
Systems

GC28-0725-2
File No. S370-37

OS/VS2 System
Programming Library:
MVS Di.agnostic Techniques

Release 3.7

I ncludes Selectable Units:

Scheduler Improvements
Supervisor Performance # 1
Supervisor Performance #2
Service Data Improvements
JES2 Release 4.1
3838 Vector Processing Subsystem Support
Dumping Improvements
Attached Processor System for Models 158/168
Hardware Recovery Enhancements
Interactive Problem Control System (lPCS)

--... - .------ - ---- ---- --. _ -- - - ----
-----~-
____ <l>_

VS2.03.804
VS2.03.805
VS2.03.807
VS2.03.817
5752-825
5752-829
5752-833
5752-847
5752-855
5752-857

Third Edition (September, 1978)

This is; a major revision of, and obsoletes, GC28-0725-1 incorporating changes released in the
follo\\ting System Library Supplement:

Interactive Problem Control
System (IPCS)

5752-857 GD23-0095-0 (dated March 31, 1978)

See the Summary of Amendments following the Contents for a summary of the changes that
have been made to this manual. A vertical line to the left of the text or illustration indicates
a technical change made in this edition; revision bars are not used, however, to indicate changes
made in previous editions, technical newsletters, or supplements.

This edition applies to release 3.7 of OS!VS2 and to all subsequent releases of OS!VS2 until
otherwise indicated in new editions or Technical Newsletters. Changes are continually made
to the information herein; before using this publication in connection with the operation of
IBM systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions
that are applicable and current.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, NY 12602. IBM may use
or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information
you supply.

©Copyright International Business Machines Corporation 1976, 1977,1978

(

Guide for Using This Publication

The following is a list of the requirements for using this publication.

• This publication contains information for the following Selectable Units:

Scheduler Improvements - SU4
Supervisor Performance # 1 - SUS
Supervisor Performance # 2 - SU7
Service Data Improvements - SU17
JES2 Release 4.1 - SU25
3838 Vector Processing Subsystem Support - SU29
Dumping Improvements - SU33
Attached Processor System for Models 158/168 - SU47
Hardware Recovery Enhancements - SUSS
Interactive Problem Control System (IpeS) - SU57

• To use this publication, you must have installed at least SUs 4, 5, 7, 17, 25,
(if you are a JES2 user), 33, and 55.

• The implied date of this publication, for the purpose of adding new
supplements/TNLs, is September 30,1978. Always use the page with the latest
date (shown at the top of the page) when adding pages from different supple­
ments/TNLs.

Guide for Using This Publication iii

iv OS/VS2 System Programming Library: MVS Diagnostic Techniques

]./

Preface

This publication describes diagnostic techniques and gUidelines for isolating
problems on MVS systems. It is intended for the use of system programmers and
analysts who understand MVS internal logic and who are involved in resolving MVS
system problems.

This publication is intended for use only in debugging. None of the information
contained herein should be construed as defining a programming interface.

Organization and Contents

This publication stresses a three-step debugging approach:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the problem
to the component level.

3. Analyzing the component to determine the cause of the problem.

In support of this approach, the publication has been reorganized into three
basic parts consisting of five sections and three appendixes as follows:

Part 1

Section 1. GeneralIntroduction -- Describes the debugging approach that is used
and defines the external symptoms that are used to identify a system problem.

Section 2. Important Considerations Unique to MVS -- describes concepts and
functions that should be understood prior to undertaking system diagnosis.
Included are: global system analysis, system execution modes and status saving,
locking, use of recovery work areas, effects of MP, trace analysis, debugging hints,
and general data gathering techniques.

Section 3. Diagnostic Materials Approach -- provides guidelines for obtaining and
analyzing storage dumps of data areas affected by the problem.

Preface v

Part 2

Section 4. Symptom Analysis Approach - describes how to identify an external jf
symptom (loop, wait state, TP problem, performance degradation, or incorrect ~
output), and provides an analysis procedure for what kind of problem is causing the
symptom.

Section 5. Component Analysis - describes the operating characteristics and
. recovery procedures of selected system components and provides debugging

techniques for determining the cause of a problem that has been isolated to a
particular component.

Part 3

Appendixes

A. - describes the flow of various MVS processes.

B. - provides a step-by-step approach to analyzing a stand-alone dump.

C. - contains definitions of abbreviations used throughout the publication.

vi OS/VS2 System Programming Library: MVS Diagnostic Techniques

Referenced Publications

The following publications either are referenced in this publication or provide
related reading:

System/370 Principles of Operation

Synchronous Data Link Control General Information

OS/VS2 MVS Interactive Problem Control System (IPCS) User's
Guide and Reference

OS/VS Environmental Recording Editing and Printing (EREP)
Program

OS/VS2 System Programming Library:
Initialization and Tuning Guide
Supervisor
Job Management
Service Aids

GA22-7000

GA27-3093

GC34-2006

GC28-0772

GC28-0681
GC28-0628
GC28-0627
GC28-0674
GC28-0677 SYSl.LOGREC Error Recording

Debugging Handbook (2 volumes)
JES3 Debugging Guide

GC28-0751 and GC28-0752
GC28-0703

OS/VS2 TCAM System Programmer's Guide, TCAM Level 10

OS/VS TCAM Debugging Guide, TCAM Levell 0

OS/ VS2 MVS VTAM Debugging Guide

Operator's Library:
OS/VS2 MVS System Commands
OS/VS2 MVS JES2 Commands
OS/VS2 MVS JES3 Commands
VTAM Network Operating Procedures
OS / VS TCAM Levell 0

OS/VS Message Library:
VS2 System Messages
VS2 System Codes

3704/3705 Program Reference Handbook

OS/VS2 I/O Supervisor Logic

I OS/VS2 System Initialization Logic

OS/VS2 VSAM Logic

OS/VS2 Catalog Management Logic

OS/VS2 VTAM Data Areas

OS/VS2 Access Method Services Logic

OS/VS2 VTAM Logic

GC30-2051

GC30-3040

GC27-0023

GC38-0229
GC23-0007
GC23-0008
GC27-6997
GC30-3037

GC38-1002
GC38-1008

GY30-3012

SY26-3823

SY28-0623

SY26-3825

SY26-3826

SY27-7267

SY35-0010

SY28-0621

OS/VS2 System Logic Library (7 volumes) SY28-0713 through SY28-0719

Preface vii

OS/VS2 CVOL Processor Logic

OS/VS2 MVS iES2 Logic

OS/VS2 VIO Logic

OS/VS2 MVS JES3 Logic .

I OS/VS2 TCAM Level 10 Logic

"IBM 3704 and 3705 Communications Controllers NCe!VS Logic

OS/VS2 Data Areas (microfiche)

3704/3705 Communications Controllers Principles of Operation

IBM 3704/3705 Communications Controllers Emulation
Program Generation and Utilities Guide and Reference Manual

IBM 3704/3705 Communications Controllers NCP/VS Generation
and Utilities Guide and Reference Manual

viii OS/VS2 System Programming Library: MVS Diagnostic Techniques

SY35-0011

SY24-6000
If! SY26-3834 '~

SY28-0612

SY30-3032

SY30-3013

SYB8-0606

GC30-3004

GC30-3008

GC30-3007

Contents

Section 1. General Introduction .. 1.1.1
Basic MVS Problem Analysis Techniques 1.1.1
IPCS - Interactive Problem Control System. . . • . 1.1.4

Section 2. Important Considerations Unique to MVS ••••••••.•.•••.•..
Global System Analysis

Global Indicators that Determine the Current System State
Work Queues, TCBs and Address Space Analysis

TCB Summary.
SRB Dispatching Queues
Address Space Analysis.
Task Analysis .
Summary

System Execution Modes and Status Saving. '.'•...............
System Execution Modes

Task Mode•....
SRB Mode ,
Physically Disabled Mode .
Locked Mode

Determining Execution Mode From a Stand-alone Dump ..•...........
Locating Status Information in a Storage Dump

Task/SRB Mode Interruptions
Locally Locked Task Suspension .
SRB Suspension.

Locking
Classes of Locks.
Types of Locks .
Locking Hierarchy .
Determining Which Locks Are Held On a Processor
Content of Lockwords
How to Find Lockwords. .. .
Results of Requests for Unavailable Locks•.......

Use of Recovery Work Areas for Problem Analysis
SYS1.LOGREC Analysis

Listing the SYS1.LOGREC Data Set.
SYS1.LOGREC Records
Important Considerations About SYS1.LOGREC Records

SYS1.LOGREC Recording Control Buffer
Formatting the LOGREC Buffer•....•..
Finding the LOGREC Recording Control Buffer
Format of the LOGREC Recording Control Buffer

fRR Stacks
Extended Error Descriptor (EED)•....................
RTM2 Work Area (RTM2WA)

Formatted RTM Control Blocks
System Diagnostic Work Area (SDWA) Use in RTM2

Effects of Multi-Processing On Problem Analysis••..........
Features of an MP Environment•........
MP Dump Analysis . '.' . •

Data Areas Associated With the MP Environment.
Parallelism • . •
General Hints for MP Dump Analysis.

In ter-Processor Comm unica tion.
Direct Services. • . . . •
Remote Pendable Services.
Remote Immediate Services.

MP Debugging Hints; . . • . . •

2.1.1
2.1.3
2.1.3
2.1.6
2.1.6
2.1.7
2.1.7
2.1.8
2.1.10
2.2.1
2.2.1
2.2.1
2.2.2
2.2.2
2.2.3
2.2.4
2.2.5
2.2.5
2.2.6
2.2.7
2.3.1
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.5
2.3.7
2.4.1
2.4.2
2.4.2
2.4.3
2.4.13
2.4.14
2.4.15
2.4.15
2.4.15
2.4.17
2.4.19
2.4.19
2.4.19
2.4.20
2.5.1
2.5.1
2.5.2
2.5.3
2.5.4
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10
2.5.16

Contents ix

MVS Trace Analysis .
Trace Entries
Trace Examples
Notes for Traces

Tracing Procedure.. '.' •
Cautionary Notes•...............

Miscellaneous Debugging Hints . '.'
Alternate CPU Recovery (ACR) Problem Analysis
Pattern Recognition

Low Storage Overlays •'.
Common Bad Addresses .

OPEN/CLOSE/EOV ABENDs.
Debugging Machine Checks .
Debugging Problem Program Abend Dumps.
Debugging from Summary SVC Dumps

SUMDUMP Output for SVC-Entry SDUMP
SUMDUMPOutput for Branch-Entry SDUMP

Started Task Control ABEND and Reason Codes. . . "
SW A Manager Reason Codes. . .'. "

Additional Data Gathering Techniques. •
Using the CHNGDUMP, DISPLAY DUMP, and DUMP Commands
How to Print Dumps ; '. •
How to Automatically Establish System Options for SVC Dump
How to Copy PRDMP Tapes.
How to Rebuild SYS1.UADS
How to Print SYS1.DUMPxx
How to Clear SYS1.DUMPxx Without Printing
How to Print the SYS1.COMWRITE Data Set
How to Print an LMOD Map of a Module
How to Re-create SYS1.STGINDEX•..............
Software LOGREC Recording
Using the PSA as a Patch Area
Using the SLIP Command

Designing an Effective SLIP Trap. ',' • . . .
Enabling the PER Hardware to Monitor Storage Locations
System Stop Routine
U sing the MVS Trace to Monitor Storage .. . ,.
How To Expand the Trace Table

Section 3. Diagnostic Materials Approach.
Standalone Dumps . .'.
SVC Dumps

How to Change the Contents of an SVC Dump Issued by an Individual
Recovery Routine.

SDUMP Parameter List
SYSABENDs, SYSMDUMPs, and SYSUDUMPs

Software-Detected Errors
Hardware~Detected Errors.

Section 4. Symptom Analysis Approach .
Waits

Characteristics of Enabled Waits
Characteristics of Disabled Waits
Analysis Approach for Disabled Waits ~
Analysis Approach for Enabled Waits

Stage 1: Preliminary Global System Analysis.
Stage 2: Key Subsystem Analysis
Stage 3: System Analysis .

Loops
Common Loop Situations .
Analysis Procedure .

x OS/VS2 System Programming Library: MVS Diagnostic Techniques

2.6.1
2.6.1
2.6.3

~ 2.6.5
2.6.5
2.6.7
2.7.1
2.7.1
2.7.3
2.7.4
2.7.5
2.7.5
2.7.6
2.7.11
2.7.14
2.7.14
2.7.16
2.7.18
2.7.19
2.8.1
2.8.2
2.8.2
2.8.5
2.8.5
2.8.6
2.8.7
2.8.7
2.8.8
2.8.8
2.8.9
2.8.9
2.8.10
2.8.10
2.8.12
2.8.15
2.8.17
2.8.18
2.8.18

3.1.1
3.1.3
3.1.5

3.1.6
3.1.7
3.1.9
3.1.9
3.1.10

4.1.1
4.1.3
4.1.3
4.1.4
4.1.5
4.1.7
4.1.8
4.1.10
4.1.15
4.2.1
4.2.1
4.2.2

TP Problems
Message Flow Through the System.
Types of Traces. • . '.' . .

EP Mode Traces
NCP Mode Traces.

Trace Output Under Normal Conditions
Example 1: VTAM I/O Trace.
Example 2: VT AM and GTF Traces.
Notes on Examples 1 and 2 .
Summary
VTAM Buffer Trace Modification
VTAM I/O Trace (RNIO) Modification
Other Tracing Methods.

Performance Degradation
Operator Commands
Dump Analysis Areas

Incorrect Output
Initial Analysis Steps.
Isolating the Component
Analyzing System Functions
Summary

Section 5. Component Analysis
Dispatcher.

Important Dispatcher Entry Points
Dispatchable Units and Sequencing of Dispatching
Dispatchability Tests.
Miscellaneous Notes About the Dispatcher
Dispatcher Recovery Considerations .
Dispatcher Error Conditions.

lOS•.................
Front-End Processing
Back-End Processing
lOS Problem Analysis '.' .

lOS Abend Codes .. ' .
Loops•...............................
lOS Wait States '

General Hints for lOS Problem Analysis
Error Recovery Procedures (ERPs)

lOS and ERP Processing •
Identifying ERP Module Names
How ERP Transfers Control.
Abnormal End Appendages ..
Retry/Restart the Channel Program
Error Interpreter
ERP Messages and Logging. . . . • .
Intercept Conditions .
Unit Check on Sense Command
Compound Errors.
Diagnostic Approach. . . . • .

Program Manager .
Functional Description.

Program Manager Organization
Program Manager Con trol Blocks.
Program Manager Queues .
Queue Validation•..................
System Initialization . • . •

4.3.1
4.3.1
4.3.3
4.3.4
4.3.5
4.3.7
4.3.7
4.3.12
4.3.27
4.3.28
4.3.29
4.3.29
4.3.30
4.4.1
4.4.1
4.4.2
4.5.1
4.5.1
4.5.1
4.5.2
4.5.3

5.1.1
5.1.3
5.1.3
5.1.4
5.1.10
5.1.12
5.1.13
5.1.14
5.2.1
5.2.1
5.2.1
5.2.1
5.2.4
5.2.4
5.2.5
5.2.6
5.2.8
5.2.8
5.2.9
5.2.9
5.2.10
5.2.11
5.2.11
5.2.12
5.2.13
5.2.13
5.2.13
5.2.14
5.3.1
5.3.1
5.3.1
5.3.1
5.3.2
5.3.4
5.3.5

Contents xi

Basic Functional Flow. • 5.3.5
LINK•...........•..................... 5.3.5
ATTACH .. 5.3.8
XCTL ' 5.3.8
LOAD ' 5.3.11
DELETE· ... c ••••••••••.•••••.•••• ' •••••••••••••••••••• 5.3.11
Exit Resource Manager. 5.3.11
SYNCH ; 5.3.12
IDENTIFY 5.3.12
Abend Resource Manager . 5.3.13
806 Abend 5.3.14
APF Authorization. 5.3.14

Module Subpools ... ' : 5.3.19
Fetch/Program Manager Work Area (FETWK) ; .•................. 5.3.19
RB. Extended Save Area (RBEXSAVE) 5.3.20

VSM•................... 5.4.1
Address Space Initialization. 5.4.3
Step Initialization/Termination. 5.4.5
Virtual Storage Allocation. • . 5.4.6
GETMAIN's Functional Recovery Routine . 5.4.8
VSM Cell Pool Management. 5.4.10
Miscellaneous Debugging Hints . 5.4.10

Real Storage Manager (RSM) . . . " ~'.. 5.5.1
Major RSM Control Blocks .. 5.5.1

PCB ; 5.5.3
SPCT•...................... 5.5.5
PFTE ' ; 5.5.6

Page Stealing ' '. 5.5.6
Reclaim ' .. : •................................ 5.5.8
Relate '. 5.5~8

RSM Recovery 5.5.9
RSM Debugging Tips 5.5.12
Converting a Virtual Address to a Real Address 5.5.13

Example: Converting a Virtual Address to aReal Address 5.5.15
Auxiliary Storage Manager (ASM) 5.6.1

Component Functional Flow•..................... 5.6.2
Saving an LG . 5.6.2
Requesting I/O .. 5.6.3
Requesting Swap I/O ; .. 5.6.4

Component Operating Characteristics . 5.6.4
System Mode ... ' ',' 5.6.4
Address Space, Task, and SRB Structure. 5.6.6
Storage Considerations. 5.6.6
MP Considerations 5.6.6
Interfaces With Other Components. 5.6.7
Register Conventions. 5.6.7
Footprints and Traces ; . 5.6.7

General Debugging Approach. 5.6.8
Paging Interlocks 5.6.8
Incorrect Pages 5.6.9

Finding the LSID for a Given Page " ... 5'.6.10
Finding LSIDs ofVIO Data Sets .. , 5.6.10.
Locate PART and PAT Bit 5.6.12
Converting a Slot Number to a Full Seek Address 5.6.14

Unusable Paging Data Sets.;•................... 5.6.15
Page/Swap Data Set Errors 5.6.17
Error Analysis Suggestions 5.6.18
Validity Checking 5.6.19

xii OS/VS2 System Programming Library: MVS Diagnostic Techniques

'A
I
\ ..

ASM Serialization 5.6.19
SALLOC Lock•.•.................... 5.6.19
ASM Class Locks. .. 5.6.20
Local Lock of Current Address Space 5.6.21
Compare and Swap (CS) Serialization .. 5.6.21
Serialization via Control Block Queues. 5.6.22

Recovery Considerations. 5.6.22
Recovery Traces. .. 5.6.23
Recovery Structure. .. 5.6.23
Recovery as a Debugging Tool. .. 5.6.24
Recovery Footprints. .. 5.6.24

FRR/ESTAE Work Areas .. 5.6.24
SDWA Variable Reco"rding Area. • 5.6.25

ASM Diagnostic Aids. .. 5.6.25
COD ABEND Meanings for ASM 5.6.26
ASM Recovery Control Blocks .. 5.6.26

ASM Tracking Area (ATA) .. .' 5.6.26
Recovery Audit Trail Path (EPATH)•................ 5.6.29

Additional ASM Data Areas. 5.6.32
BSHEADER. .. 5.6.32
BUFCONBK•••...•.•.................. 5.6.33
DSNLIST .. 5.6.33
·MSGBUFER•..................... 5.6.34

System Resources Manager (SRM) . 5.7.1
SRM Objectives. 5.7.1
Address Space States 5.7.2
SRM Indicators. .. 5.7.3

System Indicators• 5.7.3
Individual User Indicators. 5.7.6
Other Indicators. • . 5.7.8

SRM.Error Recovery 5.7.8
Module Entry Point Summaries•.....•....•....... 5.7.8

IRARMINT - SRM Interface Routine •......•.............. 5.7.9
IRARMEVT - SRM SYSEVENT Router .•...............•... 5.7.9
IRARMSTM - Storage Management Routine. 5.7.9
IRARMSRV - SRM Service Routine•. 5.7.10
IRARMERR - SRM's Functional Recovery Routine 5.7.10
IRARMCPM .,... Processor Management 5.7.11
IRARMIOM - I/O Management ...•.••...•.............•• 5.7.12
IRARMRMR- Resource Manager •........................ 5.7.13
IRARMCTL - SRM Control Algorithms •...........•........ 5.7.13
IRARMWAR- Workload Activity Recording 5.7.15
IRARMWLM- SRM Workload Manager 5.7.16

VTAM•. "•.......... 5.8.1
VT AM's Relationship With MVS ... ~ .. 5.8.1
Processing Work Through VTAM. .. 5.8.2
VTAM Functio~ Management Control Block (FMC B) 5.8.5
VT AM Operating Characteristics. 5.8.6

Module Naming Convention '• 5.8.6
Addre~s Space Usage. • 5.8.6
Locking '•...................... 5.8.7

VT AM Recovery /Terinination. 5.8.8
VTAM Debugging•.•....•...•........... 5.8.10

Waits•.••..•.......•......... '. 5.8.11
Program Checks•......••.•.................... 5.8.15

Miscellaneous Hints on VTAM •.........••.......•......... 5.8.15
VSAM ... 5.9.1

Record Management•................•... 5.9.1
RPL ... 5.9.1
PLH••.•..........•.... 5.9.2
BUFC : .•..................... 5.9.3

Contents xiii

Record Management DebuggingAids••.•........•......
Open/Close/End-of-Volume.• • • • . . .
O/C/EOV Debugging Aids. • .
I/O Manager '
I/O Manager Debugging ..

Catalog Management . • . .
Major Registers and Control Blocks. • • . . .

How to Find Registers • .
Major Registers • . . • •
Major Control Blocks ~•.............

Module Structure. • . • . •
VSAM Catalog Recovery Logic , • . . • • . •

Establishing/Releasing a Recovery Environment
Maintaining a Pushdown List End Mark•....•...•.
Tracking GETMAIN/FREEMAIN Activity
CMS Function Gate. • • '. . .

Recovery Routine Functions•...•...•.................
Diagnostic Output . •
Backout
Drop Catalog Orientation .
Storage Freeup • .
DEFINE/DELETE Backout•.............

Debugging Aids .
Allocation/Unallocation .•.................................

Functional Description.
Allocation .
Unallocation•.
Batch Initialization and Control.
Dynamic Initialization and Control.
JFCB Housekeeping'. •
Common Allocation . . . • .

Fixed Device Allocation . • . • • • .
TP Allocation . • • •' . . •
Generic Allocation • . . . • •
Recovery Allocation ..

Common Unallocation .•..............................
Volume Mount and Verify. . . • •

General Debugging Aids .
Allocation Module Naming Conventions. •
Registers and Save Areas.
Common Allocation Control Block Processing •.................
EST AE Processing . • . . • • • • •

Debugging Hints.
Allocation Serialization . . .'. • • . .
Subsystem Allocation Serialization.
Device Selection Problems (Non-Abend)
Address Space Termination. • .
OBO Abend '
OC4 Abend in IEFAB4FC, or Loop in IEFDB413
Volume Mount and Verify (VM&V) Waiting Mechanism•.....

Allocation/Unallocation Reason Codes. • . . . • . • •
Common and Batch Allocation and JFCB Housekeeping Reason Codes
Common and Batch Unallocation Reason Codes
Dynamic Allocation Reason Codes. . . • . . . •

JES2
Job Processing Through JES2•...................

Input
Conversion. • .
Execution
Output•...........
Purge ' ~

xiv OS/VS2 System Programming Library: MVS Diagnostic Techniques

5.9.3
5.9.6
5.9.7
5.9.8
5.9.9
5.10.1
5.10.1
5.10.1
5.10.2
5.10.2
5.10.9
5.10.10
5.10.10
5~10.10

5.10.11
5.10.11
5.10.12
5.10.12
5.10.13
5.10.13
5.10.13
5.10.14
5.10.15
5.11.1
5.11.1
5.11.2
5.11.2
5.11.2
5.11.3
5.11.3
5.11.4
5.11.4
5.11.4
5.11.5
5.11.5
5.11.5
5.11.5
5.11.6
5.11.6
5.11.6
5.11.7
5.11.10
5.11.11
5.11.11
5.11.12
5.11.12
5.11.13
5.11.13
5.11.13
5.11.14
5.11.16
5.11.16
5.11.19
5.11.19
5.12.1
5.12.1
5.12.1
5.12.1
5.12.1
5.12.1
5.12.2

JES2 Structure
HASJES20 Program Structure
HASJES20 Module Structure
HASP Control Table (HCT) ..
HASPSSSM,

Subsystem Interface
Dispatcher Structure

$WAIT .. .
$$POST
JES2 WAIT

Dispatcher Queue Structure.
JES2 Error Services

Disastrous Error Routine
JES2 ESTAE Routine
Catastrophic Error Routine
JES2 Exit Routine
Input/Output Error Logging Routine

JES2 $DEBUG Functions In a Multi-Access Spool Configuration
Initialization.
Read
Write '
Release .. .

Miscellaneous Hints on JES2
Starting JES2 - Enqueue Wait on STCQUE

Subsystem Interface (SSI)
System Initialization Processing
Subsystem Interface Major Control Blocks
Requesting Subsystem Services

Invoking the Subsystem Interface
Logic Flow Examples ;

Notifying a Single Subsystem
Notifying All Active Subsystems

Debugging Hints.
Recovery Termination Manager (R TM) .

Functional Description.
Work Areas
Major RTM Modules

Process Flow.
Hardware Error Processing..
Normal Task Termination
Abnormal Task Termination
Retry
Cancel .. .

FORCE Command
Address-Space Termination .
Error ID ,

5.12.2
5.12.2
5.12.3
5.12.4
5.12.6
5.12.7
5.12.9
5.12.9
5.12.10
5.12.10
5.12.10
5.12.11
5.12.11
5.12.13
5.12.13
5.12.13
5.12.14
5.12.14
5.12.15
5.12.15
5.12.15
5.12.16
5.12.16
5.12.16
5.13.1
5.13.1
5.13.2
5.13.5
5.13.5
5.13.7
5.13.7
5.13.8
5.13.9
5.14.1
5.14.1
5.14.1
5.14.1
5.14.2
5.14.2
5.14.4
5.14.5
5.14.6
5.14.7
5.14.8
5.14.9
5.14.10

SVC Dump Debugging Aids ,5.14.11
Important SVC Dump Entry Points 5.14.11

BRANCH=YES Option. 5.14.11
BRANCH=NO Option 5.14.11

SVC Dump Error Conditions 5.14.12
SYS1.LOGREC Entries Produced for SVC Dump Errors 5.14.12

Fixed Data. 5.14.12
Variable Data. 5.14.13

Control Blocks Used to Debug SVC Dump Errors 5.14.14
Address Space Control Block (ASCB) 5.14.14
Recovery Termination Control Table (RTCT) , 5.14.14
SVC Dump Work Area (SDWORK). 5.14.14
Summary Dump Work Area (SMWK). 5.14.14

Resource Cleanup for SVC Dump. 5.14.15

Contents 'xv

Communications Task•..............•............•... 5.i5.1
Functional Description. • • • . . • . . . 5.15.2
Communications Task Control Blocks. . . • • . .. 5.15.4
Debugging Hints. • • . . • • • . . 5.15.6

Console Not Responding to Attention. • • 5.15.6
Enabled Wait State. . • . . • • . 5.15.6
Disabled Wait State•..........•.......•..... 5.15.7
Messages or Replies Lost.•...•.................. 5.15.7
No Messages on One Console ...•....................•... 5.15.8
Messages Routed to Wrong Console .•.........•..........•.. 5.15.8
Truncated Messages 5.15.9
Console Switching•.........•................• 5.15.9
DIDOCS Trace Table. ;•.......................... 5.15.9
DIDOCS-In-Operation Indicator•.....•........... 5.15.10
DIDOCS Locking 5.15.10

Appendix A: Process Flows••.........•...•. A.I.l
RSM Processing for Page Faults. • .. A.1.3

IEAVPIX Tests • • • • A.l.3
IEAVGF A Tests. • . • . . . • A.l.3
IEAVPIOP Tests • . • . . A.l.6
IEAVIOCP Tests•........•.....••.....•.. A.l.6

Swapping '. • . . • A.2.1
Swap-In Process•......... '. • A.2.1
Swap-Out Process ; . A.2.3

EXCP/IOS " A.3.1
GETMAIN/FREEMAIN ...•............................. " A.4.1

GETMAIN Processing A.4.1
FREEMAIN Processing A.4.2

VTAM Process ... A.5.l
TSO ...•. A.6.1

Time Sharing Initialization ~ A.6.1
LOGON Processing. • . • A.6.4

LOGON Scheduling Diagnostic Aids A.6.l2
TSO Line Drop Processing•.....••.... A.6.l4
TMP and Command Processor Interface ',' • . . . A.6.l7
TSO Command Processor Recovery A.6.21
TSO Terminal I/O Overview. • A.6.23

Terminal Output Flow A.6.24
Terminal Input Flow•..... A.6.25

TSO/TIOC Terminal I/O Diagnostic Techniques A.6.26
TSO Attention Processing•...................... A.6.27

Appendix B: Stand-alone Dump Analysis. • B.1.1
Overview .. B.l.l
Analysis Procedure••. B.1.7

Appendix C: Abbreviations•............... C.l.l

Index. .. 1.1,.1

xvi OS/VS2 System Programming Library: MVS Diagnostic Techniques

Figure 2-1.
Figure 2-2.

Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Fi~ure 2~11.

Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2-17.
Figure 2-18.
Figure 4-1.
Figure 4-2 .

. Figure 4-3.
Figure 4-4.

. Figure 4-5.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5~7.
Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-20.
Figure 5-21.
Figure 5-22.
Figure 5-23.
Figure 5-24.
Figure 5-25.
Figure 5-26.
Figure 5-27.
Figure 5-28.
Figure 5-29.
Figure 5-30.
Figure 5-31.
Figure 5-32.
Figure 5-33.

Definition and Hierarchy of MVS Locks .
Bit Map to Show Locks Held on a Processor
Classification and Location of Locks.
SYS 1.LOG REC Software Incident- Record 1.
SYS1.LOGREC Software Incident Record 2.
SYS1.LOGREC Software Incident Record 3.
Format of the LOGREC Recording Control Buffer
Format of Records Within the LOGREC Recording Control Buffer
SIGP Return Codes.
External Call (XC) Process Flow .
Emergency Signal (EMS) Process Flow
How to Locate the Trace Table
Types of Trace Entries .
MVS Trace of a Page Fault Without I/O
MVS Trace of a Page Fault With I/O .
GTF Trace of a Page Fault Without I/O
GTF Trace of a Page Fault With I/O .
Trace Example of PER Hardware Monitoring
Summary of EP and UCP Mode Traces
VTAM I/O Trace Example.
VT AM and GTF Traces Example .
JES2 Commands for Status Information.
System Use of Hardware Components
Global SRB Queue Structure and Control Block Relationships
Local SRB Queue Structure and Control Block Relationships.
Dispatcher Processing Overview
lOS Processing Overview
Major lOS and EXCP Control Block Relationships
Program Manager Modules.
Program Manager Control Blocks and Work Areas
Program Manager Queues .
IEAVNP05 Initialization
New PRB Initialization - LINK
New RB Initialization - XCTL
XCTL RB Manipulation
CDE Initialization by IDENTIFY.
Module Search Sequence for LINK, ATTACH, XCTL and LOAD.
Module Search Seq uence of Private Libraries
CDE Allocation .
VSM's View of MVS Storage
VSM's Control Block Usage
VSM's Global Data Area
SDWAVRA Error Indicators
VSM Cell Pool Management
Major RSM Control Blocks and Their Functions
Relationship of Critical RSM Control Blocks
Page Stealing Process Flow.
Converting Virtual Addresses to Real Addresses.
Relationship of Important ASM Control Blocks.
Locating an LSID From an LPID .
Relating the Virtual Address to the PART and PAT
Page/Swap Data Set Error Action Matrix.
SRM Control Block Overview .
SRM Module/Entry Point Cross Reference
VTAM Control Block Structure
Several RPHs Waiting for the Same Lock.

Figures

2.3.2
2.3.4
2.3.6
2.4.4
2.4.7
2.4.11
2.4.16
2.4.16
2.5.8
2.5.12
2.5.14
2.6.1
2.6.2
2.6.3
2.6.3
2.6.4
2.6.4
2.8.16

· 4.3.3
.4.3.8
· 4.3.14
· 4.4.2
· 4.4.3
· 5.1.5
· 5.1.7
· 5.1.9
· 5.2.2
· 5.2.3
· 5.3.2
· 5.3.3
· 5.3.3
· 5.3.6
· 5.3.7
· 5.3.9
· 5.3.10
· 5.3.13
· 5.3.15
· 5.3.16
· 5.3.17
· 5.4.2
· 5.4.4
.5.4.7
· 5.4.9
· 5.4.11
.5.5.1
·5.5.2

5.5.7
5.5.14
5.6.5
5.6.11
5.6.13
5.6.17
5.7.4
5.7.20
5.8.3
5.8.9

Figures xvii

Figure 5-34. Sample Storage Pool Dump
Figure 5-35. Queueing of RPHs While Waiting for Storage
Figure 5-36. Relationship of the Six Major Functions of Allocation/Unallocation .
Figure 5-37. Common Allocation Input.
Figure 5-38. Common Allocation Control Blocks After Construction of Volunit

Table and EDLs ..
Figure 5-39. VM& V Control Block Structure .
Figure 5-40. HASJES20 Module Map
Figure 5-41. Locating the JES2 Module Directory in HASPNUC.
Figure 5-42. HCT Major Vector Fields .
Figure 5-43. The Subsystem Vector Table .
Figure 544. HASPSSM - HASJES20 - OS/VS2 Relationship .
Figure 5-45. Formal Subsystem-Interface Vectors.
Figure 5-46. JES2 Queue Control Fields.
Figure 5-47. JES2 Processor Control Element Relationships .
Figure 5-48. Example Dump of JES2 Processor Queue Chains
Figure 5-49. Major JES2 Control Blocks.
Figure 5-50. Subsystem Interface Control Block Usage
Figure 5-51. Control Block Structure for Invoking Subsystem Interface
Figure 5-52. Finding the SSIB for a Job When SSOB Pointer is Zero
Figure 5-53. Sequence of Communications Task Processing .
Figure 5-54. Communications Task Control Block Structure.
Figure A-I. Page Fault Process Flow
Figure A-2. Swap-In Process Flow .
Figure A-3. Swap-Out Process Flow.
Figure A4. IOS/EXCP Process Flow
Figure A-5. VTAM SEND Process Flow
Figure A-6. Overview of Logon Processing.
Figure A-7. TCAM Organization After a TSO Logon .
Figure A-8. Logon Work Area
Figure A-9. LOGON Work Area Bits That Indicatt;: the Currently Executing Module.
Figure A-10. LOGON Scheduling Post Codes
Figure A-II. Overview of TSO Line Drop Process.
Figure A-12. Summary of Command Processor Recovery Activity
Figure A-13. TSO Attention Flow
Figure B-l. Standalone Dump Analysis Flowchart

xviii OS/VS2 System Programming Library: MVS Diagnostic Techniques

· 5.8.13
· 5.8.14
.5.11.1
· 5.11.8

.5.11.9

.5.11.15
· 5.12.3
· 5.12.4
.5.12.5
.5.12.6
· 5.12.6
· 5.12.8
· 5.12.9
· 5.12.11
· 5.12.12
· 5.12.17
· 5.13.4
· 5.13.6
· 5.13.6
· 5.15.3
· 5.15.5
· A.1.4
· A.2.2
· A.2.4
· A.3.2
· A.5.2
· A.6.2
· A.6.7
· A.6.9
· A.6.12
· A.6.13
· A.6.15
· A.6.22
· A.6.28
· B.I.6

Summary of Amendments
for GC28-072S-2
VS2 Release 3.7

Changes have been made throughout this publication to reflect a Service Update to
OS/VS2 Release 3.7 and to include the following topics:

Diagnostic Aids Information

Information from OSjVS2 System Logic Library, Volume 7, SY28-0719, was
added in the following topics:

• Started task control (STC) abend and reason codes.
• Scheduler work area (SWA) manager reason codes.
• Auxiliary storage manager (ASM) diagnostic aids and serialization information.
• Allocation/unallocation reason codes.
• TSO logon scheduling.
• Communications task overview and diagnostic aids.
• DIDOCS diagnostic aids.

Also, diagnostic aids information was added for:

• Error recovery procedures (ERPs).
• Converting virtual addresses to real addresses.
• JES2 miscellaneous hints.

Interactive Problem Control System (IPCS), SU57

Overview information was added for IPCS.

Miscellaneous Changes

Throughout the text:

• Minor technical and editorial changes were made.
• References to DSS (dynamic support system) were removed.
• References to EREPO were changed to EREPI (environmental recording editing

and printing).

Summary of Amendments xix

xx OS/VS2' System Programming Library: MVS Diagnostic Techniques

Section 1. General Introduction

This section introduces basic MVS problem analysis and provides an overview of the
interactive problem control system (lpeS).

Basic MVS Problem Analysis Techniques

Problem isolation and determination are significantly more complex in MVS than
in previous operating systems because of:

• Enabled System Design which has made the internal and environmental status­
saving functions more extensive than those of previous system.

• Multiprocessing (MP) which potentially allows the execution of code in
sequences not encountered in a uniprocessing (UP) environment. MP can also
cause contention for serially reuseable resources. (In this manual, MP refers to
multiprocessing on both multiprocessors and attached processors.)

• Locking Mechanism which facilitates Enabled System Design and Multi­
processing functions and maintains data integrity.

• Subsystems which are responsible for processing work requested from the
system. They maintain their own work queues, control block structures and
dispatching mechanisms - all of which must be understood in order to
effectively pursue problems in the MVS operating system.

• Software Recovery which attempts to keep the system available despite errors.

• The large number of new components which provide new functions and whose
internal logic must be understood for effective problem determination.

As a result of this complexity, MVS problem solvers have made two adjustments
in their diagnostic outlook:

• Rather than learning the system logic at an instruction or module level, they
have learned the system in terms of component interactions at the interface
level.

• They have learned that the most effective problem analysis at a system level is
obtained from a disciplined, almost formal, diagnostic approach.

Section 1. General Introduction 1.1.1

•

Section 1: General Introduction (continued)

This publication contains those debugging techniques and guidelines that have
proven the most useful to problem solvers with several years experience in
analyzing MVS system problems. These techniques are presented in terms of a
debugging "approach" that can be summarized in three steps:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the problem
to a component.

3. Analyzing the component to determine the cause of the problem.

The most important step in this approach is often the first - correctly
identifying the external symptom of a problem. To do this, it is best to get a
description of the problem as it was perceived by an eyewitness. You will want a
description that provides a context from which to start, such as:

"System is looping; can't get in from console."

'''Job abended with 213"

"I/O error on 251."

"Console locked out."

"Terminal hung, keyboard locked."

"System in wait, nothing running."

"Bad output."

"Job won't cancel."

"System degrading. Very slow."

"System died."

"OC4 in component abc."

The list is endless, of course. Your objective is to fit one (or more) of these
descriptions to one of the following external symptoms.

• Enabled wait - The system isnot executing any work and when it takes
interrupts, nothing happens. Something appears to be stuck.

• Disabled wait - The system freezes with a disabled PSW that has the wait bit
on. This can be either an explicit and intentional disabled wait or a situation
that occurs because the PSW area has been overlaid. Unfortunately, the latter
is more often the case.

•

,e

Disabled loop - This is normally a small (fewer than 50 instructions) loop in
disabled code.

Enabled loop - This is normally a large loop in enabled code (and may
include disabled portions - loops as a result of interrupts).

1.1.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

I

\

Section 1. General Introduction (continued)

• Program check - The program is automatically cancelled by the system,
usually because of improper specification or incorrect use of instructions or
data in the program. The program check message gives the location of the
failing operation and the condition code. If a SYSABEND, SYSMDUMP, or
SYSUDUMP DD statement was included in the JeL for the job, a dump of
the problem program will be taken.

I. ABEND - The system issues an SVC 13 with a specific code from 1 to 4095
to indicate an abnormal situation.

• Incorrect output - The system is not producing expected output. Incorrect
output can be categorized as: missing records, duplicate records or invalid
data that has sequence errors, incorrect values, format errors, or meaningless
data. If a program has apparently executed successfully, incorrect results will
not be detected until the data is used at some future time.

• Performance degradation - A bottleneck or system failure (hardware or
software) has severely degraded job execution and throughput.

• TP problem - A problem, usually detected by the operator or terminal user,
that indicates malfunctions are affecting one or more terminals,lines, etc.

The chapters in Section 4 (Symptom Analysis Approach) will help you identify
these symptoms. The main rule at this stage of your analysis is to proceed
carefully. When first screening a problem, do not assume too much. Don't even
assume that the original eye witness description was correct. Keep all initial
information about the problem as a reference for your later analysis.

In the course of identifying the correct external symptom, you will begin
gathering data that will lead you to other sections of the publication. Specific data
gathering techniques are contained in Sections 2 and 3. Section 2 describes the
major MVS debugging areas such as LOGREC records and recovery work areas.
Section 3 describes how to use a storage dump effectively as your main source of
diagnostic material.

Eventually you should have gathered enough data to isolate the problem to a
particular component or process. Section 5 and Appendix A provide techniques
for analyzing system components and processes so that you can determine the

I cause of the problem. Appendix Bcontains a step-by-step procedure that can be
used as a guide for analyzing a stand-alone dump.

Note: Before you begin using this publication for problem analysis, scan
through it to find out where the various types of information are located.
Depending on your current debugging ski1llevel, various sections will be more
important than others.

Always keep in mind that trouble-shooting a system of the internal complexity
of MVS is not always an "If A, then B" procedure. The guidelines and techniques
presented in this publication define "generally" what the analyst will discover. The
nature of the debugging process is such that the problem solver does not perform
the same analysis for every problem.

Section 1. Generallntroduction 1.1.3

Section 1: General Introduction (continued)

IPCS - Interactive Problem Control System

The interactive problem control system (IPCS) provides MVS installations with
expanded capabilities for diagnosing software failures and facilities for managing
problem information and status.

IPCS includes facilities for:

• Online examination of storage dumps.

• Analysis of key MVS system components and control blocks.

• Online management of a directory of software problems that have occurred in
the user's system.

• Online management of a directory of problem-related data, such as dumps or
the output of service aids.

IPCS runs as a command processor under TSO, allowing the user to make use
of existing TSO facilities from IPCS, including the ability to create anti execute
command procedures (CLISTs) containing the IPCS command and its sub­
commands.

IPCS supports three forms of MVS storage dumps:

I • High-speed stand-alone dumps produced by AMDSADMP.

• Virtual dum,ps produced by MVS SDUMP on SYSl.DUMP data sets.

• Virtual dumps produced by MVS SDUMP on data sets specified by the
SYSMDUMP DD statement.

Dumps on data sets specified by the SYSABEND or SYSUDUMP DD state­
ments cannot be analyzed using the IPCS facilities.

For information about IPCS, refer to the OS/VS2 MVS Interactive Problem
Control System (IPCS) User's Guide and Reference.

1.1.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques

(

"

Section 2. Important Considerations Unique to MVS

This section describes concepts and functions that are unique to the MVS environ­
ment and useful to problem analysis. It also contains miscellaneous debugging
hints and general data gathering techniques.

The chapters in this section are:

• Global System Analysis

• System Execution Modes and Status Saving

• Locking

• Use of Recovery Work Areas in Problem Analysis

• Effects of Multi-Processing on Problem Analysis

• MVS Trace Analysis

• Miscellaneous Debugging Hints

• Additional Data Gathering Techniques

Section 2: Important Considerations Unique to MVS ·2.1.1

2.1.2 OS/VS2 System Programming Library: .MVS Diagnostic Techniques

Global System Analysis

In trying to isolate a problem to an intemal symptom, a global system analysis
often uncovers enough data to provide a starting point for the actual problem
isolation and debugging. This chapter discusses the main considerations the analyst
should be aware of when analyzing a stand-alone dump, including:

• The system areas that should be inspected to understand the current system
state at the time of a dump

• The system areas that should be examined to understand the current state of
the work in the system and the current disposition of storage and tasks

Global Indicators That Determine the Current System State

The following areas should be examined to help determine the current state of the
system:

I. PSA - occupies the first 4K bytes of real storage for each processor. Note that
absolute 0 is not used during normal system operation on a machine with the
MP feature - this is true whether the system is operating in MP or UP. (The
one exception is a control program that is system generated with
ACRCODE=NO.) During NIP processing the PSA(s) for the processor(s) are
initialized and the prefix register(s) are initialized to point to them.

Special Notes About Standalone Dumps:

• Before taking a stand-alone dump, it is necessary to perform a STORE
STATUS operation. This hardware facility does not use prefixing;
instead it stores values such as the current PSW, registers, CPU timer, and
clock comparator in the unprefixed PSA (the one used before NIP
initialized the prefix register) at absolute address 100. The dump program
subsequently saves these values and, in an MP environment, issues a
SIGP instruction to the other processor requesting a STORE STATUS
operation. As a result, these values in the unprefixed PSA are overlaid
by the second processor's values.

Therefore, in an MP environment the status in the unprefixed PSA is
always that of the non-IPLed processor, not the one on which the stand­
alone dump was IPLed.

• In a machine not equipped with the MP feature and therefore without
prefixing, the IPLing of the stand-alone dump program causes low storage
(0-X'18') to be overlaid with CCWs. You should be aware of this and not
consider it as a low storage overlay.

Section 2: Important Considerations Unique to MVS 2.1.3

Global System Analysis (continued)

;;
• In an MP environment, the STORE STATUS operation must be performed ';j

only from the processor to be IPLed for the stand-alone dump program.

)

• IPLing the stand-alone dump program twice causes the storage dump to
contain a dump of itself because it was read in for the first IPL. This
causes the dump program to overlay a certain portion of the nucleus
(generally starting at X'7000') and the general purpose registers to con­
tain values associated with the stand~alone dump program and not MYS.

• If the operator does not issue the STORE STATUS instruction before
IPLing a stand-alone dump, the message "ONLY GENERAL PURPOSE
REGS YALID" appears on the formatted dump. The PSW, coritrol
registers, etc., are not included. This greatly hampers the debugger's
task: .

2. Registers and PSW - The print dump program formats the current PSW and
the general, floating point, and control registers associated with each processor.
From these, you can determine the program executing on each processor.

If the current PSW is 070EOOOO 00000000 and the GPRs are all 0, you are
in the no~work wait condition, which indicates no ready work is available
for this processor to execute.

If there is or should be work remaining, an invalid wait condition results.
(Refer to the chapter on "Waits" in Section 4.)

If the registers are not equal to zero and the PSW does no~ contain the wait
bit (X'0002'), there is an active program. If the wait task is dispatched, the
system is in the no-work wait condition.

3. ILC/CC - location X'84' for external interrupts; location X'88' for SYC
interrupts; location X'8C' for program interrupts. These fields indicate the
last type of interrupt associated with each interrupt class for each processor.
The work active when each interrupt occurs is represented by the old PSWs
aLlocations:' X'18' (external); X'20' (SYC); X'28' (program). Common con­
ten ts 0 f these fields are:

X'84' 00001004

00001005

- 00001201

- 00001202

clock comparator

CPU timer

SIGP-emergency signal

SIGP-external call

2.1.4 OS!VS2 System Programming LibraI)': MVS Diagnostic Techniques

Global System Analysis (continued)

X'88' - 000200xx where xx is the SVC number. This field should be
inspected for 1,!nusual SVCs such as:

1, - WAIT: can indicate an enabled wait situation

D - ABEND: can indicate program error processing

F - ERREXCP: can indicate· a problem in I/O error processing

10 .PURGE: can indicate a problem in the swap process

38 ENQ: can indicate a resource contention problem

4F STATUS: can indicate a non-dispatchability problem

X'8C' - OOOXOO 11

4. PSA + X'204' (CPU ID)

indicates a'page fault interrupt. Anything other than
a code of 11 is highly suspect and must be inspected
further. Also with a code of 11 ~ the program check
old PSW (location X'28') must be enabled (mask =
X'OT) because disabled page faults are not allowed in
MVS and it is an error if one occurs.

5. PSA + X'21 0' (address of LCCA - 1 per processor) - The LCCA contains many
of the status-saving areas that were located'in low storage in previous systems.
It is used for software environment saving and indications. The registers
associated with each of the interrupts you find in the PSA are saved in this
area. In addition, the system mode indicators for each processor are
maintained in the LCCA.

6. PSA + X'224' (PSAAOLD) - This is the address of the ASCB of the work last
dIspatched on each processor. This field indicates the address space that is
curren tly executing.

7. PSA + X'21C' (PSATOLD) - This is the address of the TCB of the work last
dispatched on each processor. This field in conjunction with PSAAOLD isolates to
a task within an address space. Note: PSATOLD=O when SRBs are dispatched.

8. PSA + X'228' (PSASUPER) - This is a field of bits that represent various
supervisory functions in the system. If a loop is suspected, these bits should
be checked in an attempt to isolate the looping process.

Note: Because of SRM timer proces~ing in MVS, the external first level
interrupt handler bit (X'20') or the dispatcher bit (X'04') may be set.in this
field even in the enabled wait situation.

9. PSA + X'2F8' (PSAHLHI) - This field indicates the current locks held on
each processor. Knowing which locks are held helps isolate the problem,
especially in a loop situation. By determining the lock holders you can
isolate the current process. (See the chapter on "Locking" later in this
section.)

Section 2: Important Considerations Unique to MVS 2~1.5

Global System Analysis (continued)

10. PSA + X'380'(PSACSTK) ~ This is the address of the active recovery stack
which contains the addresses of the recovery routines to be routed control in
case of an error. If the address is other than X'COO' (normal stack), the type

.' of stack (for example, program check FLIH or restart FLIH) is meaningful,
especially inthe.Joop situation.

By searching the normal stack (X'COO') and associating the recovery
routine to active mainline'routines you may get an idea of the current process.
This is true only if the pointer to the current entry is not X'C34,' which would
indicate an empty recovery stack.

Note: If a loop is suspected, the first word following each routine address in
the current stack should be scanned. A X'80'indicates that routine is in
control. A X'40' indicates that routine is in control and that it is a nested
recovery routine ..

If X'IO' into the stack is non-zero, also check for an SDWA address at X'44'
into the active stack. This block is mapped by the SDWA DSECT and is
described in the Debugging Handbook, (RTCA and SDW A are different names
for the same control block.) If an SDWA address is present, an error has
occurred and it can be related to the problem you are analyzing. If trapping
via RTM's SLIP facility, the registers at entry to RTM are contained in this area.

At this point you should understand each processor's current activity, any
possible errors that have been detected by recovery, and the current system
state or mode.

Work Queues, TCBs and Address Space Analysis

Examine the following areas to help determine the current state of work in the
system.

TCBSummary

The TCB summary report, produced by AMDPRDMP (print dump program),
contains a s,ummary of the address spaces .and their associated tasks. A quick scan
of the completion (CMP) field for each task reveals any abnormal terminations
that have occurred. Discovery of an error completion code warrants further
investigationasto the cause. Remember, however, that these codes are residual
and thejob or task might have recovered from the problem.

, Also investigate mUltiple abnormal completion codes which all relate to the same
area of the system, or many tasks that all have the same completion code. These

'completion codes. can all relate to one area of the .system and perhaps to the problem
you are investigating. Again, LOGREC should provide further documentation in an
error situation such as this.

2.1.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Global System Analysis (continued)

Once you understand the system's history from a trace, LOGREC,.and error
viewpoint, you should examine the work to be done as your next step to under­
standing the problem.

SRB Dispatching Queues

The print dump program formats the SRB dispatching queues. Elements on any of
these queues should be investigated, especially in cases where no work appears to
be progressing through the system.

Elements on the global or local service manager queues (GSMQ/LSMQ) can
indicate that the dispatcher has not received control since these SRBs were
scheduled. This is an unusual condition that should be investigated. It can also
indicate that the CVT anchors for these queues have been inadvertently altered.
This again is an error condition.

Elements on the GSPLs/LSPLs should be explained. It is possible the dump was
taken before the SRB routines were able to execute. But it more likely indicates
some other system problem such as an enabled wait or disabled loop. If there
are SRBs on an LSPL, you should determine if the associated address space
is swapped-into storage and if it is not, why not. (Possible causes are real frame
shortage or a problem in the paging/swapping mechanism.) Again this is an indica­
tion of a potential system problem. The chapter on "Waits" in Section 4 and the
chapter on "Dispatcher" in Section 5 contain additional information on the
dispatching queues.

If, at this point, you can isolate the problem to a component, refer to the
"Component Analysis" for that component in Section 5. The chapter on "Waits"
in Section 4 should prove helpful if you have isolated to a problem in the system.

