
Systems

GC26·3902·1
File No. S370-32

OS/VS2 MVS Utilities

Release 3.S

Includes Selectable Units:

Data Management

System Security Support

Data Management Support

--- -
~ ~ ~ §"f§

VS2.03.S0S

5752-S32

5752-S60

Second Edition (September 1983)

This is a reprint of GC26-3902-0 incorporating changes released in the following Technical
Newsletters:

GN26-0926 (dated 31 January 1979)
GN26-0930 (dated 29 June 1979)
GN26-0982 (dated 10 October 1980).

This edition applies to Release 1.0 of Data Facility/Device Support, Program Product 5740-
AM7, as well as to Release 3.8 of OS/VS2 MVS, and to any subsequent releases until otherwise
indicated in new editions or Technical Newsletters.

Changes are periodically made to the information herein; before using this pUblication in
connection with the operation of IBM systems, consult the latest/BM System/370 and 4300
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers' comments has been provided at the back of this publication. If the form
has been removed, address comments to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California 95150. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1977

HOW TO USE THIS PUBLICATION

This publication describes how to use the OS/VS utility programs. To use this
book, you should be familiar with VS terms and concepts.

In addition to the preface you are now reading, a table of contents, and a list of
figures, this publication has the following majQr parts:

Title

"Summary of Amendments"

"Introduction"

"Guide to Utility
Program Functions"

Utility Programs

"Appendix A: Exit
Routine Linkage"

"Appendix B: Invoking
Utility Programs from
a Problem Program"

"Appendix C: DD Statements
for Defining Mountable
Devices"

Function

an abstract of the major technical changes
reflected in this and previous editions.

a summary of the utility programs and
information on the differences among system,
data set, and independent utility programs. This
chapter contains basic information about how the
programs are executed and about the utility
control statements used to specify program
functions. New or infrequent users of the utility
programs should give particular attention to this
chapter.

a table, arranged in alphabetic order, of
utility program functions and the programs that
perform them. This table enables you to find the
program that can do what you need to have done.

individual chapters for each utility program
arranged in alphabetic order. For a discussion of
the organization of these chapters, see
"Organization of Program Descriptions" below.

information about linking to and returning from
optional user-supplied exit routines. This
appendix should be read only if you plan to code
or use an exit routine. If you are coding an exit
routine, this appendix provides linkage
conventions, descriptions of parameter lists, and
return codes. If you are using an existing exit
routine, you may be interested in the meaning of
return codes from the exit routine.

description of the macro instructions used to
invoke a utility program from a problem program
rather than executing the utility program by job
control statements or by a procedure in the
procedure library. This appendix should be read
only if you plan to invoke a utility program from a
problem program.

a review of how to define mountable volumes to
ensure that no one else has access to them.
For ~ definitive explanation of this subject, see
OS/VS2 JCL, GC28-0692.

How to Use This Publication iii

"Appendix D: Processing
User Labels"

"Index"

description of the user-label processing that can
be performed by IEBGENER, IEBCOMPR,
IEBPTPCH,IEHMOVE, IEBTCRIN, and
IEBUPDTE. This appendix should be read only if
you plan to use a utility program for processing
user labels.

a subject index to this publication.

Organization of Program Descriptions
Program descriptions are all organized, as much as possible, in the same way to
enable you to find information more easily. Most programs are discussed according
to the following pattern:

• Introduction to and description of the functions that can be performed by the
program. This' description typically includes an overview of the program's use,
definitions of terms, illustrations, etc.

• Functions supported by the utility and the purpose of each function.

ti Input and output (including return codes) used and produced by the program.

• Control of the program through job control statements and utility control
statements. Explanations of utility control statement parameters are presented in
alphabetic order in tabular format, showing applicable control statements,
syntax, and a description of the parameters. Any general information,
restrictions, and relationships of a given utility control statement to other control
statements are described in the sections concerning the statements or in the
section for restrictions.

• Examples of using the program, including the job control statements and utility
control statements.

Required Publications

iv OS/VS2 MVS Utilities

The reader should be familiar with the following publications:

• OS/VS Message Library: Utilities Messages, GC38-100S, which contains a
complete listing and explanation of the messages and codes issued by the utility
programs.

• OS /VS2 JCL, GC28-0692, which contains a complete explanation of the job
control statements available for the operating system.

• OS/VS2 MVS Data Management Services Guide, GC26-387S, which describes
the input/output facilities of the operating system. It contains information on
record formats, data set organization, access methods, direct access device
characteristics, data set disposition, space allocation, and generation data sets.

• OS/VS2 Supervisor Services and Macro Instructions, GC28-0683, which
contains information on how to use the services of the supervisor. Among the
services of the supervisor are program management,. task creation and
management, virtual storage management, and checkpoint and restart.

• OS/VS2 MVS Data Management Macro Instructions, GC26-3873, which
contains a description of the WRITE SZ, LINK, and RETURN macro
instructions, and contains the format and contents of the DCB.

Related Publications

/

The additional publications referred to in this publication are:

• OS / VS2 Data Areas, SYB8-0606, which contains a complete description of the
control blocks used by the operating system.

• IBM System/3 70 Principles of Operation, GA22-7000, which contains a
description of system structure; of the arithmetic, logical, branching, status
switching, and input/output operations; and of the interruption system.

• OS/VS Mass Storage System (MSS) Services: General Information,
GC35-0016, which contains information on the copy or restore of a staging
volume.

• OS/VS2 Access Method Services, GC26-3841, which contains information on
generation data groups and SMF record types 63 and 67.

• OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide,
GC26-3838, which contains information on cataloging VSAM data sets.

• OS/VS2 System Programming Library: Data Management, GC26-3830, which
contains information on data set password protection.

• IBM 50 Magnetic Data Inscriber Component Description, GA27-2725, which
contains information on the MTDI cartridge used by the IBM 2495 Tape
Cartridge Reader (TCR) when used by the IEBTCRIN utility program.

• Using OS Catalog Management with the Master Catalog: CVOL Processor,
GC35-0010, contains VSAM catalog management details.

• OS/VS2 MVS CVOL Processor, GC26-3864, has detailed information
regarding CVOL processing with the MVS VSAM master catalog.

• OS/VS Message Library: VS2 Utilities Messages, GC26-3920, contains error
messages and corrective actions.

• OS/VS2 Conversion Notebook, GC28-0689, contains information on program
authorization (APF) in the OS/VS2-MVS environment.

• Device Support Facilities, GC35-0033, describes initialization and maintenance
of direct access storage devices (DASD).

• Data Facility/Device Support: User's Guide and Reference, SC26-3952, has
detailed information on processing DASD volumes with indexed VTOC.

• Data Facility/Data Set Services: User's Guide and Reference, SC26-3949,
describes DASD utility functions such as dump or restore, and reduction or
elimination of free space fragmentation.

How to Use This Publication v

Utilities Not Explained in This Book

vi OS/VSZ MVS Utilities

._--_ __ _------ -

There are several specialized utilities not discussed in this book. The following list
shows their names, functions, and what book contains their explanation.

Utility

IEBIMAGE

IDCAMS

IAPAPIOO

Device Support
Facilities

Data Facility /
Data Set Services

Function

Allows the user to define,
modify, print, or link
modules for use with the
IBM 3800 Printing Subsystem.

Allows users to define,
manipulate, or delete
VSAM data sets, define and
maQ.ipulate VSAM Catalogs,
and copy, print, or convert
SAM and ISAM data sets to
VSAM data sets.

Examines user data and
drive characteristics of
IBM 3344 and 3350 DASD
for errors. If AP-l detects
an error, it prints a message
to the operator, and
diagnostic information to
the system's printer.

To be used for the
initialization and maintenance
of DASD volumes.

Describes DASD utility functions
such as dump/restore and
reduction of free space
fragmentation.

Reference

IBM 3800 Printing
Subsystem Programmer's
Guide, GCZ6-3846.

OS/VS2 Access Method
Services, GCZ6-3841

OS/VS and DOS/VS
Analysis Program-i
(AP-i) User's Guide,
GCZ6-3855

Device Support
Facilities, GC35-0033.

Data Facility/Data Set
Services: User's Guide
and Reference,
SC26-3949

.~

)

CONTENTS

How to Use This Publication .. iii
Organization of Program Descriptions ... iv
Required Publications .. .iv
Related Publications .. v
Utilities Not Explained in This Book ... v

Figures .. xv

Summary of Amendments .. xix

Introduction .. 1-1
Device Support .. 1-3
Control .. 1-3

Job Control Statements .. , 1-3
Utility Control Statements .. 1-4

Continuing Utility Control Statements ... 1-4
Restrictions ... 1-5

Notational Conventions ... 1-5
KEYWORD = device = list ... 1-5

Special Referencing Aids ... 1-6
Guide to Utility Program Functions .. 1-7

IBCDASDI Program .. 2-1
Initializing a Direct Access Volume .. 2-1
Assigning an Alternate Track .. 2-1
Executing IBCDASDI ... 2-2

Input and Output ... 2-2
Control .. 2-2

Utility Control Statements .. 2-3
JOB Statement .. ; 2-3
MSG Statement .. 2-3
DADEF Statement ... 2-3
VLD Statement ... 2-4
VTOCD Statement ... 2-4
IPL TXT Statement ... 2-4
GET AL T Statement ... 2-4
END Statement ... 2-5
LASTCARD Statement .. 2-5
Restrictions ... 2-10

IBCDASDI Examples .. 2-10

IBCDMPRS Program ... 3-1
Executing IBCDMPRS .. 3-1

Input and Output ... 3-1
Control .. 3-2

Utility Control Statements .. 3-2
JOB Statement .. 3-2
MSG' Statement .. 3-2
DUMP Statement ... 3-2
VDRL Statement .. 3-3
RESTORE Statement ... 3-3
END Statement ... 3-3

IBCDMPRS Examples ... 3-6

Contents vii

ICAPRTBL Program ... 4-1
Executing ICAPRTBL ... 4-1
Input and Output ' .. 4-1
Control .. 4-2

Utility Control Statements .. 4-2
JOB Statement .. 4-2
DFN Statement ... 4-2
UCS Statement .. "' ... 4-2
FCB Statement ... 4-2
END Statement. .. 4-3

ICAPRTBL Example ... 4-6

IEBCOMPR Program .. 5-1
Input and Output .. 5-2
Control .. 5-2

Job Control Statements ... 5-2
Utility Control Statements .. 5-3

COMPARE Statement ... 5-3
EXITS Statement .. 5-3
LABELS Statement .. 5-5
Restrictions ... 5-6

IEBCOMPR Examples .. 5-6

IEBCO PY Program .. " ... 6.- J
Copying Members That Have Aliases ... M ... 6-1
Creating a Backup Copy .. 6-2
CQPying Data Sets ... 6-2
Copying or Loading Unloaded Data Sets .. 6-2
Selecting Members to be Copied, Unloaded, or Loaded 6-2
Replacing Identically Named Members .. 6-3
Replacing Selected Members .. 6-4
Renaming Selected Members ... ' ... 6-4
Excluding Members from a Copy Operation ... 6-4
Compressing a Data Set ... 6-4
Merging Data Sets .. 6-5
Re-creating a Data Set ... 6-5

Input and Output .. 6-5
Control ... 6-6

Job Control Statements .. 6-6
P ARM Information on the EXEC Statement.. .. 6-7
Space Allocation .. 6-7

Utility Control Statements ... 6-X
COpy Statement ... 6-X
SELECT Statement ... 6-11
EXCLUDE Statement ... 6-12
Restrictions .. 6- J 5

IEBCOPY Examples .. 6-15

IEBDG Program .. 7-1
IBM-Supplied Patterns ... 7-1
User-Specified Pictures .. 7-2
Modification of Selected Fields ... · 7-2

Input and Output .. 7-3
Control .. 7-4

Job Control Statements ... 7-4
PARM Information on the EXEC Statement .. · 7-5

viii OS/VS2 MVS Utilities

IEBDG Program (continued)
Utility Control Statements .. 7-6

DSD Statement ... 7-6
FD Statement .. 7-6
CREATE Statement ... 7-8
REPEAT Statement .. ~ ... 7 -1 0
END Statement ... 7 -11
Restrictions ... 7 -1 9

IEBDG Examples .. 7-1 9

IEBEDIT Program ... 8-1
Input and Output ... R-l
Control .. R-2

Job Control Statements ... 8-2
Utility Control Statement .. 8-2

EDIT Statement .. 8-2
Restrictions ... 8-6

IEBEDIT Examples .. R-6

IEBGENER Program ... 9-1
Creating a Backup Copy ... 9-1
Producing a Partitioned Data Set from Sequential Input 9-1
Expanding a Partitioned Data Set ... 9-2
Producing an Edited Data Set ... 9-2
Reblocking or Changing Logical Record Length .. 9-3

Input and Output ... 9-4
Control .. 9-5

Job Control Statements ... 9-5
Utility Control Statements .. 9-5

GENERATE Statement ... 9-:-6
EXITS Statement .. 9-6
LABELS Statement .. 9-7
MEMBER Statement .. 9-7
RECORD Statemerit .. 9-7
Restrictions .. 9-15

IEBGENER Examples ... 9-15

IEBISAM Program .. 10-1
Copying an Indexed Sequential Data Set .. 10-1
Creating a Sequential Backup Copy .. 10-1
Specifying a Load Operation .. 1 ()~2
Creating an Indexed Sequential Data Set from an Unloaded Data Set 10-3
Printing the Logical Records of an Indexed Sequential Data Set.. 10-3

Input and Output ... 10-4
Control .. 10-5

Job Control Statements ... 10-5
PARM Information on the EXEC Statement ... 10-5

IEBISAM Examples .. 10-8

IEBPTPCH Program .. 11-1
Printing or Punching a Data Set .. 1 1-1
Printing or Punching Selected Members ... 11-1
Printing or Punching Selected Records ... 11-2
Printing or Punching a Partitioned Directory .. 11-2
Printing or Punching an Edited Data Set .. 11-2

Input and Output ... 11-2

Contents ix

IEBPTP(;H Program (continued)
Control ..•............... 11-3

Job Control Statements ... 11-3
Utility Control Statements .. 1 1-3

PRINT Statement ... 11-4
PUNCH Statement ... 11-5
TITLE Statement .. 11-5
EXITS Statement .. 11-5
MEMBER Statement .. : ... 11-5
RECORD Statement .. 11-6
LABELS Statement .. 1 1-6
Restrictions ... 11-1 5

IEBPTPCH Examples ... , 11-15

IEBTCRIN Program .. 12-1
MTDI Editing Criteria ... 12-1

MTDI Editing Restrictions ... J 2-2
End-of-Cartridge ... 12-7
Error Records , ... 12-8
Error Description Word (EDW) ... J 2-8
Sample Error Records ... J 2-1 ()

Input and Output ... J 2- J 2
Return Codes .. 12- J 2

Control ... 12-12
Job Control Statements .. J 2-12
Utility Control Statements ... 12- J 4

TCRGEN Statement .. 12-14
EXITS Statement .. ; 12-14
Restrictions .. 12 -1 9

IEBTCRIN Examples ... 12- J 9

IEBUPDTE Program ... 13:-1
Creating and Updating Symbolic Libraries .. J 3- J
Incorporating Changes ... 13-1
Changing Data Set Organization .. 13- J

Input and Output ... J 3-2
Control ... 13-2

Job Control Statements .. J 3-2
PARM Information on the EXEC Statement.. .. 13-3

Utility Control Statements .. 13-4
Function Statement .. 13-4

Function Restrictions .. 13-5
Detail Statement ... 1 3-7

Detail Restrictions ... 13-7
Data Statement .. 13-8
LABEL Statement ... 13-8
ALIAS Statement .. 13-10
ENDUP Statement .. 13-] 0
Restrictions .. 13 -1 7

IEBUPDTE Examples .. 13- J 8

x OS/VS2 MVS Utilities

(
\

IEHA TLAS Program ... ~ 14-1
Input and Output .. 14- 1
Control .. 1 4-2

Job Control Statements .. 14-2
Utility Control Statement ... 14-2

TRACK or VTOC Statement .. 14-2
Return Codes ... J 4-3

Restrictions .. 14-5
IEHA TLAS Examples .. 1 4-5

IEHDASDR Program ... 15-1
Initializing a Direct Access Volume .. 15-1
Initialize-MSS Staging Volumes ... 15-3
Changing the Volume Serial Number of a Direct Access Volume 15-3
Assigning Alternate Tracks for Specified Tracks .. 15-3
Creating a Backup, Transportable, or Printed Copy 15-3
Copying Dumped Data to a Direct Access Volume .. 1 5-4

Dumping and Restoring Unlike Devices ... 15-5
Formatting a Direct Access Volume ... 15-5
Writing IPL Records and a Program on a Direct Access Volume 15-5

Input and Output .. 15-7
Control .. 1 5-7

Job Control Statements ... 15-8
PARM Information on the EXEC Statement ... 15-9
Considerations .. 15-9

Utility Control Statements ... 15-11
ANALYZE Statement .. ". 15-12
ANALYZE MSS Statement ... 15-13
FORMAT Statement ... 15-13

;' LABEL Statement ... 15-13
GET AL T Statement .. 15-14
DUMP Statement ... ; .. 15-14
RESTORE Statement .. 15-15
IPL TXT Statement .. 15-15
PUTIPL Statement .. 15-16
Restrictions .. 15-23

IEHDASDR Examples ... 15-24

IEHINITI Program ... 1 6- 1
Placing a Standard Label Set on Magnetic Tape .. 16-2

Input and Output .. 1 6-2
Control ... · ···· 1 6-3

Job Control Statements .. 16-3
P ARM Information on the EXEC Statement ... j 6-3

Utility Control Statement. ... 16-3
INITT Statement .. 16-4
Restrictions....................... 1 6-6

IEHINITT Examples ... 16-6

IEHLIST Program .. 1 7-1
Listing OS Catalog Entries .. 1 7-1
Listing a Partitioned Data Set Directory .. 1 7-1

Edited Format .. 17-2
Unedited (Dump) Format .. 17-3

Listing a Volume Table of Contents .. 17-3
Edited Format .. 17-3
Unedited (Dump) Format ... · 17-5

Input and Output .. ~ ; 17-5

Contents xi

IEHLIST Program (continued)
Control .. 17-6

Job Control Statements ... , ... 17-6
P ARM Information on the EXEC Statement , 1 7 -7

Utility Control Statements .. 17-7
LISTCTLG Statement .. 1 7-7
LISTPDS Statement .. 1 7-7
LISTVTOC Statement .. 17-8
Restrictions... 1 7 -10

IEHLIST Examples 1 7 - J 0

IEHM.OVE Program .. 18-1
Reblocking 18-5
Moving of Copying a Data Set. 18-5
Moving or Copying a Group of Cataloged Data Sets.... 18-8
Moving or Copying a Catalog... 18-9
Moving or Copying a Volume of Data Sets .. 18-10
Moving or Copying Direct Data Sets with Variable Spanned Records 18-10

Input and Output ... 18-11
Control .. 18-12

Job Control Statements ... 18-12
P ARM Information on the EXEC Statement.. ... 18-14
Job Control Language for the Track Overflow Feature 18-14

Utility Control Statements .. 18-15
MOVE DSNAME Statement ... 18-16
COpy DSNAME Statement ... 18-16
MOVE DSGROUP ... 18-17
COpy DSGROUP .. 18-17
MOVE PDS Statement ... 1 8-18
COpy PDS Statement .. 18-18
MOVE CATALOG Statement ... 18-19
COpy CATALOG Statement .. 18-19
MOVE VOLUME Statement ... 18-20
COpy VOLUME Statement .. ' 18-20
INCLUDE Statement ... 18-20
EXCLUDE Statement .. 18-21
SELECT Statement ~ ... 18-21
REPLACE Statement ... 18-21
Restrictions ... 18-27

IEHMOVE Examples .. 18-28

IEHPROGM Program ... 19-1
Scratching a Data Set or Member.................................. 19-1
Renaming a Data Set or Member................ 19-1
Cataloging or Uncataloging a Data Set 19-2
Building or Deleting an Index in a CVOL............ ... 19-2
Building or Deleting an Index Alias in a CVOL 19-3
Connecting or Releasing Two Control Volumes (CVOLs) 19-3
Buil<;iing and Maintaining a Generation Index in a CVOL 19-4
Maintaining Data Set Passwords.................................... 19-5

Adding Data Set Passwords.. 19-7
Replacing Data Set Passwords.. 19-7
Deleting Data Set Passwords ~... 19-7
Listing Password Entries .. 19-8

Input and Output... 19-8
Control .. ,.. 19-9

xii OS/VS2 MVS Utilities

IEHPROGM Program (continued)
Job Control Statements... 19-9

PARM Information on the EXEC Statement.. ... 19-10
Utility Control Statements .. 19-10

SCRATCH Statement .. 19-11
RENAME Statement .. 19-11
CA TLG ·Statement ... 19-11
UNCATLG Statement. ... 19-12
BLDX (Build Index) Statement.. .. 19-12
DLTX (Delete Index) Statement. ... 19-12
BLDA (Build Index Alias) Statement. .. 19-12
DLTA (Delete Index Alias) Statement. .. 19-13
CONNECT Statement. ... 19-13
RELEASE Statement ... 19-13
BLDG (Build Generation Index) Statement.. ... 19-14
ADD (Add a Password) Statement .. 19-14
REPLACE (Replace a Password) Statement. .. 19-14
DELETEP (Delete a Password) Statement. ... 19-14
LIST (List Information from a Password) Statement. 19-15
Restrictions ... 19-21

IEHPROGM Examples ... 19-22

IFHST ATR Program .. 20-1
Assessing the Quality of a Tape Library ... 20-1
Input and Output .. 20-2
Control .. 20-2

Job Control Statements ... 20-2
IFHST ATR Example '" ... 20-3

I

,/
Appendix A. Exit Routine Linkage .. 21-1
Linking to an Exit Routine .. 21-1

Label Processing Routine Parameters ... 21-1
Nonlabel Processing Routine Parameters , , 21-2

Returning from an Exit Routine .. 21-3

Appendix B. Invoking Utility Programs from a Problem Program 22-1
LINK or ATTACH Macro Instruction ... 22-1
LOAD Macro Instruction ... 22-3
CALL Macro Instruction .. 22-3

Appendix C. DD Statements for Defining Mountable Devices 23-1
DD Statement Examples .. 23-1

Appendix D. Processing User Labels .. 24-1
Prucessing User Labels as Data Set Descriptors ... 24-1
Exiting to a User's Totaling Routine ... 24-2
Processing User Labels as Data .. 24-2

Index .. 25-1

Contents xiii

\
;'

FIGURES

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
2-1.
2-2.
2-3.
3-1.
3-2.
3-3.
4-1.
4-2.
4-3.
5-1.

5-2.

5-3.
5-4.
5-5.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.

6-9.

6-10.

6-11.

6-12.
6-13.

6-14.

6-15.
6-16.

7-1.
7-2.
7-3.
7-4.
7-5.

7-6.

System Utility Programs ... 1-1
Data Set Utility Programs ... 1-2
Independent Utility Programs ... 1-2
Locating the Right Program .. 1-6
Locating the Right Example ... 1-6
Tasks and Utility Programs ... 1-7
mCDASDI Utility Control Statements 2-3
VTOC Entries per Track .. 2-6
IBCDASDI Example Directory .. 2-9
IBCDMPRS Utility Control Statements 3-2
Valid 7-Track Tape Unit Modes in IBCDMPRS 3-4
mCDMPRS Example Directory ... 3-6
ICAPRTBL Wait-State Codes .. 4-1
ICAPRTBL Utility Control Statements 4-2
ICAPRTBL Example Directory .. 4-6
Partitioned Directories Whose Data Sets Can Be
Compared Using IEBCOMPR .. 5-1
Partitioned Directories Whose Data Sets Cannot Be
Compared Using IEBCOMPR .. 5-2
IEBCOMPR Job Control Statements 5-3
IEBCOMPR Utility Control Statements 5-3
IEBCOMPR Example Directory .. 5-6
IEBCOPY Job Control Statements .. 6-6
Changing Input Record Format Using IEBCOPY 6-7
IEBCOPY Utility Control Statements 6-8
Multiple Copy Operations Within a Job Step 6-10
IEBCOPY Example Directory .. 6-16
Copying a Partitioned Data Set-Full Copy 6-17
Copying from Three Input Partitioned Data Sets 6-19
Copy Operation with "Replace" Specified on the
Data Set Level .. 6-21
Copying Selected Members with Reblocking and
Deblocking .. 6-22
Selective Copy with "Replace" Specified on the
Member Leve1. .. 6-25
Selective Copy with "Replace" Specified on the
Data Set Level .. 6-26
Renaming Selected Members Using IEBCOPY 6-28
Exclusive Copy with "Replace" Specified for One Input
Partitioned Data Set .. 6-29
Compress-in-Place Following Full Copy with
"Replace" Specified .. 6-33
Multiple Copy Operations/Copy Steps 6-35
Multiple Copy Operations/Copy Steps Within a Job Step 6-38
ffiM-Supplied Patterns ... 7-1
IEBDG Actions .. 7 -3
IEBDG Job Control Statements ... 7-4
IEBDG Utility Control Statements ... 7-6
Defining and Selecting Fields for Output Records
Using IEBDG .. 7-7
Field Selected from the Input Record
for Use in the Output Record ... 7-7

Figures xv

Figure 7-7. Compatible IEBDG Operations .. 7-8
Figure 7-8. Default Placement of Fields Within an Output Record

Using IEBDG .. 7-9
. Figure 7-9. Creating Output Records with Utility Control Statements 7-10
Figure 7-10. Repetition Due to the REPEAT Statement Using IEBDG 7-11
Figure 7-11. IEBDG Example Directory ... 7-19
Figure 7-12. Output Records at Job Step Completion 7-22
Figure 7-13. Output Partitioned Member at Job Step Completion 7-23
Figure 7-14. Partitioned Data Set Members at Job Step Completion 7-25
Figure 7-15. Contents of Output Records at Job Step Completion 7-26
Figure 8-1. IEBEDIT Job Control Statements .. 8-2
Figure 8-2. IEBEDIT Example Directory ... 8-6
Figure 9-1. Creating A Partitioned Data Set From Sequential Input

Using IEBGENER .. 9-2
Figure 9-2. Expanding a Partitioned Data Set Using IEBGENER 9-3
Figure 9-3. Editing a Sequential Data Set Using IEBGENER 9-4
Figure 9-4. IEBGENER Job Control Statements 9-5
Figure 9-5. IEBGENER Utility Control Statements 9-6
Figure 9-6. IEBGENER Example Directory ... 9-16
Figure 10-1. An Unloaded Data Set Created Using IEBISAM I0-3
Figure 10-2. Record Heading Buffer Used by IEBISAM 10-4
Figure 10-3. IEBISAM Job Control Statements ... 10-5
Figure 10-4. IEBISAM Example Directory ... 10-8
Figure 11-1. IEBPTPCH Job Control Statements 11-3
Figure 11-2. IEBPTPCH Utility Control Statements 11-4
Figure 11-3. IEBPTPCH Example Directory .. 11-15
Figure 12-1. Special Purpose Codes .. 12-4
Figure 12-2. MTDI Codes from TCR ... 12-5
Figure 12-3. MTST Codes from TCR ... 12-6
Figure 12-4. MTST Codes after Translation by IEBTCRIN

with TRANS=STDGL ... 12-7
Figure 12-5. Tape Cartridge Reader Data Stream 12-10
Figuup 12-6. Record Construction ... 12-11
Figure 12-7. IEBTCRIN Job Control Statements 12-13
Figure 12-8. IEBTCRIN Utility Control Statements 12-14
Figure 12-9. IEBTCRIN Example Directory .. 12-19
Figure 13-1. IEBUPDTE Job Control Statements 13-3
Figure 13-2. IEBUPDTE Utility Control Statements 13-4
Figure 13-3. Format of System Status Information 13-5
Figure 13-4. NEW, MEMBER, and NAME Parameters 13-6
Figure 13-5. IEBUPDTE Example Directory .. 13-18
Figure 13-6. Sequence Numbers and Data Statements to Be Inserted 13-24
Figure 13-7. Sequence Numbers and Seven Data Statements

to be Inserted .. 13-25
Figure 14-1. IEHATLAS Job Control Statements 14-2
Figure 14-2. IEHATLAS Utility Control Statements 14-2
Figure 14-3. Return Codes from ATLAS ... 14-3
Figure 14-4. IEHATLAS Example Directory ... 14-4
Figure 15-1. Direct Access Volume Initialized Using IEHDASDR 15-1
Figure 15-2. Format of a Direct Access Volume Dumped to a Printer

Using IEHDASDR .. 15-4
Figure 15-3. Input Data Set with Three Program Records 15-6
Figure 15-4. Cylinder 0, Track 0 Fragment Without User Labels 15-6
Figure 15-5. Cylinder 0, Track 0 Fragment With User Labels 15-7
Figure 15-6. IEHDASDR Job Control Statements 15-8

xvi OS/VS2 MVS Utilities

Figure 15-7. RACF Authorization Required for IEHDASDR Function .. 15-11
Figure 15-8. IEHDASDR Utility Control Statements 15-12
Figure 15-9.

~
) Figure 16-1.

Figure 16-,2.

IEHDASDR Example Directory ... 15-24
IBM Standard Label Group After Volume Receives Data 16-1
IEHINITT Job Control Statements .. 16-3

Figure 16-3. Printout of INITT Statement Specifications
and Initial Volume Label Information 16-4

Figure 16-4. IEHINITT Example Directory .. 16-6
Figure 17-1. lndex Structure-Listed by IEHLIST 17-1
Figure 17-2. Sample Directory Block .. 17-1
Figure 17-3. Edited Partitioned Directory Entry ... 17-2
Figure 17-4. Sample Partitioned Directory Listing 17-3
Figure 17-5. Sample Printout of a Volume Table of Contents 17-5
Figure 17-6. IEHLIST Job Control Statements .. 17-6
Figure 17-7. IEHLIST Utility Control Statements 17-7
Figure 17-8. IEHLIST Example Directory .. 17 -1 0
Figure 18-1. Move and Copy Operations-Direct Access Receiving

Volume with Size Compatible with Source Volume 18-3
Figure 18-2. Move and Copy Operations-Direct Access Receiving

Volume with Size Incompatible with Source Volume 18-4
Figure 18-3. Move and Copy Operations-Non-Direct Access

Receiving Volume ... 18-4
Figure 18-4. Moving and Copying Sequential and Partitioned

Data Sets ... 18-6
Figure 18-5. Partitioned Data Set Before and After an IEHMOVE

Copy Operation .. 18-7
Figure 18-6. Merging Two Data Sets Using IEHMOVE 18-7
Figure 18-7. Merging Three Data Sets Using IEHMOVE 18-8
Figure 18-8. Moving and Copying a Volume of Data Sets 18-9
Figure 18-9. Moving and Copying a Group of Cataloged Data Sets 18-9
Figure 18-10. Moving and Copying the Catalog ... 18-10
Figure 18-11. IEHMOVE Job Control Statements 18-13
Figure 18-12. IEHMOVE Utility Control Statements 18-15
Figure 18-13. IEHMOVE Example Directory .. 18-28
Figure 19-1. Index Structure Before and After an IEHPROGM

Build Operation .. 19-2
Figure 19-2. Building an Index Alias Using IEHPROGM 19-3
Figure 19-3. Connecting a Volume (CVOL) to a Second Volume

Using IEHPROGM ... 19-4
Figure 19-4. Connecting Three Volumes Using IEHPROGM 19-4
Figure 19-5. Building a Generation Index Using IEHPROGM 19-5
Figure 19-6. Relationship Between the Protection Status of a

Data Set and Its Passwords ... 19-6
Figure 19-7. Listing of a Password Entry .. 19-8
Figure 19-8. IEHPROGM Job Control Statements 19-9
Figure 19-9. IEHPROGM Utility Control Statements 19-10
Figure 19-10. IEHPROGM Example Directory .. 19-22
Figure 20-1. Type 21 (ESV) Record Format .. 20-1
Figure 20-2. Sample Output from IFHST ATR ... 20-2
Figure 20-3. IFHSTATR Job Control Statements 20-2
Figure 21-1. Parameter Lists for Nonlabel Processing Exit Routines 21-2
Figure 21-2. Return Codes Issued by User Exit Routines 21-4
Figure 22-1. Typical Parameter Lists .. 22-2
Figure 22-2. Sequence of DDNMELST Entries .. 22-3
Figure 24-1. System Action at OPEN, EOV, or CLOSE Time 24-1

Figures xvii

SUMMARY OF AMENDMENTS

OSjVS2 MVS DASD Support

Major Technical Changes
• Two utilities have been added to those not explained in this book. A description

of them is contained in the following manuals:

- Device Support Facilities, GC35-0033. This utility is used for the initialization
and maintenance of direct access storage devices (DASD). It supersedes
IBCDASDI and IEHDASDR for these functions. In addition, it supports the
IBM 3375 Direct Access Storage, the IBM 3380 Direct Access Storage, and
volumes with indexed VTOC.

- Data Facility/Data Set Services: User's Guide and Reference, SC26-3949,
describes DASD utility functions such as dump or restore, and reduction or
elimination of free space fragmentation.

• The IBM 3375 Direct Access Storage and the IBM 3380 Direct Access Storage
are not supported by IBCDASDI, IBCDMPRS, or IEHDASDR. Refer to Device
Support Facilities for information on initialization and maintenance of such
DASD volumes. Refer to Data Facility/Data Set Services: User's Guide and
Reference for information on additional support of such DASD volumes, such as
dump or restore, and reduction or elimination of free space fragmentation.

• DASD volumes with indexed VTOC are not supported by IBCDASDI or
IEHDASDR. Refer to Device Support Facilities for information on initialization
and maintenance of such DASD volumes. IEHLIST supports volumes with
indexed VTOC. Refer to Data Facility/Device Support: User's Guide and
Reference for additional information.

OS/VS2 SUpport for the mM 3203-5 Printer

Major Technical Changes

Throughout this manual the mM 3203-5 Printer is correctly specified as "3203-4."

OS/VS2 MVS Data Management (VS2 Release 3.8)

Major Technical Changes

Miscellaneous maintenance changes have been made throughout.

November 1977 Edition

Major Technical Changes

• Separate manual created for OS/VSl Utilities, GC26-3901.

• IEHUCAT description deleted.

• Numerous technical descriptions expanded throughout.

• Statement of non-support of the 3036 console by the Independent (standalone)
utilities.

S~mmary of Amendments xix

• OS/VS2 MVS System Security Support (SU32).

• OS/VS2 MVS Data Management Support (SU60).

Major Editorial Changes

• All chapters revised to include a tabular description of utility control card
parameters.

• A Device Support section included in the Introduction portion of the manual.

• Specific device support information added to the mCDASDI and IEHDASDR
chapters.

• 3330, 3340, 3344, 3350 grouped as Buffered-Log DASD throughout.

OS/VS2 MVS Data Management (VS2.03.808)

CVOL

RACF

VS2 Release 3

Support for OS CVOLs in MVS has been added to the IEHLIST, IEHMOVE, and
IEHPROGM sections of the manual.

The user will be checked for proper access authorization to all data sets accessed by
the utilities, except for the independent utility programs which operate outside of
the operating system. Special cases are noted in the IEHMOVE, IEHDASDR, and
IEHPROGM sections of the manual.

For information about RACF, refer to the OS/VS2 MVS Resource Access Control
Facility (RACF): General Information Manual.

Major Technical Changes

Editorial Changes

xx OS/VS2 MVS Utilities

Mass Storage System (MSS). Added a restriction to IBCDASDI since it cannot be
used to format MSS staging volumes. Also, IBCDMPRS cannot be used to dump or
restore a staging volume.

• Added a restriction to IEHATLAS since it cannot be used on MSS virtual
volumes or virtual devices.

• Added an example to IEHDASDR that dumps to tape and then restores a 3330
volume that contains a VSAM user catalog.

• Added an example to IEHDASDR that describes initialization of an MSS staging
volume.

• Added an example to IEHMOVE that describes the MOVE DSGROUP control
statement.

• Added descriptions of the MOVE and COPY DSGROUP statements to the
IEHMOVE section.

~\

VS2 Release 2

Major Technical Changes

• Incorporated changes as listed in VS1 Release 3, with the exception of the
IEHUCAT chapter which does not run under VS2 Release 2.

• Added recognition of JES2 control statements to IEBEDIT.

• IEHLIST for VS2 Release 2 does not support listing catalog entries. It is
suggested that this entire chapter be carefully reviewed if running under VS2
Release 2.

• IEHMOVE for VS2 Release 2 does not support moving or copying groups of
cataloged data sets, catalogs, nor portions of catalogs. Neither can it move nor
copy the SYSCTLG data set, ISAM data sets, or VSAM data spaces. Before
running IEHMOVE under VS2 Release 2, it is suggested that this chapter be
reviewed in its entirety.

• IEHPROGM for VS2 Release 2 does not support the following functions:

1. Building and deleting indexes and their aliases.

2. Connecting and releasing two volumes.

3. Building and maintaining generation indexes.

It does catalog and uncatalog non-VSAM data sets. Before running
IEHPROGM under VS2 Release 2, it is suggested that this chapter be reviewed
in its entirety.

• IEHDASDR for VS2 Release 2 processed both VSAM and non-VSAM data
sets. However, additional restrictions are encountered when processing
password-protected VSAM data sets.

Major Editorial Changes

• Added the syntax and explanation of the LABEL statement of IEBUPDTE.

• Added a section on dumping and restoring unlike devices to the IEHDASDR
chapter.

• Added a data security suggestion to the IEHINITT program.

• Added an example showing labelling a tape volume at 6250 bpi to the
IEHINITT chapter.

• All syntax presentations have been modified to show the required comma
between keyword parameters.

• All examples have been adjusted to show exact character punch positions.

• Many notes have been added, to more readily bring to the user's attention any
special or unusual requirements or restrictions of the individual programs.

• The SMF Type 21 record format in the IFHSTATR chapter has been modified
to more accurately reflect the contents of this record. A paragraph on suggested
use of the information gathered by SMF, and available from record type 21, has
been added.

• The appendix explaining generation data groups has been removed from this
publication. The information on generation data groups is now located in
OS/VS2 MVS Data Management Services Guide, GC26-3875, and OS/VS2
Access Method Services, GC26-3841.

Summary of Amendments xxi

INTRODUCTION

/

os /VS provides utility programs to assist in organizing and maintaining data. Each
utility program falls into one of three classes of programs, determined by the
function performed and the type of control of the utility.

System utility programs are used to maintain and manipulate system and user data
sets. Entire volume manipulation, for example, copying or restoring, is also
provided. These programs must reside in an authorized library and are controlled
by JCL statements and utility control statements.

They can be executed as jobs or can be invoked as subroutines by authorized
programs. The invocation of utility programs and the linkage conventions are
discussed in "Appendix B: Invoking Utility Programs from a Problem Program."

Refer to Figure 1-1 for a list of system utility programs and unique notes when
using them.

System Utility Purpose

· IEHATLAS to assign alternate tracks and recover usable data records when
defective tracks are indicated.

· IEHDASDR to initialize and label direct access volumes, to assign alternate tracks
when defective tracks are indicated, or to dump or restore data.

· IEHINITT to write standard labels on tape volumes.

· IEHLIST to list system control data.

· IEHMOVE to move or copy collections of data.

· IEHPROGM to build and maintain system control data.

· IFHSTATR to select, format, and write information about tape errors from the
IFASMFDP tape or the SYS1.MAN data set.

When using system utility programs,

· Each data set to be used by programs other than IEHPROGM, IEHMOVE, and IEHLIST
must be defined on a DO statement specifying the data set name. When updating activity is
being performed by IEHPROGM, IEHMOVE, or IEHDASDR in a multiprogamming
environment, other tasks should not be allowed to access the data set being updated. (Refer
to" Appendix C: DD Statements for Defining Mountable Devices" for precautions to be
taken.)

· DD statements defining mountable devices must specify that volumes mounted on those
devices cannot be shared.

· Mountable volumes must not be made available to the system until the user is requested by
the system to mount the specified volumes.

· A reader procedure must be used that will direct input and output data sets to volumes other
than those which are to be modified by a system utility program.

· When executing a SCRATCH operation, the data set or volume being scratched must not be
used by a program executing concurrently.

Figure 1-1. System Utility Programs

Data set utility programs are used to reorganize, change, or compare data at the
data set and/or record level. These programs are controlled by JCL statements and
utility control statements.

These utilities manipulate partitioned, sequential, or indexed sequential data sets
provided as input to the programs. Data ranging from fields within a logical record
to entire data sets can be manipulated.

Introduction 1-1

1-2 OS/VS2 MVS Utilities

Data set utility programs can be executed as jobs or can be invoked as subroutines
by a calling program. The invocation of utility programs and the linkage
conventions are discussed in "Appendix B: Invoking Utility Programs from a
Problem Program."

Refer to Figure 1-2 for a list of data set utility programs.

Data Set Utility Purpose

· IEBCOMPR to compare records in sequential or partitioned data sets.

· IEBCOPY to copy, compress, or merge partitioned data sets, to select or
exclude specified members in a copy operation, and to rename
and/or replace selected members of partitioned data sets.

· IEBDG to create a test data set consisting of patterned data.

· IEBEDIT to selectively copy job steps and their associated JOB statements.

· IEBGENER to copy records from a sequential data set or to convert a data set
from sequential organization to partitioned organization.

· IEBISAM to place source data from an indexed sequential data set into a
sequential data set in a format suitable for subsequent
reconstruction.

· IEBPTPCH to print or punch records that reside in a sequential or partitioned
data set.

· IEBTCRIN to construct records from the input data stream that have been
read from the IBM 2495 Tape Cartridge Reader.

· IEBUPDTE to incorporate changes to sequential or partitioned data sets.

Figure 1-2. Data Set Utility Programs

Independent utility programs are used to prepare devices for system use when the
operating system is not available. They operate outside of, and in support of, the
operating system, are controlled by utility control statements, and cannot be
invoked by a calling program. They do not support, however, the 3036 display
console or the 3066 console.

Refer to Figure 1-3 for a list of independent utility programs.

Independent Utility Purpose

· IBCDASDI to initialize a direct access volume and to assign alternate
tracks.

· IBCDMPRS to dump and restore the data contents of a direct access
volume.

· ICAPRTBL to load the forms control and Universal Character Set buffers
of a 3211 after an unsuccessful attempt to IPL, with the 3211
printer assigned as the output portion of a composite console.

Figure 1-3. Independent Utility Programs

The selection of a specific program is dependent on the nature of the job to be
performed. For example, renaming a data set involves modifying system control
data. Therefore, a system utility program can be used to rename the data set. In
some cases, a specific function can be,phformed by more than one program. Figure
1-6 at the end of this chapter is provided to help you find the program that
performs the function you need.

)

Device Support

Control

Job Control Statements

The IEHDASDR system utility program can be used with volumes containing
VSAM and/or non-VSAM data sets. The other utility programs that manipulate
data sets and are contained in this manual cannot be used with VSAM data sets.
Information about VSAM data sets can be found in OS / VS2 Access Methods
Services.

Two utilities, IEHMOVE and IEBCOPY, do not support Virtual Input/Output
(VIO) data sets.

Except where noted, all of the following devices are supported by all Utility
programs. Restrictions and peculiar device support will be noted in the individual
Utility sections.

The table below indicates specific devices supported, and the notation to be used to
reference them. The term Buffered-Log DASD includes all DASD except
2314/2319 and 2305 devices.

DASD:

Tape:

Device-id Notation

2314

2305

3330

3330-1

3340

3350

3375

3380

3330V

2400

3400

2495

Devices

2314,2319

2305 Modell & 2

3330,3333 and 3350 in 3330 compatibility mode

3330-MODll, 3333-MODll and 3350 in
3330-MOD11 compatibility mode

3340,3344 (both 35 & 70 megabyte models)

3350 Native mode

3375

3380

3850 MSS Virtual Volumes

2400 (all models)

3400 (all models)

2495 (IEBTCRIN only)

System and data set utility programs are controlled by job control statements and
utility control statements. Independent utility programs are controlled by utility
control statements; because these programs are independent of the operating
system, job control statements are not required. The job control statements and
utility control statements necessary to use utility programs are provided in the
major discussion of each utility program.

A system or data set utility program can be introduced to the operating system in
different ways:

• Job control statements can be included in the input stream.

• Job control statements, placed in a procedure library or defined as an inline
procedure; can be included by means of the EXEC job control statement .

• A utility program can be invoked by a calling program.

If job control statements are placed in a procedure library, they should satisfy the
requirements for most applications of the program; a procedure, of course, can be
modified or supplemented for applications that require additional parameters, data

Introduction 1-3

sets, or devices. The data set utility IEBUPDTE can be used to enter a procedure
into a procedure library; see "IEBUPDTE Program."

A job that modifies a system data set (identified by SYS 1.) must be run in a single
job environment; however, a job that uses a system data set, but does not modify
it, can be run in a multiprogramming environment. The operator should be
informed of all jobs that modify system data sets.

DD statements should ensure that the volumes on which the data sets reside cannot
be shared when update activity is being performed.

Utility Control Statements

Utility control statements are used to identify a particular function to be performed
by a utility program and, when required, to identify specific volumes or data sets to
be processed.

The control statements for the utility programs have the following standard format:

label operation operand

The label symbolically identifies the control statement and, with the exception of
system utility program IEHINITT, can be omitted. When included, a name must
begin in the first position of the statement and must be followed by one or more
blanks. It can contain from one to eight alphameric characters, the first of which
must be alphabetic.

The operation identifies the type of control statement. It must be preceded and
followed by one or more blanks.

The operand is made up of one or more keyword parameters separated by commas.
The operand field must be preceded and followed by one or more blanks. Commas,
parentheses, and blanks can be used only as delimiting characters.

Comments can be written in a utility statement, but they must be separated from
the last parameter of the operand field by one or more blanks.

Continuing Utility Control Statements

1-4 OS/VS2 MVS Utilities

Utility control statements are coded on cards or as card images and are contained in
columns 1 through 71. A statement that exceeds 71 characters must be continued
on one or more additional cards. A nonblank character must be placed in column
72 to indicate continuation. A utility statement can be interrupted either in column
71 or after any comma.

The continued portion of the utility control statement must begin in column 16 of
the following statement. (Job control language continuations can begin in any
column from 4 through 16, and do not require a nonblank character in column 72
for continued operand fields.) Comments can be placed on any card containing a
complete or partial statement. However, when a card is included for the sole
purpose of continuing a comment, the continuation must begin in column 16.

Note: The IEHPROGM, IEBCOPY, IEBPTPCH, IEBGENER, IEBCOMPR, and
IEBDG utility programs permit certain exceptions to these requirements (see the
applicable program description).

The utility control statements are discussed in detail, as applicable, in the remaining
chapters.

Restrictions

• Unless otherwise indicated in the description of a specific utility program, a
temporary data set can be processed by a utility program only if the user
specifies the complete name generated for the data set by the system (for
example, DSNAME=SYS68296.T000051.RP001.JOBTEMP.TEMPMOD).

• Standard utility programs do not normally support VSAM. Refer to the various
program descriptions for certain exceptions.

Notational Conventions

keyword=dev;ce = list

A uniform system of notation describes the format of utility commands. This
notation is not part of the language; it simply provides a basis for describing the
structure of the commands.

The command-format illustrations in this book use the following conventions:

• Brackets [] indicate an optional parameter.

• Braces { } indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

• Required parameters will not have brackets or braces surrounding them.

• Items separated by a vertical bar (I) represent alternative items. No more than
one of the items may be selected.

• An ellipsis . . . indicates that multiple entries of the type immediately preceding
the ellipsis are allowed.

• Other punctuation (parentheses, commas, spaces, etc.) must be entered as
shown. A space is indicated by b.

• Boldface type indicates the exact characters to be entered. Such items must be
entered exactly as illustrated.

• Italic type specifies fields to be supplied by the user.

• Underscored type indicates a default option. If the parameter is omitted, the
underscored value is assumed.

The term keyword is replaced by VOL, FROM or TO.

The term device is replaced by either a generic name, for example, 3330; or a
substitute for a generic name, for example DISK, if this substitute has been
generated into your system. For direct access devices, the term list is replaced
by one or more volume serial numbers separated by commas. When there is
more than one, the entire list field must be enclosed in parentheses.

For tape, the term list is replaced by either one or more volume serial
number-comma-data set sequence number pairs. Each pair is separated from the
next pair by a comma. When there is more than one pair, the entire list field
must be enclosed in parentheses; for example:
FROM= 2400= (tapeA, 1 ,tapeB, 1).

Introduction 1-5

Special Referencing Aids

1-6 OS/VS2 MVS Utilities

Two special referencing aids are included in this publication to help you:

1. Locate the right utility program.

2. Locate the right example.

To locate the right utility program, refer to Figure 1-6 in "Guide to Utility Program
Functions," which immediately follows this section. Figure 1-4 shows a portion of
the table. The figure shows that you can use IEHINITT to label a magnetic tape
volume or IEHLIST to list a volume table of contents.

Task

Label

List

Definition of Task

magnetic tape volumes

a password entry
a volume table of contents
partitioned directories

Figure 1-4. Locating the Right Program

Utility Program

IEHINITT

IEHPROGM
IEHLIST

To locate the right example, use the figure-called an "example directory"-that
precedes each program's examples. Figure 1-5 shows a portion of the example
directory for IEHMOVE. The figure shows that IEHMOVE Example 1 is an
example of moving a sequential data set and that IEHMOVE Example 2 is an
example of copying a sequential data set.

Operation

MOVE Sequential

COpy Sequential

Device

3330 Disk,
2314 Disks

3330 Disk,

2314 Disks

Figure 1-5. Locating the Right Example

Comments

Source volume is demounted
after job completion.
Two mountable disks.

Three cataloged sequential
data sets are to be copied.
The 2314s are mountable.

Example

2

)

Guide to Utility Program Functions
Figure 1-6 shows a list of tasks that the utility programs can be used to perform.
The left-hand column shows tasks that you might want to perform. The middle
column more specifically defines the tasks. The right-hand column shows the utility
programs that can be used for each task. Notice that in some cases more than one
program may be available to perform the same task.

Task

Add

Analyze

Assign alternate
tracks

Catalog

Change

a password

tracks on direct access

to a dir.ect access volume
to a direct access volume and
recover usable data

a data set

data set organization
logical record length

Utility Program

IEHPROGM

IEHDASDR, IBCDASDI

IEHDASDR, IBCDASDI
IEHATLAS

volume serial number of direct access volume

IEHPROGM

IEBUPDTE
IEBGENER
IEHDASDR

Compare

Compress-in-
place

Construct

a partitioned data set
sequential data sets

a partitioned data set

records from MTST and MTDI input

IEBCOMPR
IEBCOMPR

IEBCOPY

IEBTCRIN

Convert to
partitioned

a sequential data set created as a result of an unload IEBCOPY
sequential data sets IEBUPDTE, IEBGENER

Convert to
sequential

Copy

a partitioned data set
an indexed sequential data set

a direct access volume
a partitioned data set
a volume of data sets
an indexed sequential data set

IEBUPDTE, IEBCOPY
IEBISAM,IEBDG

IEHDASDR, IBCDMPRS, IEHMOVE
IEBCOPY, IEHMOVE

IEHMOVE
IEBISAM

dumped data from tape to direct access
job steps

IEHDASDR, IBCDMPRS
IEBEDIT

IEBGENER, IEBUPDTE, IEBDG
IEBCOPY, IEHMOVE

IEBGENER, IEHMOVE, IEBUPDTE
IBCDMPRS

members
selected members
sequential data sets
to tape

Create a library of partitioned members
a member
a sequential output data set
an indexed sequential data set
an output job stream

Delete a password
records in a partitioned data set

Dump a direct access volume

Edit MTDI input

Edit and convert
to partitioned a sequential data set

Edit and copy a job stream
a sequential data set

Figure 1-6 (Part 1 of 3). Tasks and Utility Programs

IEBUPDTE
IEBDG
IEBDG
IEBDG

IEBEDIT

IEHPROGM
IEBUPDTE

IEHDASDR, IBCDMPRS

IEBTCRIN

IEBGENER, IEBUPDTE

IEBEDIT
IEBGENER,IEBUPDTE

Introduction 1-7

1-8 OS/VS2 MVS Utilities

Task

Edit and list

Edit and print

Edit and punch

Enter

Exclude

Expand

error statistics by volume (ESV) records

a sequential data set

a sequential data set

a procedure into a procedure library

a partitioned data set member from a copy
operation

a partitioned data set
a sequential data set

a 3350 to 3330-1,3330-11, or 3350 mode

test data

Utility Program

IFHSTATR

IEBPTPCH

IEBPTPCH

IEBUPDTE

IEBCOPY, IEHMOVE

IEBCOPY
IEBGENER

IEHDASDR, IBCDASDI

IEBDG

Format

Generate

Get alternate
tracks on a direct access volume IEHDASDR, IBCDASDI, IEHATLAS

Include

Initialize

Insert records

Label

List

changes to members or sequential data sets

a direct access volume

into a partitioned data set

magnetic tape volumes

a password entry
a volume table of contents
contents of direct access volume on system output
device
number of unused directory blocks and tracks
partitioned directories

Load a previously unloaded partitioned data set
an indexed sequential data set
an unloaded data set
UCS and FCB buffers of a 3211

Merge partitioned data sets

Modify a partitioned or sequential data set

Move a volume of data sets
partitioned data sets
sequential data sets

Number records in a new member
in a partitioned data set

Password protect add a password
delete a password
list passwords
replace a password

IEBUPDTE

IEHDASDR, IBCDASDI

IEBUPDTE

IEHINITT

IEHPRQGM
IEHLIST

IEHDASDR
IEBCOPY
IEHLIST

IEBCOPY
IEBISAM

IEHMOVE
ICAPRTBL

IEHMOVE, IEBCOPY

IEBUPDTE

IEHMOVE
IEHMOVE
IEHMOVE

IEBUPDTE
IEBUPDTE

IEHPROGM
IEHPROGM
IEHPROGM
IEHPROGM

Print a sequential data set'
partitioned data sets
selected records

IEBGENER, IEBUPDTE, IEBPTPCH
IEBPTPCH
IEBPTPCH

Punch

Read

Reblock

a partitioned data set member
a sequential data set
selected records

Tape Cartridge Reader input

a partitioned data set
a sequential data set

Figure 1-6 (Part 2 of 3). Tasks and Utility Programs

IEBPTPCH
IEBPTPCH
IEBPTPCH

IEBTCRIN

IEBCOPY
IEBGENER,IEBUPDTE

Task

Recover

Rename

Renumber

Replace

Restore

Scratch

Uncatalog

Unload

Update

Write

data from detective tracks on direct
access volumes
tracks flagged as defective on some DASD

a partitioned data set member
a sequential or partitioned data set
moved or copied members

logical records

a password
data on an alternate track
identically, named members
logical records
members
records in a member
records in a partitioned data set
selected members
selected members in a move or copy
operation

a dumped direct access volume from tape

a volume table of contents
data sets

data sets

a partitioned data set
a sequential data set
an indexed sequential data set

in place a partitioned data set

IPL records and a program on a direct access
volume

Figure 1-6 (Part 3 of 3). Tasks and Utility Programs

Utility Program

IEHATLAS
IEHDASDR, IBCDASDI

IEBCOPY,IEHPROGM
IEHPROGM

IEHMOVE

IEBUPDTE

IEHPROGM
IEHATLAS

IEBCOPY
IEBUPDTE
IEBUPDTE
IEBUPDTE

IEBUPDTE, IEBCOPY
IEBCOPY

IEBCOPY,IEHMOVE

IBCDMPRS,IEHDASDR

IEHPROGM
IEHPROGM

IEHPROGM

IEHMOVE, IEBCOPY
IEHMOVE

IEBISAM

IEBUPDTE

IBCDASDI, IEHDASDR

Introduction 1-9

44,""1$.",,1

mCDASDI PROGRAM

mCDASDI is an independent utility used to initialize direct access volumes for use
and to assign alternate tracks on direct access storage volumes. IBCDASDI jobs
can be performed continuously by stacking complete sets of control statements.

Initializ.ing a Direct Access Volume

mCDASDI can be used to initialize a direct access volume by two methods;

A non-QUICK DASDI will:

1. Unassign all alternate tracks

2. Rewrite the home address and/or record zero (HA/RO) on all tracks

3. Test flagged defective tracks and recover them if no errors are detected

4. Assign defective tracks to new, alternate tracks

5. Perform all other functions of QUICK DASDI

A QUICK DASDI will:

1. Write IPL records on track 0 (records 1 and 2)

2. Write volume labels on track 0 (record 3) and provide space for additional
records, if requested (reads alternate tracks and decreases the total count of the
alternates by one when an alternate is found defective or assigned)

3. Construct and write a volume table of contents (VTOC)

4. Write an IPL program, if requested, on track 0

5. Optionally, check for tracks that have been previously designated as defective
(flagged) and have had alternate tracks assigned

6. Optionally, write a track descriptor record (record 0) and erase the remainder of
each track. May also attempt to reclaim any track that has the defective bit on in
the flag byte of the home address.

Assigning an Alte17Ulte Track

mCDASDI can be used to: (1) test a track* and, if necessary, assign an alternate
or (2) bypass testing and automatically assign an alternate.

If testing is performed, an alternate track is assigned for any track found defective.
If the defective track is an unassigned alternate, it is flagged to prevent its future
use. The alternate track address is made known to the operator.

If a track is tested and not found to be defective, no alternate is assigned. The
operator is notified by a message.

If testing is bypassed, an alternate track can be assigned for the specified track or
its alternate, whether it is defective or not. If the specified track is an unassigned
alternate, it is flagged to prevent its future use.

·Only 2314 and 3350 (native) devices are tested before alternate tracks are assigned.

IBCDASDI Program 2-1

Executing IBCDASDI

Input and Output

Control

2-2 OS/VS2 MVS Utilities

IBCDASDI is loaded as card decks or as card images on tape. Control statements
for the requested program can follow the last card or card image of the program, or
can be entered on a separate input device. To execute IBCDASDI:

1. Place the object program deck in the reader or mount the tape reel that contains
the object program.

2. Load the object program from the reader or tape drive by setting the load
selector switches and pressing the console LOAD key. \Vhen the program is
loaded, the wait state is entered and the console lights display the hexadecimal
value FFFF.

3. Define the control statement input device in one of the following ways:

a. Press the REQUEST key of the console typewriter* and, in response to the
message "DEFINE INPUT DEVICE", enter "INPUT=xxxx,cuu". The xxxx
is the device type, c is the channel address, and uu is the unit address. The
device type can be 1402, 2400, 2501, 2540, or 3505.

b. If the console typewriter is not available, enter at storage location 0110
(hexadecimal): 2cuu for a 2400 9-track tape unit; or Ocuu for a 2540 Card
Read Punch, 2501 card reader, 3410 tape, or 3420 tape. Press the console
INTERRUPT key.

4. Control statements are printed on the message output device. At the end of the
job, "END OF JOB" is printed on the message output device, and the program
enters the wait state.

IBCDASDI uses as input a control data set which consists of utility control
statements.

IBCDASDI produces as output an initialized direct access volume and a message
data set.

Use IEHDASDR for online initialization of all supported DASD.

IBCDASDI is controlled by utility control statements. Because mCDASDI is an
independent utility, operating system job control statements are not used.

• Terminal screen consoles must be in "printer keyboard" mode.

Utility Control Statements

JOB Statement

MSG Statement

DADEF Statement

All utility control statements/operands must be preceded and followed by one or
more blanks.

IBCDASDI utility control statements in the order in which they must appear are:

Statement

JOB

MSG

DADEF

VLD

VTOCD

IPLTXT

GETALT

END

LASTCARD,

Use

Indicates the beginning of an IBCDASDI job.

Defines an output device for operator messages.

Defines the volume to be initialized.

Contains information for constructing an initial volume label and for
allocating space for additional labels.

Contains information for controlling the location of the volume table
of contents.

Separates utility control statements from any IPL program text
statements.

Assigns an alternate track on a volume.

Indicates the end of an IBCDASDI job.

Ends a series of stacked IBCDASDI jobs.

Figure 2-1. IBCDASDI Utility Control Statements

The JOB statement indicates the beginning of an IBCDASDI job.

The format of the JOB statement is:

[label] JOB [user-information]

The MSG statement defines an output device for operator messages. It follows the
JOB statement and precedes any function definition statements.

The format of the MSG statement is:

[label] MSG TODEV=xxxx

,TOADDR=cuu

The DADEF statement defines the direct access volume to be initialized.

The format of the DADEF statement is:

[label] DADEF TODEV=xxxx

,TOADDR=cuu

[,IPL={YES I NO}]

,VOLID={ serial I SCRATCH}

[,FLAGTEST={NO I YES}]

[,P ASSES=n]

[,BYPASS = {YES I NO}]

[,MODEL=n]

IBCDASDI Program 2-3

VLD Statement

VTOCD Statement

IPL TXT Statement

GET AL T Statement

2-4 OS/VS2 MVS Utilities

The VLD Statement contains information for constructing an initial volume label
and for allocating space for additional labels.

The format of the VLD statement is:

[label] VLD NEWVOLID=serial

[,VOLPASS={!! It}]

[,OWNERID=xxxxxxxxxx]

[,ADDLABEL=n]

The VTOCD statement contains information for controlling the location of the
volume table of contents (VTOC).

The format of the VTOCD statement is:

[label] VTOCD STRT ADR=nnnnn

,EXTENT=nnnn

The IPL TXT statement separates utility control statements from IPL program text
statements. It is required only when IPL text is included.

The format of the IPLTXT statement is:

IPLTXT

IPL TXT must be preceded by at least one blank space.

When IPL text is included, END must start in column 2. See "END Statement"
below.

The GET AL T statement is used to assign an alternate track on a volume. Any
number of alternate tracks can be assigqed in a single job by including a GETALT
statement for each track.·

Note: A GETALT statement that applies to a 3330, 3330-1, or 3340/3344 device
causes an alternate track to be assigned automatically without testing.

The format of the GET ALT statement is:

[label] GETALT TODEV=xx~

,TOADDR=cuu

,TRACK=cccchhhh

,VOLID=serial

[,FLAGTEST={NO I YES}]

[,PASSES=n]

[,BYP ASS= {YES I NO}]

[,MODEL=n]

END Statement

LASTCARD Statement

The GET AL T function should not be used immediately after a RESTORE
operation that did not complete successfully. Before using GETALT in such a case,
reinitialize the volume, if possible.

The END statement denotes the end of job. It appears after the last function
definition statement.

The format of the END statement is:

[label]END [user-information]

END must be preceded and followed by at least one blank.

END must start in column 2 if IPL TXT is included.

The LASTCARD statement is required only when an IBCDASDI job or a series of
stacked IBCDASDI jobs is followed by other statements on the control statement
input device. The LASTCARD statement must follow the last END statement
applying to an IBCDASDI job.

The format of the LASTCARD statement is:

LASTCARD

LASTCARD must be preceded by at least one blank space.

IBCDASDI Program 2-5

Operands

ADDLABEL

BYPASS

EXTENT

Applicable
Control
Statements

VLD

DADEF

GETALT

VTOCD

2-6 OS/VS2 MVS Utilities

Description of Operands/Parameters

ADDLABEL=n
specifies the total number of additional labels for which space is to be
allocated. The value of n can be 1 through 7.

Default: 0

BYPASS=YES
specifies that no .check is to be made for defective tracks.

If 2314: write standard RO on each track. No check will be made for
defective tracks.

If Buffered-log DASD: the BYPASS parameter is not applicable.

Default: NO

IF 2314:
If FLAGTEST=NO write HA and 7294 byte RO, then test (read RO).
Write HA and standard RO on each track.

If FLAGTEST= YES,. write 7294 byte RO then test (read RO). Write
standard RO on each track.

BYPASS=YES
Applicable only to 2314 and 3350 (native and compatibility modes);
causes an alternate track to be assigned without testing the track to be
flagged.

Default: BYPASS=NO

Test the track to be flagged and assign an alternate only if the test results
are in error (data check).

EXTENT =nnnn
specifies the length (number of tracks) of the VTOC.

Device VTOC Entries per Track

2314 25
2319 25
2305-1 18
2305-2 34
3330 39
3330-1 39
3340/3344 22
3350 47

Figure 2-2. VTOC Entries per Track

Operands

FLAGTEST

IPL

MODEL

NEWVOLID

OWNERID

Applicable
Control
Statements

DADEF

GETALT

DADEF

DADEF
GETALT

VLD

VLD

Description of Operands/Parameters

FLAGTEST={NO I YES}

If Buffered-log DASD: the FLAGTEST parameter is not applicable.

If 2314: FLAGTEST=NO specifies that all tracks will be tested whether
flagged defective or not. Write HA on each track if BYPASS=NO is also
specified.

Default: YES

If 2314: check for and maintain all flagged (defective) tracks by assigning
alternates.

If Buffered-log DASD: the FLAGTEST parameter is not applicable.

If 2314: FLAGTEST=NO specifies previously flagged tracks will be tested
before assigning alternates (see BYPASS).

Default: YES

If 2314: previously flagged tracks will remain flagged.

IPL={YES I NO}
specifies that an IPL program is to be written on the volume. An IPL
initialization program must be written on a device to be used for system
residence.

Default: No IPL program is written.

MODEL=n
specifies a decimal model number (1 or 2). This parameter corresponds
to the 2305-1 and 2305-2, respectively. MODEL is required when a
2305 is to be initialized.

NEWVOLID=serial
specifies a one- to six-character volume serial number.

OWNERJD=xxxxxxxxxx
specifies a one- to ten-character field that identifies the owner of the
volume.

Default: no identification given.

IBCDASDI Program 2-7

Operands

PASSES

STRTADR

TOADDR

TODEV

App6cable
Control
Statements

DADEF

GETALT

VTOCD

MSG
DADEF
GETALT

MSG

2-8 OS/VS2 MVS Utilities

Description of Operands/Parameters

PASSES=n

For 2314:
in checking for defective tracks. (n= 1 :255)

For 3330:
If PASSES=O, do a QUICK DASDI.
If PASSES=I, write RO on each track.
If PASSES> 1, write RO on each track 'n' times. No surface analysis is
performed.

For 3340:
If PASSES=O, do a QUICK DASDI.
If PASSES> = 1, test all flagged (defective) tracks and recover (unflag)
those that test okay. Write RO on each track.

For 3350:
If PASSES=O, do a QUICK DASDI.
If PASSES> = 1, write HA/RO on each track. Test all flagged tracks
and recover (unflag) those with no errors.

For 2314:
specifies the number of passes per track to be made in checking for
defective tracks. (n= 1 :255)

For Buffered-log DASD:
the PASSES parameter is not applicable.

STRT ADR=nnnnn
specifies the one- to five-byte decimal track address, relative to the
beginning of the volume, at which the VTOC is to begin. The VTOC
cannot occupy track 0 or any alternate track.

To improve performance when reading from and writing to the VTOC, it
is recommended that every VTOC end on the last track of a cylinder (a
cylinder boundary). This means that you should determine the starting
address for the VTOC by subtracting the number of tracks allocated to
the VTOC from the nearest larger track that ends on a cylinder
boundary. For example, if the VTOC requires 5 tracks on a 3336 disk
pack, which has 19 tracks per cylinder, the starting track should be
specified as track 14, so that the VTOC will end on track 18 (the last
track of the first cylinder).

TOADDR=cuu
specifies the channel number, c, and unit number, uu, of the message
output device (MSG), or the direct access device (for DADEF and
GETALT).

TODEV=xxxx
specifies the type of device to receive messages. All supported tape
drives (see Introduction - Device Support) and the following unit-record
devices: 1403, 1443, 1052,3203-4,3210,3215,3211 and 3800.

Operands

TRACK

Applicable
Control
Statements

DADEF
GETALT

GETALT

Description of Operands/Parameters

specifies the type of DASD device (see Introduction - Device Support for
proper device notation).

TRACK=cccchhhh
specifies the hexadecimal address of the track for which an alternate is
requested, where ecce is the cylinder number and hhhh is the head
number.

user-information JOB
END

[user-information]
specifies user explanation of action.

VOLID

VOLPASS

Restrictions:

DADEF
GETALT

VOLID={seriall SCRATCH}
specifies the volume serial number of the volume to which an alternate
track is to be assigned. If serial does not match the volume serial number
found on this volume, the operator is notified and the job is terminated.
SCRATCH specifies that no volume serial number check is to be made.

VLD VOLPASS={!! II}
specifies the value of the volume security bit.
o specifies that the volume is not security protected.
1 specifies that the volume is security protected.

• IBCDASDI should not be used to format Mass Storage System staging volumes
because the disk format written by this utility is incompatible with the disk
format required for staging volumes. IBCDASDI may be used to initialize a
pack that has been formatted for use as a staging pack. You must use the
DADEF option, PASSES=1, to re-initialize a staging,pack for normal system use.

• IBCDASDI does not support volumes with indexed VTOC, the IBM 3375, or the
IBM 3380. Refer to Device Support Facilities for information on initialization
and maintenance of such DASD volumes.

IBCDASDI Program 2-9

IBCDASDI Examples

IBCDASDI Example 1

2-10 OS/VS2 MVS Utilities

The examples that follow illustrate some of the uses of IBCDASDI. See the
IBCDASDI utility control statement descriptions for complete device dependent
information. Figure 2-3 can be used as a quick reference guide to IBCDASDI
examples. The numbers in the "Example" column point to examples that follow:

Note: Examples which use disk in place of actual device-ids, must be changed
before use. See the Device Support section, in the Introduction to this manual, for
valid device-id notation.

Operation

Initialize

Initialize

Initialize

Initialize

Initialize

Assign alternate
tracks

Comments

A disk volume is to be initialized with
surface analysis. (2305 and 2314 only)

A disk volume is to be initialized without
surface analysis. (2305 and 2314 only)

A disk volume to be used as the system
residence volume is to be initialized. An IPL
program is included in TXT format.

A 3350 volume is to be formatted for
compatible 3330-11 mode and initialized

A 3340 volume is to be initialized.
Flagged (defective) tracks are to be
tested and recovered if no (data check)
errors occur.

Three alternate tracks are to be assigned
on a disk volume.

Figure 2-3.IBCDASDI Example Directory

In this example, a 2305 volume is initialized with surface analysis.

INIT JOB 'INITIALIZE 2305'
MSG TODEV=1403,TOADDR=00E

Example

2

3

4

5

6

72

DADEF TODEV=2305,TOADDR=140,VOLID=SCRATCH,FLAGTEST=NO, C
MODEL=2
VLD NEWVOLID=111111

VTOCD STRTADR=40,EXTENT=8
END

The control statements are discussed below:

• JOB initiates the IBCDASDI job.

• MSG defines the 1403 on channel 0, unit OE, as the output message device.

• DADEF specifies that a 2305 volume on channel 1, unit 40, is to be initialized.
No check is to be made for previously flagged tracks.

IBCDASDI Example 2

IBCDASDI Example .1

• VLD specifies 111111 as the volume serial number of the volume to be
initialized.

• VTOCD specifies the starting address and length in tracks of the volume table of
contents.

In this example, a disk volume is initialized. No surface analysis is performed with
the initialization.

INIT INITIALIZE DISK
TODEV=1403,TOADDR=OOE

JOB
MSG

DADEF
VLD

VTOCD
END

TODEV=disk, TOADDR= 140, VOLID=SCRATCH, BYPASS=YES
NEWVOLID=230500
STRTADR=1,EXTENT=7

The control statements are discussed below:

• DADEF specifies that a disk volume is to be initialized and specifies the channel
and unit number. No check is to be made for the volume serial number or for
defective tracks.

• VLD specifies the volume serial number of the volume to be initialized.

• VTOCD specifies that the volume table of contents is to begin on track 1 and is
to extend over seven tracks. The VTOC terminates on the last track of the first
cylinder.

• END specifies the end of the IBCDASDI job.

In this example, a disk volume is initialized for later use as a system residence
volume. An IPL program is included in standard TXT format.

INIT JOB 'INITIALIZE DISK'
MSG TODEV=1403,TOADDR=00E

DADEF TODEv=d~k,TOADDR=150,IPL=YES,VOLID=SCRATCH
VLD NEWVOLID=P10000,OWNERID=BROWN,ADDLABEL=2

VTOCD STRTADR=2,EXTENT=7
IPLTXT

(IPL program text statements)

END

The control statements are discussed below:

• DADEF specifies that a disk volume is to be initialized and specifies the channel
number and unit number. An IPL program is to be included.

• VLD specifies a volume serial number and owner identification for the volume
to be initialized. It also specifies that space is to be allocated for two additional
labels.

• VTOCD specifies that the volume table of contents is to begin on track 2 and is
to extend over nine tracks.

• IPL TXT specifies the beginning of IPL program text statements.

• END specifies the end of IPL program text statements. Because IPL text is
included, END begins in column 2.

IBCDASDI Program 2-11

IBCDASDI Example 4

IBCDASDI Example 5

IBCDASDI Example 6

2-12 bS/VS2 MVS Utilities

In this example, a 3350 volume (in 3350 or 3330 format) will be reformatted to
compatible 3330-1 format. HA and RO fields will be rewritten. Each flagged
(defective) track encountered will be recovered.

INIT JOB
MSG

DADEF

VLD
VTOCD

END

'INITIALIZE 3350 TO 3330-1 FORMAT'
TODEV=1403,TOADDR=00E
TODEV=3330-1,TOADDR=360,VOLID=SCRATCH,
PASSES=1
NEWVOLID=333011
STRTADR=7675,EXTENT=19

The control statements are discussed below:

72

C

• DADEF specifies that a 3350 in 3330-1 compatibility mode is to be reformatted
to 3330-1 format and initialized. Flagged (defective) tracks will be tested and
recovered (unflagged) if no errors occur.

• VLD specifies 333011 as the volume serial numbet.

• VTOCD specifies a one cylinder VTOC in the center of the 3330-1 volume.

In this example, a 3344 volume will be initialized. Flagged (defective) tracks will be
tested and recovered (unflagged) if no errors occur. RO will be rewritten on each
track.

INIT JOB
MSG

DADEF

VLD
VTOCD

END

'INITIALIZE 3344'
TODEV=1403,TOADDR=00E
TODEV=3340,TOADDR=259,VOLID=SCRATCH,
PASSES=1,BYPASS=NO
NEWVOLID=3340AA
STRTADR=2,EXTENT=10

The control statements are discussed below:

• DADEF specifies a 3340 volume is to be initialized.

• VLD specifies 3340AA as the volume serial number.

• VTOCD specifies starting address and length of the volume table of contents.

72

C

In this example, three alternate tracks are assigned to a disk volume, without
reinitialization of the volume. The check for a defective track is bypassed when the
first two of the three tracks are assigned.

72
ALTRK JOB ASSIGN ALTERNATE TRACKS ON DISK

MSG TODEV=1052,TOADDR=009
STMT1 GETALT TODEV=disk, TOADDR=150, VOLID=P20000, C

BYPASS=YES,TRACK=006FOO01
STMT2 GETALT TODEV=d~k,TOADDR=150,VOLID=P20000, C

BYPASS=YES,TRACK=0091 0004
STMT3 GETALT TODEv=d~k,TOAADR=150, C

TRACK=004BOO07,VOLID=P20000
END

The control statements are discussed below:

• The first and second GETALT statements bypass the check for defective tracks.

• The third GET AL T statement causes the check for a defective track to be made
because BYPASS is not included.

IBCDASDI Program 2-13

-

mCDMPRSPROGRAM

Executing IBCDMPRS

Input and Output

IBCDMPRS is an independent utility used to dump and restore data on direct
access volumes.

The data contents of a direct access volume (all data except the home address) can
be dumped to supported DASD or tape volumes and restored to a direct access
volume that resides on the same type of device as the source volume. Both the
source volume and the volume to which data is to be restored must have been
initialized according to operating system specifications. mCDMPRS is useful for
preparing transportable copies and backup copies of direct access volumes.

IBCDMPRS cannot be used to dump or restore a staging volume. For further
information see OS/VS Mass Storage System (MSS) Services: General
Information.

IBCDMPRS is loaded as a card deck or as card images on tape. Control statements
for the requested program can follow the last card or card image of the program, or
can be entered on a separate input device. To execute IBCDMPRS:

1. Place the object program deck in the reader or mount the tape reel that contains
the object program.

2. Load the object program from the reader or tape drive by setting the load
selector switches and pressing the console LOAD key. When the program is
loaded, the wait state is entered and the address portion of the current PSW is
set to X'FFFF'.

3. Define the control statement input device in one of the following ways:

a. Press the REQUEST key of the console typewriter and, in response to the
message "DEFINE INPUT DEVICE", enter "INPUT =XXXX, cuu ". The xxxx
is the device type, c is the channel address, and uu is the unit address. The c

device type can be 1402, 2400, 2501, 2540, or 3505.

b. If the console typewriter is not available, enter at storage location 0110
(hexadecimal): 2cuu for a 2400 9-track tape unit; or Ocuu for a 2540 Card
Read Punch, 2501 card reader, 3410 tape, or 3420 tape. Press the console
INTERRUPT key.

4. Control statements are printed on the message output device. At the end of the
job, "END OF JOB" is printed on the message output device, and the program
enters the wait state with the address portion of the current PSW set to
X'EEEE'.

IBCDMPRS uses as input:

• A control data set, which contains utility control statements.

• A data set to be dumped to tape or to be restored to a direct access volume.

IBCDMPRS produces as output:

• A data set dumped to tape or a data set restored to a direct access volume.

• A message data set.

IBCDMPRS Program 3-1

Control
IBCDMPRS is controlled by utility control statements. Bl!cause mCDMPRS is an
independent utility, operating system job control statements are not used.

Utility Control Statements

JOB Statement

MSG Statement

DUMP Statement

3-2· OS/VS2 MVS Utilities

All utility control statement operands must be preceded and followed by one or
more blanks.

IBCDMPRS utility control statements are:

Statement

JOB

MSG

DUMP

VDRL

RESTORE

END

Use

begin an IBCDMPRS job.

Defines an output device for operator messages.

Identifies the volume to be dumped and the receiving volume.

Specifies the upper and lower track limits of a partial dump.

Identifies the source volume whose data is to be restored and the receiving
volume.

Indicates the end of an IBCDMPRS job.

Figure 3-1. IBCDMPRS Utility Control Statements

The JOB statement indicates the beginning of a job.

The format of the JOB statement is:

[label] JOB [user-information]

The MSG statement defines an output device for operator messages. It follows the
JOB statement and precedes any function definition statements.

The format of the MSG statement is:

[label] MSG TODEV=xxxx

, TOADDR=cuu

The DUMP statement is used to identify both the source volume whose contents
are to be dumped and the receiving volume. The data contents of the entire source
volume are dumped, including any data on alternate tracks. If both the source and
receiving volumes reside on the same type of direct access device, the receiving
volume is an exact replica of the source volume.

Dump time can be minimized by selecting devices assigned to different channels.
For example:

DUMP FROMDEV =3330,FROMADDR= 150, TODEV =2400, TOADDR=282

VDRL Statement

RESTORE Statement

END Statement

The format of the DUMP statement is:

[label] DUMP FROMDEV =xxxx

,FROMADDR=cuu

,TODEV =xxxx

,TOADDR=cuu

[,VOLID=serial [, serial]]

[,MODE=mm]

[,MODEL=n]

The VORL (volume dump/restore limits) statement is used to specify the upper
and lower limits of a partial dump. If a track within these limits has had an alternate
assigned to it, the data on the alternate track-is included in the dump. When the
VORL statement is used, it must be preceded by a DUMP statement and must be
followed by an END statement.

The format of the VDRL statement is:

[label] VDRL BEGIN = {nnnnn I g,}
[,END=nnnnn]

The RESTORE statement is used to identify both the source volume whose data
contents are to be restored and the receiving volume.

Note: IBCDMPRS can be used to restore a tape created by IEHDASDR.
Conversely, IEHDASDR can be used to restore a tape created by IBCDMPRS.

Restore time can be minimized by selecting devices assigned to different channels.
For example:

RESTORE FROMDEV =2400,FROMADDR=282, TODEV =3330, TOADDR= 150

The format of the RESTORE statement is:

[label] RESTORE FROMDEV =xxxx

,FROMADDR=cuu

,TODEV =xxxx

,TOADDR=cuu

, VOLID=serial

[,MODE=mm]

[,MODEL=n]

The END statement marks the end of job. It appears after the last function
definition statement.

The format of the END statement is:

[label] END [user-information]

IBCDMPRS Program 3-3

Operands

BEGIN

END

FROMADDR

FROMDEV

MODE

MODEL

Applicable
Control
Statements

VDRL

VDRL

DUMP
RESTORE

DUMP
RESTORE

DUMP
RESTORE

DUMP
RESTORE

3-4 OS/VS2 MVS Utilities

Description of Operands/Parameters

BEGIN={nnnnn I!!}
specifies a one- to five-byte relative decimal track address that identifies
the first t.-ack to be dumped.

Default: ?

END=nnnnn
specifies the relative decimal track address of the last track to be
dumped. If only one track is to be dumped, this address is the same as
the beginning address.

Default: the last track of the volume, excluding those tracks reserved as
alternates, is assumed to be the upper limit.

FROMADDR=cuu
specifies channel number, c, and unit number, uu, of the source d~vice.

FROMDEV=xxxx
specifies the type of the source device.

MODE=mm
specifies the bit density for data written to the receiving tape volume.
This parameter must match the mode specified when data was written to
the source volume. MODE should not be specified if the source or
receiving volumes are not tape or if MODE was not specified when data
was written to the source volume. This parameter is applicable to tape
units with density selections of 800, 1600, and 6250 bits per inch. Valid
modes for 7-track page are shown in Figure 3-2. (Only those modes that
set the data converter on are accepted.) For 9-track tape with density
selections of 800, 1600, and 6250 bits per inch, the mode settings are
CB,.C3, and D3, respectively. If the receiving device is not a tape unit,
the MODE parameter is ignored. If the receiving device is a tape device
but no mode is specified, the data is written at the highest density
supported by the device.

Mode Density Data

(mm) (bits per inch) Translator Converter Parity

13 200 Off On Odd

53 556 Off On Odd

93 800 Off On Odd

Figure 3-2. Valid 7-Track Tape Unit Modes in mCDMPRS

MODEL=n
specifies a decimal model number (lor 2) for a 2305. This parameter is
applicable only when a 2305 is specified.

Default: 2305-1 is assumed.

Operands

TOADDR

TODEV

App6cable
Control
Statements

MSG
DUMP
RESTORE

DUMP
RESTORE

MSG

user-information JOB
END

VOLID DUMP
RESTORE

Description of Operands/Parameters

TOADDR=cuu
specifies the channel number, c, and unit number, uu, of the message
output device (MSG) or the receiving device (DUMP and RESTORE).

TODEV=xxxx
specifies the type of the receiving device. For RESTORE, this device
type must be compatible with the device originally contained in the
volume. If the receiving device is a tape unit and no MODE parameter is
specified, the data is written at the highest density supported by the
device. (For 7-track tape, the default mode is 93.)

TODEV=xxx
specifies the type of device to receive messages. All supported tape
drives (see Introduction-Device Support) and the following unit-record
devices: 1403, 1443, 1052, 3203-4, 3210, 3215, 3211, and 3800.

[user-information 1
specifies user explanation of action, and comments

VOLID=serial [,serial l ...
specifies the volume serial numbers of the receiving volumes. VOLID is
required when the receiving volume has a standard label. If serial does
not match the volume serial number found on the receiving volume, the
operator is notified and the job is terminated. If VOLID is not specified
and the receiving volume contains a volume serial number, the operator
is notified.

IBCDMPRS Program 3-5

Restrictions: IBCDMPRS does not support volumes with indexed VTOC, the
IBM 3375, or the IBM 3380. Refer to Data Facility/Data Set Services: User's Guide
and Reference for information on this support.

mCDMPRS Examples
The examples that follow illustrate some of the uses of IBCDMPRS. Figure 3-3 can
be used as a quick reference guide to the examples. The numbers in the "Example"
column point to examples that follow.

Operation

DUMP

RESTORE

Comments

A direct access volume is to be
dumped to a tape volume.

A data set dumped to tape is to be

Devices

disk, tape

restored to a direct access volume. disk, tape

Figure 3-3. IBCDMPRS Example Directory

Example

2

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

IBCDMPRS Example 1

In this example, a direct access volume is dumped to a tape volume:

DUMP

END

JOB
MSG

DUMP

DUMP DISK ONTO TAPE
TODEV=3210,TOADDR=009
FROMDEV=diskFROMADDR=150,
TODEV=mpe,TOADDR=280

IBCDMPRS Example 2

3-6 OS/VS2 MVS Utilities

In this example, dumped data is restored to a direct access volume:

RESTORE JOB
MSG

RESTORE

END

RESTORE DISK FROM TAPE
TODEV=3210,TOADDR=009
FROMDEV=tape,FROMADDR=280,TODEv=disk,
TOADDR=150,VOLID=PZ1111

72

c

72

c

ICAPRTBL PROGRAM

Executing lCAPRTBL

Input and Output

ICAPRTBL is an independent utility used to load the Universal Character Set
(UCS) buffer and the forms control buffer (FeB) for an mM 3211 or 3203-4
Printer.

ICAPRTBL is used when the 3211/3203-4 is assigned as the output portion of a
composite console and an unsuccessful attempt has been made to initialize the
operating system because the UCS and FCB buffers contain improper bit patterns.
ICAPRTBL is used to properly load the buffers so the operating system can be
initialized.

Note: When an operabb console printer keyboard is available, the buffers are
loaded under the control of the operating system.

ICAPRTBL must be loaded from a card reader. Control statements must follow the
last card of the program. Only one printer can be initialized each time the program
is executed.

To execute ICAPRTBL:

1. Mount the correct train on the printer and ready the printer.

2. Place the object program deck and the control cards in the card reader. Ready
the reader and press the END OF FILE key.

3. Load the object program from the reader by setting the load selector switches
and pressing the console LOAD key.

Wait state codes will be displayed in the address portion of the PSW for normal
termination and for input/output, system or control card errors. Code B01 is issued
for normal termination; B02 through B07 are issued for control card errors; BOA
through BOC are issued for system errors; and B11 through BlD are issued for
input/ output errors. Figure 4-1 shows these codes and their meanings.

Code Meaning Code Meaning

BOI Visually check the train image B12 Reader not ready.
printed on the 3211/3203-4. B13 Reader unit check (display low

B02 Missing control card or main storage location 2 through
control card out of order. 7 for sense information).

B03 Incorrect JOB statement. B14 Reader channel error.
B04 Incorrect DFN statement. B15 No device end on reader.
B05 Incorrect UCS statement. B19 Printer not online.
B06 Incorrect FCB statement. BIA Printer not ready.
B07 Incorrect END statement. BIB Printer unit check (display low
BOA External interrupt. virtual storage location 2 through
BOB Program check interrupt. 7 for sense information).
BOC Machine check interrupt. BIC Printer channel error.
Bll Reader not online. BID No device end on printer.

Figure 4-1. ICAPRTBL Wait-State Codes

ICAPRTBL uses as input utility control statements that contain images to be
loaded into the Universal Character Set and/or Forms Control Buffer. ICAPRTBL
produces as output properly loaded UCS and FCB buffers.

ICAPRTBL Program 4-1

Control
ICAPRTBL is controlled by utility control statements. Because ICAPRTBL is an
independent utility, operating system job control statements are not used.

Utility Control Statements

JOB Statement

DFN Statement

UCS Statement

FCB Statement

4--2 OS/VS2 MVS Utilities

All utility control· statement operands must be preceded and followed by one or
more blanks.

ICAPRTBL utility control statements are:

Statement

JOB

DFN

UCS

FCB

END

Use

Indicates the beginning of an ICAPRTBL job.

Defines the address of the 3211 or 3203-4.

Contains an image of the characters to be loaded into the UCS buffer.

Defines the image to be loaded into the FCB.

Indicates the end of an ICAPRTBL job.

Figure 4-2. ICAPRTBL Utility Control Statements

The JOB statement indicates the beginning of an ICAPRTBL job.

The format of the JOB statement is:

[label] JOB [user-information]

The DFN statement is used to define the address of the 3211 or 3203-4, to specify
that lowercase letters are to be printed in uppercase when the lowercase print train
is not available, and to identify UCS and FCB image-ids.

The format of the DFN statement is:

DFN ADDR=cuu, [FOLD={Y I N}] [,DEVT={3211 I 3203-4}] [,UCS=ucsname]
[,FCB=fcbname] --

The UCS statement contains an image to be loaded into the UCS buffer.

The format of the UCS statement is:

[ucsname] UCS ucs-image

The FCB statement defines the image to be loaded into the forms control buffer.
The FCB statement may precede or follow the UCS statement.

The format of the FCB statement is:

ffcbname] FCB LPI= {6 I 8}

,LNCH=«I, c)[,(/, c ,) ...])

,FORMEND=x

END Statement

The END statement signals the end of the ICABPRTBL job.

The format of the END statement is:

[label] END [user-information]

ICAPRTBL Program 4-3

Operands

ADDR

DEVT

FCB

FOLD

FORMEND

LNCH

LPI

App6cable
Control
Statements

DFN

DFN

DFN

DFN

FCB

FCB

FCB

4-4 OS/VS2 MVS Utilities

Description of Operands/Parameters

ADDR=cuu
specifies the channel number, c, and unit number, UU, of the 3211.

DEVT={321113203-4}
specifies the device type for which the ADDR parameter addresses.

FCB = {fcbname I STD I STD2}
specifies a one- to eight-character name of the image loaded into the
forms control buffer. The actual image loaded into the buffer is not
affected by this name, but serves as a meaningful reference when printed
on the printer, fcbname should be the same as the FCB image being
used.

FOLD={YI~J
specifies whether lowercase letters are to be printed as uppercase letters
when the lowercase print train is not available. These values can be
coded:

Y

N

specifies that lowercase letters are to be printed as uppercase letters
when the lowercase print train is not available.

specifies that lowercase letters are not to be printed as uppercase
letters.

FORMEND=x
specifies the number of lines (maximum 180) on the printer form. For an
11 inch form, spacing six lines per inch, x must be 66.

LNCH=«I,c)[,(l,c) ...])
specifies the channels of the FCB image. Each set of parentheses must
contain the line number (1-180), a comma, and the channel number
(1-12) to be assigned to that line. One or all of the 12 channels may be
assigned in any order. Each set must be separated by commas and the
entire group surrounded by parentheses.

LPI={618}
specifies the number of lines per inch that will be printed on the
document. These values can be coded:

6
specifies that six lines per inch will be printed.

8
specifies that eight lines per inch will be printed.

Operands

ues

ucs-image

Applicable
Control
Statements

DFN

ues

user-information JOB
END

Description of Operands/Parameters

ues= {ucsname I AN I All}
is a one- to eight-character alphameric name of the image loaded into the
ues buffer. This name is printed on the printer to serve as a reference to
the print train being used.

AN
is the default for 3203-4 devices.

All
is the default for 3211 devices.

ucs-image
specifies characters to be loaded into the DeS buffer. The characters
must be contained in columns 16 through 71. The first ues statement
contains the first 56 characters; subsequent statements contain
continuations of the image to be loaded into the DeS buffer.

[user-information]
specifies user explanation of action and comments.

ICAPRTBL Program 4-5

ICAPRTBL Examples
The examples that follow illustrate some of the uses of ICAPRTBL. Figure 4-3 can
be used as a quick reference guide to the examples. The numbers in the "Example"
column point to examples that follow.

Devices

3211

3211

3203-4

3203-4

Example

2

3

4

Figure 4-3. ICAPRTBL Example Directory

lCA.PRTBL Example 1

JOB
DFN

A 11 UCS

STD2 FCB

END

In this example, a 3211 DeS image (All) and an FCB image are loaded into the
DCS and FeB buffers.

72
LOAD A 1 1 IMAGE
ADDR=002,FOLD=N

1<.=IHGFEDCBA*$~RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGF
EDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGFEDCBA*$­
RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGFEDCBA*$-RQPONMLK
J%,&ZYXWVUTS/@#0987654321<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXW
VUTS/@#0987654321<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0
987654321<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/23098765432
1<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGF
EDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#098765432
LPI=6,
LNCH=((4, 1), (10,2) , (16,3) , (22,4) , (28,5) , (34,6) , (40, 7) ,
(46,8) , (52, 10) , (58, 11) , (64, 12) , (66,9)) ,
FORMEND=66

The control statements are discussed below:

• DFN specifies the channel and unit number of the 3211 and specifies that
lowercase letters are not to be printed as uppercase letters when the lowercase
print train is not available.

• DeS specifies the characters to be loaded into the DeS buffer.

• FeB specifies the values to be loaded into the forms control buffer.

C
C
C

lCA.PRTBL Example 2

4-6 OSjVS2 MVS Utilities

In this example, a 3211 DeS image (P1l) and an mM standard FeB image are
loaded into the DeS and FCB buffers by specifying images via the DeS and FCB
parameter of the DFN statement.

JOB LOAD 3211 P11 IMAGE
DFN UCS=P11,ADDR=004,FCB=STD1
END

The DFN control statement is discussed below:

• By omitting the DEVT parameter, the default device type is 3211.

• The DeS parameter specifies the DeS image-id to be loaded into the DeS
buffer from standard image tables provided by the utility.

(

ICAPRTBL Example 3

ICAPRTBL Example 4

• The ADDR parameter specifies the channel and unit number of the 3211.

• By omitting the FOLD parameter, the default FOLD value N is selected,
specifying that lowercase letters are not to be printed as uppercase letters when
the lowercase print train is not available.

• The FCB parameter specifies the standard FCB image-id (SID 1) to be loaded
into the FCB buffer from standard image tables provided by the utility.

In this example, a 3203-4 UCS image (AN by default) and a standard FCB image
(STD2 by default) are loaded into the UCS and FCB buffers.

JOB
DFN DEVT=3203-4,ADDR=002
END

The DFN statement is discussed below:

• The DEVT parameter specifies the device type as 3203-4.

• The ADDR parameter specifies the channel and unit number of the 3203.

