
Systems

GC2IJ.OI83-3
File No. S37G-38

OS/VS2 MVS Supervisor Services
and Macro Instructions

Inclu" Selectable Uni1l:

Suparviaor Performance • 2
IBM 3800 Printing Sublystam
System Security Support
Dumpinglmprovementl

---------- -----~-- -. ---- -- -------------,-

VS2.03.807
VS2.03.810
6762·832
6762-833

Fifth Edition (September 1983)

This is a reprint of GC28-0683-2 incorporating changes released in the following Teclm1ca1
Newsletters:

GN28-2914 (datecJ 30 June 1978)
GN28-S002 (dated 30 October 1981)

This edition applies to Release 3.7 of OS/VS2 until otherwise indicated in new edi~ODl or
Teclm1ca1 Newsletters. ChaDaes are continually made to the information herein; before using
this publication in connection with the operation of IBM systems, consuh the latest IBM
Sy.tem/370 BlbllogrfIPhy. GC20-0001, for the editions that are appUcable and current.

References in this publication to IBM products, proarams, or services do not imply that IBM
intends to make these available in aU countries in which IBM operates.

Publications are not stocked at the adc:lreas given below. Requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
servlna your locality.

A form for readers' comments has been provided at the back of this publication. If the form
has been removed. address comments to IBM Corporation. Information Development. Depart­
ment DS8. BuDding 706-2. P.O. Box 390, Poupkeepaie. New York 12602. IBM may use or
distribute whatever information you suppl, in any way it believes appropriate without in­
currina any obUption to you.

e> Copyrlaht International Business Machines Corporation 1976, 1978

Guide For U-. nIs Publication

The following is a list of requirements for usiq this pub6cation .

• The implied date of tlUs publication, for the purpoee of adding new
Supplements/TNLs, is April 3, 1978. Always use the page with the
latest date (shown in the 11111 at the top of the pap) when adding
pages from different Newsletters/Supplements .

• This publication obsoletes GC28-0683-1 (Releue 3.7) and
GC28-0756-0 (Release 3.7 and SUs).

i¥ OS/VS2 MVS _ ... SenIceI_ Maae

Preface

This book, intended mainly for the programmer codiq in assembler
1aDguage, describes how to use the services of the supervisor, the macro
instructions used to request these services, and the linkage conventions used
by the control program to provide these services.

The system programmer interested in additional information on the
supervisor should see OS/YS2 Sptem Programmi1tl Libnuy: SIIP'"Uor,
GC28-0628.

This book is divided into two parts. Part I, "Supervisor Services",
provides explanations and aids for using the facilities available through the
supervisor. Part H, "Macro Instructions," provides coding information.

Part I is divided into eight topics. Specific topics include:

• Linkage Conventions

• Subtask Creation and Control

• Program Management

• Resource Control

• Interruption, Termination, and Dumping Services

• Virtual Storage Management

• Real Storage Management

• MisceUaneous Services

Part D contains the descriptions and defmitions of the supervisor macro
instructions available in the OS/VS assembler language. It provides
appHcations programmers coding the assembler language with the
information necessary to code the macro instructions. The standard, list,
and execute forms of the macro instructions are grouped, where applicable,
for ease of reference.

Use of this book requires a basic knowledge of the operating system and
of OS/VS assembler language. Books that contain basic information are:

OS/YS - DOS/YS - YM/370 Assembler Language, GC33-4010

OS/YS
OS/YS2 MYS Ch«lcpoint/ Restart, GC26-3877
OS/YS2 MYS Data Management Macro 11Utructioru, GC26-3873
OS/YS2 MYS Data Management Ssvice, GuiM, GC26-387S
OS/YS Linkage Editor and Loader, GC26-3813

IBM Sptem/370
Principle, olOpnation, GA22-7000

OS/YS2 Sptem Programming Library: Job MQ1IQgelM1lt, GC28-0627
OS/YS2 Sptem Programming Library: SuperviMJr, GC28-0628

OS/YS2 Sptem Programming Librtuy: Services Aids, GC28-0674

Yi OS/VS2 MVS _Inlier Maae

Contents

PMt I: Supenlsor Senlces

IatnHIactIon to SupervIsor Semces 3
Summary of Services 3

Llllkaae COIWentioas 5
Linkage Registers. 5
Saving the Calling Program's Registers 6
Establishing a Base Register 7
Providing a Save Area 7
Summary of Conventions to be Followed When Passing and Receiving Control 9

s.w.k Creation .. Control 11
Creatinl the Task 11
Priorities 11

Address Space Priority 11
Task Priority 12
Subtask Priority 12
Assigning and Changing Priority 12

Task and Subtask Communications 13

............ M enaent 15
Load Module Structure Types . 15

Simple Structure 15
Dynamic Structure 15

Load Module Execution . . . 15
Passing Control in a Simple Structure 16

Passing Control Without Return 16
Preparing to Pass Control 16
Passing Control 17

Passing Control With Return 18
Preparing to Pass Control 18
Passing Control 18
Analyzing the Return 20
How Control is Returned. 20
Return to the Control Program 22

Passing Control in a Dynamic Structure 22
Bringing the Load Module into Virtual Storage 22

Location of the Module 23
The Search for the Load Module . 24
Using an Existing Copy 26
Using the LOAD Macro Instruction 27

Passing Control with Return 27
The LINK Macro Instruction . . 27
Using CALL or Branch and Link 29
How Control is Returned 30

Passing Control Without Return . . 30
Passing Control Using a Branch Instruction 30
Using the XCTL Macro Instruction 31

Additional Entry Points '.' 32
Entry Point and Calling Sequence Identifiers as Debugging Aids 33

ResotR'ce Control 35
Task Synchronization 35
Using a Serially Reusable Resource 36

Naming the Resource 36
Exclusive and Shared Requests . 37
Processing the Request 37
Using ENQ and DEQ . " 38

Duplicate Requests for a Resource. 38
Releasing the Resource 38
Conditional and Unconditional Requests 38
Avoiding Interlock. . . . 39

Resource Access Control Facility 41

Contents vii

RACHECK Macro Instruction
RACSTAT Macro Instruction
FRACHECK Macro Instruction

Interruption, Termination, and DunIpin8 Senices
Program Interruption Processing
Program Interruption Control Area

Program Interruption Element
Register Contents Upon Entry to User's Exit Routine

Handling Abnormal Conditions
Intercepting Abnormal Termination of Tasks ..

Interface to an ESTAE Exit
Intercepting Abnormal Termination of Subtasks

Interface to an EST AI Exit
EST AE/EST AI Retry Routines .

Interface to a Retry Routine
Dumping Services .

ABEND Dumps
SNAP Dumps

Vlrtal Stonge M ement . . • .
Explicit Requests for Virtual Storage

Specifying the Size of the Area
Types of Explicit Requests.
Subpool Handling

Implicit Requests for Virtual Storage
Reenterable Load Modules
Reenterable Macro Instructions
Nonreenterable Load Modules
Freeing of Virtual Storage

Real Stonge M ement . .
Relinquishing Virtual Storage • . .
Loading/Paging Out Virtual Storage Areas. .
Virtual Subarea List (VSL)

Miseelueous Senices
Timing Services . . .

Date and Time of Day
Interval Timing.

Extended-Precision Floating-Point Simulation
Extended-P.recision Division
Division Process
Arithmetic Exceptions.
Calling the Simulator
Designing the Exit Routine

Communicating with the System Operator
Writing to the Programmer .
Writing to the System Log
Message Deletion

Part II: Macro IIIItnIdIons .

Introduction to Supenllor Macro Instructions .
Macro Instruction Forms ...
Coding the Macro Instructions
Continuatir.n Lines
VS I/VS2 Compatibility

Desafpdons of the Macro InstndIonI. .
ABEND - Abnormally Terminate a Task.
ATTACH - Create a New Task
ATTACH (List Form)
ATTACH (Execute Form)
CALL - Pass Control to a Control Section
CALL (List Form).
CALL (Execute Form)
CHAP - Change Dispatching Priority . . .
DELETE - Relinquish Control of a Load Module

• OS/VSl MVS SupenIIor Senten .. Macro Instndlons

41
41
41

43
43
43
44
45
46
48
49
50
50
SO
51
52
52
S2

S5
S5
S5
5S
57
60
60
60
62
62

63
63
64
64

67
67
67
67
69
69
69
70
71
72
75
76
77
77

79

81
81
82
83
84

87
89
91
96
97
99

101
102
103
lOS

DEQ - Release a Serially Reusable Resource
DEQ (List Form)
DEQ (Execute Form)
DETACH - Detach a Subtask
DOM - Delete Operator Message
DXR - Divide Extended Register
ENQ - Request Control of a Serially Reusable Resource
ENQ (List Form)
ENQ (Execute Form)
EST AE - Extended ST AE.
EST AE (List Form)
ESTAE (Execute Form)
EVENTS - Events Wait. ECB Initialization. and Table Creation/Deletion.
FRACHECK - Fast Path Resource Authorization Checking
FRACHECK (List Form)
FRACHECK (Execute Form)
FREEMAIN - Free Virtual Storage
FREEMAIN (List Form)
FREEMAIN (Execute Form)
GETMAIN - Allocate Virtual Storage
GETMAIN (List Form)
GETMAIN (Execute Form)
IDENTIFY - Add an Entry Name
LINK - Pass Control to a Program in Another Load Module .
LINK (List Form)
LINK (Execute Form)
LOAD - Bring a Load Module into Virtual Storage
PGLOAD - Load Virtual Storage Areas into Real Storage .
PGLOAD (List Form)
PGOUT - Page Out Virtual Storage Areas from Real Storage
PGOUT (List Form)
PGRLSE - Release Virtual Storage Contents
PGRLSE (List Form)
PGRLSE (Execute Form)
POST - Signal Event Completion
RACHECK - Check RACF Authorization
RACHECK (List Form)
RACHECK (Execute Form)
RACST AT - RACF Status Extract Service
RACST AT (List Form)
RACST AT (Execute Form).
RETURN - Return Control
SA VE - Save Register Contents
SEGLD - Load Overlay Segment and Continue Processing
SEGWT - Load Overlay Segment and Wait .
SETRP - Set Return Parameters
SNAP - Dump Virtual Storage and Continue
SNAP (List Form)
SNAP (Execute Form)
SPIE - Specify Program Interruption Exit .
SPIE (List Form)
SPIE (Execute Form)
STATUS - Change Subtask Status
STIMER - Set Interval Timer . : .
TIME - Provide Time and Date .
TTIMER - Test Interval Timer .
WAIT - Wait for One or More Events
WAITR - Wait for One or More Events
WTL - Write to log
WTL (List Form)
WTL (Execute form)
WTO - Write to Operator.
WTO (List Form)
WTO (Execute Form) . . .
WTOR - Write to Operator with Reply. .
WTOR (List Form)'
WTOR (Execute Form)
XCTL - Pass Control to a Program in Another Load Module .
XCTL (List Form). .
XCTL (Execute Form)

ladex

107
110
111
112
114
116
117
122
123
12S
129
130
132

138.1
138.4
138.S

139
142
143
14S
148
149
lSI
IS3
ISS
lS6
IS7
lS9
161
162
164
16S
166
167
168
170
173
174

174.1
174.2
174.3

175
176
178
179
180
183
187
188
190
192
193
194
196
199
201
202
204
20S
206
207
208
211
212
213
21S
216
217
219
220

223

COIII_s Ix

mustrations

Figures
Figure 1.
Figure 2.
Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.

Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.

Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
F~gure 51.
Figure 52.
Figure 53.
Figure 54.

Acquiring PARM Field Information
Format of the Save Area
SAVE Macro Instruction Used to Save (A) All Registers but 13 and
(B) Registers 5-10,14 and 15
Chaining Save Areas in a Nonreenterable Program
Chaining Save Areas in a Reenterable Program
Levels of Tasks in a Job Step
Characteristics of Load Modules . . .
Passing Control in a Simple Structure .
Passing Control With a Parameter List
Passing Control With Return .
Passing Control With CALL
Test for Normal Return
Return Code Test Using Branching Table .
Establishing a Return Code
Using the RETURN Macro instruction .
RETURN Macro Instruction With Flag . .
Search for Module, EP or EPLOC Parameter With DCB.O or DCB
Parameter Omitted .
Search for Module, EP or EPLOC Parameters With DCB Parameter
Specifying Private Library
Search for Module Using DE Parameter
Use of the LINK Macro Instruction With the Job or Link Library
Use of the LINK Macro Instruction with a Private Library .. .
Use of the BLDL Macro Instruction
The LINK Macro Instruction With a DE Parameter
Misusing Control Program Facilities Causes Unpredictable Results ..
Event Control Block
ENQ Macro Instruction Processing .
Interlock Condition
Two Requests for Two Resources
One Request for Two Resources .
Program Interruption Control Area .
Using the SPIE Macro Instruction . .
Program Interruption Element ...
Detecting an Abnormal Condition .
Using the GETMAIN Macro Instruction
Virtual Storage Control
Using the List and the Execute Forms of the DEQ Macro
Instruction in a Reenterable Program ..
Releasing Virtual Storage
Interval Timing . '.
Summary of Program Interruptions.
Calling the Extended-Precision Floating-Point Simulator .
Return Codes From the Extended-Precision Floating-Point Simulator
Interruption Codes Returned by the Simulator .
Writing to the Operator
Writing to the Operator With a Reply
Sample Macro Instruction
Continuation Coding
Return Code Area Used by DEQ. . . .
DEQ Macro Instruction Return Codes
Return Code Area Used by ENQ .
ENQ Return Codes
Creating A Table
Parameter List Format
Posting The Parameter List . . .
Processing One Event At A Time

x OS/VSl MVS Supemsor Senices and Macro Instructions

6
7

7
8
8

13
15
17
17
18
19
20
20
21
22
22

24

25
26
28
28
28
29
32
35
37
40
40
40
44
44
45
47
56
58

61
64
68
71
73
74
74
76
76
82
84

109
109
120
121
134
135
136
137

Summary of Amendments
for GC28-0683-2
as Updated October 30, 1981
by Technical Newsletter GN28-S002

The following changes have been made to support
Resource Access Control Facility (RACF) Version 1
Release 4.

• The keyword OWNER has been added to the
RACHECK macro instruction.

• The DSTYPE keyword of the RACHECK macro
instruction has been extended to include DSTYPE=M.

Summary of Amendments
for GC28-0683-2
OS/VS2 Release 3.7 and listed Selectable Units

Changes have been made throughout this publication to
reflect a service update to OS/VS2 Release 3.7 and include
the following listed Selectable Units.

Supervisor Performance .2 GN28-2713

Infonnation was added for Supervisor Perfonnance .2
in the following areas:

• The addition of the RACHECK macro instruction for
checking authorization of RACF.protected data sets.

IBM 3800 PrintiDa Subsystem GN28-2712

Infonnation was added to support the IBM 3800 Printing
Subsystem in the following areas:

• Changes to the parameters in the data control block
for dumps.

• Changes to the SNAP macro instruction.

Summary of Amendments

System Security Support GCl8-0842

Infonnation was added for System Security Support in
the following areas:

• Additional specifications for the CLASS parameter in
the RACHECK macro instruction.

• Addition of the OLDVOL parameter to the RACHECK
macro instruction.

Dumpina Improvements GCl8-0821

Infonnation was added for Dumping Improvements in the
following areas:

• SYSMDUMP has been added to the DD statements that
can be specified for ABEND ,dumps.

• Changes to the SNAP macro instruction.
• TRT, DM, ERR and 1/0 SDATA codes.
• STRHDR parameter.

Sum....., 01 ~ta Xl

xii OS/VS2 MYS Supent80r SemceI aacI MacIo IRltructioDl

Part I: Supervisor Serrices

Introduction to Supervisor Services

Summary of Services
The supervisor provides the resources that your programs need while assuring that as many of
these resources as possible are being used at a given time. Well designed programs use system
resources efficiently. Knowing the conventions and characteristics of the VS supervisor will
help you design more efficient programs.

The services you can request from the supervisor can be classified as follows:

Subtaslt Creation and Control: Occasionally, you can have your program executed faster and
more efficiently by dividing parts of it into subtasks that compete with each other and with
other tasks for execution time.

Proaram Manaaement: The supervisor can be used to aid communication between segments of
a program. Save areas, addressability, and passage of control from one segment of a program
to another are discussed.

Resource Control: Portions of some tasks are dependent on the completion of events in other
tasks, thus requiring planned task synchronization. Planning is also required when more than
one program uses a serially reusable resource.

Interruption, Termination, aDd Dumpinl Services: The supervisor provides facilities for writing
exit routines to handle specific types of interruptions. It is not likely, however, that you will be
able to write routines to handle all types of abnormal conditions. The supervisor therefore
provides for termination of your program when you request it by issuing an ABEND macro
instruction, or when the control program detects a condition that will degrade the system or
destroy data.

Virtual Storace Manaaement: While virtual storage allows you to write large programs without
the need for complex overlay structures, virtual storage must be obtained for your job step.
Virtual storage is allocated by both explicit and implicit requests.

Real Storace M ement: The supervisor administers the use of real storage and directs the
movement of virtual pages between auxiliary storage and real storage in page size blocks. The
services provided allow you to release virtual storage contents, load virtual storage areas into
real storage, and page out virtual storage areas from real storage.

In addition to the services outlined above, the supervisor provides the facilities for timing
events, extended precision floating-point simulation, and operator communication with both the
system and application programs.

I Aokage Conventions

All programs, regardless of function or relative position in the task, should be designed using
certain conventions and with certain characteristics of the control program in mind. This
chapter describes these conventions and characteristics and discusses the effects they may have
on the execution of your program.

During the execution of a program the services of another program may be required. The
program that requests the services of another program is known as a calling program, and the
program that was requested is known as the called program. For example, when the control
program passes control to program A, program A becomes a called program. H program A in
tum passes control to program B, program A becomes a calling program, and program B
becomes a called program. From the point of view of the control program, however, program
A remains a called program until control is returned by program A. For more information on
.this subject, see the discussion under the heading "Task and Subtask Communications" in
"Subtask Creation and Control."

The following conventions are presented assuming one calling and one called program. They
apply, however, to all called and calling programs operating in the system. If the conventions
presented here are always followed, execution of the called program will not be affected by the
method used to pass control or by the identity of the calling program.

Registers 0, 1, 13, 14, and 15 are known as the linkage registers,· they are used in fIXed ways
by the control program. It is good practice to use these registers in the same way in your
program, since they may be modified by the control program or by your program when system
macro instructions are used. Registers 2-12 are not changed by the control program.

Registers 0 and 1 are used to pass parameters to the control program or to a called
program. The expansions of some system macro instructions result in instructions that load a
value into register 0 or 1 or both, or load the address of a parameter list into register 1. For
other macro instructions, the control program uses register 1 to pass specified parameters to
the program you call.

Register 13 contains the address of the save area provided by the calling program.

Register 14 contains the return address of the calling program or an address within the
control program to whi~h your program is to return control when it has completed execution.

Register 15 contains the entry address when control is passed to your program by the
control program. The entry address of the called routine should be in register 15 when you
pass control to another program. The expansion of some macro instructions results in
instructions that load into register 15 the address of a parameter list to be passed to the
control program. Register 15 is also used by the called program to return a value (a return
code) to the calling program.

The manner in which the control program passes the information in the PARM field of your
EXEC statement is a good example of how the control program uses a parameter register to
pass information. When control is passed to your program from the control program, register 1
contains the address of a fuUword on a fuUword boundary in your area of virtual storage (refer
to Figure 1). The high-order bit (bit 0) of this word is set to 1. This is a convention used by
the control program to indicate the last word in a variable-length parameter list; you must use
the same convention when making requests to the control program. The low-order three bytes
of the fuUword contain the address of a two-byte length field on a halfword boundary. The

length field contains a binary count of the number of bytes in the P ARM field, which
immediately fonows the length field. H the P ARM field was omitted in the EXEC statement,
the count is set to zero. To prevent possible errors, the count should always be used as a
length attribute in acquiring the information in the P ARM field. If your program is not going
to use this information immediately, you should load the address from register 1 into one of
registers 2-12 or store the address in a fullword in your program.

Register
1

Full·Word
Boundary

F 1. AcquirinsPARM Field Inform.do.

4 Bytes
A

~ ____ L_._n_g~ __ F_le_ld ____ ~P_A_R_M_F_le_~~~
~ ____ ~y, ____ -JA~ ______ y~ _____ ~J

Half·Word
Boundary

2 Bytes 0 to 100 Bytes

Saving the Calling Program's Registers

The fltSt action a caned program should take is to save the contents of the calling program's
registers. The contents of any register the called program modifies and the contents of the
linkage registers must be saved. All registers should be saved to avoid errors when the caned
program is modified.

The registers are saved in the 18-word save area provided by the calling program and
pointed to by register 13. The format of this area is shown in Figure 2. As indicated by this
figure, the contents of each register must be saved in a specific location within the save area.
'Registers can be saved either with a store-multiple (STM) instruction or with the SAVE macro
instruction. The store-multiple instruction, STM 14,12,12(13), places the contents of all
registers except 13 in the proper words of the save area. Saving register 13 is discussed under
the beading "Providing a Save Area."

6 OS/VSl MVS SIIpenIsor SenkeI .ad MIcro ~

Woni CoIIteats
1 Used by PL/I language program
2 Address of previous save area (stored by calling program)
3 Address of next save area (stored by current program)
4 Register 14 (Return address)
S Register 1 S (Entry address)
6 Register 0
7 Register 1
8 Register 2
9 Register 3

10 Register 4
11 Register S
12 Register 6
13 Register 7
14 Register 8
1 S Register 9
16 Register 10
17 Register 11
18 Register 12

FIpre 2. F of die SPe Area

The SA VB macro instruction generates instructions that store a designated group of
registers in the save area. The registers to be saved are coded in the same order as in an STM
instruction. Figure 3 illustrates uses of the SA VB macro instruction. The T parameter (in B)
specifies that the contents of registers 14 and 15 are to be saved.

(A) PROGNAME
(B) PROGNAME

SAVE (1 4 , 1 2)
SAVE (5, 1 0) , T

Ji1Ipn 3. SAVE Maa-o UM4I t. Sue (A) en .. 13 .. (8) 5-10, 14 .. 15

The SA VB macro instruction or the equivalent instructions should be placed at the entry
point to the program.

EstabHsbing a Base Register
In System/370, addresses' are resolved by adding a displacement to a base address. You must,
therefore, establish a base register using one of the registers from 2-12 or register 15. If your
program does not use system macro instructions and does not pass control to another program,
you can establish a base register using the entry address in register 15. Otherwise, because
both your program and the control program use register 15 for other purposes, you must
establish a base using one of the registers 2-12. This should be done immediately after saving
the calling program's registers.

Note: Cautiously choose your base registers keeping in mind that SQme instructions alter
register contents (for example, TRT alters register 2). A complete list of instructions and their
processing is available in IBM System/3 70 Principks 01 Operation.

Providing a Save Area
If any control section in your program passes control to another control section, your program
must provide its own save area. You must also provide a save area when you use certain
system functions, such as GET or PUT. If you establish which registers are available to the
called program or control section, a save area is not necessary. Omitting the save area is not a
good coding practice, however, since any changes in your program might necessitate changing
a called program.

Whether or not your program provides a save area, the address of the calling program's save
area, which you used, must be saved, because you will need it to restore the registers before
you return control to the program that called you. If you are not providing a save area, you
can keep the address in register 13 or store it in a location in virtual storage. If you are
creating your own save area, the following procedure should be followed:

• Store the address of the save area that you used (the address passed to you in register
13) in the second word of the save area you created .

• Store the address of your save area (the address you will pass in register 13) in the third
word of .the calling program's save area.

This procedure enables you to find the save area when you need it to restore the registers,
and it enables a trace from'save area to save area should one be necessary during a dump.

Figures 4 and S show two methods of obtaining a save area and of saving all the registers,
including the addresses of the two save areas. In Figure 4 the registers are stored in the save
area provided by the calling program by using the STM instruction: Register 12 is then
established as the base register. The address of the caller's save area is then saved in the
second word of the new save area, established by the DC statement. The address of the calling
program's save area is loaded into register 2. The address of the new save area is loaded into
register 13, and then stored in the third word of the caller's save area.

PROGNAME·

SAVEAREA

CSECT
STM
LR
USING
ST
LR
LA
ST

DC

14,12,12(13)
12,15 .
PROGNAME, 12
13,SAVEAREA+4
2,13
13,SAVEAREA
13, 8(2.)

1SF'O'

,.... 4. CIIIiIIIIII Sa,e Areas ... NOlfteidenMe

In Figure S, the SA VB macro instruction is used to store registers (an STM instruction
could have been used). The eniry address is loaded into register 12, which is established as the
base register. An unconditional GETMAIN macro instruction (discussed in detail under the
beading "Virtual Storage Management") is issued requesting the control program to allocate 72
bytes of virtual storage from an area outside your program, and to return the address of the
area in register 1. The addresses of the old and new save areas are stored in the assigned
locations, and the address of the new save area is loaded into register 13.

PROGNAME CSECT
SAVE (14, 1 2)
LR 12,15
USING PROGNAME,12
GETMAIN R,LV=72
ST 13, 4(1)
ST 1 , 8(13)
LR 13,1

Summary of Conventions to. be Followed When Passing and Receiving
Control

The follOwing is a list of conventions ·to be followed when passing and receiving control. The
actual methods of passing control are described under the heading "Program Management."

By a Called Program Upon Receiving Control:

• Save the contents of registers 0-12, 14, and IS in the save area provided by the calling
program.

• Establish a base register.

• Request the control program to allocate storage for a save area if you did not already
allocate it by using a DC statement.

• Store the save area addresses in the assigned locations.

By a CaUing Program before Passing Control (Return Required):

• Place the address of your save area in register 13.

• Place the address at which you wish to regain control (the return address) in register 14.

• Place the entry address of the program you are caUing in register IS.

• Place the address of the parameter list (if there is one) in register 1. (Passing parameters
is discussed under "Program Management.")

Bya CaUing Program before Passing Control (No Return Required):

• Restore registers 2-12 and 14.

• Place the address of the save area provided by the program that called you in register 13.

• Place the entry address of the program you are caUing in register IS.

• Place the addresses of parameter lists in registers 1 and O.

Bya Called Program before Returning Control:

• Restore registers 0-12 and 14.

• Place the address of the save area provided by the program you are returning control to
in register 13.

• Place a return code in the low-order byte of register 15 if one is required. Otherwise,
restore register 15.

10 OS/VSl MVS _Inlier SenIceI 1M Macro

--------- ----------------

Subtask Creation and Control

One task is created in the address space by the control program as a result of initiating
execution of the job step (the job step task). You can create additional tasks in your program.
If you do not, however, the job step task is the only task in the address space being executed.
The benefits of a multiprogramming environment are still available even with only one task in
the job step; work is still being performed for other address spaces when your task is waiting
for an event, such as an input operation, to occur.

The advantage in creating additional tasks within the job step is that more tasks are
competing for control. When a wait condition occurs in one of your tasks, it is not necessarily
a task from some other address space that gets control; it may be one of your tasks, a portion
of your job.

The general rule is that parallel execution of a job step (that is, more than one task in an
address space) should be chosen only when a significant amount of overlap between two or
more tasks can be .achieved .. The amount of time taken by the control program in establishing
and controlling additional tasks, and your increased effort to coordinate the tasks and provide
for communications between them must be taken into account.

Creatiog the Task
A new task is created by issuing an ATTACH macro instruction. The task that is active when
the A IT ACH macro instruction is issued is the originating task; the newly created task is the
subtask of the originating task. The subtask competes for control in the same manner as any
other task in the system, on the basis of priority (both address space priority and task priority
within the address space) and the current ability to use a central processing unit. The address
of the task control block for the subtask is returned in register 1.

If the A IT ACH macro instruction is executed successfully, control is returned to the user
with a hexadecimal code of '00' in register IS.

The entry point in the load module to be given control when the subtask becomes active is
specified as it is in a LINK macro instruction, that is, through the use of the BP, BPLOC, and
DB parameters. The use of these parameters is discussed in "Program Management."
Parameters can be passed to the subtask using the P ARAM and VL parameters, also described
under "The LINK Macro Instruction. n Additional parameters deal with the priority of the
subtask, provide for communication between tasks, specify libraries to be used for program
linkages, and establish an error recovery environment for the new subtask.

CaUdOD: All modules contained in the libraries for a job step should be uniquely named. If
duplicate module names are contained in these libraries, the results are unpredictable.

Priorities
There are really three priorities to consider: address space priorities, task priorities, and subtask
priorities.

Address Space Priority

When each job is initiated, an address space is created. All successive steps in the job execute
in the same address space. The address space has a dispatching priority, which is normally
determined by the control program. The control program will select, and alter, the priority in
order to achieve the best load balance in the system - that is, in order to make the most
efficient use of central processing unit time and other system resources.

It may be desirable for some jobs to execute at a different address space priority than the
default priority assigned by the system. To assign apriority, you code
DPRTY-(valuel,value2) on the EXEC statement. The address space priority is then
determined as follows:

address space dispatching priority = (value1 x 16) +value2

Once the address space dispatching priority is set, it can be altered only by the control
program. (Thus, there is no limit priority associated with an address space.) However, a new
address space priority may be set for succeeding job steps by specifying different values in the
DPRTY parameter on the EXEC statement.

Task Priority

Each task in an address space has associated with it a limit priority and a dispatching priority.
These priorities are set by the control program when a job step is initiated. When other tasks
are created in the address space by use of the ATTACH macro instruction, they may be given
different limit and dispa~hing priorities by use of the LPMOD and DPMOD parameters,
respectively. .

The task dispatching priorities of the tasks in an address space do not affect the order in
which the jobs are selected for execution because the order is selected on the basis of address
space dispatching priority. Once an address space is selected for dispatching, the bighest
priority task awaiting execution is selected. Thus, task priorities may affect processing within
an address space. Note, however, that in a multiprocessing system, task priorities cannot
guarantee the order in which the tasks wUl execute because more than one task may be
executing simultaneously in the same address space on different central processing units. In a
paging environment, page faults may alter the order in which the tasks execute.

Subtask Priority

When a subtask is created, the limit and dispatching priorities of the subtask are the same as
the current limit and dispatching priorities of the originating task except when the subtask
priorities are modified by the LPMOD and DPMOD parameters of the ATTACH macro
instruction. The LPMOD parameter specifies the number to be subtracted from the current
limit priority of the originating task. The result of the subtraction is assigned as the limit
priority of the subtask. H the result is zero or negative, zero is assigned as the limit priority.
The DPMOD parameter specifies the number to be added to the current dispatching priority of
the originating task. The result of the addition is assigned as the dispatchin& priority of the
subtask, unless the number is greater than the limit priority or less than zero. In that case, the
limit priority or 0, respectively, is used as the dispatching priority.

AssipiDa and ChanaiD • Priority

Tasks with a large number of input/output operations should be assigned a higher priority than
tasks with little input/output, because the tasks with much input/output wiD be in a wait
condition for a greater amount of time. The lower priority tasks wUl be executed when the
bigher priority tasks are in a wait condition. As the input/output operations are completed, the
higher priority tasks get control, so that more I/O can be started.

The priorities of subtasks can be changed by using the CHAP macro instruction. The
CHAP macro instruction changes the dispatching priority of the active task or one of its
subtasks by adding a positive or negative value. The dispatching priority of an active task can
be made less than the dispatching priority of bother task. H this occurs, if the other task is
dispatchable it would be given control after execution of the CHAP macro instruction.

The CHAP macro instruction can also be used to increase the limit priority of any of an
active task's subtasks. An active task cannot change its own limit priority. The dispatching
priority of a subtask can be raised above its own ~t priority, but not above the limit of the
originating task. When the dispatching priority of a subtask is raised above its own limit
priority, the subtask's limit ~riority is automatically raised to equal its new dispatching priority.

Task and Subtask Communications
The task management information in this section is required only for establishing
communications among tasks in the same job step. The relationship of tasks in a l job step is
shown in Figure 6. The horizontal lines in Figure 6 separate originating tasks and subtasks;
they have no bearing on task priority. Tasks A, AI, A2, A2a, B, Bland B 1 a are all subtasks
of the job-step task; tasks At, A2, and Ala are subtasks of task A. Tasks A2a and Bla are
the lowest level tasks in the job step. Although task Bl is at the same level as tasks Al and
A2, it is not considered a subtask of task A.

Task A· is the originating task for both tasks A 1 and A2, and task A2 is the originating task
for task Ala. A hierarchy of tasks exists within the job step. Therefore the job step task, task
A, and task A2 are predecessors of task A2a, while task B has no direct relationship to task
Ala.

Pipre 6. Levell 01 Tub in a Job Step

I
I

B
I
I

8
s.btuk CreadoD aM CGDtroI 13

All of the tasks in the job step compete independently for CPU time; if no constraints are
provided, the tasks are performed and are terminated asynchronously. However, since each
task is performing a portion of the same job step, some communication and constraints
between tasks are required, such as notification of the completion of subtasks. H termination
of a predecessor task is attempted before all of the subtasks are complete, those subtasks and
the predecessor task are abnormally terminated.

Two parameters, the ECB and ETXR parameters, are provided in the ATTACH macro
instruction to assist in communication between a subtask and the originating task. These
parameters are used to indicate the normal or abnormal termination of a subtask to the
originating task. H the ECB or BTXR parameter, or both, are coded in the ATTACH macro
instruction, the task control block of the subtask is not removed from the system when the
subtask is terminated. The originating task must remove the task control block from the system
after termination of the subtask by issuing a DETACH macro instruction. H the ECB
parameter is specified in the ATTACH macro instruction, the ECB must be in storage so that
the issuer of the attach can wait on it (using the WAIT macro instruction) and the control
program can post it on behalf of the terminating task. The task control blocks for all subtasks
must be removed before the originating task can terminate normally.

The ETXR parameter specifies the address of an end-of -task exit routine in the .originating
task, which is to be given control when the subtask being created is terminated. The
end-of -task routine is given control asynchronously after the subtask has terminated and must
therefore be in virtual storage when it is required. After the control program terminates the
subtask, the end-of-task routine specified is scheduled to be executed. It competes for CPU
time using the priority of the originating task and of its address space and can be given control
even though the originating task is in the wait condition. Although the DETACH macro
instruction does not have to be issued in the end-of-task routine, this is a good place for it.

The ECB parameter specifies the address of an event control block (discussed under "Task
Synchronization"), which is posted by the control program when the subtask is terminated.
After posting occurs, the event control block contains the completion code specified for the
subtask.

H neither the BCB nor the ETXR parameter is specified in the ATTACH macro instruction,
the task control block for the subtask is removed from the system when the subtask is
terminated. Its originating task does not have to issue a DETACH macro instruction. A
reference to the task control block in a CHAP or a DETACH macro instruction in this case is
risky as is task termination. Since the originating task is not notified of subtask termination,
you may refer to a task control bloCk which has been removed from the system, which would
cause the active task to be abnormally terminated.

Program Management

This chapter discusses facilities that aid you in designing your programs. Included are
descriptions of load module structures, facilities for passing control between programs and the
use of associated macro instructions.

Load Module Structure Types
Each load module used during a job step can be designed in one of three load module
structures: simple. planned overlay. or dynamic. A simple structure does not pass control to
any other load modules during its execution, and is brought into virtual storage all at one time.
A planned overlay structure ~ay, if necessary, pass control to other load modules during its
execution, and it is not brought into virtual storage all at one time. Instead, segments of the
load module reuse the same area of. virtual storage. A dynamic structure is brought into virtual
storage all at one time, and passes control to other load modules during its execution. Each of
the load modules to which control is passed can be one of the three structure types.
Characteristics of the load module structure types are summarized in Figure 7.

Since the large capacity of virtual storage all but eliminates the need for complex overlay
structures, planned overlays will not be discussed further.

Structure Type
Simple
Planned Overlay
Dynamic

Simple Structure

Loaded All at Oae Tbae
Yes
No
Yes

Puses Coatrot to Other
Load Modules

No
Optional
Yes

A simple structure consists of a single load module produced by the linkage editor. The single
load module contains an of the instructions required and is paged into real storage by the
control program as it is executed. The simple structure can be the most efficient of the two
structure types because the instructions it uses to pass control do not require control-program
assistance. However, any program should be carefully designed to make most efficient use of
paging.

Dynamic: Structure

A dynamic structure requires more than one load module during execution. Each load module
required can operate as either a simple structure or another dynamic structure. The advantages
of a dynamic structure over a simple structure increase as the program becomes mbre complex,
particularly when the logical path of the program depends on the data being processed. The
load modules required in a dynamic structure are paged into real storage when required, and
can be deleted 'from virtual storage when their use is completed.

Load Module Execution
Depending on the configuration of the operating system and the macro instructions used to
pass control, execution of the load modules is serial or in parallel. Execution is serial in the VS
operating system unless an A IT ACH macro instruction is used to create a new task. The new
task competes for CPU time independently with all other tasks in the system. The load module
named in the A IT ACH macro instruction is executed in parallel with the load module

containing the A IT ACH macro instruction. The execution of the load modules is serial within
each task.

The following paragraphs discuss passing control for serial execution of a load module.
Creation and management of new tasks is discussed under the headings "Task Creation and
Control."

Passing Control in a Simple Structure
There are certain procedures to follow when passing control to an entry point in the same load
module. The established conventions to use when passing control are also discussed. These
procedures and conventions are the framework for all program interfaces. Knowledge of the
information about addressing contained in the OS/VS - DOS/VS - VM/370 As.mbler
Language publication is required.

PtJUi •• Co.trol Witllo"t Ret"r.

Some control sections pass control to another control section of the load module and do not
receive control back. An example of this type of control section is a housekeeping routine at
the beginning of a program which establishes values, initializes switches, and acquires buffers
for the other control sections in the program. The following procedures should be used when
passing control without return.

Preparing to Pass Control

Because control will not be returned to this control section, you must restore the contents of
register 14. Register 14 originally contained the address of the location in the caUing program
(for example, the control program) to which control is to be passed when your program is
finished. Since the current control section does not make the return to the calling program, the
return address must be passed to the control section that makes the return. In addition, the
contents of registers 2-12 must be unchanged when your program eventually returns control,
so these registers must also be restored.

If control were being passed to the next entry point from the control program, register 15
would contain the entry address. You should use register 15 in the same way, so that the
called routine remains independent of the program that passed control to it.

Use register 1 to pass parameters. Establish a parameter list and place the address of the list
in register 1. The parameter list should consist of consecutive fuUwords starting on a fullword
boundary, each fullword containing an address to be passed to the called control section in the
three low-order bytes of the word. The high-order bit of the last word should be set to 1 to
indicate that it is the last word of the list. The system convention is that the list contain
addresses only. You may, of course; deviate from this convention; however, when you deviate
from any system convention, you restrict the use of your programs to those programmers who
are aware of your special conventions.

Since you have reloaded all the necessary registers, the save area that you used is now
available, and can be reused by the called control section. Pass the address of the save area in
register 13 just as it was passed to you. By passing the address of the old save area, you save
the 72 bytes of virtual storage for a second, and unnecessary, save. area.

16 OS/VSl MVS SupenIsor Senlces ... Macro hIItnIcdoat

P Control

1be common way to pass control between one control section and an entry point in the same
load Iitodule is to load relister 1 S with a V -type address constant for the name of the external
entry point, and then to branch to the address in register 1 S. The external entry point must
have been identifaed using an ENTRY instruction in the called control section if the entry
point is not the same as the control section's name.

An example of loading relisters and passing control is shown in Figure 8. In this eumple,
DO new save area is used, 10 register 13 still contains the address of the old save area. It is
also 8IIUIIled for this example that the control section wiD pass the same parameters it received
to the next entry point. Fust, register 14 is reloaded with the return address. Next, register 1 S
is loaded with the address of the external entry point NEXT, using the V -type address
constant at the location NEXT ADDR. Registers 0-12 are reloaded, and control is passed by a
branch instruction usin& register 1 S. The control section to which control is passed contains an
ENTRY instruction identifying the entry point NEXT.

NEXTADDR

L
L
LM
BR

DC

14,12(13)
15,NEXTADDR
0, 12,20(13)
15-------->

V(NEXT)

..... L c.....a

CSECT
ENTRY NEXT

NEXT SAVE (1 4 , 1 2)

An example of palliq a parameter list is shown in Figure 9. Early in the routine the
contents of rePter 1 (that is, the address of the fullword containing the P ARM field acldrese)
were stored at the fullword PARMADDR. Register 13 is loaded with the address of the old
save area, which bad been saved in word 2 of the new save area. The contents of relister 14
are' restored. and reJister 1 S is loaded with the entry address.

EARLY

PARMLIST
DCBADDRS

PARMADDR
NEXTADDR

USING -,12
ST 1,PARMADDR

L
L
L
L
LA
OI
LM
BR

OS
DC
DC
DC
DC

13,4(13)
0,20(13)
14,12(13)
15,NEXTADDR
1,PARMLIST
PARMADDR,X'SO'
2, 12, 2S(13)
15

OA
A(INDCB}
A(OUTDCB)
A(0)
V(NEXT)

..... t c.....a w.. P.-•• t. LIlt

Establish addressability
Save parameter address

Reload address of old save area

Load return address
Load address of next entry point
Load address of parameter list
Turn on last parameter indicator
Reload remaining 'registers
Pass control

The addreas of the list of parameters is loaded into register 1. These parameters include the
addresses of two data control blocks (DeBs) and the original register 1 contents. The
hiab-order bit in the last address parameter (PARMADDR) is set to 1 using an OR-immediate
iDItruction. The contents of registers 2-12 are restored. (Since one of these registers was the
base relister. restorina the registers earlier would have made the parameter list unaddressable.)
A branch instruction using register 1 S passes control to entry point NEXT .

.......... M _ ... "

Pag;II. COlltrol w;'" R.""II

The control program passed control to your program, and your program will return contrOl
when it is through processing. Similarly, control sections within your program will pass control
to other control sections, and expect to receive control back. An-example of this type of
control section is a monitoring routine; the monitor determines the order of execution of other
control sections based on the type of input data. The following procedures should be used
when passing control with return.

Preparina to Pass Control

Registers 1 S and 1 are used in the same manner they are used to pass control without return.
Register 1 S contains the entry address in the new control section and register 1 is used to pass
a parameter list.

Register 14 must contain the address of the location to which control is to be returned
when the called control section completes execution. The address can be the instruction
following the instruction which causes control to pass, or it can be another location within the
current control section designed to handle all returns. Registers 2 ... 12 are not involved in the
passing of control; the called control section should not depend on the contents of these
registers in any way.

You should provide a new save area for use by the called control section as previously
described, and pass the address of that save area in register 13. Note that the same save area
can be reused after control is returned by the called control section. One new save area is
ordinarily all you will require regardless of the number of control sections called.

Passing Control

Two standard methods are used for passing control to another control section and providing
for return of control. One is an extension of the method used to pass control without a return,
and requires a V -type address constant and a branch or a branch and fink instruction. The
other method uses the CALL macro instruction to provide a parameter list and establish the
entry and return addresses. Using either method, the entry point must be identified by an
EN'TltY insiluction in the called control section if the entry name is not the same as the
control section name. Figures 10 and 11 illustrate the two methods of passing control; in each
example, it is assumed that register 13 already contains the address of a new save area.

L 15,NEXTADDR Entry address in register 15
CNOP 0,4
BAL 1,GOOUT Parameter list address in register

PARMLIST OS OA Start of parameter list
DCBADDRS DC A(INDCB) Input dcb address

DC A(OUTDCB) Output deb address
ANSWERAD DC B'10000000' Last parameter bit on

DC AL3(AREA) Answer area address
NEXTADDR DC V(NEXT) Address of entry point
GOOUT BALR 14,15 Pass control; register 14 contains

return address
RETURNPT
AREA DC 12F'0' Answer area from NEXT

,..... to c.troI WIdI RetWII

Use of an inIine parameter list and an answer area is also illustrated in Figure 10. The
address of the external entry point is loaded into register 1 S in the usual manner. A branch
and link instruction is then used to branch around the parameter list and to load register 1
with the address of the parameter list. An inline parameter list such as the one shown in Figure

tl OSlVa MYS s.penllor SenIces .. Macro

lOis convenient when you are debugging because the parameters involved are located in the
listing (or the dump) at the point they are used, instead of at the end of the listing or dump.
Note that the first byte of the last address parameter (ANSWERAD) is coded with the
high-order bit set to 1 to indicate the end of the list. The area pointed to by the address in the
ANSWERAD parameter is an area to be used by the called control section to pass parameters
back to the calling control section. This is a possible method to use when a called control
section must pass parameters back to the calling control section. Parameters are passed back in
this manner so that no additional registers are involved. 'The area used in this example is
twelve'words: the size of the area for any specific application depends on the requirements of
the two control sections involved.

RETURNPT
AREA

CALL NEXT,(INDCB,OUTDCB,AREA),VL

DC 12F'Q'

...... I I Coatrol WIdI CALL

The CALL macro instruction in Figure 11 provides the same functions as the instructions in
Figure 10. When the CALL macro instruction is expanded, the parameters cause the following
results:

NEXT
A V-type address constant is created for NEXT, and the address is loaded into register IS.

(INDCB,OUTDCB,AREA)
A-type address constants are created for the three parameters coded within parentheses, and
the address of the fU'St A-type address constant is placed in register 1.

VL
The high-order bit of the last A-type address constant is set to 1.

Control is passed to NEXT using a branch and link instruction. The address of the
instruction following the CALL macro instruction is loaded into register 14 before control is
passed.

In addition to the results described above, the V -type address constant generated by the
CALL macro instruction requires the load module with the entry point NEXT to be link edited
into the same load module as the control section containing the CALL macro instruction.
Refer to the Unkage EdiJor and Loader publication, if you are interested in fmding out more
about this service.

The parameter list constructed from the CALL macro instruction in Figure 11, contains
only A-type address constants. A variation on this type of parameter-list results from the
following coding:

CALL NEXT, (INDCB, (6) , (7)) , VL

In the above CALL macro instruction,. two of the parameters to be passed are coded' as
registers rather than symbolic addresses. The expansion of this macro instruction again results
in a three-~ord parameter list; in this example, however, the expansion also contains
instructions that store the contents of registers 6 and 7 in the second and third words,
respectively, of the parameter list. The bigh-order bit in the third word is set to 1 after register
7 is stored. You can specify as many address parameters as you need, and you can use
symbolic addresses or register contents as you see fit.

Propam Ma.p... It

Analyzing the Return

When control is returned from the control program. after processing a system macro
instruction, the contents of registers 2-13 are unchanged. When control is. returned to your
control section from the called control section, registers 2-14 contain the same information
they contained when control was passed, as long as system conventions are followed. The
called control section has no obligation to restore registers 0 and 1; so the contents of these
registers mayor may not have been changed.

When control is returned, register 1 S can contain a return code indicating the results of the
processing done by the called control section. If used, the return code should be a multiple of
4, so a branching table can be used easily, and a return code of 0 should be ·used to indicate a
normal return. The control program frequently uses this method to indicate the results of the
requests you make using system macro instructions; an example of the type of return codes the
control program provides is shown in the description of the IDENTIFY macro instruction.

The meaning of each of the codes to be returned must be agreed upon in advance. In some
cases, either a "good" or "bad" indication (zero or nonzero) will be sufficient for you to
decide your next action. If this is true, the coding in Figure 12 could be used to analyze the
results. Many times, however, the results and the alternatives are more complicated, and a
branching table, such as shown in Figure 13, could be used to pass control to the proper
routine.

Note: Explicit tests are required to ensure that the return code value does not exceed the
branch table size.

RETURNPT LTR
BNZ

15,15
ERRORTN

FII-e 12. Test for N Retia

RETURNPT
RETTAB

B RETTAB(15)
B NORMAL
B COND1
B COND2
B GIVEUP

Test return code for zero
Branch if not zero to error routine

Branch to table using return code
Branch to normal routine
Branch to routine for condition 1
Branch to routine for condition 2
Branch to routine to handle impossible
situations

FII-e 13. Ret.a Code Test U TMie

How Control is Returned

In the discussion of the return under "Analyzing the Return" it was indicated that the control
section returning control must restore the contents of registers 2-14. Because these are the
same registers reloaded when control is passed without a return, refer to the discussion under
"Passing·Control Without Return" for detailed information and examples. The contents of
registers 0 and 1 do not have to be restored.

Register 1 S can contain a return code when control is returned. As indicated previously, a
return code should be a multiple of four with a return code of zero indicating a normal return.
The return codes other than zero that you use can have any meaning, as long as the control
section receiving the return codes is aware of that meaning.

The return address is the address originally passed in register 14; control should always be
returned to that address. You can either use a branch instruction such as BR 14, or you can
use the RETURN macro instruction. An example of each method of returning control is
diScussed in the following paragraphs.

Figure 14 is a portion of a control section used to analyze input data cards and to check for
an out-of-tolerance condition. Each time an out-of-tolerance condition is found, in addition to
some corrective action, one is added to the value at the address STATUSBY. After the last
data card is analyzed, this control section returns to the calling control section, which bases its
next action on the number of out-of -tolerance conditions encountered. The coding shown in
Figure 14 loads register 14 with the return address. The contents of register 15 are set to zero,
and the value at the -address STATUSBY (the number of errors) is placed in the low-order
eight bits of the register. The contents of register 15 are shifted to the left two places to make
the value a multiple of four. Registers 2-12 are reloaded, and control is returned to the address
in register 14.

L 13,4(13)
L 14,12(13)
SR 15,15
Ie 15,STATUSBY
SLA 15,2
LM 2, 12,28(13)
BR 14

STATUSBY DC X'QQ'

Ii'IIIn 14. EstabIIshIai • R CMe

Load address of previous save area
Load return address
Set register 15 to zero
Load number of errors
Set return code to multiple of 4
Reload registers 2-12
Return

The RETURN macro instruction is provided to save coding time. The expansion of the
RETURN macro instruction provides instructions that restore a designated range of registers,
load return code in register 15, and branch to the address in register 14. In addition, the
RETURN macro instruction can be used to flag the save area used by the returning control
section; this flag, a byte containing all ones, is placed in the high-order byte of word four of
the save area after the registers have been restored. The flag indicates that the control section
that used the save area· has returned to the calling control section. You will find that the flag is
useful when tracing the flow of your program in a dump. For a complete record of program
flow, a separate save area must be provided by each control section each time control is
passed.

The contents of register 13 must be restored before the RETURN macro instruction is
issued. The registers to be reloaded should be coded in the same order as they would have
been designated had a load-multiple (LM) instruction been coded; You can load register 15
with the return code before you write the RETURN macro instruction, you can specify the
return code in the RETURN macro instruction, or you can. reload register 15 from the save
area.

The coding shown in Figure 15 provides the same result as the coding shown in Figure 14.
Registers 13 and 14 are reloaded, and the return code is loaded in register 15. The RETURN
macro instruction reloads registers 2-12 and passes control to the address in register 14. The
save area used is not flagged. The RC-15 parameter indicates that register 15 already contains
the return code, and the contents of register 15 are not to be altered.

STATUSBY

L
L
SR
IC
SLA
RETURN

DC

13,4(13)
14, 12(13)
15,15
15,STATUSBY
15,2
(2, 12) , RC=(15)

X'OO'

Ftcwe IS. Using the RETURN MacI'O IDstruetion

Restore save area address
Return address in register 14
Zero register 15
Load number of errors
Set return code to multiple of 4
Reload registers and return

Figure 16 illustrates another use of the RETURN macro instruction. The correct save area
address is again established, and then the RETURN macro instruction is issued. In this
example, registers 14 and 0-12 are reloaded, a return code of 8 is placed in register 15, the
save area is flagged, and control is returned. Specifying a return code overrides the request to
restore register 15 even though register 15 is within the designated range of registers.

L 13,4(13)
RETURN (14,12),T,RC=8

FIpre 16. RETURN Macro IDItruetIon WIth Flag

Return to the Control Program

The discussion in the preceding paragraphs has covered passing control within one load
module, and has been based on the assumption that the load module was brought into virtual
storage because of the program name specified in the EXEC statement. The control program
established only one task to be performed for the job step. When the logical end of the
program is reached, control passes to the return address passed (in register 14) to the first
control section in the control program. When the control program receives control at this
point, it terminates the wk it created for the job step, compares the return code in register 15
with any COND values specified on the JOB and EXEC statements, and determines whether
or not subsequent job steps, if any are present, should be executed.

Passing Control in a Dynamic Structure
The discussion of passing control in a simple structure provides the background for the
discussion of passing control in a dynamic structure. Within each load module, control should
be passed as in a simple structure. If you can determine which control sections will make up a
load module before you code the control sections, you should pass control within the load
module without involving the control program. The macro instructions discussed in this section
provide increased linkage capability, but they require control program assistance and possibly
increased execution time.

Bri",i", til. Load Mod"l. i"to Yirt"lIl Storll,.
The load module containing the entry name you specified on the EXEC statement is
automatically brought into virtual storage by the control program. Any other load modules you
require during your job step are brought into virtual storage by the control program when
requested; these requests are made by using the LOAD, LINK, ATTACH, and XCTL macro
instructions. The following paragraphs discuss the proper use of these macro instructions.

22 OS/VSl MVS Supervisor Semces Macro

Location of the Load Module

Initially, each load module that you can obtain dynamically is located in a library (partitioned
data set). This library is the link library, the job or step library, task library, or a private
library.