Address Space Analysis

If you have isolated the error to a given address space or wish to determine the
state of a given address space, analyze the ASCB.

Important indicators in the ASCB are:

• . ASCBLOCK (ASCB + X'80') - to determine the specific state of the local lock.
If it. contains 7FFFFFFF or FFFFFFFF (the lock suspend/interrupt IDs),
refer to the chapter on "Locking" later in this section for an explanation.

Note: When holding a suspend lock, code can only be suspended because it
attempts to obtain an unavailable higher suspend lock or because of a page fault.
To find the reason for the suspension, refer to the discussion of Task Analysis
later in this chapter and to the chapter on "Locking" later in this section.

Section 2: .. Important Considerations Unique to MVS 2.1.7

Global System Analysis (continued)

• ASCBEWST (ASeB + X'48') - to determine the TOD clock value when the
address 'space last executed. This field helps you determine how long an
address space has been swapped-out. By subtracting this field (middle four
digits) from the last timer value in the MVS trace table and converting to
seconds, you can discover the approximate swap-out time. (See the
chapter "MVS Trace Analysis" later in this section.)

• ASCBRCTF (ASCB +X'66'), - current status of the address space.
ASCBFLGI (ASCB + X'67')

• ASCBASXB (ASCB + X'6C') - pointer to the ASXB that anchors the T~Bs.

• ASCBSRBS (ASCB + X'76') - number ofSRBs active (currently executing or
suspended) in the address space.

• ASCBOUCB (ASCB + X'90') - pointer to the OUCB, whicH is helpful when
determining Why an address space is swapped­
out.

• ASCBFMCT (ASCB + X'?8')- number of real frames currently occupied by
the address space.

• ASCBTCBS (ASCB + X'7C') number of ready TCBs.

ASCBCPUS (ASCB + X'20') - number of processors running tasks in this
address space.

Task Analysis

Once you understand the ASCB you should analyze the associated task structure.
Once again, scan the TCBs associated with your address space and look for an
abnormal completion field. While doing so, check the RB structure for each task.
Remember that the region control task, dump task, and started task control are
represented by the firstthree TCBs. "Normally" they will be waiting during
task execution. If one of them is not, you should determine why.

Assuming the first three TCBs ar.e not obvious problem areas, continue
inspecting the remaining TCBs. You are trying to explain each RB. Starting with
the last RB created (the first RB, pointed to by the TCB + 0), determine what work
is represented. If work is waiting, find out.why.

Note: The master scheduler address space has system task TCBs that differ from
other address spaces. Refer to the diagrams for Master Scheduler Initialization, Start
Initiator, and Job Execution in the topic "General System Flow" in the Debugging
Handbook, Volume 1 for details of the TCB structures.

2.LB OS/VS2 System Programming Library: MVS Diagnostic Techniques

Global System Analysis (continued)

The RBOPSW indicates the issuer of an explicit WAIT. If an explicit WAIT
is not obvious, consider the following suspension possibilities and their associated
key indicators:

1. If ASCBLOCK = X'7FFFFFFF' or X'FFFFFFFF', the status (registers and
PSW) of the suspended or interrupted task is saved in the IHSA (ASCB + X'6C'
points to ASXB; ASXB + X'20' points to IHSA). The reason for suspension
is important. If it is for a lock, find oUJ what address space or task owns that
lock and what the owners.' state is. (The chapter on "Locking" later in this
section shows how to determine lock owners.) If it is for a page fault, find
out of the state of that page fault. Note also that while the RBTRANS field
points to the page fault causing address, the RBWCF is O.

Note: If a task owned the local lock at the time of the suspension or interrupt,
the TCB active indicators and the TCBCPUID (last processor on which this task
was dispatched) is set on. If no TCB in the task structure has these indicators
set, you can assume an SRB owned the lock. If no SRBs are on the CMS
suspend queue, the suspension is probably the result of a page fault.

An SRB can be suspended because of a page fault or a request for an
unavailable suspend lock. The save area for the suspended SRB is the SSRB
(see the Debugging Handbook). If suspended for page fault processing, the
SSRB is pointed to by the corresponding PCB+IC. PCBs are generally chained
together and anchored in two locations: (1) the RSMHDR for local address
space page faults; (2) the PVT for page faults caused by referencing commonly
addressable storage. Note that if real frames were not available when the page
fault occurred, even local page faults are queued from the PVT on the defer
queue (PVTGFADF, PVT + X'7S4'). For a CMS lock request, the SSRB is on
the CMS lock suspended queue. Se~ the chapter on ''Waits'' in Section 4 for
details on how to locate the SSRB. For Local lock suspensions, the SSRBs are
chained together on a queue anchored in the ASCB (ASCB + X'84').

A locked TCB can be suspended for the same reasons as an SRB. The save
area is the IHSA (described in the Debugging Handbook). The IHSA is valid
during a page fault if the corresponding PCB+8 flag is on, indicating the lock
'was held at the time of the page fault. Also, the TCBLLH (TCB + X'I14')
is set to X'O l' if the task was locally locked at the time of the page fault.

The IHSA is valid for a CMS lock suspension if the ASCB is on the eMS
lock suspend queue at label CMSASBF in IEANUCO 1. The TCB can be
suspended because of a page fault while holding both the local and CMS locks.
One way to tell is that the ASCB+X'67' flag for the CMS lock is turned on and
the ASCB address is in the CMS lockword.

Section 2: Important Considerations Unique to MVS 2.1.9

Global System Analysis (continued)

2. If ASCBLOCK = X'OOOOOOOO' and the memory/task is waiting, the status ~
is saved in the RB/TCB. (See the chapter on "System Execution Modes and ~
Status Saving" later in this section.)

3. Suspended SRBs can cause bottlenecks. The chapter on "System Execution
Modes and Status Saving" can aid in locating any suspended SRBs that relate to
the address space. Note: Do not spend time looking for them unless other facts
about the problem indicate a potential problem in this area.

By far the most important consideration in task analysis is the RB structure of
each task. Generally if you have isolated the problem to an address space, RB
analysis shows a potential problem in the way of:

• Long RB chains

• Contention caused by an ENQ (SVC 38) request

• Page fault waits

• I/O waits

• Abnormal termination processing, that is, SVC D RB

Once you have analyzed the RB structure you might want to go back and further
analyze the TCBs. Following are additional important fields in the TCB:

1. TCBFLGS (TCB + X'ID') - indicators of how the system currently considers
this task.

2. TCBGRS (TCB + X'30') -.general purpose registers (O-IS) saved when a
TYPE 1 SVC is issued or for an interruption for a non-locked task.

3. TCBSCNDY (TCB + X'AC') - additional system indicators for this task that
help to determine why this task is not executing.

4. TCBRTWA (TCB + X'EO') - pointer to the RTM2 work area (mapped in the
Debugging Handbook) which contains information similar to the SDWA but
also data for RTM processing.

Summary

This chapter contains major considerations you must be aware of when
analyzing a stand-alone dump in MVS. A disciplined approach is important; resist
the tendency to go off on tangents upon finding the first unexplainable condition.
After gathering all the facts, try to resolve the "cause and effect" situations you are
bound to uncover. Generally, at this point you will have isolated the error and can
start a detailed component/process analysis.

2.1.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques

System Execution Modes and Status Saving

MVS differs significantly from previous operating systems by having multiple
execution modes. Status is saved and·restored from many different locations
depending upon the execution mode at the time control was lost. This chapter
explains those modes and how they affect problem analysis.

System Execution Modes

MVS has four execution modes:

1. Task mode

2. SRB mode

3. Physically disabled mode

4. Locked mode

Code always executes in one of these modes or, in certain cases, in a combination
of modes. For instance, code running in task or SRB mode can also be either
locally locked or physically disabled.

Task Mode

Task mode describes code that is executing in the system because the dispatcher
selected work from the task control block (TCB) chain. To start execution, the
dispatcher sets up the environment (registers and PSW) and then passes control to
the code to be executed. The registers and PSW are found in one of two places:

1. In the TCB at TCBGRS (TCB+X'30'), which is a register save area used when
unlocked, enabled TCB mode work is interrupted. The PSW is obtained from
the request block (RB) that is found through the TCB+O.

2. In the IHSA (interrupt handler save area), which is used to save registers when
locally locked task mode code is interrupted. IHSA is found through
ASXB+X'20'; ASXB is found through ASCB+X'6C'. The PSW for locally
locked tasks is obtained from the IHSA.

Task mode is probably the most common execution mode. All programs given
control via ATTACH, LINK, and XCTL operate in this mode.

Section 2: Important Considerations Unique to MVS 2.2.1

System Exe~ution Modes and Status Saving (continued)

SRB Mode

SRB (service request block) mode describes code that is executing in the system
because the dispatcher fmds an SRB on one of the SRB queues. SRB set-up is
started by the SCHEDULE macro. SCHEDULE is an in-line macro that places the
requestor-furnished ~RB on one of two service queues, local or global, depending
on the requestor's specification. These queues can be found from the CVT at
CVTGSMQ (CVT+X'264'), which contains the address of the global service
manager queue, or at CVTLSMQ (CVT+ X'268'), which contains the address of the
local service manager queue. Whenever the dispatcher finds work on either queue,
the SRBs are moved to the corresponding system priority list queue. The global
system priority list qlleue (GSPL), which contains globally scheduled SRBs, is
found from the CVT at CVTGSPL (CVT+X'26C').

There is also one local system priority list queue (LSPL) per address space.
Each LSPL, which is found from the ASCB at ASCBSPL (+X'IC'), contains all
SRBs locally scheduled by the requestor and also those SRBs that were globally
scheduled when the targeted address space was swapped out.

SRBs are selected from these LSPLs by thy dispatcherin order to start execution.
The dispatcher loads registers 0, 1, 14, and 15 from information in the SRB and
builds the PSW. The PSW key and address are the responsibility of the scheduler
of the SRB and are specified in the SRB. SRB mode has the characteristics of
being enabled, supervisor state, key requested and non-preemptable. Non­
preemptable means that the interrupt handler should return control to the
interrupted service routine (code running under SRB mode). However, service
routines can be suspended because of a page fault or because a lock (CMS or local)
is unavailable.

Physically Disabled Mode

Disabled mode is reserved for high-priority system code whose function is the
manipulation of criticlllsystem queues and data areas. It is usually combined with
supervisor state and key 0 in the PSW, and assures that the routine running disabled
is able to complete its function before losing control. It is restricted to just a
few modules in MVS (for example, interrupt handlers, the dispatcher, and
programs holding a global spin lock).

Physically disabled mode is used for one of two reasons:

1. To assure that data remains static while the code is referencing or updating the
data.

2. To assure that non-reentrant code does not lose control while performing
critical system functions. For example, lOS must run disabled while enqueueing
and dequeueing requests to UCBs and while updating UCBs at the start and end
of I/O operations.

2.2.2 OS/VS2 System Programming LibraJY: MVS Diagnostic Techniques

System Execution Modes and Status Saving (continued)

In the MVS system, physical disablement on a system basis because of MP must
be accompanied by locking in order to guarantee serialization. MVS disabled code
is also always accompanied by either a global spin lock or code executing under a
"super bit". The "super bits" are located in each processor's PSA (X'228').
They are used primarily for recovery reasons - they allow RTM to recognize that
a disabled supervisory function was in control at the time of error even though
global locks were not held. This indicates that FRR recovery processing should
be initiated by RTM.

Note that type 1 SVCs do not execute disabled in MVS. Instead they are
entered with the local lock. Thus they are considered to be task mode physically
enabled, holding the local lock.

Locked Mode

Locked mode describes code executing in the system while owning a lock. (See
the chapter on "Locking". later in this section.) A lock can be requested during any
execution mode (SRB, TCB, physically disabled).

Status saving while in a locked mode requires unique considerations from the
system. An example is a program that invokes a type 1 SVC, such as EXCP
or WAIT, that executes in locked mode. When a type 1 SVC is enabled, it
can be interrupted. However, if the SVC is interrupted, the registers cannot be
saved in the T<;B beca:use it is being used to save registers active at the time of the
SVC request for return to the requestor. Therefore, status must be saved else­
where.

For programs executing in locked mode, status is saved according to the
condition surrounding the programs, as follows:

Locally locked task is interrupted. A new area, the IHSA interrupt handler save
area (IHSA), has been defmed in MVS to contain the status when a locally locked
task is interrupted. The IHSA is found from the ASCB + X'6C,' which points to
the ASXB; the ASXB + X'20' points to the IHSA.

Locally locked SRB is interrupted. When locally locked SRBs are interrupted,
there is no problem because SRBs are non-preemptable. The registers and PSW are
saved in the LCCA. When the system has handled the interrupt, the SLIHs return
to the FLIHs, the status is restored from the LCCA, and control is returned to the
interrupted SRB routine.

Locally locked SRB is suspended. Locally locked SRBs that are suspended must
have their status saved in a unique area. The process that suspends an SRB is
responsible for obtaining an SSRB (suspended SRB), 'which will contain the
interrupted status and will also serve as the control block used to reschedule the
service routine once the reason for suspension has been resolved. See "Locating
Status Information in a Storage Dump" later in this chapter for a detailed
description of how to find these SSRBs.

Section 2: Important Considerations Unique to MVS 2.2.3

System Execution Modes and Status Saving (continued)

Determining Execution Mode from a Stand-alone Dump

Knowing the system's execution mode at the time a stand-alone dump was taken is
important in analyzing adisabled coded wait state or a loop. The folloWing areas
may help determine the mode of execution:

LCCA Indicators - There are two bytes of important dispatcher flags in the
LCCA + X'21C'. At location X'21D', the LCCADSRW flag is
turned on just prior to any LPSW (Load PSW) for a global
SRB, a Local SRB, or task dispatch. For a global SRB, the
LCCAGSRB and LCCASRBM flags are also set on. For a
Local SR,B, only the LCCASRBM flag is set on in addition to
LCCADSRW.

PSA Indicators

• Super Bits - Flags in the supervisor control word located at PSA +
X'228' indicate whether the dump was taken while
in one of the interrupt handlers or dispatcher.

• Recovery
Stack

• Current
Work

• Locks

If the first two words of the RTM stack vector table
(PSA + X'380') are not equal, then control is in one of the
interrupt handlers or the dispatcher. Compare the address
at PSA + X'380' with each entry in the FRR stack vector
table starting at PSA + X'384' to determine the owner of the
active stack. (See the chapter on "Use of Recovery Work
Areas for Problem Analysis" later in this section for stack
vector table analysis.)

PSA + X'218' contains the addresses of the new TCB, old
TCB, new ASCB and old ASCB consecutively in a four-word
area. If the system is in SRB mode, the address of the old
TCB equals O. If the addresses of the new and old ASCBs are
not equal, then the stand-alone dump was taken between the
time that an address space switch was requested and the time
the dispatcher dispatched an address space or a global SRB was
dispatched. In all cases, the old TCB and ASCB indicate the
current work.

The PSA also contains the lock indicators. (See the chapter on
"Locking" later in this section for a description of how to
determine the lock mode.)

ASCB Indicators - The following ASCB locations help determine execution
mode:

X'lC'

X'66-67'

X'72-73'

2.2.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Address of the local service priority list,
which contains SRBs queued for dispatching.

RCT flags.

Non-dispatchability flags.

System Execution Modes and Status Saving (continued)

X'76' Count of SRBs dispatched in this address
space.

X'7C' Number of ready TCBs in this address space.

X'80' Local lock (see the chapter on "Locking'~
later in this section for how to interpret this
field when f 0).

X'84' Address of the SRB suspend queue for
unavailable local lock requestors.

Keep in mind that mixed modes frequently occur. For
example, a local SRB can obtain a lock, be interrupted, and
the stand-alone dump taken while disabled in the I/O
supervisor. Depending on the system mode at the time of
the interrupt, a task's status (registers, PSW, etc.) can be saved
in one of several places.

Locating Status Information in a Storage Dump

Status information is located in a storage dump depending on the conditions
under which it was saved .

• Task and SRB Mode Interruptions: Status saving is required whenever the
code gives up control, whether voluntarily or involuntarily. Initial status
is saved by the first level interrupt handler (FLIH) as follows:

SVC FLIH (task mode only) - Initially:

registers saved at LCCA+X'380' (LCCASGPR)

Then for Type 1 and Type 4 SVCs:

registers moved to TCB+X'30' (TCBGRS)

PSW moved from PSA to requestor's RB

Then for Type 2, 3, and 4 SVCs:

Registers moved to SVRB

PSW moved from PSA to requestor's RB

I/O FLIH - Initially:
registers saved at LCCA+X'lCO' (LCCAGPGR)

PSW saved at LCCA+X'200' (LCCAIOPS)

Then for unlocked tasks:

Registers moved to TCB

PSW moved to RB

Section 2: Important Considerations Unique to MVS 2.2.5

System Execution Modes and Status Saving (continued)

For locked tasks (CMS or local):
registers moved to IHSA ASCB+X'6C' ~ASXB

ASXB+ X'20' ---.. IHSA

For SRBs:

PSW moved to IHSA

registers remain in LCCA

PSW remains in LCCA

External FLIH - Initially:
registers saved at LCCA+X'AO'

Then for recursion purposes:

I f first recursion:

registers moved to LCCA+ X'EO'
PSW is in PSA+X'240'

registers moved from LCCA+X'AO'
to LCCA+X'120'

PSW is in PSA+X'248'

If second recursion:
registers moved to LCCA+X'AO',
where they stay
PSW is in PSA+X'18'

(LCCAXGRI)

(LCCAXGR2)
(pSAEXPSI)

(LCCAXGRI)
(LCCAXGR3)
(PSAWXPS2)

(LCCAXGRI)

(FLCEOPSW)

Note: Subsequent status manipulation for tasks and SRBs is the same as for the
I/O FLIH(that is, the movement from LCCA to TCB or IHSA is identical).

Program check - Initially:
registers saved at LCCA+8

Then: registers moved to LCCA+X'48"
PSW is in LCCA+X'88'

For page faults that require I/O the following occurs:

Unlocked tasks: registers moved to TCB
PSW moved to RB

Locked tasks: registers moved to IHSA
PSW moved to IHSA

(LCCAPGRI)

(LCCAPGR2)
(LCCAPPSW)

SRBs: Are suspended: see "SRB Suspension" later in this
chapter.

Note: For SRB code, status is not moved from the LCCA save areas. SRBs are
non-preemptable and are given control back immediately, with the
status being restored from the LCCA.

• Locally Locked Task Suspension: Status saving is the same as for locked task
interruptions (described earlier under "I/O FLIH") except that IHSAalso
contains the floating point registers, the FRR stacks, and the PSW. The
ASCBLOCK field is updated to contain X'7FFFFFFF'.

2.2.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques

System Execution Modes and Status Saving (continued)

• SRB Suspension: An SRB can be suspended in two cases. If a service routine
encounters a page fault and a page-in is required, then the SRB routine must
give up control. In that event, an SSRB (suspended SRB) must be obtained and
the status saved in that con trol block. Then the SSRB is queued from the page
control block (PCB) in the real storage manager. When the paging I/O
completes, the SSRB is re-queued to the local service priority list (LSPL)
where it is found later by the dispatcher. The SSRB must be obtained
because the original SRB was not retained after the dispatch. Status saved in an
SSRB must include the current FRR stack.

The second case of SRB suspension is an unconditional request for an
unavailable lock. Status saving for SRB suspension for a lock differs from the
page fault where the SSRB is queued and where control returns after the
redispatch of the SSRB. For a request for a 10ca1lock that is unavailable, the
SSRB is queued from the ASCB. For a request for an unavailable CMS lock,
the SSRB is queued on the CMS suspend queue header. (For more detail see the
chapter on "Locking" later in this section.) In both cases of SRB suspension,
resumption is at the appropdate entry in the lock manager to try to
acquire the lock. Upon release of the eMS lock by the holder, any SSRBs are
rescheduled. Upon release of the local lock by the holder, the first SSRB that
was suspended is given the local lock and rescheduled.

Suspend SRB queues can be summarized:

Page Faults

PCB is chained from PVTCIOQF (at PVT+X'75C') for a common area page
and from RSMLIOQ (at RSMHD+X'24') for a private area page.

PCB+X'lC' points to SSRB.

Local Lock Requests

SSRB is queued from ASCBLSQH (ASCB+X'84').

eMS Locked

SSRB is queued from the CMS SRB suspend queue in lEA VESLA as
shown:

PSALITA
(PSA + X'2FC')

~ LIT

+0 t DISP LOCK' ~ IEAVESLA

DISP LOCK

SALLOC LOCK

SRM LOCK

00000000

CMS lockword and t10 CMS LOCK

queue header for
SR,Bs and ASCBs

+14
CMS SUSPEND

suspended for CMS Q HDR

Section 2: Important Considerations Unique to MVS 2.2.7

2.2.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Locking

Serialization of resources to provide data integrity and protection is a necessary
function of operating systems. In pre-MVS systems, resource serialization was
accomplished by physical disablement and by the ENQ/DEQ component. Physical
disablement controls only one processor and thus, in MP systems, does not
guarantee serialization.

To achieve these requirements the locking facility provides:

• Serialization in a tightly-coupled MP system

• Serialization across address spaces for common resources

• Serialization within address spaces

A central lock manager acquires and maintains all locks. Use of the lock
manager is restricted to key 0 programs running in supervisor state, which prevents
unauthorized problem programs from interfering with the serialization process.
The lock manager is located in the nucleus in CSECT lEA VELK.

Classes of Locks

MVS locks are divided into two classes:

• Global Locks, which protect serially reusable resources related to more than
one address space. These resources provide system-wide services or use
control information in the common area. Examples of resources protected by
global locks are UCBs and dispatcher control blocks.

• Local Locks, which protect serially reusable resources assigned to a particular
address space. When a task or SRB holds a local lock, the queues and control
blocks serialized by that lock can be used only by the task or SRB holding the
lock.

Figure 2-1 defines the MVS locks. All MVS locks, except the local lock, are
global locks.

Section 2: Important Considerations Unique to MVS 2.3.1

~ "

Locking (continued)

Name

DISP

ASM

SALLOC

10SYNCH

10SCAT

10SUCB

10SLCH

SRM

CMS

LOCAL

Description

Global dispatcher lock - serializes all functions associated with the
dispatching queues.

Auxiliary storage management lock.....; serializes the auxiliary storage
resources.

Space allocation lock - serializes real storage management (RSM)
resources; virtual storage management (VSM) global resources, and
some auxiliary storage management (ASM) resources.

I/O supervisor synchronization lock - serializes the lOS purge function
and other lOS resources.

lOS channel availability table lock - serializes the lOS processor­
related save area.

lOS unit control block lock - serializes access and updates to the unit
control blocks. There is one lock per UCB.

lOS logical channel queue lock - serializes access and updates to the
lOS logical channel queues. There is pne lock per channel queue.

System resources manager lock - serializes use of the SRM control
blocks 'and associated data.

Cross memory services lock - serializes on more than one address space
where this serialization is not provided by one or more of the other
global locks. Provides global serialization when enablement is required.

Local storage lock - serializes functions and storage within a local
address space. There is one lock per address space.

Note: Locks are listed in hierarchical order, with DISP being the highest lock in the
hierarchy.

Figure 2-1. Definition and Hierarchy of MVS Locks

Types of Locks

Two types oflocks exist. The type determines what happens when a processor
makes an unconditional request for a lock that is unavailable. The types are:

• Spin locks - prevent the requesting processor from doing any work until the
lock is cleared by the other processor. The requesting processor enters a loop
in the lock manager (lEA VELK) that keeps testing the lock until the other
processor releases it. As soon as the resource is free, the first processor can
obtaip the resource and continue processing.

• Suspend locks - prevent the requesting program from doing work until the
lock is available, but allow the processor to continue doing other work. The
request is queued by suspending the requesting task or SRB, and the requesting
processor is dispatched to do other work. Upon release of the lock, the highest
priority queued requestor is given c'ontrol of the lock, except in the case of the
local lock. Upon release of the local lock, the first SSRB will be given the lock
and rescheduled.

2.3.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Locking (continued)

Combining classes and types oflocks provide three categories oflocks:

Global Spin Lock, which is used primarily to provide serialization in MP systems.
While code is executing under a global spin lock, it is physically disabled. An
unconditional request for an unavailable lock will cause the processor to spinin the
lock manager. Upon release of the global spin lock, the looping processor acquires
ownership and returns control to the requestor.

The global spin locks supported by MVS are: DISP, SALLOC, ASM, IOSYNCH,
IOSCAT, IOSUCB, IOSLCH, and SRM.

Local Suspend Lock, which is used to serialize resources within an address space.
There is one local suspend lock per address space and it is located in the ASCB.
An unconditional request for the local lock when it is not available causes the
suspension of the requesting task or SRB until the lock is released.

Global Suspend Lock, which is used to serialize resources that are commonly
addressable from any address space. The requestor remains physically enabled
while owning the lock. The CMS (cross memory services) lock is the only
supported global suspend lock. The local lock must be held in order to obtain
the CMS lock. An unconditional request for the CMS lock when it is unavailable
causes suspension of the requesting task or SRB.

Locking Hierarchy

To prevent a deadlock between processors, MVS locks are arranged in a hierarchy,
and a processor may unconditionally request only locks higher in the hierarchy
than locks that it currently holds. The locking hierarchy is the order in "which the
locks are listed in Figure 2-1 with DISP being the highest lock in the hierarchy.

Some locks are single system locks (for example, DISP), and some locks are
multiple locks in which there is more than one lock within the lock level (for
example,IOSUCB). For those global lock levels that have more than one lock, a
processor may only hold one lock of each level. For example, if a processor holds
an IOSUCB lock, it may not request a different IOSUCB lock.

The local lock must be held by the caller when requesting the eMS lock. Also,
the local lock cannot be released while holding the CMS lock.

It is not necessary to obtain all locks in the hierarchy up to the highest lock
needed. Only the needed locks have to be obtained, but in hierarchical sequence.

Section 2:' Important Considerations Unique to MVS 2.3.3

Locking (continued)

Determining Which Locks Are Held On a Processor

To diagnose certain MVS problems, such as wait states and performance
degradation, it is necessary to d.etermine the lock status of the system as well as
the back-up of work caused by lock contention.,

Locks held by a particular processor are indicated in the processors PSA
(prefixed save area). There is a bit map in the PSA which the lock manager
checks when a request is made for a lock. This map is called PSAHLHI (PSA
highest lock held indicator). Each bit corresponds to a particular lock in the
hierarchy. The bits are in the same order as the hierarchy so that the low-order bit
corresponds to the lowest lock in the lock hierarchy. When a bit is on, it means
that lock is held ~y the corresponding processor. Figure 2-2 shows the bit
assignments.
(Note: When a holder of a eMS or local lock is .suspended, the corresponding bit in
the PSAHLHI field is reset to 0 even though the lock is still held.)

PSAHLH I (location X~2F8' in PSA)

. .2FA 2F8

10 00 DISP

08 00 ASM

04 00 SALLOC

02 00 IOSYNCH

01 00 IOSCAT

00 80 IOSUCB

00 40 IOSLCH

00 20 not assigned

00 10 not assigned

00 08 not assigned

00 04 SRM

00 02 CMS

00 01 LOCAL

Figure 2-2. Bit Map to Show Locks Held on a Processor

2.3.4 OS/VS2System Programming Library: MVS Diagnostic Techniques

Locking (continued)

Content of Lockwords

Each lock is represented by a lockword that defmes the availability and status of
the lock. The contents of lockwords differ according to the type oflock they
describe:

Global Spin Lockword

X'OOOOOOOO' - Lock is available.

X'00000040' - Lock is held on processor O.

X'00000041' - Lock is held on processor I.

Global Suspend Lockword (CMS Lock)

X'OOOOOOOO' - Lock is available.

X'OOxxxxxx' - ASCB address of owner of lock. If an address space owned the
CMS lock but was interrupted or suspended, the ASCBCMSH flag
in ASCBFLG 1 is turned on and the CMS lock-held bit in
PSAHLHI is turned off until the address space is redispatched.
The ASCB address remains in the CMS lock until it is released.

Locai Suspend Lockword (Local Lock)

X'OOOOOOOO' - Lock is available.

X'00000040' - Lock is held on processor O.

X'00000041' - Lock is held on processor 1.

X'7FFFFFFF' - Task or SRB suspended while holding the lock. The reason for
suspension is either a page fault or an unconditional request for
the CMS lock while it was unavailable.

X'FFFFFFFF' - Task or SRB holding the local lock was suspended or interrupted

How To Find Lockwords

but is now dispatchable. The reasons for this state are:

• A page fault has been resolved for a locked task or SRB.
• The CMS lock, at one time unavailable, is now available.
• A higher priority address space was given control over this

locked task.

Lockwords for single system locks are located in a table called lEA VESLA
(pSA + X'2FC' points to the lock interface table (LIT); LIT + 0 points to
IEAVESLA). They can also be located at the label IEAVESLA in a NUCMAP.

Lockwords for multiple system locks are supplied by the requestor of the lock.
The addresses of these are placed in the PSA for each processor at locations
X'284' to X'298'.

Section 2: Important Considerations Unique to MVS 2.3.5

Locking (continued)

. The location of all the lockwords>are shown in Figure 2-3. Note that all
lockwords must reside in fixed common storage. . (

Location of
Address of

Lock Lock (when
Name Class Type Number of Locks Location of Lock actually held)

DISP Global Spin 1 IEAVESLA+O

ASM Global Spin 1 per ASID ASMHD+X'14' PSA+X'284'

SALLOC Global Spin 1 IEAVESLA+4

IOSYNCH Global Spin 1 IOCOM+X'38' PSA+X'28C'

IOSCAT Global Spin 1 IOCOM+X'30' PSA+X'290'

IOSUCB Global Spin 1 per UCB UCB-8 PSA+X'294'

IOSLCH Global Spin 1 per LCH LCH+8 PSA+X'298'

SRM' Global Spin 1 IEAVESLA+8

CMS Global Suspend 1 IEAVESLA+X'10'

LOCAL Local Suspend 1 per address space ASCB+X'80'

*PSA+X'2FC' points to the lock interface table; the lock interface table +0 points
to IEAVESLA.

Figure 2-3. Classification and Location of Locks

(
2.3.6 OS!VS2 System Ptogramming Library: . MVS Diagnostic Techniques

Locking (continued)

Results of Requests for Unavailable Locks

Global Spin Locks - An unconditional request for a global spin lock results in a
disabled loop in lEA VELK. In this case, register 11
contains the address of the requested lock and register 14
contains the address of the requestor.

Local Locks

eMS Lock

- Tasks requestil)g an unavailable local lock are suspended. In
each case, the request block old PSW (RBOPSW) is set
to re-enter the lock manager, and the registers are saved in
the TCB. Note: The dispatcher will not dispatch any task
in the address space other than the holder of the lock until
the lock is released.

SRBs requesting an unavailable local lock are suspended.
In each case, the lock manager obtains an SSRB and places
the GPRs and the current FRR stack there.

Notes:
1. The FRR stack can be used to help recreate the process

leading up to the point of suspension by interpreting the
recovery routines that are currently active. SSRBs for
local lock suspensions can be found by inspecting the
local lock suspend queue anchored in the ASCB from
field ASCBLSQH (ASCB+X'84'). SSRBs are obtained
from SQA (SP 245). SSRBs on the local lock suspend
queue are chained together at SRB+4.

2. When interrogating a given address space, if the
ASCBLOCK field is not 0, check the ASCBLSQH to
determine the SRB work being delayed in this address
space because of lock contention.

Tasks unconditionally requesting the CMS lock when it is
unavailable are suspended. For each task:

• GPRs are saved in the IHSA which is pointed to from
ASXB + X'20'.

• The resume PSW is set to re-enter the lock manager.

• The ASCB is queued on the CMS suspend queue. (The
first element of the CMS suspend queue is anchored in
CSECT IEAVESLA + X'14'; this anchor points to either
an SSRB or an ASCB which is suspended for the CMS
lock. There is only one queue for suspended CMS lock
requesters.) Note: When a NUCMAP is not available,
locate the IEAVESLA through PSA + X'2FC' which
contains the address of the lock interface table; the
lock interface table + X'O' contains the address of
I EAVES LA.

Section 2: Important Considerations Unique to MVS 2.3.7

Locking (continued)

PSALITA
(PSA+X'2FC')

)

c:
+0 t DISPLOCK '

, IEAVESLA

DISP LOCK

SALLOC LOCK

SRM LOCK

0-- - - --0

CMS LOCK /
4

CMS SUSPEND ./
QHDR +1

The address spaces suspended on the CMS lock are
represented by the ASCBs on the CMS suspend queue.
The ASCBs are chained together at the field ASCBCMSF
(forward pointer).
Note: When an ASCB is on the CMS suspend queue, the
ASCBLOCK contains X'7FFFFFFF'.

When the CMS lock is released, the ASCBLOCK is
changed to X'FFFFFFFF', which indicates that work was
interrupted but it is now ready to be resumed.

SRBs unconditionally requesting the CMS lock when it
is unavailable are suspended. For each SRB, the lock
manager:

• Obtains an SSRB from SQA

• Saves GPRs and the FRR stack in the SSRB

• Sets ASCBLOCK to X'7FFFFFFF'

• Chains the SSRB on the CMS SRB suspend queue
located in IEAVESLA (IEAVESLA + X'14')

Note: Since there is only one queue for suspended CMS
lock requesters, the SSRBs and ASCBs are chained on the
CMS suspend queue using either ASCBCMSF (ASCB +
X'C') or SRBFLNK (SSRB + 4). There are no backward
pointers. Thus the CMS suspend queue could have the
following appearance:

SSRB .Joo. ASCB __ SSRB

+4
J +4 ,

+C -

(SSRB ...a.. ASCB ..lo.ASCB

L/ ~/ +4
+C

2.3.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Use of Recovery Work Areas For Problem Analysis

Recovery processing, which is unique to MVS, enhances the reliability of the
operating system. When an error occurs, "active recovery" is given control, one
routine at a time, in an attempt to isolate the error to a unit of work. Recovery
terminates that work instead of the entire operating system and then continues
normal system operation. This process occurs whether the error is in the system or
an application.

Because system operation is not halted at the point of error, the resulting storage
dumps represent system status sometime after the original error(s). Often the
system can encounter numerous errors, fully recover, and continue. At other times
it can be a recovery failure that causes the system to cease operations and to take
a stand-alone dump. In either case, the obvious problem and its associated tracks
have been covered over. This makes the back-tracking process extremely difficult.

However, experience has shown that although recovery causes this difficulty, it
can very often provide valuable clues for the problem analyst. This chapter points
out important recovery areas and explains how they can be used in the debugging
process.

CAUTION: Recovery is not designed to aid the problem solver; it is designed as
a means by which the system can prevent total loss. Because recovery maintains
system status information, its work areas often provide the same information to
the analyst. However, once recovery is invoked, the system is in a tenuous
position; it is attempting to maintain operation despite an error. It is possible that
the recovery process itself can encounter the same error or bad data. Most often
this is not the case; the system does recover and continues normal operation.
But the possibility of recursive errors in the recovery process does exist, in which
case the new error becomes of prime consideration. If you are dependent on
internal recovery conrol blocks and queues, be aware of this possibility. Don't
get caught following a chain of blocks for some subsequent or unrelated problem
that will help your own error-finding efforts. This danger is most prevalent when
you use recovery work areas without following the normal work-related debugging
techniques. Do not immediately use the RTM2 work area without analyzing the
Task/RB structure and associated indicators.

The following work areas should be used carefully and only after traditional
techniq ues have failed. The exceptions to this rule are:

• When the dump is taken as a result of a trap (for example, SLIP) and the analyst
understands that the current status at the time of error can only be found by
using the recovery save areas.

• When there are problems in the recovery process itself.

In other instances, be aware of the total environment so that what you discover
in these areas bears some relationship to the problem you are analyzing. These
areas are of great importance if used with understanding.

Section 2: Important Considerations Unique to MVS 2.4.1

Use Of Recovery Work Areas For Problem Analysis (continued)

SYSl.WGREC Analysis

For effective problem analysis, use the information in SYSl.LOGREC
to understand the error history Of the system. Because of recovery
processing, MVS does riot halt operation when an error occurs. Dump analysis
must be performed using a snapshot of storage as it appears sometime after the
error and recovery have occurred; therefore, some type of recording mechanism is
needed in order to trace the error.

The entries in SYSl.LOGREC provide information about a potential problem.
This is the most informative data about the error that you receive. The
SYS1.LOGREC entries serve as a diagnostic trace of the problem encountered by
the operating system; they usually provide a history of events leading up to a
system incident. Use this information to understand system problems, the recovery
acti()ns that are taken as a ,result of these problems, and the outcome of the
recovery attempt.

Often more than one record exists for the same software incident. You must
be able to relate these records in the proper sequence and understand the progress
of recover'y the various records indicate. Knowing the errors that have occurred
since the last IPL helps you understand the system behavior and explains;
your findings at dump analysis time.

In stand-alone dump analysis you should always inspect the in-storage LOGREC
buffer for entries that recovery routines have made but which were not written to
the SySl.LOGREC data set because of a system problem. Very often it is these
records that are the key to the problern solution. (There is a discussion of
LOGREC buffer analysis· later in this chapter.) ,

Information that is w!itten by recovery routines to the SYSl.LOGREC data set
is used primarily to monitor incidents both when retry is attempted and when
percolation to the next recovery routine takes place.

Generally, functional recovery routines (FRRs) will write a SYSl.LOGREC
record whenever they are entered. The default for ESTAE routines, however, is to
not write a record. This means that unless the ESTAE routine specifically requests
recording, no SYSl.LOGREC record will be built.

Listing the SYSl.LOGREC Data Set

To get a listing of the SYSl.LOGREC data set, use the IFCEREPI service aid as
described in OS/VS Environmental Recording Editing and Printing (EREP)

, Program. (The JCL required to print the SYSl.LOGREC data set is contained in
the chapter "Additional Data Gathering" later in this section. It is important to
obtain both an event history and a full report. The event history (EVENT=Y
parameter on the EXEC statement) prints an abstract for all records in
chronological' order. This allows the analyst to recreate the sequence of events.)
IFCEREPI formats the standard area, the first X'194' bytes of each SDWA, into
a series of titles, each followed by pertinent data found in the standard area.
IFCEREPI will put the variable area, the last X'6C' bytes of each SDWA, in an
alphameric or hexadecimal format, whichever is specified. This variable area is

2.4.2 OS/VS2 System Programming Lihrary:MVS Diagnostic Techniques

Use of Recovery Work Areas For Problem Analysis (continued)

used by the recovery routines to construct messages and to provide data that often
contains valuable debugging information.

There are five different types of software incidents for which the failure is
written to SYSl.LOGREC. They are:

1. ABEND (SVC 13)

2. Invalid SVC

3. MCH software recovery attempt

4. Program check

5. Restart key depressed

SYSl.LOGREC Records

This section contains examples and explanations of three different types of error
records that you can obtain from SYS1.LOGREC.

SYSl.LOGREC Software Incident Record 1

Figure 24 is an example of the data that is recorded in SYS1.LOGREC when a
software (source) entry is recorded as the result of an SVC 13. The following
explanations are called out by Notes A-E in the example:

Note A: The CSECT name is IDAVBPPI; it can be found in module IDDWI.
IDA VBPRI is the FRR that processed the error under consideration.
The EC PSW indicates that SVC D was issued at location X'F4BB64'.

Note B: Approximately midway into the formatted record shown, you find
more spe~ific information about why this particular LOGREC entry was
made. Note B points out three bits that reflect the status of the system
a t the time this failure was detected:

• SVC was issued by a locked or SRB routine.

• Logically disabled (physically disabled, locked, or SRB) routine
was in contr.ol. .

• Type 1 SVC routine was in control.

Note C: For this LOGREC record there is no formatted entry for the system
completion code. Only a portion of the recorded software incidents are
assigned a system completion code. A system completion code can be
found at X'04' bytes into the SDW A, which can be found unformatted
at the bottom of the record. Also, if the cause of a record is an abend
SVC, a completion code is contained in register 1 under "Regs at time
of error". The system completion code for this failure is OE3.

Section 2: Important Considerations Unique toMVS 2.4.3

N
~.

~

o
~
~
N

~

~
~

i
!3
S·

(JQ

~ -a:

~
~
tI:l

o
~.

~
~.

~
g.
= .~.

~

_ .. _----
CA TE TIKE CPU CPU RELEASE

_ ________ _ .____ _ ___ _ ______ DAy_n HH "\'4 SS.TH __ .SE_R IAL ___ .1D ____ LEVEL ____ _
20 31 01 93 023732 0158 VS 2 REL. 03 --- RECORD ENTRY SOURCE - SO~TWARE --- TYPE SOFT~A~E(SVC 13) 117 75

-.ERRORID=SEQOOOS6 CPU0040 ASID0002 TIME 20.31.01.0
---JO:.iNAME--------·----- --NWll1ADP2

ASE;~D I:-..IG P::tOG~ AM ~","'E _____ t,/A. __ BC ~:ClJ~_t>_S_W __ ALIJ M~_JJF ERRO!..!R ______ _

1
N~ME OF :-1UDULE INVULVtD I!JO"H
NAME OF CSECT INVOLVED IDAVP.PPl

4
FU/liCTIO,"Al RECJ.VERY RJUTIilE--- IDAVBP~l

REGS AT TIME UF ERR~R ----------N-o-t-e-C---
Note A -"f,GS 0:"7- ----OOOOOqOO---OOOc3060~4-E-{~e___c()-O-60C-9C--06fA73T4---0-6CAIF~6oioooO-1-OOCA7CDO----------------

__ ~fC!S_8_-:15 ___ JJOOO_OJ_O ___ ~_OLi.~ 774 coeceoco OOCA 7B28 50F~B9_rj~0_OC~ nt~50F:j_q~_E.9~O)O-"0..!<O-'-4 _______________ _

EC PSw AT TIME JF A~END 070C2000 00F4Ba66 EC\PSW F~U~ ESTAE Raco FOR ESTAI) 070COOOO
~fTIO;-~-LINF~:- ADDITIONAL INFO:

BC-2~~Q~S~Q~~Sl...B_~B ____ _

_____ OOOoOOO_Loo_Oonooo . ___ . _______ ~OOOOOOLO_O_OOOOOQ ____ _

00 F4EE90

J:~ST LE~jGTH COOE _______________ ()2. ___ I NST_LENGT_W"COQL ______ Oz
I~TtRRUPTCJDE 0000 INTE~RUPT CJOE 0000

_v_l_~I~OV.~_P£_J.~t\'lS EXCEP ___ QQ204]_20 VI R T Ai3..QLQf-IBANS EX CEP 0020272~0=<--_____________ _

REGS OF RB LEVEL UF ESTAE EXIT OR ZERO FOR ESTAI

__ ~_EG S __ .9:-:_ !-. ___ OOOCOuO o ___ 0 CC.E_~OC_C. __ C~_~.4 ~E .?~ __ gq9_09~9~i;A 7 ~£! __ O.9J~_Al FOB __ QQ 1 OOOO_1 __ 0:JC~_.?~D-'=-oJ _________ _
~EGS 3-15 00000J03 40F45174 CCCCY:JCO OJCA7B28 50F4b9B4 00CA73b4 50F~3BE6 00)JJ004

---- - ,Y.CH FCAG- 13 YIE: ------------tiCIC f~puT--niFo F;{A;:'-E ERRURI~~lJICA TDR.S STORAGE EC::::iOR I Nur CATURS
STORAGE ADD~S APE VALID a STO~AGE KEY FAILURE ~ STn~AGEERROR ALREADY SET 0 FRA~E OFFLINf(O~ SCHE~) 0

~CK--_:~{CUP_L)--NOf-RECb;;:i)-E-D--O--REGISTE:RSW~pr{EC-I-C-TABLE 0 CHA,ilGE INDICATOR ON 0 INTERCEPT 0
.1 1'1(, S TA'1~ I S VALID _ ____ O_PSW _U:--'PREDI C TABLE 0 STJQAGE __ E_~~_O~_P~~MA~E/'{L_Q __

STURAGE IS RECONFIGURED 0 STORAGE DATA CHECK 0 PERMANENT RES. STORAGE 0
RF.C[).\FIGUtlE_ STHUS_ AVAIL __ oJ __ ACJLR_ECUESJ_______ 0 FB_AME_r~LSOA_.. Q
:;>~'_~".F!GU~E NJT ATT[r-IPTED 0 If\SlRLCTICN FAILuRE 0 FRAME IN LSQA 0

_________________________ .SQElllW_R 0 FR"~L£..A....GE FIXED 0
TIMER ERROR 0 F~A~E IS V=~ 0

______ ____ ______ Tlr-1_LS_T~~OL~_S_S.QCJAL~lLJ-1A_C!::il,"lL~.!:i£CK REC_Oi<Q_· _______ ~_
BEGINNING VIRT ADDR OF STORAGE CHECK OOCOOOOO DATE TIME
E~J[~G VI~T ADDP OF STORAGE CHECK COCCOOOO . DAY YR HH MM SS.TH
REAL STORAGE fAIl. INC; ADDRESS- ·-----c-O-CCCCCO oooo-~ooo-oo -o'-'o.!-..---------------

-~~cHiNE~C-~rE-tK 0 TYPE 1 SVC IN CO-Nt~-RUL--l--PQ,EV--ESTA- 0::1, FRR fAILED 0 EXIT TO CLEANUP ONLY 0
_~~JG~AI.t _CHEC~ _________ O_. _E_NA_.B'=-!=Q-~-~1L~-9NJ . .ROJ. __ ~~.-.S.LALJ~.:3JV IN CONTROL 0 RJL9LE_SJ.A_N:J.T_HLC_ONr~L 0

kESTA~T K~Y DEP~ESSED 0 DISABLED RTN IN CONTRa 1 IRB PRECEDED RB 0 ESTA EXIT FOR PREY AaE~D 0
TASK ISSUED S~ 13 0 SYSTE~ IN S~B MaCE 0 THIS RTN PERCOLATED To 0 STE~ AbEND REQUESTED 0

-- SYS rtM ·FORCED svc -13-----0- -- -- ----------.--, -- LO~ER--lEVEl-E-xiT-- i-NF-O---o-.-iASK AN C-Esri:iR ABE~OE-D---O--
SVC BY LOCKED OR SR8 RTN 1 ~. Note B . REGS AND PSw UNAVAILA9LE 0

---iC.-A:\lSLATT6N --FA ILURE 0 MCK INFO U~AVA I LABlE 0

_~~~~I~O_EqBOR Q, ___ --

CURRE~T 1/0 STATUS
-~£MORYi S-I 0 oo-ao-I i6 - ISRE" STOR-E-;'; B Li~·----o---

~ECOVERY RETURN CODE 00 1/0 IS NOT ~ESTOREABLE 0
NO llC GUTSTANCING 0

______ --C!NO I IC_J~J~9~;'~.~J..BG'L_ ___ ~0!._. _____ ____, ___________________________________ _

FigUre 2-4. SYS l.LOGREC Software Incident Record 1 (Part 1 of 2)

~ ...-..

f1?
(")

ct. g
~

~
~ g
n g
~
~
g'
~

~
.0'
c:
(I>

S

~
tI.l

N
~
u-.

ADOiTIONAL PROCESSING GLOBAL LOCKS TO BE fkEED LOCKWORDS
'",C:Cw~~!t,:; KE';0cSl EU 1 01 ~t>;'l(hE.i{ LOCK 0
VALID SPIN • v ---SR~ LeeK -. --------6---------.. ----- -------.---
UPDAlE8 ~EGS F~F ~ET~Y C IUSCAT LUCK ° IOSC~T LOCKWO~U 00100000

FREE RTCABEFCRE- RETR-Y---o--iu-s-uc-e-COCK 0 I OS-UCB L-OCK-\-I-j~D o~o~~50o;!.0-------------
lOSLCr LeCK ° IOSLCH LuCKwu~D OOu 00 00o _____________________ ___
IGS~~CH LOCK ° ILSVNCH LCCKWORO 00000000

_. ___ . _______ l\CB LeeK _0 ___ \lC6 L[)CKIJORD ________ OOO~OOOO'___ _________________ .
D~(e LeCK 0 D~CB LGCKWO~D 00000000
ACBDEdS LeCK a ACBJEBS LOCK~ORD OOOOOOOJ

-------------------~AS-M-PAT LOCK 0 A-SMPA T L O~C~K'-.!.~"~J~R!.!.D~------~O~O~O~O~O~O~O~O~--------------

_______ SA L L C.C L uc,~ 0 AS IDe U::.:.R.:..:R..:.:E~N.:...:T'__ ______ 0.:..0.:...:0.:...:2=--_____________ _
CNS LOCK 0
LOCAL LOCK 0

Note E
DUMP Crlt.~ACHRI ST ICS-------- .---. - -- - .

DU~P RANGES AOEA
OU~P FLAGS SuAfA OPTlCNS PDAlA CPTlu~S F~OM ~TD

__ S_NA.~D;)JI,~REQUEST_ 0 __ 01 SPLA_Y_NL:Cl,.LUS 0 DJ_SJ~L~Y_SAVc':'A~E_~_S _____ O __ ~A.!'\IGE 1 QOCA7B2B 00C,AID3B_
PARM LIST SUPPLIED 0 DISPLAY SOA 0 DISPLAY SAVE AREA HEADER 0 RANGE 2 80CAIFOB 00CAIF2C
STORAGE LIST SU?PLIEO 0 DISPLAY LSOA 0 DISPLAY oEGISTEqS 0 RANGe 3 00000000 OOCOOOOO

---- ---. - -.- - --.. - - - -- - 01 SPLAY--S~A - 1 0·1 SI>LAY- TASK LPA-"MoDuLESo--RANGE-4-00000()O-O-000-ooooo
________________ ~ ____________ ~DISPL~V GTF TRACE TA~lE 0 DISPLAV TASK J?A~~~J~D~U~L;E~S __ ~O ______________________________ ___

151 SPLAY CCNTPGL BLOCKS 0 D1SP.LAY PSW - 0
________ . __ . _________ . __ DlSi~L.t1'l._QC3l.Q_EL_S ° DI SEl..,A'L_V5ELs...UBPQQL.S'-_----"'0'__ _________ ."..-______ _

Note 0 USER VAol ABLE EnCOIe DATA

~Cl~~~f~~~B~~i~m~O~~~e,A(~~)~~~8-----------·--------------~---------------­
HE-X Dll."oIP OF Rr-CORO

----'-H:..;:Ec.::.:Ac--DEQ.----4-oii~6BCO eCOCOOOO 0075117F 11494895

--.-~.-- .. -- :-~-.. - -- - -------~-- ----_.---------_.. -------------- - - --------------_._._ .. --------
1 Note C 05D605C5 60C609D9 00023782 0158C2AO

~JOO OJOJOC9C aOOE300Q 00000000 000000~J OOOOOJ~O OOJOOOOO 00000000 000E3000
0020 OO~4EE90 C000DC9C 00CA73F4 OOCAIF08 0010C001 00CA7:~0 00000000 40F4B774
OJ40 000,)0000-- O~CA 7B28--5CF 4oC;S·i.--CCCAiB64 50F4B8E·6--000~JJ:)4--00a·00ooo--OOOOoOOO------
0060 00000))0 00000000 070C2000 OOF4~B66 0002000D 00202720 070COOOO 00F4EE90

-----'cO~-O____cOO-2ooJrj--ooici72 0 oetcoeco ooon 000 00 F4EE90 OOOOJC9C O'JCA 7OF4 aOCA IF 08
OOAO 001)0001 OOCA1CDO CCCOOCOO' 4aF~8174 00000000 00CA7B28 50F4B9B4 00CA7864

---- OaCO-50F455Eb--00000004--0000::1000--0-0000000 b-oooo-oO-O--00o-0600o---oe-oo~io·o-0--cio-coocOO·------
OOEO COGOCOOF GeCCOCOe C40AOeCO O)OOOJJO O)OOOOJO 0)CCE550 OOJ00J~O 00e00000

-----0100 OO)O')J 05---.)0) ooO·J 0---00 0) 0 J 00--0 00 OJ 000 0000-) 0 ~o--o 0 oeo C)O 5--0 C ooc 0 0-0--0001)(1000------
012000020038 C9C4C4E6 C9404040 C9C4CIE5 C207D7Fl CQC4CIE5 C2D7D9Fl 00CCE5CO

-----'6-140-0-0-.5b-j-j 60---1 C:O:) 000---C CCA-7B 28--0 JC A i 038 8 JCAi F::I8 OJ C A 1F 2 C 00000 JO 0 00000000:<.------
0160 OOJOojOJ 00000000 OCOOOOOO 40000000 05D6D5C5 60C6D9)9 00380040 00020006

·----O-18045320066--,-c-cccoco-c--ccc-OO·cc-o--oooo6-o-0-6 006C4033 05 E-b-FOF 1 Ci-C401F2 6~E·5E-~D-6------
JIAO 6~C9C4Cl (5C2D101 F16SC14D C4E2D7C3 5D7EC3Cl F7C2F2FS 68C140C2 ~4C6C350

----ClCO--7EC3ClFl C6FOFbo"O--6000J006--oo-0-00000 000 00 O-C)O----O 00-0 0000--00 0 0-0-0 0 0---00-0 0 o-e 0-0 -----
OleO OCCOOOOO CCCCGeee eocoooco 0000)000 JOOOOOJO 0)000)00 OJOOOOOO 00000000

Figure 2-4. SYS l.LOGREC Software Incident Record 1 (part 2 of 2)

Use of Recovery Work Areas For Problem Analysis (continued)

Given the name of the module involved in the error, you can determine
the id of the failing component by using the "Module Summary" section
of the Debugging Handbook. This summary also names the corresponding
PLM for each component. Component microfiche numbers are found in
the "Component Summary" section of the Debugging Handbook, Volume 1.