• By omitting the FOLD parameter, the default FOLD value N is selected
specifying that lowercase letters are not to be printed as uppercase letters when
the lowercase print train is not available.

• By omitting both a UCS statement and the UCS parameter, the default 3203
UCS image (AN) is loaded into the UCB buffer from standard image tables
provided by the utility.

• By omitting both an FCB statement and the FCB parameter, the default FCB
image (STD2) is loaded into the FCB buffer from standard image tables
provided by the utility.

In this example, a 3203-4 UCS image (AN by default) and a provided FCB image
are loaded, respectively, into the UCS and FCB buffers.

72
JOB 3203-4 AN USER FCB

USER FCB FORMEND=88,LPI=8,LNCH=((4,1),(12,2), C
(20,3) , (28,4) , (36,5) , (44,6) , (52, 7) , C
(60,8) , (68, 10) , (76, 11) , (84, 12) , (88,9))

DFN FOLD=Y, C
FCB=STD1, C
ADDR=003, C
DEVT=3203-4

END

The control statements are discussed below:

• The FCB statement specifies the values to be loaded into the forms control
buffer.

• The specification of the FCB parameter on the DFN statement is overridden by
the FCB statement specification.

• The DEVT parameter of the DFN statement specifies the device type as 3203.

• The ADDR parameter specifies the channel and unit number of the 3203.

• The FOLD parameter specifies that lowercase letters are to be printed as
uppercase letters when the lowercase print train is not available.

ICAPRTBL Program 4-7

4-8 OS/VS2 MVS Utilities

• By omitting both a ues statement and the ues parameter of the DFN
statement, the default 3203-4 ues image (AN) is loaded from standard image
tables provided by the utility.

IEBCOMPR PROGRAM

IEBCOMPR is a data set utility used to compare two sequential or two partitioned
data sets at the logical record level to verify a backup copy. Fixed, variable, or
undefined records from blocked or unblocked data sets or members can also be
compared.

Two sequential data sets are considered equal, that is, are considered to be
identical, if:

• The data sets contain the same number of records, and,

• Corresponding records and keys are identical.

If these conditions are not met, an unequal comparison results. If records are
unequal, the record and block numbers, the names of the DD statements that
define the data sets, and the unequal records are listed in a message data set. Ten
successive unequal comparisons terminate the job step unless a user routine is
provided to handle error conditions.

Two partitioned data sets are considered equal if:

• Corresponding members contain the same number of records.

• Note lists are in the same position within corresponding members.

• Corresponding records and keys are identical.

If these conditions are not met, an unequal comparison results. If records are
unequal, the record and block numbers, the names of the DD statements that
define the data sets, and the unequal records are listed in a message data set. After
ten successive unequal comparisons, processing continues with the next member
unless a user routine is provided to handle error conditions.

Partitioned data sets can be compared only if all the names in one or both of the
directories have counterpart entries in the other directory. The comparison is made
on members identified by these entries and corresponding user data.

Figure 5-1 shows the directories of two partitioned data sets. Directory 2 contains
corresponding entries for all the names in Directory 1; therefore, the data sets can
be compared.

Directory 1
ABCDGL

Figure 5-1. Partitioned Directories Whose Data Sets Can Be Compared Using IEBCOMPR

Figure 5-2 shows the directories of two partitioned data sets. Each directory
contains a name that has no corresponding entry in the other directory; therefore,
the data sets cannot be compared, and the job step is terminated.

User exits are provided for optional user routines to process user labels, handle
error conditions, and modify source records. See "Appendix A: Exit Routine
Linkage" for a discussion of the linkage conventions to be followed when user
routines are used.

IEBCOMPR Program 5-1

Input and Output

Control

Job Control Statements

5-2 OS/VS2 MVS Utilities

Directory 1
ASCFHIJ

Figure 5-2. Partitioned Directories Whose Data Sets Cannot Be Compared Using IEBCOMPR

At the completion or termination of IEBCOMPR, the highest return code
encountered within the program is passed to the calling program.

IEBCOMPR uses the following input:

• Two sequential or two partitioned data sets to be compared.

• A control data set that contains utility control statements. This data set is
required if the input data sets are partitioned or if user routines are used.

IEBCOMPR produces as output a message data set that contains informational
messages (for example, the contents of utility control statements), the results of
comparisons, and error messages.

IEBCOMPR provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 08, which indicates an unequal comparison. Processing continues.

• 12, which indicates an unrecoverable error. The job step is terminated.

• 16, which indicates that a user routine passed a return code of 16 to
IEBCOMPR. The job step is terminated.

IEBCOMPR is controlled by job control statements and utility control statements.
The job control statements are required to execute or invoke IEBCOMPR and to
define the data sets that are used and produced by IEBCOMPR. The utility control
statements are used to indicate the input data set organization (that is, sequential or
partitioned), to identify any user routines that may be provided, and to indicate
whether user labels are to be treated as data.

Figure 5-3 shows the job control statements necessary for using IEBCOMPR.

One or both of the input data sets can be passed from a preceding job step.

Input data sets residing on different device types can be compared. Input data sets
with a sequential organization written at different densities can also be compared.

Statement

JOB

EXEC

Use

Initiates the job.

Specifies the program name (PGM=IEBCOMPR) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set, which can be written to a system output
device, a tape volume, or a direct access volume.

SYSUTI DD

SYSUT2DD

SYSINDD

Defines an input data set to be compared.

Defines an input data set to be compared.

Defines the control data set or specifies DUMMY if the input data sets are
sequential and no user routines are provided. The control data set normally
resides in the input stream; however, it can be defined as a member within a
library of partitioned members.

Figure 5-3. IEBCOMPR Job Control Statements

Utility Control Statements

COMPARE Statement

EXITS Statement

The utility control statements used to control IEBCOMPR are:

Statement Use

Indicates the organization of a data set.

Identifies user exit routines to be used.

COMPARE

EXITS

LABELS Indicates whether user labels are to be treated as data by
IEBCOMPR.

Figure 5-4. IEBCOMPR Utility Control Statements

The COMPARE statement is used to indicate the organization of data sets to be
compared.

The COMPARE statement, if included, must be the first utility control statement.
COMP ARE is required if the EXITS or LABELS statement is used or if the input
data sets are partitioned data sets.

The format of the COMPARE statement is:

[label] COMPARE TYPORG= IPS I PO}

The EXITS statement is used to identify any user exit routines to be used. The
EXITS statement is required if a user exit routine is to be used. If more than one
valid EXITS statement is included, all but the last EXITS statement are ignored.
For a discussion of the processing of user labels as data set descriptors, see
"Appendix D: Processing User Labels."

The format of the EXITS statement is:

[label] EXITS [INHDR=routinename]

[,INTLR=routinename]

[,ERROR=routinename]

[,PRECOMP=routinename]

IEBCOMPR Program 5-3

LABELS Statement

5-4 OS/VS2 MVS Utilities

The LABELS statement specifies whether user labels are to be treated as data by
IEBCOMPR. For a discussion of this option, refer to "Processing User Labels as
Data" in "Appendix D: Processing User Labels."

The format of the LABELS statement is:

[label] LABELS [DATA = {YES I NO I ALL I ONLY}]

Note: LABELS DAT A= NO must be specified to make standard user label (SUL)
exits inactive when input/output data sets with nonstandard labels (NSL) are to be
processed.

If more than one valid LABELS statement is included, all but the last LABELS
statement are ignored.

Applicable
Control

~. Operands Statements)

DATA LABELS

ERROR EXITS

INHDR EXITS

INTLR EXITS

PRECOMP EXITS

TYPORG COMPARE

Description of Operands/Parameters

DATA = {YES I NO I ALL I ONLY}
specifies whether user labels are to be treated as data. The values that
can be coded are:

YES
specifies that any user labels that are not rejected by a user's label
processing routine are to be treated as data. Processing of labels as data
stops in compliance with standard return codes.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that user labels are to be treated as data regardless of any return
code. A return code of 16 causes IEBCOMPR to complete processing of
the remainder of the group of user labels and to terminate the job step.

ONLY
specifies that only user header labels are to be treated as data. User
header labels are processed as data regardless of any return code. The
job terminates upon return from the OPEN routine.

ERROR=routinename
specifies the symbolic name of a routine that is to receive control after
each unequal comparison for error handling. If this parameter is omitted
and ten consecutive unequal comparisons occur while IEBCOMPR is
comparing sequential data sets, processing is terminated; if the input data
sets are partitioned, processing continues with the next member.

INHDR=routinename
specifies the symbolic name of a routine that processes user input header
labels.

INTLR=routinename
specifies the symbolic name of a routine that processes user input trailer
labels.

PRECOMP=routinename
specifies the symbolic name of a routine that processes logical records
(physical blocks in the case of VS or VBS records longer than 32K
bytes) from either or both of the input data sets before they are
compared.

TYPORG={PS I PO}
specifies the organization of the input data sets. The values that can be
.coded are:

PO
specifies that the input data sets are partitioned data sets.

PS
specifies that the input data sets are sequential data sets.

IEBCOMPR Program 5-5

Restrictions

• The SYSPRINT DD statement must be present for each use of IEBCOMPR.

• The SYSIN DD statement is required.

• The logical record lengths of the input data sets must be identical; otherwise,
unequal comparisons result. The block sizes of the input data sets can differ;
however, block sizes must be multiples of the logical record length.

• The block size specified in the SYSPRINT DD statement must be a multiple of
121. The block size specified in the SYSIN DD statement must be a multiple of
80.

IEBCOMPR Examples
The examples that follow illustrate some of the uses of IEBCOMPR. Figure 5-5
can be used as a quick reference guide to IEBCOMPR examples. The numbers in
the "Example" column point to examples that follow. Note: Examples which use
disk or tape in place of actual device-ids, must be changed before use. See
the Device Support section, in the Introduction to this manual, for valid device-id
notation.

Data Set
Operation Organization Devices Comments

COMPARE Sequential 9-track Tape No user routines. Blocked input.

COMPARE Sequential 7-track Tape No user routines. Blocked input.

COMPARE Sequential 7-track and User routines. Blocked input.
9-track Tape Different density tapes.

COMPARE Sequential Card Reader, No user routines. Blocked input.
9-track Tape

COMPARE Partitioned Disk No user routines. Blocked input.

COpy (using Sequential 9-track Tape No user routines. Blocked input.
IEBCOPY) Two job steps; data sets are
and COMPARE passed to second job step.

COpy (using Partitioned Disk User routine. Blocked input.
IEBCOPY) and Two job steps; data sets are
COMPARE passed to second job step.

Figure 5-5.IEBCOMPR Example Directory

Example

2

3

4

5

6

7

IEBCOMPR Example 1

5-6 OS/VS2 MVS Utilities

In this example, two sequential data sets that reside on 9-track tape volumes are to
be compared.

IITAPETAPE JOB 09#660,SMITH
II EXEC PGM=IEBCOMPR
IISYSPRINT DD SYSOUT=A
IISYSUTl DD UN I T=tape ,LABEL=(,NL) ,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DD UNIT=wpe,LABEL=(,NL),DISP=(OLD,KEEP),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=1040),
II VOLUME=SER=001235
IISYSIN DD DUMMY
1*

Because no user routines are to be used and the input data sets have a sequential
organization, utility control statements are not used.

The control statements are discussed below:

• SYSUTI DD defines an input data set, which resides on an unlabeled, 9-track
tape volume. The blocked data set was originally written at a density of 800 bits
per inch.

• SYSUT2 DD defines an input data set, which resides on an unlabeled, 9-track
tape volume. The blocked data set was originally written at a density of 800 bits
per inch.

• SYSIN DD defines a dummy data set.

IEBCOMPR Example 2

In this example, two sequential data sets that reside on 7 -track tape volumes are to
be compared.

IITAPETAPE JOB 09#660,SMITH
II EXEC PGM=IEBCOMPR
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=SET1,LABEL=(2,SUL),DISP=(OLD,KEEP),
II VOL=SER=001234,DCB=(DEN=2,RECFM=FB,LRECL=80,
II BLKSIZE=2000,TRTCH=C),UNIT=2400
IISYSUT2 DD DSNAME=SET1,LABEL=(,SUL),DISP=(OLD,KEEP),
II VOL=SER=001235,DCB=(DEN=2,RECFM=FB,LRECL=80,
II BLKSIZE=2000,TRTCH=C),UNIT=2400
IISYSIN DD *

1*

COMPARE TYPORG=PS
LABELS DATA=ONLY

The control statements are discussed below:

• SYSUTI DD defines an input data set, which resides on a labeled, 7 -track tape
volume. The blocked data set was originally written at a density of 800 bits per
inch with the data converter on.

• SYSUT2 DD defines an input data set, which is the first or only data set on a
labeled, 7 -track tape volume. The blocked data set was originally written at a
density of 800 bits per inch with the data converter on.

• SYSIN DD defines the control data set, which follows in the input stream.

• COMPARE specifies that the input data sets are sequentially organized.

• LABELS specifies that only user header labels are to be compared.

IEBCO MPR Program 5-7

IEBCOMPR Example 3

In this example, two sequential data sets written at different densities on different
device types are to be compared.

IITAPETAPE JOB 09#660,SMITH
II EXEC PGM=IEBCOMPR
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=SET1,LABEL=(,SUL),DISP=(OLD,KEEP),
II VOL=SER=001234,DCB=(DEN=1,RECFM=FB,LRECL=80,
II BLKSIZE=320,TRTCH=C),UNIT=2400
IISYSUT2 DD DSNAME=SET2,LABEL=(,SUL),DISP=(OLD,KEEP),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=640),UNIT=wpe
II VOLUME=SER=001235
IISYSIN DD *

1*

COMPARE TYPORG=PS
EXITS

LABELS
INHDR=HDRS,INTLR=TLRS
DATA=NO

The control statements are discussed below:

• SYSUTI DD defines an input data set, which is the first or only data set on a
labeled, 7 -track tape volume. The blocked data set was originally written at a
density of 556 bits per inch with the data converter on.

• SYSUT2 DO defines an input data set, which is the first or only hlocked data set
on a laheled tape volume.

• SYSIN DD defines the control data set, which follows in the input stream.

• COMP ARE specifies that the input data sets are sequentially organized.

• EXITS identifies the names of routines to be used to process user input header
labels and trailer labels.

• LABELS specifies that the user input header and trailer labels are not to be
compared.

lEBCOMPR Example 4

5-8 OS/VS2 MVS Utilities

In this example, two sequential data sets (card input and tape input) are to be
compared.

IICARDTAPE JOB 09#660,SMITH
II EXEC PGM=IEBCOMPR
IISYSPRINT DD SYSOUT=A
IISYSIN DD DUMMY
IISYSUT2 DD UNIT=wpe,VOLUME=SER=001234,LABEL=(,NL),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),DISP=(OLD,KEEP)
IISYSUT1 DD DATA

(input card data set)

1*
The control statements are discussed below:

• SYSIN DD defines a dummy control data set. Because no user routines are
provided and the input data sets are sequential, utility control statements are not
used.

• SYSUT2 DD defines an input data set, which resides on an unlabeled, 9-track
tape volume. The blocked data set was originally written at a density of 800 bits
per inch.

• SYSUTI DD defines an input data set (card input).

)

lEBCOMPR Example 5

In this example" two partitioned data sets are to be compared.

IIDISKDISK JOB 09#660,SMITH
II EXEC PGM=IEBCOMPR
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=PDSSET, UN I T=disk ,DISP=SHR,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=PDSSET, UN I T=disk ,DISP=SHR,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
II VOLUME=SER=111113
IISYSIN DD *

COMPARE TYPORG=PO
1*
The control statements are discussed below:

• SYSUTI DD defines an input partitioned data set. The blocked data set resides
on a disk volume.

• SYSUT2 DD defines an input partitioned data set. The blocked data set resides
on a disk volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set consists of one utility control statement.

lEBCOMPR Example 6

In this example, a sequential data set is to be copied and compared in two job steps.

IITAPETAPE JOB 09#660,SMITH
IISTEPA EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSN=COPYSET,UNIT=tape,DISP=(OLD,PASS),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=640),LABEL=(,SL),
II VOLUME=SER=001234
IISYSUT2 DD DSNAME=COPYSET,DISP=(,PASS),LABEL=(,SL),
I I DCB=(RECFM=FB, LRECL=80, BLKSIZE=640), UN I T=tape
II VOLUME=SER=001235
IISYSIN DD DUMMY
1*
IISTEPB
IISYSPRINT
IISYSUTl
IISYSUT2
IISYSIN
1*

EXEC PGM=IEBCOMPR
DD SYSOUT=A
DD DSNAME=*.STEPA.SYSUT1,DISP=(OLD,KEEP)
DD DSNAME=*.STEPA.SYSUT2,DISP=(OLD,KEEP)
DD DUMMY

The first job step copies the data set and passes the original and copied data sets to
the second job step. The second job step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed below:

• SYSUTI DD defines an input data set passed from the preceding job step. The
data set resides on a labeled, 9-track tape volume. The blocked data set was
originally written at a density of 800 bits per inch.

• SYSUT2 DD defines an input data set passed from the preceding job step. The
data set, which was created in the preceding job step, resides on a labeled,
9-track tape volume. The blocked data set was originally written at a density of
800 bits per inch.

• SYSIN DD defines a dummy control data set. Because the input is sequential
and no user exits are provided, no utility control statements are required.

IEBCOMPR Program 5-9

IEBCOMPR Example 7

5-\ 0 OS/VS2 MVS Utilities

In this example, a partitioned data set is to be copied and compared in two job
steps.

The example follows:

IIDISKDISK JOB 09#660,SMITH
IISTEPA EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=OLDSET,UNIT=d~k,DISP=SHR,
II VOLUME=SER=111112,DCB=(RECFM=FB,LRECL=80,
II BLKSIZE=640)
IISYSUT2 DD DSNAME=NEWMEMS, UNIT=disk, DISP=(, PASS),
II VOLUME=SER=111113,SPACE=(TRK,(5,5,5)),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=640)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
I/SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSIN DD *

1*

COpy OUTDD=SYSUT2,INDD=SYSUT1
SELECT MEMBER=(A,B,D,E,F)

IISTEPB EXEC PGM=IEBCOMPR
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=OLDSET,DISP=(OLD,KEEP)
IISYSUT2 DD DSNAME=NEWMEMS,DISP=(OLD,KEEP)
IISYSIN DD *

1*

COMPARE TYPORG=PO
EXITS ERROR=SEEERROR

The first job step copies the data set and passes the original and copied data sets to
the second job step. The second job step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed below:

• SYSUT 1 DD defines a blocked input data set that is passed from the preceding
job step. The data set resides on a disk volume.

• SYSUT2 DD defines a blocked input data set that is passed from the preceding
job step. The data set resides on a disk volume.

• SYSUT3 and SYSUT4 define temporary system data sets to be used for work
files if needed.

• SYSIN DD defines the control data set, which contains a COMPARE statement
and an EXITS statement.

• COMPARE specifies partitioned organization.

• EXITS specifies that a user routine, SEEERROR, is to be used.

Because the input data set names are not identical, the data sets can be retrieved by
their data set names.

IEBCOPY PROGRAM

IEBCOPY is a data set utility used to copy one or more partitioned data sets or to
merge partitioned data sets. A partitioned data set which is copied to a sequential
data set is said to be 'unloade~'. The sequential data set created by an unload
operation can be copied to any direct access device. When one or more data sets
created by an unload operation are used to re-create a partitioned data set, this is
called a 'load' operation. Specific members of a partitioned or unloaded data set
can be selected for, or excluded from, a copy, unload, or load process.

IEBCOPY can be used to:

• Create a backup copy of a partitioned data set.

• Copy one or more data sets per copy operatjon.

• Copy one partitioned data set to a sequential data set (unload).

• Copy one or more data sets created by an unload operation to any direct access
device (load).

• Select members from a data set to be copied, unloaded, or loaded ..

• Replace identically named members on data sets (except when unloading).

• Replace selected data set members.

• Rename selected members.

• Exclude members from a data set to be copied, unloaded, or loaded.

• Compress partitioned data sets in place (except when the data set is an unloaded
data set).

• Merge data sets (except when unloading).

• Re-create a data set that has exhausted its primary, secondary, or directory space
allocation.

In addition, IEBCOPY automatically lists the number of unused directory blocks
and the number of unused tracks available for member records in the output
partitioned data set. If LIST=NO is coded (see "COpy Statement"), the names of
copied, unloaded, or loaded members listed by the input data set are suppressed.

Copying Members That Have Aliases

When copying members that have aliases, the following should be noted:

• When the main member and its aliases are copied, they exist on the output
partitioned data set in the same relationship they had on the input partitioned
data set.

• When members with alias names are copied using the SELECT or EXCLUDE
member option, those aliases that are to be selected or excluded must be
explicity named.

The rules for replacing or renaming members apply to both aliases and members;
no distinction is made between them. Note, however, that the replace option (on
the SELECT statement) does not apply to an unload operation.

At the completion or termination of the program, the highest return code
encountered within the program is passed to the calling program.

IEBCOPY Program 6-1

Creating a Backup Copy

Copying Data Sets

IEBCOPY can be used to create a backup copy of a data set by copying
(unloading) it to a sequential data set. A partitioned data set can be totally or
partially unloaded to any tape volume or direct access device supported by BSAM.
A data set is unloaded when physical sequential organization space allocation is
specified for the output data set on a direct access device or when the output data
set is a tape volume. To unload more than one partitioned data set to the same
volume in one execution of IEBCOPY, multiple copy operations must be used and
multiple sequential data sets must be allocated on the same volume.

A data set with a physical sequential organization resulting from an unload
operation can, in turn, be copied.

IEBCOPY can be used to copy a partitioned data set, totally or in part, from one
direct access volume to another. In addition, a data set can be copied to its own
volume, provided its data set name is changed. If the data set name is not changed,
the data set is compressed in place.

Note that copied members are not reordered. Members are copied in the order in
which they exist on the original data set. If the members are to be reordered,
IEHMOVE can be used for the copy operation (see "IEHMOVE Program").

Copying or Loading Unloaded Data Sets

Data sets can be copied or loaded, totally or in part, from one or more direct access
volumes or tape volumes to a single direct access volume. To copy or load more
than one input partitioned data set, specify more than one input data set with the
COpy statement. The input data sets are copied or loaded in the order in which
they are specified.

Selecting Members to be Copied, Unloaded, or Loaded

6-2 OS/VS2 MVS Utilities

Members can be selected from one or more input data sets. Selected members can
be copied, unloaded, or loaded from the input data sets specified on the INDD
statement preceding a SELECT statement.

Selected members are searched for in a low-to-high (a-to-z) collating sequence,
regardless of the order in which they are specified; however, they are copied in the
same physical sequence in which they appear on the input partitioned data set.

Once a member of a dataset has been found, no search is made for it on any
subsequent input data set. Similarly, when all of the selected members are found,
the copy or load step is terminated even though all of the input data sets may not
have been searched. For example, if members A and B are specified and A is found
on the first of three input data sets, it is not searched for again; if B is found on the
second input data set, the copy or load operation is successfully terminated after
the second input data set has been processed, although both A and B may also exist
on the third input data set.

However, if the first membername is not found on the first input dataset, the search
for that member stops and the first dataset is searched for the second member. This
process continues until the first input dataset has been searched for all specified
members. All the members that were found on the input data set are then processed
for copying, unloading, or loading to the output data set. This process is repeated
for the second input data set (except that the members that were found on the first
input data set are not searched for again).

Note: Only one data set can be processed if an unload operation is to be
performed. Multiple unload operations are allowed per job step; multiple INDD
statements are not allowed per unload operation.

Replacing Identically Named Members

In many copy and load operations, the output partitioned data set may contain
members that have names identical to the names of the input partitioned data set
members to be copied or loaded. When this occurs, the user may specify that the
identically named members are to be copied from the input partitioned data set to
replace existing members.

The replace option allows an input member to override an existing member on the
output partitioned data set with the same name. The pointer in the output
partitioned data set directory is changed to point to the copied or loaded member.

If the replace option is not specified, input members are not copied when they have
the same name as a member on the output partitioned data set.

The replace option can be specified on the data set or member level. The level is
specified on a utility control statement.

When replace is specified on the data set level with a COpy or INDD statement,
the input data is processed as follows:

• In a full copy or load process, all members on an input partitioned data set are
copied to an output partitioned data set; members whose names already exist on
the output partitioned data set are replaced by the members copied or loaded
from the input partitioned data set.

• In a selective copy or load process, all selected input members will be copied to
the output dataset, replacing any identically named output dataset members.

• In an exclusive copy process, all nonexcluded members on input partitioned data
sets are copied or loaded to an output partitioned data set replacing those
duplicate named members on the output partitioned data set.

When replace is specified on the member level (specified on a SELECT statement),
only selected members for which replace is specified are copied or loaded, and
identically named members on the output partitioned data set are replaced.

There are differences between full, selective, and exclusive copy or load processing.
These differences should be remembered when specifying the replace option and all
of the output data sets contain member names common to some or all of the input
partitioned data sets being copied or loaded. These differences are:

• When a full copy or load is performed, the output partitioned data set contains
the replacing members that were on the last input partitioned data set copied.

• When a selective copy or load is performed, the output partitioned data set
contains the selected replacing members which were found on the earliest input
partitioned data set searched. Once a selected member is found, it is not
searched for again; therefore, once found, a selected member is copied or
loaded. If the same member exists on another input partitioned data set it is not
searched for, and hence, not copied or loaded.

• When an exclusive copy or load is performed, the output partitioned data set
contains all members, except those specified for exclusion, that were on the last
input partitioned data set copied or loaded.

IEBCOPY Program 6-3

Replacing Selected Members

The user may specify the replace option on either the data set or the member level
when members are being selected for copying or loading.

If the replace option is specified on the data set level, all selected members found
on the designated input data sets replace identically named members on the output
partitioned data set. This is limited by the fact that once a selected member is found
it is not searched for again.

If the replace option is specified on the member level, the specified members on the
input data set replace identically named members on the output partitioned data
set. Once a member is found it is not searched for again. (See "Replacing
Identically Named Members" earlier in this chapter.)

Renaming Selected Members

Selected members on input data sets can be copied and renamed on the output data
set, the input and output data sets must not be the same. However, in the case of a
copy or load operation, if the new name is identical to a member name on the
output data set, the input member is not copied or loaded unless the replace option
is also specified. See "SELECT Statement" below for information on renaming
selected members.

Note: Renaming is not physically done to the input data set directory entry. The
output data set directory, however, will contain the new name.

Excluding Members from a Copy Operation

Members from one or more input data sets can be excluded from a copy, unload, or
load operation. The excluded member is searched for on every input data set in the
copy, unload, or load operation and is always omitted. Members are excluded from
the input data sets named on an INDD statement that precedes the EXCLUDE
statement. (See "COpy Statement" and "EXCLUDE Statement" in this chapter.)

The replace option can be specified on the data set level in an exclusive copy or
load, in which case, nonexcluded members on the input data set replace identically
named members on the output data set. See "Replacing Identically Named
Members" earlier in this chapter for more information on the replace option.

Compressing a Data Set

6-4 OS/VS2 MVS Utilities

A compressed data set is one that does not contain embedded, unused space. After
copying or loading one or more input partitioned data sets to a new output
partitioned data set (by means of a selective, exclusive, or full copy or load that
does not involve replacing members), the output partitioned data set contains no
embedded, unused space.

To make unused space available, either the entire data set must be scratched or it
must be compressed in place. A compressed version can be created by specifying
the same data set for both the input and the output parameters in a full copy step.
A backup copy of the partitioned data set to be compressed in place should be kept
until successful completion of an in-place compression is indicated (by an
end-of-job message and a return code of 00).

An in-place compression does not release extents assigned to the data set.
Inclusion, exclusion, or renaming of selected members cannot be done during the
compression of a partitioned data set.

Merging Data Sets

Re-creating a Data Set

Input and Output

Note: When the same ddname is specified for the INDD and OUTDO keywords
(see "COpy Statement" below) and the DO statement specifies a block size
different from the block size specified in the OSCB, the DSCB block size is
overridden; however, no physical reblocking or deblocking is performed by
IEBCOPY.

A merged data set is one to which an additional meItlber is copied or loaded. It is
created by copying or loading the additional members to an existing output
partitioned data set; the merge operation-the ordering of the output partitioned
data set's directory-is automatically performed by IEBCOPY.

Note: If there is a question about whether or not enough directory blocks are
allocated to the output partitioned data set to which an input data set is being
merged, the output partitioned data set should be re-created with additional
directory space prior to the merge operation.

A data set can be re-created by copying or loading it and allocating a larger amount
of space than was allocated for the original data set. This application of IEBCOPY
is especially useful if insufficient directory space was allocated to a data set. Space
cannot be allocated in this manner for an existing partitioned data set into which
members are being merged.

IEBCOPY uses the following input:

• An input data set, which contains the members to be copied, loaded, merged or
unloaded to a sequential data set.

• A control data set, which contains utility control statements. The control data set
is required if members are to be selected for or excluded from a copy, unload,
load, or merge operation.

If no utility control statements are supplied, a full copy of the input partitioned data
set is attempted. In this case, SYSUTI and SYSUT2 are required ddnames for the
input partitioned data set and output partitioned data set, respectively, as described
under "Job Control Statements" below.

IEBCOPY produces the following output:

• An output data set, which contains the copied, merged, unloaded, or loaded
data. The output data set is either a new data set (from a copy, load, or unload)
or an old data set (from a merge, compress-in-place, copy, or load).

• A message data set, which contains informational messages (for example, the
names of copied, unloaded, or loaded members) and error messages, if
applicable.

• Spill data sets, which are temporary data sets used to provide space when not
enough virtual storage is available for the input and/or output partitioned data
set directories. These data sets are opened only when needed.

IEBCOPY produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

IEBCOPY Program 6-5

Control

Job Control Statements

6-6 OS/VS2 MVS Utilities

• 04, which indicates a condition from which recovery may be possible.

• 08, which indicates an unrecoverable error. The job step is terminated.

IEBCOPY is controlled by job control statements and utility control statements.

Figure 6-1 shows the job control statements necessary for using IEBCOPY.

Statement

JOB

EXEC

SYSPRINTDD

anynamel DD

anyname2 DD

SYSUT3DD

SYSUT4DD

SYSINDD

Use

Initiates the job.

Specifies the program name (PGM=IEBCOPY) or, if the job control
statements reside in the procedure library, the procedure name. This
statement can include optional P ARM information to define the size of the
buffer to be used; see "PARM Information on the EXEC Statement" below.

Defines the sequential message data set used for listing statements and
messages. This data set can be written to a system output device, a tape
volume, or a direct access volume.

Defines an input partitioned data set. These DD statements can describe
partitioned data sets on direct access devices or sequential data sets, created
as a result of unload operations, on tape or direct access devices. The data
set can be defined by a data set name, as a cataloged data set, or as a data
set passed from a previous job step.

Defines an output partitioned data set. These DD statements can describe
partitioned data sets on direct access devices or sequential data sets, created
as a result of unload operations, on tape or direct access devices.

Defines a spill data set on a direct access device. SYSUT3 is used when there
is no space in virtual storage for some or all of the current input partitioned
data set's directory entries. SYSUT3 may also be used when not enough
space is available in virtual storage for retaining information during table
sorting.

Defines a spill data set on a direct access device. SYSUT 4 is used when there
is no space in virtual storage for the current output partitioned data set's
merged directory and the output partitioned data set is not new.

Defines the control data set. The control data set normally resides in the
input stream; however, it can reside on a system input device, a tape
volume, or a direct access volume.

Figure 6-1. IEBCOPY Job Control Statements

Fixed or variable records can be reblocked. Reblocking or deblocking is done if the
block size of the input partitioned data set is not equal to the block size of the
output partitioned data set.

An unloaded partitioned data set will have a variable spanned record format. When
an unloaded data set is subsequently loaded, the output data set will have the same
characteristics it had before the unload operation, unless specified differently by
the user.

lEBCOPY Unloaded Data Set Block Size

The block size for unloaded data sets is determined as follows:

1. The minimum block size for the unloaded data set is calculated as being equal to
the larger of:

• 284 bytes, or

• 16 bytes + the block size and key length of the input data set.

2. If a user-supplied block size was specified, and it is larger than the minimum size
calculated in step 1 (above), it will be passed to step 3 (below). Otherwise, the
minimum size is passed.

3. The block size value passed from step 2 (above) is then compared with the
largest block size acceptable to the output device. If the output device capacity is
less than the block size passed in step 2, the unloaded data set block size is set to
the maximum allowed for the output device.

4. The logical record length (LRECL) is then set to the block size minus four (4)
bytes.

Note: Reference source: IEBCOPY module IEBLDUL.

For unload and load operations, requests are handled in the same way as for a copy
operation.

Figure 6-2 shows how input record formats can be changed. In addition, any record
format can be changed to the undefined format (in terms of its description in the
DSCB).

Input Output

Fixed Fixed Blocked
Fixed Blocked Fixed
Variable Variable Blocked
Variable Blocked Variable

Figure 6-2. Changing Input Record Format Using IEBCOPY

System data sets should not be compressed in place unless the subject partitioned
data set is made non-sharable. The libraries in which IEBCOPY resides
(SYS 1.LINKLffi and SYS 1.SVCLffi) must not be compressed by IEBCOPY unless
IEBCOPY is first transferred to a JOBLffi.

Refer to OSjVS2 Data Management Services Guide for information on estimating
space allocations.

Refer to OSjVS2 Storage Estimates, or OSjVS2 System Programming Library:
Storage Estimates, to determine when spill data sets are required; see "Space
Allocation" below for a description of how to determine the amount of space to
allocate.

IEBCOPY issues a conditional storage request (GETMAIN) of one megabyte for
work areas.

P ARM Information on the EXEC Statement

The EXEC statement for IEBCOPY can contain P ARM information that is used to
define the number of bytes used as a buffer. The PARM parameter can be coded:

PARM= 'SIZE=nnnnnnnn[K],

IEBCOPY Program 6-7

Space Allocation

The nnnnnnnn can be replaced by one to eight digits. The K causes the nnnnnnnn
to be multiplied by 1024.

If P ARM is not specified, or is invalidly specified, or a value below the minimum
buffer size is specified, IEBCOPY defaults to the minimum buffer size, which is
twice the maximum of the input or output block sizes or four ti1tJ.es the input or
output track capacities.

The maximum buffer size that can be specified is equal to the storage remaining in
the storage area gotten when IEBCOPY issues a conditional one-megabyte storage
request (GETMAIN) for work areas and buffers. If the value specified in PARM
exceeds this maximum, IEBCOPY defaults to the maximum.

Note: A request for too much buffer storage may result in increased system paging
because of a lack of available system page frames. This will degrade overall system
performance.

Sometimes it is necessary to allocate space on spill data sets (SYSUT3 and
SYSUT4). The space to be allocated for SYSUT3 depends on the number of
members to be copied or loaded. The space to be allocated for SYSUT4 depends on
the number of directory blocks to be written to the output data set.

To conserve space on the direct access volume, an initial quantity and a secondary
quantity for space allocation may be used, as shown in the following SPACE
parameter:

SPACE=(c,(x,y»

The c value should be a block length of 80 for SYSUT3 and of 256 for SYSUT4.
The x value is the number of blocks in the primary allocation, and the y value is the
number of blocks in a secondary allocation.

For SYSUT3, x + 15y must be equal to or greater than the number of entries in the
largest input partitioned data set in the copy operation, multiplied by 1.05.

For SYSUT4, x + ISy must be equal to or greater than the number of blocks
allocated to the largest "output partitioned data set directory in the IEBCOPY job
step.

For example, if there are 700 members on the largest input partitioned data set,
space could be allocated for SYSUT3 as follows:

SPACE=(80,(25,45»

However, the total amount of space required for SYSUT3 in the worst case is used
only if needed. If space is allocated in this manner for SYSUT4, the user must
specify in his SYSUT4 DD statement:

DCB=(KEYLEN=8)

Note that IEBCOPY ignores all other DCB information specified for SYSUT3
and/or SYSUT4. Multivolume SYSUT3 and SYSUT4 data sets are not supported.

The temporary spill data sets mayor may not be opened, depending on the amount
of of virtual storage available; therefore, the SYSUT3 and SYSUT4 DD statements
should always appear in the job stream.

Utility Control Statements

IEBCOPY is controlled by the following utility control statements:

6-8 OS/VS2 MVS Utilities

(

~.,'
;,J

COpy Statement

Statement

COpy

SELECT

EXCLUDE

Use

Indicates the beginning of a COpy operation.

Specifies which members in the input data set are to be copied.

Specifies members in the input data set to be excluded from the
copy step.

Figure 6-3. IEBCOPY Utility Control Statements

In addition, when INDD, a COpy statement parameter, appears on a card other
than the COpy statement, it is referred to as an INDD statement; it can function
as a control statement in this context.

Utility control statements may be continued on subsequent cards provided that all
the data is contained in columns 2 through 71. Control statement operation and
keyword parameters can be abbreviated to their initial letters; COpy, INDD,
OUTDD, and LIST can be abbreviated to C, I, 0, and L.

The COpy Statement is required to initiate one or more IEBCOPY copy, unload,
or load operations. Any number of operations can follow a single COpy statement;
any number of COpy statements can appear within a single job step.

IEBCOPY Program 6-8.1

)

IEBCOPY copy, unload, and load operations are specified by a combination of job
control language and utility control statements. The OUTDD and INDD keyword
parameters on COpy statements name DD statements that define data sets ,to be
copied, unlmlded, or loaded. For example:-

IICOPY JOB accountnb,'name',MSGLEVEL={ 1,1)
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIIN DD DSN=xxxxx,UNIT=yyyy,VOL=SER=yyyyyy,DISP=OLD
IIOUT DD DSN=xxxxx,UNIT=yyyy,VOL=SER=yyyyyy,
II DISP=NEW,SPACE=xxxx
IISYSUT3 DD DSN=TEMP1,UNIT=SYSDA,DISP=(NEW,DELETE),
II SPACE=(CYL,(2,2))
IISYSUT4 DD DSNAME=TEMP2,UNIT=DA,DISP=(NEW,DELETE),
II SPACE=(CYL,(2,2))
IISYSIN DD *

COpy OUTDD=OUT,INDD=IN
1*
The INDD parameter names the DD statement that identifies the input data set.

The OUTDD parameter names the DD statement that identifies the output data
set.

The characteristics of the input and output data sets depend on the operation to be
performed, as follows:

• If a data set is to be copied, the input and output data sets must both be
partitioned data sets.

• If a data set is to be loaded, the input data set may be either partitioned or
sequential; the output data set must be partitioned.

• If a data set is to be unloaded, the input data set must be either a partitioned
data set or a sequential data set that was created as a result of a previous unload
operation. The output data set may reside on either a direct access or tape
volume. If the output data set is to reside on a direct access volume, the
organization of the data set must be specified as sequential. To specify
sequential organization for a direct access data set, specify the SPACE
parameter, omitting the directory or index value.

A COPY statement must precede a SELECT or EXCLUDE statement when
members are selected for or excluded from a copy, unload, or load step. In addition,
if an input ddname is specified on a separate INDD statement, it must follow the
COpy statement and precede the SELECT or EXCLUDE statement to which it
applies. If one or more INDD statements are immediately followed by the /* card
or another COpy statement, a full copy, unload, or load is invoked onto the most
recent output partitioned data set previously specified

IEBCOPY uses a copy operation/copy step concept. l A copy operation starts with
a COpy statement and continues until either another COPY statement or the end
of the control data set is found. Within each copy operation, one or more copy
steps are present. Any INDD statement directly following a SELECT or
EXCLUDE statement marks the beginning of the next copy step and the end of the
preceding copy step within the copy operation. If such an INDD statement cannot
be found in the copy operation, then the copy operation consists of only one copy
step.

Figure 6-4 shows the copy operation/copy step concept. Two copy operations are
shown in the figure: the first begins with the statement containing the name
COPOPERl, and the second begins with the statement containing the name
COPOPER2.

lThe same applies to an unload or load operation or step.

IEBCOPY Program 6-9

6-10 OS/VS2 MVS Utilities

1st
Copy
Operation

STEP 1

STEP 2

2nd
Copy
Operation
STEP 1

STEP 2

Job Control Statements

COPOPER1 COpy

SELECT
SELECT

EXCLUDE

COPOPER2 COPY
SELECT

OUTDD=AA,INDD=ZZ
INDD=BB,CC
INDD=DD
INDD=EE
MEMBER=MEMA, MEMB
MEMBER=MEMC

INDD=GG
INDD=HH
MEMBER=MEMD, MEMH

OUTDD=YY,I=(MM,PP),LIST=NO
MEMBER=MEMB

INDD=KK
INDD=LL, NN

Figure 6-4. Multiple Copy Operations Within a Job Step

There are two copy steps within the first copy operation shown in Figure 6-4: the
first begins with the COpy statement and continues through the two SELECT
statements; the second begins with the first INDD statement following the two
SELECT statements and continues through the EXCLUDE statement preceding
the second COpy statement. There are two copy steps within the second copy
operation: the first begins with the COpy statement and continues through the
SELECT statement; the second begins with the INDD statement immediately
following the SELECT statement and ends with the same /* (delimiter) statement
that ended the copy operation.

The format of the COPY statement is:

[label] COpy OUTDD=ddname

[,INDD= {ddname 1 [, ddname2]. .. I
ddnamel [, ddname2][,(ddname2 ,R)] ... I
« ddname 1 ,R)[, ddname 2] ...)}]

[,LIST=NO]

Note: The control statement operation and keyword parameters can be
abbreviated to their initial letters; for example, COpy can be abbreviated to C and
OUTDD can be abbreviated to O. Only one INDD and one OUTDD keyword may
be placed on a single card. OUTDD must appear on the COpy statement. When
INDD appears on a separate card, no other operands may be specified on that card.
If INDD appears on a separate card, it is not preceded by a comma.

If there are no keywords on the COpy card, compatibility with the previous
version is implied. In this case, comments may not be placed on this card.

If more than one ddname is specified, the input partitioned data sets are processed
in the same sequence as that in which the ddnames are specified.

A full copy, unload, or load is invoked only by specifying different input and output
ddnames; that is, by omitting the SELECT or EXCLUDE statement from the copy
step.

The compress-in-place function is valid for partitioned data sets. Compress-in-place
is normally invoked by specifying the same ddname for both the OUTDD and
INDD parameters of a COpy statement. If multiple entries are made on the INDD
statement, a compress-in-place will occur if one of the input ddnames is the same as
the ddname specified by the OUTDD parameter of the COpy statement, provided
that SELECT or EXCLUDE is not specified.

~ELECT Statement

When a compression is invoked by specifying the same ddname for the INDD and
OUTDD parameters, and the DD statement specifies a block size that differs from
the block size specified in the DSCB, the DSCB block size is overridden; however,
no physical reblocking or deblocking is done by IEBCOPY.

The SELECT statement specifies members to be selected from input data sets to be
copied, loaded, or unloaded to an output data set. This statement is also used to
rename and/ or replace selected members on the output data set. More than one
SELECT statement may be used in succession, in which case the second and
subsequent statements are treated as a continuation of the first.

The SELECT statement must follow either a COpy statement that includes an
INDD parameter or one or more INDD statements. A SELECT statement cannot
appear with an EXCLUDE statement in the same copy, unload, or load step, and it
cannot be used with a compress-in-place function.

When a selected member is found on an input data set, it is not searched for again,
regardless of whether it the member is copied, unloaded, or loaded. A selected
member will not replace an identically named member on the output partitioned
data set unless the replace option is specified on either the data set or member
level. (For a description of replacing identically named members see "Replacing
Identically Named Data Set Members," and "Replacing Selected Members" in this
chapter.) In addition, a renamed member will not replace a member on the output
partitioned data set that has the same new name as the renamed member, unless the
replace option is specified.

The format of the SELECT statement is:

[label] SELECT MEMBER= {[(] namel[, name2][, ...][)] I

where:

({(name l, newname [,R]) [, ...] I
(namel, newname)[, ...] I
(namel" R)[, ...]})}

MEMBER=
specifies the members to be selected from the input data set. The values that
can be coded are:

name
specifies the name of a member that is to be selected in a copy step. Each
member name specified within one copy step must be unique; that is,
duplicate names cannot be specified as either old names, or new names, or
both, under any circumstances.

newname

R

specifies a new name for a selected member. The member is copied,
unloaded, or loaded to the output partitioned data set using its new name.
If the name already appears on the output partitioned data set, the member
is not copied unless replacement (R) is also specified.

specifies that the input member is to replace any identically named member
that exists on the output partitioned data set. The replace option is not
valid for an unload operation.

The control statement operation and keyword parameter can be abbreviated to
their initial letters; SELECT can be abbreviated to S and MEMBER can be
abbreviated to M.

IEBCOPY Program 6-11

EXCLUDE Statement

6-12 OS/VS2 MVS Utilities

To rename a member, the old member name is specified in the SELECT statement,
followed by the new name and, optionally, the R parameter. When this option is
specified, the old member name and new member name must be enclosed in a set of
parentheses. When any option within parentheses is specified anywhere in the
MEMBER field, the entire field, exclusive of the MEMBER keyword, must be
enclosed in a second set of parentheses.

The EXCLUDE statement specifies members to be excluded from the copy,
unload, or load step. Unlike the selective copy, unload, or load, an exclusive copy,
unload, or load causes all members specified on each EXCLUDE statement to be
omitted from the operation.

More than one EXCLUDE statement may be used in succession, in which case the
second and subsequent statements are treated as a continuation of the first. The
EXCLUDE statement must follow either a COpy statement that includes an 1480
parameter or one or more INDD statements. An EXCLUDE statement cannot
appear with a SELECT statement in the same copy, unload, or load step; however,
both may be used following a COpy statement for a copy or load operation. The
EXCLUDE statement cannot be used with a compress-in-place function.

The format of the EXCLUDE statement is:

[label] EXCLUDE MEMBER=[(l membernamel [, membername2 1 ... [)1
The control statement operation and keyword parameter can be abbreviated to
their initial letters; EXCLUDE can be abbreviated to E and MEMBER can be
abbreviated to M.

Operands

INDD

LIST

Applicable Control
Statements

COpy

COpy

Description of Operands/Parameters

INDD=[(] ddnamel[, ddname2][,(ddname3,R)][, ...][)]
specifies the names of the input partitioned data sets.
INDD may, optionally, be placed on a separate card
following a COpy statement containing the OUTDD
parameter, another INDD statement, a SELECT
statement, or an EXCLUDE statement. These values can
be coded:

ddname

R

specifies the ddname, which is specified on a DD
statement, of an input data set. For an unload operation,
only one ddname may be specified per COpy statement.
If more than one ddname is specified in the case of a
copy or load operation, the input data sets are processed
in the same sequence as the ddnames are specified.

specifies that all members to be copied or loaded from
this input data set are to replace any identically named
members on the output partitioned data set. (In
addition, members whose names are not on the output
partitioned data set are copied or loaded as usual.)
When this option is specified with the INDD parameter,
it does not have to appear with the MEMBER
parameter (discussed in "SELECT Statement" in this
chapter) in a selective copy operation. When this option
is specified, the ddname and the R parameter must be
enclosed in a set of parentheses; if it is specified with
the first ddname in INDD, the entire field, exclusive of
the INDD parameter, must be enclosed in a second set
of parentheses.

LIST=NO
specifies that the names of copied members are not to be
listed on on SYSPRINT at the end of each input data set.

Default: The names of copied members are listed.

IEBCOPY Program 6-13

Operands

MEMBER

OUTDD

Applicable Control
Statements

SELECT

EXCLUDE

COpy

6-14 OS/VS2 MVS Utilities

Description of Operands/Parameters

MEMBER={[(] namel[, name2][' ...]f)] I
({(namel,newname[.R])[, ...] I
(namel,newname)[, ...] I
(namel "R)[, ...]})}

specifies the members to be selected from the input data
set. The values that can be coded for SELECT are:

name
specifies the name of a member that is to be selected in
a copy step. Each member name specified within one
copy step must be unique~ that is, duplicate names
cannot be specified as either old names, or new names,
or both, under any circumstances.

newname

R

specifies a new name for a selected member. The
member is copied, unloaded, or loaded to the output
partitioned data set using its new name. If the name
already appears on the output partitioned data set, the
member is not copied unless replacement (R) is also
specified.

specifies that the input member is to replace any
identically named member that exists on the output
partitioned data set. The replace option is not valid for
an unload operation.

MEMBER=[(] membernamel[, membername2] ... [)]
specifies members on the input data set that are not to be
copied, unloaded, or loaded to the output data set. The
members are not deleted from the input data set unless the
entire data set is deleted. (This can be done by specifying
DISP=DELETE in the operand field of the input DD job
control statement.) Each member name specified within
one copy step must be unique.

OUTDD= ddname

specifies the name of the output partitioned data set. One
ddname is required for each copy, unload, or load
operation; the ddname used must be specified on a DD
statement.

,)

Restrictions

• IEBCOPY must run from an authorized library because of special storage key
requirements for IEBCOPY 110 appendages.

• SYSPRINT and SYSIN are mandatory DD statements. The block size for the
SYSPRINT data set must be a multiple of 121. The block size for the SYSIN
data set must be a multiple of 80. Any blocking factor may be specified for these
data sets, with a maximum allowable block size of 32,767 bytes.

• The SYSPRINT DD statement must define a data set with fixed blocked or fixed
records.

• INPUT DD and OUTPUT DD statements are required. There must be one
INPUT DD statement ~or each unique data set used for input and one OUTPUT
DD statement for each unique data set used for output in the job step.

• Input data sets cannot be concatenated.

• The SYSIN DD statement must define a data set with fixed block or fixed
records.

• Variable spanned and variable block spanned format data sets are not supported.

• The maximum block size for input data sets to be unloaded is 32,767 (input key
length + 20).

• VIO is not supported by IEBCOPY for SYSUT4 and partitioned input or output
data sets.

• When merging into or compressing system libraries, do not specify DISP=SHR.
The results of a merge into or compress of the current SYS 1.LINKLIB or
SYS 1.SVCLIB would be unpredictable.

• IEBCOPY does its own buffering; therefore, coding the BUFNO parameter will
cause a J CL error.

• Reblocking or deblocking cannot be done if either the input or the output data
set has undefined format records, keyed records, track overflow records, note
lists, or user TTRNs, or if compress-in-place is specified.

The cOinpress-in-place function cannot be performed for the following:

• An unloaded· data set.

• A data set with track overflow records.

• A data set with keyed records.

• A data set for which reblocking is specified in the DCB parameter.

• An unmovable data set.

IEBCOPY Examples
The following exal1?-ples illustrate some of the uses of IEBCOPY. Figure 6-5 can be
used as a quick reference guide to IEBCOPY examples. The numbers in the
"Example" column point to ex~mples that follow.

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction, to this
manual for valid device-id notation.

IEBCOPY Program 6-15

Operation Device Comments Example

COPY Disk Full Copy. The input and output
data sets are partitioned.

COpy Disk Multiple input partitioned data sets.
Fixed blocked and fixed record formats. 2

COPY Disk All members are to be copied.
Identically named members on the
output data set are to be replaced.
The input and output data sets are
partitioned. 3

COpy Disk Selected members are to be copied.
Variable blocked data set is to be
created. Record formats are variable
blocked and variable. The input and
output data sets are partitioned. 4

COPY Disk Selected members are to be copied.
One member is to replace an
identically named member on the
output data set. The input and
output data sets are partitioned. 5

COPY Disk, and Selected members are to be copied.
2305 Fixed Members found on the first input data set
Head Storage replace identically named members on

the output data set. The input and
output data sets are partitioned. 6

COpy Disk Selected members are to be copied.
Two members are to be renamed. One
renamed member is to replace an
identically named member on the
output data set. The input and
output data sets are partitioned. 7

COPY Disk Exclusive Copy. Fixed blocked and
fixed record formats. The input and
output data sets are partitioned. 8

Unload and Disk and Copy a partitioned data set to
Compress- Tape tape (unload) and compress-in-
in-place place if the first step is successful. 9

COPY and Disk Full copy to be followed by a compress-
Compress- in-place of the output data set. Replace
in-place specified for one input data set. The

input and output data sets are
partitioned. to

COpy Disks Multiple copy operations. The input and
output data sets are partitioned. 11

COpy Disks Multiple copy operations. 12

Unload Disk, and A partitioned data set is to be
Tape unloaded to tape. 13

Load Tape,and An unloaded data set is to be loaded
Disk to disk. 14

Unload, Disk, and Selected members are to be unloaded,
Load,and Tape loaded, and copied. The input data set
COPY is partitioned; the output data set is

sequential. 15

Figure 6-5. IEBCOPY Example Directory

6-16 OS/VS2 MVS Utilities

IEBCOPY Example 1

In this example, a partitioned data set (DATASET5) is to be copied from one
disk volume to another.
Figure 6-6 shows the input and output data sets before and after processing.

II COpy JOB 06#990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUT4 DD DSNAME=DATASET4,UNIT=3350,VOL=SER=111112,
II DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2))
IIINOUT5 DD DSNAME~DATASET5,UNIT=3350,VOL=SER=111113,
II DISP=SHR
IISYSUT3 DD
IISYSUT4 DD
IISYSIN DD

UNIT=SYSDA,SPACE=(TRK,(1))
UNIT=SYSDA,SPACE=(TRK,(1))

*
COPYOPER COPY OUTDD=INOUT4,INDD=INOUT5
1*

Input

Output
DATASET4

l"()P~

opl'ratilJlI

DATASET5

After
processrn~

DATASET5

Figure 6-6. Copying a Partitioned Data Set-Full Copy

The control statements are discussed below:

• INOUT4 DD defines a new partitioned data set (DATASET4) that is to be kept
after the copy operation. Five tracks are allocated for the data set on a 3350
volume. Two blocks are allocated for directory entries.

• INOUT5 DD defines a partitioned data set (DATASET5), that resides on a
3350 volume and contains two members (A and C).

IEBCOPY Program ~17

IEBCOPY Example 2

6--18 OS/VS2 MVS Utilities

• SYSUT3 DD defines a temporary spill data set. One track is allocated ona disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement.

• COPY indicates the start of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. The OUTDD parameter
specifies INOUT4 as the DD statement for the output data set (DATASET4);
the INDD parameter specifies INOUT5 as the DD statement for the input data
set. After the copy operation is finished, the output data set (DAT ASET4) will
contain the same members that are on the input data set (DATASET5);
however, there will be no embedded, unused space on DATASET4.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, members are to be copied from three input partitioned data sets
(DATASET1, DATASET5, and DATASET6) to an existing output partitioned
data set (DATASET2). The sequence in which the control statements occur
controls the manner and sequence in which partitioned data sets are processed.
Figure 6-7 shows the input and output data sets before and after processing.

IICOPY JOB 06#990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUTl DD DSNAME=DATASET1,UNIT=3330,VOL=SER=111112,
II DISP=SHR
IIINOUTS DD DSNAME=DATASETS,UNIT=33S0,VOL=SER=111114,
II DISP=OLD
IIINOUT2 DD DSNAME=DATASET2,UNIT=33S0,VOL=SER=11111S,
II DISP=(OLD,KEEP)
IIINOUT6 DD DSNAME=DATASET6,UNIT=3350,VOL=SER=111117,
II DISP=(OLD,DELETE)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(l))
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSIN DD *
COPYOPER COPY OUTDD=INOUT2

INDD=INOUTl
INDD=INOUT6
INDD=INOUTS

1*
The control statements are discussed below:

• INOUT1 DD defines a partitioned data set (DATASETl). This data set, which
resides on a 3330 volume, contains three members (A, B, and F) in fixed format
with a logical record length of 80 bytes and a block size of 80 bytes.

• INOUT5 DD defines a partitioned data set (DATASET5), which resides on a
3350 volume. This data set contains two members (A and C) in fixed blocked
format with a logical record length of 80 bytes and a block size of 160 bytes.

• INOUT2 DD defines a partitioned data set (DATASET2), which resides on a
3350 volume. This data set contains two members (C and E) in fixed blocked
format. The members have a logical record length of 80 bytes and a block size of
240 bytes.

)

Output
DATASET2

Before
copy
operation

Input
DATASETl

After
processing
DATASETl

Input
DATASET6

After
processing
DATASET6

Figure 6-7. Copying from Three Input Partitioned Data Sets

Input
DATASET5

After
processing
DATASET5

• INOUT6 DD defines a partitioned data set (DATASET6), which resides on a
3350 volume. This data set contains three members (B, C, and D) in fixed
blocked format with a logical record length of 80 bytes and a block size of 400
bytes. This data set is to be deleted when processing is completed.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement and three INDD statements.

• COpy indicates the start of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. The OUTDD parameter
specifies INOUT2 as the DD statement for the output data set (DATASET2).

• The first INDD statement specifies INOUTI as the DD statement for the first
input data set (DATASET1) to be processed. All members (A, B, and F) are
copied to the output data set (DATASET2).

• The second INDD statement specifies INOUT6 as the DD statement for the
second input data set (DATASET6) to be processed. Processing occurs, as
follows: (1) members Band C, which already exist on DATASET2, are not

IEBCOPY Program 6-19

IEBCOPY Example 3

6-20 OS/VS2 MVS Utilities

copied to the output data set (D~TASET2), (2) member D is copied to the
output data set (DATASET2), and (3) all members on DATASET6 are lost
when the data set is deleted.

• The third INDD statement specifies INOUT5 as the DD statement for the third
input data set (DATA8,ET5) to be processed. No members are copied to the
output data set (DATASET2) because all of them exist on DATASET2.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, members are to be copied from an input partitioned data set
(DATASET6) to an existing output partitioned data set (DATASET2). In addition,
all copied members are to replace identically named members on the output
partitioned data set.

Figure 6-8 shows the input and output data sets before and after processing.

The example follows:

IICOPY JOB
IIJOBSTEP EXEC
IISYSPRINT DD
IIINOUT2 DD
II DISP=OLD

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET2,UNIT=3330-1,VOL=SER=111113,

IIINOUT6 DD DSNAME=DATASET6,UNIT=3350,VOL=SER=111117,
II DISP=(OLD,KEEP)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
I ISYSUT4 DD UNIT=SYSDA, SPACE=(,TRK, (1))
IISYSIN DD *
COPYOPER COPY OUTDD=INOUT2

INDD=((INOUT6,R))
1*
The control statements are discussed below:

• INOUT2 DD defines a partitioned data set (DATASET2), which resides on a
3330-1 volume. This data set contains two members (C and E).

• INOUT6 DD defines a partitioned data set (DATASET6), which resides on a
3350 volume. This data set contains three members (B, C, and D).

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement and an INDD statement.

• COPY indicates the start of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. The OUTDD parameter
specifies INOUT2 as the DD statement for the output data set (DATASET2).

• INDD specifies INOUT6 as the DD statement for the input -data set
(DATASET6). Members B, C, and D are copied to the output data set
(DATASET2). The pointer in the output data set directory is changed to point
to the new (copied) member C; thus, the space occupied by the old member C is
embedded unused space. Member C is copied even though the output data set
already contains a member named "c" because the replace option is specified

lEBCOPY Example 4

~

)

Input
DATASET6

Output
DATASET2

Before
copy
operation

After
processing
DATASET6

Figure 6-8. Copy Operation with "Replace" Specified on the Data Set Level

for all identically named members on the input data set; that is, the replace
option is specified on the data set level.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, five members (A, C, D, E, and G) are to be selected from two
input partitioned data sets (DATASET6 and DATASET2) to be copied to a new
output partitioned data set (DATASET4). Figure 6-9 shows the input and output
data sets before and after processing.

IEBCOPY Program 6-21

6-22 OS/VS2 MVS Utilities

Output
DATASET4

Before
copy
operation

Input
DATASET6

After
processing
DATASET6

Input
DATASET2

After
processing
DATASET2

Figure 6-9. Copying Selected Members with Reblocking and Deblocking

IICOPY JOB 06#990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUT2 DD DSNAME=DATASET2,UNIT=3330,VOL=SER=111114,
II DISP=(OLD,DELETE)
IIINOUT6 DD DSNAME=DATASET6,UNIT=3350,VOL=SER=111117,
II DISP=(OLD,KEEP)
IIINOUT4 DD DSNAME=DATASET4,UNIT=3350,VOL=SER=111116,
II DISP=(NEW,KEEP),SPACE=(TRK,(5,,2)),
II DCB=(RECFM=VB,LRECL=96,BLKSIZE=300)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSIN DD *
COPYOPER COPY OUTDD=INGOT4

1*

INDD=INOUT6
INDD=INOUT2

SELECT MEMBER=C,D,E,A,G

The control statements are discussed below:

• INOUT2 DD defines a partitioned data set (DATASET2), which resides on a
3330 volume. This data set contains two members (C and E) in variable blocked
format with a logical record length of 96 bytes and a block size of 500 bytes.
This data set is to be deleted when processing is completed .

• INOUT6 DD defines a partitioned data set (DATASET6), which resides on a
3350 volume. This data set contains three members (B, C, and D) in variable
format with a logical record length of 96 bytes and a block size of 100 bytes.

• INOUT4 DD defines a partitioned data set (DATASET4). This data set is new
and is to be kept after the copy operation. Five tracks are allocated for the data
set on a 3350 volume. Two blocks are allocated for directory entries. In addition,
records are to be copied to this data set in variable blocked format with a logical
record length of 96 bytes and a block size of 300 bytes.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contain~ a COpy statement, two INDD statements, and a SELECT
statement.

• COpy indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD parameter specifies INOUT4 as
the DD statement for the output data set (DAT ASET4).

• The first INDD statement specifies INOUT6 as the DD statement for the first
input data set (DATASET6) to be processed. The members specified on the
SELECT statement are searched for. The found members (C and D) are copied
to the output data set (DATASET4) in the order in which they reside on the
input data set, that is, il1 TTR order. In this case, member D is copied first, and
then member C is copied.

• The second INDD statement specifies INOUT2 as the DD statement for the
second input data set (DATASET2) to be processed. The members specified on
the SELECT statement and not found on the first input data set are searched
for. The found member (E) is copied onto the output data set (DATASET4). All
members on DATASET2 are lost when the data set is deleted.

• SELECT specifies the members to be selected from the input data sets
(DATASET6 and DATASET2) to be copied to the output data set
(DAT ASET4).

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

IEBCOPY Program 6-23

IEBCOPY Example 5

6-24 OS/VS2 MVS Utilities

In this example, two members (A and B) are to be selected from two input
partitioned data sets (DATASET5 and DATASET6) to be copied to an existing
output partitioned data set (DATASET1). Member B is to replace an identically
named member that already exists on the output data set. Figure 6-10 shows the
input and output data sets before and after processing.

IICOPY JOB 06#990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUT1 DD DSNAME=DATASET1,UNIT=3330,VOL=SER=111112,
II DISP=(OLD,KEEP)
IIINOUT6 DD
II DISP=OLD
IIINOUTS DD
II DISP=(OLD,KEEP)
IISYSUT3 DD
IISYSUT4 DD
IISYSIN DD
COPYOPER COPY

SELECT
1*

DSNAME=DATASET6,UNIT=33S0,VOL=SER=11111S,

DSNAME=DATASETS,UNIT=3330,VOL=SER=111116,

UNIT=SYSDA,SPACE=(TRK,(1))
UNIT=SYSDA,SPACE=(TRK,(1))

*
OUTDD=INOUT1
INDD=INOUT5,INOUT6
MEMBER=((B, ,R),A)

The control statements are discussed below:

• INOUT1 DD defines a partitioned data set (DATASETl). This data set resides
on a 3330 volume and contains three members (A, B, and F).

• INOUT6 DD defines a partitioned data set (DATASET6). This data set resides
on a 3350 volume and contains three members (B, C, and D).

• INOUT5 DD defines a partitioned data set (DATASET5). This data set resides
on a 3330 volume and contains two members (A and C).

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement, an INDD statement, and a SELECT
statement.

• COpy indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD parameter specifies INOUT1 as
the DD statement for the output data set (DATASETl).

• INDD specifies INOUT5 as the DD statement for the first input data set
(DATASET5) to be processed and INOUT6 as the DD statement for the second
input data set (DAT ASET6) to be processed. Processing occurs, as follows: (1)
selected members are searched for on DATASET5, (2) member A is found, but
is not copied to the output data set because it already exists on DATASET2 and
the replace option is not specified, (3) selected members not found on
DATASET5 are searched for on DATASET6, and (4) member B is found and
copied to the output data set (DATASETl), even though a member named B
already exists on the output data set, because the replace option is specified for
member B on the member level. The pointer in the output data set directory is
changed to point to the new (copied) member B; thus, the space occupied by the
old member B is unused.

IEBCOPY Example 6

Output
DATASET 1

copy
operation

Input
DATASET5

After
procesSing
DATASET5

Input
DATASET6

After
processing
DATASET6

Figure 6-10. Selective Copy with "Replace" Specified on the Member Level

• SELECT specifies the members to be selected from the input data sets
(DAT ASET5 and DAT ASET6) to be copied to the output data set
(DATASET1).

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, two members (A and B) are to be selected from two input
partitioned data sets (DATASET5 and DATASET6) to be copied to an existing
output partitioned data set (DATASET1). All members found on DATASET5 are
to replace identically named members on DATASET1. Figure 6-11 shows the input
and output data sets before and after processing.

IEBCOPY Program 6-25

6-26 OS/VS2 MVS Utilities

Output
DATASETl

Before
copy
operatIon-

Input
DATASET5

After
processIng
DATASET5

Input
DATASET6

After
procesSIng
DATASET6

Figure 6-11. Selective Copy with "Replace" Specified on the Data Set Level

IICOPY JOB
IIJOBSTEP EXEC
IISYSPRINT DD
IIINOUT1 DD
II DISP=(OLD,KEEP)

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET1,UNIT=3350,VOL=SER=111112,

IIINOUT5 DD DSNAME=DATASET5,UNIT=3330,VOL=SER=111114,
II DISP=(OLD,DELETE)
IIINOUT6 DD DSNAME=DATASET6,UNIT=2305,VOL=SER=111115,
II DISP=(OLD,KEEP)
IISYSUT3 DD
IISYSUT4 DD
IISYSIN DD
COPYOPER COpy

SELECT
1*

UNIT=SYSDA,SPACE=(TRK,(1))
UNIT=SYSDA,SPACE=(TRK,(1))

*
OUTDD=INOUT1
INDD=«INOUT5,R),INOUT6)
MEMBER=(A,B)

The control statements are discussed below:

• INOUTl DD defines a partitioned data set (DATASETl). This data set resides
on a 3350 volume and contains three members (A, B, and F).

• INOUT5 DD defines a partitioned data set (DATASET5). This data set contains
two members (A and C) and resides on a 3330 volume. This data set is to be
deleted when processing is completed.

• INOUT6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) and resides on a 2305 volume.

IEBCOPY Example 7

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement, an INDD statement, and a SELECT
statement.

• COPY indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD operand specifies INOUTl as
the DD statement for the output data set (DATASETl).

• INDD specifies INOUT5 as the DD statement for the first input data set
(DATASET5) to be processed and INOUT6 as the statement for the second
input data set (DAT ASET6) to be processed. Processing occurs, as follows: (l)
selected members are searched for on DATASET5, (2) member A is found and
copied to the output data set (DATASETl) because the replace option was
specified on the data set level for DATASET5, (3) member B, which was not
found on DATASET5 is searched for and found on DATASET6, (4) member B
is not copied because DATASETl already contains a member called member B
and the replace option is not specified for DATASET6. The pointer in the
output data set directory is changed to point to the new (copied) member A;
thus, the space occupied by the old member A is unused.

• SELECT specifies the members to be selected from the input data sets
(DATASET5 and DATASET6) to be copied to the output data set
(DATASET1).

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, four members (A, B, C, and D) are to be selected from an input
partitioned data set (DATASET6) to be copied to an existing output partitioned
data set (DATASET3). Member B is to be renamed H; member C is to be renamed
J; and member D is to be renamed K. In addition, member C (renamed J) is to
replace the identically named member (1) on the output partitioned data set. Figure
6-12 shows the input and output data sets before and after processing.

IICOPY JOB #990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUT3 DD DSNAME=DATASET3,UNIT=d~k,vOL=SER=111114,
II DISP=(OLD,KEEP)
IIINOUT6 DD DSNAME=DATASET6,UNIT=d~k,vOL=SER=111117,
II DISP=(OLD,DELETE)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1»
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1»
IISYSIN DD *
COPYOPER COpy OUTDD=INOUT3,INDD=INOUT6

SELECT MEMBER=«B,H),(C,J,R),A,(D,K»
1*
The control statements are discussed below:

• INOUT3 DD defines a partitioned data set (DATASET3). This data set contains
four members (D, G, H, and J) and resides on a disk volume.

IEBCOPY Program 6-27

6-28 OS/VS2 MVS Utilities

Input

Output
DATASET3

Before
copy
operaticn

DATASET6

After
processmg
DATASET6

Figure 6-12. Renaming Selected Members Using IEBCOPY

• INOUT6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) and resides on a disk volume. DAT ASET6 is to be
deleted when processing is completed; thus, all members on this data set are lost.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement, an INDD statement, and a SELECT
statement.

• COpy indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD parameter specifies INOUT3 as
the DD statement for the output data set (DATASET3).

• INDD specifies INOUT6 as the DD statement for the input data set
(DATASET6). Processing occurs, as follows: (1) selected members are searched
for on DATASET6, (2) member B is found, but is not copied to DATASET3
because its intended new name (H) is identical to the name of a member (H),
which already exists on the output data set, and replace is not specified, (3)
member C is found and copied to the output data set (DATASET3), although its
new name (1) is identical to the name of a member (J), which already exists on
the output data set, because the replace option is specified for the renamed
member, and (4) member D is copied onto the output data set (DATASET3)
because its new name (K) does not already exist there.

lEBCOPY Example 8

• SELECT specifies the members to be selected from the input data set
(DATASET6) to be copied to the output data set (DATASET3).

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, five members (A, B, C, J, and L) are to be excluded from the copy
operation when each of the input partitioned data sets (DATASET1, DATASET3,
and DAT ASET6) is processed. In addition, replace is specified for the last input
partitioned data set (DAT ASET6) to be processed; thus, with the exception of the
members specified on the EXCLUDE statement, all members on DAT ASET6 will
replace any identically named members on the output partitioned data set
(DATASET4). Figure 6-13 shows the input and output data sets before and after
processing.

Output
DATASET4

Before
copy
operation

Input
DATASETl

After
processing
DATASETl

Input
DATASET3

After
processing
DATASET3

Input
DATASET6

After
processing
DATASET6

Copy

member

Figure 6-13. Exclusive Copy with "Replace" Specified for One Input Partitioned Data Set

IEBCOPY Program 6-29

6-30 OS/VS2 MVS Utilities

IICOPY JOB
IIJOBSTEP EXEC
IISYSPRINT DD
IIINOUT1 DD
II DISP=(OLD,KEEP)
IIINOUT3 DD
II DISP=OLD

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASETl , UNIT=disk, VOL=SER=111112,

DSNAME=DATASET3 , UNIT=disk, VOL=SER= 111114,

IIINOUT4 DD DSNAME=DATASET4 , UNIT=disk , VOL=SER= 111115,
II DISP=(NEW,KEEP),SPACE=(TRK,(3,1,2)),DCB=(LRECL=100,
II RECFM=FB,BLKSIZE=400)
IIINOUT6 DD DSNAME=DATASET6, UNIT=disk , VOL=SER= 111116,
II DISP=OLD
IISYSUT3 DD
IISYSUT4 DD
IISYSIN DD

UNIT=SYSDA,SPACE=(TRK,(1))
UNIT=SYSDA,SPACE=(TRK,(1))

*
COPYOPER COPY OUTDD=INOUT4,INDD=INOUT1,INOUT3,(INOUT6,R)

EXCLUDE MEMBER=A,J,B,L,C
1*
The control statements are discussed below:

• INOUTl DD defines a partitioned data set (DATASETl). This data set contains
three members (A, B, and F) and resides on a disk volume. The record format is
fixed blocked with a logical record length of 100 bytes and a block size of 400
bytes.

• INOUT3 DD defines a partitioned data set (DATASET3), which resides on a
disk volume. This data set contains four members (D, G, H~ and 1) in fixed
blocked format with a logical record length of 100 bytes and a block size of 600
bytes.

• INOUT4 DD defines a new partitioned data set (DATASET4). Five tracks are
allocated for the copied members on a disk volume. Two blocks are allocated for
directory entries. In addition records are to be copied to this data set in fixed
blocked format with a logical record length of 100 bytes and a block size of 400
bytes.

• INOUT6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) in fixed format. The records have a logical record
length of lOO bytes and a block size of lOO bytes. This data set resides on a disk
volume.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement and an EXCLUDE statement.

• COpy indicates the start of the copy operation. The presence of an EXCLUDE
statement causes an exclusive copy. The OUTDD parameter specifies INOUT4
as the DD statement for the output data set (DATASET4). The INDD
parameter specifies INOUTl as the DD statement for the first input data set
(DATASETl) to be processed, INOUT3 as the DD statement for the st:cond
input data set (DAT ASET3) to be processed, and INOUT6 as the DD statement
for the last input data set (DATASET6) to be processed. Processing occurs, as
follows: (1) member F, which is not named on the EXCLUDE statement, is
copied from DATASETl, (2) members D, G, and H, which are not named on
the EXCLUDE statement, are copied from DATASET3, and (3) member D is
copied from DAT ASET6 because the replace option is specified for nonexcluded
members. The pointer in the output data set directory is changed to point at the

IEBCOPY Example 9

new (copied) member D; thus, the space occupied by the old member D (copied
from DATASET3) is unused.

• EXCLUDE specifies the members to be excluded from the copy operation. The
named members are excluded from all of the input partitioned data sets specified
in the copy operation.

The temporary spill data sets mayor may not be opened, depending' on the amount
of'virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, a partitioned data set is to be unloaded to a tape volume to create a
backup copy of the data set. If this step is successful, the partitioned data set is to
be compressed in place.

IISAVE
IisTEP1
IISYSPRINT
IIINPDS
II DISP=OLD

JOB 123456, 'name' ,MSGLEVEL=(1,1)
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=PARTPDS,UNIT=d~k,vOL=SER=PCP001,

IIBACKUP DD DSNAME=SAVDATA,UNIT=mpe,VOL=SER=TAPE03,
II DISP=(NEW,KEEP),LABEL=(,SL)
IISYSUT3 DD DSNAME=TEMP1 ,UNIT=disk, VOL=SER=111111 ,
II DISP=(NEW,DELETE),SPACE=(80,(60,45))
IISYSIN DD *

COpy OUTDD=BACKUP,INDD=INPDS
1*
IISTEP2 EXEC PGM=IEBCOPY,COND=(O,NE),
II PARM='SIZE=99999999K'
IISYSPRINT DD SYSOUT=A
IICOMPDS DO DSNAME=PARTPDS, UNIT=disk, DISP=OLD,
II VOL=SER=PCP001
IISYSUT3 DD DSNAME=TEMPA, UNIT=disk, VOL=SER=111111 ,
II DISP=(NEW,DELETE),SPACE=(80,(60,45))
I ISYSUT4 DD DSNAME=TEMPB, UNIT=disk ,VOL=SER= 111111 ,
II SPACE=(256,(15,1)),DCB=KEYLEN=8
IISYSIN DD *

COpy OUTDD=COMPDS,INDD=COMPDS
1*
The control statements are discussed below:

• INPDS DD defines 'a partitioned data set (P ARTPDS) that resides on a disk
volume and has 700 members. The number of members is used to calculate the
space allocation on SYSUT3.

• BACKUP DD defines a sequential data set to hold PARTPDS in unloaded form.
Block size information can optionally be added; this data set must be new.

• SYSUT3 DD defines the temporary spill data set.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement.

• COpy marks the beginning of the unload operation; the absence of an
EXCLUDE or SELECT statement causes the entire partitioned data set
(INDD=INPDS) to be unloaded to a sequential data set (OUTDD=BACKUP).

• The second EXEC statement marks the beginning of the compress-in-place
operation. The SIZE parameter indicates that the buffers are to be as large as
possible. The COND parameter indicates that the compress-in-place is to be
performed only if the unload operation was successful.

IEBCOPY Program 6-31

IEBCOPY Example 10

6-32 OS/VS2 MVS Utilities

• COMPDS DD defines a partitioned data set (PARTPDS) that contains 700
members and resides on a disk volume.

• SYSUT3 DD defines the temporary spill data set to be used if there is not
enough space in main storage for the input data set's directory entries.

• SYSUT4 DD defines the temporary spill data set to be used if there is not
enough space in main storage for the output partitioned data set's directory
blocks.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement.

• COPY marks the beginning of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. Because the same DD
statement is specified for both the INDD and OUTDD operands, the data set is
compressed in place.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream. Note, however, that the
SYSUT4 data set is never used for an unload operation.

Note: For an unload operation, only one INDD data set may be specified for one
OUTDD data set.

In this example, two input partitioned data sets (DATASET5 and DATASET6) are
to be copied to an existing output partitioned data set (DATASETl). In addition,
all members on DAT ASET6 are to be copied; members on the output data set that
have the same names as the copied members are replaced. After DAT ASET6 is
processed, the output data set (DATASETl) is to be compressed in place. Figure
6-14 shows the input and output data sets before and after processing.

IICOPY JOB 06#990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUT1 DD DSNAME=DATASET1,UNIT=3330,VOL=SER=111112,
II DISP=(OLD,KEEP)
IIINOUT5 DD DSNAME=DATASET5,UNIT=3350,VOL=SER=111114,
II DISP=OLD
IIINOUT6 DD DSNAME=DATASET6,UNIT=3350,VOL=SER=111115,
II DISP=(OLD,KEEP)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSIN DD *
COPYOPER COpy OUTDD=INOUT1

INDD=INOUT5,(INOUT6,R),INOUT1
1*
The control statements are discussed below:

• INOUTl DD defines a partitioned data set (DATASETl). This data set contains
three members (A, B, and F) and resides on a 3330 volume.

• INOUT5 DD defines a partitioned data set (DATASET5). This data set contains
two members (A and C) and resides on a 3350 volume.

• INOUT6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) and resides on a 3350 volume.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

(
\

Input

Before
copy
operation

DATASET5

After
processing
DATASET5

DATASET6

After
Processing
DATASET6

DATASET)

After
compressing
in place

Figure 6-14. Compress-in-Place Following Full Copy with "Replace" Specified

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement and an INDD statement.

• COpy indicates the start of the copy operation. The OUTDD operand specifies
INOUT1 as the DD statement for the output data set (DATASETl). The
absence of a SELECT or EXCLUDE statement causes a default to a full copy.

• INDD specifies INOUT5 as the DD statement for the first input data set
(DATASET5) to be processed. It then specifies INOUT6 as the DD statement
for the second input data set (DATASET6) to be processed; in addition, the
replace option is specified for all members copied from DATASET6. Finally, it
specifies INOUT1 as the DD statement for the last input data set (DATASETl)
to be processed; this causes a compress-in-place of DATASET1 because it is
also specified as the output data set. Processing occurs, as follows: (1) member
A is not copied from DATASET5 onto the output data set (DATASETl)
because it already exists on DATASET1 and the replace option was not
specified for DATASET5, (2) member C is copied from DATASET5 to the
output data set (DATASETl), occupying the first available space, and (3) all

IEBCOPY Program 6-33

lEBCOPY Example 11

6-34 OS/VS2 MVS Utilities

members are copied from DATASET6 to the output data set (DATASETl),
immediately following the last member. Members Band C are copied even
though the output data set already contains members with the same names
because the replace option is specified on the data set level. The pointers in the
output data set directory are changed to point to the new members Band C;
thus, the space occupied by the old members Band C is unused. The members
currently on DATASETI are compressed in place, thereby eliminating
embedded unused space.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, members are to be selected, excluded, and copied from input
partitioned data sets onto an output partitioned data set. This example is designed
to illustrate multiple copy operations. Figure 6-15 shows the input and output data
sets before and after processing.

IICOPY JOB
IIJOBSTEP EXEC
IISYSPRINT DD
IIINOUTA DD
II DISP=OLD
IIINOUTB DD
II DISP=(OLD,KEEP)
IIINOUTC DD
II DISP=(OLD,KEEP)
IIINOUTD DD
II DISP=OLD
IIINOUTE DD
II DISP=OLD

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASETA, UN I T=disk , VOL=SER=111113,

DSNAME=DATASETB, UNIT==disk, VOL=SER= 111115,

DSNAME=DATASETC, UN I T=disk , VOL=SER=111114,

DSNAME=DATASETD, UN I T==disk , VOL=SER= 111116,

DSNAME=DATASETE, UN I T=disk , VOL=SER=111117 ,

IIINOUTX DD DSNAME=DATASETX, UN I T==disk , VOL=SER= 111112,
II DISP=(NEW,KEEP),SPACE=(TRK,(3,1,2))
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSIN DD *
COPERST1 COPY O=INOUTX,I=INOUTA

1*

COPY OUTDD=INOUTA,INDD=INOUTA
INDD=INOUTB

COpy O=INOUTA
INDD=INOUTD

EXCLUDE MEMBER=MM

SELECT
INDD=INOUTC
MEMBER=((ML,MD,R))
INDD=INOUTE

The control statements are discussed below:

• INOUTA DD defines a partitioned data (DATASET A). This data set contains
eight members (MA, MB, MC, MD, ME, MF, and MG) and resides on a disk
volume.

• INOUTB DD defines a partitioned data set (DATASETB). This data set resides
on a disk volume and contains two members (MA and MJ).

• INOUTC DD defines a partitioned data set (DATASETC), which resides on a
disk volume. The data set contains four.members (MF, ML, MM, and MN).

Second copy operation

Output
DATASETA

Before
copy
operation

DATASET A

After
compressing
in place.

DATASETB

After
processing
DATASETB

Figure 6-15 (Part 1 of 2). Multiple Copy Operations/Copy Steps

IEBCOPY Program 6-35

6-36 OS/VS2 MVS Utilities

Third coP'll operation

Before
copy
operatIon

MF

MG

MJ

DATASETD

After
processing
DATASETD

DATASET'C

Afte(
processing
DATASETC

Figure 6-15 (Part 2 of 2). Multiple Copy Operations/Copy Steps

DATASETE

Member MD

MT

MF

ME

Member MA

After
processing
DATASETE

• INOUTD DD defines a partitioned data set (DAT~SETD). This data set resides
on a disk volume and contains two members (MM and MP).

• INOUTE DD defines a partitioned data set (DATASETE). This data set
contains four members (MD, ME, MF, and MT) and resides on a disk volume.

• INOUTX DD defines a partitioned data set (DAT ASETX). This data set is new
and is to be kept after the copy operation. Five tracks are allocated for the data
set on a disk volume. Two blocks are allocated for directory entries.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains two COpy statements, several INDD statements, a SELECT
statement, and an EXCLUDE statement.

• The first COpy statement indicates the start of the first copy operation. This
copy operation is done to create a backup copy of DATASETA, which is
subsequently compressed in place.

• The second COpy statement indicates the start of another copy operation. The
absence of a SELECT or EXCLUDE statement causes a default to a full copy;
however, the same DD statement, INOUTA, is specified for both the INDD and
OUTDD parameters, causing a compress-in-place of the specified data set.

• INDD specifies INOUTB as the DD statement for the input data set
(DATASETB) to be copied. Only member MJ is copied because member MA
already exists on the output data set.

• The third COpy statement indicates the start of the third copy operation. The
OUTDD parameter specifies INOUT A as the DD statement for the output data
set (DATASET A). This copy operation contains more than one copy step.

• The first INDD statement specifies INOUTD as the DD statement for the first
input data set (DATASETD) to be processed. Only member MP is copied to the
output data set (DAT ASETA) because member MM is specified on the
EXCLUDE statement.

• EXCLUDE specifies the member to be excluded from the first copy step within
this copy operation.

• The second INDD statement marks the beginning of the second copy step for
this copy operation and specifies INOUTC as the DD statement for the second
input data set (DATASETC) to be processed. Member ML is searched for,
found, and copied to the output data set (DATASETA). Member ML is copied
even though its new name (MD) is identical to the name of a member (MD) that
already exists on the output data set, because the replace option is specified for
the renamed member.

• SELECT specifies the member to be selected from the input data set
(DATASETC) to be copied to the output partitioned data set.

• The third INDD statement marks the beginning of the third copy step for this
copy operation and specifies INOUTE as the DD statement for the last data set
(DATASETE) to be copied. Only member MT is copied because the other
members already exist on the output data set. Because the INDD statement is
not followed by an EXCLUDE or SELECT statement, a full copy is performed.

IEBCOPY Program 6-37

IEBCOPY Example 12

6-38 OS/VS2 MVS Utilities

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

The output data set is compressed in place first to save space because it is known
that it contains embedded, unused space.

In this example, members are to be selected, excluded, and copied from input
partitioned data sets to an output partitioned data set. This example is designed to
illustrate multiple copy operations. Figure 6-16 shows the input and output data
sets before and after processing.

First copy operation

Output
DATASETA

Before
copy
operation

Input
DATASETE

After
processing
DATASETE

Input
DATASETC

After
processing
DATASETC

Figure 6-16 (Part 1 of 3). Multiple Copy Operations/Copy Steps Within a Job Step

Second copy operation

Before
copy
operation

Input
DATASETD

After
processing
DATASETD

Input
DATASETC

After
processing
DATASETC

Input
DATASETB

After
compressing
in place

Figure 6-16 (Part 2 of 3). MUltiple Copy Operations/Copy Steps Within a Job Step

IEBCOPY Program 6-39

-

6-40 OS/VS2 MVS Utilities

Third copy operation

Output
DATASETD

Directory

~
MI~_

~
Available

Before
copy
operation

member

Input
DATASETB

Directory I MA MF MJ ML
~ MM MN MP

Mernber MA

MJ

MP

MF

ML

MN

Available

After
processing
DATASETB

Figure 6-16 (Part 3 of 3). Multiple Copy Operations/Copy Steps Within a Job Step

II COpy JOB
IIJOBSTEP EXEC
IISYSPRINT DD
IIINOUTA DD
II DISP=OLD
IIINOUTB DD
II DISP=(OLD,KEEP)
IIINOUTC DD
II DISP=(OLD,KEEP)
IIINOUTD DD
I I UNIT=disk
IIINOUTE DD
I I UN I T=disk
IISYSUT3 DD
IISYSUT4 DD
IISYSIN DD

1*

COPY

SELECT

EXCLUDE
COpy

COPY
SELECT

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASETA, UN I T=disk , VOL=SER=111113,

DSNAME=DA'l'ASETB, VOL=SER= 111115, UNIT=disk,

DSNAME=DATASETC, VOL=SER=111114, UNIT=disk,

DSNAME=DATASETD,VOL=SER=111116,DISP=OLD,

DSNAME=DATASETE,VOL=SER=111117,DISP=OLD,

UNIT=SYSDA,SPACE=(TRK,(1))
UNIT=SYSDA,SPACE=(TRK,(1))

*
OUTDD=INOUTA
INDD=INOUTE
MEMBER=MA,MJ
INDD=INOUTC
MEMBER=MM,MN
O=INOUTB,INDD=INOUTD
I=«INOUTC,R),INOUTB)
O=INOUTD,I=«INOUTB,R))
MEMBER=MM

The control statements are discussed below:

• INOUTA DD defines a partitioned data set (DATASET A). This data set
contains three members (MA, MB, and MD) and resides on a disk volume.

• INOUTB DD defines a partitioned data set (DATASETB). This data set resides
on a disk volume and contains two members (MA and MJ).

• INOUTC DD defines a partitioned data set (DATASETC), which resides on a
disk volume. This data set contains four members (MF, ML, MM, and MN).

• INOUTD DD defines a partitioned data set (DATASETD). This data set resides
on a disk volume and contains two members (MM and MP).

• INOUTE DD defines a partitioned data set (DATASETE), which resides on a
disk volume. This data set contains three members (MA, MJ and MK).

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains three COpy statements, SELECT and EXCLUDE statements,
and several INDD statements.

• The first COPY statement indicates the start of a copy operation. The OUTDD
operand specifies INOUT A as the DD statement for the output data set
(DATASETA).

• The first INDD statement specifies INOUTE as the DD statement for the first
input data set (DATASETE) to be processed. Processing occurs, as follows: (1)
member MA is searched for and found, but is not copied because the replace
option is not specified, and (2) member MJ is searched for, found, and copied to
the output data set. Members are not searched for again after they are found.

• SELECT specifies the members (MA and MJ) to be selected from the input data
set (DATASETE) to be copied.

IEBCOPY Program 6-41

IEBCOPY Example 13

6-42 OS/VS2 MVS Utilities

• The second INDD statement marks the end of the first copy step and the
beginning of the second copy step within the first copy operation. It specifies
INOUTC as the DD statement for the second input data set (DATASETC) to
be processed. Members MF and ML, which are not named on the EXCLUDE
statement, are copied because neither exists on the output data set.

• EXCLUDE specifies the members (MM and MN) to be excluded from the
second copy operation.

• The second COpy statement indicates the start of another copy operation. The
absence of a SELECT or EXCLUDE statement causes a default to a full copy.
The 0 (OUTDD) parameter specifies INOUTB as the output data set
(DATASETB). The INDD parameter specifies INOUTD as the first input data
set (DAT ASETD) to be processed. Members MP and MM are copied to the
output data set.

• INOD(I) specifies INOUTC as the DO statement for the second input data set
(DAT ASETC) and INOUTB as the OD statement for the third input data set
(DATASETB) to be processed. Members MF, ML, MM, and MN are copied
from DAT ASETC. Member MM is copied, although it already exists on the
output partitioned data sets, because the replace option is specified. Because
DATASETB is also the data set specified in the OUTDD parameter, a
compress-in-place takes place. (The pointer in the output data set directory is
changed to point to the new (copied) member MM; thus the space occupied by
the replaced member MM is embedded, unused space.)

• The third COpy statement indicates the start of another copy operation. The 0
(OUTDD) parameter specifies INOUTD as the DD statement for the output
data set (DATASETD). The I (INDD) parameter specifies INOUTB as the DO
statement for the input data set (DATASETB).

• SELECT specifies the member (MM) to be selected from the input partitioned
data set (DATASETB) to be copied. The replace option is specified on the data
set level.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

Data sets used as input data sets in one copy operation can be used as output data
sets in another copy operation, and, vice versa.

In this example, a partitioned data set (SYS1.LINKLIB) is to be unloaded to a tape
volume.

IIUNLOAD JOB
IISTEPl EXEC
IISYSPRINT DD
IIINPDS DD
II VOL=SER=666666

246803,'name',MSGLEVEL=(1,1)
PGM=IEBCOPY,PARM='SIZE=100K'
SYSOUT=A
DSNAME=SYS 1 . LINKLIB, UNIT=disk ,DISP=SHR,

IIOUTTAPE DD DSNAME=LINKLIB,UNIT=wpe,VOL=SER=TAPEOO,
II LABEL=(,SL),DISP=(NEW,KEEP)
IISYSUT3 DD DSN=TEMP1,UNIT=d~k,vOL=SER=111111,
IIDISP=(NEW,DELETE),SPACE=(80,(60,45»
IISYSIN DD *-

1*

COpy OUTDD=OUTTAPE
INDD=INPDS

IEBCOPY Example 14

The control statements are discussed below:

• EXEC specifies the execution of IEBCOPY. The PARM parameter specifies the
size of the input/output buffer to be used.

• INPDS DD defines a partitioned data set (SYSl.LINKLIB), which resides on a
disk volume. This data set has 700 members; the number of members is used to
calculate the space allocation for SYSUT3.

• OUTT APE DD defines a sequential data set to which SYS 1.LINKLIB is to be
unloaded. The unloaded data set is named LINKLIB. If a tape volume is used, it
can be standard labeled or unlabeled.

• SYSUT3 DD defines a temporary spill data set on a disk volume. This data set is
used if there is not enough space in virtual storage for the input partitioned data
set's directory entries. This data set mayor may not be opened depending on the
amount of virtual storage available; therefore, it is suggested that the statement
always appear in the job stream.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy and INDD statement.

• COpy indicates the start of an unload operation because the OUTDD parameter
refers to OUTT APE DD, which specifies a sequential output data set. Because
of the absence of an EXCLUDE or SELECT statement, the entire data set is
unloaded.

• INDD refers to INPDS DD, which defines theinput partitioned data set to be
unloaded. Note that for an unload operation, only one INDD data set may be
specified for each OUTDD data set.

The SYSUT4 data set is never used for an unload operation. The SYSUT3 data set
for an unload operation is used under the same conditions as it is used for a copy
operation.

Note: If too much space is allocated, the paging process slows down because the
buffer areas are fixed.

In this example, a sequential data set created by an IEBCOPY unload operation is
to be loaded.

IILOAD JOB 246803, 'name' ,MSGLEVEL=(1,1)
IISTEPA EXEC PGM=IEBCOPY,PARM='SIZE=14588'
IISYSPRINT DD SYSOUT=A
IISEQIN DD DSNAME=UNLOADSET, UNIT=tape, LABEL=(, SL),
II VOL=SER=TAPE01,DISP=OLD
IIINOUT4 DD DSNAME=DATASET4, UN I T=disk , VOL=SER=2222222,
II DISP=(NEW,KEEP),SPACE=(CYL,(10,5,10))
IISYSUT3 DD DSN=TEMP1,UNIT=d~k,vOL=SER=111111,
II DisP=(NEW,DELETE),SPACE=(80,(15,1))
IISYSIN DD *

COPY OUTDD=INOUT4,INDD=SEQIN
1*
The control statements are discussed below:

• EXEC specifies the execution of IEBCOPY. The P ARM parameter allocates
two tracks on a disk volume. If less space is specified, two tracks are allocated
because two tracks are the minimum required by IEBCOPY when the unloaded
data set's block size does not exceed the track capacity.

IEBCOPY Program 6-43

IEBCOPY Example 15

~4 OS/VS2 MVS Utilities

• SEQIN DD defines a sequential data- set that was previously unloaded by
IEBCOPY. The data set contains 28 members in sequential organization.

• INOUT4 DD defines a partitioned data set ona disk volume. This data set is to
be kept after the load operation. Ten cylinders are allocated for the data set; ten
blocks are allocated for directory entries.