• The link library is always present and is avallable to all job steps of all jobs. The control
program provides the data control block for the library and logically connects the library
to your program, making the members of the library available to your program.

• The job and step libraries are explicitly established by including / /JOBLIB and
/ /STEPLIB 00 statements in the input stream. The / /JOBUB DO statement is placed
immediately after the JOB statement, while the / /STEPLIB DD statement is placed
among the DD statements for a particular job step. The job library is available to all
steps of your job, except those that have step libraries. A step library is available to a
single job step; if there is a job library, the step library replaces the job library for the
step. For either the job library or the step library, the control program provides the data
control block and issues the OPEN macro instruction to logically connect the library to
your program.

• Unique task libraries may be established by using the T ASKLIB parameter of the
ATTACH macro instruction. The issuer of the ATTACH macro instruction is responsible
for providing the OD statement and opening the data set or sets. If the T ASKLm
parameter is omitted, the task library of the attaching task is propagated to the attached
task. In the following example, task A's job library is LIB 1. Task A attaches task B,
specifying TASKLIB-LIB2 in the ATTACH macro instruction. Task B's task library is
therefore LIB2. When task B attaches task C, LIB2 is searched for task C before LIBI
or the link library. Because task B did not specify a unique task library for task C, its
own task library (LIB2) is propagated to task C and is the rlrSt library searched when
task C requests that a module be brought into virtual storage.

Task A
Task B

ATTACH EP=B,TASKLIB=LIB2
ATTACH EP=C

• A private library is defined by including a DD statement in the input stream and is
avaDable only to the job step in which it is defmed. You must provide the data control
block and issue the OPEN macro instruction for each data set. You may use more than
one private library by including more than one DO statement and associated data control
block.

A library can be a single partitioned data set, or a collection of such data sets. When it is a
collection, you define each data set by a separate DD statement, but you assign a name only
to the statement that defines the first data set. Thus, a job library consisting of three
partitioned data sets would be defined as follows:

IIJOBLIB DO DSNAME=PDS1, .. .
II DO DSNAME=PDS2, .. .
II DO DSNAME=PDS3 .. .

The three data sets (PDS 1, PDS2, POS3) are processed as one, and are said to be
concatenated. Concatenation and the use of partitioned data sets is discussed in more detail in
the Data Management Services publication.

Some of the load modules from the link library may already be in virtual storage in an area
called the link pack area. The contents of these areas are determined during the nucleus
initialization process and will vary depending on the requirements of your installation. The link
pack area contains all reenterable load modules from the LPA library, along with installation
selected modules from the SVC and link libraries. These load modules can be used by any job
step in any. job.

With the exception of those load modules contained in this area, copies of an of the
reenterable load modules you request are brought into your area of virtual storage and are
available to any taSk in your job step. The portion of your area containing the copies of the
load modules is called the job pack area.

The Search for the Load Module

In response to your request for a copy of a load module, the control program searches the job
pack area, the task's load list, and the link pack area. If a copy of the load module is found in
one of the pack areas, the control program determines whether that copy can be used (see
"Using an Existing Copy"). If an existing copy can be used, the search stops. If it cannot be
used, the search continues until the module is located in a library. The load module is then
brought into the job pack area or the load list area.

The order in which the libraries and pack areas are searched depends on the parameters
used in the macro instruction requesting the load module. The parameters that define the order
of the search are EP, EPLOC, DE, DCB, and TASKLm. The EP, EPLOC, and DE
parameters are used to specify the name of the entry point in the load module; you code one
of the three used to indicate the address of the data control block for the library containing
the load module, and is optional. Omitting the DCB parameter or using the DCB parameter
with an address of zero specifies the data control block for the task libraries, the job or step
library, or the link library. The TASKLm parameter is used only for ATTACH.

The following paragraphs discuss the order of the search when the entry name used is a
member name.

The EP and EPLOC parameters require the least effort on your part; you provide only the
entry name, and the control program searches for a load module having that entry name.
Figure 17 shows the order of the search when EP or EPLOC is coded, and the DCB
parameter is omitted or DCB-O is coded.

The job pack area is searched for an available copy.
The requestinl task's task Hbrary and all the unique task libraries of its antecedent tasks are searched.
The step library is searched; if there is no step library, the job library (if any) is searched.
The link pack area is searched.
The link library is searched.

,..... 17. SurdI for MothIIe, EP or EPLOC Panmeter WIllI DCB-O or DCB P.nmeter 0aIIttM

When used without the DCB parameter, the EP and EPLOC parameters provide the easiest
method of requesting a load module from the link, job, or step library. The task libraries are
searched before the job or step library, beginning with the task library of the task that issued
the request and continuing through the task libraries of all its antecedent tasks. The job or step
library is then searched, followed by the link library.

A job, step, or link library or a data set in one of these libraries can be used to hold one
version of a load module, while another can be used to hold another version with the same
entry name. If one version is in the link library, you can ensure -that the other will be found
first by including it in the job or step library. However, if both versions are in the job or step
library, you must define the data set that contains the version you want to use before the data
set that contains the other version. For example, if the wanted version is in PDSI and the
unwanted version is in PDS2, a step library consisting of these data sets should be defmed as
follows:

IISTEPLIB DO DSNAME=PDS1, .. .
II DO DSNAME=PDS2, .. .

24 OSIVS2 MVS s., SemeeI lad Macro ~

H, however, the first version in the job or step library has been previously loaded and the
version in the link library or the second version in the job library is desired, the DeB
parameter must be coded in the macro instructions.

This is not the case for task libraries. Extreme caution should be used when specifying
module names in unique task libraries, because duplicate names may cause the wrong module
to be brought into virtual storage when a task requests it. Once a module has been loaded, the
module name is known to all tasks in the region and a copy of that module is given to aU tasks
requesting that that module name be loaded, regardless of the requester's task library.

H you know that the load module you are requesting is a member of one of the private
libraries, you can still use the EP or EPLOe parameter, This time in conjunction with the
DCB parameter. You specify the address of the data control block for the private library in
the DCB parameter. The order of the search for EP or EPLOe with the DeB parameter is
shown in Figure 18.

The job pack area is searched for an available copy.
The specified library is searched.
The link pack area is searched.
The link library is searched.

Ji'IaIn '1. Snrda for MfMWe, EP or EPLOC Panlaeten WItIt DCB er SpedfJIBI Pmate LInry

Searching a job or step library slows the retrieval of load modules from the link library; to
speed this retrieval, you should limit the size of the job and step libraries. You can best do this
by eliminating the job library altogether and providing step libraries where required. You can
limit each step library to the data sets required by a single step; some steps (such as
cOmpilation) do not require a step library and therefore do not require searching and retrieving
modules from the link library. For maximum efficiency, you should derme a job library only
when a step library would be required for every step, and every step library would be the
same.

The DE parameter requires more work than the EP and EPLOe parameters, but it can
reduce the amount of time spent searching for a load module. Before you can use this
parameter, you must use the BLDL macro instruction to obtain the directory entry for the
module. The directory entry is part of the library that contains the module.

To save time, the BLDL macro instruction used must obtain directory entries for more than
one entry name. You specify' the names of the load modules and the· address of the data
control block for the library when using the BLDL macro instruction; the control program
places a copy of the directory entry for each entry name requested in a designated location in
virtual storage. H you specify the link library and the job or step library, the directory
information indicates from which library the directory entry was taken. The directory entry
always indicates the relative track and block location of the load module in the library. If the
load module is not located on the library you indicate, a return code is given. You can then
issue another BLDL macro instruction specifying a different library.

To use the DE parameter, you provide the address of the directory entry and code or omit
the DeB parameter to indicate the same library specified in the BLDL macro instruction. The
task using the DE parameter should be the same as the one which issued the BLDL or one
which has the same job, step, and task library structure as the task issuing the BLDL. The
order of the search when the DE parameter is used is shown in Figure 19 for the link, job,
step, and private libraries.

The preceding discussion of the search is based on the premise that the entry name you
specified is the member name. The control program checks for an alias entry point name when
the load module is found in a library. If the name is an alias, the control program obtains the

corresponding member name from the library directory, and then searches the fink pack and
job pack areas using the member name to determine if a usable copy of the load module exists
in virtual storage. If a usable copy does not exist in a pack area, a new copy is brought into
the job pack area. Otherwise, the existing copy is used, conserving virtual storage and
eliminating the loading time.

Directory Entry Indicates Link Library and DCB-O or DCB Parameter Omitted.
The job pack area for the region is searched for an available copy.
The link pack area is searched.
The module is obtained from the link library.

Directory Entry Indicates Job, Step, or Task Library and DCB-O or DCB Parameter Omitted.
The job pack area for the region is searched for an available copy.
The module is obtained from the task library designated by the 'z' byte of the DE operand.

DCB Parameter Indicates Private Library
The job pack area for the region is searched for an available copy.
The module is obtained from the specified private library.

~ 19. SardI for ModIIIe U DE

As the discussion of the search indicates, you should choose the parameters for the macro
instruction that provide the shortest search time. The search of a library actually involves a
search of the directory, followed by copying the directory entry into virtual storage, followed
by loading the load module into virtual storage. If you know the location of the load module,
you should use the parameters that eliminate as many of these unnecessary searches as
possible, as indicated in Figures 17, 18, and 19. Examples of the use of these figures are
shown in the following discussion of passing control.

Usin& an Existina Copy

The control program uses a copy of the load module already in the job pack area if the copy
can be used. Whether the copy can be used or not depends on the reusability and current
status of the load module; that is, the load module attributes, as designated using linkage editor
control statements, and whether the load module has already been used or is in use. The status
information is available to the control program only when you specify the load module entry
name on an EXEC statement, or when you use A IT ACH, LINK, or XCTL macro instructions
to transfer control to the load module. The control program protects you from obtaining an
unusable copy of a load module if you always "formally" request a copy using these macro
instructions (or the EXEC statement); if you pass control in any other manner (for instance, a
branch or a CALL macro instruction), the control program, because it is not informed, cannot
protect your copy.

All reenterable modules (modules designated as reenterable using the linkage editor) from
any library are completely reusable; only one copy is ever placed in the link pack area or
~rought into your job pack area, and you get immediate control of the load module. If the
module is serially reusable, only one copy is ever placed in the job pack area; this copy is
always used for a LOAD macro instruction. If the copy is in use, however, and the request is
made using a LINK, A IT ACH, or XCTL macro instruction, the task requiring the load
module is placed in a wait condition until the copy is available. A LINK macro instruction
should not be issued for a serially reusable load module currently in 'use for the same task; the
task will be abnormally terminated. (This could occur if an exit routine issued a LINK macro
instruction for a load module in use by the main program.)

If the load module is not reusable, a LOAD macro instruction will always bring in a new
copy of the load module; an existing copy is used only if a LINK, A IT ACH, or XCTL macro
instruCtion is issued and the copy has not been used previously .. Remember, the control
program can determine if a load module has been used or is in use only if all of your requests
are made using LINK, A IT ACH, or XCTL macro instructions.

Using the LOAD Macro Instruction

The LOAD macro instruction is used to ensure that a copy of the specified load module is in
virtual storage in your region or job pack area if it was not preloaded into the link pack area.
When a LOAD macro instruction is issued, the control program searches for the load module
as discussed previously. and brings a copy of the load module into the region if required. When
the control program returns control, register 0 contains the virtual storage address of the entry
point specified for the requested load module, and register 1 contains the length of the loaded
module (in doublewords) and the authorization code in the high byte. Normally, the LOAD
macro instruction is used only for a reenterable or serially reusable load module, since the load
module is retained even though it is not in use.

The control program also establishes a "responsibility" count for the copy, and adds one to
the count each time the requirements of a LOAD macro instruction are satisfied by the same
copy. As long as the responsibility count is not zero, the copy is retained in· virtual storage.

The responsibility count for the copy is lowered by one when a DELETE macro instruction
is, issued during the task which was active when the LOAD macro instruction was issued.
When a task is terminated, the count is lowered by the number of LOAD macro instructions
issued for the copy when the task was active minus the number of deletions. When the use
count for a copy in a job pack area reaches zero, the virtual storage area containing the copy
is made available.

PIISS; •• Co.trol w;t1l R.t.",

The LINK. macro instruction ,is used to pass control between load modules and to provide for
return of control. You can also pass control using branch or branch and link instructions or the
CALL macro instruction; however, when you pass control in this manner you must protect
against multiple uses of nonreusable or serially reusable modules. The following paragraphs
discuss the requirements for passing control with return in each case.

The LINK Macro Instruction

When you use the LINK macro instruction, as far as the logic of your program is concerned,
you are passing control to another load module. Remember, however, that you are requesting
the control program to assist you in passing control. You are actually passing control to the
control program, using an SVC instruction, and requesting the control program to find a copy
of the load module and pass control to the entry point you designate. There is some similarity
between passing control using a LINK. macro instruction and passing control using a CALL
macro instruction in a simple, structure. These similarities are discussed first.

The convention regarding registers 2-12 still applies; the control program does not change
the contents of these registers, and the called load module should restore them before control
is returned. You must provide the address in register 13 of the save area for use by the called
load module; the control program does not use this save area. You can pass address
parameters in a parameter list to the load module using register 1; the LINK macro instruction
provides the same facility for constructing this list as the CALL macro instruction. Register 0
is \l8ed by the control program and the contents may be modified.

There is also some difference between passing control using a LINK macro instruction and
passing control using a CALL macro instruction. When you pass control in a simple structure,
register 1 S contains the entry address and re~ter 14 contains the return address. When the
called load module gets control, that is still what registers 14 and 1 S contain, but when you
use the LINK macro instruction, it is the control program that establishes these addresses.
When you code the LINK macro instruction, you provide the entry name and possibly some
library information using the EP, EPLOC, or DE, and DeB parameters. But you have to get
this entry name and library information to the control program. The expansion of the LINK

Proanm MaMpm.. 27

macro instruction does this by creating a control program parameter list (the information
required by the control program) and placing the address of this parameter list in register 1 S.
After the control program "finds the entry name, it places the address in register 1 S.

The return address in your control section is always the instruction following the LINK,; that
is not, however, the address that the called load module receives in register 14. The control
program saves the address of the location in your program in its own save area, and places in
register 14 the address of a routine within the control program that will receive control.
Because control was passed using the control program, return must also be made using the
control program.

The control program establishes a use count for a load module when control is passed using
the LINK macro instruction. This is a separate use count from the count established for
LOAD macro instructions, but it is used in the same manner. The count is increased by one
when a LINK macro instruction is issued and decreased by one when return is made to the
control program or when the called load module issues an XCTL macro instruction.

Figures 20 and 21 show the coding of a LINK macro instruction used to pass control to an
entry point in a load module. In Figure 20, the load module is from the link, job, or step
library; in Figure 21, the module is from a private library. Except for the method used to pass
control, this example is similar to Figures 10 and 11. A problem program parameter list
containing the addresses INDCB, OUTDCB, and AREA is passed to the called load module;
the return point is the instruction following the LINK macro instruction. A V -type address
constant is not generated, because the load module containing the entry point NEXT is not to
be edited into the calling load module. Note that the EP parameter is chosen, since the search
begins with the job pack area and the appropriate library as shown in Figure 17.

RETURNPT
AREA

LINK EP=NEXT,PARAM=(INDCB,OUTDCB,AREA),VL=1

DC 12F'O'

FfIIn 20. Ulle of tile LINK Macro IIIItnIdIoD With the Jolt or u.r.y

OPEN (PVTLIB)

LINK EP=NEXT,DCB=PVTLIB,PARAM=(INDCB,OUTDCB,AREA),VL=1

PVTLIB DCB DDNAME=PVTLIBDD,DSORG=PO,MACRF=(R)

FfIIn ll. Ulle of the LINK Macro IIIItnIdIoD WIth • PrlYate LInry

Figures 22 and 23 show the use of the BLDL and LINK macro instructions to pass control.
Assuming that control is to be passed to an entry point in a load module from the link library,
a BLDL macro instruction is issued to bring the directory entry for the member into virtual
storage. (Remember, however, that time is saved only if more than one directory entry is
requested in a BLDL macro instruction. Only one is requested here for simplicity.)

LISTADDR

NAMEADDR

BLDL O,LISTADDR

DS
DC
DC
DC
DS

OH
H'01'
H'60'
CL8'NEXT'
26H

..,.... n. U. of the BLDL Macro

List description field:
Number of list entries
Length of each entry

Member name
Area required for directory information

LINK DE=NAMEADDR, DCB=O, PARAM=(INDCB, OUTDCB, AREA) , VL= 1.

Ji1awe n. 'I1ae LINK Macro Instructlon Wida • DE ParaBleter

The first parameter of the BLDL macro instruction is a zero, which indicates that the
directory entry is on the link, job, step, or task library. The second parameter is the address in
virtual storage of the list description field for the directory entry. The first two bytes at
LISTADDR indicate the length of each entry. If the entry is to be used in a LINK, LOAD,
A IT ACH, or XCTL macro instruction, the entry must be 60 bytes in length. A character
constant is established to contain the directory information to be placed there by the control
program as a result of the BLDL macro instruction. The LINK macro instruction in Figure 23
can now be written. Note that the DE parameter refers to the name field, not the list
description field, of the directory entry.

Using CALL or Branch and Link

You can save time by passing control to a load module without using the control program.
Passing control without using the control program is performed as follows. Issue a LOAD
macro instruction to obtain a copy of the load module, preceded by a BLDL macro instruction
if you cali shorten the search time by using it. The control program returns the address of the
entry point in register 0 and the length in doublewords in register 1. Load this address into
register 15. The linkage requirements are the same when passing control between load modules
as when passing control between control sections in the same load module: register 13 must
contain a save area address, register 14 must contain the return address, and register 1 is used
to pass parameters in a parameter list. A branch instruction, a branch and link instruction, or a
CALL macro instruction can be used to pass control, using register 15. The return will be
made directly to your program.

Note: When control is passed to a load module without using the control program, you must
check the load module attributes and current status of the copy yourself; and you must check
the status in all succeeding uses of that load module during the job step, even when the control
program is used to pass control.

The reason you have to keep track of the usability of the load module has been discussed
previously: you are not allowing the control program to determine whether you can use a
particular copy of the load module. The following paragraphs discuss your responsibilities when
using load modules with various.attributes. You must always know what the reusability
attribute of the load module is. If you do not know, you should not attempt to pass control
yourself.

If the load module is reenterable, one copy of the load module. is aD that is ever required for
a job step. You do not have to determine the status of the copy; it can always be used. The
best way to pass control is to use a CALL macro instruction or a branch or branch and link
instruction.

If the load module is serially reusable, one use of the copy must be completed before the
next use beJins. If. your job step consists of only one task, preventing simultaneous use of the
same copy involves making sure that the logic of your program does not require a second use
of the same load module before completion of the first use. An exit routine must not require
the use of a serially reusable load module also required in the main program.

Preventing simultaneous use of the same copy when you have more than one task in the job
step requires more effort on your part. You must still be sure that the logic of the program for
each task does not require a second use of the same load module before completion of the first
use. You must also be sure that no more than one task requires the use of the same copy of
the load module at one time; the ENQ macro instruction can be used for this purpose.

Program M ement 29

Properly used, the ENQ macro instruction prevents the use of a serially reusable resource, in
this case a load module, by more than one task at a time. Refer to "Resource Control" for a
complete discussion of the ENQ macro instruction. A conditional ENQ macro instruction can
also be used to check for simultaneous use of a serially reusable resource within one task.

If the load module is nonreusable, each copy can only be used once; you must be sure that
you use a new copy each time you require the load module. You can ensure that you always
get a new copy by using a LINK macro instruction or by doing as follows:

1. Issue a LOAD macro instruction before you pass control.

2. Pass control using a branch or a branch and link instruction or a CALL macro
instruction only.

3. Issue a DELETE macro instruction as soon as you are through with the copy.

How Control is Returned

The return of control between load modules is the same as return of control between two
control sections in the same load module. The program in the load module returning control is
responsible for restoring registers 2-14, possibly loading a return code in register IS, and
passing control using the address in register 14. The program in the load module to which
control is returned can expect registers 2-13 to be unchanged, register 14 to contain the return
address, and optionally, register 15 to contain a return code. Control can be returned using a
branch instruction or the RETURN macro instruction. If control was passed without using the
control program, control returns directly to the calling program.. However, if control was
originally passed using the control program, control returns first to the control program, then
to the calling program.

The action taken by the control program is as follows. When control was passed using a
LINK or A'IT ACH macro instruction, the responsibility count was increased by one for the
copy of the load module to which control was passed to ensure that the copy would be in'
virtual storage as long as it was required .. The return of control indicates to the control
program that this use of the copy is completed, and so the responsibility count is decreased by
one. The virtual storage atea containing the copy is made available when the responsibility
count reaches zero.

Passi". Co"trol Witlao.t R.t.",

The XCTL macro instruction is used to pass control between load modules when no return of
control is required. You can also pass control using a branch instruction; however, when you
pass controi in this manner, you must protect against multiple uses of nonreusable or serially
reusable modules. The following paragraphs discuss the requirements for passing control
without return in each case.

Passing Control Using a Branch Instruction

The same requirements and procedures for protecting against reuse of a nonreqsable copy of a
load module apply when passing control without return as were stated under "Passing Control
With Return." The procedures for passing control are as follows.

A LOAD macro instruction should be issued to obtain a copy of the load module. The entry
address returned in register 0 is loaded into register 15. The linkage requirements are the same
when passing control between load modules as when passing control between control sections
in the same load module; register 13 must be reloaded with the old save area address, then
registers 14 and 2-12 restored from that old save area. Register 1 is used to pass parameteR in
a parameter list. A branch instruction is issued to pass control to the address in register 15.

30 OS/VSl MVS Supemsor Senlces aDd Macro IDStnctIoDs

Note: Mixing branch instructions and XCTL macro instructions is hazardous. The next topic
explains why.

Using the XCfL Macro Instruction

The XCTL macro instruction, in addition to being used to pass control, is used to indicate to
the control program that this use of the load module containing the XCTL macro instruction is
completed. Because control is not to be returned,' the address of the old save area must be
reloaded into register 13. The return address must be loaded into register 14 from the old save
area, as must the contents of registers 2-12. The XCTL macro instruction can be written to
request the loading of registers 2-12, or you can do it yourself. If you Il'store all registers
yourself, do not use the EP parameter. This creates an inline parameter list that can only be
addressed using your base register, and your base register is no longer valid. If EP is used, you
must have XCTL restore the base register for you.

When using the XCTL macro instruction, you pass parameters in a parameter list, with the
address of the list in register 1. In this case, however, the parameter list (or the parameter
data) must be established in a portion of virtual storage outside the current load module
containing the XCTL macro instruction. This is because the copy of the current load module
may be deleted before the called load module can use the parameters, as explained in more
detail below.

The XCTL macro instruction is similar to the LINK macro instruction in the method used
to pass control: control is passed by way of the control program using a control program
parameter list. The control program loads a copy of the load module, if necessary, loads the
entry address in register 15, saves the address passed in register 14, and passes control to the
address in register 15. The control program adds one to the responsibility count for the copy
of the load module to which control is to be passed and subtracts one from the responsibility
count for the current load module. The current load module in this case is the load module last
given control using the control program in the performance of the active task. If you have
been passing control between load modules without using the control program, chances are the
responsibility count will be lowered for the wrong load module copy. And remember, when the
responsibility count of a copy reaches zero, that copy may be deleted, causing unpredictable
results if you try to return control to it.

Figure 24 shows how this co,u1d happen. Control is given to load module A, which passes
control to the load module B (step 1) using a LOAD macro instruction and a branch and link
instruction. Register 14 at this time con~ the address of the instruction following the
branch and link. Load module B then is executed, independently of how control was passed,
and issues an XCTL macro instruction when it is finished (step 2) to pass control to load
module C. The control program knowing only of load· module A, lowers the responsibility
count of A by one, resulting in its deletion. Load module C is executed and returns to the
address which used to follow the branch and link instruction. Step 3 of Figure 24 indicates the
result.

Two methods are available for ensuring that the proper responsibility count is lowered. One
way is to always use the control program to pass control with or without return. The other
method is to use only LOAD and DELETE macro instructions to determine whether or not a
copy of a load module should remain in virtual storage.

Control
~ogram_

Control Program

A ~
B ..

LOADB
BALRB

A I
I

BA!R -------...., B !
XCTLC

r---
I

B I I

c ! , , I ,
I ,
I t

XCTLC
____ J

RETURN

---I:'~ Control
Progqm ,

C

Program Contr~ j
To routine which
lest iaued. IALA
Instruction.

Fipre 24. Milulina Control Propam FlCltitiea Cau •• UnpftMlictable R

Additional Entry Points

,,3

Through the use of linkage editor facilities you can specify as many as 17 different names (a
member name and 16 aliases) and associated entry pobtts within a load module.· It is only
through the use of the member name or the aliases that a copy of the load module can be
brought into virtual storage. Once a copy has been brought into virtual storage, however,
additional entry points <?8D. be provided for the load module, subject to one restriction. The
load module copy to that the entry point is to be added must be one of the following:

• A copy that satisfied the requirements of a LOAD macro instruction issued durin. the
same task

• The copy of the load module most recently liven control through the control proaram in
performance of the same task

The entry point is added through the use of the IDENTIFY macro instruction, which can be
issued only by a program running under a program request block (PU). The mENTIFY
macro instruction cannot be issued by supervisor caD routines or asynchronous exit routines
estabUshed using other supervisor macro instructions.

When you use the IDENTIFY macro instruction, you specify the name to be used to
identify the entry point, and the virtual storage address of the entry point in the copy of the
load module. The address must be within a copy of a load module that meets the requirements
Usted above; if it is not, the entry point will not be added, and you will be liven a return code

32 0S/VS2 MVS SupenIIor Senlcel ad Macro

of OC (hexadecimal). The name can be any valid symbol of up to eight characters, and does
not have to correspond to a name or symbol within the load module. The name must not be
the same as any other name used to identify any load module available to the control program;
duplicate names cause errors. The control program checks the names of all load modules in the
link pack area, and the job pack area when you issue an IDENTIFY macro instruction, and
provides a return code of 08 if a duplicate is found. You are responsible for not duplicating a
member name or an alias in any of the libraries.

Entry Point and Calling Sequence IdentDterS as Deb.ng Aids
An entry point identifier is a character string of up to 70 characters which can be specified in
a SA VB macro instruction. The character string is created as part of the SA VB macro
instruction expansion.

A calling sequence identifier is a 16-bit binary number which can be specified in a CALL or
a LINK. macro instruction. When coded in a CALL or a LINK macro instruction, the calling
sequence identifier is located in the two low-order bytes of the fullword at the return address.
The high-order two bytes of the fullword form a NOP instruction.

Resource Control

Task Synchronization
Some planning on your part is required to determine what portions of one task are dependent
on the completions of portions of all other tasks. The POST macro instruction is used to signal
completion of an event; the WAn' and EVENTS macro instructions are used to indicate that a
task cannot proceed until one or more events have occurred. An event control block is used
With the WAIT, EVENTS or POST macro instructions; it is a fullword on a fullword
boundary, as shown in Figure 25.

An event control block is also used when the ECB parameter is coded in an ATTACH
macro instruction. In this case the control program issues the POST macro instruction for the
event (subtask termination). Either the 24-bit (bits 8 to 31) return code in register 15 (if the
task completed normally) or the completion code specified in the ABEND macro instruction (if
the task was abnormally terminated) is placed in the event control block as shown in Figure
25. The originating task can issue a WAIT or EVENTS W AlT-YES macro instruction
specifying the event control block; the task will not regain control until after the event has
taken place and the event control block is posted (except if an asynchronous event occurs, for
example, timer expiration).

o 1 2 31

,.. 25. Eyflllt COIIDOIIIIock

When an event control block is originally created, bits 0 (wait bit) and 1 (post bit) must be
set to zero. If an ECB is reused, bits 0 and 1 must be set to zero before a WAfT, EVENTS
ECB. or POST macro instruction can be specified. If, however, the bits are set to zero before
the ECB has been posted, any task waiting for that ECB to be posted will remain in the wait
state. When a WAn' macro instruction is issued, bit 0 of the associated event control block is
set to 1. When a POST macro instruction is issued, bit 1 of the associated event control block
is set to 1 and bit 0 is set to O. For an EVENTS type ECB, POST also puts the completed
ECB address in the EVENTS table.

A WAIT macro instruction can specify more than one event by specifying more than one
event control block. (Only one WAIT macro instruction can refer to a event control block at a
time, however.) If more than one event control block is specified in a WAIT macro instruction,
the WAIT macro instruction can also specify that all or only some of the events must occur
before the task is taken out of the wait condition. When a sufficient number of events have
taken place (event control blocks have been posted) to satisfy the number of events indicated
in the WAIT macro instruction, the task is taken out of the wait condition.

An optional parameter, LONG-YES or NO, allows you to indicate whether the task is
entering a long wait or a regular wait. A long wait should never be considered for I/O activity.
However, you might wish to use a long wait when waiting for an operator response to a
WTOR macro instruction.

Using a Serially Reusable Resource

When one or more users of a serially reusable resource modify the resource, simultaneous use
must be prevented. Consider a data area in . virtual storage that is being used by programs
associated with several tasks of a job step. Some of the users are only reading records in the
data area; since they are not changing the records, their use of the data area can be
simultaneous. Other users of the data area, however, are reading, updating, and replacing
records in the data area. Bach of these users must acquire, update, and replace records one at
a time, not simultaneously. In addition, none of the users that are only reading the records
wish to use a record that another user is updating until after the record has been replaced.
This illustrates why special care must be taken with seriaUy reusable resources.

For all of the uses of the serially reusable resource made during the performance of a single
task, you must prevent incorrect use of the resource yourseU. You must mate sure that the
logic of your program does not require the second use of the resource before completion of
the fll'St use. Be especially careful when using a serially reusable resource in an exit routine;
since exit routines are given control asynchronously from the standpoint of your program logic,
the exit routine could obtain a resource already in use by the main program. For the uses of
the serially reusable resource by more than one task, the ENO macro instruction is provided to
ensure that the resource is used serially. The ENO macro instruction cannot be used to prevent
simultaneous use of the resource within a single task. It can only be used to test for
simultaneous use within one task.

The. ENO macro instruction requests the control program to assign control of a resource to
the active task or another task. The cOntrol program determines the status of the resource, and
either grants the request by returning control to the active task, delays assignment of control
by placing the active task in the wait condition, or passes back a return code indicating the
status of the resource. When the status of the resource changes so that control can be given to
a waiting task. the task is taken out of the wait condition and placed in the ready condition.
The use of the ENO macro instruction is discussed in the following paragraphs.

Nil_i •• ,I. lla .. rc.

You represent the resource in the ENO. macro instruction by two names known as the qname
and the rname, and by a scope indicator. 'These names mayor may not have any relation to
the actual name of the resource. The control program does not associate the name with the
actual resource; it merely processes requests ~ving the same qname, mame, and scope on a
first-in, rust-out basis. It is up to you to associate the names with the actual resource. It is up
to all users of the resource to use qname, rname, and scope to represent the same resource.
The control program treats requests having different qname, mame, and scope combinations as
requests for different resoUrce. Because the actual resource is not identified by the control
program, it is possible to use the resource without issuin& an ENO macro instruction requesting
it. If this happens, the control program cannot provide any protection.

If the resource is used only in the performance of tasks in your job step, you should code
the STEP parameter in the J!NO macro instructiODS that request the resource, indicating that
the resource is used only in that. job step. The control program adds the address space
identifier to the scope so that dupUcate qname and rname combinations C8Jl be used in
different address spaces. If the resource is available to any address space in the system, the
qname, mame, and scope combination' must be agreed upon by all users. The SYSTEM
parameter should be coded in each ENO macro instruction requesting one of these resources.

When selecting a qname for the re80~, do not use SYS as the first three characters;
qnames used by the control program start with SYS and ~ot be used.

Bxc",.IN ".11 SA"nd •• 9 ••• '.

You can request exclusive or shared control of the resources for a task by coding either E or S
in the ENQ macro instruction. If this use of the resource will result in modification of the
resource, you must request exclusive control. If you are requesting use of a serially reusable
load module and passing control yourself, you must request exclusive control, since that
program modifies itself during execution. If you are updating a r~rd in a data area, you must
request exclusive control. If you are only reading a record, and you will not change the record,
you can request shared control.

In order to protect any user of a serially reusable resource, all users must request exclusive
or shared control on this basis: When a task is given control of a resource in response to a
shared request, control will be given to other tasks simultaneously only in response to other
requests for shared control, never in response to requests for exclusive control. A request for
shared control will protect against modification of the resource by another task only if the
above rules are followed.

Proc g ,A ••• 9 ••• '

The control program constructs a list for each qname, rname, and scope combination it
receives in an ENQ macro instruction, and enters a request in the list for the task which is
active when the ENQ macro instruction is issued. The request is entered in an existing list
when the control program receives a request specifying a qname, rname, and scope
combination for which a list exists; if no list exists for that qname, mame, and scope
combination, a new list is built. The requests are placed on the list in the order they are
received by the control program; the priority of the task has no effect in this case. Control of
the resource is allocated to a task according to two factors:

• The position on the list of the task's request.

• The exclusive control or shared control requirements of the request which caused the
entry to be added to the list.

Figure 26 shows the status of a list built for a qname, mame, and scope combination. The S or
E next to the entry indicates that the request was for shared or exclusive control. The task
represented by the rust entry on the list is always given control of the resource, so the task
represented by ENTRYl (Figure 26, Step I) is assigned the resource. The request which
estabUsbed ENTRY2 was for exclusive control, so the corresponding task is placed in the· wait
condition, along with the tasks represented by all the other entries in the list.

ENTRY1 (S)

ENTRY2 (Ef

ENTRY3(S)

ENTRY4 (S)

ENTRY6 (E)

ENTRY6(S)

Step 1

Fipre 26. ENQ Macro Instruction Procelllini

ENTRY2 (E)

ENTRY3 (S)

ENTRY4 (S)

ENTRY6 (E)

ENTRV6 (5)

S_2

ENTRY3 (S)

ENTRY4 (S)

ENTR¥6 (E)

ENTRY6 (S)

Step 3

Eventually, control of the resource is released for the task represented by ENTRYI, and the
entry is removed from the list. As shown in Figure 26, Step 2, ENTRY2 is now first on the
list, and the corresponding task is assigned control of the resource. Because the request which
estabUsbed ENTR Y2 was for exclusive control, the tasks represented by all the other entries in
th- litd are kept in the wait condition.

ReICMfte c......a 37

Figure 26, Step 3, shows the status of the list after control of the resource is released for
the task represented by ENTRY2. Because ENTRY3 is now at the top of the list, the task
represented by ENTRY3 is given control of the resource. ENTRY3 indicates that the resource
can be shared, and, because ENTRY 4 also indicates that the resource can be shared, ENTRY 4
is also given control of the resource. In this case, the task represented by ENTR YS will not be
given control of the resource until control has been released for both the tasks represented by
ENTRY3 and ENTRY4.

The following general rules are used by the control program:

• A task represented by the first entry in the list is always given control of the resource.

• If the request is for exclusive control, the task is not given control of the resource until
its request is the first entry in the list.'

• If the request is for shared control, the task is given control either when its request is
first in the list or when all the entries before it in the Jist also indicate a shared request.

• If the request is for several resources, the task is given control when all of the entries for
an exclusive request are first in the list and an of the entries for a shared request are
either first in the list or are preceded only by entries for other shared requests.

U,ill, BNQ IIlId DBQ

Proper use of the ENQ and DEQ macro instructions is required to avoid duplicate requests, to
avoid tying up the resource, and to avoid interlocking the system. Guides to using them
properly are given in the following paragraphs.

Duplicate Requests for a Resource

A duplicate request occurs when an ENQ macro instruction is issued to request a resource and
a task bas already been ~igned control of that resource. If the second request results in a
second entry on the Jist, the control program recognizes the contradiction and refuses to place
the task in the ready condition (for the first request) and in the wait condition (for the second
request) simultaneously. The second request results in a return code or abnormal termination
of the task. You should design your program to ensure that a second request for a resource is
never issued until control of the resource is released for the first use. Again, be especially
careful when using an ENQ macro instruction in an exit routine.

Releasing the Resource

The DEQ macro instruction is used to release a serially reusable resource assigned to a task
through the use of an ENQ macro instruction. The task must be in control of the resource. A
resource cannot be released if the task does not have control. As you have seen, it is possible
for many tasks to be placed in the walt condition while one task is assigned control of the
resource. This may reduce the amount of work being done by the system. Issue a DEQ macro
instruction as soon as possible to release the resource, so that other tasks can be performed. If
a task returns control to the control program without releasing a resource, the resource is
released automatically.

Conditional aDd Unconditional Requests

The normal use of the ENQ and DEQ macro instruction is to make unconditional requests,
and these are the only requests that have been considered to this point. As you have seen,
abnormal termination of the task occurs when two ENQ macro instructions are issued for the
same resource in performance of the same task or subtask, without an intervening DEQ macro
instruction. Abnormal termination also occurs if a DBQ macro instruction is issued in a task
that bas not been assigned control of the resource. Both of these abnormal termination

conditions can be avoided either by careful program design or through the use of the RET
parameter in the ENQ and DEQ macro instructions. The RET parameter (RET'-TEST,
RET-USE, RET-CHNG, and RET-HAVE for ENQ; RET-HAVE for DEQ) indicates a
conditional request for or, release of a resource.

RET-TEST is used to test the status of the list for the corresponding qname, mame, and
scope combination. An entry is never made in the list when RET -TEST is coded. Instead, a
return code is provided indicating the status of the list at the time the request was made. A

return code of 8 means the task is queued and has control of the resource. A return code of
20 means the task is queued but does not have control of the resource. A return code of 4
indicates the task would have been placed in the wait condition if the request had 'been
unconditional. A return code of 0 indicates the task would have been given immediate control
of the resource if the request had been unconditional. RET-TEST is most useful for
determining if the task has already been assigned control of the resource. It is less useful for
determining the status of the list and to take action based on that status. In the interval
between the time the control program checks the status and the time your program checks the
return code and issues another ENQ macro instruction, another task could have been made
active, and the status of the list could have been changed.

RET - USE indicates to the control program that the active task is to be assigned control of
the resource only if the resource is immediately available. A return code of 0 indicates that the
request was put on the list and the task was assigned control of the resource. A return code of
4 indicates that the task would have been placed in the wait condition if the request had been
unconditional. A return code of 8 means the task is queued and h8s control of the resource. A
return code of 20 means the task is queued but does not have control of the resource. The
request is not put on the list if any return code other than 0 is given. RET-USE can be best
used when there is other proCessing that can be done without using the resource. You do not
want to wait for the resource if there is other work that you can do.

RET-ClING indicates to the control program that the caller Wishes to have exclusive
control of a resource which he has already requested. A return code of 0 indicates that the
resource was available and was assigned to the exclusive control of the caller. Either the caller
had already requested exclusive control, or the requested change from shared to exclusive
control was honored. A return code of 4 indicates that the requested change in attribute
cannot be honored, because the caller is currently sharing the resource with another user. A
return code of 8 indicates that the user was not queued to receive control of the resource
when he requested the attribute change. Although this is an error condition, control is returned
to the user. A return code of 20 means the task is queued but does not have control of the
resource.

RET-HAVE is used in both the ENQ and DEQ macro instructions. An ENQ macro
instruction is treated as a normal request for control unless a request from the same task
already exists. A return code of 8 means the task is queued arid has control of the resource. A
return code of 20 means the task is queued but does not have control of the resource. A
return code of 0 indicates that the task was assigned control of the resource. A DBQ macro
instruction is processed as a normal request to release a resource unless the task does not have
control of the resource. A return code of 0 indicates that the resource has been released. A
return code of 8 indicates that the task did not have an entry for the resource. RET-HA VB
can be used to good advantage in an exit routine to avoid abnormal termination.

Avoidina Interloek

An interlock condition arises when two tasks are waiting for each others' completion, yet
neither task can gain access to the resource necessary for its completion. An example of an
interlock is shown in Figure 27. Task A has exclusive access to resource M, and higher-priority
task B has exclusive access to resource N. Task B is placed in a wait condition when it

R-..ee COlltnl 39

requests exclusive access to resource M because M is accessible only by task A. The interlock
becomes complete when task A requests exclusive access to resource N, because N is .
accessible only by Task B. The same interlock would have occurred if task B issued a single
request for multiple resources M and N prior to task A's second request. The interlock would
not have occurred if both tasks had issued single requests for multiple resources. Other tasks
requiring either of the resources are also in a wait condition because of the interlock, although
in this case they did not contribute to the conditions that caused the interlock.

Task A
ENQ (M,A,E,8,SYSTEM)

ENQ (N,B,E,8,SYSTEM)

FIaIn 27. lIItetlock C

Task B

ENQ (N,B,E,8,SYSTEM)
ENQ (M,A,E,8,SYSTEM)

The above example involving two tasks and two resources is a simple example of an
interlock. The example could be expanded to cover many tasks and many resources. It is
imperative that interlocks be avoided. The fonowing procedures indicate some ways of
preventing interlocks.

• Do not request resources that are not immediately required. If you can use the serially
reusable resources one at a time, you should request them one at a time and release one
before requesting the next.

• Share resources as much as possible. If the requests in the lists shown in Figure 27 bad
been for shared resources, there would have been no interlock. This does not mean you
should share a resource that you will modify. It does mean that you should analyze your
requirements for the resources carefully, and not request exclusive control when shared
control would suffice.

• The ENQ macro instruction can be written to request control of more than one resource
at a time. The requesting program is placed in a wait state until all of the requested
resources are' available. Those resources not being used by any other program
immediately become exclusively available to the waiting program and are unavailable to
any other programs that may request them. For example, instead of coding the two ENQ
macro instructions shown in Figure 28, the one ENQ macro instruction shown in Figure
29 could be coded. If all requests were made in this manner, the interlock shown in
Figure 27 would be avoided~ All of the requests from one task would be processed
before any of the requests from the second task. The DEQ macro instruction should
release a resource as soon as it is no longer needed.

ENQ (NAME 1 ADD, NAME2ADD, E, 8 , SYSTEM)
ENQ (NAME3ADD,NAME4ADD,E,10,SYSTEM)

...... 11. Two R For Two ReI4MfteI

ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM,NAME3ADD,NAME4ADD,E,10,SYSTEM)

Ji1pre 29. o.e R~ For Two R.....-eeI

• If the use of one resource always depends on the use of a second resource, then the pair
of resources can be defined as one resource in the ENQ and DEQ macro instructions.
This procedure can be used. for any number of resources that are always used in
combination. There would be no protection of the resources if they are also requested
independently, however. The request would always have to be for the set of resources.

• If there are many users of a group of resources and some of the users require control of
a second resource while retaining control of the first resource, it is still possible to avoid
interlocks. In this case the order in which control of the resources is requested should be
the same for each user. For instance, if resources A, B, and C are required in the
performance of many tasks, the requests should always be made in the order of A, B,
and C. An interlock situation will not develop, since requests for resource A will always
precede requests for resource B.

The above is not an exhaustive list of the procedures to be used to avoid an interlock. In a
controlled loop, you could also make repeated requests for control specifying the RET-USE
parameter, which would prevent the task from being placed in the wait condition. If no
interlock was developing, of course, this would be a waste of execution time. If the resource
was not obtained before the loop control expired, an interlock is possible and further requests
of the resource should be discontinued. The solution to the interlock problem in all cases
requires the cooperation of all the users of the resources.

Resource Access Control Facility (RACF)
The Resource Access Control Facility (~CF) provides software access control measures that
can be used to enhance data security in a computing system. RACF can be used in addition to
any present data security measures currently being used.

This facility provides the ability to specify access authorities under which the resources (for
example, DASD data sets, tape volumes, and DASD volumes) in the system are made avallable
to the users of the system.

When users, groups, and resources are defined to RACF, RACF builds and stores their
descriptions in profiles on the RACF data set. The profiles will be used by RACF for
RACHECK authorization checking.

For more information on RACF, see OS/YS2 MYS Resource Access Control Facility
(RACF): General Infonhation Manual, GC28-0722.

RA CHECK Macro l,.stnlct;o"

RACHECK processing determines if a user is authorized to obtain use of a resource protected
by RACF. When a user requests access to a RACF-protected resource, acceptance of the
request is based upon the identity of the user and whether the user has been permitted
sufficient access authority to the resource.

System authorization checking is performed by RACF when a resource manager (for
example, data management OPEN), which controls a RACF-protected resource issues the
RACHECK macro instruction before allowing a user access to the resource.

RACSTAT Macro I,.slr.clio"

RACST AT processing determines if RACF is active and optionally determines if RACF
protection is in effect for a given resource class. The macro can be used to determine if a
resource class is defined to RACF.

FRA CHECK Macro l,.st",ct;o"

FRACHECK processing determines if a user is authorized to obtain a RACF-protected
resource. FRACHECK is a branch-entered service that performs authorization checking for
RACF-protected resources whose profiles have been brought into main storage by the
RACLIST routine.

R....-ce COIIb'oI 41

42 OS/VS2 MVS SapenIIor SenkeI aM Maero

Interruption, Termination, and Dumping Sen1ces

The supervisor offers many services to assist in the detection and processing of abnormal
conditions during the execution of the system. Certain types of abnormal conditions are
detected by the hardware and cause program interruptions to occur (for example, if an attempt
is made to execute an instruction with an invalid operation code). Other abnormal conditions
are detected by the software (for example, an attempt to open a data set which is not defined
to the system causes an ABEND to be issued by the Open routine).

Although the SUpervisor provides facilities for writing exit routines to handle specific types
of interruptions and abnormal conditions, the supervisor also provides for termination of your
program when you request it by issuing an ABEND macro instruction, or when the control
program detects a condition that wiD degrade the system or destroy data.

Program Jntemaption Processing

Some conditions encountered in a program cause a program interruption. These conditions
include incorrect parameters and parameter specifications, as wen as exceptional results, and
are known generally as program exceptions. For certain exceptions (rlXed-point and decimal
overflow, exponent underflow and significance), interruptions can be disabled by setting the
corresponding bits in the program status word to zero.

When a task becomes active for the fUst time, all program interruptions that can be disabled
are disabled, and a s.tandard control program exit routine, included when the system was
generated, is provided. This control program exit routine is given control when certain program
interruptions occur; it issues an ABEND macro instruction specifying task abnormal
termination and requesting a dump. By issuing the SPIE macro instruction, you can specify
your own exit routine to be given control for one or more types of program exceptions. The
macro instruction specifies the address of the exit routine to be given control when specified
program exceptions occur. If the SP~ macro instruction specifies an exception for which the
interruption has been disabled, the control program enables the interruption when the macro
instruction is issued.

The SPIE macro instniction can be issued by any problem program being executed in
performance of the task. When the task is active, your exit routine receives control for all
interruptions resulting from exceptions specified in the SPIB macro instruction unless the
current routine for the task is operating in supervisor mode. For other program interruptions,
control is given to the control program exit routine. Bach succeeding SPIE macro instruction
completely overrides specifications in the previous macro instruction.

Program Jntemaption Control Area

The expansion of each standard or list form SPIE macro instruction contains a control program
parameter list called the program interruption control area (PICA). The PICA and another
control program area caned the program interruption element (PIB) contain the information
that enables the control program to intercept user-specified program interruptions. Together t
the PIB and the PICA associated with it are called the "SPIB environment. tt (The PIE is
described later in this section.) The PICA, as shown in Figure 30, contains the new program
mask for the interruption types that can be disabled, the address of the exit routine to be given
control when one of the specified interruptions occurs, and a code for interruption types
(exceptions) specified in the SPIE macro instruction.

Displecement
(Bytes) o 2 3 4 6

0000 ! Program
I Mask Exit Routine Address Interruption Type

I

Fipre 30. PrOFam Interruption Control Area

The control program maintains a pointer (in the PIE) to the PICA referred to by the last
SPIE macro instruction executed. This PICA may have been created by the last SPIE
(standard or list form) or may have been created previously and referred to by the last SPIE
(execute form). Each program that issues a SPIE macro instruction, before returning control to
the calling program or passing control to another program via an XCTL macro instruction,
must cause the control program to adjust the SPIE environment to the condition that existed
or to eHminate the spm environment if one did not exist on entry to the program. When the
standard or execute form of the SPIE macro instruction is issued, the control program returns
the address of the previous PICA in register 1. U no SPIB environment existed when the
program was entered, the control program returns zeros in register 1.

The effect of the last SPIB macro instruction is canceled by issuing a SPIE· macro
instruction with no parameters. This action does not reestablish the effect of the previous
SPIB; it does create a new PICA that contains zeros, thus indicating that no user exit routine
is to process interruptions. Any previous SPIE environment may be reestablished, regardless of
the number or type of subsequent SPIE macro instructions issued, by using the execute form
of the SPIE macro instruction specifying the appropriate value that had been returned in
register 1 by the control program. U a PICA address is specified (as opposed to zeros), the
PICA must still be valid (not overlaid). The SPIB environment will be eliminated by specifying
zeros as the PICA address.

Figure 31 shows how to restore a previous PICA. The fU'St SPIE macro instruction
dosignates an exit routine called FIXUP that is to be given control if fixed-point overflow
occurs. The address returned in register 1 is stored in the fullword called HOLD. At the end of
the program, the execute form of the SPIE macro instruction is used to restore the previous
PICA.

SPIE FIXUP,(8) Provide exit routine for fixed-point overflo
ST 1,HOLD Save address returned in register 1

L S,HOLD Reload returned address
SPIE MF=(E,(S» Use execute form and old PICA address

HOLD DC F'O'

:rro,rll. l.te""""I •• BI •••• t

At the fll"St execution of a SPIE macro instruction during the performance of a task, the
control program creates a 32-byte program interruption element (PIB) in the virtual storage
area assiped to the job step. Because the PIE is freed when the SPIE environment is
eliminated (by specif)ing a PICA address of zero in the execute form of a SPIE macro
instruction), a PIB will also be created whenever a SPIE macro instruction is issued and no
PIE exists. The format of the PIE is shown in Fipre 32.

DiIp nt

(Bytes) 0

4

12

16

20

24

28

32

Rel8N8d I
Old Progrem StatUI Word

in BC mode

...... 32.

2 3

PICA Addre ..

: (Interruption Codes) L- _______________

Register 14

Regilter 16

Register 0

Register 1

Regilter 2

The PICA address in the program interruption element is the address of the program
interruption control area used in the last execution of a SPIE macro instruction for the task.
When control is passed to the routine indicated in the PICA, the BC mode old program status
word contains the interruption code in bits 16-31; these bits can be tested to determine the
cause of the program interruption. The contents of registers 14, IS, 0, 1, and 2 at the time of
the interruption are stored by the control program as indicated.

llegist., CO.t •• " U, •• E.try to Us.,'s Exit llo.ti ••

When control is pasaed to the designated exit routine, the register contents are as follows:

R 0: Internal control program information.

aep.ter 1: Address of the program interruption element for the task that caused the
interruption .

....... 13: Address of the save area for the main program. The exit routine must not use
this save area.

llqIJter 14: Return address (to the control program).

RePter 15: Address of the 'exit routine. The exit routine must be in virtual storage when it is
required, and must return control to the control program using the address passed in register
14. The control program restores registers 14, IS, 0, 1, and 2 from the program interruption
element after control is returned, but does not restore the contents of registers 3-13. If a
program interruption occun when the program interruption exit routine is in control, the
control program exit routine is given control.

To determine which·type of interruption occurred, the exit routine can test bits 28 through
31 of the old program status word (OPSW in BC mode) in the program interruption element.
The routine can' then take cori'ective action or can simply ignore the exceptional condition.

, rlla, ... 0 e r • SenIceI 45

The exit routine can alter the contents of the registers when control is returned to the
interrupted program. For registers 3 through 13, the routine alters the contents of the actual
registers. For registers 14 through 2, the routine alters the contents of the register save area in
the program interruption element, because the control program reloads these registers from this
area when it returns control to the interrupted program. The exit routine can also alter the last
four bytes of the OPSW in the program interruption element. By changing the OPSW, the
routine can select any return point in the interrupted program.

Handling Abnormal Conditions
It is not possible to provide procedures for all possible conditions which can occur during the
execution of a program. You should, of course, be sure that you can process all valid data, and
that your program satisfies all the requirements of the problem. The more general you make
the program, the greater the number of additional routines you will require to handle special
cases. But you wiD not be able to provide routines to detect and correct all of the special or
abnormal conditions that can occur.

The control program does a great deal of checking for abnormal conditions. A standard
program interruption routine is provided to detect and process errors such as protection
violations or addressing errors. The data management and supervisor routines provide some
error checking facilities to ensure that, based on the information you have provided, only valid
data is being processed, and that no requests with conflicting requirements have been made.
For the abnormal conditions that can possibly be corrected, control is returned to your
program with a return code indicating the.probable source of the error. For conditions that
indicate that further processing would result in degradation of the system or destruction of
existing data, the control program abnormal termination routine is given control.

There wiD be abnormal conditions unique to your program, of course, that the control
program cannot detect. Figure 33 is an example of one of these. The routine shown in Figure
33 checks a control field in an input parameter list to determine which function the program is
to perform. Only characters between 1 and 4 are valid in the control field. The presence of
any other character is invalid, but the routine must be prepared to detect and handle these
characters. The routine should indicate its inability to continue processing by returning control
to the calling program with an error return code. The calling program should then try to
interpret the return code and to recover from the error. If it cannot do so, the calling program
should detach its incomplete subtasks, execute its usual termination procedures, and return
control to its calling program, again 'with an error return code. This procedure may result in
termination of all the tasks of a job step; if it does, the COND parameters of the JOB and
EXEC statements may be used to determine whether subsequent job steps should be executed.