Note D: The "Diagnostic Aids" section of the OS/VS2 VIO Logic describes the
diagnostic output for module IDAVBPPI. It explains that the recovery
routine sets starting and ending addresses for the DSPCT header and
the BUFC in the SDWADPSL fie~d of the SDWA. A diagnostic message
is then built in the variable recording area in the SDWA (at X'194'). This
message is formatted in the LOGREC record under the 'User Variable
EBCDIC Data' field, just above the unformatted SDWA. (Also see Note P.)

Note E: The entries in the 'Dump Characteristics' section of this LOGREC record
reflect the SDATA and PDATA options specified by the recovery routine
for a SYSABEND, SYSMDUMP, or SYSUDUMP. All recovery routines
can specify exactly what portions of storage are dumped. In addition, the
recovery routines can specify a list of storage ranges that are to be
dumped. In the dump for the failure in this example, the only area of
storage displayed would be the SWA. A range of addresses would also be
included. Range 1 is from CA7B28 to CA7D38; range 2 is from CAIF08
to CAIF2C.

In summary, from studying this LOGREC entry you find that
the module IDA VBPPI has detected an error and has issued a OE3
ABEND, with a return code of 4. At the time of the failure, the system
was logically disabled and a type 1 SVC was in control. SVC 13 was
issued while the system was logically disabled, which is why the LOGREC
entry was written. A functional recovery routine, module IDAVBPRI,
was given control and tried to recover from the error. It was unsuccessful
so it dumped the scheduler work area (SW A) and two sections of stor~ge
where the DSPCT and an important parameter list were located. The
module then percolated to. the next higher FRR in the stack. Note that
the 'Recovery Return Code' field (SDW A + X'FC') = 00; this indicates
percolation. A code of '04' indicates that retry was requested.

SYSl.LOGREC Software Incident Record 2

Figure 2-5 is another example of the type of data recorded in
SYSI.LOGREC when a software incident occurs. Compare this example with
record 1 in order to understand the different types of information that you can
obtain from SYS1.LOGREC. .

First compare the time stamp at the top of this record with that in record 1.
These times are either identical or just a fraction of a second apart whenever
the system is percolating through FRRs.

2.4.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques

~
()
Q;
o
=
~

a
'0
~ g -g
!:
CD

S. g
fJ'.I

c:: e.
~
S

~
fI.)

~

~
!.J

----- -- ----~--------.-- .. ---- DATE TIME C?U CPU RELEASE

D.\YY~ HHMM-SS.TH SERIAL 10 lEV_El ___ -:-:--
---' RECORD f:tiTQY SUURCf - SO{YWflR E --':::=--iYP-E-SO~iwAP:E (SVC -'1-3''''-- 117 -75--2-0- 31 01 ·93---·02J·78Z--oisa-·--vs 2 REl. 03

ERRORID=SEQ00056 CPU0040 ASID0002 TIME20.31.01.0
-J-U3r~A-Yft:'----'- -- NW01ADP2'

ASENDING_PROGRAM NAME ____ r:-JA: BC M_QPE PSW.-!LU_.11LQ_Lf.fi.~PR BC MOOE PSW OF LAST RB
NA~E UF ~UDULE INVULVED IDDWI

Note G_____ _~A~E OF CS ECT. INVOLVED _ . __ IDD~t TkM. ____ _
~FUNCTIONAL RECuVERY RJuT1NE IDCWlfRR

c c C C .Of) OLOO_v 0000 0_ O_O_::I_Q.O_O_O'(LO 0 0_0_0.0.0.0,--___ _

REGS AT TIME OF E~~OR

REGS 0-7----u 0~)6uoOJ-·-Ii OOT3(Y60-Q0F4EE c;-c--oooo oc 9COOC A 7BF400CAl F 08
__ ~EG~ __ .8-1 '? ___ o~9_q'O.QO __ 40F!!fHJ_4 __ COQ..9..Q.00<L_.Q_OCA7B_28 50Fft~_<tI:!.'L-.Q..OCA:n~64

_E~~~! TH'IE_9F ABEND 070C200.o 00F4BB66 EC\P~w FROM ESTAE
ADJITIONAL INFO: ADDITIONAL INFO:

00100001
50F4BSE6

00CA7CDO
00090004

RBtO FOR ESTA!) 010COOOO OOF4E8FO

INST LENGTH CODE 02 _ INsr LEN~TH·~pDE Q2~ _______________ _
--'1 NTE'RRUPT' CODE ---------0000 I-NT-ERRU-PT CODE 0000
___ Y.I.~'LlDD~_OLT.RANS_~_XCEP __ 09.29.4.120 V 13.LA..DDR OF TRANS E.X.CEP 00..2.Qll~2~0 ___________ _

REGS OF RB lEVEL OF ESTAE EXIT OR ZERO FOR ESTAI

_ R EG~ _ J_-7 00090 OJ 0 __ 0 oQE}Qo_0 __ 9_Q ~'!.t~_~L....f~Q.qQf~L-.Q~C A 7OF4.._QQG A 1 F 08
REGS 3-15 00000000 40F4B714 COOOOOOO 00CA7B28 50F4B9B4 00CA7a64

9_Q.!.Q. 0 J 0 1
50F468E6

Qq~~l~D~O~. ________________ __
OODOOOO/~

·:---MCH-FC·AG--SYTE ~v.tKIN·p-uT"-'-fiFO FRAME tRROR INDICATORS -STORAGE ERROR INDICATORS
. STn~AGE ~DnRS AQE VALID 0 STGRAGE'KEY FAILURE 0 STORAGE Eq~JR ALQEADY S~T 0 FQAME OFFLINE(OR SCHED) 0
-MCKP'-EcoiE- N:iT--qECO~D-ED 0 REGl STERS UNPiEDI CTABlE 0 CHANGE INDICATOR ON 0 INTE-RCEPT 0

TI"IE STA'-1P IS VALID. 0 PSt; UNPREOICTAi3LE 0 STORAr.E_E.?RO!Le..ERJ1..ANENJ __ ~
-STORAGE I S"-RECONF I GU£EO----O--S TeRAG E--OAT 14- CHECK 0 P'E~,"'ANENT RE S. STO?AGE 0

Rf:CC\;FIGUQ,E STATUS AVAIL _O_AC~REQUEST a JRfI,"E_H-LSQA 0 __
k!:~\=rGURE NOT ATT~MPTED 0 I~STRUCTION FAILURE 0 F~AME IN lS~A 0

_______________ -:':S_OFT ER~OR 0 FRAHUS ?AGE FIXEO 0
TIMER ERROR 0 FRAME IS V=R 0

___ -----------~--------------~T~I~AMP)F A-S5~C~~~~CHINE CHEC~JLq~D~ ___________ _
BEGIN~ING VIRT AODP OF STORAGE CHECK COCCOOOO DATE TIME
ENf)ING VIRT ADDR. OF STORAGE 'CHECK OOCOOOOO DAY YR HH MM SS.TH
RE AL STOqAGe"· FAIL Ii~-A"oDR-E·S-S--· 00000-0-00 000 00 00 00 00 0"-3-0----------------

~t-HI~t CH'ECK 0 TYPE 1 SVC 11\ CC1'rtRGL PKEV ESTA OR FRR fAILED 0 EXIT TO CLEA".UP ONLY 0
PROG~AM CHECK 0 ENAeLED RB IN. CONTROL \) (EISTAI PREV IN CONTROL 0 R9 OF ESTA NOT IN CONTROL 0

--·~EST:.~T-KEYDEP~ESSED 6--oi"S·Aai.-ED ~TN-·lr.:-CCNT~l--I-RBP-iECE-i)E~-- 0 ESTA-EXnFGR-·-Pj{-EV--Ad·6 .. o-o-
TASK ISSuED SVC 13 0 SYSTEM IN SRB MODE 0 THIS RTN PERCOLATED TO ~1 STEP ABEND REQUESTED 0

--'SYSTE''1 FORCED" SVC--'13 6------------ lOWE? LEVEL Exif-i\FJ 7i0 TASKt:NC"E-STOr{ AeEi'4'oEO 0
SVC BY LJCKEO'OR SRB ~TN 1 ~ REGS AND PS~ UNAVAILABLE 0

-iRM.jSLAr-TlJ~~· FAILuR-e--' 0 Note F' Mer<. INFO UNAVAILA8LE---0
._PA:;L 1 ~..o __ E RRJE..-.. 0 ___ _

CURRENT lID STATUS
- MEMD RY-isTo-----O:l oo--jf'oI S-~-ESTOti"EA~~L-E-·---....,o

RECQV~~Y RETURN CODE CO 1/0 IS NOT RESTCP:~EA~B~L~E~--~O~--~
NO 1/0 OUTSTANDING 0
N.~_!..LG....£~9~E~..?_!t~~ 0 -----------

Figure 2-5. SYS 1.LOGREC SoftWare Incident Record 2 (part 1 of 2)

~ :r;.
00

i
"< rIl
~

~
""
~

f
a
~.

t-t

J
~
rIl

~
<§
i
~.

~ g.
~.
.:
(D

""

AVO! (IDrUL PROCESS iNG GlOBt.L-LOcK-s--j-08E-f-REED---L(jcK\~ORD-S- -------------------
_'_qECCR~iN'; _ _') __ EQUESTED_ _ _ L __ OISPATCt-IELLCC.1< .0 ________ _

- VALID SPIN 0 - SRM LeCK 0
UPDATED Q~GS FOQ I:ETR.Y 0 ICSCAT LOCK 0 IOSC.lIT lOCK..W_U~D OOOOOQO_Q

--FREE~T CA ifFORER-£T~Y--O-- IOsuc-a--LOCK 0 I 05UCO- tOCKWOfom O-OJJOJOOloL-----"'-"'----,-------,-
ICSLC~ LeCK 0 IOSLCH LOCKwOPO 00000000, _____________________ __

--------IOS'rt\CH LOCK O-rOSYNCH LOCI(WORO 00000000
__________ NCG_lOC~ Q~CB lOCKnCRD OOOOOOJQ~ __________________ __

ONes LCCK 0 DNCS LoCKWQ~O 00000000
AC8DERS LOCK 0 ACBDEBS LOCKWORD OO~OOOJO

-----------------------~ASMPAT LeeK 0 ASM?AT LOCK~ORD OOOOOO~O~O~------~----~--------
SALlec LGCK 0 ASID C=U~R~R~E~N~T __________ ~0~0~0~2~ ________________ ~----
CMS LCCK 0
LOCAL LOCK 0

-----OU~ p -c rlA-;AC TER I S Tie s------ --- . --
Note I DUMP RANGES AREA

DUMP FLA~S SDATA OPTI8NS PDATA uPTlO~S fj FROM TO
S~AP DUMP REOU~ST 0 DISPLAY NLCLE~S 0 DISPLAY SAV~ AR~AS 0 ~ANGE 1 OOCB2A2S 00C32C28

--PARM-U sr-. SUPPL. 1 EO 0- DI.S-;>LA.Y--SOA ---- 0 D-i S?LAY-SAVE--:-AREA -HEADER 0 RANGE-2--0-0-CS2800-CO-CS-2B20--
__ S.lQ~~G_L~J..iL$l).?p_~_t~Q. __ Q_ 01 S PL~LL_SQ_A l __ D.t.5£>L A~_~EGISTER S 0 RA~G~ __ 8_Q~B2A~JL_J~9C62~F8

DISPLAY S~A 1 DISPLAY TASK LPA MODULES 0 RANGE ~ 00000000 00000000
DISPL~Y GTF TRACE TABLE 0 DISPLAYTAS~K~J~P~A~M~D~O.~U~L~E~S __ O~ ______________________________ __
DISPLAY CCNTQOL BLeCKS 0 DISPLAY PSW
DISPLAY OCB/OELS 0- DISPLAY uSER SUBPODLS, ____ ~ __ ~ ________________ ~ ________ ___

USER VARIABLEEa-C-DIC--DATA--~·--------- ··-/NoteH~-- -- ------ -

-:rua-NA-,~:E'; N ~ OTAD? 2, V 10---L :"10 o,i; I JD .. r;"kTtxCp;Af! C-S-)---ooc"Ifzs-bS; A {V D SC-fD =i)"ifcAi E7 0
HEX DUMP OF RECORD
HEADER. 40-83-0-8{i~o--c:C-C:-0:-C:-O::-:0::-:O::-:O:-----:O--:O---=7---=5117F 11494e95 00023782- 015802AO D506D5C5 60C6D909

o a 00---0506 DC 7C ---8-6 DEja 00 000 a 0 0 00 000 00000 000 00000----0 0001 0 0 0--0-0-000 0 00 0 OUE 3000
OOzo OOF4EE90 OOOOOC9C OOCA7DF4 00CA1F08 00100001 OCCA7CDO 00000000 4aF4B17~

-- ---- - - OJ40 -0)000::)00 JOCA 7B28--~Ci=-4BC;B4---o-6cJ'.7664 -S-OF483E6--0a 00 0 J)4--0000000-0---0000 OJOO-------
0060 00000000 00000000 070C2000 OOF4S666 00020000 00202720 070S0000 OQF4E8FO

--------"008-0-00020000--66-2ci72"0----co-(000-00 000E3-boo OO-F4EE-90 OJoooE9{:---OO-CA1BF4 OOCA IF 08=--------
OOAO 00100001 OOCA7CDO CCCCOCOD 40F4B774 OOOOCOOO 00CArB28 50F489B4 00C~7B64

------OOCO-SOF4BbE6--0C000004--00000000--0000:)OOO 6-o-o-o000·0--ooooooo-0--ooooci-oo-0--o(iuOo-coo-'----'------
OOEO OOOOOGOF CCCCCOOO 04CAI000 00000000 OOOaOlJO OJCCES50 00000000 00800000

-----0100-00000000--OJOOoo-00--60000 0-0-0--000-00 000 0000000-0--600:)00-0-0--00000000--00000000'------
0120 ooooeooo C9C4C4E6 (9404040 CQC4C4E6 C9E3D9D4 C9C4C4E6 C9C6)QD9 OOCCE500

-----o~i4o_o-i)o05:)-6--3-ocooo-6-0---c-cC J2~2a ooc-~Tf28 OOc"i3-2tDO OJCBZ-S20--a70Ct32t.C-8 00c"B2AF~8'-------
0160 00000000 00000000 000000-00 40000000 DSiJ6DSC-S 60C60909 00380040 00020008

-----0-180-4534000 o--c C cecco o--c"CO{)C 00-6-----00-600-660 00 6"Ci;o4-S--Dt" [)& c-2155----c104(: S-iE--O-S!: 6F JF 1-----------
o LAO C1C4D7F2 6Bf5C9LJ6 4003D406 C47EC9C4 C4E6C968 EoC9C5E7 C3D702C1 4DC9DbC2

------':OlCO-5D407E40--FOFOC-3-t~i{iF-O-FO--6B-ci4i5E5 C-4-E2C3C-2--~fD-iE-F"(:lFO C3clF--i(s---F7F040CO'-"-------
OlEO 00000000 CCCCOCOO CCCOOCCO OOOCOOOO 00000000 00000000 00000000 OOOOOJOO

Figure 2-5. SYSl.LOGREC Software Incident Record 2 (part 2 of 2)

~
~--

£-:::

Use of Recovery Work Areas For Problem Analysis (continued)

The following explanations refer to Notes F-I in Figure 2-5.

Note F: Look at the status bits that appear approximately midway through the
example. One additional bit has been turned on in this entry that was off
in record I. This indicates that this routine received control through
percolation (SDWA + X'EA' = X'IO'). This indicator (that is, SDWA +
X'EA') is not set when recovery processing goes from the last active FRR
to the current ESTAE.

Note G: The name of the FRR in this example is IDDWIFRR. The completion
code and the register contents are the same as in record I.

Note H: Look at the 'User Variable EBCDIC Data' field. This area gives the
location of two more control blocks that can be used in determining
exactly what failed. These two control blocks are:

• lOB, located at address X'CB2BOO'

• VDSCB, located at address X'CA 7E70'

Note I: Compare the lOB and VDSCB addresses to the 'Dump Ranges Area' that
have been specified. The VDSCB does not fall in one of these ranges
because it is part of the SWA. Using the 'Diagnostic Aids' section of.
OSjVS2 VIO Logic, you can identify the other two dump ranges that are
printed. Included in these ranges are the current channel program and
the DEB.

Section 2: Important Considerations Unique to MVS 2.4.9

Use of Recovery Work Areas For Problem Analysis (continued)

SYSl.LOGREC Software Incident Record3

Figure 2-6 illustrates a SYS1.LOGREC software (source) entry that has been
recorded as a result of a·program check (type). The following explanations refer to
Notes J-N in Figure 2-6.

Note J: Because there is no completion code in register 1 for this type of entry,
look for the completion code in SDWA+X'4' (in this case OC9).

Note K: Check the status bits. They confirm the fact that the failure was a
program check that occurred while an enabled RB was in control.

NoteL: The 'Dump Characteristics' bits are on only if the functional recovery
routine issues a SETRP macro with the DUMP=YES operand. This macro
uses the SDWA to contain its dump options and these are the fields
formatted in the LOGREC entry. Functional recovery routines can also
take dumps by issuing the SDUMP macro. The SDUMP macro uses a
different area for its dump options. You might receive a dump of certain
failures even though the LOGREC 'Dump Characteristics' are zeros.
Check the byte at displacement X'4' into the SDW A. This flag is turned
on if a dump was requested by a SETRP, CALLRTM, or ABEND macro.
As a general rule, EST AE routines are the most common users of the
DUMP and DUMPOPT operands of the SETRP macro. Since the OC9
abend code in this LOGREC entry was for a problem program (an enabled
RB in contro!), a dump would also be taken if the job had a SYSUDUMP,
SYSMDUMP, or SYSABEND DD statement in its JCL.

Note M: There is a dump associated with this failure because location SDWA+4
(X'80') indicates a request for a dump. This can be seen from the
unformatted record.

Note N: For this entry, the data in the variable recording area (at X'194' under
'Hex Dump of Record') is not formatted under 'User Variable EBCDIC
Data'. This data is formatted by specifying an option (see Note P) in the
individual recovery routine.

Note P: The two bytes of SDW A + X' 190' specify the length of the variable
recording area that starts at X'194'.

In the two bytes at SDWA + X'192': the first byte specifies how the
routine wants its data in the variable recording area printed (X'80' for
unformatted hexadecimal, X'40' for hexadecimal and formatted under
'User Variable EBCDIC Data'); the second byte gives the length of the
data. It is often helpful while reading LOGREC entries to refer to the
SDW A layout in the Debugging Handbook for additional information
about individual bit settings.

2.4.10 OS/VS2 System Programming Library: MVSDiagnostic Techniques

~
(")

g'
~

~
~ g
.....
n g
l:!/.
~
;
g
.."

o e .
.g

(1)

s-
~
rIl

t-.)

~ ,;.. -

DATE TIME CPU CPU PELEASE
-- ---",., ___ . __ ,___ , _______ . ____ . __ O.\X._Y~_Ht:L.r"f04,_ SS,.~ER..IAL-IQ LEVEL, ___ _

RECGRO ENTRV,SOURCE - SOFTWARE TYPE PROGRAM CHECK 117 7S 20 31 01 50 023782 0158 VS 2 REL. 03
__ ~~~~?-_____ ~E~R __ RORID=SEQ00055 CPU0040 ASID001B TIME20.31.01.0

JuBNA~~ N~01ACP2
ABEI\:DING PROGRAM NAME" , __ ,_N/A B,c...1..C.P_E_P5jL~L.Ll~CO.LEB.B.a1L- B.L.l1.0DLP_S}f~LA.S_LP..JoL8 ___ _
NAME OF MUDULE INVULVED IGG0325A

,_,NA··~E .OF CSECT INVOLVED , _____ IGGC32,5A FFO_409_Q!L!t.9,021CCQ EE_85Q02.(L5_0CJ~5.a,9,O, ____ _
FUNCTIO~AL RECOVERY ROUT!NE IFGCRRCA

ReGS AT TIME Of ERROR

-REGSO=-7---cf6003'i30--0-0EB'2E8800cB2EEO
__ R .E-'~S _ ?=..1_? __ 0 09J>9g_oO_Q.Q.QQQ9Q9~~,~QJLQ 0

00C82CBO 00E63iac OOOOFFFF
ceo v ~~OO ,2E~~,A __ oi~ft2!=J~_8

FFfF1FFF 80001E70
60E6323E 00021~~~4=E _________ _

__ E~~~,AT TIME OF ABEND 070COOOO 00021CCO EC,?SW FRUM ESTAE Q.B(O FOtt ESTAI) 01OCOOOO 00021CCO
ADUITIJNAL INfQ: ADDITIONAL INFO:
It-lST_LE~G:rH CODE ____ 02 .1 NSLLENGJH::COD_!; 02"-______________ _
I~TER~U?T CODE' 0009 INTERRUPT CODE 0009

__ VI.BLApq!LOF T~A~S_,p~,EP __ 09:p_'!!!.Q,4C VIRT ADDR OF TRA~S~E!:.!X~C!:<..!E!:..!P~~0!..!,0u,Da4~4~6~4~0'--__________ _

REGS OF RB LEVEL UF EST,AE fX~I~T~O~R~I~E~R~O~F~O~R~ES~T~A~I~ __ ___

ttEGS 0-7 00003230 OCCB2E88 CCCB2EEO 00CB2CBO OOE631BC OOOOFFFF FFFF1FFF 80001E10
--r([:GS-9::i-5--0000000'O-'-OCOOOo-oo---6oooocioo---ao003230-000-ZFFCA-oDCB2E88 60E63Z3EO"Oo21C4=-e------------

---~CH-FTAGBYTE RI<i~'PUT-TN FO FRA~E EPROR INDICATJRS SiO~AGE ERROR INDICATORS
STORAGE AODRS ARE VALID 0 STORAGE KEY FAILURE 0 STORAGE ERROR ALREADY SET 0 FRAME OFFLINEJOR SCHEO) 0

~K~ECUI~DNOT-QECOR:)ED 0 REG'I-STERSUNPRECICTt.BLE, 0 CHANGE INDICATOR ON 0 INTERCEPT 0
T I"!E ST~"IP I S VAll 0 . 0 PS~ Uf\PREDI CHSL E OS TOR-AGE ERRO!Lf.EgMAt{'E~_T __ O __

--STORAGE IS "R E'CONF I G'U'R,-E'O--O--S TOk AG'e-'DATA--CH'ECK 0 P'ERMANENT 'RES. STORAGE 0
P~CQ~FICURE STATUS AVAIL 0 ACR RECUEST 0 FRA~E IN SQA Q
~::'S;:' .. ,:::':;UPE NOT ATTEMPTEO-O--INS':{Rl.CTION FAILlJRE 0 F'RA:-iE-{N-LSQA 0

______________________ --:SOFT ERROR 0 FRM-1E IS PAGE FIXED 0
TIMER ERROR 0 fRAME IS V=R 0

TIME STAMP 9F ASSOCIATED MACHINE CHECK RECORD
BEGINNING VIRT ADDR OF STORAGE CHECK OOOOOJOO DATE TIME
eNDING VIRT ADD~ UF STOQAGE CHECK. COCCOOOO DAY YR HH MM SS.TH

--REAL STORAGE'FAIL IN'G- ADDRESS--' oc-cccccc Note K 0-0000 00 00 070~0-=-0~-------------