• SYSUT3 DD defines a temporary spill data set on a disk volume. This data set is
used if there is not enough space in main storage for the input data set's
directory entries. This data set mayor may not be opened, depending on the
amount of main storage available; therefore, it is suggested that the statement
always appear in the job stream. Note that the space allocated for this data set is
based on the number of members in the input data set.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement.

• COpy indicates the start of a load operation because the INDD parameter refers
to SEQIN DD, which defines a sequential data set, and OUTDD refers to
INOUT4 DD, which defines a direct access volume.

Because the output data set in this example is new, the SYSUT 4 data set is not
needed. SYSUT4 should be specified, however, when the output data set is old.

Note: Reblocking may be specified for the output partitioned data set.

In this example, members are to be selected, excluded, unloaded, loaded, and
copied. Processing will occur, as follows: (1) unload, excluding members, (2)
unload, selecting members, and (3) load and copy to merge members.

IICOPY JOB 06#990, 'name' ,MSGLEVEL=(l,l)
IISTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIPDS1 DD DSNAME=ACCOUNTA,UNIT=3350,VOL=SER=333333,
II DISP=OLD
IIPDS2 DD DSNAME=ACCOUNTB,UNIT=3350,VOL=SER=333333,
II DISP=OLD
IISEQ1 DD DSNAME=SAVAC,UNIT=3350,VOL=SER=333333,
II DISP=(NEW,KEEP),SPACE=(CYL,(5,2))
IISEQ2 DD DSNAME=SAVACB,UNIT=tape,VOL=SER=T01911,
II DISP=(NEW,KEEP),LABEL=(,SL)
IINEWUP DD DSNAME=NEWACC,UNIT=tape,VOL=SER=T01219,
II DISP=OLD,LABEL=(,SL)
IIMERGE DD DSNAME=ACCUPDAT,UNIT=3330~1,VOL=SER=22222222,
II DISP=OLD
IISYSUT3 DD DSNAME=TEMP1,VOL=SER=666666,UNIT=3330-1,
II DISP=(NEW,DELETE),SPACE=(80,(1,1))
I ISYSUT4 DD DSNAME=TEMP2, VOL=,SER=666666, UNIT=3330-1 ,
II DISP=(NEW,DELETE),SPACE=(256,(1,1)),DCB=(KEYLEN=8)
IISYSIN DD *

1*

COPY OUTDD=SEQ1,INDD=PDS1
EXCLUDE MEMBER=(D,C)
COpy OUTDD=SEQ2,INDD=PDS2
SELECT MEMBER=(A,K)
COpy OUTDD=MERGE,INDD=((NEWUP,R),PDS1,PDS2)
EXCLUDE MEMBER=A

The control statements are discussed below:

• PDS 1 DD defines a partitioned data set that contains six members (A, B, C, D,
E, and F) and resides on a 3350 volume.

• PDS2 DD defines a partitioned data set that contains three members (A, K, and
L) and resides on a 3350 volume.

• SEQ1 DD defines a new sequential data set on a 3350 volume.

• SEQ2 DD defines a new sequential data set on a tape volume.

• NEWUP DD defines an old sequential data set that is the unloaded form of a
partitioned data set that contains eight members (A, B, C, D, M, N, 0, and P). It
resides on a tape volume.

• MERGE DD defines a partitioned data set that contains six members (A, B, C,
D, Q, and R) and resides on a 3330-1 volume.

• The first COpy statement indicates the start of the first unload operation. (The
input data set is partitioned; the output data set is sequential.)

• The first EXCLUDE statement specifies that members D and C are to be
excluded from the unload operation specified by the preceding COpy statement.

• The second COpy statement indicates the start of the second unload operation.
(The input data set is partitioned; the output data set is sequential.)

• The SELECT statement specifies that members A and K are to be included in
the unload operation specified by the preceding COpy statement.

• The third COPY statement indicates the start of the copy and load operations.
The replace option is specified for the NEWUP data set; therefore, members in
this data set replace identically named members on the output data set. The first
INDD data set is an unloaded data set that is to be loaded. The second and third
INDD data sets are partitioned data sets that are to be copied. (The input data
sets are sequential and partitioned; the output data set is partitioned.)

IEBCOPY Program 6-45

IEBDG PROGRAM

IBM -Supplied Patterns

IEBDG is a data set utility used to provide a pattern of test data to be used as a
programming debugging aid.

An output data set, containing records of any format, can be created through the
use of utility control statements, with or without input data. An optional user exit is
provided to pass control to a user routine to monitor each output record before it is
written. Sequential, indexed sequential, and partitioned data sets can be used for
input or output.

The user codes utility control statements to generate a pattern of data that he can
analyze quickly for predictable results.

When the user defines the contents of a field, he decides:

• What type of pattern-IBM-supplied or user-supplied-he wishes to place
initially in the defined field.

• What action, if any, is to be performed to alter the contents of the field after it is
selected for each output record.

IBM supplies seven patterns: alphameric, alphabetic, zoned decimal, packed
decimal, binary number, collating sequence, and random number. The user may
choose one of them when he defines the contents of a field. All patterns except the
binary and random number patterns repeat in a given field, provided that the
defined field length is sufficient to permit repetition. For example, the alphabetic
pattern is:

ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG ...

Figure 7-1 shows the IBM-supplied patterns.

Type

Alphameric

Alphabetic

Zoned Decimal

Packed Decimal

Binary Number

Expressed in
Hexadecimal

Cl C2 ... E9 FO ... F9

Cl C2 ... E9

FOFO ... FOFI

0000 ... 001C
(Positive pattern)
0000 ... 0010
(Negative pattern)

00 ... 01
(Positive pattern)
FF ... FF
(Negative pattern)

Expressed in
Printable Characters

AB ... Z 0 ... 9

AB ... Z

00 ... 01

Not applicable

Not applicable

Collating Sequence 40 ... F9 b¢.«+ I &!$*); -/, <Yc.,_>?:#@'="
A ... ZO ... 9

Random Number Random hexadecimal digits Not applicable

Figure 7-1. IBM-Supplied Patterns

Note: A packed decimal or binary number is right aligned in the defined field.

IEBDG Program 7-1

User-Specified Pictures

The user can specify a starting character when defining an alphameric, alphabetic,
or collating-sequence field. For example, a ten-byte alphabetic field for which "H"
is specified as the starting character would appear as:

HIJKLMNOPQ

The same ten-byte alphabetic field with no specified starting character would
appear as:

ABCDEFGHIJ

The user can specify a mathematical sign when defining a packed decimal or binary
field. If no sign is specified, the field is assumed to be positive.

Instead of selecting an IBM-supplied pattern, the user can specify a picture to be
placed in the defined field. The user can provide:

• An EBCDIC character string.

• A decimal number to be converted to packed decimal by IEBDG.

• A decimal number to be converted to binary by IEBDG.

When the user supplies a picture, he must specify a picture length that is equal to or
less than the specified field length. An EBCDIC picture is left aligned in a defined
field; a decimal number that is converted to packed decimal or to binary is right
aligned in a defined field.

The user can initially load (fill) a defined field with either an EBCDIC character or
a hexadecimal digit. For example, the IO-byte picture "BADCFEHGJI" is to be
placed in a IS-byte field. An EBCDIC "2" is to be used to pad the field. The result
is BADCFEHGJI22222. (If no fill character is provided, the remaining bytes
contain binary zeros.) Remember that the fill character, if specified, is written in
each byte of the defined field prior to the inclusion of an IBM-supplied pattern or
user-supplied picture.

Modification of Selected Fields

7 - 2 OS/VS2 MVS Utilities

IEBDG can be used to change the contents of a field in a specified manner. One of
eight actions can be selected to change a field after its inclusion in each applicable
output record. These actions are tipple, shift left, shift right, truncate left, truncate
right, fixed, roll, and wave.

Figure 7-2 shows the effects of each of the actions on a six-byte alphabetic field.
Note that the roll and wave actions are applicable only when a user pattern is
supplied. In addition, the result of a ripple action depends on which type of
pattern-IBM-supplied or user-supplied-is present.

If no action is selected, or if the specified action is not compatible with the format,
the fixed action is assumed by IEBDG.

Input and Output

R ipple- user·
supplied picture

ABCDEF

BCDEFA

CDEFAB

DEFABC

EFABCD

FABCDE

ABCDEF

BCDEFA

Truncate left

ABCDEF

BCD E F

CD E F

D E F

E F

F

ABCDEF

BCD E F

R ipple-I BM·
supplied format

ABCDEF

BCDEFG

C D.E F G H

DEFGHI

EFGH IJ

FGHI JK

GH IJKL

H IJKLM

Truncate right

ABCDEF

ABCDE

ABCD

ABC

A B

A

ABCDEF

ABC D E

Figure 7-2. IEBDG Actions

Shift' left

ABCDEF

BCD E F

CD E F

DE F

E F

F

ABCDEF

BCD E F

Fixed

ABCDEF

ABCDEF

ABCDEF

ABCDEF

ABCDEF

ABCDEF

ABCDEF

ABCDEF

IEBDG uses the following input:

Shift right

ABCDEF

ABC D. E

ABCD

ABC

AB

A

ABCDEF

ABCDE

Roll-user­
supplied picture

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

Wave-user­
supplied picture

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

• An input data set, which contains records that are to be used in the construction
of an output data set or partitioned data set member. The input data sets are
optional; that is, output records can be created entirely from utility control
statements.

• A control data set, which contains any number of sets of utility control
statements.

IEBDG produces the following output:

• An output data set, which is the result of the IEBDG operation. One output data
set is created by each set of utility control statements included in the job step.

• A message data set, which contains informational messages, the contents of
applicable utility control statements, and any error messages.

Note that input and output data sets may be sequential, indexed sequential, or
partitioned data set members.

BDAM is not supported.

IEBDG produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a user routine returned a code of 16 to IEBDG. The job
step is terminated at the user's request.

IEBDG Program 7 - 3

Control

Job Control Statements

7 - 4 OS/VS2 MVS Utilities

• 08, which indicates that an error occurred while processing a set of utility control
statements. No data is generated following the error. Processing continues
normally with the next set of utility control statements, if any.

• 12, which indicates that an error occurred while processing an input or output
data set. The job step is terminated.

• 16, which indicates that an error occurred from which recovery is not possible.
The job step is terminated.

IEBDG is controlled by job control statements and utility control statements. The
job control statements are used to execute or invoke IEBDG and define the data
sets used and produced by IEBDG. Utility control statements are used to control
the functions of the program and to define the contents of the output records.

Figure 7 -3 shows the job control statements necessary for using IEBDG.

Both input and output data sets can contain fixed, variable, or undefined records.

Statement

JOB

EXEC

SYSPRINT DD

SYSIN DD

seqinset DD

parinset DD

seqout DD

parout DD

Use

Initiates the job.

Specifies the program name (PGM=IEBDG) or, if the job control
statements reside in a procedure library, the procedure name. Additional
information can be specified in the EXEC statement; see "PARM
Information on the EXEC Statement" below.

Defines a sequential message data set. The data set can be written on a
system output device, a tape volume, or a direct access volume.

Defines the control data set, whkh contains the utility control statements
and, optionally, input records. The data set normally resides in the input
stream; however, it can be defined as a sequential data set or as a member
of a partitioned data set.

Defines an optional sequential or indexed sequential data set used as input
to IEBDG. The data set can reside on a tape volume or on a direct access
volume. Any number of these statements (each having a ddname different
from all other ddnames in the job step) can be included in the job step.
Each DD statement is subsequently referred to by a DSD utility control
statement.

Defines an optional input partitioned data set member residing on a direct
access volume. Any number of these statements (each having a ddname
different from all other ddnames in the job step) can be included in the job
step. The "parinset" DD statement is referred to by a DSD utility control
statement.

Defines an output (test) sequential or indexed sequential data set. Any
number of "seqout" DD statements can be included per job step; however,
only one "seqout" statement is applicable per set of utility control
statements.

Defines an optional output partitioned data set member to be created and
placed on a direct access volume. Any number of "parout" DD statements
(each DO statement referring to the same or to a different data set) can be
included per job step; however, only one "parout" statement is applicable
per set of utility control statements.

Figure 7-3. IEBDG Job Control Statements

Refer to OS/VS2 MVS Data Management Services Guide for information on
estimating space allocations.

The "seqinset" DD statement can be entered:

/ /seqinset DD DSNAME=setname,UNIT=xxxx,DISP=(OLD,KEEP),
/ / VOLUME=SER=xxxxxx,LABEL=(. .. , ...),
/ / DCB=(applicable subparameters)

The LABEL parameter is included only for a magnetic tape volume. If the input
data set has an indexed sequential organization, DSORG=IS should be coded in
the DCB parameter.

The "parinset" DD statement can be entered:

/ /parinset DD DSNAME=setname(membername),UNIT=xxxx,DISP=(OLD,
/ / KEEP), VOLUME=SER=xxxxxx,
/ / DCB=(applicable subparameters)

The "seqout" DD statement can be entered:

/ /seqout DD DSNAME=setname, UNIT=xxxx,
/ / DISP=(,KEEP),VOLUME=SER=xxxxxx,
/ / DCB=(applicable subparameters)

The LABEL parameter is included for magnetic tape; the SPACE parameter is
included for direct access.

The "parout" DD statement can be entered:

/ /parout DD DSNAME=setname(membername),UNIT=xxxx,
/ / DISP=(,KEEP),VOLUME=SER=xxxxxx,DCB=(applicable
/ / subparameters),DISP=(,KEEP),
/ / SPACE=(applicable subparameter)

The SPACE parameter is included on the parout DD statement when creating the
first member to be placed in a partitioned data set.

P ARM Information on the EXEC Statement

The EXEC statement can include an optional P ARM parameter to specify the
number of lines to be printed between headings in the message data set, coded as
follows:

PARM=LINECT=nnnn

The nnnn is a four-digit decimal number that specifies the number of lines (0000 to
9999) to be printed per page of output listing.

If PARM is omitted, 58 lines are printed between headings (unless a channel 12
punch is encountered in the carriage control tape, in which case a skip to channel 1
is performed and a heading is printed).

Note: If IEBDG is invoked, the line-count option can be passed in a parameter list
that is referred to by a subparameter of the LINK or A TT ACH macro instruction.
In addition, a page count can be passed in a six-byte parameter list that is referred
to by a subparameter of the LINK or ATTACH macro instruction. For a discussion
of linkage conventions, refer to "Appendix B: Invoking Utility Programs from a
Problem Program."

IEBDG Program 7 - 5

Utility Control Statements

DSD Statement

FD Statement

7 - 6 OS/VS2 MVS Utilities

IEBDG is controlled by the following utility control statements:

Statement

DSD

FD

CREATE

REPEAT

END

Use

Specifies the ddnames of the input and output data sets. One DSD
statement must be included for each set of utility control statements.

Defines the contents and lengths of fields to be used in creating output
records.

Defines the contents of output records.

Specifies the number of times a CREATE statement or a group of
CREATE statements are to be used in generating output records.

Marks the end of a set of IEBDG utility control statements.

Figure 7-4. IEBDG Utility Control Statements

Any number of sets of control statements can appear in a single job step. Each set
defines one data set.

Note: Continuation of PICTURE parameter statements requires a nonblank
character in column 72 and must begin in column 4 on the next statement.

The DSD statement marks the beginning of a set of utility control statements and
specifies the data sets that IEBDG is to use as input. The DSD statement can be
used to specify one output data set and any number of input data sets for each
application of IEBDG.

The format of the DSD statement is:

[label] DSD OUTPUT=(ddname)

[,INPUT=(ddname , ...)]

Note: The ddname SYSIN must not be coded in the INPUT parameter. Each
parameter should appear no more than once on any DSD statement.

The FD statement defines the contents and length of a field that will be u.sed
subsequently by a CREATE statement (or statements) to form output records. A
defined field within the input logical record may be selected for use in the output
records if it is referred to, by name, by a subsequent. CREATE statement.

Figure 7-5 shows how fields defined in FD statements are placed in buffer areas so
that subsequent CREATE statements can assign selected fields to specific output
records.

Figure 7 -6 shows how the FD statement is used to specify a field in an input record
to be used in output records. The left-hand side of the figure shows that a field in
the input record beginning at byte 50 is selected for use in the output record. The
right-hand side of the figure shows that the field is to be placed at byte 20 in the
output record.

Note: When retrieving data sets with RECFM=F and RKP>O, the record consists
of the key plus the data with embedded key. To copy the entire record, the output
DCB=LRECL has to be input LRECL + KEYLEN. If only the data is to be
copied, the FROMLOC must point to start of the data, that is,
FROMLOC=keylength.

FD Statements-define fields

Contents are placed in buffers
so that subsequent CR EATE
statements can selectively
create output records.

CREATE Statement-creates,output record from ~1(fi'elds

Figure 7-5. Defining and Selecting Fields for Output Records Using IEBDG

Figure 7-6. Field Selected from the Input Record for Use in the Output Record

The format of the FD statement is:

[label] FD NAME=name

,LENGTH=length-in-bytes

[,ST ARTLOC=starting-byte-location]

[,FILL = {' character' I
X' 2-hexadecimal-digits'}]

{[,FORMAT=pattem [,CHARACTER=character] I

,PICTURE=length, {' character-string' I

[,SIGN =sign]

[,ACTION =action]

P' decimal~number' I
B'decimal-number'}]}

[,INDEX=number [,CYCLE=number][,RANGE=number]]

[,INPUT =ddname]

[,FROMLOC=number]

Some of the FD keywords do not apply when certain patterns or pictures are
selected by the user; for example, the INDEX, CYCLE, RANGE, and SIGN

IEBDG Program 7 - 7

CREATE Statement

7 :- 8 OS/VS2 MVS Utilities

parameters are used only with numeric fields. Figure 7-7 shows which IEBDG
keywords can be used with the applicable pattern or picture chosen by the user.
Each keyword should appear no more than once on any FD statement.

FORMAT /PIcrURE

Format

AL
AN
CO

Format

ZD
PD
BI

Picture

PD
BI

Picture

EBCDIC

Compatible Operations

Action

SL
SR
TL
TR
FX
RP

Index
Cycle
Range
Sign*

Index
Cycle
Range
Sign

Action

SL
SR
TL
TR
FX
RP
WV
RO

*Zoned decimal numbers (ZD) do not include a sign.

Figure 7-7. Compatible IEBDG Operations

The CREATE statement defines the contents of a record (or records) to be made
available to a user routine or to be written directly as an output record (or records).

The format of the CREATE stat9ment is:

[label] CREATE [QUANTITY=number]

[,FILL = {' character' I X' 2-hexadecimal-digits'}]

[,INPUT= {ddname I SYSIN[«(:ccc)]}]

[,PICTURE = length , startloc I,' character-string' I
,P' decimal-number' I
,B'decimal..;number'}]

[,NAME= {name I (name 1 , namen ...) I
(name(COPY=number, name1 ,namen ...) •••)}]

[,EXIT=routinename]

After processing each potential output record, the user routine provides a return
code to instruct IEBDG how to handle the output record. The user codes are:

• 00, which specifies that the record is to be written.

• 04, which specifies that the record is not to be written. The skipped record is not
to be counted as a generated output record; processing is to continue as though a
record were written. If skips are requested through user exits and input records
are supplied, each skip causes an additional input record to be processed in the
generation of output records. For example, if a CREATE statement specifies
that ten output records are to be generated and a user exit indicates that two
records are to be skipped, 12 input records are processed.

• 12, which specifies that the processing of the remainder of this set of utility
control statements is to be bypassed. Processing is to continue with the next
DSD statement.

• 16, which specifies that all processing is to halt.

Note: When an exit routine is loaded and when the user returns control to IEBDG,
register one contains the address of the first byte of the output record. Each
keyword should appear no more than once on any CREATE statement.

Figure 7-8 shows the addition of field X to two different records. In record 1, field
X is the first field referred to by the CREATE statement; therefore, field X begins
in the first byte of the output record. In record 2, two fields, field A and field B,
have already been referred to by a CREATE statement; field X, the next field
referred to, begins immediately after field B. Field X does not have a special
starting location in this example.

Record 1

21 80 ,..-----

Record 2

Figure 7-8. Default Placement of Fields Within an Output Record Using IEBDG

The user can also indicate that a numeric field is to be modified after it has been
referred to n times by a CREATE statement or statements, that is, after n cycles, a
modification is to be made. A modification will add a user-specified number to a
field.

The CREATE statement constructs an output record by referring to previously
defined fields by name and/or by providing a picture to be placed in the record.
The user can generate multiple records with a single CREATE statement.

When defining a picture in a CREATE statement, the user must specify its length
and starting location in the output record. The specified length mus! be equal to the
number of specified EBCDIC or numeric characters. (When a specified decimal
number is converted to packed decimal or binary, it is automatically right aligned.)

Figure 7-9 shows three ways in which output records can be created from utility
control statements.

As an alternative to creating output records from utility control statements alone,
the user can provide input records, which can be modified and written as output
records. Input records can be provided directly in the input stream, or in a data set.
Only one input data set can be read for each CREATE statement.

IEBDG Program 7 - 9

7 - 10 OS/VS2 MVS Utilities

1. Fields only Output record

3. Picture only

(CREATE Picture

Figure 7-9. Creating Output Records with Utility Control

As previously mentioned, the CREATE statement is responsible for the
construction of an output record. An output record is constructed in the following
order:

1. A fill character, specified or default (binary zero), is initially loaded into each
byte of the output record.

2. If the INPUT operand is specified on the CREATE statement, and not on an FD
statement, the input records are left aligned in the corresponding output record.

3. If the INPUT operand specifies a ddname in any FD statement, only the fields
described by the FD statement(s) are placed in the output record.

4. FD fields, if any, are placed in the output record in the order of the appearance
of their names in the CREATE statement.

S. A CREATE statement picture, if any, is placed in the output record.

IEBDG provides a user exit so that the user can provide his own routine to analyze
or further modify a newly constructed record before it is placed in the output data
set.

A set of utility control statements contains one DSD statement, any number of FD,
CREATE, and REPEAT statements, and one END statement when the INPUT
parameter is omitted from the FD card.

When selecting fields from an input record (FD INPUT=ddname), the field must
be defined by an FD statement within each set of utility control statements. In that
case, defined fields for field selection are not usable across sets of utility control
statements; such an FD card may be duplicated and used in more than one set of
utility control statements within the joh step.

REPEAT Statement

END Statement

/

The REPEAT statement specifies the number of times a CREATE statement or
group of CREATE statements is to be used repetitively in the generation of output
records. The REPEAT statement precedes the CREATE statements to which it
applies.

Figure 7-10 shows a group of five CREATE statements repeated n times.

Figure 7-10. Repetition Caused by the REPEAT Statement Using IEBDG

The format of the REPEAT statement is:

[label] REPEAT QUANTITY =number [,CREATE=number]

The END statement is used to mark the end of a set of utility control statements.
Each set of control statements can pertain to any number of input data sets and a
single output data set.

The format of the END statement is:

[label] END

IEBDG Program 7 - 11

Operands

ACTION

CREATE

EXIT

Applicable Control
Statements

FD

REPEAT

CREATE

7 - t 2 OS/VS2 MVS Utilities

Description of Operands/Parameters

ACTION =action
specifies that the contents of a defined field are to be
altered after the field's inclusion in an output record. These
values can be coded:

SL
specifies that the contents of a defined field are to be
shifted left after the field's inclusion in an output record.

SR
specifies that the contents of a defined field are to be
shifted right after the field's inclusion in an output
record.

TL
specifies that the contents of a defined field are, to be
truncated left after the field's inclusion in an output
record.

TR
specifies that the contents of a defined field are to be
truncated right after the field's inclusion in an output
record.

RO
specifies that the contents of a defined field are to be
rolled after the field inclusion in an output record. RO
can be used only for a user-defined field.

wv
specifies that the contents of a defined field are to be
waved after the field's inclusion in an output record.
WV can be used only for a user-defined field.

FX
specifies that the contents of a defined field are to be
fixed after the field's inclusion in an output record.

RP
specifies that the contents of a defined field are to be
rippled after the field's inclusion in an output record.

Default: FX

CREATE=number
specifies the number of following CREATE statements to
be included in the group.

Default: One CREATE statement is repeated.

EXIT =routinename
specifies the name of a user routine that is to receive
control from IEBDG before writing each output record.

Operands

FILL

FORMAT

~
~
J

FROMLOC

)

Applicable Control
Statements

CREATE

FD

FD

Description of Operands/Parameters

FILL={'character' I X' 2-hexadecimal-digits'}
specifies a value that is to be placed in each byte of the
output record before any other operation in the
construction of record. These values can be coded:

'character'
specifies an EBCDIC character that is to be placed in
each byte of the output record.

X'2 -hexadecimal-digits'
specifies two hexadecimal digits (for example,
FILL=X'40', or FILL=X'FF') to be placed in each
byte of the output record.

Default: Binary zeros are placed in the output record.

FORMAT =pattern [,CHARACTER=eharacter]
specifies an IBM-supplied pattern that is to be placed in
the defined field. FORMAT must not be used when
PICTURE is used. The values that can be coded are:

pattern
specifies the IBM=supplied patterns, as follows:

AN
specifies an alphameric pattern.

ZD
specifies a zoned decimal pattern.

PD
specifies a packed decimal pattern.

CO
specifies a collating sequence pattern.

BI
specifies a binary pattern.

AL
specifies an alphabetic pattern.

RA
specifies a random binary pattern.

CHARACTER=eharacter
specifies the starting character of a field.

FROMLOC=number
specifies the location of the selected field within the input
logical record. The number represents the position in the
input record. If, for example, FROMLOC=10 is coded,
the specified field begins at the tenth byte; if
FROMLOC= 1 is coded, the specified field begins at the
first byte. (For variable records, significant data begins on
the first byte after the four-byte length descriptor.)

Default: The start of the input record.

IEBDG Program 7 - 13

Operands

INDEX

INPUT

Applicable Control
Statements

FD

DSD

FD

7 -14 OS/VS2 MVS Utilities

Description of Operands/Parameters

INDEX= number [,CYCLE = number][,RANGE= number]
specifies a number to be added to this field whenever a
specified number of records have been written. These
additional values can be coded:

CYCLE=number
specifies a number of output records (to be written as
output or made available to an exit routine) that are
treated as a group by the INDEX keyword. Whenever
this field has been used in the construction of the
specified number of records, it is modified as specified
in the INDEX parameter. For example, if CYCLE=3 is
coded, output records might appear as 111 222333 444
etc. This parameter can be coded only when INDEX is
coded.

RANGE=number
specifies an absolute value which the contents of this
field can never exceed. If an index operation attempts to
exceed the specified absolute value, the contents of the
field as of the previous index operation are used.

Default: No indexing is performed. If CYCLE is omitted
and INDEX is coded, a CYCLE value of 1 is assumed;
that is, the field is indexed after each inclusion in a
potential output record.

INPUT = (ddname , ...)
specifies the ddname of a DD statement defining a _data set
used as input to the program. Any number of data sets can
be included as input-that is, any number of ddnames
referring to corresponding DD statements can be coded.
Whenever ddnames are included on a continuation card,
they must begin in column four.

Note: The ddname SYSIN must not be coded as the
INPUT parameter on the DSD and FD control statements.
Each ddname should not appear more than once on any
control statement.

INPUT=ddname

specifies the ddname of a DD-statement defining a data set
used as input for field selection. Only a portion of the
record described by the FD statement will be placed in the
output record. If the record format of the output data set
indicates variable-length records, the position within the
output record will depend upon where the last insert into
the output record was made.

A corresponding ddname must also be specified in the
associated CREATE statement in order to have the input
record(s) read.

(

)

Operands

INPUT
(continued)

LENGTH

NAME

Applicable Control
Statements

CREATE

FD

FD

Description of Operands/Parameters

INPUT = { ddname I SYSIN[(ecce)]}
defines an input data set whose records are to be used in
the construction of output records. If INPUT is coded,
QUANTITY should also be coded, unless the remainder of
the input records are all to be processed by this CREATE
statement. If INPUT is specified in an FD statement
referenced by this CREATE statement, there must be a
corresponding ddname specified in the CREATE
statement in order to get the input record(s) read. These
values can be coded:

ddname
specifies the ddname of a DD statement defining an
input data set.

SYSIN[ecce]
specifies that the SYSIN data set (input stream)
contains records (other than utility control statements)
to be used in the construction of output records. If
SYSIN is coded, the input records follow this CREATE
statement (unless the CREATE statement is in a
REPEA T group, in which case the input records follow
the last CREATE statement of the group). When
INPUT = SYSIN with no ecce value is coded, the input
records are delimited from any additional utility control
statements by a record containing $$$E in columns 1
through 4. If this value is coded, the input records are
delimited by a record containing EBCDIC characters
beginning in column 1; the ecce can be any combination
of from one to four EBCDIC characters.

LENGTH=length-in-bytes
specifies the length in bytes of the defined field. For
variable records, four bytes of length descriptor are added.

NAME=name
specifies the name of the field defined by this FD
statement.

IEBDG Program 7 - 15

¥4L Al_iiW.,iHUJ

Operands

NAME
(continued)

OUTPUT

Applicable Control
Statements

CREATE

DSD

7 - 16 OS/VS2 MVS Utilities

Description of Operands/Parameters

NAME={ name I (namel,namen .••) I (name, (COPY=
number, name 1, namen ..•) •.•)J

specifies the name or names of previously defined fields to
be included in the applicable output records. If both
NAME and PICTURE are omitted, the fill character
specified in the CREATE statement appears in each byte
of the applicable output record. These values can be
coded:

(name1, •••)
specifies the name or names of a field or fields to be
included in the applicable output record(s). Each field is
included in an output record in the order in which its
name is encountered in the CREATE statement.

COPY= number
indicates that all fields named in the inner parentheses
(maximum of twenty) are to be treated as a group and
included the specified number of times in each output
record produced by this CREATE statement. Any
number of sets of inner parentheses can be included
with NAME; however sets of parentheses cannot be
embedded. Within each set of inner parentheses, COpy
must appear before the name of any field.

OUTPUT=(ddname)
specifies the ddname of the DD statement defining the
output data set.

~
I

J

Operands

PICTURE

QUANTITY

Applicable Control
Statements

FD
CREATE

CREATE

Description of Operands/Parameters

PICTURE=length,startloc {,' character-string' I ,P
'decimal-number' I ,B' decimal-number '}

specifies the length, starting byte (CREATE only), and the
contents of a user-supplied picture. For FD, PICTURE
must not be used when FORMAT is used. If both
PICTURE and NAME are omitted, the fill character
specified in the CREATE statement appears in each byte
of applicable output records. These values can be coded:

length
specifies the number of bytes that the picture will
occupy.

start/oc (CREA TE only)
specifies a starting byte (within any applicable output
record) in which the picture is to begin.

'character-string'
specifies an EBCDIC character string that is to be
placed in the applicable record(s). The character string
is left aligned at the defined starting byte. A character
string may be broken in column 71, a nonblank
character in column 72 is required, and it must be
continued in column 4 of the next statement.

P 'decimal-number'
specifies a decimal number that is to be converted to
packed decimal and right aligned (within the boundaries
of the defined length and starting byte) in the output
records or defined field.

B 'decimal-number'
specifies a decimal number that is to be converted to
binary and right aligned (within the boundaries of the
defined length and starting byte) in the output records
or defined field. In all cases for FD, the number of
characters within the quotation marks must equal the
number specified in the length subparameter.

QUANTITY= number
specifies the number of records that this
CREATE statement is to generate; each record is
specified by the other parameters. If both QUANTITY and
INPUT are coded, and the quantity specified is greater
than the number of records in the input data set, the
number of records created is equal to the number of input
records to be processed plus the generated data up to the
specified number.

Default: If QUANTITY is omitted and INPUT is not
specified, only one output record is created. If
QUANTITY is omitted and INPUT is specified, the
number of records created is equal to the number of
records in the input data set.

IEBDG Program 7 -17

Operands

QUANTITY
(continued)

SIGN

STARTLOC

Applicable Control
Statements

REPEAT

FD

FD

7 - 18 OS/VS2 MVS Utilities

Description of Operands/Parameters

specifies the number of times the defined group of
CREATE statements is to be used repetitively. This
number cannot exceed 65,535.

SIGN= sign
specifies a mathematical sign (+ or -), which is used when
defining a packed decimal or binary field.

Default: Positive (+).

ST ARTLOC =starting-byte-location
specifies a starting location (within all output records using
this field) in which a field is to begin. For example, if the
first byte of an output record is chosen as the starting
location, the keyword is coded ST AR TLOC = 1; if the
tenth byte is chosen, STAR TLOC = lOis coded, etc.

Default: The field will begin in the first available byte of
the output record (determined by the order of specified
field names in the applicable CREATE statement). For
variable records the starting location is the first byte after
the length descriptor.

Restrictions

IEBDG Examples

• The DSORG subparameter must be included in the DCB subparameters if the
input or output data set has an indexed sequential organization (DSORG=IS). If
members of a partitioned data set are used, DSORG=PO or DSORG=PS may
be coded. If the DSORG subparameter is not coded, DSORG=PS is assumed.

• If the SYSPRINT DD statement is omitted, no messages are written.

• For an indexed sequential data set, the key length must be specified in the DCB.

• The block size for the SYSPRINT data set must be a multiple of 121. The block
size for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for these block sizes.

The following examples illustrate some of the uses of IEBDG. Figure·7-11 can be
used as a quick reference guide to IEBDG examples. The numbers in the
"Example" column point to examples that follow.

Operation

Place binary zeros in
selected fields.

Ripple alphabetic
pattern

Create output records
from utility control
statements

Modify records from
partitioned members
and input stream

Create partitioned
members for utility
control statements

Roll and wave user-
supplied patterns

Create indexed
sequential data set
using field selection
and data generation

Data Set
Organization

Sequential

Sequential

Sequential

Partitioned,
Sequential

Partitioned

Sequential

Sequential,
Indexed
sequential

Figure 7-11. IEBDG Example Directory

Device Comments

9-track Tape Blocked input and
output.

9-track Tape, Blocked input and
2314 Disk output.

2314 Disk

2314 Disk

2314 Disk

Blocked output.

Reblocking is performed.
Each block of output
records contains ten
modified partitioned
input records and two
input stream records.

Blocked output. One set
of utility control

Example

2

3

4

statements per member. 5

2314 Disk Output records are
created from utility
control statements. 6

2314 Disk Output records are
created by augmenting
selected input fields
with generated data. 7

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

IEBDG Program 7 -19

lEBDG Example 1

7 - 20 OS/VS2 MVS Utilities

In this example, binary zeros are to be placed in two fields of records copied from a
sequential data set. After the operation, each record in the copied data set
(OUTSET) contains binary zeros in locations 20 through 29 and 50 through 59.

IICLEAROUT JOB "MSGLEVEL=1
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IISEQIN DD DSNAME=INSET,UNIT=mpe,DISP=(OLD,KEEP),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),LABEL=(,NL),
II VOLUME=SER=222222
IISEQOUT DD DSNAME=OUTSET,UNIT=mpe,VOLUME=SER=222333,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),DISP=(,KEEP),
II LABEL=(,NL)
IISYSIN DD

1*

DSD
FD
FD
CREATE
END

*
OUTPUT=(SEQOUT),INPUT=(SEQIN)
NAME=FIELD1,LENGTH=10,STARTLOC=20
NAME=FIELD2,LENGTH=1 0, STARTLOC=50
QUANTITY=100,INPUT=SEQIN,NAME=(FIELD1,FIELD2)

The control statements are discussed below:

• SEQIN DO defines a sequential input data set (INSET). The data set was
originally written on a unlabeled tape volume.

72

• SEQOUT DO defines the test data set (OUTSET). The output records are
identical to the input records,except for locations 20 through 29 and 50 through
59, which contain binary zeros at the completion of the operation.

• SYSIN DO defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DO statements defining the input and output data sets.

• The first FD statement defines an 80-byte field of input data.

• The first and second FD statements create two ten-byte fields (FIELD 1 and
FIELD2) that contain binary zeros. The fields are to begin in the 20th and 50th
bytes of each output record.

• CREATE constructs 100 output rcords in which the contents of previously
defined fields (FIELD 1, FIELD2) are placed in their respective starting
locations in each of the output records. Input records from data set INSET
are used as the basis of the output records.

• END signals the end of a set of utility control statements.

(

IEBDG' Example 2

)

IEBDG Example 3

In this example, a ten-byte alphabetic pattern is to be rippled. At the end of the job
step the first output record contains" ABCDEFGHIJ", followed by data in location
11 through 80 from the input record; the second record contains "BCDEFGHIJK"
followed by data in locations 11 through 80, etc.

72
IIRIPPLE JOB "MSGLEVEL=l
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IISEQIN DD DSNAME=INSET,DISP=(OLD,KEEP),VOL=SER=222222,
I I DCB=(RECFM=FB, LRECL=80, BLKSIZE=800), UNIT=tape
IISEQOUT DD DSNAME=OUTSET, UNIT=disk, VOLUME=SER= 111111 ,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),DISP=(,KEEP),
II SPACE=(TRK,(10,10))
IISYSIN DD *

1*

DSD OUTPUT=(SEQOUT),INPUT=(SEQIN)
FD NAME=FIELD1,LENGTH=10,FORMAT=AL,ACTION=RP, C

STARTLOC=l
CREATE QUANTITY=100,INPUT=SEQIN,NAME=FIELDl
END

The control statements are discussed below:

• SEQIN DD defines an input sequential data set (INSET). The data set was
originally written on a 9-track, standard labeled tape volume.

• SEQOUT DD defines the test output data set (OUTSET). Twenty tracks of
primary space and ten tracks of secondary space are allocated for the sequential
data set on a disk volume.

• SYSIN DD defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DD statements defining the input and output data sets.

• The FD statement creates a ten-byte field in which the pattern ABCDEFGHIJ
is placed. The data is rippled after each output record is written.

• CREATE constructs 100 output records in which the contents of a previously
defined field (FIELD 1) are included. The CREATE statement uses input
records from data set INSET as the basis of the output records.

• END signals the end of a set of utility control statements.

In this example, output records are to be created entirely from utility control
statements. Three fields are to be created and used in the construction of the
output records. In two of the fields, alphabetic data is to be truncated; the other
field is a numeric field that is to be incremented (indexed) by one after each output
record is written. Figure 7 -12 shows the contents of the output records at the end
of the job step.

IEBDG Program 7 - 21

IEBDG Example 4

7 - 22 OS/VS2 MVS Utilities

Field 1 Field 2 Field 3 (packed decimal)

1 31 61 71 80

ABCDE F G H IJK LMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORSTUVWXYZABCD FF , " FF 123, , ,90

BCDEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORSTUVWXYZABC FF , , , FF 123, , ,91

CDEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORSTUVWXYZAB FF , , , FF 123, , ,92

DEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORSTUVWXYZA FF , , , FF 123, ,,93

EFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORSTUVWXYZ FF , , , FF 123, , ,94

Figure 7-12. Output Records at Job Step Completion

IIUTLYONLY JOB "MSGLEVEL=l
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IISEQOUT DD DSNAME=OUTSET,UNIT=d~k,DISP=(,KEEP),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(10,10)),
II VOLUME=SER=111111
IISYSIN DD DATA

DSD OUTPUT=(SEQOUT)
FD NAME=FIELD1,LENGTH=30,STARTLOC=1,FORMAT=AL,ACTION=TL
FD NAME=FIELD2,LENGTH=30,STARTLOC=31,FORMAT=AL,ACTION=TR

72

FD NAME=FIELD3,LENGTH=10,STARTLOC=71,PICTURE=10, C
P'1234567890' ,INDEX=l
CREATE QUANTITY=100,NAME=(FIELD1,FIELD2,FIELD3),FILL=X'FF'

END
1*
The control statements are discussed below:

• SEQOUT DD defines the test output data set. Ten tracks of primary space and
ten tracks of secondary space are allocated for the sequential data set on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the output data set.

• FD defines the contents of three fields to be used in the construction of output
records. The first field cont'ains 30 bytes of alphabetic data to be truncated left
after each output record is written. The second field contains 30 bytes of
alphabetic data to be truncated right after each output record is written. The
third field is a ten-byte field containing a packed decimal number (1234567890)
to be incremented by one after each record is written.

• CREATE constructs 100 output records in which the contents of previously
defined fields (FIELD 1, FIELD2, and FIELD 3) are included.

• END signals the end of a set of utility control statements.

In this example, two partitioned members and input records from the input stream
are to be used as the basis of a partitioned output member. Each block of 12 output
records is to contain ten modified records from an input partitioned member and
two records from the input stream. Figure 7-13 shows the content of the output
partitioned member at the end of the job step.

Input

Department 21

Department 21
Input recQrd 1
I nputrecord 2

Department 21

Department 21
I nput record 3
I "put record 4

Department 21

(Rightmost 67 bytes oflNSeT1 (ME MBA) record · ' · · -1' ~ "
(Rightmost 67 byte. ofINSET1(MEMBA)
frol1l input stream '
from input stream

,i', ", .
Department 21 ·(Rightmost67. b~~}NSeTi (Me_~'}i.'~;~t?'"

'nput record 19 from inputstrtam
Input record 20 from 'input Weam

, Oepartment 21 '

Figure 7-13. Output Partitioned Member at Job Step Completion

IIMIX JOB "MSGLEVEL=1
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IIPARIN1 DD DSNAME=INSET1 (MEMBA), UNIT=disk, DISP=OLD,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),
II VOLUME=SER=111111
IIPARIN2 DD DSNAME=INSET2 (MEMBA) , UN I T=disk , DISP=OLD,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=960,DSORG=PS),
II VOLUME=SER=222222
IIPAROUT DD DSNAME=PARSET(MEMBA), UNIT=disk, DISP=(, KEEP) ,
II VOLUME=SER=333333,SPACE=(TRK,(10,10,5)),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=960,DSORG=PS)
IISYSIN DD DATA

DSD OUTPUT=(PAROUT),INPUT=(PARIN1,PARIN2)
FD NAME=FIELD1,LENGTH=13,PICTURE=13,'DEPARTMENT 21'
REPEAT QUANTITY=1 0, CREATE=2
CREATE QUANTITY=10,INPUT=PARIN1,NAME=FIELD1
CREATE QUANTITY=2,INPUT=SYSIN

(input records 1 through 20)

$$$E
REPEAT
CREATE
CREATE

QUANTITY=10,CREATE=2
,QUANTITY=1 0, INPUT=PARIN2,NAME=FIELD1
QUANTITY=2,INPUT=SYSIN

(input records 21 through 40)

$$$E
END

1*

IEBDG Program 7 - 23

IEBDG Example 5

7 - 24 OS/VS2 MVS Utilities

The control statements are discussed below:

• PARIN1 DD defines one of the input partitioned members.

• PARIN 2 DD defines the second of the input partitioned members. (Note that
the members are from different partitioned data sets.)

• PAROUT DD defines the output partitioned member. This example assumes
that the partitioned data set does not exist prior to the job step; that is, this DD
statement allocates space for the partitioned data set.

• SYSIN DD defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DD statements defining the input and output data sets.

• FD creates a 13-byte field in which the picture "DEPARTMENT 21" is placed.

• The first REPEAT statement indicates that the following group of two
CREATE statements is to be repeated ten times.

• The first CREATE statement creates ten putput records. Each output record is
constructed from an input record (from partitioned data set INSET1) and from
previously defined FIELD 1.

• The second CREATE statement indicates that two records are to be constructed
from input records included next in the input stream.

• The $$$E record separates the input records from the REPEAT statement. The
next REPEAT statement group is identical to the preceding group, except that
records from a different partitioned member are used as input.

• END signals the end of a set of utility control statements.

In this example, output records are to be· created from three sets of utility control
statements and written in three partitioned data set members. Four fields are to be
created and used in the construction of the output records. In two of the fields
(FIELD 1 and FIELD3), alphabetic data is to be shifted. The other two fields are to
be fixed alphameric and zoned decimal fields. Figure 7-14 shows the partitioned
data set members at the end of the job step.

(

MEMBA
Field 1 Field 3 Field 2 Binary zeros
1 31 51 71 80

ABCDEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORST 00000000000000000001 fill

BCDEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPORS 00000000000000000001 fill

CDEFGHIJKLMNOPORSTUVWXYZABCD ABCDEFGHIJKLMNOPOR 00000000000000000001 fill

.!.:.:. G H IJ KIM ~1f)PORSTUVWXYZABs.c.-- ABCDEFGHIJKI MI\I()PO 000000000OOoo00~~1 .fill -
MEMBS
Field 3 Field 3 Field 3 Field 2

1 21 41 61 80

ABCDEFGHIJKLMNOPORST ABCDEFGHIJKLMNOPORST ABCDl:FGHIJKLMNOPORST 00000000000000000001

ABCDEFGHIJKLMNOPORS ABCDEFGHIJKLMNOPORS ABCDEFGHIJKLMNOPORS 00000000000000000001

ABCDE FGHIJLKMNOPOR ABCDEFGHIJKLMNOPOR ABCDEFGHIJKLMNOPOR 00000000000000000001
--e.BCDE FGH IJK LMNOPO ABCDE FG H IJ KLMf\If)pn ABcnl= cr,HIJI<' I np() ooonnOOOOQO(l~~nnnJ. - ~ -

MEMBC
Field 4 Field 1 Binary zeros

1 31 61 80

ABCDE FGHIJKLMNOPORSTUVWXYZ0123 ABCDEFGHIJKLMNOPORSTUVWXYZABCD fill

ABCDEFGHIJKLMNOPORSTUVWXYZ0123 BCDEFGHIJKLMNOPORSTUVWXYZABCD fill

ABCDEFGHIJKLMNOPORSTUVWXYZ0123 CDEFGHIJKLMNOPORSTUVWXYZASCD fill
ABCDE FG HI.IK LMNOPORSTUVWV YZ0123 DEFGHIJKI M"'.!!lPQ,R.£J:.: .. :.!.'WXY7/\ ""1'1 fill-

Figure 7 .. 14. Partitioned Data Set Members at Job Step Completion

I IUTSTS JOB, , MSGLEVEL= 1
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IIPAROUT1 DD DSNAME=PARSET(MEMBA),UNIT=d~k,DISP=(,KEEP),
II VOLUME=SER=111111,SPACE=(TRK,(10,10,5»,DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=800,DSORG=PS)
IIPAROUT2 DD DSNAME=PARSET(MEMBB),UNIT=AFF=PAROUT1,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),DISP=OLD,
II VOLUME=SER=111111
IIPAROUT3 DD DSNAME=PARSET(MEMBC),UNIT=AFF=PAROUT1,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),DISP=OLD,
II VOLUME=SER=111111
IISYSIN DD DATA

1*

DSD OUTPUT=(PAROUT1)
FD NAME=FIELD1,LENGTH=30,FORMAT=AL,ACTION=SL
FD NAME=FIELD2, LENGTH=20, FORMAT=ZD
FD NAME=FIELD3,LENGTH=20,FORMAT=AL,ACTION=SR
FD NAME=FIELD4, LENGTH=30, FORMAT=AN
CREATE QUANTITY=4,NAME=(FIELD1,FIELD3,FIELD2)
END
DSD
CREATE
END
DSD
CREATE
END

OUTPUT=(PAROUT2)
QUANTITY=4,NAME=((COPY=3,FIELD3),FIELD2)

OUTPUT=(PAROUT3)
QUANTITY=4,NAME=(FIELD4,FIELD1)

The control statements are discussed below:

• PAROUTI DD defines the first member (MEMBA) of the partitioned output
data set. This example assumes that the partitioned data set does not exist prior
to this job step; that is, this DD statement allocates space for the data set.

• PAROUT2 and PAROUT3 DD define the second and third members,
respectively, of the output partitioned data set. Note that each DD statement
specifies DISP=OLD and UNIT=AFF=P AROUTI.

• SYSIN DD defines the control data set, which follows in the input stream.

IEBDG Program 7 - 25

lEBDG Example 6

7 - 26 OS/VS2 MVS Utilities

• DSDmarks the beginning of a set of utility control statements and refers to the
DD statement defining the member applicable to that set of utility control
statements.

• FD defines the contents of a field that is used in the subsequent construction of
output records.

• CREATE constructs four records from combinations of previously defined
fields.

• END signals the end of a set of utility control statements.

In this example, ten fields containing user-supplied EBCDIC pictures are to be used
in the construction of output records. After a record is written, each field is rolled
or waved, as specified in the applicable FD statement. Figure 7-15 shows the
contents of the output records at the end of the job step.

FIELD1 FIELD2 FIELD3 FIELD4 FI ELD5 FIELD6 FIELD7 FIELD8 FIELD9

AAAAA BBBBB A AA BB B AAA __ f-- eeec~ -- DDDD -e ee D D
AAAAA BBBBB A AA BB B f----:-f-AA _ eeeee DDDD e ee DD D

AAAAA BBBBB
AA A¥- BB B

1----- -- - -DDDD - e ee D D AAA eeeee
AAAAA BBBBB

r-------=;---- AAA ----- ceeee DDDD r----e ee DD D ~~--
AAAAA BBBBB A AA BB B -AAA---- -----ecccc 1---- 0151515 ;"c-cc- DD D

AAAAA BBBBB A AA BB _L AAA -- ece-cc- D-b-DD e ee D D -----AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee DD D
AAAAA BBBBB A AA BB _B-=-- ' AAA eccce DDDD e ee DD D

AAAAA BBBBB
---- ---- --- ----e-ecce e ee A AA BB B AAA DDDD D D

AAAAA BBBBB __ A..._~~ __ _~!3 ___ 1:3_ AAA --- eeeec DDDD e ee DD D

- -- --
Figure 7-15. Contents of Output Records at Job Step Completion

IIROLLWAVE JOB "MSGLEVEL=1
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IIOUTSET DD DSNAME=SEQSET,UNIT=d~k,DISP=(,KEEP),
II VOLUME=SER=SAMP,SPACE=(TRK,(10,10»,DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=800)
IISYSIN DD *

DSD OUTPUT=(OUTSET)

D

FD NAME=FIELD1,LENGTH=8,PICTURE=8,' AAAAA',ACTION=RO
FD NAME=FIELD2 , LENGTH=8 , PICTURE=8, 'BBBBB ' , ACT ION=RO
FD NAME=FIELD3,LENGTH=8,PICTURE=8,'A AA ',ACTION=RO
FD NAME=FIELD4,LENGTH=8,PICTURE=8,' BB B',ACTION=RO
FD NAME=FIELDS,LENGTH=8,PICTURE=8,' AAA ',ACTION=RO
FD NAME=FIELD6,LENGTH=8,PICTURE=8,' CCCCC',ACTION=WV
FD NAME=FIELD7,LENGTH=8,PICTURE=8,' DDDD ',ACTION=WV
FD NAME=FIELD8,LENGTH=8,PICTURE=8,' C CC ',ACTION=WV
FD NAME=FIELD9,LENGTH=S,PICTURE=8,' DD D',ACTION=WV

FIELD 10

eee,
eee

eee
eee

eee
eee

eee
eee

eee
eee --

72

FD NAME=FIELD10,LENGTH=8,PICTURE=8,' CCC ',ACTION=WV
CREATE QUANTITY=300;NAME=(FIELD1,FIELD2,FIELD3, C

END
1*

FIELD4, FIELDS, F'IELD6, FIELD7 , FIELD8, C
FIELD9,FIELD10)

The control statements are discussed below:

• OUTSET DD defines the output sequential data set on a disk volume. Twenty
tracks of primary space and ten tracks of secondary space are allocated to the
data set .

• SYSIN DD defines the control data set, which follows in the input stream.

lEBDG Example 7

• DSD marks the beginning of a set of utility control statements and refers to the
DO statement defining the output data set.

• FD defines a field to be used in the subsequent construction of output records.
Note that the direction and frequency of the initial roll or wave depends on the
location of data in the field.

• CREATE constructs 300 records from the contents of the previously defined
fields.

• END signals the end of a set of utility control statements.

In this example, the first ten bytes of the output record contain data generated in
zoned decimal format. This field serves as the key field for the output record in the
output indexed sequential data set. The key field is incremented (indexed) by one
for each record. The input sequential data set provides an additional80-byte field
to complete the output record.

IICREATEIS JOB MSGLEVEL=1
IIBEGIN EXEC PGM=IEBDG
IITAPEIN DD DCB=(BLKSIZE=80,LRECL=80,RECFM=F),
I I DISP=(OLD, KEEP), UNIT=tape, LABEL=(, SL),
II DSNAME=TAPEIT,VOL=SER=MASTER
IIDISKOUT DD DCB=(BLKSIZE=270,LRECL=90,RECFM=FB,
II DSORG=IS,NTM=2,OPTCD=MY,RKP=O,KEYLEN=10,
II CYLOFL=1),UNIT=disk,sPACE=(CYL, 1),DISP=(NEW,KEEP),
II VOL=SER=111111,DSNAME=CREATIS
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

DSD OUTPUT=(DISKOUT),INPUT=(TAPEIN)

72

FD NAME=DATAFD,LENGTH=80,FROMLOC=1, C
STARTLOC=11,INPUT=TAPEIN

FD NAME=KEYFD,LENGTH=10,STARTLOC=1,FORMAT=ZD,INDEX=1
CREATE INPUT=TAPEIN,NAME=(KEYFD,DATAFD)
END

1*
The control statements are discussed below:

• T APEIN DO defines the sequential input dataset.

• DISKOUT DO defines the indexed sequential output data set.

• SYSIN DO defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DO statement defining the output data set.

• FD defines a field that will be used in the subsequent construction of output
records. The first FD statement in this example defines and locates an 80-byte
field of input data. The data is field selected from one of the input logical
records and placed at start location 11 of the output logical record. The second
FD statement defines and locates the ten-byte key field.

• CREATE constructs a 90-byte output record by referring to the previously
defined fields.

• END signals the end of a set of utility control statements.

IEBDG Program 7 - 27

IEBEDIT PROGRAM

Input and Output

IEBEDIT is a data set utility used to create an output data set containing a
selection of jobs or job steps. At a later time, the data set can be used as an
input stream for job processing.

IEBEDIT creates an output job stream by editing and selectively copying a
job stream provided as input. The program can copy:

• An entire job or jobs, including JOB statements and any associated
JOBLIB or JOBCAT statements, and JES2 control statements.

• Selected job steps, including the JOB statement, JES2 control statements
following the JOB statement, and any associated JOBLIB or JOBCAT
statements.

All selected JOB statements, JES2 control statements, JOBLIB or JOBCAT
statements, jobs, or job steps are placed in the output data set in the same
order as they exist in the input data set. Note that a JES2 control statement or
a JOBLIB or JOBCAT statement is copied only if it follows a selected JOB
statement.

When IEBEDIT encounters a selected job step containing an input record
having the characters " .. *" in columns 1 through 3, the program automatically
converts that record to a termination statement (/* \) statement) and places it
in the output data set.

Note: A" /*nonblank" indicates a JES2 control statement.

IEBEDIT uses the following input:

• An input data set, which is a sequential data set consisting of a job stream.
The input data set is used as source data in creating an output sequential
data set.

• A control data set, which contains utility control statements that are used
to specify the organization of jobs and job steps in the output data set.

IEBEDIT produces the following output:

• An output data set, which is a sequential data set consisting of a resultant
job stream.

• A message data set, which is a sequential data set that contains applicable
control statements, error messages, if applicable, and, optionally, the
output data set.

IEBEDIT provides a return'code to indicate the results of program execution.
The return codes and their'meanings are:

• 00, which indicates successful completion.

• 04, which indicates that an error occurred. The output data set may not be
usable as a job stream. Processing continues.

• 08, which indicates that an unrecoverable error occurred while attempting
to process the input, output, or control data set. The job step is terminated.

IEBEDIT Program 8 - 1

Control

Job Control Statements

Utility Control Statements

EDIT Statement

8 - 2 OS/VS2 MVS Utilities

IEBEDIT is controlled by job control statements and utility control
statements. The job control statements are required to execute or invoke the
program and to define the data sets used and produced by the program. The
utility control statements are used to control the functions of the program.

Figure 8-1 shows the job control statements necessary for using IEBEDIT.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM~IEBEDIT) or, if th~ job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data set can be written to a
system output device, a tape volume, or a direct access volume.

SYSUTl DD Defines a sequential input,data set on a card reader, tape volume, or
direct access device.

SYSUT2 DD Defines a sequential output data set on a card punch, printer, tape
volume, or direct access device.

SYSIN DD Defines the control data set. The data set normally is included in the
input stream; however, it can be defined as a member of a procedure
library or as a sequential data set existing somewhere other than in the
input stream.

Figure 8-1. IEBEDIT Job Control Statements

The EDIT statement indicates which step or steps of a specified job in the
input data set are to be included in the output data set. Any number of EDIT
statements can be included in an operation, thus including selected jobs in the
output data set.

EDIT statements must be included in the same order as the input jobs that
they represent. If no EDIT statement is present in the control data set, the
entire input data set is copied.

The format of the EDIT statement is:

[label] EDIT [START=jobname]

[,TYPE= {POSmON I INCLUDE I EXCLUDE}]

[,STEPNAME={(name-name[, name-name] I name[, name], ...)]}

[,NOPRINT]

Notes:
• Any JES2 control statement or JOBLm DD statement that follows a

selected JOB statement is automatically copied to the output data set.
• JES2 control statements preceding the JOB statement are assumed to

belong to the previous job.
• JES2 control statements preceding the first JOB statement are included

only if a total copy is requested.
• JES2 control statements within selected job steps are included.
• JES2 control statements within a DD DATA stream are included only if

a delimiter other than "/*" is coded in the DD DATA card. For a
description of coding another delimiter see OS/VS2 JCL. If another
delimiter is not coded, the first two characters of the JES2 control
statement will act as a delimiter to DD DATA.

IEBEDIT Program 8 - 3

Operands

NOPRINT

START

STEPNAME

Applicable Control
Statements

EDIT

EDIT

EDIT

8 - 4 OS/VS2 MVS Utilities

Description of Operands/Parameters

NOPRINT
specifies that the message data set is not to include a listing
of the output data set.

Default: The resultant output is listed in the message data
set.

START=jobname
specifies the name of the input job to which the EDIT
statement applies. (Each EDIT statement must apply to a
separate job.) If START is specified without TYPE and
STEPNAME, the JOB statement and all job steps for the
specified job are included in the output.

Default: If START is omitted and only one EDIT
statement is provided, the first job encountered in the
input data set is processed. If START is omitted from an
EDIT statement other than the first statement, processing
continues with the next JOB statement found in the input
data set.

STEPNAME=(f name-name [, name-name] I
name [, name]}, •••)

specifies the first job step to be placed in the output data
set when coded with TYPE = POSITION. Job steps
proceding this step are not copied to the output data set.
When coded with TYPE = INCLUDE or
TYPE=EXCLUDE, STEPNAME specifies the names of
job steps that are to be included in or excluded from the
operation. For example,
STEPNAME=(STEPA,STEPF-STEPL,STEPZ) indicates
that job steps STEP A, STEPF through STEPL, and
STEPZ are to be included in or excluded from the
operation.

Default: If STEPNAME is omitted, the entire input job
whose name is specified on the EDIT statement is copied.
If no job name is specified, the first job encountered is
processed.

,
)

Operands

TYPE

AppUcable Control
Statements

EDIT

Description of Operands/Parameters

TYPE=IPosmON I INCLUDE I EXCLUDE}
specifies the contents of the output data set. These values
can be coded;

PosmON
specifies that the output is to consist of a JOB
statement, the job step specified in the STEPNAME
parameter, and all steps that follow jt. All job steps
preceding the specified step are omitted from the
operation.

INCLUDE
specifies that the output data set is to contain a JOB
statement and all job steps specified in the STEPNAME
parameter.

EXCLUDE
specifies that the output data set is to contain a JOB
statement and all job steps belonging to the job except
those steps specified in the STEPN AME parameter.

IEBEDIT Program 8 - 5

Restrictions

IEBEDIT Examples

lEBEDIT Example 1

8 - 6 OS/VS2 MVS Utilities

The block size for the SYSPRINT data set must be a multiple of 121. If not,
the job step is terminated with a return code of 8. The block size for the
SYSIN, SYSUT1, and SYSUT2 data sets must be a multiple of 80. Any
blocking factor can be specified for these block sizes.

The following examples show some of the uses of IEBEDIT. Figure 8-2 can
be used as a quick reference guide to IEBEDIT examples. The numbers in the
"Example" column point to examples that follow.

Operation Devices Comments Example

COpy 9-track Tape The input data set contains three jobs. One job is
to be copied.

COpy 7-track Tape The output data set is the second data set on the
volume. One job step is to be copied from each of
three jobs. 2

COpy Disk and Include a job- step from one job and exclude a
9-track Tape job step from another job. 3

COpy Disk Latter portion of a job stream is to be copied.
4

COpy 9-track Tape All records in the input data set are to be copied.
The" .. *" record is converted to a "/*1:>"
statement in the output data set. 5

COpy 9-track Tape The input contains a JES2 control statement
and a new delimiter. 6

Figure 8-2. IEBEDIT Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to
this manual, for valid device-id notation.

In this example one job (JOBA), including all of its job steps (A, B, C, and
D), is to be copied into the output data set. The input data set contains three
jobs: JOBA, which has four job steps; JOBB, which has three job steps; and
JOBC, which has two job steps.

IIEDIT1 JOB 09#440,SMITH
II EXEC PGM=IEBEDIT
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=mpe,DISP=(OLD,KEEP),VOL=SER=001234
IISYSUT2 DD UNIT=mpe,DISP=(NEW,KEEP),VOL=SER=001235,
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80),DSNAME=OUTTAPE
IISYSIN DD *

EDIT START=JOBA
1*
The control statements are discussed below:

• SYSUT1 DD defines the input data set. The data set resides on a standard
labeled tape volume (001234).

• SYSUT2 DD defines the output data set. The data set is to reside as the
first data set on a standard labeled tape volume (001235).

(

IEBEDIT Example 2

IEBEDIT Example 3

• SYSIN DD defines the control data set, which follows in the input stream.

• EDIT indicates that JOBA is to be copied in its entirety.

This example copies: (1) the JOB statement and steps STEPC and STEPD for
JOBA, (2) the JOB statement and STEPE for JOBB, and (3) the JOB statement
and STEPJ for JOBC. The input data set contains three jobs: JOBA, which
includes STEPA, STEPB, STEPC, and STEPD; JOBB, which includes STEPE,
STEPF, and STEPG; and JOBC, which includes STEPH and STEPJ.

IIEDIT2 JOB 09#440,SMITH
II EXEC PGM=IEBEDIT
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DISP=(OLD,KEEP),VOLUME=SER=001234,
I I UN I T=tape
IISYSUT2 DD DSN=OUTSTRM,UNIT=wpe,DISP=(NEW,KEEP),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80),
II LABEL=(2,SL)
IISYSIN DD *

EDIT
EDIT
EDIT

START=JOBA,TYPE=INCLUDE,STEPNAME=(STEPC,STEPD)
START=JOBB,TYPE=INCLUDE,STEPNAME=STEPE
START=JOBC,TYPE=INCLUDE,STEPNAME=STEPJ

1*
The control statements are discussed below:

• SYSUT1 DD defines the input data set. The data set resides on a standard
labeled tape volume (001234).

• SYSUT2 DD defines the output data set. The data set is to reside as the second
data set on a standard labeled tape volume (001235).

• SYSIN DD defines the control data set, which follows in the input stream.

• The EDIT statements copy the indicated JOB statements and job steps.

This example copies: (1) the JOB statement and steps STEPF and STEPG for
JOBB and (2) the JOB statement and STEPH, excluding STEPJ, for JOBC. The
input data set contains three jobs: JOBA, which includes STEPA, STEPB, STEPC,
and STEPD; JOBB, which includes STEPE, STEPF, and STEPG; and JOBC,
which includes STEPH and STEPJ.

IIEDIT3 JOB 09#440,SMITH
II EXEC PGM=IEBEDIT
IISYSPRINT DD SYSOUT=A
I ISYSUT 1 DD DSNAME=INSET, UNIT=disk, DISP=(OLD, KEEP),
II VOLUME=SER=llllll
IISYSUT2 DD DSNAME=OUTTAPE, UNIT=tape, LABEL(,NL),
II DCB=(DEN=2,RECFM=F,LRECL=80,BLKSIZE=80),DISP=(,KEEP)
IISYSIN DD *

1*

EDIT START=JOBB,TYPE=INCLUDE,STEPNAME=(STEPF-STEPG)
EDIT START=JOBC,TYPE=EXCLUDE,STEPNAME=STEPJ

The control statements are discussed below:

• SYSUT1 DD defines the input data set. The data set resides on a disk volume
(111111).

• SYSUT2 DD defines the output data set. The data set is to reside as the first or
only data set on an unlabeled (800 bits per inch) tape volume.

IEBEDIT Program 8 - 7

-

IEBEDIT Example 4

IEBEDIT Example 5

8 - 8 OS/VS2 MVS Utilities

• SYSIN DD defines the control data set, which follows in the input stream.

• The EDIT statements copy selected JOB statements and job steps.

This example copies the JOBA JOB statement, the job step STEPP, and all the
steps that follow it. The input data set contains one job (JOBA), which includes
STEPA, STEPB, ... STEPL. Job steps STEPA through STEPE are not included in
the output data set.

IIEDIT4 JOB 09#440,SMITH
II EXEC PGM=IEBEDIT
IISYSPRINT DD SYSOUT=A
IISYSUT 1 DD DSNAME=INSTREAM, UNIT=disk, DISP=(OLD, KEEP) ,
II VOLUME=SER=llllll
IISYSUT2 DD DSNAME=OUTSTREM,UNIT=d~k,DISP=(,KEEP),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80),VOLUME=SER=222222,
II SPACE=(TRK,2)
IISYSIN DD *

EDIT START=JOBA,TYPE=POSITION,STEPNAME=STEPF
1*
The control statements are discussed below:

• SYSUT1 DD defines the input data set. The data set resides on a disk volume
(111111).

• SYSUT2 DD defines the output data set. The data set is to reside on a disk
volume (222222). Two tracks are allocated for the output data set.

• SYSIN DD defines the control data set, which follows in the input stream.

• EDIT copies the JOB statement and job steps STEPP through STEPL.

This example copies the entire input (SYSUT1) data set. The record containing the
characters" .. *" in columns 1 through 3 is converted to a "/* b" statement in the
output data set.

IIEDITS JOB 09#440,SMITH
II EXEC PGM=IEBEDIT
IISYSPRINT DD SYSOUT=A
IISYSUT2 DD DSNAME=OUTTAPE,UNIT=lape,VOLUME=SER=001234,
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80),DISP=(NEW,KEEP)
IISYSIN DD DUMMY
IISYSUTl DD DATA
IIBLDGDGIX JOB
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDD 1 DD UNIT=disk, VOLUME=SER= 111111 ,DISP=OLD
IISYSIN DD *

BLDG INDEX=A.B.C,ENTRIES=10,EMPTY

*
1*
The control statements are discussed below:

• SYSUT2 DD defines the output data set. The data set is to reside as the first
data set on a tape volume (001234).

• SYSIN DD defines a dummy control data set.

• SYSUT1 DD defines the input data set, which follows in the input stream. The
job is terminated when the termination statement (/* b) is encountered.

(

IEBEDIT Example 6

• SYSIN DD defines a dummy control data set .

• SYSUT1 DD defines the input data set, which follows in the input stream.
The job is terminated when the termination statement (/* t» is

, encountered.

This example copies the entire input (SYSUT1) data set including the JES2
control statement since a new delimiter (JP) has been coded. Otherwise the
"/*" in the JES2 control statement would have terminated the input.

IIEDIT6 JOB 09#440,SMITH
IISTEPA EXEC PGM=IEBEDIT
IISYSPRINT DD SYSOUT=A
IISYSUT2 DD DSN=TAPEOUT,UNIT=wpe,VOL=SER=001234,
II LABEL=(,SL),DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
II DISP=(NEW,KEEP)
IISYSIN DD DUMMY
IISYSUT1 DD DATA,DLM=JP
IILISTVTOC JOB 09#550,BLUE
I*MESSAGE JOB NEEDS VOLUME ·231400
IIFSTEP EXEC PGM=IEHLIST
IISYSPRINT DD SYSOUT=A
IIDD2 DD UN I T=disk , VOL=SER=111111 , DISP=OLD
IISYSIN DD *

1*
JP

LISTVTOC FORMAT,VOL=d~k=111111

The control statements are discussed below:

• SYSUT2 DD defines the output data set. The data set will be the first data
set on a standard label tape volume (001234).

• SYSIN DD defines a dummy control data set.

• SYSUT1 DD defines the input data set. The DLM parameter defines
characters JP to act as a delimiter for the input data.

• EDIT copies the JOB statement through the" /*" statement.

IEBEDiT Program 8 - 9

)

IEBGENER PROGRAM

IEBGENER is a data set utility that can be used to:

• Create a backup copy of a sequential data set or a partitioned member.

• Produce a partitioned data set or member from a sequential input data set.

• Expand an existing partitioned data set by creating partitioned members and
merging them into the data set that is to be expanded.

• Produce an edited sequential or partitioned data set.

• Reblock or change the logical record length of a data set.

• Copy user labels on sequential output data sets. (Refer to "Appendix D:
Processing User Labels.")

• Provide optional editing facilities and exits for user routines that process labels,
manipulate input data, create keys, and handle permanent input/output errors.
Refer to "Appendix A: Exit Routine Linkage" for a discussion of linkage
conventions that are applicable when user routines are provided.

At the completion or termination of IEBGENER, the highest return code
encountered within the program is passed to the calling program.

Creating a Backup Copy

A backup copy of a sequential data set or partitioned member can be produced by
copying the data set or member to any IBM-supported output device. For example,
a copy can be made from tape to tape, from direct access to tape, etc.

A data set that resides on a direct access volume can be copied to its own volume, "­
provided that its data set name is changed. A partitioned data set cannot reside on a
magnetic tape volume.

Producing a Partitioned Data Set from Sequential Input

Through the use of utility control statements, the user can logically divide a
sequential data set into record groups and assign member names to the record
groups. IEBGENER places the newly created members in a partitioned output data
set.

Note: A partitioned data set cannot be produced if an input or output data set
contains spanned records.

Figure 9-1 shows how a partitioned data set is produced from a sequential data set
used as input. The left side of the figure shows the sequential data set. Utility
control statements are used to divide the sequential data set into record groups and
to provide a member name for each record group. The right side of the figure shows
the partitioned data set produced from the sequential input.

IEBGENER Program 9-1

Utility control
names first

names new

Sequential
input
~-----. Record

group
1

Partitioned
output

Directory
123456n

; .. ~! ~

..

M~~STREC1

~ ;-:' '~?' 2' LAS1TREC 2

LASTREC n

Record
group
2

Record
group
n

I Ij t: "~ LASTREC"

Figure 9-1. Creating a Partitioned Data Set from Sequential Input Using IEBGENER

Expanding a Partitioned Data Set

An expanded data set is a data set into which an additional member or members
have been merged. IEBGENER creates the members from sequential input and
places them in the data set being expanded. The merge operation-the ordering of
the partitioned directory-is automatically performed by the program.

Figure 9-2 shows how sequential input is converted into members that are merged
into an existing partitioned data set. The left side of the figure shows the sequential
input that is to be merged with the partitioned data set shown in the middle of the
figure. Utility control statements are used to divide the sequential data set into
record groups and to provide a -memBer name for each record group. The right side
of the figure shows the expanded partitioned data set. Note that members B, D, and
F from the sequential data set were placed in available space and that they are
sequentially ordered in the partitioned directory.

Producing an Edited Data Set

9-2 OS/VS2 MVS Utilities

IEBGENER can be used to produce an edited sequential or partitioned data set.
Through the use of utility control statements, the user can specify editing
information that applies to a record, a group of records, selected groups of records,
or an entire data set.

An edited data set can be produced by:

• Rearranging or omitting defined data fields within a record. (

Utility contror~"ts:
define record ~Pti: <,'

Name membe~.<;;

Sequential
input

LASTREC

Member
D

LASTREC

Member
F

Existing
data set

Figure 9-2. Expanding a Partitioned Data Set Using IEBGENER

• Supplying literal information as replacement data.

Expanded
data set

• Converting data from packed decimal to unpacked decimal mode, unpacked
decimal to packed decimal mode, or H-set BCD to EBCDIC mode.

Figure 9-3 shows part of an edited sequential data set. The left-hand side of the
figure shows the data set before editing is performed. Utility control statements are
used to identify the record groups to be edited and to supply editing information. In
this figure, literal replacement information is supplied for information within a
defined field. (Data is rearranged, omitted, or converted in the same manner.) The
BBBB field in each record in the record group is to be replaced by CCCC. The
right-hand side of the figure shows the" data set after editing.

Note: IEBGENER cannot be used to edit a data set if the input and output data
sets consist of variable spanned (VS) or variable blocked spanned (VBS) records
and have equal block sizes and logical record lengths. In this case, any utility
control statements that specify editing are ignored, that is, for each physical record
read from the input data set, the utility writes an unedited physical record on the
output data set.

Reblocking or Changing Logical Record Length

IEBGENER can be used to produce a reblocked output data set containing either
fixed or variable records. In addition, the program can produce an output data set
having a logical record length that differs from the input logical record length.

IEBGENER Program 9-3

Input and Output

9-4 OS/VS2 MVS Utilities

/ Utility control statement
Defines record group, contains
literal replacement data (CCCC).
Applies to all records within
the group.

»
»
»
»
::
eD
at
»
»
»
»
~
C!
CD
01
»

~ ~
CD
»
»
»
»
CD
Q:J
~
CD

Record
1

Record
2

Record
group

Record

Figure 9-3. Editing a Sequential Data Set Using IEBGENER

IEBGENER uses the following input:

»
»
»

»
»
»

I

• An input data set, which contains the data that is to be copied, edited, converted
into a partitioned data set, or converted into members to be merged into an
existing data set. The input is either a sequential data set or a member of a
partitioned data set.

• A control data set, which contains utility control statements. The control data set
is required if editing is to be performed or if the output data set is to be a
partitioned data set.

IEBGENER produces the following output:

• An output data set, which can be either sequential or partitioned. The output
data set can be either a new data set (created during the current job step) or an
existing partitioned data set that was expanded.

• A message data set, which contains informational messages (for example, the
contents of utility control statements) and any error messages.

• Message IECS07D will be issued twice when adding data or members to an
existing data set which has an unexpired expiration date. This occurs because the
input and output data sets are opened twice.

IEBGENER provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates probable successful completion. A warning message is
written.

• 08, which indicates that processing was terminated after the user requested
processing of user header labels only.

• 12, which indicates an unrecoverable error. The job step is terminated.

Control

Job Control Statements

• 16, which indicates that a user routine passed a return code of 16 to
IEBGENER. The job step is terminated.

IEBGENER is controlled by job control statements and utility control statements.
The job control statements are required to execute or invoke IEBGENER and to
define the data sets that are used and produced by the program. The utility control
statements are used to control the functions of IEBGENER.

Figure 9-4 shows the job control statements necessary for using IEBGENER.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBGENER) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DO Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access volume.

SYSUTI DO Defines the input data set. It can define a sequential data set or a member of a
partitioned data set.

SYSUT2 DO Defines the output data set. It can define a sequential data set, a member of a
partitioned data set, or a partitioned data set.

SYSIN DO Defines the control data set, or specifies DUMMY when the output is
sequential and no editing is specified. The control data set normally resides in
the input stream; however, it can be defined as a member within a library of
partitioned members.

Figure 9-4. IEBGENER Job Control Statements

IEBGENER always uses two buffers, regardless of what was specified in the DeB.

If both the SYSU,T 1 and the SYSUT2 DD statements specify standard user labels
(SUL), IEBGENER copies user labels from SYSUT1 to SYSUT2. See "Appendix
D: Processing User Labels" for a discussion of the available options for user label
processing.

Both the input data set and the output data set can contain fixed, variable,
undefined, or variable spanned records. These records can be reblocked by the
specification of a new maximum block length on the SYSUT2 DD statement.
During reblocking, if the output data set resides on a direct access volume:

• For fixed or variable records, keys can be retained only by using the appropriate
user exit.

• For variable spanned records, keys can never be retained.

Refer to OS/VS2 MVS Data Management Services Guide for information on
estimating space allocations.

Utility Control Statements

IEBGENER is controlled by utility control statements. The statements and the
order in which they must appear are:

The control statements are included in the control data set as re,quired. If no utility
control statements are included in the control data set, the entire input data set is
copied sequentially.

IEBGENER Program 9-5

GENERATE Statement

EXITS Statement

9-6 OS/VS2 MVS Utilities

Statement

GENERATE

EXITS

LABELS

MEMBER

RECORD

Use

Indicates the number of member names and alias names, record identifiers,
literals, and editing information contained in the control data set.

Indicates that user routines are provided.

Specifies user-label processing.

Specifies the member name and alias of a member of a partitioned data set to
be created.

Defines a record group to be processed and supplies editing information.

Figure 9-5. IEBGENER Utitily Control Statements

When the output is to be sequential and editing is to be performed, one
GENERATE statement and as many RECORD statements as required are used. If
user exits are provided, an EXITS statement is used.

When the output is to be partitioned, one GENERATE statement, one MEMBER
statement per output member, and RECORD statements, as required, are used. If
user exits are provided, an EXITS statement is used.

Utility control statements may be continued on subsequent cards provided that the
data starts in columns 4 through 16. A nonblank character in column 72 is optional
for IEBGENER.

The GENERATE statement is required when: (1) output is to be partitioned, (2)
editing is to be performed, or (3) user routines are provided and/or label
processing is specified. The GENERATE statement must appear before other
statements. If it contains errors or is inconsistent with other statements,
IEBGENER is terminated.

The format of the GENERATE statement is:

[label] GENERATE [MAXNAME=n]

[,MAXFLDS=n]

[,MAXGPS=n]

[,MAXLITS=n]

The EXITS statement is used to identify exit routines supplied by the user.
Linkages to and from exit routines are discussed in "Appendix A: Exit Routine
Linkage."

For a detailed discussion of the processing of user labels as data set descriptors, and
for discussion of user label totaling, refer to "Appendix D: Processing User
Labels."

The EXITS statement is used when user routines are provided.

LABELS Statement

MEMBER Statement

RECORD Statement

The format of the EXITS statement is:

[label] EXITS [INHDR=routinename]

[,OUTHDR=routinename]

[,INTLR=routinename]

[,OUTTLR=routinename]

[,KEY =routinename]

[,DATA=routinename]

[,IOERROR=routinename]

[,TOTAL = (routinename , size)]

The LABELS statement specifies whether or not user labels are to be treated as
data by IEBGENER. For a detailed discussion of 'this option, refer to "Processing
User Labels as Data," in "Appendix D: Processing User Labels."

The LABELS statement is used when the user wants to specify that: (1) no user
labels are to be copied to the output data set, (2) user labels are to be copied to the
output data set from records in the data portion of the SYSIN data set, or (3) user
labels are to be copied to the output data set after they are modified by the user's
label processing routines. If more than one valid LABELS statement is included, all
but the last LABELS statement are ignored.

The format of the LABELS statement is:

[label] LABELS IDATA= {YES I NO I ALL I ONLY I INPUT}]

Note: LABELS DATA=NO must be specified to make standard user labels (SUL)
exits inactive when input/output data sets with nonstandard labels (NSL) are to be
processed.

The MEMBER statement is used when the output is to be partitioned. One
MEMBER statement must be included for each member to be created by
IEBGENER. The MEMBER statement provides the name and aliases of a member
that is to be created.

All RECORD statements following a MEMBER statement pertain to the member
named in that MEMBER statement. If no MEMBER statements are included, the
output data set is organized sequentially.

The format of the MEMBER statement is:

[label] MEMBER NAME=(name [, alias]. ..)

The RECORD statement is used to define a record group and to supply editing
information. A record group consists of records that are to be processed identically.

The RECORD statement is used when: (1) the output is to be partitioned, (2)
editing is to be performed, or (3) user labels for the output data set are to be
created from records in the data portion of the SYSIN data set. The RECORD
statement defines a record group by identifying the last record of the group with a
literal name.

IEBGENER Program 9-7

91'i"'S QS/VS2 MVS Utilities

If no RECORD statement is used, the entire input data set or member is processed
without editing. More than one RECORD statement may appear in the control
statement stream for IEBGENER.

Within a RECORD statement, one IDENT parameter can be used to define the
record group; one or more FIELD parameters can be used to supply the editing
information applicable to the record group; and one LABELS parameter can be
used to indicate that this statement is followed immediately by output label records.

The format of the RECORD statement is:

[label] RECORD [IDENT=(length,' name', input-location)]

[,FIELD=([length],[{ input-location I 'literal'}],[conversion]
,[output-location])[,FIELD=]

[,LABELS=n]

Operands

DATA

Applicable Control
Statements

EXITS

LABELS

Description of Operands/Parameters

DAT A= routinename specifies the symbolic name of a routine
that modifies the physical record (logical record for VS or
VBS type records) before its processed by IEBGENER.

DATA={YES I NO I ALL I ONLY I INPUT} specifies whether
user labels are to be treated as data by IEBGENER. These
values can be coded:

YES
specifies that any user labels that are not rejected by a
user's label processing routine are to be treated as data.
Processing of labels as data ends in compliance with
standard return codes.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that user labels in the group currently being
processed are to be treated as data regardless of any
return code. A return code of 16 causes IEBGENER to
complete processing the remainder of the group of user
labels and to terminate the job step.

ONLY
specifies that only user header labels are to be treated as
data. User header labels are processed as data regardless
of any return code. The job terminates upon return from
the OPEN routine.

INPUT
specifies that user labels for the output data set are
supplied as 80-byte input records in the data portion of
SYSIN. The number of input records that should be
treated as user labels must be identified by a RECORD
statement.

IEBGENER Program 9-9

Operands

FIELD

Applicable Control
Statements

RECORD

9-10 OS/VS2 MVS Utilities

Description of Operands/Parameters

FIELD = ([length],[{input-location I 'literal '}],
[conversion],[output-location D[,FIELD= ...]

specifies field-processing and editing information. Only the
contents of specified fields in the input record is copied to
the output record, that is, any field in the output record
that is not specified will contain meaningless information.
The values that can be coded are:

length
specifies the length (in bytes) of the input field or literal
to be processed. If length is not specified, a length of 80
bytes is assumed. If a literal is to be processed, a length
of 40 bytes or less must be specified.

input-location
specifies the starting byte of the field to be processed.

Default: Byte 1 is assumed.

'literal'
specifies a literal (maximum length of 40 bytes) to be
placed in the specified output location. If a literal
contains apostrophes, each apostrophe must be written
as two consecutive apostrophes.

conversion
specifies a two-byte code that indicates the type of
conversion to be performed on this field. If no
conversion is specified, the field is moved to the output
area without change. The values that can be coded are:

PZ
specifies that data (packed decimal) is to be
converted to unpacked decimal data.

ZP
specifies that data (unpacked decimal) is to be
converted to packed decimal data.

'HE
specifies that data (H-set BCD) is to be converted to
EBCDIC.

output-location
specifies the starting location of this field in the output
records.

If conversion is specified in FIELD, the following
restrictions apply:

• PZ-type (packed-to.;.unpacked) conversion is
impossible for packed decimal records longer than
16K bytes.

• For ZP-type (unpacked-to-packed) conversion, the
normal 32K-type maximum applies.

• When the ZP parameter is specified, the conversion is

Operands
Applicable Control
Statements Description of Operands/Parameters

performed in place. The original unpacked field is
replaced by the new packed field. Therefore, the ZP
parameter must be omitted from subsequent
references to that field. If the field is needed in its
original unpacked form, it must be referenced prior to
the use of the ZP parameter.

If conversion is specified in the FIELD parameter, the
length of the output record can be calculated for each
conversion specification. When L is equal to the length
of the input record, the calculation is made, as follows:

• For a PZ (packed-to-unpacked) specification, 2L-l.

• For a ZP (unpacked-to-packed) specification, (L/2)
+ C. If L is an odd number, C is 1/2; if L isan even
number, C is 1.

• For an (H-set BCD to EBCDIC) specification, L.

If both output header labels and output trailer labels are
to be contained in the SYSIN data set, the user must
include one RECORD statement (including the
LABELS parameter), indicating the number of input
records to be treated as user labels, for header labels
and one for trailer labels. The first such RECORD
statement indicates the number of user header labels;
the second indicates the number of user trailer labels. If
only output trailer labels are included in the SYSIN data
set, a RECORD statement must be included to indicate
that there are no output header labels in the SYSIN data
set (LABELS=O). This statement must precede the
RECORD LABELS=n statement which signals the
start of trailer label input records.

For a detailed discussion of the LABELS option, refer
, to "Processing User Labels As Data," in "Appendix D:
Processing User Labels."

Default: Byte 1 is assumed.

IEBGENER Program 9-11

Operands

IDENT

INHDR

INTLR

IOERROR

KEY

Applicable Control
Statements

RECORD

EXITS

EXITS

EXITS

EXITS

9-12 OS/VS2 MVS Utilities

Description of Operands/Parameters

IDENT=(length, 'name',input,-location)
identifies that last record of the input group to which the
FIELD parameters of MEMBER statement applies. If the
RECORD statement is not followed by additional
RECORD or MEMBER statements, IDENT also defines
the last record to be processed.

These values can be coded:

length
specifies the length (in bytes) of the identifying name.
The length cannot exceed eight characters.

'name'
specifies the exact literal that identifies the last input
record of a record group.

Default: If no match for name is found, the remainder
of the input data considered to be in one record group;
subsequent RECORD and MEMBER statements are
ignored.

inpui-location
specifies the starting locaiton of the field that contains
the identifying name in the input records.

Default: If IDENT is omitted, the remainder of the input
data is considered to be in one record group; subsequent
RECORD and MEMBER statements are ignored.

INHDR= routinename
specifies the symbolic name of a routine that processes
user input header labels.

INTLR= routinename
specifies the symbolic name of a routine that processes
user input trailer labels

IOERROR=routinename
specifies the symbolic name of a routine that handles
permanent input/output error conditions.

KEY =routinename
specifies the symbolic name of a routine that creats the
output record key. (This routine does not receive control
when a data set consisting of VS or VBS type records is
processed because no processing of keys is permitted for
this type of data.)

Applicable Control
Operands Statements

LABELS RECORD

MAXFLDS GENERATE

MAXGPS GENERATE

MAXLITS GENERATE

MAXNAME GENERATE

NAME MEMBER

OUTHDR EXITS

OUTTLR EXITS

Description of Operands/Parameters

LABELS=n
is an optional parameter that indicates the number of
records in the SYSIN data set to be treated as user labels.
The number n, which is a number from 1 to 8, must
specify the exact number of label records that follow the
RECORD statement. If this parameter is included,
DAT A=INPUT must be coded on a LABELS statement
before it in the input stream.

MAXFLDS=n
specifies a number that is no less than the total number of
FIELD parameter appearing in subsequent RECORD
statements. MAXFLDS is required if there are any FIELD
parameters in subsequent RECORD statements.

MAXGPS=n
specifies a number that is no less than the total number of
IDENT parameters appearing in subsequent RECORD
statements. MAXGPS is required if there are any IDENT
parameters in subsequent RECORD statements.

MAXLITS=n
specifies a number that is no less than the total number of
characters contained in the FIELD literals of subsequent
RECORD statements. MAXLITS is required if the FIELD
parameters of subsequent RECORD statements contain
literals. MAXLITS does not pertain to literals used in
IDE NT parameters.

MAXNAME=n
specifies a number that is no less than the total number of
member names as aliases appearing in subsequent
MEMBER statements. MAXNAME is required if there are
one or more MEMBER statements.

NAME=(name[, alias] ...)
specifies a member name followed by a list of its aliases. If
only one name appears in the statement, it need not be
enclosed in parentheses.

OUTHDR= routinename
specifies the symbolic name of a routine that creates user
output header labels. OUTHDR is ignored if the output
data set is partitioned.

OUTTLR:::routinename
specifies the symbolic name of a routine that processes
user output trailer labels. OUTTLR is ignored if the output
data set is parititioned.

IEBGENER Program 9-13

Operands

TOTAL

Applicable Control
Statements

EXITS

9-14 OS/VS2 MVS Utilities

Description of Operands/Parameters

TOT AL= (routinename,size)
specifies that exits to a user's routine are to be provided
prior to writing each record. The keyword OPTCD=T
must be specified for the SYSUT2 DD statement. TOTAL
is valid only when the utility is used to process sequential
data sets. These values must be coded:

routinename
specifies the name of a user-supplied totaling routine.

size
specifies the number of bytes needed to contain totals,
counters, pointers, etc.

Restrictions

• The SYSPRINT DD statement is required for each use of IEBGENER.

• The block size for the SYSPRINT data set must be multiple of 121. The block
size for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for these block sizes.

• If the output data set is on a card punch or a printer, the user must specify DCB
information on the SYSUT2 DD statement. DCB parameters in a SYSUT2 DD
statement defining an expanded partitioned data set must be compatible with the
specifications made when the data set was originally created.

The SYSIN DD statement is required for each use of IEBGENER.

Concatenated data sets with unlike attributes are not allowed as input to
IEBGENER. For information on concatenated data sets, see OS/VS2 MVS
Data Management Services Guide.

• When RECFM, BLKSIZE, and LRECL are not specified in the JCL for the
output data set, values for each are copied from the input data set's DSCB.

• Always specify the output block size when the logical record length and record
format (except for U) are specified. The default RECFM is U for the output
data set. The output LRECL must be specified when editing is to be performed
and the record format is FB, VS, or VBS. In all other cases, a default LRECL
value is generated by IEBGENER.

• The input data set must always have a BLKSIZE. parameter specified. The
default RECFM is U for the input data set: The input LRECL must be specified
when the record format is FB, VS, or VBS. In all other cases, a default LRECL
is gneerated by IEBGENER.

• RECFM (except for undefined data sets), BLKSIZE, and LRECL (except for
undefined data sets) must be specified on the SYSUT1/SYSUT2 DD statement
when the data set is new, a dummy data set, a card punch, or a printer.

• A partitioned data set cannot be produced if an input or output data set contains
spanned records.

• IEBGENER can not produce an output data set having a logical record length
that differs from the input logical record length if both input and output
RECFM are V or VB.

IEBGENER Examples
The examples that follow iliustrate some of the uses of IEBGENER. Figure 9-6 can
be used as a quick reference guide to IEBGENER examples. The numbers in the
"Example" column point to the examples that follow.

IEBGENER Program 9-15

Data Set
Operation Organization Devices Comments Example

COpy Sequential Card Reader Blocked output.
and Tape

COPY-with Sequential Card Reader Blocked output.
editing and Tape 2

COPY-with Sequential Card Reader Blocked output. Input includes
editing and Tape / /cards. 3

COPY-with Sequential Card Reader Blocked output. Input includes
editing and Disk / / cards. 4

PRINT Sequential Card Reader Input includes / / cards. System
and Printer output device is a printer. 5

CONVERT Sequential Tape and Blocked output. Three members
input, Disk are to be created.
Partitioned
output 6

COPY-with Sequential Disk Blocked output. Two members are
editing to be merged into existing data set. 7

COPY-with Sequential Tape Blocked output. Data set edited as
editing one record group. 8

COPY-with Sequential Disk Blocked output. New record length
editing specified for output data set. Two

record groups specified. 9

COPY-with Sequential Tape Blocked output. Data set edited as
editing one record group. 10

Figure 9-6. IEBGENER Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

IEBGENER Example 1

9-16 OS/VS2 MVS Utilities

In this example, a card-input, sequential data set is to be copied to a 9-track tape
volume.

The example follows:

I/CDTOTAPE JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DO DUMMY
IISYSUT2 DO DSNAME=OUTSET, UNIT=tape, LABEL=(, SL) ,
II DISP=(,KEEP),VOLUME=SER=001234,DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSUT1 DO *
(input card data set)

1*
The control statements are discussed below:

• SYSIN DD defines a dummy data set. No editing is to be performed; therefore,
no utility control statements are needed.

• SYSUT2 DD defines the output data set. The data set is written to a tape
volume. The data set is to reside as the first (or only) data set on the volume.

• SYSUTI DD defines the card-input data set. The data set can contain no / / or
/* cards.

lEBGENER Example 2

In this example, a card-input, sequential data set is to be copied to a tape volume.
The control data set is a member of a partitioned data set.

IICDTOTAPE JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSODT=A
IISYSIN DD DSNAME=CNTRLIBY(STMNTS), UNIT=disk,
II DISP=(OLD,KEEP),VOLUME=SER=111112,DCB=(RECFM=F,
II LRECL=80,BLKSIZE=80)
IISYSUT2 DD DSNAME=OUTSET,UNIT=wpe,LABEL=(,SL),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
II DISP=(,KEEP),VOLUME=SER=001234
IISYSUT1 DD *
(input card data set)

1*
The control statements are discussed below:

• SYSIN DD defines the control data set, which contains the utility control
statements. The control statements reside as a member, STMNTS, in a
partitioned data set.

• SYSUT2 DD defines the output data set. The data set is written as the first data
set on the tape volume.

• SYSUTI DD defines the card-input data set. The data set can contain no / /
cards.

lEBGENER Example 3

In this example, a card-input, sequential data set is to be copied to a tape volume.
The input contains cards that have slashes (/ /) in columns 1 and 2. The control
data set is a member of a partitioned data set.

IICDTOTAPE JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DSNAME=CNTRLIBY(STMNTS) , UNIT=disk,
II DISP=(OLD,KEEP),VOLUME=SER=111112
IISYSUT2 DD DSNAME=OUTSET,UNIT=tape,LABEL=(2,SL),
II VOLUME=SER=001234,DCB=(RECFM=FB,LRECL=80,
II BLKSIZE=2000),DISP=(,KEEP)
IISYSUT1 DD DATA

(input card data set, including / / cards)

1*
The control statements are discussed below:

• SYSIN DD defines the data set containing the utility control statements. The
statements reside as a member, STMNTS, in a partitioned data set.

• SYSUT2 DD defines the copied sequential data set (output). The data set is
written as the second data set on the specified tape volume.

• SYSUTI DD defines the card-input data set. The data set is to be edited as
specified in the utility control statements (not shown). The input data set
contains / / cards.