RTN1
Ves

RTN2
Vel

RTN3
Ves

RTN4
Ves

No

Flpre 33. Detectina an Abnormal Condition

An alternative to this procedure is to pass control to the control program abnormal
termination routine by issuing an ABEND macro instruction. In this case, if an error exit
routine was established via the EST AS macro instruction or the A IT ACH macro instruction
with the EST AI or ST AI option, the error exit routine gets control (This error exit routine
also receives control if the system issues an ABEND macro instructioa.) The exit ~ then
determine its actio~ with regard to the abnormal condition. This approach permits the
implementation of mainline routines which contain less error handling code (for example, there
is DO need to check return codes after invocation of a subroutine if the subroutine issues an
ABEND). The error handling functions can be packaged in the ESTAE/ESTAI exits which
execute only when an error occurs.

~ position within the job step hierarchy of 'the task. for which ,the ABEND macro
instruction is issued determines the exact function of the abnormal tenDination routine. If an
ABEND macro instruction is issued when the job step task. (the highest level or only task) is
active, or if the STEP parameter is coded in an ABEND macro instruction issued during the
performance of any task in the job step, all the tasks in the jOb step are terminated. An
ABEND macro instruction (without a STEP parameter) that is issued in performance of any
task other than the job step task usually causes only that task. and the subtasks of that task to
be abnormally terminated. However, if the abnormal termination cannot, be fuIrllled as
requested, it may be necessary for the control program to abnormally terminate the job step

task. The abnormal termination routine works in the same manner whether it is given control
from the control program or a problem program.

If the job step is not to be terminated, the following actions are taken:

• The resources owned by the terminating task and all of its subtasks are released, starting
with the lowest level task.

• The (system or user) completion code specified in the ABEND macro instruction is
placed in the task control block of the active task (the task for which the ABEND macro
instruction was. issued).

• If the ECB parameter was written in the AITACH macro instruction issued to create the
active task, the ECB is posted with the completion code specified in the ABEND macro
instruction.

• If the ETXR parameter was written in the A IT ACH macro instruction issued to create
the active task, the end-of .. task exit routine is scheduled to be given control when the
originating task becomes active.

• If neither the ECB nor ETXR parameter was written when the A IT ACH macro
instruction w.as issued, a DETACH macro instruction is issued by the control program for
the active task.

If the job step is to be terminated, the following actions are taken:

• The resources owned by each task are released, starting with the lowest level task, for all
tasks in the job step. No end-of-task exit routine is given control.

• The (system or user) completion code specified in the ABEND macro instruction is
written on the system output device.

• Unless you specify otherwise in your job control statements, the remaining job steps in
the job are skipped. However, the statements defining these steps are checked for proper
syntax.

It is possible to restart a job step that has been abnormally terminated. Restart can occur
either at the beginning of the job step or at an internal checkpoint. A detailed discussion of
checkpoint and restart appears in OS/VS2 MVS Checkpoint/Restart.

Intercepting Abnormal TermiDation of Tasks

Abnormal termination of a task can be intercepted through the use of the EST AE macro
instruction. When a task that has previously issued an EST AE macro instruction is scheduled
for abnormal termination, control, is passed to the user at his EST AE exit routine address.
Within the EST AE exit routine, the user can perform pre-termination functions and diagnose
the error. He can also determine whether abnormal termination should continue for the task,
or whether normal processing can resume at some retry point.

When the abnormal t:Jrmination is scheduled, the EST AE exit routine must be resident. It
may either be part of the program issuing.ESTAE or be brought into virtual storage via the
LOAD macro instruction.

A single user program can issue more than one EST AE macro instruction with the CT
(create) parameter. All EST AE requests issued by programs running under the same task are
queued so that the exit established by the most recent EST AE request will be the fust to get
control. If this exit fails or requests that the abnormal termination continue, the exit
established by the previous EST AE request will get control.

... OSIVS2 MVS .. I SenIees .. MKn

If the user wishes to use the same exit routine for several tasks at the same time, it must
be reenterable. For convenience, it is recommended that all EST AE exit rQutines be
reenterable.

The user can cancel or overlay the current EST AE request; that is, the one most recently
made. If no EST AE requests are active for the task when a cancel or overlay is issued, or if
the user attempts to cancel or overlay an EST AE . request not associated with his request block
level of control, he will be informed that his request is invalid by a return code. An EST AE
request can be canceled by issuing the EST AE macro instruction with the EST AE exit routine
address specified as zero. Overlaying is done by issuing an EST AE macro instruction
specifying OV. Every program should cancel all EST AE exits it has created before returning
control to its caller.

I.,.r/llce I" 1111 ESTAE ex;I

Before the initial EST AE exit routine receives control, the I/O and asynchronous processing
requests specified in the EST AE macro instruction are fulfilled. The 1/ 0 processing requests
will be performed only for the first exit selected; subsequent exits, if entered, will receive an
indication of the I/O status, but no additional I/O processing will be performed. The
asynchronous exit processing requests, however, will be fulfilled for each exit.

Before each EST AE exit receives control, the control program attempts to obtain and
initialize a work area which will control information about the error. This work area is called
the System Diagnostic Work Area (SDWA). (The SDWA mapping macro - IHASDWA - must
be included in the routine.) The first word of the SDWA contains the address of the parameter
list established via the EST AE macro instruction. If the SDW A is obtained, the contents of the
registers on entry to the EST AE exit routine are:

register 0

register I
registers 2-12
register 13
register 14
register IS

A code indicating the type of I/O processing performed:
o Active I/O has been quiesced and is restorable.
4 - Active I/O has been halted and is not restorable.
8 - No I/O was active at time of ABEND.
16 - No I/O processing was performed.
Address of the SDWA.
Unpredictable.
Address of a 72-byte register save area.
Return address.
Entry point address.

The exit routine is enabled and has the same protection key as the routine which established
the exit as long as that routine was under a problem program protection key (keys 8-15). An
EST AE exit created by a program running under any other control program protection key
(keys 0-7) receives control in key O. Entry is made to the ESTAE exit via the SYNCH macro
instruction.

When the EST AE exit has completed its analysis of the error, it should use the SETRP
macro instruction to inform the control program of the actions it desires. The SETRP macro
instruction will initialize the SDW A with the desired options.

Return from the EST AE exit can optionally be ·effected via the SETRP REGS parameter or
by a BR 14 instruction.

If storage was not available for the SDW A, the register contents upon entry to the EST AE'
exit routine are as follows:

register 0 12 (decimal).
register 1 ABEND completion code.
register 2 Address of the parameter list specified on the EST AE macro instruction, or O.
resisters 3-13 Unpredictable.
register 14 Return address.
register 1 S Entry point address.

The exit routine is enabled and has the same protection key as the routine which established
the exit as long as that routine was under a problem program protection key (keys 8-15). An
EST AE exit created by a program running under any other control program. protection key
(keys 0-7) receives control in key O. Entry is made to the ESTAE exit via the SYNCH macro
instruction.

U the control program could not provide a work area, a register save area will not be
provided either. In this case, register 14 must be saved and used as the return register to the
control program.

U a work area (SDW A) was not provided, the user must place a return code in register 15
before returning control to the control program from the EST AE exit routine. The return code
indicates whether ABEND processing is to be continued for the task or whether termination
can be circumvented and a retry address given control. The return codes placed in register 15
may be:

o - Termination should be continued. (Any EST AE exits that were established prior to this exit will
receive control.)

4 - A retry address is provided. (This address must be placed in register 0.)

The ESTAE exit routine returns control via BR 14.

IoterceptiDg Abnormal Termination of Subtasks
To provide an exit in your program. to intercept abnormal termination of a subtask, use the
EST AI parameter of the A IT ACH macro instruction you issue to create the subtask. The
EST AI request issued for any subtask will be extended to aU subtasks. For example, suppose
task A attaches task B and uses the ESTAI parameter of ATTACH. When task B attaches
task C, the EST AI request issued by A will be active for C as well as B.

Since more than one subtask abnormally terminate at the same time, the EST AI exit routine
may be used by more than one task concurrently. Therefore, the exit routine must be
reenterable.

l.terlilce to II. EST.t41 exit

EST AI exits are entered after aU EST AE exits that exist for a given task have received control
and have either failed or requested that the termination continue.

The interface to EST AI exits is the same as that for EST AE exits. However, one additional
option is available for EST AI. In relinquishing control to the system, return code 16 may be
specified either on the SETRP macro instruction if an SDWA exists or in· register 15 if an
SDWA is not available. The return code means that the termination should be continued and
no further EST AI exits should receive control for that task.

ESTAE/ESTAI ReV)' Routines
If a given EST AB/EST AI exit routine requests that the termination be continued, the control
program will give control to the next oldest EST AB/EST AI exit which eldsts for the task.
However, if a given EST AE/EST AI exit routine requests that a retry address be given control,
a dump will be taken if requested (unless suppressed by the exit), and no further
EST AB/EST AI exits will be processed. Instead, the address specified as the retry address will
be given control.

The EST AB/EST AI retry routine, like the EST AB/EST AI exit routine must be in virtual
storage when the exit routine determines that retry is to be attempted. If not already resident
within your load module, it may be brought into storage via the LOAD macro instruction.

An EST AE retry routine will execute under the request block that issued the EST AE macro
instruction; aU newer request blocks will be purged before the retry routine is passed control.

An EST AI retry routine will execute under the request block for the latest EST AE or
ESTAI exit routine. (A request block will exist for a previous ESTAE or ESTAI exit if one
had abnormally terminated during execution.) H no previous EST AE or EST AI exit has failed,
the RB queue is purged until only program request blocks PRBs remain. Then, the retry
routine will get control under the newest PRB left on the queue.

When control is passed to a retry address, the EST AE macro instruction does not have to
be reissued to continue to use the same EST AE exit. However, EST AE may be issued to add
or change exits.

H an SDWA was passed to the exit and FRESDWA-YES was not specified on the SETRP
macro instruction, the retry routine should issue the FREEMAIN macro instruction to free the
storage occupied by the SOW A when it is no longer needed. The subpool number and the
length which should be used on the FREEMAIN macro instruction are contained within the
SOWA.

later/lice to II Retry llo.tlae

There are two different interfaces to the retry routine:

• H an SOW A was obtained, you can set in the SOW A the register contents you wish to
have and request that they be passed to the retry routine by coding RETREGS-YES in
the SETRP macro instruction. This alternative is most often used in mainline processing .

• If no SOWA was obtained or if RETREGS-NO was specified on the SETRP macro
instruction, only parameter registers are passed to the retry routine. This alternative is
most often used if a special retry routine is to get control.

The register contents are as follows:

If an SDW A was not obtained:

register 0
register I
register 2

registers 3·13
register 14
register IS

12.
Address of the user parameter list established via the EST AE macro instruction.
Address of the purge I/O restore list (PIRL) if I/O was quiesced and is restorable.
Otherwise, O.
Unpredictable.
Address of an SVC 3 instruction.
Entry point address of retry routine.

If an SDW A was obtained and the exit did not request register update (RETREGS-NO) or
release of the SOWA (FRESOWA-NO):

register 0
register 1
repters 2-13
register 14
register IS

O.
Address of SDWA.
Unpredictable.
Address of an SVC 3 instruction.
Entry point address of retry routine.

If an SOW A was obtained and the exit did not request register update but did request
release of the SOW A:

register 0
reper 1
register 2
registers 3·13
register 14
register IS

20.
Address of the user parameter list established via the EST AE macro instruction.
Address of the PIRL if I/O was quiesced and is restorable. Otherwise, O.
Unpredictable.
Address of an SVC 3 instruction.
Entry point address of retry routine.

If the exit requested register update (RETREGS-YES), the registers as they appear in the
SOW A will be passed to the retry routine.

--doe, ~ SenIceI 51

In all cases, the routine runs enabled, and the protection key is the same key of the routine
that established the exit.

Dumping Services

There are two types of storage dumps that can be requested by a problem program of the
operating system:

• A dump obtained through use of the DUMP parameter in the ABEND macro instructioll
or the DUMP-YES parameter on the SETRP macro instruction in a recovery exit.

• A dump obtained through use of the SNAP macro instruction.

A.BENDD •• ps

An ABEND macro instruction initiates enor processing for a task. The DUMP option of
ABEND requests a dump of Storage and the DUMPOPT option may be used to specify the
areas to be displayed. These dump options may be expanded by an EST AE or EST AI routine.
The control program usually requests a dump for you when it issues an ABEND macro
instruction.

An ABEND dump will be provided only if a DD statement (SYSABEND, SYSMDUMP, or
SYSUDUMP) is incuded in the job step. The DD statement determines the type of dump
provided and the system dump options that are used. When the dump is taken, the
user-requested dump options (specified in the ABEND macro instruction or by recovery
routines) are added to the installation-selected options.

Note: The operator can use the CHNGDUMP command either to alter the user-requested and
installation-selected dump options or to supress all ABEND dumps.

If a dump is requested and the ESTAE/BSTAI exit also requests retry, the dump will be
taken by the control program prior to passing control to the retry address.

The data set containing the dump can reside on any device which is supported by the basic
sequential access method (BSAM). The dump is placed in the data set described by the DD
statement you provide. If a printer is selected, the dump is printed immediately. However, if a
direct access or tape device is designated, a separate job must be scheduled to obtain a 1isting
of the dump, and to release the space on the device. If the dump data set was described by a
SYSMDUMP DD statement, the AMDPRDMP service aid can be used to format and print the
dump. (A printer should not be selected for a SYSMDUMP DD statement.) For information
about the AMDPRDMP service aid see OS/VS2 System Programmer Library: S~"i~ Aids.

SNAP DrllllPS

A SNAP dump may be requested by a task at any time during its processing by issuing a
SNAP macro instruction. For a SNAP dump, the DD statement may have any name except
SYSABEND, SYSMDUMP, and SYSUDUMP.

Like the ABEND dump, the data set containing the dump can reside on any device that is
supported by BSAM. The dump is placed in the data set described by the DD statement you
provide. If a printer is selected, the dump is printed immediately. However, if a direct access or
tape device is designated, a separate job must be scheduled to obtain a listing of the dump,
and to release the space on the device.

52 OS/VS2 MVS S.,enilor Senke8 .. Maao

To obtain a dump using the SNAP macro instruction, you must provide a data control block
and issue an OPEN macro instruction for the data set before any SNAP· macro instructions are
issued. If the standard dump format is requested, 120 characters per line are printed. The data
control block must contain the following parameters: DSORG-PS, RECFM-VBA,
MACRF-W, BLKSIZW-882 or 1632, and LRECL-12S. (The data control block is
discussed in OS/VS Data Ma1llJgement SBVi~s GIl. and OS/VS Data MtmtJgement MtICI'O
Instructions.) If a bigh-density dump is to be printed on a 3800 Printing Subsystem, 204
characters per line are printed. To obtain a bigh-density dump, CHARS-DUMP must be
coded on the DD statement describing the dump data set. The BLKSIZE- must be either
1470 or 2724, and the LRECL- must be 209. CHARS-DUMP can also be coded on the DD
statement describing a dump data set that wiD not be printed immediately. If CHARS-DUMP
is specified and the output device is not a 3800, print lines are truncated and print data is lost.
If your program is to be prQCeSSed by the loader, you should also issue a CLOSE macro
instruction for the SNAP data control block.

54 OS/VS2 MVS -. SenIceI_ MMn

You use the virtual storage area assigned to your job step through implicit and explicit requests
for virtual storage. The use of a UNK macro instruction is an example of an implicit request;
the control program allocates storage before bringing the load module into your job pack area.
The use of the GETMAIN macro instruction is an explicit request for a certain number of
bytes of virtual storage to be allocated to the active task. In addition to your requests for
virtual storage, requests are made by the control program and data management routines for
areas to contain some of the control blocks required to manage your tasks.

Note: If your job step is to be executed as a nonpageable (V-R) task, the REGION
parameter value specified on the job or execute statement determines the amount of virtual
(real) storage reserved for the job step. If you run out of storage because of a system failure,
such as in a GETMAIN request, increase the REGION parameter size.

'The following paragraphs discuss some of the techniques that can be applied for efficient
use of the virtual storage area reserved for your job step. These techniques apply as well to the
data management portions of your programs. The specific data management storage allocation
facilities are discussed in the OS/YS Data Management Servi~1 Guide and OS/YS Datil
MtDUlgSMnt Macro l1Utn1Ctio", pub6cations; the principles discussed here provide the
backsround you need to use these facilities.

ExpIIdt Requests for Virtual Stonge
Virtual storage can be explicitly requested for the use of the active task by issuing a
GBTMAIN macro instruction. The request is satisfied by allocating a portion of the virtual
storage area reserved for the job step. The virtual storage area is usually not set to zero when
aDocated. (The storage is zeroed for the initial allocation of a page).

You release virtual storage by issuing a PREBMAIN' macro instruction. This does not
release the area from control of the job step, but mates the area available to satisfy the
requirements of additional requests for any task in the job step. The virtual storage assigned to
a task is also given up to a different task in the same job step when the task terminates,
except as indicated under "Subpool Handling. tt Releasing virtual storage for use by other job
steps is discussed under "Relinquishing VIrtUal Storage. tt

Spedfylq the Size of tile Area

Virtual storage areas are always allocated to the task in multiples of eight bytes and may begin
on either a doublewordor page boundary. The request for virtual storage is given in terms of
bytes; if the number specifted is not a multiple of eight, it is rounded to the next mper
multiple of eight. You can make repeated requests for a small number of bytes as you need the
area or you can make one large request to completely satisfy the requirements of the task.
There are two reasons for making one large request: it is the only way you can be sure of
getting contiguous storage and avoid fragmenting your address space, and because you only
make one request, the amount of control program overhead is less.

Types of ExpUdt Reqaests

'lhere are four methods of explicitly requesting virtual storage using a GETMAIN macro
iDstruction. Bach of the methods, which are designated by coding an associated character in
the parameter field of the GBTMAIN macro instruction, has certain advantages, depending on
the requirements of your program. The last three methods do not produce reenterable coding
unless coded in the list and execute forms, as indicated in "Implicit Requests." The methods are
U f080ws:

VIIWIISt.,...M II .. 55

R Type: Specifies a request for a single area of virtual storage of a specified length. The
address of the area is returned in register 1. This type of request produces reenterable coding,
because parameters are passed to the control program in registers, not in a parameter list.

Ele.eld Type: Specifies a request for a single area of virtua1 storage of a specified length. The
control program places the addless of the allocated area in a fullword that you supply.

V Type: Specifies a request for a single area of virtual storage with a length between
two values you specify. The control program attempts to allocate the maximum length you
specify; if not enough storage is available to allocate the maximum length, the largest area with
a length between the two values is allocated. The control program places the address of the
area and the length allocated in two consecutive fullwords that you supply.

UIt,.,..: Specifies a request for one or more areas of virtual storage of specified lengths.

In addition to the above methods of requesting virtual storage, you can designate the
request as conditional or unconditional. If the request is unconditional and sufficient virtual
storage is not available to fD1 the request, the active task is abnormally terminated. If the
request is conditional, however, and insufficient virtual storage is available, a return code of 4
is provided in register 1 S; a return code of 0 is provided if the request was satisfied.

An eumple of using the GETMAIN macro instruction is shown in Figure 34. The example
assumes a program that operates most efficiently with a work area of 16,000 bytes, with a fair
degree of effICiency with 8,000 bytes or more, inefficiently with less than 8,000 bytes. The
program \lIeS a reenterable load module having an entry name of REENTMOD, and will use it
again later in the program; to save time, the load module was brought into the job pack area
usiq a LOAD macro instruction so that it wiD be available when it is required.

GETMAIN EC,LV=16000,A=ANSWADD Conditional request for
16,000 bytes in processor
storage

LTR 15,15 Test return code
BZ PROCEED 1 If 16,000 bytes allocated,

proceed
DELETE EP=REENTMOD If not, delete module and
GETMAIN VU,LA=SIZES,A=ANSWADD try to get smaller amount

of virtual storage
L 4,ANSWADD+4 Load and test allocated

length
CH 4,MIN If 8,000 or more, use

procedure 1
BNL PROCEED 1 If less than B,OOO use

procedure 2
PROCEED 2
PROCEED 1
MIN DC H'SOOO' Min. size for procedure
SIZES DC F'4000' Min. size for procedure 2

DC F' 16000' Size of area for maximum
efficiency

ANSWADD DC F'O' Address of allocated area
DC F'O' Size of allocated area

...... 34. l1IIII'" GETMAIN MMre

A conditional request for a siqle element of storage with a lenJtb of 16,000 bytes is
requested in Figure 34. The return code in register 1 S is tested to determine if the storage is
avaDable; if the return code is 0 (the 16,000 bytes were allocated), control is passed to the
processing routine. If sufficient storage is not available, an attempt to obtain more virtual
storage is made by issuing a DBLETB macro iDstruction to free the area occupied by the load
module RBENTMOD. A second GETMAIN macro instruction is issued, this time an

56 OS/VD MVS SIll! ... s.tIceI_ MIMft

unconditional request for an area between 4,000 and 16,000 bytes in length. If the minimum
size is not available, the task is abnormally terminated. If at least 4,000 bytes are available, the
task can continue. The size of the area actually allocated is determined, and one of the two
procedures (efficient or inefficient) is given control.

Subpool Handliq

In an operating system, subpools of virtual storage are provided to assist in virtual storage
management and for communications between tasks in the same job step. Because the use of
subpools requires some knowledge of how the control program manages virtual storage, a
discussion of virtual storage control is presented here.

VIrtual StGnae Coatrol: When the job step is given a region of virtual storage, all of the
storage area available for your use within that region is unassigned. Subpools are created only
when a GETMAIN macro instruction is issued designating a subpool number (other than 0)
not previously specified. If no subpool· number is designated, the virtual storage is allocated
from subpoolO, which is created for the job step by the control program when the job-step
task is initiated.

For purposes of control and virtual storage protection, the control program considers all
virtual storage within the region in terms of 4096-byte blocks. These blocks are assigned to a
subpool, and space within the blocks is allocated to a task by the control program when
requests for virtual storage are made. When there is sufficient unaUocated virtual storage
within any block assigned to the designated subpool to rill a request, the virtual storage is
allocated to the active task from that block. H there is insufficient unallocated virtual storage
within any block assigned to the subpool, a new block (or blocks, depending on the size of the
request) is assigned to the subpool, and the storage is allocated to the active task. The blocks
assigned to a subpool are not necessarily 'Contiguous unless they are assigned as a result of one
request. Only blocks within the region reserved for the associated job step can be assigned to a
subpool.

Figure 35 is a simpHfied view of a virtual-storage region containing four 4096-byte blocks
of storage. All the requests are for virtual storage from subpool O. The first request from lOme
task in the job step is for 1008 bytes; the request is satisfied from the block shown as· Block A
in the figure. The second request, for 4000 bytes, is too large to be satisfied from the unused
portion of Block A, so the control program assigns the next available block, Block B, to
subpool 0, and allocates 4000 bytes from Block B to the active task. A third request is then
received, this time for 2000 bYtes. There is enough area in Block A (blocks are checked in the
order lint in, rust out), so an additional 2000 bytes are allocated to the task from Block A.
All blocks are searched for the closest fitting free area which will then be assigned. H the
request had been for 96 bytes or less, it would have been allocated from Block B. Because all
tasks may share subpool 0, Request 1 and Request 3 do not have to be made from the same
task, even though the areas are contiguous and from the same 4096 byte block. Request 4, for
6000 bytes, requires that the control program allocate the area from 2 contiguous blocks which
were previously unassigned, Block D and Block C. These blocks are assigned to subpool O.

v...... sa-. M 57

Request 3: 2000 bytes ----, Request 2: 4000 bytes

Request 1: 1008 bytes Request 4: 6000 bytes

Block A Block B Block C Block 0 J
----~----_./ - T

4096 Bytes

Fiaure 35. Virtual Stor. CODtrol

As indicated in the preceding example, it is possible for one 4096-byte block in subpool 0
to contain many small areas allocated to many different tasks in the job step, and it is possible
that numerous blocks could be split up in this manner. Areas acquired by a task other than the
job-step task are not released automatically on task termination. Even if FREEMAIN macro
instructions were issued for each of the small areas before a task terminated, the probable
result would be that many small unused areas would exist within each block while the control
program would be continually assigning new blocks to satisfy new requests. To avoid this
situation, you can define subpools for exclusive use by individual tasks.

Any subpool can be used exclusively by a single task or shared by several tasks. Each time
that you create a task, you can specify which subpools are to be shared. Unlike other subpools,
subpool 0 is shared by a task and its subtask, unless you specify otherwise. When subpool 0 is
not shared, the control program creates a new subpool 0 for use by the subtask. As a result,
both the task and its subtask can request storage from subpool 0 but both will not receive
storage from the same 4096-byte block. When the subtask terminates, its virtual storage areas
in subpool 0 are released; since no other tasks share this subpool, complete 4096-byte blocks
are made available for reallocation.

When there is a need to share subpool 0, you can define other subpools for exclusive use by
individual tasks. When you rust request storage from a subpool other than subpool 0, the
control program assigns a new 4096-byte block to that subpool, and allocates storage from
that block. The task that is then active is assigned ownership of the subpool and, therefore, of
the block. When additional requests are made by the same task for the same subpool, the
requests are satisfied by allocating areas from that block and as many additional blocks as are
required. U another task is active when a request is made with the same subpool number, the
control program assigns a new block to a new subpool, allocates storage from the new block,
and assigns ownership of the new subpool to the second task.

A task can specify subpools numbered from 0 to 127. FREEMAIN macro instructions can
be issued to release any complete subpool except subpool 0, thus releasing complete 4096-byte
blocks. When a task terminates, its unshared subpools are released automatically.

0tmIDa ad : A subpool is initially owned by the task that was active when the
subpool was created. The subpool can be shared with other tasks, and ownership of the
subpool can be assigned to other tasks. Two macro instructions are used in the handling of
subpools: the GETMAIN macro instruction and the A IT ACH macro instruction. In the
GETMAIN macro instruction, the SP parameter can be written to request storage from

51 OSIVS2 MVS s.,lrtIIor SenIeeI .. Mauo

subpools 0 to 127; if this parameter is omitted, subpoolO is assumed. The parameters that deal
with subpools in the ATTACH macro instruction are:

• GSPV and GSPL, which give ownership of one or more subpools (other than subpool 0)
to the task being created.

• SHSPV and SHSPL, which share ownership of one or more subpools (other than subpool
0) with the new subtask.

• SZERO, which determines whether subpool 0 is shared with the subtask.

All of these parameters are optional. If they are omitted, no subpools are given to the
subtask, and only subpool 0 is shared.

CreatiaI • SuIJpooI: A new subpool is created whenever SHSPV or SHSPL is coded on an
ATTACH macro instructions or a GETMAIN macro instruction is issued, and the subpool(s)
specified does not exist for the active task. A new subpool zero is created for the subtask if
SZERO-NO is specified on ATTACH. If one of the ATTACH macro instruction parameters
causes the subpool to be created, the subpool number is entered in the list of subpools owned
by the task, but no blocks are assigned and no storage is actually allocated. If a GETMAIN
macro instruction results in the creation of a subpool, the subpool number is assigned to one
or more 4096-byte blocks, and the requested storage is allocated to the active task. In either
case, ownership of the subpool belongs to the active task; if the subpool is created because of
an A IT ACH macro instruction, ownership is transferred or retained depending on the
parameter used.

TnasI~ Owaenblp: An owning task gives ownership of a subpool to a direct subtask by
using the GSPV or GSPL parameters in the ATTACH macro instruction issued when that
subtask is created. Ownership of a subpool can be given to any subtask of any task, regardless
of the control level of the two tasks involved and regardless of how ownership was obtained.
A subpool cannot be shared with one or more subtasks and then transferred to another
subtask, however; an attempt to do this results in abnormal termination of the active task.
Ownership of a subpool can only be transferred if the active task has ownership; if the active
task is sharing a subpool and an attempt is made to pass ownership to a subtask, the subtask
receives shared control and the originating task reHnquishes the subpool. Once ownership is
transferred to a subtask or relinquished, any subsequent use of that subpool number by the
originating task results in the creation of a new subpool. When a task that has ownership of
one or more subpools terminates, all of the virtual storage areas in those subpools are released.
Therefore, the task with ownership of a subpool should not terminate until all tasks or
subtasks sharing the subpool ~ve completed their use of the subpool.

If GSPV or GSPL specifies a subpool which does not exist for the active task, no action is
taken.

SbarIDI • SuIJpooI: Shared use of a subpool can be given to a direct subtask of any task with
ownership or shared control of the subpool. Shared use is given by specifying the SHSPV or
SHSPL parameters in the ATI ACH macro instruction issued when the subtask is created. Any
task with ownership or shared control of the subpool can add to or reduce the size of the
subpool through the use of GETMAIN and FREEMAIN macro instructions. When a task that
has shared control of the subpool terminates, the subpool is not affected.

SubpooIs III T_ COIIIIIIUDlcadoD: The advantage of subpools in virtual storage management is
that, by assigning separate subpools to separate subtasks, the breakdown of virtual storage into
small fragments is reduced. An additional benefit from the use of subpools can be realized in
task communication. A subpool can be created for an originating task and all parameters to be
passed to the subtask placed in the subpool. When the subtask is created, the ownership of the
subpool can be passed to the subtask. After all parameters have been acquired by the subtask,

VIIIWII Stonee M 11_'" 59

a FREEMAIN macro instruction can be issued, under control of the subtask, to release the
subpool virtual storage areas. In a similar manner, a second subpool can be created for the
originating task, to be used as an answer area in the performance of the subtask. When the
subtask is created, the subpool ownership would be shared with the subtask. Before the
subtask is terminated, all parameters to be passed to the originating task are placed in the
subpool area; when the subtask is terminated, the subpool is not released, and the originating
task can acquire the parameters. After all parameters have been acquired for the originating
task, a FREEMAIN macro instruction again makes the area available for reuse.

ImpUcit Requests for Virtual Storage
You make an implicit request for virtual storage every time you issue a LINK, LOAD,
A IT ACH, or XCTL macro instruction. In addition, you make an implicit request for virtual
storage when you issue an OPEN macro instruction for a data set. This section discusses some
of the techniques you can use to cut down on the amount of real storage required by a job
step, and the assistance given you by the control program.

Reenterable Load Modules

A reenterable load module is designed so that during execution it serializes its modification or
does not modify itself. Only one copy of the load module is paged into real storage to satisfy
the requirements of any number of tasks in a job step. This means that even though there are
several tasks in the job step and each task concurrently uses the load module, the only real
storage needed is an area large enough to hold one copy of the load module (plus a few bytes
for control blocks). The same amount of real storage would be needed if the load module were
serially reusable;' however, the load module could not be used by more than one task at a time.

Reenterable Macro Instructions

All of the macro instructions described in this manual can be written in reenterable form.
These macro instructions are classified as one of two types: macro instructions which pass
parameters in registers 1 and 0, and macro instructions which pass parameters in a list. The
macro instructions that pass parameters in registers present no problem in a reenterable
program; when the macro instruction is coded, the required parameter values should be
contained in registers. For example, the POINT macro instruction requires that the DCB
address and block address be coded as follows:

POINT deb address, block address

One method of coding this in a reenterable program would be to require that both of these
addresses refer to a portion of storage allocated to the active task through the use of a
GETMAIN macro instruction. The addresses would change for each use of the load module.
Therefore, you would load two of the general registers 2-12 with the addresses, and designate
the appropriate registers when you code the macro instruction. If register 4 contains the DCB
address and register 6 contains the block address, the POINT macro instruction is written as
follows:

POINT (4) , (6)

The macro instructions that pass parameters in a list require the use of special forms of the
macro instruction when used in a reenterable program. The macro instructions that pass
parameters in a list are identified within their descriptions in the macro instruction section of
this manual. The expansion of the standard form of these macro instructions results in an
in-line parameter list and executable instructions to branch around the list, to load the address
of the list, and to pass control to the required control program routine. The expansions of the
list and execute forms of the macro instruction simply divide the functions provided in the
standard form expansion: the list form provides only the parameter list, and the execute form

" OS/VS2 MVS SapenIIor SenIees ... Macro-

provides executable instructions to modify the list and pass control. You provide the
instructions to load the address of the list into a register.

The list and execute forms of a macro instruction are used in conjunction to provide the
same services available from the standard form of the macro instruction. The advantages of
using list and execute forms are as foDows:

• Any parameters that remain coDStant in every use of the macro instruction can be coded
in the list form. These parameters can then be omitted in each of the execute forms of
the macro instruction which use the list. This can save appreciable coding time when you
use a macro instruction many times. (Any exceptions to this rule are listed in the
deacription of the execute form of the applicable macro instruction.)

• The execute form of the macro instruction can modify any of the parameters previously
desipated. (Again, there are exceptions to this rule.)

• The list used by the execute form of the macro instruction can be located in a portion of
virtual storage assigned to the task through the use of the GETMAIN macro instruction.
This ensures that the program remains reenterable."

Figure 36 shows the use of the list and execute forms of a DEQ macro instruction in a
reenterable program. The length of the list constructed by the list form of the macro
instruction is obtained by subtracting two symbolic addresses; virtual storage is allocated and
the list is moved into the allocated area. The execute form of the DEQ macro instruction does
not modify any of the parameters in the list form. The list had to be moved to allocated
storage because the control program can store a return code in the list when RET-HAVE is
coded. Note that the coding in a routine labeled MOVERTN is valid for lengths up to 256
bytes only. Some macro instructions do produce lists greater than 256 bytes when many
parameters are coded (for example, OPEN and CLOSE with many data control blocks, or
ENQ and DBQ with many resources), so in actual practice a length check should be made.
The move long instruction (MVCL) should be considered for moving large data lists.

LA 3,MACNAME Load address of list form
LA " 5,NSIADDR Load address of end of list
SR 5,3 Length to be moved in register 5
BAL 14,MOVERTN Go to routine to move list
DEQ ,MF=(E,(1» Release allocated resource

• The MOVERTN allocates storage from subpool ° and moves up to 256
• bytes into the allocated area. Register 3 is from address,
• register 5 is length. Area address returned in register 1.
MOVERTN GETMAIN R, LV=(5) ,

LR 4,1 Address of area in register 4
BCTR 5,0 Subtract 1 from area length
EX 5,MOVEINST Move list to allocated area
BR 14 Return

MOVEINST MVC 0(0,4),0(3)

MACNAME
NSIADDR
NAME 1
NAME 2

DEQ

DC
DC

(NAME1,NAME2,8,SYSTEM),RET=HAVE,MF=L

CL8'MAJOR'
CL8'MINOR'

v.n.I St MI •• '. 6.

NODleenterable Load Modules

The use of reenterable load modules does not automatically conserve virtual storage; iIi many
applications it will actua1ly prove wasteful. If a load module is not used in many jobs and if it
is not employed by more than one task in a job step, there is no reason to make the load
module reenterable. The allocation of virtual storage for the purpose of moving coding from
the load module to the allocated area is a waste of both time and virtual storage when only
one task requires the use of the load module.

You should not make a load module reenterable or ~riaUy reusable if reusability is not
really important to the logic of your program. Of course, if reusability is important, you can
issue a LOAD macro instruction to load a reusable module, and later issue a DELETE macro
instruction to release its area.

Notes:

1. If your module is reenterable or serially reusable, the load module must be link edited,
with the desired attribute, into a library.

2. A module that does not modify itseH (a refresbable module) reduces paging activity
because it does not need to be paged out.

Freeing of Virtual Storage

The control program establishes two responsibility counts for every load module brought
into virtual storage in response to your requests for that load module. The responsibility counts
are lowered as follows:

• If the load module was requested in a LOAD macro instruction, that responsibility count
is lowered when using a DELETE macro instruction.

• If the load module was requested in a LINK, ATIACH, or XCTL macro instruction,
that responsibility count is lowered when using an XCTL macro instruction or by
returning control to the control program.

• When a task is terminated, the responsibility counts are lowered by the number of
requests for the load module made in LINK, LOAD, A TI ACH, and XCTL macro
instructions during the performance of that task, minus the number of deletions indicated
above.

The virtual storage area occupied by a load module is released when the responsibility
counts reach zero. When you plan your program, you can design the load modules to give you
the best trade-off between execution time and efficient paging. If you use a load module many
times in the course of a job step, issue a LOAD macro instruction to bring it into virtual
storage; do not issue a DELETE macro instruction until the load module is no longer needed.
Conversely, if a load module is used only once during the job step, or if its uses are widely
separated, issue a LINK macro instruction to obtain the module and issue an XCTL from the
module (or return control to the control program) after it has been executed.

There is a minor problem involved in the deletion of load modules containing data control
blocks. An OPEN macro instruction must be issued before the data control block is used, and
a CLOSE macro instruction issued when it's no longer needed. H you do not issue a CLOSE
macro instruction for the data control block, the control program issues one for you when the
task is terminated. However, if the load module containing the data control block bas been
removed from virtual storage, the attempt to issue the CLOSE macro instruction causes
abnormal termination of the task. You must either issue the CLOSE macro instruction yourseH
before deleting the load module, or ensure that the data control block is still in virtual storage
when the task is terminated (possibly by issuing a GETMAIN and creating the DCB in the
area that had been allocated by the OETMAIN).

Real Storage _

The real storage manager (RSM) administers the use of real storage and directs the movement
of virtual pages between auxiliary storage and real storage in page size (4096 bytes) blocks. It
makes all addressable virtual storage in each address space appear as real storage. Only virtual
pages necessary for program execution are kept in real storage, the remainder reside on
auxiliary storage. RSM employs the auxiliary storage manager (ASM) of the Data Manager to
perform the actual paging I/O necessary to transfer pages in and out of real storage. ASM also
provides DASD allocation and management for paging I/O space on auxiliary storage. RSM
relies on the system resources manager (SRM) for guidance in the performance of some of its
operations.

RSM assigns storage page frames upon request from a pool of available frames, thereby
associating virtual addresses with real storage addresses. Frames are repossessed upon
termination of use, when freed by a user, when a user is swapped-out, or when needed to
replenish the available pool. While a virtual page occupies a real storage frame, the page is
considered page able unless specified otherwise as a system page that must be resident in real
storage. RSM also allocates virtual equals real (V -R) regions upon request by those programs
that cannot tolerate dynamic relocation. Such as region is allocated contiguously from a
predefined area of real storage and is non-pageable. Programs in this region do run in
translation mode, although addressing is one to one virtual to real.

The paging services provided in VS2 include the following:

• PGRLSE - Release virtual storage contents.

• PGLOAD - Load virtual storage areas into real storage.

• PGOUT - Page out virtual storage areas from real storage.

The PGRLSE function allows the user and the system to make available space in both real
storage and auxiliary storage that is known to be of no future use. Proper use of this function
can increase the amount of storage available to the system and prevent needless paging I/O
activity. Usage of PGRLSE may improve operating efficiency when the using program can
discard the contents of a large virtual storage area (circumscribing one or more pages) and
reuse the virtual storage pages; paging operations may be eUminated for those virtual storage
pages when they are reused.

The proper use of the PGLOAD and PGOUT functions will tend to decrease system
overhead resulting from page faults and to clean out of real storage those pages no longer
required for program execution or not required for some period in the future.

Relinquishing Virtual Stonge
When an area of virtual addressable storage within your program no longer has signiflcaDt
contents, you can make this storage available by issuing a PGRLSE macro instruction. The
PGRLSE macro makes available all real and external page storage wholly associated with the
area of virtual address space specified. As shown in Figure 37 if the specified addresses are
not on page boundaries, the low address is rounded up and the high address is rounded down;
then, the pages contained between the addresses are released. The virtual space remains, but
its contents are forfeited. When the using program can discard the contents of a large virtual
area (one or more complete pages) and reuse the virtual space without the necessity of paging
operations, PGRLSE may improve operating efficiency.

.- Stonee Mil." Q

~ I !
address 1
(low)

1 page
A

,.... 37. R ~St ..

T
Released virtual storage

! I
addrea2
(high)

All storage obtained for your program by the GETMAIN macro instruction is automatically
freed by the control program when the job step terminates. Freeing storage in this manner
requires no action on your part. When you issue a FREEMAIN macro instruction,
FREEMAIN does the equivalent of PGRLSE for any resulting free page.

Loading/Paging Out Virtual Storage Areas
The PGLOAD macro instruction essentially provides a page-ahead function. By loading
specified virtual storage areas into real storage, you can attempt to ensure that certain pages
will be in real storage when needed. Page faults can occur, however, and these pages may be
paged out.

With PGLOAD, you have the option of specifying that the contents of the virtual area is to
remain intact or be released. If you specify RELEASE-Y, the current contents of entire
virtual 4K pages to be brought in may be discarded and a new real frames assigned without
page-in operations; if you specify RELEASE-Nt .the contents are to remain intact and later
used.

If you specify PGLOAD with RELEASE-Y, the PGRLSE function will be performed
before the PGWAD function. That is, no page-in is needed for areas defining entire virtual
pages since the contents of those pages are expendable.

The PGOUT function initiates page-out operations for specified virtual address pages that
are in real storage. The real storage frames will be made available for reuse upon completion
of the page-out operation unless you specify the KEEPREL parameter in the macro
instruction. An area that does not encompass one or more complete pages will be copied to
auxiliary storage, but the real frames will not be freed.

Virtual Subarea Ust (VSL)
The virtual subarea list provides the basic input to the page service functions: PGLOAD,
PGRLSE, and PGOUT. The list consists of one or more doubleword entries, each entry
describing an area of virtual storage. The list must be nonpageable and contained in the
address space of the subarea to be processed.

Eacb parameter list entry has the following format:

Byte o
FLAGS

1 2

START ADDRESS

.. OSIVS2 MVS s.,.ntIor SenIcet .. Macro

3 4

FLAGS
5 6

END ADDRESS + 1

7

Byte 0 Flags:
Bit 0 (1 ...

Bit 1 (.1..
Bit 2 (.• 1.
Bit 3 (... 1
Bit 4 (....
Bit S (....
Bit 6 (....
Bit 7 (....

Start Address:

. ...)

....)

....)

....)
1 ...)
.1..)
..1.)
• .. 1)

This bit indicates that bytes 1-3 are a chain pointer to the next VSL entry to be
processed; parameter list entry; bytes 4-7 are ignored. This feature allows several
parameter lists to be chained as a sinale logical parameter list •
Reserved.
Reserved.
PGLOAD is to be performed; reserved, set by macro instruction.
PGRLSE is to be performed; reserved, set by macro instruction.
Reserved.
Reserved.
Reserved.

The virtual address of the oriain of the virtual area to be processed.

Byte 4 Flags:
Bit 0 (1... . .•.)

Bit 1 (.1..)
Bit 2 (.. 1.)
Bit 3 (... 1)
Bit 4 (.... 1. ..)
Bit S (.... . 1..)
Bit 6 (.... •• 1.)

Bit 7 (.... ... 1)

End Address + 1:

This flag indicates the last entry of the list. It is set in the last doubleword entry
in the list.
When this flag is set, the entry in which it is set is ipored .
Reserved.
This flag indicates that a return code of 4 was issued from a page service
function other than PGRLSE.
Reserved.
POOUT is to be performed; reserved, set by macro instnJction .
KEEPREAL option of PGOUT is to be performed; reserved, set by macro
instruction.
Reserved .

The virtual address of the byte immediately foDowing the end of the virtual area.

........ M II ••• 65

_Services

Interval timing is a standard feature of VS. It provides the ability to request the date and time
of day and provides for setting, testing, and cancel.ing intervals of time.

Date and Tiae of Day

The operator is responsible for initially supplying the correct date and the time of day in terms
of a 24-hour clock. You request the date and time of· day using the TIME macro instruction.
The control program returns the date in register 1 and the time of day in register 0 or in a
doubleword supp6ed by you if the MIC or STCK parameter was specified.

If ZONE-GMT is specified, the returned time of day and date will be for Greenwich Mean
Time. If ZONE-LT is specified or if the ZONE parameter is omitted, the local time of day
and date will be returned. However, if STCK is specified, the ZONE parameter will be
iporecl.

AU references to time of day use the time-of-day (TOD) clock, a 64-bit binary counter. The
roD clock IUDS continuously whlle the power is on; the clock is not affected by the system
ItOp-conditions. The operator normally sets the clock only after an interruption of CPU power
bu caused the clock to stop, and restoration of power has restarted it. The operator sets the
clock during system initiaHzation in response to a system message. (For more information
about the TOD clock, see IBM System/ J 70 Princlpks of Operation.)

laterval T

A time interval, up to a maximum of 24 hours, can be established for any task in the job step
throqh the use of the STIMBR macro instruction, and the time remaining in the interval can
be tested and canceled throqh the use of the 1TIMER macro instruction. Each task in the job
step can have an active time interval.

When you request a time interval, you also specify the manner in which the interval is to be
decreased, through the use of the TASK, REAL, or WAIT parameter of the STIMER macro
iDstruction. REAL and WAIT both indicate that the interval is to be decreased continuously,
whether the associated task is active or not. TASK indicates that the interval is to be
decreased only when the associated task is active. If REAL or TASK is coded, the task
continues to compete with the other ready tasks for control; if WAIT is coded, the task is
pJaced in the wait conditioa until the interval expires, at which time the task is placed in the
ready condition.

When TASK or REAL is designated, the address of an asynchronous timer completion exit
routine can be specified. This routine is given control as a result of the time interval
completing. The routine does not get control immediately when the interval completes, but at
lOme time after the interval completes. 'Ibis delay is dependent on the system's work load and
the relative dispatching priority of the associated task. If an exit routine is not specified, there
is no notification of the completion of the time interval. The exit routine must be in virtual
storage when required, and must save and restore registers and return control to the address in
register 14. Although timing services allows only one active time interval for a task, it does not
serialize the use of an asynchronous timer completion exit routine.

Figure 38 shows the use of a time interval when testing a new loop in a program. The
STIMER macro instruction sets a time interval of S .12 seconds, which is to be decreased only
when the task is active, and provides the address of a routine called FIXUP to be given
control when the time interval expires. The loop is controlled by a BXLE instruction.

STIMER TASK,FIXUP,BINTVL=TIME Set time interval
LOOP

NG

FIXUP

TM TIMEXP,X'01'
BC 1,NG
BXLE 1 2 , 6 , LOOP
TTIMER CANCEL

USING
SAVE
01

FIXUP,15
(14,12)
TIMEXP,X' 01 '

RETURN (14,12)

TIME DC
TlMEXP DC

X'00000200'
X'QO'

FIpre 31. 1atemII

Test if fixup routine Entered
Go out of loop if time interval expired
If processing not complete, repeat loop
If loop completes, cancel remaining time

Provide addressability
Save registers
Time interval expired, set switch in loop

Restore registers

Timer is 5.12 seconds
Timer switch

The loop continues as long as the value in register 12 is less than or equal to the value in
register" 7. H the loop stops. the TIIMER macro instruction causes any time remaining in the
interval to be canceled; the exit routine is not given control. H. however, the loop is stUl in
effect when the time interval expires. control is given to the exit routine PIXUP. The exit
routine saves registers and turns on the switch tested in the loop. The FIXUP routine could
also print out a message indicating that the loop did not go to completion. Registers are
restored and control is returned to the control program. The control program returns control to
the main program and execution continues. When the switch is tested this time, the branch is
taken out of the loop. Caution should be used to prevent a timer exit routine from issuing an
STIMER specifying the same eDt routine. An infinite loop may occur.

The priorities of other tasks in the system may also affect the accuracy of the time interval
measurement. If you code REAL or WAIT, the interval is decreased continuously and may
expire 'when the task is not active. (This is certain to happen when WAIT is coded.) After the
time interval expires, assuming the task is not in the wait condition for any other reason, the
task is placed in the ready condition and then competes for CPU time with the other tasks in
the system that are also in the ready condition. The additional time required before the task
becomes active will then depend on the relative dispatching priority of the task.

The STIMER macro instruction should not be issued while a BT AM OPEN or LINE OPEN
" operation is in progress, since the BT AM OPEN LINE routines also use STIMER. STIMBR
should not be issued before invoking dynamic allocation because dynamic allocation can also
issue STIMBR.

Extended-Precision FJoating-Point Simulation

The System/370 Extended-Precision Floating-Point Simulator provides full extended-precision
arithmetic for all VS usen. A divide macro instruction (DXR) is provided for the models that
have the extended-precision floating arithmetic facility and all seven instructions are provided
for the models that do not. The instructions provided are:

Nuae
ADD NORMALIZED (extended)
LOAD ROUNDED (extended to lonl)
LOAD ROUNDED (lona to short)
MULTIPLY (extended)
MULTIPLY (lonl to extended)
MULTIPLY (Iona to extended)
SUBTRACT NORMALIZED (extended)

Maemoale
AXR
LRDR
LRER
MXR
MXDR
MXD
SXR

For more details on the instructions, see SYJtem/3 70 Principles of Operation.

Thus, you can use extended-precision floating-point instructions whether or not your
particular machine model has the extended-precision floating-point facility. To do so, write a
program-inJerruption-handling exit routine. The exit routine is required:

• If your machine model already has the extended-precision floating-point facility, and you
also wish to use the extended-precision floating-point divide (DXR) macro instruction.

• If your machine model does not have the extended-precision floating-point instructions,
but you wish to use these instructions and the extended-precision floating-point divide
instruction.

To determine if the extended-precision floating-point feature is installed in your CPU, call
the module IEAXPSIM, which returns a pointer to the appropriate simulator.

The format of the extended-precision floating-point divide (DXR) instruction is described in
the macro instructions section, and the formats of the other extended-precision floating-point
instru('1ions are described in SYJtem/ J 70 PrinCiples 0/ Operation.

Extended-PredsioD DivisioD

To perform extended-precision division, use the DXR macro instruction:

OXR reg 1 , reg2

where regl contains the dividend, reg2 the divisor.

The first parameter (the dividend) is divided by the second parameter (the divisor) and is
replaced by the normaHzed quotient. No remainder is preserved. For a discussion of
normalization, refer to the section "Floating-Point Arithmetic" in SYJtem/3 70 Principles 0/
Opel'Cltion.

DivisioD Proeess

The quotient fraction has 28 hexadecimal digits and is developed such that it is the largest
number for which the absolute value of the product of the quotient and the divisor fractions is
either equal to or less than the absolute value of the adjusted (normalized) dividend fraction.
All digits of the dividend and divisor fractions are involved in the operation; the dividend
fraction is extended with low-order zeros.

The sign of the quotient is determined by the rules of algebra; however, if the quotient is
made a true 0, its sign is made plus.

Mllel"._ SerrIeet "

Unless the quotient is made a true 0, the characteristic, sign, and high-order 14 hexadecimal
digits of the normalized quotient fraction replace the higb.-order part of the first parameter.
The low-order 14 hexadecimal digits of the quotient fraction replace the low-order fraction of
the first parameter. The low-order sign is made equal to the high-order sign, and the low-order
~bara~temtic is made 14 less than the higJI-order characteristic. However. when the ,ubtractioa
of 14 causes the low-order characteristic to become less than 0, it is made 128 greater than its
correct value. Extended-precision arithmetic is further discussed in System/3 70 Principles of
Operation.

Arithmetic Exceptions

The following exceptions can occur when using the DXR macro instruction.

• Exponent overflow.

• Exponent underflow.

• Floating-point divide.

Exponent overflow is recognized when the characteristic of the normalized quotient exceeds
127 and the fraction of the quotient is not O. The operation is completed by making the
high-order characteristic 128 less than the current value. If the low-order characteristic also
exceeds 127, it is decreased by 128. The quotient fraction and sign remain unchanged. A
program interruption for exponent overflow then occurs.

Exponent underflow is recognized when the characteristic of the normalized quotient is less
than 0 and neither parameter fraction is O. If the exponent underflow mask bit is set, the
operation is completed by making the characteristics of both parts 128 greater than their
correct values. The quotient fraction and sign remain unchanged. A program interruption for
exponent underflow then occurs. If the exponent underflow mask is 0, a program. interruption
does not occur; instead, the operation is completed by making both the high-order and
low-order parts of the quotient a true O.

Exponent underflow is not recognized when the low-order characteristic is less than 0 and
the high-order characteristic is greater than or equal to O. Similarly, exponent underflow is not
recognized when one or both of the parameters underflow during prenormalization, but the
quotient can be expressed without encountering underflow.

The floating-point divide exception is recognized when the divisor fraction is O. The
operation is suppressed, and a program. interruption for floating-point divide ocCurs.

When the dividend fraction is 0, the quotient is made a true 0, and a possible exponent
overflow or underflow is not recognized. A division of 0 by 0, however, causes the operation
to be suppressed and an interruption for floating-point divide to occur.

The condition code remains unchanged for all arithmetic exceptions. Figure 39 describes the
program interruptions that can occur.

iatema,tioD Type

Operation

Specification

Exponent
Overflow

Exponent
Underflow

Floating-Point
Divide

DescrIptio.

The instruction is not installed.

Registers other than 0 or 4 are specified,
or positions 16-23 do not contain O's.

The characteristic of the normalized
quotient exceeds 127, and neither operand
fraction is O.