~(tITNE CHECK- 0
PPOG~AM CHECK 1

'--R~START-KEY DEPR-ESSED 6
TASK ISSUED SVC 13 0

·-sysTei·,. FORCED'S-yC--'13 6
SVC BY LOCKED OR SRB RTN 0
~~~~SLATION FAILURE a 
PAGE 110 tRROR 0 

"-TYPE 1 SVC IN tONTRCL '~r-,~O-~P~~E~V~~ES~"T~A~O-.~~F~R~R~F~A~l~L~E~D~~O---E~~X~IT~T~O~C~L~E~A~~~U~P.rO~N~L~Y~----~O---
ENABLED RB I~ CC~TROL ~1 (E.STAI PREV IN CONTROL 0 RB OF ESTA NOT IN CONTROL 0 
{) iSABl-EDRT.'ilN"-CONTROL 0 1 RB PRECEDED RS 0 ESTA ExTTFOR PREVAB-E~O--
SYSTEM IN SRB ~OCE 0 THIS RT~ PE~C~LATED TO 0 STEP ABEND REQUESTED 0 

- LOwER LE-VEL EX IT INFO 0 TASK A~JCESTOR-ABEN'DEO 0 

CURRENT I/O STATUS 

REGS A~D PSH UNAVAILA9LE 0 
MCK INFO UNAVAILAaLE 0 

MEMQRY -A-~S-I~D-----------~O~O~O~O-~I/O-ls:RESTJREABL~E------O------------------------------------------------

RtCGYERY kETURN CODE 00 1/0 IS NOT ~ESTO~.~E~A~B~l~E~--~O~--------------------__ --__ ------______ ----------------____ __ 
NO I/O OUTS_TA/liCI~~G 0 
NO l/G PROCESSING 1 

Figure 2-6. SYS l.LOGREC Software Incident Record 3 (part 1 of 2) 



N 
~ 
;... 
N 

o 
~ 
fa 
~ 
i 
a 
~ 
ci 
a a s· 

OQ 

t-t a: 
~ 
~ 
fIl 

52 
em 
~ 
~ 
~ g. 
= ..0' 
c 
(p 
rA 

ADDITIONAL PROCESSING GLOBAL LOCKS TO BE FREED LOCKWOi<DS 
PECu~Dt:~G ~E'JUc:5n-D 1 O!St>/.TCHE" LJ,.lCK _0 ____________ _ 
VALI0 SPIN 0 5~~ LeCK 0 
UPDATED ~EGS FU~ R~TRY 0 rUSCAT LOCK 0 IOSCAr LOCK~DRO OOJaOOOO 

-F~ E-E-~fc A-bEFG~ E-R ~ TRY--O--ro S uc e L nCK 0 i O-S-UC-S---L (ic i(-";ORO 00--0 J-O-OOO~------------
___________________ IOSLCH _LGCK,_ 9 __ IOSLCH _lOCKWO&D OOOOOOOO~ ___________ _ 

IOSYNCH LOCK 0 IOSYNCH LOCKWORO 00000000 
!\oCB LeCK __ O_NCB lOCKwQRD_ 00000000 _____ _ 
DNC8 LeCK 0 UNce LOCKWORD aaoeoooo 

_______________ ---'AC_B(:L~ryLL_QCK 0 AC ODESS~KWORO OOOOJ.QQ.--l/O~ ___________ _ 

ASMPAT LOCK 0 ASMPAT lOCK wORD 00000000 
______________ SALL_CC __ I-OCK Q. ASID CURRENT 0018 

CMS LOCK 0 
Note L ~ __________ . LO~_~_L_L_Q~!<~ ______ ~O~ ____________________________ _ 

DUMP CHARACTeRISTICS 
DUMP RANGES AREA 

DU~'P FLAGS SDATA GPTIor-;s PDATA UPTIO~S FROM TO 
SNAP uUHP REQUEST 0 DISPLAY NUCLEuS 0 DISPLAY SAV~'AREAS 0 RA~GE 1 00000000 OJOOOOOO 

-P-i.R:1lISf--sUPPLIEO-------O--OIS-PL-AY-SQA-- -- 0 D-i-s?L-AY-SAVE-AR-EA-tiEA~o~NGez-000-00o-oo-000oo-0-60 
_$_T_JJLAG~_l_lS.L_S_U~PlJEP ___ J) __ DI SP_LA'CLSQ_A 9_-_DI$~L_"Y __ R.EGl.Slf~S ______ {) __ R_~_NG_E._3 __ -_QQ900Q(Hl_O_QP_Q90J~_Q .. ~ __ 

N t J DISPLAY SWA 0 DISPLAY TASK LPA MODULES 0 RANGE 4 00000000 00000000 
_0 e _-_OJ sP-UY~r..L.lR_ACLUJH __ E 0 D I S£...LA Y TASK JP A ~DDU.L00E ..... S~..lo!O~ __________ --, ____ _ 

Note N""",----- Note M 01 SPLAY CCNTRCL BLOCKS 0_ DISPLAY PSW 0 
~ _______ ._:.. _______ ~ _0J S~l,..!LOC~.l.OEl_S 0 01 SPlA_Y_VSE..B_SJJ.ae...DQ_LS __ -2 

HEX D~MP OF PECJRD 
___ rtI;A O_[~ __ 42 830800__ C C Q QJ2Xl 3._2,_' __ 01.:> 8 J4A.O __ Q5_~_Q.F_O£l __ C_1 C~Q.1~2~ ____ _ 

-"-' 
____ --=O_Q..Q~OOC B_2C <t.9 __ 1:: c' __ 900_0 __ F..f O_/!itQ_O..9---.i~tQ ~1 CoCO E,=-~_5j)_9~S>9~5.S 90 OOOO~_'-3...L-Q9~_e 2....,E~8,..,8:<-____ _ 

C020 00CB2tEO OCCS2CBO OOE631BC OOOOFFFF fFFF7FFF 8JJJ7F.70 ooooa~oo 00000000 
_____ O~)40_00000QJO __ 0000323_Q __ OPu2f.FC_A __ aO(:JR~~8 60f;63_VE __ 000_2.1C_4~ __ 00CCO_~5_8 __ 0.o00000P~ ____ _ 

0060 00000000 OCOOOOOO 070COeOO 00021CCO 00020009 00044640 070COOOO 00021CCO 
________ 0)8 J __ OJJ20009 ___ 00044640_-~_00J03 23Q ___ COCB2 E8$ OOCg2EEO __ OQCB2C~_Q __ 00~531_~C ___ OOOOFS:-ff, _____ _ 

OOAO FFF~7FFF 800J7E70 00000000 OOOOOOJO 00000000 00003230 0002FFCA 00CS2EdS 
_____ -'QQc;._~OE6323E __ G_CC21C_~E ___ E~Q_O_Q2~~O_Q_OOO_0_QQ_ ~_Q(H>-QO_QL_..QO_OAQ;>QQ Qu_Q9~J_O_;>'L-...Q..;tO_v.000",->O,,--____ _ 

O:lEO OOI)OOOOF 00000000 40040000 00001001) Note 00000000 00CA2F4S OOOOOJOO 00800000 . 
_____ o1 OQ __ OOOOOOOO __ OCCOOOOO __ - _OQ_OQ90QO __ OQOOoP~tO_ P ___ Ooo.oOO_0_0 __ O.QQ.o_OQQO ___ OQQOQ900 0900000_0"--____ _ 

0120 00000000 C<;C7C7fO F3F2FSCl C9C7C7FO '- F3F2F5Cl C9C6C7FO D909FOCl _ 00CA2EF8 
_ 0140 OOOJOOOO 00000000 00000000 00000000 ~OOOOJOOO oboooooo 00000000 00000000 
-----0160-00COGOOO---eC000000--00000000--0000-0000 ~OOJO-O--cio-o6oo-oo--6o-376-cioo---00-HioOOB'-------

0180 45300000 00000000 OCCCOCCO OCCCOOOO- ~6C§018 AOOOO.)OO 00CB2A30 OOEACCAC 
-----O::...:i-A-0-OOO-o-0-ooO---oo-oooifoo--OO-CA2FSa-c47E"c"ic4 {4E6C-9~E('C9C5E7 C 3:>768(: 1 4DC9-D-6-C~2------

Oleo 50407E40 FCFCC3C2 FCC2FOFO 6BC14DE5 C4E2C3C2 5D7EFJFO C3~4i-4~3 ___ Cpf]40pa 
-----=oi"Eo-oa-oo-ooo~oocjo-Oo-o()ocioo-oo 00000000 00000000 OOOJOOOO 00000000 0000000.",0------

Figure 2-6. SYS l.LOGREC Software Incident Record 3 (Part 2 of 2) 

~ 



I 

Use of Recovery Work Areas For Problem Analysis (continued) 

Important Considerations About SYSl.LOGREC Records 

As shown in the three incident records the LOGREC records are mostly SDWAs the 
system supplies, plus variable user data areas the individual recovery routines 
supply. 

Following are some special considerations pertaining to specific portions of 
LOGREC entries: 

• . Jobname - If the jobname is "NONE-FRR", this indicates that the record is 
generated by an SRB's FRR (Functional Recovery Routine) or the current 
ASCB was invalid. 

• "BC mode PSW at Time of Error, of Last RB" - You can ignore these fields. 

• "EC PSW from EST AE RB (0 for EST AI)" - This field has the following 
possible meanings: 

a. If the ESTAE is associated with an RB level other than the one encountering 
the error, this is the PSW at the time that the RB level associated with the 
ESTAE last gave up control. Note: If this is the case, the "RB of ESTAE 
Not in Control" flag should also be set. 

If the ESTAE is associated with the RB level in error, the PSW is equal 
to the "EC PSW at Time of ABEND" because the last time the RB level gave 
up control was when the error occurred. 

b. If the record was generated by an FRR, this is the PSW used to pass control 
to the FRR and is therefore the address of the FRR. 

c. If the record was generated by an FRR (that is, a locked/disabled routine is in 
control, or the system is in SRB mode), and the "EC PSW at Time of 
ABEND" is equal to the EC PSW from ESTAE RB, this is a system-generated 
record. 

• "Regs of RB Level of ESTAE Exit or Zero for EST AI": 

a. If the EST AE exit is associated with the RB level that encountered the error, 
these registers are the same as "Regs at Time of Error". 

b. If the EST AE is associated with an RB level other than the one encountering 
the error, then these are the registers at the time that RB last gave up control. 

Section 2: Important Considerations Unique to MVS 2.4.13 



Use of Recovery Work Areas For Problem Analysis (continued) 

c. If this is an FRR-generated record, the two sets of registers are identical. 
However, if the FRR or EST AE has updated the registers for retry, these 
registers are the new, updated registers. 

• "SVC by Locked or SRB Routine" - This indicator can be misleading. 
A forced SVC 13, which is often the way FRR-protected code passes control to 
recovery, also causes this flag to be set if the SVC occurred in locked, 
disabled, or SRB mode. Although the flag is set, this situation is not a key, 
error indication in itself. The analyst must investigate why the issuing routine 
invoked SVC 13. 

• Error Identifier 
This field, as described in recovery termination management (Section 5), 
contains pertinent information regarding the error described by this 
SYSl.LOGREC entry, and provides a correlation to other SYSl.LOGREC 
entries. Related software and MCH records have the same sequence (SEQ) 
number that allows the correlation of records written in a particular recovery 
path (that is, FRR and/or ESTAE percolation, or MCH and subsequent software 
entries). For locked, disabled, or SRB routines, the processor identifier (CPU) 
indicates the processor on which the routine was running when it encountered 
an error. A zero processor identifier indicates that the record was written by an 
ESTAE ,routine (that is, the processor identifier is not uniquely identifiable 
because the EST AE routine may be executing on a processor other than the 
mainline). ASID indicates the current ASID at the time of the error. TIME 
indicates the tirne that the ERRORID was generated. It is normally very close 
to the time that the record was written, as indicated in the first line of the 
record. TIME can be used to chronologically order related SYSl.LOGREC 
entries that contain the same SEQ number. This ordering is useful in recon­
structing the environment as it was at the time of the error. 

If an SVC dump is taken, the ERROR ID as it appears if(the SYS1.LOGREC 
record, will also appear in the SVC dump output and associated IEA911 I 
message. Do not be concerned if the ERROR ID sequence numbers seem to 
have an increment of more than one. Although the RTM adds one 
to the sequence number of each unique entry (not percolation or recursion), 
there may be no associated recording of the error, thus, the sequence number 
is updated internally but is not always'externally written. 

As shown above, the SYSl.LOGREC data set is a vital tool in debugging. At 
times, the information in the LOGREC printout can be used to describe the 
entire problem situation. A search of Retain for the CSECT, FRR, and abend 
code will often 'identify the problem as a known one. 

SYS1.LOGREC Recording Control Buffer 

This is one of the most important areas to be used when analyzing problems in 
. MVS~ The previous discussion of LOGREC records analysis generally applies to the 
in-storage LOGREC buffer as well. 

2.4.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



I 

Use of Recovery Work Areas For Problem Analysis (continued) 

This buffer serves as the intermediate storage location for data that 
the recovery process uses after it has completed but before the data reaches 
SYSl.LOGREC. The physical I/O is done from this buffer. Its real significance 
is in the error history it displays. Also, any records in the buffer that have not 
reached SYSl.LOGREC are almost certainly related to the problem you are trying 
to solve. 

Formatting the LOGREC Buffer 

The in-storage LOGREC buffer can be formatted by specifying the LOGDATA verb 
under AMDPRDMP. This verb causes the entries still in the buffer to be formatted 
in the same manner as those printed from SYSl.LOGREC. For detailed informa­
tion on how to invoke the AMDPRDMP service aid, see OS/VS2 SPL: Service Aids. 

Finding the LOGREC Recording Control Buffer 

The CVT + X'23C' points to the RTCT (recovery termination control table); 
and RTCT + X'20' points to the RTMRCB (LOGREC recording control buffer). 
The buffer always resides in SQA on a page boundary, is 4K bytes in length, and is 
generally located just beyond the trace table. Scanning the EBCDIC portion of 
the dump following the trace table usually leads you to a series of module/job 
names that are part of the individual records. 

Format of the LOGREC Recording Control Buffer 

The LOGREC recording control buffer is a "wrap-table" similar to the MVS trace 
table. The entries are variable in size. The latest entries are the most significant 
especially if they have not yet been written to SYSl.LOGREC. Knowing the areas 
of the system that have encountered errors and the actions of their associated 
recoverY routines, information obtained from SYSl.LOGREC and the LOGREC 
recording control buffer, helps provide an overall understanding of the 
environment you are about to investigate. Figure 2-7 shows the format of the 
buffer and Figure 2-8 shows the format of individual records \Yithin the buffer. 

Section 2: Important Considerations Unique to MVS 2.4.15 



Use of Recovery Work Areas For Problem Analysis (continued) 

o 4 8 C E. 10 

RCBBUFB RCBBUFE RCBFREE RCBFLNG RCBDUM 
I 

SRB used to post t start of t end of t next number Dummy Recording Task in Master ( 
Address Space in order to ) record record available of bytes Displace-

area area space available ment write record to ( 
SYS1.LOGREC 

X'40' 

Missing Record Header - This 
record shows the number of times 
space was requested but was not 
available. 

X'58' X'59' 

LCNT 
FLGS Missing 

record SRB in use 

count flag 

X'50' 

Processor serial number 

X'5E' 

( 
) RCBTLNG 

I Total buffer length 

\ 

If the record contains a counter or is present in SYS1.LOGREC, you have a good indication of 
a recovery loop. 

X'60' = first possible record header 

Figure 2-7. Format of the LOGREC Recording Control Buffer 

Record Header 
o 2 

Length Record 
of Types 
Record 

Record Type - X'80' 

Options 

X'40' 

X'20' 

- X'08' 

X'04' 

X'01' 

3 4 6 8 C 10 

Options ASID ECB Reserved Actual 
for Record 
POST 

This record wraps around from the end of the buffer space back 
through the beginning. 

This record is to go to SYS1.LOGREC. 

This record is a WTO. 

Record not buffered; the address ofthe record exists at X'10.' 

The recording requestor is to be posted when the record is written. 

Record is ready to be written. If not set, the record is still being 
constructed. 

. . 
Note: The beginning of the actual record + X'20' is the start of the SDWA for software 

reoords. The SDWA contains software diagnostic information at the time of the error 
and is mapped in the Debugging Handbook. 

Figure 2-8. Format of Records, Within the LOGREC Recording Control Buffer 

2.4.16 OS/VS2 System Programming Library: MVSDiagnostic Techniques 



Use of Recovery Work Areas For Problem Analysis (continued) 

FRR Stacks 

The FRR (functional recovery routines) stacks are often useful for understanding 
the latest processes on the processors. Entries are added and deleted dynamically as 
processing occurs. The PSA + X'380' contains the pointer to the current stack. 
The format is described in Data Areas section of the Debugging Handbook under 
FRRs. Experience has shown that the normal stack (located at X'COO' in each. 
PSA) is perhaps the most useful, although all stacks have been beneficial on 
occasion. 

The FRR stack +X'C' points to the current recovery stack entry. (Unless the 
FRR stack +X'C' matches FRR stack +0, in which case no recovery is present on 
the stack.) This entry +0 points to the recovery routine that is to gain control in 
case of error. The entry +4 contains flags used for RTM processing; a X'80' 
indicates this FRR is currently in control, a X'40' indicates a nested FRR is 
currently jn control. The next 24 bytes serve as a work area for the mainline 
function associated with the FRR pointed to by this entry. This parameter area 
may contain footprints useful to your debugging efforts. The previous entry in the 
stack (X'20' bytes in front of the current) represents the next most current 
recovery routine. Only the current and previous entries are valid. The stacks do 
contain residual information associated with recovery that was previously active but 
is no longer valid. You should not rely on any information beyond the current 
entry. 

Also consider the case where: 

A gains control and establishes recovery; 

A passes control to B; 

B establishes recovery, performs its function, deletes recovery, and passes 
control to C; 

C establishes recovery and subsequently encounters an error. 

The FRR stack will contain entries for module A's and C's recovery routines. 
There is no indication from the FRR stack that B was ever involved in the process 
although it might have contributed to or even caused the error. The debugger gains 
an insight into the process but is not presented with the exact flow. Although you 
can get an idea of the general process or flow, do not make assumptions based 
solely on the FRR stack con tents. 

If you have trapped a specific problem, the stacks often contain valuable 
information. The same is true of a stand-alone dump taken because of a suspected 

loop. If RTIW +0 (at FRR stack +X'lO') is not zero, the FRR stack contains 
current, valid data. Following are some of the more valuable fields in the FRR 
stacks from a debugging viewpoint: 

Section 2: Important Considerations Unique to MVS 2.4.17 



Use of Recovery Work Areas For Problem Analysis (continued) 

1. FRR stack + X'10' - RTM 1 work area (RTIW) 

In the case of an error, the RTIW + 2 (FRR stack + X'12') field indicates the 
error type as follows: 

- program check 
2 - restart key 
3 - SVC error (SVC was issued while in locked, disabled, or SRB mode) 
4 - DATerror 
5 - machine check 

10 - paging I/O error 
11 - abnormal termination 
12 - branch entry to abnormal termination (compatibility interface) 
13 - cross memory abnormal termination 
15 - memory termination 
20 - MCH (machine check handler) 

2. RTIW + X'34' (FRR Stack + X'44') - address of system diagnostic work area 
(SDWA) 

If no pointers can be found, the SDWA for each supervisor FRR stack can be 
found at X'20' bytes past the start of the last entry in the respective stack. 
(FRR +4 points to the last entry.) The SDWA for disabled errors on the normal 
stack is at X'330' bytes past the start of the last entry on the restart stack. 
(pSA + X'3B8' points to the restart stack.) 

3. RTIW + X'40' (FRR stack + X'50') - mode at entry to RTMI 

X'80' - supervisor control mode (pSASUPER=t=O) 
X'40' - phYSically disabled mode 
X'20' - global spin lock held 
X'10' - global suspend lock held 
X'08' - local lock held 
X'04' - Type 1 SVC mode 
X'02' SRB mode 
X'O l' - unlocked task mode 

This is the system mode at the time of entry to RTM 1. The mode may 
change as processing continues through recovery; the current mode is at RTIW 
+ X'41 ' (FRR stack + X'51 '). 

2.4.18 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Use of Recovery Work Areas For Problem Analysis (continued) 

Extended Error Descriptor (EED) 

The extended error descriptor (EED) passes error information between RTM 1 and 
RTM2 and also between successive schedules of RTM 1. The EED address is found 
at RTIW + X'3C' (FRR stack + X'4C'), at TCBRTM12 (TCB + X'104'), or in the 
RTM2 SVRB at X'7C'. The EED is generally not present because RTM2 releases 
it early in its processing. The EED is described in the Debugging Handbook as part 
of the RTIW. Important EED fields are: 

EED+O pointer to next EED 

EED + 4 (byte 0) - description of contents of the rest of the EED 
BYTE 0 = 1 - software EED 

For a software EED: 

EED + X'C' - registers 0-15 

2 - dump parameters 
3 - hardware EED 
4 - errorid EED 

EED + X'4C' - PSW/Instruction Length Code (ILC)/Translation Exception 
Address (TEA) at time of error 

RTM2 Work Area (RTM2W A) 

This is the work area used by RTM2 to control abend processing. Registers, 
PSW, abend code, etc. at the time of the error are recorded in the RTM2WA. 
This area is often useful for debugging purposes and is described in the Debugging 
Handbookby RTM2WA. This work area can be found through TCB + X'EO', 
or RTM2 SVRB + X'80'. 

Formatted RTM Control Blocks 

I RTM control blocks are formatted either by AMDPRDMP as a TCB exit with the 
FORMAT, PRINT CURRENT, and PRINT JOBNAMES control statements, or with 
the ERR option under SNAP/ABEND. With the exception of the RTCT, the 
formatted control blocks are all TCB-related, and are formatted only when they are 
associated with the TCB. The formatted control blocks are: 

• RTCT (recovery termination control table) - formatted with the first TCB of 
the current address space on the processor on which the dump was initiated. 
(This control block is formatted only by AMDPRDMP.) 

• FRRS (functional recovery routine stack) - has the RTI W embedded within 
it and is formatted with the current TCB if the local lock is held. (This control 
block is formatted only by AMDPRDMP and it is mutually exclusive of the IHSA). 

Section 2: Important Considerations Unique to MVS 2.4.19 



Use of Recovery Work Areas For Problem Analysis (continued) 

• IHSA (interrupt handler save area) - has the FRR stack saved within it and is 
formatted with the TCB pointed to by the IHSA, if the address space was 
interrupted or suspended while the TCB was holding the local lock. (This 
control block is formatted only by AMDPRDMP and it is mutually exclusive of 
the FRRS) . 

•. RTM2WA (RTM2 work area) ...:. fonriatted if the TCB pointer to it is not zero. 

• ESA (extended save area of the SVRB) bit summary - formatted only if the 
RTM2WA formatted successfully and the related SVRB could be located. 

• SDWA (system diagnostic work area) - formats the registers at the time of error 
only if the ESA formatted successfully and the SDWA could be located. 

• EED (extended error descriptor block) - formatted if the TCB or RTIW pointer 
to it is not zero. 

• SCB (STAE control block) - formatted under AMDPRDMP for abend tasks 
only. It is formatted under SNAP/ABEND whenever the TCB pointer to it is 
not zero. 

, System Diagnostic Work Area (SDW A) Use in RTM2 

This work area is used to pass information to EST AE recovery routines·. It is 
found by: SVRB + X'80' points to RTM2WA; RTM2WA + X'D4' points to 
SDW A. Also, register 1 contains the address of the SDW A when the recovery 
routines are entered. 

2.4.20 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Effects Of Multiprocessing On Problem Analysis 

The multiprocessing (MP) capability of MVS allows two processors to share real 
storage using one control program. (MP refers to multiprocessing on both multi­
processors and attached processors.) MVS also functions on a uniprocessor con­
figuration, which may be only one processor configured out of what is otherwise 
an MP system. In MP mode, each processor has addressability to all of main 
storage and executes under the control of one set of supervisor routines. 

Because various queue structures must be processed in a serial fashion, inter­
locking facilities are implemented in both the hardware and software to allow 
serialization of portions of the control program where conflicts may arise. Queue 
structures that don't require serialization are processed in parallel, that is, without 
regard to the other processor. 

Features of an MP Environment 

The main features of a multiprocessing configuration are: 

PSA - Each processor has a unique real storage frame, called a prefixed save area 
(PSA), referenced with addresses from 0 to 4K. Its lOcation in real storage is 
determined by the processor's prefix register. 

Inter-Processor Communication - Malfunction alerts (MFA) are automatically 
generated by failing processors before entering the check-stop state. Other inter­
processor signaling is accomplished with the SIGP instruction. (This feature is 
discussed in detail later in this chapter.) 

VARY Command - Performs three functions: (1) dynamically add or remove a 
processor from the configuration; (2) dynamically increase or decrease the amount 
of useable real storage; (3) control the availability of channels and devices. 

QUIESCE Command - Quiesces the system so that I/O pools or two channel 
switches or both can be reconfigured~ 

locking - Access to various supervisory services is serialized by means of a 
software locking structure. 

Dispatching - Assures that highest-priority ready work is processed by available 
processors. 

PTLB (purge translation lookaside buffer) - When an entry is to be invalidated 
in a page or segment table, the translation lookaside buffer (TLB) on every 
processor must be purged before permitting subsequent references to the 
corresponding virtual address. 

Timing - The TOD clocks must be synchronized among the configured processors. 

Section 2: Important Considerations Unique to MVS 2.5.1 



Effects of Multiprocessing On Problem Analysis (continued) 

RMS - When components of the hardware operating system fail, it becomes the 
responsibility of the recovery management support (RMS) to help define the 
extent of the damage. 

Compare and Swap - Two instructions assure interlocked update operations. They 
are Compare and Swap (CS) and Compare Double and Swap (CDS). References to 
storage for these instructions are interlocked the same way as the Test and Set (TS) 
instruction. 

lOS - lOS has the ability to initiate I/O activity to a device from whichever 
processor has an available path. 

ACR - When one processor fails in an MP configuration, the alternate CPU 
recovery (ACR) function attempts to take the failing processor offline so that 
system operation can continue with the remaining processor. (See Miscellaneous 
Debugging Hir:tts). 

CPU Affinity - The ability to force a job step to execute on a particular processor 
is a feature of MVS. (For example, because an emulator feature is generally 
installed on only one of the processors in an MP environment, processor a:ffmity 
will force the execution of programs that require this feature to the proper 
proc~ssor.) 

MP Dump Analysis 

Experience with MVS has shown that there are comparatively few bugs unique to 
MP. Usually, problems encountered in an MP environment could also be discovered 
in a UP environment. The increased in~eraction (parallelism) between software 
components in an MP environment tends to increase the probability of hitting bugs 
that are not unique to MP. Thus, the. odds are that the dump you are trying to 
debug could also occur on a UP configuration. 

The first step of MP dump analysis is to determine conclusively that it is an MP 
dump. To do this, you must find the common system d~ta area (CSD). The 
CSD address is located at offset X'294' in the CVT. The halfword CSDCPUOL, at 
offset X'A' in the CSD, gives the number of processors currently active. If this 
number is two, you are looking at an MP dump. For the rest of this discussion, we 
will assume that CSDCPUOL=2. 

Several other fields in the CSD are informative. For example, the byte 
CSDACR at offset X' 16', indicates whether or not ACR is in progress. ACR in 
progress (X'FF' in CSDACR) indicates that one of the processors in the configuration 
is becoming inactive. If this is the case, the problem may be the result of a failure 
during ACR processing, and the MP dump will probably present at least two 
problems: 

1. A hardware failure causing ACR to be invoked. 

2. A failure during ACR processing. (See the discussion on ACR processing in the 
"Miscellaneous Debugging Hints" chapter later in this section.) 

2.5.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Effects of Multiprocessing On Problem'Analysis (continued) 

Data Areas Associated With the MP Environment 

There are several processor-related areas with which you should be familiar: 

1. The PCCA (physical configuration communication area) 

2. The LCCA (logical configuration communication area) 

3. The PSA (prefixed save area) 

There is a set of these control blocks for each processor located as 
follows: 

CVT + X'2FC' points to the PCCA VT (contains the address of a PCCA for each 
processor) 

CVT + X'300' points to the LCCA VT (contains the address of an LCCA for each 
processor) 

PCCA + X'18' points to the virtual address of the PSA for that processor 

PCCA + X'1 C' points to the real address of the PSA for that processor 

The PSA is the "low storage area" (first 4K bytes of storage) and it contains, 
among other things, the hardware-assigned storage locations. System/370 Principles 
a/Operation details the prefixing mechanism the hardware uses to reassign a block 
of real storage for each processor to a different block in absolute main storage. 
Prefixing permits processors to share main storage and operate concurrently. 

The PCCA contains information about the physical facilities associated with its 
processor, the LCCA contains save areas for use by the first level interrupt handlers 
(FLIHs). The need for processor unique areas arises, for example, because external 
interrupts could occur simultaneously on each processor, and therefore a processor­
related area must exist for status saving by the external FLIH. Such areas are in the 
processor's LCCA. After locating these control blocks, you can determine several 
things about the status of each processor. ''II-

• The PSWs at the time of the last program, I/O, SVC, external, and machine 
check interrupts for each processor (PSA) 

• The general purpose registers at each interrupt (LCCA) 

• The mode (SRB or task) of each processor (LCCA) 

• The last program interrupt on each processor (PSA) 

• The address of the device causing the last I/O interrupt on each processor 
(PSA) 

In addition, a work/save area vector table (WSAVTC) pointed to at LCCA + 
X'218' is associated with each processor. This vector table contains pointers to 
processor-related work/save areas. For example, there is a large save area for use by 

, ACR, whiqh is pointed to in the processor's WSAVTC. It is important to be aware 
of the existence:of these processor-relatedareas because GTF, SRM, ACR, lOS, etc., 
use them; but you must narrow your problem to one of these processes (such as GTF, 
SRM, etc.) before the information in the associated work/save areas become helpful. _ 

.Section 2: Important Considerations Unique to MVS 2.5.3 



Effects of Multiprocessing On Problem Analysis (continued) 

Parallelism 

The most important characteristics of the MVS MP capability is parallelism. In 
looking at MP dumps, you must always remember that any two processes run in 
parallel and reference the same main storage locations. As a result, queue structures 
and common data areas are vulnerable. In order to preserve their integrity, the 
system must insure that they are accessed serially. The resources that must be 
serialized in order to guarantee their integrity are called serially reusable resources I 
(SRRs). The use of shared resources is undoubtedly the key item to be kept in 
mind in debugging an MP dump. There are various mechanisms available for 
serializing SRRs: 

• ENQ/DEQ 
• WAIT/POST 
• Disablement 
• Locking 
• Compare and Swap (CS) instruction 
• Non-dispatchability 
• Test and Set (TS) instruction 
• RESERVE/RELEASE 

Obviously all users of a particular SRR must use the same serialization 
mechanism. The integrity of an SRR is not enhanced if one user employs locking 
and another uses ENQ/DEQ. The point is to understand the processes going on in 
both processors at the time of the failure. The processor on which the failure occurred 
may not be the one that caused the problem. 

Use of the work/save areas pointed to from the ASXB is a good example. These 
areas are serialized with the local lock . The following diagram shows what could 
happen if the same address space is running on both processors and one of the 
processes involved fails to serialize properly. 

PROCESSOR 0 

• 
• 
• 
• 
Branch enters validity check routine 

• 
• 

PROCESSOR 1 

• 
• 
• 
Gets local lock 
Branch enters validity check routine 

Releases local lock 

• 
• 

In this example, assume that the process executing on processor 0 fails to get the 
local lock before it branch enters the system validity check routine. The validity . 
check routine uses the local lock to serialize one of the save areas mentioned above 
in order to save the caller's registers. The registers saved by the validity check 
routine on processor 1 can be overlaid by the registers saved by the validity check 
routine on processor O. Thus, the failure would be encountered on processor 1, 
but the processor 0 process would be the one that caused the failure. 

2.5.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Effects of Multiprocessing On Problem Analysis (continued) 

OIINI (OR Immediate and AND Immediate) instructions also illustrate this 
phenomenon. These instructions take more than one machine cycle to complete 
(that is, the operand is fetched, altered, and then stored). In previous operating 
systems, physical disablement and UP environments were enough to insure the 
completion of one instruction before another was executed. In MVS, with multiple 
processors, this is no longer true. 

For example, suppose processor 0 issues 01 and the operand has been fetched. 
Before processor 0 stores the changed byte, processor 1 executes the fetch cycle of 
an NI instruction to change a different bit in the same byte. Now, processor 0 
stores the original status plus the 01 change; subsequently the NI instruction com­
pletes, which erases the effect of the 01 on the same byte. In MVS, locking is used 
to solve some of the problems arising from such multi-cycle instructions. When 
locking is not an appropriate solution, the CS instruction is. CS serializes the word 
containing the byte against the other processor. The point is that in debugging an 
MP dump, both processors must be considered because interaction between 
processes and shared resources is generally-the key to solving the problem. 

When a program serializes an SRR incorrectly, other programs can alter the SRR 
before the first program completes its update. The other programs may be running 
on the other processor, or they may have received control .on the same processor 
because the first program was pre-empted (for example, SRB suspension because of 
a page fault) before completing its update. Proving that a problem resulted from 
incorrect serialization is accomplished by fmding both the "other" program and the 
window (an interval in which a program opens a serialization exposure is called a 
window) . 

. The system trace table can sometimes be used to find potential "other" 
programs. If the occurrence of the error has not been overlaid in the trace table, 
it may be possible to reconstruct the series of events leading up to the failure by: 

1. Listing all events on that proces'sar, in order, using the logical processor 
address field in each event's trace entry 

2. Making a similar list of all of the events on the other processor 

3. Comparing the two lists to see if the processes executing in parallel 
on the processors are altering a common resource 

Try to relate these two processes to the serialization problem that caused the 
dump. The existence of the window is confirmed by reading the code that alters 
the state of the SRR and finding where the two programs serialize improperly. 

Section 2: Important Considerations Unique to MVS 2.5.5 



< Effects of MultiproceSSing On Problem Analysis (continued) 

General Hints For MP Dump Analysis 

The following is a list of general hints to help you analyze an MP dump. 

1. The use of PRIORITY and DPRTY parameters no longer ensures the order 
in which tasks are dispatched. First; the SRM, when attempting to handle 
resources, can allow a task or job with a lower DPRTY to run prior to a job 
with a higher priority. Second,ils the dispatcher dispatches tasks to both 
processors, tasks of different priority may be executing on both processors 
simultaneously. 

2. The CHAP (change priority) SVC does not ensure that tasks are dispatched in 
the expected order when dispatching on two processors. 

3. Attached tasks can execute at the same time as the mother task on different 
processors. Therefore, if both tasks reference the same data, serialization of 
the data is required: 

4. Any references made to system control blocks that change dynamically after 
IPL must be serialized to preserve the integrity of the data. The serialization 
technique for the data item must match that employed by the system. 

5. Tasks can be redispatched on a different processor from the one on which they 
were previously operating. Therefore, do not use storage from 04K because 
redispatch on a different processor results in different data being referenced. 

6. Ifsubpools are shared between tasks, users must serialize the use of any data in 
the sub pools c'ommon to the two tasks. 

7. SRBs can be dispatched on either processor unless they are scheduled with 
affinity for a particular processor. 

8. Asynchronous appendages can operate Simultaneously with the task on the 
other processor. , 

9. Recovery routines can run on either processor, not necessarily the one on 
which the error was detected. 

I 10. STATUS STOP does not prevent SRBs from being added to the local queue; 
it merely quiesces the address space after any currently executing or suspended 
SRBs have completed. 

11. When access methods allow sharing of data sets between tasks in the same 
address space, access to the data sets must be serialized between the tasks. 

2.5.6 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Effects of Multiprocessing On Problem Analysis (continued) 

Inter-Processor Communication 

MVS uses the inter-processor communication OPC) function in doing its inter­
processor related work. The IPC function uses the SIGP (Signal Processor) instruc­
tion to provide the necessary hardware interface between the MP-configured 
processors. This instruction provides twelve distinct functions. Two of these 
functions are augmented by the control program to request services of the other 
processor; external call (XC) and emergency signal (EMS) which are SIGP codes 
02 and 03, respectively. Thus, there are two classes of IPC services: 

1. Direct - These services are defined for those control program functions that 
require the modification or sensing of the physical state of one of the pro­
cessors. Ten of the twelve SIGP functions are defined as IPC direct services: 

sense 
start 
stop 
restart 

Function 

initial program reset 
program reset 
stop and store status 
initial microprogram load 
initial processor reset 
processor reset 

Function Code 

01 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 

Note: Codes OA, OB, and OC are not valid on a Model 158. 

2. Remote - These services are defmed for those control program functions 
that require the execution of a software function on one of the processors. 
The two remaining SIGP functions, external call (XC) and emergency signal 
(EMS), provide the hardware interface and interruption mechanism to initiate 
the desired program on the proper processor. The remote service function is 
provided in two categories: 

• Pend able service - uses the XC function of SIGP 

• Immediate service - uses the EMS function of SIGP 

When processor A issues a SIGP (XC or EMS) instruction to processor B, a 
request for an interrupt becomes pending in processor B for the external 
class. If external interrupts are disabled in the current PSW for processor B, 
the interrupt is not taken. If the PSW for processor B is enabled, then 
separate mask bits for XC and EMS are interrogated in control register O. 
Interrupts are taken one at a time for those requests enabled in the control 
register. If processor B is disabled, processor B keeps pending at most one 
XC and one EMS request. XC requests can pend simultaneously. Each 
specific XC request is encoded in a physical configuration communication 
area (PCCA) buffer associated with the receiving processor. 

Both the direct and remote services may be used to initiate the desired 
function on any of the processors phYSically attached via the MP feature, 
including the processor the request is initiated on. 

Section 2: Important Considerations Unique to MVS 2.5.7 



Effects of Multiprocessing On Problem Analysis (continued) 

Direct Services 

The direct service function consists of a macro instruction (DSGNL) and a SIGP 
issuing routine (IEAVEDR); The DSGNL macro generates an in-line sequence of 
instructions that: 

1. Loads general register 0 with one of the ten SIGP function codes used to 
perform the desired hardware action 

2. Loads general register 1 with the address of the specified processor's physical 
configuration communication area (PCCA) 

3. Loads general register 15 with the address of lEA VEDR 

4. BALRs 14, 15 

Upon return from lEA VEDR, register 15 contains a return code indicating the 
status of the request. If the return code is 8, register 0 contains sense information 
about the receiving processor as shown in Figure 2-9. 

Return Code of 8: Register 0 
Bit 

o 
1-23 

24 
25 
26 
27 
28 
29 
30 
31 

The other return codes are: 

Meaning 

Equipment check 
Reserved 
External call pendi ng 
Stopped 
Operator intervening 
Check stop 
Not ready 
Reserved 
I nvalid order 
Receiver check 

o - SIGP instruction successfully initiated. The function is not necessarily 
completed upon return to the caller. 

4 - SIGP function not completed because path to the addressed processor 
was busy or the addressed processor was in a state where it could not accept 
and respond to the function code. 

12 - Not operational, that is, the specified processor is either not installed 
or is not configured into the system or is powered off. 

16 - SIGP unsuccessful. Processor is a uniprocessor and does not have SIGP 
sending and receiving capabilities. 

Figure 2-9. SIGP Return Codes 

2.5.8 OS!VS2 System Programming Library: MVSDiagnostic Techniques 



Effects of Multiprocessing On Problem Analysis (continued) 

Remote Pendable Services 

The remote pendable services function (external call) consists of a macro 
instruction (RPSGNL) and a routine (lEAVERP) which are used to invoke the 
execution of a specified program on a specifc processor. This service is used by 
supervisor state, zero protection key functions that are not dependent upon the 
completion of the specified service in order to continue their processing~ The 
RPSGNL macro generates an in-line instruction sequence that: 

1. Loads register 0 with a code identifying one of the services to be initiated 

2. Loads register 1 with the address of the PCCA of the processor on which the 
service is to be initiated 

3. Loads register 15 with the address of IEAVERP 

4. BALRs 14, 15 

Upon return, register 15 contains a return code. If the return code is 8, register 0 
contains sense information (see Figure 2-9). There are currently six functions that 
can be initiated via external call: 

1. Switch - specifies that the service routine (lEA VEMSI) used by the memory / 
task switch function is to be executed. 

2. SIO - specifies that the IDS start I/O routine (IECIPC) is to be executed on 
the specified processor. 

3. RQCHECK - specifies that the timer supervisor TQE check service routine 
(IEAPRQCK) is to be executed. This routine ensures that the top TQE on the 
real-time queue is being timed. 

4. GTFCRM - specifies the GTF service routine (AHLSTCLS) that modifies the 
Monitor Call (MC) control registers is to be executed. 

5. MODE - specifies the recovery management services (RMS) service 
routine (IGFPEXI2) that modifies the RMS oriented control registers is to be 
executed. 

6. MFITCH - specifies that the MFI service routine (pointed to by 
CVT + X'320') is to be executed. This routine executes TCH (Test Channel) 
instructions on the processor to which the channels are attached. 

Section 2: Important Considerations Unique to MVS 2.5.9 



Effects of Multiprocessing On Problem Analysis (continued) 

The remote pendable seIVices routine (IEAVERP) sets the appropriate code in the 
external call buffer of the receiving processor's PCCA (offset X'84') as follows: 

SWITCH X'80' 
SIO X'40' 
RQCHECK X'20' 
GTFCRM X'IO' 
MODE X'04' 
MFITCH X'02' 

Then IEAVERP sets the external call (XC) function code (X'02') in register 0 and 
uses the DSGNL macro instruction to cause the SIGP instruction to be issued. 
The receiving processor will take an external interrupt when it becomes enabled 
for such interrupts. The external FLIH determines that the interrupt was an XC 
and passes control to the XC SLIH. The XC SLIH locates the XC buffer (X'84') in 
his PCCA, determines the function requested, and branches (BAL) to the 
appropriate routine. Refer to Figure 2·10 for the XC process flow. 

Remote Immediate Services 

The remote immediate seIVices function consists of a macro instruction, RISGNL, 
and a routine, IEAVERI, which are used, like the remote pend able services, to 
cause the execution of a specified program on any of the online MP·configured 
processors. However, the immediate seIVice differs from the pendable seIVice in 
two important ways: 

• The processors in an MP configuration are enabled for the emergency signal 
(EMS) interrupt at times when the processors are not enabled for the external 
call interrupt. In particular, EMS interrupts are enabled when the processor 
is in the "window spin" state in which all other asynchronous interrupts 
(except machine check and malfunction alerts) are disabled. This "window 
spin" state is entered by a routine, such as the lock manager, when a point is 
reached in its processing that requires an action on the other processor in order 
for processing to continue. The "window spin" state specifically allows either 
the malfunction alert or EMS interrupts that are used to trigger the alternate 
CPU recovery (ACR) function to be accepted and processed. 

• An immediate seIVice routine can be requested to execute serially or in parallel 
with the function requesting the seIVice. That is, IEAVERI will spin while 
waiting for the designated processor to signal either that the receiving routine 
has completed execution(serial) or that the receiving routine has been given 
control (parallel). 

Some of the functions that can be initiated via EMS are: 

• HIO - A Halt I/O command is issued to the designated device by the 
receiving processor. 

• ACR Function - The receiving processor helps the sending processor from a 
failure by al ternate CPU recovery procedures. 

2.5.10 OS/VS2 System Programming Library:MVS Diagnostic Techniques 



Effects of Multiprocessing On Problem Analysis (continued) 

• Clock Synchronization - TOD clocks are adjusted so the same value is in 
each clock. 

• PfLB - The receiving processor purges its translation-Iookaside buffer (TLB). 

The remote immediate services macro, RISGNL, generates an in-line sequence of 
instructions that: 

1. Loads register 0 with the PARALLEL/SERIAL indication 

2. Loads register 1 with the address of the PCCA of the processor on which the 
service is to be executed 

3. Loads register 11 with the address of a parameter list to be passed to the 
service routine 

4. Loads register 12 with the entry point address of the service routine to be 
executed 

5. Loads register 15 with the address of lEA VERI 

6. BALRs 14, 15 

As for direct and remote pendable services, upon return register -15 contains a 
return code. Register 0 contains sense information in case the return code was 
eight. (See Figure 2-9). 

lEA VERI builds the emergency signal buffer in the sending processor's own 
PCCA at offset X'88', sets the EMS function code X'03' in register 0, and issues 
the DSGNL macro to cause the SIGP to be issued. The receiving processor will 
take an external interrupt when it becomes enabled. The external FLIH determines 
that the interrupt is an EMS and routes control to the EMS SLIH. The SLIH 
locates the EMS buffer of the sender and, for a parallel request, the SLIH turns 
off the parallel bit and calls the receiving routine. For a serial request, the receiving 
routine is given control, and, upon completion, the serial bit is turned off. During 
this interrupt handling process, the sending processor was in the window spin state 
until the serial or parallel bit was turned off. Figure 2-11 'shows the EMS process 
flow. 

Section 2: Important Considerations Unique to MVS 2.S.11 



SENDING PROCESSOR 

Invoked via Macro 
(See Below) 

Input Registels 

RO Function Code 

. R 1 Receiving Processor's 
/PCCA 

R 14 Return Address 

R15 IEAVERP EP 

1. 

2. 

3. 

4. 

5. 

6. 

RO 

R1 

R14 

IEAVERP 

Disables (STOSM) 
External and 10 Interrupt 
Set up (see Note 1.1 

Is Receiving Processor 
Online? 
Yes No 

Turns On External Call's 
Sub·Function Code in 
External Call's Buffer In 
Receiving Processor's 
PCCA. (Compare and 
Swap On) 

Sets External Call 
Function Code, X'02' In 
Reg 0 

Issues DSGNL (0), (1) 

Checks Return Codes. 
If R.C. = S and Status 
is External Call Pending, 
Set Return Code = O. 

Return Registers 

RO Status Bits 

R14 Return Address 

R 15 Return Code 

Note: R.C. S means 
status bits are set in 
Register O. 

Input Registers 

Function Code 
= X'02' 

Receiving Processor's 
PCCA 

Return Address 

R15 IEAVEDREP 
Entry Point 

IEAVERP Invoked via RPSGNL Macro Expansion: 

~ SWITCH ! SIO 
RQCHECK 

RPSGNL GTFCRM ,PROCESSOR = j PCCA Entry .Address l 

l MODE 1 (1) f 
MFITCH 

(0) 

Figure 2-10. External Call (XC) Process Flow (Part 1 of 2) 

2.5.12 OS/VS2 System Programming.Library: MVS Diagnostic Techniques 

IEAVEDR 

Disables (STOSM) 
External and I/O Interrupts 
Set up . see Note 1. 

Establishes SIGP Registers 
a. Physical Processor Address 

X'SO' 
X'40' 
X'20' 
X'10' 
X'OS' 
X'04' 
X'02' 

R2 = PCCACPUA based on R1 
b. Establishes Parameter Register 

R1 = 0 
c. Establishes Function Code 

R3= RO 

SIGP R1, R2, 0 (R3) 

3. Checks Condition Code 
CC2 - Busy - Retry (2) 
CC1 - Eq. Chk, Operator Intervention 

Receiver Check - Retry 
Within Limits 

CC1 - All Others - R.C. S 
CC3 - R.C. S (See Note 3.) 
CCO - R.C. 0 

4. Restores Caller's Status and 
Returns to Caller 

Return Registers 

RO Status Bits 

R14 Return Address 

R 15 Return Code 

Note: R.C. S means 
status bits are set in 
Register 0 

Returns to 
IEAVERP 

(To Part 2) 



RECEIVING PROCESSOR 

(Fr P rt 1) om a 

A 

Input Registers 

R2 FLIH Return 
Address 

R10 Ext. Call SLIH 
Entry Address 

Notes: 
1. T urns on active indicator 

Saves callers registers 
Establishes addressability 

2. Disables/Enables Spin 

"I .. 

1. Turns on SPIN indicator 

1. 

2. 

3. 

4. 

5. 

External FLiH 

JIo.. 

'" 
Determines If 
Interrupt 
IsAn 
External 
Call 

I 

External Call SLI H 

Turns On Active Bit 

Locates External Call Buffer 
PSA ~ PCCA 

If Buffer Equals 0, 
Returns ,to F LI H 

Determines Subfunction 
Requested Compare and 
Swap Bit Off and Bal 14 
to Appropriate Routine: 

X'SO'SWITCH IEAVEMS1 
X'4Q'SIO IECIPC 
X'20'RQCHECK IEAPRQCK 
X'10' GTFCRM AHLSTCLS 
X'OS'RESERVED 
X'04' MODE IGFPEXI2 
X'02' MF ITCH CVTMFRTR% 

Turns Off Active Indicator and 
Returns To External FLiH - BR 2 

2. Enables for MFA and emergency signal interrupts 
3. Disables 
4. Turns off SPIN indicator 

3. If CC = 3 and yet the processor is logically online, a SIGP 
hardware failure may exist. A "Soft ACR" option is 
available to the system operator to reconfigure to a 
UP system. 

Figure 2-10. External Call (XC) Process Flow (part 2 of 2) 

Appropriate 
Routine 

... 

... 
... 
..... 

Section 2: Important Considerations Unique to MVS 2.5.13 



SENDING PROCESSOR 

See Macro Below 

Input Registars 

RO 
R 1 ... R-e-ce-i-Vi-ng-P-ro-c-es-so-r-'s ...... 

PCCA 

R11 
~-------I 

R12 
~----~--~----~ 

R14 
~--------------~ R15 

IEAVERI 

1. Disables (STOSM) 
External and 10 Interrupts 
Sets up (see Note 1 J 

2. Is Receiving Processor Online ~ 
Yes NO .... RC=4.~ 

3. Builds Emergency Signal Buffer in 
Own peCA. 
a) Turn On Parallel or Serial 

Indicator. 
b) Place Receiving 

1) Routine's EP 
2) Routine's Parameter Address 
3) Processor's Address 
In The Buffer 

4. Sets Emergency Signal Function 
Code, X'03' In Reg O. 
Issue DSGNL (0), (1) 

5. Checks Return Codes: 
Unsuccessful 
Successful 

6. Serial 
Request 

Spin Until Serial 
Bit Is Off. 
Note 2 

Parallel 
Request 

Spin Until Parallel 
Bit is Off. 
Note 2 

7. Restore Caller's Status and 
Returns To Caller 

X'03' I Status Bits 

Return Address 

Return Code 

RO 

R1 

R14 

R15 

I nput Registers 

Function Code = 
X'03' 

Receiving Processor's 
PCCA 

~-------f 

Figure 2·11. Emergency Signal (EMS) Process Flow (part 1 of 2) 

2.5.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 

Emergency Signal Buffer 
(In Sending Processor's PCCA) 

Bit 0 - Parallel (To 
Bit 1 - Serial 
Bit 31 - RMS Indicator 

Receiving RoutIne's 
Entry Point 

Receiving Routine's 
Par~meter Address 

IEAVEDR 

1. Disables (STOSM) 
External and 1/0 Interrupts 
Sets up (see Note 1,) 

2. Establishes SIGP Registers 
a. Physical Processor Address 

R2 = PCCACPUA based 
on R1 

b. Establishes Parameter 
Register 
R1=O 

c. Establishes Function Code 
R3=RO 
SIGP R 1. R2. 0 (R3) 

3. Checks Condition Code 
CC2 - Busy - Retry (2) 

. CC1 - Eq.Chk.Operator 
Intervention Receiver 
Check - Retries Within 
Limits 

CC1 - All Others - R.C.S 
CC3 - R.C. 12 (See Note 3) 
CCO - R.C. 0 

(To Part . 

/ 
\ 



RECEIVING PROCESSOR 

(From Part 1) External FLIH 

~~----------.~!r------. 

R2 

Input Registers 

FLIH Return 
Address 

R10 EMSSLIH 
Entry Address 

Determines 
Interrupt 
Is An 
Emergency 
Signal 

E'YIergancy Sillnal SLIH 

1. Turns On Active Bit 

2. Locates EMS Buffer of Sender 
CVT ... PCCA VT (Processor TO) .... PCCA 

B 1===========1 :=:================~ 
(From Part 1) 

Input Registers 

R 1 Parameter Address 

R14 Return Address 

R 15 Receiving Routine's 
Entry Address 

3. If RMS Indicator On, ~alls ACR 

4. If Receiving Processor 10 Equals This 
Processor 10, Returns to FLIH. 

5. Determines If This Is 

Serial 

Calls Receiving 
Routine 

Turns Off 
Serial Bit. 

or Parallel: 

Tums Off Parallel Bit 

Calls Receiving 
Routine 

6. Turns Off Active Indicator 

7. Returns to FLIH 

ACR ... ~ 
Receiving Routine 

Input Registers 

R 1 Parameter Address 

R14 Return Address 

R15 Receiving Routine's 
Entry Address 

IEAVERI Invoked via RISGNL Macro Expansion: Output Register 

RISGNL j Pa~lIel t . CPU = j PCCA Entry Address l 
1 Senal ~ ? (1) f 

EP = j Address t [p = j Address t] ? (12) ~ ,arm 1 (11) ~ 

Notes: 
1. Turns on active indicator 

Saves callers registers 
Establishes addressability 

2. Disables/Enables Spin 
1. Turns on SPIN indicator 
2. Enables for MFA and emergency signal interrupts 
3. Disables 
4. Turns off SPIN indicator 

3. If CC = 3 and yet the p'rocessor is logically online, a SIGP 
hardware failure may exist. A "Soft ACR" option is 
available to the system operator to reconfigure to a 
UP system. 

R21 FLIH Return Address I 

Figure 2·11. Emergency Signal (EMS) Process Flow (part 2 of 2) 

Section 2: Important Considerations Unique to MVS 2.S.1S 



Effects of Multiprocessing On Problem Analysis (continued) 

MP Debugging Hints 

1. Apparent disabled loop in lEA VERI on processor A. 

This is probably caused when processor A sends an EMS to processor B, but 
the receiving routine on processor B has not yet turned off the serial or 
parallel bit in processor A's PCCA. Thus, processor A is in the "window 
spin" state in lEA VERI. 

To find what processor A wanted processor B to do, locate processor 
A's PCCA. 

CVT + X'2FC' points to the PCCA VT 

PCCA VT + 4 (CPUID for processor A) points to processor A's PCCA. 

PROCESSOR A's 
PCCA 

X'88' 
RISP 

X'8C' 

Receiving Routine PARM address 
X'90' 

Receiving Routine EP address 
X'94' 

Receiving Processor's PCCA 

"t'address "'r 

X'80' for Parallel 
Request 
X'40' for Serial 
Request 

By locating the proper PCCA (in this case processor A's), you can determine 
whether the EMS request was parallel or serial, the entry point, and, there­
fore, the name of the receiving routine. Although this information tells quite 
a bit about the current process on processor A, the real problem, however, is 
most likely on processor B. Three past experiences can help determine the 
state of processor B. 

• Processor B, if disabled for EMS interrupts, would never take the EMS 
interrupt; therefore the receiving routine would never get control and the 
parallel or serial bit would never get turned off. 

• There could be a hardware problem with the SIGP circuitry. For example, 
if lEA VERI got condition code 0 as a result of issuing the SIGP instruc­
tion on processor A, but the SIGP was never received on processor B, there 
would be a loop in IEAVERI. 

• Processor B was stopped in order to take a stand-alone dump. Before the 
dump program was IPLed or processor A was stopped, processor A issued 
the EMS for page invalidation. Thus, when the dump occurred, processor 
A was looping while waiting for the page invalidation to complete. So it 
appeared that processor A's looping was the problem when actually it was 
caused by a previously-identified problem on processor B. 

2.5.16 OS/VS2 System Programming Library: . MVS Diagnostic Techniques 

( 



Effects of Multiprocessing On Problem Analysis (continued) 

2. Locate External Call buffers 

The external call buffer is located at offset X'84' in ilie PCCA. Normally, the 
buffer is clear, but it is worthwhile to check to make sure that there is no 
XC work to process, as indicated by the request codes below: 

PCCA 

X'84' 

code I 

Request Code: 