IEBG ENER Program 9-17

lEBGENER Example 4

In this example, a card-input, sequential data set is to be copied to a 2314 volume.
The input data set contains / / cards.

IICDTODISK JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DSNAME=CNTRLIBY(STMNTS), UN I T=disk ,
II DISP=(OLD,KEEP),VOLUME=SER=111112
IISYSUT2 DD DSNAME=OUTSET, UNIT=disk, VOLUME=SER= 111113,
II DISP=(,KEEP),SPACE=(TRK,(10,10)),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSUT1 DD DATA

(input card data set, including / / cards)

1*
The control statements are discussed below:

• SYSIN DD defines the control data set, which contains the utility control
statements. The control statements reside as a member, STMNTS, in a
partitioned data set.

• SYSUT2 DD defines the output data set. Ten tracks of primary storage space
and ten tracks of secondary space are allocated for the data set on a disk
volume.

• SYSUT1 DD defines the card-input data set. The data set is to be edited as
specified in the utility control statements (not shown). The input data set
contains / / cards.

lEBGENER Example 5

9-18 OS/VS2 MVS Utilities

In this example, the content of a card data set is to be printed. The printed output is
to be left-aligned, with one 80-byte record appearing on each line of printed
output.

IICDTOPTR JOB
II EXEC
IISYSPRINT DD
IISYSIN DD
IISYSUT2 DD
IISYSUT1 DD

09#660,SMITH
PGM=IEBGENER
SYSOUT=A
DUMMY
SYSOUT=A,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
DATA

(input card data set, including / / cards)

1*
The control statements are discussed below:

• SYSIN DD defines a dummy data set. No editing is to be per(ormed; therefore,
no utility control statements are required.

• SYSUT2 DD indicates that the output is to be written on the system output
device (printer). Carriage control can be specified by changing the RECFM=F
subparameter to RECFM=FA.

• SYSUT1 DD defines the input card data set. The input data set contains / /
cards.

IEBGENER Example 6

In this example, a partitioned data set (consisting of three members) is to be
created from sequential input.

IITAPEDISK JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DO SYSOUT=A
IISYSUTl DO DSNAME=INSET,UNIT=mpe,LABEL=(,SL),
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DO DSNAME=NEWSET,UNIT=d~k,DISP=(,KEEP),
II VOLUME=SER=111112,SPACE=(TRK,(10,5,5»,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
IISYSIN DO *

GENERATE MAXNAME=3,MAXGPS=2
MEMBER NAME=MEMBER1

GROUP 1 RECORD IDENT=(8,'FIRSTMEM' ,1)
MEMBER NAME=MEMBER2

GROUP2 RECORD IDENT=(8,'SECNDMEM' ,1)
MEMBER NAME=MEMBER3

1*
The control statements are discussed below:

• SYSUTI DD defines the input data set (INSET). The data set is the first data
set on a tape volume.

• SYSUT2 DD defines the output partitioned data set (NEWSET). The data set is
to be placed on a disk volume. Ten tracks of primary space, five tracks of
secondary space, and five blocks (256 bytes each) of directory space are
allocated to allow for future expansion of the data set. The output records are
blocked to reduce the space required by the data set.

• SYSIN DD defines the control data set, which follows in the input stream. The
utility control statements are used to create members from sequential input data;
the statements do not specify any editing.

• GENERATE indicates that: (1) three member names are included in subsequent
MEMBER statements and (2) the IDENT parameter appears twice in
subsequent RECORD statements.

• The first MEMBER statement assigns a member name (MEMBER 1) to the first
member.

• The first RECORD statement (GROUPl) identifies the last record to be placed
in the first member. The name of this record (FIRSTMEM) appears in bytes 1
through 8 of the input record.

IEBGENER Example 7

• The remaining MEMBER and RECORD statements define the second and third
members.

In this example, sequential input is to be converted into two partitioned members.
The newly created members are to be merged into an existing partitioned data set.
User labels on the input data set are to be passed to the user exit routines.

IEBGENER Program 9-19

IIDISKTODK JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
I ISYSUT 1 DD DSNAME=INSET, UNIT=disk, DISP=(OLD, KEEP) ,
II VOLUME=SER=111112,
I I LABEL=(, 5UL)
IISYSUT2 DD DSNAME=EXISTSET, UNIT=disk , DISP=(MOD, KEEP) ,
II VOLUME=SER=111113
IISYSIN DD *

GENERATE MAXNAME=3,MAXGPS=1
EXITS INHDR=ROUT1,INTLR=ROUT2

MEMBER NAME=(MEMX,ALIASX)
GROUP 1 RECORD IDENT=(8,'FIRSTMEM',1)

MEMBER NAME=MEMY
1*
The control statements are discussed below:

• SYSUTI DD defines the input data set (INSET). The input data set, which
resides on a disk volume, has standard and user labels.

• SYSUT2 DD defines the output partitioned data set (EXISTSET). The members
created during this job step are merged into the partitioned data set.

• SYSIN DD defines the control data set, which follows in the input stream. The
utility control statements are used to create members from sequential input data;
the statements do not specify any editing.

• GENERATE indicates that: (1) two member names and one alias are included
in subsequent MEMBER statements and (2) an IDENT parameter appears in a
subsequent RECORD statement.

• EXITS defines the user routines that are to process user labels.

• The first MEMBER statement assigns a member name (MEMX) and an alias
(ALIASX) to the first member.

• The first RECORD statement identifies the last record to be placed in the first
member. The name of this record (FIRSTMEM) appears in bytes 1 through 8 of
the input record.

• The second MEMBER statement assigns a member name (MEMY) to the
second member. The remainder of the input data set is included in this member.

lEBGENER Example 8

9-20 OS/VS2 MVS Utilities

In this example, a sequential input data set is to be edited and copied.

IITAPETAPE JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=OLDSET,UNIT=Wpe,DISP=(OLD,KEEP),
II VOLUME=SER=001234,LABEL=(3,SL)
IISYSUT2 DD DSNAME=NEWSET, UN I T=tape , DISP=(NEW, PASS),
II DCB=(RECFM=FB,LRECL=80,BLKSTZE=2000),
II VOLUME=SER=001235,LABEL=(,SL)
IISYSIN DD *

GENERATE MAXFLDS=3,MAXLITS=11

72

RECORD FIELD=(10,'**********' ,,1), C
FIELD=(5, 1 ,HE, 11) ,FIELD=(1, '=' ,,16)

EXITS INHDR=ROUT1,OUTTLR=ROUT2
LABELS DATA=INPUT
RECORD LABELS=2

(first header label record)
(second header label record)

RECORD LABELS=2

(first trailer label record)
(second trailer label record)

/*

The control statements are discussed below:

• SYSUT1 DD defines the sequential input data set (OLDSET). The data set was
originally written as the third data set on a tape volume.

• SYSUT2 DD defines the sequential output data set (NEWSET). The data set is
written as the first data set on a tape volume. The output records are blocked to
reduce the space required by the data set and to reduce the access time required
when the data set is subsequently referred to. The data set is passed to a
subsequent job step.

• SYSIN DD defines the control data set, which follows in the input stream.

• GENERATE indicates that: (1) a maximum of three FIELD parameters is
included in subsequent RECORD statements and (2) a maximum of 11 literal
characters are included in subsequent FIELD parameters.

• EXITS indicates that the specified user routines require control when SYSUT1 is
opened and when SYSUT2 is closed.

• LABELS indicates that labels are included in the input stream.

• The first RECORD statement controls the editing, as follows: (1) asterisks are
placed in positions 1 through 10, (2) bytes 1 through 5 of the input record are
converted from H-set BCD to EBCDIC mode and moved to positions 11
through 15, and (3) an equal sign is placed in byte 16.

• The second RECORD statement indicates that the next two records from SYSIN
should be written out as user header labels on SYSUT2.

• The third RECORD statement indicates that the next two records from SYSIN
should be written as user trailer labels on SYSUT2.

Note: This example shows the relationship between the RECORD LABELS
statement and the EXITS statement. IEBGENER attempts to write a first and
second label trailer as user labels at close time of SYSUT2 before returning control
to the system; the user routine, ROUT2, can review these records and change
them, if necessary.

IEBGENER Program 9-21

IEBGENER Example 9

9-22 OS/VS2 MVS Utilities

In this example, a sequential input data set is to be edited and copied.

IIDISKDISK JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT 1 DD DSNAME=OLDSET, UNIT=disk, DISP=(OLD, KEEP) ,
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=NEWSET,UNIT=4~k,DISP=(NEW,KEEP),
II VOLUME=SER=111113,DCB=(RECFM=FB,LRECL=80,
II BLKSIZE=640),SPACE=(TRK,(20,10))
IISYSIN DD *

GENERATE MAXFLDS=4,MAXGPS=1
EXITS IOERROR=ERRORRT

72

GROUP 1 RECORD IDENT=(8,'FIRSTGRP',1), C
FIELD=(21,80,,60),FIELD=(59,1,,1)

GROUP2 RECORD FIELD=(11,90,,70),FIELD=(69,1,,1)
1*
The control statements are discussed below:

• SYSUTI DD defines the input data set (OLDSET).

• SYSUT2 DD defines the output data set (OUTSET). Twenty tracks of primary
storage space and ten tracks of secondary storage space are allocated for the
data set on a disk volume. The logical record length of the output records is 80
bytes, and the output is blocked.

• SYSIN DD defines the control data set, which follows in the input stream.

• GENERATE indicates that: (1) a maximum of four FIELD parameters is
included in subsequent RECORD statements and (2) a maximum of one IDENT
parameter appears in a subsequent RECORD statement.

• EXITS identifies the user routine that handles input/output errors.

• The first RECORD statement controls the editing of the first record group, as
follows: (1) FIRSTGRP, which appears in bytes 1 through 8 of the input record,
is defined as being the last record in the first group of records and (2) bytes 80
through 100 of each input record are moved into positions 60 through 80 of
each corresponding output record. (This example implies that bytes 60 through
79 of the input records in the first record group are no longer required; thus, the
logical record length is shortened by 20 bytes.) The remaining bytes within each
input record are transferred directly to the output records, specified in the
second FIELD parameter.

• The second RECORD statement indicates that the remainder of the input
records are to be processed as the second record group. Bytes 90 through 100 of
each input record are moved into positions 70 through 80 of the output records.
(This example implies that bytes 70 through 89 of the input records from group
2 are no longer required; thus, the logical record length is shortened by 20
bytes.) The remaining bytes within each input record are transferred directly to
the output records, specified in the second FIELD parameter.

If the logical record length of the output data set differs from that of the input data
set, as in this example, all positions in the output records must undergo editing to
justify the new logical record length.

IEBGENER Example 10

In the example, a sequential input data set is to be edited and copied.

IITAPETAPE JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=OLDSET,UNIT=mpe,DISP=(OLD,KEEP),
II VOLUME=SER=001234,LABEL=(3,SUL)
IISYSUT2 DD DSNAME=NEWSET,UNIT=tape,DISP=(NEW,PASS),
II VOLUME=SER=001235,LABEL=(,SUL),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSIN DD *

GENERATE MAXFLDS=3,MAXLITS=11

72

RECORD FIELD=(10,'**********',,1), C
FIELD=(5, 1 ,HE', 11) ,FIELD=(1, '=',,16)

LABELS DATA=INPUT
RECORD LABELS=3

(first header label record)
(second header label record)
(third header label record)

RECORD LABELS=2

(first trailer label record)
(second trailer label record)

1*
The control statements are discussed below:

• SYSUTI DD defines the input data set (OLDSET). The data set is the third data
set on a tape volume.

• SYSUT2 DD defines the output data set (NEWSET). The data set is written as
the first or only data set on a tape volume. The output records are blocked to
reduce the space required by the data set and to reduce the access time required
when the data set is subsequently referred to. The data set is passed to a
subsequent job step.

• SYSIN DD defines the control data set, which follows in the input stream.

• GENERATE indicates that: (1) a maximum of three FIELD parameters is
included in subsequent RECORD statements and (2) a maximum of 11 literal
characters are included in subsequent FIELD parameters.

• LABELS indicates that label records are included in the input stream.

• The first RECORD statement controls the editing, as follows: (1) asterisks are
placed in positions 1 through 10, (2) bytes 1 through 5 of the input record are
converted from H-set BCD to EBCDIC mode and moved to positions 11
through 15, and (3) an equal sign is placed in byte 16.

• The second RECORD statement indicates that three 80-byte records (cards), to
be written as user labels on the output data set, immediately follow. The third
RECORD statement indicates that the following cards are to be treated as trailer
labels.

IEBGENER Program 9-23

IEBISAM PROGRAM

IEBISAM can be used to:

• Copy an indexed sequential (ISAM) data set directly from one direct access
volume to another.

• Create a backup (transportable) copy of an ISAM data set by copying
(unloading) . it into a sequential data set on a direct access or magnetic tape
volume.

• Create an ISAM data set from an unloaded data set. The sequential (unloaded)
data set is in a form t1}at can be subsequently loaded, that is, it can be converted
back into an ISAM data set.

• Print an ISAM data set.

At the completion or termination of IEBISAM, the highest return code encountered
within the program is passed to the calling program.

Copying an Indexed Sequential Data Set

IEBISAM can be used to copy an indexed sequential data set directly from one
DASD volume to another. When the data set is copied, the records marked for
deletion are only deleted if the DELETE parameter was specified in the OPTCD
(optional control program service) field. Those records that are contained in the
overflow area of the original data set are moved into the primary area of the copied
data set. The control information characteristics such as BLKSIZE and OPTCD
can be overridden by new specifications. Caution should be used, however, when
overriding these characteristics (see "Specifying a LOAD operation").

Creating a Sequential Backup Copy

An unloaded sequential data set can be created to serve as a backup or
transportable copy of source data from an indexed sequential data set. Records
marked for deletion within the indexed sequential data set are automatically deleted
when the unloaded data set is created. When the data set is subsequently
loaded-reconstructed into an indexed sequential data set-records that were
contained in the overflow area assigned to the original data set are moved
sequentially into the primary area.

An unloaded data set consists of 80-byte logical records. The data ~et contains:

• Fixed records from an indexed sequential data set.

• Control information used in the subsequent loading of the data set.

Control information consists of characteristics that were assigned to the indexed
sequential data set. These characteristics are:

• Optional control program service (OPTCD)

• Record format (RECFM)

• Logical record length (LRECL)

• Block size (BLKSIZE)

• Relative key position (RKP)

• Number of tracks in cylinder index (NTM)

IEBISAM Program 10-1

• Key length (KEYLEN)

• Number of overflow tracks on each cylinder (CYLOFL)

Specifying a Load Operation

10-2 OS/VS2 MVS Utilities

When a load operation is specified, these characteristics can be overridden by
specifications in the DCB parameter of the SYSUT2 DD statement (refer to "Job
Control Statements" for a discussion of the SYSUT2 DD statement). Caution
should be used, however, because checks are made to ensure that:

, 1. Record format is the same as that of the original indexed sequential data set
(either fixed (F) or variable (V) length).

2. Logical record length is greater than or equal to that of the original indexed
sequential data set when the RECFM is variable (V) or variable, blocked (VB).

3. For fixed records, the block size is equal to or a multiple of the logical record
length of the records in the original indexed sequential data set. For variable
records, the block size is equal to or greater than the logical record length plus
four.

4. Relative key position is equal to or less than the logical record length minus the
key length. Following are relative key position considerations:

• if the RECFM is V or VB, the relative key position should be at least 4.

• If the DELETE parameter was specified in the OPTCD field and the RECFM
is F or fixed blocked (FB), the relative key position should be at least 1.

• If the DELETE parameter was specified in the OPTCD field and the RECFM
is V or VB, the relative key position should be at least 5.

5. The key length is less than or equal to 255 bytes.

6. For a fixed unblocked data set with RKP=O, the LRECL value is the length of
the data portion, not, as in all other cases, the data portion and key length. When
changing the RECFM from fixed unblocked and RKP=O to fixed blocked, the
new LRECL must be equal to the old LRECL plus the old key length.

If either RKP or KEYLEN is overridden, it might not be possible to reconstruct the
data set.

The number of 80-byte logical records in an unloaded data set can be determined
by the formula:

x = n(y+2) + 158

78

where x is the number of 80-byte logical records created, n is the number of
records in the indexed sequential data set, and y is the length of a fixed record or
the average length of variable records.

Figure 10-1 shows the format of an unloaded data set for the first three 100-byte
records of an indexed sequential data set. Each is preceded by two bytes (bb) that
indicate the number of bytes in that record. (The last record is followed by two
bytes containing binary zeros to identify the last logical record in the unloaded data
set.) The characteristics of the indexed sequential data set are contained in the first
two·logical records of the unloaded data set. Data from the indexed sequential data
set begins in the third logical record .. Each logical·record in the unloaded data set
contains a binary sequence number (aa) in the first two bytes of the record.

80 bytes -----------------11
a a blbl Characteristics

a a Characteristics

a a blbl 76 bytes of data

a a 24 bytes of data jblbl
a a 48 bytes of data

a a 72 bytes of data

Figure 10-1. An Unloaded Data Set Created Using IEBISAM

Creating an Indexed Sequential Data Set
from an Unloaded Data Set

52 bytes of data

Iblbl 28 bytes of data

Lblbl

An indexed sequential data set can be created from an unloaded version of an
indexed sequential data set. When the unloaded data set is loaded, those records
that were contained in the overflow area assigned to the original indexed sequential
data set are moved sequentially into the primary area of the loaded indexed
sequential data set.

Printing the Logical Records of an Indexed Sequential Data Set

The records of an indexed sequential data set can be printed or stored as a
sequential data set for subsequent printing. Each input record is placed in a buffer
from which it is printed or placed in a sequential data set. When the DELETE
parameter is specified in the OPTCD field, each input record not marked for
deletion is also placed in a buffer from which it is printed or placed in a sequential
data set. Each printed record is converted to hexadecimal unless specified otherwise
by the user.

IEBISAM provides user exits so that the user can include his own routines to:

• Modify records before printing.

• Select records for printing or terminate the printing operation after a certain
number of records have been printed.

• Convert the format of a record to be printed.

• Provide a record heading Jor each record if the record length is at least 18 bytes.
If no user routines are provided, each record is identified in sequential order on
the printout.

When a user routine is supplied for a print operation, IEBISAM issues a LOAD
macro instruction. A BALR 14,15 instruction is used to give control to the user's
routine, When the user's routine receives control, register 0 contains a pointer to a
record heading buffer; regjster 1 contains a pointer to an input record buffer. (Note
that the user must save registers 2 through 14 when control is given to- the user
routine.) "

The input record buffer has a length equal to the length of the input logical record.

Figure 10-2 shows the record heading buffer.

The user returns control to IEBISAM by issuing a RETURN macro instruction (via
register 14) or by using a BR 14 instruction after restoring registers 2 through 14.

A user routine must place a return code in register 15 before returning control to
IEBISAM. The possible return codes and their meanings are:

• 00, which indicates that buffers are to be printed.

IEBISAM Program 10-3

Input and Output

10-4 OS/VS2 MVS Utilities

Register 0

Available to the user ~

t-I.o------Totallength = line length of applicable printer-------

Register 1

tp",'~'d
\ ~ ------- -Total length = input logical record length (LRECL) ------

Figure 10-2. Record Heading Buffer Used by IEBISAM

• 04, which indicates that the buffers are to be printed and the operation is to be
terminated.

• 08, which indicates·that this input record is not to be printed; processing
continues.

• 12, which indicates that this input record is not to be printed; terminate the
operation.

IEBISAM uses an input data set (the organization of the input data set depends on
the operation to be performed) as follows:

• If a data set is to be copied, unloaded, or printed in logical sequence, the input is
an indexed sequential data set.

• If a data set is to be loaded, the input is an unloaded version of an indexed
sequential data set.

IEBISAM produces as output:

• An output data set, which is the result of the IEBISAM operation.

• A message data set, which contains information messages and any error
messages.

IEBISAM provides a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a return code of 04 or 12 was passed to IEBISAM by
the user routine.

• 08, which indicates that an error condition occurred that caused termination of
the operation.

• 12, which indicates that a return code other than 00, 04, 08, or 12 was passed to
IEBISAM from a user routine. The job step is terminated.

• 16, which indicates that an error condition caused termination of the operation.

Control

Job Control Statements

IEBISAM is controlled by job control statements. No utility control statements are
required.

Figure 10-3 shows the job control statements necessary for using IEBISAM.

Statement

JOB

EXEC

SYSUTI DD

SYSUT2 DD

SYSPRINTDD

Use

Initiates the job.

Specifies the program name (PGM=IEBISAM). Additional information is
required on the EXEC statement to control the execution of IEBISAM; see
"PARM Information on the EXEC Statement" below.

Defines the input data set.

Defines the output data set.

Defines a sequential message data set, which can be written to a system
output device, a tape volume, or a direct access device.

Figure 10-3. IEBISAM Job Control Statements

If the block size of the SYSPRINT data set is not a multiple of 121, a default value
of 121 is tak~n (no error message is issued, and no condition code is set).

P ARM Information on the EXEC Statement"

The P ARM parameter on the EXEC statement is used to control the execution of
IEBISAM.

Note: Exit routines must be included in either the job library or the link library.

For a COpy operation, the SYSUT2 DD statement must include a primary space
allocation that is sufficient to accommodate records that were contained in
overflow areas in the original indexed sequential data set. New overflow areas can
be specified when the data set is copied.

For an UNLOAD operation, specifications that are implied by default or included
in the DCB parameter of the SYSUT2 DD statement (for example, tape density)
must be considered when the data set is subsequently loaded. If a block size is
specified in the DCB parameter of the SYSUT2 DD statement, it must be a
multiple of 80 bytes.

For a LOAD operation, if the input data set resides on an unlabeled tape, the
SYSUT1 DD statement must specify a BLKSIZE that is a multiple of 80 bytes.
Specifications that are implied by default or included in the DCB parameter of the
SYSUT 1 DD statement must be consistent with specifications that were implied or
included in the DCB parameter of the SYSUT2 DD statement used for the
UNLOAD operation. The SYSUT2 DD statement must include a primary space
allocation that is sufficient to accommodate records that were contained in
overflow areas in the original indexed sequential data set. If new overflow areas are
desired, they must be specified when the data set is loaded.

For a PRINTL operation, if the device defined by the SYSUT2 DD statement is a
printer, the specified BLKSIZE must be equal to or less than the physical printer
size; that is 121, 133, or 145 bytes. If BLKSIZE is not specified, 121 bytes is
assumed. LRECL (or BLKSIZE when no LRECL was specified) must be between
55 and 255 bytes.

IEBISAM Program 10-5

1G-6 OS/VS2 MVS Utilities

If a user routine is supplied for a PRINTL operation, IEBISAM issues a LOAD
macro instruction to make the user routine available. A BALR 14,15 instruction is
subsequently used to give control to the routine. When the user routine receives
control, register 0 contains a pointer to a record heading buffer; register 1 contains
a pointer to an input record buffer.

Operands

PARM

Applicable Control
Statements

EXEC

Description of Operands/Parameters

PARM={COPY I UNLOAD I LOAD I PRINTL I PRINTL[,N]
[,EXIT=routinename]}

The P ARM values have the following meaning:

• COPY specifies a copy operation.

• UNLOAD specifies an unload operation.

• LOAD specifies a load operation.

• PRINTL specifies a print operation in which each record is
converted'to hexadecimal before printing. The N is an
optional value that specifies that records are not to be
converted to hexadecimal before printing.

• EXIT is an optional value that specifies the name of an exit
routine that is to receive control before each record is
printed.

IEBISAM Program 10-7

IEBISAM Examples

fEBfSAM Example 1

10-8 OS/VS2 MVS Utilities

The following examples illustrate some of the uses of IEBISAM. Figure 10-4 can
be used as a quick reference guide to IEBISAM examples. The numbers in the
"Example" column point to the examples that follow.

Data Set
Operation Organization Devices Comments Example

COpy Indexed Disks Unblocked input; blocked output.
sequential Prime area and index separation.

UNLOAD Indexed- Disk and Blocked output.
sequential, 9-track
Sequential Tape 2

UNLOAD Indexed Disk and Blocked output. Data set written
sequential, 7-track as second data set on input
Sequential Tape volume. 3

LOAD Sequential, 9-track Input data set is second data set
Indexed Tape on tape volume.
sequential and Disk 4

PRINTL Indexed Disk and Blocked input. Output not
sequential, System converted.
Sequential Printer 5

Figure 1O-4.IEBISAM Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

In this example, an indexed sequential data set is to be copied from two DASD
volumes. The output data is blocked.

IICPY JOB 09#770,SMITH
II EXEC PGM=IEBISAM,PARM=COPY
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=ISAM01,VOLUME=SER=(222222,333333),
I I DISP=(OLD, DELETE), UNIT=(disk, 2), DCB=(DSORG=IS,
II LRECL=500,BLKSIZE=500,RECFM=F,RKP=4)
IISYSUT2 DD DSNAME=ISAMO2 (INDEX) , UNIT=disk, DISP=(NEW,
II KEEP),VOLUME=SER=444444,DCB=(DSORG=IS,BLKSIZE=1000,
II RECFM=FB),SPACE=(CYL,(2»
II DD DSNAME=ISAM02(PRIME),UNIT=(d~k,2),
II DCB=(DSORG=IS,BLKSIZE=1000,RECFM=FB),SPACE=(CYL,(10»,
II VOLUME=SER=(444444,555555),DISP=(NEW,KEEP)
1*
The control statements are discussed below:

• EXEC specifies the program name and the COpy operation.

• SYSUTI DD defines an indexed sequential input data set, which resides on two
disk volumes.

• SYSUT2 DD defines the output data set index area; the index and prime areas
are separated.

• The second SYSUT2 DD defines the output data set prime area. Ten cylinders
are allocated for the prime area on each of the two disk volumes.

fEBfSAM Example 2

fEBfSAM Example 3

fEBfSAM Example 4

In this example, indexed sequential input is to be converted into a sequential data
set; the output is to be placed on a 9-track tape volume.

IISTEP1 JOB 09#770,SMITH
II EXEC PGM=IEBISAM,PARM=UNLOAD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=INDSEQ, UN I T=disk , DISP=(OLD, KEEP) ,
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=UNLDSET, UNIT=tape, LABEL=(, SL) ,
II DISP=(,KEEP),VOLUME=SER=001234,DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=640)
1*
The control statements are discussed below:

• EXEC specifies the program name and the UNLOAD operation.

• SYSUTI DD defines the indexed sequential input data set, which resides on a
disk volume.

• SYSUT2 DD defines the unloaded output data set. The data set consists of fixed
blocked records, and is to reside as the first or only data set on a 9-track tape
volume. The data set is to be written at a density of 800 bits per inch.

In this example, indexed sequential input is to be converted into a sequential data
set and placed on a 7 -track; tape volume.

IISTEPA JOB 09#770,SMITH
II EXEC·PGM=IEBISAM,PARM=UNLOAD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=INDSEQ, UNIT=disk ,DISP=(OLD ,KEEP),
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=UNLDSET,UNIT=2400-2,LABEL=(2,SL),
II VOLUME=SER=001234,DCB=(DEN=2,RECFM=FB,LRECL=80,
II BLKSIZE=1040,TRTCH=C),DISP=(,KEEP)
1*
The control statements are discussed below:

• EXEC specifies the program name and the UNLOAD operation.

• SYSUTI DD defines the input data set, which is an indexed sequential data set.
The data set resides on a disk volume.

• SYSUT2 DD defines the unloaded output data set. The data set consists of fixed
blocked records, and is to reside as the second data set on a 7-track tape volume.
The data set is to be written at a density of 800 bits per inch.

In this example, an unloaded data set is to be converted to the form of the original
indexed sequential data set.

IISTEPA JOB 09#770,SMITH
II EXEC PGM=IEBISAM,PARM=LOAD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=UNLDSET,UNIT=tape,LABEL=(2,SL),
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DD DSNAME=INDSEQ,DISP=(,KEEP),DCB=(DSORG=IS),
II SPACE=(CYL,(1 »,VOLUME=SER=111112;UNIT=d~k
1*

IEBISAM Program 10-9

fEBfSAM Example 5

10-10 OS/VS2 MVS Utilities

The control statements are discussed below:

• EXEC specifies the program name and the LOAD operation.

• SYSUTI DD defines the input data set, which is a sequential (unloaded) data
set. The data set is the second data set on a tape volume.

• SYSUT2DD defines the output data set, which is an indexed sequential data set.
One cylinder of space is allocated for the data set on a disk volume.

In this example, the logical records of an indexed sequential data set are to be
printed on a system output device.

IlpRINT JOB 09#770,SMITH
II EXEC PGM=IEBISAM,PARM='PRINTL,N'
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=ISAM03,UNIT=d~k,DISP=OLD,
II VOLUME=SER=222222
IISYSUT2 DD SYSOUT=A
1*
The control statements are discussed below:

• EXEC specifies the program name and the PRINTL operation. The output
records are not to be converted to hexadecimal prior to printing.

• SYSUT1 DD defines the input data set, which resides on a disk volume.

• SYSUT2 DD defines the output data set. A logical record length (LRECL) of
121 bytes is assumed.

)

IEBPTPCH PROGRAM

IEBPTPCH is a data set utility used to print or punch all, or selected portions, of a
sequential or partitioned data set. Records can be printed or punched to meet either
standard specifications or user specifications.

The standard specifications are:

• Each logical record begins on a new printed line or punched card.

• Each printed line consists of groups of 8 characters separated by 2 blanks. Each
punched card contains up to 80 contiguous bytes of information.

• Characters that cannot be printed appear as blanks.

• When the input is blocked, each logical record is delimited by "*,, and each
block is delimited by "* *" .

User formats can be specified, provided that no output record exceeds the
capability of the output device.

IEBPTPCH provides optional editing facilities and exits for user routines that can
be used to process labels or manipulate input or output records.

IEBPTPCH can be used to:

• Print or punch a sequential or partitioned data set in its entirety.

• Print or punch selected members from a partitioned data set.

• Print or punch selected records from a sequential or partitioned data set.

• Print or punch the directory of a partitioned data set.

• Print or punch an edited version of a sequential or partitioned data set.

At the completion or termination of the program, the highest return code
encountered within the program is passed to the calling program.

Printing or Punching a Data Set

IEBPTPCH can be used to print or punch a sequential data set or a partitioned
data set in its entirety. Data to be printed or punched can be either hexadecimal or
a character representation of valid alphameric bit configurations. For a print
operation, packed decimal data should be converted to unpacked decimal or
hexadecimal mode to ensure that all characters are printable.

For a standard print operation, each logical record is printed in groups of eight
characters. Each set of eight characters is separated from the next by two blanks.
Up to 96 data characters can be included on a printed line. (An edited output can
be produced to omit the blank delimiters and print up to 144 characters per line.)

Data from an input logical record is punched in contiguous columns in the punched
card(s) representing that record. Sequence numbers can be created and placed in
columns 73 through 80 of the punched cards.

Printing or Punching Selected Members

IEBPTPCH can be used to print or punch selected members of a partitioned data
set. Utility control statements are used to specify members to be printed or
punched.

IEBPTPCH Rrogram 11-1

Printing or Punching Selected Records

IEBPTPCH can be used to print selected records from a sequential or partitioned
data set. Utility control statements can be used to specify:

• The termination of a print or punch operation after a specified number of
records has been printed or punched.

• The printing or punching of every nth record.

• The starting of a print or punch operation after a specified number of records.

Printing or Punching a Partitioned Directory

IEBPTPCH can be used to print or punch the contents of a partitioned directory.
Each directory block is printed in groups of eight characters. If the directory is
printed in hexadecimal representation, the first four printed characters of each
directory block indicate the total number of used bytes in that block. For details of
the format of the directory, see OS/VS2 Data Areas.

Data from a directory block is punched in contiguous columns in the punched cards
representing that block.

Printing or Punching an Edited Data Set

Input and Output

11-2 OS/VS2 MVS Utilities

IEBPTPCH can be used to print or punch an edited version of a sequential or a
partitioned data set. Utility control statements can be used to specify editing
information that applies to a record, a group of records, selected groups of records,
or an entire member or data set.

An edited data set is produced by:

• Rearranging or omitting defined data fields within a record.

• Converting data from packed decimal to unpacked decimal or from alphameric
to hexadecimal representation.

IEBPTPCH uses the following input:

• An input data set, which contains the data that is to be printed or punched. The
input data set can be either sequential or partitioned.

• A control data set, which contains utility control statements. The control data set
is required for each use of IEBPTPCH.

IEBPTPCH produces the following output:

• An output data set, which is the printed or punched data set.

• A message data set, which contains informational messages (for example, the
contents of the control statements) and any error messages.

IEBPTPCH provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that either a physical sequential data set is empty or a
partitioned data set has no members.

• 08, which indicates that a member specified for printing does not exist in the
input data set. Processing continues with the next member.

Control

Job Control Statements

• 12, which indicates that an unrecoverable error occurred or that a user routine
passed a return code of 12 to IEBPTPCH. The job step is terminated.

• 16, which indicates that a user routine passed a return code of 16 to
IEBPTPCH. The job step is terminated.

IEBPTPCH is controlled by job control statements and utility control statements.
The job control statements are required to execute or invoke the IEBPTPCH
program and to define the data sets that are used and produced by the program.
The utility control statements are used to control the functions of IEBPTPCH.

Figure 11-1 shows the job control statements necessary for using IEBPTPCH.

Statement Use

JOB Initiates the job step.

EXEC Specifies the program name (PGM=IEBPTPCH) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access device.

SYSUTI DD Defines a sequential or partitioned input data set.

SYSUT2 DD Defines the output (printed or punched) data set.

SYSIN DD Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a member in a partitioned data set.

Figure 11-1. IEBPTPCH Job Control Statements

The input data set can contain fixed, variable, undefined, or variable spanned
records.

Both the output data set and the message data set can be written to the system
output device if it is a printer. Variable spanned records are allowed only when the
input is sequential.

'If the logical record length of the input records is such that the output would
exceed the output record length, the utility divides the record into multiple lines or
cards in the case of standard printed output, standard punched output, or when the
PREFORM operand was specified. Otherwise, only part of the input record is
printed (a maximum of 144 characters) or punched (a maximum of 80 characters).

Utility Control Statements

IEBPTPCH is controlled by utility control statements. The control statements in
Figure 11-2 are shown in the order in which they must appear.

The control statements are included in the control data set, as required. Any
number of MEMBER and RECORD statements can be included in a job step.

A nonblank character in column 72 is optional for IEBPTPCH continuation
statements.

IEBPTPCH Program 11-3

PRINT Statement

11-4 OS/VS2 MVS Utilities

Statem~t
PRINT or
PUNCH

TITLE

EXITS

MEMBER

RECORD

LABELS

Use

Specifies that the data is to be either
printed or punched.

Specifies that a title is to precede the printed or punched data.

Specifies that user routines are provided.

Specifies that the input is a partitioned data set and that a selected member is
to be printed or punched.

Specifies whether editing is to be performed, that is, records are to be printed
or punched to nonstandard specifications.

Specifies whether user labels are to be treated as data.

Figure 11-2. IEBPTPCH Utility Control Statements

The PRINT statement is used to initiate the IEBPTPCH operation. If this is a print
operation, PRINT must be the first statement in the control data set.

The format of the PRINT statement is:

[label] PRINT [PREFORM={A 1M}]

[,TYPORG={PS I PO}]

[,TOTCONV = {XE I PZ}]

[,CNTRL={n I!}

[,STRTAFT=n]

[,STOPAFT=n]

[,SKIP=n]

[,MAXNAME=n]

[,MAXFLDS=n]

[,MAXGPS=n]

[,MAXLITS=n]

[,INITPG=n]

[,MAXLINE=n]

PUNCH Statement

TITLE Statement

EXITS Statement

MEMBER Statement

)

The PUNCH statement is used to initiate the IEBPTPCH operation. If this is a
punch operation, PUNCH must be the first statement in the control data set.

The format of the PUNCH statement is:

[label] PUNCH [PREFORM = {A I M}]

[,TYPORG={PS I PO}]

[,TOTCONV={XE I PO}]

[,CNTRL={ n I !}]
[,STRT AFT =n]

[,STOPAFT=n]

[,SKIP=n]

[,MAXNAME=n]

[,MAXFLDS=n]

[,MAXGPS=n]

[,MAXLITS=n]

[,CDSEQ=n]

[,CDINCR=n]

The TITLE statement is used to request title and subtitle records. Two TITLE
statements can be included for each use of IEBPTPCH. A first TITLE statement
defines the title, and a second defines the subtitle. The TITLE statement, if
included, follows the PRINT or PUNCH statement in the control data set.

The format of the TITLE statement is:

[label] TITLE ITEM=(' title'[, output-location]) [,ITEM .•.]

The EXITS statement is used to identify exit routines supplied by the user. Exits to
label processing routines are ignored if the input data set is partitioned. Linkage to
and from user routines are discussed in "Appendix A: Exit Routine Linkage."

The EXITS statement, if included, must immediately follow any TITLE statement
or follow the PRINT or PUNCH statement.

The format of the EXITS statement is:

[label] EXITS [INHDR=routinename]

[,INTLR=routinename]

[,INREC=routinename]

[,OUTREC=routinename]

The MEMBER statement is used to identify members to be printed or punched. All
RECORD statements that follow a MEMBER statement pertain to the member
indicated in that MEMBER statement only. When RECORD and MEMBER
statements are used, at least one MEMBER statement must precede the first

IEBPTPCH Program 11-5

RECORD Statement

LABELS Statement

11-6 OS/VS2 MVS Utilities

RECORD statement. If no RECORD statement is used, the member is processed
to standard specifications.

If no MEMBER statement appears, and a partitioned data set is being processed,
all members of the data set are printed or punched. Any number of MEMBER
statements can be included in a job step.

If the NAME parameter is specified in the MEMBER statement, MAXNAME
must be specified in a PRINT or PUNCH statement.

The format of the MEMBER statement is:

[label] MEMBER NAME= {membername I aliasname }

The RECORD statement is used to define a group of records, called a record group,
that is to be printed or punched to the user's specifications. A record group consists
of any number of records to be edited identically.

If no RECORD statements appear, the entire data set, or named member, is
printed or punched to standard specifications. If a RECORD statement is used, all
data following the record group it defines (within a partitioned member or within
an entire sequential data set) must be defined with other RECORD statements.
Any number of RECORD statements can be included in a job step.

A RECORD statement referring to a partitioned data set for which no members
have been named need contain only FIELD parameters. These are applied to the
records in all members of the data set.

If a FIELD parameter is included in the RECORD statement, MAXFLDS must be
specified in the PRINT or PUNCH statement.

If an IDENT parameter is included in the RECORD statement, MAXGPS must be
specified in the PRINT or PUNCH statement. If a literal is specified in the IDENT
parameter, MAXLITS must be specified in the PRINT or PUNCH statement.

The format of the RECORD statement is:

[label] RECORD [IDENT=(length,' name', input-location)]

[,FIELD= (length ,[input-location],[conversion]
,[output-location])[,FIELD= ...]

The LABELS statement specifies whether user labels are to be treated as data. For
a detailed discussion of this option, refer to "Processing User Labels as Data," in
"Appendix D: Processing User Labels."

Note: LABELS DATA=NO must be specified to make standard user label (SUL)
exits inactive when an input data set with nonstandard labels (NSL) is to be
processed.

If more than one valid LABELS statement is included, all but the last LABELS
statement are ignored.

The format of the LABELS statement is:

[label] LABELS [CONV = {PZ I XE} I
,DATA = {YES I NO I ALL I ONLY}]

Operands

CDINCR

CDSEQ

CNTRL

CONY

Applicable Control
Statements

PUNCH

PUNCH

PRINT

PUNCH

LABELS

Description of Operands/Parameters

CDINCR=n
specifies the increment to be used in generating sequence
numbers.

Default: lOis the increment value.

CDSEQ~

specifies the initial sequence number of a deck of punched
cards. This value must be contained in columns 73 through
80. Sequence numbering is initialized for each member of a
partitioned data set. If the value of n is zero, 00000000 is
assumed as a starting sequence number.

Default: Cards are not numbered.

CNTRL=~ II}
specifies a control character for the output device that
indicates line spacing, as follows: 1 indicates single spacing;
2 indicates double spacing; and 3 indicates triple spacing.

specifies a control character for the output device that is
used to select the stacker, as follows: 1 indicates the first
stacker and 2 indicates the second stacker.

CONV={PZ I XE}
specifies a two-byte code that indicates the type of
conversion to be performed on this field before it is printed
or punched. The values that can be coded are:

PZ
specifies that data (packed decimal) is to be converted
to unpacked decimal data. The converted portion of the
input record (length L) occupies 2L - 1 output
characters.

XE
specifies that data (alphameric) is to be converted to
hexadecimal data. The converted portion of the input
record (length L) occupies 2L output characters.

Default: The field is moved to the output area without
change.

IEBPTPCH Program 11-7

Operands

DATA

Applicable Control
Statements

LABELS

11-8 OS/VS2 MVS Utilities

Description of Operands/Parameters

DATA={YESINOIALLIONLY}
specifies whether user labels are to be treated as data. The
values that can be coded are:

YES
specifies that any user labels that are not rejected by a
user's label processing routine are to be treated as data.
Processing of labels as data stops in compliance with
standard return codes.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that user labels are to be treated as data
regardless of any return code. A return code of 16
causes the utility to complete the processing of the
remainder of the group of user labels and to terminate
the job step.

ONLY
specifies that only user header labels are to be treated as
data. User header labels are processed as data regardless
of any return code. The job terminates upon return from
the OPEN routine.

Operands

FIELD

App6cable
Control
Statements

RECORD

Description of Operands/Parameters

FIELD=(length ,[input-location],[conversion],[output-location])
[,FIELD= ...]

specifies field-processing and editing information. These values can be
coded.

length
specifies the length (in bytes) of the input field to be processed.

Note: The length must be equal to or less than the initial input LRECL.

input -location
specifies the starting byte of the input field to be processed.

Default: 1

Note: The sum of the length and the input location must be equal to or
less than the input LRECL plus one.

conversion
specifies a two-byte code that indicates the type of conversion to be
performed on this field before it is printed or punched. The values that
can be coded are:

PZ

XE

specifies that data (packed decimal) is to be converted to
unpacked decimal data. The converted portion of the input
record (length L) occupies 2L - 1 output characters when
punching, and 2L output characters when printing.

specifies that data (alphameric) is to be converted to
hexadecimal data. The converted portion of the input
record (length L) occupies 2L output characters.

Default: The field is moved to the output area without change.

output -location
specifies the starting location of this field in the output records.
unspecified fields in the output records appear as blanks in the printed
or punched output. Data that exceeds the SYSUT2 printer or punch
size is not printed or punched. The specified fields may not exceed the
logical output record length minus one. When specifying one or more
FIELDs, the sum of all lengths and all extra characters needed for
conversions must be equal to or less than the output LRECL minus '
one.

Default: 1

IEBPTPCH Program 11-9

Operands

IDENT

INHDR

INITPG

INREC

INTLR

Applicable
Control
Statements

RECORD

EXITS

PRINT

EXITS

EXITS

11-10 OS/VS2 MVS Utilities

Description of Operands/Parameters

IDENT = (length, ~name', input -location)
identifies the last record of the record group to which the FIELD
parameters apply. The values that can be coded are:

length
specifies the length (in bytes) of the field that contains the identifying
name in the input records. The length cannot exceed eight bytes.

~name'

specifies the exact literal that identifies the last record of a record
group. If the literal contains apostrophes, each must be written as two
consecutive apostrophes.

input -location
specifies the starting location of the field that contains the identifying
name in the input records.

Note: The sum of the length and the input location must be equal to
or less than the input LRECL plus one.

Default: If IDENT is omitted and STOP AFT is not included with the
PRINT or PUNCH statement, record processing halts after the last
record in the data set. If IDENT is omitted and STOPAFT is included
with the PRINT or PUNCH statement, record processing halts when the
STOP AFT count is satisfied or after the last record of the data set is
processed, whichever occurs first.

INHDR=routinename
specifies the symbolic name of a routine that processes user input header
labels.

INITPG=n
specifies the initial page number; the pages are numbered sequentially
thereafter. The INITPG parameter must not exceed a value of 9999.

Default: 1

INREC=routinename
specifies the symbolic name of a routine that manipulates each logical
record (or physical block in the case of VS or VBS records longer than
32K bytes) before it is processed.

INTLR= routinename
specifies the symbolic name of a routine that processes user input trailer
labels.

Operands

ITEM

MAXFLDS

MAXGPS

MAXLINE

MAXLITS

MAXNAME

Applicable
Control
Statements

TITLE

PRINT
PUNCH

PRINT
PUNCH

PRINT

PRINT
PUNCH

PRINT
PUNCH

Description of Operands/Parameters

ITEM = ('title 1. ,output-location]) [,ITEM •••]
specifies title or subtitle information. The values that can be coded are:

'title'
specifies the title or subtitle literal (maximum length of 40 bytes),
enclosed in apostrophes. If the literal contains apostrophes, each
apostrophe must be written as two consecutive apostrophes.

output-location
specifies the starting position at which the literal for this item is to be
placed in the output record. The specified title may not exceed the
output logical record length minus one.

Default: 1

MAXFLDS=n
specifies a number no less than the total number of FIELD parameters
appearing in subsequent RECORD statements. The value must not
exceed 32,767.

Default: If MAXFLDS is omitted when there is a FIELD parameter
present, the print or punch request is terminated.

MAXGPS=n
specifies a number no less than the total number of IDENT parameters
appearing in subsequent RECORD statements. The value must not
exceed 32,767.

Default: If MAXGPS is omitted when there is an IDENT parameter
present, the print or punch request is terminated.

MAXLINE=n
specifies the maximum number of lines to a printed page. Spaces, titles,
and subtitles are included in this number.

Default: 60

MAXLITS=n
specifies a number no less than the total number of characters contained
in the IDENT literals of subsequent RECORD statements. The value
must not exceed 32,767.

Default: If MAXLITS is omitted when there is a literal present, the print
or punch request is terminated.

MAXNAME=n
specifies a number no less than the total number of subsequent
MEMBER statements. The value must not exceed 32,767.

Default: If MAXNAME is omitted when there is a MEMBER statement
present, the print or punch request is terminated.

IEBPTPCH Program 11-11

Operands

NAME

OUTREC

PREFORM

SKIP

Applicable
Control
Statements

MEMBER

EXITS

PRINT
PUNCH

PRINT
PUNCH

11-12 OS/VS2 MVS Utilities

Description of Operands/Parameters

NAME= ~embemame I aliasname}
specifies a member to be printed or punched. These values can be coded:

membemame
specifies a member by its member name.

aliasname
specifies a member by its alias.

OUTREC=routinename
specifies the symbolic name of a routine that manipulates each logical
record (or physical block in the case of VS or VBS records longer than
32K bytes) before it is printed or punched.

PREFORM = {A 1M}
specifies that a control character is provided as the first character of each
record to be printed or punched. The control characters are used to
control the spacing, number of lines per page, page ejection, and
selecting a stacker. That is, the output has been previously formatted,
and the "standard specifications" are superseded. If an error occurs, the
print/punch operation is terminated. If PREFORM is coded, any
additional PRINT or PUNCH operand~and all other control statements,
except for syntax checking, LABELS statements and TYPORG
operands, are ignored. PREFORM must not be used for printing or
punching data sets with VS or VBS records longer than 32K bytes. These
values can be coded:

A

M

specifies that an ASA control character is provided as the first
character of each record to be printed or punched. If the input record
length exceeds the output record length, the utility uses the ASA
character for printing the first line, with a single space character on all
subsequent lines of the record (for PRINT), and duplicates the ASA
character on each output card of the record (for PUNCH).

specifies that a machine-code control character is provided as the first
character of each record to be printed or punched. If the input record
length exceeds the output record length, the utility prints all lines of
the record with a print-skip-one-Iine character until the last line of the
record, which will contain the actual character provided as input (for
PRINT), and duplicates the macWne control character on each output
card of the record (for PUNCH).

SKIP=n
specifies· that every nth record (or physical block in the case of VS or
VBS records longer than 32K bytes) is to be printed or punched.

Default: Successive logical recQrds are printed or punched.

Operands

STOPAFT

STRTAFT

TOTCONV

Applicable
Control
Statements

PRINT
PUNCH

PRINT
PUNCH

PRINT
PUNCH

Description of Operands/Parameters

STOPAFf=n
specifies, for sequential data sets, the number of logical records (or
physical blocks in the case of VS or VBS records longer than 32K bytes)
to be printed or punched. For partitioned data sets, this specifies the
number of logical records (or physical blocks in the case of VS or VBS
records longer than 32K bytes) to be printed or punched in each member
to be processed. The n value must not exceed 32,767. If STOPAFT is
specified and RECORD statements are present, the operation is
terminated when the STOP AFT count is satisfied or at the end of the
first record group, whichever occurs first.

STRTAFf=n
specifies, for sequential data sets, the number of logical records (physical
blocks in the case of VS or VBS type records longer than 32K bytes) to
be skipped before printing or punching begins. For partitioned data sets,
STR TAFT =n specifies the number of logical records to be skipped in
each member before printing or punching begins. The n value must not
exceed 32,767. If STRTAFT is specified and RECORD statements are
present, the first RECORD statement of a member describes the format
of the first logical record to be printed or punched.

TOTCONV = {XE I PZ}
specifies the representation of data to be printed or punched.
TOTCONV can be overridden by any user specifications (RECORD
statements) that pertain to the same data. These values can be coded:

XE
specifies that data is to be punched in 2-character-per-byte
hexadecimal representation (for example, C3 40 F4 F6). If XE is not
specified, data is punched in I-character per byte alphameric
representation. The above example would appear as C 46.

PZ
specifies that data (packed decimal mode) is to be converted to
unpacked decimal mode. IEBPTPCH does not check for packed
decimal mode. The output is unpredictable when the input is other
than packed decimal.

Default: If TOTCONV is omitted, data is not converted.

IEBPTPCH Program 11-13

Operands

TYPORG

Applicable
Control
Statements

PRINT
PUNCH

11-14 OS/VS2 MVS Utilities

Description of Operands/Parameters

TYPORG={PS I PO}
specifies the organization of the input data set. These values can be
coded:

PS
specifies that the input data set is organized sequentially.

PO
specifies that the input data set is partitioned.

Restrictions

• The SYSPRINT DD statement is requir~d for each use of IEBPTPCH. The
RECFM is always FBA, the LRECL is always 121. Output can be blocked by
specifying a block size that is a multiple of 121 on the SYSPRINT DD
statement. The default block size is 121.

• The SYSUTI DD statement is required for each use of IEBPTPCH. The
RECFM (except for undefined records), BLKSIZE, and LRECL (except for
undefined and fixed unblocked records) must be present on the DD statement,
in the DSCB, or on the tape label.

• The SYSUT2 DD statement is required every time IEBPTPCH is used. The
RECFM is always FBA or FBM. The LRECL parameter, or, if no logical record
length is specified, the BLKSIZE parameter, specifies the number of characters
to be written per printed line or per punched card (this count includes a control
character). The number of characters specified must be in the range of 2 through
145. The default values for edited output lines are 121 characters per printed
line and 81 characters per punched card. The SYSUT2 data set can be blocked
by specifying both the LRECL and the BLKSIZE parameters, in which case,
block size must be a mUltiple of logical record length.

• The SYSIN DD statement is required for each use of IEBPTPCH. The RECFM
is always FB, the LRECL is always 80. Any blocking factor that is a multiple of
80 can be specified for the BLKSIZE. The default block size is 80.

• A partitioned directory to be printed or punched must be defined as a sequential
data set (TYPORG=PS). You must specify RECFM=U, BLKSIZE=256, and
LRECL=256 on the SYSUTI DD statement.

IEBPTPCH Examples
The following examples illustrate some of the uses of IEBPTPCH. Figure 11-3 can
be used as a quick reference guide to IEBPTPCH examples. The numbers in the
"Example" column point to the examples that follow:

Data Set
Operation Organization Devices Comments Example

PRINT Sequential 9-track Tape and Standard format. Conversion to
System Printer hexadecimal.

PUNCH Sequential 7-track Tape and Standard format. Conversion to
Card Reader hexadecimal. 2

PRINT Partitioned Disk and Standard format. Conversion to
System Printer hexadecimal. Ten records from

each member are to be printed. 3

PRINT Partitioned Disk and Standard format. Conversion to
System Printer hexadecimal. Two members are

to be printed. 4

PRINT Sequential 9-track Tape and User-specified format. Input
System Printer data set is the second data set

on the volume. 5

Figure 11-3 (Part 1 of 2). IEBPTPCH Example Directory

IEBPTPCH Program 11-15

lEBPTPCH Example 1

11-16 OS/VS2 MVS Utilities

DataSet
Operation Organization Dewees Comments Example

PUNCH Sequential Disk and User-specified format. Sequence
Card Reader numbers are to be assigned and
Punch punched. 6

PRINT Sequential, Disk and Standard format. Conversion to
Partitioned System Printer hexadecimal. 7

PUNCH Sequential Card Reader and Standard format. Control data
Card Read set is a member in a cataloged
Punch partitiohed data set. 8

PRINT Sequential Disk and User-specified format. User
System Printer routines are provided.

Processing ends after the third
record group is printed or
STOPAFT is satisfied. 9

PRINT Sequential 9-track tape_ SYSOUT format. SYSOUT data
and System Printer set is on tape volume. 10

Figure 11-3 (Part 2 of 2). IEBPTPCH Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation ..

In this example, a sequential data set is to be printed according to standard
specifications. The input data set resides on a tape volume. The printed output is to
be converted to hexadecimal.

IIPRINT JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=tape,LABEL=(,NL),VOLUME=SER=001234,
II DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=2000)
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT TOTCONV=XE
TITLE ITEM=('PRINT SEQ DATA SET WITH CONV TO HEX',10)

1*
The control statements are discussed below.

• SYSUTI DD defines the input data set. The data set contains undefined records;
no record is larger than 2,000 bytes.

/

• SYSUT2 DD defines the output data set. The data set is written to the system
output device (printer assumed). Each printed line contains groups (8 characters
each) of hexadecimal information. Each record begins a new line of printed
output.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT and TITLE statements.

• PRINT initiates the print operation and specifies conversion from alphameric to
hexadecimal representation.

• TITLE specifies a title to be placed beginning in column 10 of the printed
output. The title is not converted to hexadecimal.

IEBPTPCH Example 2

IEBPTPCH Example .1

In this example, a sequential data set is to be punched according to standard
specifications. The input data set resides on a tape volume. The punched output is
converted to hexadecimal.

IIPUNCHSET JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=INSET,UNIT=tape,VOLUME=SER=001234,
II LABEL=(,NL),DISP=(OLD,KEEP),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSUT2 DD SYSOUT=B
IISYSIN DD *

PUNCH TOTCONV=XE
TITLE ITEM=('PUNCH SEQ DATA SET WITH CONV TO HEX',10)

1*
The control statements are discussed below:

• SYSUTl DD defines the input data set. The data set contains 80-byte, fixed
blocked records.

• SYSUT2 DD defines the system output class (punch is assumed). Each record
from the input data set is represented by two punched cards.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PUNCH and TITLE statements.

• PUNCH initiates the punch operation and specifies conversion from alphameric
to hexadecimal representation.

• TITLE specifies a title to be placed beginning in column 10. The title is not
converted to hexadecimal.

In this example, a partitioned data set (ten records from each member) is to be
printed according to standard specifications. The input data set resides on a disk
volume. The printed output is converted to hexadecimal.

IIPRINTPDS JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=PDS,UNIT=d~k,DISP=(OLD,KEEP),
II VOLUME=SER=111112
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT TOTCONV=XE,TYPORG=PO,STOPAFT=10
TITLE ITEM=('PRINT PDS - 10 RECS EACH MEM',20)

1*
The control statements are discussed below:

• SYSUTI DD defines the input data set.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Each record begins a new line of printed output. The size of the
record determines how many lines of printed output are required per record.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT and TITLE statements.

IEBPTPCH Program 11-17

lEBPTPCH Example 4

lEBPTPCH Example 5

II-IR OS/VS2 MVS Utilities

• PRINT initiate,s the print operation, specifies conversion from alphameric to
hexadecimal representation, indicates that the input data set is partitioned, and
specifies that ten records from each member are to be printed.

• TITLE specifies a title to be placed beginning in column 20 of the printed
output. The title is not converted to hexadecimal.

In this example, two partitioned members are to be printed according to standard
specifications. The input data set resides on a disk volume. The printed output is to
be converted to hexadecimal.

JOB
EXEC
DD
DD

IIPRNTMEMS
II
IISYSPRINT
IISYSUTl
II
IISYSUT2
IISYSIN

DD
DD

PRINT
TITLE

MEMBER
MEMBER

1*

09#660,SMITH
PGM=IEBPTPCH
SYSOUT=A
DSNAME=PDS,DISP=(OLD,KEEP),VOLUME=SER=111112,
UNIT=disk
SYSOUT=A

*
TYPORG=PO,TOTCONV=XE,MAXNAME=2
ITEM=('PRINT TWO MEMBS WITH CONV TO HEX',10)
NAME=MEMBERl
NAME=MEMBER2

The control statements are discussed below:

• SYSUTI DD defines the input data set.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Each record begins a new line of printed output.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains PRINT, TITLE, and MEMBER statements.

• PRINT initiates the print operation, indicates that the input data set is
partitioned, specifies conversion from alphameric to hexadecimal representation,
and indicates that two MEMBER statements appear in the control data set.

• TITLE specifies a title to be placed beginning in column 10 of the printed
output. The title is not converted to hexadecimal.

• MEMBER specifies the member names of the members to be printed.

In this example, a sequential data set is to be printed according to user
specifications. The input data set is the second data set on a tape volume.

IIPTNONSTD JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=SEQSET, UN I T=tape , LABEL=(2, SUL),
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

1*

PRINT MAXFLDS=l
EXITS INHDR=HDRIN,INTLR=TRLIN

RECORD FIELD=(80)
LABELS DATA=YES

IEBPI'PCH Example 6

The control statements are discussed below:

• SYSUTI DD defines the input data set.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains 80 contiguous characters (one record) of
information.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, RECORD, EXITS, and LABELS
statements.

• PRINT initiates the print operation and indicates that one FIELD parameter is
included in a subsequent RECORD statement.

• RECORD indicates that each input record is to be processed in its entirety (80
bytes). Each input record is printed in columns 1 through 80 on the printer.

• LABELS specifies that user header and trailer labels are to be printed according
to the return code issued by the user exits.

• EXITS indicates that exits will be taken to user header-label and trailer-label
processing routines when these labels are encountered on the SYSUTI data set.

In this example, a sequential data set is to be punched according to user
specifications. The input data set resides on a disk volume.

I/PHSEQNO JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=SEQSET, UNIT=disk ,LABEL=(, SUL),
II VOLUME=SER=111112,DISP=(OLD,KEEP),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSUT2 DD SYSOUT=B
IISYSIN DD *

PUNCH MAXFLDS=1,CDSEQ=OOOOOOOO,CDINCR=20
RECORD FIELD=(72)
LABELS DATA=YES

1*
The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set contains 80-byte, fixed
blocked records.

• SYSUT2 DD defines the system output class (punch is assumed). Each record
from the input data set is represented by one punched card.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PUNCH, RECORD, and LABELS statements.

• PUNCH initiates the punch operation, indicates that one FIELD parameter is
included in a subsequent RECORD statement, and assigns a sequence number
for the first punched card (00000000) and an increment value for successive
sequence numbers (20). Sequence numbers are placed in columns 73 through 80
of the output records.

• RECORD indicates that bytes 1 through 72 of the input records are to be
punched. Bytes 73 through 80 of the input records are replaced by the new
sequence numbers in the output card deck.

• LABELS specifies that user header labels and user trailer labels are to be
punched.

IEBPTPCH Program 11-19

IEBPTPCH Example 7

11-20 OSjVS2 MVS Utilities

Labels cannot be edited; they are always moved to the first 80 bytes of the output
buffer. In this example, no sequence numbers are present on the cards containing
user header and user trailer records.

In this example, the directory of a partitioned data set is to be printed. The input
data set resides on a disk volume. The printed output is to be converted to
hexadecimal.

IIPRINTDIR JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
I ISYSUT 1 DD DSNAME=PDS, UNIT=disk, VOLUME=SER= 111112,
II DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=256)
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT TYPORG=PS,TOTCONV=XE
TITLE ITEM=('PRINT PARTITIONED DIRECTORY OF PDS' ,10)
TITLE ITEM=('FIRST TWO BYTES SHOW NUM OF USED BYTES' ,10)

LABELS DATA=NO
1*
The control statements are discussed below:

• SYSUTI DD defines the input data set (the partitioned directory).

• SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Six lines of print are required for each record. Each record begins a
new line of printed output.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, TITLE, and LABELS statements.

• PRINT initiates the print operation, indicates that the partitioned directory is
organized sequentially, and specifies conversion from alphameric to hexadecimal
representation.

• The first TITLE statement specifies a title, which is not converted to
hexadecimal.

• The second TITLE statement specifies a subtitle, which is not converted to
hexadecimal.

• LABELS specifies that no user labels are to be printed.

Note: Not all of the bytes in a directory block need contain data pertaining to the
partitioned data set; unused bytes are sometimes used by the operating system as
temporary work areas. The first four characters of printed output indicate how
many bytes of the 256-byte block pertain to the partitioned data set. Any unused
bytes occur in the latter portion of the directory block; they are not interspersed
with the used bytes.

IEBPTPCH Example 8

IEBPTPCH EXIlmple 9

In this example, a card deck containing valid punch card code or BCD is to be
duplicated. The input card deck resides in the input stream.

IIPUNCH
II
IISYSPRINT
IISYSIN
IISYSUT2
IISYSUT1

JOB
EXEC
DD
DD
DD
DD

09#660,SMITH
PGM=IEBPTPCH
SYSOUT=A
DSNAME=PDSLIB(PNCHSTMT),DISP=(OLD,KEEP)
SYSOUT=B
DATA

(input card data set including / / cards)
1*
The control statements are discussed below:

• SYSIN DD defines the control data set. The control data set contains a PUNCH
statement and is defined as a member of the partitioned data set PDSLffi. (The
data set is cataloged.) The RECFM must be FB and the LRECL must be 80.

• SYSUT2 DD defines the system output class (punch is assumed).

• SYSUTI DD defines the input card data set, which follows in the input stream.

In this example, three record groups are to be printed. A user routine is provided to
manipulate output records before they are printed.

IIPRINT JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=SEQDS,UNIT=d~k,DISP=(OLD,KEEP),
II LABEL=(,SUL),VOLUME=SER=111112
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT MAXFLDS=9,MAXGPS=9,MAXLITS=23,STOPAFT=32767
TITLE ITEM=('TIMECONV-DEPT D06),ITEM=(JAN10-17' ,80)

EXITS OUTREC=NEWTIME,INHDR=HDRS,INTLR=TLRS

72

RECORD IDENT=(6,'498414',1), C
FIELD=(8,1,,10),FIELD=(30,9,XE,20)

RECORD IDENT=(2,'**',39), C
FIELD=(8,1,,10),FIELD=(30,9,XE,20)

RECORD IDENT=(6, '498414',1), C
FIELD=(8,1,,10),FIELD=(30,9,XE,20)

LABELS CONV=XE,DATA=ALL
1*
The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set resides on a disk volume.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed).

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, TITLE, EXITS, and RECORD statements.

• The PRINT statement: (1) initializes the print operation, (2) indicates that not
more than nine FIELD parameters are included in subsequent RECORD
statements, (3) indicates that not more than nine IDENT parameters are
included in a subsequent RECORD statement, (4) indicates that not more than
23 literal characters are included in the subsequent IDENT parameter, and (5)
indicates that processing is to be terminated after 32,767 records are processed

IEBPTPCH Program 11-21

or after the third record group is processed, whichever comes first. Because
MAXLINE is omitted, 60 lines are printed on each page.

• TITLE specifies a title.

• EXITS specifies the name of a user routine (NEWTIME), which is used to
manipulate output records before they are printed.

• The first RECORD statement defines the first record group to be processed and
indicates where information from the input records is to be placed in the output
records. Bytes 1 through 8 of the input records appear in columns 10 through 17
of the printed output, and bytes 9 through 38 are printed in hexadecimal
representation and placed in columns 20 through 79.

• The second RECORD statement defines the second group to be processed. The
parameter in the IDENT operand specifies that an input record containing the
two characters ** in positions 39 and 40 is to be the last record edited according
to the FIELD operand in this RECORD statement. The FIELD operand
specifies that bytes 1 through 8 of the input records are to be printed in
hexadecimal representation and placed in columns 2 through 17 of the printed
output, and bytes 9 through 38 are to appear in columns 20 through 49.

• The third and last RECORD statement is equal to the first RECORD statement.
An input record that meets the parameter in the IDENT operand ends
processing, unless the STOP AFT parameter in the PRINT statement has not
already done so.

• LABELS specifies that all user header or trailer labels are to be printed
regardless of any return code, except 16, issued by the user's exit routine. It also
indicates that the labels are to be converted from alphameric to hexadecimal
representation.

IEBPTPCH Example 10

11-22 OS/VS2 MVS Utilities

In this example, the input is a SYSOUT (sequential) data set, which was previously
written as the second data set of a standard label tape. It is to be printed in
SYSOUT format.

IlpTSYSOUT JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UN I T=tape , LABEL=(2, SL) , DSNAME=LISTING,
II DISP=(OLD,KEEP),VOL=SER=001234
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT PREFORM=A
1*
The control statements are discussed below:

• SYSUT1 DD defines the input data set. It is the second data set of a standard
label tape, which has been assigned the name LISTING.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed).

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT statement.

• The PRINT statement initiates the print operation and indicates that an ASA
control character is provided as the first character of each record to be printed.

IEBTCRIN PROGRAM

MTDI Editing Criteria

IEBTCRIN is a data set utility used to read input from the IBM 2495 Tape
Cartridge Reader (TCR), edit the data as specified by the user, and produce a
sequentially organized output data set.

IEBTC~IN can be used to construct records from the stream of data bytes read
sequentially from the Tape Cartridge Reader. The user has the option of gaining
temporary control (via a user-supplied exit routine) to process each logical record.

The input to IEBTCRIN is in the form of cartridges written by either the IBM
Magnetic Tape SELECTRIC Typewriter (MTST) or the IBM SO Magnetic Data
Inscriber (MTDI). An input data set (one or more cartridges) must consist of either
all MTST cartridges or all MTDI cartridges. (For more information concerning the
MTDI use and an explanation of terminology used in this chapter, refer to IBM 50
Magnetic Data Inscriber Component Description.)

When MTDI input is edited, IEBTCRIN maintains information about each record
as it is being edited. This information is summarized in the Error Description Word
(EDW) which is described later. When the EDW contains a value other than zero
in either the level status (byte 0) or the type status (byte 1), the record is
considered an error record by the program and the EDW is appended to the start of
the record to aid the user in analyzing the error.

The cartridges created on the IBM SO Magnetic Data Inscriber contain a
continuous stream of data bytes (that is, there are no interblock gaps). Therefore,
when editing is specified, IEBTCRIN extracts records one at a time from the data
stream. To accomplish this, IEBTCRIN scans for control codes written by MTDI.
IEBTCRIN uses start-of-record (SOR) and end-of-record (EOR) locations to
extract MTDI records from the input stream.

The (SOR) location is defined as:

• ~ The location of the first character on a cartridge.

• The location of the first character after the previous record's (EOR) location.

• The location of an SOR code.

• The location of a group separator (GS) code.

The character in the SOR location is checked to determine if it is a valid
start-of-record character. A PI through P8, a cancel code, or a GS code are valid
start-of-record characters; all others are invalid.

The EOR location by priority sequence is:

1. The same location as the SOR location, if the SOR character was a valid GS
code.

2. The location of the first encountered record mark (RM) or verify okay (VOK)
code if that location is within the length of the maximum \lse~-specified record
size.

3. The location of any code preceding either a valid SOR code or theend-of-media
(EOM) code, if that location is within the length of the maximum user-specified
record size.

IEBTCRIN Program 12-1

MIDI Editing Restrictions

12-2 OS/VS2 MVS Utilities

4. The location determined in 2 or 3, regardless of the maximum user-specified
record size if the SOR location contains a cancel code.

5. If one of the previous EOR locations cannot be defined, an EOR condition will
be forced at the location where the record length equals the maximum
user-specified record size.

The character in the EOR location is checked to determine if it is a valid
end-of-record character. Valid EOR characters are the as character (if the SOR
character was a as code) and VOK or RM codes; all others are invalid. Each as
code is considered a valid SOR code or EOR code and will be bypassed.

Following are the restrictions that apply when editing MTDI records:

• All canceled records are bypassed; they are not passed to any exit routines or
written on any data sets. The level status is set to o.

• All input records less than three bytes in length (SOR location, one data byte,
and EOR location) are treated as canceled records. The remaining portion of a
record that was longer than the user-specified maximum record size can result in
an input record of this size.

• Data duplicatiOll. is accomplished by replacing the DUP (duplication) code with
the character from the corresponding location of the previous record.

• The record used for data duplication is the record returned from any user exits.

• as codes will not affect the level status or duplication of following records.

• Data duplication does not occur for any of the following conditions:

1. The DUP code is encountered in the first record of a cartridge.

2. The DUP code is encountered in a record immediately following a canceled
record. A canceled record is one that contains a cancel code in the SOR
location or an input record of less than three bytes as described above.

3. The DUP code is encountered in a position that would cause duplication of a
position beyond the last data byte of the previous record.

4. The DUP code is encountered in a position that would cause duplication of an
error-replace character.

In each case, the DUP code is replaced with the user specified error-replace
character, and a field error is indicated.

• Left-zero justification does not occur; the left-zero fill code (LZ) is replaced
with the user-specifieq error-replace character and a field error is indicated for
either of the following conditions:

1. The left-zero fill code (LZ) is encountered without first having encountered
its corresponding left-zero start code (LZS).

2. The user-specified maximum record size is exceeded before encountering the
valid end of a left-zero field.

If MTDI is edited, an EDW which is four bytes long is appended to the front of
each error record describing the error condition. For further definition of the EDW,
see "Error Records" earlier in this chapter. If the SYSUT3 DD statement specified
variable length records, an RDW which is four bytes long is also appended to the
front of the record. For further description of the RDW, see OS/VS2 Supervisor
Services and Macro Instructions.

The user-supplied routines specified in ERROR and OUTREC can be used to
examine and modify any byte in the record or EDW. The record length can be
changed, subject to the following restrictions:

• A work area used to construct the records is allocated by the program equal in
size to the largest of (1) MAXLN, (2) LRECL on SYSUT2, or (3) LRECL on
SYSUT3. .

• The record length must not be increased beyond this size. Overlaying of other
work areas may then occur, causing unpredictable results.

The new record length must be placed in the location pointed to by the second
parameter word as received at entry to the routine. This length must include the
EDW and RDW (if applicable). It is not necessary to modify the RDW because it is
re-created if the record is to be written by IEBTCRIN. However, if the user does
his own output from this routine, he must ensure that the RDW is correct for the
record.

If IEBTCRIN is to write the record, the length of the output record depends on the
RECFM specification, as follows:

• Fixed and variable records may have a maximum length equal to LRECL.
Records larger than this are truncated.

• Undefined records may have a maximum length equal to BLKSIZE. RecorQs
larger than this are truncated.

These record lengths include the EDW and RDW, where applicable.

The record length returned from the error exit is used to establish the location of
the last data byte in the record. The location is used to control data duplication in
the following record. However, it is not used for checking the record length of
subsequent records.

Modifications to the EDW, record, or record length may affect the editing of
subsequent records. If the input is not edited, the user can examine and modify any
byte in the record. The record length can also be changed, subject to the
MTDI-editing restrictions.

If STDUC, STDLC, or name is specified, certain of the MTST codes are processed
in a special way before translation. Feed codes (FD), switch codes (SW), and
autosearch codes (AS), both uppercase and lowercase, are deleted from the data.
Each 61-character reference code is reduced to a single search code (SRC).

A stop code, whether uppercase (ST) or lowercase (st), indicates that all data on a
cartridge has been read. Therefore, when an MTST cartridge to be processed by
IEBTCRIN is created, the user must not use a stop code for any purpose other than
signaling end-of-data on the cartridge. Stop codes within meaningful data cause any
subsequent data on the cartridge to be lost because the cartridge is rewound and
unloaded when a stop code is encountered.

If EDITD or EDITR is specified, the edit consists of the following functions:

• Records are extracted one at a time from the input buffers by scanning for the
record-delimiting codes (SOR and EOR).

• DUP codes are replaced with the character from the corresponding location in
the preceding record.

• Left-zero fields are right aligned and leading zeros are inserted where necessary.

• Left-zero start codes are deleted from the records.

IEBTCRIN Program 12-3

t2-4 OS/VS2 MVS Utilities

• Group separator codes and records that start with cancel record codes are
bypassed.

For MTDI input with editing specified, MAXLN is used to specify in bytes the
length of the longest valid record after editing. If the program encounters a record
in which a valid end-of-record cannot be determined within this length, an
end-of-record condition is forced and the record is considered an error record.

The values that can be specified for MINLN and MAXLN are:

• For MTST processing or MTDI processing without editing, MINLN is not
specified. MAXLN should equal the number of bytes to be passed as a record.

• For MTDI processing when EDIT=EDITD, MINLN should equal the number of
bytes in the shortest valid record after editing, excluding SOR and EOR codes.
MAXLN should equal the number of bytes in the longest valid record after
editing, excluding SOR and EOR codes.

• For MTDI processing when EDIT=EDITR, MINLN should equal the number of
bytes in the shortest valid record after editing, including SOR and EOR codes.
MAXLN should equal the number of bytes in the longest valid record after
editing, including SOR and EOR codes.

Note: The values for MINLN and MAXLN should not include the four bytes long
record descriptor word added to a variable length record.

Figure 12-1 shows the hexadecimal characters representing special purpose codes
that must not be used as replacement bytes.

MTDI Codes

X'OO' (LZ) X'tE' (VOK) X'74' (P4)
X'tt' "(DUP) X'3C' (RM) X'75' (P5)
X't2' (LZS) X'7t' (PO X'76' (P6)
x'tS' (CAN) X'72' (P2) X'77' (P7)
X'tD' (OS) X'73' (P3) X'7S' (PS)

MTSTCodes

x'to' (cr) X't4' (CR) X'5t' (as)
X'tl' (sw) X't5' (SW) X'55' (AS)
X'13' (fd) X'17' (FD) X'SO' (src)

x'St through X'FF'

Figure 12-1. Special Purpose Codes

The special purpose codes listed in Figure 12-1 are used by IEBTCRIN when
constructing records. Use of these codes causes a message to be issued and the
utility to be terminated.

Figure 12-2 shows the values that can be chosen to replace error bytes for MTDI
input.

Figure 12-3 shows the values that can be chosen to replace error bytes for MTST
input.

Figure 12-4 shows MTST codes after they have been translated by IEBTCRIN
when TRANS=STDLC is specified.

III °u
~. -! 00 01
'" ~ c Q)

:I: og
° iii "0 00 01 10 11 00 01 10
0 c

Q. S ...
iii ~ 0 1 2 3 4 5

0000 0 LZ SP &

0001 1 DUP

0010 2 LZS

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8 CAN

1001 9 ED

1010 A rJ !

1011 B $

1100 C RM < *

1101 D GS o()

1110 E i'/OK + ;

1111 F I,

This figure represents the character set and control
codes as read from an MTDI created cartridgeo

Figure 12-2. MTDI Codes from TCR

6

/

%

>

?

10

11 00 01 10 11 00

7 8 9 A B C

P1 A

P2 B

P3 C

P4 D

P5 E

P6 F

P7 G

PS H

I

:

@

/

=

"

11

01 10

D E

0 082

J

K S

L T

M U

N V

0 W

P X

Q y

R Z

11

F

0

1

2

3

4

5

6

7

8

9

Bit Positions 0,1

Bit Positions 2, 3

First Hexadecimal Digit

Special Control:

LZ = Left zero fill
DUP = Duplicate
LZS = Left zero start
ED = End data
GS = Group Separator

Start of Record (SOR):

P1 = Program level 1
P2 = Program level 2
P3 = Program level 3
P4 = Program level 4
P5 = Program level 5
P6 = Program level 6
P7 = Program level 7
ps. = Program level 8
CAN = Cancel

End of Record (EOR):

RM = Record mark
VOK = Verify OK

IEBTCRIN Program 12-5

...
'51

I' 0
cD ~
It) 'u
~. CI>

't:I
00 <II ~ C

0 CI>
.;; :r
.~ 't:I 00 01 10 11

c
Cl.. 0 ... ()

CD CI> 0 1 2 3 en

0000 0 z cr 5 0

0001 1 2 sw 6 9

0010 2 t e h

0011 3 n fd k b

0100 4 Z CR %)

0101 5 @ SW ¢ (

0110 6 T E H

0111 7 N FD K B

1000 8 1 7 4

1001 9 3 st 8

1010 A x d I

1011 B u c

1100 C ± & $

1101 D # ST *

1110 E X D L

1111 F U C

cr and CR = Carrier return code
sw and SW = Switch code
fd and FD = Feed code
st and ST = .stop code
tab and TAB = Tab code
as and AS = Automatic search
sp and SP = Space
bsp and asp = Backspace
stx and STX = Stop transfer
src and SRC = Search

01

00 01 10

4 5 6

I tab

as i

j sp p

= q

0
TAB ..

• AS I

J SP P

+ Q

m bsp r

v a

g :

f stx

M BSP R

V A

G :

F STX

This figure represents the character set and control
codes as read from an MTST created cartridge.

Figure 12-3. MTST Codes from TCR

12-6 OS/VS2 MVS Utilities

10 11 Bit Positions 0,1

11 00 01 10 11 00 01 10 11 Bit Positions 2, 3

7 8 9 A a C D E F First Hexadecimal Digit

s src

w

y

S SRC

W

Y

0

/

a

?

...
'51

"
i5

c.o" ~
III 'u
~"

Q)
'0 00 01 <II "' C)(

0 Q)

.;: ~
'Uj '0 00 01 10 11 00 01 10 11
0 c

Q.. 0 ... CJ

co ~ 0 1 2 3 4 5 6 7

0000 0 SP &

0001 1 /

0010 2 STX

0011 3

0100 4

0101 5 TAB

0110 6 BSP

0111 7

1000 8

1001 9

1010 A ¢ ! :

1011 B $ #

1100 C * % @

1101 D CR () -

1110 E SRC + ; =

1111 F ? ..

10

00 01 10 11 00

8 9 A B C

j 0
A a

b k s B

c I t C

d "' u D

e n v E

f 0 w F

g P x G

h q y H

i r z I

±

11

01 10

D E

J

K S

L T

M U

N V

0 W

P X

a y

R Z

11

F

0

1

2

3

4

5

6

7

8

9

Bit Positions O. 1

Bit Positions 2, 3

First Hexadecimal Digit

TAB = Tab code
CR = Carrier return
BSP = Backspace
SRC = Search
STX = Stop transfer
SP = Space

Note: The STDUC option permits translating
both lowercase and uppercase alphabetic
characters to uppercase.

Figure 12-4. MTST Codes after Translation by IEBTCRIN with TRANS=STDCL

End-of -Cartridge

Unique codes, written by the MTST or theMTDI device, signal the program when
all data on a cartridge has been read. For MTST cartridges, this end-of -cartridge
code is a lowercase stop code (st) or an uppercase stop code (ST). For MTDI
cartridges, the end-of-cartridge code is the end-data code (ED).

IEBTCRIN terminates input from a cartridge upon encountering the
end-of -cartridge code and rewinds the cartridge. IEBTCRIN continues to process
cartridges until end-of-file is encountered.

IEBTCRIN Program 12-7

Error Records

End-of-file is signaled following a rewind operation when there are no more
cartridges in the feed hopper, the END OF FILE button is pressed, and
end-of-cartridge for the last cartridge is recognized. An end-of-file indication will
be passed to the OUTREC and/or ERROR exits if specified by setting register 1
equal to O.

If a record is found to be in error, the record is passed to the user error exit routine
if one is specified. If an error exit is not specified, the action to be taken. is
determined by the option specified in a utility control statement.

When either MTST input or MTDI input without editing is specified, the only error
that can be recognized is a record containing one or more permanent data checks.
The data check bytes are replaced as described in a utility control statement. The
record is considered an error record, but because a data check is the only error that
can occur, no EDW is appended to the error record.

Error Description Word (EDW)

12-8 OS/VS2 MVS Utilities

The Error Description Word (EDW) consists of four bytes that are appended to the
start of an error record.

The error description word is in EBCDIC format; for example, a 2 is represented as
X'F2' and a C is represented as X'C3'. The information proviqed in each of the
four bytes of the EDW is discussed below.

Byte

Level Status
(Byte 0)

Indicator meaning

Identifies error records that result from interrecord
dependency that cannot be identified in the type status
byte.

Value Meaning

o Indicates any error record that will not cause
questionable data in the following records. A type
status other than zero accompanies this byte.

1 Indicates any error record that may cause
questionable data in the following re~ords, and
for which the level status of the previous record
wasO.

2 Indicates any error that contains questionable
data because the error level of the preceding
record was 1 or 2, or for any error record that
may cause questionable data in the following
records and for which the level status of the
previous record was 1 or 2.

A level status of 1 or 2 is presented with error records
resulting from the following:

• The start-of -record (SOR) location has a character
defined as an error.

• The record contains two or more data check bytes side by
side. These may have been an SOR and EOR
(end -of -record).

Byte

Type Status
(Byte 1)

• The record is longer than the user-specified maximum
length record.

• The length of the record is not equal to the length of the
first valid record of the same program level encountered
on this cartridge. For this purpose, a valid record is one
that contains no errors as identified in the type status,
with the possible exception of being shorter than the
user-specified minimum length.

• The record has a data-duplication dependency on a
previous record with one of the above errors.

The level status is set to 0 when IEBTCRIN encounters: (1)
a record without one of the previous errors, (2) a canceled
record, or (3) the first record of a cartridge.

Indicator Meaning

Identifies records in error because of SOR, EOR, length,
field, or data check error conditions.

Value Meaning

o Indicates any record that contains none of the
following identifiable errors, but contains
questionable data due to a level status other than
zero. (See Level Status above.)

1 Indicates any record that has: (1) an SOR
character of other than PI through P8 or a GS
code, (2) an EOR character of other than a VOK
code for records when the user specified a record
verification check, or (3) an EOR character of
other record-verification check.

2 Indicates any record that has an incorrect length
because it is: (1) longer than the user-specified
maximum, (2) shorter than the user-specified
minimum, or (3) not encountered on this
cartridge.

4 Indicates any record that has a field error. A field
error occurs when duplication or left-zero
justification functions did not occur in a field
because of an error condition. See "MTDI Editing
Criteria" below.

8 Indicates any record that has a permanent data
check error.

The type-status indicator can also have values of 3, 5, 6, 7, 9; A, B, C, D, E, and F.
These values indicate a combination of SOR, EOR, length, field, and data check
errors. For example, a value of A indicates a record with a data check error (8), as
well as, an incorrect length (2).

Start-of -Record
(Byte 2)

Indicates the start-of-record (SOR) character
associated with this record. The SOR character
can be 1 through 8, where 1 indicates PI, 2
indicates P2, etc., or E, which indicates the SOR
character is in error.

IEBtCRIN Program t 2-9

Sample Error Records

12-10 OS/VS2 MVS Utilities

End-of-Record
(Byte 3)

Indicates the end-of-record (EOR) character
associates with this record. The EOR character
can be: U (unverified record); V (verified
record); or E (EOR character is in error).

Figure 12-5 shows a stream of data bytes read sequentially from the tape cartridge
reader.

p V
111372 RECORD NUMBER lAO

1 K

P DDDDDDDDDDDDDDD DV
357987UUUUUUUUUUUUUUU3UO

1 PPPPPPPPPPPPPPP PK

P R
358436 RECORD NUMBER 5

1 M

* DDDDDDDDDDDDDDD DV
*111378uuuuuuuuUUUUUUU2UO
* PPPPPPPPPPPPPPP PK

P * V
358977 REC*RD NUMBER 4AO

1 * K

P DDDDDDDDDDDDDDD DV
358436UUUUUUUUUUUUUUU6UO

1 PPPPPPPPPPPPPPP PK

P V
998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREHOUSEO

3 K

P VE
367*82 RECORD NUMBER 8AO

1 * KD

Figure 12-5. Tape Cartridge Reader Data Stream

Figure 12-6 shows the records constructed by IEBTCRIN from the input records
shown in Figure 12-5. These records show some of the errors that can occur during
processing and their effect on the Error Description Word. The following
parameters were specified for these records:

TCRG:8N TYPE=MTDI,EDIT~EDITR,VERCHK=VOKCHK,

MAXLN=50,REPLACE=X'5B'

72
C

IEBTCRIN classifies records 2 through 9 in Figure 12-6 as error records. The
records are classified as follows:

• Record 1 is a valid record. It contains a program-level 1 code, and thus
establishes the valid length for all program-level 1 records in this cartridge to be
25 bytes.

• Record 2 has a data check in the SOR location. Level status is set to 1 because
the SOR location might have contained a cancel code that would cause any data
duplicated on the following record to be questionable. The type status (9)

(Record 1)

v
P 0
1111372 RECORD NUMBER 1AK

(Record 3)

v
P 0

201V 1357987 RECORD NUMBER 3AK

(Record 5)

P R
131U 1358436 RECORD NUMBER 5M

(Record 7)

P

(Record 2)

v
o

19EV $111378 RECORD NUMBER 2AK

(Record 4)

v
P 0

081V 1358977 REC$RD NUMBER 4AK

(Rec6rd 6)

v
P 0

241V 1358436 RECORD NUMBER 6$K

(Record 8)

233E 3998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREH

v
o

21EV OUSEK

(Record 9)

v
P 0

081V 1367$82 RECORD NUMBER 8AK

Resulting Error
Description Word

Figure 12-6. Record Construction

,
MAXLN ends here

(EOR Forced)

indicates the record has an incorrect SOR/EOR character (1) and a data check
error (8).

• Record 3 contains no identifiable error, but contains questionable data because
it requires duplication from the previous record, which had a level status of 1.

• Record 4 has a data check. Because it contained no DUP codes, the level status
is set to O.

• Record 5 is shorter than the first program-level 1 record on this c~rtridge (length
error). This record also contains an RM code rather than a VOK code in the
EOR location (VOKCHK was specified on the TCRGEN statement. Because
IEBTCRIN cannot determine why the record is short, all data duplicated from
this record is questionable; the level status is set to 1. The type status is set to 3
indicating an SOR/EOR error (1) and length error (2).

• Record 6' contains a DUP code that is beyond the last position of the preceding
record.

• The seventh input record is longer than the maximum user-specified record
length. Note that it is passed as two records; The first record (record 7) indicates
an EOR error and a length error; the second (record 8) indicates an SOR error.
Because record 7 is an error record, its length (50 bytes) is not established as the
valid length for all program-level 3 records on this cartridge.

• Record 9 has a data check. Because it contained no DUP codes, the level status
is set to o.

IEBTCRIN Program 12-11

Input and Output

Return Codes

Control

IEBTCRIN uses the following input:

• An input data set, which contains data on tape cartridges to be read from the
Tape Cartridge Reader (TCR). The input data set was created on either MTST
orMTDI.

• A control data set, which contains utility control statements that are used to
control the functions of IEBTCRIN.

IEBTCRIN produces the following output:

• An output data set, which contains the sequential output produced by the utility
as a result of processing the cartridge input according to the utility control
statements.

• An error output data set, which contains records that do not conform to the
specifications for a valid record.

• A message data set, which contains diagnostic messages.

IEBTCRIN produces the following return codes:

• 00, which indicates normal termination.

• 04, which indicates warning message issued; execution permitted. Conditions
leading to issuance of this code are: (1) SYSPRINT, SYSIN, SYSUT2, or
SYSUT3 DD statements missing and (2) DCB parameters missing SYSUT2 or
SYSUT3 DD statements.

• 12; which indicates diagnostic error message issued; execution terminated.
Conditions leading to issuance of this code are: (1) SYSUT1 DD statement
missing, (2) conflicting DCB parameters in DD statements, and (3) invalid or
conflicting utility control statements.

• 16, which indicates terminal error message issued; execution terminated.
Conditions leading to issuance of this code are: (1) permanent input/output
errors (not including data checks on the TCR), (2) unsuccessful opening of data
sets, (3) requests for termination by user exit routine, (4) insufficient storage
available for execution, and (5) user exit routine not found.

IEBTCRIN is controlled by job control statements and utility control statements.
The job control statements are required to execute or invoke IEBTCRIN and to
define the data sets that are used and produced by the program. The utility control
statements are used to indicate the source of the input data cartridges (MTST or
MTDI) and to specify the type of processing to be done.

Job Control Statements

12-12 OS/VS2 MVS Utilities

Figure 12-7 shows the job control statements necessary for using IEBTCRIN.

If the SYSPRINT DD statement is missing, a message is written on the operator
console and processing continues.

If some parameters are specified but others are omitted, IEBTCRINattempts to set
defaults for the missing parameters that are consistent with those supplied. For (
example, if RECFM= VBA is specified, IEBTCRIN assumes BLKSIZE= 129 and

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBTCRIN) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set, which can be written to any
QSAM-supported output device.

SYSUTI DD Defines the input data set.

SYSUT2 DD Defines a sequential output data set for valid records.

SYSUT3 DD Defines a sequential output data set for error records.

SYSIN DD Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a sequential data set or as a member of
a partitioned data set. If this statement is not included, all utility control
statement defaults are assumed and a message is issued to SYSPRINT. If
DUMMY is specified, all utility control statement defaults are assumed.

Figure 12-7. IEBTCRIN Job Control Statements

LRECL=125. If LRECL, BLKSIZE, and RECFM are not specified, the defaults
are LRECL=121, BLKSIZE=121, and RECFM=FBA.

For the SYSUTI DD statement, only the UNIT keyword is required. The value
specified in UNIT=xxxx can be '2495', the device address, or any other name that
was generated in the system as a unit device name. The VOLUME=SER=keyword
may be specified to identify the tape cartridges to be mounted. The volume serial
number must be an externally recognizable name associated with the cartridges to
be processed. A message is issued to the operator instructing that the cartridges
identified by that name be mounted. If VOLUME is not specified, the name
TCRINP is assumed and used in the mount message. The BUFL DCB parameter
can be specified to indicate the size of input buffers; if BUFL is not specified, a
value of 2000 is assumed.

Fixed and variable records on the SYSUT2 or SYSUT3 data set can be blocked
through the specification of the BLKSIZE and RECFM DCB parameters.

SYSUT2 DD and SYSUT3 DD statements may be omitted or specified as
DUMMY for other than sequential data sets. A message is issued on SYSPRINT
and processing continues.

The DCB parameters defining the SYSIN, SYSPRINT, SYSUT2, and SYSUT3 data
sets can be supplied from any valid source (for example, DD statements or a data
set label). Because the output (SYSUT2 and/or SYSUT3) data sets are not opened
until the first record is ready for output (after any OUTREC and/or ERROR
exits), DCB parameters to be supplied from an existing data set label are not
available for records constructed before the data set is opened. Therefore, the DCB
parameters should always be provided in the DD statement even though they may
already exist in the label. Otherwise, defaults are used to construct records until the
data set is opened.

If a permanent error occurs on SYSIN, SYSUTI (not including a data check),
SYSUT2, or SYSUT3, a message is issued on SYSPRINT and the program is
terminated. If a permanent input/output error occurs on SYSPRINT, both the
failing message and a SYNADAF message indicating the error are written on the
programmer's console and processing is terminated.

IEBTCRIN Program 12-13

Utility Control Statements

TCRGEN Statement

EXITS Statement

12-14 OS/VS2 MVS Utilities

Figure 12-8 shows the utility control statements necessary for using IEBTCRIN.

Statement

TCRGEN

EXITS

Use

Specifies whether MTDI or MTST input is to be processed and the type of
processing to be performed.

Specifies any exit routines provided by the user.

Figure .12-8. IEBTCRIN Utiiity Control Statements

If these statements contain errors or inconsistencies, the program is terminated and
the appropriate diagnostics are sent to the message data set. If TCRGEN is not
specified, standard defaults are used.

The TCRGEN statement is used to indicate the device (MTDI or MTST) on which
the input data was created and the type of processing to be performed on the input
data.

The format of the TCRGEN statement is:

[label] TCRGEN [lYPE= {MIDI I MTST}]

[,TRANS= {SIDUC I STDLC I name I NOTRAN}]

[,EDIT= {EDIID I EDITR I NOEDIT}]

[,VERCHK= {NOCHK I VOKCHK}]

[,MINLN=n]

[,MAXLN=n]

[,REPLACE=X'xx ']

[,ERROPT= {NORMAL I NOERR}]

The EXITS statement is used to identify user-supplied exit routines, which must
exist in either the user job library or the link library.

Upon entry, a parameter list is supplied to the exit routine. Upon returning from the
exit routine, the user must provide an acceptable return code. See "Appendix A:
Exit Routine Linkage."

The format of the EXITS statement is:

[label] EXITS [ERROR=routinename]

[,OUTREC=routinename]

[,OUTHDR2=routinename]

[,OUTHDR3=routinename]

[,OUTTLR2=routinename]

[,OUTTLR3=routinename]

Applicable Control
Operands Statements

) EDIT TCRGEN

ERR OPT TCRGEN

ERROR EXITS

MAXLN TCRGEN

Description of Operands/Parameters

EDIT={EDITD I EDITR I NOEDIT}
specifies the type of processing to be performed on MTDI
input. These values can be coded:

EDITD
specifies that the input is to be edited and that SOR and
EOR codes are to be deleted and not included as part of
the output record.

EDITR
specifies that the input is to be edited and SOR and
EOR codes are to be kept as part of the output record.

NOEDIT
specifies that no editing is to be performed. Data,
including any group separator (GS) codes, is passed
exactly as read from the cartridge.

