTIAL DATA SET: Assume that,
using the data set created in the previous example, vou are to
retrieve all records beginning with 915. Those records with a
date (positions 13-16) before today's date are to be deleted.
The date is in the standard form as returned by the system in
response to the TIME macro instruction, that is, packed decimal
00yyddds. Overflow records can be logically deleted even though
they cannot be physically deleted from the data set.

One way to solve this problem is shown in Figure 56 on page 119.

05/VS2 Data Management Services Guide

TN

//INDEXDD DD DSNAME=SLATE.DICT,---
ISRETR START 0
DCBD DSORG=1S
ISRETR CSECT
USING IHADCB, 3
LA 3,ISDATA
OPEN (ISDATA)
SETL ISDATA,KC,KEYADDR Set scan limit
TIME Today's date in register 1
ST 1, TODAY
NEXTREC GET ISDATA Locate mode
cLC 19¢10,1),LIMIT
BNL ENDJOB
CP 12(4,1), TODAY Compare for old date
BNL NEXTREC
MVI 0C(1),X'FF?* Flag old record for deletion
PUTX ISDATA Return delete record
B NEXTREC
TODAY DS F
KEYADDR DC c'915" Key prefix
pC XL7'0° Key padding
LIMIT DC c'916"
DC XL7'0°
CHECKERR

Test DCBEXCD1 and DCBEXDE2 for error indication
Error Routines

ENDJOB CLOSE (ISDATA)
ISDATA DCB DDNAME=INDEXDD, DSORG=IS,MACRF=(GL,SK,PU), ¢
""" SYNAD=CHECKRR

Figure 56. Sequentially Updating an Indexed Sequential Data Set

Direct Retrieval and Update

By using the basic indexed sequential access method (BISAM) to
process an indexed sequential data set, vou can make direct
references to the records in the data set for the purpose of:

. Direct retrieval of a record by its key
. Direct update of a record
. Direct insertion of new records

Because the operations are direct, there can be no anticipatory
bgffering. However, the system provides dynamic buffering each
time a read request is made, if specified.

To ensure that the requested record is in virtual storage before
vou start processing, you must issue a WAIT or CHECK macro
instruction. If you issue a WAIT macro instruction, vou must
test the exception code field of the DECB. If vou issue a CHECK
macro instruction, the system tests the exception code field in
the DECB. If an error analysis routine has not been specified
and a CHECK is issued, the program is abnormally terminated with
a system completion code X'001'. In either case, if you wish to
determine whethar the record is an overflow record, you should
test the exception code field of the DECB.

After you taest the exception code field of the DECB, yvou need
not set it to 0. If you have used a READ KU macro instruction
and if you plan to use the same DECB again to rewrite the
updated record using a WRITE K macro instruction, vou should not

Part 2: Data Management Processing Procedures 119

120

set the field to 0. If you do, your record may not be rewritten
properly.

To update existing records, you must use the READ KU and WRITE K
combination. Because READ KU implies that the record will be
remwritten in the data set, the system retains the DECB and the
buffer used in the READ KU and uses them when the record is
written. If yvou decide not to write the record, you should use
the same DECB in another read or write macro instruction or
issue a FREEDBUF macro instruction if dynamic buffering was
used. If vou issue several READ KU or WRITE K macro instructions
before checking the first one, you may destroy some of your
updated records unless the records are from different blocks.

If there is the possibility that your task and another task will
be simultaneously accessing the same data set, or the same task
has two or more DCBs opened for the same data set, vou should
use the DCB integrity feature. You specify the DCB integrity
feature by coding DISP=SHR in your DD statement. In this way you
ensure that the DCB fields are maintained for vour program to
process the data set correctly. If vou do not use DISP=SHR and
more than one DCB is open for updating the data set, the results
are unpredicatable.

If you specify DISP=SHR, vou must also issue an ENQ for the data
set before each input/output request and a DEQ upon completion
of the request. All users of the data set must use the same
aname and rname operands for ENQ. For example, the users might
use the data set name as the gname operand. For more information
about using ENQ and DEQ, see 05/VS52 Supervisor Services and
Macro_Instructions.

When you are using scan mode with QISAM and you want to issue
PUTX, issue an ENQ on the data set before processing it and a
DEQ after processing is complete. ENQ must be issued before the
SETL macro instruction, and DEQ must be issued after the ESETL
macro instruction. When you are using BISAM to update the data
set, do not modify any DCB fields or issue a DEQ until you have
issued CHECK or WAIT.

SHARING A BISAM DCB BETWEEN RELATED TASKS: When a task using
BISAM processes a data set whose DCB is defined and opened by a
related task, the task must issue an ENQ on the DCB before an
input/output request is issued and must issue a DEQ after the
WAIT or CHECK for the input/output request is issued. If the
task does not enqueue the DCB and any of its related tasks
terminates abnormally, the task may enter a wait state or a
program check may occur. See 05/VS2 Supervisor Services and
Macro Instruction for more information on the ENQ and DEQ macro
instructions and on multitasking.

For subtasking, I/0 requests should be issued by the task which
owns the DCB or a task which will remain active as long as the
DCB is open. If the task that issued the I/0 request terminates,
the storage used by its data areas (such as I0Bs may be freed or
queuing switches in the DCB work area may be left set on,
causing another task issuing an I/0 request to the DCB to
program check or to enter the wait state. For example, if a
subtask issues and completes a READ KU I/0 request, the IOB
which was created by the subtask is attached to the DCB update
queue. If that subtask terminates, and subpool zero is not
shared with the subtask owning the DCB, the I0OB storage area is
freed and the integrity of the ISAM update queue is destroyed. A
request from another subtask, attempting to use that queue, may
cause unpredictable abends. As another example, if a WRITE KEY
NEW is in process when the subtask terminates,
"WRITE-KEY-NEW-IN-PROCESS" bit is left set on. if another 1I/0
request is issued to the DCB, the request is queued but cannot
proceeced.