X'80' SWITCH 
X'40' SIO 
X'20' 
X'10' 
X'08' 
X'04' 

RQCHECK 
GTFCRM 
RESERVED 
MODE 

X'02' MF1TCH 

The code is set in the receiving processor's PCCA so that a bit on in processor 
B's PCCA, for example, means that processor A initiated the request. 

3. Determining Which Processor Has I/O Capability 

The processor attribute bits, PCCAATTR, are located at offset x' 178' in the 
PCCA. lfbit 1 (PCCAIO) is 1, then this processor has 1/0 capability, which 
means that this processor has at least one channel logically online. 

Bit 1 is set to 0 by: 

IEAVNIPO: For each processor that has no channels physically online. 
(Note: For Model 158 and Model 168 APsystems, PCCAIO=O 
for the attached processing unit.) 

IEEVCPU: When the last channel of a processor is varied offline. 

Bit 1 is set to 1 by: 

IEAVNIPO: For each processor that has channels physically online. 

IEEVWKUP: When a processor is varied online and it has channels physcially 
online. 

When the first channel of a processor is varied online. 

Section 2: Important Considerations Unique to MVS ·2.5.17 



Effects of Multiprocessing On Problem Analysis (continued) 

Bit 1 is referenced by: 

IGFPTERM: When searching for a live processor, if that processor has I/O 
capability (PCCAIO=1), a SIGP EMS is issued to that processor. 

IGFPTSIG: When processing an EMS received from a failing processor. 

When invoked during system termination, if executing on a 
processor with I/O capability, IGFPTSIG writes to LOGREC and 
the console. 

IGFPXMFA: When processing an MFA received from a failing processor. If 
executing on a processor that has I/O capability, IGFPXMFA 
invokes ACR. . 

IEAVTACR: IfPCCAIO=1 for the failing processor, IEAVTACR invokes I/O 
restart to handle outstanding I/O. 

2.S.18 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



MVS Trace Analysis 

This chapter reviews the trace formats found in VS2 storage dumps. The 
MVS trace (similar to the as trace) and the GTF trace are available in both system­
initiated dumps (SNAP) and in stand-alone dumps. There are formatting routines 
for most combinations. The trace table entry format can be found in the "Data 
Areas" section (see TTE-Trace Table Entry) and the "Dump and Trace Formats" 
section of the Debugging Handbook . 

. The information in this chapter is provided to assist you in reviewing the various 

formats as you will see them in a storage dump. The page fault path is used as the 
vehicle for describing these formats in the following examples and descriptions. 

Trace Entries 

To have these entries formatted in a SYSUDUMP/SYSABEND/SYSMDUMP, the 
installation must specify SDATA={TRT) in the SYSl.PARMLIB members or use 
the CHNGDMP command. 

Note: SYSMDUMP produces a machine-readable dump; AMDPRDMP must be 
used to print it.AMDPRDMP does not format the system trace table'. 

For unformatted trace table entries, the system queue area (SQA) must have 
been printed. Use location X'S4' as shown in Figure 2-12 to locate the trace table. 
Remember that 'TRACE ON' was required at IPL time. (Note that if GTF is active, 
the system trace is turned off.) 

FD95CO 
FD95EO 
FD9600 
FD9620 
FD9640 
FD9660 
FD9680 

~ 
a 

Entry Pointers 
LocX'54' 

"" Current . First 

00000000 000295C8 ~~ 
00000000 00000000 00000000 00000000 
078D206F 40F63284 00000004 00000004 
070C3011 BOF647EE 00000000 OOCBDOOO 
078D706F 40F63284 00000000 00000000 
078D2003 40014C72 00FA903A 00000000 
070C700C 60E470B4 00FA903A 00000000 

\ 070C200C--':OE4 70B41\00E4 70E6 OOOOO~O 

b c 

Last 

~ F5003240 00000000 00000000 
00000000 00000000 00000000 00000000 
00064F08 00400004 00CEC410 0712 8A 1 B 
OOCBDOOO 00400004 00CEC410 07128A38 
00000127 00400004 00CEC410 07128A67 
00064DE8 00400004 00CEC410 07128A8D 
00064DE8 00400004 00CEC410 07128A9F 
0,()064DE8)~~~~ 

d e f 9 

where: 

a - address column in SQA 

b - PSW or device address/CAW if an SIO operation 

c - variable, see TTE in Debugging Handbook 

d - CPU I D: 0040 for processor 0; 0041 for processor 1 

e - ASID: 0001 is Master Scheduler; 0002 is usually JES; 
0000 is Dummy Task or N/A 

f - TCB address 

9 - Timer value 

Figure 2-12. How to Locate the Trace Table 

* ....... H .. . 
* .......... . 
* .... 6 .... . 
* ..... 6 .... . 
* .... 6.A .. . 
* ........ .. 
* ..... u .... . 
* ..... U ... U. 

. Section 2: Important Considerations Unique to MVS 2.6.1 



G)--FD98AO 
FD98CO 
FD98EO 

(Y-FDB900 
FDB92 0 

@-~g:~~~ 
@f~g:!~~ 

FDBA20 

FD9740 
@-FD9760 

@:~~~!~ 
G)rFD97CO 

FD97EO 
FD9800 
FD9820 

®-FD9840 
FD9860 
FD9880 

where: 

<D 

@ 

® 

® 

o 

® 

MVS Trace Analysis (continued) 

If low address storage is overlaid and the trace table pointer (X'S4') is lost, you 
can locate the trace table (which is in the SQA) by searching through the high 
address range of common storage: Each trace entry is X'20' bytes in length and 
begins in the extreme left-hand column of a storage dump. Once you locate a 
pattern ofX'OT and X'04' combinations, you have found the trace table. 

If location X'S4' has not been overlaid, then it will point to the control informa­
tion for the trace; this information is directly in front of the actual table. 

The trace routine places an entry (record) type indicator in the fifth position of 
the PSW and moves the interrupt code in to make the PSW appear as Be mode . 

. Figure 2-13 illustrates and explains each of the trace entry types. 

Position 5 

000150 000060F8 
078D7000 00F62F84 
078D206F 40F63284 
078r.@>04 00F63284 
078D706F 40F63284 
078D2003 40014C72 
078$6F 40F63284 
070~11 BOF647EE 
078D706F 40F63284 
078D2003 40014C72 

078D2003 40014C72 
3001A128 

001F54F8 OCOOOOOO 
00F62F30 00000001 
00000004 00000004 
00000000 00000000 
00000000 00000000 
00FA903A 00000000 
00000004 00000004 
00000000 00CB5000 
00000000 00000000 
00FA903A 00000000 

00FA903A 00000000 
001F5258 OCOOOOOO 070*50 

070 4 00 0001C760 00000004 00FF5168 
070C700C 7001A128 00000000 00000088 
070c@J00 0003054C 00000004 OOOOFFFF 
00000250 000060F8 001F5258 OCOOOOOO 
070C700C 60E470B4 00FA903A 00000000 
070C200C 60E470B4 00E470E6 00000000 
078r:&>00 00E470E6 00E470E6 00000000 
078D5250 00F62F84 001 F54F8 OCOOOOOO 
070C4000 0001C760 00000004 00FF5168 

00FF51.~4 00400004 
00064F08 00400004 
00064F08 00400004 
000002BO 00400000 
000002BO 00400004 
00064DE8 00400004 
00064F08 00400004 
00CB5000 00400004 
000002BF 00400004 
00064DE8 00400004 

00064DE8 00400004 
00000000 00400004 
00FF5194 00400004 
00CC3CBO 00400004 
00FF5258 00400004 
00FF5194 00400004 
00064DE8 00400004 
00064DE8 00400004 
00064DE8 00400004 
00000000 00400004 
00FF5194 00400004 

00CEC410 07128D81 
00CEC410 07128D8E 
00CEC410 07128DA9 
00FE99B8 0712B~82 
00CEC410 0712B5A8 
00CEC410 0712B5C4 
00CEC410 0712B6B2 
00CEC410 0712B6DO 
00CEC410 0712B700 
00CEC410 0712B716 

00CEC410 07128BDF 
00CEC410 07128BEE 
00CEC410 07128C01 
00CEC410 07128C10 
00CEC410 07128C1C 
00CEC410 07128C58 
00CEC410 07128C65 
00CEC410 07128D10 
00CEC410 07128D25 
00CEC410 07128D32 
00CEC410 07128D43 

* ....... 8 ••• 8 ••••••••• 
* ..•.. 6 ••• 6 ••••••••••• 
* .... 6 ••••••••••••••• 
* ..... 6 ••••••••• 
* .... 6 ••••••••• 
* ............. . 
* .... 6 ••••••••••••••• 
* ..... 6 ••••••••••••••• 
* .... 6 ••••••••••••••• 
>1< •••••••••••••••••• Y. 

>1< •••• •••••••••••••• Y. 
>I< ..................... 
* .. ••• G •••••••••••••• 
>I< ..................... 
>1< ••••••••••••••••••••• 

>1< ••••••• 8 •.•..•..••••• 
* .. , .. u .•.•.••..•.•. Y. 
>I< ••••• u ••. u.w .•.•••• Y. 
>1< ••••• u.W. u.W •..•..•. Y. 
>1< ••••• 6 ••.•• 8 ..•.•.•.• 
>I< .. ••• G •••••••••••••• 

Fifth digit in first word is O. This is an SIO entry for device 250. The CAW 
address is '60F8'. The CSW is residual from the previous I/O interrupt. The 10SB 
address is 'FF5194'. 

Fifth digit = 1, an external type. This entry has an interrupt code of X'1004' so it 
was generated by a clock comparator interrupt. 

Fifth digit = 2, an SVC interrupt. An SVC '6/=' was issued from location F63284 
(minus the interruption length code -- I LC). Variable fields are registers 15, 0 
and 1. 

Fifth digit = 3, a program interrupt. Interrupt code of X'11' is a page exception. 
Word four is the referenced translation exception address (TEA). 

Fifth digit = 4, an SRB dispatch. The address in the PSW (1C760) is the entry 
point address. Word 3 contains the ASID to be dispatched. This illustrates the 
scheduling of POST status after an I/O interrupt. 

Fifth digit = 5, an I/O interrupt. The device. address (250) has been moved into the 
PSW. Words 3 and 4 are the CSW with the channel end/device end. 

Fifth digit = 6, SRB redispatch. SRBs can be suspended because of lock contention 
or a page fault. The address in the PSW is the return address to the lock manager 
or the instruction that caused a page fault. 

Fifth digit = 7, Task dispatch. Interrupt code is from the last task interrupt. If the 
interrupt cOde is 0, it is a return from SVC 0 or the first dispatch of this request 
block (RB) for the task. 

Figure 2-13. Types of Trace Entries 

2.6.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



MVS Trace Analysis (continued) 

Note: In previous systems, the program check trace entries had registers 15, 0, 1 
in words 3,4, and 5. Also, the fourth word was the TEA for page fault entries. 
This is changed in MVS; the fourth word for any type of program check is now 
the TEA. 

Trace Examples 

Figures 2-14 through 2-17 illustrate different kinds of MVS and GTF traces, as 
follows: 

Figure 2-14. MVS Trace of a Page Fault Without I/O 

Figure 2-15. MVS Trace of a Page Fault With I/O 

Figure 2-16. GTF Trace of a Page Fault Without I/O 

Figure 2-17. GTF Trace of a Page Fault With I/O 

While trace tables do not include all system activity, they can be very helpful in 
establishing a pattern. Remember that many MVS system services are branch 
entered and therefore do not appear in any trace type entry. 

Figure 2-14 illustrates a page fault that did not require I/O for completion. 

@-
DSP NEW PSW 
PGM OLD PSW 
SVC OLD PSW 
DSP NEW PSW 

071C700A 4009247E R15/RO 00000000 00000178 R1 
071C3011 80092480 R1S/RO 00000000 00098E8C R1 
071C200A 600925FO R15/RO 00000000 00000178 R1 
071C700A 600925FO R15/RO 00000000 00099000 R1 

00098E88 IDS 0041000C TCB 008FC72B TME 48CB062C 
00098E88 IDS 0041000C TCB 00BFC728 TME 48CB0635 
00098E88 IDS 0041000C TCB OOBFC72B TME 48CB0670 
00098E88 IDS 0041000C TCB 008FC728 TME 48CB06AB 

@ - Fifth digit = 3 and the interrupt code is X'11.' The faulting instruction is at 
X'92480' and is referencing X'98E8C: Because the next entry for this ASID andTCB 
is not a redispatch of the same location, it can be assumed that the page exception was 
satisfied by reclamation or the first time reference after a GETMAIN. No I/O Was 
required and there are no additional trace entries illustrating the process. 

Figure 2-14. MVS Trace of a Page Fault Without I/O 

Figure 2-15 illustrates another possible format of a page fault. It shows an MVS 
trace (formatted by the SNAP routine) and how it would appear in an SYSUDUMP 
or SYSABEND dump if the TRT operand was specified in SYS1.PARMLIB or by 
the CHNGDUMP command. 

(j)-, DSP 
~LpGM 
\f::I L ISD 
@-SIO 
~ DSP 
&--I/O 
/i;\ .ISO 
~DSP 

where: 

NEW PSW 070C7038 50040162 R15/RO 00040146 C9C7C7FO 
OLD PSW 07SC3011 80F8AOOO R15/RO 00F8AOOO 00F8AOOO 
OLD PSW 070C4000 000SB4AO ASD/RO 00000001 00FE7400 
CC/DEV/CAW 00005312 0000E5AO CSW 00076470 OC000001 
NEW PSW 070E7000 00000000 R15/RO 00000000 00000000 
OLD PSW 070E5312 00000000 CSW 000768FO OC000001 
OLD PSW 070C4000 00025B7A ASD/RO OOOOOOOA 00FF8510 
NEW PSW 075C7038 40F8AOOO R15/RO 00F8AOOO C9C7C7FO 

CD The page exception. 

R1 F1F9F9C6 
R1 F1F9F9C6 
R1 00000000 
ISB 00FF0188 
R1 00000000 
RES 00000000 
R1 00000001 
R1 F1F9F9C6 

@ The SRB dispatch to initiate ASM's processing in address space 1. 

@ The SIO by lOS after a branch entry from ASM. 

@ The I/O interrupt with channel end/device end. 

IDS 0041000A 
IDS 0041000A 
IDS 00410001 
IDS 00410001 
IDS 00410000 
IDS 00410000 
IDS 0041000A 
IDS 0041000A 

(§) SRB scheduled in page faulting addr"ess space to post the suspend task that I/O 
is complete. 

® Redispatch at page faulting location. 

Figure 2-15. MVS Trace of Page Fault With I/O (Formatted by SNAP in SYSUDUMP/SYSABEND) 

TCB 008DD1C8 
TCB 00BDD1C8 
TCB 00000000 
TCB 00000000 
TCB 0001D8A8 
TCB 0001D8AB 
TCB 00000000 
TCB 008DD1C8 

TME 4BCB023B 
TME 4BCB0249 
TME 48CB02BA 
TME 48CB02C2 
TME 4BCB03B6 
TME 48CB04D9 
TME 48CB0874 
TME 4BCBOBAO 

Section 2: Important Considerations Unique to MVS 2.6.3 



MVS Trace Analysis (continued) 

Note that the sequence illustrated for the page fault path is not a mandatory one. 
Frequently ASM finds more than one request for paging on the queue and can 
satisfy them with one I/O. Also, if RSM queues a request and notes that a request 
already exists, it does not interface with ASM. The ASM SRB has been scheduled 
previously. 

The next two examples are of GTF traces with the following options in effect: 

FORMAT=SYS 
SVC=ALL 
SIO=ALL 
PI=ALL 
10=ALL 
EXT=YES 
RR=YES 

USR=YES 
GTF=NO 
DSP=YES 
PCI=YES 
RNIO=NO 
SRM=YES 
USERTIME=YES 

Note: The fields in GTF trace records are described in Debugging Handbook, 
Volume 1. 

Figure 2-16 illustrates one of two situations: 

1. A first reference to a page after a GETMAIN was issued for it. 

2. A reclaim; that is, a fault on a page which was stolen but whose real frame 
had not yet been reused. 

PGM 017 ASCB 00FD5858 CPU 0000 JOBN USRT085 OLD PSW 075C0011 000853F6 -TCB 008B8EBlJ MOON SVC-RES VPA 00885F5F 
RC 00885F60 Bl 000001AO R2 00000050 R3 0050F602 R4 000000E6 R5 00085000 R6 A0085220 R7 C00000050 
R8 0008B120 R9 00000001 R10 00055020 Rl1 008BE740 R12 000001AO R13 00000000 R14 008B5E60 R15 00000000 
TIME 44413.312955 

Figure 2-16. GTF Trace of a Page Fault Without I/O 

Figure 2-17 shows the steps taken to acquire a new page following a page fault. 
PGM 017 ASCB 00FD5858 CPU 0000 JOBN USR1085 OLD PSW 075C0011 00C6BOOO TCB 00888FB8 MOON SVC-RES VPA-00C68000 

RO 0000005B Rl 0000005B R2 8F8B5B78 R3 40C69002 R4 008B58F8 R5 01885F2C R6 008B5EE4 R7 018B5F20 
R8 008B5F04 R9 00000000 R10 00000008 R11 008B5A04 R12 00000000 R13 0000005B R14 008B8EB8 R15 00C6BOOO 
TIME 44413.341696 

SRa ASCB 000167FO CPU 0000 JOBN *MASTER* SRB PSW 070COOOO 00061A40 SRB 00FE7400 PARM 00000000 TYPE GLOBAL 
TIME 44413.343055 

SIO 0353 ASCB 00016780 CPU 0000 JOBN *MASTER* R/V CPA 00078740 00078470 CAW OOOOEFBO OSIO 00000000 
FLGS 00000010 8801 STAT 0000 SK ADOR 00000000 OE000803 CC 0 
TIME 44413.344333 

DSI> ASCB 00017058 CPU 0000 JOBN N/A DSP PSW 070EOOOO 00000000 TCB 00017158 MOON N/A 
'l'IME 44413.345269 

IO 0353 ASCB 00016780 CPU 0000 JOBN *MASTER* OLD PSW 070EOOOO 00000000 TCB N/A USIO 00000000 
CSW 00078498 OC000001 SNS N/A R/V CPA 00078470 00078470 FLG C0108801 A2000353 00 
'rIME 44413.372394 

SRB AseB 00F05858 CPU 0000 JOBN USRT085 SRB PSW 070COOOO 0004B6FA SRB 00FFB480 PARM 00000001 TYPE LOCAL 
TIME 44413.373942 

DSP ASCB 00F05858 CPU 0000 JOBN USRT085 OSP PSW 075COOOO 00C6BOOO TCB 008B8EB8 MOON SVC-RES 

PGM 017 

SRB 

SIO 353 

DSP 

10353 

I
SAB 

DSP 

TIME 44413.375033 

The page fault. VPA=address of fault. 

The dispatch of ASM's part monitor routine in master's address space. 

The Start 110 to page-in the requested page. 

The dispatch of any ready work while the page-in 1/0 is in progress. 
In this case, there is no ready work, so the wait task is dispatched. 

The 1/0 interrupt from the paging device. ASM's disable interrupt exit­
(DIE) routine gets control. 

The dispatch of RSM's I EAVIOCP page-in completion processor, to 
validate the page table entry and post the faulter as ready to run. 

The faulter resumed where he left off. 

Figure 2-17. GTF Trace of a Page Fault With I/O -

2.6.4 OS/VS2 System Programming LibraIy: MVS Diagnostic Techniques 



MVS Trace Analysis (continued) 

Notes for Traces 

The trace provides a history of some of the events that lead to a storage dump. 
Trace interpretation is one of the most important aspects of debugging. 

Tracing Procedure 

When attempting to recreate the process that was occurring on the processor(s) 
when the dump was taken, start at the last entry in the trace table (identified either 
by the trace header or by the highest clock value in the last column) and scan up­
wards. While scanning, look for unexpected events. These include: 

• Unit check, unit exceptions on I/O devices 

• Non-CC = 0 on SIOs 

• Non-type 11 program checks 

• SVC D, 33 - (see number 6 under "Cautionary Notes" later in this chapter) 

• Malfunction alerts (X'1200' external interrupt) 

• Entries that show both processors -executing the same code as indicated by the 
ICs (instruction counter) in the entries 

• Large time gaps in the TOD dock value 

• MP environment and only one processor doing anything 

These entries indicate a potential for errors. Do not be distracted if you 
discover an entry of this type. Record the incident for future use. Then continue 
scanning back through the trace and try to determine what was happening in the 
system that might have caused the failure. Remember to conduct the scan by unique 
processor. Separate the processes that occur on each processor and watch for any 
obvious interactions in the processes. 

You can further subdivide the activity by address space (as depicted by 
ASID) or by task (TCB address; remember to stay under the same ASID). As you 
recreate the situation, remember that you are relating individual 
entries to real events that must occur in order to accomplish work. Do not be 
distracted. For example, do not look for an I/O interrupt just because you see an 
SIO. The two events should be associated, but you should also determine the 
follOwing: 

• Why the I/O is occurring; 

• If the I/O is related to the process, address space, task, page fault, 
etc. that you are concerned with; 

• If the I/O completion should trigger another event. This is the way work is 
accomplished in MVS, that is, events triggering more events. As you become 
familiar with trace coding you learn to expect this "event causing" sequence. 
Certain sequences occur very frequently; you learn to recognize these and 
to look for less familiar sequences. 

Section 2: Important Considerations Unique to MVS 2.6.5 



MVS Trace Analysis (continued) 

As you are searching trace entries, watch for repeating patterns, which can 
indicate a loop in the system. These patterns can 'appear as constantly repeating 
ICs (generally the case in a tight enabled loop), or as a repeating sequence of 
entries (often the case in a process loop, such as an ERP constantly retrying an 
I/O operation). Note that in the latter case, other entries from otlier processes 
can intervene periodically in the trace table, especially in an MP environment. 

If you reach a point in the trace analysis where you are somewhat comfortable 
with the processes you are uncovering and recreating, and you feel you have a 
fair understanding of the activity in the system, pause. Try to understand 
what you have found. Is there any way you can relate your findings to the reason 
you have taken the. dump in the first place? Do the unexpected events have 
anything to do with the problem, or are they unrelated to the problem? It c·an 
happen that the events you have discovered are unrelated to the problem causing 
the dump and you have exhausted the scope of the trace. In this case, you probably 
have to go into the system and study the address space and task structures, . 
queues, and global data areas in order to zero in on the problem. 

However, if the events you have discovered are related to the problem causing 
the dump, you must then attempt to isolate the erroneous process. Try to . 
understand how the unexpected events relate to the process. Look on both 
sides of the event: did the event trigger the bad process, or is it a result of the 
bad process? 

It is also necessary in trace analysis inMVS to understand whether you 
are looking at the primary error or at some secondary problem. Is this 
a mainline failure or a failure because of a problem in the recovery? Also, you 
must decide if the problem is caused by a previous error from which the system has 
recovered. Always be sure that it was not something several pages earlier in the 
trace that caused recovery to be activated and eventually led to the current prob­
lem. If thjs is the case you must now decide which error to pursue. The original 
error is probably more important; however, m\lch of the required information 
might be lost because of recovery arid the subs~quent recovery failure. Also k~ep in 
mind that if you must attack the secondary error condition, your search of the 
dump and the recovery areas can often uncover information about the first error. 

The trace is one of the most useful tools available for back-tracking through a 
problem sequence. You must use it in conjunction with system control blocks and 
indicators in order to recreate the errorsequence. This is still true in MVS despite 
the fact that the trace contains less information than in previous systems. 
In MVS, the SVC calls have been greatly reduced because of branch entry 
logic for both transfer of control and supervisor services. This means that trace 
entries are not provided as in previous operating systems. Also, many significant 
events, such as lock acquisition and release, SRB scheduling, and SIGP issuance, 
are not traced. Because of these MVS considerations, you must be able to under­
stand the processes and interpret the trace table rather than just read it. 

2.6.6 OS!VS2 System Programming Library: MVS Diagnostic Techniques 

'. 



MVS Trace Analysis (continued) 

Cautionary Notes 

Listed below are some items the problem solver should understand when analyzing 
an MVS trace table. 

I. I/O Processing: 

• Much I/O is accomplished in MVS by the branch entry interface to lOS and 
without the use of SVC 0 (EXCP). Therefore, you often find I/O 
entries (SIO/I/O interrupt) that are not accompanied by SVC O. 

• Back-end I/O processing in MVS generally results in an SRB schedule of 
IECVPST. This trace entry should appear soon after an I/O interrupt. The 
register 1 slot will contain the 10SB address. The 10SB is the key to 
tracking the I/O request. 

2. Timer Value: 

The last field of each trace entry contains the middle four bytes of the eight­
byte TOO clock at the time the entry was made~ The clock can be of 
considerable importance when trace entries and various system fields (such as 
the ASCB or LCCA, which also contain TOO clock values) are used to deter­
mine how much time has elapsed between significant events. The last digit 
represents a value that is increased every 16 microseconds. Also, the fourth 
digit represents the value to be increased every second. 

3. Enabled Wait State: 

Because of recovery, the end symptom of many problems is an enabled wait 
state. For tracing, the wait state presents particular problems in MVS. SRM 
maintains a timer interval that causes a clock comparator interrupf(code 
X'1004') approximately every 1/2 second. These external interrupts are 
recorded in the trace table. You then see the re-dispatch of the no-work 
wait task followed by another clock comparator interrupt, and so on. Even 
though this occurs,the sequence is not repeatedly traced. In addition, in an 
MP environment there are external calls (code X' 1202') issued between the two 
processors requesting that the receiver look for ready work. These calls will be 
followed by a re-dispatch of the no-work wait on the receiving processor. In 
short, the wait state is a combination of dispatches of the no-work wait task, 
clock comparator interrupts, and SIGP external calls. The IC (instruction 
counter) will always be O. At approximately 12- or I3-seconds intervals, an 
SRB is dispatched in the master scheduler address space to run a section of 
SRM in order to gather system statistics. When the SRB has completed, the 
no-work wait task is again dispatched. 

All this extraneous activity causes the trace to wrap around and overlay the 
important trace entries of the events that led up to the enabled wait state. 

Section 2: Important Considerations Unique to MVS 2.6.7 



MVS Trace Analysis (continued) 

4. MP Activity: 

The communication between the two processors in the MP environment is 
traced ,as the external interrupts are accepted by the receiving processor. An 
external interrupt code ofX'1201' is an emergency signal; and an external 
interrupt code of X' 1202' is an external call. (The previous chapter, "Effects 
of MP on Problem Analysis," explains this communication process.) 

5. Trace Currency: 

Various processesthatoccur in MVS turn off the MVS trace. The most 
prominent o'f these are GTF and SVC dump. Determine if the trace was 
running when the, dump occurred: if you are unaware that the trace was not 
running when the dUlllP was taken, you might go off on a fruitless chase and 
lose considerable time. The trace was still active when the dump occurred if 
the CVT +X'191' value =X'FA'. 

Note: When SVC dump turns off the MVS trace, it sets bit 0 on in the CPU 
identifier (offset X'14') in the current trace table entry. 

6.' SVC D Entries: 

SVC D is the means .by which termination is invoked. In previous operating 
systems, SVC D meant abnormal termination. This is not always true in MVS. 
RTM2 is the mechanism for normal end-of-task processing as well as for 
abnormal te,rmination; RTM2 is invoked via SVC D. Consequently, SVC D 
for normal termination is a valid situation and is traced. You 
can determine whether SVC D implies normal or abnormal termination by 
inspecting the register 1 slot associated with the SVC D entry. If the first 
byte contains a X'08', RTM2 is being invoked for normal termination and this 
is not an error situation. 

7. Important events not traced: 

MVS design prevents locked, disabled, or SRB code from issuing SVCs. The 
SVC FLIH abnormally terminates code that issues an SVC. Note that in this 
case, the erroneous SVC invo~ation is not traced. Also note that locked, dis­
abled, or SRB code that issues SVC D does so as a means of entering RTMI; 
this is a common technique used by IBM SCP code in order to invoke recovery. 
RTM indicators show SVC error, but the real problem is why the SVC D 
was issued. 

2.6.8 OS/VS2 System Programming,Libr~ry: MVS Diagnostic Techniques 



MVS Trace Analysis (continued) 

8. Unit exception I/O interrupt on a 3705 communications controller: 

The presence of unit exception conditions from the 3705 is a common 
occurrence while running VTAM. This is a normal situation and should not be 
considered erroneous. The host processor has issued a set of read commands to 
the 3705, and the channel program has been terminated before all the reads 
have completed because the NCP did not have enough data to satisfy each read 
CCW. 

9. GETMAIN, FREEMAIN - SVC X'A', SVC X78': 

For SVC X'A', inspect the register 1 slot of the associated trace entry. A value 
of X'80' in the high-order byte indicates GETMAIN; a value of X'OO' indicates 
FREEMAIN. SVC X'78' uses a code in register 15 (see the Debugging 
Handbook.) If a GETMAIN is indicated, the register 1 slot of the associated 
re-dispatch of the SVC issuing code can be used to locate the storage allocated 
by the GETMAIN process. 

I 10. A GETMAIN for X'3CC' bytes is often seen soon after an SVC D is issued: 

This is RTM2's request for storage for an RTM2WA. By locating the re­
dispatch of RTM2 and inspecting the register 1 slot, you can locate the 
RTM2WA. 

Section 2: Important Considerations Unique to MVS 2.6.9 



2.6.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Miscellaneous Debugging Hints 

This chapter is a collection of miscellaneous debugging hints to aid the problem 
solver in specific situations not covered elsewhere in this book. It includes the 
following topics: 

• Alternate CPU Recovery Problem Analysis 
• Pattern Recognition 
• OPEN/CLOSE/EOV ABENDs 
• Debugging Machine Checks 
• Debugging Problem Program ABEND Dumps 
• Debugging from Summary SVC Dumps 
• Started Task Control ABEND and Reason Codes 
• SW A Manager Reason Codes 

Alternate CPU Recovery (ACR) Problem Analysis 

Alternate CPU recovery (ACR) is the process by which MVS dynamically adjusts 
to the unexpected failure of a processor in a multiprocessing (MP) configuration. 
ACR is initiated by the failing processor. If the failing processor's hardware detects 
the failure, it issues a malfunction alert (MFA) external signal to the other 
processor. If the failing processor generates the severe machine check interrupt 
(recursive or invalid logout) type, the machine check iIlterrupt handler will initiate 
ACR via the SIGP instruction, emergency signal (EMS) operand, which generates 
an external interrupt on the receiving processor. 

When the running processor detects that a failing processor is requesting ACR, 
it places X'FF' in the CSDACR byte (CSD+X'16') in the CSD control block. The 
byte will be restored to X'OO' after ACR is complete. 

ACR works in three phases: pre-processing, intermediate, and post-processing 
phase. Pre-processing is the initialization phase: the running processor copies the 
PSA and normal functional recovery routine (FRR) stacks of both processor's 
and places them in the area pointed to from their respective LCCA's WSACACR 
pointer. The WSACACR pointer islocated at X'lO' beyond the area pointed to 
by LCCACPUS; Additionally, LCCAs are marked so that in both processor's 
LCCAs, LCCADCPU points to the LCCA of the failing processor and LCCARCPU 
points to the LCCA of the running processor. By means of the LCCACPUA field 
in the LCCA, you can determine which processor has failed and which is still 
running. 

Note that in a storage dump, the physical PSA of the failed processor is the 
same as it was when the processor decided that ACR should be initiated. The 
normal FRR stack, pointers to other FRR stacks, locks, PSASUPER bits etc. all 
reflect the state of the processor at the time it failed. This will be useful for solving 
problems in the recovery initiated for the process on the failed processor. 

Section 2: Important Considerations Unique to MVS 2.7.1 



Miscellaneous Debugging flints (continued) 

The ACR intermediate phase gets control from the MVS dispatcher, or lock 
manager global spin lock routine. In this phase, ACR switches from the process 

. on one logical processor to the process on the other logical processor. This 
switching continues until the RTMI recovery (routing to FRRs) completes on 
behalf of the process on the failed processor. At this point, the ACR post­
processing phase is entered. 

ACR post-processing consists of cleanup activities performed by other 
components and by ACR. ·Post-processing invokes I/O restart (IECVRSTI) to 
initialize the channel reconfiguration hardware (CRH) function on a Model 168 
or to mark outstanding I/O from the failed processor with a permanent error which 
then initiates error recovery processing via error recovery procedures (ERPs). 
Console switch is invoked via POST. Additionally, the system resources manager 
(SRM) is notified of the loss of the processor. Finally, ACR performs additional 
cleanup activities and sets the CSDACR flag to X'OO'. 

Historically, the parts of the ACR process that have had software problems are 
the FRRs (written by component developers to protect particular mainline 
functions) and the ERPs (device-dependent routines). The mainline ACR routine 
(lEA VTACR) is basic and has been quite free of problems. 

Note: The I/O error processing invoked during the ACR process has caused many 
of the problems discovered to date. Of significant importance is EXCP I/O error . I processing. The following flow describes the non-CRH situation for an MVS 
1 S8 MP system. 

1. I/O restart (IECVRSTI}determines all devices that have outstanding requests 
at the time of a machine check. 

2. IECVRSTI simulates an I/O interrupt for each device of a channel control 
check and interface control check (X'OOOOOOOO 00060000') and sets the 
pseudo interrupt bit in the IRT (lRTPINT bit at X'02' in IRTENVR). This 
prevents lOS from interfacing with the channel check handler (CCH). 

3. IECVRSTI passes control to lOS via the I/O FLIH. 

4. lOS sets the IOSCODfield in IOSP to X'74' and schedules IECVPST. 

S. IECVPST routes control to the abnormal exit routine. 

6. For an EXCP, the EXCP compatability interface routine receives control. 

7. EXCP converts the X'74' to X'7F' in the lOB. 

8. EXCP branches to abnormal end appendage . 
• I 

9. Abnormal end appendage returns to EXCP, which returns to IECVPST. 

10. IECVPST invokes normal ERP processing. 

11. If no path remains to a device, subsequent I/O requests (either ERP retry or 
normal new requests) are intercepted by lOS and flagged with IOSCOD = X'S l' 
and IECVPST is scheduled. 

12. IECVPST routes control to the abnormal exit routine. 

13. For EXCP requests, the abnormal exiUs again the EXCP compatability 
interface routin~. 

2.7.2. OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Miscellaneous Debugging Hints (continued) 

14. EXCP converts the X'SI' to a X'41' (permanent error) in the lOB and enters 
the abnormal end appendage. 

15. The abnormal end appendage returns to EXCP; EXCP returns to IECVPST, 
which enters the termination routine. 

The important point in the above discussion is that EXCP changes the ACR 
completion codes to conventional error post codes. 

The most frequent I/O problems have been: 

• ERP's abnormal end appendages not coded for a 0 CCW address in CSW. 

• ERP's abnormal end appendages not recognizing that the last path to a device 
has been lost (as with asymmetric I/O) and thus going into an I/O retry loop. 

Pattern Recognition 

When analyzing a dump you should always be aware of the possibility of a storage 
overlay. System incidents in MVS are often caused by storage overlays that 
destroy data, control blocks, or executable code. The results of such an overlay 
vary. For example: 

• The system detects the problem and issues an abnormal completion code, yet 
the error can be isolated to an address space. 

• Referencing the data or instructions can cause an immediate error such as a 
specification or op-code exception. 

• The bad data can be used to reference a second location, which then causes an 
evident error. 

When you recognize that the contents of a storage location are invalid and 
subsequently recognize the bit pattern as a certain control block or piece of data, 
you generally can identify the erroneous process/component and start a detailed 
analysis. This section discusses pattern recognition and potential causes of storage 
overlays, and points out common patterns that aid the debugger. 

Once you recognize an overlay, analyze the bit pattern. If you do not recognize 
the pattern at all, try to determine the extent of the damaged area. Look at the 
data on both sides of the obviously bad areas. See if the length is familiar; that is, 
can you relate the length to a known control block length, data size, MVC length, 
etc.? If so, check various offsets to determine their contents and, if you recognize 
some, try to determine the exact control block/data. Even if you do not recognize 
the pattern, take one more step. Can you determine the offset from some base (X) 
that would have to be used in order to create the bit pattern? If so, the fact that 
there is a certain bit pattern at a certain offset (Y) can be helpful. For example, 
a BALR register value (X'40D21CS8') at an offset X'C' can indicate that a program 
is using this storage for a register save area (perhaps caused by a bad register 13). 
Another field in the same overlaid area might trigger recognition. 

Section 2: Important Considerations Unique to MVS 2.7.3 



Miscellaneous Debugging Hints (continued) 

Look at the overlaid area and scan for familiar addresses sucn-'as devjce· addresses, 
UCB addresses, and BAL/BALR register values (full word with Ngh-order byte 
containing some "1" bits). If you find. any of these, try to detemrine what components 
or modules are involved or what control blocks contain these addresses. 

Repetition of a pattern can indicate a bad process. If you can tecognize the bad 
data you might be able to relate that data to the component or module that is 
causing the error. This provides a starting point for further analysis\ 

Low Storage Overlays 

Low storage is a common location for storage overlays. The following should be 
noted: 

• Location X'IO' (CVT pointer) should contain a nucleus address. This location 
is refreshed by the program check first level interrupt handler and so is often 
valid when adjacent locations are bad. 

• Location X'14' should always be O. 

• Locations X'18' through X'3F' (old PSWs) should always contain valid PSWs. 
The mask (first byte) of each PSW should be X'07', with the exception of 
X'30' which can containX'O', X'04', or X'07'. 

• Location X'4C' should be equal to location X' 1 0'. 

• Locations X'S8' through X'7F' (new PSWs) should contain valid PSWs. 

If any of the above statements is not true, consider a low storage overlay. 
Further analysis is required to determine what the cause may be. Also consider 
that, on a non-prefixed machine, the low storage locations described above can be 
overlaid by CCWs for the stand-alone dump program, starting at location X'IO.' 
Do not consider this an error situation. 

Two common low storage problems are: 

• A register save area starting at location X'30'. This can happen when an area 
of the system saves register status in a TCB at location O. Or it can be cal,1sed 
by a routine using PSATOLD for a TCB address when the system is in SRB 
mode; this is indicated by PSATOLD=O. 

• An SRB/IOSB combination starting at location X'O'. This can be caused by 
a problem in the lOS storage manager. The contents vary depending upon 
how many control blocks the code has initialized. Points to considerare: 

1. The two blocks might point to each other (X'IC' into each). 

2.7.4 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Miscellaneous Debugging Hints (continued) 

2. An ASCB address might be at location 8. 

3. Addresses of I ECVEXCP routines might be at X'68' and/or X'6C'. 

Common Bad Addresses 

Three common bad addresses are: 

• X'COOOO', and this address plus some offset. These are generally the result of 
some code using 0 as the base register for a control block and subsequently 
loading a pointer from 0 plus an offset, thereby picking up the first half of a 
PSW in the PSA. 

Look for storage overlays in first level interrupt handlers or in code pointed 
to by the Qld PSW. These overlays result when 0 plus an offset cause the 
second half (IC) of a PSW to be used as a pointer. 

• X'COO', X'C34', X'CSO', X'CS4', X'CSC', X'C7C', and other pointers to 
fields in the normal FRR stack. Routines often lose the contents of a 
register during a SETFRR macro expansion and illegally use the address of 
the 24-byte work area returned from the expansion. 

• Register save areas. Storage might be overlaid by code doing an STM (Store 
Multiple) instruction with a bad register save area address. In this case, the 
registers saved are often useful in determining the component or module at 
fault. 

OPEN/CLOSE/EOV ABENDs 

When a dump shows an abend issued from O/C/EOV, the key area to start 
your diagnosis in is the RTM2 work area. The failing TCB has a pointer 
(at TCB+ X'EO') to this area. This work area contains information current 
at the time of the abend, the most important being the register contents. 
Register 4 pOints to the current O/C/EOV work area. This work area is built by 
IFGORROA during problem determination and contains key information about the 
problem: the JFCB, lOB, DEB and other pertinent fields are all saved in the work 
area for use later by the recovery routines. The O/C/EOV work area is documented 
on microfiche in each O/C/EOV module. 

The module in control at the time of the abend can be determined from the 
"Where To Go" (WTG) table, which is pointed to by register 6 in the RTM2 work 
area. The WTG table is contained within another work area called the O.C. work 
area. IFGORROA saves a copy of the current DCB in this work area. If multiple 
DCBs are involved, the prefix to the DCB work area points to another DCB 
work area. These DCB areas are laid out precisely like a DCB. All these work 
areas and their prefixes are documented at the end of every O/C/EOV module in 
the microfiche. 

Section 2: Important Considerati.ons Unique to MVS 2.7.5 



Miscellaneous Debugging Hints (continued) 

In an MVS environment, O/C/EOV must build these work areas rather than rely 
on what is in real storage at the time of the dump. The main task is to find these 

. ·areas and interpret their fields using microfiche. A quick way to find these work 
areas is to find subpool230 in the dump. All O/C/EOV data is in this subpool. 

Assuming you have all the. pertinent information about the failure, the problem 
becomes the same as an O/C/EOV problem in OS. One more point: built into the 
code is message IEC999I. This message indicates that there is a problem in the 
O/C/EOV code that cannot be determined. While you may be able to circumvent 
this problem, you should also submit an APAR for it. 

Debugging Machine Checks 

The machine check interruption is the hardware's method of informing the MVS 
control program that it 'has detected a hardware malfunction. Machine checks vary 
considerably in their impact on software processing. Some machine checks notify 
software that the processor detected and corrected a hardware problem that 
required no software recovery action (software calls these errors soft errors). Hard 
errors are hardware problems detected by a processor but that require software-initiated 
action for damage repair. Hard errors also require software recovery to verify the 
integrity of the process that experienced the failure. Obviously, if there are soft-
ware problems after a machine check, it is more likely that the machine check was 
a hard error. It is important to get· a feeling for which software components are 
affected by particular hardware failures. 

The machine check interrupt code (MCIC), located in the PSA, describes the 
error causing the interrupt. The following discussion shows how to find MCICs and 
how to interpret them for subsequent software processing. Machine checks can be 
found in a LOGREC buffer (LRB), the SYS I.LOGREC data set, or in the storage 
area used as a buffer prior to writing records to SYSI.LOGREC (see the discussion 
of SYSI.LOGREC analysis in the "Recovery Work Areas" chapter earlier in this· 
section). Also, a pointer to the LRB that describes the last machine check that occurred 
ona processor can be found in that processor's PCCA at PCCALRBV (PCCA+X'AO'). 
The LRB contains the machine check interrupt code (MCIC), except when: 

• The machine check old PSW is zero. The MCIC is also zero. The 
LRBMTCKSbit (field LRBTERM at LRB+X'20') is turned on by 
software. 

• MCIC is zero and the machine check old PSW is non-zero. The LRBMTINV 
bit (field LRBTERM at LRB+ X'20') is turned on by software. 

The MCIC is the principal driver of software processing after a machine check. 
\ It must be examined to determine the'actions that MVS should take. The MCIC 

contains bits describing the conditions that caused the interupt. Note that more 
than one failing condition can be described by a machine check at one time. 
Software performs repair processing for each condition found; software recovery 
processing is initiated if any hard error conditions are found (except in'the cases 
described on the following pages). 

2.7.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Miscellaneous Debugging Hints (continued) 

Because hard errors require FRR and EST AE processing, identifying a hard 
error is important. Important MCIC bits are listed below, with a description 
of their hardware significance and impact on software. A handy MCIC reference 
matrix, containing additional machine check and ensuing action-taken 
information appears at the back of this section. 

Bit 0 (System damage) - The processor is still useable, but damage occurred 
while the processor was in the process of changing PSWs or otherwise changing 
system control, and thus has lost the associated process or interrupt. Software 
recovery routines (FRRs) are entered for this hard error. 

Bit 1 (Instruction processing damage) - The processor is still useable but an 
instruction has failed to operate as intended. Software recovery is initiated for 
this hard error, unless the backed-up bit is on with storage error or key error 
uncorrected on refreshable storage (see Bit 16 description). 

Bit 2 (System recovery) - The processor detected and corrected a potential 
hardware problem. The interrupted process is completely restored by software 
for this soft error; no repair is performed and no recovery routines are entered. 

Bit 3 (Timer damage)· - The interval timer at PSA location X'SO' has failed. 
Because MVS does not use this timer, this failure is ignored (indicated as a soft 
error). 

Bit 4 (Timing facility damage) - Damage has occurred to the CPU timer, clock 
comparator, or time-of-day clock. The particular clock facility that is damaged 
is described by MCIC bits 46 and 47. A first failure to a facility results in an 
attempt to reuse it. Subsequent failures result in taking the facility offline 
(described in the PCCA fields PCCATODE, PCCACCE, or PCCAINTE). If no clock 
of a particular type remains in the system, any task which requests timing using 
that type of clock is sent through software recovery. This is treated as a soft error 
for the process current on the processor at the time of the interrupt. 

Bit 5 (External damage) - Damage has occurred to a unit external to the 
processor. MVS expects more information in a channel check I/O interrupt. 
This is treated as a soft error. 

Bit 7 (Degradation) - The system has detected that elements of the high-speed 
buffer (cache) or translation look-aside buffer have had bit (parity) errors. The 
bad elements are automatically reconfigured out of the buffer. Once a predefined 
threshold of degradation machine checks is reached, the buffer and the translation 
look-aside buffer are reset, thus making the entire buffer available again. This 
threshold has a default value of 3 which can be changed by the operator via the 
MODE command. Until then, the system might perform at a reduced rate because 
of increased storage access time (cache element deletion) or increased time to 
translate virtual addresses (because of translation look-aside buffer element 
deletion). However, because no damage has been dane to any software processor 
data, this soft error is merely recorded in SYSI.LOGREC. The system state at the 
time of the error is re-established, ignoring the occurrence of the buffer bit error. 
It is treated as a soft error and no software recovery is initiated. 

Section 2: Important Considerations Unique.to MVS 2.7.7 



Miscellaneous Debugging Hints (continued) 

Bit 8 (Warning) - Damage isjmminen~; there is a cooling loss or a power drop, 
etc. Software determines if the error is transient or permanent. If it is transient, 
the warning interrupt is treated as a soft error. If permanent, an attempt is 
made to invoke the power warning feature software, to record the system state 
at the time of this hard error. 

Bit 16 (Storage error uncorrected) - There is a block in storage with a double bit 
error that is located at the real, prefixed address stored in PSA location X'F8'. If 
the frame's page is refreshable, that is, unchanged, pageable, and in the current 
address space, it is marked invalid so a future reference will cause a fresh copy 
to be paged into a new frame. (Note: More than one error can occur before the 
page goes offline.) In all cases, an attempt is made to take the damaged frame 
offline (unless the frame is in the nucleus). For unchanged nucleus frames, the 
page is refreshed from a copy paged-out at NIP time. When a storage error un­
corrected condition occurs in conjunction with a system recovery or external 
damage error, it is treated as a soft error and no recovery routines are entered. If 
the storage error occurs in conjunction with instruction processing damage when 
the backed-up bit (bit J4) and storage logical validity-bit (bit 31) are on, and the 
frame's page is refreshable, the error is treated as soft and no recovery routines are 
entered. 

Any other occurrences of storage error uncorrected are treated as hard errors 
and software recovery is initiated for the error. 

Bit 17 (Storage error corrected) - A single-bit storage error was detected and 
successfully corrected by hardware. Software treats this error as a soft error. This 
error sometimes appears in conjunction with system recovery (bit 2). 

Bit 18 (Storage key error uncorrected) - Hardware has detected a bit error in a 
storage key. Software attempts to reset the storage key to its original value. If the 
key is successfully reset, and the storage key error occurs in conjunction with 
instruction processing damage when the backed-up bit (bit 14) and the storage 
logical validity bit (bit 31) are on, the error is treated as soft and no recovery 
routines are entered. When thestorage key error occurs in conjunction with a 
system recovery or external damage error, it is also treated as a soft error and 
no recovery routines are entered. Change bits are set to one in case the frames have 
been altered. Any other occurrences of storage key error are treated as hard 
errors and software recovery is initiated for the error. 

In addition to these error description bits there are other MCIC fields that 
describe the time-of-occurrence of the machine check interrupt, or the validity of 
the registers, PSW, and other data logged out during the machine check interruption 
process. 

The two time-of-occurrence bits are bits 14 and 15. The backed-up bit (bit 14), 
when set to 1, indicates that the machine check occurred before actual damage 
occurred. The delayed bit (bit 15) is set to 1 when the processor has been disabled 
for one or more of the interrupt conditions described in the MCIC. The processor 
had been processing after damage was detected. 

2.7.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Miscellaneous Debugging Hints (continued) 

Validity bits describe the validity of the associated field logged out during the 
machine check interrupt. If a validity bit is 0, the associated data logged out is 
ineorrect. Validity bits are: 

• Bit 20 (PSW EMWP mask validity) 

• Bit 21 (masks and key validity) 

• Bit 22 (program mask and condition code validity) 

• Bit 23 (instruction address of machine check old PSW validity) 

• Bit 24 (failing storage address validity) 

• Bit 25 (region code validity) 

• Bit 27 (floating point register validity) 

• Bit 28 (general purpose register validity) 

• Bit 29 (control register validity) 

• Bit 30 (processor model-depe.ndent logout validity) 

• Bit 46 (processor timer validity) 

• Bit 47 (clock comparator validity) 

Additionally, the storage logical validity bit (bit 31 set to 1) indicates that all store 
operations (that were to occur before the machine check interrupt) have 
completed. 

Section 2: Important Considerations Unique to MVS 2.7.9 



CONDITION 1 2 3 

Recursion X X X 
Check Stop X X 
Invalid Logout X X X 
Subclass (MCIC) System Damage 

Inst. Proc'g. Damage 

System Recovery 

Timer Damage 

Clock Damage 

External Damage 

Degradation 

Warning 

Time Backed Up 

Delayed 

Type Stor Err Uncorr 

Stor Err Corr 

Key Error 

Key Err Unresetable 

Validity PSW (WP, MS, PM, IA). 

Failing Stor Addr 

Registers (FP, GR, CRI 

Logout 

Storage Logical 

CPU Timer 

Clock Comparator 

Location Pageable 

Nucleus 

LSOA, SOA 

Fixed 

V=R 

Outside Curro Memory 

Storage State Changed 

Unchanged 

System UP X 

MP X X 

AP 

Processor 158 X 

168 X 

APU 

I/O Reserve Outstanding 

Occurrence 1st 

2nd 

ACTION TAKEN 

Reset timing component 

Mark CPU Timer perm. damaged 

Mark Clock Comp perm. damaged 

Mark TOD Clock perm. damaged 

Invoke PWF if available 

Activate CRH X 

Take frame offline immed. 

Take frame offline when avail. 

Invalidate Page Table Entry 

Repair SPF Key 

Disabled Wait X 

Restartable Wait 

Enter RTM for Recov. X X 

Record X X X 

Take Processor offline X X 

Resume at MCOPSW 

Refresh the nucleus page 

'Possible loss of Job. 

Miscellaneous Debugging Hints (continued) 
, '1' . '·,1 

The following chart attempts to show the action taken for each error condition. 
For example: In column 6 the condition involves recursive machine checks, or, a 
check stop, or, invalid logout. The condition originated on either a Model 158 or 
a Model 168 attached PI:oc~ssor system, and did not involve the APU. The action 
taken resulted in a disabled wait. Where multiple errors do exist, appropriate repair 
action is taken for all errors, and recovery action is taken for the most severe error. 

With the exception of I/O reserve outstanding, the status of each of the 
conditions can be determined from examination of MCH SYSI.LOGREC records. 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

X X X 

X X X 

X X X 

X 

X X X X 

X 
.. X 

X X X X X X 

X 

X 

X 

X X 0 
0 0 
X X X X X X X 

X 

X X X 

X X 

X X .' 0 
X X 0 

X X 0 

X X 

0 0 X X X X 

X X 0 0 X X 

X X X X X X 1(5<) 
X X X X I 
X X X IlX) 
X X X 

X X 

0 0 0 X 

X 

X X X X 

X 

X X 

X X (X 

X I\"X 
X 0 

X 

X X X 

X X X 

X X X 

X 

X X 

X 

X 

X X 

X X X X X 

X X 

X X 

X X 

X 

X X X X X X X X X X X X X X X 

X X X X X X X X X X X X X X X X X X X X X X X X X 

X X 

X X X X X X X X X X 

X 

Notes: 

• Key. X = Condition must be present 

o = Condition must not be present ©= The action is the same no matter which condition represents the situation 

2~·7.10 OS!VS2 System Programming Lihrary: MVS Diagnostic Techniques 



Miscellaneous Debugging Hints (continued) 

Debugging Problem Program Abend Dumps 

The following steps may provide some initial assistance in this debugging process: 

I. Locate the RTM2 work area (RTM2WA), which is pointed to by the TCBRTWA 
field in the TCB and the ESART2WA field in the abend SVRB. It provides a 
summary of the abend as follows: 

Name 

RTM2CC 

RTM2ABNM 

RTM2ABEP 

RTM2EREG 

RTM2APSW 

RTM2ILCI. 

RTM2ERAS 

RTM2TRCU 

RTM2TRFS 

RTM2TRLS 

RTM2ERR;\ 

Notes: 

Offset 

ID 

8C 

94 

3C 

7C 

85 

36C 

37C 

380 

384 

B4 

Explanation 

Abend completion code. 

Abending program name. This is the name of a 
load module or an external entry point (ALIAS) 
in the load module. 

Abending program address (the beginning 0 f the 
load module or an ALIAS in the load module). 

Registers at time of error. 

EC PSW at time of error. 

Instruction length code for PSW at time of error. 

Error ASID. 

Address of current trace entry for saved system 
trace table. 

Address of first trace entry for saved system 
trace table. 

Address of last trace entry for saved system trace 
table. 

Error type. 

• The RTM2ABNM and RTM2ABEP fields do not contain information about 
the abending program if an SVC has abended . 

• In a recursive abend (an abend occurring while the original abend is 
. being processed by an ESTAE or other recovery routine), more than one 
RTM2WA may be created, and the RTM2PREV or RTM2PRWA field points 
to other RTM2WAs associated with the problem. The system diagnostic 
work area (SDWA) is pointed to by the RTM2RTCA field during recovery 
routine processing, and has register contents at time of error stored in the 
SDWAGRSV field. These register contents may differ from those in the 
RTM2WA after a recursive abend. 

Section 2: Important Considerations Unique to MVS 2.7.11 



Miscellaneous Debugging Hints (continued) 

2. To find the abend code and its explanation, look at the completion code at 
. the top of the abend dump. A user completion code is printed as a 4-digit 
decimal number and a system completion code is printed as a 3-digit 
hexadecimal number. 

If the user code is non-zero, a user program has specified the completion code 