ERROPT= {NORMAL I NOERR}
specifies the disposition of all error records. ERROPT is
ignored if a user error routine is specified in the EXITS
statement. These values can be coded:

NORMAL
specifies that all error records are to be placed in the
error data set (SYSUT3).

NOERR
specifies that all records (including error records) are
placed in the normal output data set (SYSUT2). No
records are placed in the error data set (SYSUT3).

ERROR=routinename
specifies the symbolic name of a routine that receives
control before an error record is passed to the error output
data set (SYSUT3). This exit routine can be used to
analyze and, if possible, correct the error record. This
parameter nullifies any ERR OPT value.

MAXLN=n
specifies the number of bytes, n, plus four for the record
descriptor word when variable records are specified, to be
contained in all but the last record passed to the output
routine when editing is not performed. IEBTCRIN does
not indicate the end of data from one cartridge and the
beginning of data from the next. Usually this transition
from one cartridge to another occurs within an output
record. The last record passed to the output routine
contains only the number of bytes remaining (plus four if
the record format is variable) and is the only record that
can be shorter than the length specified by MAXLN.,The
size of the records actualIy written depends on the record
length (LRECL) specified for the output data set.

Default: 120 bytes

IEBTCRIN Program 12-15

Applicable Control
Operands Statements Description of Operands/Parameters

MINLN TCRGEN MINLN=n
(

specifies in bytes the length, n, of the shortest valid, edited
record. This parameter is valid only when TYPE=MTDI
and either EDIT=EDITD or EDIT=EDITR are specified.
If IEBTCRIN encounters a record shorter than this
specified length, the record is considered an error record.

Default: No minimum length checking is performed.

OUTREC EXITS OUTREC =routinename
specifies the symbolic name of a routine that receives
control before the record is passed to the normal output
data set (SYSUT2). In this exit routine, the user can
process the record and perform his own output if output
other than the SYSUT2 data set is desired. Any
modification of an edited MTDI record may affect the
editing of following records. The record returned from this
exit is used to accomplish data duplication in the record
that follows. If the SYSUT2 data set has specified variable
length records, an RDW which is four bytes long is
appended to the front of the record.

OUTHDR2 EXITS OUTHDR2 =routinename
specifies the symbolic name of a routine that receives
control during the opening of the SYSUT2 data set; this
exit routine can be used to create user output header labels
for the normal output data set (SYSUT2).

OUTHDR3 EXITS OUTHDR3=routinename
specifies the symbolic name of a routine that receives
control during the opening of the SYSUT3 data set; this
exit routine can be used to create user output header labels
for the error data set (SYSUT2).

OUTTLR2 EXITS OUTTLR2 =routinename
specifies the symbolic name of a routine that receives
control during the closing of the SYSUT2 data set; this exit
routine can be used to create user output trailer labels for
the normal output data set (SYSUT2).

OUTTLR3 EXITS OUTTLR3 =routinename
specifies the symbolic name of a routine that receives
control during the closing of the SYSUT3 data set; this exit
routine can be used to create user output trailer labels for
the error data set (SYSUT3).

12-16 OS/VS2 MVS Utilities

Operands

REPLACE

TRANS

TYPE

Applicable Control
Statements

TCRGEN

TCRGEN

TCRGEN

Description of Operands/Parameters

REPLACE = XXx ,
speCifies the hexadecimal representation of the character to
be used by IEBTCRIN to replace error bytes. REPLACE
allows the user to identify and possibly correct error bytes
on the error exit routine or in subsequent processing. The
specified REPLACE character should be one that does not
normally appear in the data. To replace error bytes on
MTDI data, select a value for.xx from Figure 12-2. To
replace error bytes on MTST data, select a value for xx
from Figure 12-3. The replacement of error bytes is
accomplished before any specified MTST translation.

Default: X' 19', end-of-data

TRANS = {STDUC I STDLC I name I NOTRAN}
specifies the type of processing to be performed on MTST
input. These values can be coded:

SIDUC
specifies that the MTST code is to be translated to
standard EBCDIC; alphabetic characters are translated
to uppercase.

STDLC
specifies that the MTST code is to be translated to
standard EBCDIC; alphabetic characters are not
translated to uppercase.

name
specifies a user translate table to be used by IEBTCRIN.
The translate table must exist as a load module named in
a user job library or the link library. This load module
must consist of a translate table which begins at the
entry point and conforms to the specifications for the
translate instruction (TR) found in IBM System/370
Principles of Operation.

NOTRAN
specifies that no translation and no special processing
are to be performed. Data is passed exactly as read from
the cartridge.

lYPE={MIDI I MTST}
specifies the device on which the magnetic tape
cartridge(s) was written. These values can be coded:

MIDI
specifies that the input was created on a Magnetic Data
Inscriber.

MTST
specifies that the input was created on a Magnetic Tape
SELECTRIC ® typewriter.

IEBTCRIN Program 12-17

Operands

VERCHK

Applicable Control
Statements

TCRGEN

12-18 OS/VS2 MVS Utilities

Description of Operands/Parameters

VERCHK={NOCHK I VOCHK}
specifies whether a record-verification check is ~o be made
on MTDI input that is to be edited. This parameter is valid
only when TYPE=MTDI and either EDIT=EDITD or
EDIT=EDITR are specified. These values can be coded:

NOCHK
specifies that no record-verification check is to be made.
Either a record mark (RM) or a verify OK (VOK) code
is considered a valid end-of-record code.

VOKCHK
specifies that a record-verification check is to be made.
A record that does not contain a verify OK code is to be
considered an error record.

Restrictions

• Because IEBTCRIN always constructs the SYSPRINT records with USASI
(type A) control characters, type A control characters should be indicated when
'RECFM is specified.

• If a parameter that is not consistent with the other parameters is specified on
SYSPRINT DD, a message is issued and processing is ended.

• The SYSUTI DD statement is required for each use of IEBTCRIN.

• The SYSUT2 DD and SYSUT3 DD statements must identify sequential data
sets; the data sets can have fixed, variable, variable spanned, or undefined
records. These data sets can be written on any QSAM-supported device.

• If editing of MTDI input is specified on the utility control statements, the
SYSUT3 LRECL parameter should be four bytes greater than the SYSUT2
LRECL parameter to include a four bytes long Error Description Word
appended to the front of the record by IEBTCRIN. (See "Error Records" earlier
in this chapter.) For variable records on either SYSUT2 or SYSUT3, the
LRECL and BLKSIZE DCB parameters must be large enough to include the
four bytes long record descriptor word.

• If inconsistent parameters are specified on SYSUT2 DD or SYSUT3 DD, a
message is issued and processing is ended.

IEBTCRIN Examples

lEBTCRIN Example 1

The following examples illustrate some of the uses of IEBTCRIN. Figure 12-9 can
be used as a quick reference guide to IEBTCRIN examples. The numbers in the
"Example" column point to examples that follow.

Data Set
Operation Organization Device Comments Example

Edit MDTI input Sequential Disk and
9-track Tape

Invoke IEBTCRIN
with LINK macro
instruction

Figure 12-9. IEBTCRIN Example Directory

Fixed blocked output. Error
exit routine specified

Assembler language
interface instructions

In this example, input from a tape cartridge is to be edited with normal records
written to a disk volume and error records written to a tape volume.

IIJOBNAME JOB 0, SMITH, MSGLEVEL=1
IISTPNAME EXEC PGM=IEBTCRIN
IISYSPRINT DD SYSOUT=A

2

IISYSUT1 DD UNIT=TCR,'VOLUME=SER=MYTAPE,DCB=(BUFL=3000)
IISYSUT2 DD DSNAME=GOODSET,DISP=(NEW,CATLG),UNIT=d~k
IIVOLUME=SER=111222,SPACE=(TRK(10,10)),DCB=(LRECL=100,
IIBLKSIZE=1000,RECFM=FB)
IISYSUT3 DD DSNAME=ERRSET,UNIT=tape,VOLUME=SER=000001,
II DISP=(NEW,KEEP),DCB=(BLKSIZE=104,RECFM=U)
IISYSIN DD*

TCRGEN TYPE=MTDI,EDIT=EDITD,MAXLN=100,REPLACE=X'5B'
EXITS ERROR=MYERR

1*

IEBTCRIN Program t 2-t 9

IEBTCRIN Example 2

. 12-20 OS/VS2 MVS Utilities

The control statements are discussed below:

• SYSUTI DD defines the input tape cartridge data set. A console message
instructs the operator to mount a set of cartridges named MYT APE. The two
input buffers are each 3000 bytes long (BUFL). The UNIT parameter assumes
that TCR has been system generated as a unit name for the Tape Cartridge
Reader.

• SYSUT2 DD defines a sequential data set for the normal output records. The
data will be written to a disk volume.

• SYSUT3 DD defines a sequential data set for the error records. The records are
undefined with a maximum block size of 104 bytes, including a 4-byte error
description word.

• SYSIN DD defines the control data set, which follows in the input stream.

• TCRGEN indicates MTDI input. The input is to be edited with SOR and EOR
codes deleted, the maximum .valid record length is to be 100 bytes, and the
replace character is a hexadecimal "SB". VERCHK is defaulted to NOCHK.
Minimum record-length checking is not requested.

• EXITS indicates that a user has provided an exit routine to handle error records.
Because no job library has been specified, the exit routine (MYERR) must
reside in the link library.

In this example, IEBTCRIN is invoked via the LINK macro instruction in an
Assembler language program. An alternate name has been assigned to each of the
DD statements used by IEBTCRIN. The job control for this step must include DD
statements with the alternate DD names.

OPTLIST

DDNAME

LINK
CNOP
DC
CNOP
DC
DC
DC
DC
DC
DC
DC
DC

EP=IEBTCRIN,PARAM=(OPTLIST,DDNAME),VL=1
2,4 (OPTLIST must be on halfword boundary)
H ' 0' (Length must be zero for IEBTCRIN)
2,4 (DDNAME list must be on halfword boundary)
H' 82' (Length of DDNAME list)
8F'O'
C' NEWIN '(Alternate DDNAME for SYSIN)
C ' NEWPRINT' (Alternate DDNAME for SYSPRINT)
2F'O'
C'NEWUT1
C'NEWUT2
C'NEWUT3

, (Alternate DDNAME for SYSUT1)
, (Alternate DDNAME for SYSUT2)
, (Alternate DDNAME for SYSUT3)

IEBUPDTE PROGRAM

IEBUPDTE is a data set utility used to incorporate IBM and user-generated source
language modifications into sequential or partitioned data sets. Exits are provided
for user routines that process user header and trailer labels.

IEBUPDTE can be used to:

• Create and update symbolic libraries.

• Incorporate changes to partitioned members or sequential data sets.

• Change the organization of a data set from sequential to partitioned or vice
versa.

At the completion or termination of IEBUPDTE, the highest return code
encountered within the program is passed to the calling program.

Creating and Updating Symbolic Libraries

Incorporating Changes

IEBUPDTE can be used to create a library of partitioned members consisting of (at
the most) 80-byte logical records. In addition, members can be added directly to an
existing library, provided that the original space allocations are sufficient to
incorporate the new members. In this manner, a cataloged procedure can be placed
in a procedure library, or a set of job or utility control statements can be placed as
a member in a partitioned library.

IEBUPDTE can be used to modify an existing partitioned or sequential data set.
Logical records can be replaced, deleted', renumbered, or added to the member or
data set.

A sequential data set residing on a tape volume can be used to create a new master
(that is, a modified copy) of the data set: A sequential data set residing on a direct
,access device can be modified either by creating a new master or by modifying the
data set directly on the volume on which it resides.

A partitioned data set can be modified either by creating a new master or by
modifying the data set directly on the volume on which it resides.

Changing Data Set Organization

IEBUPDTE can be used to change the organization of a data set from sequential to
partitioned, or to change a member of a partitioned data set to a sequential data set
(the original data set, however, remains unchanged). In addition, logical records
can be replaced, deleted, renumbered, or added to the member or data set.

IEBUPDTE Program 13-1

Input and Output

Control

Job Control Statements

13-2 OS/VS2 MVS Utilities

IEBUPDTE uses the following input:

• An input data set (also called the old master data set), which is to be modified or
used as source data for a new master. The input data set is either a sequential
data set or a member of a partitioned data set.

• A control data set, which contains utility control statements and, if applicable,
input data. The data set is required for each use of IEBUPDTE.

IEBUPDTE produces the following output:

• An output data set, which is the result of the IEBUPDTE operation. The data
set can be either sequential or partitioned. It can be either a new data set (that
is, created during the present job step) or an existing data set, modified during
the present job step.

• A message data set, which contains the utility program identification, control
statements used in the job step, modification made to the input data set, and
diagnostic messages, if applicable. The message data set is sequential.

IEBUPDTE provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a control statement is coded incorrectly or used
erroneously. If either the input or output is sequential, the job step is terminated.
If both are partitioned, the program continues processing with the next function
to be performed.

• 12, which indicates an unrecoverable error. The job step is terminated.

• 16, which indicates that a label processing code of 16 was received from a user's
label processing routine. The job step is terminated.

IEBUPDTE is controlled by job control statements and utility control statements.
The job control statements are required to execute or invoke IEBUPDTE and to
define the data sets that are used and produced by the program. The utility control
statements are used to control the functions of IEBUPDTE and, in certain cases, to
supply new or replacement data.

Figure 13-1 shows the job control statements necessary for using IEBUPDTE.

The input and output data sets contain blocked or unblocked logical records with
record lengths of up to 80 bytes. The input and output data sets may have different
block sizes as long as they are multiples of the logical record length.

If an ADD operation is specified with PARM=NEW in the EXEC statement, the
SYSUT1 DD statement need not be coded.

If an UPDATE operation is specified, the SYSUT2 DD statement should not be
coded.

If the SYSUT1 DD statement defines a sequential data set, the file sequence
number of that data set must be included in the LABEL keyword (unless the data
set is the first or only data set on the volume).

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBUPDTE), or, if the job control
statements reside in a procedure library, the procedure name. Additional
information can be specified in the P ARM parameter of the EXEC statement.

SYSPRINT DD Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access volume.

SYSUTI DD Defines the input (old master) data set. It can define a sequential data set on a
card reader, a tape volume, or a direct access volume. Or, it can define a
partitioned data set on a direct access volume.

SYSUT2 DD Defines the output data set. It can define a sequential data set on a card
punch, a printer, a tape volume, or a direct access device. It can define a
partitioned data set on a direct access device.

SYSIN DD Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a member of a partitioned data set.

Figure 13-1. IEBUPDTE Job Control Statements

If both the SYSUTI and SYSUT2 DD statements specify standard user labels
(SUL), IEBUPDTE copies user labels from SYSUTI to SYSUT2.

If the SYSUTI and SYSUT2 DD statements define the same partitioned data set,
the old master data set can be updated without creating a new master data set; in
this case, a copy of the updated member or members is written within the extent of
the space originally allocated to the old master data set. Subsequent referrals to the
updated member(s) will point to the newly written member(s). The member names
themselves should not appear on the DD statements; they should be referenced
only through IEBUPDTE control statements.

P ARM Information on the EXEC Statement

Additional information can be coded in the P ARM parameter of the EXEC
statement, as follows:

PARM={NEW I MOD},[inhdr],[intlr]

Following are the P ARM values:

• NEW, which specifies that the input consists solely of the control data set. The
input data set is not defined if NEW is specified.

• MOD, which specifies that the input consists of both the control data set and the
input data set. If neither NEW nor MOD is coded, MOD is assumed.

• "inhdr," which specifies the symbolic name of a routine that processes the user
header label on the volume containing the control data set.

• "intlr," which specifies the symbolic name of a routine that processes the user
trailer label on the volume containing the control data set.

IEBUPDTE Program 13-3

Utility Control Statements

Function Statement

13-4 OS/VS2 MVS Utilities

Figure 13-2 shows the utility control statements used to control IEBUPDTE.

Statement

Function

Detail

Data

LABEL

ALIAS

ENDUP

Use

Initiates an IEBUPDTE
operation.

Used with the Function statement
for special applications.

A logical record of data to be used as a new or
replacement record in the output data set.

Indicates that the following data statements
are to be treated as user labels.

Assigns aliase's.

Terminates IEBUPDTE.

Figure 13-2. IEBUPDTE Utility Control Statements

The Function statement is used to initiate an IEBUPDTE operation. At least one
Function statement must be provided for each member or data set to be processed.

A member or a data set can be added directly to an old master data set if the space
originally allocated to the old master is sufficient to incorporate that new member
or data set. ADD specifies that a member or a data set is to be added to an old
master data set. If a member is to be added and the member name already exists in
the old master data set, processing is terminated. If, however, PARM=NEW is
specified on the EXEC statement, the member is replaced. For a sequential output
master data set, P ARM= NEW must always be specified on the EXEC statement.
At least one blank must precede and follow ADD.

When a member replaces an identically named member on the old master data set
or a member is changed and rewritten on the old master, the alias (if any) of the
original member still refers to the original member. However, if an identical alias is
specifiedJor the newly written member, the original alias entry in the directory is
changed to refer to the newly written member. REPL specifies that a member of a
data set is being entered in its entirety as a replacement for a sequential data set or
for a member of the old master data set. The member name must already exist in
the old master data set. At least one blank must precede and follow REPL.
CHANGE specifies that modifications are to be made to an existing member or
data set. Use of the CHANGE Function statement without a NUMBER or
DELETE Detail statement, or a Data statement causes an error condition. At least
one blank space must precede and follow CHANGE. REPRO specifies that a
member or a data set is to be copied in its entirety to a new master data set. At
least one blank must precede and follow REPRO.

Members can be deleted from a copy of a library by being omitted from a series of
REPRO Function statements within the same job step.

One sequential data set can be copied in a given job step. A sequential data set is
deleted by being omitted from a series of job steps which copy only the desired
data sets to a new volume. If the NEW subparameter is coded in the EXEC
statement, only the ADD Function statement is permitted.

Function Restrictions

Figure 13-3 shows how the system status information (SSI=OA3CI23B) is packed.

Change level F lag byte Serial number

byte 1 byte 2 byte 3 byte 4

Figure 13-3. Format of System Status Information

The format of the Function statement is:

./ [label] {ADD I CHANGE I REPL I REPRO}

[LIST = ALL]

When UPDATE is specified:

[,SEQFLD= {ddll ddl,ddt}]

[,NEW= {PO IPS}]

[,MEMBER=cccccccc]

[,COLUMN=dd]

[,UPDATE=INPLACE]

[,INHDR=cccccccc]

[,INTLR=cccccccc]

[,OUTHDR=cccccccc]

[,OUTILR=cccccccc]

[,TOT AL= (routinename,

[,NAME=cccccccc]

[,LEVEL=hh]

[,SOURCE=x]

[,SSI=hhhhhhhh]

• The SYSUT2 DD statement is not coded.

• The P ARM parameter of the EXEC statement must imply or specify MOD.

• The NUMBER statement can be used to specify a renumbering operation.

• Data statements can be used to specify replacement information only.

• One CHANGE Function statement and one UPDATE parameter are permitted
per job step.

• No functions other than replacement, renumbering, and header label
modification (via the LABEL statement) can be specified.

• Only replaced records are listed unless the entire data set is renumbered.

• System status information cannot be changed.

Within an existing logical record, the data in the field defined by COLUMN is
replaced by data from a subsequent data statement, as follows:

IEBUPDTE Program 13-5

13-6 OS/VS2 MVS Utilities

1. IEBUPDTE matches a sequence number of a Data statement with a sequence
number of an existing logical record. In this manner, the COLUMN specification
is applied to a specific logical record.

2. The information in the field within the Data statement replaces the information
in the field within the existing logical record. For example, COLUMN =40
indicates that columns 40 through 80 (assuming 80-byte logical records) of a
subsequent Data statement are to be used as replacement data for columns 40
through 80 of a logical record identified by a matching sequence number. (A
sequence number in an existing logical record or Data statement need not be
within the defined field.)

The COLUMN specification applies to the entire function, with the exception of:

• Logical records deleted by a subsequent DELETE Detail statement.

• Subsequent Data statements not having a matching sequence number for an
existing logical record.

• Data statements containing information to be inserted in the place of a deleted
logical record or records.

Figure 13-4 shows the use of NEW, MEMBER, and NAME parameters for
different input and output data set organizations.

Input Data Set
Organization

Partitioned

None

Partitioned

Sequential

Output Data Set
Organization

Partitioned

Partitioned '(New)

Sequential

Partitioned

Parameter
Combinations

With an ADD Function statement, use NAME to
specify the name of the member to be placed in the
partitioned data set defined by the SYSUT2 DO
statement. If an additional name is required, an ALIAS
statement can also be used.

With a CHANGE, REPL, or REPRO Function
statement, use NAME to specify the name of the
member within the partitioned data set defined by the
SYSUTI DO statement. If a different or additional
name is desired for the member in the partitioned data
set defined by the SYSUT2 DO statement, use an
ALIAS statement also.

With each ADD Function statement, use NAME to
assign a name for each member to be placed in the
partitioned data set.

With a Function statement, use NAME to specify the
name of the member in the partitioned data set defined
by the SYSUTI DO statement. Use NEW=PS to
specify the change in organization from partitioned to
sequential. (The name and file sequence number
assigned to the output master data set are specified in
the SYSUT2 DO statement.)

With a Function statement, use MEMBER to assign a
name to the member to be placed in the partitioned
data set defined by the SYSUT2 DO statement. Use
NEW =PO to specify the change in organization from
sequential to partitioned.

Figure 13-4. NEW, MEMBER, and NAME Parameters

IletallStatemnent

Iletall Restrictions

A Detail statement is used with a Function statement for certain applications, such
as deleting or renumbering selected logical records. NUMBER specifies, when
coded with a CHANGE Function statement, that the sequence number of one or
more logical records is to be changed. It specifies, when coded with an ADD or
REPL Function statement, the sequence numbers to be assigned to the records
within new or replacement members or data sets. When used with an ADD or
REPL Function statement, no more than one NUMBER Detail statement is
permitted for each ADD or REPL Function statement. If NUMBER is coded, it
must be preceded and followed by at least one blank. DELETE specifies, when
coded with a CHANGE Function statement, that one or more logical records are to
be deleted from a member or data set. If DELETE is coded, it must be preceded
and followed by at least one blank.

Note: Logical records cannot be deleted in part; that is, a, COLUMN specification
in a Function statement is not applicable to records that are to be deleted. Each
specific sequence number is handled only once in any single operation.

The format of a Detail statement is:

./[labelHNUMBER I IlELETE}[SEQt= {cccccccc I ALL},]

[,SEQ2=cccccccc]'

[,NEWt =cccccccc]

[,INCR=cccccccc]

[,INSERT = YES]

When INSERT is coded:

• The SEQ 1 parameter specifies the existing logical record after which the
insertion is to be made. The SEQ2 parameter need not be coded; SEQl=ALL
cannot be coded.

• The NEWl parameter assigns a sequence number to the first logical record to be
inserted. If the parameter is alphameric, the SEQFLD= (ddl,ddl) parameter
should be coded .

• The INCR parameter is used to renumber as much as is necessary of the member
or data set from the point of the first insertion; the member or data set is
renumbered until an existing logical record is found whose sequence number is
equal to or greater than the next sequence number to be assigned. If no such
logical record is found, the entire member or data set is renumbered.

• Additional NUMBER Detail statements, if any, must specify INSERT. If a prior
numbering operation renumbers the logical record specified in the SEQ 1
parameter of a subsequent NUMBER Detail statement, any NEWl or INCR
parameter sp'ecifications in the latter NUMBER statement are overridden. The
prior increment value is used to assign the next successive sequence numbers. If
a prior numbering operation does not reIlUmber the logical record specified in
the SEQ 1 parameter of a subsequent NUMBER Detail statement, the latter
statement must contain NEWl and INCR specifications.

• The block of Data statements to be inserted must contain blank sequence
numbers.

IEBUPDTE Program 13-7

Data Statement

LABEL Statement

13-8 OS/VS2 MVS Utilities

• The insert operation is terminated when a Function statement, a Detail
statement, and end-of-file indication, or a Data statement containing a sequence
number is encountered.

• The SEQ1, SEQ2, and NEWt parameters (with the exception of SEQ1=ALL)
specify eight (maximum) alphameric characters. The INCR parameter specifies
eight (maximum) numeric characters. Only the significant part of a numeric
sequence number need be coded; for example, SEQI =00000010 can be
shortened to SEQI-10. If, however, the numbers are alphameric, the alphabetic
characters must be specified; for example, SEQI =00ABCOI0 can be shortened
to SEQI =ABCOI0.

A Data Statement is used with a Function statement, or with a Function statement
and a Detail statement. It contains a logical record used as replacement data for an
existing logical record, or new data to be incorporated in the output master data
set.

Each Data statement contains one logical record, which begins in the first column
of the Data statement. The length of the logical record is equal to the logical record
length (LRECL) specified for the output master data set. Each logical record
contains a sequence number to determine where the data is to be placed in the
output master data set.

When used with a CHANGE Function statement, a Data statement contains new
or replacement data, as follows:

• If the sequence number in the Data statement is identical with a sequence
number in an existing logical record, the Data statement replaces the existing
logical record in the output master data set.

• If no corresponding sequence number is found within the existing records, the
Data statement is inserted in the proper collating sequence within the output
master data set. (For proper execution of this function, all records in the old
master data set must have a sequence number.)

• If a Data statement with a sequence number is used and INSERT= YES was
specified, the insert operation is terminated. IEBUPDTE will continue
processing if this sequence number is at least equal to the next old master record
(record following the referred to sequence record).

When used with an ADD or REPL Function statement, a Data statement contains
new data to be placed in the output master data set.

Sequence numbers within the old master data set are assumed to be in ascending
order. No validity checking of sequence numbers is performed for data statements
or existing records.

Sequence numbers in Data statements must be in the same relative. position as
sequence numbers in existing logical records. (Sequence numbers are assumed to be
in columns 73 through 80; if the numbers are in columns other than these, the
length and relative position must be specified in a SEQFLD parameter within a
preceding Function statement.)

The LABEL statement indicates that the following data statements are to be
treated as user labels. These new user labels are placed on the output data set. The
next Function statement indicates to IEBUPDTE that the last label Data statement
of the group has been read.

")

The format of the LABEL statement is:

./[name] LABEL

There can be no more than two LABEL statem.ents per execution of IEBUPDTE.
There can be no more than eight label Data statements following any LABEL
statement. The first four bytes of each 80-byte label Data statement must contain
"UHLn" or "UTLn", where n is 1 through 8, for input header or input trailer labels
respectively, to conform to IBM standards for user labels. Otherwise, data
management will overlay the data with the. proper four characters.

When IEBUPDTE encounters a LABEL statement, it reads up to eight Data
statements and saves them for processing by user output label routines. If there are
no such routines, the saved records are written by OPEN or CLOSE as user labels
on the output data set. If there are user output label processing routines,
IEBUPDTE passes a parameter list to the output label routines. This parameter list
is described fully in "Appendix A: Exit Routine Linkage." The label buffer
contains a label data record which the user routine can process before the record is
written as a label. If the user routine specifies (via return codes to IEBUPDTE)
more entries than there are label data records, the label buffer will contain
meaningless information for the remaining entries to the user routine.

The position of the LABEL statement in the SYSIN data set, relative to Function
statements, indicates the type of user label that follows the LABEL statement:

• To create output header labels, place the LABEL statement and its associated
label Data statements before any Function statements in the input stream. A
Function statement, other than LABEL, must follow the last label Data
statement of the group.

• To create output trailer labels, place the LABEL statement and its associated
label Data statements after any Function statements in the input stream, but
before the ENDUP statement. The ENDUP statement is not optional in this
case. It must follow the last label Data statement of the group if IEBUPDTE is
to create output trailer labels.

When UPDATE is specified in a Function statement, user input header labels can
be updated by user routines, but input trailer and output labels cannot be updated
by user routines. User labels cannot be added or deleted. User input header labels
are made available to user routines by the label buffer address in the parameter list.
See "Appendix D: Processing User Labels" for a complete discussion of the linkage
between utility programs and user-label processing routines. The return codes when
UPDATE is used differ slightly from the standard codes discussed in "Appendix D:
Processing User Labels," as follows:

• 0, which specifies that the system resumes normal processing; any additional
user labels are ignored.

• 4, which specifies that the system does not write the label. The next user label is
read into the label buffer area and control is returned to the user's routine. If
there are no more user labels, the system resumes normal processing.

• 8, which specifies that the system writes the user labels from the label buffer
area and resumes normal processing.

• 12, which specifies that the system writes the user label from the label buffer
area, then reads the next input label into the label buffer area and returns
control to the label processing routine. If there are no more user labels, the
system resumes normal processing.

IEBUPDTE Program 13-9

ALIAS Statement

ENDUP Statement

13-10 OS/VS2 MVS Utilities

If the user wants to examine the replaced labels from the old master data set, he
must:

1. Specify an update of the old master by coding the UPDATE parameter in a
Function statement.

2. Include a LABEL statement in the input data set for either header or trailer
labels.

3. Specify a corresponding user label routine.

If the above conditions are met, fourth and fifth parameter words will be added to
the standard parameter list. The fourth parameter word is not now used; the fifth
contains a pointer to the replaced label from the old master. In this case, the
number of labels supplied in the SYSIN data set must not exceed the number of
labels on the old master data set. If the user specifies, via return codes, more entries
to the user's header label routine than there are labels in the input stream, the fri:st
parameter will point to the current header label on the old master data set for the
remaining entries. In this case, the fifth parameter is meaningless.

The format of the LABEL statement is:

./[label] LABEL

The ALIAS statement is used to create or retain an alias in an output (partitioned)
master directory. The ALIAS statement can be used with any of the Function
statements. Multiple aliases can be assigned to each member up to a maximum of
16 aliases.

Note: If an ALIAS statement is specifying a name which already exists on the data
set, the original TTR of that directory entry will be destroyed.

ALIAS must be preceded and followed by at least one blank. If multiple ALIAS
statements are used, they must follow the data records.

The format of the ALIAS statement is:

./[label] ALIAS NAME=cccccccc

An ENDUP statement can be used to indicate the end of SYSIN input to this job
step. It serves as an end-of -data indication if there is no other preceding delimiter
statement. The ENDUP statement follows the last group of SYSIN control
statements .

. ENDUP must be preceded and followed by at least one blank. The ENDUP
statement must follow the last label Data statement if ffiBUPDTE is used to create
output trailer labels.

The format of the ENDUP statement is:

.j[label] ENDUP

Operands

./

COLUMN

INCR

INHDR

INSERT

INTLR

LEVEL

~

Applicable Control
Statements

ADD
REPL
CHANGE
REPRO
NUMBER
DELETE
LABEL
ALIAS
ENDUP

CHANGE

NUMBER

ADD
REPL
CHANGE
REPRO

CHANGE
NUMBER

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

Description of Operands/Parameters

./
is required and must appear in columns land 2.

COLUMN = Inn I !}
specifies, in decimal, the starting column of a data field
within a logical record image. The field extends to the end
of the image. Within an existing logical record, the data in
the defined field is replaced by data from a subsequent
Data statement.

INCR=cccccccc
specifies an increment value used for assigning successive
sequence numbers to new or replacement logical records,
or specifies an increment value used for renumbering
existing logical records.

INlIDR==eccccccc
specifies the symbolic name of the user routine that
handles any user input (SYSUTl) header labels. When
used with UPDATE, this routine assumes a special
function. This parameter is valid only when a sequential
data set is being processed.

INSERT=YES
specifies the insertion of a block of logical records. The
records, which are Data statements containing blank
sequence numbers, are numbered and inserted in the
output master data set. INSERT is valid only when coded
with both a CHANGE Function statement and a
NUMBER Detail statement. SEQl, NEWl, and INCR are
required on the first NUMBER Detail statement.

INTLR=eccccccc
specifies the symbolic name of the user routine that
handles any user input (SYSUTl) trailer labels. INTLR is
valid only when a sequential data set is being processed,
but not when UPDATE is coded.

LEVEL=hh
specifies the change (update) level in hexadecimal
(00-FF). The level number is recorded in the directory
entry of the output member. This parameter is valid only
when a member of a partitioned data set is being
processed. This parameter has no effect when SSI is
specifed.

IEBUPDTE Program 13-11

Operands

LIST

MEMBER

NAME

name

Applicable Control
Statements

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO
ALIAS

ADD
REPL
CHANGE
REPRO
NUMBER
DELETE
LABEL
ALIAS
ENDUP

13-12 OS/VS2 MVS Utilities

Description of Operands/Parameters

LIST=ALL
specifies that the SYSPRINT da~a set is to contain the
entire updated member or data set and the control
statements used in its creation.

Default: For old data sets, if LIST is omitted, the
SYSPRINT data set contains modifications and control
statements only. If UPDATE was specified, the entire
updated member is listed only when renumbering has been
done. For new data sets, the entire member or data set and
the control statements used in its creation are always
written to the SYSPRINT data set.

MEMBER=cccccccc
specifies, a name to be assigned to the member placed in
the partitioned data set defined by the SYSUT2 DD
statement. MEMBER is used only when SYSUT 1 defines a
sequential data set, SYSUT2 defines a partitioned data set,
and NEW=PO is specified. Refer to Figure 13-4 for the
use of MEMBER with NEW.

For ALIAS:

NAME=cccccccc
specifies a one- to eight character alias.

For all others:

NAME=cccccccc
indicates the name of the member placed into the
partitioned data set. The member name need not be
specified in the DD statement itself. NAME must be
provided to identify each input member. Refer to Figure
13-4 for the use of NAME with NEW. This'parameter is
valid only when a member of a partioned data set is being
processed.

name
specifies an optional name which begins in column 3 and
extends no further than column 10.

Operands

NEW

NEW1

OUTHDR

OUTTLR

Applicable Control
Statements

ADD
REPL
CHANGE
REPRO

NUMBER

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

Description of Operands/Parameters

NEW={PO IPS}
specifies the organization of the old master data set and
the organization of the updated output. NEW should not
be specified unless the organization of the new master data
set is different from the organization of the old master.
Refer to Figure 13-4 for the use of NEW with NAME and
MEMBER. These values can be coded:

PO
s}Jecifies that the old master data set is a sequential data
set, and that the updated output is to become a member of
a partitioned data set.

PS specifies that the old master data set is a partitioned data
set, and that a member of that data set is to be converted
into a sequential data set.

NEwt =eccccccc

specifies the first sequence number assigned to new or
replacement data, or specifies the first sequence number
assigned in a renumbering operation. A value specified in
NEW 1 must be greater than a value specified in SEQ 1
(unless SEQ1 = ALL is specified, in which case this rule
does not apply).

OUTHDR=eccccccc
specifies the symbolic name of the user routine that
handles any user output (SYSUT2) header labels.
OUTHDR is valid only when a sequential data set is being
processed, but not when UPDATE is coded.

OUTILR=eccccccc
specifies the symbolic name of the user routine that
handles any user output (SYSUT2) trailer labels.
OUTTLR is valid only when a sequential data set is being
processed, but not when UPDATE is coded.

IEBUPDTE Program 13-13

Operands

SEQ1

SEQ2

Applicable Control
Statements

NUMBER
DELETE

NUMBER
DELETE

13-14 OS/VS2 MVS Utilities

Description of Operands/Parameters

SEQ 1 = {cccccccc I ALL}
specifies records to be renumbered, deleted, or assigned
sequence numbers. These values can be coded:

cccccccc
specifies the sequence number of the first logical record to
be renumbered or deleted. This value is not coded in a
NUMBER Detail statement that is used with an ADD or
REPL Function statement. When this value is used in an
insert operation, it specifies the existing logical record after
which an insert is to be made. It must not equal the
number of a statement just replaced or added. Refer to the
INSER T p~rameter for additional discussion.

ALL
specifies a renumbering operation for the entire member or
data set. ALL is used only when a CHANGE Function
statement and a NUMBER Detail statement are used. ALL
must be coded if sequence numbers are to be assigned to
existing logical records having blank sequence numbers. If
ALL is not coded, all existing logical records having blank
sequence numbers. copied directly to the output master
data set. When ALL is coded: (1) SEQ2 need not be
coded and (2) one NUMBER Detail statement is permitted
per Function statement. Refer to the INSERT parameter
for additional discussion.

SEQ2 =cccccccc
specifies the sequence number of the last logical record to
be renumbered or deleted. SEQ2 is required on all
DELETE Detail statements. If only one record is to be
deleted, the SEQ 1 and SEQ2 specifications must be
identical. SEQ2 is not coded in a NUMBER Detail
statement that is used with an ADD or REPL Function
statement.

Operands

SEQFLD

SOURCE

SSI

Applicable Control
Statements

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

Description of Operands/Parameters

SEQFLD= { ddt I (pdt,ddt)}
ddt specifies, in decimal, the starting column (up to
column 80) and length (8 or less) of sequence numbers
within existing logical records and subsequent Data
statements. Note that the starting column specification (dd)
plus the length (I) cannot exceed the logical record length
(LRECL) plus 1. Sequence numbers on incoming Data
statements and existing logical records must be padded to
the left with enough zeros to fill the length of the sequence
field.

(ddt, ddt)
may be used when an alphameric sequence number
generation is required. The first ddt specifies the sequence
number columns as above. The second ddt specifies, in
decimal, the starting column (up to column 80) and length
(8 or less) of the numeric portion of the sequence numbers
in subsequent NUMBER statements. This information is
used to determine which portion of the sequence number
specified by the NEW1 parameter may be incremented and
which portion(s) should be copied to generate a new
sequence number for inserted or renumbered records.
Note: The numeric columns must fall within the sequence
number columns specified (or defaulted) by the first ddt.
Acceptable alphameric characters are A-Z, 1-9, @, #, $, *.
Default: 738 is assumed, that is, an eight-byte sequence
number beginning in column 73. Therefore, if existing
logical records and subsequent Data statements have
sequence numbers in columns 73 through 80, this keyword
need not be coded.

SOURCE=x
specifies user modifications when the x value is 0, or IBM
modifications when the x value is 1. The source is recorded
in the directory entry of the output member. This
parameter is valid only when a member of a partitioned
data set is being processed. This parameter has no effect
when SSI is specified.

SSI=hhhhhhhh
specifies eight hexadecimal characters of system status
information (SSI) to be placed in the directory of the new
master data set as four packed hexadecimal bytes of user
data. This parameter is valid only when a member of a
partitioned data set is being processed. SSI overrides any
LEVEL or SOURCE data given on the same Function
statement.

IEBUPDTE Program 13-15

Operands

TOTAL

UPDATE

Applicable Control
Statements

ADD
REPL
CHANGE
REPRO

CHANGE

13-16 OS/VS2 MVS Utilities

Description of Operands/Parameters

TOT AL= (routinename,size)
specifies that exits to a user's routine are to be provided
prior to writing each record. This parameter is valid only
when a sequential data set is being processed. These values
are coded:

routinename
specifies the name of the user's totaling routine.

size
specifies the number of bytes required for the user's data.
The size should not exceed 32K, nor be less than 2 bytes.
In addition, the keyword OPTCD=T must be specified for
the SYSUT2 (output) DD statement. Refer to "Appendix
A: Exit Routine Linkage" for a discussion of linkage
conventions for user routines.

UPDATE=INPLACE
specifies that the old master data set is to be updated
within the space it actually occupies. The old master data
set must reside on a direct access device. UPDATE is valid
only when coded with CHANGE. No other function
statements (ADD, REPL, REPRO) may be in the same
job step.

Restrictions

• The output data set can have a blocking factor that is different from the input
data set; however, if insufficient space is allocated for reblocked records, the
update request is terminated.

• The message data set has a logical record length of 121 bytes, and consists of
fixed length, blocked or unblocked records with an ASA control character in the
first byte of each record. The input and output data sets have a logical record
length of 80 bytes or less, and consist of standard fixed blocked (RECFM=FB)
or unblocked records. The control data set contains 80-byte, blocked or
unblocked records.

• The SYSIN DD statement is required for each use of IEBUPDTE.

• When UPDATE=INPLACE is specified, there must be no other function
statements in the job step.

• Space must be allocated for an output data set (SYSUT2 DD statement) that is
to reside on a direct access device, unless the data set is an existing data set.

• The SYSUT2 DD statement must not specify a DUMMY data set.

• When adding a member to an existing partitioned data set using an ADD
Function statement, any DCB parameters specified on the SYSUT1 and
SYSUT2 DD statements (or the SYSUT2 DD statement if that is the only one
specified) must be the same as the DCB parameters already existing for the data
set.

• If the SYSUT1 and SYSUT2 DD statements define the same sequential data set
(direct access only), only those operations that add data to the end of the
existing data set can be made. In these cases:

1. The FARM parameter of the EXEC statement must imply or specify MOD. (See
"PARM Information on the EXEC Statement" below.)

2. The DISP parameter of the SYSUT1 DD statement must specify OLD.

3. The DISP parameter of the SYSUT2 DD statement must specify MOD.

• The SYSIN DD statement is required for each use of IEBUPDTE.

• When UPDATE=INPLACE is specified, there must be no other function
statements in the job step.

IEBUPDTE Program 13-17

IEBUPDTE Examples

13-18 OS/VS2 MVS Utilities

The following examples illustrate some of the uses of IEBUPDTE. Figure 13-5 can
be used as a quick reference guide to IEBUPDTE examples. The numbers in the
"Example" column point to examples that follow.

Data Set
Operation Organization Device Comments Example

ADD and Partitioned Disk SYSUTI and SYSUT2 DD
REPL statements define the same data set.

A JCL procedure residing in the
control data set is to be stored as
a new member of a procedure library
(PROCLIB). Another JCL
procedure, also in the IEBUPDTE
control data set, is to replace an
existing member in PROCLIB.

CREATE a Partitioned Disk Input data is in the control data set.
partitioned Output partitioned data set is to
library contain three members. 2

CREATE a Partitioned Disk Input from control data set and from
partitioned existing partitioned data set. Output
data set partitioned data set is to contain three

members. 3

UPDATE Partitioned Disk Input data set is considered to be the
INPLACE and output data set as well; therefore, no
renumber SYSUT2 DD statement is required. 4

CREATE and Partitioned, Disk and Sequential master is to be created from
DELETE Sequential Tape partitioned disk input. Selected

records are to be deleted. Blocked
output. 5

CREATE, Sequential, Tape Partitioned data set is to be created
DELETE, and Partitioned and Disk from sequential input. Records are to
UPDATE be deleted and updated. Sequence

numbers in columns other than 73
through 80. One member is to be
placed in the output data set. 6

INSERT Partitioned Disk Block of logical records is to be
inserted into an existing member.
SYSUTI and SYSUT2 DD statements
define the same data set. 7

INSERT Partitioned Disk Two blocks of logical records are to be
inserted into an existing member.
SYSUTI and SYSUT2 DD statements
define the same data set. Sequence
numbers are alphanumeric. 8

CREATE Sequential Card Reader, Sequential data set with user labels is
and Disk to be created from card input. 9

COpy Sequential Disk Sequential data set is to be copied
from one direct access volume to
another; user labels can be processed
by exit routines. 10

CREATE Partitioned Disk Create a new generation. 11

Figure 13-5. IEBUPDTE Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

IEBUPDTE Example 1

In this example, two procedures are to be placed in the cataloged procedure library,
SYS I.PROCLIB. The example assumes that the two procedures can be
accommodated within the space originally allocated to the procedure library.

IIUPDATE JOB 09#660,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=SYS1.PROCLIB,DISP=OLD
IISYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=OLD
IISYSIN DD DATA
.1 ADD LIST=ALL,NAME=ERASE,LEVEL=01,SOURCE=O
.1 NUMBER NEW1=10,INCR=10
IIERASE EXEC PGM=IEBUPDTE
IIDD1 DD UNIT=disk ,DISP=(OLD ,KEEP), VOLUME=SER=111111
IISYSPRINT DD SYSOUT=A
.1 REPL LIST=ALL,NAME=LISTPROC
.1 NUMBER NEW1=10,INCR=10
IILIST EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DISP=SHR,
II DSN=SYS1.PROCLIB(&MEMBER)
IISYSUT2 DD SYSOUT=A,
II DCB=(RECFM=F,BLKSIZE=80)
IISYSIN DD DUMMY
.1 ENDUP
1*
The control statements are discussed below:

• SYSUT 1 and SYSUT2 DD define the SYS I.PROCLIB data set, which is
assumed to be cataloged.

• SYSIN DD defines the control data set. The data set contains the utility control
statements and the data to be placed in the procedure library.

• The ADD Function statement indicates that records (Data statements) in the
control data set are to be placed in the output. The newly created procedure is to
be listed in the message data set.

The ADD function will not take place if a member, named ERASE, already
exists in the new master data set referenced by SYSUT2.

• The REPL function statement indicates that records (Data statements) in the
control data set are to replace an already existing member. The member is stored
in the new master data set referenced by SYSUT2. The REPL function will only
take place if a member named LISTPROC already exists in the old master data
set referenced by SYSUTI.

• The NUMBER Detail statement indicates that the new and replacement
procedures are to be assigned sequence numbers. The first record of each
procedure is to be assigned sequence number 10; the next record is to be
assigned sequence number 20, and so on.

IEBUPDTE Program 13-19

IEBUPDTE Example 2

IEBUPDTE Example 3

13-20 OS/VS2 MVS Utilities

In this example, a three member, partitioned library is to be created. The input data
is contained solely in the control data set.

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=NEW
IISYSPRINT DD SYSOUT=A
IISYSUT2 DD DSNAME=OUTLIB,UNIT=d~k,DISP=(NEW,KEEP),
II VOLUME=SER=111112,SPACE=(TRK,(50,,10)),DCB=(RECFM=F,
II LRECL=80,BLKSIZE=80)
IISYSIN DD DATA
.1 ADD NAME=MEMB1,LEVEL=OO,SOURCE=O,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

.1 ADD NAME=MEMB2,LEVEL=OO,SOURCE=O,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

.1 ADD NAME=MEMB3,LEVEL=OO,SOURCE=O,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

.1 ENDUP
1*
The control statements are discussed below:

• SYSUT2 DD defines the new partitioned master OUTLIB. Enough space is
allocated to allow for subsequent modifications without creating a new master
data set.

• SYSIN DD defines the control data set. The data set contains the utility control
statements and the data to be placed as three members in the output partitioned
data set.

• The ADD Function statements indicate that subsequent Data statements are to
be placed as members in the output partitioned data set. Each ADD Function
statement specifies a member name for subsequent data and indicates that the
member is to be listed in the message data set.

• The Data statements contain the data to be placed in the output partitioned data
set.

• ENDUP signals the end of control data set input.

Note: Because sequence numbers (other than blank numbers) are included within
the Data statements, no NUMBER Detail statements are included in the example.

In this example, a three-member, partitioned data set (NEWMCLIB) is to be
created. The data set is to contain:

• Two members (ATTACH and DETACH) copied from an existing partitioned
data set (SYS1.MACLIB).

• A new member (EXIT), which is contained in the control data set.

lEBUPDTE Example 4

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=SYS-l .MACLIB, DISP=SHR, UN I T=disk
IISYSUT2 DD DSNAME=NEWMCLIB~VGLUME=SER=111112,UNIT=d~k,
II DISP=(NEW,KEEP),SPACE=(TRK,(100,,10)),DCB=(RECFM=F,
II LRECL=80,BLKSIZE=80)
IISYSIN DD DATA
.1 REPRO NAME=ATTACH,LEVEL=OO,SOURCE=l,LIST=ALL
.1 REPRO NAME=DETACH,LEVEL=OO,SOURCE=l,LIST=ALL
.1 ADD NAME=EXIT,LEVEL=OO,SOURCE=l,LIST=ALL
.1 NUMBER NEW1=10,INCR=100

(Data cards for EXIT member)

.1 ENDUP
1*
The control statements are discussed below:

• SYSUT1 DD defines the input pa~itioned data set SYSl.MACLIB, which is
assumed to be cataloged.

• SYSUT2 DD defines the output partitioned data set NEWMCLIB. Enough
space is allocated to allow for subsequent modifications without creating a new
master data set.

• SYSIN DD defines the control data set.

• The REPRO Function statements identify the existing input members to be
copied onto the output data set. These members are also listed in the message
data set.

• The ADD Function statement indicates that records (subsequent Data
statements) are to be placed as a member in the output partitioned data set. The
Data statements are to be listed in the message data set.

• The NUMBER Detail statement assigns sequence numbers to the Data
statements. (The Data statements contain blank sequence numbers in columns
73 thr~ugh 80.) The first record of the output member is assigned sequence
number 10; subsequent records are incremented by 100.

• ENDUP signals the end of SYSIN data.

Note: The three named input members (ATTACH, DETACH, and BLDL) do not
have to be specified in the order of their collating sequence in the old master.

In this example, a member (MODMEMB) is to be updated within the space it
actually occupies. Two existing logical records are to be replaced, and the entire
member is to be renumbered.

IIUPDATE JoB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=PDS,UNIT=d~k,DISP=(OLD,KEEP),
II VOLUME=SER=111112
IISYSIN DD *
.1 CHANGE NAME=MODMEMB,LIST=ALL,UPDATE=INPLACE
.1 NUMBER SEQ1=ALL,NEW1=10,INCR=5

(Data statement 1, sequence number 00000020)
(Data statement 2, sequence number 00000035)

1*

IEBUPDTE Program 13-21

IEBUPDTE Example 5

13-22 OS/VS2 MVS Utilities

The control statements are discussed below:

• SYSUTI DD defines the data set that is to be updated in place. (Note that the
member name need not be specified in the DD statement.)

• SYSIN DD defines the control data set.

• The CHANGE Function statement indicates the name of the member to be
updated and specifies the UPDATE=INPLACE operation. The entire member
is to be listed in the message data set.

• The NUMBER Detail statement indicates that the entire member is to be
renumbered, and specifies the first sequence number to be assigned and the
increment value for successive sequence numbers.

• The Data statements replace existing logical records having sequence numbers of
20 and 35.

In this example, a sequential master data set is to be created from partitioned input
and selected logical records are to be deleted.

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=PARTDS,UNIT=d~k,DISP=(OLD,KEEP),
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=SEQDS,UNIT=mpe,LABEL=(2,SL),
II DISP=(,KEEP),VOLUME=SER=001234,DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSIN DD *
.1 CHANGE NEW=PS,NAME=OLDMEMB1

(Data statement 1, sequence number 0000(123)

.1 DELETE SEQ1=223,SEQ2=246

(Data statement 2, sequence number 0000(224)

1*
The control statements are dis,?ussed below:

• SYSUTI DD defines the input partitioned data set PARTDS.

• SYSUT2 DD defines the output sequential data set. The data set is to be written
as the second data set on a tape volume.

• SYSIN DD defines the control data set.

• CHANGE identifies the input member (OLDMEMB1) and indicates that the
output is to be a sequential data set (NEW=PS).

• The first Data statement replaces the logical record whose sequence number is
identical to the sequence number in the Data statement (00000123). If no such
logical record exists, the Data statement is incorporated in the proper sequence
within the output data set.

• The DELETE Detail statement deletes logical records having sequence numbers
from 223 through 246.

• The second Data statement is inserted in the proper sequence in the output data
set.

Note: Only one member can be used as input when converting to sequential
organization.

lEBUPDTE Example 6

In this example, a member of a partitioned data set is to be created from sequential
input and existing logical records are to be updated.

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=OLDSEQDS, UNIT=tape
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DD DSNAME=NEWPART, UNIT=disk, DISP=(, KEEP),
II VOLUME=SER=111112,SPACE=(TRK,(10,5,5)),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
IISYSIN DD *

72

.1 CHANGE NEW=PO,MEMBER=PARMEM1,LEVEL=01, C

.1 SEQFLD=605,COLUMN=40,SOURCE=0

(Data statement 1, sequence number 0(020)

.1 DELETE SEQ1=220,SEQ2=250

(Data statement 2, sequence number 00230)
(Data statement 3, sequence number 00260)

.1
1*

ALIAS NAME=MEMBl

The control statements are discussed below:

• SYSUTI DD defines the input sequential data set (OLDSEQDS). The data set
resides on a tape volume.

• SYSUT2 DD defines the output partitioned data set. Enough space is allocated
to provide for members that might be added in the future.

• SYSIN DD defines the control data set.

• The CHANGE Function statement identifies the output member and indicates
that a conversion from sequential input to partitioned output is to be made. The
SEQFLD parameter indicates that a five-byte sequence number is located in
columns 60 through 64 of each Data statement. The COLUMN parameter
specifies the starting column of a field (within subsequent Data statements) from
which replacement information is obtained.

• The first Data statement is used as replacement data. Columns 40 through 80 of
the statement replace columns 40 through 80 of the corresponding logical
record. If no such logical record exists, the entire card image is inserted in the
output member.

• The DELETE Detail statement deletes all of the logical records having sequence
numbers from 220 through 250.

• The second Data statement, whose sequence number falls within the range
specified in the DELETE Detail statement, is incorporated in its entirety in the
output member.

• The third Data statement, which is beyond the range of the DELETE Detail
statement, is treated in the same manner as the first Data statement.

• ALIAS assigns the alias MEMBI to the output member PARMEMI.

IEBUPDTE Program 13-23

IEBUPDTE Example 7

13-24 OS/VS2 MVS Utilities

In this example, a block of three logical records is to be inserted into an existing
member, and the updated member is to be placed in the existing partitioned data
set.

Figure 13-6 shows existing sequence numbers, new sequence numbers, and Data
statements to be inserted.

Sequence Numbers and
Data Statements to be
Inserted New Sequence Numbers

10
15
Data statement 1
Data statement 2
Data statement 3
20
25
30

10
15
20
25
30
35
40
45

Figure 13-6. Sequence Numbers and Data Statements to be Inserted

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT'I DD DSNAME=PDS, UNIT=disk, DISP=(OLD, KEEP),
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=PDS, UNIT=disk, DISP=(OLD, KEEP),
II VOLUME=SER=111112
IISYSIN DD *
.1 CHANGE NAME=RENUM,LIST=ALL,LEVEL=Ol,SOURCE=O
.1 NUMBER SEQ1=15,NEW1=20,INCR=5,INSERT~YES

(Data statement 1)
(Data statement 2)
(Data statement 3)

1*
The control statements are discussed below:

• SYSUTI and SYSUT2 DD define the partitioned data set (PDS).

• SYSIN DD defines the control data set.

• The CHANGE Function statement identifies the input member RENUM. The
entire member is to be listed in the message data set.

• The NUMBER Detail statement specifies the insert operation and controls the
renumbering operation.

• The Data statements are the logical records to be inserted. (Sequence numbers
are assigned when the Data statements are inserted.)

In this example, the existing logical records have sequence numbers 10, 15, 20, 25,
30, etc. Sequence numbers are assigned by the NUMBER Detail statement, as
follows:

1. Data statement 1 is assigned sequence number 20 (NEWI =20) and inserted
after existing logical record 15 (SEQ 1 = 15).

2. Data statements 2 and 3 are assigned sequence numbers 25 and 30 (INCR=5)
and are inserted after Data statement 1.

lEBUPDTE Example 8

3. Existing logical records 20, 25, and 30 are assigned sequence numbers 35, 40,
and 45, respectively.

4. The remaining logical records in the member are renumbered.

In this example, two blocks (three logical records per block) are to be inserted into
an existing member, and the member is to be placed in the existing partitioned data
set. A portion of the output member is to be renumbered.

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD 72
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=PDS,UNIT=d~k,DISP=(OLD,KEEP),
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=PDS,UNIT=d~k,DISP=(OLD,KEEP),
II VOLUME=SER=111112
IISYSIN DD *
.1 CHANGE NAME=RENUM,LIST=ALL,LEVEL=01,SOURCE=O, C
.1 SEQFLD=(765,783)
.1 NUMBER SEQ1=AA015,NEW1=AA020,INCR=5,INSERT=YES

(Data statement I)
(Data statement 2)
(Data statement 3)

.1 NUMBER

(Data statement 4)
(Data statement 5)
(Data statement 6)

SEQ1=AA030,INSERT=YES

(Data statement 7, sequence number AA035)

1*
Figure 13-7 shows existing sequence numbers, new sequence numbers, and Data
statements to be inserted. It should be noted that the sequence numbers are
alphameric.

Sequence Numbers and
Data Statements to be
Inserted

AAOIO
AAOl5
Data statement I
Data statement 2
Data statement 3
AA020
AA025
AA030
Data statement 4
Data statement 5
Data statement 6
Data statement 7
AA040
AA050
88010
88015

New Sequence Numbers

AAOIO
AAOl5
AA020
AA025
AA030
AA035
AA040
AA045
AA050
AA055
AA060
AA065
AA070
AA075
88010
88015

Figure 13-7. Sequence Numbers and Seven Data Statements to be Inserted

The control statements are discussed below:

• SYSUT1 and SYSUT2 DD define the partitioned data se,t PDS.

• SYSIN DD defines the control data set.

IE8UPDTE Program 13-25

13-26 OS/YS2 MYS Utilities

• The CHANGE Function statement identifies the input member RENUM. The
entire member is to be listed in the message data set.

• The NUMBER Detail statements specify the insert operations (INSERT = YES)
and control the renumbering operation.

• Data statements 1, 2, 3, and 4, 5, 6 are the blocks of logical records to be
inserted. Because they contain blank sequence numbers, sequence numbers are
assigned when the Data statements are inserted.

• Data statement 7, since it contains a sequence number, terminates the insert
operation. The sequence number is identical to the number on the next record in
the old master data set; consequently, data statement 7 will replace the equally
numbered old master record in the output data set.

The existing logical records in this example have sequence numbers AA010,
AA015, AA020, AA025, AA030, AA035, AA040, AA045, AA050, BB010,
BB015, etc. The insert and renumbering operations are performed as follows:

1. Data statement 1 is assigned sequence number AA020 (NEW1=AA020) and
inserted after existing logical record AA015 (SEQ1=AA015).

2. Data statements 2 and 3 are assigned sequence numbers AA025 and AA030
(INCR=5) and are inserted after Data statement 1.

3. Existing logical records AA020, AA025, and AA030 are assigned sequence
numbers AA035, AA040, and AA045 , respectively.

4. Data statement 4 is assigned sequence number AA050 and inserted. (The
SEQl =AA030 specification in the second NUMBER statement places this Data
statement after existing logical record AA030, which has become logical record
AA045.)

5. Data statements 5 and 6 are assigned sequence numbers AA055 and AA060 and
are inserted after Data statement 4.

6. Existing logical record AA035 is replaced by data statement 7, which is assigned
sequence number AA065.

7. The remaining logical records in the member are renumbered until logical record
BBO lOis encountered. Because this record has a sequence number higher than
the next number to be assigned, the renumbering operation is terminated.

(

IEBUPDTE Example 9

In this example, IEBUPDTE is used to create a sequential data set from card input.
User header and trailer labels, also from the input stream, are placed on this
sequential data set.

IILABEL JOB , MSGLEVEL=1
IICREATION EXEC PGM=IEBUPDTE,PARM=NEW
IISYSPRINT DO SYSOUT=A
IISYSUT2 DO DSNAME=LABEL,VOLUME=SER=123456,UNIT=d~k,
II DISP=(NEW,KEEP),LABEL=(,SUL),SPACE=(TRK,(15,3))
IISYSIN DO *
.1 LABEL

(First header label)

(Last header label)

.1 ADD LIST=ALL,OUTHDR=ROUTINE1,OUTTLR=ROUTINE2

(First input data record)

(Last input data record)

.1 LABEL

(First trailer label)
(Last trailer label)

.1 ENDUP
1*
The control statements are Oiscussed below:

• SYSUT2 DD defines and allocates space for the output sequential data set,
which resides on a disk volume.

• SYSIN DD defines the control data set. (This control data set includes the
sequential input data set and the user labels, which are on cards.)

• The first LABEL statement identifies the 80-byte card images in the input
stream which will become user header labels. (They can be modified by the
user's header-label processing routine specified on the ADD Function
statement.)

• The ADD Function statement indicates that the Data statements that follow are
to be placed in the output data set. The newly created data set is to be listed in
the message data set. User output header and output trailer routines are to be
given control prior to the writing of header and trailer labels.

• The second LABEL statement identifies the 80-byte card images in the input
stream which will become user trailer labels. (They can be modified by the user's
trailer-label processing routine specified on the ADD Function statement.)

• ENDUP signals the end of the control data set.

IEBUPDTE Program 13-27

lEBUPDTE Example 10

In this example, IEBUPDTE is used to copy a sequential data set from one direct
access volume to another. User labels are processed by user exit routines.

72
IILABELS JOB , MSGLEVEL=1
II EXEC PGM=IEBUPDT~,PARM=(MOD"MMMMMM)
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=OLDMAST,DISP=OLD,LABEL=(,SUL),
II VOLUME=SER=111111,UNIT=d~k
IISYSUT2 DD DSNAME=NEWMAST,DISP=(NEW,KEEP),LABEL=(,SUL),
II UNIT=2314,VOLUME=SER=XB182,SPACE=(TRK,(5,10»
IISYSIN DD DSNAME=INPUT,DISP=OLD,LABEL=(,SUL),
II VOLUME=SER=222222,UNIT=d~k
II
The control statements are discussed below:

• SYSUTI DD defines the input sequential data set, which resides on a disk
volume.

• SYSUT2 DD defines the output sequential data set, which will reside on a disk
volume.

• SYSIN DD defines the control data set. The contents of this disk-resident data
set in this example are:

.1

.1

.1

REPRO LIST=ALL,INHDR=SSSSSS,INTLR=TTTTTT,
OUTHDR=XXXXXX,OUTTLR=YYYYYY

ENDUP

C

• The REPRO Function statement indicates that the existing input sequential data
set is to be copied to the output data set. This output data set is to be listed on
the message data set. The user's label processing routines are to be given control
when header or trailer labels are encountered on either the input or the output
data set.

• ENDUP indicates the end of the control data set.

lEBUPDTE Example 11

13-28 OS/VS2 MVS Utilities

In this example, a partitioned generation consisting of three members is to be used
as source data in the creation of a new generation. IEBUPDTE is to be used to add
a fourth member to the three source members and to number the new member. The
resultant data set is to be cataloged as a new generation.

II JOB
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=A.B.C(O),DISP=OLD
IISYSUT2 DD DSNAME=A. B. C(+ 1) , DISP=(, CATLG) , UNIT=disk ,
II VOLUME=SER=111111,SPACE=(TRK,(100,10,10»,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
IISYSIN DD DATA
.1 REPRO NAME=MEM1,LEVEL=OO,SOURCE=O,LIST=ALL
.1 REPRO NAME=MEM2,LEVEL=OO,SOURCE=O,LIST=ALL
.1 REPRO NAME=MEM3,LEVEL=OO,SOURCE=O,LIST=ALL
.1 ADD NAME=MEM4,LEVEL=OO,SOURCE=O,LIST=ALL
.1 NUMBER NEW1=10,INCR=5

(data cards comprising MEM4)

.1 ENDUP
1*

The control statements are discussed below:

• SYSUTI DD defines the latest generation, which is used as source data.

• SYSUT~/DD defines the new generation, which is created from the source
ge~r--atlon and from an additional member included as input and data.

~/~he REPRO Function statements reproduce the named source members in the
output generation.

• The ADD Function statement specifies that the data cards following the input
stream be included as MEM4.

• The NUMBER Detail statement indicates that the new member is to have
sequence numbers assigned in columns 73 through 80. The first record is
assigned sequence number 10. The sequence number of each successive record is
incremented by 5.

• ENDUP signals the end of input card data.

Note: This example assumes that a model DSCB exists on the catalog volume on
which the index was built.

IEBUPDTE Program 13-29

· (
\

\-
)

IEHATLAS PROGRAM

Input and Output

IEHA TLAS is a system utility used with direct access devices when a defective
track is indicated by a data check or missing address marker condition.

IEHATLAS can be used to locate and assign an alternate track to replace the
defective track. Usable data records on the defective track are retrieved and
transferred to the alternate track. A replacement for the bad record is created from
data supplied by the user and placed on the alternate track.

In a simple application, IEHA TLAS is used as a separate job after an abnormal
termination of a problem program. Input data necessary for execution of
IEHA TLAS-the address of the defective track and replacement records-may be
obtained from the dump and from backup data.

A more complex use of IEHATLAS may involve the preparation of a user's
SYNAD routine, which reconstructs the necessary input data and invokes
IEHA TLAS dynamically.

When IEHATLAS is invoked, it attempts to write on the defective track. If the
subsequent read-back check indicates that the attempt was successful, a message is
issued on the SYSOUT device. If not, a supervisor call routine (SVC 86) is entered
automatically.

The SVC routine locates and assigns an alternate track. (If a defective track already
has an alternate and an error occurs on that alternate, the SVC routine assigns the
next available alternate. All of the valid data records on the defective track are
retrieved and transferred to the alternate track. The input record is written on the
alternate track in the correct position to recover from the previous error.

When a READ error occurs and a complete recovery is desired, IEHDASDR can
be used to produce a listing of error data on a track. Using this data, the input data
record for IEHA TLAS can be created. The replace function can then be performed
by executing IEHATLAS.

IEHATLAS supports all current DASD, as listed in the Device Support section of
this manual, except the MSS staging packs and virtual volumes.

IEHA TLAS uses the following input: (1) a description of the defective track,
specifying the cylinder, track, record, key, and data length (in hexadecimal
notation), (2) an indication if WRITE Special is needed, and (3) a valid copy (in
hexadecimal notation) of the bad record.

IEHA TLAS produces as output: (1) a nessage, issued on the SYSOUT device,
containing the user's control informatio.l, the input record, and diagnostics, (2) the
input record, written on either th~ original (defective) track or on an alternate track
containing the usable data taken from the defective track, and (3) the return
parameter list (specifying a maximum of three error record numbers in hexadecimal
when an unrecoverable error occurs).

IEHA TLAS Program t 4-1

Control

Job Control Statements

IEHA TLAS is controlled by job control statements and utility control statements.
The job control statements are used to execute or invoke IEHA TLAS and to define (
the data sets used and produced by IEHATLAS.

A utility control statement is used to specify whether the bad record is a member of
the volume table of contents or a member of some other data set. It is also used to
indicate whether or not the WRITE Special CCW command is to be used for track
overflow records.

Figure 14-1 shows the job control statements necessary for using IEHA TLAS.

Statement

JOB

EXEC

SYSPRINTDD

SYSUTI DD

SYSINDD

Use

Initiates the job.

Specifies the program name (PGM=IEHATLAS) or, if the job control
statements reside in a procedure library, the procedure name.

Defines a sequential data set that contains the output messages issued by
IEHATLAS.

Defines the data set that contains the bad record.

Defines the control data set, which contains the utility control statement
and a copy of the bad record.

Figure 14-1.1EHATLAS Job Control Statements

Utility Control Statement

Figure 14-2 shows the utility control statements necessary for using IEHATLAS.

Statement

TRACK

VTOC

Use

Specifies that an alternate track is to be assigned for a track that does nQt
contain VTOC records.

Specifies that an alternate track is to be assigned for a track that contains
VTOC records.

Figure 14-2.1EHA TLAS Utility Control Statements

TRACK or VTOC Statement

14-2 OS/VS2 MVS Utilities

The TRACK or VTOC statement is used to identify the defective record.

Care should be taken to ensure that the input record data length does not exceed
the track size. This is especially important when the WRITE Special command is
specified because the error may not be recognized immediately by the system.

The TRACK or VTOC statement must not begin in column 1.

Input data (consisting of the hexadecimal replacement record) begins in column 1
immediately following the utility control data. Input data may continue through
column 80. As many cards as necessary may be used to contain the replacement
record. All columns (1 through 80) are used on the additional cards.

IEHATLAS is designed to replace an error record with a copy of that record. It
cannot be used to replace a record with another of a different key and/or data
~~. /

Retum Codes

An end-of-file record cannot be changed; therefore, input for key and/or data
fields are ignored.

The format of the TRACK or VTOC statement is:

{TRACK=bbbbcccchhhhrrkkdddd [S] }
{VTOC=bbbbcccchhhhrrkkdddd }

Return Code

o
4

8

12

16

20

24

28

32

36

40

48

52

56

60

Meaning

Successful completion; ATLAS has assigned an alternate track.

The device does not have software-assignable alternate tracks.

All the alternate tracks for the device have been assigned.

The requested main storage space is not available.

There was an I/O error in the alternate track assignment after N attempts
at assignment (where N= 100

,.{) of the assignable alternate tracks for this
device).

The error is a condition other than a data check or missing address
marker.

There is an error in the Format 4 DSCB that prevents ATLAS from
reading it.

The user-specified error record is the Format 4 DSCB, which ATLAS
cannot handle because the alternate track information is unreliable.

ATLAS cannot handle the error found in the count field of the last record
on the track.

There are errors in the Home Address or in Record Zero.

ATLAS found one or more errors in record(s) and assigned an alternate
track. 1) There was an error on an end-of-file record. 2) ATLAS
encountered an error in the count field. 3) There were errors in more than
three count fields.

ATLAS found no errors on the track and assigned no alternate track.

Because of an I/O error, ATLAS cannot reexecute the user's channel
program successfully.

The system does not support track overflow.

The track address provided does not belong to the indicated data set.

Figure 14-3.Return Codes from ATLAS

IEHA TLAS Program 14--3

Operands

bbbb

ecce

dddd

hhhh

rrkk

S

Applicable Control
Statements

TRACK
VTOC

TRACK
VTOC

TRACK
VTOC

TRACK
VTOC

TRACK
VTOC

TRACK

t 4-4 OS/VS2 MVS Utilities

DeSCription of Operands/Parameters

bbbb
This number must be zeros.

ecce
is the number of the cylinder inwhjch the defective track
was found. ,,<. " ,

dddd
is the data length, of the bad record. (When a WRITE
Special command is used, dddd IS the length of the record
segment.)

, ,

hhhh
is the defective track number~

rrkk

S

is the record number and key length for the bad record.

is an optional byte of EBCDIC information that specifies
that the WRITE Special command is to be used (when the
last record on the track overflows and must be completed
elsewhere) .

Restrictions

• The block size for the SYSPRINT data set must be a multiple of 121. The block
size for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified.

• DISP=SHR must not be coded on the SYSUTI DD statement.

IEHA TLAS Examples

lElIA TUS Emmple 1

The following examples illustrate some of the uses of IEHATLAS. Figure 14-4 can
be used as a quick reference guide to IEHATLAS examples. The numbers in the
"Example" column point to examples that follow.

Operation

Get Alternate
Track

Get Alternate
Track

Get Alternate
Track

Get Alternate
Track

Comments

Write Special is included because of a
track overflow condition.

Alternate track assigned for a bad
end-of-file record.

Alternate track assigned for: a bad
VTOC record.

Replace defective record zero.

Figure 14-4.IEHATLAS Example Directory

Example

2

3

4

Note: Examples which use disk in place of actual device-ids, must be changed
before use. See the Device Support section, in the Introduction to this manual for
valid device-id notation.

In this example, the data set defined by SYSUTI contains the bad record. An
alternate track on the specified unit and volume will be assigned to replace the
defective track.

IIJOBATLAS JOB 06#990,SMITH,MSGLEVEL=1
IISTEP EXEC PGM=IEHATLAS
IISYSPRINT 00 SYSOUT=A
/ISYSUTl 00 OSNAME=NEWSET,UNIT=d~k,vOLUME=SER=333333,
II OISP=OLO
IISYSIN 00 *

TRACK=00000002000422020006S
F3F1C2C2FOFOOOOO
1*
The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages can be written.

• SYSUTI DD defines the data set that contains the bad record.

• SYSIN DD defines the control data set, which foll()ws in the input stream.

• TRACK specifies the cylinder and track number for the defective track, and the
record number, key length, and data length of the bad record. In this example,
the input record is to be placed on cylinder two, track four, record 22; it has a
key length of two with a logical record length of six. The WRITE Special (S)
character is used because there is a track overflow condition.

IEHATLAS Program 14-5

lEHATLAS Example 2

lEHATLAS Example 3

The input record in this example is a typical hexadecimal record as defined by a
TRACK statement. The input record contains eight bytes (data length = 6, key
length = 2).

In this example, an alternate track is assigned for a bad end-of-file record.

IIJOBATLAS JOB 06#990,SMITH,MSGLEVEL=1
II STEP EXEC PGM=IEHATLAS
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=EOFSET,UNIT=d~k,vOLUME=SER=333333,
II DISP=OLD
IISYSIN DD *

TRACK=00000001000003000000
1*
The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages can be written.

• SYSUTI DD defines the data set that contains the bad record.

• SYSIN DD defines the control data set, which follows in the input stream.

• TRACK defines an end-of-file record on cylinder one, track zero, record three.
Input data other than the utility control statement is not required.

In this example, an alternate track is assigned for a bad volume table of contents
record.

IIJOBATLAS JOB 06#990,SMITH,MSGLEVEL=1
IISTEP EXEC PGM=IEHATLAS
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=disk, VOLUME=SER=222222, DISP=OLD
IISYSIN DD *

VTOC=000000000005022C0060
D6C2D1C5C3E340
40404040F1F2F3F1F1FOF000014401360000000100
000040008000000FOOOF00033333333333333333310DDD00000100OOOAOOOOOOOAOOOOOOOOOOOOOO
00
1*

14-6 OS/VS2 MVS Utilities

The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages can be written.

• SYSUTI DD defines the data set that contains the bad record.

• SYSIN DD defines the control data set, which follows in the input stream.

• VTOC defines the location of the bad VTOC record as track five of cylinder
zero. The record number is 2 with a key length of 44. Record length of the bad
record is 96.

The input record in this example is a typical hexadecimal record as defined by the
VTOC statement. The input record contains 140 bytes (data length = 96, key
length = 44).

lEHATLA.S Example 4

In this example, the replacement record is Record O.

IIJOBATLAS JOB 06#990,SMITH,MSGLEVEL=1
IISTEP EXEC PGM=IEHATLAS
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=NEWSET,UNIT=d~k,vOLUME=SER=333333,
II DISP=OLD
IISYSIN DD *

TRACK=00000002000400000008
0000000000000000
1*
The control statements are discussed below:

• SYSPRINT DO defines the device to which the output messages can be written.

• SYSUTI DO defines the data set that contains the bad record.

• SYSIN DO defines the control data set, which follows in the input stream.

• TRACK specifies the bin, cylinder, and track number for the defective track,
and the record number, key length, and data length of the bad record. In this
example, the input record is to be placed on cylinder two, track four, record
zero; it has a key length of zero with a logical record length of eight. The input
record in this example is a typical hexadecimal record as defined by a TRACK
statement. The input record contains eight bytes (data length=8, key length=O).

IEHATLAS Program 14-7

IEHDASDR PROGRAM

IEHDASDR is a system utility used to prepare direct access volumes for use and to
assign alternate tracks on direct access volumes.

In addition, IEHDASDR can be used to dump the entire contents or portions of a
direct access volume to a volume or volumes of the same direct access device type,
to a tape volume or volumes, to a system output device. Data that is dumped to a
tape volume is arranged so that it can subsequently be restored to its original
organization by IEHDASDR or IBCDMPRS.

IEHDASDR can be used with volumes containing VSAM and non-VSAM data
sets. Information about VSAM data sets can be found in OS/VS2 Access Method
Services.

Only the special MSS initialize function is allowed on MSS staging packs.

The program can be used to:

• FORMAT: Assign alternate tracks for defective tracks. Write RO and erase the
rest of the track. List the alternate and defective tracks. Then QUICK DASDI to
make the direct access volume suitable for operating system use.

• ANALYZE: Analyze tracks, assign alternate tracks for defective tracks, and
perform QUICK DASDI functions to make 2314 or 2305 direct access volumes
suitable for operating system use.

• LABEL: Change the volume serial number of a formatted direct access volume.

• GET AL T: Assign alternate tracks.

• DUMP: Create a backup or transportable copy of a direct access volume, or list
the contents on a system output device.

• RESTORE: Copy dumped data from a tape volume to a direct access volume.

• PUTIPL: Install a user-supplied IPL bootstrap and IPL text program on a
nonsystem residence DASD volume.

Initializing a Direct Access Volume

IEHDASDR can be used to initialize a direct access volume by either of two
methods:

A non-QUICK DASDI:

1. U nassign all alternate tracks.

2. Rewrite the home address and/or record zero (HA/RO) on all tracks.

3. Test flagged defective tracks and recover them if no errors are detected.

4. Assign defective tracks to new, alternate tracks.

5. Perform all other functions of QUICK DASDI.

A QUICK DASDI:

1. Write IPL records on track 0 (records 1 and 2).

2. Write volume labels on track 0 (record 3) and provide space for additional
records, if requested (reads alternate tracks and decreases the total count of the
alternates by one when an alternate is found defective or assigned).

3. Construct and write a volume table of contents (VTOC).

IEHDASDR Program 15-1

15-2 OS/VS2 MVS Utilities

4. Write an IPL program, if requested, on track O.

5. Optionally, check for tracks that have been previously designated as defective
(flagged) and have had alternate tracks assigned.

6. Optionally, write a track descriptor record (record 0) and erase the remainder of
each track. May also attempt to reclaim any track that has the defective bit on in
the flag byte of the home address.

IEHDASDR can be used to format 3350 devices, a modified surface analysis will
be defaulted for OFFLINE ANAL YZE (PASSES= 1). The analysis procedure will
be:

• Unassign all alternates

• Rewrite the home-address and record-zero (HA/RO) on all tracks

• Perform surface analysis on previously flagged defective tracks and reclaim them
if no errors are detected, otherwise, assign an alternate.

• Write a volume label, VTOC, and IPL text, if supplied.

Figure 15-1 shows a direct access volume after it has been prepared for use. A
direct access volume can be initialized in this manner using IEHDASDR.

Standard home
address

Figure 15-1. Direct Access Volume Initialized Using IEHDASDR

IPL
bootstrap
records

Volume
label
record

)

IEHDASDR can be used to attempt to reclaim tracks on a 3340/3344 device with
the defective bit on in the home address (HA) flag byte. When the ANALYZE
function is executed on these devices, with the FLAGTEST=NO option, the
volume is scanned for flagged defective tracks.

• When a track is found flagged (defective), the track is surface analyzed.

• If no defect is indicated, the track is returned to service with the defective bit off
in the home address flag byte and a standard RO is written.

• A defective primary track is assigned the next available alternate.

If over a period of time the same track on a particular 3340/3344 shows a history
of failures, or has been flagged by the manufacturer, the track is probably marginal
and should be assigned an alternate even if no error occurs on the surface analysizs.

lnitialize-MSS Staging Volumes

IEHDASDR can be used to prepare a 3330 or 3330-1 volume for use with MSS as
a staging pack. The format of the staging pack is as follows:

Primary tracks

Alternate tracks

3330

0-408

409,410

3330-1

0-808

809-814

Note: A I-track VTOC will be written on track 2 of cylinder 0 with a format 5
DSCB that indicates no free, tracks.

Changing the Volume Serial Number of a Direct Access Volume

IEHDASDR can be used to change the volume serial number of an initialized direct
access volume. Optionally, a one- to ten-character owner name can be placed in the
volume label record (record 3 of track 0). If an owner name already exists, it is
overwritten with the new name.

Note: All cataloged data sets residing on a volume whose label is changed must be
recataloged if the catalog reflects the old serial number.

Assigning Alternate Tracks for Specified Tracks

IEHDASDR can be used to assign an alternate track on a disk volume. An
alternate track can be assigned for any track, whether it is defective or not. If the
specified track is an alternate, a new alternate is assigned; if the specified track is
an unassigned alternate, it is flagged to prevent its future use.

For 3350 volumes only, surface analysis will be performed to determine if the track
is defective. Alternates will be assigned only if an error is detected.

Creating a Backup, Transportable, or Printed Copy

IEHDASDR can be used to dump a direct access volume or'a portion of a volume
to any number of tape volumes or volumes of the same direct access device type, or
to a system output device. The program can dump a single track, a group of tracks,
or an entire volume.

When an entire volume is dumped:

• All primary tracks (for which no alternate tracks are assigned) are dumped.

• When a defective primary track is found, the alternate track is dumped in place
of the primary track.

IEHDASDR Program 15-3

Each track to be dumped will have all of its data except the home address (HA)
and the count field of record ,zero (RO) copied to the receiving volume. The dump
function of IEHDASDR is dependent on the validity of the Count field of every
record on the track being dumped. The results of reading an erroneous R 1 count
field are unpredictable, while R2 through Rn will cause the dump function to
terminate.

A receiving direct access volume retains its own serial number unless the user
specifies that it is to be assigned the serial number of the direct access volume being
dumped.

Except for a printing operation, only data that is owned is dumped; IEHDASDR
checks the first or only Free Space (Format 5) data set control block (DSCB) in
the volume table of contents. The Free Space (Format 5) DSCB identifies unowned
(unused) space on the direct access volume. Whenever an unowned track is
encountered, a dummy record, containing a home address and record zero, is
written on the receiving volume. When data is dumped to a system output device,
the entire range of specified tracks is dumped.

A printing operation prints each record in hexadecimal. In addition, all printable
characters are also represented in EBCDIC.

Figure 15-2 shows the format of printed output. Each track is identified by its
absolute track address (cccchhhh). The RO data field is printed on the same line as
the track address .. Each printed record is preceded by a count field that identifies
the applicable track address (cccchhhh), the record number of the record being
printed (rr), and the key and data length (kk anddddd) of the record.

If an alternate track is printed in place of a primary track, it is identified in the
printout by the primary track address.

Copying Dumped Data to a Direct Access Volume

When a direct access volume is dumped to a tape volume, the data is placed in a
format that is specially suited for the tape volume. IEHDASDR can be used to
restore the format of the dumped data and place the data on the same type of direct
access volume as the original volume; that is, data originally dumped from a 2314
volume can be restored to a 2314 volume, etc.

Identical copies of dumped data can be restored to any number of volumes of the
same direct access device type as the original volume during the execution of a
single restore operation. In addition, data that was dumped by IBCDMPRS can be
restored.

A receiving direct access volume retains its own serial number unless the user
specifies that it is to be assigned the serial number of the direct access volume

*** TRACK cccchhhh RO DATA xxxxxxxxxxxxxxxx

COUNT cccchhhhrrkkdddd
key and data fields

(hexadecimal)

000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxx xxx xx *
000032 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx *

etc.

COUNT cccchhhhrrkkdddd

000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx *
000032 xxxxxxxx xxx xxx xx xxxxxxxx etc.

** * TRACK cccchhhh RO DATA xxxxxxxxxxxxxxxx

COUNT cccchhhhrrkkdddd

000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx *
000032 xxxxxxxx xxxxxxxx etc.

key and data fields

(EBCDIC)

Figure 15-2. Format of a Direct Access Volume Dumped to a Printer Using IEHDASDR

15-4 OS/VS2 MVS Utilities

originally dumped. If multiple direct access volumes are to be dumped to, and the
user specifies that the serial number of the dumped volume is to be propagated, all
receiving volumes are assigned that serial number.

Dumping and Restoring Unlike Devices

With the 3330, 3330-1, and 3340, you have the capability of upward device
migration. That is, a 3330 can be dumped or restored to a 3330-1 volume, but a
3330-1 cannot be dumped or restored to a 3330. Likewise, a 3340, 35-megabyte
model can be dumped or restored to a 3340, 70-megabyte model, but the
70-megabyte model cannot be dumped or restored to the 35-megabyte model.

If the input volume contains a VSAM catalog or VSAM data sets, upward
migration with IEHDASDR to a different device type should not be done due to
device-dependent information in the VSAM catalog. The Access Method Services
utility must be used to move the VSAM catalog or data set.

~en any of these device migration functions are performed, the 'DOS' bit in the
receiving volume's Format 4 DSCB is set to indicate the Format 5 DSCB is
incorrect. It is recommended that a job step be executed to allocate a temporary
data set for the receiving volume to cause the DADSM function to reset the DOS
bit and correct the Format 5 DSCB.

Formatting a Direct Access Volume

IEHDASDR can be used to format a direct access volume. A volume can be
formatted to:

• Check a direct access volume for previously flagged tracks. No formatting is
performed on known defective tracks. The defective and the alternate tracks are
printed.

• Format each track by writing RO and erase the rest of the track.

• Assign alternate tracks for defective tracks.

• Construct IPL bootstrap records (records 1 and 2 of track 0), a volume label
record (record 3 of track 0), and a volume table of contents (VTOC), whose
size and placement are determined by the user.

• Optionally, write an IPL program record and provide owner information in the
volume label record.

Writing IPL Records with the PUTIPL Function

IEHDASDR can be used, via the PUTIPL function, to write user-supplied IPL
bootstrap records and an IPL program on cyliner 0, track 0, of any initialized
DASD volume, other than the system residence volume. See Figure 15-1.

The contents of the IPL records and the contents of the records that make up the
program are not checked by IEHDASDR. It is the user's responsibility to ensure
that the IPL records can load an executable program.

The first IPL record must contain a PSW followed by two CCWs (channel
command words). The CCWs must have the following hexadecimal formats:

First CCW:

SecondCCW:

06xxxxxx60000090

08xxxxxxOOOOOOOO

IEHDASDR Program 15-5

15-6 OS/VS2 MVS Utilities

The first CCW is a command to read in the second IPL record at main storage
address xxxxxx. The second CCW is a transfer-in-channel command (a branch) to
the CCW that begins the second IPL record.

The second IPL record must be a 144-byte channel program. Bytes 32 to 42 of this
record must contain zeros.

The program may consist of:

• One record, not longer than 3K (3072) bytes.

• Two records, neither longer than 3K (3072) bytes.

• Three records, none longer than 2K (2048) bytes.

Figure 15-3 shows an input data set with three program records.

IPl
Records Program Records

'" ,4111

2K :~;tes 2K ;;tes 144

I
80

bytes bytes

'- 4bte 2 y s

Figure 15-3. Input Data Set With Three Program Records

If the output volume does not contain user labels, IEHDASDR writes program
records after the volume label record. Figure 15-4 shows where program records
are written when the output volume does not contain user labels.

Figure t 5-4. Cylinder 0, Track 0 Fragment Without User Labels

If user labels have been written after the volume label, the user can specify that
IEHDASDR:

• Write over the user labels.

• Put the program records after the user labels when a non-2314 volume is used.

Figure 15-5 shows program records to be written after user labels.

The following errors are possible when using IEHDASDR PUTIPL function to
write IPL records and a program on a direct access volume:

• A 2314 output volume contains user labels, but the user has not specified that
the user labels are to be overwritten.

• The total input (IPL records and program) consists of fewer than three records.

Input and Output

Control

Figure 15-5. Cylinder 0, Track 0 Fragment With User Labels

• The first and second IPL records are not 24 bytes and 144 bytes in length,
respectively.

• A third program record is longer than 2K bytes.

• The output device is not a direct access device.

• The output volume contains a VTOC on cylinder 0, track O.

• The output volume is the system residence volume.

IEHDASDR uses as input a control data set containing utility control statements~
and optionally, IPL text.

The primary output or result of executing IEHDASDR is determined by the
application. A sequential message data set is created to list informational messages
(for example, control statements used), dumped data (for a print operation), and
any error messages.

IEHDASDR provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that an unusual condition was encountered; however, the
overall result is successful. A warning message is issued.

• 08, which indicates that a specified operation did not complete successfully. An
attempt is made to perform any additional operations.

• 16, which indicates that either an error occurred upon invoking IEHDASDR, or
IEHDASDR was unable to open the input or message data set. The job step is
terminated.

IEHDASDR is controlled by job control statements and utility control statements.
The job control statements are used to execute or invoke IEHDASDR and define
the data sets used and produced by IEHDASDR. The utility control statements are
used to control the functions of the program.

IEHDASDR Program 15-7

Job Control Statements

15-8 OS/VS2 MVS Utilities

Figure 15-6 shows the job control statements necessary for using IEHDASDR.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHDASDR) or, if the job control
statements reside in a procedure library, the procedure name. Additional
information can be entered in the PARM parameter of the EXEC statement;
see "PARM Information on the EXEC Statement" below.

STEPCA T Is required when a volume contains a VSAM data set which is not cataloged
on the master catalog.

SYSPRINT DO Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access device.

anyname DO Defines a direct access device type.

tapename DO Defines a magnetic tape unit.

SYSIN DD Defines the control data set. The control data set usually resides in the input
stream; however, it can be defined as a blocked or unblocked sequential data
set or as a member of a procedure library.

Figure 15-6. IEHDASDR Job Control Statements

The "anyname" DD statem~nt can be entered:

/ / any name DO UNIT =XXXX, VOLUME=SER=xxxxxx,DISP=OLD

If more than one volume is to be processed on a single mountable device, deferred
mounting can be specified in the "anyname" DD statement by entering:

/ / anyname DO UNIT =(xxxx"DEFER), VOLUME=(PRIV ATE, ...),
/ / DISP=(NEW,KEEP)

The "anyname" DD statement is not used for an operation that analyzes an offline
direct access volume.

If the volume serial number of a volume to be processed online is not known, it
may be possible to make a nonspecific, PRIV ATE volume request on a specific
unit; for example:

/ /anyname DO UNIT=(t91"DEFER),VOLUME=PRIVATE,DISP=(NEW,KEEP),
/ / SPACE=(TRK,(t, 1)

In this case, the operator is asked to mount a scratch volume on that unit. See
"Appendix C: DD Statements for Defining Mountable Devices" for the appropriate
DD statement and for a discussion of how to make a nonspecific unit request.

If an IEHDASDR operation produces-a volume serial number that is a duplicate of
a volume serial number already allocated within the system, the volume to which
the duplicate number is assigned is made unavailable to the system. The operator is
asked to remove the applicable volume at the completion of the operation.

The "tapename" DD statement can be entered:

/ /tapename DO UNIT =XXXX, VOLUME=SER=xxxxxx,LABEL=(. .. , ...),
/ / DISP=(. ... ,KEEP),DCB=(TRTCH=C,DEN=x)

If more than one tape volume is to be processed on the same tape unit, deferred
mounting can be specified by:

/ /tapename DO UNIT=(xxxx"DEFER),VOLUME=(PRIVATE, ...)

If standard labeled tapes are specified, the DSNAME should also be provided.

The "anyname" DD and "tapename" DD statements are referred to by utility
control statements for program operation.

Both the SYSIN and the SYSPRINT data set can have a blocking factor of other
than 1.

P ARM Information on the EXEC Statement

Considerations

The EXEC statement for IEHDASDR can contain PARM information that is used
by the program to control line density on output listings and to indicate the
maximum number of operations of the same type that can be performed
concurrently in the job step.

The EXEC statement can be coded:

/ / EXEC PGM=IEHDASDR {,PARM='N=n'
{,PARM='LINECNT=xx' }
{,PARM='LINECNT=xx,N=n' }

The LINECNT value specifies the number of lines per page in the listing of the
SYSPRINT data set. The number xx is a 2-digit decimal number ranging from 01 to
99. If LINECNT is omitted, the number of lines per page is 58.

The N value specifies a decimal number from one to six that represents the
maximum number of like functions that can be performed concurrently by
IEHDASDR, assuming that adequate system resources are available. If N is
omitted, up to six ANALYZE, FORMAT, DUMP, or RESTORE operations are
performed concurrently-according to the number of successive like statements in
the input stream. (See "Utility Control Statements.")

System resources permitting, multiple output copies can be specified in any or all of
the concurrent operations. For example, if N=2 and four DUMP statements appear
in succession, the first two dump operations are performed concurrently. As each
dump operation is completed and system resources become available, a new dump
operation begins.

To reformat native 3330, 3330-1, or 3340 VM packs to OS/VS format, use the
FORMAT function.

To reformat emulated 3330,3330-1, or native 3350 VM packs to OS/VS format,
use the ANAL YZE (offline) function.

Data can be dumped from the system residence volume (the IPL volume); however,
this is the only IEHDASDR operation that can be performed on that volume.

Because IEHDASDR can change serial numbers and existing data on a direct
access volume, operating precautions must be followed by users who have two or
more central processing units sharing the same direct access volume.

If IEHDASDR is run in a multiprogramming environment, you must choose a
combination of DD statements (defining mountable devices) that will ensure that
volume integrity is maintained. Refer to "Appendix C: DD Statements for Defining
Mountable Devices."

If non-VSAM password-protected data sets reside on volumes that are used by
IEHDASDR, the following considerations must be made:

• When dumping from a volume containing read password-protected data sets,
each data set must be described in a separate DD statement having a unique
ddname. When the program is executed, the operator must supply the correct
password (in answer to a console message) for each password-protected data
set.

IEHDASDR Program 15-9

15-10 OS/VS2 MVS Utilities

• When dumping to a tape volume from a direct access volume containing
non-VSAM password-protected data sets, the DD statement defining the tape
volume must include a DSNAME parameter. In addition, the LABEL parameter
must define a standard labeled tape, include a PASSWORD subparameter, and
specify or imply a file number of 1.

• When restoring from a tape volume, a DSNAME parameter must be included in
the DD statement defining the tape volume.

• During the DUMP, RESTORE, ANALYZE, and FORMAT·functions (see
"Utility Control Statements"), the direct access "TO" volume is checked for
password-protected data sets. At this time the operator must supply the correct
password for each password-protected data set encountered.

Refer to OS/VS2 System Programming Library: Data Management for additional
information on non-VSAM data set password protection.

If VSAM data sets reside on volumes that are used by IEHDASDR, the following
considerations must be made:

• All VSAM data spaces are described by a Format-l DSCB which indicates that
the data set is password protected. Therefore, the catalog in which the data
space is defined must be identified to IEHDASDR by a STEPCAT DD
statement or defaulted to the master catalog, whether or not any VSAM data set
is password protected.

• The catalog master password or the VSAM data set master password must be
supplied by the operator for all VSAM password-protected data sets within each
data space.

• A separate DD statement for each VSAM data set is not required as is the
requirement for non-VSAM password-protected data sets.

• When no non-VSAM password-protected data sets reside on a volume, the
restore tape(s) need not be password protected.

• PURGE = YES option must be specified on the RESTORE control card, if the
receiving volume of a restore operation contains VSAM data spaces.

Refer to OS/VS2 Access Method Services for additional information on VSAM
data set password protection.

If RACF-protected data sets reside on volumes that are used by IEHDASDR, the
following considerations apply:

• The user must have ALTER access authorization to all RACF-defined data sets
on the TODD volume of a FORMAT, ANALYZE, full RESTORE, and full
DUMP operation.