DIRECT UPDATE WITH EXCLUSIVE CONTROL—INDEXED SEQUENTIAL DATA
SET: In the example shown in Figure 57 on page 121 the
previously described data set is to be updated directly with
transaction records on tape. The input tape records are 30
characters long, the key is in positions 1-10, and the update

05/VS2 Data Management Services Guide

(>

C

information is in positions 11-30. The update information
replaces data in positions 31-50 of the indexed sequential data

(record.
//INDEXDD DD DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1,...),-—-
/7/TAPEDD DD ———
ISUPDATE START 0
NEXTREC GET TPDATA, TPRECORD
ENQ (RESQOURCE, ELEMENT,E, ,SYSTEM)
READ DECBRW,KU, ,'S',MF=E Read into dynamically
obtained buffer
WAIT ECB=DECBRW
™ DECBRW+24,X'FD?' Test for any condition
BM RDCHECK but overflow
L 3,DECBRW+16 Pick up pointer to record
MVC ISUPDATE-ISRECORD Update record
(L'UPDATE, 3),UPDATE
WRITE DECBRN,K,MF=E
WAIT ECB=DECBRW
™ DECBRW+26,X'FD" Any errors?
BM WRCHECK
DEQ (RESOURCE, ELEMENT, ,SYSTEM)
B NEXTREC
RDCHECK ™ DECBRW+24,X'80" No record found
BZ ERROR If not, go to error routine
FREEDBUF DECBRW,K,ISDATA Otherwise, free buffer
MVC ISKEY,KEY Key placed in ISRECORD
MVC ISUPDATE,UPDATE Updated information placed
* in ISRECORD
WRITE DECBRW, KN, ,WKNAREA,'S'",MF=E Add record to data set
- WAIT ECB=DECBRW
Q ™ DECBRW+26,X"FD' Test for arrors
- BM ERROR
DEQ (RESOURCE, ELEMENT, ,SYSTEM) Release exclusive control
B NEXTREC
WKNAREA DS 4F BISAM WRITE KN work field
ISRECORD DS 0CL50 50-byte record from ISDATA
DS CL19 DCB First part of ISRECORD
ISKEY DS CL10 Key field of ISRECORD
DS CL1 Part of ISRECORD
ISUPDATE DS cL20 Update area of ISRECORD
*
ORG ISUPDATE . Overlay ISUPDATE with
TPRECORD DS 0CL30 TPRECORD 30-byte record from
KEY DS CL10 TPDATA DCB Key for locating
UPDATE DS CL20 ISDATA record Update
RESOURCE DC CL8'SLATE' information or new data
ELEMENT DC C'DICT!
READ DECBRW,KU,ISDATA,'S','S'",KEY,MF=L
ISDATA DCB DDNAME=INDEXDD, DSORG=1S,MACRF=(RUS,WUA), C
MSHI=INDEX,SMSI1=2000
TPDATA DCB -———
INDEX DS 2000C
Figure 57. Directly Updating an Indexed Sequential Data Set

Exclusive control of the data set is requested since more than
one task may be referring to the data set at the same time.
Notice that exclusive control is released after each block is
written to avoid tying up the data set until the update is
completed.

Note the use of the FREEDBUF macro instruction in Figure 57.
Usually the FREEDBUF macro instruction has two functions:

Part 2: Data Management Processing Procedures 121

122

. To indicate to the ISAM routines that a record that has been
read for update will not be written back

. To free a dynamically obtained buffer

In Figure 57 on page 121, since the read operation was
unsuccessful, the FREEDBUF macro instruction frees only the
dynamically obtained buffer.

The first function of FREEDBUF allows you to read a record for
update and then decide not to update it without performing a
WRITE for update. You can use this function even when your READ
macro instruction does not specify dynamic buffering, provided
that you have included S (for dynamic buffering) in the MACRF
field of your READ DCB.

You can effect an automatic FREEDBUF simply by reusing the DECB,
that is, by issuing another READ or a WRITE KN to the same DECB.
You should use this feature whenever possible, since it is more
efficient than FREEDBUF. For example, in Figure 57 on page
121,the FREEDBUF macro instruction could be eliminated, since
the WRITE KN addressed the same DECB as the READ KU.

For an indexed sequential data set with variable-length records,
you may make three types of updates by using the basic access
technique. You may read a record and write it back with no
change in its length, simply updating some part of the record.
You do this with a READ KU followed by a WRITE K, the same way
vou update fixed-length records. Two other methods for updating
variable-length records use the WRITE KN macro instruction and
allow you to change the record length.

In one method, a record read for update (by a READ KU) mav be
updated in a manner that will change the record length and then
be written back with its new length by a WRITE KN. In the second
method, you may replace a record with another record having the
same key and possibly a different length using the WRITE KN
macro instruction. To replace a record, it is not necessary to
have first read the record.

In either method, when changing the record length, you must
place the new length in the DECBLGTH field of the DECB before
issuing the WRITE KN macro instruction. If you use a WRITE KN
macro instructien to update a variable-length record that has
been marked for deletion, the first bit (no record found) of the
exceptional condition code field (DECBEXCl) of the DECB is set
on. If this condition is found, the record must be written using
a WRITE KN with nothing specified in the DECBLGTH field.

Do not try to use the DECBLGTH field to determine the length of
a record read, because DECBLGTH is for use with writing records,
not reading them. If you are reading fixed-length records, the
length of the record read is in DCBLRECL, and if you are reading
variable-length records, the length is in the record descriptor
word (RDW).

DIRECT UPDATE~INDEXED SEQUENTIAL DATA SET WITH VARIABLE-LENGTH
RECORDS: In Figure 58, an indexed sequential data set with
variable-length records is updated directly with transaction
records on tape. The transaction records are of variable length
and each contains a code identifying the type of transaction.
Transaction code 1 indicates that an existing record is to be
replaced by one with the same key; 2 indicates that the record
is to be updated by appending additional information, thus
changing the record length; 3 or greater indicates that the
record is to be updated wWwith no change to its length. For this
example, the maximum record length of both data sets is 256
bytes. The key is in positions 6-15 of the records in both data
sets. The transaction code is in position 5 of records on the
transaction tape. The work area (REPLAREA) size is equal to the
maximum record length plus 16 bytes.

05/7VS52 Data Management Services Guide

()

SN

O

/7 INDEXDD
//TAPEDD

ISUPDVLR
NEXTREC

*

DD DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1,...),---
DD -
START 0

GET TPDATA, TRANAREA
CLI TRANCODE, 2

BL REPLACE

READ DECBRW,KU,,'S','S",MF=E
CHECK DECBRW,DSORG=1S

CLI TRANCODE, 2

BH CHANGE

.o

Determine if replacement or
other transaction

Branch if replacement

Read record for update

Check exceptional conditions
Determine if change or append
Branch if change

% CODE TO MOVE RECORD INTO REPLACEA+16 AND APPEND DATA FROM TRANSACTION

% RECORD

CHANGE

MVC DECBRW+6(2),REPLAREA+16
WRITE DECBRW,KN,,REPLAREA,MF=E

CHECK DECBRW,DSORG=IS
B NEXTREC

move new length from RDW
into DECBLGTH (DECB+6)
Reuwrite record with
changed length

¥ CODE TO CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD

REPLACE
*

*
*

CHECKERR

REPLAREA
TRANAREA
TRANCODE
KEY

TRANDATA

ISDATA
TPDATA

Figure 58.