The characteristic of the normalized
quotient is less than 0, neither operand
fraction is 0, and the exponent underflow
mask bit is set.

The divisor fraction is O.

...... 3t. s...., of ,

CalIIq the Simulator

Aedoa TakeD

The operation is
suppressed.

The operation is
suppressed.

The operation is
completed.

The operation is
completed.

The operation is
suppressed.

To use the extended-precision floating-point instructions that your machine model does not
have, call the extended-precision floating-point simulator from a program-interruption-handling
exit routine. The simulator is a program that is automatically included in your operating system
at system generation time. Writing an exit routine to handle program interruptions is discussed
under "Program Interruption Processing."

To use the extended-precision floating-point simulator, specify in the spm macro instruction
that your exit routine is to receive control if an operation exception occurs. In addition, the
exit routine must perform the following tasks, in this order:

• Check that the exception is for floating-point divide.

• Prepare a parameter list to pass to IEAXPSIM.

• Pass control to IEAXPSIM, using standard operating system conventions.

• Prepare a parameter list to pass to the simulator.

• Pass control to the simulator, using standard operating system conventions.

• Check the code returned by the simulator.

• Perform corrective action if necessary.

In addition, the exit routine may perform the following tasks:

• Load the IEAXPSIM module, using the LOAD macro instruction, before its use.

• Delete the IEAXPSIM module, using the DELETE macro instruction, after its use.

• Load the simulator, using the LOAD macro instruction, the first time it is needed.

• Delete the simulator t using the DELETE macro instruction, at the end of the job step.

Desiping the Exit Roube

The following paragraphs and Figure 40 should help you design your exit routine.

The parameter list that you pass to IEAXPSIM must be pointed to by register 1 and must
contain a pointer to a doubleword area into which IEAXPSIM will move the name of the
simulator module to which you will pass control.

The parameter list that you pass to the simulator must be pointed to by register 1 and must
contain the following:

1. A pointer to the PIE.

2. A pointer to the area containing the contents of general registers 0 through 1 S at
interrupt time.

3. A pointer to a work area.

4. A pointer to a byte that is nonzero if the last bit of the quotient for a DXR need not be
correct.

USING EXTPRE,15
EXTPRE STM 3,13,SIMSV+12

LR 4,15
USING EXTPRE,4
MVC SIMSV(12),20(1)
MVC SIMSV+56(S),12(1)
ST 14,RET
ST 1,PARMB
LA 13, SAVESIM
L 15,SIMADD
LTR 15,15
BNZ TOSIM
LOAD EP=IEAXPSIM
LR 15,0
LA 1,PARMA
BALR 14,15
DELETE EP=IEAXPSIM

Save registers not in PIE

Establish addressability
Registers 0-2 from PIE
Registers 14-15 from PIE
Save return address
Pointer to PIE
Load save area address

Does SIMADD contain address?
If so, go directly to simulator

Put IEAXPSIM's address in register
Load pointer to doubleword
Get simulator's address

LOAD EPLOC=SIMUL Load simulator
LR 15,0 Put simulator's address in register
ST O,SIMADD Save address of simulator

TOSIM LA 1,PARMB Parameter list address
BALR 14,15 go to simulator
LTR 15,15 Error or exceptional
BZ GOODOUT Condition?

-HERE THE EXIT ROUTINE SHOULD DETERMINE THE ERROR OR THE
-EXCEPTIONAL CONDITION THAT OCCURRED IN SIMULATING AND
-TAKE APPROPRIATE ACTION.

BOUT
GOODOUT EQU -
-HERE THE EXIT ROUTINE SHOULD TAKE APPROPRIATE ACTION WHEN
-NO ERROR OR EXCEPTIONAL CONDITION OCCURRED DURING SIMULATION.

OUT L 14,RET
LM 3, 13,SIMSV+12 Restore registers
BR 14 Return

-WHEN THE EXIT ROUTINE NO LONGER NEEDS THE SIMULATOR,
-THE ROUTINE SHOULD DELETE IT.

DELETE EPLOC=SIMUL

PARMA OS
SIMUL OS
PARMB OS

DC
DC
DC

ZERO DC
WORK DC
SIMSV OS
SIMADD DC
RET OS
SAVE~IM OS

X'SO',AL3(SIMUL)
o
F
A(SIMSV)
A(WORK)
X I SO' , A 1 3 (ZERO)

X'O'
SOD
16F
FtO'
F
1SF

Pointer to simulator name
Simulator name
For pointer to PIE
Address of register area
Address of work area
Divide adjust switch
pointer

Adjust switch for divide
Work area
Register area
Address of simulator
Return address
Save area

..... 40. c.-.. tile ED •••• PredIIea PeIat .atw
The work area must be at least 30 doublewords (240 bytes) if your installation's machine

model has the extended-precision fioating-point facility or at least SO doublewords (400 bytes)
if it does not. The exit routine shown in Figure 40 can be used for either type machine model
because its work area is 50 doublewords.

To obtain the name of the extended-precision fioating-point simulator installed in your
system, caD the module mAXPSIM, which returns a pointer to the name of the simulator in
the doubleword that you provide. In Figure 40, the doubleword is SIMUL.

Before passing control to the simulator, you can use the LOAD macro instruction to bring
the simulator' into virtual storage if it is not already there. The entry point name is specified as

the name returned from IEAXPSIM. After issuing LOAD, you can pass control to the
simulator, using standard calling conventions.

Upon regaining control from the simulator, the exit routine should check register 15 for one
of the two return codes shown in Figure 41.

Heudecbaal
Code
00
FF

Meaalq

The operation was successful.
The operation was not successful. or an exceptional condition occurred.

Ji'IIwe 41 •• etma CoeIes ..,.. tile EsteDded-PrecIIIoIa 'Ji1oadIII-PoIIIt Sf • t_

If the return code is X'FF', the exit routine determines the kind of error encountered by the
simulator by examining the interruption code. Figure 42 shows the possible settings of the
interruption code.

Meaalq of Iatema,doa
The simulator found that the operation was not an extended-precision floatina-point
operation and returned control without further processing. 0001
Protection exception1 3 0100
Addressing exception 1 3 0101
Specification exception12 3 0110
Exponent overflow exception. 1100
Exponent underflow exceptio~ 1101
Sianificance exception. 1110
Floating-point divid~ 11 t t

1When the simulator encounters these exceptions. it stops procesaina and returns control to the exit routine.
2Ao incorrect extended-precision floatina-point register was specified, the third byte of the DXR macro

instruction was not)COO' or a register other than 0 or 4 was specified in the R 1 or R2 field of the DXR
. maero instruction.
3The error oa:urred during the processing of an MXD macro instruction •
.tThe error oa:urred during simulation.

JI'Ipre 42. c-., tile S ' • .-

The simulator adjusts the condition code in the old PSW in the PIE (bits 34-35) to indicate
the result of an AXR or SXR macro instruction. When a program interruption occurs within
the simulator while fetching the argument of the MXD macro instruction, the instruction
address in the PSW in the PIE is restored to its setting at operation-interruption time.

The simulator never alten the program check old PSW at location 40. Its interruption code
will be an operation exception except for the MXD macro instruction, when it may be a
protection, addressing, or specification exception.

The simulator should be deleted by the using program if it was obtained by the LOAD
macro instruction.

If the full simulator (IEAXPALL) is loaded on a CPU that already bas the
extended-precision fioating-point facility, no abnormal conditions result. Only the DXR macro
instruction is simulated. However, the simulation of the DXR function is slower than if the
IEAXPDXR were used, since the other extended-precision operations in the divide algorithm
are also simulated.

If IEAXDXR is loaded on a CPU without the extended-precision floating-point facility, a
OC 1 ABEND occurs when an extended-precision divide is simulated. In the simulation of the
other extended-precision macro instructions, a return code of X'FF' is passed to the caller and
no simulation is attempted.

CommUDiatting with the System Operator

The WTO and the WTOR macro instructions allow you to write messages to the operator. The
WTOR macro instruction also allows you to request a reply from the operator. Messages can
be sent to (and replies received from) as many as 99 operator consoles.

There are two basic forms of the WTO macro instruction: the single-line form, and the
multiple-line form.

The following should be considered when issuing multiple-line WTO messages (ML WTO).

• Only the first line of a multiple-line WTO message is passed to the user-written WTO
exit routine.

• When a console switch takes place, unended multiple-line WTO messages and
multiple-line WTO messages in the process of being written to the original console are
not moved to the new console.

• When a hard copy switch takes place from the system log to an active operator's console,
ML WTO messages in the process of being written to the system log are not moved to
the new hard copy device.

• The left most three bytes of register zero must be zero for a multiple-line message. You
must ensure that this is done.

• When the system hard copy log is an active operator's console, only the hard copy
versions of multiple-line messages are written to the console.

• Since the bard copy log receives a copy of every message in the system, an active
operator's console should be used as the hard copy log only in an emergency.

See the macro instructions section for an explanation of the parameters in the single-line
and multiple-line fol'D".8 of the WTO macro instruction.

The message is routed using the routi"g codes specified in the wro macro instruction. At
system generation, each operator's console in the system is assigned routing codes that
correspond to the functions that the installation wants that console to perform. When any of
the routing codes assigned to a message match any of the routing codes assigned to a console,
the message is sent to that console.

Disposition of the message is indicated through the descriptor codes specified in the WTO
macro instruction. Descriptor codes classify WTO messages so that they can be properly
presented on, and deleted from, display devices. Each WTO macro instruction should contain
one descriptor code. The descriptor code is not printed or displayed as part of the message
text. U the descriptor code is coded in the WTO instruction, an indicator is inserted as the first
character of the message. The four indicators are: a blank, an at sign @, an asterisk (*), or a
plus sign (+). An indicator of an @ or an * informs the operator that he must take some
immediate action. U a WTO that uses a descriptor code of 1 or 2 is coded by a privileged or
APF authorized user, the indicator in the rust character is an •. U a descriptor code of 3
through 16 is 'USed, the indicator field is left blank. U a WTO that uses a descriptor code of 1
or 2 is coded in a problem program, the @ sign is used as the indicator and descriptor code 7
is turned on to ensure that the message will be deleted at address space or task termination. U
3 throup 16 is used, the indicator is a +. For more information on routing and descriptor
codes, see YS2 Routing and IHscriptor CoMs.

A sample WTO macro instruction is shown in Figure 43.

Single-line WTO
format

'BREAKOFF POINT REACHED. TRACKING COMPLETED.', C
ROUTCDE=14,DESC=7

Multiple- WTO
line format
(list form)

('SUBROUTINES CALLED',C),
('ROUTINE TIMES CALLED',L),('SUBQUER',D),
('ENQUER' , D) , ('WRI TER' , D) ,
('DQUER' ,DE),
ROUTCDE=(2,14),DESC=(7,8),MF=L

,.... 43. W t. die o,.n..

C
C
C
C

To use the WTOR macro instruction, you code the message exactly as designated in the
single-line WTO macro instruction. (The WTOR macro instruction cannot be used to pass
multiple-line messages.) When the message is written, the control program adds a
two-character message identifier before the message to associate the reply with the message.
The control program also inserts an indicator as the rust character of all WTOR messages,
thereby informing the operator that immediate action is required. You must, however, indicate
the response desired. In addition, you must supply the address of the area in which the control
program is to place the reply, and you must indicate the length of the reply. The length of the
reply may not be zero. You also supply the address of an event control block which the
control program posts after the reply has been placed, left-adjusted, in your designated area.

A sample WTOR macro instruction is shown in Figure 44. The reply is not necessarily
available at the address you specified undl a WAIT macro instruction has been issued.

XC ECBAD,ECBAD Clear ECB
WTOR 'STANDARD OPERATING CONDITIONS? REPLY YES OR NO',

REPLY,3,ECBAD,ROUTCDE=(1,15)

ECBAD
REPLY

WAIT ECB=ECBAD

DC
DC

FtO'
C'bbb'

FIpn '". W to die o,.n.. WIda • ..,.,

Event control block
Answer area

When a WTOR macro instruction is issued any console receiving the message has the
authority to reply. The fll'St reply received by the control program is returned to the issuer of
the WTOR, providing the syntax of the reply is correct. U the syntax of the reply is not
correct, another reply is accepted. The WTOR is satisfied when the control program moves the
reply into. the issuer's reply area and posts the event control block. Each console that received
the original WTOR will also receive the accepted reply unless it's a security message. The
master console may answer any WTOR, even if he did not receive the original message.

Writing to the _

The WTO and the WTOR. macro instructions allow you to write messages to the programmer,
as weD as to the operator.

To write a message to the programmer, you must specify ROUTeDE-II in the WTO or
the WTOR macro instruction.

'6 OSlVa MVS _Inlier SenIcet ... Macro

WritiDg to the System Log

The system log consists of one SYSOUT data set on which the communication between the
operator and the system is recorded. You can use the system log by coding the information
that you wish to log in the "text" parameter of the WTL macro instruction.

When the WTL macro instruction is executed, the control program places your text in one
of the buffers and, when the buffer is full, writes the buffer onto the system log data set. The
control program. writes the text of your WTL macro instruction on the master console instead
of on the system log if the system log is not active.

Although when using the WTL macro instruction you code the message within apostrophes,
the written message does not contain the apostrophes. The message can include any character
that is valid for the WTO macro instruction and is assembled and written the same way as the
WTO macro instruction. MCS routing codes and descriptor codes are not assigned, since they
are not needed by the WTL macro instruction.

Message Deletion

H your system is using a cathode-ray tube (CRT) display as a console, unnecessary messages
can be deleted from the operator's screen by the programmer. The control program assigns a
message identification number to each wro and WTOR message and returns the message
identification number in register 1. The OOM macro instruction uses the identification number
to indicate which message is to be deleted. The message identification number must not be
confused with the reply identification number that is assigned to wrOR replies.

You can also use the OOM macro instruction to inhibit operator messages from appearing
on any operator console by specifying REPLY-YES on the macro. The issuer of the OOM
with REPLY-YES must be a task in the same job step and address space as the issuer of the
WTOR macro instruction or must be a task executing in supervisor mode, under protection key
0-7, or authorized by APF.

71

Part D: Macro instructions

• OS/VS2 MVS _Inlier SertIee8 .. MIcro

Introduction to Supervisor Macro Instructions

You can communicate service requests to the control program using a set of macro instnlctions
provided by mM. These macro instructions are available only when programming in the
assembler language, and are processed by the assembler program using macro definitions
supplied by mM and placed in the macro library ·when the system was generated.

The processing of the macro instruction by the assembler program results in a macro
expansion, generally consisting of data and executable instructions in the form of assembler
language statements. The data fields are the parameters to be passed to the requested control
program routine; the executable instructions generally consist of a branch around the data,
instructions to load registers, and either a branch instruction or a supervisor call (SVC) to give
control to the proper program. The exact macro expansion appears as part of the assembler
output listing.

The macro instructions described in this publication have no restrictions in use by
applications programmers. Some macro instructions contain parameters that are restricted to
systems programmers and installation-approved personnel. These parameters, as well as
installation-controlled macro instructions, are described in OS/YS2 System Programming
Ubrary: Supriisor.

Macro Instruc:tioo Forms
When written in the standard form, some of the macro instructions result in instructions that
store into an inline parameter list. The option of storing into an out-of -line parameter list is
provided to allow the use of these macro instructions in a reenterable program. You can
request this option through the use of list and execute forms. When list and execute forms
exist for a macro instruction, their descriptions follow the description of the standard form.

Use the list form of the macro instruction to provide a parameter list to be passed either to
the control program or to a problem program, depending on the macro instruction. The
expansion of the list form contains no executable instructions; therefore registers cannot be
used in the list form.

Use the execute form of the macro instruction in conjunction with one or two parameter
lists established using the list form. The expansion of the execute form provides the executable
instructions required to modify the parameter lists and to pass control to the required program.
Only the A IT ACH, LINK, and XCTL macro instructions use two parameter lists: a problem
program list, resulting from the address parameter and VL parameters, ·and a control program
list, resulting from the remaining parameters. The control program list is required, and the
problem program list is optional in these macro instructions.

The CALL, DBQ, BNQ, and SNAP macro instructions can result in variable length
parameter lists. The length of the parameter list generated by the list form of the macro
instruction must be equal to the maximum length list required by any execute form that refers
to the list. The maximum length list can be constructed in one of three methods:

• Code the parameters required for the maximum length execute form in the list form.

• Provide a DS instruction immediately following the list· form to allow for the maximum
length parameter list.

• Acquire a maximum length list by using commas in the list form to indicate the maximum
number of parameters. For example, the STORAGB parameter of the SNAP macro
instruction could be coded as STORAGB-("",,,,) to allow for five pairs of addresses.
The actual addresses would be provided in the execute forms.

The descriptions of the following macro instructions assume that the standard begin, end,
and continue columns are used - for example, column 1 is assumed as the begin column. To
change the begin, end, and continue columns, code the ICTL instruction to establish the coding
format you wish to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see OS/VS - DOS/VS - VM/370 A.ssembler Language.

Coding the Macro Instructions
The table appearing near the beginning of each macro instruction indicates how the macro
instruction is to be coded. The table does not attempt to explain the meanings of the
parameters; the parameters are explained following the table.

Figure 45 presents a sample macro instruction, TEST, and summarizes all the coding
information that is available for it. The table is divided into three columns.

crcp cp
name

b

~TEST
b

MATH
@----HIST

GEOG

,DATA-data add,

®----..... ~ ,LNG-data length

,FMT-HEX
~----~-~ ,AMT-DEC

,FMT-BIN

,PASS-yalue

FI&tn 45. SaIpIe Maao IastnctIoD

name: symbol. Begin name in column 1.

One or more blanks must precede TEST.

One or more blanks must follow TEST.

data add,: RX-type address, or register (2) - (12).

data length: symbol or decimal digit, with a maximum value of
256.

De,,,: FMT-HEX

value: symbol, decimal digit, or register (I) or (2) - (12).
De'auIt: PASS-65.

• The first column, ® ' contains those parameters that are required for that macro
instruction. H a single line appears in that column, ® . , the parameter on that Hoe is
required and must be coded. If two or more lines appear together, @ , the parameter
appearing on the one and only one of the lines must be coded.

• The second column, @' contains those parameters that are optional for that macro
instruction. H a single line appears in that column, @ ,the parameter on that Hoe is
optional. If two or more Hnes appear together, ~ , the parameter appearing on one and
only one of the lines may be coded if desired.

• The third column, © ' provides additional information for coding the macro instruction.
When substitution of a variable is required, the following classifications should be
understood:

symbol: any symbol valid in the assembler language. That is, an alphabetic character
followed by 0-7 alphameric characters, with no special characters and no blanks.

dedmaI t: any decimal digit up to the value indicated in the parameter description. H
both symbol and decimal digit are indicated, an absolute expression is also allowed.

reaister (2) - (12): one of general registers 2 through 12, specified within parentheses,
previously loaded with the right-adjusted value or address indicated in the parameter
description. The unused high-order bits must be set to zero. The register may be designated
symbolically or with an absolute expression.

realster (0): general register 0, previously loaded as indicated under register (2) - (12)
above. Designate the register as (0) only.

repter (1): general register 1, previously loaded as indicated under register (2) - (12)
above. Designate the register as (1) only.

RX-type 1IddreM: any address that is valid in an RX-type instruction (for example, LA).

A-type address: any address that may be written in an A-type address constant.

default: a value that is used in default of a specified value, and that is assumed if the
parameter is not coded.

Use the parameters to specify the services and options to be performed, and write them
according to the following general rules:

• If the selected parameter is written in all capital letters (for example, STEP, Dt)MP, or
RET-USE), code the parameter exactly as shown.

• If the selected parameter is written in italics (for example, Niue or comp coM),
substitute the indicated value, address, or name.

• If the selected parameter is a combination of capital letters and italics separated by an
equal sign (for example, EP-entry point), code the capital letters and equal sign as
shown, and then make the indicated substitution for the italics.

• Read the table from top to bottom, and code the parameters in the order shown. Code
commas and parentheses exactly as shown.

• If a parameter is selected to be coded read column 3 before proceeding to the next
parameter. Column 3 will often contain notes pertaining to restrictions on coding the
parameters.

You can continue the parameter field of a macro instruction on one or more additional lines
according to the following rules:

1. Enter a continuation C?haracter (not blank, and not part of the parameter coding) in
column 72 of the line.

2. Continue the parameter field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the parameter
field through column 71, with no blanks, and continue in column 16 of the next line; or
truncate the parameter field by a comma, where a comma normally falls, with at least one
blank before column 71, and then continue in column 16 of the next line. Figure 46 shows an
example of each method. Additional information on the continuation of any assembler
language macro instruction is provided in the publication OS/YS - DOS/YS - YM/370
Assembler Langullge.

NAME 1 OP 1 OPERAND 1 , OPERAND2 , OPERAND3 , OPERAND4 , OPERA X
NDS,OPERAND6 THIS IS ONE WAY

NAME 2 OP2 OPERAND1,OPERAND2, THIS IS ANOTHER WAY X
OPERAND3, X
OPERAND4

JI'Ipre 46. CMk c.-

VSl/VSl Compatibility
This publication describes VS2 macro instructions only. However, all macro instructions and
parameters defined in this publication may also be executed on a VS 1 system, with the
following exceptions. If these exceptions are coded, assembler errors will result.

ABEND macro instruction
SYSTEM
USER
DUMPOPT-

A TI ACH macro instruction
GSPV-
GSPL-
SHSPV-
SHSPL-
SZERO-
TASKLIB-
STAI-
ESTAI-
PURGE-
ASYNCH-
TERM-
RELATED-

CHAP macro instruction
RELATED-

DELETE macro instruction
RELATED-

DEQ macro instruction
RELATED-

DETACH macro instruction
STAB-
RELATED-

DOM macro instruction
REPLY-

ENQ macro instruction
RELATED-

EST AB macro instruction
FREEMAIN macro instruction

LC
LU
L
VC
VU
EC
EU
RC
RU
LA-
RELATED-

OETMAIN macro instruction
RC
RU
LC
LU
RELATED-

LINK macro instruction
BRRET-

LOAD macro inltNction
BRRET­
RELATED-

PGLOAD macro instruction
PGOUT maero instruction
SETRP macro iilltrUction
SNAP IDKfO inItruetion

SDATA-(DM.ERIl.IO.LSQA,SQA.SW A)
STRHDR-

STATUS macro instruction
STlMER macro iDatnIction

MICVL-
GMT-
ERRET-

TIME macro instruction
STCK
ZONE-
ERRET-

1TIMER mac:ro iDItrUction
MiC
ERRET-

WAIT maero inItruetion
LONG-

wro macro inltruction
multiple line meaaae formats

...... die. to ... ,..,... M8ae •

• OSIVSJ MVS .. II SenIeea .. Macn

_ of the Macro Instructions

• OS/VSZ MYS s.,entlar Semen .. MMft

ABEND - AboormaIIy TenniDate a Task

The ABBND macro instruction is used to initiate enor processing for a task. ABEND can
.request a full or tailored dump of virtual storage areas and control blocks pertaining to the
tasks being abnormally terminated, and can specify that the entire job step is to be abnormally
terminated. Before the task is terminated, an EST AS exit gets control. 1bis exit may recover
the task and allow it to retry.

If the job step task is abnormally terminated or if ABBND specifies job step termination,
~ completion code is recorded on the system output device, and the remaining job steps in
the job are either skipped or executed as specified in their job control statements.

If the job step is not to be terminated, the following actions are taken:

• The task that was active when ABEND was isiued is terminated, along with all of the
subtasks of that active task.

• The completion code is posted as indicated in the completion code parameter description
below.

• The end-of-task exit routine specified in the ATIACH macro instruction that created the
task which issued ABBND is selected to be given control. The e~t routine is given
control when the originatiq task of the task for which ABEND was issued becomes
active. None of the end-of-task exit routines specifted for any subtasks of the task for
which ABEND was issued are given control.

The ABBND macro instruction is written as follows:

b

ABEND

b

comp coM

• DUMP
.. STEP
",coM tYJM
.DUMP,STEP
.DUMP"cod~ type
,.STEP.coM ,.
,DUMP.STEP,eotk tYJM

,DUMPOPT..p4II'Jft lut tldilr

".",.: 1)'IIlbol. Belin IttUI'W in column I.

One or more blanks must prec:ede ABEND.

One or more blanks must follow ABEND.

comp eotJ.: symbol, decimal or hexadecimal digit, or register (I) or
(2) - (12).
v .. ,...: O· 4095

code type: USER or SYSTEM •
DefMM: cod~ ty~ - USER .

JIll"" lilt IIIldr: RX-type address, or resister (2) • (12).

The parameten are explained below:

compcode
specifies the completion code associated with the abnormal termination. If the job step is to
be terminated, the decimal representation of the user completion code or the hexadecimal
representation of the system completion code is recorded on the system output device. If the
job step is not to be terminated, the comple~on code is placed in the TCB of the active
task. and in the BCB specified in the BCB parameter of the A IT ACH macro instruction
issued to create the active task.

ABEND -~ Tenllllllate a T_ 19

,DUMP

"STEP
",code type
~DUMP,STEP

,DUMP"code type
"STEP, code type
,DUMP ,STEP, code type

specifies options available with the ABEND macro instruction:

DUMP specifies that a dump is requested of virtual storage areas assigned to the task and
control blocks pertaining to the task. A separate dump is provided for each of the tasks
being terminated as a result of ABEND. If a / /SYSABEND, / /SYSMDUMP, or
/ /SYSUDUMP DD statement is not provided, the DUMP parameter is ignored.

STEP specifies that the entire job, step of the active task is to be abnormally terminated.

code type specifies that the completion code is to be treated as a USER or SYSTEM code.

,DUMPOPT - parm list addr
specifies the address of a parameter list valid for the SNAP macro instruction. The
p~ameter list is used to produce a tailored dump, and may be created by using the list form
of the SNAP macro instruction, or a compatible list may be created. The TCB, DCB, ID,
and STRHDR options available on SNAP will be ignored if they appear in the parameter
list; the TCB used will be that of the task being terminated, the DCB used will be provided
by the ABDUMP routine. If a / /SYSABEND, / /SYSMDUMP, or / /SYSUDUMP DD
statement is not provided, the DUMPOPT parameter is ignored.

If the dump options specified include ranges of storage areas to be dumped, only the storage
areas in the first four ranges will be dumped.

Example 1

OperatioD: Terminate with a user completion code of 432.

ABEND 432

Example 1

OperatioD: Terminate with the user completion code that is contained in register S. The entire
job step is to be terminated.

ABEND (5), ,STEP

98 OS/VS2 MVS Sapenllor Semcet .. M.ao

A1T ACH - Create a New Task

The A IT ACH macro instruction causes the control program to create a new task and indicates
the entry point in the program to be given control when the new task becomes active. The
entry point name that is specified must be a member name or an alias in a directory of a
partitioned data set, or must have been specified in an IDBNTIFY macro instruction. If the
specified entry point cannot be located, the new subtask is abnormally terminated.

The address of the task control block for the new task is returned in register 1. The new
task is a subtask of the originating task; the originating task is the task that was active when
the A IT ACH macro instruction was issued. The limit and dispatching priorities of the new
task are the same as those of the originating task unless modified in the AITACH macro
instruction.

The load module containing the program to be given control is brought into virtual storage
if a usable copy is not available in virtual storage. The issuing program can provide an event
control block,in which termination of the new task is posted, an exit routine to be given
control when the new task is terminated, and a parameter list whose address is passed in
register 1 to the new task. If the BCD or EXTR parameter is coded, a DETACH macro
instruction must be issued to. remove the subtask from the system before the program that
issued the A IT ACH macro instruction terminates. If the BCD or BXTR parameter is not
coded, the subtask is automatically removed from the system upon completion of its execution.
If the BCD parameter is specified in the AITACH macro instruction, the BCB must be in
storage so that the issuer of the attach can wait on it (using the WAIT macro instruction) and
the control program can post it on behalf of the terminating task. The A IT ACH macro
instruction can also be used to specify that ownership of virtual subpools is to be assigned to
the new task, or that the subpools are to be shared by the originating task and the new task.

AtTACH - Create • New T_ 9.

The standard form of the A'IT ACH macro instruction is written as follows:

~

ATTACH

~

EP-e""" 1UUfI~
EPLOC .. "try 1UUfI~ addr
DE-Itrt ~"try addr

,DCB-dcb tlddr

,LPMOD-Ilmlt prior "mbr

,DPMOD-dlsp prior "mbr

,P A.R.AM-(addr)
,P A.R.AM-(addr), VL-l

,ECB-ecb tlddr

,ETXR-ult,.", addr

,GSPV-subpool nmbr
,GSPL-subpooilist addr

,SHSPV -subpool nmbr
,SHSPL-subpool list addr

,SZERO-YES
,SZERO-NO

,T ASKLIB-deb addr

,81' AI-(lXlt addr)
,81' AI-(lXlt addr,parm tlddr)
,EST AI-(lXlt addr)
,EST AI-(ult addr,pann addr)

,PURGE-QUIESCE
,PURGE-NONE
,PURGE-HALT

,ASYNCH-NO
,ASYNCH-YES

,TERM-NO
,TERM-YES

,RELATED-l'alw

"arM: symbol. Begin "am~ in column 1.

One or more blanks must precede ATTACH.

One or more blanks must follow A IT ACH.

miry "a~: symbol.
~""" ~ tlddr: A-type address, or register (2) - (12).
list ~"try addr: A-type address, or register (2) - (12).

deb addI': A-type address, or register (2) - (12).

limit prior "mbr: symbol, decimal digit, or register (2) - (12).

dlsp prior "mbr: symbol, decimal digit, or register (2) - (12).

addr: A-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For
example, P A.R.AM-(addr,tlddr,addr)

~eb addr: A-type address, or register (2) - (12).

IXlt ,.", addr: A-type address, or register (2) - (12).

subpool "mbr: symbol, decimal digit, or register (2) - (12).
",bpooilist addr: A-type address, or register (2) - (12).

lubpool nmbr: symbol, decimal digit, or register (2) - (12).
",bpool list addr: A-type address, or register (2) - (12).

Def .. : SZERO-YES

deb addr: A-type address, or register (2) - (12).

IXlt add,: A-type address, or register (2) - (12).
pa"" addr: A-type address, or register (2) - (12).

Note: PURGE may be specified only if ST AI or EST AI is specified.
Def .. for ST AI: PURGE-QUIESCE
Def .. for EST AI: PURGE-NONE

Note: ASYNCH may be specified only if ST AI or EST AI is
specified.
Def ... for ST AI: ASYNCH-NO
Def .. for ESTAI: ASYNCH-YES

Note: TERM may be specified only if EST AI is specified.
Def .. : TERM-NO

l'alu~: any valid macro keyword specification.

The parameters are explained below:

EP - entry ruune
EPLOC - entry name addr
DE -list entry addr

specifies the entry name, the address of the entry name, or the address of the name field of
a 6O-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLO~ is coded, the name must be padded to eight bytes, if necessary.

,DCB - deb addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above. (Note: The DCB must be opened before the ATIACH macro
instruction is executed.)

,LPMOD -limit prior nmbr
specifies the number (255 or less) to be subtracted from the current limit priority of the
originating task. The result is the limit priority of the new task. If this parameter is omitted,
the current limit priority of the originating task is assigned as the limit priority of the new
task.

,DPMOD - disp prior nmbr
specifies the signed number (255 or less) to be algebraically added to the current
dispatching priority of the originating task. The result is assigned as the dispatching priority
of the new task, unless it is greater than the limit priority of the new task. If the result is
greater, the limit priority is assigned as the dispatching priority.

If a register is designated, a negative number must be in two's complement form in the
register. If this parameter is omitted, the dispatching priority assigned is the smaller of either
the new task's limit priority or the originating task's dispatching priority.

,PARAM - (addr)
,PARAM-(addr),VL-l

specifies addressees) to be passed to the control program. Bach address is expanded in1ine
to a fuDword on a fullword boundary, in the order designated. Register 1 contains the
address of the f11'St word when the program is given control. (If this parameter is not coded,
register 1 is not altered.)

VL - 1 should be designated only if the called program can be passed a variable number of
parameters. VL-l causes the higb-order bit of the last address to be set to 1; the bit can
be checked to fmd the end of the Jist.

,BCB -ecb addr
specifies the address of an event control block for the new task to be used by the control
program to indicate the termination of the new task. The ECB must be in storage so that
the issuer of the attach can wait on it (using the WAIT macro instruction) and the control
program can post it on behalf of the terminating task. The return code (if the task is
terminated normally) or the completion code (if the task is terminated abnormally) is also
p~ in the even control block. If this parameter is coded, a DETACH macro instruction
must be issued to remove the subtask from the system after the subtask has been
terminated.

,ETXll-exit 111l addr
specifies the address of the end-of-task exit routine to be given control after the new task is
normally or abnormally terminated. The exit routine is given control when the originating
task becomes active after the subtask is terminated, and must be in virtual storage when
required. If this parameter is coded, a DETACH macro instruction must be issued to
remove the subtask from the system after the subtask has been terminated.

The contents of the registers when the exit routine is given control are as follows:

...... eo_tea_
o Control pfOll'BJD information.
1 AdcIreII of the talk control block for the task that was terminated.
2-12 Unpredictable.
13 Address of a save area provided by the control proaram.
14 Return address (to the control proll'am).
1 S Address of the exit routine.

The exit routine is responsible for saving and restoring the registers.

A1TACH-CreMeaNewT_ "

,GSPV - subpool nmbr
.GSPL-subpool list addr

specifies a virtual storage subpool number less than 128 or the address of a list of virtual
storage subpool numbers each less than 128. Ownership of each of the specified subpools is
assigned to the new task. Programs of the originating task can no longer GETMAIN or
FREEMAIN the associated virtual storage areas.

If GSPL is specified, the first byte of the Hst contains the number of remaining bytes in the
list; each of the following bytes contains a virtual storage subpool number.

,SHSPV - subpool nmbr
.SHSPL - subpool list addr

specifies a virtual storage subpool number less than 128 or the address of a Hst of virtual
storage subpool numbers each less than 128. Programs of both originating task and the new
task can use the associated virtual storage areas.

If SHSPL is specified, the first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage subpool number .

• SZERO-YES
,SZERO-NO

specifies whether subpool 0 is to be shared with the subtask. YES specifies that subpool 0 is
to be shared; NO specifies that subpool 0 is not to be shared.

,T ASKLIB - deb addr
specifies that a task library DCB address bas been supplied and is stored in TCBJLB.
Otherwise, TCBJLB is propagated from the originating task. (Note: The DCB must be
opened before the ATIACH macro instruction is executed.)

,STAI-(exit addr)
,STAI - (exit addr,parm addr)
,ESTAI-(exit addr)
,EST AI - (ex;t addr,parm addr)

specifies whether a STAI or ESTAI SCB is to be created; any STAI/ESTAI SCBs queued
to the originating task are propagated to the new task.

The exit addr specifies the address of the ST AI or EST AI exit routine which is to receive
control if the subtask abnormally terminates; the exit routine must be in virtual st()rage at
the time of abnormal termination. The parm addr is the address of a parameter list which
may be used by the ST AI or EST AI exit routine.

,PURGE - QUIESCE
,PURGE - NONE
,PURGE-HALT

specifies what action is to be taken with regard to I/O operations when the subtask is
abnormally terminated. No action may be specified (NONE), a halting of I/O operations
may be requested (HALT), or a quiescing of I/O operations may be indicated (QUIESCE).

,ASYNCH-NO
,ASYNCH - YES

specifies whether asynchronous exits are to be allowed when a subtask abnormal
termination occurs.

ASYNCH-YES must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their normal

processing are going to be requested by the EST AE exit routine.

• PURGE-OUIBSCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE.NONE is specified and the CHECK macro instruction is issued in the ESTAE
exit routine for any access method that requires asynchronous interruptions to complete
normal input/output processing.

Note: If ASYNCH .. YES is specified and the ABEND was originally scheduled because of
an error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous exit handling was the cause of the failure.

,tERM-NO
,TERM-YES

specifies whether the exit routine associated with the EST AE request is also to be scheduled
in the following situations:
-CANCEL
-Forced LOGOFF
-Job step timer expiration
-Wait time limit for job step exceeded
-ABEND condition because incomplete task detached when ST AE option not specifted on

DETACH
-EST AE macro instruction issued by subtask and attaching task abnormally terminates

,RBLA TED - wllue
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

ATTCH1 ATTACH EP=MYJOB,ECB=MYECB,RELATED=(DETCH1,'CREATE SUBTASK')
DETCH1 DETACH (1),RELATED=(ATTCH1,'DETACH SUBTASK')

When control is returned, register 1S contains one of the f080wing return codes:

HevMhd··1
Code

00
04
08

OC

M..taa
Successful oompletion.
ATTACH was issued in a ST AE exit; processina not completed.
Insufficient stol'8le available for oontro. block for ST AI/EST AI request; proceaina not
completed.
Invalid exit routine address or invalid parameter list addfeS!l specified with ST AI
parameter; processin, not completed.

Note: For any return code other than 00, register 1 is set to zero upon return.

Note: The proiram manager processing for ATTACH is performed under the new subtask,
after control has been returned to the originating task. Therefore, it is possible for the
originating task to obtain return code 00, and ~ not have the subtask successfully created
(for example, if the entry name could not be found by the program manager). In such cases,
the new subtask is abnormaDy terminated.

A1TAOI - CreMe • New Till t5

A1TACH (list Form)

Two parameter lists are used in an A IT ACH macro instruction: a control program parameter
list and an optional problem program parameter list. You can construct only the control
program parameter list in the list form of ATIACH. Address parameters to be passed in a
parameter list to the problem program can be provided using the list form of the CALL macro
instruction. This parameter list can be referred to in the execute form of ATTACH.

The list form of the A IT ACH macro instruction is written as follows:

name

b

ATTACH

b

EP~ntry name
EPLOC~ntry name addr
DE-list entry addr

,DCB-dcb addr

,LPMOD-limit prior nmbr

,DPMOD-disp prior nmbr

,ECB~eb addr

,ETXR~x;t nn addr

,GSPV-subpool nmbr
,GSPL-subpoollist addr

,SHSPV -subpool nmbr
,SHSPL-subpool list addr

,SZERO-YES
,SZERO-NO

,TASKLlB-deb addr

,ST AI-(exlt addr)
,ST AI-(ex;t addr,parm addr)
,EST AI-(alt add,)
,EST AI-(exlt addr,parm adtlr)

,PURGE-QUIESCE
,PURGE-NONE
,PURGE-HALT

,ASYNCH-NO
• ASYNCH-YES

• TERM-NO
.TERM-YES

• RELATED-yalue

.SF-L

name: symbol. Begin name in column 1.

One or more blanks must precede A 11 ACH.

One or blanks must follow ATIACH.

entry name: symbol. .
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

limit prior nmbr: symbol or decimal digit.

disp prior nmbr: symbol or decimal digit.

ecb addr: A-type address.

exit nn addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

Def .. : SZERO-YES

deb addr: A-type address.

exit addr: A-type address.
parm addr: A-type address.

Note: PURGE may be specified only if ST AI or EST AI is specified.
Def .. for ST AI: PURGE-QUIESCE
Def .. for EST AI: PURGE-NONE

Note: ASYNCH may be specified only if ST AI or EST AI is
specified .
Def .. for ST AI: ASYNCH-NO
Def .. for EST AI: ASYNCH-YES

Note: TERM may be specified only if EST AI is specified .
Def .. : TERM-NO

Niue: any valid macro keyword specification .

The parameters are explained under the standard form of the ATTACH macro instruction,
with the following exceptions:

,SF-L
specifies the list form of the A Tf ACH macro instruction.

t6 OSIVSl MVS Supenilor SenIcet ... Macre

ATTACH (Execute Form)

Two parameter lists are used in A TI ACH: a control program parameter list and an optional
problem program parameter list. Either or both of these parameter lists can be remote and can
be referred to and modified by the execute form of ATIACH. If only the problem program
parameter list is remote, parameters that require use of the control program. parameter list
cause that list to be constructed inline as part of the macro expansion.

The execute form of the A IT ACH macro instruction is written as follows:

b

ATTACH

b

EP-m6ry ~
EPLOC..".try 1IiI~ addr
DE-list entry addr

,DCB-dcb addr

,LPMOD-llmlt prior "mbr

,DPMOD-d#.rp prior 1Imbr

,P ARAM-(addr)
,PARAM-(addr), VL-I

,ECB-«b addr

~ETXR-t'Xlt ,.", addr

,GSPV -subpool "",,,,
,GSPL-.rllbpool list addr

,SHSPV -subpool nmbr
,SHSPL-supoool list addr

,SZERO-YES
,SZERO-NO

,T ASKLIB-deb addr

,ST AI-(alt addr)
,ST AI-(alt addr,parm addr)
,EST AI-(ult addr) .
,EST AI-(~xlt addr,pann addr)

,PURGE-QUIESCE
,PURGE-NONE
,PURGE-HALT

,ASYNCH-NO
,ASYNCH-YES

,TERM-NO
,TERM-YES

,RELA TED-,a.

,MF-(E, prob addr)
,SF-(E, em addr)
,MF-(E, prob addr),SF-(E, em addr)

IIiIm~: symbol. Begin 11i11fW in column I.

One or more blanks must precede ATTACH.

One or more blanks must follow A'IT ACH.

~"try "ame: symbol._
mtry "am~ addr: RX-type address, or register (2) - (12).
list ~"try addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

limit prior "mbr: symbol, decimal digit, or register (2) - (12).

dlsp prior "mbr: symbol, decimal digit, or register (2) - (12).

addr: RX-type address, or register (2) - (12).
Nete: addr is one or more addresses, separated by commas. For
example, PARAM-(addr,tlddr,addr)

~eb addr: RX-type address, or register (2) - (12).

alt ,.",' addr: RX-type address, or register (2) - (12).

subpool "mbr: symbol, decimal digit, or register (2) - (12)
subpool list addr: RX-type address, or register (2) - (12).

subpool "mbr: symbol, decimal digit, or reper (2) - (12).
subpooillst addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

ult addr: RX-type address, or register (2) - (12).
/HI"" addr: RX-type address, or register (2) - (12).

Note: PURGE may be specified only if ST AI or EST AI is specified.

Nete: ASYNCH may be specified only if ST AI or EST AI is
specified.

Note: TERM may be specified only if EST AI is specified.

,alu~: any valid macro keyword specification.

prob addr: RX-type address, or register (1) or (2) - (12).
ctrl addr: RX-type address, or register (2) - (12) or (IS).

An ACH (beau 'ona) 97

The parameters are explained under the standard form of the A'IT ACH macro instruction,
with the following exceptions:

,MF - (E, prob addr)
,sF - (E, ctrl addr)
,MF - (E, prob addr),sF - (E, cui addr)

specifies the execute form of the A'IT ACH macro instruction using either a remote problem
program parameter list or a remote control program parameter list. Any problem program or
control program parameters are provided in parameter lists expanded inline.

Notes:

• If ST AI is specified on the execute form, the following fields are overlaid in the control
program parameter list: exit addr, parm OI/dr, PURGE, ancj...ASYNCH. If pann addr is
not specified, zero is used; if PURGE or ASYNCH are not specified, defaults are used.

• If EST AI is specified on the execute form, then the following fields are overlaid: ait
addr, parm addr, PURGE, .ASYNCH, and TERM. If parm addr ~ not specified, zero is
used; if. PURGE, ASYNCH, or TERM are not specified, defaultS are used.

• If the ST AI or EST AI is to be specified, it must be completely specified on either the list
or execute form, but not on both forms.

• If SZERO is not specified on the list or execute form, the default is SZERO-YES. If
SZERO-NO is specified on either the Jist form or a previous execute form using the
same SF-list, then SZERO-YES is ignored for any following execute forms of the
macro. Once SZERO-NO is specified, it is in effect for all users of that list.

EDIIl,le 1

Operadoa: Cause the program named in the list to be attached. Established RTN as an end of
task exit routine.

ATTACH DE=LISTNAME,ETXR=RTN

EDIIl,le 2

Operadoa: Cause PROGRAMI to be attached, share subpool S, wait on WORDI to
synchronize processing with that of the subtask, and establish EXITl as an EST AI exit.

ATTACH EP=PROGRAM1,SHSPV=5,ECB=WORD1,ESTAE=(EXIT1)

• OSIVS2 MVS ".nIIar SenIceI_ MMn

CALL - Pass Control to a Control Section

The CALL macro instruction passes control to a control section at a specified entry point as
follows:

• OVERLAY: The overlay segment containing the designated entry point is brought into
virtual storage if required, and control is passed to the segment.

Refer to Lin/cQge Editor and Loader for details on overlay. The CALL macro instruction
cannot be used in an asynchronous exit routine.

• NON-OVERLAY: H a symbol is designated, the linkage editor includes the load module
containing that entry point in the same load module containing the CALL instruction.
When the CALL macro instruction is executed, control is passed to the control section at
the specified entry point.

The linkage relationship established when control is passed is the same as that created by a
SAL instruction; that is, the issuing program expects control to be returned. The control
program is not involved in passing control, sO the reusability of the called program must be
maintained by the user.

An address parameter list can be constructed and a calling sequence identifier can be
provided.

The standard form of the CALL macro instruction is written as follows:

b

CALL

b

,(addr)
,(add,),VL

,ID-Id nmbr

na1M: symbol. Begin name in column 1.

One or more blanks must precede CALL.

One or more blanks must follow CALL.

entry name: symbol or register (l S).

add,: A-type address, or register (2) - (12).
Note: add, is one or more addresses, separated by commas. For
example, (addr,add,.addr)

Id nmb,: symbol or decimal digit, with a maximum value of 409S.

The parameters are explained below:

entry name
specifies the entry name to be given control.

, (addr)
, (addr),VL

specifies address(es) to be passed to the control program. Each address is expanded inline
to a fullword on a fuUword boundary, in the order designated. Register 1 contains the
address of the first parameter when the program is given control. (H this parameter is not
coded, register 1 is not altered.)

VL should be coded only if the called program can be passed a variable number of
parameters. VL causes the bigh-order bit of the last address parameter to be set to 1; the
bit can be checked to find the end of the list.

CALL - c to • c SedIaII "

,ID - id IImbr
specifies an identifier useful for debugging purposes oaly. The last fullword of the macro
expansion is a NOP instruction contaiDing the identifier value in bytes 3 and 4.

Upon entry to the called program, the register contents are as follows:

RePter M
1 Address of parameter list, if Prelellt.
14 R.eturn address.
15 Entry adc:IreII of caIlecI propam.

CALL (List FOIIII)

The list form of the CALL macro instruction is used to construct a nonexecutable problem
program parameter Hat. This Hat form generates only ADCONa of the address parameters. This
problem program parameter list can be referred to in the execute form of a CALL. LINK.
ATIACH, or Xcn.. macro instruction.

The list form of the CALL macro instruction is written as follows:

b

CALL

b

,(tltId,)
,(tIdd,), VL

1ItIIM: symbol. Beam 1ItI". in column I.

One or more blanks must precede CALL.

One or more blanks must follow CALL.

tIddr: A-type address.
Nefe: tUJtIr is one or more IIddreaes, separated by COIDIDM. For
example, (tlddr,tlddr,lIIIdr)

The parameters are explained under the standard form of the CALL macro instruction, with
the following exceptions:

,MF-L
specifIeS the list form of the CALL macro instruction.

CALL (LIlt , __) .1.

CALL (Execute Form)

A remote problem program parameter list is referred to and can be modified by the execute
form of the CALL macro instruction. Only executable instructions and a VCON of the entry
point are generated.

The execute form of the CALL macro instruction is written as follows:

b

CALL

b

~nt" "tmI~

,(lIdd,)
,(lIdd,). VL

,ID.ld lImb,

,MP-(E,pmb IIdd,)

,",1M: symbol. Belin ""lite in column t.

One or more blanks must precede CALL.

One or more blanks must follow CALL.

entry 1ItIIM: symbol or register (15).

IIdd,: RX-type addrea. or register (2) - (12).
Nete: tUldr is one or more addrelles, separated by commas. For
example, (tUldr,lIddr,tUldr)

Id "mbr: symbol or decimal digit, with a maximum value of 4095.

prob tlddr: Rx-type address, or register (I) or (2) - (12).

The parameters are explained under the standard form of the CALL macro instruction, with
the following exceptions:

,MF-(E,prob addr)
specifies the execute form of the CALL macro instruction. This form uses a remote problem
program parameter list. H the address parameters are also specified in this form, the
ADCONS of the parameter are placed on contiguous fullword boundaries beginning at the
address specified in the MF parameter, and sequentially overlaying corresponding fuDwords
in the existing list.

Example 1

Opendoa: Call the entry point contained in register 1 S, and pass three addresses to the
control program.

CALL (15), (ADDR1 ,ADDR2 ,ADDR3)

101 OSIVS2 MVS SIIpentIor SenIeet ... MIKft

CHAP - Change Dispatching Priority

CHAP changes the dispatching priority of the task or any of its subtasks relative to the other
tasks in the address space. It does not change the priority relative to other tasks in the system.
CHAP may also change the limit priority of a subtask. (See the section "Priorities" in this
publication.) The algebraic sum of the priority value and the dispatcbing priority of the subject
task determines the new dispatching priority.

• H the subject task is the task executing CHAP, its dispatching priority is set· equal to the
sum of the priority value and the dispatching priority. This value is not set at less than
zero or greater than the limit priority for the task. Its limit priority is unaffected.

• H the subject task is a subtask of the task executing CHAP, its dispatching priority is set
equal to the sum of the priority value and the dispatching priority. This value is not set at
less than zero or greater than the limit priority of the task executing CHAP. Alter this
modification, if the subtask's dispatching priority exceeds its limit priority, the limit
priority is made equal to the dispatching priority.

The CHAP macro instruction is written as follows:

b

CHAP

b

priority ra_
:~
,tcb addr

,RELATED-l'a_

nalM: symbol. Besin MIM in column 1.

One or more blanks must precede CHAP.

One or more blanks must follow CHAP.

priority ,alw: symbol, decimal digit, or reamer (0) or (2) - (12).

tcb addr: RX-type address, or register (1) or (2) - (12).
Del .. : 'S'

WI_: any valid macro k.eyword specification.

The parameters are explained below:

priority WJ/.
specifies the signed value to be added to the dispatching priority of the specified task. H the
value is negative and contained in a register, it must be in two's complement form.

,'S'
,teb addr

speanes the address of a fuUword on a fuUword boundary containing the address of a task
control block for a subtask of the active task. U'S' is coded or assumed, the dispatching
priority of the active task is updated.

,RELATED - WJ/w
speanes information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite -services
(for example, ATIACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and EST AS).

The parameter may be used, for example, as follows:

CHAPUP
CHAPDOWN

CHAP 1,S,RELATED=(CHAPDOWN,'UP PRIORITY')
CHAP -1,S,RELATED=(CHAPUP,'RESUME INITIAL PRIORITY')

Example 1

OperadoD: Lower by 2 the dispatching priority of the subtask TCB, whose address is in a
fullword which is addressed by register 1. The subtuk TCB will be repositioned on the
dispatching queue in accordance with its new dispatching priority.

CHAP -2, (,)

Example 2

OperadOD: Cause the TCB of the task issuing CHAP to be repositioned at the bottom of the
group of TCBs on the dispatching queue for the add.reas space, having the same dispatching
priority as that task.

CHAP 0

1M OIIV82 MVS "Inlier s.'fIceI .. Macn

DELETE - Relinquish Control of a Load Module

The DELETE macro instruction cancels the effect of a previous LOAD macro instruction. If
DELETE cancels the only outstanding LOAD request for the module and no other
requirements exist for the module, the virtual storage occupied by the load module is released
and is available for reassignment by the control program.

The entry name specified in the DELETE macro instruction must be the same as that
specified in the LOAD macro instruction that brought the load module into storage. Also, the
DELETE macro instruction must be issued by the same task that issued the LOAD macro
instruction.

Any module loaded by a task will not be removed from virtual storage until the DELETE
macro instruction is issued or end of task is reached. In addition, any module loaded by a
system task will not be removed from virtual storage untll a DELETE macro instruction is
issued by a system task or end of task is reached.

The DELETE macro instruction is written as follows:

t>

DELETE

t>

EP-mtry ntllM

EPLOC-ewtry Mine tldd,
DE-/1.r1 ~""" tldd,

,RELA TED-""Il~

ntllM: symbol. Desin ntl1M in column 1.

One or more blanks must precede DELETE.

One or more blanks must follow DELETE.

~ntry ntlm~: symbol.
entry ntllM tldd,: RX-type address, or register (0) or (2) - (12).
II.rI ~ntry tldd,: RX-type address, or register (0) or (2) - (12).

"''''~: any valid macro keyword specification.

The parameters are explained below:

BP - entry name
BPLOC - atry name addr
DE -list entry addr

specifies the entry name, the address of the entry name, or the address of a 6O-byte list
entry for the entry name that was constructed using the BLDL macro instruction. If
EPLOC is coded, the name must be padded to eight bytes, if necessary.

,RELATED - Wllue
specifies information used to self -document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and BSTAB).

The parameter may be used, for example, as follows:

LOAD' LOAD EP=APGIOHK' ,RELATED=(DEL 1 , 'LOAD APGIOHK")
DEL' DELATE EP=APGIOHK',RELATED=(LOAD', 'DELATE APGIOHK1')

DELETE - C fila M..... 185

When control is returned, register IS contains one of the foDowing return codes:

Ra.dld··t
Code

00
04

Exaapie 1

M
Succeuful completion of requested function.
Request Via not iaued for this module, or attempt Via made to delete a syltem
module.