• The user must have UPDATE access authorization to all RACF-defined data
sets on the TODD volume of a partial DUMP or partial RESTORE.

• The user must have READ access authorization to all RACF-defined data sets
on the FROMDD volume of a DUMP.

• The user may bypass expiration date, password, and RACF data set access
authority checking for RACF-defined volumes if the user has the proper volume
access authority. Figure 15-7 indicates the required DASD volume access
authority for the various functions.

Authorization Required for RACF-Defined DASD Volume IDs

Function/Option

FROMDD TODD

DUMP READ ALTER

RESTORE READl ALTER

ANALYZE - ALTER

FORMAT - ALTER

GETALT - ALTER

PUTIPL - UPDATE

LABEL ALTER ALTER

DUMP with
CPYVOLID = ALTER ALTER
YES

RESTORE with
CPYVOLID = ALTERt ALTER
YES

1 RACF authorization refers to the DASD volume ID used during the creation of the tape. RACF
authorization for the tape volume ID is optional.

Figure 15-7. RACF Authorization Required for IEHDASDR Functions

IEHDASDR can perform up to six concurrent operations of ANALYZE,
FORMAT, DUMP, or RESTORE operations (see "Utility Control Statements").
This feature, which can shorten the time required to execute the program, is
controlled by (1) the number of devices defined for use and (2) the physical
arrangement of utility control statements in the input stream. For example,
assuming that the required devices are defined and available, a combination of six
successive statements of the same type permits six concurrent operations to take
place. However, if the utility control statements are arranged so that no operations
of the same type appear in succession, no operations are performed concurrently,
even though many devices might be defined for use.

Note: The number of concurrent operations allowed can be overridden by an
EXEC statement P ARM value.

Utility Control Statements

Figure 15-8 shows the utility control statements necessary for using IEHDASDR.

For most operations, multiple copies of a source volume can be made. The program
can also perform from two to six ANALYZE, FORMAT, DUMP, or RESTORE
operations concurrently, according to the number of successive like statements in
the input stream; that is, up to six direct access volumes can be analyzed or
formatted, or dumped simultaneously, or up to six magnetic tape (restore) volumes
can be processed simultaneously.

IEHDASDR Program 15-11

ANALYZE Statement

15-12 OS/VS2 MVS Utilities

Statement

ANALYZE

ANALYZEMSS

FORMAT

LABEL

GETALT

DUMP

RESTORE

IPLTXT

PUTIPL

Use

Analyzes the recording surface to test for defective tracks (2314 and 2305
only), assigns alternates for any defective tracks found, and initializes the
volume to make it ready for use. Format 3350 volumes in 3350 or 3330 or
3330-1 mode.

Analyzes the recording surface of a MSS device to test for defective
tracks, assigns alternates for any defective tracks found, and formats the
volume to make it ready for use.

Write RO on each track and initialize the volume to make it ready for use.

Changes the volume serial number of a direct access volume and,
optionally, updates the owner field.

t)Test a track and, if necessary, assign an alternate (2314 and 3350 only),
or 2) bypass testing and assign an alternate.

Dumps a single track, a group of tracks, or an entire direct access volume.

Restores a previously dumped direct access volume to a direct access
device.

Signals the beginning of IPL program text statements.

Specifies that IPL records and a program are to be written on a direct
access device.

Figure 15-8. IEHDASDR Utility Control Statements

The ANALYZE statement is used to analyze the recording surface of a 23140r
2305. Bit patterns are written on a track, read, and tested for defects. If no defects
are found, the track is formatted to make it ready for system use.

An IEHDASDR job to initialize a Buffered-log device will not perform a surface
analysis. The ANALYZE option can also perform a "QUICK DASDI."

When th{f\ ANALYZE option is performed on a 3340 with FLAGTEST=NO, an
attempt is made to reclaim any track that has the defective bit on in the flag byte of
the home address.

Note: If the device is online the volume label and VTOC are read, and the
information contained in them is used to initialize the volume. If the device is
offline, the volume label and VTOC information is ignored.

The format of the ANAL YZE statement is:

[label] ANALYZE TODD= {(cuu, .•.) I (ddname, .••)}

,VTOC=xxxxx

,EXTENT =xxxxx

[,NEWVOLID=serial]

[,IPLDD=ddname]

[,FLAGTEST= {YES I NO}]

[,PASSES= {n 10}]

[,OWNERID=name]

[,PURGE= {YES{NO}]

ANALYZE MSS Statement

FORMAT Statement

LABEL Statement

This statement is used to allow IEHDASDR to prepare a standard 3330 or 3330-1
volume for use as an MSS staging pack. Cylinders 409 and 410 for 3330 and 809
through 814 for 3330-1 will be assigned as alternates. Defective primary tracks will
be reassigned to this alternate area. A one track VTOC will be written on track 2
with a format 5 DSCB that indicates no free tracks.

The volume must be offline and the NEWVOLID must be specified. If other
ANAL YZE parameters are specified, they will be ignored.

The format of the ANALYZE MSS statements is:

[label] ANALYZE TODD = {(cuu, ••.)}

,NEWVOLID=serial

,MSS

[,OWNERID=name]

Note: To prepare an MSS staging pack for non-MSS use, an offline ANALYZE
followed by a FORMAT should be performed.

The FORMAT statement is used to prepare a volume for operating-system use.
Except for flag testing, no analysis is made prior to formatting a track. Previously
flagged disk tracks remain flagged; alternate tracks are assigned, where applicable.

The output includes a list of defective tracks and their assigned alternates.

Note: If a command reject is detected while a FORMAT operation is performed on
an assigned alternate track on an IBM 2305 Fixed Head Storage volume,
processing continues as if no alternate track existed. No action need be taken if
message IEH400I is typed out on the operator's console in response to this
condition.

If FORMAT cannot read a home address, it flags the track as being defective and
assigns an alternate track.

The format of the FORMAT statement is:

[label] FORMAT TODD=(ddname, .••)

,VTOC=xxxxx

,EXTENT =XXXXX

[,NEWVOLID=serial]

[,IPLDD=ddnanie]

[,OWNERID=name]

[,PURGE = {YES I NO}]

The LABEL statement is used to change the serial number of a direct access
volume and, optionally, to update the owner field in record 3 of track o. One
LABEL statement must be included for each volume that is to have its label
changed.

IEHDASDR Program 15-13

GET AL T Statement

DUMP Statement

15-14 OS/VS2 MVS Utilities

The format of the LABEL statement is:

[label] LABEL TODD= {cuu I ddname}

,NEWVOLID=serial

[,OWNERID=name]

The GETALT statement is used to assign an alternate track for a specified disk
track if the volume was previously initialized.

For 3350 volumes, alternate tracks will be assigned only if an error is detected
during surface analysis.

Flags set by GET AL T statement, for 3330 or 3330-1, tracks, cannot be removed
by IEHDASDR.

The format of the GETALT statement is:

[label] GETALT TODD=ddname

,TRACK=cccchhhh

The DUMP statement dumps a single track, a group of consecutive tracks, or an
entire direct access volume to one or more direct access volumes of the same device
type, to one or more tape volumes, or to a system output device (printer assumed).
When dumping more than one file to the same tape volume, the tape is rewound to
the load point at the end of each dump operation.

An extra input/output error (data check) message is generated at the console when
the dump to SYSPRINT function encounters one of the following conditions:

• Missing address marker.

• Data check in count and key fields and/or data field.

• Input/output error on a search command.

• Missing address marker and no record found.

The additional data check message printed at the console is generated by the dump
function's error recovery procedure. However, the additional message is not
reflected by a SYNADAF message in the SYSPRINT data set. If a missing address
marker is encountered during a space count command, the function terminates with
a return code of 8.

Note: If mUltiple output volumes are specified in a DUMP statement and abnormal
completion of the DUMP operation occurs, the operation is terminated on all
output volumes.

Do not dump a volume and restore new data to that volume in the same job step.
IEHDASDR does not flush the input stream if an operation is unsuccessful; that is,
the program attempts to perform any remaining functions after encountering an
error. Thus, if a dump operation is unsuccessful, data is lost if a subsequent restore
operation places new data on the dumped volume.

Partial dumps of direct access volumes should be used with extreme caution.
Because only those tracks that are dumped are placed on the receiving volume, the
partially dumped data may not be usable. When partially dumped data is
subsequently restored, it is placed on the same tracks as it originally occupied.

RESTORE Statement

IPL TXT Statement

When using the DUMP statement, do not specify the same ddname in more than
one TODD parameter in a single job step, except when the ddname is SYSPRINT.

When space permits, more than one direct access volume can be dumped to a
restore tape. Each dumped volume will be handled as a separate file.

When dumping to or restoring from a tape, specified as standard label or "BLP", a
disposition of KEEP should be specified in the DD statement for the tape.
Unlabeled tapes may have other disposition parameters.

When restoring from a restore file on a tape, the same file sequence number and
tape label format used in the dump operation must be used.

Intermixing of restore files with system data sets is not recommended because of
the unique format of the restore file.

The format of the DUMP statement is:

[label] DUMP FROMDD=ddname

,TODD= (ddname, ••.)

[,CPYVOLID= {YES I NO}]

[,BEGIN =cccchhhh]

[,END=cccchhhh]

[,PURGE= {YES I NO}]

The RESTORE statement is used to restore a direct access volume or volumes from
a tape volume on which a dumped copy was previously placed.

Note: When a standard labeled restore tape created by IBCDMPRS is restored by
IEHDASDR, the DD card describing the tape for IEHDASDR can specify
LABEL = (2,BLP).

The format of the RESTORE statement is:

[label] RESTORE TODD=(ddname, ...)

,FROMDD=ddname

[,CPYVOLID= {YES I NO}]

[,PURGE={YES I NO}]

The IPL TXT statement is used to mark the beginning of IPL program text
statements. An ANALYZE or FORMAT statement must precede this statement.

IPL text need be included only once in the input stream; that is, IEHDASDR refers
to the first copy of IPL text encountered when performing multiple functions in a
single job step.

The format for the IPL TXT statement is:

Vabel] IPLTXT

IEHDASDR Program 15-15

PUTIPL Statement

] 5-] 6 OS/VS2 MVS Utilities

The PUTIPL statement specifies that IPL bootstrap records and a program are to
be read from an input data set and written to cylinder 0, track 0 of a direct access
volume. As a result, cylinder 0, track 0 of the output volume will contain a program
that the user should be able to load from the console.

Note: If the PUTIPL function of IEHDASDR is used to write IPL records, the user
must supply both the IPL bootstrap records and the IPL text program. The
contents of the bootstrap records and the IPL text program are not checked by
IEHDASDR. The IPL text on SAMPLIB cannot be used, unless the user also
supplies the bootstrap records ahead of the IPL text.

The format of the PUTIPL statement is:

[label] PUTIPL FROMDD=ddname

,TODD=ddname

[,PURGE= {YES I NO}]

(
\

Operands

BEGIN

CPYVOLID

END

EXTENT

FLAGTEST

Applicable Control
Statements

DUMP

DUMP
RESTORE

DUMP

ANALYZE
FORMAT

ANALYZE

Description of Operands/Parameters

BEGIN =cccchhhh
specifies in hexadecimal a cylinder number, cccc and head
number, hhhh, that identify the first track to be dumped. If
BEGIN is omitted, the dump operation begins with track O.

Default: Dump begins with track o.

CPYVOLID={YES I NO}
specifies whether receiving direct access volumes are to be
assigned the serial number of the dumped volume.

YES
specifies that all receiving direct access volumes are to be
assigned the serial number of the dumped volume.

NO specifies that receiving volumes are to keep their own
serial numbers.

END==eccchhhh
specifies in hexadecimal a cylinder number, cccc, and head
number,.hhhh, that identify the last track to be dumped. If
only one track is to be dumped, both BEGIN and END
specify that track address.

Default: The last primary track of the volume is the last
track to be copied. (Alternate tracks are not dumped unless
they are assigned as alternates.)

EXTENT ::;xxxxxx
specifies the decimal length of the VTOC in tracks. The
VTOC cannot extend into the alternate track area or to a
second volume.

FLAGTEST={YES I NO}
specifies whether a check is to be made for previously
flagged tracks. The default changes to NO for OFFLINE
initialization of 2314 or 2305 volumes. FLAGTEST is not
applicable to 3330, 3330-1, or 3350 volumes.

YES
specifies that each track is to be checked to see whether it
was previously flagged as defective. Alternate tracks are
re-assigned.

NO
specifies that surface analysis will be performed without a
check for previously flagged tracks on 2305 or 2314
volumes. On 3340 volumes, "PASSES= 1" is forced and
analysis is performed on each flagged (defective) track.

IEHDASDR Program 15-17

/

Operands

FROMDD

IPLDD

MSS

NEWVOLID

OWNERID

AppUcable Control
Statements

DUMP
RESTORE
PUTIPL

ANALYZE
FORMAT

ANALYZEMSS

ANALYZE
ANALYZEMSS
FORMAT
LABEL

ANALYZE
ANALYZEMSS
FORMAT
LABEL

15-18 OS/VS2 MVS Utilities

Description of Operands/Parameters

FROMDD=ddname
• specifies the ddname of the DD statement defining the

device containing the direct access volume from which a
copy or copies are to be made (for DUMP).

• specifies the ddname of the DD statement that defines
the tape volume containing the data to be restored. If
more than one tape volume is to be used as input, the
DD statement for the tape must indicate multiple
volume (for RESTORE).

• specifies the ddname of the DD statement that identifies
the input data set. The DD statement must contain the
DSNAME and DISP parameters and, if the input data
set is not cataloged or passed from an earlier step, the
VOL and UNIT parameters (for PUTIPL).

IPLDD=ddname
specifies,the ddname of a DD statement defining the data
set containing the IPL program. The IPL program can be
included in the SYSIN (input stream) data set, or it can be
defined as a sequential data set or a member of a
partitioned data set. If IPL text is included in the input
stream, an IPL TXT statement is used to separate the
ANAL YZE statement from the IPL program text
statements. Maximum IPL record size is restricted to 6,496
bytes.

MSS
specifies an MSS staging pack is to be prepared.

NEWVOLID:::;S'eriai
specifies a one- to six-character serial number. The serial
number is assigned to all direct access volumes processed
through the use of this control statement. This parameter is
required for the analysis of a volume offline.

Default: The direct access volumes retain their own serial
numbers.

OWNERID==name
specifies a one- to ten-character name or other identifying
information to be placed in the volume label record.
OWNERID is specified as a character string of any
alphameric, national character, hyphen (-), slash (/), or
period (.).

/

\

Operands

PASSES

Applicable Control
Statements

ANALYZE

Description of Operands/Parameters

PASSES= {n I O}
For 2305 or 2314: specifies the number of passes to be
made in analyzing a recording surface.

These values can be coded:

n

o

specifies the number of times a bit pattern test is to be
performed. The n value is a decimal number from 1 to
255.

specifies that the ANALYZE function is to perform a
QUICK DASDI.

Default: The bit pattern test is performed once on each
track.

For 3330: P ASSES= 1 is not applicable; P ASSES=O
indicates do a QUICK DASDI.

For 3340: PASSES is not applicable.

For 3350: PASSES= 1 (ONLINE) is not applicable;
PASSES=1 (OFFLINE) write-HA and RO on each track
to convert volume format to 3330, 3330-1, or 3350 mode.
Test all defective (flagged) tracks and recover (unflag)
those that pass the surface analysis test. PASSES=O--do a
QUICK DASDI.

IEHDASDR Program 15-19

Operands

PURGE

Applicable Control
Statements

ANALYZE
FORMAT
DUMP
RESTORE
PUTIPL

15-20 OS/VS2 MVS. Utilities

Description of Operands/Parameters

PURGE = {YES I NO}
specifies whether the ANALYZE, FORMAT, DUMP, or
RESTORE operations are to be terminated when an
unexpired dataset is encountered, or, ,for PUTIPL only,
specifies whether user labels are to be overwritten.
PURGE does not apply when dumping to a restore tape.
PURGE = YES must be specified if the receiving volume of
a restore operation contains VSAM data spaces. If PURGE
is omitted and an unexpired data set is encountered, the
ANALYZE, FORMAT, DUMP, or RESTORE operations
are terminated. These values can be coded:

YES
indicates that all unexpired data sets on the volume can be
overwritten provided that the operator signals his
concurrence when the first unexpired data set is
encountered, or, for PUTIPL only, specifies that the
program may be written over any user labels or over any
data that follows the volume label record.

If PURGE = YES is coded and an unexpired data set is
encountered, the operation is prompted. The operator
replies are:

• U, which indicates that all unexpired data sets on this
volume can be overwritten.

• T, which indicates that this volume contains unexpired
data sets that must not be overwritten.

NO
specifies that the various operations are to be terminated if
an unexpired data set is encountered, or, for PUTIPL only,
specifies that the program may not be written over
standard user labels. If the output device is a 2305 or
Buffered-log DASD, the program is written following any
standard user labels. If the output volume contains user
labels and the device is a 2314, there may not be enough
space on the track for the IPL program; in that case, the
write operation is terminated.

The PURGE parameter does not apply to
password-protected data sets; that is" the operator must
always respond with the proper password for each
password-protected data set encountered. If he is unable to
do so, the operation is terminated.

Operands

TODD

AppUcable Control
Statements

ANALYZE
ANALYZEMSS
FORMAT
LABEL
GETALT
DUMP
RESTORE
PUTIPL

Description of Operands/Parameters

For ANALYZE and LABEL:
TODD={(cuu, ...) I (ddname, ...)}

For ANALYZE MSS:
TODD={cuu, ... }

For FORMAT, DUMP, and RESTORE:
TODD = (ddname), ••.)

For GETALT and PUTIPL:
TODD=ddname

specifies the ddname for the volume to be processed.
These values can be coded:

(ccu, ...) or cuu
specifies the channel and unit address of a direct access
device containing a volume to be initialized or labeled. This
value is used only if the volume is offline, which includes
the first analysis of a volume or for labeling an offline
volume. If this value is coded, a DD statement defining the
device must not be provided. The specified devices must be
varied offline (by use of the VARY OFFLINE command)
prior to the execution of the job step.

(ddname, ...) or ddname
specifies (1) the ddname of the system output device
(SYSPRINT); (2) the ddnames of the DD statements
defining the devices containing the direct access or tape
volumes on which copies are to be made; (3) the ddname
of the DD statement that identifies the volume serial
number of the output volume.

Note 1: If TODD=SYSPRINT is coded, the direct
access volume described by FROMDD is dumped to the
system output device. If a permanent data check or missing
address marker is encountered while reading the direct
access volume, the defective records are identified and
printed. The output may exceed the expected data size due
to a data check in the count field of the error record.

Note 2: If multiple output volumes are specified in a
FORMAT, ANALYZE, or RESTORE statement and an
abnormal completion of the format or restore operation
occurs, the operation is terminated on all output volumes.

IEHDASDR Program 15-21

Operands

TRACK

VTOC

Applicable Control
Statements

GETALT

FORMAT
ANALYZE

15-22 OS/VS2 MVS Utilities

Description of Operands/Parameters

TRACK=cccchhhh
specifies in hexadecimal the cylinder number, ecce, and
head number, hhhh, on a track for which an alternate track
is requested. TRACK cannot specify track 0 or the first
track occupied by the VTOC.

VTOC=xxxxxx
specifies a one- to five-byte decimal relative track address
representing a primary track on which the volume table of
contents is to begin. The VTOC cannot occupy track O.

To improve performance when reading from and writing to
the VTOC, it is recommended that every VTOC end on
the last track of a cylinder (a cylinder boundary). This
means that you should determine the starting address for
the VTOC by subtracting the number of tracks allocated to
the VTOC from the nearest larger track that ends on a
cylinder boundary. For example, if the VTOC requires 5
tracks on a 3336 disk pack, which has 19 tracks per
cylinder, the starting track should be specified as track 14,
so that the VTOC will end on track 18 (the last track of
the first cylinder).

Restrictions

• If an error is detected in the VTOC, IEHDASDR may terminate this control
function and continue with the next control card.

• If IEHDASDR is used to change a volume serial number and a subsequent
operation is performed on the newly labeled volume in the same job step, two
"anyname" DD statements are required. The VOLUME parameter in the first
statement includes the old volume serial number; the VOLUME parameter in
the second statement specifies the new volume serial number. In addition, the
second statement specifies unit affinity'with the first.

• One "anyname" DD statement is required for each device to be used in the job
step unless the device is to be processed offline.

• The "tapename" DD statement must be included if a data set is dumped to tape
or if a previously dumped data set is to be restored to a direct access volume.

• A tape created with the IEHDASDR DUMP function cannot be copied or
transmitted by other programs. Such attempts will yield unpredictable results due
to the physical layout of the tape. IEHDASDR allows copies to be produced as
required.

• If BLKSIZE is specified on the SYSIN DD statement, it must be a multiple of
80. If BLKSIZE is omitted from the statement, a block size of 80 bytes is
assumed.

• If BLKSIZE is specified on the SYSPRINT DD statement, it must be a multiple
of 121. If BLKSIZE is omitted or incorrectly specified, a block size of 121 bytes
is assumed.

• SYSIN attributes must be identical if SYSIN data sets are to be concatenated.

• If the PUTIPL function of IEHDASDR is used to write IPL records, the user
must supply both the IPL bootstrap records and the IPL (TXT) program. The
contents of the bootstrap records and the IPL (TXT) program is not checked by
IEHDASDR. The IPL TXT in SYS1.SAMPLIB can not be used, unless the user
also supplies the bootstrap records, with the PUTIPL function.

• The format 4 DSCB must be placed as record one (Rl) on a track to conform to
IBM standards.

• IEHDASDR does not support volumes with indexed VTOC, the IBM 3375, or
the IBM 3380. Refer to Device Support Facilities for information on
initialization and maintenance of such DASD volumes. Also, refer to Data
Facility/Data Set Services: User's Guide and Reference for information on
dumping or restoring such DASD volumes.

IEHDASDR Program 15-23

IEHDASDR Examples

15-24 OS/VS2 MVS Utilities

The following examples illustrate some of the uses of IEHDASDR. Figure 15-9 can
be used as a quick reference guide to IEHDASDR examples. The numbers in the
"Example" column point to examples that follow.

Operation Device Comments Example

INITIALIZE Disk QUICK DASDI to build a VTOC and change the
volume serial number.

INITIALIZE Disk FORMAT will verify HA and write a standard 2
RO on each track. IPL text is included
in the input stream. Volume serial id is
changed.

INITIALIZE Disk Three previously initialized volumes are to be 3
reinitialized; their volids are to be changed.

INITIALIZE 3350 Change volume format to match hardware mode 4
(3330,3330-1 or 3350).

INITIALIZE MSS Staging A staging volume for MSS
Volume is initialized. 5

WRITE Disk Write IPL bookstrap records and a program
PROGRAM on track 0 of a direct access volume. 6

GETALT Disk Get alternate tracks for a previously initialized
and LABEL volume and change its volume serial number. 7

DUMP Disk Dump a copy of one volume to three other
volumes. 8

DUMP Disk and Dump a group of tracks to the system output
system output device, which is assumed to be a printer.
device 9

DUMP Disk and Dump a disk volume to magnetic tape. Only
Tape one tape volume is required. to

RESTORE Disk and A 3330 disk volume, previously dumped to
7-track Tape tape, is to be restored to direct access. 11

DUMP and Disks and Dump operations are to be performed
RESTORE Tape concurrently to minimize input/output time.

Restore operations are to be performed
concurrently to minimize input/output time. 12

RESTORE Disk and A 2314 volume, previously dumped to two tape
Tape volumes, is to be restored to disk. 13

DUMP and Disk and VSAM and non-VSAM password-protected data
RESTORE Tape sets are dumped and then restored. The

receiving volume does not contain a
VSAM user catalog. 14

DUMP and Disk and VSAM and non-VSAM password-protected data
RESTORE Tape sets are dumped and then restored. The

receiving volume contains a VSAM user catalog. 15

Figure 15-9. IEHDASDR Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

lEHDASDR Example 1

In this example, a disk volume is initialized with a VTOC and volume serial
number-a "QUICK DASDI" is performed.

IIDASDR13 JOB
EXEC PGM=IEHDASDR
DD SYSOUT=A

II
IISYSPRINT
IIDISK
IISYSIN

DD UNIT4d~k,DISP=OLD,VOL=(PRIVATE"SER=(111111))
DD *

ANALYZE TODD=DISK,VTOC=00019,EXTENT=00019,NEWVOLID=333333
1*
The control statements are discussed below:

• DISK DD defines a buffered-log DASD, volume (111111).

lEHDASDR Example 2

• ANALYZE defines the starting location and extent of the volume table of
contents.

In this example, a disk volume is formatted and assigned a new serial number.

IIDASDR 1 1 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIDISK DD UNIT=d~k,DISP=OLD,VOL=(PRIVATE,
II SER= (1 111 .11))
IISYSIN DD *

72

FORMAT TODD=d~k,VTOC=00006,EXTENT=00005, C
NEWVOLID=333333,PURGE=YES,IPLDD=SYSIN

IPLTXT

IPL TXT (text) statements

1*
The control statements are discussed below:

• DISK DD defines the disk device on which the volume (111111) is mounted.

• SYSIN DD defines the control data set which follows in the input stream.

• FORMAT defines a starting location and extent of a volume table of contents,
specifies a new serial number, and indicates that the IPL text is included in the
input stream. Record 0 (RO) of each track is rewritten and the rest of the track is
erased. Assigns alternate tracks for flagged (defective) tracks.

• IPL TXT signals the start of IPL text.

IEHDASDR Program 15-25

IEllDASDR Example .1

In this example, three previously initialized disk volumes are to be initialized and
assigned new serial numbers.

72
IIDASDR2 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIVOL1 DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(111111))
IIvOL2 DD UNIT=(d~k"DEFER),DISP=OLb,
II VOLUME=(PRIVATE"SER=(222222))
IIvOL3 DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(333333))
IISYSIN DD *

ANALYZE TODD=VOL1,VTOC=00003,EXTENT=00010, C
OWNERID=SMITH,NEWVOLID=DISK01,FLAGTEST=NO

ANALYZE TODD=VOL2,VTOC=00006,EXTENT=00010, C
OWNERID=SMITH,NEWVOLID=DISK02,FLAGTEST=NO

ANALYZE TODD=VOL3,VTOC=00004,EXTENT=00010, C
OWNERID=SMITH,NEWVOLID=DISK03,FLAGTEST=NO

1*
The control statements are discussed below:

• VOLl, VOL2, and VOL3 DD define three disk devices on which the volumes to
be initialized are mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• The ANALYZE statements indicate the ddnames of DD statements defining
devices on which the three disk volumes (111111, 222222, and 333333) are to
be mounted. The ANALYZE statements also define starting locations and
extents of the three VTOCs, specify new owner names and serial numbers
(DISKOl, DISK02, and DISK03), and indicate that no flag testing is to be
performed on these volumes.

IEHDASDR Example 4

15-26 OS/VS2 MVS Utilities

In this example an OFFLINE 3350 volume (in 3350 or 3330 format) will be
reformatted to 3330-1 format. HA and RO fields will be rewritten. Each flagged
(defective) track encountered will be tested and recovered (unflagged) if no errors
are found.

IIDASDR4
IIs1
IISYSPRINT
IISYSIN

JOB
EXEC PGM=IEHDASDR
DD SYSOUT=A
DD *
ANALYZE TODD=130,VTOC=7675,EXTEND=19,

NEWVOLID=222222,IPLDD=SYSIN,
PASSES=1
IPLTXT

(IPL TEXT STATEMENTS)

1*

C
C

)

The control statements are discussed below:

lEHDASDR Example 5

• ANALYZE specifies that an OFFLINE 3350 is to be reformatted and
initialized.

• VTOC specifies a one cylinder VTOC in the center of the 3330-1 volume.

• P ASSES= 1 causes HA and RO to be written on each track, to conform with the
device type defined for address 130.

In this example a staging volume for MSS is initialized.

IIDASDR16 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

ANALYZE TODD=350,NEWVOLID=SSIDOO,MSS
1*
The control statements are discussed below:

lEHDASDR Example 6

• AN AL YZE defines the staging device which is to be initialized.

• NEWVOLID specifies the new volume identification for the pack and MSS
specifies that it is to be formatted as an MSS staging volume.

In this example, IPL bootstrap records and a program are to be written on track 0
of a direct access volume.

IIDASDR10 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIINPUT DD DSNAME=IPLPROG, UN I T=disk ,
II VOL=SER=222222,DISP=OLD
IloUTPUT DD UN I T=disk , VOL=SER=111111 , DISP=OLD
IISYSIN DD *

PUTIPL FROMDD=INPUT, TODD=OUTPUT, PURGE=YES
1*
The control statements are discussed below:

• INPUT DD defines the input data set, which contains the IPL records and
program to be written. The input data set resides on a disk volume (222222) .

• / OUTPUT DD defines the output data set, which is to reside on a disk volume
(111111).

• SYSIN DD defines the control data set, which follows in the input stream.

• PUTIPL identifies the DD statements (INPUT and OUTPUT) that define the
input and output data sets and specifies that the program to be written on the
disk A volume can be written over any data after the volume label record.

IEHDASDR Program 15-27

lEHDASDR Example 7

In this example, alternate tracks are to be assigned for three suspected defective
tracks on a 3330 volume.

IIDASDR3 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIVOLUMEl DD UNIT=(3330"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(333QOO»
IISYSIN DD *

1*

GETALT TODD=VOLUME1,TRACK=odoSOOll
GETALT TODD=VOLUME1,TRACK=OOA00007
GETALT TODD=VOLUME1,TRACK=01010002

LABEL TODD=VOLUME1,NEWVOLID=DISKOO,OWNERID=SMITH

The control statements are discussed below:

• VOLUME1 DD defines a device that is to contain the 3330 volume (333000).

• SYSIN DD defines the control data set, which follows in the input stream.

• The GET AL T statements specify the ddname of the DD statement defining the
device on which the 3330 volume is mounted. The GETALT statements specify
the relative track addresses of the tracks for which alternates are to be assigned.

• LABEL specifies the ddname of the DD statement defining the device on which
the 3330 volume is mounted. The LABEL statement changes the serial number
of the 3330 volume from 333000 to DISKOO.

lEHDASDR Example 8

15-28 OS/VS2 MVS Utilities

In this example, a copy of an entire volume (111111) is to be dumped to three
volumes (222222, 333333, and 444444).

The example follows:

IIDASDR4 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIDUMPFROM DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(llllll»
IIDUMPTOl DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222»
IIDUMPT02 DD UNIT=(disk"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(333333»
I IDUMPT03 DD UNIT=(disk, , DEFER), DISP=OLD,
II VOLUME=(PRIVATE"SER=(444444»
IISYSIN DD *

72

DUMP FROMDD=DUMPFROM,TODD=(DUMPT01,DUMPT02,DUMPT03), C
PURGE=YES

1*
The control statements are discussed below:

• DUMPFROM DD defines a mountable device that is to contain a source
volume.

• DUMPT01, DUMPT02, and DUMPT03 DD define mountable devices that are
to contain the three receiving volumes.

• DUMP specifies the dump operation and identifies the DD statements defining
the applicable devices. All receiving volumes are to retain their own serial
numbers.

IEHDASDR Example 9

In this example, a copy of tracks 0 through 62 (of a 3330 DASD) is to be dumped
to a system output device.

the example follows:

I/DASDR5 JOB
I I' EXEC PGM=IEHDASDR
II~YSPRINT DD SYSOUT=A
IIDEV DD UNIT=disk , DISP=OLD ,
II VOLUME=(PRIVATE"SER=(111111))
IISYSIN DD *

DUMP FROMDD=DEV,TODD=SYSPRINT,BEGIN=OOOOOOOO,END=00030004
1*
The control statements are discussed below:

• DEV DD defines a device that is to contain the source volume.

• DUMP specifies the dump operation, identifies the DD statements defining the
source an4 receiving devices, and identifies the tracks that are to printed.

IEHDASDR Example 10

In this example, ,a disk volume (111111) is to be dumped to a tape volume
(222222).

IIDASDR6 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IISOURCE DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(111111))
I IRECEIVE DD lJNIT=(tape, ,DEFER) ,DISP=NEW ,DSNAME=TAPE 1 ,
II VOLUME=(PRIVA~E"SER=(222222))
IISYSIN DD *

DUMP FROMDD=SOURCE,TODD=RECEIVE
1*
Note: This example asswnes that only one tape volume is required. If more than
one is required, code the volume serial numbers of the additional volumes in the
VOLUME parameter of the DD statement that defines the magnetic tape device.
For unlabeled tapes, include a volume count in the DD statement.

The control statements are discussed below:

• SOURCE DD defines a mountable device that is to contain the source volume.

• RECEIVE DD defines a tape drive that is to contain the receiving tape volume.

• DUMP specifies the dump operation and identifies the DD statements defining
the source and receiving devices.

IEHDASDR Program 15-29

lEHDASDR Example 11

In this example, three disk volumes (222222, 333333, 444444) are to be restored
from a 7-track, 556 bits per inch, standard-labeled tape volume.

IIDASDR7 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IITAPE DD UNIT=(2400-2"DEFER),DISP=OLD,
II DCB=(TRTCH=C,DEN=1),DSNAME=TAPE1,
II VOLUME=(PRIVATE"SER=(111111»
I IDIRACC1 DD UNIT=(disk, , DEFER), DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222»
I IDIRACC2 DD UNIT=(disk, , DEFER), DISP=OLD,
II VOLUME=(PRIVATE"SER=(333333»
IIDIRACC3 DD UNIT=(d~k"DEFER);DISP=OLD,
II VOLUME=(PRIVATE"SER=(444444)
IISYSIN DD *

RESTORE TODD=(DIRACC1,DIRACC2,DIRACC3),FROMDD=TAPE
1*
The control statements are discussed below:

• TAPE DD defines a 7 -track tape unit that is to contain the source tape volume.

• DIRACCl, DIRACC2, and DIRACC3 DD define mountable devices that are to
contain the three receiving volumes.

• RESTORE specifies the restore operation and identifies the DD statements
defining the source and receiving devices. The receiving volumes retain their
own serial numbers.

lEHDASDR Example 12

15-30 OS/VS2 MVS Utilities

In this example, two direct access volumes are to be dumped concurrently to two
receiving volumes in one operation; two direct access volumes are to be restored
concurrently from two standard labeled tape volumes in another operation.

IIDASDR8 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IISOURCE1 DD UNIT=(disk, , DEFER) ,DISP=OLD,
II VOLUME=(PRIVATE"SER=(111111»
IISOURCE2 DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222»
IITOl DD UNIT=d~k,vOLUME=SER=333333,DISP=OLD
IIT02 DD UNIT=d~k,vOLUME=SER=444444,DISP=OLD
IISOURCE3 DD UNIT=(mpe"DEFER),DISP=OLD,LABEL=(,NL),
II VOLUME=(PRIVATE"SER=(555555»
I ISOURCE4 DD UNIT=(tape, ,DEFER) ,DISP=OLD,LABEL=(,NL),
II VOLUME=(PRIVATE"SER=(666666»
IIT03 DD UNIT=AFF=T01,VOLUME=SER=777777,DISP=OLD
IIT04 DD UNIT=AFF=T02,VOLUME=SER=888888,DISP=OLD
IISYSIN DD *

1*

DUMP FROMDD=SOURCE1,TODD=T01
DUMP FROMDD=SOURCE2,TODD=T02

RESTORE TODD=T03,FROMDD=SOURCE3
RESTORE TODD=T04,FROMDD=SOURCE4

The control statements are discussed below:

• SOURCEl and SOURCE2 DD define devices on which the source volumes for
the dump operation are to be mounted.

• TOl and T02 DD define devices on which the receiving volumes for the dump
operation are to be mounted.

• SOURCE3 and SOURCE4 DD define devices on which the source tape volumes
for the restore operation are to be mounted.

• T03 and T04 DD define devices on which the receiving direct access volumes
for the restore operation are to be mounted. The receiving volumes for the
restore operation are to be mounted on the same devices as the receiving
volumes for the dump operation were mounted.

lEHDASDR Example 13

In this example, a disk volume previously dumped to tape is to be restored. Because
a completely filled disk volume requires more space than is available on a single reel
of tape, two tape volumes were used in the dump operation.

IIDASDR9 JOB OO#990,SMITH
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IITAPE DD UNIT=fflpe,VOL=(",2,SER=(111111,222222»,
II DISP=OLD
IIDISK DD UNIT=disk, VOL=SER=333333, DISP=OLD
IISYSIN DD *

RESTORE FROMDD=TAPE,TODD=DISK
1*
The control statements are discussed below:

• TAPE DD defines the tape volumes that contain the data to be restored to disk.

• DISK DD defines the disk volume to which data is to be restored.

• RESTORE specifies that data is to be restored from the tape volumes defined in
the TAPE DD statement to the disk volume defined in the DISK DD statement.

Note: For unlabeled tapes, use the external volume identification and the
LABEL=(,NL) parameter on the associated tape DD card. Also, be sure the serial
numbers are entered in the same order as during the previous disk-to-tape dump.

IEHDASDR Example 14

In this example a disk volume containing VSAM and non-VSAM
password-protected data sets is dumped to a standard labeled tape and then
restored. The receiving volume does not contain a VSAM user catalog.

IIDASDR14 JOB
IID14STEP1 EXEC PGM=IEHDASDR
IISTEPCAT DD DSNAME=VSAMCAT1,DISP=OLD
IISYSPRINT DD SYSOUT=A
IIDISK1 DD UNIT=d~k,vOL=SER=111111,DISP=OLD
IITAPE 1 DD UNIT=tape, DISP=NEW, DSNAME=TAPE 1 ,
II VOL=(",2,SER=(222222,333333»,
II LABEL=(,SL,PASSWORD),DCB=DEN=4
IIDISKA DD UNIT=d~k,vOL=SER=111111,DISP=OLD,
II DSNAME=DATASET1
IISYSIN DD *

.DUMP FROMDD=DISK1,TODD=TAPE1
1*
IID14STEP2 EXEC PGM=IEHDASDR
IISTEPCAT DD DSNAME=VSAMCAT1,DISP=OLD
IISYSPRINT DD SYSOUT=A
IIDISK2 DD UNIT=d~k,vOL=SER=111111,DISP=bLD
IITAPE2 DD UNIT=mpe,DISP=OLD,DSNAME=TAPE1,
II VOL=(",2,SER=(222222,333333»,LABEL=(,SL)
IISYSIN DD *

RESTORE TODD=DISK2,FROMDD=TAPE2,PURGE=YES
1*

IEHDASDR Program 15-31

15-32 OS/VS2 MVS Utilities

The control statements are discussed below:

• The STEP CAT DD statements define a VSAM user catalog in which VSAM
data sets on the volume are cataloged. The data sets are not cataloged in the
master catalog. This must be provided even when no data sets are'VSAM
password protected.

• TAPE1 defines a tape unit upon which a three-volume data set resides. This data
set must be password protected when any non-VSAM data sets on the volume
are password protected. If no non-VSAM password data sets reside on the
volume, the tape need not be password protected.

• DISK1 defines the device that is to contain the source volume.

• DISKA defines a non-VSAM password-protected data set which resides on the
source volume. This is necessary since password prompting is by DDname and
would cause confusion if more than one non-VSAM password-protected data set
resided on the volume.

• DISK2 defines the device that is to contain the receiving volume.

• T APE2 defines the tape unit that is to contain the source tape volumes.

• D 14STEP 1, during this job, step the operator will be required to provide the
password for each non-VSAM password-protected data set identified by the
unique DDname provided in the JCL. The operator will also be required to
provide the catalog master password or the data set master password for each
VSAM password-protected data set.

• D 14STEP2, during this job step the operator will be required to provide the
password for each non-VSAM password-protected data set residing on the
receiving volume. A DD statement need not be provided for those non-VSAM
data sets. The operator will also be required to provide the catalog master
password or the data set master password for each VSAM password-protected
data set.

If the tape data set is password protected, .its password must also be supplied.

PURGE = YES is specified since the receiving volume contains VSAM data
spaces.

lEHDASDR Example 15

In this example a disk volume containing VSAM and non-VSAM
password-protected data sets is dumped to a standard labeled tape and then
restored.

This example is intended to illustrate the specific situation where:

STEP 1 The volume dumped to tape contains VSAM and non-VSAM
password-protected data sets.

and

STEP2 The receiving volume of the restore operation contains a VSAM user
catalog which describes the VSAM data sets to be overlayed.

IIDASDR15 JOB
IID15STEP1 EXEC PGM=IEHDASDR
IISTEPCAT DD DSNAME=VSAMCAT1,DISP=OLD
IISYSPRINT DD SYSOUT=A
IIDISK1 DD UNIT=d~k,vOL=SER=333333,DISP=OLD
IITAPE1 DD UNIT=tape,DISP=NEW,DSNAME=TAPE1,
I I VOL=(, , ,2, SER=(111111 ,222222)),
II LABEL=(,SL,PASSWORD),DCB=DEN=4
IIDISKA DD UNIT=d~k,vOL=SER=333333,DISP=OLD,
II DSNAME=DATASET1
IISYSIN DD *

DUMP FROMDD=DISK1,TODD=TAPE1
1*
IID15STEP2 EXEC PGM=IEHDASDR
IISTEPCAT DD DSNAME=VSAMCAT1,DISP=OLD
IISYSPRINT DD SYSOUT=A
IITAPE2 DD UNIT=TAPE,DISP=OLD,DSNAME=TAPE1,
II VOL=(",2,SER=(111111,222222)),LABEL=(,SL)
IISYSIN DD

RESTORE TODD=STEPCAT,FROMDD=TAPE2,PURGE=YES
1*
The control statements are discussed below:

• The STEPCA T DD statements define a VSAM user catalog in which VSAM
data sets on the volume are cataloged. The data sets are not cataloged in the
master catalog. This must be provided even when no data sets are VSAM
password protected. DISP=OLD must be specified to ensure the integrity of the
dumped data sets.

• TAPE 1 defines a tape unit upon which a three-volume data set resides. This data
set must be password protected when any non-VSAM data sets on the volume
are password protected. If no non-VSAM password data sets reside on the
volume, the tape need not be password protected.

• DISKl defines the device that is to contain the source volume.

• DISKA defines a non-VSAM password-protected data set which resides on the
source volume. This is necessary since password prompting is by DDname and
would cause confusion if more than one non-VSAM password-protected data set
resided on the volume.

• T APE2 defines the tape unit that is to contain the source tape volumes.

• Dl5STEPl, during this job step the operator will be required to provide the
password for each non-VSAM password-protected data set identified by the
unique DDname provided in the JCL. The operator will also be required to
provide the catalog master password or the data set master password for each
VSAM password-protected data set.

IEHDASDR Program 15-33

15-34 OS/VS2 MVS Utilities

• D15STEP2, during this job step the operator will be required to provide the
password for each non-VSAM password-protected data set residing on the
receiving volume. A DO statement need not be provided for those non-VSAM
data sets.

The operator will also be required to provide the catalog master password or the
data set master password for each VSAM password-protected data set.

• The STEPCAT DO statement is required to allow the VSAM user catalog on the
receiving volume to be opened so that. a check for password protection can be
made. Since IEHDASDR does not allow two DD statements to reference the
same volume for one control operation, the STEPCAT DD statement is also
used to describe the receiving volume. OISP=OLO must be specified to ensure
that the integrity of the volume is maintained during the restore operation.

If the tape data set is password-protected, its password must also be supplied.

IEHINITf PROGRAM

IEHINITT is a system utility used to place IBM volume label sets written in
EBCDIC, in BCD, or in ASCII (American Standard Code for Information
Interchange) onto any number of magnetic tapes mounted on one or more tape
units. Because IEHINITI can overwrite previously labeled tapes regardless of
expiration date and security protection, it is suggested that IEHINITT be moved
and deleted from SYS I.LINKLIB into an authorized password protected private
library. Each volume label set created by the program contains:

• A standard volume label with user-specified serial number and owner
identification.

• An 80-byte dummy header label. For IBM standard labels, this record consists
of HDRI followed by zeros. For labels written in ASCII, this record consists of
HDRI followed by zeros in the remaining positions, with the exception of
position 54, which contains an ASCII space.

• A tape mark.

Note: When a labeled tape is subsequently used as a receiving volume: (1) the tape
mark created by IEHINITT is overwritten, (2) the dummy HDRI record created by
IEHINITT is filled in with operating system data and device-dependent
information, (3) a HDR2 record, containing data set characteristics, is created, (4)
user header labels are written if exits to user label routines are provided, (5) a
tapemark is written, and (6) data is placed on the receiving volume.

Figure 16-1 shows an IBM standard label group after a volume is used to receive
data. Refer to OS/VS2 MVS Data Management Services Guide for a discussion of
volume labels.

I nitial volume label

HDRl

HDR2

User header labels
(optional up to 8)

Tape mark

Data

,1." "'~

Figure 16-1. IBM Standard Label Group After Volume Receives Data

IEHINITT Program 16-1

Placing a Standard Label Set on Magnetic Tape

Input and Output

16-2 OS/VS2 MVS Utilities

IEHINITT can be used toW-rite BCD labels on 7-track tape volumes and EBCDIC
or ASCII labels on 9-track tape volumes. Any number of 7 -track and/or 9-track
tape volumes can be labeled in a single execution of IEHINITT.

Tape volumes are labeled in sequential order by specifying a serial number to be
written on the first tape volume. The serial number is incremented by 1 for each
successive tape volume. If only one t~pe volume is to be labeled, the specified serial
number can be either numeric or alphameric. If more than one volume is to be
labeled, the serial numbers must be specified as six numeric characters.

• If any errors are encountered while attempting to label a tape, the t~pe is left
unlabeled. IEHINITT attempts to label any tapes remaining to be processed.

• The user can provide additional information, such as owner name, rewind or
unload specifications, and whether the label is to be written in ASCII.

• The user must supply all tapes to be labeled, and must include with each job
request explicit instructions to the operator about where each tape is to be
mounted.

• IEHINITT writes 7 -track tape labels in even parity (translator on, converter
off).

• Previously labeled tapes can be overwritten with new labels regardless of
expiration date and security protection.

For information on creating routines to write standard or non-standard labels, refer
to OS/VS Tape Labels.

IEHINITT uses as input a control data set that contains the utility control
statements.

IEHINITT produces an output data set that contains: (1) utility program
identifiCation, (2) initial volume label information for each successfully labeled tape
volume, (3) contents of utility control statements, and (4) any error messages.

IEHINITT produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion. A message data set was created.

• 04, which indicates successful completion. No message data set was defined by
the user.

• 08, which indicates that the program completed its operation, but error
conditions were encountered during processing. A message data set was created.

• 12, which indicates that the program completed its operation, but error
conditions were encountered during processing. No message data set was defined
by the user.

• 16, which indicates that the program terminated operation because of error
conditions encountered while attempting to read the control data set. A message
data set was created if defined by the user.

Control

Job Control Statements

IEHINITT is controlled by job control statements and utility control statements.
The job control statements are used to execute or invoke IEHINITT and to define
data sets used and produced by IEHINITT. Utility control statements are used to
specify applicable label information.

Figure 16-2 shows the job control statements necessary for using IEHINITT.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHINITT) or, if the job control
statements reside in a procedure library, the procedure name. The EXEC
statement can include additional PARM information; see "PARM
Information on the EXEC Statement."

SYSPRINT DO Defines a sequential output data set.

anyname DO Defines a tape unit to be used in a labeling operation; more than one tape unit
can be identified.

SYSIN DO Defines the control data set; The control data set normally resides in the input
stream; however, i~ can be defined as a member of a partitioned data set or as
a sequential data set outside the input stream.

Figure 16-2.IEHINITT Job Control Statements

The "anyname" DD statement is entered:

/ /anyname DO DCB=DEN=x,UNIT=(xxxx,n,DEFER)

The DEN parameter specifies the density at which the labels are written. The UNIT
parameter specifies the device type, number of units to be used for the labeling
operation, and deferred mounting. The name "anyname" must be identical to a
name specified in a utility control statement to relate the specified unit(s) to the
appropriate utility control statement.

PARM Information on the EXEC Statement

The EXEC statement can include P ARM information that specifies the number of
lines to be printed between headings in the message data set, as follows:

PARM= 'L1NECNT =nn'

If P ARM is omitted, 60 lines are printed between headings.

If IEHINITT is invoked, the line count option can be passed in a parameter list that
is referred to by the "optionaddr" subparameter of the LINK or ATTACH macro
instruction. In addition, a page count can be passed in a six..:byte parameter list that
is referred to by the "hdingaddr" subparameter of the LINK or ATTACH macro
ins·truction. For a discussion of linkage conventions, refer to "Appendix B:
Invoking Utility Programs from a Problem Program."

Utility Control Statement

IEHINITT uses a utility control statement to provide control information for a
labeling operation.

IEHINITT Program t 6-3

I~f11rStatemnent

16-4 OS/VS2 MVS Utilities

The INITT statement provides control information for the IEHINITT program.

Any number of INITT utility control statements can be included for a given
execution of the program. An identically named DD statement must exist for a
utility control statement in the job step.

Figure 16-3 shows a printout of a message data set including the INITT statement
and initial volume label information. In this example, one INITT statement was
used to place serial numbers 001122 and 001123 on two tape volumes.
VOLI0011220 and VOL10011230 are interpreted, as follows:

• VOL 1 indicates that an initial volume label was successfully written to a tape
volume.

• 001122 and 001123 are the serial numbers that were written onto the volumes.

• 0 is the Volume Security field.

No errors occurred during processing.

SYSTEM SUPPORT UTILITIES IEHINITT

ALL INITT SER=001122,NUMBTAPE=2,OWNER='P.T.BROWN',
DISP=REWIND

VOL10011220
VOL10011230

P.T. BROWN
P.T.BROWN

72
C

Figure 16-3.Printout of INITT Statement Specifications and Initial Volume Label Information

The format of the INITT statement is:

ddname INITT SER=xxxxxx

[,OWNER='cccccccccc [ecce]']

[,NUMBT APE = {n I .!.I I
,DISP= {REWIND I UNLOAD}

[,LABTYPE=AL]

Operands

DISP

LABTYPE

ddname

NUMBTAPE

OWNER

SER

Applicable Control
Statements

INITT

INITT

INITT

INITT

INITT

INITT

Description of Operands/Parameters

DISP={REWIND I UNLOAD}
specifies whether a tape is to be rewound or unloaded.
These values can be coded:

REWIND
specifies that a tape is to be rewound (but not unloaded)
after the label has been written. If DISP=REWIND is
not specified, the tape volume is rewound and unloaded.

UNLOAD
specifies that a tape is to be unloaded after the label has
been written.

LABTYPE=AL
specifies that a volume label written in ASCII is to be
created.

Default: The tape is written in EBCDIC for 9-track tape
volumes and in BCD for 7-track tape volumes.

ddname
specifies a name that is identical to a ddname in the name
field of a DD statement defining a tape unit(s). This name
must begin in column 1.

NUMBT APE= {n I !}
specifies the number of tapes to be labeled according to the
specifications made in this control statement. The value n
represents a number from 1 to 255. If more than one tape
is specified, the serial number must be numeric.

OWNER= 'cccccccccc[cccc]'
specifies the owner's name or similar identification. The
information is specified as character constants, and can be
up to 10 bytes in length for EBCDIC and BCD volume
labels, or up to 14 bytes in length for volume labels written
in ASCII. The delimiting apostrophes can be omitted. if no
blanks, commas, apostrophes, equal signs, or other special
characters (except periods or hyphens) are included. If an
apostrophe is included within the OWNER name field, it
must be written as two consecutive apostrophes.

SER=xxxxxx
specifies the volume serial number of the first .or only tape
to be labeled. The serial number cannot contain blanks,
commas, apostrophes, equal signs, or special characters
other than periods or hyphens. A specified serial number is
incremented by one for each additional tape to be labeled.
(Serial number 999999 is incremented to 000000.) When
processing multiple tapes, the volume serial number must
be all numeric.

IEHINITT Program ·1 ~5

Restrictions

• The SYSPRINT data set must have a logical record length of 121 bytes. It must
consist of fixed length records with an ASA control character in the first byte of
each record. Any blocking factor can be specified.

• The SYSIN data set must have a logical.record length of 80. Any blocking factor
can be specified.

• Labels written in ASCII cannot be put on 7 -track tape volumes.

IEHINfIT Examples

lEHlNI1T Example 1

t 6-6 OS/VS2 MVS Utilities

The following examples illustrate some of the uses of IEHINITT. Figure 16-4 can
be used as a quick reference guide to IEHINITT examples. The numbers in the
"Example" column point to examples that follow.

Operation

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

Comments

Three 9-track tapes are to be labeled.

A 9-track tape is to be labeled.

Two groups of 9-track tape volumes are to be labeled.

9-track tape volumes are to be labeled. Sequence
numbers are to be incremented by 10.

Three 9-track tape volumes are to be labeled. An
alphameric label is to be placed on a 2400 volume;
numeric labels are placed on the 2400-4 volumes.

Two 9-track tape volumes are to be labeled. The
first volume is labeled at a density of 6250 bpi;
the second at a density of 1600 bpi.

Figure 16-4.IEHINITT Example Directory

Example

2

3

4

5

6

Note: Examples which use tape in place of actual device-ids, must be changed
before use. See the Device Support section, in the Introduction to this manual, for
valid device-id notation.

In this example, serial numbers 001234,001235, and 001236 are to be placed on
three tape volumes; the labels are to be written in EBCDIC at 800 bits per inch.
Each volume to be labeled is mounted, when it is required, on a single 9-track tape
unit.

JOB 09#990,BROWN,MSGLEVEL=(1,1)
EXEC PGM=IEHINITT
DO SYSOUT=A
DO DCB=DEN=2, UNIT=(tape, 1 ,DEFER)
DO *

IILABEL1
II
IISYSPRINT
IILABEL
IISYSIN
LABEL INITT SER=001234,NUMBTAPE=3
1*

lEHlNI1T Example 2

lEHINITT Example 3

lEHlNI1T Example 4

In this example, serial number 001001 is to be placed on one ASCII tape volume;
the label is to be written at 800 bits per inch. The volume to be labeled is mounted,
when it is required, on a 9-track tape unit.

IILABEL2 JOB 09#990,BROWN,MSGLEVEL=(1,1)
II EXEC PGM=IEHINITT
IISYSPRINT DD SYSOUT=A
IIASCIILAB DD DCB=DEN=2, UNIT=(tape, 1 , DEFER)
IISYSIN DD *
ASCIILAB INITT SER=001001,OWNER='SAM A. BROWN' ,LABTYPE=AL
1*

In this example, two groups of serial numbers (001234,001235,001236, and
001334, 001335, 001336) are placed on six tape volumes. The labels are to be
written in EBCDIC at 800 bits per inch. Each volume to be labeled is mounted,
when it is required, on a single 9-track tape unit.

JOB
EXEC
DD
DD
DD

IILABEL3
II '
IISYSPRINT
IILABEL
IISYSIN
LABEL
LABEL

INITT
INITT

1*

09#990,BROWN,MSGLEVEL=(1,1)
PGM=.IEHINITT
SYSOUT=A
DCB=DEN=2 , UNIT=(tape, 1 , DEFER)

*
SER=001234,NUMBTAPE=3
SER=001334,NUMBTAPE=3

In this example, serial numbers 001234, 001244, 001254, 001264, 001274, etc.,
are to be placed on eight tape volumes. The labels are to be written in EBCDIC at
800 bits per inch. Each volume to be labeled is mounted, when it is required, on
one of four 9-track tape units.

IILABEL4 JOB 09#990,BROWN,MSGLEVEL=(1,1)
II EXEC PGM=IEHINITT
IISYSPRINT DD SYSOUT=A
IILABEL DD DCB=DEN=2, UNIT=(tape, 4, DEFER)
IISYSIN DD *
LABEL INITT SER=001234
LABEL INITT SER=001244
LABEL INITT SER=001254
LABEL INITT SER=001264
LABEL INITT SER=001274
LABEL INITT SER=001284
LABEL INITT SER=001294
LABEL INITT SER=001304
1*

IEHINITT Program 16-7

IEHINI1T Example 5

IEHINI1T Example 6

16-8 OS/VS2 MVS Utilities

In this example, serial number TAPE 1 is to be placed on a tape volume, and serial
numbers 001234 and 001235 are to be placed on two tape volumes. The labels are
to be written in EBCDIC at 800 and 1600 bits per inch, respectively.

IILABEL5 JOB 09#990,BROWN,MSGLEVEL=(1,1)
II EXEC PGM=IEHINITT
IISYSPRINT DD SYSOUT=A
IILABEL1 DD DCB=DEN=2,UNIT=(tape,1,DEFER)
I/LABEL2 DD DCB=DEN=3, UNIT=(tape, 1 , DEFER)
IISYSIN DD *
LABEL1 INITT SER=TAPE1
LABEL2 INITT SER=001234,NUMBTAPE=2
1*

In this example, the serial number 006250 is to be written in EBCDIC on a tape
volume at a density of 6250 bpi, and the serial number 001600 is to be written in
EBCDIC on a second volume at a density of 1600 bpi.

I/LABEL6 JOB 09#990,BROWN,MSGLEVEL=(1,1)
II EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
IIDDFIRST DD DCB=DEN=4,UNIT=(tape,1,D~FER)
IIDDSECOND DD DCB=DEN=3,UNIT=(tape,1,DEFER)
//SYSIN DD *
DDFIRST INITT SER=006250
DDSECOND INITT SER=001600
1*

/

IEHLIST PROGRAM

Listing Catalog Entries

IEHLIST is a system utility used to list entries in a catalog, entries in the directory
of one or more partitioned data sets, or entries in a volume table of contents. Any
number of listings can be requested in a single execution of the program.

IEHLIST lists all OS catalog entries that are part of the structure of a fully
qualified, data set name. Figure 17-1 shows an index structure for which IEHLIST
lists fully qualified names A.B.D.W, A.B.D.X, A.B.E.Y, and A.B.E.Z. Because
A.C.F does not represent a cataloged data set (that is, the lowest level of
qualification has been deleted), it is not a fully qualified name, and it is not listed.

A

F

w x y z

Figure 17-1.Index Structure-Listed by IEHLIST

Note: IEHLIST will list only OS catalogs (SYSCTLG data sets). To list VSAM
catalogs, use Access Method Services.

Listing a Partitioned Data Set Directory

IEHLIST can list up to ten partitioned data set directories in a single application of
the program. A partitioned directory is composed of variable length records
blocked into 256-byte blocks. Each directory block can contain one or more entries
which reflect member (and/or alias) names and other attributes of the partitioned
members in edited and unedited format.

Figure 17-2 shows a directory block as it exists in storage.

-..!.---
(-

- - - - - - - - - - - - - - - - ")

'_~------------~~--------~~--------'-------~~--------~~----~~----4

C'" __ ----

Figure 17-2.Sample Directory Block

IEHUST Program 17 - 1

Edited Format

IEHLIST optionally provides the following information, which is obtained from the
applicable partitioned data set directory, when an edited format is requested:

• Member name

• Entry point

• Relative address of start of member

• Relative address of start of text

• Contiguous virtual storage requirements

• Length of first block of text

• Origin of first block of text

• System status indicators

• Linkage editor attributes

• APF authorization required

• Other information

Before printing the directory entries on the first page, an index is printed explaining
the asterisk (*), if any, following a member name, the attributes (fields 3 and 10),
and other information (field 12). Under the OTHER INFORMATION INDEX,
scatter and overlay format data is described positionally as it appears in the listing;
under the ATTRIBUTE INDEX, the meaning of each attribute bit is explained.

Each directory entry occupies one printed line, except when the member name is an
alias and the main member name and associated entry point appear in the user data
field. When this occurs, two lines are used and every alias is followed by an
asterisk. If the main member is renamed, the old member name will still be in the
alias directory entry and consequently printed on the second line.

Note: The FORMAT option applies only to a partitioned data set whose members
have been created by the linkage editor (that is, the directory entries are at least 34
bytes long). If a directory entry is less than 34 bytes, a message is issued and the
entry is printed in unedited format; if the entry is longer than 34 bytes, it is
assumed that it is created by the linkage editor.

Figure 17-3 shows an edited entry for a partitioned member (IEANUCOl). The
entry is shown as it is listed by the IEHLIST program.

OTHER INFORMATION INDEX
SCATTER FORMAT SCTR=SCATTER/TRANSLATION TABLE TTR IN HEX, LEN OF SCRT LIST IN DEC, LEN OF TRANS TABLE IN DEC,

ESDID OF FIRST TEXT RCDIN DEC, ESDID OF CSECT CONTAINING ENTRY POINT IN DEC

OVERLAY FORMAT ONLY=NOTE LIST RCD TTR IN HEX, NUMBER OF ENTRIES IN NOTE LIST RCD IN DEC

ALIAS NAMES ALIAS MEMBER NAMES WILL BE FOLLOWED BY AN ASTERISK IN THE PDS FORMAT LISTING

ATTRIBUTE INDEX

BIT ON OFF BIT ON OFF BIT ON OFF BIT ON OFF

0 RENT NOT RENT 4 OL NOT OL 8 NOT DC DC 12 NOT EDIT EDIT
REUS NOT REUS SCTR BLOCK 9 ZERO ORG NOT ZERO 13 SYMS NO SYMS
ONLY NOT ONLY 6 EXEC NOT EXEC 10 EP ZERO NOT ZERO 14 F LEVEL E LEVEL
TEST NOT TEST 1 TXT MULTI RCD 11 NO RLD RLD 15 REFR NOT REFER

MEMBER ENTRY ATTR REL ADDR-HEX CONTIG LEN 1ST ORB 1ST SSI VS AUTH OTHER
NAME PT-HEX HEX BEGIN 1ST TXT STOR-DEC TXT-DEC TXT-HEX INFO ATTR REQ INFORMATION

IEANUC01 000000 06E2 000004 00020F 000166248 0927 ABSENT 880000 NO SCTR=OOOOOO,
00484,01084,32,32

OF THE 00002 DIRECTORY BLOCKS ALLOCATED TO THIS PDS, 00001 ARE (IS) COMPLETELY UNUSED

Figure 17-3.Edited Partitioned Directory Entry

17 - 2 OS/VS2 MVS Utilities

Unedited (Dump) Format

The user may choose the unedited format. If this is the case, IEHLIST lists each
member separately.

Figure 17-4 shows how the information in Figure 17-2 is listed.

Note: A listing organized as shown in Figure 17-4 can also be obtained by using
IEBPTPCH (see "IEBPTPCH Program ").

MEMB A

MEMB B

MEMB C

MEMB n

TTR

TTR

TTR

TTR

USER DATA

USER DATA

USER DATA

USER DATA

Figure 17-4.Sample Partitioned Directory Listing

To correctly interpret user data information, the user must know the format of the
partitioned entry. The formats of directory entries are discussed in OS/VS2 Data
Areas.

Listing a Volume Table 01 Contents

Edited Format

IEHLIST can be used to list, partially or completely, entries in a specified volume
table of contents (VTOC). The program lists the contents of selected data set
control blocks (DSCBs) in edited or unedited form.

Note: VSAM data spaces are identified only; not the data sets within them.

Two edited formats are available. One is a comprehensive listing of the DSCBs in
the VTOC. It provides the status and attributes of the volume, and describes in
depth the data sets residing on the volume. This listing includes:

• Logical record length and block size

• Initial and secondary allocations

• Upper and lower limits of extents

• Alternate track information

• Available space information, in detail

• Option codes (printed as two hexadecimal digits)

• Record formats

A VTOC consists of as many as seven types of DSCBs which contain information
about the data sets residing on the volume:

• Identifier DSCB--Format 1

• Index DSCB-Format 2

• Extension DSCB--Format 3

• VTOC DSCB--Format 4

• Free Space DSCB-Format 5

• Shared Extent DSCB-Format 6

• Free VTOC DSCB--Format 0

IEHLIST Program 17-3

17·- 4 OS/VS2 MVS Utilities

The first DSCB in a VTOC (and on your listing) is always a VTOC (Format 4)
DSCB. It defines the scope of the VTOC itself; that is, it contains information
about the VTOC and the volume rather than the data sets referenced by the
VTOC.

The VTOC (Format 4) DSCB is followed, when necessary, by the Free Space
(Format 5) DSCB, which describes the space available on the volume for allocation
to other data sets. More than one Format 5 DSCB may be required to describe the
available space on a volume because each Format 5 DSCB describes only 26
extents.

The Format 4 and Format 5 DSCBs are followed, in any order, by Format 1,2,3,
or 6 DSCBs.

Each Identifier (Format 1) DSCB contains information about a particular data set
residing on the volume. This type of DSCB describes the characteristics and up to
three extents of the data set.

For data sets having indexed sequential organization, additional characteristics are
specified in an Index (Format 2) DSCB pointed to by the Identifier (Format 1)
DSCB.

Additional extents are described in an Extension (Format 3) DSCB pointed to by
the Identifier (Format 1) DSCB or in the Index (Format 2) DSCB for an
indexed-sequential data set.

A Shared Extent (Format 6) DSCB is used for shared-cylinder allocation. It
describes the extent of space (one or more contiguous cylinders) that is being
shared by two or more data sets. The Shared Extent (Format 6) DSCB is pointed
to by the VTOC (Format 4) DSCB. Subsequent Format 6 DSCBs are pointed to
by the previous Format 6 DSCB.

A Free VTOC Record (Format 0) DSCB, which indicates space available for
another DSCB, is not listed by IEHLIST. They are 140-byte records, consisting of
binary zeros, that are overwritten with Format 1,2,3, and 6 DSCBs when a new
data set is allocated, and with Format 5 DSCBs when space is released.

Figure 17-5 shows a sample listing of the edited format. This sample illustrates how
each DSCB will appear on a listing, although in many cases the VTOC may not
contain all possible types. The information is in columns, with the values or
numbers appearing underneath each item's heading.

The second edited format is an abbreviated description of the data sets. It is
provided by default when no format is requested specifically. It provides the
following information:

• Data set name

• Creation date (dddyy)

• Expiration date (dddyy)

• Password indication

• Organization of the data set

• Extent(s)

• V olume serial number

The last line in the listing indicates how much space remains in the VTOC.

~\

)

)

SYSTEMS SUPPORT UTILITIES---IEHLIST

CONTENTS OF VTOC ON VOL EXAMPL

PAGE 1

FORMAT 4 DSCB NO AVAIL/MAX DSCB /MAX DIRECT NO AVAIL NEXT ALT FORMAT 6
(C-H-R)

LAST FMT 1 VTOC EXTENT THIS DSCB
(C-H-R) VI DSCBS PER TRK BLK PER TRK ALT TRK TRK (C-H) DSCB(C-H-R)/LOW(C-H) HIGH(C-H)

5055059 00 154 16 10 30 200 5 0

FORMAT 5 DSCB
TRK FULL

ADDR CYLS
17 3

A = NUMBER OF TRKS IN ADDITION TO FULL CYLS IN THE EXTENT
TRK FULL TRK FULL TRK FULL

A
3

ADDR CYLS A
110 189 0

DSCB(C-H-R) 0

ADDR CYLS A ADDR CYLS A
TRK

ADDR
FULL
CYLS

TRK
ADDR

FULL
CYLS A

---------------DATA SET NAME--------------­
EXAMPLE .OF. COMBINED. FORMATS. ONE. AND. TWO

ID SER NO SEQ NO CREDT EXPDT REFDT NO EXT
1 EXAMPL 1 36699 27469 00000

DSORG RECFM OPTCD BLKSIZE
IS F 100

LRECL KEYLEN INITIAL ALLOC 2ND ALLOC/LAST BLK PTR (T-R-L) USED PDS BYTES FMT 2 OR 3 (C-H-R) /DSCB (C-H-R)
100 4 ABSTR 0 5 0 3 5 0 4

EXTENTS NO LOW(C-H) HIGH(C-H)
o 6 0 10 9

2MIND(M-~-C-H)/3MIND(M-B-C-H)/L2MFN(C-H-R)/L3MIN(C-H-R)/CYLAD(M-B-C-H)/ADLIN(M-B-C-H)/ADHIN(M-B-C-H)/NOBYT/ NOTRK
o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 9 0 0 0 0 1 0 10 9 70 0

LTRAD(C-H-R)/LCYAD(C-H-R)/LMSAD(C-H-R)/LPRAD(M-B-C-H-R) /NOLFV /CYLOV/ TAGDT/ PRCTR / OVRCT/ RORG1/PTRDS(C-H-R)
6 0 3 10 9 1 0 0 0 1 0 6 1 12 1 0 20 0 0

----UNABLE TO CALCULATE EMPTY SPACE.

---------------DATA SET NAME---------------- 10 SER NO SEQ NO CREDT EXPDT REFDT NO EXT DSORG RECFM OPTCD BLKSIZE
EXAMPLE.OF.COMBINED. FORMATS. ONE. AND.THREE 1 EXAMPL 1 36699 27069 00000 16 PS V 3504

LRECL KEYLEN INITIAL ALLOC 2ND ALLOC/LAST BLK PTR (T-R-L) USED PDS BYTES FMT 2 OR 3 (C-H-R) /DSCB (C-H-R)
3500 TRKS 1 1 5 1 1723 5 0 6 5 0 5

EXTENTS NO LOW(C-H) HIGH (C-H) NO LOW(C-H) HIGH(C-H) NO LOW(C-H) HIGH(C-H)
0 0 1 0 1 0 2 0 2 2 0 3 o 3

4 0 0 5 0 5 5 0 6 o 6
6 0 7 0 7 0 8 0 8 0 9 o 9
9 0 0 10 11

12 13 4 14
15 6 6

----ON THE ABOVE DATA SET,THERE ARE 0 EMPTY TRACK(S) •

THERE ARE 192 EMPTY CYLINDERS PLUS 3 EMPTY TRACKS ON THIS VOLUME
THERE ARE 154 BLANK DSCBS IN THE VTOC ON THIS VOLUME

Figure 17-5.Sample Printout of a Volume Table of Contents

Unedited (Dump) Format

Input and Output

This option produces a complete hexadecimal listing of the DSCBs in the VTOC.
The listing is in an unedited dump form, requiring the user to know the various
formats of applicable DSCBs. The VTOC overlay for IEHLIST listings of VTOCs
in dump format is useful in identifying the fields of the DSCBs.

Refer to OS/VS2 Data Areas for a discussion of the various formats that data set
control blocks can assume.

IEHLIST uses the following input:

• One or more source data sets that contain the data to be listed. The input data
set(s) can be: (1) a VTOC data set, (2) a partitioned data set, or (3) an OS
catalog data set (SYSCTLG).

• A control data set, which contains utility control statements that are used to
control the functions of IEHLIST.

IEHLIST produces as output a message data set which contains the result of the
IEHLIST operations. The message data set includes the listed data and any error
messages.

IEHLIST produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

IEHLlST Program 17 - 5

Control

Job Control Statements

17 - 6 OS/VS2 MVS Utilities

• 08, which indicates that an error condition caused a specified request to be
ignored. Processing continues.

• 12, which indicates that a permanent input/output error occurred. The job is
terminated.

• 16, which indicates that an unrecoverable error occurred while reading the data
set. The job is terminated.

IEHLIST is controlled by job control statements and utility control statements. The
job control statements are used to execute or invoke IEHLIST and to define the
data sets used and produced by IEHLIST.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes to be modified.

Figure 17-6 shows the job control statements necessary for using IEHLIST.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHLIST) or, if the job control
statements reside in a procedure library, the procedure name. Additional
PARM information can be specified to control the number of lines printed per
page. See "PARM Information on the EXEC Statement" below.

SYSPRINT DD Defines a sequential message data set.

anynamel DD Defines a permanently mounted volume.

anyname2 DD Defines a mountable device type.

SYSIN DD Defines the control data set. The control data set normally follows the job
control language in the input stream; however, it can be defined as an
unblocked sequential data set or member of a procedure library.

Figure l7-6.IEHLIST Job Control Statements

The "anyname 1" DD statement can be entered:

/ /anynamel DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume serial
number. The DISP=OLD specification prevents the inadvertent deletion of the
data set. This statement is arbitrarily assigned the ddname DDI in the IEHLIST
examples.

When deferred mounting is required, the "anyname2" DD statement can be
entered:

/ /anyname2 DD UNIT=(xxxx"DEFER),VOLUME=(PRIVATE, ...),DISP=OLD

See "Appendix C: DD Statements for Defining Mountable Devices" for
information on defining mountable devices. This statement is arbitrarily assigned
the ddname DD2 in the IEHLIST examples. Statements defi.ning additional
mountable devices are assigned ddnames DD3, DD4, etc.

With the exception of the SYSIN and SYSPRINT DD statements, all DD
statements in this table are used as device allocation statements, rather than as true
data definition statements.

PARM Information on the EXEC Statement

Additional information can be specified in the P ARM parameter of the EXEC
statement to control the number of lines printed per page. The P ARM parameter
can be coded:

PARM='LINECNT=xx'

The LINECNT parameter specifies the number of lines, xx, to be printed per page;
xx is a decimal number from 01 through 99. If LINECNT is not specified, 58 lines
are printed per page. The P ARM field cannot contain embedded blanks, zeros, or
any other P ARM keywords, or the default of 58 is used.

Utility Control Statements

LISTCTLG Statement

LISTPDS Statement

Statement Use

LISTCTLG

LISTPDS

LISTVTOC

Requests a listing of all or part of an OS catalog (SYSCTLG).

Requests a directory listing of one or more partitioned data sets.

Requests a listing of all or part of a volume table of contents.

Figure t 7 -7 .IEHLIST Utility Control Statements

The LISTCTLG statement is used to request a listing of either the entire catalog or
a specified portion of the catalog (SYSCTLG data set). The listing includes the
fully qualified name of each applicable cataloged data set and the serial number of
the volume on which it resides. Empty index levels are not listed.

The format of the LISTCTLG statement is:

[label] LISTCTLG [VOL=device =serial]

[,NODE=name]

The LISTPDS statement is used to request a directory listing of one or more
partitioned data sets that reside on the same volume.

Before printing the directory entries on the first page, an index is printed explaining
the attributes (fields 3 and 10) and other information (field 12). OTHER
INFORMATION INDEX explains scatter and overlay format data as it appears in
the listing; ATTRIBUTE INDEX explains each attribute bit.

Note: The Format option of the LISTPDS statement may be used only on a
partitioned data set whose members have been created by the linkage editor.
Members that have not been created by the linkage editor cause their directory
entries to be listed in unedited (DUMP) format.

The format of the LISTPDS statement is:

[label] LISTPDS DSNAME=ldsnamel I (dsnamel [,dsname2 [], ...])}

[,VOL=device =serial]

[{,DUMP I ,FORMAT}]

IEHLIST Program 17 - 7

LISTVTOC Statement

t 7 - 8 OS/VS2 MVS Utilities

The LISTVTOC statement is used to request a partial or complete listing of the
entries in a specified volume table of contents.

The format of the LISTVTOC statement is:

[label] LISTVTOC [{DUMP I FORMAT}[,INDEXDSN=SYS1.VTOCIX.nnn]]

[,DATE=dddyy]

[,VOL=device=seria/]

[,DSNAME=(name[,name] ...)]

App6cable.
Control

~ Operands Statements Description of Operands/Parameters
~

DATE LISTVTOC DATE=dddyy
specifies that each entry that expires before this date is to be flagged
with an asterisk (*) in the listing. This parameter applies only to the
abbreviated edited format. The date is represented by ddd, the day of
the year, and yy, the last two digits of the year.

Default: No asterisks appear in the listing ..

DSNAME DSNAME=(name[,name} ...)

LISTPDS specifies the fully qualified names of the partitioned data sets whose
directories are to be listed. A maximum of ten names is allowed. If the
list consists of a single name, the parentheses can be omitted.

LISTVTOC specifies the fully qualified names of the data sets whose entries are to be
listed. A maximum of ten names is allowed. If the list consists of a single
name, the parentheses can be omitted.

DUMP LISTPDS DUMP
LISTVTOC specifies that the listing is to be in unedited, hexadecimal form.

Default: If both DUMP and FORMAT are omitted, an abbreviated
edited format is generated for LISTVTOC. For LISTPDS, DUMP is the
default used.

'\
FORMAT FORMAT

/ LISTPDS s,Qecifies that the listing is to be edited for each directory entry.

LISTVTOC specifies that a comprehensive edited listing is to be generated.

Default: If both FORMAT and DUMP are omitted, an abbreviated
edited format is generated for LISTVTOC. For LISTPDS, DUMP is the
default used.

INDEXDSN LISTVTOC INDEXDSN=SYS1.VTOCIX.nnnn
specifies that index information is to be listed, in addition to the VTOC.
nnn is any third level qualifier. DUMP or FORMAT must be specified if
INDEXDSN is specified. For more information, refer to Data Facility/
Device Support: User's Guide and Reference.

NODE LISTCTLG NODE = name
specifies a qualified name. All data set entries whose names are qualified
by this name are listed. The CVOL must be defined in the VSAM
Master Catalog as: SYSTCTLG.VYYYYYY, where YYYYYY is the
serial number of the CVOL, see Using OS Catalog Management with
the Master Catalog: CVOL Processor and OS/VS2 MVS CVOL
Processor.

Default: All data set entries are listed.

VOL LISTCTLG VOL=device=serial
LISTPDS specifies the device type and volume serial number of the volume on
LISTVTOC which the catalog, PDS directory, or VTOC resides.

J Default: For LISTCTLG, the catalog is assumed to reside on the system
residence volume.

IEHLIST Program 17-9

Restrictions

IEHLIST Examples

17-10 OS/VS2 MVS Utilities

• The block size for SYSIN and SYSPRINT must be a multiple of 80 and 121,
respectively. Any blocking factor can be specified for these block sizes.

• Concatenated DD statements are allowed only for SYSIN.

• An "anyname 1" DD statement must be included for each permanently mounted
volum~ referred to in the job step. (The system residence volume is considered
to be a permanently mounted volume.)

• An "anyname2" DD statement must be included for each mountable device to
be used in the job step.

• Because IEHLIST modifies the internal control blocks created by device
allocation DD statements, IEHLIST job control statements must not include the
DSNAME parameter. (All data sets are defined explicitly or implicitly by utility
control statements.)

• When IEHLIST is dynamically invoked in a job step by another program, the
DD statements defining mountable devices for IEHLIST must precede DD
statements required by the other program.

• IEHLIST cannot support empty space calculations for data sets allocated in
blocks when the block sizes are approximately the same or larger than the track
size. The empty block calculation gives only approximate indications of available
space. When IEHLIST cannot supply an approximate number, the "Unable to
Calculate" message is issued.

• IEHLIST specifications do not allow for protection of the object being listed. If
another program updates a block of the data set just prior to IEHLIST reading
the data set, a message (IEHI05I or IEHI08I) may be issued and the output
produced by IEHLIST may be incorrect. If this happens, rerun the job.

• If you are using IEHLIST to list both the VTOC and the index data set of
an indexed VTOC, refer to Data Facility/Device Support: User's Guide and
Reference.

The following examples illustrate some of the uses of IEHLIST. Figure 17-8 can be
used as a quick reference guide to IEHLIST examples. The numbers in the
"Example" column point to examples that follow.

Operation Devices

LIST

LIST

LIST

LIST

Disk and
system output
device

Disk system
residence device
and system
output device

Disk and
system output
device

Disk and
system output
device

Comments

Source catalog is to be listed on the
system output device.

Three catalogs and part of a fourth
are to be listed on the system
output device.

Three partitioned directories are to
be listed on the system output device.

Volume table of contents is to be
listed in edited form; selected
data set control blocks are listed
in unedited form.

Figure 17-8. IEHLIST Example Directory

Example

2

3

4

Note: Examples which use disk, in place of actual device-ids, must be changed

l~
\

/

IEHLIST Example 1

IEHLIST Example 2

Note: Examples which use disk, in place of actual device-ids, must be changed
before use. See the Device Support section, in the Introduction to this manual, for
valid device-id notation.

Note: In the IEHLIST examples, the EXEC statement and the SYSPRINT DD
statement can be replaced with the following job control statement:

I I EXEC PROC=LI.ST

The EXEC statement invokes the following IBM-supplied cataloged procedure:

IILIST EXEC PGM=IEHLIST,REGION=44K
IIDDSRV DD VOLUME=REF=SYS1.SVCLIB,DISP=OLD
IISYSPRINT DD SYSOUT=A

In this example, an OS catalog data set named SYSCTLG, residing on a disk
volume (111111), is to be listed.

The example follows:

IILISTCAT JOB 09#550,BLUE
II EXEC PGM=IEHLIST
IISYSPRINT DD SYSOUT=A
IIDD2 DD UNIT=disk, VOLUME=SER= 111111 ,DISP=OLD
IISYSIN DD *

LISTCTLG vOL=d~k=111111

1*
The control statements are discussed below:

• DD2 DD defines a mountable device on which the volume containing the source
catalog is mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• LISTCTLG defines the source volume and specifies the list operation.

In this example, a catalog residing on the system residence volume, two catalogs
residing on disk volumes, and a portion of a catalog residing on another volume, are
to be listed.

IILISTCATS JOB 09#550,BLUE
II EXEC PGM=IEHLIST
IISYSPRINT DD SYSOUT=A
IIDD1 DD UNIT=d~kB,vOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=(d~kA"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222))
IISYSIN DD *

/*

LISTCTLG
LISTCTLG
LISTCTLG
LISTCTLG

VOL=diskA=333333
VOL=diskA=444444
VOL=diskA=555555 , NODE=A. B. C

The control statements are discussed below:

• DD 1 DD defines a system residence device. (The first catalog to be listed resides
on the system residence volume.)

• DD2 DD defines a mountable device on which each diskA volume is mounted as
it is required by the program.

• SYSIN DD defines the control data set, which follows in the input stream.

IEHLIST Program 17 - 11

IEHLIST Example 3

IEHLIST Example 4

t 7 - t 2 OS/VS2 MVS Utilities

• The first LISTCTLG statement indicates that the catalog residing on the system
residence volume is to be listed.

• The second and third LISTCTLG statements identify two diskA disk volumes
containing catalogs to be listed.

• The fourth LISTCTLG statement identifies a diskA volume containing a catalog
that is to be partially listed. All data set entries whose beginning qualifiers are
"A.B.C" are listed.

In this example, a partitioned directory existing on the system residence volume is
to be listed. In addition, two partitioned directories existing on another disk volume
are to be listed.

IILISTPDIR JOB
II EXEC
IISYSPRINT DD
IIDD1 DD
IIDD2 DD
IISYSIN DD

1*

LISTPDS
LISTPDS

09#550,BLUE
PGM=IEHLIST
SYSOUT=A
UNIT=diskB , VOLUME=SER= 111111 , DISP=OLD
UNIT=diskA , VOLUME=SER=22 22 22, DISP=OLD

*
DSNAME=PARSET1
DSNAME=(PART1,PART2),VOL=d~kA=222222

The control statements are discussed below:

• DDl DD defines the system residence device.

• DD2 DD defines a mountable device on which a disk volume (222222) is to be
mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• The first LISTPDS statement indicates that the partitioned data set directory
belonging to data set P ARSETl is to be listed. This data set exists on the system
residence volume.

• The second LISTPDS statement indicates that partitioned directories belonging
to data sets PARTl and PART2 are to be listed. These data sets exist on a disk
volume (222222).

In this example, a volume table of contents in edited form, is to be listed. the
edited listing is supplemented by an unedited listing of selected data set control
blocks.

IILISTVTOC JOB 09#550,BLUE
II EXEC PGM=IEHLIST
IISYSPRINT DD SYSOUT=A
IIDD2 DD UNIT=d~k,vOLUME=SER=111111,DISP=OLD
IISYSIN DD *

LISTVTOC FORMAT, VOL=disk=111111
LISTVTOC DUMP, VOL=disk=111111 , DSNAME=(SET1 , SET2, SET3)

1*
The control statements are discussed below:

• DD2 DD defines a mountable device on which the volume containing the
specified volume table of contents is to be mounted.

• SYSIN DD defines the control data set which follows in the input stream.

• The first LISTVTOC statement indicates that the volume table of contents on
the specified disk volume is to be listed in edited form.

• The second LISTVTOC statement indicates that the data set control blocks
representing data sets SETl, SET2, and SET3 are to be listed in unedited form.

IEHLIST Program 17 - 13

IEHMOVE PROGRAM

IEHMOVE is a system utility used to move or copy logical collections of
operating system data.

IEHMOVE can be used to move or copy:

• A data set residing on from one to five volumes, with the exception of
ISAM data sets, and VSAM data spaces.

• A group of cataloged data sets.

• An OS catalog (CVOL) or portions of a CVOL.

• A volume of data sets.

The scope of a basic move or copy operation can be enlarged by:

• Including or excluding data sets from a move or copy operation.

• Merging members from two or more partitioned data sets.

• Including or excluding selected members.

• Renaming moved or copied members.

• Replacing selected members.

If, for some reason, IEHMOVE is unable to successfully move or copy
specified data, an attempt is made to reorganize the data and place it on the
specified output device. The reorganized data--called an unloaded data
set-is a sequential data set consisting of 80-byte blocked records that
contain the source data and control information for subsequently
reconstructing the source data as it originally existed.

When an unloaded data set is moved or copied to a device that will support
the data in its true form, the data is automatically reconstructed. For example,
if the user attempts to move a partitioned data set to a tape volume, the data
is unloaded to that volume. The user can re-create the data set simply by
moving the unloaded data set to a direct access (DASD) volume.

A move operation differs from a copy operation in that a move operation
scratches source data if the data set resides on a direct access source volume
and the expiration date has occurred. while a copy operation leaves source
data intact. In addition, for cataloged d:;lta sets, a move operation updates the
catalog to refer to the moved version (unless otherwise specified), while a
copy operation leaves the catalog unchanged.

Space can be allocated for a data set on a receiving volume either by the user
(through the use of DD statements in a prior job step) or by IEHMOVE in
the IEHMOVE job step. If the source data is unmovable (that is, if it contains
location dependent code), the user should allocate space on the receiving
volume using absolute track allocation to ensure that the data set is placed in
the same relative location on the receiving volume as it was on the source
volume. Unmovable data can be moved or copied if space is allocated by
IEHMOVE, but the data will not be in the same location on the receiving
volume as it was on the source volume. When data sets are to be moved or
copied between unlike DASD devices, a secondary allocation should be made
to ensure that ample space is available on the receiving volume.

IEHMOVE Program 18-1

18-2 OS/VS2 MVS Utilities

Space for a new data set should not be allocated by the user when a direct
data set is to be moved or copied, not unloaded, because IEHMOVE cannot
determine if the new data set is empty.

If IEHMOVE performs the space allocation for a new data set, the space
requirement information of the old data set (if available) is used. This space
requirement information is obtained from the DSCB 'of the source data set, if
it is on a DASD volume, or the control information in the case of an unloaded
data set.

If space requirement information is available, IEHMOVE uses this
information to derive an allocation of space for the receiving volume, taking
into account the differences in device characteristics, such as track capacity
and overhead factors. However, when data sets with variable or undefined
record formats are being moved or copied between unlike DASD devices, no
assumption can be made about the space that each individual record needs on
the receiving device.

In general, when variable or undefined record formats are to be moved or
copied, IEHMOVE attempts to allocate sufficient space. This might cause too
much space to be allocated under the following circumstances:

• When moving or copying from a device with a relatively large block
overhead to a device with a smaller block overhead, the blocks being small
in relation to the block size.

• When moving or copying from a device with a relatively small block
overhead to a device with a larger block overhead, the blocks being large in
relation to the block size.

Direct data sets with·variable or undefined record formats always have the
same amount of space allocated by IEHMOVE. This practice preserves any
relative track addressing system that might exist within the data sets.

If the Resource Access Control Facility (RACF) is active, the following
considerations apply:

• The user must have valid RACF authorization to access any
RACF-defined dat~ sets with IEHMOVE. ALTER authorization is
required to the source data set for a MOVE function, as the source data set
is scratched. When moving a volume or group of data sets, the user must
have adequate access authorization to all of the RACF-protected datasets
on the volume or in the group.

• If the user has the. ADSP attribute and IEHMOVE is to allocate space for
the receiving data set, that data set will be automatically defined to RACF.
If the data set does not have the userid of this user a~ the first level
qualifier, at least one of the following conditions must be met:

the user specifies MOVE or COpy with RENAME so that the first
level qualifier is the correct userid

the data set being moved or copied is a group data set and the user is
connected to the group with CREATE authority

the user has the OPERATION attribute

• If COPYAUTH is specified and the input data set is RACF-protected
(whether or not the user has the ADSP attribute), the receiving data set of
a MOVE or COpy operation is given a copy of the input data set's RACF
protection and access list during allocation, governed by the same
restrictions described above for defining a data set for a user with the

t>,

ADSP attribute. The user must have ALTER access authorization to the
input data set to either MOVE or COPY using COPY AUTH.

A move or copy operation results in: (1) a moved or copied data set, (2) no
action, or (3) an unloaded version of the source data set. These results
depend upon the compatibility of the source and receiving volumes with
respect to:

• Size of the volumes.

• Data set organization (sequential, partitioned, or direct).

• Movability of the source data set.

• Allocation of space on the receiving volume.

Two volumes are compatible with respect to size if (1) the source record size
does not exceed the receiving track size, or (2) the receiving volume supports
the track overflow feature and the output is to be written with track overflow.
(Refer to "Job Control Statements" for notes on the track overflow feature.)
When using direct data set organization, two volumes are compatible with
respect to size if the source track capacity does not exceed the receiving track
capacity. Direct data sets moved or copied to a smaller device type or tape are
unloaded. If the user wishes to load an unloaded data set, it must be loaded to
the same device type from which it was originally unloaded.

Figure 18-1 shows the results of move and copy operations when the
receiving volume is a DASD volume that is compatible in size with the source
volume. The organization of the source data set is shown along with the
characteristics of the receiving volume.

Receiving Volume
Characteristics Sequential Partitioned Direct

Space allocated moved or copied moved or copied moved or copied
byIEHMOVE
(movable data)

Space allocated moved or copied moved or copied no action
byIEHMOVE
(unmovable data)

Space previously moved or copied moved or copied no action
allocated, as yet
unused

Space previously no action moved or copied no action
allocated, partially (merged)
used

Figure 18-1.Move and Copy Operations-DASD Receiving Volume with Size Compatible
with Source Volume

Figure 18-2 shows the results of move and copy operations when the
receiving volume is a DASD volume that is not compatible in size with the
source volume. The organization of the source data set is shown along with
the characteristics of the receiving volume.

Figure 18-3 shows the results of move and copy operations when the
receiving volume is not a DASD volume. The organization of the source data
set is shown along with the characteristics of the receiving volume.

Space cannot be previously allocated for a partitioned data set that is to be
unloaded unless the SPACE parameter in the DD statement making the
allocation implies sequential organization. Direct data sets should not be

IEHMOVE Program 18-3

t 8-4 OS!VS2 MVS Utilities

Receiving Volume
Characteristics Sequential Partitioned Direct

Space allocated unloaded unloaded unloaded
byIEHMOVE

Space previously unloaded unloaded no action
allocated, as yet
unused

Space previously no action no action no action
allocated, partially
used

Figure 18-2.Move and Copy Operations-DASD Receiving Volume with Size
Incompatible with Source Volume

Receiving Volume
Characteristics

Movable data

Unmovable data

Sequential

moved or copied

unloaded

Partitioned

unloaded

unloaded

Direct

unloaded

no action

Figure 18-3.Move and Copy Operations-Non-DASD Receiving Volume

previously allocated because IEHMOVE cannot determine whether they are
empty or not.

If a move or copy operation is unsuccessful, the source data remains intact.

If a move or copy operation is unsuccessful and space was allocated by
IEHMOVE, all data associated with that operation is scratched from the
receiving direct access volume. If the receiving volume was tape, it will
contain a partial data set.

If a move or copy operation is unsuccessful and space was previously
allocated, no data is scratched from the receiving volume. If, for example,
IEHMOVE moved 104 members of a 105-member partitioned data set and
encountered an input/output error while moving the 105th member:

• The entire partitioned data set is scratched from the receiving volume if
space was allocated by IEHMOVE.

• No data is scratched from the receiving volume if space was previously
allocated. In this case, after determining the nature of the error, the user
need move only the 105th member into the receiving partitioned data set.

If a sequential data set, which is not an unloaded data set, on a non-DASD
volume is to be moved or copied toa DASD volume, and space attributes are
not available through a previous allocation, IEHMOVE makes a default space
allocation. The default allocation consists of a primary allocation of 72,500
bytes of storage (data and gaps) and up to 15 secondary allocations of 36,250
bytes each.

When moving or copying a data set group or a volume containing
password-protected data sets, the user must provide the password each time a
data set is opened or scratched.

IEHMOVE always moves or copies any user labels associated with an input
data set. IEHMOVE does not take exits to a user's label processing routines.

Note: If a data set that has only user trailer labels is to be moved from a tape
volume to a direct access volume, space must be previously allocated on the
direct access volume to ensure that a track is reserved to receive the user
labels.

Rebloeki"g

Data sets with fixed or variable records can be reblocked to a different block size
by previously allocating the desired block size on the receiving volume. No
reblocking can be performed when loading or unloading. Also, no reblocking can
be performed on data sets with variable-spanned or variable-blocked-spanned
records.

When moving or copying data sets with undefined record format and reblocking to
a smaller block size (that is, transferring records to a device with a track capacity
smaller than the track capacity of the original device), the user must make the block
size for the receiving volume equal to or larger than the size of the largest record in
the data set being moved or copied.

Movi"g or Copyi"g a Data Set

IEHMOVE can be used to move or copy sequential, partitioned, and direct access
data sets, as follows:

• A sequential data set can be: (1) moved from one DASD volume or non-DASD
volume to another (or to the same volume provided that it is a direct access
volume), or (2) copied from one volume to another (or to the same volume
provided that the data set name is changed and the receiving volume is a DASD
volume).

• A direct data set can be moved or copied from one DASD volume to another
provided that the receiving device type is the same device type or larger, and that
the record size does not exceed 32K.

• A partitioned data set can be: (1) moved from one DASD volume to another (or
to the same volume) or, (2) copied from one direct access volume to another (or
to the same volume provided that the data set name is changed).