WRITE DECBRW,K,MF=E

DECBRW, DSORG=IS
NEXTREC
MVC DECBRW+6(2), TRANAREA

WRITE

CHECK
B

Rewrite record with no
change of length

Move new length from RDW
into DECBLGTH (DECB+6)

DECBRW, KN, , TRANAREA-16 ,MF=E Write transaction record

as replacement for record
with the same key

CHECK DECBRW,DSORG=IS
B NEXTREC
. SYNAD routine
DS cL272
DS CL4
DS CcL1
DS CL10
DS CL241
READ DECBRW, KU, ISDATA,'S','S',KEY,MF=L

DCB DDNAME=INDEXDD, DSORG=IS,MACRF=(RUSC,WUAC),SYNAD=CHECKERR

DCB -—

..

Directly Updating an Indexed Sequential Data Set with

Variable-Length Records

PROCESSING A DIRECT DATA SET

In a direct data set, there is a relationship between a control
number or identification of each record and its location on the
direct-access volume. This relationship allows vou to gain
access to a record without an index search. You determine the
actual organization of the data set. If the data set has been
carefully organized, location of a particular record takes less
time than with an indexed sequential data set.

The DSORG parameter of the DCB macro specifies the type of
processing to be performed, while DSORG in the DD statement
specifies the organization of the data set.

Part 2% Data Management Processing Procedurass 123

Although you can process a direct data set sequentially using
either the queued access technique or the basic access
technique, you cannot read record keys using the queued access
technique. When you use the basic access technique, each unit of
data transmitted between virtual storage and an I/70 device is
regarded by the system as a record. If, in fact, it is a block,
you must perform any blocking or deblocking required. For that
reason, the LRECL field is not used when processing a direct
data set. Only BLKSIZE must be specified when you add or update
records on a direct data set.

If dynamic buffering is specified for your direct data set, the
system will provide a buffer for your records. If dynamic
buffering is not specified, vou must provide a buffer for the
system to use.

As indicated in the discussion of direct-access devices, record
keys are optional. If they are specified, they must be used for
every record and must be of a fixed length.

ORGANIZING A DIRECT DATA SET

In developing the organization of your data set, you can use
direct addressing. When direct addresses are used, the location
of each record in the data set is knoun.

If format-F records with keys are being written, the key of each
record can be used to identify the record. For example, a data
set with keys ranging from 0 to 4999 should be allocated space
for 5000 records. Each key relates directly to a location that
you can refer to as a relative record number. Therefore, each
record should be assigned a unique key. If identical keys are
used it is possible, during periods of high CPU and channel
activity, to skip the desired record and retrieve the next
record on the track. The main disadvantage of this type of
organization is that records may not exist for many of the keys
even though space has been reserved for them.

Space could be allocated on the basis of the number of records
in the data set rather than on the range of keys. This type of
organization requires the use of a cross-reference table. When a
record is written in the data set, you must note the physical
location either as an actual address or as a relative track and
record number. The addresses must then be stored in a table that
is searched when a record is to be retrieved. Disadvantages are
that cross-referencing can be used efficiently only with a small
data set, storage is required for the table, and processing time
is required for searching and updating the table.

A more common, but somewhat complex, technique for organizing
the data set involves the use of indirect addressing. In
indirect addressing, the address of each record in the data set
is determined by a mathematical manipulation of the key. This
manipulation is referred to as randomizing or conversion. Since
a number of randomizing procedures could be used, nho attempt is
made here to describe or explain those that might be most
appropriate for vour data set.

REFERRING TO A RECORD IN A DIRECT DATA SET

124

Once you have determined how your data set is to be organized,
you must consider how the individual records will be referred to
when the data set is updated or new records are added. This is
important for determining whether a return address will be
required when the data is created and, if so, in what form the
return address will be used. The record identification can be
represented in any of the following forms:

05/VS52 Data Management Services Guide

RELATIVE BLOCK ADDRESS: You specify the relative location of the
record (block) within the data set as a 3-byte binary number.
This type of reference can be used only with format-F records.
The system computes the actual track and record number. The
relative block address of the first block is 0.

RELATIVE TRACK ADDRESS: You specify the relative track as a
2-byte binary number and the actual record number on that track
as a l-byte binary number. The relative track address of the
first track is 0.

RELATIVE TRACK OR BLOCK ADDRESS AND ACTUAL KEY: In addition to
the relative track or block address, you specify the address of
a virtual-storage location containing the record key. The system
computes the actual track address and searches for the record
with the correct key.

ACTUAL ADDRESS: You supply the actual address in the standard
8-byte form—MBBCCHHR. Remember that the use of an actual
address may force you to indicate that the data set is
unmovable.

EXTENDED SEARCH: You request that the system begin its search
with a specified starting location and continue for a certain
number of records or tracks. This same option can be used to
request a search for unused space in which a record can be
added.

To use the extended search option, you must indicate in the DCB
the number of tracks (including the starting track) or records
(including the starting record) that are to be searched. If vou
indicate a number of records, the system may actually examine
more than this number. In searching a track, the system searches
the whole track (starting with the first record); it therefore
may examine records that precede the starting record or follow
the ending record.

If the DCB specifies a number equal to or greater than the
number of tracks allocated to the data set or the number of
records within the data set, the entire data set is searched in
the attempt to satisfy your request.

EXCLUSIVE CONTROL FOR UPDATING: When more than one task is
referring to the same data set, exclusive control of the block
being updated is required to prevent simultaneous reference to
the same record. Rather than issuing an ENQ macro instruction
each time you update a block, you can request exclusive control
through the MACRF field of the DCB and the type operand of the
READ macro. The coding example in Figure 61 on page 129
illustrates the use of exclusive control. After the READ macro
instruction is executed, your task has exclusive control of the
block being updated. No other task in the system requesting
access to the block is given access until the operation started
by vour WRITE macro is complete. If, however, the block is not
to be written, vou can release exclusive control using the RELEX
macro instruction.

FEEDBACK OPTION: This option specifies that the system provide
the address of the record requested by a READ or WRITE macro
instruction. This address may be in the same form that was
presented to the system in the READ or WRITE macro instruction,
or as an 8-byte actual address. This option can be specified in
the OPTCD parameter of the DCB and in the READ or WRITE macro
instruction. If this option is omitted from the DCB but is
requested in a READ or WRITE macro instruction, an 8-byte actual
address is returned to the user.

The feedback option is automatically provided for a READ macro
instruction requesting exclusive control for updating. This
feedback will be in the form of an actual address (MBBCCHHR)
unless feedback was specified in the OPTCD field of the DCB. In
this case, feedback is returned in the format of the addressing
scheme used in the problem program (an actual or a relative
address). When a WRITE or RELEX macro instruction is issued

Part 2: Data Management Processing Procedures 125

(which releases the exclusive control that was gotten for the
READ request), the system will assume that the addressing scheme
used for the WRITE or RELEX macro instruction is in the same
format as the addressing scheme used for feedback in the READ
macro instruction.