Operatloa: Remove a module (PGMTOVL Y) from virtual storage.

DELETE EP=PGMTOVLY

t. 0SIVS2 MVS _.nIIIr ~ ... E~

DEQ - Release a SeriaDy Reusable Resource

DBQ removes control of one or more (maximum is 65,535) serially reusable resources from
the active task. Register 15 is set to 0 if the request is satisfied. An unconditional request to
release a resource from a task that is not in control of the resource, or a request that contains
invalid parameters results in abnormal termination of the task.

The standard form the the DBQ macro instruction is written as follows:

b

DEQ

b

fttl1M: symbol. Beam ntIIM in column 1.

One or more blanks must precede DEQ.

One or more blanks must foDow DEQ.

,

qntuM tJddr: A-type addrell, or reaister (2) - (12).

""',. lUldr: A-type addrea, or resister (2) - (12).

""'1M fagth: synlbol, decimal diait, or reaWer (2) - (12).
Note: I1IIl1IW 'megth mull be coded if a reaWer is specified for 1'ftIl1M
add,..

,STEP
,SYSTEM
,SYSTEMS

Defalllt: STEP

(

,WI,.1234

,RET.HAVE
,RET.NONE

,RELA TED.WlIw

Wlf'1234: The precedill8 4 parameters may be repeated up to 6','3'
times.

Defalllt: RET.NONE

Wllw: any valid macro keyword specification.

The parameters are explained below:

specifies the beginning of the resource description.

qnamll addr
specifies the address in virtual storage of an 8-character name. The f[fIIII'M must be the
same name specified for the resource in an BNQ macro instruction.

,17ItI1IW addr
specifies the address in virtual storage of the name used in conjunction with q1ltJl'M and
scope to represent the resource acquired by a previous BNQ macro instruction. The name
can be qualified and must be from 1 to 255 bytes long. The ~ must be the same name
specified for the resource in an BNQ macro instruction.

,mII1IW lagth
specifies the length of the rna". described above. The length must have the same value as
specified in the previous BNQ macro instruction. If this parameter is omitted, the assembled
Ieqth of the 1'1III1M is used. You can specify a value between 1 and 255 to override the
assembled leqth, or you may specify a value of O. If 0 is specified, the length of the .17ItI1M

must be contained in the fIrSt byte at the 17III1M addr specified above.

DEQ - a s.tIIJ ~ 107

,STEP
,sYSTEM
,sYSTEMS

specifies the scope of the resource. You must specify the same STEP, SYSTEM, or
SYSTEMS option as you used in the BNQ macro instruction requesting the resource.

~Wlr1234

specifies that up to 6S,S3S resources may be specified in the DBQ macro instruction.

specifies the end of the resource description.

,RET-HAVE
,RET-NONE

specifies that the request for releasing the resources named in DBQ is to be honored only if
the active task has been assigned control of the resources or if BNQ was executed with
BCB (HAVE) or specifieS an 'unconditional request to release all the 'resources (NONE). If
tbis parameter is omitted, the request for release is unconditional, and the active task is
abnormally terminated if it baS not been assigned control of the resources.

,RELATED - Wllue
specifies information used to self-docum.ent macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and can be any valid coding values.

The RBLA TED parameter is available on macro instructions that provide opposite services
(for example, ATIACH/DBTACH, GBTMAIN/FREBMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructiODS (for
example, CHAP and BSTAB). .

The parameter may be used, for example, as follows:

ENQUEUE ENQ (MAJOR,MINOR,S,8,STEP),RELATED=(DEQUEUE,'OBTAIN RESOURCE
DEQUEUE DEQ (MAJOR, MINOR, 8, STEP) , RELATED=ENQUEUE, 'RELEASE RESOURCE')

Return codes are provided by the control program only if RET-HAVE is designated. If aD
of the return codes for the resources named in DBa are 0, register IS contains O. If any of
the return codes are not 0, register IS contains the address of a virtual storage area containiq
the return codes as shown in Figure 47. The return codes are placed in the parameter list
resulting from the macro expansion in the same sequence as the resource names in the DBa
macro instruction. The return codes are shown in Figure 48.

•• 0SIVS2 MVS _ SenIces .. MIao

Addr ..
Retumed in
Register 15

J

12

24

36
....

[

2

.... - -
""

3

Retum
Cod ..

!
RC 1

RC2

RC3

4

~

4

-

12

Return codes are
12 bytes apart,
ltarting 3 bytes
from the addr ...
in regilter 15.

..... 47 • CetIe ANa VIM ., DIQ

Code o
4

8

M-btI
The resource has been released.
The resource has been ~uested for the task, but the task has not been
assiped control. The task is not removed from the wait condition. (This
retumcode could result if DBQ is issued within an exit routine which was
aiven control because of an interruption.) .
Control of the resource has not been requested by the active task, or the
resource has already been released.

DEQ (Ust Fonn)

Use the list form of DBQ to construct a control program parameter list. The number of qname,
mame, and scope combinations in the list form of DBQ must be equal to the maximum
number of qname, 17UJme and scope combinations in any execute form of DBQ that refers to
that list form.

The list form of the DBQ macro instruction is written as follows:

b

CEQ

b

qlllllM add,

,
,STEP
,SYSTEM
,SYSTEMS

"1.1234

,RET-HAVE
,RET-NONE

,RELATEC."lalw

,MF-L

"1IIft~: symbol. Beam "1IIft~ in column 1.

One or more blanks must precede CEQ.

One or more blanks must follow CEQ.

qnam~ addr: A-type address.

""'m~ add,: A-type address.

"",me length: symbol or decimal digit.

Deflllllt: STEP

.",,1234: The preceding 4 parameters may be repeated up to 65,535
times.

"lal,,~: any valid macro keyword specification.

The parameters are explained under the standard form of the DBQ macro instruction, with
the following exceptions·:

,MF-L
specifies the list form of the DBQ macro instruction.

no OSIVS2 MVS _Inlier SenIees .. Maao

DEQ (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the DEQ macro. The parameter list can be generated by the list form of either the DEQ or
the ENQ macro instruction.

The execute form of the DEQ macro instruction is written as follows:

b

DEQ

b

qftlllM IIdd,

,
.",IIIM IIddr

,
,STEP
,SYSTEM
,SYSTEMS

.WI,1234

,RET-HAVE
,RET-NONE

,RELA TED-WlIue

,MF-(E .etrl IIdd,)

IlIUM: symbol. Bepn "",. in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

Nete: (and) are th~ beJinnina and end of a parameter list. The
entire list is optional. If nothing in the list is desired, the (,), and all
parameters between (and) should not be specified. If something in
the list is desired, the (,), and all parameters in the list should be
specified 81 indicated at the left.

q".",~ tMldr: RX-type address, or repster (2) - (12).

f1IIIIM IIddr: RX-type addrelS, or register (2) - (12).

I7UIIM '.,rh: symbol, decimal digit, or register (2) - (12).

Def":STEP

'IIlrI234: The preceding 4 parameters may be repeated up to 65,535
times.

Nete: See note opposite (above.

Def .. :RET-NONE

WI.: any valid macro keyword specification.

etrlllddr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the DEQ macro instruction, with
the foUowing exceptions: .

,MF - (E ,etrl addr)
specifies the execute form of the DEQ macro instruction using a remote control program
parameter list.

Example 1

Operadoa: Release control of the resource in Example 1 of ENQ, if it has been assigned to
the current TCB. The length of the mame is expJicidy defmed as 9 characters.

DEQ (MAJOR1,MINOR1,9,STEP),RET=HAVE

Example 2

Operadoa: Unconditionally release control of the resources in Example 2 of ENQ. The length
of the rname for the first resource is 3 characters.

DEQ (MAJOR4,MINOR4,3,STEP,MAJOR2,MINOR2"SYSTEM,
MAJOR3,MINOR3"SYSTEMS)

DEQ (EuaIte FGIa) •••

DETACH - Detach a Subtask

The DETACH macro instruction is used to remove from the system a subtask created by an
ATTACH macro instruction that specified the ECB or ETXR parameter. Each subtask created
in this manner must be removed from the system before the originating task terminates.
Failure to remove these subtasks causes abnormal termination of the originating task and all of
its subtasks. Issuing a DETACH macro instruction that specifies a subtask created without the
ECB or ETXR parameter also causes abnormal termination of the originating task when the
specified subtask has already terminated. Issuing a DETACH macro instruction that specifies a
subtask that has not terminated causes termination of that subtask and all of its subtasks. A
DETACH macro instruction ca~ be issued only for subtasks created by the active task.

The DETACH macro instruction is written as follows:

b

DETACH

b

tcb addr

.STAE-NO

.STAE-YES

,RELA TED-"alue

name: symbol. Begin name in column 1.

One or more blanks must precede DETACH.

One or more blanks must follow DETACH.

tcb add,: symbol, RX-type address, or register (1) or (2) - (12).

De,,,: STAE-NO

"alue: any valid macro keyword specification.

The parameters are explained below:

tcb addr
specifies the address of a fullword on a fullword boundary containing the address of the
task control block for the subtask to be removed from the system.

,STAE-NO
,STAE-YFS

specifies whether the exit routine specified in a ST AE macro instruction issued by the
subtask, or ST AI/EST AB/EST AI exits existing for the subtasks, is or is not to be given
control if the subtask is detached before it has been terminated. H a retry routine is
specified by the ST AE exit routine, it is not given control.

,RELATED - value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and EST AB).

The parameter may be used, for example, as follows:

ATTCH1 ATTACH EP=MYJOB,ECB=MYECB,RELATED=(DETCH1,'CREATE S
DETCH1 DETACH (1),RELATED=(ATTCH1,'DETACH SUBTASK')

When control is returned, register 1 S contains one of the following return codes:

1Ies ··1
Code

00
04

ExaIBple 1

M
Successful completion.
An incomplete subtask was detached with ST AE-YES specified; DETACH PJ'O"IIina
successfully completed.

o,eraUoa: Cause the subtask to be removed from the address space. The address of the TCB
is in the fuDword labeled SA VEWORD.

DETACH SAVEWORD

Exaaple 2

Operatioa: In addition to causing the subtask to be removed from the address space, give
control to the most recent ST AE exit established by the subtask if the subtask has not yet
been terminated.

DETACH (1),STAE=YES

DETACH - DetadI • 113

DOM - Delete Operator Message

The OOM macro instruction is used with MCS with DIDOCS only. It is used to delete an
operator message or group of messages from display on graphic consoles or to inhibit operator
messages from ever appearing on any operator consoles. When a program no longer requires
that a message be displayed, the OOM macro instruction should be issued to delete the
message.

Depending on the timing of the OOM relative to the wrO(R), the message mayor may not
be displayed. H the message is being displayed, it is removed when space is required for other
messages.

When a wro or WTOR macro instruction is executed, the control program assigns an
identification number to the message. The control program returns the assigned identification
number (24 bits and right-justified) to the issuing program in general register 1. When display
of the message is no longer needed, the DOM macro instruction is coded using the
identification number that was returned in general register 1.

The DOM macro instruction is written as follows:

~

DOM

~

MSG-~
MSGLIST./ul addr

,REPLY.YES

nam~: symbol. Begin name in column 1.

One or more blanks must precede DOM.

One or more blanks must follow DOM.

reg: register (1) or (2) - (2).
lUI addr: symbol. RX-type address. or register (1) or (2) - (12).

The parameters are explained below:

MSG-reg
MSGLIST -list add,.

specifies the message numbers of messages to be deleted.

For MSG, the register contains the 24-bit, right-justified identification number of the
message to be deleted. Use this parameter to delete a single message. If you use register 1,
the macro expansion is shortened by two bytes.

For MSGLIST, the address is of a list of one or more fullwords, each word containing a
24-bit, right-justified identification number of a message to be deleted. A maximum of 60
identification numbers may be in the message list. If more than 60 identification numbers
are in the list, only the fust 60 are processed. Begin the list on a fullword boundary.
Indicate the end of the list by setting the bigh-order bit of the last fullword entry to 1. If
you use register 1, the macro expansion is shortened by four bytes. H any register 2 through
12 is used, the macro expansion is shortened by two bytes.

,IlEPL Y - YES
specifies that the need for a reply to a wrOR message has been eliminated. This parameter
must be specified if a wrOR message is to be deleted.

114 OSIVSl MVS s..entlor SenIeeI_ Macro

Example 1

o,eratloa: Delete an operator message whose message id is in register 1.
OOM MSG=(R1)

Example 2

Operatloa: Delete a list of operator messages, some of which may be WTORs.

DOM MSGLIST=ID2,REPLY=YES

DOM - Delete o,erater M... 115

DXR - DiYide Extended Register

The DXR macro instruction is used to divide one extended-precision floating-point number by
another. A detailed description of the division proCess and extended precision and rounding is
given in IBM Syst~m/ 370 Principles 0/ Operation.

To use the DXR macro instruction, you must provide a SPIE exit routine to process the
program exception caused (intentionally) by execution of the DXR instruction. The SPIE exit
routine is described in the section on Extended-Precision Floating-Point Simulation in the
Services section of this publication.

The DXR macro instruction is written as fonows:

b

Dn
b

lUUfte: .ymbol. Beain Itlllfle in column 1.

One or more blanks must precede DXR.

One or more blanks must follow DXR.

d/~1dad reg: symbol or decimal diait. The only permitted reaitten
are 0 and 4.

dlYbo, reg: symbol or decimal diait. The only permitted reaiaten are
o and 4.

The parameters are explained below:

diYUJ.rtd ,.,
specifies the register that contains the dividend. The quotient is placed in this reaister; the
remainder is discarded.

~dhuor ,.
specifies the register that contains the divisor.

ExaJaple 1

Operadoa: Divide the extended-precision floating-point number in register 0 by the
extended-precision fioating-point number in register 4.

OXR 0,4

II' 08/V82 MVS "inlier s...._ MMN

ENQ - Request Control of a Serially Reusable Resource

ENQ requests the control program to assign control of one or more (up to 65,535) serially
reusable resources to the active task. H any of the resources are not available, the active task
may be placed in a wait condition until all of the requested resources are available. Once
control of a resource has been assigned to a task, it remains with that task until one of the
programs of the same task issues a DEQ macro instruction specifying the same resource.
Register 1 S is set to 0 if the request is satisfied.

You can also use ENQ to determine the status of the resource; whether it is immediately
available or in use, and whether control has been previously requested for the active task in
another ENQ macro instruction.

You may request either shared or exclusive use of a resource. The resource is represented in
the ENQ by a pair of names, the qtUUM and the 1'I'UI1fN. and a scope value. The control
program does Dot correlate the names with the actua1 resource. ENQ simply coordinates access
to whatever it is the names represent. The names may be given meaning restricted to a job
step or across job steps. In either case, all programs for which coordination of the resource is
provided must represent it by the same name.

Issuing two ENQ macro instructions for the same resource without an intervening DBa
macro instruction results in abnormal termination of the task, unless the second ENQ
designates RET-TEST, USE, CHNG, or HAVE. If normal termination of a task is attempted
while the task still has control of any serially reusable resources, all requests made by this task
WI be automatically clequeued. If resource input addresses are incorrect, the task is abnormally
terminated.

ENQ - C..nIeI. SedIIJ R~ 117

The standard form of the ENQ macro instruction is written as follows:

name

t;

ENQ

t;

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname addr

,11Ulme addr

qname addr: A-type address. or register (2) - (12).

mame addr: A-type address. or register (2) - (12).

Def":E . .
,E
,S

. rname length: symbol, decimal digit, or register (2) - (12) .
,mame kngth Note: rname length must be coded if a register is specified for 11Ulme

addr.
Def .. : assembled leqth of mame

, Def":STEP.
,STEP
,SYSTEM
,SYSTEMS

. ,WJr12345

,RET-CHNO
,RET-HAVE:
,RET-TEST
,RET-USE
,RET-NONE

,RELA TED. value

var12345: The pre(:Cding 5 parameters may be repeated up to 65,535
times.

Def .. : RET-NONE.

value: any valid macro keyword specification.

The parameters are explained below:

specifies the beginning of the resource description.

q1llJme addr
specifies the address in virtual storage of an 8-character name. Every program issuing a
request for a serially reusable resource must use the same qname, mame, and scOpe to
represent the resource.

,mame addr

,E
,s

specifies the address in virtual storage of the name used in conjunction with q1llJme to
represent a single resource. The name can be qualified and must be from 1 to 2SS bytes
long. If the name used in an BQU assembler instruction is the same as the name specified in
marne, the maine length must be specified.

specifies whether the request is for exclusive (E) or shared (8) control of the resource. If
the resource is modified while under control of the task, the request must be for exclusive
co~trol; if the resource is not modified, the request should be for shared control.

•• 1 OSIVS2 MVS s..enllor SenIeet .. Macro

,mame length
specifies the . length of the mame described above. If this parameter is omitted, the
assembled length of the mame is used. You can specify a value between 1. and 255 to
override the assembled length, or you may specify a value of O. If 0 is specified, the length
of the mame must be contained in the first byte at the mame addr specified above. If the
name used in EQU assembler instruction is the same as the name specified in rname, the
mame length must be specified.

,sTEP
,SYSTEM
,SYSTEMS

specifies the scope of the resource used only within the job step of the issuing program
(STEP), used by programs of more than one address space (SYSTEM), or shared between
systems (SYSTEMS). If STEP is specified, a request for the same q1ll.JiM and mame from a
program in another address space denotes a different resource. If SYSTEM or SYSTEMs is
specified, requests for the same qname, mame, and scope from programs of any address
space denote the same resource.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the same
resource. If two macro instructions specify the same tpUJme and mame, but one specifies
STEP and the other specifies SYSTEM or SYSTEMS, they are treated as requests for
different resources.

,wu12345
specifies that up to 65,535 resources may be specified in the ENQ macro instruction.

)

specifies the end of the re."~­

.RET-CHNG

.RET-HAVE

.RET-TPST
,RET-USE
,RET-NONE

specifies the type of request for all of the resources named above.

CHNG - the status of the resource specified is to be changed from shared to exclusive
control.

HAVE - control of the resources is requested only if a request has not been made previously
for the same task.

TEST - the availability of the resources is to be tested, but control of the resources is not
requested.

USE - control of the resources is to be assigned to the active task only if the resources are
immediately available. If any of the resources are not available, the active task is not placed
in a wait condition.

NONE - control of aU the resources is unconditionally requested.

,RBLA TED - value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED. parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

ENQ -·R COIIIroI or. SerIIIy Re.MIe R..... I.,

The parameter may be used, for example, as fonows:

ENQUEUE ENQ (MAJOR,MINOR,S,8,STEP) ,RELATED=(DEQUEUE,'OBTAIN
DEQUEUE DEQ (MAJOR,MINOR,8,STEP) ,RELATED=(ENQUEUE,'RELEASE R

Return codes are provided by the control program only if you specify RET-TEST,
RET-USE, RET-CHNG, or RET-HAVE; otherwise, return of the task to the active
condition indicates that control of the resource has been assigned (or previously assigned) to
the task. H all return codes for the resources named in the ENQ macro instruction are 0,
register 15 contains 0. H any of the return codes are not 0, register 15 contains the address of
a storage area containing the return codes, as shown in Figure 49. The return codes are placed
in the parameter list resulting from the macro expansion in the same seq"
names in the ENQ macro instruction. The return codes are shown in P'

Address
Returned in
Register 16

12

24

36
... A.A.

C I~

2

""

,..... 49. R.hIII Code Area Ute4 Ity ENQ

128 OSIVS2 MVS SIIpenIIor SenIeet .. MIcro IDItnIdIoaI

3

....

Return
Codes

!
RC 1

RC2

RC 3

4 12

<

,

I'Oc

"'~RC~N ~ IlO

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

HexadeciDW
Code

o

4

8

20

MeaJ!l~
For RET-TEST, the resource was immediately available.
For RET-USE or RET-HAVE, control of the resource has been
assip,,-d to the active task. .
For~T-CHNG, the status.of the resource has been changed to
exclusive.
For RET-TEST or RET-USE, the resource is not immediately available.
For RET-CHNG the status cannot be changed to exclusive.
For RET-TEST, RET-USEz or RET-HAVE, a previous ~uest for
control of the same resource nas been made for the same task. Task has
control of resource.
For RET-CHNG, the resource has not been queued.
If bit 3 is on - shared control of resource; if bit 3 is off - exclusive
control.
A previous J;equest for control of the same resource has been made for the
same task. Task does not have control of resource.

f'IItn 50. ENQ RetIn eo-.

ENQ - Re4IMIt c of • SedaIy Re Reso.ee 121

ENQ (Ust Form)

Use the list form of ENQ to construct a control program parameter list. Any number of
resources can be specified in the ENQ macro instruction;' therefore, the number of Q1lQme,

17IIlme, and scope combinations in the list form the ENQ macro instruction must be equal to
the maximum number of q1JlJtne, mante, and scope combinations in any execute form of the
macro instruction that refers to that list form.

The list form of the ENQ macro instruction is written as follows:

na~

b

ENQ

b

qnarM addr

,
,,,.am~ addr

,
,E
,S

,
,,,.am~ kngth

,
,STEP
,SYSTEM
,SYSTEMS

,Wlr1234j

,RET-CHNG
,RET-HAVE
,RET-TEST
,RET-USE
,RET-NONE

,RELATED-Wllw

,MF-L

ntl1M: symbol. Begin nam~ in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qnam~ addr: A-type address.

maIM addr: A-type address.

Def .. : E

maIM length: symbol or decimal digit.
Def .. : assembled length of ".am~

Def .. : STEP

,arl23"j: The preceding 5 parameters may be repeated up to 65,535
times.

Def .. :RET-NONE

,alu~: any valid macro keyword specification.

The parameters are explained under the standard form of the ENQ macro instruction, with
the following exceptions:

,MF-L
specifies the list form of the ENQ macro instruction.

122 OSIVS2 MVS SapenIIor SemeeI ... Macro

ENQ (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the BNQ macro instruction. The parameter list can be generated by the list form of BNQ.

The execute form of the ENQ macro instruction is written as follows:

b

ENQ

b

fila" add,

.
,mam~ addr

,
,E
,S

,
,STEP
,SYSTEM
,SYSTEMS

.,arI234'

,RET-CHNG
,RET-HAVE
,RET-TEST
,RET-USE
,RET-NONE

,RELA TED-yalw

,MF-(E ,etrl add,)

itaIM: symbol. Begin Itam~ in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

Note: (and) are the beginning and end of a parameter list. The
entire list is optional. If nothing in the list is desired. then (.). and
all parameters between (and) should not be specified. If something
in the list is desired, then (.), and all parameters in the list should
be specified as indicated at the left.

tpla",~ addr: RX-type address, or register (2) - (12).

ma",~ add,: RX-type address, or register (2) - (12) .

Defult:E

maIM I~ltg"': symbol. decimal digit, or register (2) - (12).

DefMllt:STEP

WlrI234': The preceding S parameters may be repeated up to 6S.S3S
times.

Note: See note opposite (above.

Def .. : RET-NONE

Wl/w: any valid macro keyword specification.

etrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the ENQ macro instruction, with
the following exceptions:

,MF - (E ,ctrl addr)
specifies the execute form of the ENQ macro instruction using a remote control program
parameter list.

ENQ (ExeCllte r ..) 123

EDIIlpie 1

Operadoa: Request control of a serially reusable resource that is known only within the
address space (STEP) The, resource is only to be obtained if immediately availabl". The,
resource will be used for read-only purposes. The length of 17UJnte is allowed to default.

ENQ (MAJOR 1 , MINOR 1 , S, , STEP) ,RET=USE

Example 2

Operatloa: Unconditionally request exclusive control of 3 resources. The scope of each
resource differs (STEP, SYSTEM, and SYSTEMS respectively). The mame length of the third
resource is 8 characten.

ENQ (MAJOR4,MINOR4,E",MAJOR2,MINOR2",SYSTEM,
MAJOR3,MINOR3,E,8,SYSTEMS)

EST AE - Extended ST AE

The EST AE macro instruction is used to extend the recovery capability facilities of the ST AE
(Specify Task Abnormal Exit) macro instruction. Issuance of the ST AE or EST AE macro
instruction or ATTACH with the STAI or ESTAI option allows the user to intercept a
scheduled ABEND. Control is given to a user specified exit routine in which the user may
perform pre-termination processing, diagnose the cause of ABEND, and specify a retry address
if he wishes to avoid the termination. These exits operate in both problem program and
supervisor modes.

EST AE provides the increased capabilities over ST AE to allow EST AE exits to be
scheduled for clean-up processing under certain instances for which ST AE exits did not get
control, and to default parameters to the most commonly used options.

Note: The ST AE macro instruction is available for compatibility with Release 1 of VS2 and
with MVT and MFr, and is described in OS/YS2 System Programming Library: SupnWor.
However, it is recommended that EST AE be used.

The standard form of the EST AE macro instruction is written as follows:

IttIIM 1ttJIM: .ymbol. Beam "tIIII~ in column 1.

One or more blanb mUit precede EST AB.

One or more blanb mUll foBow EST AB.

alltMldr
o Ull addr: A-type addrea, or reaiater (2) - (12).

Def ... : CT, ,CT
,OV

,PARAM-Itrl IIIldr

,XCTL-NO
,XCTL-VES

,PURGE-NONE
,PURGE-QUIESCE
,PURGE-HALT

,ASYNCH-YES
,ASYNCH-NO

,TERM-NO
,TERM-YES

,RELATED-Wl_

Itrl IIdtlr: A-type addrell, or reaiMer (2) - (12).

DeI ... :XCTL-NO

Def ... :PUROE-NONE

Def ... : ASYNCH-YES

Def .. : TERM-NO

'lIiw: any valid macro keyword ipCCification.

The parameters are explained below:

exit GdIlr
o

speciraes the address of an EST AE exit routine to be entered if the task issuing this macro
instruction terminates abnormally. If 0 is specified, the most recent EST AE exit is canceled.

ISTAE - Ext ••••• STAE 125

,CT
,OV

specifies the creation of a new EST AE exit (CT) or indicates that parameters passed in this
EST AE macro instruction are to overlay the data contained in the previous ESTAE exit
(OV).

,P ARAM -list addr
specifies the address of a user-definec:l parameter list containing data to be used by the
EST AE exit routine when it is scheduled for execution .

.xCTL-NO
,XCTL-YES

specifies that the ESTAE macro instruction will be canceled (NO) or will not be canceled
(YES) if an XCTL macro instruction is issued by this program.

,PURGE - NONE
,PURGE - QUIESCE
,PURGE-HALT

ipeclnes that all outstanding requests for I/O operations wiD not be saved when the ESTAE
exit is taken (HALT), that I/O processing will be aDowed to continue normally when the
ESTAE exit is taken (NONE), or that aU outstanding requests for I/O operations wiD be
saved when the BSTAE exit is taken (QUIESCB). If QUIESCB is specified, the user's retry
routine can restore the outstanding I/O requests.

Notes: If any IBM-supplied access method, except BXCP, is being used, the
PURGB-NONE option is recommended. If this is done, all control blocks affected by
input/output processing may continue to change during EST AE exit routine processing.

If PURGE-NONE is specified and the ABBND was originally scheduled because of an
error in input/output processing, an ABBND recunion wiD develop when an input/output
interruption occurs, even if the exit routine is in progress. Thus, it wiD appear that the exit
routine failed when, in reality, input/output processing was the cause of the failure.

IS.AM Notes: H ISAM is being used and PURGB-HALT is specified or
PURGE-QUIESCB is specified but I/O is not restored:

• Only the input/output event on which the purge is done wiD be posted. Subsequent event
control blocks (BCDs) wiD not be posted.

• The ISAM check routine wiD treat purges I/O as normal I/O.

• Part of the data set may be destroyed if the data set is being updated or added to when
the failure occurred.

,ASYNCH - YES
,ASYNCH-NO

specifies that asynchronous exit processing will be aUowed (YES) or prohibited (NO) while
the user's EST AE exit is executing.

ASYNCH-YBS must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their normal
processing are going to be requested by the EST AS exit routine.

• PURGB-QUIBSCB is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE-NONE is specified and the CHECK macro instruction is issued in the BSTAS
exit routine for any access method that requires asynchronous interruptions to complete
normal input/output processing.

126 0SIVS2 MVS s.p.m.r SenIcet .. MIMft

Note: If ASYNCH-YES is specified and the ABEND was originally scheduled because of
an error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous exit handling was the cause of the failure.

,TERM-NO
,TERM-YES

specifies that the exit routine associated with the EST AE request will be scheduled (YES)
or will not be scheduled (NO), in addition to normal ESTAE processing, in the following
situations:

• Cancel by operator.

• Forced logoff.

• Expiration of job step timer.

• Exceeding of wait time limit for job step.

• ABEND condition because of DETACH of an incomplete subtask when the ST AE
option was not specified on the DETACH.

• ABEND of the attaching task when the EST AE macro instruction was issued by a
subtask.

• ABEND of job step task when a non-job step task requested ABEND with the STEP
option.

When the exit routine is entered because of one of the preceding reasons, retry will not be
permitted. If dump is requested at the time of ABEND, it is taken prior to entry into the
exits.

Note: If DETACH was issued with the STAB parameter, the following will occur for the
task to be detached:

• All ESTAE exits will be entered.

• The most recently established ST AE exit will be entered.

• All ST AI/EST AI exits will be entered unless return code 16 is returned from one of the
STAI exits.

In these cases, entry to the exit is prior to dumping and retry will not be permitted.

,RELATED - WI/.
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding fonctions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

DEFESTAE ESTAE (4),CT,PARAM=(2) ,RELATED=(DELESTAE,'DELETE ESTAE
DELESTAE ESTAE O,RELATED=(DEFESTAE,'DEFINE ESTAE')

rsfAE - Ext •• t.t Sl.u 127

121

Control is returned to the instruction following the EST AE macro instruction. When control
is returned, register 15 contains one of the following return codes:

Rn • ..
Code

00
04

oc

10
14

Meaabaa
Successful completion of EST AE request.
EST AE OV was specified with a valid exit addrea, but the current exit is either
nonexistant, not owned by the user's RD, or is not an ESTAE exit.
Cancel (an exit address equal to zero) was specified and either there are no exits for
this TCB, the most recent exit is not owned by the caller, or the most recent exit is not
as EST AE exit.
An unexpected error was encountered while processilll this request.
EST AE was unable to obtain storage for an seB.

EST AE (List Form)

The list form of the EST AE macro instruction is used to construct a remote control program
parameter list.

The list form of the ESTAE macro instruction is written as follows:

b

ESTAE

b

exit add,
o
,P ARAM-Ilst add1

,PURGE-NONE
,PURGE-QUIESCE
,PURGE-HALT

,ASYNCH-YES
,ASYNCH-NO

,TERM-NO
,TERM-YES

,RBLA TED-yaille

,MF-L

Ilam~: symbol. Begin Ilam~ in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow EST AE.

~xlt add,: A-type address.

list add,: A-type address.

Del .. : PURGE-NONE

Default: ASYNCH-YES

Del .. : TERM-NO

yaille: any valid macro keyword specification.

The parameters are explained under the standard form of the EST AE macro instruction,
with the following exceptions:

.MF-L
specifies the list form of the EST AE macro instruction.

ESTAE (Lilt ,) 129

EST AE (Execute Form)

A remote control program. parameter list is used in, and can be modified by, the execute form
of the EST AE macro instruction. The control program parameter list can be generated by the
list form of the EST AE macro instruction. H the user desires to dynamically change the
contents of the remote EST AE parameter list, he may do so by coding a new exit address
and/ or a new parameter list address. H exit address or P ARAM is coded, only the associated
field in the remote EST AE parameter list will be changed. The other field will remain as it was
before the current EST AE request was made.

The execute form of the EST AE macro instruction is written as follows:

t;

ESTAB

t;

exit addr
o
,CT
,OV

,P ARAM-list addr

,XCTL-NO
,XCTL-YES

,PURGE-NONE
,PURGE-QUIESCE
,PURGE-HALT

,ASYNCH-YES
,ASYNCH-NO

,TERM-NO
,TERM-YES

,RELATED-,a/~

,MF-(E ,e,,' add,)

"am~: symbol. Begin "am~ in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow EST AB.

~xlt addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

,a/~: any valid macro keyword specification.

etrl addr: RX-type address, or register (I) or (2) - (12).

The parameters are explained under the standard form of the EST AE macro instruction,
with the following exceptions: .

,MF - (E .ctrl addr)
specifies the execute form of the EST AE macro instruction using a remote control program
parameter list.

138 OSIVS2 MVS SapenIIor SenIees ... Macro 1IdIoaI

Example 1

OperadOD: Request an overlay of the existing ESTAE recovery exit (at ADDR). with the
following options: parameter list is as PLIST. 110 will be baited. no asynchronous exits wW be
taken. ownership will be transferred to the new request block resulting from any XCTL macro
instructions.

ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

Example 2

OpendOD: Provide the pointer to the recovery code in the register called EXITPTR. contain
the address of the EST AE exit parameter list in register 9. Register 8 points to the area where
the ESTAE parameter list (created with the MF-L option) was moved.

ESTAE (EXITPTR), PARAM=(9) ,MF=(E, (8))

I'BrAE (beau , ...) 131

EVENTS - Wait for One or More Events to CCRDpiete

The EVENTS macro instruction is a functional specialization of the WAIT ECBLIST- macro
facility with the advantages of notifying the program that events have completed and the order
in which they completed.

The macro performs the fonowing functions:

• Creates and deletes EVENTS tables.

• Initializes and maintains a list of completed event control blocks.

• Provides for single or multiple BCB processing.

For a detailed explanation of how to use EVENTS to perform these functions see "Using
the BVENTS Macro Instruction" in this section.

The EVENTS macro instruction is written as fonows:

b

EVENTS

b

ENTRIES-II
ENTRIES-DEL,T ABLE-tab/~ addrm
T ABLE-tab/~ addreu

,WAIT-NO
,WAIT-YES

,ECB-ecb addms
,LAST-last adtbal

IUUM: symbol. Belin IUIIM in column 1.

One or more blanks must pm:ecle EVENTS.

One or more blanks must follow EVENTS.

II: variable. decimal dipt 1-32,767.
tabk tUItItaI: symbol, RX-type address, or register (2)-(12).
Note: If ENTRIES." or ENTlUES-DEL,T ABLE-tab/~ adtItm
is specified. no other parameter should be specified.

DefIllt:None.

«b add,.: symbol, RX-type address. or register (2)-(12).
IlUt addrel8: symbol. RX-type addreBl. or register (2)-(12).
Nate: Optional parameten are only valid when T ABLE-tabk
addn!u is the only required parameter specified.

The parameters are explained below:

ENTRIES-n
n is a decimal number from 1 to 32.767 which specifies the muimum number of completed
ECD addresses that can be processed in an EVENTS table concurrently.

Note: When this parameter is specified no other parameter should be specl.t"JeCl.

ENTRIES - DEL.TABLE - table address
specifies that the EVENTS table whose address is specified by TABLE-table address is to
be deleted. The user is responsible for deleting all of the tables he creates; however. all
existing tables are automatically freed at task termination.

Note: When this parameter is specified no other parameter should be specified.

TABLE - table address
specifies either a register number or the address of a word containing the address of the
EVENTS table associated with the request. The address specified with the operand TABLE
must be that of an EVENTS table created by this task.

,WAIT-NO
,WAIT-YES

specifies whether or not to put the issuing program in a wait state when there are no
completed events in the EVENTS table (specified by the TABLE- parameter).

,sCB - ecb ad.drelll
specifies either a register number or the address of a word containing the address of an
event control block. The EVENTS macro instruction should be used to initialize any
event-type ECB. To avoid the accidental destruction of bit settings by a system service such
as an access method, the ECD should be initialized after the system service that will post
the ECB has been initiated (thus making the BCB eligible for posting) and before the .
EVENTS macro is issued to wait on the BVENTS table.

N ... :

• Register 1 should not be specified for the BCB address.

• This parameter may not be specified with the LAST- parameter.

• H only ECB initialization is being requested, neither WAIT-NO nor W AlT-YES should
be specified, to prevent any unnecessary WAIT processing from occurring.

,LAST -lut addras
specifies either a register number or the address of a word containing the address of the last
EVENT parameter list entry processed.

NoteI:

• Register 1 should not be specified for the LAST address.

• This parameter should not be specified with the ECB- parameter.

Using the EVENTS Macro Iostructioo

The following explains the different uses of EVENTS:

• Creating EVENTS Tables - When ENTRIBS-n is specified, the system creates an
EVENTS table with "n" entries for completed ECB addresses. This table is queued on
the EVENTS table queue associated with the task. (There is no limit to the number of
EVENTS tables that can be queued for a single task.) The address of the EVENTS table
is returned to the user in register 1. See Figure. 51 below:

EVENTS Tlble

ENTRY'

ENTRY2

-~ -I'""

ENTRYn.'

ENTRYn

JI'Ipre st. CreatIIIi. T

Helder Section

Variable Length
Entry Section

• Deleting EVENTS Tables - When ENTRIES-DEL,TABLE-table address is specified,
the EVENTS table whose address is specified by the TABLE-table address parameter
shall be deleted. The address specified with the TABLE operand must be that of an
EVENTS table created by this task. The user is responsible for deleting aD of the tables
he creates; however, all existing tables are automatically freed at task termination.

• Initializing ECBs - When an ECB is created, bits 0 (wait bit) and bit 1 (post bit) must
be set to zero. When an EVENTS ECB- macro instruction is issued, bit 0 of the
associated event control block is set to 1. When a POST macro instruction is issued, bit 1
of the associated event control block is set to 1 and bit 0 is set to O. If the ECB is
reused, bit 0 and bit 1 must be set to zero before either a WAIT, EVENTS ECB-, or
POST macro instruction can be specified. If, however, the bits are set to zero before the
ECB has been posted, any task waiting for that ECB to be posted will remain in wait
state.

• Maintaining a List of Completed EVENT Control Blocks - After the ECB has been
initialized the POST macro sets the complete bit and puts the address of the completed
ECB in the EVENTS table.

• Providing Single or Multiple BCD Processing - When the WAIT parameter is specified
and there are completed BCDs in the BVENTS table, the address of the parameter list is
returned in register 1. The parameter list has the following format:

_____ ECB1

--. ECB2

80 ~ ECBm

The parameter list contains completed BCD addresses in post occurrence order. The high
order bit of the last word in the list is set to 1. The user may choose to process the entire Jist
(aee LAST parameter) or one event at a time by successive EVENTS requests with the
W Arc- option.

However, if WAIT-NO is specifJ.ed and no ECDs are posted in the EVENTS table, register
1 contains a zero when the user receives control.

When a user has processed more than one ECB in the parameter Jist returned from the
previous BVENTS W Arr- macro, the LAST- parameter should be used to indicate the last
ECD processed. The EVENTS macro removes from the parameter list aU entries from the rust
thru the last specified by LAST, and then completes processing the request according to the
W Arr- specification.

136

In the illustration below t BCBs 6 through 10 were posted to the parameter list while the
user was processing 1 through S.

EVENTS TABLE-tabla addr .. , WAIT-YES

I Regiltar 1 I

"'- - --.. ECB1

----. ECB2

--. ECB3

--.. ECB4

80 --+ ECB6

(load reglltar 2 with addr ... of the lut entry proceaed.)

EVENTS TABLE-table addr., WAIT-YES, LAST-(2)

I Regllter 1 I
~

---. ECB6

~ ECB7

--. ECB8

--+ ECB9

80 --. ECB10

This ftgUre demonstrates processing one event at a time.

ISluing EVENTS TABLE-table addr .. , WAIT-YES for the
fint time will Initiate:

I Regl.tar 1 1
~~P.ro_LI"

--.
---..
---..

80 -----

ECB1

ECB2

ECB3

ECB4

ECB6

Thel8COnd time that EVENTS TABLE-tabl. addr ... , WAIT-YES
i. inued will initiate:

I Regl.tar 1 1
"'-- _ Paro_ LI"

---.
--..

80 --...

Example 1

The following shows total processing via EVENTS.

EVENTS A ECB

START
EVENTS
ST
~ITE

LA
EVENTS

ENTRIES=1000
R1,TABADD
ECBA
R2,ECBA
TABLE=TABADD,ECB=(R2)

ECB2

ECB3

ECB4

ECB6

EVENTS - Wilt for ODe or More E to ea.,Iete 137

....... LIlt PIece "

BEGIN
EVENTS
LR
B

LOOP 1 EVENTS
LR

LOOP 2 EQU

TM
BO
LA
B

DeIetIBa EVENTS T

EVENTS
:r'ABADD

Example 2

TABLE=TABADD,WAIT=YES
R3 , R 1 PARMLIST ADDR
LOOP 2 GO TO PROCESS ECB
TABLE=TABADD,WAIT=YES,LAST=(R3}
R3,R1 SAVE POINTER
•

PROCESS COMPLETED EVENTS
O(R3),X'80' TEST FOR MORE EVENTS
LOOP 1 IF NONE, GO WAIT
R3,4(,R3) GET NEXT ENTRY
LOOP 2 GO PROCESS NEXT ENTRY

TABLE=TABADD,ENTRIES=DEL
OS F

Processing One BCB at a Time.

NEXTREC

RETEST

TABLE

EVENTS
ST
GET
ENQ
READ
LA
EVENTS
WRITE
LA
EVENTS
LTR
BNZ
B

DS

ENTRIES=10
1,TABLE
TPDATA,KEY
(RESQURCE,ELEMENT,E"SYSTEM)
DECBRW,KU,,'S',MF=E
3,DECBRW
TABLE=TABLE,ECB=(3),WAIT=YES
DECBRW,K,MF=E
3,DECBRW
TABLE=TABLE,ECB=(3),WAIT=NO
1 , 1
NEXTREC
RETEST
F

131 0S/VS2 MVS _Inlier SenIceI .. Macro

FRACHECK - Fast Path Resource Authorization Checking

The FRACHECK macro is used to check a user's authorization for access to a resource.
FRACHECK verifies access to those resources whose RACF profiles have been brought into
main storage by the RACLIST facility. FRACHECK is a branch entered service that does not
save registers upon entry. Registers 0-5, 14, and 15 are used by the FRACHECK macro.
instruction and are not restored .. Registers 6-13 are not altered by FRACHECK.

The standard form of the FRACHECK macro instruction is written as follows:

~

FRACHECK

b

ENTITY ~ntlty add,

,CLASS.'clauname'
,CLASS.c1aunalM add,

,ATTR-READ
,ATTR-UPDATE
,A TTR-CONTROL
,ATTR-ALTER
,ATTR-~:

,ACEE-acu add,

,WKAREA-a~a add,

,APPL- 'app/ntuM'
,APPL-applname add,

,INSTLN-parm list add,

The parameters are explained below:

ENTITY - entity add,

name: symbol. Begin name in column 1.

One or more blanks must precede FRACHECK

One or more blanks must follow FRACHECK.

entity add,: A-type address or register (2)-(12).

c/tulname add,: A-type address or register (2)-(12).

ng: registen (2)-(12).
Def_:ATrR.READ

acee addr: A-type address or register (2)-(12).
Def_: zero

a~a add,: A-type address or register (2)-(12).

applname addr: A-type address or register (2)-(12).
Def_: zero

parm list add,: A-type address or register (2)-(12).
Def_: zero

specifies that RACF authorization checking is to be performed for the resource whose name
is pointed to by the specified address. The resource name is a 44-byte DASD data set name
for CLASS. 'DATASET' or a 6-byte volume serial number for CLASS. 'DASDVOL' or
CLASS. 'T APEVOL'. The name must be left justified and padded with blanks. The length
of all other resource names is determined from the class descriptor tables.

,CLASS - 'class1Ulme'
,CLASS - c/ass1Ulme add,

specifies that RACF authorization checking is to be performed for a resource of the
specified class. If an address is specified, the address must point to an 8-byte field
containing the classname.

,AITR-READ
,AITR - UPDATE
,ATTR-CONTROL
,ATTR - At TER
,A ITR - (reI)

specifies the access authority required by the user or group accessing the resource:

FRACHECK Flit PatIa Resoarce Authortzadon Chedtlnl 138.1

READ - RACF user or group can open the resource only to read.

UPDATE - RACF user or group can open the resource to read or write.

CONTROL - For VSAM data sets, RACF user or group has authority equivalent to
the VSAM control password. For non-VSAM data sets and other resources, RACF user
or group has UPDATE authority.

ALTER - RACF user or group has total control over the resource.

If a register is specified, the register must contain one of the following codes in the
low-order byte of the register:

X'02'-READ

X'04'-UPDATE

X'08'-CONTROL

X'80'-ALTBR

,ACEE-acee addr
specifies the address of the accessor control environment element (ACEE) to be used to
check authorization and to locate the in-storage profiles (RACLIST ouput) for the specified
classes. If an ACEE is specified, it is used for authorization checking. If the specified
ACEE has an in-storage profile list for the specified class, it is used to locate the resource.
If an ACEE is not speeified or if there is no in-storage profile list for the specified class in
the ACEE, RACF uses the main ACEE to obtain the list of the in-storage profiles. The
main ACEE is pointed to by the ASXBSENV field (x'C8') of the address space extension
block.

,WKAREA -area addr
specifies the address of a 16 word work area to be used by FRACHECK..

,APPL - 'applname~

,APPL -applname addr
specifies the name of the application requesting the authorization checking. This information
is not used for the authorization checking process but is made available to the installation
exit(s). If an address is specified, it should point to an 8-byte area containing the
application name, left justified and padded with blanks, if necessary.

,INSTLN - parm list addr
specifies the address of an area that contains information for the FRACHECK installation
exit. This address is passed to the exit routine when the exit is given control. The INSTLN
parameter is used by application or installation programs to pass ill:formation to the
FRACHECK installation exit.

131.1 OS/VSl MVS s.,em.... Senleet aM MIICIO

When control is returned, register IS contains one of the following return codes:

Hn ••• d ...
Code

00
04
08
OC
10
14

M
The user or JI'OUp is authorized to use the resource.
The resource or ctaaname is not defined to RACF.
The user or poup is not authorized to use the resource.
RACF is not active.
FRACHECK iDltallation exit error occured.
RACF CVT does not exist (RACF is not iDltalled or insufficient level of RACF is
installed.

FRACHECK (Ust Form)

The list form of the FRACHECK macro instruction is written as follows:

IJame

h

FRACHECK

h

ENTITY -entity add,

,CLASS- 'classlJa/M'
,CLASS-cla.uIJame add,

,AITR-READ
,ATIR-UPDATE
,A TIR-CONTROL
,AITR-ALTER

,ACEE-acu add,

,WKAREA-alYa addr

,APPL- 'applname'
,APPL-applname add,

,INSTLN-pann list addr

,MF-L

IJame: symbol. Begin IJame in column 1.

One or more blanks must precede FRACHECK.

One or more blanks must follow FRACHECK.

eIJtity add,: A-type address

cla.uIJame add,: A-type address.

Defult:ATTR-READ

acee add,: A-type address
Def .. : Zero

alYa add,: A-type address.

applname add,: A-type address.
Def .. : Zero.

pann list add,:
Def : Zero.

The parameters are explained under the standard form of the FRACHECK
macro instruction, with the fonowing exception:

,MF-L
specifies the list form of theFRACHECK macro instruction.

13104 OS/VS2 MVS Sllpe"'" SenIces .. Macro,.....

FRACHECI (Execute Form)

The execute form of the FRACHECK macro instruction is written as
follows:

b

FRACHECK

b

ENTITY ~"tlty addr

,CLASS-eltI.UIfQIPM add,

,AITR-(~

,ACBB-ae« add,

,WKAREA-area addr

,APPL-appbta",~ tUJdr

,INSTLN..,,,,,,, list add,

,MF-(E,ctrl addr)

lIa",~: symbol. Beain IIt11ft~ in column 1.

One or more blanks must precede FRACHBCK.

One or more blanks must foUow FRACHECK.

~"tlty addr: . RX-type address or relister (2)-(12).

cltl.UlfQ"'~ add,: RX-type address or register (2)..(12).

rq: register (2)-(12)

ae« addr: RX-type address or register (2)-02).

area addr: RX-type address or reaister (2)..(12).

apP"'tIIft~ addr: RX-type address or register (2)..(12).

/HI"" list add,: RX-type address or registers (2)-(12).

em add,: RX-type address or register 0)..(12).

The parameters are explained under the standard form of the FRACHECK
macro instruction, with the following exception:

,MF - (&ell'/ tIddr)
specifies the execute form of the FRACHECK macro instruction, using a

remote control program parameter list.

FRACHBCIC (Execute Parm) 138.5

138.6 OS/VS2 MVS Supervilor SeMcea and Macro Jutructioaa

FREEMAIN - Free Virtual Storage

The FREEMAIN macro instruction releases one or more areas of virtual storage, or an entire
virtual storage subpool, previously assigned to the active task as a result of a GETMAIN
macro instruction. The active task is abnormally terminated if the specified virtual storage does
not start on a doubleword boundary or, for an unconditional request, if the specified area or
subpool is not currently allocated to the active task. Register 1 S is set to 0 to indicate
successful completion. For a conditional FREEMAIN, register 1 S is set to 4 if the specified·
area or subpool is not currently allocated to the active task.

In the parameters discussed below, EU, LU, and VU specify unconditional requests and
result in the same processing as E, L, and V, respectively. The two formats for these requests
are available to maintain compatibility with the GETMAIN formats.

The standard form of the FREEMAIN macro instruction is written as follows:

b

FREEMAIN

b

LC,LA-kwrth tIIldr
LU,LA-I.."h tIddr
L,LA-I."" tIIl4r
VC
VU
V
EC,LV.Ia,tIt NIue
EU,LV-Iartlt Wllue
E,LV -IeIl,tIt ,111_
RC,LV ... ",tIt WlIue
RC,SP-.rubpooI1lmbr
RU,LV.k",tIt NIue
RU,SP-.rubpoollllftbr
R,LV -Ieltflh Wllue

R,SP bpool ""'.
,A-tuIdr

,SP-.rubpool "",61'

lIame: symbol. Begin lIame in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must fonow FREEMAIN.

Inr,th tIIldr: A-type address, or register (2) - (12).
Inr,th Niue: symbol, decimal diait, or register (2) - (12). If R,
RC, or RU is specified, register (0) may also be specified.
",bpool "",61': symbol, decimal digit 0-127, or reaister (2) - (12).
If R is specified, resister (0) may also be specified.
Note: If the forms RC,SPralllbpoolllmbr or RU,SP-.rubpool "mbr
or R,SP...,ubpool 1IIftbr are specified, no other parameters except
RELATED may be specified. SP- must be specified for subpool
FREEMAINs; for other types of FREEMAlN, SP- is optional
and defaults to SP-O.

addr: A-type address, or reaister (2) - (12).

,ubpoo/llmbr: symbol, decimal digit 0-127,or register (2) - (12). If
R is specified above, register (0) may also be specified.

,al.: any valid macro keyword specification.

FREEMAIN - Free vtrt.I St..... 139

The parameters are explained below:

LC,LA -length addr
LU,LA -length addr
L,LA -length addr
VC
VU
V
EC,LV -length .11,.
EU,LV -length WIllie
E,L V -length Wll,.
RC,L V -length Wll,.
RC,sP - subpool "",br
RU,LV -length Wll,.
RU,SP - subpool nmbr
R.,LV -length WIllie

. R,sP - subpool "",br
specifies the type of FREEMAIN request:

LC and LU and L indicates conditional (LC) and unconditional (LU and L) list requests,
and specifies release of one or more areas of virtual storage. The length of each virtual
storage area is indicated by the values in a list beginning at the address specified in the LA
parameter. The address of each of the virtual storage areas must be provided in a
corresponding list whose address is specified in the A parameter. All virtual storage areas
must start on a doubleword boundary.

VC and VU and V indicates conditional (VC) and unconditional (VU and V) variable
requests, and specifies release of single areas of virtual storage. The address and length of
the virtual storage area are provided at the address specified in the A parameter.

EC and EU and E indicates conditional (BC) and unconditional (BU and B) element
requests, and specifies release of single areas of virtual storage. The length of the single
virtual storage area is indicated in the LV parameter. The address of the virtual storage area
is provided at the address indicated in the A parameter.

RC and RU and R indicates conditional (RC) and unconditional (RU and R) register
requests, and specifies release of single areas of virtual storage from the subpool indicated,
or specifies release of the entire subpool indicated. If the release is not for the entire
subpool, the address of the virtual storage area is indicated in the A parameter. The le~
of the area is indicated in the LV parameter. The virtual storage area must start on a
doubleword boundary.

Note: A conditional request indicates that the task is not to be abnormally terminated if the
virtual storage being freed is not allocated to the active task. However, AOS-2 and A 78-7
abends cannot be prevented. An unconditional request Indicates that the task is to be
abnormally terminated in this situation.

LA specifies the virtual storage address of one or more consecutive fuUwords starting on a
fuUword boundary. One word is required for each virtual storage area to be released; the
bigh-order bit in the last word must be set to 1 to indicate the end of the list. Bach word
must contain the required length in the low-order three bytes. The fuUwords in this list must
correspond with the fuUwords in the associated list specified in the A parameter. If the
words are within an area to be released, they must be completely within the area and must
not begin in the first two words of the fll'8t area. The words must not overlap the virtual
storage area specified in the A parameter.