When IEHMOVE uncatalogs a data set, cataloged in a VSAM catalog, which has
one or more aliases, the aliases are also removed. An alias can be replaced by
means of the Access Method Services program when the data set is cataloged later.
If an alias name is spe~ified in the DSNAME or PDS keyword, the true name only
is moved or copied. Cataloging is done with the true name. The alias is removed if
any uncataloging is done in a VSAM catalog.

IEHMOVE can be used to move or copy multivolume data sets. To move or copy a
multivolume data set, specify the complete volume list in the VOL=SER parameter
on the DD statement. To move or copy a data set that resides on more than one
tape volume, specify the volume serial numbers of all the tape volumes and the
sequence numbers of the data set on the tape volumes in the utility control
statement. (You can specify the sequence number even if the data set to be moved
or copied is the only data set on a volume.) To move or copy a data set to more
than one tape volume, specify the volume serial numbers of all the receiving
volumes in the utility control statement.

A data set with the unmovable attribute can be moved or copied from one DASD
volume to another or to the same volume provided that space has been previously
allocated on the receiving volume. Change the name of the data set if move or copy
is to be done to the same volume. SVCLffi can be moved or copied to another
location on the system residence volume, provided that space has been previously
allocated on that volume. IEHPROGM must be used immediately after such a
move operation to rename the moved version SYS l.SVCLffi. After such a copy
operation, IEHPROGM must be used to scratch the old version and to rename the
copied version.

IEHMOVE Program 18-5

18-6 OS/VS2 MVS Utilities

When moving or copying a direct data set from one device to another device of the
same type, relative track and relative block integrity are maintained.

When moving or copying a direct data set to a larger device, relative track integrity
is maintained for data sets with variable or undefined record formats; relative block
integrity is maintained for data sets with fixed record formats.

When moving or copying a direct data set to a smaller device or a tape, the data set
is unloaded. An unloaded data set is loaded only when it is moved or copied to the
same device type from which it was unloaded.

Figure 18-4 shows basic and optional move and copy operations for sequential and
partitioned data sets.

Operation

Move
Sequential

Move
Partitioned

Copy
Sequential

Copy
Partitioned

Basic Actions

Move the data set. For DASD,
scratch the source data. For cataloged
data sets, update the catalog
to refer to the moved data set.

Move the data set. Scratch the
source data. For cataloged
data sets, update the catalog to refer
to the moved data set.

Copy the data set. The source data set
is not scratched. The catalog is not
updated to refer to the copied data set.

Copy the data set. The source data is
not scratched. The catalog is not
updated to refer to the copied data
set.

Optional Actions

Prevent automatic cataloging of the
moved data set. Rename the moved
data set.

Prevent automatic cataloging of the
moved data set. Rename the moved
data set. Re-allocate directory space.
(Not possible if the space was not
allocated by IEHMOVE during this
move function.) Perform a merge
operation using members from two or
more data sets. Move only selected
members. Replace members. Unload the
data set.

Uncatalog the source data set. Catalog
the copied data set on the receiving
volume. Rename the copied data set.

Uncatalog the source data set. Catalog
the copied data set. Rename the
copied data set. Re-allocate
directory space. (Not possible if
the space previously allocated is
partially used.) Perform a merge
operation using members from two
or more data sets. Copy only
selected members. Replace members.
Unload the data set.

Figure 18-4. Moving and Copying Sequential and Partitioned Data Sets

IEHMOVE moves or copies partitioned members in the order in which they appear
in the partitioned directory. That is, moved or copied members are placed in
collating sequence on the receiving volume.

Figure 18-5 shows a copied partitioned data set. Note that the members are copied
in the order in which they appear in the partitioned directory. IEBCOPY can be
used to copy data sets whose members are not to be collated.

Members that are merged into an existing data set are placed, in collating sequence,
after the last member in the existing data set. If the target data set contains a
member with the same name as the from dataset, the member will not be
moved! copied.

Source data set Copied ddtd ,PI

Figure 18-5.Partitioned Data Set Before and After an IEHMOVE Copy Operation

Figure 18-6 shows members from one data set merged illto an existing data
set. Members Band F are copied in collating sequence.

Source data set

Existing data set
prior to merge

Figure 18-6.Merging Two Data Sets Using IEHMOVE

Figure 18-7 shows how members from two data sets are merged into an
existing data set. Members from additional data sets can be merged in a like
manner. Members F, B, D, and E from the source data sets are copied in
coUating sequence.

IEHMOVE Program 18-7

EXisting data set
prior to merge

Directory
ACG

Members A

c

G

EXisting data set
after merge

Figure 18-7.Merging Three Data Sets Using IEHMOVE

Source data sets

dre pldced If)

co 1101 Ing seq uence
dfter eXlslln4
members

Moving or Copying a Group 01 Cataloged Data Sets

18-8 OS/VS2 MVS Utilities

IEHMOVE can be used to move or copy a group of data sets that are cataloged in
VSAM catalogs and whose names are qualified by one or more identical names.
For example, a group of data sets qualified by the name A.B can include data sets
named A.B.D and A.B.E, but could not include data sets named A.C.D or A.D.F.

If the user specifies that the data set group is cataloged in a CVOL, two additional
options are available. First, additional data sets not belonging to the specified data
set group can be included in the move or copy operation. Second, data sets
belonging to the group can be excluded from the requested operation.

Additional data sets not belonging to the specified data set group can be included in
the move or copy operation; data sets belonging to the group can be excluded.

Before copying/moving a DSGROUP that is cataloged in an OS catalog, the
volume containing the catalog must be defined in the VSAM mater catalog. See
Using OS Catalog Management with the Master Catalog: CVOL Processor for
details on how this is done.

If a group of data sets is moved or copied to magnetic tape, the data sets must be
retrieved one by one by data set name and file-sequence number, or by
file-sequence number for unlabeled or non-standard labeled tapes.

Access Method Services can be used to determine the structure of the catalog.

Figure 18-8 shows basic and optional move and copy operations for a group of
cataloged data sets.

Operation

Move group
of cataloged
data sets

Copy group
of cataloged
data sets

Basic Actions

Move the data set group (excluding
password-protected data sets) to the
specified volumes. Scratch the source
data sets (direct access only).
Merging is not done.

Copy the data set group (excluding
password-protected data sets). Source
data sets are not scratched.
Merging is not done.

Optional Actions

Prevent updating of the catalog.
Include password-protected data
sets in the operation, Unload
data sets. If a data set group is
cataloged in a CVOL: you may
INCLUDE or EXCLUDE data sets
during the operation.

Include password-protected data
sets in the operation. Uncatalog
the source data sets. Catalog
the copied data sets on the
receiving volumes. Unload a
data set or sets. If a data set
group is cataloged in a CVOL:
you may INCLUDE or EXCLUDE
data sets during the operation.

Figure 18-8.Moving and Copying a Group of Cataloged Data Sets

Moving or Copying a Catalog

IEHMOVE can be used to move or copy an OS catalog (CVOL) or portions
of an OS catalog without copying the data sets represented by the cataloged
entries. If the catalog is in an unloaded form, all entries are moved or copied.
The SYSCTLG (system catalog) data set need not be defined on the receiving
volume before the operation. If, however, SYSCTLG was defined before the
operation, the data set organization must not have been specified in the DCB
field. Moved or copied entries are merged with any existing entries on the
receiving volume. Note that the receiving volume must be a DASD volume
unless the catalog is to be unloaded.

Figure 18-9 shows basic and optional move and copy operations for the
catalog.

Operation

Move catalog

Copy catalog

Basic Actions

Move entries from the catalog to the
specified direct access volume.
Scratch the last index of all
entries in the source catalog.

Copy entries from the catalog to the
specified direct access device. The
source catalog is not scratched.

Figure 18-9. Moving and Copying the Catalog

Optional Actions

Exclude selected entries from
operation. Move an unloaded
version of the OS catalog. Unload
the OS catalog.

Exclude selected entries from
the operation. Copy an unloaded
version of the OS catalog. Unload
the OS catalog.

Note: Before copying/moving an OS catalog both the volume containing the
catalog and the volume to which the catalog is to be moved must be defined
in the VSAM Master catalog.

IEHMOVE Program 18-9

Moving or Copying a Volume 0/ Data Sets

IEHMOVE can be used to move or copy the data sets of an entire direct
access volume to another volume or volumes. A move operation differs from
a copy operation in that the move operation scratches source data sets, while
the copy operation does not. For both operations, any cataloged entries
associated with the source data sets remain unchanged. IEHPROGM can be
used to uncatalog all of the cataloged data sets and recatalog them according
to their new location.

If the source volume contains a SYSCTLG data set, that data set is the last to
be moved or copied onto the receiving volume.

If a volume of data sets is moved or copied to tape, sequential data sets are
'moved' while partitioned and direct data sets are 'unloaded'. The data sets
must be retrieved one by one by data set name and file-sequence number, or
by file-sequence number for unlabeled or non-standard labeled tapes.

When copying a volume of data sets, the user has the option of cataloging all
source data sets in a SYSCTLG data set on a receiving volume. However, if a
SYSCTLG data set exists on the source volume, error messages indicating
that an inconsistent index structure exists are generated when the source
SYSCTLG entries are merged into the SYSCTLG data set on the receiving
volume.

IEHMOVE ignores VSAM data spaces and system catalog data sets.

The move-volume feature does not merge partitioned data sets. If a data set
on the volume to be moved has a name identical to a data set name on the
receiving volume, the data set is not moved, or merged onto the receiving
volume.

The copy-volume feature does merge partitioned data sets. If a data set on the
volume to be copied has a name identical to a data set name on the receiving
volume, the data set is copied and merged onto the receiving volume.

Figure 18-10 shows basic and optional move and copy operations for a
volume of data sets.

Operation Basic Actions

Move a volume Move all data sets not protected by a
of data sets password to the specified direct access

volumes. Scratch the source data sets
for direct access volumes. The catalog
is not updated.

COpy a volume Copy all data sets not protected by a
of data sets password to the specified direct access

volume. The source data sets are not
scratched.

Figure 18-10.Moving and Copying a Volume of Data Sets

Optional Actions

Include password~protected data
sets in the operation. Unload the
data sets.

Include password-protected data
sets in the operation. Catalog all
copied data sets. Unload the data
sets.

Moving or Copying Direct Data Sets with Variable Spanned
Records

18-10 OS/VS2 MVS Utilities

IEHMOVE can be used to move or copy direct data sets with variable
spanned records from one direct access volume to a compatible direct access
volume, provided that the record size does not exceed 32K.

Because a direct access data set can reside on one to five volumes (all of
which must be mounted during any move or copy operation), it is possible for

Input and Output

the data set to span volumes. However, single variable spanned records are
contained on one volume.

Relative track integrity is preserved in a move or copy operation for spanned
records. Moved or copied direct access data sets occupy the same relative
number of tracks that they occupied on the source device.

If a direct data set is unloaded (moved or copied to a smaller device or tape),
it must be loaded back to the same device type from which it was originally
unloaded.

When moving or copying variable spanned records to a larger device, record
segments are combined and re-spanned if necessary. Because the remaining
track space is available for new records, variable spanned records are
unloaded before being moved or copied back to a smaller device.

If a user wishes to create a direct data set without using data management
BDAM macros, all data management specifications must be followed. Special
attention must be given to data management specifications for RO track
capacity record content, segment descriptor words, and the BFTEK=R
parameter.

When moving or copying a multivolume data set, the secondary allocation for
direct data sets should be at least two tracks. (See the "WRITE SZ" macro in
OS/VS2 MVS Data Management Macro Instructions.)

IEHMOVE uses the following input:

• One or more data sets, which contain the data to be moved, copied, or
merged into an output data set.

• A control data set, which contains utility control statements that are used
to control the functions of the program.

• A work data set, which is a work area used by IEHMOVE.

IEHMOVE produces the following output:

• An output data set, which is the result of the move, copy, or merge
operation.

• A message data set, which contains informational messages (for example,
the names of moved or copied data sets) and error messages, if applicable.

IEHMOVE produces a return code to indicate the results of program
execution. The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a specified function was not completely successful.
Processing continues.

• 08, which indicates a condition from which recovery is possible. Processing
continues.

• 12, which indicates an unrecoverable error. The job step is terminated.

• 16, which indicates that is is impossible to OPEN the SYSIN or SYSPRINT
data set.

IEHMOVE Program 18-11

Control

Job Control Statements

18-12 OS/VS2 MVS Utilities

IEHMOVE is controlled by job control statements and utility control
statements. The job control statements are used to execute or invoke the
program, define the devices and volumes used and produced by IEHMOVE,
and prevent data sets from being deleted inadvertently.

Utility control statements are used to control the functions of the program
and to define those data sets or volumes that are to be used.

Figure 18-11 shows the job control statements necessary for using
IEHMOVE.

The SYSUTI DD statement must be coded:

/ /SYSUTI DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

At least 3 utility work areas of 13, 13, and 26 contiguous tracks, respectively,
must be available for work space on the volume defined by the SYSUT1 DD
statement. (This figure is based on a 2314 being the work volume. If a direct
access device other than a 2314 is used, an equivalent amount of space must
be available.)

The anynamel DD statement can be coded:

/ /anynamel DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

In the anynamel DD statement, the UNIT and VOLUME parameters define
the device type and volume serial number. The DISP=OLD specification
prevents the inadvertent deletion of a data set. The anyname 1 DD statement
is arbitrarily assigned the ddname DDt in the IEHMOVE examples.

The anyname2 DD statement can be coded:

/ /anyname2 DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

When the number of volumes to be processed is greater than the number of
devices defined by DD statements, there must be an indication (in the
applicable DD statements) that multiple volumes are to be processed. This
indication can be in the form of deferred mounting, as follows:

/lanyname2 DD UNIT=(xxxx"DEFER),VOLUME=(PRIVATE, ...),
/ / DISP=(. .. ,KEEP)

See "Appendix C: DD Statements for Defining Mountable Devices" for
information on defining mountable devices. The anyname2 DD statement is
arbitrarily assigned the ddname DD2 in the IEHMOVEexamples. DD
statements defining additional mountable device types are assigned names
DD3, DD4, etc., when 7-track tape is to be used.

The tape DD statement can be coded:

/ /tape DO DSNAME=xxxxxxxx,UNIT=xxxx,VOLUME=SER=xxxxxx,
/ / DISP=(. .. ,KEEP),LABEL=(. .. , ...),DCB=(TRTCH=C,DEN=x)

A utility control statement parameter refers to the tape DD statement for
label and mode information.

The date on which a data set is moved or copied to a magnetic tape volume is
automatically recorded in the HDR 1 record of a standard tape label if a
TODD parameter is specified in a utility control statement. An expiration
date can be specified by including the EXPDT or RETPD subparameters of
the LABEL keyword in the DD statement referred to by a TODD parameter.

~\
;)

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHMOVE) or, if the job control
statements reside in a procedure library, the procedure name. This
statement can include optional P ARM information; see "p ARM
Information on the EXEC Statement" below.

SYSPRINT DD Defines a sequential message data set. The data set can be written onto
a system output device, a magnetic tape volume, or a direct access
volume.

SYSUTI DD Defines a volume on which 3 work data sets required by IEHMOVE
are allocated.

anynamel DD Defines a permanently mounted DASD volume. (The system residence
volume is considered to be a permanently mounted volume.)

anyname2 DD Defines a mountable device type.

tape DD Defines a mountable tape device.

SYSIN DD Defines the control data set. The data set, which contains utility control
statements, usually follows the job control statements in the input
stream; however, it can be defined either as a sequential data set or as a
member of a procedure library.

Figure 18-11.1EHMOVE Job Control Statements

A sequence number, for a data set on a tape volume, or a specific device
address (for example, unit address 190), must be specified on a utility control
statement instead of a DD statement. To move or copy a data set from or to a
tape volume containing more than one data set, specify the sequence number
of the data set in the utility control statement. To move or copy a data set
from or to a specific device, specify the unit address (rather than a group
name or device type) in the utility control statement. To copy to a unit record
or unlabeled tape volume, specify any standard name or number in the utility
control statement.

The tape DD statement can be used to communicate DCB attributes, of data
sets residing on tape volumes that do not have standard labels, to IEHMOVE.
If no DCB attributes are specified, an undefined record format and a block

. size of 2560 are assumed. However, in order to recognize unloaded data sets
on an unlabeled tape volume, the DCB attributes must be specified as
follows:

DCB= (RECFM=FB,LRECL= 80,BLKSIZE= 800).

IEHMOVE automatically calculates and allocates the amount of space
needed for the work areas. No SPACE parameter, therefore, should be coded
in the SYSUTI DD statement. If, in the EXEC statement, POWER=3 is
specified, the work space requirement is three times the basic requirements,
etc.

With the exception of the SYSIN and SYSPRINT DD statements, all DD
statements shown in Figure 18-11 are used as device allocation statements,
rather than as true data definition statements. Because IEHMOVE modifies
the internal control blocks created by device allocation DD statements, these
statements must not include the DSNAME parameter. (All data sets are
defined explicitly or implicitly by utility control statements.)

A merge operation requires that one DD statement defining a mountable
device be present for each source volume containing data to be included in
the merge operation.

IEHMOVE Program 18-13

Prior space allocations can be made by specifying a dummy execution of
IEHPROGM before the execution of IEHMOVE.

Blocked format data sets that do not contain user data TTRNs or keys can be
reblocked or unblocked by including the proper keyword subparameters in
the DCB operand of the DD statement used to previously allocate space for
the data set. The new blocking factor must be a multiple of the logical record
length originally assigned to the data set. For a discussion of user data
TTRNs, refer to OS/VS2 MVS Data Management Services Guide.

PARM Information on the EXEC Statement

The EXEC statement for IEHMOVE can contain P ARM information that is
used by the program to allocate additional work space and/or control line
density on output listings. The EXEC statement can be coded, as follows:

/ / EXEC PGM=IEHMOVE[,PARM= {'POWER=nnn'}
{'POWER=nnn,LINECNT=xx'}
{'LINECNT=xx'}]

The POWER=n parameter is used to request that the normal amount of
space allocated for work areas be increased n times (1 to 999). The POWER
parameter is used when 750 or more members are being moved or copied.
The progression for the value of n is:

• POWER=2 when 750 to 1,500 members are to be moved or copied.

• POWER=3 when 1,501 to 2,250 members are to be moved or copied.

• POWER=4 when 2,251 to 3,000 members are to be moved or copied.

If POWER = 2, the work space requirement on the SYSUT1 volume is two
times the basic requirement; if POWER=3, work space requirement is three
times the basic requirement, etc. For example, if POWER=2, three areas of
26, 26, and 52 contiguous tracks on a 2314 must be available.

When moving or copying an OS catalog, the value of the POWER parameter can
be calculated, as follows:

n =(10D + V + 20G)/4000

wbere D is the total number of data sets, aliases, and generation data set
entries (which is the number of data set names printed by IEHLIST when
LISTCTLG is specified); V is the total number of volumes used by these data
sets (which is the number of lines printed by IEHLIST when LISTCTLG is
specified); and G is the number of generation data sets. Approximate values
can be used:

• POWER=2 when 350 to 700 data s~ts are cataloged.

• POWER=3 when 701 to 1,050 data sets are cataloged.

• POWER=4 when 1,051 to 1,400 data sets are cataloged.

The LINECNT =xx parameter specifies the number of lines per page in the
listing of the SYSPRINT data set; xx is a two-digit number in the range 04
through 99.

Job Control Language for the Track Overflow Feature

18-14 OS/VS2 MVS Utilities

A data set containing track overflow records can be moved or copied if the
source volume and the receiving volume are mounted on DASD that support
the track overflow feature. (For direct data sets, the source and receiving
devices must be the same device type.)

Utility Control Statements

A data set that was written without track overflow can be moved or copied
with or without track overflow or vice versa if the following conditions are
met:

• Space was allocated for the data set prior to the request for a move or copy
operation.

• The DD statement used for that allocation included the subparameter to
specify the changed track overflow value and all other desired values. (The
RECFM specifications assigned when the data set was originally created
are overridden by the RECFM subparameter in this DD statement.)

If space has not been allocated, or if RECFM was not specified when space
was allocated, the data set is moved or copied in accordance with RECFM
specifications that were made when the data set was originally created.

The track overflow attribute is not retained for a sequential data set that is
moved or copied to a device other than a DASD.

IEHMOVE is controlled by the following utility control statements (see figure
18-12).

Statement

MOVE DSNAME

COpy DSNAME

MOVE DSGROUP

COpy DSGROUP

MOVEPDS

COpy PDS

MOVE VOLUME

COpy VOLUME

MOVE CATALOG

COPY CATALOG

Use

Moves a data set.

Copies a data set.

Moves a group of cataloged data sets.

Copies a group of cataloged data sets.

Moves a partitioned data set.

Copies a partitioned data set.

Moves a volume of data sets.

Copies a volume of data sets.

Moves CVOL entries.

Copies CVOL entries.

Figure 18-12. IEHMOVE Job Control Statements

In addition, there are four subordinate control statements that can be used to
modify the effect of a MOVE DSGROUP, COpy DSGROUP, MOVE PDS,
COPYPDS, MOVE CATALOG, or COpy CATALOG operation. The
subordinate control statements are:

• INCLUDE statement, which is used to enlarge the scope of a MOVE
DSGROUP (with CVOL), COpy DSGROUP (with CVOL), MOVE
PDS, or COPY PDS statement by including a member or data set not
explicitly included by the statement it modifies.

• EXCLUDE statement, which is used with a MOVE DSGROUP (with
CVOL), COpy DSGROUP (with CVOL), MOVE PDS, COpy PDS,
MOVE CATALOG, or COpy CATALOG statement to exclude data
sei(s), a member or catalog entry(ies) from a move or copy operation.

• REPLACE statement, which is used with a MOVE PDS or COpy PDS
statement to exclude a member from a move or copy operation and to
replace it with a member from another partitioned data set.

IEHMOVE Program 18-15

MOVE DSNAME Statement

COpy DSNAME Statement

18-16 OS/VS2 MVS Utilities

• SELECT statement, which is used with MOVE PDS or COPY PDS
statements to select members to be moved or copied and, optionally, to
rename the specified members.

FROM and CVOL should never appear in the same IEHMOVE utility
control statement. FROMDD must be specified in the control statement when
no data set label information is available. TODD must be specified in the
control statement when an expiration data (EXPDT) or retention period
(RETPD) is to be created or changed.

The MOVE DSNAME statement is used to move a data set. The source data
set is scratched.

If the data set is cataloged, the catalog is automatically updated unless
UNCATLG /FROM is specified.

The format of the MOVE DSNAME statement is:

[label] MOVE DSNAME=name

,TO=device =list

[{,FROM=device =list I ,CVOL=dev;ce =serial}]

[,UNCATLG]

[,RENAME=name]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

The COpy DSNAME statement is used to copy a data set.

The source data set, if cataloged, remains cataloged unless UNCATLG or
CATLG without CVOL is specified.

The format of the COpy DSNAME statement is:

[label] COpy DSNAME=name

,TO=device =list

[{,FROM=device =list I ,CVOL=device =serial}]

[,UNCATLG]

[,CATLG]

[,RENAME=name]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

MOVE DSGROUP Statement

COPY DSGROUP Statement

The MOVE DSGROUP statement is used to move groups of data sets whose
names are partially qualified by one or more identical names. The data sets
may be cataloged on several catalogs. Source data sets are scratched. Data set
groups to be moved must reside on direct access volumes. Only data sets that
could be moved by MOVE DSNAME or MOVE PDS can be moved by
MOVE DSGROUP. Alias entries in VSAM catalogs for the data sets are lost
and can be replaced with Access Method Services.

INCLUDE and EXCLUDE statements, discussed later in this chapter, can be
used to add to or delete data sets from the group, if CVOL is specified.

MOVE DSGROUP operations cause the catalog to be updated automatically
unless UNCATLG is specified.

The format of the MOVE DSGROUP statement is:

[label] MOVE DSGROUP[=name]

,TO=device = list
[,CVOL=device =serial]

[,PASSWORD]

[,UNCATLG]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

The COPY DSGROUP statement is used to copy groups of data sets whose
names are partially qualified by one or more identical names. The data sets
may be cataloged on several catalogs. Only data sets that can be copied with
COPY DSNAME or COPY PDS can be copied with COPY DSGROUP.
Data set groups to be copied must reside on DASD volumes.

INCLUDE and EXCLUDE statements, discussed later in this chapter, can be
used to add to or delete data sets from the group, if CVOL is specified.

The source data sets remain cataloged unless UNCATLG or CATLG without
CVOL is specified.

The format of the COPY DSGROUP statement is:

[label] COpy DSGROUP[=name]

,TO=device =list

[,CVOL=device =serial]

[,PASSWORD]

[,UNCATLG]

[,CATLG]

[, TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

IEHMOVE Program 18-17

MOVE PDS Statement

COpy PDS Statement

18-18 OS/VS2 MVS Utilities

The MOVE PDS statement is used to move partitioned data sets. When used
in conjunction with INCLUDE, EXCLUDE, REPLACE, or SELECT
statements" the MOVE PDS statement can be used to merge selected
members of several partitioned data sets or to delete members.

If IEHMOVE is used to allocate space for an output partitioned data set, the
MOVE PDS statement can be used to expand a partitioned directory.

If the receiving volume contains a partitioned data set with the same name,
the two data sets are merged. The source data set is scratched.

MOVE PDS causes the specified catalog to be updated automatically unless
UNCATLG/FROM is specified.

The format of the MOVE PDS statement is:

[label] MOVE PDS=name

,TO=device =serial

[{,FROM=device =serial I ,CVOL=device =serial}]

[,EXPAND=nn]

[,UNCATLG]

[,RENAME=name]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COpy AUTH]

The COpy PDS statement is used to copy partitioned data sets. When used in
conjunction with INCLUDE, EXCLUDE, REPLACE, or SELECT
statements, the COpy PDS statement can be used to merge selected members
of several partitioned data sets or to delete members.

If IEHMOVE is used to allocate space for an output partitioned data set, the
COPY PDS statement can be used to expand a partitioned directory.

If the receiving volume already contains a partitioned data set with the same
name, the two are merged.

The source partitioned data set remains cataloged unless UNCATLG or
CATLG without CVOL is specified. The format of the COPY PDS statement
is:

[label] COpy PDS=name

, TO=device =serial

[{,FROM=device =seriall ,CVOL=device =serialJ)

[,EXPAND=nn]

[,UNCATLG]

[,CATLG]

[,RENAME=name]

MOVE CATALOG Statement

COPY CATALOG Statement

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

The MOVE CATALOG statement is used to move the entries of a CVOL
catalog (SYSCTLG data set) without moving the data sets associated with
those entries. Certain entries can be excluded from the operation by means of
the EXCLUDE statement. If the receiving volume contains a CVOL, the
source CVOL entries are merged with it.

The format of the MOVE CATALOG statement is:

[label] MOVE CATALOG[=name]

TO=device =serial

[{,CVOL= device=seriall,FROM=device=serial}]

[,FROMDD=ddname]

[, TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

The COpy CATALOG statement is used to copy the entries of a CVOL cata
(SYSCTLG data set) without copying the data sets associated with these entri
Certain entries can be excluded from a copy operation with the EXCLUDE
statement. If the receiving volume contains a CVOL, the source
CVOL is merged with it.

The format of the COpy CATALOG statement is:

[label] COpy CATALOG[=name]

, TO =device =serial

[{,CVOL= device = seria I I ,FROM=device=serial}]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

IEHMOVE Program 18-19

MOVE VOLUME Statement

COpy VOLUME Statement

INCLUDE Statement

18-20 OS/VS2 MVS Utilities

The MOVE VOLUME statement is used to move all the data sets residing on
a specified volume. Catalog entries associated with the data sets remain
unchanged. Data sets to be moved must reside on direct access volumes.

The format of the MOVE VOLUME statement is:

[label] MOVE VOLUME=device =serial

,TO=device = list

[,PASSWORD]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

The COpy VOLUME statement is used to copy all the data sets residing on a
specified volume. Catalog entries associated with the data sets remain
unchanged. Data sets to be copied must reside on direct access volumes.

If CA TLG is specified, error messages indicating that an inconsistent index
structure exists are issued when the source SYSCTLG data set entries are
merged into the CVOL catalog on the receiving volume. (Because the
SYSCTLG data set is the last to be copied, only those entries representing
cataloged data sets not residing on the source volume are copied into a
receiving volume's SYSCTLG data set; entries representing all data sets
residing on the source volume have already been made in the receiving
SYSCTLG data set.)

The format of the COpy VOLUME statement is:

[label] COpy VOLUME=device =serial

,TO=device = list

[,PASSWORD]

[,CATLG]

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

The INCLUDE statement is used to enlarge the scope of MOVE DSGROUP,
COpy DSGROUP, MOVE PDS, or COpy PDS statements by including a
member or a data set not explicitly defined in those statements. The
INCLUDE statement follows the MOVE or COpy statement whose function
it modifies. The record characteristics of the included partitioned data sets
must be compatible with those of the other partitioned data sets being moved
or copied. Any number of INCLUDE statements can modify a MOVE or
COpy statement. For a PDS, the INCLUDE statement is invalid when data is
unloaded or when unloaded data is moved or copied. For DSGROUP
operations, INCLUDE is invalid unless CVOL has been specified on the
MOVE/COPY DSGROUP control statement.

EXCLUDE Statement

SELECT Statement
~\

REPLACE Statement

The format of the INCLUDE statement is:

[label] INCLUDE DSNAME=name

[,MEMBER=membername]

[{,FROM=device = list I ,CVOL=device =serial}]

The EXCLUDE statement is used to restrict the scope of MOVE
DSGROUP, COpy DSGROUP, MOVE PDS, COPY PDS, MOVE
CATALOG, or COpy CATALOG statements by excluding a specific portion
of data defined in those statements.

Partitioned data set members excluded from a MOVE PDS operation cannot
be recovered (the source data set is scratched). Any number of EXCLUDE
statements can modify a MOVE PDS or COpy PDS statement.

Source data sets or catalog entries excluded from a MOVE DSGROUP or
MOVE CATALOG operation remain available. Only one EXCLUDE
statement can modify a MOVE DSGROUP, COpy DSGROUP, MOVE
CATALOG, or COpy CATALOG statement. The EXCLUDE statement is
invalid when data is unloaded or when unloaded data is moved or copied. The
EXCLUDE statement is invalid for a DSGROUP operation unless CVOL is
specified on the MOVE/COPY DSGROUP control statement.

The format of the EXCLUDE statement is:

[label] EXCLUDE {DSGROUP=name I MEMBER=membemame }

The SELECT statement is used with the MOVE PDS or COpy PDS
statement to select members to be moved or copied, and to optionally rename
these members. The SELECT statement cannot be used with either the
EXCLUDE or REPLACE statement to modify the same MOVE PDS or
COPY PDS statement. The SELECT statement is invalid when data is
unloaded or when unloaded data is moved or copied. Members not selected in
a MOVE PDS operation cannot be recovered since the source data set is
scratched.

The format of the SELECT statement is:

[label] SELECT {MEMBER=(name [, name] ...) I
MEMBER = «name, newname)[,(name , newname)] ...)}

The REPLACE statement is used with a MOVE PDS or COpy PDS
statement to exclude a member from the operation and replace it with a
member from another partitioned data set. The new member must have the
same name as the old member and must possess compatible record
characteristics. Any number of REPLACE statements can modify a MOVE
PDS or COPY PDS statement. The REPLACE statement is invalid when data
is unloaded or when unloaded data is moved or copied.

The format of the REPLACE statement is:

[label] REPLACE DSNAME=name

,MEMBER=name

[{,FROM=device =serial I ,CVOL=device =serial}]

IEHMOVE Program 18-21

Operands

CATALOG

CATLG

COPYAUTH

CVOL

Applicabl-e Control
Statements

MOVE CATALOG
COpy CATALOG

COpy DSNAME
COPY DSGROUP
COPYPDS
COpy VOLUME

Iv10VE DSNAME
COPY DSNAME
MOVE DSGROUP
COpy DSGROUP
MOVEPDS
COPYPDS
MOVE CATALOG
COPY CATALOG
MOVE VOLUME
COpy VOLUME

MOVE DSNAME
COpy DSNAME
MOVEPDS
COPYPDS
INCLUDE
REPLACE

MOVE DSGROUP
COpy DSGROUP

MOVE CATALOG
COpy CATALOG

18-22 OS/VS2 MVS Utilities

Description of Operands/Parameters

CATALOG [=name]
specifies the CVOL catalog entries to be moved or copied.
If name, which is a fully qualified name, is not coded, all
entries in the catalog are to be moved or copied. If name is
coded, all catalog entries whose names are qualified by this
name are moved or copied. If the name is a fully qualified
data set name, only the catalog entry that corresponds to
that data set is moved or copied.

CATLG
specifies that the copied data set(s) is to be cataloged. If
the CVOL operand is omitted, the cataloging is done in the
VSAM master/JOBCAT/STEPCAT catalog. If the
RENAME and FROM operands are omitted, the source
data set(s) is uncataloged to permit the copied data set(s)
to be cataloged. If CVOL operand is specified, the
cataloging is done in the OS catalog on the receiving
DASD volume. If an OS catalog does not exist on the
receiving DASD volume, one is created.

COPYAUTH

specifies that the receiving data set is to be given the same
access list as the input data set, if the input data set is
RACF-protected.

CVOL =device=serial
specifies the device type and serial number of the CVOL
on which the catalog search for the data set is to begin. If
the CVOL and FROM operands are omitted, the data set
is assumedto be cataloged in the VSAM master/JOBCAT/STEPCAT
catalog.

CVOL=device=serial
specifies the device type and serial number of the CVOL
on which the catalog search for the data set(s) is to begin.
If the CVOL operand is omitted, the data set(s) is assumed
to be cataloged in the VSAM master/JOBCAT/STEPCAT
catalog.

CVOL=device=serial
specifies the device type and serial number of the CVOL
from which the SYSCTLG data set is to be moved or
copied. If the CVOL and FROM operands are omitted, the
SYSCTLG data set to be inoved or copied is assumed to
reside on the system residence volume.

Applicable Control
~ Operands Statements Description of Operands/Parameters
v

DSGROUP MOVE DSGROUP DSGROUP=name
COpy DSGROUP specifies the cataloged data set(s) to be moved or copied.

If name is a fully qualified data set name, that data
set is not moved or copied. If name is one or more
qualifiers, all data sets whose names are qualified by name
are moved or copied. If name is omitted, all data sets
whose names are found in the searched catalog are moved
or copied.

EXCLUDE DSGROUP=name
Specifies the cataloged data set(s) or the catalog entry(ies)
to be excluded in a MOVE/COPY DSGROUP or
CATALOG operation. If used in conjunction with
MOVE/COPY DSGROUP, all cataloged data sets whose
names are qualified by name are excluded from the
operation. If used in conjunction with MOVE/COPY
CATALOG, all catalog entries whose names are qualified
by name are excluded from the operation.

DSNAME MOVE DSNAME DSNAME=name
COpy DSNAME specifies the fully qualified name of the data set to be

moved or co~ied.

INCLUDE DSNAME=name
specifies the fully qualified name of a data set. If used in
conjunction with MOVE/COPY DSGROUP, the named
data set is included in the group. If used in conjunction
with MOVE/COPY PDS, either the named partitioned
data set or a member of it is included in the o~eration.

REPLACE DSNAME=name
specifies the fully qualified name of the partitioned data set
that contains the replacement member.

EXPAND MOVEPDS EXPAND=nn
COPYPDS specifies the number of 256-byte records (up to 99

decimal) to be added to the directory of the specified
partitioned data set. For COPY, EXPAND cannot be
specified if space is previously allocated. For MOVE,
EXPAND will be ignored if space is previously allocated.

IEHMOVE Program 18-23

Operands

FROM

FROMDD

Applicable Control
Statements

MOVE DSNAME
COpy DSNAME
MOVEPDS
COPYPDS
INCLUDE
SELECT
MOVE CATALOG
COpy CATALOG

MOVE DSNAME
COPY DSNAME
MOVEPDS
COPYPDS
MOVE CATALOG
COpy CATALOG

18-24 OS/VS2 MVS Utilities

Description of Operands/Parameters

FROM=device={ list I serial}
specifies the device type and serial number(s) of the
volume(s) on which the data set resides if it is not
cataloged. If the data set is cataloged, FROM should not
be specified.

The serial subparameter applies to PDS and CATALOG
operations. The list subparameter applies to DSNAME
operations, but may also be used when refering to an
unloaded PDS residing on more than one DASD or tape
volume, and when refering to an unloaded catalog residing
on more than one tape volume.

When FROM is used in conjunction with a MOVE,
DSNAME/PDS operation, the catalog will not be updated.
When FROM is used in conjunction with a MOVE/COPY
CATALOG operation, it specifies where an unloaded
version of the catalog resides.

When FROM refers to a tape device and the data set to be
retrieved is not the first on the volume, the serial
subparameter must be enclosed in parentheses and the
volume serial number must be followed by the data set
sequence number and separated from it by a comma. When
FROM is to refer to a specific device, code the unit
address in the device parameter, in place of device type.

If FROM and CVOL operands are omitted from a
MOVE/COPY DSNAME/PDS, INCLUDE or
REPLACE operation" the data set is assumed to be
cataloged in the VSAM master/JOBCAT/STEPCAT
catalog. If FROM and CVOL operands are omitted from a
MOVE/COPY CATALOG operation, the SYSCTLG
data set to be moved or copied is assumed to reside on the
system residence volume.

FROMDD=ddname
specifies the name of the DD statement from which DCB
and LABEL information (except dataset sequence
number), for input data sets on tape volumes, can be
obtained. When FROMDD is used in conjunction with a
MOVE/COPY PDS/CATALOG operation, the tape data
set must be an unloaded version of a partitioned data set or
an unloaded version of a catalog. The FROMDD operand
can be omitted, provided the data set has standard labels
and resides on a 9-track tape volume.

Operands

MEMBER

PASSWORD

PDS

RENAME

TO

Applicable Control
Statements

INCLUDE
REPLACE

EXCLUDE

SELECT

MOVE DSGROUP
COPY DSGROUP
MOVE VOLUME
COpy VOLUME

MOVEPDS
COPYPDS

MOVE DSNAME
COpy DSNAME
MOVEPDS
COPYPDS

MOVE DSNAME
COpy DSNAME
MOVE DSGROUP
COpy DSGROUP
MOVE VOLUME
COpy VOLUME

MOVEPDS
COPYPDS
MQVE CATALOG
COpy CATALOG

Description of Operands/Parameters

MEMBER=membername
specifies the name of the partitioned data set named in the
DSNAME parameter on the INCLUDE/REPLACE
statement. When coded on an INCLUDE statement, the
member is merged with the partitioned data set being
moved or copied. When coded on a REPLACE statement,
the member replaces an equally named member in the
partitioned data set being moved or copied. Regardless of
the operation, neither the partitioned data set containing
the named member nor the member is scratched.

MEMBER = name
specifies the name of a member to be excluded from a
MOVE/COPY PDS operation

MEMBER = {name I (name[,name] ...) I «name,newname)
[, (name, newname)]. .. H

specifies the names of the members to be moved or copied
by a MOVE/COPY PDS operation, and optionally new
names to be assigned to the members.

PASSWORD
specifies that password protected data sets are to be
included in the operation. This is not VSAM password
protection, but the OS password scheme.

Default: Only data sets that are not protected ane copied
or moved.

PDS=name
specifies the fully qualified name of the partitioned data set
to be moved or copied.

RENAME=name
specifies that the data set is to be renamed, and indicates
the new name.

TO=dev;ce=list
specifies the device type and volume or volumes to which
the specified group of data sets is to be moved or copied.

TO = device = serial
specifies the device type and volume serial number of the
volume to which the partitioned data set or catalog entry is
to be moved or copied. The list parameter may be used
when unloading a partitioned data set that must span tape
volumes.

IEHMOVE Program 18-25

Applicable Control
Operands Statements Description of Operands/Parameters

TODD MOVE DSNAME TODD=ddname
COPY DSNAME specifies the name of a DD statement from which DCB
MOVE DSGROUP (except RECFM, BLKSIZE and LRECL) and LABEL
COpy DSGROUP (except data set sequence number) information for output
MOVEPDS data sets on tape volumes, can be obtained.
COPYPDS

When TODD is used in conjunction with a MOVE/ COPY
MOVE VOLUME
COPY VOLUME

DSNAME/DSGROUP /VOLUME operation, it describes

MOVE CATALOG
the mode and label information to be used when creating

COPY CATALOG
output data sets on tape volumes. RECFM, BLKSIZE, and
LRECL information, if coded, is ignored.

When UNLOAD is specified, or when TODD is used in
conjunction with a MOVE/COPY PDS/CATALOG
operation, it describes the mode and label information to
be used when creating unloaded versions of data sets on
tape volumes. RECFM, BLKSIZE, and LRECL
information, if coded, must specify (RECFM=FB,
BLKSIZE=800, LRECL=80).

The TODD operand can be omitted for 9-track tapes with
standard labels and default density for the unit type
specified.

UNCATLG MOVE DSNAME UNCATLG
COpy DSNAME specifies that the catalog entry pertaining to the source
MOVE DSGROUP partitioned data set is to be removed. This parameter
COpy DSGROUP should be used only if the source data set is cataloged. If
MOVEPDS the volume is identified by FROM, UNCATLG is ignored.
COPYPDS Alias entries in VSAM catalogs for the source data sets are

lost and can be replaced with Access Method Services if
the data sets are later cataloged. For a MOVE operation,
UNCATLG inhibits cataloging of the output data set.

UNLOAD MOVE DSNAME UNLOAD
COPY DSNAME specifies that the data set is to be unloaded to the receiving
MOVE DSGROUP volume(s).
COPY DSGROUP
MOVEPDS
COPYPDS
MOVE VOLUME
COPY VOLUME
MOVE CATALOG
COPY CATALOG

VOLUME MOVE VOLUME VOLUME=device=serial
COPY VOLUME specifies the device type and volume serial number of the

source volume.

18-26 OS/VS2 MVS Utilities

Restrictions

• The block size for the SYSPRINT data set must be a multiple of 121. The block
size for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for these block sizes.

• One anyname 1 DD statement must be included for each permanently mounted
volume referred to in the job step.

• One anyname2 DD statement must be included for each mountable device to be
used in the job step.

• When IEHMOVE is dynamically invoked in a job step containing another
program, the DD statements defining mountable devices for IEHMOVE must be
included in the job stream prior to DD statements defining data sets required by
the other program.

• VIO is supported by IEHMOVE only for SYSIN and SYSPRINT.

• The "TO" data set must be cataloged in the VSAM master catalog to run a
move of a CVOL catalog using IEHMOVE.

• DSNAME must be in the form of SYSCTLG.Vserial

• When unloading a DASD data set to another DASD data set, the data set name
(DSN =) must be coded on the DD-card for the data set to be unloaded. If the
output (unloaded) data set was not preallocated, all unused space will be
released.

IEHMOVE Program 18-27

IEHMOVE Examples

18-28 OS/VS2 MVS Utilities

The following examples illustrate some of the uses of IEHMOVE. Figure 18-13 can
be used as a quick reference guide to IEHMOVE examples. The numbers in the
"Example" column point to the examples that follow.

Data Set
Operation Organization Device Comments Example

MOVE Sequential Disk Source volume is demounted after
job completion. Two mountable
disks.

COpy Sequential Disk Three cataloged sequential data
sets are to be copied. The disks
are mountable. 2

MOVE Partitioned Disk A partitioned data set is to be
moved; a member from another
PDS is to be merged with it. 3

MOVE Volume Disk
4

MOVE Partitioned Disk A data set is to be moved to a
volume on which space was
previously allocated. 5

MOVE Partitioned Disk Three data sets are to be moved
and unloaded to a volume on which
space was previously allocated. 6

MOVE Sequential Disk and A sequential data set is to be
Tape unloaded to an unlabeled 9-track

tape volume. 7

MOVE Sequential Disk and Unloaded data sets are to be
Tape loaded from a single volume. 8

COpy Sequential Disk and Data sets are to be copied from
Tape separate source volumes. 9

COpy Partitioned Tape and Unloaded data sets are to be
Disk loaded from unlabeled tape to a

specific device. 10

MOVE Data Set Disk Data set group is to be
Group moved. The 2314 disks are

mountable. 11

MOVE CVOL Disk SYSCTLG data set (CVOL) is to be
moved from one volume to another.
Source CVOL is scratched. 12

MOVE CVOL Disk Selected CVOL catalog entries are
moved from one CVOL to another. 13

Figure 18-13. IEHMOVE Example Directory

Note: Examples which use disk or tape in place of actual device-ids, must be
changed before use. See the Device Support section in the Introduction to this
manual for valid device-id notation.

lEIIMOVE Example 1

lEIIMOVE Example 2

In this example, three data sets (SEQSETl, SEQSET2, and SEQSET3) are to
be moved from a disk volume to three separate disk volumes. Each of the
three receiving volumes is mounted when it is required by IEHMOVE. The
source data sets are not cataloged. Space is allocated by IEHMOVE.

IIMOVEDS JOB 09#550,GREEN
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=d~k,vOLUME=SER=333333,DISP=OLD
IIDD1 DD UN I T=disk ,VOLUME=SER=111111, DISP=OLD
IIDD2 DD UNIT=(disk, , DEFER) , DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222))
IIDD3 DD VOLUME=(PRIVATE,RETAIN,SER=(444444)),
II UNIT=d~k,DISP=OLD
IISYSIN DD *

MOVE DSNAME=SEQSET1 , TO=disk=222222, FROM=disk=444444
MOVE DSNAME=SEQSET2, TO=disk=222333 , FROM=disk=444444
MOVE DSNAME=SEQSET3,TO=d~k=222444,FROM=d~k=444444

1*
The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work data set.

• DDlDD defines the system residence device.

• DD2 DD defines the mountable device on which the receiving volumes will
be mounted as they are required.

• DD3 DD defines a mountable device on which the source volume is to be
mounted. Because the RETAIN subparameter is included, the volume
remains mounted until the job has completed.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE moves the source data sets to volumes 222222, 222333, and
222444, respectively. The source data sets are scratched.

In this example, three cataloged data sets are to be copied to a disk volume.
Space is allocated by IEHMOVE. The catalog is not updated. The source data
sets are not scratched.

IICOPYPDS JOB
II EXEC
IISYSPRINT·DD
IISYSUT1 DD
IIDDl DD
IIDD2 DD
IIDD3 DD
IISYSIN DD

1*

COPY
COpy
COpy

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=disk, VOLUME=SER=222222, DISP=OLD
UNIT=d~k,vOLUME=SER=111111,DISP=OLD
UNIT=d~k,vOLUME=SER=222222,DISP=OLD
UNIT=d~k,vOLUME=SER=333333,DISP=OLD

*
DSNAME=SEQSET 1 ,To=disk=3 3 3 3 3 3
DSNAME=SEQSET3, TO=disk=333333
DSNAME=SEQSET4, TO=disk=333333

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set.

• DDl DD defines the system residence device.

• DD2 DD defines a mountable device on which the source volume is
mounted.

IEHMOVE Program 18-29

IEHMOVE Example 3

IEHMOVE Example 4

18-30 OS/VS2 MVS Utilities

• DD3 DD defines a mountable device on which the receiving volume is
mounted.

• SYSIN DD defines the control data set which follows in the input stream.

• COPY copies the source data sets onto volume 333333.

In this example, a partitioned data set (P ARSETt) is to be moved to a disk
volume. In addition, a member (P ARMEM3) from another partitioned data
set (PARTSET2) is to be merged with the source members on the receiving
volume. The source partitioned data set (PARTSETt) is scratched. Space is
allocated by IEHMOVE.

IIMOVEPOS
II

JOB
EXEC

IISYSPRINT DO
IISYSUT1 DO
11001 DO
11002 DO

DO
DO

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UN I T=disk , VOLUME=SER=333000, OISP=OLO
UNIT=disk, VOLUME=SER=111111 ,OISP=OLO
UNIT=disk,vOLUME=SER=222111,OISP=OLO
UNIT=disk, VOLUME=SER=222222 ,OISP=OLO
UN I T=disk , VOLUME=SER=222333 ,OISP=OLO

11003
11004
IISYSIN

MOVE
INCLUDE

DO *
POS=PARTSET1,TO=disk=222333,FROM=disk=222111
OSNAME=PARTSET2,MEMBER=PARMEM3,FROM=d~k=222222

1*
The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set.

• DDt DD defines the system residence device.

• The DD2, DD3, and DD4 DD statements define mountable devices that
are to contain the two source volumes and the receiving volume.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE defines the source partitioned data set, the volume that contains it,
and its receiving volume.

• INCLUDE includes a member from a second partitioned data set in the
operation.

In this example, a volume of data sets is to be moved to a disk volume. All
data sets that are successfully moved are scratched from the source volume;
however, any catalog entries pertaining to those data sets are not· changed.
Space is allocated by IEHMOVE. The work data set is deleted when the job
step is completed.

IIMOVEVOL JOB
II EXEC
IISYSPRINT DO
IISYSUT1 DO
11001 DO
11002 DO
11003 DO
I/SYSIN DO

MOVE
1*

09#550,GREEN
PGM==IEHMOVE
SYSOUT=A
UN I T=disk , VOLUME=SER=222222, OISP=OLO
UN I T=disk , VOLUME=SER= 111111 ,OISP=OLO
UNIT=disk, VOLUME=SER=222222 ,OISP=OLO
UN I T=disk , VOLUME=SER=333333, OISP=OLO

*
VOLUME=disk=333333, To=dis,k=222222, PASSWORD

lEHMOVE Example 5

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set. The work
data set is removed from the receiving volume when the job step is completed.

• DDt DD defines the system residence device.

• DD2 DD defines the mountable device on which the receiving volume is to be
mounted.

• DD3 DD defines a mountable device on which the source volume is to be
mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE specifies a move operation for a volume of data sets and defines the
source and receiving volumes. This statement also indicates that
password-protected data sets are to be included in the operation.

Note: IEHPROGM can be used to uncatalog catalog entries pertaining to
non-VSAM source data sets and to catalog the moved versions of those data sets.

In this example, a partitioned data set is to be moved to a disk volume on which
space has been previously allocated for the data set. The source data set is
scratched. The work data set is deleted when the job step is completed.

IIALLOCATE JOB 09#550,GREEN
II EXEC PGM=IEFBR14
IISET1 DD DSNAME=PDSSET1,UNIT=d~k,DISP=(NEW,KEEP),
II VOLUME=SER=222222,SPACE=(TRK,(100,10,10»,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=disk, VOLUME=SER=222222 ,DISP=OLD
IIDD1 DD UNIT=d~k,vOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=d~k,vOLUME=SER=222222,DISP=OLD
IIDD3 DD UNIT=d~k,vOLUME=SER=333333,DISP=OLD
IISYSIN DD *

MOVE PDS=PDSSET1,TO=d~k=222222,FROM=d~k=333333

1*
The IEFBRt4 job step is used to allocate space for data set PDSSETt on a disk
volume.

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set. The data set
is removed from the receiving volume at the completion of the program.

• DDt DD defines the system residence device.

• DD2 DD defines the device on which the receiving volume is to be mounted.

• DD3 DD defines a mountable device on which the source volume is to be
mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE specifies a move operation for the partitioned data set PDSSETt and
defines the source and receiving volumes.

IEHMOVE Program 18-31

IEHMOVE Example 6

18-32 OS/VS2 MVS Utilities

In this example, three partitioned data sets are to be moved from three separate
source volumes to a disk volume. The source data set PDSSET3 is unloaded. (The
record size exceeds the track capacity of the receiving volume.) The work data set
is deleted when the job step is completed.

72
IIALLOCATE JOB 09#550,GREEN
II EXEC PGM=IEFBR14
IISET 1 DD DSNAME=PDSSET 1 , UNIT=disk, DISP= (NEW, KEEP) ,
II VOLUME=SER=222222,SPACE=(TRK,(50,10,5)),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=1600)
IISET2 DD DSNAME=PDSSET2, UNIT=disk ,DISP=(NEW ,KEEP),
II VOLUME=SER=222222,SPACE=(TRK,(25,5,5)),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
IISET3 DD DSNAME=PDSSET3, UNIT=disk ,DISP=(NEW ,KEEP),
II VOLUME=SER=222222,SPACE=(TRK,(25,5)),
II DCB=(RECFM=U,BLKSIZE=5000)
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT 1 DD UNIT=disk, VOLUME=SER=222222 , DISP=OLD
IIDD 1 DD UNIT=disk, VOLUME=SER= 111111 , DISP=OLD
IIDD2 DD UNIT=(disk, , DEFER), DISP=OLD,
II VOLUME=(PRIVATE"SER=(333333))
IIDD3 DD UNIT=d~k,vOLUME=SER=222222,DISP=OLD
IISYSIN DD *

1*

MOVE
MOVE
MOVE

PDS=PDSSET 1 , TO=disk=222222, FROM=disk=3333 33
PDS=PDSSET2, TO=disk=222222, FROM=disk=222222
PDS=PDSSET3,TO=d~k=222222,
FROM =disk=444444, UNLOAD C

The IEFBRl4 job step is used to allocate space for the partitioned data sets
PDSSETl, PDSSET2, and PDSSET3 on the receiving volume. The SPACE
parameter in the SET3 DD statement allocates space for a sequential data set. This
is necessary to successfully unload the partitioned data set PDSSET3. The DCB
attributes of PDSSET3 are:

DCB=(RECFM=U,BLKSIZE=5000)

The unloaded attributes are:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work data set.

• DDl DD defines the system residence device.

• DD2 DD defines a mountable device on which the source volumes are mounted
as they are required.

• DD3 DD defines a mountable device on which the receiving volume is mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE specifies move operations for the partitioned data sets and defines the
source and receiving volumes.

Note: For a discussion on estimating space allocations, refer to OS/VS2 MVS
Data Management Services Guide.

lEHMOYE Example 7

lEHMOYE Example 8

In this example, a sequential data set is to be unloaded onto a 9-track, unlabeled
tape volume (800 bits per inch). The work data set resides on the source volume
and is deleted when the job step is completed.

IIUNLOAD JOB 09#'550,GREEN
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=d~k,vOLUME=SER=222222,DISP=OLD
IIDD1 DD UNIT=disk, VOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=d~k,vOLUME=SER=222222,DISP=OLD
IITAPEOUT DD UNIT=wpe,VOLUME=SER=SCRTCH,DISP=OLD,
II DCB=(DEN=2,RECFM=FB,LRECL=80,BLKSIZE=800),
II LABEL=(,NL)
IISYSIN DD *

72

MOVE DSNAME=SEQSET 1 , TO=tape=SCRTCH , C
FROM=d~k=222222,TODD=TAPEOUT

1*
The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work data set.

• DDl DD defines the system residence device.

• DD2 DD defines a mountable device on which the source volume is mounted.

• T APEOUT DD defines a mountable device on which the receiving tape volume
is mounted. This statement also provides label and mode information.

• SYSIN DD defines the control data set which follows in the input stream.

• MOVE moves the sequential data set SEQSETl from a disk volume to the
receiving tape volume. The data set is unloaded. The TODD parameter in this
statement refers to the T APEOUT DD statement for label and mode
information.

In this example, three unloaded sequential data sets are to be loaded from a labeled,
7-track tape volume (556 bits per inch) to a disk volume. Space is allocated by
IEHMOVE. The example assumes that the disk volume is capable of supporting the
data sets in their original forms.

72
II LOAD JOB 09#550,GREEN
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=d~k,VOLUME=SER=222222,DISP=OLD
IIDD1 DD UNIT=d~k,vOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=d~k,vOLUME=SER=222222,DISP=OLD
IITAPESETS DD DSNAME=UNLDSET1,UNIT=2400-2,
II VOLUME=SER=001234,DISP=OLD,
II LABEL=(1,SL),DCB=(DEN=1,TRTCH=C)
IISYSIN DD *

MOVE DSNAME=UNLDSET1,TO=d~k=222222, C
FROM=2400-2=(001234,1),FROMDD=TAPESETS

MOVE DSNAME=UNLDSET2,TO=d~k=222222, C
FROM=2400-2=(001234,2),FROMDD=TAPESETS

MOVE DSNAME=UNLDSET3,TO=d~k=222222, C
FROM=2400-2=(001234,3),FROMDD=TAPESETS

1*

IEHMOVE Program 18-33

lEHMOYE Example 9

18-34 OS/VS2 MVS Utilities

The control statements are discussed below:

• SYSUTl DD defines the device-that is to contain the work data set.

• DDl DD defines the system residence device.

• DD2 DD defines a mountable device on which the receiving volume is mounted.

• T APESETS DD defines a mountable device on which the source volume is
mounted. DCB information is provided in this statement.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE moves the unloaded data sets to the receiving volume.

Note: To move a data set from a tape volume that contains more than one data set,
you must specify the sequence number of the data set in the list field of the FROM
parameter on the utility control statement.

In this example, two sequential data sets are to be copied from separate source
volumes to a disk volume. Space is allocated by IEHMOVE. Only one 9-track tape
unit is available for the operation.

//DEFER
//
//SYSPRINT
//SYSUT1
//DD1
//DD2
//TAPE1
//TAPE2
//SYSIN

JOB
EXEC
DD
DD
DD
DD
DD
DD
DD

COPY

COpy

/*

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=d~k,vOLUME=SER=222222,DISP=OLD
UNIT=d~k,vOLUME=SER=111111,DISP=OLD
UNIT=d~k,vOLUME=SER=222222,DISP=OLD
VOLUME=SER=OO 1234, UNIT=tape, DISP=OLD
VOLUME=SER=001235,UNIT=AFF=TAPE1,DISP=OLD

*
DSNAME=SEQSET1,TO=d~k=222222,

FROM=2400=(001234,2),FROMDD=TAPE1
DSNAME=SEQSET9,TO=d~k=222222,

FROM=2400=(001235,4),FROMDD=TAPE2

The control statements are discussed below:

• SYSUTl DD defines the volume that is to contain the work data set.

• DDl DD defines the system residence device.

72

C

C

• DD2 DD defines a mountable device on which the receiving volume is mounted.

• TAPEl DD defines a mountable device on which the first volume to be
processed is mounted. The source data set is the second data set on the volume.

• T APE2 DD defines a mountable device on which the second volume to be
processed is mounted when it is required. The source data set is the fourth data
set on the volume.

• SYSIN DD defines the control data set, which follows in the input stream.

• COPY copies. the data sets to the receiving volume.

Note: To copy a data set from a tape volume that contains more than one data set,
you must specify the sequence number of the data set in the list field of the FROM
parameter on the utility control statement.

IEHMOVE Example 10

In this example, three unloaded partitioned data sets residing on an unlabeled tape
volume mounted on device 282 are copied to a 2314 volume mounted on device
191.

IILOAD JOB MEOOAUGH,PS40300439,MSGLEVEL=1
II EXEC PGM=IEHMOVE
IISYSPRINT DO SYSOUT=A
IISYSABENO DO SYSOUT=A
IISYSUT1 DO UNIT=191,VOLUME=SER=231400,OISP=OLO
11001 DO UNIT=191,VOLUME=SER=231400,OISP=OLO
IITAPE1 DO UNIT=282,VOLUME=SER=NLTAPE,OISP=OLO,
II LABEL=(,NL),OCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
IISYSIN DO *

1*

COPY POS=OSET1,FROM=282=(NLTAPE,1),TO=191=231400,FROMOO=TAPE1
COPY PDS=DSET2,FROM=282=(NLTAPE,2),TO=191=231400,FROMDD=TAPE1
COPY POS=OSET3,FROM=282=(NLTAPE,3),TO=191=231400,FROMDO=TAPE1

The control statements are discussed below:

• SYSUTI DD defines the work data set.

• DDI DD defines the receiving volume.

• TAPEI DD defines the source data sets. They are, in the order in which they
reside on the volume, DSET1, DSET2, and DSET3.

• SYSIN DD defines the control data set, which follows in the input stream.

• COPY copies the unloaded partitioned data sets from the unlabeled tape to the
receiving volume.

Note: To copy data sets from an unlabeled tape, you must place a label in the list
field of the FROM parameter of the utility control statement. Following this label,
the sequence numbers of the data sets must also be included in the same field. The
unit address must appear in the device field of the FROM or TO parameter
whenever you want to move from or copy to a specific device.

IEHMOVE Example 11

In this example, the data set group A.B.C-which comprises data set A.B.C.X,
A.B.C.Y, and A.B.C.Z-is moved from two disk volumes onto a third volume.
Space is allocated by IEHMOVE. The catalog is updated to refer to the receiving
volume. The source data sets are scratched.

IIMOVEOSG JOB
II EXEC
IISYSPRINT DD
IISYSUT1 DO
11001 DO
11002 DO
11003 DO
11004 DO
IISYSIN DO

MOVE
1*

09#550,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=d~k,vOLUME=SER=222222,OISP=OLO
UNIT=d~k,vOLUME=SER=111111,DISP=OLD
UNIT=d~k,vOLUME=SER=222222,DISP=OLD
UNIT=d~k,vOLUME=SER=333333,DISP=OLO
UNIT=d~k,vOLUME=SER=444444,DISP=OLD

*
DSGROUP=A.B.C,TO=d~k=222222

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set.

• DDI DD defines the system residence device.

• DD2 DD defines a mountable device on which the receiving volume is to be
mounted.

IEHMOVE Program 18-35

• DD3 DD defines a mountable device on which one of the source volumes is to
be mounted.

• DD4 DD defines a mountable device on which one of the source volumes is to
be mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE moves the_ specified data sets to volume 222222.

Note: This example can be used to produce the same result without the use of the
DD4 DD statement, using one less mountable disk device. With DD3 and DD4,
both of the source volumes are mounted at the start of the job. With DD3 only, the
333333 volume is mounted at the start of the job. After the 333333 volume is
processed, the utility requests that the operator mount the 444444 volume. In this
case the DD3 statement is coded:

/ /DD3 DD UNIT=(disk"DEFER),DISP=OLD,VOLUME=(PRIVATE"
/ / SER=(333333»

lElIMOVE Example 12

18-36 OS/VS2 MVS Utilities

In this example, the SYSCTLG data set is to be moved from another mountable
disk volume to a mountable disk volume. Space is allocated by IEHMOVE. The
source catalog is scratched from the first disk volume.

IIMOVECAT1 JOB 09#550,GREEN
II EXEC PGM=IEHMOVE,POWER=3
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=d~k,vOLUME=SER=333333,OISP=OLD
liDO 1 DD UNIT=d~k,vOLUME=SER=111111,DISP=OLO
IIDD2 DD UNIT=d~k,vOLUME=SER=222222,DISP=OLO
IISYSIN OD *

MOVE CATALOG,TO=d~k=222222,CVOL=d~k=111111

1*
The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set.

• DDI DD defines the mountable device on which the source volume is to be
mounted.

• DD2 DD defines the mountable device on which the receiving volume is to be
mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE specifies the move operation and defines the source and receiving
volumes.

Note: See "P ARM Information on the EXEC Statement" for a description of the
POWERPARM.

IEHMOVE Example 13

In this example, the catalog entries for data set group A.B.C-which comprises the
entries A.B.C.X, A.B.C.Y, and A.B.C.Z-is to be moved from a SYSCTLG data
set to a mountable disk volume. If no catalog exists on the receiving disk volume,
one is created; if a catalog does exist, the specified entries are merged into it. The
last INDEX of all entries in the source SYSCTLG is scratched. The work data set is
deleted when the job step is completed.

IIMOVECAT2 JOB 09#550,GREEN
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=disk, VOLUME=SER=222222, DISP=OLD
IIDD1 DD UNIT=disk, VOLUME=SER=111111 , DISP=OLD
IIDD2 DD UNIT=disk, VOLUME=SER=222222 , DISP=OLD
IISYSIN DD *

MOVE CATALOG=A.B.C,TO=d~k=222222,CVOL=d~k=111111

1*
The control statements are discussed below:

• SYSUTt DD defines the device that is to contain the work data set. (Because
IEHMOVE deletes the work data set at the completion of the program, it can be
contained on the receiving volume, provided there is space for it.)

• DDt DD defines the system mountable device on which the source volume is to
be mounted.

• DD2 DD defines the mountable device on which the receiving volume is to be
mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE specifies a move operation for selected entries and defines the source
and receiving volumes.

IEHMOVE Program 18-37

IEHPROGM PROGRAM

IEHPROGM is a system utility used to modify system control data and to maintain
data sets at an organizational level. IEHPROGM should only be used by those
programmers locally authorized to do so.

IEHPROGM can be used to:

• Scratch a data set or a member.

• Rename a data set or a member.

• Catalog or uncatalog a non-VSAM data set.

• Build or delete an index or alias in a CVOL (SYSCTLG data set).

• Connect or release two CVOLs.

• Build and maintain a generation index in a CVOL.

• Maintain data set passwords.

At the completion or termination of the program, the highest return code
encountered within the program. is passed to the calling program.

Scratching a Data Set or Member

IEHPROGM can be used to scratch the following from a direct access volume or
volumes:

• Sequential, indexed sequential, partitioned, or direct data sets.

• Members of a partitioned data set.

• Password-protected data sets.

• Data sets named by the operating system.

A data set is considered scratched when its data set control block is removed from
the volume table of contents (VTOC) of the volume on which it resides; its space is
made available for re-allocation.

The space occupied by a data set residing on a device that operates in split-cylinder
mode is not available for re-allocation until all data sets sharing the cylinder have
been scratched.

A member is considered scratched when its name is removed from the directory of
the partitioned data set in which it is contained. The space occupied by a scratched
member is not available for re-allocation until the partitioned data set is scratched
or compressed. (When scratching a member of a partitioned data set, all aliases of
that member should also be removed from the directory.)

If RACF is active, ALTER authorization is required to scratch a RACF-defined
data set, and UPDATE authorization is required to scratch a member of a
partitioned data set.

Renaming a Data Set or Member

IEHPROGM can be used to rename a data set or member that resides on a direct
access volume. In addition, the program can be used to change any member aliases.

If RACF is active, ALTER authorization is required to rename a data set.
UPDATE authorization is required to rename a member of a partitioned data set.

IEHPROGM Program 19-1

Cataloging or Uncataloging a Data Set

IEHPROGM can be used to catalog or uncatalog a non-VSAM sequential, indexed
sequential, partitioned, or direct data set. The program catalogs a data set by
generating an entry, containing the data set name and' associated volume
information, in the index of the catalog. A valid TTR pointer is not placed in the
DSCB until the first time the data set is referenced.

The catalog function is used to catalog a non-VSAM data set that was not
cataloged when it was created.

IEHPROGM uncatalogs a non-VSAM data set by removing the data set name and
associated volume information from the catalog.

Building or Deleting an Index in a CVOL

19-2 OS/VS2 MVS Utilities

IEHPROGM can be used to build a new index in a CVOL or to delete an existing
index. In building an index, the program automatically creates as many higher level
indexes as are necessary to complete the specified structure.

IEHPROGM can be used to delete one or more indexes from an index structure;
however, an index cannot be deleted if it contains any entries. That is, it cannot be
deleted if it refers to a lower level index or if it is part of a structure indicating the
fully qualified name of a cataloged data set.

Figure 19-1 shows an index structure before and after a build operation. The left
portion of the figure shows two cataloged data sets, A.Y.YY and A.B.X.XX, before
the build operation. The right-hand portion of the figure shows the index structure
after the build operation, which was used to build index A.B.C.D.E. Note in the left
portion of the figure that index levels C and D do not exist before the build
operation. These levels are automatically created when the level E index is built.

When the level E index is subsequently deleted, the level C and D indexes are not
automatically deleted by the program. To delete these index levels, delete:
A.B.C.D.E, A.B.C.D, and A.B.C, in that order. The level B index cannot be
deleted because data set A.B.X.XX and the X level index are dependent upon the
level B index.

xx

§~
Before build operation After build operation

Figure 19-1. Index Structure Before and After an IEHPROGM Build Operation

Building or Deleting an Index Alias in a CVOL

IEHPROGM can be used to assign an alternative· name (alias) to the highest level
index of a CVOL or to delete a CVOL index alias previously assigned. An alias
cannot, however, be assigned to the highest level of a generation index.

Figure 19-2 shows an alias, XX, that is assigned to index A (a high level index).
The cataloged data set A.B.C can be referred to as either A.B.C or XX.B.C.

Figure 19-2. Building an Index Alias Using IEHPROGM

Connecting or Releasing Two Control Volumes (CVOLs)

IEHPROGM can be used to connect a volume to a second volume by placing an
entry into a high level index on the first volume. The entry contains an index name
and the volume serial number and device type of the second volume. The program
can subsequently release the volumes by removing the entry from the high level
index. If two volumes are connected:

• The catalog (SYSCTLG data set) must be created on the second volume for
cataloging of data sets having the same high level index as the connected index.

• A high level index can only be connected to one second volume, but chaining is
possible from a second to a third volume, etc.

Before any control volume (CVOL) can be accessed by the system, it must be
defined in the VSAM master catalog. For details see OS/VS2 Using OS Catalog
Management with the Master Catalog: CVOL Processor.

Figure 19-3 shows how one control volume can be connected to a second volume.
Any subsequent index search for index X on the first volume is carried to the
second volume.

IEHPROGM Program 19-3

First control volume Connected volume

Figure 19-3. Connecting a Control Volume (CVOL) to a Second CVOL Using IEHPROGM

Note: The index name of each high level index existing on the second volume must
be present in the first volume; when a new high level index is placed on a second
volume, the first volume should be connected to the second volume.

Figure 19-4 shows three CVOLs connected to one CVOL. All volumes are
accessible through high level indexes X, Y, and Z.

1stCVOL 1st CVOL

or

Figure 19-4. Connecting Three Volumes Using IEHPROGM

Building and Maintaining a Generation Index in a CVOL

19-4 OS/VS2 MVS Utilities

IEHPROGM can be used to build an index structure in a CVOL for a generation
data group and to define what action should be taken when the index overflows.

The lowest level index in the structure can contain up to 255 entries for successive
generations of a data set. If the index overflows, the oldest entry is removed from
the index, unless otherwise specified (in which case all entries are removed). If
desired, the program can be used to scratch all generation data sets whose entries
are removed from the index.

Figure 19-5 shows the index structure created for generation data group A.B.C; In
this example, provision is made for up to five subsequent entries in the lowest level
index.

Figure 19-5. Building a Generation Index Using IEHPROOM

Note: Before a generation data group can be cataloged as such, a generation index
must exist. Otherwise, a generation data set is cataloged as an individual data set,
rather than as a generation.

When creating and cataloging a generation data set, the user can provide necessary
DCB information. See OS/VS2 MVS Data Management Services Guide for a
discussion of how DCB attributes are provided for a generation data group.

\ Maintaining Data Set Passwords
)

)

IEHPROGM can be used to maintain password entries in the PASSWORD data set
and to alter the protection status of direct access data sets in the data set control
block (DSCB). For a complete description of data set passwords and the
PASSWORD data set, see OS /VS2 System Programming Library: Data
Management and OS/VS2 Data Management Services Guide.

A data set can have one of three types of password pr-otection, as indicated in the
DSCB for direct access data sets and in the tape label for tape data sets (see
OS/VS2 Data Areas fora description of the DSCB and tape label). The possible
types of data set password protection are:

• No protection, which means that no passwords are required to read or write the
data set.

• Read/ write protection, which means that a password is required to read or write
the data set.

• Read-without-password protection, which means that a password is required
only to write the data set; the data set can be read without a password.

Note: If a system data set is password protected and a problem occurs on the data
set, maintenance personnel must be provided with the password in order to access
the data set and resolve the problem.

A data set can have one or more passwords assigned to it; each password has an
entry in the PASSWORD data set. A password assigned to a data set can allow
read and write access or only read access to the data set.

Figure 19-6 shows the relationship between the protection status of data set ABC
and the type of access allowed by the passwords assigned to the data set. Passwords

IEHPROGM Program 19-5

19-'6 OS/VS2 MVSUti1ities

, ABl-E and-BAKER are assigned to data set ABC. If no l*lsswofd pt'ote¢tipn is set
iDtlie :DSCS or tape label, data set ABC can be read or written without a
password. If read/write proteetioa is set ill: tIle DSCB 0r tape label" dataset ABC

, can be read with either password ABLE or BAKER andean be written with
~sword ABLE. If read-without-password protection is set in the DSC' Ell" tape
label, data set ABC can be reaGl without a passwG'td and can be written with
password ABLE; password BAKJE"R is ne.er neede4.

Protection status of data
S!tt A$C-contained in
~f)SCB or tape: labet The kind-of pr6t9Ction-pointed

at altows data set ABC to be:
No
password
protection

R1!8d or written on with
IA1J'ti:Ht::!Hiij no password

Read/Write
protection

. Read-without
password

, pr<otection

ith

ten onwit~

_ _ ' , ,Password AaLE

<*111IlW@¥%{~i.AI~'*j@lWtMW!.iM!lWMNEf:W allows

Read with
no password

System
residence
volume ----........ "'--

Figure 19-6. Relationship Between the Protection Status of a Data Set and Us Passwords

Before lEHPROGM is used to maintain dataset passwords, the PASSWORD data
set must reside on the system residence volume. IEHPROGM can then be used to:

• Add an entry to the PASSWORD data set.

• Replace an entry in the PASSWORD data set.

'. Delete an'entry from tke PASSWORD data set.

• Provide a list of inf()rmation from aft entry in the PASSWORD data set.

Each entrY'in the PASSWORD data set contains the name of the protected data
set,'the password, the protection mode ()f the password, an access counter, and 77
,bytes of optional user data. 'the protection mode of the password defines the type
ot:a<;cess allowed by the password and whether the password is a cDnt:rol password
011 secondary password. The initial password, added to the PASSWORD data set
for a particular data set, is mw-ked in the erttry as the control password for that d~t3.:,
set. The second and subsequent passwords added for the same data set are marked

, as secondary passwords.

For dire~t access data sets, IEHPROGM updates the pr(:)tection status ia the DSCB
: when a control password entry is added, replaced; ,()f deleted. This permits setting
and resetting tbe protection status of an existing direct access data set at tbe same
time its passwords are added, replaced, or deleted. IEHPROGM automatically
alters the protection status of a data set in the DSCD if the followillg c(:)Jlditions are
met:

'. The control password for the data set is being added, replaced, or deleted.

• 'Fhedata set is online.

• The volume on which the data set resides is specified on the utility control
statement, or the data set is cataloged.

• The data set is not allocated witbin the IEHPROGM job.

)

Adding Data Set Passwords

For tape data sets, IEHPROGM cannot update the protection status in the tape
label when a password entry is added, replaced, or deleted. Protection status in a
tape label must be set with JCL.

Passwords to be added, replaced, deleted, or listed can be specified on utility
control statements or can be entered by the console operator. IEHPROGM issues a
message to the console operator when a password on a utility control statement is
either missing or invalid. The message cOlitains the job name, step name, and utility
control statement name and identifies the particular password that is missing or
invalid. Two invalid passwords are allowed per password entry on each utility
control statement before the request is ignored; a total of five invalid passwords is
allowed for the password entries on all the utility control statements in a job step
before the step is canceled.

Note: If the current password is invalidly specified in the control statement, no
message to the operator is issued and the request is ignored.

When a password is added for a data set, an entry is created in the PASSWORD
data set with the specified data set name, password name, protection mode of the
password (read/write or read only), and the optional 77 characters of user-supplied
data. The access counter in the entry is set to zero.

The control password for a data set must always be specified to add, replace, or
delete secondary passwords. The control password should not be specified,
however, to list information from a secondary password entry.

Secondary passwords can be assigned to a data set to restrict some users to reading
the data set or to record the number of times certain users access the data set. The
access counter in each password entry provides a count of the number of times the
password was used to successfully open the data set.

If a control password for a direct access, online data set is added, the protection
status of the data set (read/write or read-without-password) is set in the DSCB.
However, the data.set to be protected must not be allocated within the same job as
the one in which IEHPROGM is executed. If it is allocated, the DSCB cannot be
accessed and the protection status is not set. If the data set to be protected is being
created within the same job, use JCL to set the protection status in the DSCB.

Replacing Data Set Passwords

Any of the following information may be replaced in a password entry: the
password, protect.ion mode (read/write or read only) of the password, and the 77
characters of user data. The protection status of a data set can be changed by
replacing the control entry for the data set.

If the control entry of a direct access, online data set is replaced, the DSCB is also
reset to indicate any change in the protection status of the data set. Therefore, the
user should ensure that the volume is online when changing the protection status of
a direct access data set.

Deleting Data Set Passwords

When a control password entry is deleted from the PASSWORD data set, all
secondary password entries for that data set are also deleted. However, when a
secondary entry is deleted, no other password entries are deleted.

IEHPROGM Program 19-7

Listing Password Entries

Input and Output

19-8 OS/VS2 MVS Utilities

If the control password entry is deleted for an online, direct access data set, the
protection status of the data set in the DSCB is also changed to indicate no
protection. When deleting a control password for a direct access data set, the user
should ensure that the volume is online. If the volume is not online, the password
entry is removed, but data set protection is still indicated in the DSCB; the data set
cannot be accessed unless another password is added for that data set.

If the control password entry is deleted for a tape data set, the user must change
the protection status in the tape label to indicate no protection; otherwise, the tape
volume cannot be accessed. The tape label may be changed using the IEHINITT
utility program, however, the data set cannot be retrieved afterwards.

The delete function should be used to delete all the password entries for a scratched
data set to make the space available for new entries.

A list of information from any entry in the PASSWORD data set can be obtained
in the SYSPRINT data set by providing the password for that entry. The list
includes: the number of times the password has been used to successfully open the
data set; the type of password (control password or secondary password) and type
of access allowed by the password (read/write or read-only); and the user data in
the entry. Figure 19-7 shows a sample list of information printed from a password
entry.

DECIMAL ACCESS COUNT= 000025
PROTECT MODE BYTE= SECONDARY, READ ONLY
USER DATA FIELD= ASSIGNED TO J. BROWN

Figure 19-7. Listing of a Password Entry

IEHPROGM uses as input a control data set that contains utility control statements
used to control the functions of the program and to indicate those data sets or
volumes that are to be modified.

IEHPROGM produces as oqtput a modified object data set or volume(s), and a
message data set that contains error messages and information from the
PASSWORD data set.

IEHPROGM provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a syntax error was found in the name field of the control
statement or in the P ARM field in the EXEC statement. Processing is continued.

• 08, which indicates that a request for a specific operation was ignored because of
an invalid control statement or an otherwise invalid request. The operation is not
performed.

• 12, which indicates that an input/output error was detected when trying to read
from or write to SYSPRINT, SYSIN or the VTOC.

• 16; which indicates an unrecoverable error. The job step is terminated.

Control

Job Control Statements

IEHPROGM is controlled by job control statements and utility control statements.

Job control statements are used to:

• Execute or invoke the program.

• Define the control data set.

• Define volumes and/or devices to be used during the course of program
execution.

• Prevent data sets from being deleted inadvertently.

• Prevent volumes from being demounted before they have been completely
processed by the program.

• Suppress listing of utility control statements.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes that are to be modified.

Figure 19-8 shows the job control statements necessary for using IEHPROGM.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHPROGM) or, if the job control
statements reside in a procedure library, the procedure name. Additional
P ARM information can be specified to control the number of lines per page
on the output listing and to suppress printing of utility control statements. See
"PARM Information on the EXEC Statement" below.

SYSPRINT DD Defines a sequential message data set.

anynamel DD Defines a permanently mounted volume. (The system residence volume is
considered to be a permanently mounted volume.)

anyname2 D D Defines a mountable device type.

SYSIN DD Defines the control data set. The control data set normally follows the job
control statements in the input stream; however, it can be defined as a
member of a procedure library.

Figure 19-8. IEHPROGM Job Control Statements

The anyname 1 DD statement can be entered:

/ /anynamel DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume serial
number. The DISP=OLD specification prevents the inadvertent deletion of a data
set. The anyname1 DD statement is arbitrarily assigned the ddname DD1 in the
IEHPROGM examples.

The anyname2 DD statement can be coded in the following ways:

/ /anyname2 DD VOLUME=SER=xxxxxx,UNIT=xxxx,DISP=OLD

/ /anyname2 DD VOLUME=(PRIVATE,SER=xxxxxx),
/ / UNIT=(xxxx"DEFER),DISP=OLD

The second example can be used to specify deferred mounting when a large number
of magnetic tapes or direct access volumes are to be processed in one application of
the program. The anyname2 DD statement is arbitrarily assigned the ddname ·DD2

IEHPROGM Program 19-9

in the IEHPROGM examples. DD statements defining additional mountable
devices are assigned names DD3, DD4, etc.

Refer to "Appendix C: DD Statements for Defining Mountable Devices" for
instructions on defining mountable volumes.

P ARM Information on the EXEC Statement

Additional information can be specified in the P ARM parameter of the EXEC
statement to control the number of lines per page on the output listing and to
suppress printing of utility control statements. The EXEC statement can be coded:

/ / EXEC PGM=IEHPROGM[,PARMLINECNT=xx, {PRINT I
NOPRINT},]

The LINECNT parameter specifies the number of lines per page in the listing of
the SYSPRINT data set; xx is a 2-digit number, from 01 through 99. If LINECNT
is omitted, or if an error is encountered in the LINECNT subparameter, the
number of lines per page will be 45.

The PRINT value specifies that the utility control statements ~re to be written to
the SYSPRINT data set. If neither PRINT nor NOPRINT is coded, PRINT is
assumed.

The NOPRINT value specifies that utility control statements are not to be written
to the SYSPRINT data set. Suppressing printing of utility control statements
assures that passwords assigned to data sets remain confidential. However,
suppressing printing may make it difficult to interpret error messages because the
relevant utility control statement is not printed before the message.

Utility Control Statements

19-10 OS/YS2 MYS Utilities

Figure 19-9 shows the utility control statements necessary for using IEHPROGM.

Statement

SCRATCH

RENAME

CATLG

UNCATLG

BLDX

DLTX

BLDA

DLTA

CONNECT

RELEASE

BLDG

ADD

REPLACE

DELETEP

LIST

USe

Scratches a data set or a member from a direct access volume.

Changes the name or alias of a data set or member residing on a direct access
volume.

Generates an entry in the index of a catalog.

Removes an entry from the lowest level index of the catalog.

Creates a new index in the CYOL catalog (SYSCTLG data set).

Removes a low level index from a CYOL.

Assigns an alias to an index at the highest level of a CYOL.

Deletes an alias previously assigned to an index at the highest level of a
CVOL.

Connects two CYOLs together using a high level index name.

Removes a high level index name from one CYOL that served as a connector
or pointer to a second CYOL.

Builds an index in a CYOL for a generation data group and defines what
action should be taken when the index overflows.

Adds a password entry in the PASSWORD data set.

Replaces information in a password entry.

Deletes an entry in the PASSWORD data set.

Formats and lists information from a password entry.

Figure 19-9. IEHPROGM Utility Control Statements

SCRATCH Statement

RENAME Statement

CA TLG Statement

When a card is included for the sole purpose of continuing a comment, the
continuation may start in any column between 1 and 71.

The SCRATCH statement is used to scratch a data set or member from a direct
access volume. A data set or member is scratch~d only from the volumes designated
in the SCRATCH statement. This function does not uncatalog scratched data sets.

When executing a SCRATCH operation, care should be taken to ensure that the
data set or volume is not being used by a program executing concurrently.

The format of the SCRATCH statement is:

[label] SCRATCH {DSNAME=name I VTOC}

, VOL=device =list

[,PURGE]

[,MEMBER=name]

[,SYS]

The RENAME statement is used to change the true name or alias of a data set or
member residing on a direct access volume. The name is changed only on the
designated volume(s). The rename operation does not update the catalog.

The format of the RENAME statement is:

[label] RENAME DSNAME=name

,VOL=device =list

,NEWNAME=name

[,MEMBER=name]

The CA TLG statement is used to generate a non-VSAM entry in the index of a
CVOL. If additional levels of indexes are required in the CVOL, this function
automatically creates them. When cataloging generation or VSAM data sets and the
index becomes full, refer "BLDG (Build Generation Index) Statement" or
OS/VS2 Access Method Services, respectively, for the action to be ta

When device is represented by a group name (for example, SYSDA) instead of a
generic name (for example, 2314 or 2400) in the VOL parameter, the catalog
operation does not enter the device type code in the system catalog. Instead, it
places a unique entry in the device type field of the catalog. The allocation of the
device for this entry may not be satisfactory to the user. The generic name should
be used if the group name was generated for one or more device types. When the
system is subsequently generated, this entry may no longer be valid; that is, all such
group name entries should be uncataloged and then recataloged after a subsequent
generation of the system.

When cataloging data sets residing on tape, specify the data set sequence number
and the volume serial number, as follows:

VOL = device = (serial,seqno, ...)

If a data set is created on a 9-track dual density tape unit (2400-4), the data set can
be cataloged with a device specification of 2400 for an 800 bits per inch tape or
2400-3 for a 1600 bits per inch tape. If a device specification of 2400-4 is made

IEHPROGM Program 19-11

UNCATLG Statement

when the data set is cataloged, any subsequent retrieval of that data set is made on
a dual density unit.

If a data set is created on a 9-track dual density tape unit (3400-6), the data set can
be cataloged with a device specification of 3400-3 for an 1600 bits per inch tape or
3400-5 for a 6250 bits per inch tape. If a device specification of 3400-6 is made
when the data set is cataloged, any subsequent retrieval of that data set is made on
a dual density unit.

The format of the CA TLG statement is:

[label] CATLG DSNAME=name

, VOL=device =list

[,CVOL=device =serial]

The UNCA TLG statement is used to remove a non-VSAM entry from the index of
the catalog. If the entry removed was the last entry in the index, that index and all
higher, unneeded, indexes, with the exception of the highest-level index, are
removed from the catalog.

The format of the UNCATLG statement is:

[label] UNCATLG DSNAME=name
[,CVOL=device=serial)

BLDX (Build Index) Statement

The BLDX statement is used to create a new index in a CVOL catalog. If the
creation of an index requires that higher level indexes be created, this function
automatically creates them.

The format of the BLDX statement is:

[label] BLDX INDEX=name

[,CVOL=device =serial]

DLTX (Delete Index) Statement

The DLTX statement is used to remove an index from a CVOL catalog. Only an
index that has no entries can be removed.

Because this function does not delete higher level indexes, it must be used
repetitively to delete an entire structure. For example, to delete index structure
A.B.C, delete index A.B.C, index A.B, and index A.

The format of the DL TX statement is:

[label] DLTX INDEX=name

[,CVOL=device =serial]

BLDA (Build Index Alias) Statement

19-12 OS/VS2 MVS Utilities

The BLDA statement is used to assign an alias to an index at the highest level of a
CVOL catalog.

The format of the BLDA statement is:

[label] BLDA INDEX=name

,ALIAS=name

[,CVOL=device =serial]

)

DL T A (Delete Index Alias) Statement

CONNECT Statement

The DL T A statement is used to delete an alias previously assigned to an index at
the highest level of a CVOL catalog.

The format of the DL T A statement is:

[label] DLTA ALIAS=name

[,CVOL=device =serial]

The CONNECT statement is used to place an entry in the high level index of a
CVOL catalog. The entry identifies a second CVOL by its device type and volume
serial number. In addition, it contains an index name identifying the index to be
searched for (during subsequent index searches) on the second CVOL.

This function does not create an index on the second CVOL.

The CONNECT statement does not create a SYSCTLG data set on the connected
volume. Before cataloging the first data set on a connected volume, the user must
define a SYSCTLG data set on that volume. This can be done with the following
DD statement:

/ /ddname DD DSNAME=SYSCTLG,UNIT=xxxx,DISP=(,KEEP),
/ / SPACE=(CYL,1),VOLUME=SER=xxxxxx

If a job requires an auxiliary control volume to complete a catalog search, the user
need not have the auxiliary control volume mounted before the job is begun. (The
user does not have to remember the volume on which a particular data set is
cataloged.) The system directs the operator to mount an auxiliary control volume if
it is needed.

Before any CVOL can be accessed by the system, it must be defined in the VSAM
master catalog. For details see Using OS Catalog Management with the Master
Catalog: CVOL Processor.

The format of the CONNECT statement is:

[label] CONNECT INDEX=name

,VOL=device =serial]

[,CVOL=device =serial]

RELEASE (Disconnect) Statement

The RELEASE statement is used to remove an entry from the high level index of a
CVOL. This disconnects, in effect, a second CVOL from the first CVOL. The
RELEASE statement does not delete an index from the second CVOL.

The format of the RELEASE statement is:

[label] RELEASE INDEX=name

[,CVOL=device =serial]

IEHPROGM Program 19-13

BLDG (Build Generation Index) Statement

The BLDG statement is used to build an index for a generation data group, and to
define what action should be taken when the index overflows.

The format of the BLDG statement is:

[label] BLDG INDEX = name

,ENTRIES=n

[,CVOL=dev;ce =serial]

[,EMPTY]

[,DELETE]

ADD (Add a Password) Statement

The ADD statement is used to add a password entry in the PASSWORD data set.
When the control entry for a direct access, online data set is added, the indicated
protection status of the data set is set in the DSCB; when a secondary entry is
added, the protection status in the DSCB is not changed.

The format of the ADD statement is:

[label] ADD DSNAME=name

[,PASWORD2=new-password]

[,CPASWORD=control-password]

[,TYPE=code]

[,VOL=device = list]

[,DATA=' user-data']

REPLACE (Replace a Password) Statement

19-14 OS/VS2 MVS Utilities

The REPLACE statement is used to replace any or all of the following information
in a password entry: the password name, protection mode (read/write or read
only) of the password, and user data. When the control entry for a direct access,
online data set is replaced, the protection status of the data set is changed in the
DSCB if necessary; when a secondary entry is replaced, the protection status in the
DSCB is not changed.

The format of the REPLACE statement is:

[label] REPLACE DSNAME=name

[,PASWORDI = current-pass word]

[,P ASWORD2 = new-password]

[,CPASWORD=control-password]

[,TYPK=code]

[,VOL=device =list]

[,DATA=' user-data']

"
\

;'

DELETEP (Delete a Password) Statement

The DELETEP statement is used to delete an entry in the PASSWORD data set. If
a control entry is deleted, all the secondary entries for th~t data set are also deleted.
If a secondary entry is deleted, only that entry is deleted. When the control entry
for a direct access, online data set is deleted, the protection status in the DSCB is
set to indicate that the data set is no longer protected.

The format of the DELETEP statement is:

[label] DELETEP DSNAME=name

LIST (List Information from a Password) Statement

[,PASWORDI =current-password]

[,CPASWORD=control-password]

[,VOL=device = list]

The LIST statement is used to format and print information from a password entry.

The format of the LIST statement is:

[label] LIST DSNAME=name

,PASWORDI =current-password

IEHPROGM Program 19-15

Operands

ALIAS

CPASWORD

CVOL

Applicable Control
Statements

BLDA
DLTA

ADD

DELETEP
REPLACE

CATLG
UNCATLG
BLDX
DLTX
BLDA
DLTA
CONNECT
RELEASE
BLDG

19-16 OS/VS2 MVS Utilities

Description of Operands/Parameters

ALIAS=name
specifies an unqualified name to be assigned as the alias or
to be deleted from the index. The unqualified name must
not exceed 8 characters.

CPASWORD=control-password
specifies the control password for the data set.
CP ASWORD must be specified unless this is the first
password assigned to the data set, in which case
P ASWORD2 specifies the password to be added.

CPASWORD =control-password
CP ASWORD must be specified unless the control entry is
being changed or deleted, in which case PASWORDI.
specifies the control password.

CVOL=dev;ce=ser;al,

For CONNECT and RELEASE, specifies the device type and volume
serial number of the first CVOL.

For CATLG, UNCATLG, BLDX, DLTX and BLDG, the
CVOL on which the catalog search for the index (entry,
for UNCATLG) is to begin.

For BLDA and DLTA, the CVOL on which the catalog
entry is to be made or deleted.

For CONNECT and RELEASE, the first CVOL.

If CVOL is omitted:

For CATLG and UNCATLG, the catalog search begins
with the VSAM master/JOBCAT/STEPCAT catalog.

For BLDX, DLTX, BLDA, DLTA, CONNECT,
RELEASE and BLDG, the system attempts to locate the
proper (the first, for CONNECT) CVOL by checking the
VSAM master catalog for a CVOL pointer alias name
equal to the high level index specified in the INDEX
(ATLAS, for DL T A) operand.

The CVOL must be defined in the VSAM master catalog
as: SYSCTLG. Vserial, where serial must equal the serial
number of the CVOL.

Default: The catalog search begins with the VSAM master
catalog (or JOBCAT /STEPCAT, if specified).

Operands

DATA

DELETE

DSNAME

EMPTY

ENTRIES

INDEX

Applicable
Control
Statements

ADD
REPLACE

BLDG

SCRATCH
RENAME
CATLG
UNCATLG
ADD
REPLACE
DELETEP
LIST

BLDG

BLDG

BLDG

BLDX
DLTX

BLDA

CONNECT
RELEASE

Description of Operands/Parameters

DATA='user-data '
specifies the user data is to be placed in the password entry. The user
data has a maximum length of 77 bytes and must be enclosed in
apostrophes.

If DATA is omitted from an ADD operation, 77 blanks are used. If
DATA is omitted from a REPLACE operation, current user data is not
changed.

DELETE
specifies that generation data sets are to be scratched after their entries
are removed from the index.

DSNAME=name
specifies the fully qualified name of either the data set to be scratched or
renamed; the partitioned data set that contains the member to be
scratched or renamed; the fully qualified name of the data set to be
cataloged or uncataloged; or the fully qualified name of the data set
whose password entry is to be changed, assigned, listed, or deleted. The
qualified name must not exceed 44 characters, including delimiters.

EMPTY
specifies that all entries be removed from the generation index when it
overflows. This uncatalogs, in effect, all of the generation data sets.

Default: The entries with the largest generation numbers will be
maintained in the catalog when the generation index overflows.

ENTRIES=n
specifies the number of entries to be contained in the generation index; n
must not exceed 255.

INDEX = name
specifies the 1- to 35-character qualified name of the generation index.