CREATING A DIRECT DATA SET

126

Once the organization of a direct data set has been determined,
the process of creating it is almost identical to that of
creating a sequential data set. The BSAM DCB macro instruction
should be used with the WRITE macro instruction (the form used
to create a direct data set). The following parameters must be
specified in the DCB macro instruction:

. DSORG=PS or PSU
. DEVD=DA or omitted
. MACRF=MWL

The DD statement must indicate direct-access (DSORG=DA or DAU).
If keys are used, a key length (KEYLEN) must also be specified.
Record length (LRECL) need not be specified but may be used to
provide compatibility with sequential access method processing
of this data set.

It is possible to create a direct data set using QS5AM (no keys
allowed) or BSAM (with or without keys and the DCB specifies
MACRF=W). However, this method is not recommended because when
you access this direct data set, yvou cannot request a function
which requires the information in the capacity record (R0) data
field. For example, the following restrictions would apply:

. Variable-length, undefined-length, or variable-length
spanned record processing is not allowed.

. The WRITE add function with extended search for fixed-length
records (with or without track overflow) is not allowed.

If a VIO data set is opened for processing with the extended
search option, the DEBENDCC and DEBENDHH fields 6f the DEB will
reflect the real address of the last record written during the
BDAM create step. This is necessary to prevent BDAM from
searching unused tracks. The information needed to determine the
data set size is written in the DSCB during the close of the DCB
used in the create step. Therefore, if this data set is being
created and processed by the same program, and the DCB used for
creating the data set has not been closed before opening the DCB
to be used for processing, the resultant beginning and ending
CCHH will be equal.

If a direct data set is created and updated or read within the
same job step, and the OPTCD parameter is used in the creation,
updating, or reading of the data set, different DCBs and DD
statements should be used.

If you are using direct addressing with keys, vou can reserve
space for future format-F records by writing a dummy record. To
reserve or truncate a track for format-U or format-V records,
write a capacity record. The capacity record (R0) contains a
7-byte data field (CCHHRLL) where CCHHR is the ID of the last
record on the track, and LL is the number of unused bytes on the
track. If a WRITE SZ macro is issued for a track with no
records, R is zero and LL is the entire length of the track.

Format-F records are written sequentially as they are presented.
When a track is filled, the system automatically writes the
capacity record and advances to the next track. Because of the
form in which relative track addresses are recorded, direct data
sets whose records are to be identified by means other than
actual address must be limited in size to no more than 65,536
tracks for the entire data set.

05/7VS2 Data Management Services Guide

&

TAPE-TO-DISK—DIRECY DATA SET: In the example problem in

sequence is used to create a direct data set. A 4-byte binary

(l; Figure 59, a tape containing 204-byte records arranged in key

key for each record ranges from 1000 to 8999, so space for 8000
records is requested.

//DACGUTPUT DD DSNAME=SLATE.INDEX.WORDS,DCB=(DSORG=DA, C
/7 BLKSIZE=200,KEYLEN=4,RECFM=F),SPACE=(204,8000),---
//TAPINPUT DD -—-
DIRECT START
L 9,=F'1000"
OPEN (DALGAD, (OUTPUT), TAPEDCB)
LA 10, COMPARE
NEXTREC GET TAPEDCB
LR 2,1
COMPARE Cc 9,0(2) Compare key of input against
* control number
BNE DUMMY
WRITE DECB1,S5F,DALOAD,(2) Write data record
CHECK DECB1
AH 9,=H"1"
B NEXTREC
DUMMY C 9,=F'8999" Have 8000 records been written?
BH ENDJOB
WRITE DECB2,5D,DALOAD,DUMAREA Write dummy
CHECK DECB2
AH 9,=H'1"
BR 10
INPUTEND LA 10, DUMMY
BR 10
ENDJOB CLOSE (TAPEDCB,,DALOAD)
DUMAREA DS 8F
DALOAD DCB DSORG=PS,MACRF=C(WL), DDNAME=DAQUTPUT, C

DEVD=DA, SYNAD=CHECKER, -—~-
TAPEDCB DCB EODAD=INPUTEND,MACRF=(GL), ---

Figure 59. Creating a Direct Data Set

ADDING OR UPDATING RECORDS ON A DIRECT DATA SET

The techniques for adding records to a direct data set depend on
the format of the records and the organization used.

FORMAT-F HNITH KEYS: Adding a record amounts to essentially an
update by record identification. The reference to the record can
be made by either a relative block address or a relative track
address.

If you attempt to add a record by relative block address, the
system converts the address to a relative track address. That
track is searched and the new record written in place of the
first dummy record on the track. If there is no dummy record on
the track, you are informed that the write operation did not
take place. If vou request the extended search option, the newn
record will be uwritten in place of the first dummy record found
within the search limits yvou specify. If none is found, you are
notified that the write operation could could not take place. In
the same way, a reference by relative track address causes the
record to be written in place of the first dummy record found on
that track or the first within the search limits, if requested.
If extended search is used, the search begins with the first
record on the track. Without extended search, the search may
start at any record on the track. Therefore, records which were
added to a track are not necessarily located on that track in
the same sequence in which they were written.

Part 2: Data Management Processing Procedures 127

FORMAT~F WITHOUT KEYS: Here too, adding a record is really
updating a dummy record already in the data set. The main

di fference is that dummy records cannot be written automatically
when the data set is created. You will have to use your own
method for flagging dummy records. The update form of the WRITE
macro instruction (MACRF=W) must be used rather than the add
form (MACRF=WA).

You will have to retrieve the record first (using a READ macro
instruction), test for a dummy record, update, and urite.

FORMAT~-V OR FORMAT-U HITH KEYS: The technigue used to add
records in this case depends on whether records are located by
indirect addressing or a cross-reference table. If indirect
addressing is used, you must at least initialize each track
(write a capacity record) even if no data is actually written.
That way the capacity record indicates how much space is
available on the track. If a cross-reference table is used, you
should exhaust the input and then initialize enough succeeding
tracks to contain any additions that might be required.

To add a new record, use a relative track address. The system
examines the capacity record to see if there is room on the
track. If there is, the new record is uwritten. Under the
extended search option, the record is written in the first
available area within the search limit.

FORMAT-V OR FORMAT-U WITHOUT KEYS: Because a record of this type
does not have a key, vou can refer to the record only by its
relative track or actual address (direct addressing only). When
vou add a record to this data set, you must retain the relative
track or actual address data (for example, by updating your
cross—reference table). The extended search option is not
allowed because this option requires keys.

//DIRADD
//TAPEDD

DIRECTAD

NEXTREC

DD DSNAME=SLATE.INDEX.WORDS,---

DD -—-

START

OPEN (DIRECT, (QUTPUT), TAPEIN)

GET - TAPEIN,KEY

L 4,KEY Set up relative record number
SH 4,=H'1000"

ST 4%,REF

WRITE DECB,DA,DIRECT,DATA,'S',KEY,REF+1

WAIT ECB=DECB

CLC DECB+1(2),=X'0000" Check for any errors
BE NEXTREC

check error bits and take required action

DIRECT

TAPEIN
KEY
DATA
REF

Figure 60.