LV specifies the length, in bytes, of the virtual storage area being released. The value
should be a multiple of 8; if it is not, the control program uses the next high multiple of 8.
If R is coded, LV-(O) may be designated; the high-order .byte of register 0 must contain
the subpool number, and the low-order three bytes must contain the length (in this case, the
SP parameter is invalid).

,A-atldr
specifies the virtual storage address of one or more consecutive fullwords, starting on a
fullword boundary. If the words are within an area to be released, they must be completely
within the area and must not begin in the fust two words of the first area. If E, Ee, EU, R,
Re, or RU is ~ted, one word, which contains the address of the virtual storage area
to be released, is required. If V, VS, or VU is coded, two words are required; the first word
contains the address of the virtual storage area to be released, and the second word contains
the length of the area. If L, Le, or LU is coded, one word is required for each virtual
storage area to be released; each word contains ~e address of one virtual storage area. If R,
Re, or RU is coded, any of the registers 1 through 12 can be designated, in which case the
address of the virtual storage area, not the address of the fullword, must have previously
been loaded into the register. The specification of register 1 saves two bytes in the macro
expansion.

,SP-lUbpool nmb,
specifies the subpool number of the virtual storage area to be released. The subpool number
can be between 0 and 127. If the SP parameter is optional and is omitted, subpool 0 is
assumed. If the SP parameter must be coded, it specifies the number of the subpool to be
released, and the valid range is 1 through 127. SubpoolO cannot be released. If R is coded,
SP-(O) can be designated, in which case the subpool number must be previously loaded
into the high-order byte of register 0; the three low-order bytes must be set to O.

,RELATED - M/_
specifies information used to self-document macro instructions by 'relating' functions or
services to colTt;sponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

GET' GETMAIN R,LV=4096,RELATED=(FREE','GET STORAGE')
FREE' FREEMAIN R,LV=4096,A=('),RELATED=(GET','FREE STORAGE')

When control is returned, register 15 contains one of the following return codes:

Bawled."
Code

00
04

M
Virtual storale wu freed.
Not aU virtual storaae wu freed.

FIlEEMAIN - Free nu.I sa.... 141

FREEMAIN (Ust Fonn)

Use the list form of the FREBMAIN macro instruction to construct a nonexecutable control
program parameter list.

The list form of the FRBBMAIN macro instruction is written as foDows:

t)

FREEMAIN

&

LC
LU
L
VC
VU
V
EC
EU
E

,LA-.Plldl tUId,
,LV -.",tll Wllue

,A __ dr

,SP.-1Jpoo1 "".

,RELATED-Niue

tMF-L

IUJIM: symbol. Beam PlQIftI/ in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

IengtIa tlddr: A""ype &delrea.
l.fIIt WI_: symbol or decimal diJit.
N ... : LA may only be specified with Le, LU, or Labove.
N ... : LV may only be specified with EC, EU, or E above.

1IIldr: A""ype addrell.

6Ilbpool "".: symbol or decimal diait ~127.
Niue: any valid macro keyword specification.

The parameters are explained under the standard form of the FREBMAIN macro
instruction, with the foDowing exceptions:

,MF'-L
specifIeS the list form of the FREBMAIN macro instruction.

FREEMAIN (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the FREEMAIN macro instruction. The parameter list can be generated by the list form of
either a GETMAIN or a FREEMAIN.

The execute form the the FREEMAIN macro instruction is written as follows:

t>

FREEMAIN

t)

LC
LU
L
VC
VU
V
EC
EU
E

.LA-k",,,, add,
,LV -wnr'" Niue
,A __ dr

,SP-subpool "",br

• RELATED-Nlue

,MF-(E .e'" PIOf)

nam~: symbol. Beain nam~ in column 1.

One or more blanks must precede FREEMAIN~

One or more blanks must fonow FREEMAIN.

lenrth addr: RX-type address or register (2) - (12).
lenrth ,alue: symbol. decimal digit. or register (2) - (12).
Note: LA may only be specified with LC, LU. or Labove.
Note: LV may only be specified with Ee, EU, or E above.

add,: RX-type address, or register (2) - (12).

subpool nmbr: symbol, dec:imal digit 0-127, or register (2) - (12).

yalu~: any valid macro keyword specification .

etrl prog: RX-type address. or register (1) or (2) - (12).

The parameters are explained under the standard form of the FREBMAIN macro
instruction, with the following exceptions:

,MF - (E ,ctrl prog)
specifies the execute form of the FREBMAIN macro instruction using a remote control
program parameter list.

Example 1

Operatlo.: Free 400 bytes of storage from subpool 10, where the storage address is contained
in register 1. If the storage was allocated to the task, register 1 S will contain 0 on return; if
the storage was not allocated to the task or was partially free, the status of the storage remains
unchanged, and a 4 is returned in register 1 S.

FREEMAIN RC,LV=400,A=(1),SP=10

Example 2

OperatlOD: Free all of subpool 3 (if any) that belongs to the current task. A return will be
made to the caller even if there is no subpool3 for the current task.

FREEMAIN RU,SP=3

FREEMAIN (Exectlle , __) 143

Example 3

Operation:· Free from subpool S three areas of lengths 200, 800, and 32 previously obtained
by a list type GETMAIN which placed the addresses in AREADD. H any of these areas are
not allocated to the task, the task will be abnormally terminated.

FREEMAIN

LNTHLIST
AREAADD

LU,LA=LNTHLIST,A=AREAADD,SP=5

DC F'200',F'800',X'80',FL3'32'
DS 3F

144 OSIVa MYS SIIp.ntIor SenIceI .. MIICIO

GETMAIN - Allocate Virtual Storage

The GETMAIN macro instruction requests the control program to allocate one or more areas
of virtual storage to the active task. The virtual storage areas are allocated from the specified
subpool in the virtual storage area assigned to the associated job step. The virtual storage areas
each begin on a doubleword or page boundary and are not cleared to 0 when allocated. The
total of the lengths specified must not exceed the length available when the task assigned
ownership terminates, or through the use of the FREEMAIN macro instructions.

The standard form of the GETMAIN macro instruction is written as follows:

name

t;

GETMAIN

b

LC,LA-Iength addr,.A.-culdr
LU,LA-Iength addr,A-addr
VC,LA-Iength addr,A-culdr
VU,LA-Iength addr,A-culdr
EC,LV -length vallle,A-addr
EU,LV -length value • .A.-addr
RC,L V -length vallie
RU,LV -length vallie
R,LV -kngth value

,SP..,IIbpool nmbr

,BNDRY-DBLWD
,BNDRY-PAOE

,RELATED-value

name: symbol. Bepn 1UI1IIe in column 1.

One or more blanks must precede OETMAIN.

One or more blanks must foUow OETMAIN.

length addr: A-type address, or resister (2) - (12).
length value: symbol, decimal diait, or resister (2) - (12). If R,
RC, or RU is specified, resister (0) may also be specified.
addr: A-type address, or reper (2) - (12).

subpool nmbr: symbol, decimal cliait 0-127, or resister (2) - (12).
N .. : Subpoois are specified .. foUows: •
• LC,LU,VC,VU,EC,EU,RC, and au use the SP parameter.

a with LV not equal to (0) uses the SP parameter.
R with LV -(0) must use reaister o. The low-order three bytes
of resister 0 must contain the leqth of the subpool, and the
hiah-order byte must contain the number of the subpool.

Dd .. :BNDRY-DBLWD
N .. : This parameter may not be specified with R above.

value: any valid macro keyword specification.

The parameters are explained below:

LC,LA -length addr,A -addr
LU,LA -length addr,A -addr
VC,LA -length addr,A -addr
VU,LA -length addr,.A. -addr
EC,LV -length Wllue,A-addr
EU,L V -length Wllue,A-addr
RC,L V -length Wllue
RU,LV -length Wllue
R,LV -length Wllue

specifies the type of GETMAIN request:

LC and LU indicates conditional (LC) and unconditional (LU) list requests, and specifies
requests for one or more areas of virtual storage. The length of each virtual storage area is
indicated by the values in a list beginning at the address specified in the LA parameter. The
address of each of the virtual storage areas is returned in a list beginning at the address
specified in the A parameter. No virtual storage is allocated unless all of the requests in the
list can be satisfied.

VC and VU indicates conditional (VC) and unconditional (VU) variable requests, and
specifies requests for single areas of virtual storage. The length of the single virtual storage
area is between the two values at the address specified in the LA parameter. The address
and actual length of the allocated virtual storage area are returned by the control program
at the address indicated in the A parameter.

Note: H a region size of 0 has been specified, or if the region size has defaulted to 0,
unpredictable results can occur after a GETMAIN request for a large maximum. value (for
example, 15 million bytes) has been satisfied. See 'OS/VS2 System Programming Library:
Supervisor for information on limiting user region size.

EC and EU indicates conditional (EC) and unconditional (EU) element requests, and
specifies requests for single areas of virtual storage. The length of the single virtual storage
area is indicated in the LV parameter. The address of the allocated virtual storage area is
returned at the address indicated in the A parameter.

RC, RU and R indicate conditional (RC) and unconditional (RU and R) register requests,
and specify requests for single areas of virtual storage. The length of the single virtual area
is indicated in the LV parameter. The address of the allocated virtual storage area is
returned in register 1. (R generates the original SVC 10 calling sequence, whereas RU and
RC generate a new SVC 120 and associated parameter format.)

Note: A conditional request indicates that the task is not to be abnormally terminated if
virtual storage is not allocated to the active task. An conditional request indicates that the
task is to be abnormally terminated in this situation.

LA specifies the virtual storage address of consecutive fullwords starting on a fullword
boundary. Each fullword must contain the required length in the low-order three bytes, with
the high-order byte set to O. The lengths should be multiples of 8; if they are not, the
control program uses the next higher multiple of 8. H VC or VU was coded, two words are
required. The rust word contains the minimum length required, the second word contains
the muimum length. If LC or LU was coded, one word is required for each virtual storage
area requested; the high-order bit of the last word must be set to 1 to indicate the end of
the list. The list must not overlap the virtual storage area specified in the A parameter.

LV specifies the length, in bytes, of the requested Virtual storage. The number should be a
multiple of 8; if it is not, the control program. uses the next higher multiple of 8. If R is
specified, LV-(O) may be coded; the low-order three bytes of register 0 must contain the
length, and the bigh-order byte must contain the subpool number.

A specifies the. virtual storage address of consecutive fullwords, starting on a fullword
boundary. The control program places the address of the virtual storage area allocated in
one or more words. H E was coded, one word is required. H L was coded, one word is
required for each entry in the LA list. If V was coded, two words are required. The first
word contains the address of the virtual storage area, and the second word contains the
length actually allocated. The list must not overlap the virtual storage area specified in the
LA parameter.

,sp -subpool nmbr
specifies the number of the subpool from which the virtual storage area is to be allocated. H
this parameter is omitted, subpool 0 is assumed.

,BNDRY-DBLWD
,BNDIlY - PAGE

specifies that alignment on a doubleword boundary (DBL WD) or alignment with the start
of a virtual page on a 4K boundary (PAGE) is required for the start of a requested area.

146 OSIVS2 MVS _enller SenIc:eI aM MMro

,RELATED - WJlue
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructions (for
eumple, CHAP and ESTAE).

The parameter may be used, for eumple, as follows:

GET 1
FREE 1

GETMAIN
FREEMAIN

R,LV=4096,RELATED=(FREE1,'GET STORAGE')
R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

When control is returned, register 15 contains one of the following return codes:

Res • ..
Code

00
04

Meuiq
Virtual storale requested was allocated.
No virtual storale was allocated.

GETMAIN - AIecMe v....... sa-. .4'

GETMAIN (Ust Form)

Use the list form of the GETMAIN macro instruction to construct a control program
paramater list.

The list form of the GETMAIN macro instruction is written as follows:

b

GBTMAIN

b

LC
LU
VC
VU
EC
EU

,LA-/a,,11 IIIldr
,LV -la,,,, Wl/w

,SP-subpool IIIIIbr

,BNDRY.DBLWD
,BNDRY.PAGE

,RELATED.wdw

IItmI~: symbol. Begin IItIIrI~ in column 1.

One or more blanks must precede GBTMAIN.

One or more blanks must follow GBTMAIN.

la,tll tuldr: A-type address. kll,'" 'tllw: symbol or decimal diait.
Note: LA may not be specified with Be or EU above.
Note: LV may not be specified with LC, LU, VC, or VU above.

tUJdr: A-type address.

subpool nmbr: symbol or decimal diait ()'127.

Def .. : BNDRY.DBLWD

'tllw: any valid macro keyword specification.

The parameters are explained under the standard form of the GETMAIN macro instruction,
with the following exceptions:

,MF-L
specifies the list form of the GETMAIN macro instruction.

141 OSIVS2 MVS ... nIIer MIKft

GETMAIN (Execute FonD)

A remote control program parameter list is used int and can be modified by, the execute form
of the GBTMAIN macro instruction. The parameter list can be generated by the list form of
either a GETMAIN or a FREEMAIN.

The execute form of the GETMAIN macro instruction is written as follows:

b

OETMAIN

b

LC
LU
VC
VU
EC
EU

,LA-I.",,1t add,
,LV -IeIt,,,, WI_

,A-oddr

,SP-subpool "",b,

,BNDRY-DBLWD
,BNDRY-PAOE

,RELA TED-WlIN.

,MF-(E ,etrl PI'O,)

ntIIM: symbol. Begin 1IIl1M in column 1.

One or more blanks must precede OETMAIN.

One or more blanks must follow OETMAIN.

.fllt add,: RX-type address or register (2) - (12).
l.fllt Wllu.: symbol, decimal disit, or register (2) - (12).
Note: LA may not be specified with Ee or EU above.
Note: LV may not be specified with LC, LU, VC, or VU above.

add,: RX-type addrell, or register (2) - (12).

subpool "",b,: symbol, decimal digit ~127, or register (2) - (12).

Deflllllt: BNDRY.DBLWD

,alu.: any valid macro keyword specification.

e".' prog: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the GBTMAIN macro instruction,
with the following exceptions:

,MF - (E ~ctrl prog)
specifies the execute form of the GETMAIN macro instruction using a remote control
program parameter list.

GETMAIN (Exeale rona) 14'

Euaple 1

Operadoa: Obtain 400 bytes of storage from subpool 10. If the storage is available, the
address will be returned in register 1 and register 1 S will contain 0; if storage is not available,
register IS will contain 4.

GETMAIN RC, LV=400, SP=10

Euaple 2

o,eratIoa: Obtain 48 bytes of storage from default subpool O. If the storage is available, the
address will be stored in the word at ARBAADDR; if the storage is not available, the task will
be abnormally terminated.

GETMAIN EU,LV=48,A=AREAADDR

.
AREAADOR os F

151 OS/VS2 MVS .. II' SenIceI_ MMre

IDENTIFY - Add an Entry Name

The IDENTIFY macro instruction is used to add an entry name to a copy of a load module
currently in virtual storage. The copy must be one of the following:

• A copy that satistled the requirements of a LOAD macro instruction issued during the
execution of the current task.

• The last load module given control, if control was passed to the load module using a
LINK, A IT ACH, or XCTL macro instruction.

The IDENTIFY macro instruction may not be issued by an asynchronous exit routine.
Normally, the IDENTIFY macro assigns the identified entry point as reentrant. A user issuing
this macro should be sure that his program is reenterable, otherwise, results are unpredictable.

An exception is the case of a non-authorized user identifying a module from an authorized
library. In this cue, the identified entry point is assigned the same attributes (reentrant,
serially reusable, non-reusable load only) as the main entry point.

The IDENTIFY macro instruction is written as follows:

'>
mENTIFY

'>

EP-atry IItlIIW
EPLOC-atry ".,. tIIIdr

,ENTRY..."" tld4r .. 4

The parameten are explained below:

EP - entry 1UI1II6

EPLOC - entry' 1ItiJ1M tJddr

"tUM: symbol. Beam "111M in column 1.

One or more blanks must precede IDENTIFY.

One or more blanks must follow IDENTIFY.

airy 1ItlIIW: symbol
airy """,~ tIIIdr: RX-type Iddrea, or resister (0) or (2) • (12).

alrytllldr adMtI: RX-type Iddrea, or fClister (I) or (2) • (12).

specifies the entry name or address of the entry name. 1be name does not have to
correspond to any symbol or name in the load module, and must not correspond to any
name, alias, or added entry name for a load module in the link pack area queue, or the job
pack area of the job step. If EPLOC is coded, the name must be padded to eight bytes, if
necessary.

,ENTIly - mtry tMJdr added
specif_ the virtual storage addresss of the entry name being added.

152

When control is returned, register 1 S contains one of the following return codes:

HeudeclaW
Code

00
04
08

oc
10
14

18
IC

24

Example 1

Meulaa
Successful completion of requested function.
Entry name and address already exist.
Entry name duplicates the name of a load module currently in virtual storage; entry
address was not added.
Entry address is not within an eliJible load module; entry address was not added.
Request issued by an asynchronous exit routine; entry address was not added.
LINK, LOAD, XCTL, A 11 ACH, or IDENTIFY request was previously issued using
the same entry name but a different address; current request wu ignored.
Parameter list is invalid or is not on a word boundary.
Extent list length is not positive or a multiple of 8, or extent address is not on a double
word boundary, is not addressable, or is not in caller's region.
Unexpected system error.

OperadOD: Add an entry name (PGMT AL2A) to a load module in virtual storage. Register 3
contains the entry point address.

IDENTIFY EP=PGMTAL2A,ENTRY=(R3)

LINJ{ - Pass Control to a Program in Another Load Module

The UNK. macro instruction is used to pass control to a specified entry name in another load
module; the entry name must be a member name or an alias in a directory of a partitioned
data set. The load module containing the program is brought into virtual storage if a useable
copy is not available.

The linkage relationship established is the same as that created by a BAL instruction;
control is returned to the instruction following the LINK. macro instruction after execution of
the called program. The problem program optionally can provide a parameter list to be passed
to the called program. If the eaUed program terminates abnormally, or if the specified entry
point cannot be located, the task is abnormally terminated.

The standard form of the UNK. macro instruction is written as follows:

b

LINK

b

EP-e""., "111M
EPLOC-entry "tlIM Gddr
DE-lilt entry Gddr

,DCB-deb Gddr

,PAR.AM-(Gddr)
,P AR.AM-(tlddr), VL-l

,m-ld "",61'

,EIUlET...". "" tUldr

"""'~: symbol. Bqin "am~ in column 1.

One or more blanks must precede LINK.

One or more blanks must follow LINK.

~"try lUI": symbol.
en"" IUJIM tlddr: A-type address, or reaister (2) - (12).
lut entry IIIJdr: A-type address, or reaister (2) - (12).

deb tIddr: A-type address, or reaister (2) - (12).

tlddr: A-type address, or reaister (2) - (12).
Nate: tlddr is one or more addresses, separated by commas. For
example, (tlddr.addr.tlddr)

Id "",61': symbol or c:lec:imal diait, with a maximum value of 4095.

~" ,.", tJIldr: A-type adelre .. , or register (2) - (12).

The parameters are explained below:

EP - entry 1ItI1M
EPLOC -entry 1IIImI addr
DE-lUI entry addr

specifies the entry name, the address of the entry name, or the address of the name field in
a 6O-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLOC is coded, the name must be padded to eight bytes, if necessary.

LINK - CoIItnI te AaoCIIer lAIMI M..... 153

,DeB - deb addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above. This parameter must indicate the same DCB used in the BLDL
mentioned above.

If the DCB parameter is omitted or if DCB-O is specified when the LINK macro
instruction is issued by the job step task, the data sets referred to by either the STBPLIB
or JOBLIB DD statement are first searched for the entry point name. If the entry point
name is not found, the link library is searched.

If the DCB parameter is omitted or if DCB-O is specified when the LINK macro
instruction is issued by a subtask, the data sets associated with one or more data control
blocks referred to by previous A IT ACH macro instructions in the subtasking chain are first
searched for the entry point name. If the entry point name is not found, the search is
continued as if LINK. had been issued by the job step task.

,P ARAM - (addr)
,PARAM-(addr),VL-l

specifies address (es) to be passed to the called program. Each address is expanded in1ine to
a fullword on a fullword boundary, in the order designated. Register 1 contains the address
of the f1l"St parameter when the program is given control. (If this parameter is not coded,
register 1 is not altered.)

VL - 1 should be designated only if the called program can be passed a variable number of
parameters. VL-l causes the bigh-order bit of the last address parameter to be set to 1;
the bit can be checked to find the end of the list.

tID-ill nmbr
specifies an identifier useful for debugging purposes only. The last fuUword of the macro
expansion is a NOP instruction containing the identifier value in bytes 3 and 4.

,ElUlET - 11" rtn addr
specifies the address of a routine to receive control when an error condition that would
cause an abnormal termination of the task is detected. Register 1 contains the abend code
that would have resulted had the task abended. The routine does not receive control when
input parameter errors are detected.

LINK (list Form)

Two parameter lists are used in a LINK macro instruction: a control program parameter list
and problem program parameter list. Only the control program parameter list can be
constructed in the list form of LINK. Address parameters to be passed in a parameter list to
the problem program can be provided using the list form of CALL. This parameter list can be
referred to in the execute form of LINK.

The list form of the LINK macro instruction is written as follows:

lltune

b

LINK

b

EP-entry IItlme
EPLOC-entry lIame add,
DE-lisl elltry add,

,DCB-deb add,

,ERRET-nr rtII addr

,SF-L

lIame: symbol. Begin lIa1M in column 1.

One or more blanks must precede LINK.

One or more blanks must follow LINK.

elltry lIame: symbol.
elltry lIame addr: A-type address.
lisl elltry add,: A-type address.

deb add,: A-type address.

err rill add,: A-type address.

The parameters are explained under the standard form of the LINK'
the following exceptions:

,SF-L
specifies the list form of the LINK macro instruction.

LINK (Lilt F ..) 155

LINK (Execute Form)

Two parameter Jists are used in a LINK macro instruction: a control program parameter list
and an optional problem program parameter list. Either or both of these lists can be remote
and can be referred to and modified by the execute form of LINK. H only one of the
parameter lists is remote, parameters that require use of the other parameter list cause that list
to be constructed inline as part of the macro expansion.

The execute form of the LINK macro instruction is written as follows:

b

LINK

b

EP.",try ""1M
EPLOC-atry NIIM tuld,
DE-luI ~ntry add,

,DCB-deb Gddr

,PARAM-(Gddr)
,PARAM-(Gddr), VL-t

,ID-Id n",br

,ERRET....,. rill Gddr

,MF-(E .prob Gddt)
,SF-(E .em 1Iddr)
,MF-(E .prob Gddr),SF-(E ,em IIddr)

IUIIM: symbol. Begin IUIIM in column 1.

One or more blanks must precede LINK.

One or more blanks must follow LINK.

entry n.",~: symbol.
~ntry IUIIM IIdd,: RX-type address or register (2) - (12).
1131 ~ntry Gddr: RX-type address, or register (2) - (12).

deb IIddr: RX-type address, or register (2) - (12).

IIdd,: RX-type address, or register (2) - (12).
Nate: Gddr is one or more addresses, separated by commas. For
example, (Gddr,lItidr,Gddr)

Id nmbr: symbol or decimal digit, with a maximum value of 4095.

~rr rill IIddr: A-type address.

prob Gddr: RX-type address, or register (1) or (2) - (12).
em Gddr: RX-type address, or register (2) - (12) or (15).

The parameters are explained under the standard form of the LINK macro instruction, with
the following exceptions:

,MF - (E ,prob addr)
,sF - (E ,prob addr)
.MF - (E ,prob addr).SF - (E ,ctri addr)

specifies the execute form of the LINK macro instruction. This form uses a remote problem
program parameter list, a remote control program. parameter liSt, or both.

Example 1

Operadoa: Pass control to a specified entry name (PGMLKRUS) in another load module. Let
the system fmd the module form available Hbraries.

LINK EP=PGMLKRUS

156 OSIVS2 MVS s.p.n1Ior MIIcre

LOAD - 8riDg a Load Module into Virtual Stonge

The LOAD macro instruction is used to bring the load module containing the specified entry
name into virtual storage, if a usable copy is not available in virtual storage.

The responsibility count for the load module is increased by one. On output, the higb-order
byte of register 1 contains the authorization code of the loaded module and the low three
bytes contain the module's length in doublewords. Control is not passed to the load module;
iDstead, the virtual storage address of the designated entry point is returned in register O. The
load module remains in virtual storage until the responsibility count is reduced to 0 through
task terminations or ~tll the effects of all outstanding LOAD requests for the module have
been canceled (using the DELETE macro instruction), and there is no other requirement for
the module.

The entry name in the load module must be a member name or an alias in a directory of a
partitioned data set. If the specified entry name cannot be located, the task is abnormally
terminated.

The LOAD macro instruction is written as fonows:

b

LOAD

b

EP...", """..
EPLOC-a"" IttIIM IlIIdr
DE.lbt ."" tUJdr

,DCB-deb IIddr

,ERRET-.rr "" IIddr

,RELATED.'1I1w

1ttIIM: symbol. Beam "111M in column 1.

One or more blanks mUll precede LOAD.

One or more blanks mUll follow LOAD.

entry lltlme: symbol.
entry 1UJIfN tIddr: RX-type address or resister (0) or (2) - (12).
Ibt entry tIddr: RX-type address, or reamer (2) - (12).

deb IlIIdr: RX-type address, or resister (1) or (2) - (12).

err "" IlIIdr: RX-type address, or reamer (2) - (12).

"1I/~: any vaHd macro keyword specification.

The parameters are explained below:

EP -.ntry 1II.I1M

EPLOC -mtry 1IQ1M addr
DE -luI.""" addr

specifies the entry name, the address of the name, or the address of the name field in a
6O-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If BPLOC is coded, the name must be padded to eight bytes, if necessary.

LOAD - lAM M ~ sa.,... 157

.DCB - deb addr
specifies the address of the data control block for the partitioned data set containing, the
entry name described above. This parameter must indicate the same DCB used in the BLDL
mentioned above.

If the DCB parameter is omitted or if DCB-O is specified when the LOAD macro
instruction is issued by the job step task, the data sets referred to by either the STBPLIB
or JOBLm DD statement are first searched for the entry name. H the entry name is not
found, the link library is searched.

If the DCB parameter is omitted or if DCB-O is specified when the LOAD macro
instruction is issued by a subtask, the data sets associated with one or more data control
blocks referred to by previous A'IT ACH m~o instructions in the subtasking chain are fint
searched for the entry name. If the entry name is not found, the search is continued as if
the LOAD, had been issued by the job step task.

,ERRET - err rtn addr
Specifies the address of a routine to receive control when an error condition that would
cause an abnormal termination of the task is detected. Register 1 contains the abend code
that would have resulted had the task abended, and register 1 S contains the reason code
that is associated with the abend. The routine does not receive control when input
parameter errors are detected.

,RELATED - WJiue
specifies information used to self -document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

TheRBLATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

LOAD 1 LOAD EP=APGIOHK1,RELATED=(DEL1,'LOAD APGIOHK1')
DEL1 DELETE EP=APGIOHK1,RELATED=(LOAD1,'DELETE APGIOHK1')

EDID,le 1

Operation: Bring a load module containing a specified entry name (PGMLICRUS) into virtual
storage. Let the system find the module from available libraries.

LOAD EP=PGMLKRUS

I. OSIVS2 MVS _Inlier SenIees .. MIM:ro

PGLOAD - l.AJad Virtual Stonge Areas into Real Stor&p

The PGLOAD macro instruction is used to load specified virtual storage areas into real storage
in anticipation of future needs. That is, PGLOAD is essentially a page-ahead function. Note,
however, that a page that has been loaded via PGLOAD is eligible for page-out selection in
the same manner as a page that bas been demand-paged into real storage.

The misuse of this function can have adverse effects on system performance. Causing
unnecessary pages to be brought into real storage will force more useful pages to be displaced
and, consequently, cause unnecessary paging activity. Proper use of this function, however, wi1J
tend to decrease system overhead resulting from page faults.

The standard form of the PGLOAD macro instruction is written as fonows:

'>
PGLOAD

'>

R

,A_1lI1111ldr

,ECB-«b tMlIJr

,EA..-d tulfIr

,RELEASE-N
,RELEASE .. Y

,",1M: symbol. Beam nllme in column 1.

One or more blanks must precede PGLOAD.

One or more blanks must follow POLOAD.

811111 tlddr: A-type address, or reaister (I) or (2) - (12).

ecb tlddr: A-type address, or reaister (0) or (2) - (12).

end IIMr: A-type address, or resister (2) - (12) or (IS).
Def .. : 811111 IIddr + 1

Def .. : RELEASE-N
Nete: RELEASE-Y may only be specified with EA above.

The parameters are explained below:

R
specifies that no parameter list is being supplied with this request.

,A - nart tIddr
specifies the start address of the virtual area to be loaded.

,ECB-ecbaddr
specifies the address of an BCD that is used to signal event completion.

Note: If the user intends to walt on the BCB as part of an BCD list, he must ensure that the
list and associated BCBs are fIXed in real storage before issuing the WAIT. The PGLOAD
service routine ensures that the lpeclfwd BCB is fixed.

,EA -end tJddr
specifies the end address + 1 of the virtual area to be loaded .

.RELEASE-N
,RELEASE - Y

specifies that the contents of the virtual area is to remain intact (N) or be released (Y).

PGLOAD - v......a StonIe AreM MI sa.... .8

When control is returned, register 1S contains one of the following return codes:

Heuded.Jllal
Code

00
04

08
10

MeaabIa
Operation completed normally; BCB posted complete.
Operation abnormally terminated. Operation incomplete because of invalid address in
virtual subarea list entry; BCB posted complete.
Operation proceedina; BCD will be posted when all pap-ins are complete.
Operation abnormally terminated. Virtual subarea list entry or BCD address invalid; no
BCD is posted.

If the ECB parameter is coded, the ECB is unchanged if the request was initiated but Dot
complete (return code 8), or if an ABEND was issued with return code 10. Otherwise, the
ECB is posted complete with code

o - Operation completed successfully.
4 - Operation incomplete because of invalid address in VSL entry.

If the return code issued is 8, the ECB is posted asynchronously when paging I/O has
completed, with code

o Operation completed successfully.
4 - Operation incomplete because of Paaina error; requesting TeD wiD be abnormally terminated.

IIIco"""tlble P"r"",eten
The following parameters were valid in Release 1 of OS/VS2, but are not supported in
Release 3.7:

ReBIND -address
will probably cause errors .

• M OS/VS2 MVS 8..-enllor SenIeeI_ Macro

PGLOAD (Ust FonD)

The list form of the PGLOAD macro instruction uses a virtual subarea list.

The list form of the PGLOAD macro instruction is written as follows:

b

POLOAD

b

L

,LA.IUI lIi1dr

,ECB-«b IIIldr

,RELEASE.N
,RELEASE.Y

"111M: symbol. Beain "t.IIM in column I.

One or more blanks must precede POLOAD.

One or more blanks must foDow POLOAD.

1111 IIddr: A-type address, or reailter (I) or (2) - (12).

ecb Gddr: A-type address, or reaister (0) or (2) - (12).

Oef .. : RELEASB-N

The parameten are explained under the standard form of the PGLOAD macro instruction,
with the following exceptions:

L
specifieS that a parameter list is being supplied with this request.

,LA -list adIlr
specifies the address of the fIrSt entry of a virtual subarea list.

ExaIIlple 1

o,eradoa: Page-in a single byte of virtual storage, causing the entire 4096-byte page
containing that byte to be paged into real storage.

PGLOAD R,A=(R3)

b •• ple 2

o,eraUoa: Page-in the virtual storage lying in the range addressed by registen 3 and 4, and
notify the requestor via posting of the BCB when the page-ins are complete.

PGLOAD R,A-(R3),EA=(R4),ECB=(RS)

ExaIIlple 3

Operatloa: Discard the contents of the virtual pages totally encompassed by START AD and
BNDAD before new real storage frames are assiped.

PGLOAD R,A-STANDARD,EA=ENDAD,RELEASE=Y

PGLOAD - (IJIt "" .,.

PGOUT - Page Out Virtual Storage Areas from Real Storage

The PGOUT macro instruction is used to initiate page-out operations for specified virtual
storage areas that are in real storage. The POOUT function is complementary to the PGLOAD
function. You have the option of specifying that the virtual pages to be paged out either
remain valid in real storage or be marked invalid and the real frames assigned to them be made
available for reuse. The use of this option will not prevent page faults from occurring on the
specified storage.

The misuse of this function, like the misuse -of the PGLOAD fuiaction, can have adverse
effects on system performance. On the other band, proper use of this function will tend to
clean out of real storage those pages no longer needed for program execution or not required
for some period in the future.

The standard form of the PGOUT macro instruction is written as follows:

name

b

PGOUT

b

R

,A-stan add,

,EA-end add,.

,KEEPREL-N
,KEEPREL-Y

name: symbol. Begin IItIIM in column 1.

One or more blanks must precede POOUT.

One or more blanks must foUow POOUT.

.tan tlddr: A-type address, or rqister (1) or (2) - (12).

end addr: A-type addre .. , or register (2) - (12) or (t s).
Def .. : .tQ11 addr + 1
DefMllt:KEEPREL.N

The parameters are explained below:

R
specifies that no parameter list is being supplied with this request.

,A - ,tart addr
specifies the start address of the virtual area to be paged out.

,EA - end addr
specifies the end address + 1 of the virtual area to be paged out.

,KEEPREL-N
,KEEPREL-Y

specifies that the virtual pages will be marked invalid and the real storage frames freed for
reuse (N) or that the virtual pages will not be invalidated (Y).

162 OSIVS2 MYS SIIpenIIar SenIeet .. M8ao

When control is returned, register IS contains one of the following return codes:

BeDded·"
CotIe

00
04

OC

to

M
Operation completed normally; Paaina I/O proceedinl asynchronously.
Operation abnormally terminated. Operation incomplete because of invalid address in
virtual subarea list entry.
One or more paaes specified to be paaed out were not paaed out. Either the paaes
were in the nucleus in unusable real frames, in SQA or LSQA, in V-R area allocated
resion, were paae fixed, or the system resources necessary to perform the paae out
operations were momentarily unavailable. Paainll/O is proc:eedina normally for all
other paaes.
Operation abnormally terminated. Virtual subarea list entry or ECB address invalid.

PGOur (Ust Fonn)

The list form of the PGOUT macro instruction uses a virtual subarea list.

The list form of the PGOUT macro instruction is written as foRows:

b

POOUT

b

L

,LA-II.rt tUldr

.KEEPREL-N

.KEEPREL-Y

lUI,.: symbol. Begin IUInte in column 1.

One or more blanks must precede PGOUT.

One or more blanks must follow PGOUT.

lut addr: A-type address, or reaister (I) or (2) - (12).

Del .. : KEEPREL-N

The parameters are explained under the standard form of the PGOUT macro instructiont

with the following exceptions:

L
specifies that a parameter list is being supplied with this request.

JA -lin tIIldr
specifies the address of the rust entry of a virtual subarea list.

Example 1

OperatloD: Page-out the area of real storage totally encompassed by the start and end virtual
boundaries specified.

PGOUT R, A=(R3) , EA=(R4)

Example 2

OpentloD: Create ali audiary storage copy of a virtual area before continuing to use the area.
The area wm remain in real storage after the page-outs complete.

PGOUT R,A=(R3) ,EA=(R4) ,KEEPREL=Y

1M OS/VD MVS nIIer ~

PGRLSE - Release Virtual Storage Contents

The PGRLSE macro instruction is used to release to the system all real storage and auxiliary
storage associated with specified virtual storage areas. Use PGRLSE when a large area (one or
more complete pages) of virtual storage within your program no longer has significant
contents.

Functionally, PGRLSE is equivalent to a FREEMAIN macro instruction followed by a
GETMAIN macro instruction. That is, the virtual space is maintained, but the data is
discarded. When the page(s) being released is next referred to, that page is cleared to zeros.
Thus, you can help reduce system overhead by releasing virtual storage when you no longer
need it.

Proper use of this function can increase the amount of storage available to the system and
prevent needless paging I/O activity. Usage of PGRLSE may improve operating efficiency
when the using program can discard the contents of a large virtual storage area and reuse the
virtual storage pages; paging operations may be eHminated for those virtual storage pages when
they are reused.

The standard form of the PGRLSE macro instruction is written as follows:

IIIIIfW

b

PORLSE

b

LA-Iow tuld,

,HA-A,,1t tlddr

ftIIIM: symbol. Begin "am~ in column 1.

One or more blanks must precede PORLSE.

One or more blanks must follow PORLSE.

low tlddr: A-type address. or register (0) or (2) - (12).

Itilit tlddr: A-type address. or register (1) or (2) - (12).

The parameters are explained below:

LA -low addr
specifies the address of the lower boundary of the area to be released.

,HA - high addr
specifies the address of the upper boundary + 1 of the area to be released.

When control is returned, register IS contains one of the following return codes:

HexMed·aJ
Code

00
04

Meuia&
Successful completion.
Execution failed. The area specified. or a portion of the area. is protected from the
requesting program. Any valid portion of the area preceding the protected area is
releued.

PGRLSE - VIIUII St c-t... 165

PGRlSE (Ust Form)

The list form of the PGRLSE macro instruction is used to construct a control proJl'8lll
parameter list.

The list form of the PGRLSE macro instruction is written as foDows:

b

PORLSE

b

LA-Iow tUltIr,

HA-It'r. 1IIldr,

MP-L

".",.: IYDlbol. Beam 1UIIfN in column I.

One or more blanb IIl1ISt precede PGRLSE.

One or more blanb must foUow PGRLSE.

low tIIltlr: A-type adclrca.

AI", tlIlIb: A-type adclrelll.

The parameters are explained under the standard form of the PGRLSE macro instruction,
with the following exceptions:

MF-L
specifleS the list form of the PGRLSE macro instruction.

I. OIIVS2 MV8", MMft

PGRLSE (Execute ForDI)

A remote control program parameter Jist is referred to, and can be modified by, the execute
form of the PGRLSE macro instruction.

'The execute form of the PORLSE macro instruction is written as fonows:

tt
PORLSE

tt

IlIUM: symbol. Begin IlIUM in column 1.

One or more blanks must pre<:ede PORLSE.

One or more blanks must follow PORLSE.

low addr: A-type address, or resister (0) or (2) - (12).

Itlglt addr: A-type address, or resister (1) or (2) - (12).

ctrl addr: RX-type address, or teaister (2) - (12).

The parameters are explained under the standard form of the PORLSE macro instruction,
with the fonowing exceptions:

MF - (E .ctrl tJddr)
specifies the execute form of the PORLSE macro instruction using a remote control
program parameter list.

Euaple 1

o,entlea: Release the contents of the pages included within the specified areas. Only thOle
pages fully encompassed wUI be nullified.

PGRLSE LA=(R4) , HA=(RS)

EuJDple 2

Opentloa: Perform the operation in Example 1, but use A-type addresses.

PGRLSE LA=LOWADDR,HA=HIGHADDR

PGIUSE (keale r.,. .6'

POST - SigDaI Event Completion

Use the POST macro instruction to have the specified ECB (event control block) set to
indicate the occurrence of an event. U this event satisfies the requirements of an outstanding
WAIT or EVENTS macro instruction, the waiting task is taken out of the wait state and
dispatched according to its priority. The bits in the ECB are set as follows:

Bit 0 of the specified BeB is set to 0 (wait bit).
Bit 1 is set to 1 (complete bit).
Bits 8 through 31 are set to the specified completion code.

The POST macro instruction is written as follows:

Nlme

b

POST

b

ecb addr

,comp code

,RELA TED.value

name: symbol. Begin name in column 1.

One or more blanks must precede POST.

One or more blanks must follow POST.

ecb add,: RX-typc address, or reaister (1) or (2) - (12).

comp coM: symbol, decimal digit, or register (0) or (2) - (12).
..... ., :0-224-1
Deflllt: 0

value: Any valid macro keyword specification.

The explanation of the parameters is as follows:

ecb addr
specifies the address of the fullword event control block representing the event.

,comp code
specifies the completion code to be placed in the event control block upon completion.

,RELATED - value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and EST AE).

The parameter may be used, for example, as follows:

WAIT~ WAIT·
RESUME 1 POST

1,ECB,RELATED=(RESUME1,'WAIT FOR EVENT')
ECB,O,RELATED=(WAIT1,'RESUME WAITER')

161 OSIVS2 MVS s.,.nIIor Semen .. Maao

Example 1

OperadOD: Signal event completion with a default completion code. POSTECB is the address
of an BCB.

POST POSTECB

Example 1

Opendoa: Signal event completion with a completion code of X'7FF'. POSTECB is the
address of an BCB.

POST POSTECB,X'7FF'

POST - SIpII E,eat CompIetIoD 169

RACHECK - Check RACF Authorization

The RACHECK macro instruction is used to provide authorization checking when a user requests
access to a RACF-protected resource. RACHECK tells the issuer of the macro whether the specified
user has authority to access the specified resource, or if the resource is defined to RACF. The
RACHECK macro instruction can only be used if RACF or another functionally equivalent program is
present in the system; otherwise, an abend occurs when RACHECK is issued.

Note: Do not use the DSTYPE=M or OWNER parameters unless RACF Version 1. Release 4 is installed
on your system.

The standard form of the RACHECK macro instruction is written as follows:

name

b

RACHECK

b

ENTITY -("souru name addr)

,VOLSER-1I01 addr

• CLASS- 'c/twname'

,CLASS-c1assname addr

.ATfR-READ
• ATTR-UPDATE
.ATTR-CONTROL
.ATTR-AL TER
.ATTR-"g

.DSTYPE-N
,DSTYPE-V
,DSTYPE=M

.INSTLN-pamf lisl addr

,OLDVOL-old 1101 addr

,APPL- 'applname'
,APPL-applname addr

,OWNER=u.er addr

The parameters are explained below:

ENTITY - (resource name addr)

name: symbol. Begin name in column I.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

"source name addr: A-type address. or register (2) - (t 2).

vol addr: A-type address, or register (2) - (12).

Note: VOLSER is required for CLASS='DATASET' and DSTYPE:¢M .

c/Qllnal'l1e: DATASET, DASDVOL, or TAPEVOL.

clll8.name addr: A-type address, or register (2) - (12).
Default: CLASS='DAT ASET'

"g: register (2) - (t 2) .
Default: ATTR-READ

Default: DSTYPE-N

parm lisl addr: A-type address, or register (2) -(t 2).
Default: zero

old 1101 addr: A-type address, or register (2)-(12).
Defolt: zero

applname addr: A-type address, or register (2)-(12).

urer addr: A-type address, or register (2) - (12).

specifies that RACF authorization checking is to be performed for the resource whose name
is pointed to by the specified address. The resource name is a 44-byte DASD data set name
for CLASS.'DATASET' or a 6-byte volume serial number for CLASS.'DASDVOL' or
CLASS.'TAPEVOL'. The name must be left justified in the field and padded with blanks.
The length of all other resource names is determined from the class descriptor tables.

170 OS/VSl MVS SupenIsor Senieel Macro IDstrueCIoM

.VOLSER -yol addr
specifies the volume serial number:

• For non-VSAM DASD data sets, of the volume on which the data set resides .
• For VSAM DASD data sets, of the catalog controlling the data set.

The field pointed to by the specified address contains the volume serial number padded to
the right with blanks, if necessary, to make six characters. VOLSER= is only valid and must be
supplied with CLASS='DATASET', (unless DSTVPE=M is specified).

RACHECK - Cleek RACP Authorization 170.1

170.2 OS!VS2 MVS Supentlor SenIceIud)(acaoo laatrucdoDl

,CLASS - 'classname'
,CLASS - classname addr

specifies that RACF authorization checking is to be performed for a resource of the
specified class. If an address is specified, the address must point to a one-byte field
indicating the length of the classname, followed by the class name (for example DATASET,
DASDVOL or TAPEVOL).

,AlTR-READ
,ATTR-UPDATE
,A TTR - CONTROL
,A TTR - ALTER
,ATTR-reg

specifies the access authority of the user or group permitted access to the resource for
which RACF authorization checking is to be performed:

READ - RACF user or group can open the resource only to read.

UPDATE - RACF user or group can open the resource to write or read.

CONTROL - For VSAM data sets, RACF user or group has authority equivalent to the
VSAM control password. For non-VSAM data sets and other resources, RACF user or
group has UPDATE authority.

ALTER - RACF user or group has total control over the resource.

If a register is specified, the register must contain one of the following codes in the
low-order byte of the register:

X'02' - READ

X'04' - UPDATE

X'08' - CONTROL

X'80' - ALTER

,DSTYPE-N
,DSTYPE-V
,DSTYPE=M

specifies the type of data set:
N - non-VSAM
V -VSAM
M • model
DSTYPE-should only be specified for CLASS-'DATASET'.

Note: Do not specify DSTYPE=M unless RACF Version 1, Release 4 is installed on your system.

,INSTLN - parm list addr
specifies the address of an area that is to contain parameter information meaningful to the
RACHECK installation exit. This information is passed to the installation exit when it is
given control from the RACHECK routine.

The INSTLN parameter can be used by an application program acting in the capacity of a
resource manager that wishes to pass information to the RACHECK installation exit.

RACHECK - Oaeck RACF AathorIzadoB 171

.OLDVOL-o/d vol addr
specifies a volume serial:

• For CLASS=-'DATASET', within the same multivolume data set specified by VOLSER-.
• For CLASS=-'TAPEVOL', within the same tape volume specified by ENTITY-.
RACF authorization checking will verify that the OLDVOL specified is part of the same

multivolume data set or tape volume set.

The specified address points to the field that contains the volume serial number padded to
the right with blanks, if necessary, to make six characters.

,APPL - 'app/name'
,APPL - app/name addr

specifies the name of the application requesting authorization checking. The applname is not
used for the authorization checking process but is made available to the installation exit(s)
called by the RACHECK routine. If the address is specified, the address must point to an
8-byte field containing the application name, left justified-and added with blanks.

171.0 OS/VS2 MVS Sapenilor _ Macro

,OWNER • rut!rld tIdd,.
specifies a uaerid that is compared with the name in the owner field of the RACF profile. If the names
match, the access authority allowed for that userid is 'ALTER'. The address must point to an·S-byte
field containinl the userid, left-justified and padded with blanks.

Note: Do not specify OWNER unless RACF Version 1, Release 4 is installed on your system.

When control is returned, register IS contains one of the following return codes:

1IeD •• d- M
CoM
00
04
08

oc

EDa,le 1

The Iller is authorized by RACF to obtain use of a RACF-protectcd resource.
The specified RACF-protected resource cannot be found.
The user is .. authorized by RACF to obtain use of the specified RACF-protected
neoul'Ce.
The OLDVOL specified was not part of the multivolume data set defined by VOLSER.
or it was not part of the same tape volume defmed by ENTITY.

Operad •• : Perform RACF authorization checking using the standard form, for a non-VSAM
data set residin& on the volume pointed to by register 8. Register 7 points to the data set
name. and the RACF user is requesting the highest level of control over the data set.

RACHECK ENTITY=(R7),VOLSER=(R8),CLASS='DATASET',ATTR=ALTER

Eua,le 2

o,entloa: Perform RACF authorization checking using the standard form, for a VSAM data
set resieliDa on the volume pointed to by register S. Register 7 points to the data set name, and
the RACF user is requesting the data set for read only. Register 4 points to an area containing
additional parameter information.

RACHECK ENTITY=(R7),VOLSER=(R8),CLASS='DATASET',DSTYPE=V,INSTLN=(R4)

In 08/V82 MVS Macro

RACHECK (Ust Fonn)

The list form of the RACHECK macro instruction is written as follows:

"11""
b

RACHECK

b

ENTlTY-(raource _me IIddr)

,VOLSER-.ol tlddr

• CLASS-C'llIssnam~ addr

.AlTR-READ

.AlTR-UPDATE

.A lTR-CONTROL

.AlTR-AL TER

.DSTYPE-N

.DSTYPE-V
,DSTYPE-M

• INSTLN-parm 1111 addr

• OLDVOL-old '0' addr

.APPL-· appl"am~'

.APPL-applnam~ addr

iOWNER..,.r IIddr

"lIm~: symMI. Bellin "11"" in c,lIumn I.

One: or more blanks must "n.'Cede RACHECK.

One or more blanb must roll()w RACHECK.

raource ftllnte tlddr: A-type acldrcu.
Note: ENTITY is required Oft either the lilt or execute form.

Pol IIddr: A-type addrca.

Note: VOLSER is required only for CLASS-'DATASI:.T and
DSTYPE+M.

cllla""me: DATASET, DASDVOL, or T APEVOL.
Default: CLASS·'DATASET

clllll""me IIddr: A-type addrca .

Def : AlTR-READ

De,auIt: DSTYPE-N

parm list addr: A-type address .
De, : zero

old vol IIddr: A-type address .
De, : zero

applname addr: A-type acldrea.

uler IIddr.· A-type.ddrea.

The parameters are explained under the standard form of the RACHECK macro instruction,
with the following exceptions:

,MF-L
specifies the list form of the RACHECK macro instruction.

RACHECK - (LIlt r __) 173

RACHECK (Execute FOrm)

The execute form of the RACHECK macro instruction is written as follows:

nam~

b

RACHECK

b

ENTITY-(relourc~ nam~ add,)

,VOLSER-yol add,

,CLASS-cIQ.Una~ add,

,ATIR-READ
,ATIR-UPDATE
,ATIR-CONTROL
,ATIR-ALTER
,AlTR-rq

,DSTYPE-N
,DSTYPE-V
,DSTYPE-M

,INSTLN-PQmr Iisl add,

,OLDVOL-old '101 add,

,APPL-tlPpIMm~ add,

,OWNER-u .. addr

,MF-(E,clrl add,)

nam~: symbol. Begin nam~ in column I.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

,nource name add,: ax-type address, or register (2) - (12).