in an abend macro instruction. Looking up the name of the abending program 
in the RTM2WA, and investigating why the program would issue this completion 
code, should lead directly to the cause of the error in the user program. 

Usually the system code is non-zero. This indicates that a system routine 
issued the abend but a problem program might indirectly have caused the 
abnormal termination. For example, a problem program might have branched to 
an invalid storage address, specified an invalid parameter on a macro instruction, 
or requested too much storage space. 

Often the explanation of the system code gives enough information to 
determine the cause of the termination. The explanations of system completion 
codes, along with a short description of the action for the programmer to take to 
correct the error, are contained in OS/VS Message Library: VS2 System Codes. 
A summary of system codes is in the Debugging Handbook Volume 1. 

Note: Completion codes are not printed at the top of abend dumps that are 
formatted with the AMDPRDMP service aid. System completion codes can be 
found in the third to fifth digits (OOxxxOOO) of the abend completion code in 
the RTM2 work area. User completion codes are located in the sixth to eighth 
digits (OOOOOxxx) of the abend code in the RTM2 work area, and in this case 
are in 3-digit hexadecimal form. 

3. To find the name of the abending program look in the RTM2 work area. System 
routines usually start with the letters A or I; and module prefixes for system 
routines are listed in the Debugging Handbook Volume 1. 

Note: If the RTM2 work area is not available, or if the name of the abending 
program is not given in the RTM2 work area, the routine name can be obtained 
from the request blocks (RBs) that are formatted in the dump. If the ABEND 
dump wastaken to a data set (or to SYSOUT) specified with a SYSABEND, 
SYSMDUMP, or SYSUDUMP DD statement, the last two RBs are SVRBs for 
the SNAP and SYNCH SVCs used to take the dump. The SVC numbers can be 
checked.by obtaining the hexadecimal SVC number from the interruption code 
of the WC-L-IC field in the RB. The Debugging Handbook contains a list of SVC 
numbers. The SNAP SVC is hexadecimal '33', and the SYNCH SVC is hexa­
decimal 'OC'. The RB for the program that caused the abend is immediately 
before these two RBs. 

CSECTs within load modules in the private area of an address space can be 
located using a linkedit map produced by the AMBLIST service aid. CSECTs 
in load modules in the nucleus, FLPA, or PLPA can be located using a nucleus 
or link pack area map, also produced by AMBLIST. 

2.7.12 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Miscellaneous Debugging Hints (continued) 

4. To find the instruction that caused a program interrupt (program check) 
completion code (OCx) in a problem program, examine the PSW at the time of 
error. It is at the top of the abend dump, in the RTM2 work area, and in the 
RB for the program that caused the abend. The instruction address field in 
the PSW contains the address of the next instruction to be executed. 

The length of the abend-causing instruction is printed following the' 
instruction length code's title 'ILC' at the top of some abend dumps. It is 
also located in the RTM2ILCl field (see the RTM2 work area), and is formatted 
in the third and fourth di.gits (OOxxOOOO) of the WC-L-IC field in the PRB. 
The address of the instruction that caused the termination can be found by 
subtracting the instruction length from the address in the PSW. 

Subtract the program address found in the RTM2WA (and in the last PRB) 
from the instruction address. The resulting offset can be used to find the 
matching instruction in the abending program's assembler listing for this CSECT. 

S. To find the cause of a program interrupt, check the explanation of the system 
completion code and the instruction that caused the interrupt. Also check the 
registers from the time of error which are saved in the RTM2WA and in the 
SVRB following the RB for the program that caused the abend. The 
formatted save area trace can be used to check the input to the failing CSECT. 

6. To find the cause of an abend code from anSVC or from a system I/O 
routine, check the explanation of the system completion code, then find the last 
instruction executed in the failing program and examine the related SVC and I/O 
entries in the trace table or GTF trace records. 

The last PRB in the formatted RBs has a PSW field containing the address 
of the instruction following the instruction that issued the SVC. For I/O 
requests, check the entry point address (,EPA') field in the last PRB. The 
formatted save area trace gives the address of the I/O routine branched to, 
and the return address in that save area is the address of the last instruction 
executed in the failing program. 

The trace information can be checked for SVC entries that match the 
formatted SVRBs, or for I/O entries issued from addresses in the failing program. 
The trace information is formatted in the dump if the installation has specified 
it as a dump option. If the system trace table is not formatted, look in the 
RTM2 work area for pointers to the copy of the system trace table that was 
saved from the time of the error. Location X'S4', which is the FLCTRACE 
field in the prefixed save area (PSA), points to the system trace table header. 
The system trace table is frequently overlaid with entries for other system 
activity by the time the dump is produced. 

If the dump contains trace records, begin at the most recent entry and 
proceed backwards to locate the most recent SVC entry indicating the problem 
state. From this entry, proceed forward in the table. Examine each entry for an 
error that could have terminated the SVC or I/O system routine. The format of 
system trace table entries is described in the Debugging Handbook under the 
heading 'TTE Trace Table Entry.' The format of GTF trace records is also 
described in the Debugging Handbook. 

Section 2: Important Considerations Unique to MVS 2.7.13 



Miscellaneous Debugging Hints (continued) 

Debugging from Summary SVC Dumps 

The summary dump area formatted by the SUMDUMP option of SDUMP should 
contain the most current data relevant to the problem present in the dump. It is 
strongly recommended that the SUMDUMP output be reviewed prior to 
investigating the usual portions of the dump. The SUMDUMP option provides 
different output for SVC and branch entries. For example, branch entries general' 
dump PSA, LCCA, and PCCA control blocks, and SVC entries generally dump 
RTM2WA control blocks. Each output type is indicated by the header 
"- - - - tttt - - - - RECORD ID X'nnnn'," where tttt is the title for the type of 
SDMDUMP output, and nnnn is the hexadecimal record identifier assigned to 
the type. The record id values are described in the table below. They are also 
described by the IHASMDLR mapping macro in the Debugging Handbook. 

SUMDUMP Output for SVC-Entry SDUMP 

, The following table summarizes the SUMDUMP output types for an SVC entry to 
SDUMP: 

SVC-ENTR Y TABLE 

Record ID 
Dec. Hex Title 

4 4 TRACE TABLE 

46 2E SUMLIST RANGE 

48 30 REGISTER AREA 

49 31 PSW AREA 

53 35 NORMAL DATA END 

57 39 RTM 2 WORK AREA 

58 3A RTM2WA TRACE TAB 
60 3C ASIDINFO 

Mapping 
Macro 

TTE 

IHARTM2A 

TTE 

Fields used to Dump 
PSW or Register Areas 

RTM2NXTI 
RTM2EREG 

For an SVC entry to SDUMP, the SUMDUMP output can contain information 
that is not available in the remainder of the SVC dump if options such as region, 
LSQA, nucleus, and LP A were not specified in the dump parameters. 

For each address space that is dumped, the SOMDUMP output is preceded 
by a header with the ASID, plus the jobname and stepname for the last task 
created in the address space. The SUMDUMP output contains RTM2 work 
areas for tasks in address spaces that are dumped. Many of the fields in the 
RTM2WA provide valuable debugging information. (See "Debugging Problem 
Program ABEND Dumps" for more details.) 

2.7 .. 14 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Miscellaneous Debugging Hints (continued) 

Each RTM2WA is followed by 'RTM2WA TRACE TAB' output (record id 
x'3A'), if there is a copy of the system trace table associated with the RTM2W A 
(RTM2TRCU, RTM2TRFS, and RTM2TRLS fields are non-zero). The current 
entry in the trace table copy is pointed to by RTM2TCRU (offset 37C) in the 
associated RTM2 work area. System trace table entries are mapped by the TTE 
(Trace Table Entry) section in the Debugging Handbook. 

Each RTM2WA is also followed by 'PSW AREA' output (record id X'31 '). 
A PSW area, consisting of the instruction pointed to by the RTM2NXTl field in 

, the EC PSW saved in the RTM2WA, and the preceding instruction with length 
from the RTM2ILCl field, is dumped if the instructions can be accessed .. 

After information for all RTM2WAs associated with a task is dumped, 'PSW 
AREA' (record id X'31') and 'REGISTER AREA' (record id X'30') output appears. 
This consists of 2K of storage before and after each valid unique address pOinted to 
by the PSW and the registers from the time of the error (RTM2NXTl and 
RTM2EREG fields) from all the RTM2 work areas. Up to 32 unique addresses can 
be dumped for each task. Register addresses less than 2K are not dumped because 
they are considered to be counters. If the storage that is 2K before and after an 
address cannot be accessed, a length of 300 bytes is tried. If that amount of storage 
cannot be accessed, the address' record entry appears with a zero length. 

'TRACE TABLE' output (record id X'04') appears if the first address space 
dumped has no trace table saved in an RTM2 work area and the system trace was 
active. The output includes the header (pointers to the current, fi~st, and last 
entries) and the entries in the system trace table. System trace table entries are 
mapped by the trace table entry (TTE) described in the Debugging Hand-
book. 

'SUMLIST RANGE' output (record id X'2E') appears at the beginning of the 
SUMDUMP output if the SUMLIST keyword was specified in the SDUMP macro 
instruction. 

Section 2: Important Considerations Unique tQ MVS 2.7.15 



Miscellaneous Debugging Hints (continu.ed) 

SUMDUMP Output for Branch-Entry SDUMP 

The following table summarizes the SUMDUMP output types from a branch entry 
to SDUMP: 

BRANCH-ENTR Y TABLE 

Record ID Mapping Fields used to Dump 
Dec. Hex Title Macro PSW or Register Areas 

l' 1 PCCA lHAPCCA 
2 2 LCCA IHALCCA 
3 3 PSA IHAPSA FLCIOPSW, FLCPOPSW 

FLCEOPSW,FLCROPSW 
4 4 TRACE TABLE TTE 

5 5 FRRSTACK ·IHAYSTAK 
6 6 GWSAPAGE 10 ERR 
7 7 GWSA GET /FREEMAIN -
8 8 GWSA RSM 
9 9 GWSA RSM SUSPEND 

10 A GWSA MEM SWITCH 
11 B GWSASTATUS 
12 C GWSASRM 
13 D GWSA MEM TERM 
14 E GWSA ENQ/DEQ 
15 F GWSA STOP/RESTRT 
16 10 GWSA lEA VESCO 
17 11 CWSALOW-LVL CMN 
18 12 CWSAGTF 
19 13 CWSASRM 
20 14 CWSA TIMER 
21 15 CWSAACR 
22 16 CWSA RTM/MACHK 
23 17 CWSA lOS FLIH 
24 18 CWSA DISPATCHER 
25 19 CWSAMFI 
26 lA CWSAABTERM 
27 IB CWSA I/O RESTART 
28 lC CWSASTATUS 
29 ID CWSA SUPR REPAIR 
30 IE CWSA RTM-CCH 

2.1.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Miscellaneous Debugging Hints (continued) 

BRANCH-ENTR Y TABLE (Continued) 

Record ID Mapping Fields used to Dump 
Dec. Hex Title Macro PSW or Register Areas 

31 IF LWSA LOW-LVL CMN 
32 20 LWSA V ALID'Y CHK 
33 21 LWSARTM 
34 22 LWSASDUMP 
35 23 LWSAABTERM 
36 24 LWSACIRB 
37 25 LWSA STG2 EXT EF 
38 26 LWSA EXIT (SVC3) 

39 27 LWSAPOST 

40 28 LWSAWAIT 
41 29 LWSA STATUS 

42 2A LWSASTAE 
43 2B LWSAEVENTS 

44 2C LWSARSM 
45 2D LWSA ASCB CHAP 
46 2E SUMLIST RANGE 

47 2F INT HANDLER SA IHAIHSA IHSAGPRS 

48 30 REGISTER AREA 

49 31 PSW AREA 
50 32 GBL WSA VEC TABL IHAWSAVT 

(WSAVTG) 

51 33 CPU WSA VEC TABL IHAWSAVT 
(WSAVTC) 

S2 34 LCL WSA VEC TABL IHAWSAVT 
(WSAVTL) 

S3 35 NORMAL DATA END 

S4 36 CWSAASMDIE 

55 37 CWSA ASM SRB-I/O 
S6 38 SDWA IHASDWA SDWAGRSV 

60 3C ASIDINFO 

The SUMDUMP output for a branch entry to SDUMP might not match the data 
that is at the same addresses in the remainder of the dump. The reason for this is 
that the SUMDUMP is taken at the entry to SDUMP, and while the processor is 
disabled for interrupts. The system data in the remainder of the dump ~s often 
changed because other system activity occurs before the dump is complete. The 
SUMDUMP output is preceded by a header with the ASID for the failing address 
space. 

Section 2: Important Considerations Unique to MVS 2.7.17 



Miscellaneous Debugging Hints (continued) 

From a branch entry into SDUMP, the SUMLIST range and trace table output is 
handled similarly to that from an SVC entry. However, SUM LIST addresses must 
point to areas that are paged~in or they cannot be dumped. 

The PSA, LCCA, and PCCA are dumped for each alive processor (record ids 
x'03', x'02', and x'Ol' respectively). 

The interrupt handler save area (IHSA - record id x'2F') is dumped for the 
current address space. This save area includes the current FRR stack for suspended 
address spaces. 

The system diagnostic work area (SDWA - record id x'38') is dumped for the 
current error if the RTMI work area is currently valid and being used. 

Unique register contents are obtained from the IHSA and the current SDWA. 
Each unique register value is used as an address and storage is dumped from 2K plus 
and minus this address for a total of 4K each. These 'Register Areas' are printed 
with record id X'30'. 

The Super FRR Stacks (record id X'05'), including RTMI work areas are 
dumped. 

The global, local, and processor work save area vector tables (record id X'32', 
X'34', and X'33' respectively) are dumped. The save areas pointed to by these save 
area vector tables are also dumped. The branch-entry table at the beginning of this 
description lists the record ids for each work save area. 

2k of storage on either side of the address portion of the I/O old PSW, the 
program check old PSW, the external old PSW, and the restart old PSW saved in 
the PSA for all processors, is dumped. These 'PSW Areas' are printed with record 
id X'31'. 

Note: The SUMDUMP output from a branch entry to SDUMP only contains areas 
that were already paged in when the SUMDUMP was taken. 

I Started Task Control ABEND and Reason Codes 

In case of an irreparable error, the started task control (STC) routines issue these 
ABEND codes: 

OB8 - An error occurred while STC routines were processing a START, 
MOUNT, or LOGON command. 

In each case, the command task is terminated; for a START or MOUNT 
command, the STC routines issue message IEE824I. 

The following error codes ~an appear in register 15 at the time of the 
ABEND: 

04 Module IEEPRWI2 or IEFJSWT detected an invalid command 
code in the CSCB; the command code was incorrect for a 
ST ART, MOUNT, or LOGON command. 

2.7.18 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Miscellaneous Debugging Hints (continued) 

)B9 -

OBA -

08 - Module IEESB605 invoked IEF AB4FC (an Allocation 
routine) to build a TIOT for the START, MOUNT, or 
LOGON task; IEF AB4FC returned control to IEESB605 with 
a return code indicating failure. 

12 - Module IEESB605 invoked IEFJSWT (an STC routine) to 
. write the internal JCL text for the START, MOUNT, or 

LOGON command into system data set; IEFJSWT returned 
control to IEESB605 with a return code indicating that it 
failed in its attempt to open the data set. 

Module IEESB605 invoked the master subsystem via the subsystem 
interface to determine whether a START command was issued to start 
a subsystem; an error occurred during master subsystem processing. 

The command task is terminated; for a START or MOUNT command, 
IEESB605 issues message IEE8241. 

Module IEESB605 invoked the master subsystem via the subsystem 
interface to determine whether a START command was issued to start 
a subsystem; an error occurred during subsystem interface processing. 

The command task is terminated; for a START or MOUNT command, 
IEESB605 issues message IEE8241. 

I SWA Manager Reason Codes 

In case of an irreparable error, the SWA manager routines issue a OBO ABEND. 
Before abending, both object modules IEFQB550 and IEFQB555 place a code in 
register 15 indicating the exact cause of the error. 

These are the error codes that can appear in register 15: 

04 - The routine that called SWA manager requested an invalid function. 

08 - The routine that called SW A manager passed an invalid SW A virtual 
address (SV A). Either the SV A does not point to the beginning of a SW A 
prefix or the SW A prefix has been destroyed. 

OC - A SW A manager routine has attempted to read a record not yet written 
into SWA. 

10 - Either IEFQB550 (move mode module) has attempted to read or write 
a block which is not 176 bytes or IEFQB555 (locate mode module) has 
attempted to assign a block with a specified length of 0 or a negative 
number. 

14 The routine that called SWA manager has specified an invalid count 
field. For move mode, an invalid count is 0 for a READ, WRITE, or 
ASSIGN function; an invalid count for WRITE/ASSIGN is 00. 

18 The routine that called SWA manager by issuing the QMNGRIO macro 
instruction specified both or neither of the READ or WRITE options. 

1C The routine that called SWA manager was attempting to write into a 
SWA block for the first time; it either passed a nonexistent ID or failed 
to pass one at all. 

20 IEFQB555 has attempted to write a block using an invalid pointer to 
the block. 

Section 2: Important Considerations Unique to MVS 2.7.19 



2.7.20 OS/VS2 System Progran:lming Library: MVS Diagnostic Techniques 



Additional Data Gathering Techniques 

This chapter describes additional techniques for gathering data and circumventing 
certain system problems. The superzaps should be checked out before they are 
applied to your system. Displacements vary according to release level and PTP 
activity. 

The examples were deliberately kept simple and are designed to illustrate a 
technique rather than to be practical in themselves. 

CA UTION: Extreme care must be used when you are considering a system 
alteration in order to gather additional data about a problem. None of the Super­
~aps descnoed in this chapter should be applied before the system programmer has 
verified the logic being zapped and the trap logic itself. Remember if anyone 
location or offset within the module or trap changes, all offsets and base registers 
must be verified. 

This chapter contains the following topics: 

I • Using the CHNGDUMP , DISPLAY DUMP, and DUMP Commands 
• How to Print Dumps 
• How to Automatically Establish System Options for SVC Dump 

I • How to Copy PRDMP Tapes 
• How to Rebuild SYSl.UADS 

I • How to Print SYS 1.DUMPxx 
• How to Clear SYSl.DUMPxx Without Printing 
• How to Print the SYSl.COMWRITE Data Set 
• How to Print an LMOD Map of a Module 
• How to Re-create SYSl.STGINDEX 
• Software LOGREC Recording 
• Using the PSA as a Patch Area 
• Using the SLIP Command 
• Enabling the PER Hardware to Monitor Storage Locations 
• System Stop Routine 
• Using the MVS Trace to Monitor Storage 
• How to Expand the Trace Table 

Section 2: Important Considerations Unique to MVS 2.8.1 



Additional Data Gathering Techniques (continued) 

Using the CHNGDUMP, DISPLAY DUMP and DUMP Commands 

A dump obtained from MVS contains those storage areas specified in the dump 
request and those defined as system defaults in SYSl.PARMLIB for SYSABEND, 
SYSMDUMP, and SYSUDUMP. Normal system defaults are: 

SYSABEND: CB, ENQ,TRT,ALLPA, SPLS, LSQA, PSW, REGS, SA, DM, 
10, and ERR 

SYSMDUMP: LSQA, NUC, RGN, SQA, SWA, and TRT 

SYSUDUMP: CB, ENQ, TRT, ALLPA, SPLS, PSW, REGS, SA, DM, 10, 
and ERR 

There are no defaults for an SVC dump other than SQA, ALLPSA, and 
SUMDUMP, which are assumed by the dump program if the options NOSQA, 
NOALLPSA,and NOSUM are not specified. 

The CHNGDUMP operator command is llsed to dynamically alter the options 
specified originally by SYS I.P ARMLIB or by previous CHNGDUMP 
commands. Dump mode may be set to ADD, OVER, or NODUMP. System action 
for each setting is: 

ADD 

OVER 

- merges the options specified on the dump ~equest with the options in 
the system dump options list. 

- ignores the options specified in the dump request and uses only the 
options in the dump options list. 

NODUMP - ignores the request and does not dump. 

To determine the c.urrent system dump options, use the DISPLAY DUMP, 
OPTIONScommand. If an error is made while specifying the CHNGDUMP 
command, the system rejects the command and issues an error message. 

The topic '.'How to Automatically Establish System Options for SVC Dump", 
which appears later in this chapter, describes how to issue the CHNGDUMP 
command during IPL. See Operator's Library: OS/VS2 MVS System Commands 
for the format of the CHNGDUMP command. 

The DUMP command must be used carefully if the desired dump is to be 
obtained. For instance, the following typical error can occur when requesting 
a dump. The operator enters DUMP COMM=(title). The system responds with 
message IEE094 requesting the dump parameters. If the operator replies 'U' 
to this message, the system dumps the current address space which is the 
master scheduler address space. The operator must reply with ASID, Jobname, 
or TSOname. See Operator's Library: OS/VS2 MVS System Commands for the 
format of the DUMP command. 

How to Prin t Dumps 

The PRDMP control statements can be used to minimize the size of the output 
produced from a stand-alone dump and still keep the number of reruns to a 
minimum. This section discusses the DD statements and control statements used 
in the following example: 

2.8.2 OS/VS2 System Programming Library:' MVS Diagnostic Techniques 



Additional Data Gathering Techniques (continued) 

/lASIDDMP JOB MSGLEVEL=1 
/I EXEC PGM=AMDPRDMP 
/lPRINTER DD SYSOUT=A 
/lSYSPR INT DD SYSOUT=A 
/lTAPE DD UNIT=TAPE,LABEL=(1,NL),VOL=SER=ABCTPE,DISP=OLD 
/lSYSUT1 DD UNIT=251 ,SPACE=(TRK,(400,20)) ,DISP=NEW 
/1* PRINT STORAGE=ASJD(X)=(X,X,X,X,X,X) IS PROPER FORMAT 

CVTMAP 
CPUDATA 
SUMMARY 
QCBTRACE 
SUMDUMP 
LPAMAP 
FORMAT 
EDIT 
PRJ'NT CURRENT,SQA 
PR I NT STORAG E=ASI D(X)=(xxxx,xxxx,xxxx,xxxx) 
PRINT JOBNAME=(jobnames) 
PRINT REAL=(xxxx,xxxx) 
ASMDATA 
END 

The PRINTER DD statement defines the output data set for the dump itself. It 
should be directed to aSYSOUT class as shown. 

The SYSPRINT DD statement defines the data set for PRDMP messages, etc. 

The TAPE DD statement defines the input data set to PRDMP. It can define one 
of the SYS1.DUMPxx data sets, a stand-alone dump tape, or a GTF output data set 
on either tape or DASD. 

The SYSUTI DD statement defines work space to PRDMP. It can be used to 
define the input data set. It is not required if the input data set is defined by the 
TAPE DD statement. It does, however, significantly enhance the performance of 
PRDMP when it is used in conjunction with the TAPE DD statement and when 
the input is a tape data set. 

The SP ACE parameter is determined by the size of the dump. Generally 5 
cylinders or 95 tracks or 285 4104 records should be specified for each megabyte 
of real storage dumped by SADMP. 

Control Statements 

The placement of the control statements determines the sequence in which the 
dump is printed. Refer to the "Dump and Trace Formats" section of the 
Debugging Handbook for examples of how these statements format a dump. 

The following statements should be included in ev.ery run of PRDMP: 

SUMMARY - defines and prints the dump ranges of the dump, active processor, 
active tasks, etc. 

CVTMAP - formats the CVT and can be an aid in finding other Significant control 
blocks in thesystem. 

CPUDATA - formats the CSD, PSA, PCCA and LCCA for each active processor. 

Section 2: Important Consid.erations Unique to MVS 2.8.3 



Additional Data Gathering Techniques (continued) 

QCBTRACE - formats the END/DEQ control blocks in use at the time the dump 
was taken. 

SUMDUMP - locates and prints the summary dump data provided by SVC dump. 
It should be used on all SVC dumps. 

LP AMAP - provides a listing of the modules on the link pack area list. It 
identifies the entry point address of those modules and their length. It does 
not identify SVC modules since they are found by the SVC table. 

The FORMAT statement can produce voluminous data depending on the number 
of address spaces defined at the time the .dump is taken. However, it should be 
included in the initial run of PRDMP because it produces the formatted TCB 
summary showing the abend completion codes for each TCB in the system and 
the global and local SPLs. 

The EDIT statement should also be included in every initial run ofPRDMP. It 
formats and prints the GTF buffers (that is, all internal trace buffers or those 
external trace buffers that havenot been written to the TRACE data set) if GTF 
is active at the time the dump is taken. If GTF is not active, only an error 
message is printed. The OS trace is not valid if GTF is running. 

The PRINT statemen t can be used several ways: 

• PRINT CURRENT, SQA - should be included in the initial rUn of 
PRDMP. It formats and prints the address space and task-related control 
blocks of the address space active at the time the dump is taken. SQA 
should be printed for the valuable data it contains such as trace table, 
and logrec buffers. PRINT CURRENT prints only the current address 
space of the processor from which the SADMP program was IPLed. 

• PRINT NUC, CSA - should not be included in the initial run of 
PRDMP because of the volume of data it produces. Once a problem is 
suspected in this area, the PRDMP program should be rerun specifying 
only these parameters. 

• PRINT STORAGE=ASID(x)=(xxxx,xxxx) - should not be included in 
the initial run of PRDMP. Once a problem is isolated to an address space 
or a range of storage addresses, rerun PRDMP specifying only these 
parameters. Several AS IDs and several address ranges can be requested 
with one run of PRDMP. PRDMP does not duplicate address ranges for 
every ASID but prints all storage dumped (NUC, CSA, SWA, LPA in 
storage) if only ASIDs are specified without address ranges. PRINT 
STORAGE is useful for printing SVC dumps. See the discussion "How 
to PrintSYSl.DUMPxx" later in this chapter. 

• PRINT JOBNAME=Gobnames) - produces output equivalent to PRINT 
CURRENT except it prints the private address space ofjob(s) requested. 
It should not be used for the initial run of PRDMP unless the jobname is 
known from another source, such as the system log. 

2.8.4 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Additional Data Gathering Techniques (continued) 

• PRINT REAL=(xxxx,xxxx) - prints real storage in specified address 
range pairs. Use this option only when the system cannot find adequate 
data to format the dump. 

ASMDATA - formats and prints all ASM control blocks. It produces voluminous 
data and should not be run until an ASM failure is suspected. 

How to Automatically Establish System Options for SVC Dump 

A potential problem is that the SVC dumps written to the SYSl.DUMPxx contains 
only those address ranges that the FRR or EST AE routine passes to SDUMP. When 
these dumps are subsequently printed by PRDMP, the PRDMP formatting program 
might not find sufficient data to format the dump properly. This can make it 
difficult to find data in an SVC dump and it can provide erroneous indicators to the 
problem solver. 

The CHNGDUMP command can be used to alter the SVC dump system options 
and provide a complete dump. The following job updates the COMMNDOO 
member of SYSl.PARMLIB to issue the CHNGDUMP command automatically at 
IPL time. The CHNGDUMP command can also be entered by the operator. (See 
Operator's Library: OS/VS2 MVS System Commands for a description of the 
CHNGDUMP command.) 

IIUPDAT JOB ("S,S),MSGLEVEL=1,REGION =100K 
II EXEC PGM=IEBUPDTE 
IISYSPRINT DDSYSOUT=A 
IISYSUT1 DO UNIT=SYSDA,VOL=SER=SYSRES,DISP=OLD,DSN=SYS1.PARMLIB 
IISYSUT2 DO UN IT=SYSDA,VOL=SER=SYSR ES,D ISP=OLD ,DSN=SYS 1.PARM LI B 
ffSYSIN DO DATA 
.f REPL NAME=COMMNDOO,LIST=ALL 
.I NUMBER NEW1=10,INCR=20 
COM='TRACE ON' 
COM='CD SET,SDUMP=(PSA,NUC,SQA,LSQA,RGN,TRT), Q=YES,ADD' 
./ ENDUP 

How to Copy PRDMP Tapes 

It is sometimes necessary to copy dump tapes to supply another location with a 
copy of the dump while retaining your own. It is particularly useful to be able to 
supply a dump tape with an AP AR. 

A simple way to do this is to use PRDMP as a copy program. Define the input 
tape with the TAPE DD statement and the output tape with the SYSUT2 DD 
statement. It is also possible to put several dumps on one tape or take one dump 
from a multiple dump tape by manipulating the file number parameters in the label 
parameter. The following example shows how this is done: 

Section 2: Important Considerations Unique to MVS 2.8.5 



· Additional Data Gathering Techniques (continued) 

I/ASIDDMP JOB MSGLEVEL=1 
II EXEC PGM=AMDPRDMP 
/IPRINTER DO SYSOUT=A 
IISYSPRINT DDSYSOU.T=A 
IITAPE DO UNIT=TAPE,LABEL=(2,NL),VOL=SER=DMPIN,DISP=OLD 
IISYSUT2 'DO UNIT=:=TAPE,LABEL=(,NL),VOL=SER=DMPOUT,DISP=(NEW,KEEP) 
/ISYSIN DO * 

END 
1* 

After 'copying a PRDMP tape, a quick run through PRDMP to verify that the CVT 
can be formatted and printed will prove that the copy was successful. 

IIADMP JOB MSGLEVEL=1 
II EXEC PGM=AMDPRDMP 
IIPRINTER bb SYSOUT=A 
IISYSPRINT DO SYSOUT=A 
IITAPE DO UNIT=TAPE,LABEL=(1 ,NL) ,VOL=SER=DMPTPE,DISP=OLD 
IISYSUT1 DO UNIT=SYSDA,SPACE=(TRK,(400,20)),DISP=NEW 

CVTMAP 
END 

1* 

How to Rebuild SYSl.UADS 

The loss of the SYSl.UADS data set can significantly impact a TSO environment. 
However, it is possible to run the TMP as a batch job and recreate SYS1.UADS in 
the background. The following is an example of a job that has been run 
successfully to scratch and recreate a SYSt;UADS data set. 

IIBLDUADS JOB MSGLEVEL=1 
II EXEC PGM=IEFBR14 
/1002 DO VOL=SER=SYSRES,DISP=(OLD,DELETE),UNIT=3330, 
/I DSN=SYS1.UADS 
II EXEC PGM=IKJEFT01 
IISYSPRINT DO SYSOUT=A 
IISYSUADS DO DSN=SYS1.UADS,DISP=(NEW,KEEP),SPACE=(SOO,(20,9,30)), 
I I UN IT=3330,VOL=SER=SYSR ES,DCB=(R ECFM=FB,DSORG=PO, LR ECL=80, 
II BLKSIZE=SOO) 
IISYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR 
IISYSIN DO * 
ACCOUNT 
SYNC 
ADD (USER01 TSOTEST * IKJACCNT) 
ADD (USER02 TSOTEST * IKJACCNT) 
ADD (USER03 TSOTEST * IKJACCNT) 
ADD (USER04 TSOTEST *IKJACCNT) 
ADD (USER05TSOTEST * IKJACCNT) 
ADD,:(USER06 TSOTEST * IKJACCNT) 
ADD (USER07 TSOTEST * IKJACCNT) 
ADD (USEROS;TSOTEST * IKJACCNT) 
ADD (USER09 TSOTEST * IKJACCNT) 
ADD (USEROA TSOTEST * IKJACCNT) 
ADD (USEROB TSOTEST * IKJACCNT) 
ADD (USEROC TSOTEST * IKJACCNT) 
LIST (*) 

END 
1* 

2.8.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 

UNIT(SYSDA) 
UNIT(SYSDA) 
UN IT(SYSDA) 
UNIT(SYSDA) 
UN IT(SYSDA) 
UN IT(SYSDA) 
UN IT(SYSDA) 
UN IT(SYSDA) 
UN IT(SYSDA) 
UNIT(SYSDA) 
UN IT(SYSDA) 
UN rr(SYSDA) 

ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 
ACCT OPER JCL MOUNT 



Additional Data Gathering Techniques (continued) 

How to Print SYSl.DUMPxx 

See the discussion under "How To Print Dumps" earlier in this chapter to define 
the control statements required. The same rules apply except in this case the TAPE 
DD statement points to one of the SYSl.DUMPxx data sets. These are catalo~d 
data sets and require no further definition. 

Be aware that the dump data sets contain only those address ranges passed to 
SVC dump by tb.e dump requestor and might not contain sufficient data for 
PRDMP to properly format all requested control blocks. 

Because SVC dumps usually contain a limited number of address ranges, printing 
the entire SYSl.DUMPxx data set is feasible and assures that all the information 
about the problem will'be available. 

See the next topic "How To Clear SYSl.DUMPxx Without Printing" for a 
description of how to clear the dump data sets for reuse. Note: Printing the dump 
data sets does not clear them as it did on previous systems. 

The following example shows how to print SYSl.DUMPOO: 

IIASIDDMP JOB MSGLEVEL=1 
II EXEC PGM=AMDPRDMP 
IIPRINTER DD SYSOUT=A 
IISYSPRINT DD SYSOUT=A 
IITAPE DD DSN=SYS1.DUMPOO,DISP=OLD 
IISYSUT1 DD UNIT=SYSDA,DISP=NEW,SPACE=(CYL,(10,5)) 

SUMMARY 
CVTMAP 
CPUDATA 
SUMDUMP 
LPAMAP 
PRINT STORAGE 

/* 

How To Clear SYS 1.DUMPxx Without Printing 

In previous systems, printing the dump data set also cleared it and made it available 
for reuse. In MVS this is no longer true. The dump data sets can be cleared at 
'SPECIFY SYSTEMS PARAMETERS' time during IPL. They can also be cleared 
and made available for reuse by using PRDMP to copy the data set to tape with 
the SYSUT2 DD statement pointing to the output data set. This must be a separate 
job step from printing the dump. If it has been determined that the SYSl.DUMPxx 
data set need not be saved, it can be cleared and made available for reuse by 
running PRDMP with the SYSUT2 DD statement defined as DUMMY. The 
following example shows how'to clear SYSI DUMPOO. See the example in the 
discussion "How to Copy PRDMP Tapes" e'arlier in this chapter for how to define 
the SYSUT2 DD statement to unload the SYSl.DUMPxx data sets. 

Section 2: Important Considerations Unique to MVS l.&' 7 



Additional Data Gathering Techniques'(cohtinued) 

/lASIDDMP JOB MSGLEVEL=1' 
II EXECPGM=AMDPRDMP 
l/PRINTERDD SYSOUT=A 
/lSYSPRINT DD SYSOUT=A 
IITAPE DD DSN=SYS1.DUMPOO,DISP=OLD 
/lSYSUT2 DO DUMMY 
IISYSIN DD * 

END 

How To Print The SYSl.COMWRITE Data Set 

,The follQwingjobwill format and print the TCAM SYSl.COMWRITE data set. 
Note that the PARM fields in the EXEC statement define the traces to be 
formatted and printed. See OS/VS TeAM Debugging Guide Levell 0 for more 
information on the use of the SYSl.COMWRITE data set. 

/lCOMWRITE JOB MSGLEVEL=1 
/lSTEP1 EXEC PGM=IEDQXa,PARM='STCB,IOTR,BUFF' 
/lSYSPRINT DD SYSOUT=A ' 
/lSYSUT1 DD DSN=SYS1.COMWRITE,DISP=SHR 
I*' 

How To Print An LMOD Map Of a Module 

The following job produces a modUle cross-reference of the nucleus, module 
IEFW21 SD, and a link pack area map. In addition, AMBLIST produces an IDR 
listing or a complete hexadecimal dump of an object module. If you include the 
RELOC parameter, the cross-reference listing is based at the address the module 
is loaded in LPA. 

, Note that the JCL must contain a DD statement for every data set containing a 
module you referenced in the control card section. 

For more information about AMBLIST, see OS/VS2 System Programming 
Library: Service Aids. 

/lAMBLlST JOB MSGLEVEL=1 
II EXEC PGM=AMBLIST 
IISYSLlB,'OD DSN=SYS1.LPALlB,DISP=OLD 
IILOADLIB DD DSN=SYS1 ;NUCLEUS,DISP=OLD 
/lSYSPRINT DD SYSOUT=A 
/lSYSIN DD * 

LISTLOAD OUTPUT=XREF ,MEMBER=I EANUC01 ,DDN=LOADLIB 
LlSTLPA 
LlSTLOAD OUTPUT=XR EF,M EMB ER= I E FW21SD 

"1* 

2.8.8 OS/VS2 ,System Programming Library: MVS Diagnostic Techniques 



,/ 

Additional Data Gathering Techniques (continued) 

How To Re-Create SYSl.STGINDEX 

I 

It is possible for the SYS 1.STGINDEX data set to be destroyed because of system 
failure or operator intervention during an:lPLwith the coldstart (CLPA~CVIO) 
option. Loss of this data set prevents warmstarting the system or restarting jobs 
using VIa data sets. 

The followingjob has been run successfully to recreate this data set. Remember 
to change the VOLUME and CYLINDERS parameters to apply to your system. 

/lSTGINDEX JOB MSGLEVEL=1 
/lEXEC PGM=IDCAMS 
IISYSPRINT DO SYSOUT=A 
I!VOL DO DISP=OLD,UNIT=3330,VOL=SEA=SYSAES 
/lSYSIN DO * 

DEFINE SPACE(VOL(SYSAES)FILE(VOL)CYL(7)) 
DEFINE CLUSTER-
(NAME(SYS1.STGINDEX)-
VOLUME(SYSAES)-
CYLINDEAS(7)-
KEYS(128)-
BUFFEASPACE(5120)-
RECORDSIZE(2041 2041)-
REUSE)-
DATA-
(CONTROLlNTERVALSIZE(2048) )-
INDEX-
(CONTROLINTERVALSIZE(1024)) 

Software LOGREC Recording 

The following JCL defines a two-step job. The first step prints an event history 
report for all SYS1.LOGREC records. The second step formats each software~ 
IPL, and EOD record individually. The event history report is printed as a result of 
the EVENT=Y parameter on the EXEC statement of the first step. It can be a very 
useful tool to the problem solver because it prints the records in the same sequence 
they were recorded and therefore shows an interaction between hardware error 
records and software error records. 

I/EREP JOB MSGLEVEL=1 
I/EREPA EXEC PGM=IFCEREP1,PARM='EVENT=Y,ACC=N',REGION=128K 
I/SERLOG DO DSN=SYS1.LOGREC,DISP=SHR 
I/TOURIST DO SYSOUT=A 
/lEREPPT DO SYSOUT=A,DCB=BLKSIZE=133 
/lEREPB EXEC PGM=IFCEREP1 ,PARM='TYPE=SIE,PRINT=PS,ACC=N',REGION=128K 
/lSERLOG DO DSN=SYS1.LOGREC,DISP=SHR 
I/TOURIST DO SYSOUT=A 
I/EREPPT DO SYSOUT=A,DCB=BLKSIZE=133 
1* 

See the discussion on LOGREC analysis in the "Use of Recovery Work Areas" 
chapter earlier in this section for an explanation of its use and for examples of the 
output produced. 

Section 2: Important Considerations Unique to MVS 2.8.9 



Additional Data Gathering Techniques (continued) 

Using The PSA As a Patch Area 

There' are two areasin the PSA reserved for future expansion. They can be used 
for· quitk implementation of a'trap without having to consider base registers. They 
are X'410' - X'BFF' and X'ES4' - X'FFF'. Both of these areas are frequently 
used in examples throughout this chapteL 

CAUTION: Use extreme care when you use this method. Patches should be made 
only to disabled code unless the patch is completly reentrant. Saving registers and 
data in the PSA while the system is enabled could produce unpredictable results, 
especially in an MP environment where more than one PSA exists and the code 
could be interrupted and'subsequently redispatched on the other processor. 
Extreme care must be used when considering a system alteration in order to gather 
additional data about a problem. No superzaps should be applied before the 
system programmer has verified the logic being zapped and the trap logic itself. 
Remember if anyone location or offset within the module or trap changes, all 
offsets and base registers must be verified. 

Using the SLIP Command 

SLIP (serviceability level indication processing) provides a way of getting informa­
tion from RTM prior to ESTAE or FRR recovery processing. This is in addition to 
the information ordinarily supplied by dumping services during abnormal termina-

. tion. The SLIP command, usual1y entered by a system programmer, either at the ;If 

console or via the input stream, can al,soreside in theJ~OMMNDxx parmlib 1"4 
member. The SLIP command's purpose is to establish SLIP definitions of 
the error circumstances under which interception of an error is to occur, and 
of the action to be taken following the interception. 

As long as enough system queue area storage is available, SLIP definitions may 
be established at any time. ,The recovery termination manager (RTM) compares 
the SLIP definitions with the dynamic system conditions at the time of the error. 
If RTM detects a match, the requested action is taken. 

The ACTION keyword has the following options: 

I • ACTION=SVCD indicates that an SVC dump will be scheduled for the current 
ASID. This is the default option if ACTION is not specified. SDUMP parameters 
in this case are: SUM, SQA, RGN, TRT, LPA, CSA, and NUC. 

2.8.10 PS/VS2 System Programll1!pgLibrary: MVS Diagnostic Techniques 

( 



~ 
~ 

Additional Data Gathering Techniques (continued) 

One of the advantages of this dump over one taken by a recovery 
routine is that nothing has been done to correct the error situation. Although 
the bulk of the SVC dump is not taken until later , the summary dump portion 
preserves as much volatile data as possible. An SVC dump also contains more 
data than a SYSABEND or SYSUDUMP, and because it is machine readable, it 
can, if necessary, be copied onto a tape to accompany an AP AR, or used with 
interactive dump display programs. The biggest advantage is in situations 
where no dump was occurring. 

• ACTION=W AIT indicates that the system will be placed in a 01 B wait state. 
At this time, the operator can find the save area where the stop/restart routine 
(IEESTPRS) saves the caller's (IEAVTSLP) registers. Register 2 contains the 
address of the RTM work area for the error. This is either IHAFRRS (RTMI) 
or IHARTM2A (RTM2). Register 4 contains the address of the SLIP control 
element (SCE), which contains the id for this trap. 

CVT IHAWSAVT Save Area 

X'2AC' CVTSPSA V X'24' WSAGREST V Registers 
0-14 

• ACTION=NODUMP indicates that SLIP is to set a flag in the RTM work area 
which is checked by the dump programs ABEND/SNAP and SVC dump. If the 
bit is on, all dump requests are ignored. Because the bit is in the RTM work 
area, only dumps requested during processing of this error by RTM or its sub­
routines (FRR and ESTAE) are suppressed. Shouid the error involve recursive 
entry into RTM, the bit setting is propagated to the next RTM work ~rea. 

This action is useful for preventing dumps that may not be needed (X22, 
X37, etc.) because accompanying messages provide sufficient information. It 
can also be used to prevent duplicate dumps for known problems which have 
already been documented. 

• ACTION=IGNORE indicates that the system will not do any further SLIP pro­
cessing, and that normal system recovery will continue. This option is normally 
chosen for known errors. For example, if trapping OC4 completion codes and 
SLIP SET,COMP=OC4,ACTION=IGNORE,LPAMOD=MODX,END is entered 
after SLIP SET ,COMP=OC4,A=SVCD,END had been issued, it results in 
dumps for all OC4 errors except those in module MODx. The ACTION= 
IGNORE command must be issued after the original command because trap 
conditions are checked LIFO. 

Section 2: Important Considerations Unique to MVS 2.S.11 



Additional Data Gathering Techniques (continued) 

It is also possible to display information about SLIP definitions by using the 
DISPLAY command at the operator's console. For details concerning operand 
usage and entering the SLIP and DISPLAY commands, see Operator's Library: 
OS/VS2 MVS System Commands. The folloWing is provided to demonstrate a 
typical application of the SLIP command: 

Obtaining a Dump with Queue Control Blocks and Elements 

An error in the DEQ SVC routine is suspected because whenever program DVTRTN 
executes, it abnormally terminates even though its parameter list is correct. The 
resulting abend dump does not include queue control blocks and queue elements. 
To get a dump that does include this information, issue the following SLIP com­
mand: 

SLIP SET,ID=QELS,COMP=X30,ERRTYPE=ABEND,JSPGM=DVTRTN,END 

ID identifies this SLIP definition as "QELS"; COMP specifies the applicable 
system completion code; ERRTYPE specifies that an abend condition must exist 
for this error interception; }SPGM identifies "DVTRTN" as the job step program 
that must be executing for this error interception; END denotes the end of this 
SLIP command. 

Designing an Effective SLIP Trap 

The design of a SLIP trap requires knowledge of the error conditions and what ,/ 
makes the error unique. An effective trap should catch only the intended error. ~ 

To do this, the description should be as specific as possible. 

The best way to design a trap is from a dump of the error. In the case of the 
NODUMP action, a dump should be available. In other cases, an approximate dump 
(one taken near the time 'of the error) or one without sufficient information to 
'debug might be available. The following chart lists several SLIP keywords and 
indicates the data area fields that SLIP compares them with. 

It should be understood that SLIP operates as a subroutine within the RTM. 
SLIP is called from either RTM 1 or RTM2, depending on whether the error 
environment allowed FRR or only EST AE recovery respectively. The level of RTM 
in control affects the data areas available. The calls to SLIP are prior to calls to any 
error recovery routines, therefore it is possible that the data areas contained in a 
dump may have been changed since SLIP examined them. This is especially true of 
the COMP keyword value. Many recovery routines change the abend completion 
code to make it more specific. For example, a system service that receives a bad 
address from a user parameter list will get an OC4 which it converts to its own 
completion code meaning a bad parameter list. 

2.8.12 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Additional Data Gathering Techniques (continued) 

SLIP Keywords and Corresponding Data Areas 

Note: There may be several RTM2 work areas pointed to by the TCB if several 
abends occurred. The oldest one (last on the queue) is probably the best one to use. 

ERRTYP 

(RTMI) 

In RT1TENPT of the RTM1 work area is the number indicating the reason for 
entry into RTM1: 

l=PROG 5=MACH 

2=REST 

3=SYCERR 

4=DAT 

10=PGIO 

15=MEMTERM 

(RTM2) 

The reason for entry into RTM2 is indicated by flags in the RTM2 work area as 
follows: 

MODE 

RTM2MCHK=MACH 

RTM2PCHK=PROG 

RTM2RKEY=RESTART 

RTM2SYCD=ABEND 

RTM2ABTM=ABEND 

RTM2SYCE=SYCERR 

RTM2TEXC=DAT 

RTM2PGIO=PGIO 

RTM2EOM=MEMTERM 

System mode at error time is indicated in the MODEBYTE as follows: 

1 ... MODESUPR Supervisor Control 

.1 ...... MODEDIS Physically disabled 

.. 1. . ... MODEGSPN Global spin lock held 

... 1 .... MODEGSUS Global suspend lock held 

1 ... MODELOC Locally locked 

.1 .. MODETYP1 Type 1 SYC 

.. 1. MODESRB SRB mode 

... 1 MODETCB Task mode (unlocked) 

Section 2: Important Considerations Unique to MVS 2.S.13 



Additional Data GatheringYechniques (continued) 

(RTMl). 

The MODEBYTE value is contained in RTIWMODE. The PSW from SDWAECI 
is used for PP, Super, SKey, and PKey states. The SDWASTAF bit is used for 
,RECV. 

(RTM2) 

In the ESAMODE field (SVRB + X'B1,l') of the SVRB pointed to byRTM2VRBC, 
are bits mapped by MODEBYTE as indicated above. For the PSW values, SLIP 
uses the RBOPSW field of the RB preceding the SVRB. 

The RTM2RECR bit must be on for RECV, and in the previous RTM2 work 
area the RTM2XIP bit plus the SCBINUSE bit of the SCB pointed to by 
RTM2NSCBN must be on. 

COMP 

(RTMl) 

In the SDWA, field SDWACMPC contains the original value. 

(RTM2) , 

The RTM2CC field contains the original value for each work area. 

JOBNAME 

(RTMI and RTM2) 

In the ASCB, fields ASCBJBNI or ASCBJBNS point to the job name for either 
initiated or started jobs. 

JSPGM 

This keyword does not apply to errors which enter RTMl, so if it is specified, the 
trap is limited to RTM2 type errors only. 

PVTMOD (RTM2 only) 
LPAMOD 

. ADDRESS 

The address used for these keywords is obtained from the same PSW used when 
checking values for the MODE keyword. Additionally, PVTMOD applies to RTM2 
type errors only and restricts the trap accordingly. The module name for PVTMOD 
is compared with those in the CDE list for the jobstep TCB of the current address 
space. 

2.8.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Additional Data Gathering Techniques (continued) 

ASID 

(RTMl) 

Both SOWAFMIO and SOW AASIO are checked. 

(RTM2) I Both RTM2FMID and ASCBASID are checked. 

Enabling The PER Hardware To Monitor Storage Locations 

A convenient place to hook the system is in the MVS trace table's common 
prologue code in lEA VTRCE. All interrupts and dispatcher entries enter this code. 
Therefore a modification here will enter this trap after every interrupt and 
before the dispatcher dispatches or redispatches any TCB or SRB. The trap in the 
examples below was jnserted in module lEA VTRCE three instructions after the 
label STR in place of the code that normally stores the timer value in the trace 
table. 

This trap does not stop the system but traces in the MVS trace the PSWs that 
alter a specified storage location. To stop the system, a branch from the program 
check FLIH can be made to a patch area, and a test can be made for the interrupt 
code of X'80' with a branch equal to a trap to stop the system. In the system 
dump, the instruction that performs the modification is pointed to by X'98' 
in the PSA. 

Care should be used with this diagnostic aid since degradation occurs in pro­
portion to the number of interrupt.s taken. Only use it to monitor a section of 
storage which is never modified or only infrequently modified. Once the trap 
is in, there is ho need to re-IPL to remove it. Manually storing a word of zeros 
in control register 9 prevents further interrupts. 

Section 2: Important Considerations Unique to MVS 2.S.1S 



PGM OLD PSW 
PGM OLD PSW 
PGM O,LD PSW 

470C3080 A0009AOA 
470CI080 E0034126 
470C3080 AOOOBEF8 

Additiorial Data Gathering Techniques (continued) 

Following is an example of the PER hardware trap to be applied by superzap. 

NAME IEANUC01 IEAVTRCE 

VER 03AO B2058000,4780B02C,D70380028002,D203C01C8002,947FC014 
REP 03AO 4 7F00608,07000700 ,07000700,07000700,07000700,07000700 

NAME IEANUC01 IEAVTRTS 
VER 0796 82001078 
REP 0796 47F00600 

NAME IEANUC01 IEAVFXOO 
V E R 0600 00000000,00000000,00000000 ,00000000 ,00000000,00000000,00000000 
V E R 061 C 00000000,00000000,00000000,00000000,00000000 ,00000000 ,00000000 
REP 0600 96401078,82001078 TURN ON PER BEFORE ENTERING FRR 
REP 0608 96400300 ALWAYS TURN ON PER FOR DISPATCHER 
REP 060C 4700B032,92F0060D BUT SET THE FIRST TIME SWITCH FOR THE REST 
REP 0614 96400058,96400060,96400068,96400070,96400078 SET THE NEW PSW. 
REP 0628 B79B0630, LOAD FUNCTION CODE, LOW AND HIGH RANGE 
REP 062C 47FOa032 RETURN TO MAINLINE 
REP 0630 XXOOOOOO FUNCTION CODE IN HIGH ORDER 
REP 0634 XXXXXXXX LOW RANGE l * 
REP 0638 XXXXXXXX HIGH RANGE r 

*Note: To check a word in storage starting at 9F41C for example, 
Lowrange address = 9F41C 
High range address := 9F41 F. 

To check a byte, use the same address in low and high. 

Because the switch is in the PSA, the control registers and NEW PSWs are 
initialized on both processors in an MP environment. However, they are set only 
once and not each time through the routine. 

The example in Figure 2-18 shows trace entries usingthe storage alteration mask 
(function code X'20'). The interrupt address is the address of the instruction that 
modified the monitored storage. 

R15/RO 00009970 00DF467A 
R15/RO 00014C20 00DF467A 
R15/RO 0000BEB8 00DF467A 

R1 00FFOB08 
R1 00FF837C 
R1 00FF837C 

IDS 00400002 
IDS 00400002 
IDS 00400002 

TCB 00000000 
TCB 00000000 
TCB 00000000 

TME 9BD80401 
TME 9BD80439 

'TME 9BD8053F" 

Figure 2-18. Trace Example of PER Hardware Monitoring 

On occasion it might be necessary to monitor when only one address space is active. 
One way of doing this is to change the previous superzap example at address 060E 
from B032 to 0640 and include the following superzap. This superzap turns PER 
on only if the specified address space is active. 

NAME I EANUC01 I EAVFXOO 

V E R 0640 00000000,00000000 ,00000000 ,00000000,00000000,00000000,00000000 
REP 0640 58D00224 GET CURRENT ASCB 
REP 0644 48DOD024 GET CURRENT ASID 
REP 0648 49D00664 IS THIS MY ASID? 
REP 064C 47800658 YES - GO TURN PER ON 
REP 0650 B7990660 TURN PEROFF 
REP 0654 47FOB032 RETURN TO MAINLINE 
REP 0658 B7990630 TURN PER ON 
REP 065C 47FOB032 RETURN TO MAINLINE 
REP 0660 00000000 THIS WORD IN CR9 TURNS OFF PER 
REP 0664 xxxx ASID TO BE MONITORED 

2.8.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



"~ 

Additional Data Gathering Techniques (continued) 

Caution: Extreme care must be used when considering a system alteration in order 
to gather additional data about a problem. No superzaps should be applied before the 
system programmer has verified the logic being zapped and the trap logic itself. 
Remember if anyone location or offset within the module or trap changes, all 
offsets and base registers must be verified. 

System Stop Routine 

On occasion it is necessary to stop the system and take a stand-alone dump to fully 
document a problem. Loading a wait state PSW is sufficient on a uniprocessor. 
Stopping only one processor on an MP system is not adequate. This routine will stop 
an MVS MP or UP system. The caller must be supervisor state and key zero. The 
wait state code you wish displayed is placed at location X'756'. This trap also 
moves the wait state PSW to storage location zero and loads the PSW from there to 
prevent inadvertent restarts when the trap is hit. 

NAME IEANUC01 IEAVFXOO 
VER 0700 36F'00' 
REP 0700 ACFC074E DISABLE 
REP 0704 900F0758 SAVE REGISTERS 
REP 0708 58FOO010 GET CVT POINTER 
REP 070C 58EOF294 GET CSD POINTER 
REP 0710 91COE008 TEST IF MP 
REP 0714 47E00744 NO JUST LOAD WAIT PSW 
REP 0718 41200000 SET REG 2 TO CPU 0 
REP 071C 41300001 SET REG 3 TO CPU 1 
REP 0720 48400204 GET CPU ADDRESS 
REP 0724 1244 TEST FOR CPU 0 
REP 0726 4770073C NO, STOP CPU 0 FIRST 
REP 072A A E030009 YES, STOP CPU 1 FIRST 
REP 072E 4760072A SPIN TIL CC=O 
REP 0732 D20700000750 MOVE THE WAIT PSW TO ZERO 
REP 0738 82000000 LOAD WAIT STATE ON CPU 0 
REP 073C A E020009 SIGP STOP CPU 0 
REP 0740 4760073C SPI N TI L CC=O 
REP 0744 D20700000750 MOVE THE WAIT PSW TO ZERO 
REP 074A 82000000,0000 LOAD WAIT STATE ON CPU 1 
REP 0750 OOOEOOOO,OOOODEAD WAIT PSW 
REP 0758 00000000 SAVE AREA 

Caution: Extreme care must be used when considering a system alteration in order 
to gather additional data about a problem. No superzaps should be applied before the 
system programmer has verified the logic being zapped and the trap logic itself. 
Remember if anyone location or offset within the module or trap changes, all 
offsets and base registers must be verified. 

Section 2: Important Considerations Unique to MVS 2.8.17 



Additional Data GatheringTechniques (continued) 

Using The MVS Trace To Monitor Storage 

TheMVS trace code in module IEAVTRCE is an excellent place to hook the 
system to monitor system operation and branch to a trap routine. Three instruc­
tions past label STR in lEA VTRCE is the code which stores the timer values in the 
trace table. All trace entries pass through this code. Overlaying this code 
allows you to monitor any place in the system as it runs disabled, key zero and 
supervisor state. It must be understood that this ,code is physically disabled and 
therefore the trap must not page fault. Also no reference can be made to private 
area addresses since the trap can receive control in any address space. For larger 
patches a branch from this code to a patch area in the PSA is possible. At entry to 
this code, register 12 (C) points to the trace entry. This code normally stores the 
timer value located at X'lC' into the trace table. Storing a word at register 12 (C) 

. + X'lC' would allow dYnamic monitoring of that word in storage if addressability 
is obtained. The other seven words of the trace table are ·built within the trace 
entry code for each trace type. Monitoring for more than one word entails 
changing all entries. 

To eliminate certain trace entry types, it is only necessary to put a branch 
instruction 07FB at the entry point for that entry. 

Caution: Location X'10' cannot be monitored with this trap because the PCFLIH 
refreshes location X'1 0' before it branches to the trace routine. Extreme care must 
be used when considering a system alteration in order to gather additional data 
about a problem. No superzaps should be applied before the system programmer has 
verified the logic being zapped and the trap logic itself. Remember if anyone 
location or offset within the module or trap changes, all offsets and base registers 
must be verified. 

How To Expand The Trace Table 

Use the following zap to force trace on during NIP processing. 

NAME IEEVWAIT IEEVWAIT 
VER 0194 4710 
REP 0194 47FO 

To increase the size of the trace table, you may zap module IEAVNIPO at label 
NVTTRACE to a greater value. It defaults to X'190' (400 decimal). Do not 
exceed a value of X'400' for the size of the trace table; 806-4 and OC4 abends can 
occur when the link pack area directory is accessed. 

NAME IEANUC01 IEAVNIPO 
VER 2ECO 0190 
REP 2ECO XXXX WHERE X IS THE NEW VALUE DESIRED. 

Caution: Extreme care must be used when considering a system alteration in order 
to gather additional data about a problem. No superzaps should be applied before the 
system programmer has verified the logic being zapped and the trap logic itself. 
Remember if anyone location or offset within the module or trap changes, all 
offsets and base registers must be verified. 

2.8.18 OS/VS2 System Programming Library: MVS Diagnostic Techniques 

( 

( 