DCB DDNAME=DIRADD,DSORG=DA,RECFM=F,KEYLEN=4,BLKSIZE=200, ¢
MACRF=(WA)

DCB —-—-

DS F

DS v cL200

DS F

Adding Records to a Direct Data Set

TAPE-TO-DISK ADD—DIRECT DATA SET: The example in Figure 60
involves adding recoerds to the data set created in the last
example. Notice that the write operation adds the key and the
data record to the data set. If the existing record is not a
dummy record, an indication is returned in the exception code of
the DECB. For that reason, it is better to use the WAIT macro
instruction instead of the CHECK macro instruction to test for
errors or exceptional conditions.

128 0S/VS2 Data Management Services Guide

7
\

TAPE~-TO-DISK UPDATE——DIRECT DATA SET: The example in Figure 61
is similar to that in Figure 60 on page 128, but involves
updating rather than adding. There is no check for dummy
records. The existing direct data set contains 25,000 records
whose 5-byte keys range from 00001 to 25000. Each data record is
100 bytes long. The first 30 characters are to be updated. Each
input tape record consists of a 5-byte key and a 30-byte data
area. Notice that only data is brought into virtual storage for
updating.

When you are updating variable length records, you should use
the same length to read and write a record.

//DIRECTDD DD
//TAPINPUT DD

DIRUPDAT

NEXTREC

KEYFIELD
KEY

DATA

REF
DIRECT

TAPEDCB

Figure 61.

DSNAME=SLATE.INDEX.WORDS, -~

- ——

START

OPEN (DIRECT, (UPDAT), TAPEDCB)
GET TAPEDCB, KEY

PACK KEY,KEY

CVB 3,KEYFIELD

SH 3,=H'1T

ST 3,REF

READ DECBRD,DIX,DIRECT,'S','S",0,REF+]1
CHECK DECBRD

L

MVC

ST

3,DECBRD+12
0¢30,3),DATA
3,DECBWR+12

WRITE DECBWR,DIX,DIRECT,'S','S',0,REF+1
CHECK DECBWR

DCB

NEXTREC

0D

XL3'0?

CL5

gLSO

DSORG=DA, DDNAME=DIRECTDD,MACRF=(RISXC,WIC), c
OPTCD=RF,BUFNQ=1,BUFL=100

Updating a Direct Data Set

CONSIDERATION FOR USER LABELS: User labels, if desired, must be
created when the data set is created. They may be updated, but
not added or deleted, during processing of a direct data set.
When creating a multivolume direct data set using BSAM, vou
should turn off the header exit entry after OPEN and turn on the
trailer label exit entry just before issuing the CLOSE. This
eliminates the end-of-volume exits. The first volume, containing
the user label track, must be mounted when the data set is
closed. If you have requested exclusive control, OPEN and CLOSE
?iéllENQ and DEQ to prevent simultaneous reference to user
abels.

CONSIDERATION FOR USING THE 2305 FIXED HEAD STORAGE: When a data
set on a 2305 device is to be used by several tasks
simultaneously, or when overlapping I/0 (successive WRITEs
issued without an intervening CHECK or WAIT) is used, the
following combination may produce overlaying of records:

. WRITE-add processing

. Fixed records with or without track overflow

Part 2: Data Management Processing Procedures 129

PART 3: DATA SET DISPOSITION AND SPACE ALLOCATION

ALLOCATING SPACE ON DIRECT-ACCESS VOLUMES

When direct-access storage space is required for a data set, vou
specify the amount of space needed and the device type, and the
operating system selects the device and allocates the space
accordingly. This arrangement provides for flexible and
efficient use of devices and available storage space, and
relieves vou of considering the details involved in efficient
space control.

Before a direct-access volume can be used for data storage, it
must be initialized by either of the utility programs IBCDASDI
or IEHDASDR. The utilities' functions include in part:

. Creating the standard 80-byte volume label and writing it on
cylinder 0, track 0, of the volume.

. Initializing the volume table of contents (VTOC). The
location of the VTIOC depends on the conventions your
installation uses in initializing the volume.

. Writing the home address (HA) and capacity record (R0) for
each track.

. Checking tracks and making alternate track assignments if
necessary.

When the data set is to be stored on a direct-access volume, you
must supply, in the DD statement, control information
designating the amount of space to be allocated and the manner
in which it is to be allocated.

Note: IEHDASDR and IBCDASDI cannot be used for an MSS 3330
virtual volume. The Access Method Services utility, CREATEV,
must be used. See 05/VS Mass Storage System (MSS) Services for
Space Manaagement for a description of the CREATEV command.

SPECIFYING SPACE REQUIREMENTS

The amount of space required can be specified in blocks, tracks,
or cvlinders. If you want to maintain device independence,
specify yvour space requirements in blocks. If your request is in
tracks or cylinders, vou must be aware of such device
considerations as cylinder and track capacity.

Cylinder allocation allows faster input/output of sequential
data sets than does track allocation. The exceptions are reading
records in fixed standard format on a non-RPS5 device without
using chained scheduling, and writing any records without using
cha%ggd 5§geduling. Note that these two exceptions do not apply
to 0-AM3.

ALLOCATION BY BLOCKS: When the amount of space required is
expressed in blocks, vou must specify the number and average
length of the blocks within the data set, as in this example:

/7 DD SPACE=(300,(5000,100)),

300 = average block length in bytes
5000 = primary quantity (number of blocks)
100 = secondary quantity, to be allocated if the primary

quantity is not sufficient (in blocks)
Note that when average block length and secondary space

allocation are being used, the BLKSIZE parameter specified must
be equal to the maximum block length.

130 057VS52 Data Management Services Guide

From this information, the operating system estimates and
allocates the number of tracks required. Space is always in
whole tracks. You may also request that the space allocated for
a specific number of blocks begin and end on cylinder
boundaries.

You must be certain that both the quantity and the increment are
large enough to contain the largest block to be written.
Otherwise, all of the space requested is allocated but erased as
the system tries to find a space large enough for the record.

ALLOCATION BY TRACKS OR CYLINDERS: The amount of space required
can be expressed in tracks or cylinders, as in these examples:

/7 DD SPACE=(TRK,(100,5)),
7/ DD SPACE=(CYL,(3,1)),

ALLOCATION BY ABSOLUTE ADDRESS: If the data set contains
location-dependent information in the form of an absolute track
address (MBBCCHHR), space should be requested with respect to
the number of tracks and the beginning address, as in this
example:

/7 DD SPACE=(ABSTR,(500,20)),UNIT=2314, . . .

where 500 tracks are required, beginning at relative track 20,
which is cylinder 1, track 0.