Note: ENTITY is required on either the list or execute form
'101 add,: RX-type address, or register (2) • (12).
Note: VOLSER it required only for CLASS='DATASET' and

~~~E!~· ~Q': RX-type address, or register (2) • (12). 

~: register (2) - (12). 

pamr 1I1I add,: RX-type address, or register (2) - (12). 

old yol add,: RX-type address, or register (2)-(12). 

applna~ add,: RX-type address, or register (2)-( 12). 

UI~' add,: ax-type address or register (2) - (12). 

cui add,: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the RACHECK macro instruction, 
with the following exceptions: 

,MF - (E.ctrJ Ilddr) 
specifies the execute form of the RACHECK macro instruction, using a remote control 
program parameter list. 

174 OS/VS2 MVS ......... s..IceI ... MMft ......... 



RACSTAT - RACF Status Extract Serriee 

The RACST AT macro instruction is used to determine if RACF is active and optionally 
determine if RACF protection is in effect for a given resource class. The RACSTAT macro 
can also be used to determine if a resource class name is defmed to RACF. 

RACST A T is a branch entered service that uses standard linkage conventions. 

The standard form of the RACST AT macro instruction is written as follows: 

name 

b 

RACSTAT 

b 

name: sybmol. Begin ntUM in column I. 

One or more blanks must precede RACSTAT. 

One or more blanks must follow RACST AT . 

• CLASS-· c/assname' 
.CLASS-c/a.uname add, c/a.uname add,: A-type address, or register (2)-( 12) • 

entry addr: A-type address. or register (2)-(12). • ENTRY~ntry add, 

The parameters are explained below. 

,CLASS - 'classname' 
,CLASS - classname addr 

specifies the classname for which RACF authorization checking is performed. The name can 
be explicitly defined on the macro by enclosing the name in quotes. If specified, the address 
must point to an 8-byte field containing the ciassname, left justified and padded with blanks 
if necessary. If CLASS. is omitted, the status of RACF is returned. 

,ENTRY -entry addr 
specifies the address of a 4-byte area that is set to the address of the specified class in the 
class descriptor table. This operand is ignored when the CLASS. operand is omitted. 

When control is returned, register .. S contains one of the following return codes: 

Hexadeelmal Meaai ... 
Code 
00 
04 
08 
OC 
10 
14 
18 

RACF is active and, if CLASS- was specified, the class is active. 
RACF is active; the class is inactive. 
RACF is active; the class is not defined. 
RACF is inactive and. if CLASS- was specified, the class is inactive. 
RACF is inactive: the class is inactive. 
RACF is inactive; the class is not defined. 
RACF CVT does not exist (RACF is not installed) or an insufficient level of RACF is 
installed. 

N_: The class descriptor entry for the specified class is returned to the caller (in the 
4-byte area addressed by the entry addr), for return codes 00, 04, OC, and 10. 

RACST AT - RACF sua.. Extract SenIee 174.1 



RACSTAT (Ust Form) 

The list form of the RACSTAT macro instruction is written as follows: 

b 

RACSTAT 

b 

,CLASS-' c/tuSname' 
,CLASS-c/4Uname add, 

,ENTRY-en"., add, 

,MF-L 

name: symbol. Begin name in column I. 

One or more blanks must precede RACSTAT. 

One or more blanks must follow RACST AT. 

c/4UnIl",eadd,: A-type address. 

entry add,: A-type address. 

The parameters are explained under the standard form of the RACST AT macro instruction 
with the following exception: 

,MF-L 
specifies the list form of the RACST AT macro instruction. 

174.2 OSIVS2 MVS &lpenllor SenIees ... Macro .......... 



RACSTAT (Execute Form) 

The execute form of the RACSTAT macro is written as foDows: 

b 

RACSTAT 

b 

• CLASS-cltu.rll4lme IIIldr 

,ENTRY ... "" IIddr 

,MF-(E,ctrl tuJdr) 

HIM: symbol. Belin name in column 1. 

One or more blanks must precede RACST AT. 

One or more blanks must foUow RACSTAT. 

cltmlUllM IIddr: RX-type address or register (2)-(12) . 

elf"., IIddr: RX-type address or register (2)-(12). 

ctrllllldr: RS-type address or register (1)-(12). 

The parameters are explained under the standard form of the RACST AT macro instruction, 
with the foDowing' exception: 

,MF - (E.ctrl addr) 
specifies the execute form of the RACST AT macro instruction, using a remote control 
program parameter list. 

Exaa,le: 

Operatloa: Determine if the DASDVOL class is active and retrieve the address of its class 
descriptor. A fullword, CDADDR, contains the class descriptor address. 

RACSTAT CLASS=' DASDVOL' , ENTRY=CDADDR 

RACSTAT (Ex ... , __ ) 174.3 





RETURN - Return Control 

The RETURN macro instruction restores the control to the calling program and signals normal 
termination of the called prolJ'Ull. The return of control is always made by executing a branch 
iDstruction using the address in register 14. The RETURN macro instruction can restore a 
desipated ruaae of registers, provide a return code in register 15, and flag the save area used 
by the called program. 

If registers are to be restored, or if an indicator is to be placed into the save area, register 
13 must contain the address of the save area, wbich must have the standard format. 

The RETURN macro instruction is written as follows: 

,T 

,ac.,. coM 

_: symbol. Beam _1M in column 1. 

One or more blanb must precede RETURN. 

One or more blanb must follow RETURN. 

fell and rer2: decimal diaits, and in the order 14, IS, 0 thmuah 
12. 

ret coM: cIecimal cliai~ I)'II1bol, or reaister (15). The maximum 
value iI .,. 

The parameters are explained below: 

(,.,1) 
(,.,1,,.,2) 

,T 

specifies the relister or ruaae of registers to be restored from the save area pointed to by 
the address in register 13. If you omit this parameter, the contents of the registers are not 
altered. Do not code this parameter when returning control from·a proaram interruption exit 
routine. 

C8U1e1 the control program to fIaa the save area UIed by the called proaram. A byte 
containing aliI's is placed in the hiah-order byte of word 4 of the save area after the 
registers have been loaded; this ctesipates that a caUed program has executed a return to its 
caBer. Do not specify this parameter when returning control from an eDt routine. 

,ltC -m cotJ. 
specifies the return code to be pasaed to the calling program. If a symbol or decimal diIlt is 
coded, the return code is placed rilbt-adjusted in register 15 before return is made; if 
register 15 is coded, the return code has been previously loaded into register 15 and the 
contents of register 15 are not altered or restored from the save area. (If you omit this 
parameter, the contents of register 15 are determined by the ,.,1 and ,..2 parameters.) 

Note: If resister 15 is coded and a return code greater than 4095 (decimal) is paued, the 
results could be either an invalid return code in the message or invalid RC testiq. 

Euaple 1 

Operadoa: Restore registers 14-12, flag the save area, and return with a code of o. 
RETURN (14, 12 ) , T, RC>O 

IIE'I11aN - ...... CellInI 1'75 



SAVE - Save Realster Contents 

1be SA VB macro iDstruction stores the contents of the specified resisters in the save area at 
the adcIreu contained in register 13. If you wish, you may specify an entry point identifier. 
Write the SA VB macro instruction only at the entry point of a program because the code 
resultlna from the macro expansion requires that register 1 S contain the address of the SA VB 
macro prior to its execution. Do not use the SA VB macro instruction in a program interruption 
exit routine. 

The SA VB macro instruction is written as foDows: 

, 
SAVE , 

114UM: symbol. Belin ,.",. in column 1. 

One or more blanks must prec:ede SAVE. 

One or more blanks must foBow SAVE. 

, 
,T 

,Id """. 

,.,1 and reg2: decimal digits, and in the order 14, IS, 0 throuah 
12. 

Id 1UIIfW: chlU'lK:ter stri.na of up to 70 characten or 81 an *. 

The parameters are explained below: 

(reg1) 
(reg1~reg2) 

,T 

specifies the register or n.nge of registers to be stored in the save area at the adcIreu 
contained in register 13. The registers are stored in words 4 through 18 of the save area. 

specifies that registers 14 and IS are to be stored in word 4 and S, respectively, of the save 
area. TbiI parameter permits you to save two noncontiguous sets of registers. 

II you specify both T and ,.,2~ and if reg1 is any of reJisters 14, 15, 0, 1, or 2, all of 
reJisters 14 throu&h the ,.,2 value are ~ved. 

61tl ,.". 
specifies an identifier to be associated with the SA VB macro instruction. If an asterisk (.) is 
coded, the identifier is the llame associated with the SA VB macro instruction, or, if the 
1ItIIM field is blank, the control section name is used. The identifier aids in locatiDa a 
program'. save area in a dump. If the CSBel instruction name field is blank, the parameter 
is ipored. 



Whenever a symbol or an asterisk is coded, the followiDa macro expa ..... occun: 

• A count byte cOntaining the number of cbaracten in the identifier Dame is __ bled 
four bytes following the address contained in rqister 15. 

• The character Itriq containing the identifier DaIDe is lllembleclltlrtiDa at five byteI 
fol1owiq the address contaiDed in re .... 15. 

• An iDItruction to branch around the count and identifier fields is _bled. 

Esaa,le 1 

o,entIoa: Save rePten 14-12, and UIOCiate the identifier with tile CSBCT ...... 
SAVE (14,12)". 

Mft-......... c....... .n 



SEGLD - IAad Oveday Sepaeat aDd Continue Proeessina 

The SBGLD macro instruction causes the control program to load the specified segment and 
any segments in its path that are not part of a path already in virtual storage. Control is DOt 
passed to the specir1ed segment, but is returned to the iDstrDction foDowin& the SBGLD macro 
instruction. Processiq is overlapped with the loading of the sesmont. Refer to the OS/YS 
Uta~ Editor tIIId UJtMler for details on overlay. 

The SBGLD macro instruction is written u foRows: 

t. 
SEGLD 

t. 

IItIIIte: tylDbol. Beain ".". in column 1. 

One or more bIanb must precede SEOLD. 

ODe or more bIanb must follow SEOLD. 

The parameten are explained below: ext., 1UJIM 

specirle8 the name of a control section or an entry aame in the required section. An 
exclusive reference is not aDowed. The D8Dle does not have to be identiraed by an EXTRN 
statement. 

Ex •• ple 1 

Operatloa: Cause the control proaram to load sepleDt PGM54. 

SEGW PGMS4 

''71 OII/'Va MVS" ............ MIen ... .-



SEGwr - Load Overlay Segment and Wait 

The SOOWT macro iDltruction causes the control program to load the specified segment and 
any segments in its path tbat are not part of a path already in virtual storage. Control is not 
passed to the specified segment; control is not returned to the segment issuing the SEGWT 
macro instruction until the requested segment is loaded. Refer to the publication OS / .. s 
~ Editor CJNl LotJMr for details on overlay operations. The SEGWT macro instruction 
cannot· be UIed in an asynchronous eDt routine. 

The SEGWT macro instruction is written as follows: 

t» 

SEGWT 

t» 

"""'.: symbol. Begin """'. in column 1. 

One or more blanks must precede SEGWT. 

One or more blanks must foUow SEGWT. 

#!XI., l1li",.: symbol. 

The parameters are explainecl below: 

m., 1III1M 

specifIeS the name of a control section or an entry name in the required section. An 
exclusive reference is not allowed. The name does not have to be identified by an EXTRN 
statement. 

Ex •• ,le 1 

o,eratl •• : CaWJe the control proaram to load segment POMWT. 

SEGwr PGMWT 



SETRP - Set Retlon Parameters 

The SETRP macro instruction is used to indicate the various requests that a recovery exit may 
make. It may be used only if a System Diagnostic Work Area (SDWA) was passed to the 
recovery exit. The macro iDstruction is valid only for EST ABlEST AI exits. (The SDW A 
mapping macro .. IHASDWA - must be included in the routine which issues SETRP.) 

The SETRP macro instruction is written as foRows: 

t> 
SETRP 

t> 

,DUMP-IGNORE 
,DUMP-YES 
,DUMP-NO 

,DUMPOPI'..""", 11M "dd, 

,RC-o 
,RC-4 
,RC-16 

,RET ADDR-retry IIdtlr 

lltlme: symbol. Belin lttlme in column 1. 

One or more blanks must precede SETRP. 

One or more blanks must follow SETRP. 

IYI: decimal diaits 1-12. 
Def .. : WKAREA-(t) 

IYIl: dedma1 diPts 0-12, 14, 15. 
,.2: decimal diPts 0-12, 14, IS. 
N .. : U IYII and ,.2 are both specified, order is 14, 1',0-12. 

Def .. : DUMP-IGNORE 

/ItIIffI lUI IIdtlr: RX-type address, or resister (2) .. (12). 
Nate: This parameter may be specified only if DUMP-YES is 
specifaed above. 

Def":RC-o 

Ntry tUldr: RX-type address, or resister (2) - (12). 
Nate: This parameter may be specified only if RC-4 is specified 
above. 
,. '"/0 IIdtlr: RX-type address, or resister (2) .. (12). 

,REnEGS-NO ,. '"/0 IIdtlr: RX-type address, or resister (2) - (12). 
,REnEGS-YES . Del .. : REnEGS-NO 
,REnEGS-YES,RUB-Nf '"/0 tIddr N .. : This parameter may be specified only if RC-4 is specified 

above. 

,FRESDWA-NO Del .. : FRESDWA-NO 
,FRESDWA-YES Nate: This parameter may be specified only if RC-4 is specified 

above. 

,COMPCOD-comp coM comp coM: symbol, decimal dipt, or resister (2) - (12). 
,COMPCOD-(comp coM, USER) DefIlll1l: COMPCOD-(comp code, USER) 
,COMPCOD-(comp code,SYSTEM) 

•• OS/VS2 MVS "Inlier Sente. .. MMro ~ 



The parameters are explained below: 

,WKAREA-(~ 
specifies the address of the SDW A passed to the recovery exit. If this parameter is omitted 
the address of the SDW A must be in register 1. 

,REGS-(~l) 
,REGS-(~1.~2) 

specifies the register or range of registers to be restored from the save area pointed to by 
the address in register 13. If REGS is specified, a branch on register 14 instruction will also 
be generated to return control to the control program. If REGS is not specified, the user 
must code his own. return. 

,DUMP-IGNORE 
,DUMP-YES 
,DUMP-NO 

specifies that the dump option fields will not be changed (IGNORE), will be zeroed (NO), 
or will be merged with dump options specified in previous dump requests, if any (YES). If 
IGNORE is specified, a previous exit had requested a dump or a dump had been requested 
via the ABEND macro instruction, and the previous request will remain intact. If NO is 
specified, no dump will be taken. 

,DUMPOPI' - parm list addr 
specifies the address of a parameter list that is valid for the SNAP macro instruction. The 
parameter list may be created by using the list form of the SNAP macro instruction, or a 
compatible list may be created. The TCB, DCB, and STRHDR options available on SNAP 
will be ignored if they appear in the parameter list. The TCB used will be the one for the 
task that suffered error. The DCB used will be one created by the control program and 
either SYSABEND, SYSMDUMP, or SYSUDUMP will be used as a DDNAME. 

,RC-O 
,RC-4 
,RC-16 

specifies the return code the user exit routine sends to recovery processing to indicate what 
further action is required: 

o - Continue with termination, causes entry into previously specified recovery routine, if any. 
4 - Retry usina the retry address specified. 
16 - Suppress further ESTAI/STAI processilll (for ESTAI only). 

,RET ADDR - retry addr 
specifies the address of the retry routine to which control is to be given. 

~GS-NO 

~GS-YES 

~GS - YES,RUB - reg info addr 
specifies the contents of the registers on entry to the retry routine. If NO is specified or 
defaulted, only parameter registers (14-2) are passed; all others are unpredictable. If YES is 
specified, the contents of the SDWASRSV field will be used to initialize registers 0-14. For 
EST AE exits, this field contains the registers at the last interruption of the RB level at 
which retry will occur. For ESTAI exits, the contents of SDAWSRSV must be set by the 
user either before SETRP is issued or by use of the RUB parameter; any field not set will 
cause the corresponding register to contain 0 on entry to the retry routine. 

RUB specifies the address of an area (register update block) that contains register update 
information. The data specified in this area will be moved into the SDW A and will be 
loaded into the general purpose registers on entry to the retry routine. 

SETRP - Set Ret............. .11 



The maximum length of the RUB is 66'bytes: 

• The first two bytes represent the registers to be updated, register 0 corresponding to bit 
0, register 1 corresponding to bit 1, and so on. The usei' indicates which of the rePten 
are to be stored in the SDWA by setting the corresponding bits in these two bytes. 

• The remaining 64 bytes contain the update information for the registers, in the order 
0-15. If all 16 registers are being updated, this field consists of 64 bytes. If only one 
register is being updated, this field consists of only 4 bytes for that one register. 

For example, if only registers 4, 6, and 9 are being updated: 

• Bits 4, 6, and 9 of the fllSt two bytes are set. 

• The remaining field consists of 12 bytes for registers 4, 6, and 9; the fIrSt 4 bytes are for 
register 4, followed by 4 bytes for register 6, and 4 fmal bytes for register 9 . 

.FRESDWA - NO 
,FRESDWA-YES 

specifies that the entire SDWA be freed (YES) or not be freed (NO) prior to entry into the 
retry routine. 

,COMPCOD -comp code 
,COMPCOD - (comp code, USER) 
,COMPCOD - (comp code, SYSTEM) 

specifies the user or system completion code that the user wishes to pass to subsequent 
recovery exits. 

Example 1 

OperadOD: Request continue with termination, suppress dumping, restore register 14 from the 
save area and pass control to the location it contains, contain the SDW A in the location 
addressed by register 3, and change the completion code to 10. 

SETRP RC=O,DUMP=NO,REGS=(14),WKAREA=(3),COMPCOD=(X'OOA t ,USER) 

Example 2 

OperadoD: Retry using the address specified at location X, take a dump before retry, WJe the 
contents of SDW ASRSV to initialize tht- registers, free the SDW A before control is passed to 
the retry address, and restore registers 14-12. 

SETRP RC=4,RETREGS=YES,DUMP=YES,FRESDWA=YES,REGS=(14,12),RETADDR-X 

112 OS/VS2 MVS SIll."'" SenIees ... MJIa'O ........ 



SNAP - Dump Virtual Storage and Condoue 

The SNAP macro instruction is used to obtain a dump of some or all of the storage assigned 
to the current job step. Some or all of the control program fields can also be dumped. 

You must provide a data control block and issue an OPEN macro instruction for the data 
set before any SNAP macro instructions are issued. The DCB macro instruction must contain 
the following parameters: 

DSORG=PS,RECFM=VBA,MACRF=(W),BLKSIZE=nnn,LRECL=xxx, 
and ODNAME=any name but SYSABENO, SYSMDUMP or SYSUOUMP 

If a standard dump of 120 characters per line is requested, BLKSIZE must be either 882 or 
1632, and LRECL must be 125. (The data control block is discussed in Data Manogemsat 
s.mca GuiM and Data Ma1llJgement Macro Instructions.) If a bigh-density dump is to be 
printed on a 3800 Printing Subsystem, 204 characters per line are printed. To obtain a 
hiP-denaity dump, CHARS-DUMP must be coded on the DD statement describing the dump 
data set. The BLKSIZE- must be either 1470 or 2724, and the LRECL- must be 209. 
CHARS-DUMP can also be coded on the DD statement describing a dump data set that wUl 
not be printed immediately. If CHARS-DUMP is specified and the output device is not a 
3800, print tines are truncated and print data is lost. A SNAP data set that is opened in a 
problem program that will be processed by the system loader should be closed by the problem 
program. 

The data set containing the dump can reside on any device supported by BSAM (basic 
aecjuential access method). The dump is placed in the data set described by the DD statement 
tile user provides. If a printer is selected, the dump is printed immediately; if a direct acceIS or 
tape device is desipated, a separate job must be scheduled to obtain a listing of the dump. 

Sufrtcient unused storage must be available in the area assigned to the job step to hold the 
control program dump routine and, if not already in storage, the BSAM data management 
routines. 

SNAP - .... VIrnII St ........ CoIItIIIIe 113 



The standard form of the SNAP macro instruction is written as follows: 

t) 

SNAP 

t) 

DCB-dcb addr 

,TCB-tcb adik 

,ID-Id nmbr 

,SDATA-ALL 
,SDAT A-(Ip data cotk) 

,PDATA-ALL 
,PDATA-(prob dilta coM) 

,STORAGE..(IIrt add"end addl') 
,LIST-116t addr 

,STRHDR.-Iuk tUIdr 

,STRHDR-Itdl' lut addr 

The parameters are explained below: 

DCB - deb addr 

"ame: symbol. Begin name in column 1. 

One or more blanks must precede SNAP. 

One or more blanks must follow SNAP. 

deb addr: A-type address, or register (2) - (12). 

Icb addr: A-type address, or register (2) - (12). 

Id "",br: symbol, decimal digit, or register (2) - ,(12). 
V ........ :O-2SS 

.p dilta code: any combination of the following, separated by 
commas. If only one code is specified, the parentheaes need not 
be coded. 

NUC CB ERR 
SQA Q 
LSQA TRT 10 
SWADM 

prob dilta code: any combination of the followina, separated by 
commas. If only one code is specified, the parenthelel need not 
be coded. 

PSW 
REGS 
SA or SAH 
JPA or LPA or ALLPA 
SPLS 

Itrt addr: A-type address, or register (2) - (12). 
end addr: A-type address, or resister (2) - (12). 
lut tUIdr: A-type address, or register (2) - (12). 
Note: One or more pairs of addresses may be specified, 
separated by commas. For example: 
STORAGE-(IIrt add',e"d addr,Itrt addl',elfd adlk) 

Iub' addr: A-type address, or register (2) - (12). 
Note: hdr addr is one or more addresses separated by COIlUlUUl. 
If only one header address is specified, then the parentheses 
need not be coded. If STRHDR.-(hdl' add,) is specified, then 
STORAGE must also be speicfieci. 

ltiU lut adiU: A-type address, or register (2) - 12. 
Note: If STRHDR.-ItiU lut addr is specified, then LIST must 
alia be specified. 

specifies the address of a previously opened data control block for the data set that is to 
contain the dump. 

,TCB - tcb addr 
specifies the address of a fullword on a fullword bQundary containing the address of the 
task control block for a task of the current job step. If omitted, or if the fullword contains 
0, the dump is for the active task. If a register is designated, the register can contain 0 to 
indicate the active task, o~ can contain the address of a TCB. 

,ID-id nmbr 
specifies the number that is to be printed in the identification beading with the dump. If the 
number specified is not in the acceptable value range, it will not be printed properly in the 
heading. 



,sDATA-ALL 
,8DATA - (sys dolo code) 

specifIeS the system control program Uiformation to be dumped: 
ALL - All of the following fields. 
NUC - All of the control program nucleus except the trace table. 
SQA - The system queue area (subpools 227, 228, 239, and 245). 
LSQA - The local system queue area and subpools 229 and 230. 
SWA - The scheduler work area related to the task (subpools 236 and 237). 
CB - The control blocks for the task. 
o - The enqueue control blocks for the task. 
TRT - The GTF trace buffers if GTF tracing is active, or the supervisor trace table if 
GTF tracing is not active. If GTF tracing is active and a dump occurs in a GTF address 
space, then no attempt will be made to include trace information. 
DM - Data management control blocks for the task. 
ERR - Recovery/termination control blocks for the task. These control blocks summarize 
information that describes abnormal terminations of the task. 
10 -Input/Output supervisor control blocks for the task. 

,PDATA-ALL 
,PDATA - (prob dDIQ code) 

specifIeS the problem program information to be dumped: 
ALL - All of the following fields. 
PSW - Program status word when the SNAP or ABEND macro instruction was issued. 
REGS - Contents of the fioating and general registers when the SNAP or ABEND macro 
instruction was issued. 
SA - Save area linkage information and a back trace through save areas. 
SAIl - Save area linkage information. 
JP A - Contents of job pack area. 
LPA - Contents of active link pack area for the requested task. 
AILPA - Contents of job pact area and active lint pack area for the requested task. 
SPLS - All virtual storage subpools (0-127,252). 

,sTORAGE - (#11 oddr.nuI addr) 
,LIST -lUI addr 

specifies one or more pairs of starting and ending addresses or a list of starting and ending 
addresses of areas to be dumped. The areas between the starting and ending addresses are 
dumped one full word at a time. If the addresses are not fullword. multiples, they are 
rounded up or down to fullwords. The list must begin on a fullword boundary. The high 
order bit of the fullword contaiDing the last ending address of the list must be set to 1. 

SNAP - 0.., VktIIIII St ..... .. ,....... lIS 



,sTRHDR - hdr addr 
,sTRHDR-hdr lUI addr 

specifIeS one or more header addresses or a list of "header addresses. Each header address 
must be the address of a one byte header length field, which is followed by the text of the 
header. The header has a maximum length of 100 characters. 
If the STORAGE parameter was specified, the STRHDR (storage header) value must be 
one or more header addresses. 1be number of pain of starting and ending addresses 
specifted for STORAGE must be the same as the number of header addresses specified for 
STRHDR. If a header is not desired for a storage area, a comma must be used to indicate 
its absence. 

NoI6: If only one header address is specified, then the parentheses need not be coded. 

If the UST parameter was specified, the STRHDR value must be the address of a list of 
header addresses. The list of addresses must begin on a fullword boundary, and the high 
order bit- of the fullword containing the last address of the list must be set to 1. The number 
of pairs of starting and ending addresses supplied with the UST parameter must be the 
same as the number of addresses in the list supplied with STRHDR. If a header is not 
desired for a storage area, the STRHDR list must contain a zero address to indicate its 
absence. 

Nt*: The header list address is nol enclosed in parentheses. 

Control is returned to the instruction following the SNAP macro instruction. When control 
is returned, register 15 contains one of the foUowin& return codes: 

lIaedeel-aJ 
Code 

00 
04 

08 

oc 

M ...... 
SucceafuI completion. 
Data control block was not open, or an invalid pap exception occurred durina the 
validity check of the DCB parameten. 
Task control block adclreII wu not valid, an invalid paae reference occurred durina 
the validity cbeck of the TCB addreII, a IUbtask is a job step task, sufficient storaae 
was not available, or the READ for JFCB or JFCBE failed. In all cues, the dump is 
canceled. (Mesaae IEA997I is issued when the READ for JFCB or JPCBE fails.) 
Data control block type (DSOIlO, IlECFM, MACIlF, BLKSIZE, or LIlECL) wu 
incorrect, or the DCB'. BLKSIZE aDd/or LIlECL were not compatible with the dump 
format optioDi specified on the dump-related DD ltatement. 

116 0S/VS2 MVS 8III.nIIer s.ttc. .. MMn .......... 



SNAP (Ust Form) 

Use the list form of the SNAP macro to construct a control program parameter list. You can 
specify any number of storage addresses using the STORAGE parameter. Therefore, the 
number of starting and ending address pain in the list form of SNAP must be equal to the 
muimum number of addresses specified in any execute form of the macro, or a DS instruction 
must immediately f080w the list form to allow for the maximum number of addresses. 

The list form of the SNAP macro instruction is written as f080ws: 

b 

SNAP 

b 

DCB-dcb atldr 

,ID-ttl "",b, 

,SDATA-ALL 
,SDAT A-(q.f datil code) 

,PDATA-ALL 
,PDATA-(prob datil cod~) 

,STORAGE-(,Irt tlddr,~ruI Ilddr) 
,UST-lut tUIdr 

,STRHDR-Itdr .Ilddr 

,STRHDR-Mr lut IIddr 

1I4I1IW: symbol. Begin IItIIM in column 1. 

One or more blanks must precede SNAP. 

One or more blanks must follow SNAP. 

deb Ildd,: A-type address. 

ttl ,.",b,: symbol or decimal digit. 
VIIIIIe IMP: 0 - 2SS 

S1I. datil code: any combination of the following, separated by 
commas. If only one code is specified, the parentheses need not 
be coded. 

NUC CB ERR 
SQA Q 
LSQA TRT 10 
SWA DM 

prob datil cod~: any combination of the following, separated by 
commas. If only one code is specified, the parentheses need not 
be coded. 

PSW 
REGS 
SA or SAH 
SPA or LPA or ALLPA 
SPLS 

1m tlddr: A-type address. 
end Ilddr: A-type address. 
lilt tlddr: A-type address. 
Nate: One or more pairs of addresses may be specified, 
separated by commas. For example: 
,STORAGE-(Im tJddr,~nd Ildd',strt Ilddr,end Ilddr) 

IuJr Ildd,: A-type address. 
Nate: bdr addr is one or more addresses separated by commas. 
If only one header address is specified. then the parentheses 
need not be coded. If STIlHDR-(lad, Ilddr) is specified, then 
STORAGE must also be specified. 

Itdr lut addr: A-type address. . 
Note: If STRHDR-IIdr list IIddr is specified, then LIST must 
also be specified. 

The parameters are explained under the standard form of the SNAP macro instruction, with 
the following exceptions: 

.MF-L 
specifa the list form of the SNAP macro instruction. 

SNAP (LIlt 'anI) 117 



SNAP (Execute Form) 

A remote control program parameter list is referred to and can be modified by the execute 
form of the SNAP macro instruction. 

If you code only the DCB, ID, MF, or TCB parameters in the execute form of the macro 
instruction, the bit settings in the parameter list· corresponding to the SDAT A, PDATA, LIST, 
and STORAGE parameters are not changed. However, if you code the SDATA, PDATA, or 
LIST parameters, the bit settings for the coded parameter from the previous request are reset 
to zero, and only the areas requested in the current macro instruction are dumped. 

The execute form of the SNAP macro instruction is written as follows: 

f) 

SNAP 

f) 

DCB-dcb add, 

,TCB-tcb addr 
,TCB.'S' 

,ID-Id "".b, 

,SDATA-ALL 
,SDATA-(I)II data code) 

,PDATA-ALL 
,PDATA-(prob data coM) 

,STORAGE-(Im add"end addr) 
,UST./u, addr 

,MF-(E ,em addr) 

1UIIPIe: symbol. Begin "time in column 1. 

One or more blanks must precede SNAP. 

One or more blanks must follow SNAP. 

deb addr: RX-type address, or register (2) - (12). 

tcb addr: RX-type address, or register (2) - (12). 

III "",b,: symbol, decimal digit, or register (2) - (12). 
V ......... :O-2SS. 

1)11 da,a code: any combination of the followina, separated by 
commas. If only one code is specified, the parentheses need not 
be coded. 

NUC CB ERR. 
SQA Q 
LSQA TRT 10 
SWA DM 

prob data COM: any combination of the following, separated by 
commas. If only one code is specified, the parentheses need not 
be coded. 

PSW 
REGS 
SAorSAH 
JPA or LPA or ALLPA 
SPLS 

1m add,: RX-type address, or register (2) - (12). 
end add,: RX-type address, or resister (2) - (12). 
lilt add,: RX-type address, or resister (2) - (12). 
Note: One or more pairs of addresses may be specified, 
separated by commas. For example: 
,STORAGE-(Im adtJr,nad addr.,"" IIIldr,nad add,) 

lid, addr: RX-type address, or register (2) - (12). 
N ... : hdr addr is one or more addresses separated by commas. 
If only one header address is specified, then the parentheses 
need not be coded. If STRHDR-(hd, addr) is specified, then 
STORAGE must also be specified. 

hdr III' addr: RX-type address, or register (2)-(12). 
Note: If STRHDR-hd, III' -add, is specified, then UST must 
also be specified. 

ctrl tIddr: RX-type address, or resister (1) or (2) - (12). 

•• OSIVS2 MVS s.,enflor Sente. ... MIao ......... 



The parameters are explained under the standard form of the SNAP macro instruction, with 
the following exceptions: 

,TeB-'S' 
specifies the task control block of the active task. 

,MF'-(E .cul addr) 
specifies the execute form of the SNAP macro instruction using a remote control program 
parameter ut. 

Euaaple 1 

Operadoa: Dump the storage ranges pointed to by register 9, and dump all PDATA and 
SDATA options. 

SNAP DCB=(S),TCB=(S),PDATA=ALL,SDATA=ALL,LIST=(9) 

Example 2 

Operadoa: Dump the storage ranges pointed to by register 9, and dump only the trace table 
and enqueue control blocks. 

SNAP DCB=(S),TCB=(S),ID=4,LIST=(9),SDATA=(TRT,Q) 

Example 3 

Operadoa: Dump storage area 1000-2000 with no header, and dump storage area 3000-4000 
with a header of 'USER LABEL ONE'. The comma specified in the value· for STRHDR 
indicates that no header is wanted for storage area 1000-2000. 

L1 
HDR1 

Example .. 

SNAP DCB=(S),STORAGE=(1000,2000,3000,4000), STRHDR=(,L1) 

. 
DC 

, DC 
AL1( L'HDR1 ) 
C'USER LABEL ONE' 

Operatloa: Dump storage area 1000-2000 with a header of 'LABEL ONE' and dump storage 
area 3000-4000 with a header of 'LABEL TWO'. 

x 

L1 

HDR1 
HDR1A 
HDR2 
HDR2A 

SNAP 

. 
DC 
DC 
DC 
DC 
DC 
DC 

DC 
DC 

DC 
DC 
DC 
DC 

DCB=(S),LIST=X,STRHDR=L1 

A( 1000) Start address 
A(2000) End address 
A(3000) Start address 
X'80' End of list indicator 
AL3(4000) End address 
A(HDR1) Address of lenqth label for header one 
X'SO' End of list 
AL3(HDR2) Address of lenqth label for header two 
AL1(L'HDR1A) Lenqth of header one 
C'LABEL ONE' Header one 
AL1(L'HDR2A) Lenqth of header two 
C'LABEL TWO' Header two 

SNAP (Ex ... P-.) •• 



SPIE - Specify Program Interruption Exit 

The SPIE macro instruction specifies the address of an interruption exit routine and the 
program interruption types that are to cause the exit routine to be given control. If the 
program interruption types specified can be masked, the corresponding program mask bit in 
the PSW (program status word) is set to 1. 

Each succeeding SPIE macro instruction completely overrides any previous SPIE macro 
instruction specifications for the task. The specified exit routine is given control in the key of 
the TCB (TCBPKF) when one of the specified program interruptions occurs in any problem 
proP.'8Jl1 of the task. When a SPIE macro instruction is issued from a SPIE exit routine, the 
program interruption element (PIE) is reset (zeroed). Thus, a SPIE exit routine should save 
any required PIE data before issuing a SPIE. 

If the current SPIE environment is cancelled during SPIE exit routine processing, the control 
program will not return to the interrupted program when the SPIE program terminates. 
Therefore, if the spm exit routine wishes to retry within the interrupted program, a SPIE 
cancel should not be issued within the SPIE exit routine. 

The SPIE macro instruction can be issued by any problem program being executed in the 
performance of the task; the resulting environment exists for the entire task. 

A PICA (program interruption control area) is created as part of the expansion of SPIE. 
The PICA contains the exit routine's address and a code indicating the interruption types 
specified in SPIE. 

The control program returns the address of the previous PICA in register 1. If no previous 
SPIE environment existed, zeros are returned in register 1. 

For more information on the SPIE macro and its control blocks, see the section on program 
interruption processing. 

The standard form of the spm macro instruction is written as follows: 

name 

tt 
SPIE 

tt 

ult addr,(intenvpts) 

name: symbol. Belin IIIlIM in column 1. 

One or more blanks must precede SPIE. 

One or more blanks must follow SPIE. 

ult add,: A-type address. or reaister (2) - (12). 
Interrupts: decimal diaits I-IS, expressed as 
.......... : (2.3.4,7.8,9,10) 
....... ., ...... : «2,4),(7,10» 
ca ......... • «2,4),6.8,(10,13), IS) 



The parameters are explained below: 

ait addr~ (intnrupU) 
specifies the address of the exit routine to be given control when a program interruption of 
the type specified occurs. The interruption types are: 

Nuaber 
1 

Notes: 

2 
3 
4 
S 
6 
7 
8 
9 
10 
11 
12 
13 
14 
IS 

laterru,doa Type 
Operation 
Privileled operation 
Execute 
Protection 
Addrasiq 
Specification 
Data 
Fixed-point overflow (mukable) 
Fixed-point divide 
Decimal overflow (mutable) 
Decimal divide 
Exponent overflow 
Exponent underflow (mukable) 
Sianificance (mutable) 
Floatina-point divide 

• If an exit address is zero or no parameters are specified, the spm environment is 
cancelled. 

• If a specified program interruption type is maskable, the corresponding bit is set to 1. 
Interruption types not specified above are handled by the control program. 

• As shown in the table above, interruption types can be designated u one or more single 
numbers, as one or more pairs of numbers (designating ranges of values), or as any 
combination of the two forms. For example, (4,8) indicates interruption types 4 and 8; 
«4,8» indicates interruption types 4 through 8. 

.t. 



SPIE (list Form) 

Use the list form of the SPIE macro instruction to construct a control program parameter list 
in the form of a program interruption control area. 

The list form of the SPIE macro instruction is written as follows: 

name 

t) 

SPIE 

t) 

exit add, 

,(lnte1f1lpts) 

,MF-L 

name: symbol. Begin name in column 1. 

One or more blanks must precede SPIE. 

One or more blanks must follow SPIE. 

exit add,: A-type address. 

intenvpts: decimal dilits 1-1 S, expressed as 
............ : (2,3,4,7,8,9,10) 
..... es of .... : «2,4),(7,10» 
~: «2,4),6,8,(10,13),15) 

The parameters are explained under the standard form of the SPIE macro instruction, with 
the following exceptions: 

,MF-L 
specifies the list form of the SPIE macro instruction. 

ttl OS/VS2 MVS Sllpenllor Senkes ad Macro IaItnctIoDI 



SPIE (Execute Form) 

A remote control program parameter list (program interruptions control area) is used in, and 
can be modified by, the execute form of the SPIE macro instruction. The PICA (program 
interruptions control area) can be generated by the Jist form of SPIE, or you can use the 
address of the PICA returned in register 1 following a previous SPIE macro instruction. If this 
macro instruction is being issued to reestablish a previous SPIE environment, code only the 
MF parameter. 

The address of the remote control program parameter list associated with any previous SPIE 
environment is returned by the SPIE macro instruction. 

The execute form of the SPIE macro instruction is written as follows: 

b 

SPIE 

b 

uit culfIr 

,(i1llerrvpts) 

,MF-(E ,ctrl fIflIJr) 

1IIl,.: symbol. Begin 1IIlrM in column 1. 

One or more blanks must precede SPIE. 

One or more blanks must follow SPIE. 

uit addr: RX-type address, or register (2) - (12). 

interrupts: decimal digits 1-1 S, expresses as 
........ : (2,3,4,7,8.9,10) 
...... of ..... : «2,4),(7,10» 
~~ «2,4),6,8,(10,13),15) 

ctrl culfIr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the SPIE macro instruction, with 
the following exceptions: 

,MF - (E .cITI addr) 
specifies the execute form of the SPIE macro instruction using a remote control program 
parameter list. 

Note: If SPIE is coded with a 0 as the control address, the SPIE environment is cancelled. 

Example 1 

OperatiOD: Give control to an exit routine for interruptions 1, S, 7, 8, 9, and 10. OOITSPIE is 
the address of the SPIE exit routine. 

SPIE DOITSPIE,(1,S,7,(8,10» 

SPIE (Exealte ran.) .t3 



STATUS - CIumge Subtask Status 

The STATUS macro instruction lets the programmer change the dispatchability status of one 
or an of his program'. subtasks. For example, the STATUS macro instruction can be used to 
restart subtasks that were stopped when an attention exit routine was entered. 

The STATUS macro instruction is written as fonows: 

t) 

STATUS 

t) 

START 
STOP 

,TCB-teb add, 
,SYNCH 

,RELATED-,alw 

fta,.: symbol. Begin ""me in column 1. 

One or more blanks must precede STATUS. 

One or more blanks must foUow STATUS. 

teb addr: RX-type address, or register (2) • (12). 

WlIu~: Any valid macro keyword specification. 

The parameters are explained below: 

START 
STOP 

specUtes that the START or STOP count in the task control block specified in the TCB 
parameter wiD be decreased (for START) or increased (for STOP) by 1. If the TCB 
parameter is not coded, the count is decreased/increased by 1 in the task control blocks for 
an the subtasks of the originating task. 

Note: This parameter does not assure that the subtask(s) is stopped when control is 
returned to the issuer. A subtask can have a "stop deferred" condition which would cause 
that particular subtask to remain dispatchable until stops are no longer deferred. In an MP 
environment, it would be possible to have a task issue the STATUS macro with the STOP 
parameter and resume processing while the subtask (for which the STOP was issued) is 
re-dispatched to another CPU. A method of preventing this possibility is by issuing the 
STATUS macro with the STOP and SYNCH parameters. . 

,Tel - teb addr 
specDteS the address of a fuDword on a fuDword boundary containing the address of the 
task control block that is to have its START/STOP count adjusted. (If a register is 
specD1ed, however, the address is of the TCB itself.) If this parameter is not coded, the 
count is adjusted in the task control blocks for aD the subtasks of the originating task. 

,sYNCH 
specifies that the STOP function effects all the subtasks of the caDer. If any of the subtasks 
are deferring STOPs when the request is issued, the caller is placed in aWAIT condition. 
The issuer is taken out of the wait state when aD deferred STOPs are complete. 

Note: When using the STOP ,SYNCH parameters extreme caution should be exercised to 
prevent interlocks within an address space. -



The STOP·SYNCH function is performed by processing each of the subtasks of the issuer 
and either setting the subtask non-dispacbable or marking it with a "stop pending" indicator 
(the latter occurs when stops are currently being deferred for a subtask). When at least one 
stop has been deferred, the issuer is placed in a wait condition until all "stop pendings" 
have taken effect. Interlocks occur when a subtask, that has stops deferred, requires a 
resource or function that a non-dispatchable subtask owns. Thus, when using STATUS with 
STOP ,SYNCH parameters, an interlock can occur when the following conditions occur 
simultaneously: 

• One subtask (that has stops deferred) is waiting for a resource that will not be available 
undl the STOP ,8YNCH issuer starts the task that owns the resource . 

• The STOP,SYNCH issuer is waiting for all subtasks to become non-dispatchable. 

One method of preventing this type of interlock is to establish a timer exit, via the STIMER 
macro, before specifying STOP with the SYNCH parameter. Then if the interlock occurs, 
the issuer's timer emt will get control and the subtask(s) can be restarted. 

,RELATED - Wllw 
speciftes information used to self -document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any vaHd coding values. 

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATIACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
eumple, CHAP and ESTAE). 

The parameter may be used, for example, as foBows: 

STAT 1 STATUS STOP,TCB=YOURTCB,RELATED=(STAT2,'STOP A SUBTASK') 
STAT2 STATUS START,TCB=YOURTCB,RELATED=(STAT1,'START A SUBTASK 

EDIa,le 1 

o,eratIoa: Stop aD subtasks. 

STATUS STOP 

Es •• ple 2 

Operadoa: Stop a specific subtask. WHERETCB is a fuDword specifying the address of a 
subtask TCB. 

STATUS STOP,TCB=WHERETCB 

Esaa,le 3 

Operadoa: Start a specific subtask. WHERETCB is a fuDword specifying the address of a 
subtask TCB. 

STATUS START,TCB=WHERETCB 

STATUS - a....e........ ItS 



STIMER - Set Interval Timer 

The STlMER macro instruction is used to set a programmer timer to a specified time interval 
(less than 24 hours) or to an interval that wiD expire at a specified time of day. An optional 
asynchronous timer completion exit is given control when the time interval expires; if no 
asynchronous timer completion routine is specified, no indication that the time interval has 
expired is provided. Only one time interval per task is in effect at a time. A second STlMBR 
macro instruction issued before the rll'St time interval expires overrides the rlrSt interval and 
exit routine. 

The time interval may be a 'real-time interval' (measured continuously in real time), or a 
'task time interval' (measured only while the task is in execution.) H a real time interval is 
specified, the task may elect to either continue (REAL) or suspend (WAIT) execution during 
the interval. H the task elects to continue execution, it may optionally specify an exit routine 
to be given control on completion of the time interval. H the task elects to suspend execution, 
it is restarted at the next sequential instruction on completion of the time interval. H a task 
time interval is specified, the task must continue. It may optionally specify an exit routine to 
be given control on completion of the interval. 

The STIMER macro instruction is written as f080ws: 

REAL 
REAL ,exit "" tlIldr 
TASK 
TASK ,exit "" tlddr 
WAIT 

,BINTVL-.rtor tlIldr 
,DINTVL-.rtor tlIldr 
,GMT -.rtor GdtJr 
,MICVL-.ftor "ddr 
,TOD.."or "ddr 
,TUINTVL-.rtor "tldr 

,ERRET-nr "" tlddr 

1ItIIM: symbol. Belin 1ItI1M in column 1. 

One or more blanks must precede STINER. 

One or more blanks must fonow STIMER. 

exit rill addr: RX-type address, or relister (0) or (2) - (12). 

stor "tldr: RX-type address, or register (1) or (2) - (12). 
Nate: The GMT and TOD parameten must not be specified 
with TASK above. 

err rill "tldr: RX-type address or resister (2) - (12). 

The parameters are explained below: 

REAL 
REAL ,exit rtn addr 
TASK 
TASK ,exit rtn addr 
WAIT 

specifies whether the timer interval is a real-time interval (REAL or WAIT) or a task-time 
interval (TASK): 

For REAL, the interval is decreased continuously. H the TOD or GMT parameter is coded, 
the interval expires at the indicated time of day. 

For TASK, the interval is decreased only when the associated task is active. 

1M OSIVS2 MVS s..enllar SenIcea ... Macre ........ 



For WAn', the interval is decreased continuously. The task is to be placed in the wait 
condition until the interval expires. 

The exit rtn addr is the address of the timer completion exit routine to be given control 
after the specified time interval expires. The routine does not get control immediately when 
the interval completes, but at some time after the interval completes, depending on the 
system's work load and the relative dispatching priority of the associated task. The routine 
must be in virtua1 storage when it is required. The contents of the registers when the exit 
routine is given control are as follows: .eaIa- CoDteDts 

o - I Control program information. 
2 - 12 Unpredictable. 
13 Address of a control-proll'am-provided save area. 
14 Return address (to the control program). 
I S Address of the exit routine. 

The exit routine is responsible for saving and restoring registers. The exit routine executes 
as a subroutine, and must return control to the control program. Although timing services 
allows only one active time interval for a task, it does not serialize the use of an asynchronous 
timer completion exit routine. 

,BINTVL -stor add, 
,DINTVL -stor addr 
,GMT - stor addr 
,M1CVL - stor addr 
,TOO -Slor addr 
,TUINTVL - stor addr 

specifieS that the time be returned: 

For BINTVL, the address is in virtual storage containing the time interval. The time interval 
is presented as an unsigned 32-bit binary number; the low-order bit has a value of 0.01 
second. 

For DINTVL, the address is a doubleword on a doubleword boundary in virtual storage 
containing the time interval. The time interval is presented as unpacked decimal digits of the 
form: 

HHMM88th, where: HH is houn (24-hour clock) 
MM is minutes 
88 is IeCOnds 
t is tenths of IeCOnds 
h is hundredths of seconds 

For GMT, the address is an 8-byte area containing the Greenwich mean time at which the 
interval is to be completed. The time is presented as unpacked decimal digits of the form 
HHMMSSth, as described above under DINTVL. 

For M1CVL, the address is a doubleword on a doubleword boundary containing the time 
interval. The time interval is represented as an unsigned 64-bit binary number; bit S 1 is the 
low-order bit of the interval value and equivalent to 1 microsecond. 

For TOO; the address is a doubleword on a doubleword boundary containing the time of 
day at which the interval is to be completed. The time of day is presented as unpacked 
decimal digits of the form HHMMSSth, as described above under DIN1VL. 

For TUINTVL, the address is a fullword on a fullword boundary containing the time 
interval. The time interval is presented as an unsigned 32-bit binary number; the low-order 
bit has a value of one timer unit (approximately 26.04166 microseconds). 

STIMD - Set.............. 197 



Note: For the DINTVL, GMT, and TOD parameters, the unpacked decimal digits are not 
checked for validity. Thus, the specification of inyalid digits can result in an ABEND OC7, or 
a time interval different from that desired. 

,ERRET - e" rift addr 
specifies the address of the routine to be given control when the STIMER function cannot 
be performed because of damaged clocks; if this parameter is omitted, the STIMER 
function would be abnormally terminated. 

Notes: 

• The time interval specified by an STIMBR macro instruction has no relation to the time 
interval specified in an EXEC statement. 

• H WAIT is specified in a system running a single task, no production work is performed 
while the time interval is in effect. Notify the system operator not to cancel the job. 

• H the optional exit routine address and WAIT are not specified, no indication of 
completion of the time interval is provided. 

• The TIIMER macro instruction provides a facility for determining the remaining time 
interval associated with STIMER. 

• The STIMER macro instruction should not be issued while a BT AM OPEN or LINE 
OPEN operation is in progress, since the BT AM OPEN LINE routines also use STlMER. 
STIMER should not be issued before invoking dynamic allocation because dynamic 
allocation can also issue STIMER. 

• For task type requests, the interval is decremented until the task is preempted for higher 
priority work. Thus, the interval is decremented during both actual task execution and 
interruption processing (possibly unrelated to the task). 

The priorities of other tasks in the system can also affect the accuracy of the time interval 
measurement. H you code REAL or WAIT, the interval is decreased continuously and can 
expire when the task is not active. After the time interval expires, assuming the task is not in 
the wait condition for any other reasons, the task is placed in the ready condition and 
competes for control with the other ready tasks in the system. The additional time required 
before the task becomes active depends on the relative dispatching priority of the task. 

EDIB,le 1 

Operadoa: Request the user's asynchronous exit routine, located at location EXIT, to receive 
control after the number of hundredths of seconds specified at INTVLONG bas elapsed in real 
time. 

STlMER REAL,EXIT,BINTVL=INTVLONG 



TIME - Provide Time and Date 

The TIME macro instruction causes the control program to return either the local time of day 
and date or the Greenwich mean time of day and date. The time of day and date are only as 
accurate as the corresponding information entered by the operator, and the system response 
time. 

The date is returned in register 1 as packed decimal digits of the form 
OOYYDDDF, where: YY is the last two digits of the year 

is the day of the year DDD 
F is a 4-bit sign character that allows the data to be unpacked and printed 

The time of day, based on a 24-hour clock, is returned in different forms, as designated by 
the parameters shown below. For the DEC, BIN, and TU parameters, the time of day is 
returned in register O. For the MIC and STCK parameters, the time of day is returned in the 
specified address. 

The TIME macro instruction is written as follows: 

"tune 
b 

TIME 

b 

DEC 
BIN 
TU 
MlC ,SIO' add, 
STCK ,SIO' add, 

,ZONE-LT 
,ZONE-GMT 

,ERRET~ "" addr 

"ame: symbol. Begin name in column 1. 

One or more blanks must precede TIME. 

One or more blanks must follow TIME. 

DefIllllt:DEC 
SIO' add,: RX-type address or register (0) or (2) - (12). 

Def .. : ZONE-LT. 
Note: This parameter has no meaning if STCK above is 
specified. 

e" "" add,: A-type address, or register (2) - (12). 

The parameters are explained below: 

DEC 
BIN 
TV 
M1C ,slor addr 
STCK ,slor addr 

specifies that the time of day be returned: 

For DEC, the time of day is returned in register 0 as packed decimal digits of the form 

HHMMSSth, where: HH is houn (24-hour clock) 
MM is minutes 
SS is seconds 
t is tenths of seconds 
h is hundredths of seconds 

For BIN, the time of day is returned in register 0 as an unsigned 32-bit binary number. The 
low-order bit is equivalent to 0.01 seconds. 

For ru, the time of day is returned in register 0 as an unsigned 32-bit binary number. The 
low-order bit is approximately 26.04166 microseconds (one timer unit). 

TIME - ProYWe TIlDe ad Dllte .99 



For M1C, the time of day is returned in microseconds. The Jtor addr is the address of an 
8-byte area in storage with bit S 1 equivalent to one microsecond: 

For STCK, the contents of the TOD clock is returned as an unsigned 64-bit fixed-point 
number, where bit S 1 is equivalent to 1 microsecond. The ator addr is the address of an 
8-byte area in storage. 

,ZONE-LT 
,ZONE-GMT 

specifies that the local time and date (LT) or the Greenwich mean time and date (GMT) is 
to be returned. 

,ERRET - e" ,.", addr 
specifies the address of the routine to be given control when the TIME function cannot be 
performed because of damaged clocks. H this parameter is omitted, the TIME function 
would be abnormally terminated. 

Example 1 

OperadoD: Request the system to store the time-of -day clock in the address pointed to by 
register 2. The user's routine TIMEERR is to receive control if the time-of -day clock is 
unusable in a uniprocessing system or if both time-of -day clocks are unusable in a 
multiprocessing system. 

TIME STCK, ( 2 ) , ERRET=TIMEERR 



1TIMER - Test Interval 'DIner 

If TU is specified or assumed, the TIIMBR macro instruction causes the control program to 
return in register 0 the amount of time remaining in a timer interval previously set by an 
STlMBR macro instruction. The time remaining is returned as an unsigned 32-bit binary 
number specifying the number of timer units (approximately 26.04166 microsecond units) 
remaining in the interval. If a time interval has not been set or has already expired, register 0 
contains O. TIIMBR can also be used to cancel the remaining time interval. 

If MIC is specified, the remaining time is returned to the doubleword area specified in the 