",,, 
\ 
/ 

Section 3. Diagnostic Materials Approach 

This section provides guidelines for analyzing storage dumps to find which data 
areas were affected by the error and to isolate internal symptoms of the problem. 

The three chapters in this section are: 

• Stand-alone Dumps 

I • SVC Dumps 

I • SYSABENDs, SYSMDUMPs, and SYSUDUMPs 

Section 3. Diagnostic Materials Approach 3.1.1 

• 



( 
3.1.2 OS/VS2 System ProgrammingUbrary: MVS Diagnostic Techniques 



Stand-alone Dumps 

The stand-alone dump provides the problem solver with a larger quantity of data 
than system-initiated dumps because it contains areas that belong 
to the entire operating system rather than just a single address space or component. 
One of the major problems for the analyst is finding the important data for his 
problem and then isolating the problem area. Once this isolation is achieved, the 
debugger uses unique system/component techniques to gain further insight into the 
exact cause of the problem. 

This chapter points out where to look in a stand-alone dump to determine 
various problem symptoms. The general approach is to analyze a stand-alone dump 
to find out what the system isdoing (or not doing). Important areas will be 
described and possible reasons for their current state/contents will be explained. 
The analysis starts at the global system level and, by gathering data and gaining an 
understanding of the environment, works down to the address space and task level. 

The experienced problem solver realizes that under certain conditions it may 
be necessary or advantageous to omit interpreting various areas. For example, 
if during system operation he observes that a given segment of the system (such 
as VT AM) is not functioning (other areas.appear okay - jobs are executing, 
SYSIN!SYSOUT is appearing, etc.), he may decide to take a stand-alone dump. 
In this case, the current state of the system is probably not important. He 
would not be interested in current PSW, registers, etc.; he would be interested 
only in the address spaces that are using VT AM and the state of the TP network. 
The dump is not taken for a problem that is "active" now, but to give the analyst 
data with which to determine a problem that appears to have originated some 
time ago. The point is that knowing why the dump was taken will often govern. 
which, if any, of the stand-alone dump areas are of significance for a given problem. 

Information contained in the chapter on "Waits" in Section 4 can be used as a 
supplement to the following discussions. (Also, a step-by-step approach to 
analyzing a stand-alone dump is contained in Appendix B of this manual.) 

To analyze a stand-alone dump, you should always ask the following questions: 

1. Why was the dump taken ? 

Console sheets/logs are very important in stand-alone dump analysis. They are 
often the key to solving "enabled wait" situations and may present valuable 
information about system activity prior to taking the dump. Messages 
concerning I/O errors, condition code=3, SVC dumps, abnormal job termina­
tions, device mounts, etc. should be thoroughly investigated to determine if 
they could possibly contribute to the problem you are tracking. 

The dump title gives an'indication of the problem's external signs or, possibly, 
a specific situation that must be investigated, such as "VTAM NOT 
FUNCTIONING." 

Section 3. Diagnostic Materials-Approach 3.1.3 



Standalone Dumps (continued) . 

2. What is the current state 01 the system ? 

Examine the available global data areas to determine what the system is 
currently doing. The "Global System Analysis" chapter in Section 4 aids 
in this process. Remember that at this point, you are gathering information and 
trying to understand the system environment in order to isolate the internal 
symptom; you are not ready yet to debug. 

3. Has your global analysis isotated the problem to an internal symptom ? 

If so, refer to the qiscussion of that. symptom in Section 4 of this manual. 

4. What previous errors have occurred within the system,. could they possibly 
. have any allect on your current problem ? 

The interpretation ofSYSl.LOGREC and the in-storage LOGREC buffers are 
most important in determining error history. See the chapter on "Use of 
Recovery Work Areas" in Section 2. 

5. What is the recent system activity? 

The chapter on "MVS Trace Analysis" in Section 2 aids in trace table 
in terpretation. 

6. Wh€!t is the work status within the tiyslem ? 

Your objective is t.o determine if the system has for some reason not completed 
all scheduled work. Determining what that work is and why it is not 
progressing can provide insight into the problem as well as answer some 
questions that may hav.e arisen during an earlier analysis. Understanding the 
majorcontrol block structure anq work queue status should aid in determining 
the possible source of the error. Refer to the discussion of "Work Queues and 
Address Space Status" in the "Global System Analysis" chapter of Section 2. 

At this point, you should have gathered enough data to have a definition of the 
internal problem symptom. You should also have considerable information about 
the system's state, error history, and job status. You should refer to the 
appropriate chapter in Section 4 "Symptom Analysis Approach" or, if you have 
isolated the error to a component or process, Section 5 or Appendix A, 
respectively. 

3.1.4' OS/VS2 System ProgrammiIJg Library: MVS Diagnostic Techniques 



SVC Dumps 

SVC dumps (invoked by the SDUMP macro) are usually taken as a result of an 
entry into a functional recovery routine (FRR) or ESTAE routine. The com­
ponent recovery routine specifies the address that will be dumped. 

The "Component Analysis" chapters in Section 5 should help you identify what 
areas of the system were dumped and what they contain. 

The SVC dump is taken asynchronously and the global data areas (PSA, LCCA, 
PCCA, etc.) usually contain no relevant data except in cases where overlays, 
machine checks, channel checks, etc., have occurred. 

SDUMP options SQA, ALLPSA, and SUMDUMP are the defaults for all requests. 
The SUMDUMP option of SDUMP provides a summary dump within an SVC dump. 
There is a twofold purpose for this. First, since dump requests from disabled, 
locked, or SRB-mode routines cannot be handled by SVC dump immediately, 
system activity destroys much useful diagnostic data. With SUMDUMP, copies of 
selected data areas are saved at the time of the request and then included in the 
SVC dump when it is taken. Second, SUMDUMP provides a means of dumping 
many predefmed data areas simply by specifying one option. 

The data areas saved in SUMDUMP can be printed out by using the 
AMDPRDMP control statement SUMDUMP. TIlls summary dump data is not 

"mixed with the SVC dump because in most cases it is chronologically out of step. 
Instead, each data area selected in the summary dump is separately formatted 
and identified . 

. For information on print dump program changes needed to print the summary 
dump, and multiple address-space output from SVC dump, see OS/VS2 System 
Programming Library: Service Aids. 

The RTM2WA pointed to by the TCB upon whose behalf the dump is being 
taken is the most valid system status indicator available. The dump task is usually 
the current task; the task upon whose behalf the dump is being taken will contain 
a completion code in the TCB completion code field. It is possible for the EST AE 
routine to issue SVC D itself, in which case the current task is also the failing task. 

Section 3: Diagnostic Materials Approach 3.1.5 



I SVC Dumps (continued) 

Because of MVS recovery (retry and percolation), the SVCdump may be only 
part of the documentation at the problem solver's disposal. The problem solver 
should attempt to obtain: 

1. The system log for the time the dump was taken to ascertain if: 

• Any other SVC dumps were taken before or after the one he is 
investigating. 

• Any task subsequently abended. If so, a system dump that displays other 
areas of storage that have meaningful data may be available. 

2. The LOGREC formatted listing for the time immediately preceding the time of 
the SVC dump. If the component analysis procedure fails to determine the 
cauSe of the problem, analyze the dump as you would a stand-alone dump. 
Keep in mind that the information obtained via the CPUDATA option on 
AMDPRDMP is probably meaningless. Refer to the "Global System Analysis" 
chapter in Section 2 for information on how to do a task analysis of available 
address-space-related control blocks. 

Keep in mind that the system has detected the error and has attempted recovery, 
at least on a system basis. Therefore, there will be a good indication of the type 
(internal symptom) of error (loop, abend, problem check, etc.) that caused the 
problem. (See Section 4, "Symptom Analysis Approach.") 

How to Change the Contents of an SVC Dump Issued by an Individual Recovery 
Routine 

At times, SVC dump contents are not sufficient to solve a problem. The most 
convenient way to change the contents is the CHNGDUMP command. It can be 
used to establish system options to be added to the options on each SDUMP 
request, or to totally override the SDUMP options. See "Using the CHNGDUMP 
Command" in Section 2. If you do not want to affect all SVC dumps or if storage 
lists are involved, you may wanttochange the parameter list in a particular ESTAE 
exi t instead. 

You can usually find the name of the recovery routine by looking at the user 
data (or title) on the SVC dump printout. If not, search the ESTAE's PRB for the 
virtual address of the SDUMP SVC instruction. 

The following description of SDUMP's parameter list can help you decide which 
bits will provide the data you want. The SDUMP macro expansion generates the 
parameter list and puts the address of the list in register 1. 

3.1.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



I SVC Dumps (continued) 

I SDUMP Parameter List 

Offset 

o 

2 

1 ... 

· 1 .. 

· . 1. 

· .. 1 .... 

1. .. 

· 1 .. 

· . 1. 

· .. 1 

1. .. 

· 1. . 

· . 1. 

· .. 1 ... . 

· . .. 1 .. . 

others 

1. .. 

. 1. . 

.. 1. 

... 1 ... . 

1 .. . 

· 1 .. 

· . 1. 

· .. 1 

user-supplied DCB= 

BUFFER=YES 

user-specified STORAGE= or LIST= 

user-specified HDR= or HDRAD= 

user-specified ECB= 

user-specified ASID= 

QUIESCE=YES 

BRANCH=YES 

indicates SDUMP (as opposed to SNAP) 

indicates a SYSMDUMP request 

indicates enhanced SVC Dump 

user-specified ASIDLST= 

user-specified SUMLIST= 

reserved 

SDATA options 

ALLPSA 

PSA 

NUC 

SQA 

LSQA 

RGN 

LPA 

TRT (MVS trace table) 

Section 3. Diagnostic Materials Approach 3.1.7 



SVC Dumps (continued) 

Of !Set 

3 

4 

8 
C 

10 

14 

16 

18 

lC 

20 

24 

28 

29 

1. .. 

more SDATA options 

CSA 

. 1.. SWA 

.. 1. SUMDUMP 

. .. 1 ' .. '. I~ • NOSUMDUMP 

1. . . ,NOALLPSA 

~ 1.. "NOSQA 

others reserved 

DCB address 

address of storage list 

address of header record 

address of ECB 

caller's ASID 

target ASID of scheduled dump 

address of ASID list 

address of summary dump storage list 

address of SYSMDUMP 4K SQA area 

address of SYSMDUMP CSA work area 

length of header record (less than 100) 

header record (will appear as title) 

3.1.8 OS/VS2,System PtogrammingLibratY: MVS Diagnostic Techn;'.Iues 



SYSABENDs, SYSMDUMPs, and SYSUDUMPs 

SYSABENDs, SYSMDUMPs, and SYSUDUMPs are produced by the system when a 
job abnormally terminates and a SYSABEND, SYSMDUMP, or SYSUDUMP DD 
statement was included in the JCL for the tenninating step. In an MVS system, the 
output produced is dependent on parameters supplied in the SYSI .PARMLIB 
members IEAABDOO, IEADMROO, and IEADMPOO for SYSABENDs, 
SYSMDUMPs, and SYSUDUMPs, respectively. See OS/VS2 System Programming 
Library: Initialization and Tuning Guide for the IBM-supplied defaults and options 
that are available. 

If the IBM defaults are used, a hexadecimal dump of LSQA is produced when 
the SYSABEND DD statement is specified. MVS systems do not dump the nucleus 
or SQA as a default for SYSABEND or SYSUDUMPs. SYSMDUMP defaults 
include NUC and SQA. 

With a SYSABEND, SYSMDUMP, or SYSUDUMP, the system has detected the 
error and therefore provided a starting point (such as ajob step completion code) 
for analysis. The analyst should always look at the JCL and allocation messages 
that accompany the dump. The allocation messages contain error messages that can 
sometimes be helpful. There will also be a JES2 job log that shows the operator 
messages and responses that relate to the job. The error messages also contain 
valuable information about the error and should always be investigated. 

SYSABEND, SYSMDUMP, and SYSUDUMP errors can generally be divided into 
two categories: software-detected errors and hardware-detected errors. 

Software-Detected Errors 

Software-detected errors are those in which one or more of the following occurs: 

• A module detects an invalid control block queue. 

• A called module returns with a bad return code. 

• A program check occurs in system code and a recovery routine changes the 
program check to a completion code and abnormally terminates the task. 

The best approach for a software-detected error is: 

1. Use the JES2 job log and allocation messages to investigate all error messages 
produced. (Refer to the appropriate Message manual to determine the causes 
and corrective action of each message.) 

2. Check the abend code defmed in the dump. (Refer to OS/VS Message Library: 
VS2 System Codes to determine causes and corrective actions of the code.) 
Some abend codes define problem determination areas that can be used to 
help derme the problem. . 

Section 3. Diagnostic Materials Approach 3.1.9 



· SYSABENDs, SYSMDUMPs, and SYSUDUMPs (continued)· 

3. In the event that sufficient data is not available in the Messages and Codes 
manuals to resolve the problem, the analyst can go directly to the program 
listing. The diagnostic sections of most PLMs contain a message/module and 
abend'/module cross-reference. Once the correct module has been located, 
the program listing (supplied in the system microfiche) helps to defme the 
problem. 

SYSABENDs, SYSMDuMPs, and SYSUDUMPs normally do not produce 
system-related data areas other than those which are formatted. Because of this 
and the fact that error recovery will attempt to reconstruct invalid control block 
chains before terminating the task, any error that does not occur in the private area 
maybe difficult to resolve from a SYSABEND, SYSMDUMP, or SYSUDUMP alone. 

Because of the recovery and percolation aspects of MVS, the SYSABEND, 
SYSMDUMP, or SYSUDUMP could be the end result of an earlier system error. If 
so, the analyst should determine if any LOGREC entries were made pertaining to 
this task and if any SVC dumps were taken while this task was running. The system 
error is normally reflected in either the LOGREC entries, the dump data sets, or 
both. 

Hardware-Detected Errors 

A hardware-detected error is a program check that is not intercepted by a recovery 
routine. This is identified by a system completion code of X'OCx' where x is the 
program check type. For this type of error, the analyst needs to know the address 
of the module where the program check occurred, and the register contents when 
the program check occurred. The best place to locate this information is in the 
RTM2WA that is pointed to by the abending TCB. 

Given the registers and PSW at the time of the error, the analyst should 
determine the module that program checked by using the load list link edit maps 
of the program. (If the module is outside the private area, a NUCMAP or LPA map 
may be nece~sary.) Then he should examine the program listing for the module 
until the cause of the program check is defined. 

3.1.10 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Section 4. Symptom Analysis Approach . 

This section describes how to identify correctly an external symptom, and provides 
an analysis procedure for determining what kind of problem is causing the 
symptom. 

Each external symptom is described in a separate chapter, as follows: 

• Waits 

• Loops 

• TP Problems 

• Performance Degradation 

• Incorrect Output 

Section 4. Symp'\'i!ftn Analysis Approach 4.1.1 

• 



4.1.2 OS/VS2 System Programming Lib,rary: MVS DiagnoStic Techniques 



Waits 

Wait states may be either enabled or disabled. The characteristics of each type 
are described below. 

haracteristics of Enabled Waits 

Enabled waits have traditionally been the most difficult problem to analyze because 
of the lack of an obvious failure. The enabled wait provides no indication of error 
other than that the system apparently has nothing to do. In fact the enabled wait 
has been accurately described as an end symptom of a problem with no obvious 
causes. The task of determining the possible cause is left to the debugger. Other 
types of software failures - abends, program checks, loops, messages - provide 
a starting point for analysis; that is, software or hardware has indicated a violation 
of interfaces or data integrity and has halted the erroneous process at the point of 
error. The enabled wait provides none of these. 

Note: The subsystem design of many components includes a dispatching 
mechanism and internal control block structure not generally recognized by the 
operating system. When these subsystems (for example, VTAM, TCAM, JES2) 
malfunction, work through these components is often halted. Because of the 
critical nature of these processes, external signs of the problem are often detectable. 
Within this debugging discussion, these problems are often treated as wait states, 
that is, the system may be capable of running batch work, but the TP network 
appears "hung-up." This general discussion of analysis-approach applies for 
problems such as "permanently" swapped-out address spaces, TP network hung, and 
no batch running. The advantage is that the external symptoms may allow 
you to more easily isolate the problem component or at least a starting point - it 
may be obvious that TCAM is not responding, or that JES2 is not processing 
input. 

Experience has shown that in MVS a much greater percentage of re-IPL situa­
tions are caused by enabled waits than in previous systems. One reason for this 
characteristic of MVS is software recovery. Software recovery attempts to repair 
the damage caused by a failure and allow the system to continue meaningful opera­
tion. The general philosophy of recovery is to isolate the error to ajob, terminate 
the job, and allow the system to continue. This philosophy dictates that under 
certain conditions innocent work may be forcefully terminated. 

Section 4. Symptom Analysis Approach 4.1.3 



Waits (continued) 

Software recovery obviously may cause the termination of some critical process 
which in turn causes dependent processes to wait indefinitely. For example, 
assume that while processing a page-fault, an error occurred during the I/O interrup­
tion processing; software recovery was invoked and subsequently caused a cleanup 
of the bad control blocks, but did not post the I/O requestor. It is possible 
that the paging mechanism will wait indefmitely for the missing interrupt. This 
in turn could cause a problem program to wait indefinitely for the paging operation 
to complete. The end result is no work accomplished and also no external problem 
symptom, although a problem clearly exists. The debugger must find the bottleneck -­
the paging exception - and subsequently back-track enough to determine why the 
bottleneck still exists. Very often, this back-tracking requires analysis of several 
components in order to determine the original cause. 

Characteristics of Disabled Waits 

Situations can develop during execution of the MVS system that require the soft­
ware to abruptly terminate the system by loading a disabled PSW with the wait bit 
set to 1. In previous systems, this occurred much more frequently, than it does in 
MVS because, in MVS, many of these situations were removed from the code and 
replaced with software error recovery. However, a few cases still remain that cause 
this symptom. To understand these situations better, refer to the 'Wait State 
Codes'section ofOS/VS Message Library: VS2 System Codes. 

A more critical situation for the analyst is a disabled wait that is caused when 
data areas. containing PSWs referenced by the dispatcher or hardware are overlaid 
and subsequently fetched for use in an LPSW. This often occurs when a PSA over­
lay condition exists, that is, the low storage PSWs fetched by the hardware have 
been inadvertently overlaid by a program running in supervisor state key O. Other 
data areas, such as PRBs, may contain PSWs used by the dispatcher and are also 
potential sources of the disabled wait state. Bad LPSWs are difficult to track down. 
The most common MVS uses of the LPSW in instructions are: 

• hardware loading from low storage for an interruption-processing sequence 

• dispatcher loading from X'300' into the PSA 

• RTM (IEAVTRTS) passing control to FRRs. 

• the system termination routine 

• SVC FLIH and I/O FLIH LPSWs. 

Storage overlays resulting in wait state PSWs are approached in the same manner 
as other storage overlays. The important step is to realize the storage overlay has 
occurred, then re-create the process that was possibly responsible. The discussion of 
pattern recognition in the chapter "Miscellaneous Debugging Hints" in Section 2 
should be helpful. 

4.1.4 OS/VS2 System Programming LiJ>rary: MVS Diagnostic Techniques 



Waits (continued) 

Analysis Approach for Disabled Waits 

The following is a list of objectives that provides a systematic approach to 
analyzing a disabled wait. 

Objective 1 - Determine positively that an actual disabled wait condition exists. 
Is the PSW the type that is used when MVS loads an explicit wait or is this an over­
laid PSW with the wait bit on ? 

Analysis - Examine the current PSW contained in the dump according to the 
technique described in the chapter "Standalone Dumps" in Section 3. The PSA 
overlay should also be analyzed to determine if key PSWs have been overlaid. 

If the PSW shows an explicit wait, look up the wait state code in OS/VS Message 
Library: VS2 System Codes to find what conditions could cause the explicit wait. 
You may need to do some extra analyzing before the condition can be related to a 
component. (Note: No further analysis for explicit wait situations is discussed 
in this book.) 

If the PSW suggests an overlaid PSA or some other error source, proceed to 
Objective 3; otherwise proceed to Objective 2. 

If,for any reason, the current PSW is not formatted in the dump, the last PSW 
shown in the trace table, location X'300' (used by the dispatcher), or low storage 
should be examined as possible sources of the last PSW . 

. Objective 2 - Determine if the situation has been improperly diagnosed as a 
disabled wait. This will eliminate a situation in which the locked console is 
diagnosed as a disabled wait. 

Analysis - In previous operating systems, the operator's inability to communicate 
with the system through the console was an external indication of a disabled wait 
condition. In MVS, this same external symptom is often not a true disabled wait. 
Console communication is dependent upon other services of the operating system, 
such as paging, and the I/O subsystem. A problem in any of these services often 
terminates console activity and causes an apparent "disabled wait" situation, when 
the PSW does not actually reflect a disabled wait. 

If the current PSW is not disabled for external and I/O interrupts or if the wait 
bit (X'0002') in the PSW is not set to one (PSW = X'070EOOOO 00000000'), you 
should proceed to either the "Enabled Wait Analysis" topic later in this chapter or 
to the chapter on "Loops" later in this section. 

Objective 3 - Once you know that the disabled PSW is the result of an overlay in 
low storage or in another data area, you must gather specific data about the overlay. 
Ask such questions as: What was the damage to the PSW? When did the overlay 
most likely occur? Where did the PSW come from? 

Sectiot.t 4. Symptom Analysis Approach 4.1.5 



Waits (continued) 

Analysis - It is important to try to fmd out how the PSW was overlaid - was it a 
byte, an entire word or doubleword, a single bit, or was a large portion of the 
surrounding area destroyed along with the PSW? (The discussion of Pattern 
Recognition in the chapter "Miscellaneous Debugging Hints" in Section 2 will help 
you determine this.) Much of this analysis depends on your experience and 
familiarity with the nonnal data for the subject PSW and the surrounding area. 
You should try to gather enough data to know, for example, that "n" bytes were 
overlaid beginning at location xyz. 

Also, examine the trace table, if available, and try to determine when the PSW 
was probably last valid. Look for interrupts and unusual conditions in the trace 
entries to try to reconstruct the process(es) leading up to the incorrect PSW. 

If the trace indicates the overlay occurred after the most recent trace ~~y, the 
registers are important because they may show recent BALs ·and BALRs and 
they may contain the address of a routine or control block that was used to overlay 
the subject PSW. This "is actually a good situation because it will not take long to 
relate the overlay to some bad pointer in a control block and, hopefully, your 
analysis will proceed to a specific component. 

If the overlay occurred several trace en tries earlier, detennine a possible save 
area that might contain the registers that were active at the time of the overlay by 
examining interrupt entries or dispatch entries in the trace table. 

If there is no trace table, it is almost impossible to defme when the overlay 
occurred. You might try to analyze, for example, TCB save areas, hoping for a 
clue as to when the overlay occ,urred and to gather infonnation concerning the 
problem. However, this process is baSically undefined and undisciplined. In most 
cases, a trap for the overlay can be generated at this point and used as soon as 
possible. 

Objective 4 - Determine which component most likely caused the overlay and 
choose a likely set of modules from that component to analyze at an instruction 
level. Determine which data area field contains the bad address and who set up 
the field. 

Analysis - As mentioned earlier, by using the registers and trace table it is possible 
to identify which code actually overlaid the PSW, but the source of the error must 
still be found. This mostly involves screening code to reconstruct the path which 
caused the overlay and locating the data that generated the bad address. At this 
point, you want to learn which module set the bad field so you can start back­
tracking. 

Shortcuts are possible according to the analyst's familiarity with the modules 
that are involved. Certainly the main objective should be to decide which com­
ponent is most likely responsible and then to proceed to the discussion of that 
component's analysis (in Section 5). 

4.1.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Waits (continued) 

Analysis Approach for Enabled Waits 

It is most important that you understand the actions that must take place in 
order to accomplish work in the operating system. This requires a basic under­
standing of the key system processes in MVS - paging, I/O, dispatching, locking, 
WAIT/POST, ENQ/DEQ, VTAM, TeAM, SRM, JES2/3. These areas of the system 
are responsible for directing work through MVS; a malfunction in anyone may 
cause global system problems. Several, if not all, must be investigated in order to 
determine why work is not progressing. 

This investigation requires a disciplined approach. The relationships of com­
ponent interfaces and their mutual dependencies must be understood. With this in 
mind, the debugger should proceed to gather information about the vaoous 
processes and try to integrate his findings with his other information and assumptions 
about the problem, always trying to isolate one cause of the bottle-neck. He must 
avoid the tendency to guess, assume, and go off on tangents once the first 
irregular item is uncovered. Instead, he should continue to gather known facts 
and piece them togetherin some logical pattern that recreates the situation. 

In the vast majority of wait state cases, more than one key process will appear 
backlogged. The challenge is to determine how these problem processes relate 
and which is the fundamental cause of the wait situation. After you gather the 
facts and understand the bottlenecks, you must answer one question. 
If I "pull the cork" on this given bottleneck will all the other intertwined situations 
resolve themselves? In every problem there is only one bottleneck for which the 
answer to this question is "yes". The other problems are consequences of this key 
process's failure to complete its designed function. Isolating the process is half 
your battle; the other half is determining the cause of this one process's failure. 

Following is a sl,lggested disciplined approach for the problem solver who is 
approaching" a-system wait problem. The approach involves three distinct 
stages of problem analysis: 

Stage 1 - Preliminary global system understanding, including 

• system externals 
• current system state 
• LOGREC analysis 
• trace analysis 
• determining the reason for waiting 

Stage 2 - Key subsystem analysis - an in-depth analysis of the MVS components 
that are responsible for accomplishing work. 

Stage 3 - System analysis - using the information gathered in Stages 1 and 2 the 
problem solver must "step back", get perspective about the known 
facts by piecing them together in a logical fashion, and isolate the error 
to a process, component, module, etc. 

This approach is described in detail in the following sections. 

Section 4. Symptom Analysis Approach 4.1.7 



• 

Waits (continued) 

Stage 1: Preliminary Global System Analysis 

1. System Externals - Completely understand· the system externals of the 
situation. Console sheets and the system log should be inspected. 

• For any' enabled wait (operators call it "system hung") find out if a 
display requests command was issued. (Lack of operator action can cause 
system bottlenecks.) 

• Often many pages of console sheets must be investigated to uncover 
operational problems and explain events uncovered in the dump. 
Scanning provides a feeling for the events, jobs, requests, etc. leading up to 
the problem. 

• Make sure all DDR SWAP requests, I/O error messages, SQA shortage 
messages, etc. can be explained. 

Always take the time to examine these external areas because a small 
effort here could save many hours of detailed dump analysis. Do not over­
look obvious items such as a MOUNT PENDING message in the console 
log that can cause system problems. 

2. Current System State - Investigate fully the current situation as depicted by 
the dump. 

For enabled waits, the PSW should equal X'070EOOOOOOOOOOOO' (often called 
the "no-work " wait) or there should be a considerable recurrence of the 
no-work wait in the OS trace table - see the chapter on "MVS Trace Analysis" 
in Section 2. If this is not the case, use the disabled wait analysis approach 
(earlier in this chapter). 

If the PSW indicates the no-work wait situation, you have an enabled wait. 
You should now check other global system data areas indicators to get the 
whole picture. Following are key global indicators: 

• There should be no bit set in the PSASUPER field (PSA+X'228'). If 
there is, some supervisor routine should be in control. This situation 
can indicate incomplete processing by the associated routine. All 
possibilities should be pursued until the situation can be explained . 

• Because of SRM timer/analysis processing, even when the system is in the 
enabled wait situation,the state of the processor at the very instant the 
dump was taken can indicate, via the "super bits" or locks indfcator 
(PSAHLHI), that some process was occurring. You must determine in 
this case that these fields being set is nonnal and continue with wait 
analysis. If the fields cannot be explained, you have isolated the error. 

4.1.8 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Waits (continued) 

• There should be no locks held, as indicated by PSAHLHI on either 
processor. This situation is similar to the one described just above. You 
must try to discover the owner of the lock and determine why it is still 
held despite the fact that the system is waiting. Often the purpose of the 
lock will provide insight as to who the owner might be .. The chapter on 
"Locking" in Section 2 should be of help in your analysis. 

3. LOGREC Analysis - Determine if key components have encountered 
difficulty; determine previous errors encountered by the system. This can be 
accomplished by inspecting SYSl.LOGREC as well as the in-storage LOGREC 
buffer. Errors encountered in any of the key processes noted earlier (RSM, 
ASM, lOS, JES2/3, SRM, ENQ/DEQ, VTAM, etc.) may provide further 
information. If you do find an error associated with any of these areas, 
determine whether it could lead to the bottleneck. 

The LOGREC records generally contain the names of the error­
encountering routines and often the job on whose behalf the system was 
processing at the time of the error. If the routine names are not present, you 
may have to use system maps and the PSW/register information in the 
LOGREC records in order to associate errors with components. The discussion 

!~:~l LOGREC analysis in the "Use of Recovery Work Areas" chapter in Section 
2 should be helpful in your analysis. 

4. Trace Analysis - Determine the last activity within the system. 

Because of SRM's timer processing, the trace table for most wait condi­
tions is not useful. However, on the rare occasion that the system has been 
stopped or if for some reason the trace is not overlaid with timer il1terrupts 
(X'l004' extemalinterrupt entries), the trace should be analyzed to ensure 
normal processing, for example, page faults are being processed, I/O is being 
accomplished. Be suspicious oflarge (relative to most entries) time gaps 
in the trace table. If the table has not wrapped-around, process re-creation 
may be of some use in determining what the system was doing up to the point 
of incident. (The chapter on "MVS Trace Analysis" in Section 2 shouid be 
helpful.) 

5. Determine the reason for waiting - Once it has been determined that the 
system is waiting, it is always useful to determine what the various address 
spaces or jobs are waiting for. This is accomplished by inspecting and scanning 
the various tasks and their associated RB structure in a formatted stand-alone 
dump. Remember the RCT, started task conrol (STC)/LOGON, and dump 
task may all be waiting in each address space - this is normal. The question 
you should ask is: Why are the subtasks below the STC/LOGON waiting? 

Generally in an active system more than one address space will be waiting 
for the same or similar resource in a problem situation. Therefore, as you 
scan and analyze address space status, look for suspensions in common 
modules (RB resume.PSWs containing.similar addresses): 

Section 4. Symptom Analysis Approach 4.1.9 



Waits (continued) 

• marty tasks in page-fault wait can indicate the paging or I/O mechanism 
is faulty. 

• The PVT can indicate areal frame shortage. 

• Many tasks in terminal I/O wait can indicate something is wrong with 
the TP access method or some part of the network. 

• Seve'ral Resume PSWs pointing into the ENQ/OE.Q routine, IEAVENQ1, 
can indicate an ENQ resource contention problem. 

In general, be on the look-out. Try to compare and relate the system 
activities as you encounter them. Often more than one process or address 
space is held up because of a common bottleneck. It may be a global resource 
required by more than one address space, for example, a lock or data set. It is 
important that the exact cause be determined. 

Stage 2: Key Subsystem Analysis 

As partof this investigation, if noth~hg can be easily determined from a cursory 
address space scan, you may have to delve~)'i1io the key components. Following are 
some highlights of the important and potentially suspect areas: 

1. I/O Subsystem ..... Check for unprocessed I/O requests, bottlenecks in the I/O 
process will almost always log-jam the system. Since lOS is the central facility 
for controlling I/O operations, I/O problems should always be suspected in an 
enabled wait condition. Therefore, the lOS component and its associated 
queues should be analyzed early in the subsystem analysis stage of debugging. 
Two important lOS queues and control blocks will indicate whether problems 
exist in the I/O process: 

• Logical channel queues (LCH) contain lists of elements for I/O requests. 
If these queues (pointed to by the CVT + X'8C') are not empty in a waiting 
system, lOS must be further investigated. 

• Unit control blocks (UCBs) are a logical representation of each I/O 
device containing I/O active indicators at offset 6/7. If any indicator 
is set, this device must be further investigated. This condition can 
indicate either a hardware or software problem. 

Both the queued (LCH) and active (UCB/IOQE) requests must be further 
investigated to determine the associated requestors and what effect their I/O 
not being serviced will have on system operation (for example, if paging I/O or 
console I/O is not being serviced, the system will usually stop). 

The UCB contains indicators for OOR, intervention required, and missing 
interrupt handler processing. Any such indication must be further investigated. 

An ENQ on the SYSZEC 16 resource is an indication of a waiting condition 
generally associated with swapping. The swapping process cannot complete 
until active I/O finishes. In a quiesced system, an ENQ on this resource must 
be further investigated. 

4.1.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Waits (continued) 

2. Paging Mechanism - Check for unserviced page faults. ASM, RSM, and SRM 
are closely related and depend upon each other to maintain real storage, the 
swapping process, and page fault resolution. If, when you determined the 
reason for waiting as described in stage 1, you discovered several page fault 
wait conditions, be suspicious. Some key indicators in determining page 
fault waits are: 

• ASCBLOCK = X'7FFFFFFF' - indicates suspensiori while holding the 
local lock. If in task mode at the time of suspension, the resume PSW 
instruction address (saved at IHSA + X'IO') should be checked. When the 
instruction address = RBRTRAN (-C offset), it indicates 
the task is suspended while it waits for a page fault resolution. The page 
fault occurred when a new module (paged-out) was referenced. If in SRB 
mode at the time of suspension, an SSRB will be queued from a PCB. The 
anchor for these PCBs is the RSMHDR (private area page fault) or the PVT 
(common area page fault). 

• ASCBLOCK = 00000000 indicates no locks are held. The RB structure 
can reveal the same situation as described above for RBOPSW instruction 
address = RBRTRAN or RBXWAIT=O and, in addition, an RB wait count 
= 1. If you find several tasks in this state, check the dump for the page 
represented by RBRTRAN. Is it in storage? (Remember for private area 
addresses to be sure that the address space you are investigati.ng is printed.) 
If the page is not in storage you may have a potential paging problem. 
Again, if in SRB mode at page fault time, the SSRB must be found to 
determine more about the process. 

If you believe paging is a potential problem, check the PVTAFC (available 
frame count). A "low" value may indicate a frame shortage. While "low" is 
difficult to define, the value should certainly be above the PVTAFCOK value 
(PVT+ X'6 '). Beyond this, "low" is influenced by sizes of working sets of the 
address spaces in your system. The working set size for each address space is 
contained in the associated SRM-user control block (OUCB). This count 
(plus an SRM constant of 10) is the number of frames required to swap-in the 
corresponding address space. If enough frames are not available, the address 
space will remain swapped-out. 

ASM maintains a count of the number of paging requests received and the 
number for which processing has completed in the ASMVT. If these counts 
are not equal, ASM is backed-up and page faults have not been resolved. This 
can be caused by an I/O problem or some internal ASM problem. The ASM 
Component Analysis chapter in Section 5 describes the work queues in the 
paging activity reference table entries (PARTEs). Finding unprocessed work on 
these queues will aid in determining whether ASM is the problem component. 
But again be careful: you are still gathering data about the wait state. Your 
purpose now is not to debug ASM - it may not be the problem. Note the 
apparent ASM problems and continue your investigation. Later when you 
piece together your findings and find the real source of the problem, detailed 
debugging and logic flow will be required. 

Section 4. Symptom Analysis Approach 4.1.11 



Waits (continued) 

3. ENQ/DEQ - Check for unresolveable resource contention. Finding an 
ENQ/DEQ interlock and determining what work is being held up because of 
this interlock can provide important information about the overall problem. 
The QCBTRACE option of AMDPRDMP provides a formatted structure of 
the resources and the work that is in con ten tion for them. Determining who 
owns the resources and the current status of the owners (if swapped-out, 
why? or if waiting, for what ?) often provides important clues in under­
standing the bottleneck. 

Also in your scanning process, you should be on the alert for address spaces 
that contain subtasks (usually below the STC/LOGON level) with multiple 
RB levels, and with the lowest RB containing a resume PSW with an address 
somewhere within ENQ code (nucleus resident) and with the RB wait count 
RBWCF = 1. The previous RB should be an RB with the ENQ 
SVC (SVC X'38') indication in the "WC-LIe" portion of the RB prefIx (-4 
offset). This indicates that this task and probably the address space are 
suspended because of an unsatisfIed ENQ request. If several address 
spaces or tasks are found in this state you should fInd out why. The 
QCBTRACE facility of AMDPRDMP can be most helpful. An illustration follows: 

Investigation of QCBTRACE data shows many requests backed-up on 
resource A. The analyst notes this and determines what ASID or TCB owns 
resource A at this time (in this example , ASID 9). The other resources 
represented in the QCBTRACE are now scanned. If ASID 9 is backed-up 
behind someone else (ASID 10) waiting for another resource (B), you must now 
determine ASID 10's status with respect to other resources, including resource 
A. Essentially you are looking for cases where: 

• An address space has resource A and is waiting for resource B and a 
second address space has resource B and is waiting for resource A. This 
indicates a deadlock. You must determine the faulty process. In this 
case you have probably isolated the error to the ENQ process and the way 
it is being used. You· must analyze the task structure of each address 
space to determine how this situation occurred. Do not forget the 
SYSl.LOGREC buffers. They may contain clues like errors in ENQ/DEQ 
or one of the tied-up address spaces Gobs). Faulty recovery should be 
suspected if the latter is the case. 

It may be that ajob requests control (via ENQ) of a resource and sub­
sequently encounters a software error. The task's associated recovery 
gains control and "recovers" from the error but does not dequeue (DEQ), 
and therefore does not release the resource. Eventually, the contention 
for this resource, depending on its importance, could cause severe 
problems. 

4.1.12 OSjVS2 System Programming Library: MVS Diagnostic Techniques 



Waits (continued) 

• An address space has control of a resource and a lot of address spaces are 
queued-up behind this address space. In this case, you must find out why 
the holder is not releasing the resource. Also know your system. It is not 
unusual to see activity on the master catalog resource: "SYSIGGVI -
Master Catalog Name." But be suspicious of most resources. Determine 
from the holder's task structure what process it is attempting. Determine 
whether the address space is waiting or swapped-out and why. If it is not 
waiting or swapped-out, check the non-dispatchability bits and the 
possibility that the address space is looping. 

This second case is much more likely to be a sign of some other system 
problem. Your clue is what is preventing the holder's execution; this will 
point you to another process which must be investigated and may lead to 
the detection of the final problem. 

Note: When analyzing a dump of a quiesced system you should be suspicious 
of "unusual" ENQ resource names - resources that should not be a contention 
factor in a quiesced system. The presence of these names should be understood 
and explained because they very often will point you to the problem area. 
Common resource names are: 

"SYSZECI6 - PURGE" - Can indicate a problem in the I/O process related 
to the resource holders address space 

"SYSZV ARY - x" 

Can indicate a bottleneck in the swapping process 

indicates the reconfiguration component has been 
invoked - why is it not completing? 

4. Dispatching - Determine if there is work to do in the system. A common 
trouble indicator is an MVS dispatching queue containing elements that 
indicate work is ready to execute in a waiting system. The GSMQ, LSMQ, 
GSPL, and each LSPL should be empty. (The chapter on "System Modes and 
Status Saving" in Section 2 contains details of these queues and how to find 
them). Generally it is not a problem in the dispatching mechanism itself but 
merely an error indication. Often the most useful information is just that 
'yes, there is work.' Why is it not being dispatched? Is there a problem in 
some other area of the system? Is the address space swapped out? Yes, 
there may be a real storage problem delaying swap-in. Or perhaps SRM has not 
been told to swap-in the address space via a "user-ready" SYSEVENT. In 
short, investigate the OUCB for the address space you are concerned with. 

Another useful point is to find out what problems could arise if this work 
were not dispatched. Investigating the queued work will indicate what would 
be accomplished if this work were executed. This is usually important because 
it can clear up much of the "smoke" you may be encountering in your overall 
system investigation. 

Section 4. Symptom Analysis Approach 4.1.13 



Waits (continued) 

Likewise, investigate the task strucfure. Generally, you can ask the same 
questions as above,bllt you must look in different places for the key 
indicators. Among the most important indicators are: 

• The ASCB, which contains a count of ready TCBs in the memory 

• The TCB non-dispatchability flags 

• The RTM work area, which contains ~us at time of error 

• . The RB structure. Look for long RB chains or unusual SVCs and 
interrupt codes. Look for page fault waits. 

Again, use this information to lead you to processes or problems that 
hold-up the system. 

S. . Locking - Determine if there is a locking conflict. The locking mechanism 
causes system bottlenecks when it is not used properly. The global spin locks 
cause obvious problem symptoms such as one processor spinning in the 
lock manager (lEA VELK) in an MP environment. (In a UP eJlvironment, 
global spin iocks are generally not a problem unless a lock/w~rd or interface is 
overlaid or ba.d, causing a disabled spin. The enabled locks (local/CMS) are 
generally the problem ones.) The chapter "Locking" in Section 2 describes in 
detail the considerations with which you should be concerned. Elements on 
the CMS/localsuspend queues may indicate a problem. The technique you 
adoptto resolve the conflicts is exactly the same as the ENQ interlock or log~ 
jam situation. 

6. Teleprocessing - Determine if the TP network is responding. Problems in the 
TP network often manifest themselves as waiting network or waiting 
terminals, even waiting systems. The chapter "TP Problems" in Section 4 
contains a detailed description of TP problem analysis. The VTAM and TCAM 
chapters in· SectionS contain techniques for VT AM and TCAM problem 
analysis. 

An important fact for the problem solver here is that these ar:e 
subsystems. As such, they maintain their own control blocks, queues, and 
dispatching mechanisms. They are responsible for work being processed once 
it enters the subsystem and they often have little direct dependency on MVS. 
That is, normal MVS problem indicators will not generally solve the problem. 
You must understand the subsystem's work-processing mechanism in order to 
be an effective analyst. For example, VTAM has its own address space with a 
number of tasks used primarily for network start-up, shut~down, and operator 
commands. In most VT AM problems, a look at the VT AM address space will 
show these tasks are waiting. However, this is normal when no operator 
processing is required. Even though VTAM is waiting, this is not the place to 
be distracted. Again, remember this VTAM task structure, put it aside as part 
of your information gathering, and then proceed to the analysis of VTAM's 
in ternal work queues as described in the VT AM chapter of Section S. 

4.1.14 OS/VS2 Systel11 Programl11ing Library: MVS Diagnostic Techniques 



Waits (continued) 

7. Console Communications - Determine whether console communication is 
possible. The system can appear or actually prove to be waiting because the 
operator is not able to communicate with MVS. This could be the sign of 
a problem almost anywhere in MVS, but it often indicates an error in the 
communications task or its associated processing. 

The communications task (comm task) runs as a task in t~e master 
scheduler's address space and is usually represented by the third TCB in the 
formatted'portion of the stand-alone dump and identified by a X'FD' in the 
TCBTID field (TCB+ X'EE'). By inspecting the RB structure associated with 
this task, you can 'to determine the current status. It is not unusual to 
fmd one RB with a resume PSW address in the LP A and an RB wait count of 
one. If more than one RB is chained from the TCB and you were not able to 
enter commands, analyze the RB structure because this is not a normal 
condition. 

The key cOlltrol block is the unit control module (UCM) which is located 
in the nucleus. CVTCUCB (CVT+ X'64') points to the base UCM. The base 
UCM-4 contains the address of the UCM MCS prefrx and the base UCM-8 
contains the address of the UCM extensipn. From the UCM you can determine 
the status of the various consoles. The following should be considered and can 
warrant further investigation: 

• Important WTORs are outstanding. 

• An out-of-buffer (WQEs, OREs) situation exists. 

• There are unusual flags in the UCM. 

• There is a full-screen condition. 

• There is a console out of ready. 

Remember that comm task processing is dependent on the rest of the operating 
system. Most likely, some external service or process has caused comm task to 
back-up, and this possibility should be investigated. Remember the debug 
process: gather all the facts, then proceed with analysis. 

Stage 3:, System Analysis 

At this point you should have a detailed understanding of the system and its key 
components. You should know which components or processes are back-logged 
and, correspondingly, what work Gobs) is not being processed by the system 
because of these back -logs. You must now stand back from the problem. 

Section 4. Symptom Analysis Approach 4.1.15 



Waits (continued) 

Answer this question: Which of these problems and situations can be related 
to or attributed to each other? For example, if I/O is queued for the paging 
devices (indicated by 10QEs on the LCHs associated with the_paging devices' DCBs) 
al!dy'Qu also_ found several address spaces are in "page-fault wait", you can now relate 
these findings. And if one of these address spaces performed an ENQ for a resource 
and did not yet DEQ because of the page-fault suspension, it is very likely other 
address spaces are also backlogged behind this job's processing. Initially your 
ENQ/DEQ analysis showed the problem, but at this point you can attribute the 
ENQ contention problem to the page-fault suspension problem that you have 
already attributed to the I/O problem. 

This process must be repeated for all the potential error situations you un­
covered in your investigation. Do not forget to use the system indicators in your 
attempt to arrive at the source of the problem. And most importantly, ask your­
self: If I unplug this bottleneck, will all the other intertwined situations 
resolve themselves ? In the previous example, resolving the ENQ situation will 
allow the work queued in the ENQ/DEQ component to execute but the "page-fault 
waiting" job will still be hung. That is, ENQ/DEQ is not the problem to pursue. 
Indeed, if you resolve the I/O problem, this page fault is resolved, the DEQ will be 
performed, and all work in the system will resume normal operation. Yes, the I/O 
problem is the important consideration in this case. The I/O problem is the one 
that must be pursued. When this problem is resolved, the enabled wait state 
condition has been resolved. Global system areas, recovery work areas, 'LOGREC 
analysis, and lOS component analysis will be necessary to further isolate, and 
eventually solve, the problem. 

4.1.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Loops are defined as disabled or enabled, depending upon their external 
appearances. A disabled loop can be recognized externally by a solid system 

Loops 

light and the inability to communicate with the system through the consoles (that 
is, no input or output). Usually, a disabled loop indicates a hardware 
and/or software malfunction. There are several cases in MVS however in which a 
disabled loop is purposely used and is not an error indication. These cases are 
discussed later in this chapter. 

An enabled loop is generally much larger than a disabled loop. Observed from 
the console it appears as a bottleneck: the system seems to be slowing down 
periodically, suggesting performance degradation. The operator may notice that 
a particular job remains in the system for a long time and does not terminate. 

Common Loop Situations 

There are two common loop situations: 

1. Two processors of an MP environment communicate via the signal processor 
(SlGP) instruction. Often the SIGP-issuing processor enters a disabled loop 
until the receiving processor either accepts the SIGP-caused interrupt or 
performs the operation requested by the issuing processor. This loop serializes 
the processors in the MP configuration. The SIGP-issuing processor loops in a 
nucleus-resident module, IEAVERI. 

Often during an MP dump analysis you will fmd that one processor was in 
this loop. This is not an error if: 

• The operator pushed the STOP button on one processor and not the other to 
investigate a suspected problem. 

• The receiving processor disabled for external interrupts thereby preventing 
the SIGP-issuing processor from proceeding. 

If this situation continues for an extended period, it means there is a system 
problem but the loop is a result of that problem and is not an error itself. Most 
often, the other processor's activities must be analyzed to determine the problem. 
For a more detailed discussion of MP communication, refer to the chapter 
"Effects of MP on Problem Analysis" in Section 2. 

Section 4: Symptom Aria1ysis Approach 4.2.1 



Loops (continued) 

2. The lock manager (lEA VELK), which resides in the nucleus and controls the 
locking mechanism of MVS, contains a section of code that enters a disabled 
loop when a global spin lock is requested butis not available. On a UP this is 
an invalid condition and always signifies an overlaid lockword or invalid lock­