ALLOCATION OF MASS STORAGE SYSTEM (MSS) VIRTUAL VOLUMES: When
the data set is to be stored on an MSS virtual volume, a volume
group (MSVGP) parameter may be specified instead of using the
SPACE parameter on the DD card. Before the MSVGP parameter can
be used, the volume group must be identified to MSS by the
utility program IDCAMS.

Allocation of MSS virtual volume space should be in multiples of
cylinders with secondary allocation a multiple of the primary to
insure maximum space usage and minimum fragmentation.
ADDITIONAL SPACE ALLOCATION OPTIONS: The DD statement provides
vou with a great deal of flexibility in specifying space
requirements. These options are described in detail in Q5,/VS2
JCL.

ESTIMATING SPACE REQUIREHENTS

To determine how much space your data set requires, you must
consider these variables for the device type:

. Track capacity

. Tracks per cylinder

. Cyvlinders per volume

. Data length (blocksize)
. Key length

. Device overhead

Figure 62 on page 132 lists the physical characteristics of a
number of direct-access storage devices.

Part 3: Data Set Disposition and Space Allocation 131

Page of GC26-3875-1 as updated 3 April 1981 by TNL GN26-0996

Maximum Number
N Volume Block size Tracks per of Total
Device Type per Trackl Cylinder cylinders2 Capacityl,2
2305-1 Drum 14136 8 48 5,428,224
2305-2 Drum 164660 8 96 11,258,880
2314/2319 Disk 7294 ‘ 20 200 29,176,000
3330733333
(Model 1) Disk 13030 19 40% 100,018,280
333073333
(Model 11) Disk © 13030 19 808 200,036,560
3340/33644% Disk 8368 12 696
(70 megabytes) 69,889,536
348
(35 megabytes) 36,944,768
3350 Disk 19069 30 555 317,498,850
3375 Disk 327605 12 959 409,868,928
3380 Disk 327605 15 885 630,243,900

1
2
3

4
5

Capacity indicated in bytes (when R0 is used by the IBM programming system).
Excluding alternate cylinders.

The Mass Storage System (MSS) virtual volumes assume the characteristics of
the 3330/3333, Model 1.

The 3344 is functionally equivalent to the 3340 Model 70.

The largest record that can be written on a track is 35,616 for the 3375 and
47,676 for the 3380. However, for both devices, the largest block size
supported by the standard access methods is 32,760.

Figure 62. Direct-Access Storage Device Capacities

The term device overhead refers to the space required on each
track for hardware data, that is, address markers, count areas,
gaps between records, record 0, etc. Device overhead varies with
each device and depends also on whether the blocks are written
with keys. To compute the actual space required for each block,
including device overhead, you can use the formulas in

Figure 63 on page 133. Note that any fraction of a byte must be
ignored. For example, if the formula gives 15.644 bytes, you
must allocate 15 bytes.

132 05/7VS52 Data Management Services Guide

-

Page of GC26-3875-1 as updated 3 April 1981 by TNL GN26-0996

Bytes Required by Each Data Block

Device £§3°k Blocks With Keys Blocks HWithout Keys
2305-1 145681 634+KL+DL 632+DL

2305-2 148581 289+KL+DL 198+DL

231472319 7294 146+ (KL+DL)534s5122 101+(DL)534/5123
3330733334

(Model 1 13165 191+KL+DL 135+DL

or 11)

3340/3344 8535' 2642+KL+DL 167+DL

3350 19254 267+KL+DL 185+DL

3375 36000 224+C((KL+191)/323(32)+((DL+191)/32)(32) 224+ ((DL+191)/32)(32)
3380 47968 256+((KL+267)/32)(32)+((DL+2673/32)(32) 256+((DL+2671)/32)(32)

DL is data leng{h.
KL is key length.

1

This value is different from the maximum block size per track because the

formula for the last block on the track includes an overhead for this

device.

2 The formula for the last block on the track is 45+KL+DL.

3 The formula for the last block on the track is DL.

4 The Mass Storage System (MSS) virtual volumes assume the characteristics of
the 3330/3333, Model 1.

Figure 63. Direct-Access Device Overhead Formulas

The formulas can be combined in the following way:

If you intend to specify your space requirements in tracks (TRK)
or cvlinders (CYL), your estimate should be made as shown above.
If you request absolute tracks (ABSTR), remember that you cannot
allocate track 0, cylinder 0. The amount of space required for
the VT0C will reduce the space available on the rest of the
volume.

If you specify your space requirements in average‘block length,
the system performs the computations for you.

Because a sequential data set and a direct data set are created
in the same way, the estimate and specification of space
requirements are identical. If you use the WRITE SZ macro
instruction, your secondary allocation for a direct data set
should be at least 2 tracks. Space allocation for a partitioned
data set requires that you also consider the space used for the
directory. Similarly, allocation for an indexed sequential data
set requires that you consider the space needed for the prime
area, index areas, and overflow areas.

ALLOCATING SPACE FOR A PARTITIONED DATA SET

What is the average size of the members to be stored on your
direct-access volume? How many members will fit on the volume?
Will vou need directory entries for the member names only or
will aliases be used? How many? Will members be added or
replaced frequently? All of these questions must be answered if
you are to estimate your space requirements accurately and use
the space efficiently. Note, too, that a partitioned data set
cannot extend beyond one volume.

Part 3: Data Set Disposition and Space Allocation 133

If your data set will be quite large, or you expect to do a lot
of updating, it might be best to allocate a full volume. If it
Wwill be small or seldom subject to change, you should make your
estimate as accurate as possible to avoid wasted space or wasted
time used for recreating the data set.

If the average member length is close to or less than the track
length, the most efficient use of the direct-access storage
space may be made with a block size of 1/3 or 1/2 the track
length. For load modules, the linkage editor ignores the
specified maximum block size and uses the maximum block size for
the device. Program fetch always ighores BLKSIZE. It may be a
good practice to indicate a block length equal to track
capacity, for example, BLKSIZE=7294 for a 2314 disk. You might
then ask for either 100 tracks, or 5 cylinders, thus allowing
for 729,400 bytes of data.

Assuming an average length of 70,000 bytes for each member, you
need space for at least 10 directory entries. If each member
also has an average of three aliases, space for an additional 30
directory entries is required.

Space for the directory is expressed in 256-byte blocks. Each
block contains from 3 to 20 entries, depending on the length of
the user data field. If you expect 40 directory entries, request
at least 8 blocks. Any unused space on the last track of the
directory is wasted unless there is enough space left to contain
a block of the first member. Therefore, the most advisable
request in this case would be for 17 blocks.

Either of the following space specifications would cause the
same size allocation for a 2314 disk:

SPACE=(CYL,(5,,10))
SPACE=(TRK, (100,,10))

The following example would result in allocation of 100 tracks
for data, plus 1 track for directory space:

SPACE=(7294,(100,,10))

Although a secondary allocation increment has been omitted in
these examples, it could have been supplied to provide for
extension of the member area. The directory size, however,
cannot be extended.