address. Bit S 1 of the area is the low-order bit of the interval value and equivalent to 1 
microsecond. If a time interval has not been set or has already expired the area is set to O. 

The 1TIMER macro instruction is written as follows: 

1It111W 

b 

TrIMER 

b 

CANCEL 

,TU 
,MIC •• to, tldd, 

,ERRET..., "" ad .. 

11111M: symbol. Belin name in column I. 

One or more blanks must precede TrIMER. 

One or more blanks must foUow TriMER. 

Defllllt: TU 
.to, Ildtl,: RX-type address, or resister (0) or (2) - (12). 

~" "" Ilddr: RX-type addrea, or resister (2) - (12). 

The parameters are explained below: 

CANCEL 
specifies that the remaining time interval and exit routine, if any, are to be canceled. If 
CANCEL is not designated, the unexpired portion of the time interval remains in effect. 

If WAIT was coded in the STlMBR macro instruction that established the interval, the task 
is not taken out of the wait condition and CANCEL is ignored. 

,TU 
,MIC ,810' addr 

specifies that the remaining time in the interval be returned: 

For TU, the time is returned in register 0 as an unsigned 32-bit binary number. The 
low-order bit is approximately 26.04166 microseconds (one timer unit). 

For M1C, the time is returned in microseconds. The 810' addr is the doubleword area on a 
doubleword boundary where the remaining interval is to be stored. 

,ERRET -~" "" add, 
specifies the address of the routine to be given control when the TI1MER function cannot 
be performed because of damaged clocks. If this parameter is omitted, the 1TIMER 
function would be abnormally te~ated. 

Example 1 

Operado.: Cancel the task's current time interval. The time remaining, if any, should be 
returned in timer units in register O. 

TTlMER CANCEL,TU 



WAIT - Wait for One or More Events 

The WAIT macro instruction is used to inform the control program that performance of the 
active task cannot continue until one or more specific events, each represented by a different 
BCB (event control block), have occurred. Bit 0 and bit 1 of each BCB must be set to 0 
before it is used. The control program takes the following action: 

• For each event that has already occurred (each BCB is already posted), the count of the 
number of events is decreased by 1. 

• If the number of events is 0 by the time the last event control block is checked, control 
is returned to the instruction following the WAIT macro instruction. 

• If the number of events is not 0 by the time the last BCB is checked, control is not 
returned to the issuing program untO sufficient BCBs are posted to bring the number to 
O. Control is then returned to the instruction following the WAIT macro instruction. 

The WAIT macro instruction is written as follows: 

"ame 

b 

WAIT 

b 

eN"t "",br, 

ECB-ecb addr 
ECBLIST-ecb list addr 

,LONG-NO 
,LONG-YES 

,RELATED.yalue 

"tllM: symbol. Begin "tI",e in column 1. 

One or more blanks must precede WAIT. 

One or more blanks must foUow WAIT. 

eN'" "",br: symbol, decimal digit, or register (0) or (2) - (12). 
Def .. : 1 
v ........ : ()'2SS 

ecb tlddr: RX-type address, or register (1) or (2) - (12). 
ecb lut tlddr: RX-type address, or register (1) or (2) - (12). 

Def .. : LONG.NO 

"alue: Any valid macro keyword specification. 

The parameters are explained below: 

event nmbr, 
specifies the number of events waiting to occur. 

BCD -ecb addr 
ECDLIST -ecb list addr 

specifies the address of an BCD on a fullword boundary or the address of a virtual storage 
area containing one or more consecutive fullwords on a full word boundary. Each fullword 
contains the address of an BCB; the high order bit in the last fullword must be set to 1 to 
indicate the end of the list. 

The BCB parameter is valid only if the number of events is specified as one or is omitted. 
The number of ECBs in the Hat specified by the BCBLIST form must be equal to or greater 
than the specified number of events. 

,LONG-NO 
,LONG-YES 

specifies whether the task is entering a long wait (YES) or a regular wait (NO). 



,RELATED - wJlw 
specifies information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 

.example, CHAP and ESTAE). 

The parameter may be used, for example, as fonows: 

WAIT1 WAIT 
RESUME 1 POST 

1,ECB,RELATED=(RESUME1,'WAIT FOR EVENT') 
ECB,O,RELATED=(WAIT1,'RESUME WAITER') 

Caado.: A job step with all of its tasks in a WAIT condition is terminated upon expiration of 
the time limits that apply to it. 

Exaaple: You have previously initiated one or more activities to be completed asynchronously 
to your processing. As each activity was initiated, you set up an BCD in which bits 0 and 1 
were set to O. You now wish to suspend your task via the WAIT macro instruction until a 
specified number of these activities have· been completed. 

Completion of each activity must be made known to the system via the POST macro 
instruction. POST causes an addressed ECD to be marked complete. If completion of the event 
satisfies the requirements of an outstanding WAIT, the waiting task is marked ready and will 
be executed when its priority allows. 

EDIIlpie 1 

Operado.: Wait for one event to occur (with a default count). 

WAIT ECB=WAITECB 
WAITECB DC F(O) 

Example 2 

Operado.: Wait for 2 events to occur. 

WAIT 2,ECBLIST=LISTECBS 

. 
LISTECBS 

Example 3 

DC A( ECB1 ) 
DC A( ECB2) 
DC X'SO' 
DC AL3 ( ECB3 ) 

OperadoD: Enter a long wait for a task. 

WAIT 1,ECBLIST=LISTECBS,LONG=YES 

. 
LISTECBS DC A( ECB1 ) 

DC A( ECB2) 
DC x'SO' 
DC AL3( ECB3 ) 

WArT - Wilt far OM ar M .... E.... 203 



W AITR - Wait for One or More Events 

The W AITR macro instruction is executed in exactly the same manner as the WAIT macro 
instruction. Although the LONG option is not available on the W AITR macro instruction, 
W AITR is interpreted as having a long wait. 

Note: The W AITR macro instruction is available for compatibility with MFr. The W AITR 
macro instruction is written as follows: 

nam~ 

b 

WAITR 

b 

~'Vent nmbr, 

ECB-ecb addr 
ECBLIST -~cb list addr 

nam~: symbol. Begin nam~ in column 1. 

One or more blanks must precede W AITR. 

One or more blanks must follow WAITR. 

~Nnt nmbr: symbol, decimal digit, or register (0) or (2) - (12). 
Def .. : 1 
V ...... :~2SS 

~cb addr: RX-type address, or register (1) or (2) - (12). 
~cb list addr: RX-type address. or register (1) or (2) - (12). 

The parameters are explained below: 

event nmbr, 
specifies the number of events waiting to occur. 

ECB - ecb addr 
ECBUST - ecb list addr 

specifies the address of an ECD or the address of a virtual storage area containing one or 
more consecutive fullwords on a fullword boundary. Each fullword contains the address of 
an ECD; the high order bit in the last fullword must be set to 1 to indicate the end of the 
list. 

The ECB parameter is valid only if the number of events is specified as one or is omitted. 
The number of ECDs in the list specified by the ECDLIST form must be equal to or greater 
than the specified number of events. 

Example 1 

Opendon: Wait for one event to occur (with a default count). 

WAITR ECB=WAITECB 

Example 2 

Opendon: Wait for 2 event to occur. 

WAITR 2, ECBLIST=LISTECBS 

. 
LISTECBS DC A( ECB1 ) 

DC A( ECB2) 
DC X'80' 
DC AL3 ( ECB3 ) 

.. OS/VS2 MVS s.,em.er SenIeeI .. Maero ~ 



WfL - Write To lDg 

The wn.. macro instruction causes a message to be written to the system log. The message 
can include any character that can be used in a C-type (character) DC statement, and is 
assembled as a variable-length record. 

The standard form of the WTL macro instruction is written as follows: 

b 

WTL 

b 

'msg' 

nam~: symbol. Begin nlllPl~ in column 1. 

One or more blanks must precede WTL. 

One or more blanks must follow WTL. 

msg: Up to 126 characters. 

The parameters are explained below: 

'msg' 
specifies the message to be written to the system log. The message must be enclosed in 
apostrophes, which will not appear in the system log. 

Note: If the msg text exceeds 126 characters, truncation occurs at the last before the 126th 
character; when·there are no embedded blanks, truncation occurs after the 126th character. 

WI'L - Write to IAI 205 



wrL (list Form) 

The list form of the WfL macro instruction is used to construct a control program parameter 
list. The mess' -oe parameter must be provided in the list form. of the macro instruction. 

The Ust form of the WTL macro instruction is written as follows: 

b 

WTL 

b 

'1I'Uf' 

""me: symbol. Begin "",. in column 1. 

One or more blanks must precede WfL. 

One or more blanks must follow WTL. 

1Mf: Up to 126 characters. 

The parameters are explained under the standard form of the WTL macro instruction, with 
the following exceptions: 

,MF-L 
specifies the list form of the WTL macro instruction. 

Note: H mag text exceeds 126 characters, trimcation occurs at the last embedded blaDk before 
the 126th character; when there are no embedded blaDks, truncation occurs after the 126th 
character. 



WfL (Execute Form) 

The execute form of the WTL macro instruction uses a remote control program parameter list. 
The parameter list can be generated by the list form of WTL. You cannot modify the message 
in the execute form. 

The execute form of the WTL macro instruction is written as fonows: 

MF-(E .em tuIdr) 

"am~: symbol. Begin ,,~ in column 1. 

One or more blanks must pre<:ede WTL. 

One or more blanks must follow WTL. 

em addr: RX-type address, or repster (1) or (2) - (12). 

The parameters are explained under the standard form of the WTL macro instruction, with 
the fonowing exceptions: 

MF-(E ,ctrl tMldr) 
specifies the execute form of the WTL macro instruction. This form uses a remote control 
program parameter list. 

Exaaaple 1 

Operadoa: Write a message to the system log. 

WTL • THIS IS THE STANDARD FORMAT FOR THE WTL MACRO' 

EuIIlple 2 

Operadoa: Write a message constructed in the list form of WTL. 

WTL MF=( E, ( R2 ) ) 



wro - Write to Operator 

The WTO macro instruction causes a message to be written to one or more operator consoles. 

The standard form of the WTO macro instruction is written as follows: 

name 

b 

WTO 

b 

'mIg' 
('text') 
('text', line type) 

,ROUTCDE-(route code) 

,DESC.(dac code) 

name: symbol. Begin name in column 1. 

One or more blanks must precede WTO. 

One or more blanks must foUow WTp. 

msg: Up to 124 characters. 
The permissable line types and text lengths are shown below: 

line type VS2 text 
C 34 char 
L 70 char 
D 70 char 
DE 70 char 
E 

Def":D 

The maximum number of each line type allo~~d in a sinale 
WTO instruction is: 

1 C type 
2 L type 
10 D type 
1 DE type 
J E type. 

The maximum total number of line types allowed in one 
instruction is J O. 

route code: decimal digit from 1 to J 6. The route code is one or 
more c:odes, separated by commas. 

dac code: decimal digit from 1 to 16. The delc code is one or 
more c:odes, separated by commas. 

The parameters are explained below: 

'msg' 
('~xt') 

('text', line type) 
specifies the message or multiple-line message to be written to one or more operator 
consoles. 

The first format is used to write a single-line message to the operator. In the format, the 
message must be enclosed in apostrophes, which do not appear on the console. It can 
include any character that can be used in a character (C-type) DC instruction. When a 
problem program issues a WTO macro instruction, the control program translates the text; 
only standard printable EBCDIC c~cters are passed to the display devices. All other 
characters are replaced by blanks. The message is assembled as a variable-length record. 

The second and third formats are used to write a multiple-line message to the operator. The 
message can be up to ten lines long; the system truncates the message at the end of the' 
tenth line. The ten-line limit does not include the control line (message IEE9321I), as 
explained under line type C below. 

Note: H the second format is coded without repetition, for example, ('tex"), the message 
appears as a single-line message. 

_ OSIVS2 MVS s..em.r SenIceI ... Macro ........ 



C 

L 

D 

The text is one line of the multiple-line message A line consists of a character string 
enclosed in apostrophes (which do not appear on the operator console). Any character valid 
in a C-type DC instruction can be coded. The maximum number of characters depends on 
which line type is specified. 

Note: The leftmost three bytes of register zero must be zero for a multiple-line message. The 
user must ensure that this is done. 

The line type defines the type of information contained in the 'text' field of each line of the 
message: 

indicates that the 'text' parameter is the text to be contained in the control line of the 
message. The control line normally contains a message title. C may only be coded for the 
first line of a multiple-line message. If this parameter is omitted and descriptor code 9 is 
coded, the system generates a control line (message IEE932I) containing only a message 
identification number. The control line remains static during framing operations on a display 
console (provided that the message is displayed in an out-of-line display area). Control lines 
are optional. 

indicates that the 'text' parameter is a label line. Label lines contain message heading 
information; they remain static· during framing operations on a display console (provided 
that the message is displayed in an out-of-line display area). Label lines are optional. If 
coded, lines must either immediately follow the control line or another label line or be the 
first line of the multiple-line message if there is no control line. Only two label lines may be 
coded per message. 

indicates that the 'text' parameter contains the information to be conveyed to the operator 
by the multiple-line message. During framing operations on a display console, the data lines 
are paged. 

DE 

E 

indicates that the 'text' parameter contains the last line of information to be passed to the 
operator. 

indicates that the previous line of text was the last line of text to be passed to the operator. 
The 'text' parameter, if any, coded with a line type of E is ignored. 

,ROUTCDE - route code 
specifies the routing code(s) to be assigned to the message. 

The routing codes are: 

1 Master Console Action 
2 Master Console Information 
3 Tape Pool 
4 Direct Access Pool 
S Tape Library 
6 Disk Library 
7 Unit Record Pool 
8 Teleprocessing Control 

9 
10 
11 
12 
13 
14 
IS 
16 

System Security 
System Error/Maintenance 
Programmer Information 
Emulaton 
Reserved for customer \lie 
Reserved for customer \lie 

Reserved for customer \lie 
Reserved for future expansion 

Note: Routing codes 1, 2, 3, 4, 7, 8, and 10 cause hard copy of the message when display 
consoles are used or more than one console is active. All other routing codes may go to hard 
copy as a SYSGEN option or as a result of a VARY HARDCPY command. 

WTO - Write to ()pent... 209 



,DESC-(desc code) 
specifies the message descriptor code(s) to be assigned to the message. Descriptor codes 1 
through 6 are mutually exclusive. Codes 7 through 10 can be assigned in combination with 
any other code. 

The descriptor codes are: 

1 System Failure 6 Job Status 
2 Immediate Action Required 
3 Eventual Action Required 

7 
8 

Application Program/Processor 
Out-of-Line Message 

4 System Status 9 Operator Request 
S Immediate Command Response 10 

11-16 
Dynamic Status Displays 
Reserved for future use 

Note: All WTO messages with descriptor codes of 1 or 2 are action messages. An asterisk or 
an@sign is printed before the rlfSt character of an action message to indicate a need for 
operator action. 

If both the ROUTCDE and DESC parameters are omitted and the message is not a 
ML WTO message, the routing code specified in the OLDWTOR parameter of the system 
generation CONSOLE macro instruction is assigned; if the OLDWTOR parameter is omitted, 
no routing code is assigned. Routing codes should be used with ML WTO messages. If DESC is 
specified with no ROUTCDE, a default routing code of zero is generated causing a message to 
be queued to the master console by default. 

When control is returned, general register 1 contains the identification number (24 bits and 
right-justified) assigned to the message. 

Return codes from execution of a WTO using the multiple-line feature are as follows: 

Hexadeeimal 
Code 

00 
04 

08 
OC 

10 

14 

MeaniDa 
No errors encountered. 
Number of lines passed was 0; request is ignored. Number of lines passed was greater 
than 10; only 10 lines are processed. Message text length for a line was less than 1; all 
lines up to error line are processed. 
ID passed in register 0 does not match any on queue. Request is ignored. 
Invalid line type. An end has been forced at the point of the error except if the first 
line is an E line, in which case the request is ignored. 
Request specified routing code 11 (WTP). Request is ignored for routing code 11 but is 
processed for other routing codes if specified. 
MLWTO request to hard copy only. Request is ignored. 

Note: No return codes are issued by the WTO service routine if the MLWTO feature is Dot 
used. 

210 OSIVS2 MVS SIIpenIIor SenIcet ... Maao ......... 



wro (Ust Fonn) 

The list form of the WTO macro instruction is used to construct a control program parameter 
list. 

The list form of the wro macro instruction is written as follows: 

Ittlmt 

b 

WTO 

b 

'msg' 
('ral') 
('ral',llltt type) 

.ROUTCDE-(rolltt codt} 

.DESC-(dac coM} 

1ttI1M: symbol. Begin IttllM in column l. 

One or more blanks must precede WTO. 

One or more blanks must follow WTO. 

msg: Up to 124 characters 
The pennissable 11M IY1G and lat lenath' are shown below: 

line type VS2 text 
C 34 char 
L 70 char 
D 70 char 
DE 70 char 
E 

DefIlllt:D 
The maximum number of each line type allowed in a sinaJe 
WTO instruction is: 

I C type 
2 L type 
10 0 type 
1 DE type 
1 E type 

The maximum total number of line types allowed in 
one instruction is 10. 

rolllt codt: decimal digit from 1 to 16. The f'OIItt codt is one or 
more codes, separated by commas. 

dnc coM: decimal digit from 1 to 16. The dac coM is one or 
more codes. separated by commas. 

The parameten are explained under the standard form of the wro macro instruction, with 
the following exceptions: 

.MF-L 
specifies the list form of the wro macro instruction. 

wro (LIlt 'oma) 211 



WTO (Execute Form) 

The execute form of the WTO macro instruction uses a remote control program parameter list. 
The parameter list can be generated by the list form of WTO. The message cannot be 
modified in the execute form of the macro instruction. 

The execute form of the WTO macro instruction is written as follows: 

name 

t> 
WTO 

t> 

MF-(E .etrl addr) 

name: symbol. Begin in column 1. 

One or more blanks must precede WTO. 

One or more blanks must follow WTO. 

el,./ add,.: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the WTO macro instruction, with 
the following exceptions: 

MF - (E ,etrl addr) 
specifies the execute form of the WTO macro instruction using a remote control program 
parameter list. 

Example 1 

Operation: Write a WTO message to all active consoles. 

WTO 

Example 2 

'NDP00005 ENDED' , ROUTCDE= 
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) 

Operation: Write a message with a pre-built parameter list pointed to by register 1. 

WTO MF=(E,( 1» 

212 OS/VS2 MVS Supenllor Semeet ... Macro IDItnIdIoM 



WTOR - Write to Operator with Reply 

The WTOR macro instruction causes a message requiring a reply to be written to one or more 
operator consoles and the system log. The macro instruction also provides the information 
required by the control program to return the reply to the issuing program. 

The standard form of the WTOR macro instruction is written as follows: 

t» 
WTOR 

t» 

'nug' 

• replyaddr 

.reply k"gth 

• ecb addr 

,ROUTCDE..(ro",e code) 

"ame: symbol. Begin name in column 1. 

One or more blanks must prec:ede WTOR. 

One or more blanks must follow WTOR. 

nug: Up to 121 characten. 

rqlyaddr: A-type address, or resister (2) - (12) • 

reply Imgth: symbol, decimal diait, or register (2) - (12). The 
minimum length is t: the maximum length is 1 t S when the 
operator enten REPLY id, 'reply' and 119 when the operator 
enten Rid, 'reply'. 

ecb addr: A-type address, or register (2) - (12) . 

ro",e coM: decimal digit from 1 to 16. The 1'OfItt ctHk is one or 
more codes, separated by commas. . 

The parameters are explained below: 

'msg' 
specifies the message to be written to the operator's console. The message must be enclosed 
in apostrophes, which do not appear on the console. It can include any character that can 
be used in a character (C-type) DC instruction. When a problem program issues a WTO 
macro instruction, the control program translates the text; only standard printable EBCDIC 
characters are passed to the display devices. AD other characters are replaced by blanks. 
The message is assembled as a variable-length record. 

Note: AD WTOR messages are action messages. An indicator is printed before the first 
character of an action message to indicate a need for operator action . 

• rqly addr 
specifies the address in virtual storage of the area into which the control program is to place 
the reply. The reply is left-justified at this address . 

• rqly length 
specifies the length, in bytes, of the reply message . 

• «b addr 
specifies the address of the event control block (ECB) to be used by the control program to 
indicate the completion of the reply. 

,ROUTCDE - (~ cotk) 
specifies the routing code(s) to be assigned to the message. 

WTOIl - Write te o,entor WIdI • ..., 213 



The routing codes are: 

1 Muter Console Action 
2 Master Console Information 
3 Tape Pool 
4 Direct Access Pool 
, Tape Library 
6 Disk Library 
7 Unit Record Pool 
8 Teleprocessilll Control 

9 
10 
11 
12 
13 
14 

l' 16 

System Security 
System Error/Maintenance 
Proarammer Information 
Emulaton 
Reserved for customer use 
Reserved for customer use 
Reserved for eustc>mer use 
Reserved for future expansion 

When control is returned, general register 1 contains the identification number (24 bits and 
right-justified) assigned to the message. 

Ignored Parameters 
The parameter DESC-(M.rc coM) is meaningless if coded since an WTOR messages are 
assigned descriptor codes of 7 (application program/processor). 

214 0S/VS2 MVS SIll. , ... Ser'fIeeI .. Macro ........... 



wrOR (Ust Form) 

The tilt form of the WTOR macro instruction is used to construct a control program parameter 
list. The message parameter must be provided in the list form. 

The list form of the wrOR macro instruction is written as foDows: 

'",.,' 

, 
.«6 tMItJr 

,R.OUTCDE-f,." cotl~) 

1ItIIPW: symbol. Besin IItIIM in column 1. 

One or more blanb must precede WI'OR. 

One or more blanb must follow wrOR. 

".,,: Up to 121 cbancten. 

rq" Gddr: A-type addrea. 

rqly -",,: symbol or decimal diait. The minimum leOlth is 1; 
the maximum lenlth is 11' when the operator enten REPLY id, 
'reply and 119 when the operator enlen R. id, 'reply. 

ec6 tIIIdr: A-type address. 

fOIl. code: decimal diait from 1 to 16. The fOIl. coM is one or 
more codes, Ieparated by commas. 

The parameters are explained under the standard form of the WTOR macro instruction, 
with the foDowiDg exceptions: 

.MF-L 
specifies the list form of the WTOR macro instruction. 

WTOR (I..IIt "ana) 215 



wrOR (Execute Form) 

The execute form of the WTOR macro instruction uses a remote control program parameter 
Jist. The parameter list can be generated by the list form of WTOR. 

The execute form of the WTOR macro instruction is written as follows: 

~ 

wrOIl 

~ 

, 
.,." add, 

, 
•• eb add, 

,MF-(E .etrl tlddr) 

lUI",.: symbol. Bepn lUI",. in column 1. 

One or more blanks must precede WTOIl. 

One or more blanks must follow wrOIl. 

reply tlddr: llX-type address, or re~er (2) - (12). 

reply le",dt: symbol, decimal digit, or resister (2) - (12). The 
minimum leqth is 1; the maximum leqth is II S when the 
operator enters REPLY id, 'reply' and 119 when the operator 
enters Il id, 'reply'. 

«b addr: RX-type address, or register (2) - (12). 

etrl add,: IlX-type address, or resister (1) or (2) - (12). 

The parameters are explained under the standard form of the WTOR macro instruction, 
with the foDowing exceptions: 

,MF - (E ,ctrl IIIIdr) 
specifieS the execute form of the WTOR macro instruction using a remote control program 
parameter list. The parameter list must be aligned on a fullword boundary. The list form of 
WI'OR provides this alignment. 

EDDlpie 1 

Operatloa: Write a WTOR message to aU active consoles. 

WTOR 'THIS IS WTOR NUMBER 001' ,REPLY, 18,ECB1, 
ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) 

21' OS/V82 MVS ...... s..Ices .. MMn ......... 



XCrL - Pass Control to a Program in Another Load Module 

The XCTL lDacro instruction causes control to be passed to a specified entry name in another 
load module; the entry name must be a member name or an alias in a directory of a 
partitioned data set. The load module containing the entry name is brought into storage if a 
usable copy is not available. The storage occupied by the load module that issued the XCTL is 
eligible for reassignment by the control program if no other requirement exists for that load 
module. The program executing the xen.. macro instruction is logically removed from the 
active task, and the. program gaining control is established as a subprogram of the program 
(system or user) that placed the issuer of XC'lL into execution. 

No return is made to the program issuing the XCTL macro instruction; the use count for 
the load module containing the XC'lL macro instruction is lowered by 1. A return to the 
program that placed the issuer of Xen.. into execution is required for successful completion of 
the task. For this reason, registers 2 through 14, the program interruption control area, and the 
program mask must be restored to the conditions that existed when the load module received 
control before the XCTL macro instruction can be issued. H the specified entry cannot be 
located, the task is abnormally terminated. 

The standard form of the XCTL macro instruction is written as follows: 

& 

XCrL 

& 

(re,I), 
(re,J,,.,2), 

EP-nll)' ntmJe 
EPLOC-entl)' nt:IIM addr 
DE-/LrI entry tlddr 

,DCB-deb tlddr 

nllme: symbol. Begin ntmJe in column 1. 

One or more blanks must precede XCTL. 

One or more blanks must follow XCTL. 

rqJ and rq2: decimal digits or A-type addresses, and in the 
order 2 throup 12. 

entry ntl1M: symbol. 
entry name addr: A-type address or register (2) - (12). 
ILrI entry addr: A-type address, or register (2) - (12). 

deb addr: A-type address, or register (2) - (12). 

The parameters are explained below: 

(regl) , 
(reg l,reg2), 

specifies the register or range of registers to be restored from the save area at the address 
contained in register 13. 

EP - entry 1UJ1IW 

EPLOC -entry name addr 
DE -list en';" addr 

specifies the entry name, the address of the entry name, or the address of a 60-byte list 
entry for the entry name that was constructed using the BLDL macro instruction. H 
EPLOC is coded, the name must be padded to eight bytes, if necessary. 

XCIL - Pus CGIIb'oI to ............ III AaotIIer Load M... 217 



,DCB - deb addr 
specifies the address of the data control block for the partitioned data set containing the 
entry name described above. This parameter must indicate the same DCB used in the BLDL 
mentioned above. The DCB must not be dermed in the program issuing the XCTL macro 
instruction. 

U the DCB parameter is omitted or if DCB-O is specified when the Xcn.. macro 
instruction is issued by the job step task, the data sets referred to by either the STEPLIB or 
JOBLm D statement are first searched for the entry name. U the entry name is not found. 
the link library is searched. 

U the DCB parameter is omitted or if DCB-O is specified when the XCTL macro 
instruction is issued by a subtask, the data sets associated with one or more data control 
blocks referred to be previous A IT ACH macro instructions in the subtasking chain are flI'St 
searched for the entry point name. H the entry point name is not found, the search is 
continued as if the XCI'L had been issued by the job step task. 



XCfL (List Form) 

Two parameter lists are used in an XCTL macro instruction: a control program parameter list 
and an optional problem program parameter list. Only the control program parameter list can 
be constructed in the list form of XCTL. Address parameters to be passed in a parameter list 
to the problem program can be provided using the list form of the CALL macro instruction. 
1bis parameter list can be referred to in the execute form of XCTL. 

The list form of the XCTL macro instruction is written as follows: 

t> 
XCTL 

t> 

EP __ """ "tun_, 
EPLOC.rntry "am_ addr, 
DE-list _"try addr, 

DCB-deb add" 

SF-L 

"am_: symbol. Belin "am_ in column 1. 

One or more blanks must precede XCTL. 

One or more blanks must follow XCTL. 

."try "am_: symbol. 
_""., itaIM add,: A-type addresses. 
lut ."try add,: A-type address. 

deb add,: A-type address. 

The parameters are explained under the standard form of the XCTL macro instruction, with 
the following exceptions: 

SF-L 
specifies the list form of the XCTL macro instruction. 

xcn. (LIlt Form) 219 



XCTL (Execute Form) 

Two parameter lists ate used in the XCTL macro instruction: a control program parameter list 
and problem program parameter list. Either or both of these parameter lists can be remote and 
can be referred to, and modified by, the execute form of XCTL. If only the problem program 
parameter list is remote, parameters that require the control program parameter list cause that 
list to be constructed inline as part of the macro expansion. If only the control program 
parameter list is remote, no problem program parameters can be specified. 

The execute form. of the XCTL macro instruction is written as fonows: 

b 

XCTL 

b 

(~gl), 
(rqJ,reg2), 

EP-entry IUIm~, 
EPLOC-atry nllme IIddr, 
DE-II .. t entry IIddr, 

DCB-deb addr, 

P ARAM-(lIddr). 
PARAM-(cuIdr). VL-l, 

MF-(E .,rob addr) 
SF-(E ,em addr) 
MF-(E .,rob addr),SF-(E ,etrl IIddr) 

IUIIM: symbol. Begin IUIIM in column 1. 

One or more blanks must precede XCTL. 

One or more blanks must follow XCTL. 

ngJ and ~g2: decimal digits or RX-type addresses, and in the 
order 2 through 12. 

atry lUI,.: symbol. 
~ntry nllme addr: RX-type address or registers (2) - (12). 
Itst atry IIddr: RX-type address, or register (2) - (12). 

deb ad"': RX-type address, or register (2) - (12). 

ad"': RX-type address, or register (2) - (12). 
add, is one or more addresses, separated by commas. For 
example, P ARAM-(addr,addr,lIddr) 

,rob addr: RX-type address, or register (1) or (2) - (12). 
em ad"': RX-type address, or register (2) - (12) or (1S). 

The parameters are explained under the standard form of the XCTL macro instruction, with 
the following exceptions: 

~ARAM-(addr) 
~ARAM-(addr).VL-l 

specifies address( es) to be passed to the called program. Each address is expanded inline to 
a fuUword on a fuUword boundary, in the order designated. Register 1 contains the address 
of the fint parameter when the program is given control. (If this parameter is not coded, 
register 1 is not altered.) 

VL-l should be designated only if the called program can be passed a variable number of 
parameters. VL-l causes the bigh-order bit of the last address parameter to be set to 1; 
the bit can be checked to find the end of ihe list . 

.MF - (E .prob addr) 
,SF - (E .ctrl addr) 
.MF - (E .prob addr),SF - (E .ctrl addr) 

specifies the execute form. of the XCTL macro instruction. This form uses a remote problem 
program parameter list, a remote control program parameter list, or both. 



Example 1 

OperadOD: Pass control via the address of the-entry name (XCI'LEP), and have registers 2-12 
restored. Let the system determine the copy of the module to be used. 

XCTL ( 2 , 1 2 ) , EPLOC=XCTLEP 

XCTL (£Seale Fona) l21 





A parameter 
FREEMAIN macro instruction 139 
GETMAIN macro instruction 145 
PGLOAD macro instruction 159 
PGOUT macroinstruction 162 

A-type address 
meaning 83 

ABEND dump 52 
ABEND macro instruction 89-90 

use of 47-48,52 
abnormal condition handling 46-48 
abnormal termination 46-53 
abnormally terminate a task (ABEND) 89-90 
active task 11 
add an entry name (IDENTIFY) 151-152 
additional entry points 32-33 
address space 11 

priority 11 
alias name 

in ATTACH 91 
in LINK 153 
in LOAD 157 
in XCTL 217 

allocate virtual storage (GETMAIN) 14S-1S0 
application program/processor ciesc:riptor code 210 
ASYNCH parameter 

ATTACH macro instruction 94 
EST AE macro instruction 126 

ATTACH macro instruction 91-98 
with ABEND 89 
with CALL, 101 
with DETACH 112 
execute form 97-98 
with IDENTIFY 152 
list form 96 
standard form 91-95 
use of 11-14 

authorization checking 17()"172,41 
auxiliary storage manqer 63 

BAL instruction' 99, I 53 
base register 7 
BIN parameter 199 
BINTVL parameter 197 
BLDL macro instruction 

with ATTACH 92 
with LINK 153 
with LOAD I" 
uSe of 25,28 

BNDRY parameter 146 
brilll a load module into virtual storqe (LOAD) 157-158 
BSAM 

with SNAP 183 

CALL macro instruction 99-102 
execute form 102 
list form 101 
standard form 99-100 
use of 19,29 

called program 5 
call program 5 
CANCEL parameter 201 
cathode ray tube display 77 
change dispatching priority (CHAP) 103-104 
change subtask status (STATUS) 194-195 

CHAP macro instruction 103-104 
use of 12-13 

CHNGDUMP command 52 
code 

descriptor 75 
routinl 75 

coding the macro instructions 82-83 
communications 

subtask 13 
task 13 

compatibility 84-85 
COMPCOD parameter 182 
continuation lines 83 
conventions 

linkage 5-9 
system 16 

count, responsibility 62 
create a new task (ATTACH) 91-98 
CRT display 77 
CT parameter 126 

date 67 
DCB macro instruction 

with SNAP 183 
DCB parameter 

ATTACH macro instruction 92 
LINK macro instruction 154 
LOAD macro instruction 158 
SNAP macro instruCtion 184 
XCTL macro instruction 218 

DE parameter, 
ATTACH macro instruction 92 
DELETE macro instruction IQ5-106 
LINK macro instruction 153 
LOAD macro instruction 157 
XCTL macro instruction 217 

DEC parameter 199 
decimal dilit 

meaninl 82 
default 

meaninl 83 
DELETE macro instruction 105-106 

with LOAD 157 
responsibility count with 62 
use of 62 

delete operator messale (DOM) 114-115 
DEQ macro instruction 1m-III 

and ENQ 117 
execute form I I I 
list form 109 
standard form 107-109 
use of 38-41 

DESC parameter 
WTO macro instruction 210 
WTOR macro instruction 214 

descriptor codes 2 10, 7S 
detach a task (DETACH) 112-113 
DETACH macro instruction 1ll-113 

with ATTACH 91 
use of 14 

DIDOCS 
and DOM 114 

DINTVL parameter '197 
direct access pool routinl code 209,214 
disk library routinl code 209,214 
dispatchinl priority 

address space I I 

Index 

.... x 123 



and A 17 ACH 91 
and CHAP 103-104 
subtask 12 
task 12 

divide extended register (DXR) 116 
DOM macro instruction 114-115 

use of 77 
DPMOD parameter 93 
DPRTY parameter 12 
dump 

ABEND 52 
SNAP 52 

DUMP parameter 
ABEND macro instruction 90 
SETRP macro instruction 181 

dump virtual storage and continue (SNAP) 183-186 
DUMPORT parameter 

ABEND macro instruction 90 
SETRP macro instruction 181 

duplicate names 11 
DXR macro instruction 1 t 6 

use of 69-70 
dynamic status displays descriptor code 210 
dynamic structure 15 

E parameter 
ENQ macro instruction 118 
FREEMAIN macro instruction 139-140 

EA parameter 
PGLOAD macro instruction 158 
PGOUT macro instruction 161 

EC parameter 
FREEMAIN macro instruction 139-140 
GETMAIN macro instruction 145-146 

ECB parameter 
ATTACH macro instruction 93 
PGLOAD macro instruction 1 S9 
WAIT macro instruction 202 
W AITR macro instruction 204 

ECBIND parameter 160 
ECBLlST parameter 

WAIT macro instruction 202 
WAITR macro instruction 204 

emulator routing code 209,214 
ENQ macro instruction 117-124 

and DEQ 117 
execute form 123 
list form 122 
standard form 118-121 
use of 36-41 

ENTRY instruction 17-18 
ENTRY parameter lSI 
EP parameter 

ATTACH macro instruction 92 
DELETE macro instruction 105 
IDENTIFY macro instruction 151 
LINK macro instruction 1S3 
LOAD macro instruction 157 
XCTL macro instruction 217 

EPLOC parameter 
ATTACH macro instruction 92 
DELETE macro instruction 105 
IDENTIFY macro instruction 151 
LINK macro instruction 153 
LOAD macro instruction 157 
XCTL macro instruction 217 

ERR parameter 185 
ERRET parameter 

LINK macro instruction 153-154 
LOAD macro instruction 157-158 
STIMER macro instruction 198 

TIME macro instruction 200 
TTIMER macro instruction lOT 

EST AE macro instruction 125-131 
execute form 130 
list form 129 
standard form 125-128 
use of 48-51 

ESTAE routines 48-51 
EST AI parameter 94 
EST AI routines 50-51 
ETXR Parameter 93 
EU parameter 

FREEMAIN macro instruction 139 
GETMAIN macro instruction 145 

event control block 35 
with ABEND 89 
with ATTACH 91 
with POST 168 
with WAIT 202 

EVENTS macro instruction 132-138 
ECB 132-135 
ENTRIES 132,134-135 
ENTRIES-DELfT ABLE 132,134 
TABLE 132.134 
WAIT 132-133.135 

eventual action required descriptor code 210 
examples of macro instructions 

ABEND 90 
ATTACH 98 
CALL 102 
CHAP 104 
DELETE 106 
DEQ 111 
DETACH 113 
DOM liS 
DXR 116 
ENQ 124 
ESTAE 131 
EVENTS 138 
FREEMAIN 143-144 
GETMAIN ISO 
IDENTIFY 152 
LINK 156 
LOAD 158 
PGLOAD 161 
PGOUT 164 
PGRLSE 167 
POST 169 
RACHECK 174 
RETURN 175 
SAVE 177 
SEGLD 178 
SEGWT 179 
SETRP 182 
SNAP 189 
SPIE 193 
STATUS 195 
STIMER 198 
TIME 200 
TTIMER 201 
WAIT 203 
WAITR 204 
WTL 207 
WTO 212 
WTOR 216 
XCTL 221 

exclusive requests 36-37 
EXEC statement 

DPRTY parameter 12 
PARM field 5-6 
with STIMER 198 

execute form of macro instruction 



use of 81,~1 
execution 

parallel 15 
serial 15 

exit routines 
asynchronous 

with CALL 99 
with IDENTIFY 152 
with SEGWT 179 

end-of-task 
with ABEND 89 
with ATTACH 91 
with EST AE 125 
with SETRP 180 
with SPIE 191 

extended STAE (ESTAE) 125-131 
extended-precision floating-point simulation 69-74 

FRACHECK macro instruction 138.1 
execute form 138.5 
list form 138.4 
standard form 138.1 

frame, page 63 
free virtual storage (FREEMAlN) 139-144 
FREEMAIN macro instruction 139-144 

execute form 143 
and GETMAIN 145 
list form 142 
similar to PGRLSE 165 
standard form 139-141 
use of 55-60 

FRESDWA parameter 182 

GETMAIN macro instruction 145-150 
execute form 149 
and FREEMAIN 139 
list form 148 
similar to PGRLSE 165 
standard form 145-147 
use of 55-60 

GMT parameter 197 
graphic display 114 
Greenwich Mean Time 67 
GSPL parameter 94 
GSPV parameter 94 
GTRACE macro instruction (see OS/VS2 System 

Programming Library: Service Aids,) OC28-0674 

HA parameter 165 
hardcopy log 75 
high-density dump 52,183 

ID parameter 
CALL macro instruction 100 
LINK. macro instruction 154 
SNAP macro instruction 184 

IDENTIFY macro instruction 151·152 
use of 32-33 

IEAXPSIM 69 
IHASDWA mapping macro ISO 
immediate action required descriptor code 210 
immediate command response descriptor code 210 
interlock condition 39-41 
interruption, termination, and dumpinllervices 43-53 
interruptions, program 43 
interval timer 

set 196-198 
test 201 

interval timing 67-68 

I/O parameter 185 

job library 23 
JOB statement, with CHAP 103 
job status descriptor code 210 
job step 11 
job step task 11 

KEEPREL parameter 162 

L parameter 
FREEMAIN macro instruction 140 
POLOAD macro instruction 161 
POOUT macro instruction 164 

LA parameter 
FREEMAIN macro instruction 
GETMAIN macro instruction 
POLOAD macro instruction 
POOUT macro instruction 
PORLSE macro instruction 

140 
146 

161 
164 
165 

LC parameter 
PREEMAIN macro instruction 140 
GETMAIN macro instruction 145 

libraries 
job 23 
link 23 
private 23 
step 23 
task 23 

limit priority 
subtask 12 
task 12 

LINK macro instruction 153-156 
with CALL 101 
execute form 156 
with IDENTIFY 151 
list form 155 
responsiblity count with 27 
standard form 153-154 
use of 27-28 

link library 23 
linkage conventions 5-9 
linkage registers 5-6 
list form of macro instruction 

use of 81,60-61 
LIST parameter 185 
LOAD macro instruction I 57·lS8 

and DELETE 105 
and IDENTIFY 151 
responsibility count with 157 
use of 27 

load module 
bringing into virtual storale 22-27 
characteristics 15 
structures 15 

load overlay segment and continue processinl (SEGLD) 
178 

load overlay segment and wait (SEGWT) 179 
load virtual storaae areu into real storage (POLOAD) 

159-161 
log 

hard copy 75 
system 76 
with WTL 77,205 
with WTOR 213 

LONG parameter 202 
LPMOD parameter 93 
LV parameter 

FREEMAIN macro instruction 140 
GETMAIN macro instruction 145 



LV parameter 
FREE MAIN macro instruction 141 
GETMAIN macro instruction 146 

macro instruction forms 81 
macro instructions 81-221 

ABEND 89-90 
ATI'ACH 91-98 
CALL 99-102 
CHAP 103-104 
DELETE 105-106 
DEQ 107-111 
DETACH 112-113 
DOM 114-115 
DXR 116 
ENQ 117-124 
ESTAE 125-131 
EVENTS 132-138 
FRACHECK 138.1 
FREEMAIN 139-144 
GETMAIN 145-150 
GTRACE (see OS/VS2 System Prop-ammin, Library: 

Service Aids, GC28-(674) 
IDENTIFY 151-152 
LINK 153-156 
LOAD 157-158 
PGLOAD 159-161 
PGOUT 162-164 
PGRLSE 165-167 
POST 168-169 
RACHECK 170-174 
RACSTAT 174.1 
RETURN 175 
SAVE 176-177 
SEGLD 178 
SEGWT 179 
SETRP 180-182 
SNAP 183-189 
SPIE 190-193 
STAE 125 
STATUS 194-195 
STIMER 196-198 
TIME 199-200 
TI'IMER 201 
WAIT 202-203 
WAITR 204 
WTL 205-207 
WTO 208-212 
WTOR 213-216 
XCfL 217-220 

master console action routine code 209,214 
master console information routin, code 209,214 
MCS 

with DOM 114 
messages 

action 
with WTO 
with WTOR 

deletion 77 
routing 75 
to 101 77 
to operator 

with DOM 
with reply 
with WTL 
with WTO 
with WTOR 

to programmer 
with DOM 
with WTL 
with WTO 

75-76 
75-76 

77 
75-76 
76 
75-76 

75-76 

77 
76 
76 

with WTOR 76 
MF parameter 

ATTACH macro instruction 98 
CALL macro instruction 101,102 
DEQ macro instruction 109,110 
ENQ macro instruction 122,123 
EST AE macro instruction 129,130 
FREEMAIN macro instruction 142,143 
GETMAIN macro instruction 148,149 
LINK macro instruction 156 
PGRLSE macro instruction 166,167 
SNAP macro instruction 187,189 
SPIE macro instruction 192,193 
WTL macro instruction 206,207 
WTO macro instruction 211,212 
WTOR macro instruction 215,216 
XCTL macro instruction 220 

MIC parameter 
TIME macro instruction 199 
TTIMER macro instruction 201 

MICVL parameter 197 
miscellaneous services 67-77 
module 

reenterable 60 
serially reusable 26 

MSG parameter 114 
MSGLIST parameter 141 
multiple-line WTO message 75 

nonreenterable load modules 62 

old program status word (OPSW) 45 
operator communication 

via DOM 77 
with timinl services 67-68 
via WTL 77 
via WTOR 75-76 

operator request descriptor code 210 
oriainatinl task 11,91 
out-of-line messale descriptor code 210 
OV parameter 126 
overlay segment 

with CALL 99 
with SEGLD 178 
with SEGWT 179 

paae frame 63 . 
paae out virtual storage areas from real stor. (PGOUT) 

162-164 
paae-abead function 64 
parallel execution 15 
PARAM parameter 

A 11 ACH macro instruction 92 
EST AE macro instruction 126 
LINK macro instruction 1'4 
XCTL macro instruction 220 

PARM field 5-6 
pus control to a control section (CALL) 99-102 
pass control to a program in another load module 

LINK 1S3-156 
XCTL 217-221 

pusing control 
called proaram 8-9 
caIlina proaram 9 
conventions 8-9 
in a dynamic structure 22-31 
in a simple structure 16-22 

PDATA parameter 185 
PGLOAD macro instruction 159-161 

and PGOUT 162 



list form 161 
standard form 159-160 
use of 64 

PGOUT macro instruction 162-164 
tist form 164 
standard form 162-163 
use of 64 

PGRLSE macro instruction 165-167 
execute form 167 
list form 166 
standard form 165 
use of 63-64 

planned overlay structure 15 
POINT instruction 60 
POST macro instruction 168-169 

use of 35 
priority 

address space 11,12 
assigning 12 
changing 12 
dispatching 11-12 
limit 11-12 
subtask 12 
task 12 

private library 23 
program interruption control area (PICA) 43-44 
program interruption element (PIE) 44-45 
program interruptions 

with SPIE 43 
program management 15-33 
program information routing code 209,214 
proaram message 

with WTO 76 
with WTOR 76 

provide time and data (TIME) 199-200 
PURGE parameter 

ATTACH macro instruction 94 
EST AE macro instruction 126 

R parameter 
140 

146 
159 

162 

FREEMAIN macro instruction 
GETMAIN macro instruction 
PGLOAD macro instruction 
PGOUT macro instruction 

RACF 41 
RACHECK macro instruction 

execute form 174 
list form 173 
standard form 17()'172 
use of 41 

RACSTAT macro instruction 174.1 
execute form 174.3 
list form 174.2 
standard form 174.3 

RC parameter 
FREEMAIN macro instruction 1.tO 
GETMAIN macro instruction 146 
RETURN macro instruction 175 
SETRP macro instruction 181 

REAL parameter 196 
real storage management 63-65 
real storage manager 63 
reenterable 

load modules 60 
macro instructions 60 

register (0) 
meaning 83 

register update block (RUB) 
with SETRP 181-182 

registers 
bue 7 

calling program 6 
general 5 
linkage 5-6 
parameter S 
restoring 8 
saving 6-7 

REGS parameter 181 
RELATED parameter 

ATTACH macro instruction 95 
CHAP macro instnaction 103 
DELETE macro instruction 105 
DEQ macro instruction 107 
DETACH macro instruction 112 
ENQ macro instruction 119 
EST AE macro instruction 127 
FREEMAIN macro instruction 141 
OETMAIN macro instruction 147 
LOAD macro instruction 158 
POST macro instruction 168 
STATUS macro instruction 195 
WAfT macro instruction 203 

release a serially reusable resource (DEQ) 107-111 
RELEASE parameter 159 
release virtual storage contents (PGRLSE) 165-167 
relinquish control of a load module (DELETE) 105-106 
REPLY parameter 114 
request control of a serially reusable resource (ENQ) 

117-124 
resource control 35-41 
resources 

access autority of 41 
getting control of 36-37 
naming 36 
serially reusable 3S-41 
use of 35-41 

responsibility count 62 
with LINK 27 
with LOAD 27 
with XCTL 27 

RET parameter 
DEQ macro instruction 107 
ENQ macro instruction 119 

RETADDR parameter 181 
RETREGS parameter 181 
retry routines, EST AE/EST AI 5()'51 
return codes 

ATTACH macro instnaction 95 
DELETE macro instnaction' 106 
DEQ macro instruction 108-109 
ENQ macro instruction 12()'121 
EST AE macro instruction 128 
FRACHECK macro instnaction 138.3 
FREEMAIN macro instnaction 141 
OETMAIN macro instruction 147 
IDENTIFY macro instnaction 152 
PGLOAD macro instnaction 160 
PGOUT macro instruction 163 
PGRLSE macro instruction 165 
RACHECK macro instruction 172 
RACST A l' macro instruction 174.1 
SNAP macro instruction 186 
WTO macro instruction 210 

return control (RETURN) 175 
RETURN macro instruction I" 

use of 20-22 
ROUTCDE parameter 

WTO macro instruction 209 
WTOR macro instruction 213 

routing codes 209,75 
RU parameter 

FREEMAIN macro instruction 1.tO 
OETMAIN macro instnaction 146 

We. 227 



RUB (register update block) 181-182 
RUB parameter 181 
RX-type address 

meaning 83 

S parameter 
CHAP macro instruction 103 
ENQ macro instruction 118 

save area 
chaining 8 
providing 7 

SAVE macro instruction 176-177 
use of 6-9,33 

save register contents (SAVE) 176-177 
SOA T A parameter 185 
SDWA (system diagnostic work area) 49-51 
SEGLO macro instruction 178 
SEGWT macro instruction 179 
serial execution 15 
serially reusable module 26 
serially reusable resource 35-41 
services 3-77 
set interval timer (STIMER) 196-198 
set return parameters (SETRP) 180-182 
SETRP macro instruction 180-182 

use of 49 
SF parameter 

ATTACH macro instruction 95,98 
LINK macro instruction 155,156 
XCTL macro instruction 219,221 

shared requests 37 
shared subpools 58-59 
SHSPL parameter 94 
SHSPV parameter 94 
signal event completion (POST) 168-169 
simple structure 15 
single-line WTO message 75 
SNAP dump 52-53 
SNAP macro instruction 183-189 

execute form 188-189 
list form 187 
standard form 184-186 
use of 52-53 

SP parameter 
FREE MAIN macro instruction 141 
GETMAIN macro instruction 146 

specify program interruption exit (SPIE) 190-193 
SPIE macro instruction 190-193 

with OXR 116 
execute form 193 
list form 192 
standard form 190-191 
use of 43-45 

ST AE macro instruction 
and EST AE 125 

ST AE parameter 112 
ST AI parameter 94 
standard dump format 52-53,184 

START parameter 194 
STATUS macro instruction 194-195 
STCK parameter 199 
step library 23 
STEP parameter 

ABEND macro instruction 90 
DEQ macro instruction 107 
ENQ macro instruction 119 

STIMER macro instruction 196-198 
with TTIMER 20 t 
use of 67-68 

STM instruction 6 
STOP parameter 194 

221 OS/VSl s..emsor Senkes .. Maero ............ 

STORAGE parameter 185 
STRHOR parameter 186 
structure 

dynamic 15 
planned overlay 15 
simple 15 

subpool handling 57-60 
subtask 11 

creating with ATTACH 91 
deleting with DETACH 112 
priority 11 

subtask creation and control 11-14 
symbol 

meaning 82 
SYNCH parameter 194 
system diagnostic work area (SOW A) 49-51 

with EST AE 49-50 
with SETRP S 1 

system error/maintenance routing code 209,214 
system failure descriptor 210 
system log 77 

with WTL 77 
with WTOR 76 

S~STEM parameter 
ABEND macro instruction 90 
DEQ macro instruction 107 
ENQ macro instruction 119 

system security routing code 209,214 
system status descriptor code 210 
S~STEMS parameter 

DEQ macro instruction 107 
ENQ macro instruction 119 

SZERO parameter 94 

T parameter 
RETURN macro instruction 175 
SAVE macro instruction 176 

tape library routing code 209,214 
tape pool routing code 209,214 
task 11 

creating 11 
levels of 13 
library 23 
originating 11 
priority 11 
subtask 11 
synchronization 35-41 

task ownership of subpool 58-59 
TASK parameter 196 
T ASKLIB parameter 94 
TCa parameter 

SNAP macro instruction 184,189 
STATUS macro instruction 194 

teleprocessing control routing code 209,214 
TERM parameter 

ATTACH macro instruction 95 
EST AE macro instruction 127 

termination, abnormal 46-48 
test interval timer (TTIMER) 20 I 
TIME macro instruction 199-200 

use of 67 
time-of-day 67 
time-of-day (TOD) clock 67 
timer 

let time and datae 199-200 
set timer 196 
test timer 20 1 

TOO parameter 197 
transferring subpool ownership S9 
TTIMER macro instructions 201 

use of 67-68 



TU parameter 
TIME macro instnaction 199 
ITIMER macro instruction 201 
TUINTVL parameter 197 

unit record pool routin. code 209.214 
USER parameter 90 

V parameter 140 
V-type address constant 18 
VC parameter 

FREEMAIN macro instruction 139-140 
GETMAIN macro instruction 145 

virtual storage 55 
allocation 145-150 
loading areas of 159-161 
management of 5S-62 
release 165-167 
requests for 
explicit ,,-60 
implicit 60-62 

virtual storage management 55-62 
virtual subarea list 64-65 
VL parameter 

A IT ACH macro instruction 93 
CALL macro instruction 99 
LINK macro instruction 154 
XCTL macro instruction 220 

VU parameter 
FREEMAIN macro instruction 139-140 
GETMAIN macro instruction 145 

wait condition 
from ENQ 117 
from STlMER 196 
from WAIT 202 

wait for one or more events 
WAIT 202-203 
WAlTR 204 

WAlT macro instruction 202-203 
and POST 168 
use of 35 

WAIT parameter 196 
W AITR macro instnaction 204 
WKAREA parameter 181 
WRITE TO LOG (WTL) 205-207 
write to operator 

with DOM 114-115 
with WTL 205-207 
with WTO 208-212 
with WTOR 213-216 

write to operator (WTO) 208-212 
write to operator with reply (WTOR) 213-216 
write to proarammer 

with WTO 208-212 
with WTOR 213-216 

WTL macro instnaction 205-207 
execute form 207 
list form 206 
standard form 205 
use of 77 

WTO macro instruction 208-212 
with DOM 114 
execute form 212 
list form' 211 
standard form 208-210 
use of 75-77 

WTOR'macro instnaction 213-216 
with DOM 114 
execute form 216 
list form 215 
standard form 213-214 
use of 75-77 

XCTL macro instruction 217-220 
execute form 220 
with IDENTIFY 151 
list form 219 
responsibility count with 31 
standard form 217-218 
use of 31-32 

XCTL parameter 126 

ZONE parameter 200 

..... 22t 



230 OS/VSl _ • .., SenIeeI .. Macro .......... 



OS/VS2 MVS Supervisor Services 
and Macro Instructions 
GC28-0883-3 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. This form may be used to communicate your views about this 
publication. They will be sent to the author's department for whatever review and action, if any, 
is deemed appropriate. 

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted 
information, in any form, for any and all purposes, without obligation of any kind to the sub­
mitter. Your interest is appreciated. 
Note: Copies of IBM publtcllllons are notstockedllt the 10Clltion to which this form Is IIddre8St!d. 
Plellse direct IIny requests for cople, of publlclltions. or for assistllnce In using your IBM system. 
to your IBM representlltlve or to the IBM branch office serving your 10c1I1Uy. 

Possible topics for comments are: 

Clarity Accuracy Completeness Organization Coding Retrieval LegibHity 

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit ___ _ 

If you wish a reply, give your name and mailing address: 

Please circle the description that most closely describes your occupation. 

(Q) (U) (X) m (Z) (F) (I) (L) 

Custom. Instan System System System Applica. System ~r Term. 
M .... Consult. Analyst PrOS· Pr°l· Oper. Oper. 

(5) (P) (A) (B) (C) ~D) (R) (G) (J) 

IBM System PrOi. System System Applica. Dev. Compo System I/O 
E .... Sy .. Analyst Pro •• Prog. Prog. PrOl· Opere Oper. 

Rep. 

(E) 

Eel. 
Dev. 
Rep. 

~ 
L:J 

(N) (T) 

CUlt. Tech. 
E ... Staff 

Rep. 

Number of latest Newsletter associated with this publication: ____________ _ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, 
an IBM office or representative will be happy to forward your comments.) 



GC280883-3 

R .... '. Comment Form 

__ F':Id,:nd~" ___________ ~~~N~S~": _________ '::"'~.~ ___ ~ 

111111 NO POSTAGE ~ 

--..------- ----- --- -... ---- --------------_.-
~ 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business. Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

NECESSARY c 
IF MAILED i 
INTHE 

UNITED STATES 5. a 
f 
I' 
I 
f 

I 
! 





c:( 
cri 
::) 
.5 
"C 
g 
C .t: 
Q. 

- ..... - ------ ... _ ... - ----. - ---====='5:(!) 

GC28-0683-03 


	$001
	$002
	$003
	$004
	$005
	$006
	$007
	$008
	$009
	$010
	$011
	$012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	138.1
	138.2
	138.3
	138.4
	138.5
	138.6
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	170.1
	170.2
	171
	171.0
	171.1
	172
	173
	174
	174.1
	174.2
	174.3
	174.4
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	replyA
	replyB
	xBackA
	xBackB