INDEX = name
. specifies the qualified name of the index to be created or deleted. The
qualified name must not exceed 44 characters, including delimiters.

INDEX=name
specifies the unqualified name of the index to which an alias name is to
be assigned. The unqualified name must not exceed 8 characters.

INDEX = name
specifies the unqualified index name to be entered or removed from the
high level index on the first CVOL. The unqualified name must not
exceed 8 characters.

IEHPROGM Program 19-17

Operands

MEMBER

NEWNAME

PASWORDI

PASWORD2

PURGE

SYS

Applicable
Control
Statements

SCRATCH
RENAME

RENAME

REPLACE
DELETEP
LIST

ADD
REPLACE

SCRATCH

SCRATCH

19-18 OS/VS2 MVS Utilities

Description of Operands/Parameters

MEMBER = name
specifies a member name or alias of a member (in the named data set) to
be renamed or removed from the directory of a partitioned data set. This
name is not validity-checked because all members must be accessible,
whether the name is valid or not.

Default: The specified data set name or volume of data sets is changed or
scratched.

NEWNAME=name
specifies the new fully qualified name for the data set, or the new
member or alias.

PASWORDl =current-password
specifies the password in the entry to be listed, changed, or deleted.

Default: The operator is prompted for the current password.

PASWORD2=new-password
specifies the new password to be added or assigned to the entry. If the
password is not to be changed, the current password must also be
specified as the new password. The password can consist of one- to
eight-alphameric characters.

Default: The operator is prompted for a new password.

PURGE
specifies that each data set specified by DSNAME or VTOC be
scratched, even if its expiration date has not elapsed.

Default: The specified data sets are scratched only if their expiration
dates have elapsed.

SYS
specifies that data sets that have names that begin with
"AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA." or "SYSnnnnn.T"
and "P" or "V" in position 19 are to be scratched. These are names
assigned to data sets by the operating system. This parameter is valid
only when VTOC is specified.

If the name of the data set to be scratched begins with SYS, nnnnn is the
date.

Operands

TYPE

VOL

Applicable Cwtrol
Statements

ADD
REPLACE

CONNECT

Description of Operands/Parameters

lYPE=code
specifies the protection code of .,he Il3ssword , if a
control password entry is to be 9hanged f~ or asstSJl~ to
a direct access, online data set, ~eqifies t_pfoteqtion
status of the data set, The value$ that catlbe sp¢cified:for
code are:

1

2

3

specifies that the password is to allow !joth,!lad and
write access to the data set; if a control p~wor.4 is
being assigned or changed, read/ writeprQlt#¢tiQl\1 is set
in the DSCB.

specifies that the password is to allow ,Qnlytead jlCcess
to the data set; if control password is~ingassilDed or
changed, read/write protection is setia the DSCB.

specifies that the password is to allow b0th read and
write access to the data set; if a control pa~wor~ is
being assigned or changed" read-with~t-.p~ssw0td
protection is set in the DSeB.

Default: For ADD, if this parameter isomitted"the new
password is assigned the same protection code CIS the
control password for the data set. If a contfol password
is being "added," TYPE= 3 is the defauh.Fo.r
REPLACE, the protect~n is: not changed.

VOL::::::device=serial
specifies the device type and serial number of the second
CVOL. This information is placed in the high level index
of the first CVOL.

IEHPROGM Program 19-19

Operands

VOL
(continued)

VTOC

Applicable Control
Statements

ADD
REPLACE
DELETEP
SCRATCH
RENAME
CATLG

SCRATCH

19-20 OS/VS2 MVS Utilities

Description of Operands/Parameters

VOL=device= list
specifies the device type and serial number(s) of the
volume(s), limited to 50, that contain the data set(s).

For SCRATCH and RENAME, ifVTOC or MEMBER is specified,
VOL cannot specify more than one volume. Caution should be
used when specifying VTOC if VOL specifies the system residence
volume.

For CATLG, the volume serial numbers must appear in the
same order in which they were originally encountered (in
DD statements within the input stream) when the data set
was created.

For ADD, REPLACE and DELETEP, if omitted, the protection
status in the DSCB is not set or changed, unless the data set is
cataloged. This parameter is not necessary for secondary
password entries, or if the desired protection status in the
DSCB is already set or is not to be changed by ADD or
REPLACE.

VTOC
specifies that all data sets on the specified volume, except
those protected by a password or those whose expiration
dates have not expired, are to be scratched.
Password-protected data sets are scratched if the correct
password is provided. The effect of VTOC is modified
when it is used with PURGE or SYS.

Restrictions

• The block size for the SYSPRINT (message) data set must be a mUltiple of 121.
The block size for the SYSIN (control) data set must be a multiple of 80. Any
blocking factor can be specified for these block sizes.

• With the exception of the SYSIN and SYSPRINT DD statements, all DD
statements in Figure 19-8 are used as device allocation statements, rather than as
true data definition statements. Because IEHPROGM modifies the internal
control blocks created by device allocation DD statements, the DSNAME
parameter, if supplied, will be ignored by IEHPROGM. (All data sets are
defined explicitly or implicitly by utility control statements.)

• One anyname 1 DD statement must be included for each permanently mounted
volume referred to in the job step.

• One anyname2 DD statement must be included for each mountable device to be
used in the job step.

• When IEHPROGM is dynamically invoked in a job step containing a program
other than IEHPROGM, the DD statements defining mountable devices for
IEHPROGM must be included in the job stream prior to DD statements defining
data sets required by the other program.

• Unpredictable results may occur in multi-tasking environments where dynamic
allocation/ de allocation of devices, by other tasks, causes changes in the TIOT
during IEHPROGM execution.

IEHPROGM Program 19-21

IEHPROGM Examples

19-22 OS/VS2 MVS Utilities

The following examples illustrate some of the uses of IEHPROGM. Figure 19-10
can be used as a quick reference guide to IEHPROGM examples. The numbers in
the "Example" column point to the examples that follow.

Mount
Operation Volumes Comments Example

SCRATCH Disk VTOC is to be scratched.

SCRATCH Disk Two data sets are to be scratched and
UNCATLG uncataloged. 2

RENAME, Disks A data set is to be renamed on two mountable
UNCATLG devices; the old data set name is to
CATLG be removed from the catalog. The

data set is cataloged under its new name.
Object data set resides on two mountable
devices. 3

UNCATLG Disk Three generation data sets are to be uncataloged,
their index structures deleted from the catalog. 4

RENAME, Disk The object data set exists on one mountable
DELETEP, device.
and ADD 5

LIST and Disk The object data set exists on two mountable
REPLACE devices. 6

RENAME Disk Rename a member of a partitioned data set. 7

CATLG and Disk Connect one CVOL to another. 8
CONNECT

BLDG, Disk A generation index is built, three data 9
RENAME and sets are renamed and cataloged into the
CATLG generation index.

BLDG Disk A new generation index is built and updated 10,11
through JCL.

Figure 19-10. IEHPROGM·Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
man\lal, for valid device-id notation.

In the IEHPROGM examples, the EXEC statement and the SYSPRINT DD
statement can be replaced with the following job control statement:

/ / EXEC PROC=MOD

which invokes the following IBM-supplied cataloged procedure:

/ /MOD EXEC PGM=IEHPROGM,REGION=44K
/ /DDSRV DO VOLUME=REF=SYS1.SVCLIB,DISP=OLD
/ /SYSPRINT DO SYSOUT=A

lEHPROGM Example 1

In the following example, data sets are to be scratched from the volume table of
contents of a mountable volume. Because the system residence volume is not
referred to, no DDt DD statement is necessary in the job stream.

IlsCRVTOC JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDD2 DD UNIT=disk, VOLUME=SER=222222, DISP=OLD
IISYSIN DD *

SCRATCH VTOC,VOL=d~k=222222

1*
The SCRATCH statement, used in this example, indicates that all data sets
(including those system data sets beginning with
AAAAAA.AAAAAA.AAAAAA.AAAAAA) whose expiration dates have expired
are to be scratched from the specified volume.

lEHPROGM Example 2

In this example, two data sets are to be scratched: SETt is to be scratched on
volume 222222, and A.B.C.D.E is to be scratched on volume 222222. Both data
sets are to be uncataloged.

IlsCRDSETS JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDD1 DD UNIT=disk, VOLUME=SER= 111111 ,DISP=OLD
IIDD2 DD UNIT=disk, DISP=OLD, VOLUME=SER=222222
IISYSIN DD *

SCRATCH DSNAME=SET1fVOL=d~k=222222
UNCATLG DSNAME=SET1
SCRATCH DSNAME=A. B. C. D. E, VOL=disk=222222
UNCATLG DSNAME=A.B.C.D.E

1*
The control statements are discussed below:

• The first SCRATCH statement specifies that SET l, which resides on volume
222222, is to be scratched.

• The first UNCATLG statement specifies that SETl is to be uncataloged.

• The second SCRATCH statement specifies that A.B.C.D.E, which resides on
volume 222222, is to be scratched.

• The second UNCATLG statement specifies that A.B.C.D.E is to be
uncataloged.

IEHPROGM Program 19-23

IEHPROGM Example 3

In this example, the name of a data set is to be changed on two mountable volumes.
The old data set name is to be removed from the catalog and the data set is to be
cataloged under its new data set name.

IIRENAMEDS JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDDl DD VOLUME=SER=llllll,UNIT=d~k,DISP=OLD
IIDD2 DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE,SER=(222222,333333))
IISYSIN DD *

1*

RENAME DSNAME=A.B.C,NEWNAME=NEWSET,
vOL=d~k=(222222,333333)

UNCATLG DSNAME=A.B.C
CATLG DSNAME=NEWSET, VOL=disk=(222222,333333)

The control statements are discussed below:

72

C

• RENAME specifies that data set A.B.C, which resides on volumes 222222 and
333333, is to be renamed NEWSET.

• UNCATLG specifies that data set A.B.C is to be uncataloged.

• CATLG specifies that NEWSET, which resides on volumes 222222 and
333333, is to be cataloged.

IEHPROGM Example 4

19-24 OS/VS2 MVS Utilities

In this example, three data sets-A.B.C.D.E.F.SETl, A.B.C.G.H.SET2, and
A.B.lJ .K.SET3-are to be uncataloged. The system residence volume resides on a
disk volume.

IIDLTSTRUC JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDDl DD UNIT=d~k,vOLUME=SER=llllll,DISP=OLD
IISYSIN DD *

1*

UNCATLG DSNAME=A.B.C.D.E.F.SETl
UNCATLG DSNAME=A.B.C.G.H.SET2
UNCATLG DSNAME=A.B.I.J.K.SET3

The control statements are discussed below:

• The UNCATLG statements specify that data sets A.B.C.D.E.F.SETl,
A.B.C.G.H.SET2, and A.B.I.J.K.SET3 are to be uncataloged.

~
\

)

lEHPROGM Example 5

In this example, a data set is to be renamed. The data set passwords assigned to the
old data set name are to be deleted. Then two passwords are to be assigned to the
new data set name.

Note: If the data set is not cataloged, a message indicating that the LOCATE
macro instruction failed is issued. The return code is 8.

//ADDPASS JOB 09#550,BROWN
EXEC PGM=IEHPROGM, PARM= , NOPRINT ,

//SYSPRINT DO SYSOUT=A
//001 DO VOLUME=(PRIVATE,SER=222222),DISP=OLD,
// UNIT=(d~k"DEFER)
//SYSIN DO *

RENAME DSNAME=OLD,VOL~~k=222222,NEWNAME=NEW
DELETEP DSNAME=OLD,PASWORD1=KEY

72

ADD DSNAME=NEW, PASWORD2=KEY, TYPE=1 , C
DATA='SECONDARY IS READ'

ADD DSNAME=NEW,PASWORD2=READ,CPASWORD=KEY,TYPE=2, C
DATA='ASSIGNED TO J. DOE'

/*

The control statements are discussed below:

• DELETEP specifies that the entry for the password KEY is to be deleted.
Because KEY is a control password in this example, all the password entries for
the data set name are deleted. The VOL parameter is not needed because the
protection status of the data set as set in the DSCB is not to be changed;
read/ write protection is presently set in the DSCB, and read/write protection is
desired when the passwords are reassigned under the new data set name.

• The ADD statements specify that entries are to be added for passwords KEY
and READ. KEY becomes the control password and allows both read and write
access to the data set. READ becomes a secondary password and allows only
read access to the data set. The VOL parameter is not needed, because the
protection status of the data set is still set in the DSCB.

Note: The operator is required to supply a password to rename the old data set.

lEHPROGM Example 6

In this example, information from a password entry is to be listed. Then the
protection mode of the password, the protection status of the data set, and the user
data are to be changed.

//REPLPASS JOB 09#550,BROWN
EXEC PGM=IEHPROGM,PARM='NOPRINT'

//SYSPRINT DO SYSOUT=A
/ /001 DO UNIT=disk, VOLUME=SER=111111 ,DISP=OLD
//DD2 DD VOLUME=(PRIVATE,SER=(222222,333333)),
/ / UNIT=(disk, ,DEFER) ,DISP=OLD
//SYSIN DD *

LIST DSNAME=A.B.C,PASWORD1=ABLE

72

REPLACE DSNAME=A.B.C,PASWORD1=ABLE, C
PASWORD2=ABLE, TYPE=3 , C
VOL~~k=(222222,333333), C
DATA='NO SECONDARIES; ASSIGNED TO DEPT 31'

/*

IEHPROGM Program 19-25

The control statements are discussed below:

• LIST specifies that the access counter, protection mode, and user data from the
entry for password ABLE are to be listed. Listing the entry permits the content
of the access counter to be recorded before the counter is reset to zero by the
REPLACE statement.

• REPLACE specifies that the protection mode of password ABLE is to be
changed to allow both read and write access and that the protection status of the
data set is to be changed to write-only protection. The VOL parameter is
required because the protection status of the data set is to be changed and the
data set, in this example, is not cataloged. Because this is a control password, the
CPASWORD parameter is not required.

IEHPROGM Example 7

In this example, a member of a partitioned data set is to be renamed.

IIREN
II
IISYSPRINT
IIDD1
ilSYSIN

RENAME

1*

JOB 09#550,BROWN
EXEC PGM=IEHPROGM
DD SYSOUT=A
DD VOL=SER=222222,DISP=OLD,UNIT=d~k

DD *
VOL=disk=222222, DSNAME=DATASET, NEWNAME=BC,
MEMBER=ABC

The control statements are discussed below:

• DD 1 DD defines a permanently mounted volume.

• SYSIN DD defines the input data set, which immediately follows in the input
stream.

• RENAME specifies that member ABC in the partitioned data set DATASET,
which resides on a disk volume, is to be renamed BC.

72

C

IEHPROGM Example 8

19-26 OS/VS2 MVS Utilities

In this example, a new CVOL catalog (SYSCTLG data set) is defined and
connected to an existing CVOL. A data set is then cataloged in the new CVOL.

IILNKX JOB
IISTEP1 EXEC PGM=IEHPROGM
IISYSPkINT DD SYSOUT=A
IINEWCVOL DD DSN=SYSCTLG, UN I T=disk , VOL=SER=222222,
II DISP=(,KEEP),SPACE=(TRK,(10,1))
I IFIRST DD UNIT=disk, VOL=SER= 111111 , DISP=SHR
IISYSIN DD *

1*

CATLG DSNAME=SYSCTLG.V222222,VOL=d~k=222222
CONNECT INDEX=AA,VOL=d~k=222222
CATLG DSNAME=AA.BB,VOL=d~k=PACK14

This example assumes that the CVOL on volume 111111 was previously defined in
the VSAM master catalog with a CVOL pointer, and "AA" was defined in the
VSAM master catalog as an alias of the CVOL pointer. See Using OS Catalog
Management with the Master Catalog: CVOL Processor for details on how this is
done.

The control statements are discussed below:

• NEWCVOL DD allocates space for the new CVOL.

• The first CATLG statement establishes a CVOL pointer in the VSAM master
catalog for the new CVOL.

• The CONNECT statement causes the new CVOL (on volume 222222) to be
connected to the old CVOL (on volume 111111), such that any catalog
management requests coming to the old CVOL having a high level index name
of AA will be routed to the new CVOL.

• The second CA TLG statement will cause the data set AA.BB to be cataloged in
the new CVOL on volume 222222. Since this is the first request to update the
new CVOL, this will cause the new CVOL to be formatted before the catalog
entry is made.

lEHPROGM Example 9

In this example, a generation index for generation data group A.B.C is built in a
CVOL. Three existing non-cataloged, non-generation data sets are renamed; the
renamed data sets are cataloged as generations in the generation index.

72
IIBLDINDEX JOB
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDD1 DD UNIT=disk, VOLUME=SER=111111 ,DISP=OLD
IIDD2 DD UNIT=(disk, , DEFER) ,DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222))
IISYSIN DD *

1*

BLDG INDEX=A.B.C,ENTRIES=10,CVOL=d~k=111111
RENAME DSNAME=DATASET1,VOL=d~k=222222, C

NEWNAME=A.B.C.G0001VOO
RENAME DSNAME=DATASET2,VOL=d~k=222222, C

NEWNAME=A.B.C.G0002VOO
RENAME DSNAME=DATASET3, VOL=disk=222222, C

NEWNAME=A.B.C.G0003VOO
CATLG DSNAME=A.B.C.G0001VOO, VOL=disk=222222,CVOL=disk=111111
CATLG DSNAME=A. B. C .G0002VOO, vOL=disk=222222, CVOL=disk=111111
CATLG DSNAME=A. B. C. G0003VOO, vOL=disk-222222 I CVOL=disk=111111

The control statements are discussed below:

• DD1 DD defines the volume on which the SYSCTLG data set resides.

• BLDG specifies the generation group name A.B.C and makes provision for ten
entries in the index. The oldest generation is to be uncataloged when the index
becomes full. No generations are to be scratched.

• The RENAME statements rename three non-generation data sets residing on a
disk volume.

• CA TLG catalogs the renamed data sets in the generation index.

Note: Because the DCB parameters were supplied when the non-generation data
sets were created, no DCB parameters are now specified; therefore, no model
DSCB is required.

IEHPROGM Program 19-27

lEHPROGM Example 10

19-28 OS/VS2 MVS Utilities

In this example, an IEHPROGM job step, STEPA, creates a model OSCB and
builds a generation index. STEP B, an IEBGENER job step, creates and catalogs a
sequential generation from card input.

This example assumes that the CVOL with serial number 111111 was previously
defined in the VSAM master catalog with a CVOL pointer, and "A" was defined in
the VSAM master catalog as an alias of the CVOL pointer. See Using OS Catalog
Management with the Master Catalog: CVOL Processor for details on how this is
done.

IIBLDINDX JOB
IISTEPA EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIBLDDSCB DD DSNAME=A.B.C,DISP=(,KEEP),SPACE=(TRK,(O)),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=800),
I I VOLUME=SER=111111, UNIT=disk
IISYSIN DD *

BLDG INDEX=A.B.C,ENTRIES=10,EMPTY,DELETE
1*
IISTEPB EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DUMMY
IISYSUT2 DD DSNAME=A. B. C(+ 1), UNIT=disk, DISP=(, CATLG) ,
II VOLUME=SER=222222,SPACE=(TRK,20)
IISYSUT1 DD DATA

(input card data)

1*
The control statements are discussed below:

• BLDDSCB 00 creates a model DSCB on the CVOL volume.

• SYSIN DO indicates that a utility control statement (BLDG) is included next in
the input stream.

• BLDG specifies the generation data group name A.B.C and makes provision for
ten entries in the group. When the index is filled, it is to be emptied, and all of
the generations are to be deleted.

• SYSUT2 DO defines an output sequential generation. The generation is assigned
the absolute generation and version number GOOO 1 VOO in the index.

• SYSUTI DO defines the input card data set.

Any subsequent job that causes the deletion of the generations should include 00
statements defining the devices on which the volumes containing those generations
are to be mounted. Each generation for which no DD statement is included is
uncataloged at that time, but not deleted.

After the generation data group is emptied, the new generations continue to be
assigned generation numbers according to the last generation number assigned
before the empty operation. To reset the numbering operation (that is, to reset to
GOOOOVOO or GOOOIVOO), it is necessary to uncatalog all the old generation data
sets and then rename and recatalog, beginning with GOOOOVOO.

lEHPROGM Example 11

In this part of the example, a second generation is created and cataloged in the
index built in Example 10. DCB attributes are included to override those attributes
that were specified when the model DSCB was created.

II JOB
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DUMMY
IISYSUT2. DD DSNAME=A.B.C(+1),UNIT=disk,DISP=(,CATLG),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=1600),
II VOLUME=SER=222222,SPACE=(TRK,20)
IISYSUT1 DD DATA

(input cards)

1*
The control statements are discussed below:

I

• SYSUT2 DD defines an output sequential generation. The generation is assigned
the absolute generation and version number G0002VOO in the index. The
specified DCB attributes override those initially specified in the model DSCB.
The DCB attributes specified when the model DSCB was created remain
unchanged; that is, those attributes are applicable when you catalog a succeeding
generation unless you specify overriding attributes at that time.

• SYSUT 1 defines the input card data set.

IEHPROGM Program 19-29

IFHSTATR PROGRAM

IFHST A TR is a system utility used to format and print information from type 21
(error statistics by volume) records.

Figure 20-1 shows the format of the type 21 r~cord.

4

o

4

8

12

16

20

24

28

Bytes of Record Descriptor Word

System
Record Type Time of Day Indicator

Time of Day (continued) Current Date

Current Date (continued) System Identification

System identifier Length of rest of record
including this field

Volume Serial Number

Volume Serial No. (cont.) i22 Channel Unit Address

UCB Type

Temporary Read Temporary Write Start I/O's Errors Errors

Permanent Read Permanent Write Noise Blocks Erase Gaps
Errors Errors

32

Erase Gaps Cleaner Actions Tape Density (continued) 36

40 Block Size Reserved

Figure 20-1. Type 21 (ES v) Record Format

Error statistics by volume (ESV) records should be retrieved from the IF ASMPDP
tape or from SYS 1.MAN (on tape). ESV can also be retrieved directly from
SYS 1.MANX or SYS 1.MANY (on a direct access storage device); however,
IFHSTATR does not clear the SYS1.MANX (or SYS1.MANY) data set or make it
available for additional records.

Assessing the Quality of a Tape Library
The statistics gathered by SMF in Type 21 records can be very useful in assessing
the quality of a tape library. IFHST A TR prints Type 21 records in the same order
that they were gathered, that is, date/time sequence. You may find it useful to sort
Type 21 records into volume serial number sequence, into channel unit sequence,
and into error occurrence sequence to aid in analyzing the condition of the library.

The IFHST A TR report helps to identify deteriorating media (tapes); occasionally
poor performance from a particular tape drive can also be identified. The
permanent read error counter or permanent write error counter is incremented by
one each time the Tape Error Recovery routines (ERPs) determine that the error is
permanent and is returned to the user with indication of a permanent I/O error. If
a SYNAD routine to handle such errors is present, the counts in these fields can be
greater than one. The temporary read error counter and temporary write error
counter are incremented when the ERP initially handles an error condition which is
corrected in the ERP. The severity of a temporary error can be estimated by
analyzing either the erase gap counter for write errors or the noise block and
cleaner action counters for read errors. The erase gap counter is incremented each
time a write error is retried. For example, if the temporary write error counter
contains 2 and the erase gap counter contains 5, the ERP was entered twice for
write error recovery. The average recovery actions were 2.5 per error (actually may

IFHST A TR Program 20-1

Input and Output

VOLUME CPU MOD TIME
SERIAL DATE ID NO OF DAY

001021 69/309 BB 40 15:55:07
001022 69/309 AA 40 15:56:02
000595 69/309 CC 50 15:56:20

have been 1 and 4). The cleaner action counter is only incremented every fourth
read retry. A ratio of one cleaner action to one temporary read error indicates, in
general, recovery on the fifth retry (the first retry after the cleaner action). A ratio
of ten cleaner actions to one temporary error indicates that recovery is, in general,
a result of reading the tape in the opposite direction (reading backward on a read
forward tape or reading forward on a read backward tape). The noise block counter
is incremented once for each noise record (record less than minimum read length)
encountered.

In analyzing IFHSTATR reports, the usage (SIO) count should also be considered,
because it is the count of all Start I/O's to the tape drive, except those issued by
the ERP in the course of error recovery. The usage count can be used to determine
the ratio of error free accesses of the tape to total accesses of the tape.

IFHSTATR uses as input type 21 records, which contain information about errors
on magnetic tape. IFHSTATR processes only type 21 records; if none are found, a
message is written to the output data set.

IFHST ATR produces as output an output data set, which contains information
selected from type 21 records. The output takes the form of 121-byte unblocked
records, with an ASA control character in the first byte of each record.

Figure 20-2 shows a sample of printed output from IFHST A TR.

CHANNEL TEMP TEMP PERM PERM NOISE ERASE CLEANER USAGE TAPE BLOCK
/ UNIT READ WRITE READ WRITE B~OCKS GAPS ACTIONS (SIO's) DENSITY LENGTH

181 1 0 0 0 1 0 0 10 0800 80
184 10 0 0 0 0 0 0 28 1600 121
283 0 10 0 0 0 10 0 28 0800 50

Figure 20-2. Sample Output from IFHST A TR

Control

Job Control Statements

20-2 OS/VS2 MVS Utilities

IFHST A TR is controlled by job control statements. Utility control statements are
not used.

Figure 20-3 shows the job control statements necessary for using IFHST ATR.

The output data set can reside on any output device supported by BSAM.

Note: The LRECL and BLKSIZE parameters are not specified by IFHST ATR.
This information is taken from the DCB parameter on the SYSUTI DD statement
or from the tape label.

Statement

JOB

EXEC

SYSUTI DD

SYSUT2DD

Use

Initiates the job.

Specifies the program name (PGM=IFHSTATR).

Defines the input data set and the device on which it resides. The DSNAME,
UNIT, VOLUME, LABEL, DCB, and DISP parameters should be included.

Defines the sequential data set on which the output is to be written.

Figure 20-3. IFHST A TR Job Control Statements

IFHSTATR Example

This example shows the JCL needed to produce a report.

II JOB
II EXEC PGM=IFHSTATR
IISYSUT1 DD UNIT=2400,DSNAME=SYS1.MAN,LABEL=(,SL),
II VOLUME=SER=VOLID,DISP=OLD
IISYSUT2 DD SYSOUT=A
1*

IFHST A TR Program 20-3

APPENDIX A. EXIT ROUTINE LINKAGE

Utility programs can be linked to user-supplied exit routines for additional
processing.

Linking to an Exit Routine
Linking to an exit routine from a utility program is accomplished in one of the
following ways:

• If the exit routine is for label processing or totaling, or if the exit routine is
specified in the IEBTCRIN program by OUTREC or ERROR) linkage is
performed by the BALR instruction.

• In all other cases, linkage is performed by using the LINK macro instruction.

The LINK macro instruction contains the symbolic name of the entry point of an
exit routine and, if required, a list of parameters.

For further information on the use of the LINK macro instruction, see OS/VS2
Supervisor Services and Macro Instructions and OS/VS2 Data Management
Macro Instructions.

At the time of the linkage operation:

• General register 1 contains the starting address of the parameter list, or contains
zero to indicate end-of-file on the input data set for the IEBTCRIN OUTREC or
ERROR exits.

• General register 13 contains the address of the register save area. This save area
must not be used by user label processing routines. See" Appendix D: Processing
User Labels."

• General register 14 contains the· address of the return point in the utility
program.

• General regi~ter 15 contains the address of the entry point to the exit routine.

Registers 1 through 14 must be restored before control is returned to the utility
program.

The exit routine must be contained in either the job library or the link library.

The parameter lists passed to label processing routines and parameter lists passed to
nonlabel processing routines are described in the topics that follow.

Label Processing Routine Parameters

The parameters passed to a user's label processing routine are addresses of the
80-byte label buffer, the DCB being processed, the status information if an
uncorrectable input/output error occurs, and the totaling area.

The 80-byte label buffer contains an image of the user label when an input label is
being processed. When an output label is being processed, the buffer contains no
significant information at entry to the user's label processing routine. When the
utility program has been requested to generate labels, the label processing routine
constructs a label in the label buffer.

If standard user labels (SUL) are specified on the DD statement for a data set, but
the data set has no user labels, the system still takes the specified exits to the

Appendix A. Exit Routine Linkage 21-1

appropriate user's routine. In such a case, the user's input label processing routine is
entered with the buffer address parameter set to zero.

The format and content of the DCB are presented in OS/VS2 MVS Data
Management Macro Instructions.

Bit 0 of flag 1 in the DCB-address parameter is set to a value of 0 except when:

• Volume trailer or header labels are being processed at volume switch time .

• The trailer labels of a MOD data set are being processed (when the data set is
opened).

If an uncorrectable input/output error occurs while reading or writing a user label,
the appropriate label processing routine is entered with bit 0 of flag 2 in the status
information address parameter set on. The three low order bytes of this parameter
contain. the address of standard status information as supplied for SYNAD routines.
(The SYNAD routine is not entered.)

Nonlabel Processing Routine Parameters

21-2 OS/VS2 MVS Utilities

Figure 21-1 shows the program from which exits can be taken to nonlabel
processing routines, the names of the exits, and the parameters available for each
exit routine.

Program Exit

IEBGENER KEY

DATA
IOERROR

IEBCOMPR ERROR
PRECOMP

IEBPTPCH INREC
OUTREC

IEBTCRIN ERROR

OUTREC

Parameters

Address at which key is to be placed (record follows key);
address of DCB.
Address of SYSUTI record; address of DCB.
Address of DECB; cause of the error and address of DCB.
(Address in lower order three bytes and cause of error in high
order byte.)

Address of DCB for SYSUT 1; address of DCB for SYSUT2.1
Address of SYSUTI record; length of SYSUTI record, address
of SYSUT2 record; length of SYSUT2 record.

Address of input record; length of the input record.
Address of output record; length of the output record.

Address of the error record; address of a full word which
contains the record length.
Address of the normal record; address of a full word which
contains the record length.

lThe IOBAD pointer in the DeB points to a location that contains the address of
the corresponding data event control block (DECB) for these records. The
format of the DECB is illustrated as part of the BSAM READ macro instruction
in OS/VS2 MVS Data Management Macro Instructions.

Figure 21-1. Parameter Lists for Nonlabel Processing Exit Routines

Returning from an Exit Routine
An exit routine returns control to the utility program by means of the macro return
instruction in the exit routine.

The format of the RETURN macro instruction is:

[label] RETURN

where:

(r1,r2)

[(r1 ,r2)]

[,RC={n I (IS)}]

specifies the range of registers to be reloaded by the utility program from the
register save area. If this parameter is omitted, the registers are considered
properly restored by the exit routine.

RC=
specifies a return code in register 15. If RC is omitted, register 15 is loaded as
specified by (rl ,r2). These values can be coded:

n
specifies a return code to be placed in the 12 low order bits of register 15.

(IS)
specifies that general register 15 already contains a valid return code.

The user's label processing routine must return a code in register 15 as shown in
Figure 21-2 unless:

• The buffer address was set to zero before entry to the label processing routine.
In this case, the system resumes normal processing regardless of the return code.

• The user's label processing routine was entered after an uncorrectable output
error occurred. In this case the system attempts to resume normal processing.

Figure 21-2 shows the return codes that can be issued to utility programs by user
exit routines. Slightly different return codes are used for the UPDATE=INPLACE
option of the IEBUPDTE program. See the discussion of UPDATE=INPLACE in
the chapter "IEBUPDTE Program."

Note: For a list of return codes issued by IEBTCRIN at job termination, see the
"IEBTCRIN Program" chapter of this publication.

Appendix A. Exit Routine Linkage 21-3

21-4 OS/VS2 MVS Utilities

Type of Exit

Input Header or
Trailer Label

Output Header or
Trailer Label

Totaling Exits

All other exits
(except IEBTCRIN's
ERROR and OUTREC,
and IEBPTPCH's
exit OUTREC)

ERROR

Return
Code

o
Action

The system resumes normal processing. If there are
more labels in the label group, they are ignored.

4 The next user label is read into the label buffer area and
control is returned to the user's routine. If there are no more
labels, normal processing is resumed.

16 The utility program is terminated on request of the user
routine.

o The system resumes normal processing.
No label is written from the label buffer area.

4 The user label is written from the label buffer area. The
system then resumes normal processing.

8 The user label is written from the label buffer area. If fewer
than eight labels have been created, the user's routine again
receives control so that it can create another user label. If
eight labels have been created, the system resumes normal
processing.

16

0

4

8

16

0-11
(Set to
next
multiple
of four)

12 or 16

0

4

8

The utility program is terminated on request of the user
routine.

Processing continues, but no further exits are taken.

Normal operation continues.

Processing ceases, except for EOD processing on output
data set (user label processing).

Utility program is terminated.

Return code is compared to highest previous return code;
the higher is saved and the other discarded. At the normal
end of job, the highest return code is passed to the
calling processor.

Utility program is terminated and this return code is passed
to the calling processor.

Record is not placed in the error data set. Processing
continues with the next record.

Record is placed in the error data set (SYSUT3).

Record is not placed in error data set but is processed as a
valid record (sent to OUTREC and SYSUT2 if specified).
IEBTCRIN removes the EDW from an edited MTDI record
before processing continues.

16

OUTREC (IEBTCRIN) 0

4

16

Utility program is terminated.

Record is not placed in normal output data set.

Record is pi aGed in normal output data set (SYSUT2).

Utility program is terminated.

OUTREC (IEBPTPCH) 4

12 or 16

Any
other
number

Record is not placed in normal output data set.

Utility program is terminated.

Record is placed in normal output
data set (SYSUT2).

Figure 21-2. Return Codes Issued by User Exit Routines

Further information on the use of the RETURN macro instruction is contained in
OS/VS2 MVS Supervisor Services and Macro Instructions.

APPENDIX B. INVOKING UTILITY PROGRAMS
FROM A PROBLEM PROGRAM

Utility programs can be invoked by a problem program through the use of the
ATTACH or LINK macro instruction. In addition, IEBTCRIN can be invoked
through the use of the LOAD or CALL macro instruction.

The problem program must supply the following to the utility program:

• The information usually specified in the P ARM parameter of the EXEC
statement.

• The ddnames of the data sets to be used during processing by the utility
program.

The following utility programs require that calling programs be authorized via the
Authorized Program Facility (APF):

IEBCOPY, IEHATLAS, IEHDASDR,
IEHINIT, IEHMOVE, IEHPRGM

See the OS/VS2 Conversion Notebook for details on program authorization.

Note: When IEHMOVE, IEHPROGM, or IEHLIST is dynamically invoked in a
job step containing a program other than one of these three, the DD statements
defining mountable devices for the IEHMOVE, IEHPROGM, or IEHLIST
program must be included in the job stream prior to DD statements defining data
sets required by the other program.

LINK or A IT ACH Macro Instruction

The LINK or ATTACH macro instruction can be used to invoke a utility program
from a problem program.

The format of the LINK or ATTACH macro instruction is:

[label] {LINK I ATTACH} EP=progname

where:

,P ARAM= (optionaddr [, ddnameaddr]
[, hdingaddr])
,VL=l

EP=progname
specifies the symbolic name of the utility program.

PARAM=
specifies, as a sublist, address parameters to be passed from the problem
program to the utility program. These values can be coded:

optionaddr
specifies the address of an option list, which is usually specified in the
P ARM parameter of the EXEC statement. This address must be written
for all utility programs.

ddnameaddr
specifies the address of a list of alternate ddnames for the data sets used
during utility program processing. If standard ddnames are used and this is
not the last parameter in the list, it should point to a halfword of zeros. If it
is the last parameter, it may be omitted.

Appendix B. Invoking Utility Programs from a Problem Program 22-1

22-2 OS/VS2 MVS Utilities

hdingaddr
specifies the address of a six-byte list, HDNGLIST, which contains an
EBCDIC page count for the output device. If hdingaddr is omitted, the
page number defaults to 1.

VL=l
specifies that the sign bit of the last fullword of the address parameter list is
to be set to 1.

Figure 22-1 shows these lists as they exist in the user's DC area. Note that the
symbolic starting addresses for OPTLIST and DDNMELST fall on halfword
boundaries.

Full word Full word
boundary boundary

Half word W' Half word
boundary! boundary ii

.";~)i~i;".,.,JL [I
00 I 08 N 00 V E R F Y

Starting address
the optionaddr -:'iffi 00 48 00 00 00 00

parameter list nailJill.lPJ;" 00 00 00 00 00 00
(OPTLI ST),;7f!/fi!Pi ~u

f,~frl*#""" .* [1i
00

00 00 00
Starting address of.
the ddnameaddr .
parameter list
(DDNMELST)

Starting address of
the hd ingaddr 00 00 00 00 I N P U

f~r~~g!~~~~:i';"'M &,."""ii""""i""""'M<-'·i'N"i,{,".tt=:~~ C:~E~;:T ~W~H~~~CJ
H P T r"RWr'OO 04 00 00

I 00

Figure 22-1. Typical Parameter Lists

The P ARAM parameter of the LINK macro instruction in the calling program
provides the utility program with the symbolic addresses of the parameter lists
shown in Figure 22-1, as follows:

• The option list, OPTLIST, which includes the number of bytes in the list
(hexadecimal 08) and the NOVERIFY option .

• The alternate ddname list, DDNMELST, which includes the number of bytes in
the list (hexadecimal 48) and alternative names for the SYSIN, SYSUT1, and
SYSUT2 data sets.

• The heading list, HDNGLIST, which includes the number of bytes in the list
(hexadecimal 04) and indicates the starting page number (shown as 10) for
printing operations controlled through the SYSPRINT data set.

The option list, OPTLIST, must begin on a halfword boundary that is not also a
fullword boundary. The two high order bytes contain a count of the number of
bytes in the remainder of the list. (For all programs except IEHMOVE, IEHLIST,
IEHPROGM, IEHINITT, IEBUPDTE, and IEBISAM, the count must be zero.)
OPTLIST is free form with fields separated by commas. No blanks or zeros should

! appear in the list.

The ddname list, DDNMELST, must begin on a halfword boundary that is not also
a fullword boundary. The two high order bytes contain a count of the number of

LOAD Macro Instruction

CALL Macro Instruction

bytes in the remainder of the list. Each name of fewer than eight bytes must be left
aligned and padded with blanks. If an alternate ddname is omitted from the list, the
standard name is assumed. If the name is omitted within the list, the eight-byte
entry must contain binary zeros. Names can be omitted from the end by merely
shortening the list. Figure 22-2 shows the sequence of the eight-byte entries in the
ddname list pointed to by ddnameaddr.

Entry Standard Name

1 OOOOOOOO
2 OOOOOOOO
3 OOOOOOOO
4 OOOOOOOO
5 SYSIN
6 SYSPRINT
7 OOOOOOOO
8 SYSUTI
9 SYSUT2

10 SYSUT3
11 SYSUT4

Figure 22-2. Sequence of DDNMELST Entries

The first two bytes of HDNGLIST contain the length in bytes of the heading list.
The remaining four bytes contain a page number that the utility program is to place
on the first page of printed output.

IEBTCRIN can be invoked through use of the LOAD macro instruction.

The LOAD macro instruction causes the control program to bring the load module
containing the specified entry point into main storage unless a copy is already there.
Control is not passed to the load module.

The format of the LOAD macro instruction is:

[label] LOAD {EP=IEBTCRIN I EPLOC=address of name}

where:

EP=IEBTCRIN
is the entry point name of the program to be brought into main storage.

EPLOC=address of name
is the main storage address of the entry point name described above.

The CALL macro instruction can be used to pass control to IEBTCRIN after
IEBTCRIN has been loaded into main storage.

Control can be passed to IEBTCRIN via a CALL macro instruction or via a branch
and link instruction. If the branch and link instruction is used, register 1 must be
loaded with the address of a parameter list of full words as described under "LINK
or ATTACH Macro Instruction." The last parameter list address must contain
X'80' in byte 1 to indicate the last parameter in the list.

The format of the CALL macro instruction is:

[label] CALL IEBTCRIN(, optionaddr[, ddnameaddr][, hdingaddr]),VL

Appendix B. Invoking Utility Programs from a Problem Program 22-3

22-4 OS/VS2 MVS Utilities

where:

IEBTCRIN
is the name of the entry point to be given control; the name is used in the
macro instruction as the operand of a V-type address constant.

optionaddr
specifies the address of an option list, OPTLIST, usually specified in the
P ARM parameter of the EXEC statement. This address must be written for
all utility programs.

ddnameaddr
specifies the address of a list of alternate ddnames, DDNMELST, for the data
sets used during utility program processing. If standard ddnames are used and
this is not the last parameter in the list it should point to a halfword of zeros.
If it is the last parameter, it may be omitted.

hdingaddr
specifies the address of a six-byte list containing an EBCDIC page count for
the output device.

VL
specifies that the high order bit of the last address parameter in the macro
expansion is to be set to 1.

The option list, OPTLIST, must begin on a halfword boundary that is not also a
fullword boundary. The two high order bytes contain a count of the number of
bytes in the remainder of the list. (For all programs except IEHMOVE,
IEHPROGM, IEHINITT, and IEBISAM, the count must be zero.) The option list
is free form with fields separated by commas. No blanks or zeros should appear in
the list.

The ddname list, DDNMELST, must begin on a halfword boundary that is not also
a fullword boundary. The two high order bytes contain a count of the number of
bytes in the remainder of the list. Each name of fewer than eight bytes must be left
aligned and padded with blanks. If an alternate ddname is omitted from the list, the
standard name is assumed. If the name is omitted withitl the list, the eight-byte
entry must contain binary zeros. Names can be omitted from the end by merely
shortening the list. The sequence of the eight-byte entries in the ddname list
pointed to by ddnameaddr is shown earlier in Figure 22-2.

The first two bytes of the heading list, HDNGLIST, contain the length in bytes of
the heading list. The remaining four bytes contain a page number that the utility
program is to place on the first page of printed output.

APPENDIX C. DD STATEMENTS FOR DEFINING
MOUNTABLE DEVICES

When defining mountable devices to be used by system utility programs
IEHPROGM, IEHMOVE, IEHLIST, or IEHDASDR, the user must consider the
implications of the DD statements he uses to define those devices.

DD statement parameters must ensure that no one else has access to either the
volume or the data set. In any case, caution should be used when altering volumes
that are permanently resident or reserved.

Under normal conditions, a mountable device should not be shared with another
job step; that is, if a utility program is used to update a volume on a mountable
device, the volume being updated must remain mounted until the operation is
completed.

Following are ways to ensure that mountable devices are not shared:

• Specify DEFER in a DD statement defining a mountable device.

• Specify unit affinity on a second DD statement defining a mountable device.

• Specify a volume count in the VOLUME parameter of a DD statement that is
greater than the number of mountable devices to be allocated.

• Specify PRIVATE in a DD statement defining a mountable device.

For a detailed discussion, see OS/VS2 JCL.

DD Statement Examples

DDExample 1

In the following examples of DD statements, an IBM DASD is indicated as the
mountable device. Alternative parameters are stacked.

Note: Examples which use disk in place of actual device-ids, must be changed
before use. See the Device Support section, in the Introduction to this manual, for
valid device-id notation.

This DD statement makes a specific request for a private, non-sharable volume or
volumes to be mounted on a single device.

//001 DO UNIT=(disk, ,OEFER),OISP=(,KEEP),
/ / VOLUME=(PRIVATE, SER=(123456)), SPACE=(CYL, (11,1))

A utility program causes a mount message to be issued for a specific volume when
the volume is required for processing by the program. The user should supply the
operator with the clearly marked volume or volumes to be mounted· during the job
step.

This DD statement ensures that the volume integrity of a mountable volume is
maintained. If only one volume is to be processed, it is mounted at the start of the
job step and demounted at the end of the step. If additional volumes are processed,
they are mounted and demounted when needed by the utility program. The last
volume to be processed is demounted at the end of the job step.

Appendix C. DD Statements for Defining Mountable Devices 23-1

DDExample2

DDExample3

DDExample 4

DDExample 5

23-2 OS/VS2 MVS Utilities

This DD statement makes a request for a private, non-sharable volume.

IIDD2 DD UNIT=(disk, , DEFER) , VOLUME=PRIVATE, DISP=(NEW, KEEP) ,
II SPACE=(CYL,(1,1))

The results of this statement are identical to those shown in DD Example 1.

If a specific unit is requested and the volume serial number is not given in the DD
statement, the user must be certain that either: (1) the desired volume is already
mounted on that unit, or (2) a volume is not mounted, causing the system to issue a
mount message.

Note: This statement can be used only if the user is certain that a removable
volume, rather than a fixed volume, will be allocated by the scheduler. If there is
any chance that a fixed volume will be allocated, this statement must not be used.

This DD statement makes a specific request for a private, sharable volume to be
mounted on a device.

IIDD1 DD UN I T=disk , VOLUME=(PRIVATE, SER=(121212)) , DISP=OLD

This DD statement does not ensure that volume integrity is maintained. It should be
used with extreme caution in a multiprogramming environment because there is the
possibility that a job step running concurrently might make a specific request for
the volume, use the volume, and demount it.

This DD statement makes a specific request for a public, non-sharable volume to be
mounted on a device.

IIDD3 DD UNIT=(d~k"DEFER),VOLUME=SER=789012,DISP=OLD

If the volume is already mounted, it is used. The volume remains mounted at the
end of the job step, and is not demounted until another job step requires the device
on which the volume is mounted.

This DD statement ensures that volume integrity is maintained between jobs; two
or more such statements in a single job can allocate the same device.

This DD statement makes a specific request for a public, sharable volume to be
mounted on a device.

IIDD 1 DD UN I T=disk , VOLUME=SER=6543 21 , DISP=OLD

If the volume is already mounted, it is used. The volume remains mounted at the
end of the job step, and is not demounted until another job step requires the device
on which the volume is mounted. (This DD statement can also be used to define
permanently resident devices.)

This DD statement does not ensure that the volume integrity of a mountable
volume is maintained. It should be used with extreme caution in a
multiprogramming environment because there is the possibility that a job step
running concurrently might use the device.

APPENDIX D. PROCESSING USER LABELS

User labels can be processed by IEBGENER, IEBCOMPR, IEBPTPCH,
IEHMOVE, IEBCTRIN, and IEBUPDTE. In some cases, user-label processing is
automatically performed; in other cases, you must indicate the processing to be
performed. In general, user label support allows the utility program user to:

• Process user labels as data set descriptors.

• Process user labels as data .

• Total the processed records prior to each WRITE command (IEBGENER and
IEBUPDTE only).

For either of the first two options, the user must specify standard labels (SUL) on
the DD statement that defines each data set for which user-label processing is
desired. For totaling routines, OPTCD=T must be specified on the DD statement.

The user cannot update labels by means of the IEBUPDTE program. This function
must be performed by a user's label processing routines. IEBUPDTE will, however,
allow you to create labels on the output data set from data supplied in the input
stream. See the discussion of the LABEL statement in the chapter "IEBUPDTE
Program."

IEHMOVE does not allow exits to user routines and does not recognize options
concerning the processing of user labels as data. IEHMOVE always moves or
copies user labels directly to a new data set. See the chapters for the "IEHMOVE
Program."

Volume switch labels of a multivolume data set cannot be processed by
IEHMOVE, IEBGENER, or IEBUPDTE. Volume switch labels are therefore lost
when these utilities create output data sets. To ensure,. that volume switch labels are
retained, process multivolume data sets one volume at a time.

Processing User Labels as Data Set Descriptors

When user labels are to be processed as data set descriptors, one of the user's label
processing routines receives control for each user label of the specified type. The
user's routine can include, exclude, or modify the user label. Processing of user
labels as data set descriptors is indicated on an EXITS statement with keyword
parameters that name the label processing routine to be used.

The EXIT keyword parameters indicate that a user routine should receive control
each time the OPEN, EOV, or CLOSE routine encounters a user label of the type
specified.

Figure 2;4-1 illustrates the action of the system at OPEN, EOV, or CLOSE time.
When OPEN, EOV, or CLOSE recognizes a user label and when SUL has been
specified on the DD statement for the data set, control is passed to the utility
program. Then, if an exit has been specified for this type of label, the utility
program passes control to the user routine. The user's routine processes the label
and returns control, along with a return code, to the utility program. The utility
program then returns control to OPEN, EOV, or CLOSE.

This cycle is repeated up to eight times, depending upon the number of user labels
in the group and the return codes supplied by the user's routine.

Appendix D. Processing User Labels 24-1

OPEN/EOV/CLOSE

processing rout me

Figure 24-1. System Action at OPEN, EOV, or CLOSE Time

Exiting to a Use,.'s Totaling Routine

When an exit is taken to a user's totaling routine, an output record is passed to the
user's routine just before the record is written. The first halfword of the totaling
area pointed to by the parameter contains the length of the totaling area, and
should not be used by the user's routine. If the user has specified user label exits,
this totaling area (or an image of this area) is pointed to by the parameter list
passed to the appropriate user label routine.

Note: An output record is defined as a physical record (block), except when
IEBGENER is used to process and reformat a data set that contains spanned
records.

Processing Use,. Labels as Data

24-2 OS/VS2 MVS Utilities

When user labels are processed as data, the group of user labels, as well as the data
set, is subject to the normal processing done by the utility program. The user can
have his labels printed or punched by IEBPTPCH, compared by IEBCOMPR, or
copied by IEBGENER.

To specify that user labels are to be processed as data, include a LABELS
statement in the job step that is to process user labels as data.

There is no direct relationship between the LABELS statement and the EXITS
statement. Either or both can appear-in the control statement stream for an
execution of a utility program. If there are user label-processing routines, however,
their return codes may influence the processing of the labels as data. In addition, a
user's output label-processing routine can override the action of a LABELS
statement because it receives control before each output label is written. At this
time the label created by the utility as a result of the LABEL statement is in the
label buffer, and the user's routine can modify it.

The code returned by the user's totaling routine determines system response as
follows:

• 0, which specifies that processing is to continue, but no further exits are to be
taken.

• 4, which specifies that normal processing is to continue.

• 8, which specifies that processing is to terminate, except for EOD processing on
the output data set (user label processing).

• 16, which specifies that processing is to be terminated.

INDEX

If more than one page number is given, the primary
discussion is listed first.

[] viii
{} ix

A
action on return codes 21-4
action (IEBDG) 7-3,7-12
access counter 19-2
ADD (IEBUPDTE) 13-5
ADD statement 19-14,19-7
adding data set passwords 19-7,19-14
adding new member to a symbolic library 13-1
ALIAS statement 13-10
alias names

listed by IEHLIST 17-2
processed by IEBCOPY 6-1

allocating space
with the IEBCOPY program 6-7
with the IEHMOVE program 18-1,18-2,18-11

alphameric tape labeling 21-1
alternate DD names, specifying 22-1,22-2
alternate tracks, assigning

with IBCDASDI 2-4
with IEHATLAS 14-2
with IEHDASDR 15-3,15-14,15-22

Analysis program-l (AP-l) v
ANALYZE statement 15-12
AP-l (Analysis program-I) v
ASCII labels 16-1
assigning

alternate tracks
with IBCDASDI 2-4
with IEHATLAS 14-2
with IEHDASDR 15-3,15-14,15-22

sequence numbers 13-7
serial numbers (IEHD ASD R) 15-3, 15-13, 15-17

asterisk in PDS directory entry 17-2
ATTACH macro instruction 22-1
attributes of DD statements defining

mountable volumes 23-1

B
backup copy, producing a

using IEBCOPY 6-2
using IEBGENER 9-1
using IEHDASDR 15-3,15-14

bad VTOC, assigning alternate track for 14-2
basic move and copy operations 18-1,6-1
BDAM data set, (see direct data sets)
BLDA statement 19-12
BLDG statement 19-14
BLDX statement 19-12
bold type, use of 1-5
bootstrap records, constructtC l.l of 15-1,15-5

braces { }, use of 1-5
brackets [], use of 1-5
buffer

FCB, loading of 4-1,4-2
UCS, loading of 4-1,4-2

Buffered log devices 1-3
building

a generation index 19-4
an index 19-2
an index alias 19-3

bypassing defective-track checking feature 2-1,2-6,2-7

c
carriage control, specifying 11-7
catalog (CVOL)

building index in 19-2,19-4
copying 18-9
listing entries of 17-1
moving 18-9
placing entries in 19-2

cataloged data sets, punching 11-1
cataloging

a data set 19-2
a generation data set 19-5,19-11
a procedure 13-1,13-18
with the IEHMOVE program 18-1
with the IEHPROGM program 19-2

cataloging moved or copied data, automatically 18-1
CA TLG statement 19-11
CHANGE (IEBUPDTE) 13-5
changing

a volume serial number 15-3
input record format (IEBCOPY) 6-15
the logical record length of a data set 9-3
the organization of a data set 13··1,9-1

chart, utility program function 1-7
checking for flagged defective tracks

with the IBCDASDI program 2-1
with the IEHDASDR program 15-1,15-17,15-19

codes, return
action on 21-4
for IEBCOMPR 5-2
for IEBCOPY 6-6
for IEBDG 7-3
for IEBEDIT 8-1
for IEBGENER 9-4
for IEBISAM 10-4
for IEBPTPCH 11-2
for IEBTCRIN 12-12
for IEBUPDTE 13-2
for IEHATLAS 14-3
for IEHDASDR 15-7
for IEHINITT 16-2
for IEHLIST 17-5
for IEHMOVE 18-11
for IEHPROGM 19-8
issued by user exit routines 22-4
issued by user totaling routine 24-2

Index 1-1

COLUMN specification of a data
field (IEBUPDTE) 13-6,13-11

combinations of NEW, MEMBER,
and NAME keywords 13-6

comments on utility control statements 1-4
COMPARE statement 5-3
comparing

partitioned directories 5-1
partitioned data sets 5-1
records 5-1
sequential data sets 5-1

compatible volumes 18-3
compress-in-place 6-4
compressing a data set 6-4
concurrent operations when

using IEHDASDR, specifying 15-11
CONNECT statement 19-13
connecting two control volumes 19-3,19-13
considerations for defining DD statements 23-1
continuing utility contr~l statements 1-4
control passwords

adding 19-7
deleting 19-7
listing information from 19-8
maintaining 19-5
replacing 19-7

control statements
comments on 1-4
continuing 1-4
format of 1-4
restrictions 1-5

control volumes
connecting 19-3,19-13
copying 18-9
disconnecting 19-3, 19-13
moving 18-9

controlling
IBCDASDI 2-2
IBCDMPRS 3-1
ICAPRTBL 4-2
IEBCOMPR 5-2
IEBCOPY 6-6
IEBDG 7-4
IEBEDIT 8-2
IEBGENER 9-5
IEBISAM 10-5
IEBPTPCH 11-3
IEBTCRIN 12-12
IEBUPDTE 13-2
IEHATLAS 14-2
IEHDASDR J5-7
IEHINITT 16-3
IEHLIST 17-6
IEHMOVE 18-12
IEHPROGM 19-9
IFHSTATR 20-2

conventions, notational 1-5
converting a data set

from sequential to partitioned
organization 9-1, 13-1 , 13-13

converting a member of a partitioned
data set to a sequential data set 13-1,13-6

1-2 OS/VS2 MVS Utilities

converting data
from alphameric to hexadecimal 11-7
from H-set BCD to EBCDIC 9-10,9-3
from packed to unpacked decimal 11-9,9-10,9-3
from unpacked to packed decimal 9-10,9-3

COpy statement 6-8
COpy CATALOG statement 18-19
COpy DSGROUP statement 18-17
COPY DSNAME statement 18-16
copy operation 6-8
COpy PDS statement 18-18
COpy VOLUME statement 18-20
copying

a BDAM data set 18-5
a catalog 18-9,18-19
a data set 6-1,6-2,18-1,18-5,18-16
a direct data set with variable

spanned records 18-10
a dumped data set 15-4
a group of data sets 18-8,18-17
a member with an alias 6-1
a partitioned data set 6-2,1-8-5,18-18
a volume of data sets 18-10,18-20
an indexed sequential dataset 10-1
an unloaded data set 6-1,6-2,18-1
members of a partitioned

data set 6-1,6-2,18-6,18-20,18-21
records 9-3
sequential data sets 6-2,18-5,18-16
user labels 9-5

counter, access 19-2
CREATE statement 7-8
creating

a backup copy
using IEBCOPY 6-2
using IEBGENER 9-1
using IEHDASDR 15-3

a library 13-1
a symbolic library 13-1
a partitioned data set from

sequential input 9-1
a sequential copy of an indexed

sequential data set 10-1
a sequential output data set 12-1,8-1
a sequential output job stream 8-1
an edited data set 9-2
user header labels 13-8
user trailer labels 13-8

CVOL (see catalog)

D
DADEF statement 2-3
DASD (see Direct Access Storage Devices) supported 1-3
DASDI, Quick 2-1,15-1
DASDI program (see IBCDASDI)
data

dumped 15-1,15-3,3-1
movable 18-3
reconstructed 10-1,18-1
reorganized 18-1
unloaded 10-1,18-1
unmovable 18-1,18-3

data set control block (DSCB), alter or set protection
status in 19-5,19-7,19-8,19-14

data set passwords
adding 19-7
deleting 19-7
listing 19-8
maintaining 19-5
replacing 19-7

data set utility programs
IEBCOMPR 5-1
IEBCOPY 6-1
IEBDG 7-1
IEBEDIT 8-1
IEBGENER 9-1
IEBISAM 10-1
IEBPTPCH 11-1
IEBTCRIN 12-1
IEBUPDTE 13-1
introduction 1-1

data sets
adding 13-5
cataloging 19-2
changing 13-5
compressing 6-4
converting 9-1,13-1
copying 10-1,6-1,18-1
editing 9-2,9-3
expanding 9-2
loading 10-1
merging 6-1
modifying 13-5
moving 18-1
protecting 19-5
reconstructing 18-1
re-creating 6-5,18-1
renaming 19-1
replacing 13-5
reproducing 13-5
scratching 19-1,19-11
uncataloging 19-2,19-12
unloading 18-1,10-1

data sets, moving or copying a group of cataloged 18-8
data sets, partitioned (see partitioned data sets)
Data statement 13-8
DD names, alternate 22-1
DD statements, attributes of 23-1
DD statements, operational results of 23-1
deblocking with IEBCOPY 6-6
defective track

assign alternate tracks for 14-1,15-1,2-4,2-1
flagging 15-1
indicated by data check 14-1
indicated by IEHA TLAS 14-1
indicated by missing address marker 14-1
reclaiming on a 3340 15-3
recovering data from 14-1
testing for. 15-1,2-1

deferred mounting, specifying 23-1
defining data sets

with the IEBCOMPR program 5-3
with the IEBCOPY program 6-6
with the IEBDG program 7-4
with the IEBEDIT program 8-2
with the IEBGENER program 9-5
with the IEBISAM program 10-5
with the IEBPTPCH program 11-4
with the IEBTCRIN program 12-13
with the IEBUPDTE program 13-2

with the IEHA TLAS program 14-2
with the IEHDASDR program 15-8
with the IEHINITT program 16-3
with the IEHLIST program 17-6
with the IEHMOVE program 18-12
with the IEHPROGM program 19-9
with the IFHST A TR program 20-2

defining mountable devices 23-1
DELETE 13-7
DELETEP statement 19-15
deleting

a logical record 13-7
an index 19-2
an index alias 19-3
data set passwords 19-7,19-15

qemounting mountable volumes 23-2
Detail statement 13-6
device name 1-3
DFN statement 4-1
Direct Access Storage Devices (DASD) 1-3
direct access volumes

assigning alternate tracks to
using IBCDASDI 2-4
using IEHA TLAS 14-2
using IEHDASDR 15-3,15-14,15-22

dumping 3-1,3-2,15-3,15-14
initializing

using IBCDASDI 2-1
using IEHDASDR 15-1,15-12

restoring 3-1,15-15
direct data sets, moving or copying 18-5,18-10

with variable spanned records 20-9
directory entry, format of 17-2
directory, partitioned data set listing 17-1
disconnecting volumes 19-3
D L T A statement 19-13
DLTX statement 19-12
DSCB

set or alter protection status in 19-5,19-14
DSD statement 7-6
dummy header label 16-1
DUMP statement

for IBCDMPRS program 3-2
for IEHDASDR program 15-14

DUMP /RESTORE program (see IBCDMPRS)
dumping a direct access volume 3-1,3-2,15-3,15-14
dumping multiple volumes to a single restore tape 15-14
dumping unlike devices 15-5
DUP (see TCRGEN statement)

E
EDIT statement 8-2
edited format

of a VTOC 17-3
of a PDS directory entry 17-1

editing
data 12-1
sequential data set 9-2
partitioned data set 9-2

editing facilities
with the IEBGENER program 9-2
with the IEBTCRIN program 12-1

ellipsis, use of 1-5

Index 1-3

END statement
for IBCDASDI 2-5
for IBCDMPRS 3-3
for ICAPRTBL 4-3
for IEBDG 7-11

end-of -cartridge 12-7
end-of-file (EOF) record, assigning alternate track 14-3
end-of-record 12-3
ENDUP statement 13-10
ensuring volume integrity 23-1
entering job control statements into a

procedure library 13-19
EOR 12-2,12-3
ESV record

format 20-1
processing 20-1

examples
IBCDASDI 2-10
IBCDMPRS 3-6
ICAPRTBL 4-6
IEBCOMPR 5-6
IEBCOPY 6-16
IEBDG 7-19
IEBEDIT 8-6
IEBGENER 9-15
IEBISAM 10-8
IEBPTPCH 11-15
IEBTCRIN 12-19
IEBUPDTE 13-18
IEHATLAS 14-5
IEHDASDR 15-25
IEHINITT 16-6
IEHLIST 17-11
IEHMOVE 18-28
IEHPROGM 19-22
IFHST A TR 20-3

exceptions to control statement requirements 1-4
EXCLUDE statement

for IEBCOPY 6-12
for IEHMOVE 18-21

excluding data from move and copy operations 6-4,18-21
exclusive copy operation 6-4,6-12
executing

a data set utility program 1-1
a system utility program 1-1
an independent utility program -1-2

EXIT (on IEBISAM PARM) 10-7
exit routine linkage 21-1
exit routines

location of 21-1
parameter lists for 21-3
return codes issued by 21-4,24-2

EXITS statement
for IEBCOMPR 5-3
for IEBGENER 9-6
for IEBPTPCH 11-5
for IEBTCRIN 12-14

expanding a partitioned data set 9-2
expiration date, specifying 18-12

F
FCB

loading of 4-2
statement 4-2

1-4 OS/VS2 MVS Utilities

FD statement 7-6
field processing and editing information,

specifying 9-10,11-9
flagged defective tracks, checking for 2-1,15-1
FORMAT statement 15-13
format of utility control statements 1-4
forms control buffer, loading the 4-2
Function statement 13-4
functions, guide to utility program 1-7

G
general uses

for data set utility programs 1-2
for independent utility programs 1-2
for system utility programs 1-1

GENERATE statement 9-6
generating test data 7-1
GET AL T statement

H

for IBCDASDI program 2-4
for IEHDASDR program 15-14

header record, initializing 16-1
H-set BCD to EBCDIC conversion 9-10

I
IAPAPlOO, Analysis program-l v
IBCDASDI program 2-1

control of
utility control statements 2-2

examples 2-10
executing 2-2
input and output 2-2
used to

assign an alternate track 2-1
initialize a direct access volume 2-1

utility control statements
DADEF 2-3
END 2-5
GETALT 2-4
IPLTXT 2-4
JOB 2-3
LASTCARD 2-5
MSG 2-3
VLD 2-4
VTOCD 2-4

IBCDMPRS program 3-1
control of

utility control statements 3-1
examples 3-6
executing 3-1
input and output 3-1
used to

dump data 3-1,3-2
restore data 3-1,3-3

utility control statements
DUMP 3-2
END 3-3
JOB 3-2
MSG 3-2
RESTORE 3-3
VDRL 3-3

ICAPRTBL program 4-1
codes, wait state 4-1
control of

utility control statements 4-2
example 4-6
executing 4-1
input and output 4-1
used to

load forms control buffer 4-2
load Universal Character Set buffer 4-2

utility control statements
DFN 4-2
END 4-3
FCB 4-2
JOB 4-2
UCS 4-2

wait state codes 4-1
IEBCOMPR program 5-1

codes, return 5-2
control of

job control statements 5-2
restrictions 5-6

utility control statements 5-3
examples 5-6
input and output 5-2
return codes 5-2
used to

compare partitioned data sets 5-1
compare sequential data sets 5-1
verify backup copies 5-1

utility control statements 5-3
COMPARE 5-3
EXITS 5-3
LABELS 5-4

IEBCOPY program 6-1
codes, return 6-6
control of

job control statements 6-6
restrictions 6-15,
space allocation 6-7

utility control statements 6-8
examples 6-15
input and output 6-5
return codes 6-6
used to

compress a data set 6-4
copy data sets 6-2
create a backup copy 6-2
exclude members from a copy operation 6-4
load data sets 6-2
merge data sets 6-5
re-create a data set 6-5
rename selected members 6-4
replace identically named members 6-3
replace selected members 6-4
select members to be copied 6-2
select members to be loaded 6-2
select members to be unloaded 6-2

utility control statements
COpy 6-8
EXCLUDE 6-12
SELECT 6-11

IEBDG program 7-1
codes, return 7-3
control of

job control statements 7-4
PARM information 7-5
restrictions 7-19

utility control statements 7-6
examples 7-19
fields modified by 7-2
IBM-supplied patterns for 7-1
input and output 7-3
modifying selected fields with 7-2
patterns for - (supplied by IBM) 7-1
pictures for - (user-specified) 7-2
return codes 7-3
selected fields modified by 7-2
used to

generate test data 7-1
modify selected fields 7-2

user-specified pictures for 7-2
utility control statements

CREATE 7-8
DSD 7-6
END 7-11
FD 7-6
REPEAT 7-10

IEBEDIT program 8-1
codes, return 8-1
control of

job control statements 8-2
restrictions 8-6

utility control statement 8-2
examples 8-6
input and output 8-1
return codes. 8-1
used to

copy an entire job 8-1
copy selected job steps 8-1

utility control statement 8-2
EDIT 8-2

IEBGENER program 9-1
codes, return 9-4
control of

job control statements 9-5
restrictions 9-15

utility control statements 9-5
examples 9-15
input and output 9-4
return codes 9-4
used to

change logical record length 9-3
copy user labels on sequential output 9-7
create a backup copy 9-1
expand a partitioned data set 9-2
produce a partitioned data set

from sequential input 9-1
produce an edited data set 9-2
reblock 9-3

utility control statements
EXITS 9-6
GENERATE 9-6
LABELS 9-7
MEMBER 9-7
RECORD 9-7

IEBIMAGE Utility Program (See the JBM 3800 Printing
Subsystem Programmer's GUide)

Index 1-5

IEBISAM program 10-1
codes, return 10-3
control of

job control statements 10-5
P ARM information 10-5

examples 10-8
input and output 10-4
return codes 10-4
used to

copy an indexed sequential data set 10- t
create a sequential copy of an

indexed sequential data set 10-1
create an indexed sequential data set

from an unloaded data set 10-3
print an indexed sequential data set 10-3

IEBPTPCH program 11-1
codes, return 11-2
control of

job control statements 11-3
restrictions 11-15

utility control statements t 1-3
examples 11-15
input and output 11-2
return codes 11-2
used to print or punch

a partitioned directory 11-2
an edited data set 1 t-2
data sets 11-1
selected members 11-1
selected records 11-2

utility control statements
EXITS 11-5
LABELS 11-5
MEMBER 11-5
PRINT t 1-4
PUNCH 11-4
RECORD 11-6
TITLE 11-5

IEBTCRIN program 12-1
cartridge, end-of- 12-7
codes

MTDI, from TCR 12-5
MTST, after translation 12-7
MTST, from TCR 12-6
return 12-12
special purpose 12-4

control of
job control statements 12-12

restrictions 12-19
utility control statements 12-14

editing
criteria, MTDI 12-1
restrictions, MTDI 12-2

end-of -cartridge 12-7
error description word (EDW) 12-8

end-of-record byte 12-1
level status byte 12-1
start-of-record byte 12-1
type status byte 12-1

error records 12-1
samples of 12-10

examples 12-19
input and output 12-12
MTDI codes from TCR 12-5
MTDIediting criteria 12-1
MTDI editing restrictions 12-2

1-6 OS/VS2 MVS Utilities

MTST codes after translation 12-7
MTST codes from TCR 12-6
record, end of 12-1
record, start of 12-1
records, error 12-1

samples of 12-10
return codes 12-12
special purpose codes 12-4
status, level 12-1
status,type 12-1
used to

editdata 12-1
produce sequential output data 12-1
read input 12-1

utility control statements
EXITS 12-14
TCRGEN 12-14

IEBUPDTE program 13-1
codes, return 13-2
control of

job control statements 13-2
PARM information 13-3
restrictions 13-17

utility control statements 13-4
examples 13-18
input and output 13-2
return codes· 13-2
used to

change data set organization 13-1
create and update symbolic libraries 13-1
incorporate source language modifications 13-1
modify data sets 13-1

utility control statements
ALIAS 13-10
Data 13-8
Detail 13-7
ENDUP 13-10
Function 13-4
LABEL 13-8

IEHATLAS program 14-1
control of

job control statements 14-2
restrictions 14-5

utility control statement
examples 14-S
input and output 14-1
used to

assign an alternate track 14-1
indicate a defective track 14-1

utility control statement 14-2
TRACK or VTOC 14-2

IEHDASDR program 15-1
codes, return 15-7
control of

job control statements 15-8
P ARM information IS-9
restrictions IS-23

utility control statements IS-II
examples IS-24
initialize MSS staging volumes IS-3
input and output 15-7
reclaim defective tracks, 3340 IS-3
return codes IS-7

used to
assign alternate tracks 15-3
change volume serial numbers 15-3
copy dumped data 15-4
create a copy 15-3
dump unlike devices 15-5
initialize a Direct Access Volume 15-1
restore unlike devices 15-5
write IPL records and program 15-5

utility control statements
ANALYZE 15-12
ANALYZE MSS 15-13
DUMP 15-14
FORMAT 15-13
GETALT 15-14
IPLTXT 15-15
LABEL 15-13
PUTIPL 15-16
RESTORE 15-15

IEHINITT program 16-1
codes, return 16-2
control of

job control statements 16-3
PARM information 16-3
restrictions 16-6

utility control statement 16-3
examples 16-6
input and output 16-2
return codes 16-2
used to place volume label sets on magnetic tape 16-J
utility control statement

INITT 16-4
IEHLIST program 17-1

codes, return 17-5
control of

job control statements 17-6
PARM information 17-7
restrictions 17 -10

utility control statements 17-7
examples 17-10
input and output 17-5
return codes 17-5
used to list

catalog entries 17-1
directories 17-1

members of (edited) 17-2
members of (unedited) 17-3

volume table of contents 17-3
entries in (edited) 17-3
entries in (unedited) 17-5

utility control statements
LISTCTLG 17-7
LISTPDS 17-7
LISTVTOC 17-8

IEHMOVE program 18-1
codes, return 18-11
control of

job control statements 18-12
for track overflow 18-14
PARM information 18-14
restrictions 18-27

utility control statements 18-15
examples 18-28
input and output 18-11
return codes 18-11

used to move or copy
a catalog 18-9
a data set 18-5
a group of cataloged data sets 18-8
a volume of data sets 18-10
direct data sets with variable spanned records 18-1\

used to reblock data sets 18-5
utility control statements

COpy CATALOG 18-19
COpy DSGROUP 18-17
COpy DSNAME 18-16
COpy PDS 18-18
COpy VOLUME 18-20
EXCLUDE 18-21
INCLUDE 18-20
MOVE CATALOG 18-19
MOVE DSGROUP 18-17
MOVE DSNAME 18-16
MOVE PDS 18-18
MOVE VOLUME 18-20
REPLACE 18-21
SELECT 18-21

IEHPROGM program 19-1
codes, return 19-8
control of

job control statements 19-9
PARM information 19-10
restrictions 19-21

utility control statements 19-1 0
examples 19-22
input and output 19-8
return codes 19-8
used to

add an entry to PASSWORD data set 19-7
build a generation index 19-4
build an index 19-2
build an index alias 19-3
catalog a data set 19-2
connect two volumes 19-3
delete an entry from PASSWORD data set 19-7
delete an index 19-2
delete an index alias 19-3
list information from PASSWORD

data set entries 19-8
maintain a generation index 19-4
maintain data set passwords 19-5
release two volumes 19-3
rename a data set or member 19-1
replace an entry in PASSWORD data set 19-7
scratch a data set or member 19-1
uncatalog a data set 19-2

utility control statements
ADD 19-14
BLDA 19-12
BLDG 19-14
BLDX 19-12
CATLG 19-11
CONNECT 19-13
DELETEP 19-15
DLTA 19-13
DLTX 19-12
LIST 19-15
RELEASE 19-13
RENAME 19-11
REPLACE 19-1 4
SCRATCH 19-11

Index 1-7

UNCATLG 19-12
IFHST A TR program 20-1

control of
job control statements 20-2

example 20-3
input and output 20-2
use of 20-1

INCLUDE statement 18-20
independent utility programs

IBCDASDI 2-1
IBCDMPRS 3-1
ICAPRTBL 4-1
introduction to 1-2

index
building 19-2,19-12
deleting 19-2,19-12
generation 19-4,19-14

index alias
building 19-3,19-12
deleting 19-3,19-13

index structure, listing 17-1
indexed sequential data sets

copying 10-1
creating, from unloaded data set 10-3
loading 10-1,10-2
printing 10-5,10-3
unloading 10-1,10-7

initializing direct access volumes
with IBCDASDI 2-1
with IEHDASDR 15-1
with surface analysis 2-1 , 15-12
without surface analysis 2-1,15-1,15-2

INITT statement 16-4
input stream, organizing 8-1
input to and output from

JBCDASDI 2-2
IBCDMPRS 3-1
ICAPRTBL 4-1
IEBCOMPR 5-2
IEBCOPY 6-5
IEBDG 7-3
IEBEDIT 8-1
IEBGENER 9-4
IEBISAM 10-4
IEBPTPCH 11-2
IEBTCRIN 12-12
IEBUPDTE 13-2
IEHA TLAS t 4-1
IEHDASDR 15-7
IEHINITT 16-2
IEHLIST 17-5
IEHMOVE 18-11
IEHPROGM 19-8
IFHST A TR 20-2

inserting blocks of records 13-1,13-7
introduction

to data set utilities 1 -1
to independen.t utilities 1-2
to system utilities 1-1

invoking utility programs 22-1
IPL bootstrap records,constructing 1 5-1 , 15-5,15-16
IPL TXT statement

for IBCDASDI 2-4
for IEHDASDR 15-15

IPL program 15-1,15-5
IPL program records 15-5,15-6

1-8 OS/VS2 MVS Utilities

IPL records
contents 15-6
writing 15-5,15-6

IPL text 2-4,2-6,15-1 2, 1 5-18
italic type, use of 1-5

J
job control statement requirements 1-3
job control statements for

IEBCOMPR 5-2
IEB~OPY 6-6
IEBDG 7-4
IEBEDIT 8-2
IEBGENER 9-5
IEBISAM 10-5
IEBPTPCH 11-3
IEBTCRIN 12-12
IEBUPDTE 13-2
IEHA TLAS 14-2
IEHDASDR 15-8
IEHINITT 16-3
IEHLIST 17-6
IEHMOVE 18-12
IEHPROGM 19-9
IFHST A TR 20-2

JOB statement
for IBCDASDI 2-3
for IBCDMPRS 3-2
for ICAPRTBL 4-2

job statements in an output data set 8-1
JOB steps, copying 8-1
job stream, organizing 8-1

K
keywords, combinations of NEW, MEMBER,
and NAME 13-6

L
label processing

using IEBCOMPR 5-4
using IEBGENER 9-7,9-13
using IEBPTPCH 11-5
using IEBUPDTE 13-8
using IEHMOVE 18-4

LABEL statement
for IEBUPDTE 13-8
for IEHDASDR 15-13

labels
processing user, as data 24-2
processing user, as data set descriptors 24-1

LABELS statement
for IEBCOMPR 5-4
for IEBGENER 9-g
for IEBPTPCH 11-5

labels, volume switch 24-1
labeling a magnetic tape volume 16-1
LASTCARD statement 2-5
levels of index

creating 19-2
deleting 19-2,19-4

libraries, updating symbolic 13-1
LINK macro instruction 22-1
linking to an exit routine 22-1

LIST statement 19-15
listing

a catalog 17-1
a partitioned data set 11-1,17-1
a partitioned directory 11-2,17-1
a password entry 19-8,19-15
a sequential data set 11-1
a volume table of contents 17-3
data set passwords 19-8
error statistics by volume (ESV) records 20-1
system control data 17-1

LISTCTLG statement 17-7
LISTPDS statement 17-7
LISTVTOC statement 17-8
LOAD 10-7
load operation, specified in P ARM parameter 10-7
loading

an indexed sequential data set 10-2
an unloaded data set 10-3
forms control buffer 4-2
Universal Character Set buffer 4-2

logical record length, changing 9-3

M
magnetic tape volumes

labeling 16-1
moving a data set to 18-12
moving or copying a BDAM data set to 18-5
moving or copying a BDAM data set from 18-5
moving or copying a group of data sets to 18-8
moving or copying a volume of data to 18-to

Mass storage system
ANALYZE MSS (IEHDASDR) 15-13
initialize, staging volumes 15-3
restriction (IBCDASDI) 2-10

MEMBER, NEW, and NAME keywords,
combinations of 13-6

MEMBER statement
for IEBGENER 9-7
for IEBPTPCH 11-5

members, partitioned data set
comparing 5-1
copying and merging 18-1,6-2
renaming 18-1, 19-1 ,6-4
replacing 6-3,18-1
scratching 19-1

members of a symbolic library
adding 13-1
changing 13-1

methods of executing
data set utility programs 1-1
independent utility programs 1-2
system utility programs 1-1

modify selected fields 7-2
modifying partitioned or sequential data sets 13-1
mountable devices, defining 23-1
MOVE CATALOG statement 18-19
MOVE DSGROUP statement 18-17
MOVE DSNAME statement 18-16
MOVE PDS statement 18-18
MOVE VOLUME statement 18-20

moving
a BDAM data set 18-5
a catalog 18-9
a data set 18-5
a direct data set with variable spanned records 18-10
a group of cataloged data sets 18-8
a multivolume data set 18-5,18-to
a volume of data sets 18-10
the SYSCTLG data set 18-10

moving and copying
data 18-1
user labels 18-4

moving and copying operations
excluding data from 6-4,6-12,18-21
including data in 18-20
selecting members for 6-2,6-11,18-21

moving or copying a password
protected volume 18-4

MSG statement
for IBCDASDI 2-3
for IBCDMPRS 3-2

MSS (see Mass Storage System)
MTDI input 12-1,12-7
MTST input 12-1,12-7
multivolume data sets, moving or

copying 18-5,18-10

N
new master data set 13-1
NEW, MEMBER, and NAME keywords,
combinations of 13-6
nonsharable attribute, assigning 23-1
nonsharable devices 23-1
notation conventions 1-5
NUMBER 13-7
numbering records 13-7
numeric tape labeling 16-1

o
operand field (on utility control statements) 1-4
operating procedures for independent utilities 2-2,3-1,4-1
operation field (on utility control statements) 1-4
order of moved or copied members with the

IEHMOVE program 18-6
organizing ali input stream 8-1
output from utility programs

(see input to and output from)

p
packed to unpacked decimal conversion 9-10
parameter lists of exit routines 21-1,21-3
parameters passed to exit routines

for label processing 21-1
for nonlabel processing 21·2

P ARM information
with the IEBDG program 7-5
with the IEBISAM program 10-5
with the IEBUPDTE program 13-3
with the IEHDASDR program 15-9
with the IEHINITT program 16-3
with the IEHLIST program 17-7
with the IEHMOVE program 18-14
with the IEHPROGM program 19-to

Index 1-9

partial dumps of direct access volumes 15-3,15-14
partitioned data sets

comparing 5-1
compressing in place 6-4
converting to sequential 13-1
copying 6-1,6-2,18-5
copying selected members of 6-2,18-21
editing 9-2
expanding 9-2

excluding from move and copy
operations 6-4,18-21

listing 17 -1
loading 6-2
merging members of 6-5,18-6,18-7
moving 18-5
numbering records in 13-7
produced from sequential input 13-1
re-creating 6-5
renaming 19-1,19-11
replacing records in 13-1
unloading 18-1
updating in place 13-1

partitioned data set directory
dump format 17-3
edited format 17-2
listing 17-1
unedited format 17-3

partitioned data set directory entry
edited format 17-2
unedited format 17-3

PASSWORD data set
adding entries to 19-7
deleting entries from 19-7
listing entries in 19-8
maintaining entries in 19-5
replacing entries in 19-7

password protected data sets, IEHDASDR 15-9
password protected volumes,

moving or copying 18-4
patterns of test data 7-1
picture, user-specified 7-2
prerequisite publications iv
print specifications

standard 11-1
user 11-1

PRINT statement 11-4
printing

a partitioned directory 11-2,17-1
an edited data set 11-2
data sets 11-1
indexed sequential data sets 10-3
partitioned data sets 11-1
selected records 11-2
selected members 11-1
sequential data set 11-1

PRINTL 10-7
private attribute, assigning 23-1
procedure library, entering procedures in 13-1,13-19
processing user labels 24-1

as data 24-2
program classes

data set 1-1
independent 1-2
system 1-1

program selection 1-7
protecting data sets (see IEHPROGM utility program)

1-10 OS/VS2 MVS Utilities

punch specifications
standard 11-1
user 11-1

PUNCH statement 11-4
punching

records 11-1,11-2
partitioned data sets 11-1,11-2
sequential data sets 11-1,11-2

punctuation, use of in control statements 1-5
purging unexpired data sets (IEHDASDR) 15-20

Q
Quick-DASDI 2-1,15-1

R
reblocking

with IEBCOPY 6-6
with IEBGENER 9-3
with IEHMOVE 18-5

Reclaiming defective tracks on a 3340 15-3
RECORD statement

for IEBGENER 9-7
for IEBPTPCH 11-6

record groups, assigning 9-1
records

adding 13-8
assigning sequence numbers to 13-7
comparing 5-1
copying 9-3
deleting 13-7
error 12-8,12- to
error statistic by volume 20-1
ESV 20-1
printing 11-1,11-2,11-5
punching 11-1,11-2,11-6
renumbering 13-7
replacing 13-8

re-creating a data set 6-5,18-1
related publications v
RELEASE statement 19-13
releasing two volumes 19-3,19-13
removable volumes, allocating 23-1
removing entries from

an index structure 19-3, 19-4
RENAME statement 19-11
renaming

a data set 19-1 , 19-11
a member 19-1,19-11
a multivolume data set 19-11
selected numbers 6-4

renumbering logical records 13-1
REPEAT statement 7-10
REPL (IEBUPDTE) 13-5
REPLACE statement

for IEHMOVE 18-21
for IEHPROGM 19-14

replacement data records 13-8
replacing

data set passwords 19-7,19-14
identically named members 6-3
logical records 13-1

members in move and copy
operations 6-2,6-3,18-1

members of a symbolic library 13-1
records in a partitioned data set 13-1
selected members 6-2,6-3

REPRO (IEBUPDTE) 13-5
reproducing members of a symbolic library 13-4
required publications iv
requirements, job control statement 1-3
RESTORE statement

for IBCDMPRS 3-3
for IEHDASDR 15-15

restoring data to a direct access volume 3-1
restoring unlike devices 15-5
restrictions on utility control statements 1-5
RETURN macro instruction 21-3
return codes

for IEBCOMPR 5-2
for IEBCOPY 6-6
for IEBDG 7-3
for IEBEDIT 8-1
for IEBGENER 9-4
for IEBISAM 10-4
for IEBPTPCH 11-2
for IEBTCRIN 12-12
for IEBUPDTE 13-2
for IEHDASDR 15-7
for IEHINITT 16-2
for IEHLIST 17-5
for IEHMOVE 18-11
for IEHPROGM 19-8

return codes, action on 21-4
return codes issued by user exit routines 21-4
return codes issued by user totaling routines 24-2
returning from an exit routine 21-3

s
SCRATCH statement 19-11
scratching

a data set 19-1
a member 19-1
a volume table of contents entry 19-1,19-11

secondary passwords
adding 19-7,19-14
deleting 19-7,19-15
listing 19-8,19-15
replacing 19-7

SELECT statement
for IEBCOPY 6-11
for IEHMOVE 18-21

selecting a program 1-7
selecting members to be loaded or unloaded 6-2
selecting members to be moved or copied 6-2
selective

copy 6-2
rename 6-4
replace 6-4

sequential data sets
comparing 5-1
compressing 6-4
converting to partitioned 13-1
creating 10-1,8-1,12-1
editing 8-1,12-1
printing 11-1
punching 11-1

unloading 18-1
sequential output job stream, creating 10-1,10-3,8-1
sharing mountable devices 23-2
simultaneous IEHDASDR operations 15-9
SOR 12-1,12-2,12-3
space allocation by IEHMOVE 18-1,18-13
specific request for mountable volumes 23-1
specific volumes, making requests for 23-1
specifying an expiration date 18-12
spill data sets, used with IEBCOPY 6-7
standard print operation 11-1
standard punch operation 11-1
straight copy 6-1
surface analysis of direct access volumes 15-12
symbolic libraries, updating 13-1
SYSCTLG data set

creating 19-2,19-3
moving or copying 18-9

system control data, listing 17-1
system status information 13-5
system utility programs

T

IEHA TLAS 14-1
IEHDASDR 15-1
IEHINITT 16-1
IEHLIST 17-1
IEHMOVE 18-1
IEHPROGM 19-1
IFHSTATR 20-1
introduction 1-1

tape volumes, labeling 16-1,16-2
tapemark in a volume label set 16-1
TCRGEN statement 12-14
test data

generating 7-1
patterns of 7-1

TITLE statement 11-5
totaling routine return codes, user 24-2
TRACK statement 14-2
track overflow feature

with IEHMOVE 18-14
tracks (see alternate tracks and defective tracks)

dumping 3-1,15-14
getting alternate 15-1 ,2-1

type 21 record processing 20-1,20-2

u
UCS

loading of 4-1
statement 4-2

uncataloging a data set 19-2
UNCA TLG statement 19-12
underscore, use of 1-5
unexpired data sets encountered (IEHDASDR) 15-20
Universal Character Set buffer, loading the 4-1,4-2
unlike devices

dumping 15-5
restoring 15-5

UNLOAD 10-7
unloaded data 10-1

Index 1-11

unloaded data sets
creating· 10-1
loading 10-1,10-3
reconstructing 10-3
format of (IEBISAM) 10-2

unlo~ding
indexed sequential data set 10-1
partitioned data set 18-1,6-2
sequential data set 18-1

unmovable data sets, moving or copying 18-1
unpacked to packed decimal conversion 9-10
updating

symbolic libraries 13-1
transfer control tables 17-1
TTR entries in the SVC library 17-1

updating in place, a partitioned data set 13-3
user exits (see exit routines)
user labels

as data 24-2
as data set descriptors 24-1
copying 18-4
EXITS statement

for IEBCOMPR 5-3
for IEBGENER 9-6
for IEBPTPCH 11-5
for IEBTCRIN 12-14

LABEL statement
for IEBUPDTE 13-8
forIEHDASDR 15-13

LABELS statement
for IEBCOMPR 5-4
for IEBGENER 9-7
for IEBPTPCH 11-5

linkage with label processing exit routines 24-1
modifying 24-1
moving 18-4
processing 24-1
reserving space for 18-4
writing over 15-5
RECORD statement

for IEBGENER 9-7
for IEBPTPCH 11-6

relationship between EXITS and LABELS 24-2
return codes from exit routines 21-4,24-2
utility program handling of 24-1
volume switch labels 24-1
with IEBGENER 9-7
with IEBPTPCH 11-5

user print specifications 11-1
user punch specifications 11-1
user-specified picture 7-2
user totaling routine return codes 24-2
using NEW, MEMBER, and NAME keywords 13-6
utility control statements

comments on 1-4
continuing 1-4
format of 1-4
restrictions on 1-5

1-12 OS/VS2 MVS Utilities

utility control statements (IBCDASDI)
DADEF 2-3
END 2-5
GETALT 2-4
IPLTXT 2-4
JOB 2-3
LAST CARD 2-5
MSG 2-3
VLD 2-4
VTOCD 2-4

utility control statements (IBCDMPRS)
DUMP 3-2
END 3-3
JOB 3-2
MSG 3-2
RESTORE 3-3
VORL 3-3

utility control statements (ICAPRTBL)
DFN 4-2
END 4-3
FCB 4-2
JOB 4-2
UCS 4-2

utility control statements (IEBCOMPR)
COMPARE 5-3
EXITS 5-3
LABELS 5-4

utility control statements (IEBCOPY)
COpy 6-8
EXCLUDE 6-12
SELECT 6-11

utility control statements (IEBDG)
CREATE 7-8
DSD 7-6
END 7-11
FD 7-6
REPEAT 7-10

utility control statement (IEBEDIT)
EDIT 8-2

utility control statements (IEBGENER)
EXITS 9-6
GENERATE 9-6
LABELS 9-7
MEMBER 9-7
RECORD 9-7

utility control statements (IEBPTPCH)
EXITS 11-5
LABELS 11-5
MEMBER 11-5
PRINT 11-4
PUNCH 11-4
RECORD 11-6
TITLE 11-5

utility control statements (IEBTCRIN)
EXITS 12-14
TCRGEN 12-14

utility control statements (IEBUPDTE)
ALIAS 13-10
Data 13-8
Detail 13-7
END UP 13-10
Function 13-4
LABEL 13-8

utility control statement (IEHATLAS)
TRACK or VTOC 14-2

utility control statements (IEHDASDR)
ANALYZE, 15-12
ANALYZE MSS 15-13
DUMP 15-14
FORMAT 15-13
GETALT 15-14
IPLTXT 15-15
LABEL 15-13
PUTIPL 15-16
RESTORE 15-15

utility control statement (IEHINITT)
INITT 16-4

utility control statements (IEHLIST)
LISTCTLG 17-7
LISTPDS 17-7
LISTVTOC 17-8

utility control statements (IEHMOVE)
COpy CATALOG 18-19
COPY DSGROUP 18-17
COPY DSNAME 18-16
COpy PDS 18-18
COPY VOLUME 18-20
EXCLUDE 18-21
INCLUDE 18-20
MOVE CATALOG 18-19
MOVE DSGROUP 18-17
MOVE DSNAME 18-16
MOVE PDS 18-18
MOVE VOLUME 18-20
REPLACE 18-21
SELECT 18-21

utility control statements (IEHPROGM)
ADD 19-14
BLDA 19-12
BLDG 19-14
BLDX 19-12
CATLG 19-11
CONNECT 19-13
DELETEP 19-15
DLTA 19-13
DLTX 19-12
LIST 19-15
RELEASE 19-13
RENAME 19-11
REPLACE 19-14
SCRATCH 19-11
UNCATLG 19-12

utility programs
functions of 1-7
invocation of from a problem program 22-1

v
VDRL statement 3-3
verify

backup copies 5-1
portions of records 5-1

VLD statement 2-4
volume compatibility with respect to size (VS 1) 18-2
volume integrity, ensuring 23-1
volume label set, contents of 16-1
volume serial number, changing 15-3
volume switch labels, processing 24-1

volume table of contents
listing 17 -3

dump format 17-3
edited format 17-2
unedited format 17-5

scratching 19-11
volumes

copying 18-10,18-20
mounting and dismounting 23-1
moving 18-10,18-20

VTOC (see volume table of contents)
VTOC statement 14-2
VTOCD statement 2-4

w
write IPL records and a program

on a direct access volume 15-5,15-16

Index 1-13

GC26-3902-1

c
~
< u
" S
<
u
C
!:!
;::;
Cii
CIl

OS/VS2 MVS Utilities
G C26-3902-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not reg uired.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

Fold on two lines, tape, and ml,!il. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

GC26-3902-1

Reader's Comment Form

Fold and Tape
t •• " .. .

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose,California 95150

ARMONK, N.Y.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

..
Fold and Tape

====-=- .=® - - - --- ----- ---- -- ---- -- ---- - - ---- - - ----------------_.-

c
~
<
()
1\

~
<
()

C
~

i ...,

OS/VS2 MVS Utilities
GC26-3902-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM shaH have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

Fold on two lines, tape, and m;!il. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
coopera tion.

GC26-3902-1

Reader's Comment Form

Fold and Tape .. '" .. .

II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

ARMONK, N.Y.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I' ••••••••••••••••••••••.•••••••..•••••••••••••..••.•••.••.•.•••••••••••••

Fold and Tape

=====-=- .=® - ------ - ---- -- ----- -- ---- -- ---- - - ---- - - ------------------ _.-

OS/VS2 MVS Utilities
GC26-3902-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not reg uired.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

Fold on two lines, tape, and mlJil. No postage nticessary if mailed in the U.S.A. (Elsewhere,
any IBM representatfve will be happy to forward your comments.) Thank you for your
cooperation.

GC26-3902-1

Reader's Comment Form

Fold and Tape ..

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

ARMONK, N.Y.

II NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
Fold and Tape

--- -®

~i::R

o
C/)

< C/)
I\l

s:
<
C/)

C
C'.
;::j.'
co'
VI

E
.E
en
:c ...
co
Q)
<II

B
Q)

c.
J!!
"C
Q)

E
E
:::J
en
~
Q)

.s:
o

'~ ~
.;;
·iii
c:
~

.Q)

:;
<II
<II

~
C.

~
:::J
Q)
<II
co
Q)

0::

OS/VS2 MVS Utilities
GC26-3902-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

Fold on two lines, tape, and m;!il. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

GC26·3902·1

Reader's Comment Form

Fold and Tape
, ••• o' •••••••••••••••••••••• ~ •••••• :

II II

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

ARMONK, N.Y.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

. . . . , ~.'~ : ~
•••.•• •••••••••••••••••••••••••• e ••.• ~~~·'

Fold and Tape

GC26-3902-1

· ." · · ·
· · · · · · · · ·

',"'-'i