ALLOCATING SPACE FOR AN INDEXED SEQUENTIAL DATA SET

134

An indexed sequential data set has three areas: prime, index,
and overflow. Space for these areas can be subdivided and
allocated as follows:

. Prime area—If you request a prime area only, the system
automatically uses a portion of that space for indexes,
taking one cylinder at a time as needed. Any unused space in
the last cylinder used for index will be allocated as an
independent overflow area. More than one volume can be used
in most cases, but all volumes must be for devices of the
same device type.

. Index area—You can request that a separate area be
allocated to contain yvour cylinder and master indexes. The
index area must be contained within one volume, but this
volume can be on a device of a different type than the one
that contains the prime area volume. If a separate index
area is requested, you cannot catalog the data set with a DD
statement.

If the total space occupied by the prime area and index area
does not exceed one volume, vou can request that the
separate index area be embedded in the prime area (to reduce

105/7VS2 Data Management Services Guide

/'\\

-access arm movement) by indicating an index size in the

SPACE parameter of the DD statement defining the prime area.

If you request space for prime and index areas only, the
system automatically uses any space remaining on the last
cvlinder used for master and cylinder indexes for overflow,
provided the index area is on a device of the same type as
the prime area.

Overflow area—Although you can request an independent
overflow area, it must be contained within one volume. If no
specific request for index area is made, then it will be
allocated from the specified independent ovzrflow area.

To request that a designated number of tracks on each
cvlinder be used for cylinder overflow records, you must use
the CYLOFL parameter of the DCB macro instruction. The
number of tracks that vou can use on each cylinder edquals
the total number of tracks on the cylinder minus the number
of tracks neaded for track index and for prime data, that
158

Usable tracks = total tracks - (track index tracks + prime
data tracks)

Note that when you create a l-cvlinder data set, ISAM reserves 1
track on the last cylinder for the end-of-file filemark.

When you request space for an indexed sequential data set, the
DD statement must follow a number of conventions, as shown below
and summarized in Figure 68 on page 156.

Space can be requested only in cylinders, SPACE=(CYL,(...J),
or absolute tracks, SPACE=(ABSTR,(...)}. If the absolute
track technique is used, the designated tracks must make up
a whole number of cylinders.

Data set organization (DSORG) must be specified as indexed
sequential (IS or ISU) in both the DCB macro instruction and
the DCB parameter of the DD statement.

All required volumes must be mounted when the data set is
opened; that is, volume mounting cannot be deferred.

If your prime area extends bevond one volume, you must
indicate the number of units and volumes to be spanned, for
example, UNIT=(2314,3),VO0LUME=C(,,,3).

You can catalog the data set using the DD statement
parameter DISP=(,CATLG) only if the entire data set is
defined by one DD statement; that is, if vou did not request
a separate index or independent overflow area.

Part 3: Data Set Disposition and Space Allocation 135

N

criteria Restrictions on Resulting.
Unit Types and Arrangemant
1.Number 2.Types 3.Index Number of Units of Areas
of DD of DD Size Requested
statements Statements Coded?
3 INDEX - None Separate index, prime,
PRIME and overflow areas.
OVFLOW
2 INDEX - None Separate index and prime
PRIME areas. Any partially
used index cylinder is
used for independent
overflow if the index
and prime areas are on
the same type of device.

2 PRIME No None Prime area and overflow

OVFLOW area with an index at
its end.

2 PRIME Yes The statement Prime area and embedded

OVFLOW defining the index, and overflow
prime area cannot area.
request more than
one unit.

1 PRIME No None Prime area with index at
its end. Any partially
used index cylinder
is used for independent
overflow.

1 PRIME Yes Statement cannot Prime area with embedded
request more than index area; independent
one unit. overflow in remainder of

partially used index
cvlinder
Figure 64. Requests for Indexed Sequential Data Sets

As your data set is created, the operating system builds the
track indexes in the prime data area. Unless you request a
separate index area or an embedded index area, the cylinder and
master indexes are built in the independent overflow area. If
you did not request an independent overflow area, the cylinder
and master indexes are built in the prime area.

If an error is encountered during allocation of a multivolume
data set, the IEHPROGM utility program should be used to scratch
the DSCBs of the data sets that were successfully allocated. The
IEHLIST utility program can be used to determine whether or not
part of the data set has been allocated. The IEHLIST utility
program is also useful to determine whether space is available
or whether identically named data sets exist before space
allocation is attempted for indexed sequential data sets. These
utility programs are described in 057VS Utilities.

specifying a Prime Data Area

To request that the system allocate space and subdivide it as
required, you should code:

//ddname DD DSNAME=dsname,DCB=DSORG=IS,

/77 SPACE=(CYL,quantity,,CONTIG),UNIT=unitname,
/7 DISP=(,KEEP),---

136 05/VS2 Data Management Services Guide

You can accomplish the same type of allocation by qualifying
vour dsname with the element indication (PRIME). This element is
assumed if omitted. It is required only if you request an
independent index or overflow area: To request an embedded index
area when an independent overflow area is specified, vou must
indicate DSNAME=dsname (PRIME}. To indicate the size of the
embedded index, you specify SPACE=(CYL,(quantity,,index size)).

Specifying a Separate Index Area

To request a separate index area, other than an embedded area as
described above, you must use a separate DD statement. The
element name is specified as (INDEX). The space and unit
designations are as required. Notice that only the first DD
statement can have a data definition name. The data set name
(dsname) must be the same.

//ddname DD DSNAME=dsname(INDEX),~--
Vo4 DD DSNAME=dsname(PRIME),---

specifying an Independant Overflou Area

A request for an independent overflow area is essentially the
same as for a separate index area. Only the element name,
OVFLOW, is changed. If vou do not request a separate index area,
only two DD statements are required.

//ddname DD DSNAME=dsname(INDEX),-~-
4 DD DSNAME=dsname(PRIME),~---
77 DD DSNAME=dsname(QOVFLOW),—---

calculating Space Requirements for an Indexed Sequential Data Sset

To determine the number of cylinders required for an indexed
sequential data set, vou must consider the number of blocks that
will fit on a cylinder, the number of blocks that will be
processed, and the amount of space required for indexes and
overflow areas. When you make the computations, consider how
much additional space is required for device overhead. Figure 62
on page 132 and Figure 63 on page 133 show device capacities and
ovarhead formulas. In the formulas that follow, the length of
the last (or only) block, shown below as Bn, must include device
overhead as given in Figure 63 on page 133.

Blocks = 1 + (Track capacity - Length of the last block)
(Length of other blocks)
Bt = 1 + ((Ct-Bn)/Bi)

The following eight steps summarize calculation of space
requirements for an indexed sequential data set.

Step 1

Once vou know how many records will fit on a track and the
maximum number of records you expect to create, you can
determine how many tracks you will need for yvour data.

Number of tracks required = Maximum number of blocks
Blocks per track + 1

ISAM load mode reserves the last prime data track for the
filemark.

Example: Assume that a 200,000 record part-of-speech dictionary
is stored on an IBM 3330 Disk Storage, using the 3336 disk pack,
as an indexed sequential data set. Each record in the dictionary
has a 12-byte key (the word itself) and an 8-byte data area
containing a part-of-speech code and control information. Each
block contains 50 records; LRECL=20 and BLKSIZE=1000. Using the
formula from Figura 63 on page 133, we find that each track will

Part 3: Data Set Disposition and Spaca Allocation 137

138

contain 10 blocks or 500 records. A total of 401 tracks will be
required for the dictionary.

Bt = 1 + 13,165-¢(191+12+1000) =1 + 11,962 = 1+9 = 10
191+12+1000 1203

Records per track = (10 blocks)(50 records per block) = 500

Prime data tracks required (T) = 200,000 records +1 = 401
500 records per track

Step 2

You will want to anticipate the number of tracks required for
cylinder overflow areas. The computation is the same as for
prime data tracks, but yvou must remember that overflow records
are unblocked and a 10-byte link field is added. Remember, if
vou exceed the space allocated for any cvylinder overflow area,
an independent overflow area is required. Those records are not
placed in another cylinder overflow area.

Overflow records=1+Track capacity-Lenath of last overflow record
per track (0t) Length of other overflow records

0t = 1+((Ct-Rn)/Ri)

Example: Approximately 5000 overflow records are expected for
the data set described in step 1. Since 56 overflow records will
fit on a track, 90 overflow tracks are required. This is 90
overflow tracks for 401 prime data tracks, or approximately 1
overflow track for every ¢ prime data tracks. Since the 3336
disk pack has 19 tracks per cvlinder, it would probably be best
to allocate 4 tracks per cylinder for overflow.

Ot =1 + 13,165-(191+12+20+10) =1 + 12,932 = 1+55 = 56

191+12+20+10 233
Overflow tracks required = 5000 records = 90
56 records per track

4

Overflow tracks per cylinder (0Oc)
step 3

You will have to set aside space in the prime area for track
index entries. There will be two entries (normal and overflow)
for each track on a cylinder that contains prime data records.
The data field of each index entry is always 10 bytes long. The
key length corresponds to the key length for the prime data
records. How many index entries will fit on a track?

Index entries 1 + Track capacity - Length of last index entry

per track (It) Length of other index entries

It 1 + ((Ct-En)/Ei)

Example: Again assuming use of a 3336 disk pack and records with
12-byte keys, we find that 61 index entries will fit on a track.

It =1 + 13,165-(191+12+10) =1 + 12,952 = 1+60 = 61
191+(12+10) 213

Step &

The number of tracks required for track index entries will
depend on the number of tracks per cylinder and the number of
track index entries per track. Any unused space on the last
track of the track index can be used for any prime data records
that will fit.

Number of

trk index =2(Tracks per cvlinder-overflow tracks per cvlinder)+l1
trks per Index entries per trackt2

cylinder

(Ic)

05/VS2 Data Management Services Guide

-

N

Ic = (2(Te-0c)+1)/(It+2)

Note that for variable-length records or when a prime data
record will not fit on the last track of the track index, the
last track of the track index is not shared with prime data
records. In such a case, if the remainder of the division is
less than or equal to 2, drop the remainder. In all other cases,
round the quotient up to the next integer.

Example: The 3336 disk pack has 19 tracks per cylinder. You can
fit 61 track index entries per track. Therefore, vou need less
than 1 track for each cylinder:

Ic = 2(19-6)#1 = 31
61+2 63

The space remaining on the track is (1-31/63) (13,165) = 6686
bytes.

This is enough for 6 blocks of.prime data records. Since the
normal number of blocks per track is 10, the blocks use 6710 of
the track, and the effective value of Ic is therefore 1-6/10 =
2/5.

Note that space is required on the last track of the track index
for a dummy entry to indicate the end of the track index. The
dummy entry consists of an 8-byte count field, a key field the
same size as the key field in the preceding entries, and a
10-byte data field.

Step 5
Next you have to compute the number of tracks available on each

cylinder for prime data records. You cannot include tracks set
aside for cylinder overflow records.

Prime data Tracks Overflow tracks Index tracks
tracks per = per cylinder =~ per cvylinder - per cylinder
cylinder

Pc = Te-0c-Ic

Example: If you set aside 4 cylinder overflow tracks, and you
require 275 of a track for the track index. 14 3/5 tracks are
available on each cylinder for prime data records.

Pe = 19-6-2/5 = 14 3/5
Step 6

The number of cvylinders required to allocate prime space is
determined by the number of prime data tracks required divided
by the number of prime data tracks available on each cylinder.
This area includes space for the prime data records, track
indexes, and cylinder overflow records.

Number of

cylinders = Prime data tracks required
required Prime data tracks per cylinder
¢ = T/Pc

Example: You need 401 tracks for prime data records. You can use
14-3/5 tracks per cylinder. Therefore, 28 cylinders are required
for your prime area and cylinder overflow areas.

C = (401)7(1% 3/5) = 27+ (round up to 28)

Part 3: Data Set Disposition and Space Allocation 139

140

Step 7

You will need space for a cylinder index as well as track
indexes. There is a cylinder index entry for each track index
(for each cylinder allocated for the data set). The size of each
entry is the same as the size of the track index entries;
therefore, the number of entries that will fit on a track is the
same as the number of track index entries. Unused space on a
cylinder index track is not shared.

Number of tracks
required for Track indexestl
cylinder index Index entries per track

Ci (C+1)/1t

Example: You have 28 track indexes (from Step 6). Since 61 index
entries fit on a track (from Step 3), vou need 1 track for vour
cylinder index. The remaining space on the last track is unused.

Ci = (28+1)/61 = 29761 = 0.475 < 1

Note that every time a cylinder index crosses a cylinder
boundary, ISAM writes a dummy index entry that lets ISAM chain
the index levels together. The addition of dummy entries can
increase the number of tracks required for a given index level.
To determine how many dummy entries will be required, divide the
total number of tracks required by the number of tracks on a
cylinder. If the remainder is 0, subtract 1 from the quotient.
If the corrected quotient is not 0, calculate the number of
tracks these dummy entries require. Also consider any additional
cylinder boundaries crossed by the addition of these tracks and
by any track indexes starting and stopping within a cylinder.

Step 8

If you have a data set large enough to require master indexes,
vyou will want to calculate the space required according to the
number of tracks for master indexes (NTM parameter) you
specified in the DCB macro instruction or the DD statement.

If the cylinder index exceeds the NTM specification, an entry is
made in the master index for each track of the cylinder index.
If the master index itself exceeds the NTM specification,