word address. On an MP system, this usually indicates that the other processor 
is holding the lock and not releasing it. But it may indicate an overlaid lock­
word; if not, the problem is definitely on the other processor. In either case, 
register 11 contains the pointer to the requested lockword and register 14 
contains the address of the requestor. Check the value in the lockword. Valid 
values are a fu1lword of zeros, or three bytes of zeros and the logical processor 
address in the fourth byte. Any other bit configuration will cause the system 
to spin in a disabled loop and signifies an overlaid lockword or invalid lock­
word address. If the lockword is not valid, it is necessary to identify who 
overlaid the lockword. It is possible that the lockword was overlaid in con­
junction with some other problem. Again, since the disabled loop may not be 
the problem but a symptom of a possible error on the other processor, 
determine why the requested lock is not available. For a detailed discussion of 
"Locking" see Section 2. 

Analysis Procedure 

Generally for loop analysis, you will have a stand-alone dump if the operator con­
sidered the problem serious enough to re-IPL the system, or an SVC dump, 
SYSUDUMP, SYSMDUMP, or SYSABEND (provided by the software recovery) if 
the operator pressed the RESTART key in order to break the apparent loop. For 
the SVC dump, SYSUDUMP, SYSMDUMP, and SYSABEND dumps there is an 
abnormal completion code of X'071' associated with the looping task of a job if the 
RESTART key was pressed when the program was actually looping. In addition, a 
formatted SYSI.LOGREC listing should be available. 

Before you can determine what problem is causing the loop, you must determine 
first that a loop really exists,and second whether it is enab,led or disabled. 

First, verify that a loop exists. The disabled loop situation is fairly straight­
forward. The PSW contains a disabled mask (X'40' or X'OO') and all other 
system activity will have stopped. 

Recognizing that there is an enabled loop is often the most difficult step. 
Enabled loops are often quite large and may encompass several distinct operations 
-:- I/O events, SVCs, module linkage, etc. Because the loop is enabled, it is often 
interrupted, pre-empted and eventually resumed many times. This makes it 
difficult to recognize the loop pattern. Following are some indicators of a potential 
enabled loop: 

• The current PSW has an enabled mask, X'OT, in the first byte and the instruc­
tion address portion =t= O. This alone does not prove there is a loop, but the 
information may help your analysis of the problem later. 

4.2.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Loops (continued) 

• The MVS trace table shows a repetitive pattern of events, for examp!e, SVCs 
issued from the same virtual addresses, or dispatcher entries for virtual 
addresses that are relatively close together. Determine if the entries are related 
to the same address space by using the ASID field (offset X'16' into the trace 
entry). If so, you can now examine the task and control block structure 
indicated by the trace entries. The chapter on "MVS Trace Analysis" in 
Section 2 should prove helpful. 

• Many tasks (TCBs) or address spaces (ASIDs) appear to be bottlenecked 
waiting for some resource(s). This can be determined by using the 
QCBTRACE option for AMDPRDMP and analyzing the output. If there 
appears to be a bottleneck, determine what job owns the resource(s) and what 
that job is currently doing. It may be that the job that acquired the resource(s) 
is in an infinite enabled loop; therefore, when other jobs request the same 
resource(s), their requests cannot be satisfied, which eventually causes a major 
performance throughput problem. See the chapter on "System Execution -
Modes and Status Saving" in Section 2 for how to recreate the job's current 
status. A reconstruction of the PSW and registers helps you to determine if 
there was an enabled loop. 

• TCB/RB structure analysis. Look for unusual or long RB structures chained 
from TCBs. These may.indicate a loop that includes several levels of super­
visor linkage. 

Enabled Loop Exception: 

The system resources manager (SRM) of MVS constantly monitors resources, 
gathers data, and analyzes the system. SRM uses a timer interrupt approxi­
mately every .4 seconds in order to gather its stati.stics. This timer interrupt 
occurs even when the system is in an enabled wait condition. Because of 
this, the enabled wait is often referred to by operators as an enabled 
loop. (They observe the "WAIT" indicator from the console, followed by 
a burst of activity (SRM processing), followed by the "WAIT" indicator, etc. 
It may even be possible to enter certain operator commands.) However, this 
is really an enabled wait condition and analysis should proceed according 
to the discussion on "Enabled Waits" in the "Waits" chapter earlier in this 
section. 

The dump you are analyzing may show the MVS trace table containing a 
no-work wait (070EOOOO 00000000) PSW followed by a timer interrupt, 
SRB dispatch, MP communication, etc. This pattern indicates an enabled 
wait condition, not an enabled loop. (See the "Pattern Recognition" topic 
in the."MisceUaneous Debugging Hints" chapter in Section 2.) 

Once you have determined the type of loop, the following analysis procedure 
should help determine what problem is causing the loop. 

Section 4: Symptom Analysis Approach 4.2.3 



Loops (continued) 

Objective I - Who is looping? . 

The PSW and registers saved at the time of the dump indicate the active work. (See 
the chapter "Global System Analysis" in Section 2.) The register save areas in the 
LCCA/PSA indicate important environmental data at the time of the last I/O inter­
rupt, external interrupt, etc. (See the chapter "System Execution Modes and 
Status Saving" in Section 2.) 

The PSA indicators contain valid information about disabled loops. Also re­
member the recoverY areas active at the time of the loop are valid and may pro­
vide hints as to the current process. (See the chapter "Use of Recovery Work 
Areas" in Section 2.) 

Unlike the disabled loop situation, the enabled loop may not have the current 
registers associated with it. This is true if the loop was interrupted and new pro­
cessing was initiated before the dump was taken. For the enabled loop, find the 
current registers and status from the ASCB/ASXB/TCB/RB structure and the 
associated save areas (for example, IHSA)~ The chapter "System Execution Modes 
and Status Saving" in Section 2 will be helpful for this phase. 

Objective 2 - What is the system mode? 

It is important to know whether the system is in SRB or task mode and the 
implications of these modes. In all cases of true disabled loops, the PSW, LCCA, 
and PCCA contain valid status indicators such as the last dispatched routine 
(PSA+X'300'). The old PSWs reflect the last interrupt status. The register save 
areas in the LCCA are valid. The LCCA+X'2ID' set to I indicates SRB mode; set 
to 0 indicates task mode. The ASCB NEW/OLD and TCB NEW/OLD pointers 
reflect the current task. (Note: If the TCB OLD pointer is zero, the system is in 
SRB mode or possibly in superviso~ mode - that is, dispatcher or supervisor 
recovery. The discussion in the "System Execution Modes and Status Saving" 
chapter in Section 2 and the "Dispatcher" chapter in Section 5 are useful. 

By scanning the MVS trace table, you will be able to determine system events 
leading up to the loop. See the chapter on "MVS Trace Analysis" in Section 2. 

SYSl.LOGREC and the in-storage LOGREC buffer may contain indications 
of previous occurrences of the loop (records with X'071' completion codes) or 
records of previous errors in the currently looping process that could possibly 
contribute to the current loop. See the "Locking" chapter and the discussion 
on LOGREC in the "Use of Recovery Work Areas" chapter in Section 2. 

4.2.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Loops (continued) 

Objective 3 - What is the extent of the loop and why is the system looping? 

Using the current PSW and the global data areas in combination with the general 
purpose registers, you should be able to determine the extent of the loop. One 
register often contains the key to a loop-causing value. Try to isolate that one 
register. It may be necessary to inspect the actual object/source code to determine 
the basic logic in case there is an encoded loop that is supposed to end when a 
certain value is reached. If that value cannot be reached for some reason, the loop 
will not end. 

Isolating the cause of the loop is important in loop analysis. Once the cause is 
isolated, you can proceed the same as with a system-detected error such as a pro­
gram check. 

Objective 4 - Determine the cause of the error - how is the value that is causing 
the loop developed? 

To determine how the bad value was developed, it is necessary to back through the 
logic leading to the loop. Be aware of bad control blocks. Look at the bad value 
itself and the areas from which it was developed. Try to determine if the value is 
the result of a storage overlay or if it was calculated from bad logic. See the 
"Pattern Recognition" topic in the "Miscellaneous Debugging Hints" chapter of 
Section 2 to help make this determination. 

In addition to bad control blocks and data fields, consider the loop control 
mechanism used for encoded loops. Often a common cause of problems is that the 
BCT instruction is used and the loop control register contains a negative value. 
Scanning the active registers at the time of the dump often aids in discovering 
this type of problem. 

Figuring out how the erroneous field could possibly contain the value it does is 
the most challenging part of the process. Again, the contents of the field often 
provide the clue to determining the error-causing process. 

Also, consider how serialization is accomplished for the field in question. Is it 
possible for both processors to be updating the field simultaneously? The MVS 
trace helps you recreate recent processes, but you also must understand the modes 
and structure of the code that updates the field. (Your work in Objective 2 should 
be helpfu1.) 

It is possible that the code setting up the field was physically interrupted and, 
because it was non-reentrant or the logic was faulty, another process updated the 
field or control fields and subsequently caused the first process to encounter 
unexpected data. 

Section 4: Symptom Analysis Approach 4.2.5 



4.2.6 OS/VS2 System Programming L,brary: MVS Diagnostic Techniques 



TP Problems 

A common problem in teleprocessing (TP) environments is incorrect data, which 
may affect one termirtal or an entire component. The symptoms include no 
data, wrong data, or too much data, but the general problem symptom is that 
something is wrong with one or more messages. The problem is usually not tied 
directly to a component or access method, as a program check would be; often an 
error message is from a component not directly causing the problem. 

Typical symptoms are: 

• An error response from an application that suggests incorrect data was entered 
from a terminal, when in fact the data was correct 

• A "hung" terminal - the system will not respond 

• Wait states, in which message traffic gradually dies off 

• Incorrect characters in a message (the data may be going into or out of the 
system) 

This chapter discusses TP problem analysis, in the following topics: 

• Message Flow Through the System 

• Types of Traces 

• Trace Output Under Normal Conditions 

Message Flow Through the System 

Data exchanged between programs in the system and terminals follows a route 
through several components. The first step in solving "typical" problems is to 
determine where along that route something is happening incorrectly. 

By far the most valuable tools for doing this are the traces in the various 
components. To use the traces effectively it is necessary to understand how 
messages flow through the system. For example, consider a message from a TCAM 
application to a TCAM terminal. The path might go from the application program 
buffer to a TCAM queue data set, to a TCAM buffer while TCAM processes it, 
over the channel into the 3705, then into an NCP buffer, and fmally over a 
communications line to a terminal: Traces allows the message to be check­
pointed at certain spots along the path; therefore, understanding the,path is vital 
to knowing what traces to use and what you should see for a message that flows 
correctly. 

Section 4: Symptom Analysis Approach 4.3.1 



TP Problems (continued) 

To use traces effectively you must also understand how components refer to 
terminals or lines and how they communicate with each other regarding these 
terminals and lines. Terminals or lines are identified in traces by a line control 
block (LCB), a logical name, a network address, a polling/addressing sequence, 
or a subchannel address. Not only must these relationships be known in order to 
use multiple traces, but certain correspondences must be correct in order for data 
to move through the network. 

When using traces, the general approach to a problem of incorrect data is to 
track the data flow from a point where everything was all right to a point where the 
messages stopped or were incorrect. Messages that are flowing correctly can be 
used to establish time relationships between different traces. Then each message 
can be followed along its route past each checkpoint, with the goal of isolating 

: a gap between two checkpoints where the message stopped or became bad. The 
next step is to focus on this narrower area to learn what is wrong. 

If a message stops, what is wrong or what is missing? How does the flow up to 
that point compare with a normal flow? You must understand what resources 
and what processes are required for a message to move from where it appeared 
last to where it should have appeared next. What buffers and/or control blocks 
would have been used? Were they available? A single terminal or all terminals 
may encounter a "wait state", and it is necessary"to dig into the component to 
determine what processing has taken place and what condition or resource is 
preventing further processing. The TeAM Debugging Guide should be referenced 
for problem isolation in TCAM. 

If a part of the data moving through the system becomes bad, the traces should 
isolate a component or an interface over which it was transformed. Comparison 
with normal message flow will indicate whether any change at all should have 
taken place. If no change should have occurred, an overlay ("clobber") or incorrect 
pointers to data buffers maybe the problem. The exact amount and positioning 
of bad data should be determined, for it might provide an obvious correlation ~ith 
other known variables such as a buffer length. If some transformation norm"ally 
occurs to a message, the controlling process under which it is performed must 
be examined. What could cause an incorrect transformation of data? Examples 
are translate/edit tables or mappings from one resource name into another name, 
such as mapping the logical network name into the network address. 

4.3.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



TP Problems (continued) 

Types 0 f Traces 

The following is. a summary of EP and NCP mode traces and their relationships to 
each other. For more information on these traces refer to: 

• IBM 3704 and 3705 Communication Controllers Emulation Program 
Generation and Utilities Guide and Reference Manual 

• IBM 3704 and 3705 Communication Controllers Network Control Program/VS 
Generation and Utilities Guide and Reference Manual 

• OS/VS2 MVS VT AM Debugging Guide 

• IBM 3704 and 3705 Program Re!emence Handbooks 

• OS/VS2 TCAM System Programmer's Guide, Level 10 

• OS/VS TCAM Debugging Guide, Levell 0 

Figure 4-1 shows a summary of EP and NCP mode traces . 

. EP Mode 

3705 EP or PEP 
EP Subchannels 

BTAM APPL EP 
r-----IIOS 

TCAM· 

M 1/0 
. GTF 510 and 1/0 

TCA Trace EP Line Trace EP Line Trace 

NCPMode 

Application 

TCAM 

TCAM 
Buffer 

TeAM Trace 
Dispatcher 
Subtask 
Trace 

PIU 
Trace 

Level 3 Level 2 

3705 

Native Subchannels 
105 1--_____ -1 

GTF 
510 
and 1/0 
Trace 

NCP NCP Line 
Channel Trace 
Adapter 
Trace 

Figure 4-1. Summary of EP and NCP Mode Traces 

Section 4: Symptom Analysis Approach 4.3.3 



TP Problems (continued) 

EP Mode Traces 

The following describes the six EP mode traces: 

1. 3705 Emulator Program line trace - Any or all emulator subchannels can be 
traced in the 3705. Each character over a line (level 2 interrupt) and/or each 
interaction with the channel (level 3 interrupt) for data or status transfer can 
be traced. The trace is activated via the 3705 panel or via the EP (emulator 
program}service aid, Dynadump. Trace data is retrieved from a 3705 dump or 
via Dynadump. All of the 3705 storage above the relatively small emulator 
program itself is used for a trace table (this can be a significant amount in a 
large 3705). 

If a problem can be isolated to one or two lines and can be detected quickly, 
an in-storage trace (in the 3705) is usually sufficient. The trace can be stopped 
before critical information is lost because of wrapping. If all lines must be 
traced, if there are a good number of high-speed lines with constant activity 
such as polling, or if the problem is not externally detectable, then Dynadump 
should be used to dump trace data as it is created. 

2. PEP Emulator line trace - This traces,EP lines in a PEP (partioned emulator 
program). The size of the trace table is set at PEP generation time and is fixed. 
The size of the trace table compared to the amount of storage used for tracing 
in an EP makes wrapping a much more serious problem. Dynadump is 
extremely useful when tracing EP lines in a PEP. 

3. GTF I/O and SIO trace -All emulator sub channels can be traced. SIOs, I/O 
interrupts, CAWs, CSWs, and SIO condition codes are traced. No CCWs or data 
are traced. Data can be traced to an external file and selectively reduced by time 
and sub channel address. SIOs and I/O interrupts are directly correlated with 
channel activity seen in a 3705 EP line trace. Refer to OS/VS2 System 
Programming Library: Service Aids for details on activating and printing this 
trace. 

4. TCAM EP mode line I/O interrupt trace table - This trace I/O interrupts on 
EP or 2701/2/3 lines. The TCAM INTRO macro or the operator specifies the 
response at TCAM start up~ 

5. TeAM dispatcher sub task trace - This records the flow of all TCAM-dispatched 
elements. It is specified, as is the TCAM I/O trace, by the INTRO macro or by 
operator responses. It is useful in determining the flow of activity within TeAM. 
It contains a history of TCAM buffers, LCBs, QCBs, etc., that are processed by 
the various TCAM subtasks. 

6. TeAM buffer trace - This traces buffers for specified lines as they are 
;processed by a message handler (MH). The lines are the same lines as those 
specified by the I/O interrupt trace. or TPIO trace. 

4.3.4 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



TP Problems (continued) 

NCP Mode Traces 

The following describes the NCP mode traces: 

1. NCP line trace - This traces all characters on a given TP line (level 2 interrupt) 
in the 3705. Only one line can be traced at a time. There is one four-byte entry 
for each character interrupt in the 3705, including a one-byte time field. The 
time field wraps after 25 .5.. seconds, but it is useful for seeing delays and when 
time-out periods expire. This trace is controlled through access method operator 
commands. Data is shipped to VTAM from the NCP and traced via GTF, so 
GTF must be active for the USR trace when line trace data is required. 

2. NCPchannel adapter trace - This traces the NCP's interaction with the channel 
for status and data transfer. There is one 32-byte entry for each Level 3 NCP 
channel adapter interrupt. The data stays in a static trace table within the 3705 
and is retrieved via~a 3705 dump. The trace option is included in an NCP by 
altering the TRACE= operand in the SYSCG006 macro (in SYSl.MAC3705). 
Refer to the section "Channel Adapter Trace" in IBM 3 704 and 3 705 
Communications Controller Network Control Program/VS Logic, and to the 
3704/3705 Program Reference Handbook. 

If the NCP uses a Type 1 channel adapter, the trace includes all data 
transferred over the channel. If the NCP uses a Type 2 or Type 3 channel 
adapte~ (CA), the trace does not include data. The trace is most useful for 
problems involving NCP ABENDs where the last activity on the channel is of 
interest. Because the trace wraps very fast and cannot be written out 
dynamically, it is not useful for finding what happened over a period of time. 

3. GTF SIO and I/O trace - This traces SIO and I/O interrupts for a 3705. Its 
main value is in showing what SIOs and I/O interrupts take place in relation to 
the RNIO trace (which is discussed next). The RNIO trace shows data (PIUs) 
in and out. The SIO and I/O traces can then show attention interrupts and how 
many PIUs were transferred at a time and if there are problems in timing or in 
"coat-tailing." Coat-tailing is the ability to bring PIUs into the system from the 
3705 on the same I/O operation used to write other data out to the 3705. 

4. GTF RNIO trace, or VTAM I/O trace - This shows the header and first few 
bytes of data of each PIU coming into or going out of VTAM. It is sent to 
GTF under the RNIO trace option. Each entry is time-stamped. The tracing is 
done in channel-end appendages as soon as the I/O operation that transfers the 
data is complete. 

Section 4: Symptom Analysis Approach 4.3.5 



TP Problems (continued) 

5. IT AM buffer trace - This is a VT AM trace sent to GTF under the USR trace 
option. The trace is performed at two points in VTAM. 

a) TPIOS. Traces are labeled TPIOS IN/OUT REMOTE. Application 
jobname, destination and origin node names, feedback data block (FDB), 
feedback status block (FSB) for input operations, PIU header and text are 
traced. 

For TPIOS OUT REMOTE entries, the transmission header is not exactly 
as it will appear when I/O is finally performed. Sequence number and 
length fields, plus some other bits in the TH (transmission header) may be 
filled in after the TPIOS trace. Use the RNIO trace to see exactly how the 
PIU header was sent to the 3705. 

b) Control Layer. Traces are labeled C/L IN and C/L OUT. Application 
jobname, destination and origin node names, and text are traced 
approximately at the time of the transfer of a message from the applica­
tion's buffer to VTAM's buffer, and vice-versa. 

Note: VTAM traces such as I/O trace (RNIO) and buffer trace (USR) must 
be started and stopped by a VT AM operafor command for each terminal 
or node in the network that is to be traced. There is no higher level 
operation available. 

6. TCAM dispatcher subtask trace - This trace is described in item 5 under "EP 
Mode Traces" earlier in this chapter. 

7. TeAM buffer trace - This trace is similar to the TCAM buffer trace for EP 
lines described at the end of the section "EP Mode Traces" earlier in this 
chapter. 

8. TeAM PIU trace - This traces path information units (PIUs) for a line, a 
line group, or an NCP. 

4.3.6 OS/VS2 System Programming Library:· MVS Diagnostic Techniques 



TP Problems (continued) 

Trace Output Under Nonnal Conditions 

The following sections illustrate how some nonnal situations are seen in traces. 
Understanding normal processing cannot be over-emphasized, for it is often a 
comparison between traces such as these and a trace of an error that reveals the 
key to a problem. 

Example 1: VT AM I/O Trace 

The first example (Figure 4-2) shows only a VTAM I/O trace (RNIO) for: 

1. the activation of a PEP (it is incidental that it's a PEP), 

2. the activation and connection of a 3600 logical unit, 

3. data exchange between an application and the LU, then: 

4. disconnection and deactivation of the LU and the PEP. 

Trace Entries: 

• 1 - 9 

• 10 - 15 

show the PEP activation and initialization 

are line-activates for start-stop lines 

• 16 - 21 are line-activates for some BSC lines. 

• 24 - 32 - show the activation of the link, controller, and LU. Operator 
VARY commands are used to activate a 3600 cluster controller 
and logical unit. Unlike old-device lines, the SDLC linkJs not 
activated until a device on the link needs to be activated. 

An application program is then started that openS' (via 
OPNDST) the LU. 

• 33 - 37 - show both the connection and first message to the LU. 

• 38 - 42 - show another link activation and controller contact; the controller 
and its LUs are not being traced, however, so none of the 
subsequent activation is shown. (Every node to be traced must 
have a VTAM command issued.) The PEP itself is being RNIO 
traced, which is the reason its activation is shown. 

• 43 - 52 - show data exchange between the LU and the application. 

• 53 - 56 - show the disconnection from issuing a CLSDST. 

• 57 - end- show the PEP deactivation of the SNA devices, the SIS and BSC 
lines, and the PEP itself. 

Note entries 8 - 9 and 22 - 23 in Figure 4-2: this trace was made with a level 
3.0 PEP, which does not support VTAM's attempt to alter the channel attention 
delay; therefore, error responses are received. VTAM, through the NCP or PEP, 
immediately activates all old-device lines (S/S and BSC) in NCP mode. The SDLC 
devices are system generated with ISTATUS = INACTIVE and therefore, no SDLC 
links are activated. (The VTAM messages 1ST ..... 1 PEP736A ACTIVE would 
have appeared on the console after trace entry 23.) 

Section 4: Symptom Analysis Approach 4.3.7 



~ 

~ 
00 

o 
~ 
fC 
fI'l 
'< 

C"I.I 

S­a 
~ 
~ a 
a 
!' 
t­o: 
~ 
~ 
fI'l 

S2 
~ 
~ 
ct, 
f') 

~ g. 
= ~' 
('D 
C"I.I 

••• DATE DAY 168 YEAR 1915 

. 1;RNIO ASCB OOFOCD60 CPU 0001 JOBN VTAM 
TIME .41690.144513 

2, RNIO ASCB OOFOC060 CPU 0001 JO~N VTAM 
TIME 41690.145616 

3lRNIO ASCB 00FDCD60 CPU 0001 JOSN VTAM 
TIME 41691.003599 

4,RNIO ASCB OOFOCD60 CPU OOCI JOEN VTAM 
TIME 41691.226991 

5,RNIO ASCB OOFDC060 CPU 0001 JOcN VTAM 
TIME 41691.5286~4 

6;RNIO ASCB OOFDCD~C CPU 0001 JOBN VTAM 
TIME 41691.549546 

7 RNIO ASCS OOFOC06v CPU 0001 JObN VTAM 
TIME 41691.1995'-"2 

8· RNIO ASC8 00FOCD6Q CPU 0001 JOSN VTAM 
TIME 41691.81872b 

9 RNIO ASCB 00FDCD60 CPU 0001 JObN VTAM 
TIME 41692.0~9619 

10'RNIO ASC5 OOFOCGeD CPU 0001 JOBN VTAM 
TIME 41692.111212 

11 RNIO A~CB 00FOCD60 CPU ODOI JDbN VTAM 
TIME 41692.399922 

12 RNIO ASCS OOFOCObO CPU 0001 JObN VTAM 
TIME 41692.411~38 

13' RNIO ASCB 00FOCD6C CPU 0001 JOBN VTAM 
TIME 41692.100031 

14 RNIO ASCe COFDCD60 CPU 0001 JObN VTAM 
TIME 416Cf2.1231Ib 

15;RNIO ASCB OOFOCD6~ CPU 0001 JOBN VTAM 
TIME 41693.0001~1 

0..---. - -
~ -

16'RNIO ASCt COFrCDb( CPU 0001 JOtN VTAM 
TIME: 411f.4.5:C32bS 

17 RNIIJ ASCS COFLC060 CPU 0001 JO~N VTAM 
TIME 41104.605968 

18 RNIO ASCS r.OFlI.CvbCr CPU 0001 JO~N VTAM 
TIME: 41704.e632~e 

19 RNIO ASCE. C'O~['C(:6Q CPU 0001 JLBN VTAM 
lIME 4] 705. H't.C!';a 

20 RNIC Asce CCF(jC[){;C CPU 0001 JObN VTAM 
T1Mf- 4110 5 .18 511(, 

21RNIO Asce COFI.JCD6C CPU COCI JOfN VTAM 
TIM[ 41 n ~.4v62B3 

22 ~NIC ASCB 0f·FlICDt,l CPU 2C01 JOb~ V1AM 
TIME' 4170~.15893<t 

23 RNIO ASC~ COFDcr'6G CPU COOl JLtN VTAM 
TIME- 41-/06.006557 

24 RNlO ASCE, OOFGCl'60 CPU ~OCl JU~N VTAM 
lIME' 41746.543962 

.... 

Figure 4-2. VTAM I/O Trace Example (Part 1 of 4) 

EXTERNAL TRACE - DO TAPE 

TIME 16.30.32.113950 

IN 10000000 2boooooo 00092BOO 00500900 400698 

OUT IF002000 10000001 00066B80 00110103 

IN IFOOI000 20~0001 0000FB80 00110101 C5D1F1F3 

OUT IF002000 10000002 00046B80 OOAO 

IN IFOOI000 20000002 0004FB80 OOAO 

OUT lE002COO 10000001 00100880 00010211 200001FO 

IN lEOOI000 20000001 00069B80 00010211 

OUT 1£002000 10000002 00080880 00010211 20000500 

IN lEOOI000 20000002 OOOA9F90 00100200 00010211 

OUT lE002000 10000003 00080880 0001020A 2001 

IN lECOI000 20000003 00069880 000102CA 

OUT I~002000 10000004 00080880 0001020A 2003 

IN lE001000 2C000004 00069880 0001020A 

OUT lE002000 10000005 00080B80 OOOl020A 2005 

IN lEOOICOO 2000000500069880 0001020A 

- -- -
OUT lE002DOG 11000026 OD08JBaO 0001020A 206B 

IN lEDOI000 20000026 00069B80 OOQ1~2nA 

OUT lE0C20QC 10000021 00080B80 0001020A 2019 

IN IfCOI000 2C000021 00069880 0001020A 

OUT If 002000 1(000028 00080B80 DOOI020A 2081 

IN lECC1000 20000028 00069B80 0001020A 

0UT lE002000 10000029 000B0B80 0001C211 2000050C 

.IN H001000 2COOCC29 OOOA9F90 00100200 OC010211 

OUT If 002000 ID00002A 00080880 0001020A 2118 

- - -

--

- -

~ 
~ r::r 

~ 
I:IJ 

'(;' 
Q 

= -[ --



EXTfRNAl TRACE - on TAPE 

25 RNIO A5CB OOFDC[)6C CPU ~OOI JObN VTAM IN 1[001000 2S00CD2A C0069B80 OOCI~2OA 
TIME 4174(;.823~7? 

26 RNlO ASCE ('OFDCD60 C~U 0001 JOSN VTAM OUT lE002000 10000028 00080B80 00010201 211t • 
TIME 41746~8422'i3 

27 RNIO ASCt 00FDCUo0 CPU 0001 JUlN VTAM IN lEOOlDOO 2000002B 00069B80 00010201 
liME 41747.123477 

28 RNlO A5CB COFOCObC CPU 0001 JUbN VTAM IN leOOl000 20000001 OOC9DB00 00010280 211COI 
TIME 41749.324Rb5 

29. RNIO ASCE: OOFDCD6C' CPU ooof JO~N VTAM OUT IF00211C 10000001 00066B80 COII0101 
TIME 41749.345127 

30 RNlO ASCf COHiCD6() CPU 0001 JObN VTAM IN IFOOIOOO 211COOOl 00:OEB80 001101F3 F6FOFOFt 
lIMF 41750.02~422 

31 RNIC A5CB COFOCD6C CPU OOCI JO~N VTAM OUT lfOC2110 10000001 00066680 00000101 
TIM!:: 41758.28?656 

32 RNIO Asce OOFOC060 CPU 0001 JOhN VIAM IN lFOOI000 21100001 OC05EB80 000001 
TIME- 4175f1.B287tll 

33 1RNIO A~CE f:OFE43~2 CPU 0001 JOSN TkAt3bCO OUT IF00211D 10010001 00276B60 0031~103 ~2FF9100 ~ 
." TIME 4n87.394~70 
." 34 RNIO ASCB OCFE43QO CPU 0001 JOlN TkAL3600 IN IFOOI001 2ll0COOl 0004EB8C 0031 "" 0 TIMF 41788.(,420GO r::r ;-
a 

*** DATE DAY 168 YEAR 1'115 TIME 16.36.27.900691 r:I.I ..-
(') 

35 RNI0 ASCB eOF£:439C CPU ODD} JLBN TkAC3600 OUT IF00211D 10010002 00046B80 OOAO 
0 = TIME- 41788.0977t;4 C". 

36 RNIO ASCb OOFE439C CPU 0001 JObN TRAC3600 IN IFOOIOOI 21100002 0004EB80 OOAO = = TIME 41788.642254 til 

37,RNIO ASCB OOFE439G CPU COOl JObN lRAL3600 OUT 1~00211D 10010001 00230390 OOD9C5Cl C4E84B40 -e 
TIME 41789.441206 

38 RNIO ASCB n":FOCD6~ CPU OOul JOhN VTAM OUT lE002COO IC00002C 00080B8C 0001C20A 212E 
TIME 41872 .~31413 

39 RNIO ASCB OOFOCD60 CPU GOOI JOcN VTAM IN lEOOlOOO l000002C 00069B80 0001020A 
TIME 41B13.07178't 

4O:RNIO ASCB OOFDC06C CPU 0001 JOBN VTAM OUT lE002000 1000002D 00080B80 00010201 212F 
TIM!:: 41873.266604 

41' RNIO ASCB M'FDCD6C> CPU 0001 JOBN VTAM IN lEDOlCOO 20~0002D 00069B80 000le201 

ff TIME 41873.571967 
t) 42 RNIO ASCB 00FDCD6C, CPU 0001 JOBN VTAM IN lCOOI000 20000002 00090600 000102S0 212FOI d". TIME 4tlB15.!>131l3 0 

= ~ 

~ 43· RNIO ASCB ~IOFE439C CPU 0001 JOBN lRAC36GO IN lC001001 2110~001 00060390 0040FOFl a TIME 41968.BOO126 "0 .... 44IRNIO ASCB OOFE439C CPU 0001 JOSN TRAC3bOO OUT lEC0211D 10010002 001rC390 00C90508 F3F6FOFO 0 a TIME 4l961~.876992 

~ 
45'RNIO ASCB OOFE4390 CPU 0001 JUbN TRAC3600 IN lCOOI001 21100002 00180390 00C90508 E4C9D9E8 

TIME 41972.101915 e. 46' RNIO ASCB OOH.4390 CPU 0001 ·JOBN TRAC3600 OUT lE002110 1(1010003 00560390 00C4CIE3 C140C2Cl '< 
~. TIM~ 41972.125414 fI> 

47!RNIO ASCB OOFE4390 CPU 0001 JOBN TRAC3600 IN lCOOI00l 21100003 OC180390 00C90508 E4C909E8 
~ TIME 41991.309495 
"0 
'"I 
0 
f5 =-
.j:I. Figure 4-2. VTAM I/O Trace Example (Part 2 of 4) iN 
iD 



~ 

~ -o 

o 
CIl 

"< 
CIl 
N 

~ 
(Ij 

S­a 
a 
~ s 
$' 

OC! 
t"'4 
a= 

~ 
~ 
CIl 

52 
,em 
~ 
ct. 
(') 

~ 
g. 
= ~. 
(II 
(Ij 

,..- -
48 RNIO ASCB OOFE4390 CPU 0001 JOBN TRAC3600 

TIME 41991.332963 
49 RNID ASCB OOFE4390 CPU 0001 JOaN TRAC3600 

TIME 41994.510949 

-- ~ 

50 RNID ASCB 00FE:4390 CPU 0001 JOBN TRAC3600 
TIME 42224.350661 

51 RNIO ASCS OOFE4390 CPU 0001 JOBN TRAC3600 
TIME 42224.375301 

52 RNIO ASCB OOFE4390 CPU 0001 JOBN TRAC3600 
TIME 42237.552094 

53 RNIO ASCB OOFE4390 CPU 0001 JOBN TRAC3600 
TIME: 42238.652850 

54 RNIO ASCB OOFE4390 CPU 0001 JOHN TRAC3600 
TIME 42239.251761 

55RNIO ASCB 00FDCD60 CPU 0001 JOBN VTAM 
TIME 42253.499154 

56.RNIO ASCB OOFDCD6C CPU 0001 JOhN VTAM 
TIME 42254.054066 

*** DATE DAY 168 YEAR 1975 

57 RNIO ASce 00FDC060 CPU COOl JOBN VTAM 
TIME 42263.952790 

58'RNIO ASCB 00FOCD60 CPU 0001 JUBN VTAM 
TIME 42264.5558Cl 

59 RNIO ASCB OOFOCD60 CPU 0001 JOBN VTAM 
TIME 42264.586587 

60 RNIO ASCB OOFDC060 CPU 0001 JO&N VTAM 
TIME 42264.955744 

61 RNIC Asce COFDC060 CPU vOOI JCBN VTAM 
TIME 42265.2·)2fj~7 

62 RNIO ASCB 00FOC060 CPU UOOI JOAN VTAM 
TIME 42270.355864 

63 RNIO ASCS 00FOCD6C CPU 0001 JuBN VTAM 
TIME 42275.385671 

64 RNlO ASCB OOFDCD6C CPU 0001 JObN VTAM 
TIME 422.75.756677 

65 RNIO ASCB OOFDCD60 CPU 0001 JOeN VTAM 
TIME 4Zr(S.797796 

66 RNIO ASCE OOFDCD60 CPU COOl ~05N VTAM 
TIME: 42281.157516 

--
67 RNI0 AS(B OOFDCD60 CPU 0001 JUHN VTAM 

TIME 42895.353348 
68 RNIO A~C8 O~FOCD6C CPU 0001 JGbN VTAM 

TIME 42898.bt699~ 

69 RNIO ASCB GOFDCD6G CPU ceDI JOPN VTAM 
TIMt ~289f,.8b4574 

Figure 4-2. VTAM I/O Trace Example (part 3 of 4) 

....... 

EXTERNAL TRACE - DO TAPE 

OUT 1E002110 IG010004 00560390 00C4C1E3 C140(2C1 

IN lCOO1001 21100004 00180390 00C90508,E4C9o'9E& 

IN 1COOI001 21100017 00180390 00C90508 E4C909E& 

OUT 1E002110 10010018 00560390 00C4C1E3 C140C2Cl 

IN lC001001 21100018 00180390 00C905D8 E4C909E8 

IN 1F001001 21100003 0004E68D DOA1 

IN 1FOOI001 21100001 0004~880 0032 

OUT lF002ll0 10000002 00046880 OOOE 

IN 1FOOlOOO 211D0002 0004FB80 OOOE 

TIME 16.44.23.800573 

OUT 1F00211C 10000002 00056B80 001202 

IN IFOGI000 211C0002 0004EBcC 0012 

OUT If 002000 10000034 00080B~0 00010202 211C 

IN lEOOI00C 20000034 00069BbO 00010202 

OUT 1E002COO It000035 C008CB80 GOOI020B Z11? 

IN lEOOI000 2t000035 00069880 (001020B 

OuT lE002000 1000003600080880 00010202 212f 

IN IfOOlGOO 2C000036 C0069BHO 0001r202 

OUT 1[002000 10000037 00080880 00010208 212l 

IN lEOOlOOO 2C000037 00069B80 0001020B 

GUT If 002000 10Qo002F e008~B8C 0001020B 2eOI 

IN If 001000 20Q0002F C~069B8~ 00Cl r 2&R 

OUT l~CLlGCO 11000030 000eCB80 0001020S 2CC~ 

~ -

- • 

~ 

~ 
." 
'"t 

~ 
('I) 

a 
rIl ..­
(') 
Q 

= ~ 

~. 
('I) 

,e 



~ 
(") 

ct. 
g 
~ 

~ 
3 

't:I 

~ 
~ 
ea. 
'< 
fa. 
~ 

~ 
't:I 
"1 

~ 
~ 

~ --

- -
70 RNlu ASc[; rOrDCD6r CPU 0001 JObN VTAM 

TIM .. 42'i02.46bo41 
71 kNIO A~Ce ~ [H;C[!6' CPU 0001 JQ~N VTAM 

T1 Mf 42902.48(:' 7C;4 
72 RNIO ASCE OOfDCD6C CPU ceDI J()EN VTAM 

TIME 42906.C7135"t 
73 RN u:: A SC b fC F[,C C6e CPU (O~1 JubN V1AM 

TIM!' 42'1C'o.C6't(·4b 
74 RNlO ASCB -,OF-CCUt;-; CPU cnOl JDBN VTAM 

TIME 42909.671495 

- -
""""!:: -
~ 

75 RNlO ASCf:. OOFuC[J';'v CPU GOOI JObN VTAM 
lIME- 43005.3150('0 

76 RNIO ASCb ~! FDCD6(J CPU G.I JOhN V1AM 
TIM! 43008.~91b5t. 

77 RNlO ASCB OOfDCD6i) CPU 0001 JObN V1AM 
TIME 43009.10C'051 

78 RNIO ASCB OQFGCD6C CPU 0001 JUbN VTAM 
lIMF 43012.499105 

79 RNHJ ASCS O!" FOCDb0 CPU 0001 JOUN VTAM 
TIME 43012.S5&114 

80 RNIO Asce OOFDCD60 CPU 0001 JObN VTAM 
TlMf. 43015.8990HB 

81 RNIO ASCB OOFDCDeO CPU oeol JOBN VTAM 
TIME. 43·017.031614 

82 RNIO ASCB fJOFuCD6C: CPU 0001 JOEN VTAM 
TIME 43017.2994L5 

Figure 4-2. VTAM I/O Trace Example (Part 4 of 4) 

-
EXTERNAL TRACE - Dn TAPE 

IN IfCOI0QC 2(000030 000b9BHO 0001C208 

LUT HO('2')OO 1 ('(100031 0008::;&&0 r:"01'.'205 zr:-5 

IN 110CICOO 2~000031 00069BPO OOO1020b 

OUT IfOC7000 10000032 00080e80 0001020B ?C07 

IN IEOOIOOO 20000032 Qr069B80 OOOl~2rB 

OUT lEOC2000 lOOOC04D COC90B8(. GOOI n20B 2030 

IN IEOOIOOO 2C00004~ OOC6geao COO1020R 

OUT IfC02000 1000004E 00080B80 OC~lJ20B 2019 

IN IFDOIOOO 2000004E 00069880 00010206 

OUT 1£C02000 1~OOQ04F J006CB8~ 00010208 2Cb7 

IN 1fOCIOOO 2000004r 00069880 OD010208 

OUl IF002000 1000000D 00056~BC 0012(1 

iN IFOCHOO 200000.oD OOC4H&O 0012 

- --. 

-

~ 
~ 
Q 
a' 

~ 
fIl 

'()' 
Q 

a 
g' 
tD 

~ 



TP Problems (continued) 

Example 2: VTAM and GTF Traces 

The second example (Figure 4.3) shows all of the VTAM·GTF traces for parts of 
the process shown in the previous example. The TPIOS buffer trace, control 
layer (C/L) buffer trace, RNIO trace, and NCP line trace are illustrated in the order 
they occur. 

Trace Entries: 

• 1· 17 - show the PEP activation, etc. 

• 18· 29 - are activations. for start·stop lines. 

• 30·55 - show the SOle link activation; they also show controller and LU 
activation and connection. 

• 56 - is the first C/L record, the first data received from the application. 

• 56·76 - show the message flow between the application and the LU. 

• 77· 93 - show the NCP line trace in relation to the data in the PIUs. The 
exact placement ofline trace records relative to RNIO and buffer 
trace records cannot be depended upon; in general, most or all of 
the line trace that shows receipt of a message in the NCP will 
precede the inbound host traces for that message. The RNIO 
records are omitted from this section of the trace: there 
should be RNIO records for each PIU, plus one for each line trace 
entry showing a buffer ofline trace data coming into VTAM from 
the NCP. .. 

• 84· 122 - show the last data exchanges, the disconnection and deactivation of 
the 3600, and deactivation of the SOLC link. 

The RNIO trace entries in this example· can be matched exactly 
with the entries of the previous example. This example shows how 
messages can be followed through the network. The GTF I/O and 
SIO traces are not shown in this example. Running a single termiilal 
at a low message rate, as in this example, would cause almost every 
RNIO trace to be preceded by several I/O - SIO entries. The 
sequences are usually as follows: 

Outbound: 

GTF SIO 

GTF I/O -CE,OE 

GTF RNIOOUT 

- Inbound: 

GTF I/O -ATTN 

GTF SIO 

GTF I/O - CE, DE, UE 

GTF RNIO IN 

4.3.12 OS/VS2 SystentProgrammins Library: MVS Diagnostic Techniques 



TP Problems (continued) 

All SIO and I/O entries are for the native sub channel address of 
the 3705. With more message traffic, different sequences may be 
seen. Very few problems have occurred in the area of the VTAM­
NCP channel interface, but a brief explanation is included to avoid 
confusion. 

The following GTF I/O, SIO, and RNIO sequences are possible: 

1. Coat-tailing - data is returned from the NCP on the same I/O 
operation used to send data out, as follows: 

GTF 

GTF 

RNIO 

RNIO 

RNIO 

SIO (WRITE CCWs with READ CCW appended) 

I/O CE, DE, UE (UE because some but not all READ 

IN 

IN 

OUT 

CCWs were used) 

The number of PIUs transferred out and in can vary. If the 
maximum number of PIUs is sent in (see the MAXBFRU 
operand of the HOST macro in NCP generation), then the I/O 
interruption has a status of just CE, DE. 

2. More than the maximum number of PIUs were in the NCP ready 
to be sent to VTAM (assumes the maximum is 3): . 

GTF I/O ATTN 

GTF SIO (READ CCW string) 

GTF I/O CE, DE, ATTN 

RNIO IN 

RNIO IN 

RNIO IN 

GTF SIO (read CCW string) 

GTF I/O CE, DE, UE 

RNIO IN 

The first read operation ends normally with ari attention, 
indicating more data in the NCP. This avoids an extra interrupt 
just to present an attention. 

Section 4: Symptom Analysis Approach 4.3.13' 



~ 

~ -~ 
0 
~ 
-< 
t"'-l 
N 
t"'-l 
'< 
rIl ;-
a 
." 

t a 
S· 

QQ 

t: 
0" 
lot 

~ 
~ 
t"'-l 

i 
0 
~ t;. 

~ go 
e. 
,Q 

= (D 
rIl 

••• DATE DAY 168 YEAR 1975 

USRFD FEF ASCB 00FDCD60 JOBN VTAM 
TPIOS OUT ANODE VTAM 

REMOTE DNODE PEP736A 

TIME 41690.735400 
2 RNIO ASCBOOFDCD60 CPU 0001 JUhN VTAM 

TIME 41690.744573 
3 RNIO ASCB 00FDCD60 CPU 0001 JOBN VTAM 

TIME 41690.745676 
4 RNIO ASCB 00FDCD60 CPU 0001 JOhN VTAM 

TIME -41691.003599 
5 USRFD FEF ASCB OOFOCD6D JOBN VTAM 

TPIOS IN ANODE VTAM 
REMOTE DNODE PFP736A 

TIME 41691.0742~1 

6 USRFD FEF ASCB COFDCD60 JOBN VTAM 
TPIOS OUT ANODE V1AM 

REMOTE DNODE PE'P736A 

TlM~ 41691.217088 
7 RNIO ASCB 00FOC060 CPU 0001 JUbN VTAM 

TIME 41691.226997 
8 RNIO ASCB OOFDCDbO CPU 0001 JU~N VTAM 

TIMF 41691.528864 
9USRFD FEF ASCb C0FDCD60 JOBN VTAM 

TPIOS IN ANOliE VTAM 
RE:MOTE: DNDDE P[P730A 

TIME 416'11.532490 
10 USRFD FEF- ASCB \' Of'OCD60 JObN VTAM 

TPIeS OUT ANODE VTAM 
RE:MOn DN(jOE Pl P73bA 

TIMt 41691.5431Cy2 
11. kNIO ASCB [:.:F[)CD6~ CPU 0001 JUbN VTAM 

TIMf 41691.54C,54b 
12 RNJO ASCB OCFD('D60 CPU 0001 JOBN VTA~ 

TIMf 41691.799592 
13 USRF[l FEf- ASCB COF[)(,!)60 JOBN VIAM 

IPIQS IN ANODE VTAM 
REMOTE. DNLDE PtP73(,A 

TIMF 41691.803107 
14 USRFO FEF ASCS OOFDCUbC JOoN VTAM 

TPI0S UUl ANLL~ V1AM 
kEMOTt ONOOE: P~P7~cA 

L.. 

Figure 4-3. VTAM and GTF Traces (Part 1 of 13) 

EXTERNAL TRACE - DO TAPE 

TIME 16.30.32.113950 

FDB 00000000 00867028 ,00100000 RSVD 0000 lNG2 00A4 RSVD 00000000 00000000 
THRH lCOC2GOC 10000000 00006B80 00 
TEXT 110103 * ••. * 

IN 10000000 20000000 00092800 00500900 400698 

OUT IF002000 10000001 00066B80 00110103 

IN IFOOI000 2DOOOOOI OOOOFB80 00110107 C5D7F7F3 

FDE; COOOOOOO OOB67369 OOOAOOOO RSVO 0812 lNG2 OOCO 
FSI3 022COOOO 00000000 10002000 00010000 00000000 00000000 00000000 00000000 
THRh IFOOI000 20000001 DOODFB80 00 
TE-Xl 110107C5 D7F7F3F6 C140 * •• PE-P736A * 

FDE 00000000 OO~67348 OOOEOOOO RSVD coro lNG2 OOA4 RSVD OOuOOOOO 00000000 
lHRH lC002000 10000000 00006B80 00 
nXl AD *. * 

OUT IFOC2DOO 10000002 0004&680 OOAO 

IN IfnOl000 20000002 0004FB80 OOAO 

FOB (0000000 00807431 00010000 RSVD 0812 lNG2 OOCO 
f-SI:l 022COOC:: '':;COOOOOO 10002000 (,'0020COO OOOOe-JOO OOCOOOOO 00000000 00040000 
THRH IFOOIJon 20000002 C004Fb80 00 
TEXT AC' *. * 
F:::'L 00000000 00667410 rC270COC RSVD (1000 lNG2 COA4 RSVD 00000000 00000000 
THkH lCOO~OOO l~OOOOOO 00000880 00 
TEXT 0102l12C COOIFOF6 61FIF761 F7F54BFl F6F8FIFb ••••••• 06/17/75.16816* 

4Bf-3F44::; F5F2 *.34.52 * 
GUT IF002:00 100QCOCI 00100680 0001'-'211 2ea001H. 

IN llCOI000 20000001 0006Qe8o 00010211 

HW. (,00000(,[; 0507369 ~OO300CC RSV[' (812 LNG2 ooeo 
FSb C 22CC'OOO DOCODOD lC_u20~' G~010COO cccrnooo to:~0CAC 0000COCC COObODOD 
Tl--:I<,H 1 LCe 1 ,.,;)C 
Ton 010211 

FGE GrOeteC 
THRH lCCOZ~O 

TEXT 01[2112 

OeeeDOl CC069b8C 00 

OB67348 ~015000C - RSVU eeoo 
COl ';::: r ;) -'f''',',B8C CO 
(r5CCOC 

* ••• * 

LNG2 OOA4 RSVD 00000000 00000000 

* •••••••• * 

~ 
~ 

~ 
"'t 
0 
t::I" 
;" 
a 
fIl --n 
0 

= -S· 
= (D 

,e 



~ 
() 

ct. 
g 
f: 

~ 
.§ 
s­a 
~ 
~ 
lao 
C'I'.I 

~ 
"C ... 
~ 
~ 

~ -tit 

~--~ 

-EXTtRNAl TRACE - DO TAPE 

lIME 41t91.e143b2 
15 RIIIIO A~Cf:' (;(,F[lC[,c.C C .. ·.v 0001 J(JbN VlAM CUT ItC02COO lroooooz OOOBDBBO 00010211 20000~OG 

TIM~ 416S1.81U128 
16 RNIr; ASCI: COF(JC()b(' CPU 00(:1 JUE..N VlAM 

TIM[- 41692.099019 
17 USR~U FEF ASC~ ~O~D(Dbt JO~N VTAM 

TPICS IN ANO~E VlAM 
kEMOTE DNCD!: PEP73~A 

TIME 41692.103190 
18 USRFO FEF A~(e COFDtD60 JObN V1AM 

TPIOS OUT ANODE. V1AM 
REMOTE ~~co~ PtP73bA 

TIME 41692.11~b7? 
19 RNIO A$Cb CCFGC~bC C~UCCCI JUtN VTAM 

TIME 41692.117212 
20 RNIO Asce OOF[JCDcC CPU ceDI JllbN VT AM 

TIM[ 41692.399922 
21 USRFD FEF Asce GOFDCD60 JOBN V1AM 

TPIOS IN ANO~E VTAM 
~EM01E DNO[JE P~P13bA 

TIME 41e92.4C3432 
22 USRFD FH ASCb 00FDCD60 JO&N VTAM 

TPIOS OUT ANODE VTAM 
REMOTE DNODE PtP73~A 

TIME 41692.413215 
23 RNIO A~CB OOFDC060 CPU \i001 JOBN 

TIME 41692.417538 
24 RNIO ASCb OOFDCD60 CPU oeOl JObN 

TIME 4169?700031 
25 USRFIJ FEF ASCB 00FDCD60 JOSN VTAM 

TPIO~ IN ANODE VTAM 
kEMOTf DNODE PtP7~6A 

TIME 41692.703547 
26 USRFD FEF ASCB OOFDCC60 JOSN VTAM 

TPIOS OUT ANODE VTAM 
REMOTE ONODE PEP736A 

TIME 41692.713339 

VTAM 

VTAM 

27 RNIO ASCB OOFDCObO CPU COOl JDBN VTAM 
TIME 41692.723718 

28 RNIO ASCB OOFDCD6~ CPU 0001 JOBN VTAM 
TIME 41693.000187 

a..-....-..- -
Figure 4-3. VTAM and GTF Traces (Part 2 of 13) 

IN 11.001:CO 2~000002 OCOA9F90 00100200 00010211 

F~b 0(000000 . 0 67431 ~OC70 OC ~SVD ce12 LNG2 ooco 
fS6 (22C0000 uO 00000 10002 '0 00020~OC OQOOOOOO OOQ0}CQO 0COOOOOO OOCAaOOO 
THR~ lE001~OC 2C (0002 (SOA9 90 co 
llXl 1002~OOO Jl 211 * ...... . * 

F(;E' CCoC-.:.coc oe6741C C0120000 RSVD 0000 lNG2 OOA4 RSVD ~OCOOOOO 00000000 
THKH lCOO2~Ot "(\f1(J~Cr: (;0000&8 C :'0 
lEXT CI02CA20 * ••••• * 

OUT IFGCi~OC 10(00003 0008CB8Q C001020A 2~Ol 

IN l~~Cl~OO ~~OC0003 00069B80 0OOlS20A 

FDE: Ol'OOOOOO CCE-:t13b9 (\0030000 RSV[) 0812 LNG2 OOCD 
FS5 C22COCOC oocroooc 10002000 00030000 OOOcOOOO 00000000 00000000 00060000 
THk~ lE001000 2(000003 00069BPO 00 
lEXT C 102e A * ••• * 
FDb 00000000 00b6134b 00120000 RSVD 0000 lNG2 OOA4 RSVD 00000000 00000000 
THRH lC002~~0 10000000 00000880 00 
TE Xl 0 Ie 20A2C ': 3 * .•••. * 

OUT lE002000 10 000004 00080880 OOOlC20A 20C3 

IN 1I:0('}(/00 2(-00('004 00069880 0001020A 

FOB D0[00~ot U0867431 00030000 RSVD 0812 lNG2 OOCD 
FSb 022COOOO 00COOrioo ID002000 ~00400DO 00000000 00000000 OODoocor 00060000 
THRH lEOOlCOO 20000004 00069880 00 
TEXT 01020A .... * 
FOb 00000~00 60867410 08120000 RSVD OOCO lNG2 OOA4 RSVD 00000000 00000000 
THRH lC002~OO 10000000 GOOOOB80 00 
TEXT 01020A20 05 * ••••• * 

OUT lE002000 10000005 00~80B~0 0001020A 2005 

IN 1[00100C 20000005 00069880 OD01020A 

- -

'-'--"" 

~ 
'"0 

a 
~ 
3 
fIl -.. 
n 
Q 

= ... 
~. 

~ 



~ 

w 
;... 
Q\ 

o 
~ 
fIl 
N 

~ 
r.f,I 

S' 
:3 
~ 

1 
5· 

OQ 
r""I c;: 

~ 
~ 
fIl 

S2 
.~ 

!~ 
~ 
ct. 
(') 

~ 
So 
5!. 
.c c: 
(D 
r.f,I 

..... !, 

, " 

r----

29 USRFD FEF ASCB. 00FDCD60 JOBN VTAM 
TPIOS IN ANODE VTAM 

REMOTE DNODE PEP136A 

TIME 41693.003693 

~-
r--

3O'USRFD FEF ASC8 COFOC06C JOE.N VTAM 
TPIOS OUT ANODE VTAM 

REMOTE DNODE PEP136A 

TIME 41146.536984 

-

31 RNIO AS(.e 00FOCD60 CPU UOOI JOBN VTAM 
TIME 41146.543962 

·32 RNIO ASCB OOFOC06C CPU 0001 JOSN VTAM 
TIME 41146.823315 

33 USRFD FEf AS(B 00F~CD60 JOSN VUM 
TPIOS IN ANODE: VTAM 

Rt::MOTE ONODE PfP136A 

TIME 41146.826948 
34 USRFO FEF ASCE OOFD(060 JOBN VUM 

TPlOS OUT ANODE VTAM 
REMOTE ormoE PE:P136A 

TIME 41146.837196 
35 RNIO ASCB OOf~CD60 CPU 0001 JO~N VTAM 

TIME 41146.B42293 
36 RNIO ASCB OOF(JCDbO CPU 0001 JOBN VTAM 

TIME 41141.123411 
37USRFO FEF ASCB OOFOCG60 JOBN VTAM 

TPIOS IN ANODE VTAM 
REMLH DNDDE PEP121t-A 

TIME 41141.121060 
38 RNIO Asce OOFDCD60 CPU 0001. JObN VTAM 

TIME 41149.32486~ 

39 USRFD FEF ASCB COFOCDt..O JOBN VTAM 
TPIOS IN ANODE VTAM 

kl::.MOTt: ONODE PEI'13t..A 

TIME- 41149.3284'76 
40 USRFD FfF ASCB OOFDCDbO JObN V1AM 

TPIOS OUT ANuDE V1AM 
REMOTE ONODE Cl1l0f1 

TIME 41149.34064C 
41 RNIO ASCB GOFDCD60 CpU ~OOI JOSN VTAM 

TIMf 41141i.3451£:7 -
Figure 4-3. VT AM and GTF Traces (Part 3 of 13) 

~ 

- --
'EXTERNAL TRACE - DO TAPE 

FOB 00000000 00B61369 00030000 RSVD 0812 LNG2 OOCO 
FSB 022COOOO 00000000 10002000 00050000 00000000 00000000 0000000000060COO 
THRH lEOOI000 20000005 00069B80 00 
TEXT 01020A •... * 

-
FOB 00000000 00861410 00120000 RSVO 0000 LNG2 OOA4 RSVD 00000000 00000000 
THRH lC002000 10000000 00000880 00 
TEXT Ol020A21 IS * ••••. * 

OUT H002000 IO()0002A 00080880 COOHl2CA 211B 

IN lEOOlOOO 2000002A 00069880 C001020A 

FOB 00000000 (0861369 00030000 RSVO 0812 LNG2 OOCO 
FSB 022COOOO 00000000 10002000 D02ACOOO 00000000 ccrcooco 00000000 ~)06COOO 
THRH lE001COO 20obo02A 00069880 00 
TEXT 01020A * ••• * 
FOB 0000C1CO (':OB61348 00120000 RSVD 0000 LNG2 OOA4 RSVO 00000000 CCOO;OOO 
THRH lC002000 10000000 00000880 00 
TEXT 01020121 IC * ••••• * 

OUT 1£002000 10000028 000bDB8o DOOle2DI 211C 

IN If 001000 2C00002b OOOt9B80 ODOI~2nl 

FDb 00000000 00661431 00030000 RSVD 0212 lNG2 ooce 
FS6 ~22CCOOO COOOOCOO 10002000 D0280000 ooooooeo aOGrODeO 00000000 o~rbOOCO 
THRH IEOOI000 200DOQ2B 00069B80 00 
TFXT 010201 * ••• * 

IN lC001000 20000001 00090800 000lr280 211COI 

FOb 00000000 nOB612Al 00060000 RSVD 0812 lNG2 OOCC 
FSB 022COOOO GOOOQOOC 10002000 00010000 00000000 oooooono COOOOOr,O 00090000 
THRH lCOOI000 20000001 0009caco 00 
TfXT 01028021 lCOl * ....... * 

FOB 00000000 00667280 onlOOO~C kSVD 0000 lNG2 OOA4 RSVO (I{;(:OO:;. 0 (t~'-CtO,' ;,'tlv 

THRH lCOC21lC I COOCJOO·~. ('000688C 00 
TEXT 110101 * ••• * 

OUT IFC0211C 10000001 OOOb.6bftO COll0101 

- -

~-~ ~ 

~ 
a 
f 
~ 

.­
() 
o = -~. 
fD 

~ 



~ 
(") 

=t. 
~ 
~ 

~ a 
'tS 

~ 
~ 
~ 
fa • 
.." 

~ .... 

~ 
~ 

~ 
;... 
-..l 

"'~7 

~ 

42 kNIO ASCB OCFDCObv CPU 0001 JU8N VTAM 
TIME 41750.CZ5~22 

43 USRF 0 'F EF ASC.I; OOFDCD6C JOBN VT AM 
TPIOS IN ANODE VTAM 

RtMGTE DNODE CLILOt7 

TIME ~1750.C28~7q 

_?" 

- - -EXTERNAL TRACF - DO TAPE 

IN IFOOlC'GO 211C(\001 (V'''00fB80 C01F1F3 f'6fOFOFe 

FDb COOOOOOO CObb736~ OOOACOOO RSVD 0812 LNG2 00C0 
fS8 022COOOO OOfDroeD 10Q0211C 00010000 rooncoco 80000000 ~OC"COOO oroooooo 
THRH IF001000 211C0001 OOOOEB80 00 
TEXT 1101F3F6 FOFQFOFO FOFO *~.36000000 * 

44 USRFD HF ASCB OOFOCDbO JO.BN VTAM 
TPI05 OUT A~ODE VIAM 

REMOTt DNODE UICILOE7 
FOB 00000000 00b67348 00100000 RSVD 0000 
THRH lC002110 10000[00 COOOtB80 00 

LNG? (,(jA4 RSVv 000 0000 OOOCOOOO 

TIME 41756.278253 
45 RNIU ASCB OOFDCD60 CPU 0001 J08N VTAM 

TIMt 41758.282b5b 
46 RNIO ASCB COFOCD6( CPU COOl JOBN VTAM 

TIME 41758.828781 
47 USRFD FEF ASCh OOf'DCD60 JOBN VTAM 

TPIOS IN ANODE VTAM 
REMOTE DNDDE UICIlOE7 

TIME 41758.b32307 
48 USRFD fEF ASCB OOFt:4390 JOBN TRAC360(j 

TEXT 000101 * ••• * 
OUT IF00211D 10000001 OOU66BPO 00000101 

IN If-001GOO 2110("001 0005EB80 000001 

FOB 00000000 OOB672Al 00020000 RSVD 0812 LNG2 ooce 
FSB 022COOOO 00000000 10002110 00010000 00000000 ooooooeo ooooeooo o~OSOOOO 
THRH 1FOOIOOO 21100001 0005EBBO 00 
TEXT OD01 * •• * 

TPIOS OUT ANODE P1VT360C FOE 00000000 00B67280 00310000 RSVD oeco LNG2 OOA4 
REMOTE DNODE U1C1l0E7 THRH 1C002110 10010000 C~006B80 00 

RSVD OOOCOOOO OOOO~OOO 

TEXT 31010302 FF910000 D9(5(3D6 09C44040 r0000040 * ••••• • • RECORD * 
40404040 40404008 D7F1E5E3 F3F6FOFO * .PIV136CO * 

TIME 41787.389730 
49 RNlO ASCB OOFE4390 CPU COOl JObN TRAC3600 OUT 1F00211D 10010001 00276BeO 00310103 OZFF910C 

TIME 41787.394270 
50 RNIO ASCB OOFE4390 CPU 0001 JOBN TRAC3600 IN 1FC01001 21100001 0004E680 0031 

TIME 41788.042000 

*** OATf DAY 168 YEAR 1975 TIME 16.3t.27.900691 

51 USRFD FEF ASC8 OOFE4390 JO~N TRAC360C 
TPIOS IN ANODE PIVT3600 FOB 00000000 00867369 0001000C RSVO 0812 LNGZ OOCO 

REMOTE DNODE U1C1l0E7 FSB 022COOOO 00000000 1001211D 00010000 COOOOOOO ceoooooo oooeoooo 0~040000 

THRH IFOOI0~1 21lDOOOI 0004EB80 00 
TEXT 31 *. * 

lIME 41786.044994 
52 USRF~ FEF ASCB OOFE4390 JOBN TRAC36CO 

*** 

TPIOS OUT ANODE P1VT3600 FOB 00000000 00861348 COOfOOOO RSVO 0000 
REMOTE DNODE UICILOE7 THRH lC002110 10010000 G0006BBQ 00 

LNG2 00A4 RSVD 00000000 00000000 

TEXT AO *. * TIME 41788.093294 
53 RNIO ASCB OOFE4390 CPU 0001 JOBN TRAC3600 OUT 1F002110 1C010002 00046B8C OOAO 

TIME 41788.097764 

-

Figure 4-3. VTAM and GTF Traces (Part 4 of 13) 

~ 
""CI 
""CI 

~ 
tD a 
III .­
n 

~ -~. 
~ 



..... 
<N 
;... 
00 

o 
~ 
f'-) 
N 

~ 
C'I.I 

S­a 

f 
5· 

OQ 

~ 
~ 
,~ 
~ c; 
i n· 
~ g. 
e. .c 

~ 

fXTF~NAl TRACE - on TAPi" 

54 RNIC ASCC "'CFi'43'1(_ CPU ':'001 JUt':>; Ti\AL36::'O IN IFOOICCI ~11~2C(: con4E6~~ ~OA( 
TIME 417~f.0~:lj4 

55 U~kF[, FH- ASCe C(;H 429(: J(If:,N ThAC. (;'(0 
TPIOS IN ANGll ~lV13t( 

R~MPT~ GNOD~ UICILCt 

TI~L 417b~.b4~266 

56 USRFD Ffl ASCB OOfE~390 JOUN lkAC36f~ 

Hi (,c co.:,'(, _ f-t 72.AI ;'.01'" ,( k::'V[J Cf<12 lNG2 u.cn 
F~ O~ (,·0('(' :'00CC;f)O 1,)01211[1 OI)020~Ct' ("O~, 0000 :CCCC'CC' 
T~ H 1~ ~1)Cl 211C~OG2 (,OC~E~a[ 00 
H T At;: *. 

cee ;(;(. t l>04(" \,:0 

* 

tiL n~T ANODE ~lVl~GC0 TEXT D~(5CIC4 r~~t~OF3 ~BG7C~4: 7DD7DQDb G4f7E?7D *READY. lYPf- 'PknM~T'* 
. t.N(lL·E UIClLCE7 4CCtD6[J<i 4d .. tC5[J3 [!74b4(o41! '" F()R HELP. * 

TIMt 4]789.259277 
57 USRFD· F EF ASC.B OOH4~9(\ JOdN TR.tC3U C: 

-

TPIGS GUT ANODE PIVT3tCG Frb C00C0CO( :0f~12PC CC2CC0CC ~~VO CCD~ LNG2 GCA4 RSVD CC::t~DO 00000000 
hEMflTf DNClJE: UICIL([7 THRH lCC("211L 1(.( l~(c.(: (COt'.(,J<"C; \0 

Ti:XT u9C~(.1 (4 L;::4i '''(~ t:3 [Ru7C~ ... 0 7fiD7L9Db r..I .r'71:31G *kE:A(;Y. TYPE 'PF;.W1PT' * 
4(;C6[.c[J';' 4C('bL5('3 f'74f4 r .4C * FOR HtlP. * 

TIM~ 417R~.43517l 
58 RNIG ASCB C'OFE4j9:" CPU (,' ... 01 JObN lkAC3t.,(·(, OUT ItOt211D ](010001 C~23G39C C~C9C5Cl C4[34b4" 

TIM~ 41789.441~0b 

59 RNlO ASCf (.QFE439C CHI 0001 JOt,r~ TRAC?&CO IN lCClOlOCl ;:llDC001 ()OCbC39C (,04DFCFI 
TIME 41968.bOC126 

60 USRFCJ HF ASC5 (.OH439C' JC.ll',t'-. THAC36'J(; 
TPIOS IN ANODE PIV13600 FOB rOGOr-Or Obt7111 ~~n3CCOO RSVO C812 lNG2 CCC~ 

R~MOT~ eNODE UICJLCE7 FSB 022COOOO C:, .CO lCC1211D COOlGOOD 00000000 GOOODCCO noo~oooo ~006nono 
THRh lC0010Cl 1100001 "0060390 00 
T":XT 4DFOfl *(Cl * 

TIME 41968.80~427 

61 USRFD FFI ASCB OOFE439C JObN TRAC3bO( 
Cll IN ANlDE PIVT3~OC TEXT 4DFOFI 

DNOul: UICILGf7 
*(01 * 

TIME 41968.&571~5 

62 USRF D FF 1 Asee OCFE439C' JOBN TRAC36C(; 
Cit OUT ANODE PIVT3eOO TEXT 

Df'mDE UIC llCE7. 
TIME 41968.8c768~ 

63 USRFD F'EF ASCB OOH4390 JOBN TRAC36~)C: 
TPIOS nUT ANODE PIVT3bOO FOb 

REMOTE DND~E UICll0E7 THkH 
. TEXT 

TIME 41968.871201 
64 RNIO ASCB COFE4390 CPU oeOl JOliN TkAC:-'o(;O 

lIME 41966.876992 
65 RNIO ASCB OOFE4390 CPU 0001 JOhN TRAC3600 

TIME 41972.101915 

-
Figure 4-3. VTAM and GTF Traces (part 5 of 13) 

... 

C9D~DfF3 F6FOF04r OQCSCIC4 fe 

ocrooooc OO~670FC OOlAOOOO RSVD DODO 
lC002110 10010000 00000390 00 
C9DSG8F3 F6FOF040 09C5CIC4 EB 

*lNQ36CO kf.ADY * 

lNG2 OOA4 RSVD 00000000 ~OOOOOOO 

lFIN(t36QO READY * 
OUT l~nn21lD 10D1000~ J0100390 00C9D508 F2FbFDFC 

IN ICOOI001 21100002 00180390 00C9D5D8 E4L9D9E& 

JIi;~.::'" ..... 

~ 

~ a 
C'Il ..­
() 
o = .... 
~. 
~ ,e 



~ 
n 

g" 
~ 

~ a 
." 
0-a 

! ;;. 
~ 
." 

i 
~ 

~ -\Q 

,..... 

66 USRFD FEF ASCB OQFE4390 JOBN TRAC3600 
TPIOS IN ANODE P1VT3000 F9B 

R~MOTE ONODE UICll0E7 FSB 
THRH 
T~XT 

TIMl 41972.104925 
67 USRFD FFI ASCB OOFE4390 JOBN TRAC3600 

~XTERNAl ~RAtE - DO TAPE 

00000000 OOB671D9 00150000 RSVO 0812 lNG2 OOCO 
022COOOO 00000000 10012110 00020000 00000000 00000000 00000000 00180000 
1COOI001 21100002 00180390 00 -
C9G5D8E4 C9D9E840 F3F6FOFO 40FOFCFl 4OE4FIC3 *INQUIRY 3600 001 UIC* 
Fl *1 * 

C/l IN ANUuf: PIVT3600 nXT C905u8E4 C9D9E840 F3F6FOFO 40FOFOFI 40E4flC3 *INQUIRY 3600 CiOl lJlC* 
uNOuE UICIlOE7 F1 *1 * 

TIME' 41972.10b2~8 
68 U~RF[) fFI ASCB O(lFI:~390 JObN TRAC36(:O 

tIL OUT ANODt PIVT3600 TEXT 
ONODE UIC1lCE7 

TlMf 41972.1l6~50 
69 USRF[) HF AStB OOFE439(.. JOhN TR/.C36GO 

TPIOS OUT ANOCE PIVT3600 FDB 
REMOTE DNODE UICILCE7 THRH 

TEXT 

TIMr 41972.11982C 

C4(1£3Cl 40(2CIE2 C540CID7 0703C9C3 CIE3C906 *OATA BASE APPlICATIO* 
0540D9(5 E2D70605 E2C5400~ C5E2E2Cl C7(54040 *N RESPONSE MESSAGE * 
40404040 40404040 40404040 40404040 40404040 * * 4C404()4C 4C404040 40404040 40404040 40404040 * * 
40404040 404~404r * * 

00000000 ~O&671B6 00650000 RSVD COOO lNG2 OOA4 FSVD 00000000 00000000 
1(.00211D 10010000 (·0000390 00 
C4Clf3Cl ~0C2CIE2 (54((lD7 0703C9C3 CIE3C9D6 *DA1A 8ASE APPLICATIO* 
05~OD9C5 E2D7Db05 [2C540D4 C5E2E2Cl C7(54040 -N RES~ONSf MESSAGE * 
40404~,40 404:::;4040 4(.4(,4040 4::)4C404C ~040404C * * 
4v40~('40 40 .. 0~04C 404('404(' 4040404(> 404(,4C40 * * 
40404G4r,) 40404040 * * 

70 RNIG A~(l' (tCH439(; CPU ~\-01 JuuN TRAC3bCO OUT HC'021lD 1<'010003 OO!)B1)390 C'('C4LIE3 LI4C('2('1 
TI~E ~1972.125414 

71 RNIO AStt 00FE4~90 CPU 0001 JOhN TRAC36GO IN 1(001001 211D0003 00180390 00C90508 t4C9D9E8 
TIMt 41991.309 .. 95 

72 USRF[ FlF ASCE 'OOFE~390 JUbN TRA(360C 
TPIOS IN -ANODE PIVT3(;.O(; Hi6 (000000(, -LO~o7111 CC1~COOO RSVD OEl2 lNG2 OOCO 

R~MLT[ ~NQD[ UICllCE7 F~B 022(0000 lOOCOCOO l001211~ U00300CC Dcceocoo CCOOtOCO C0000COO GOlbOOOO 
T~RP lC~OI~01 211D0003 ~OlbG~9C QO 
TEXl C9D5U8E4 C909f~4C ~3F6fOf~ 40F~FrF2 ~~f4FIC~ *INQUIRY3~OO oo~ UIC* 

TIM!: 
73 USRff FFI ASCi' 

C/l 

TIME 
74USRfD fFl A!>CB 

C/l 

41q91.3124<t7 
~OFE439C JObN TRAC3~:O 

IN ANLDi P1VT3600 TEXl 
[;N(J[)l \JIClVi:7 

4 1 991 • 31 ~ 7 f· 3- -
OCFE439C' JObN TRAC3t,1;0 

GUT ANL{;[ PIVT360c.. HXl 
LNC[;f UIC.UC£ 7 

TIMf 41991.323826 ---
Figure 4-3. VT AM and GTF Traces (Part 6 of 13) 

F 1 *1 * 

t9[5D~~4 C.~C~~84t F3F6FCF~ 4rFGF0F2 4CE4FIC3 
Fl 

C~Clf3tl 4CCZtlf2 C54DCl~7 C1D3CQC3 CIE3C9Cb 
U54('Lc,.C~ f.2[J7u6D~ l~L54CD4 C~E2E2Cl C7C~~04C 
4('404' 40 .,04::4'41'1 .. C41,"·4(-4'.: 4e:4('4"4C 4(>41>4('40 
~(;"'~~'-'4C 4~404~4G 4n4~4~4~ 4~4n4~4~ 4~4~~040 

404(4040 40404('4( 

----

*INQUIRY 3600 C02 UIL* 
*1 * 

*~ATA bA~~ APPliCA1IC* 
*N RfSPGNSE MESSAGE * 

* 
* 
* 

* 
* 
* 

-

~ 
." 

a= 
~ 
9 
fIl -­t"J Q 

= ..... 
~. 
~ ,e 



~ 
W 
t...» 
Q 

o 
~ 
en 
N 

[f 
rt 
!3 

I s 
!3 
$' 

OQ 

t': 
0" 

~ 
~' 
en 
~ 

i' 
o 
~ 
n' 
~ g. 
= .E' 
; 
"" 

- - - - - -- -- EXTFF:NAL TP,AU - DC TAPI 

75 US~FL ~tf ~St~ ~0F~43~( .JUblli TRt.C3cfO 
TPI(;~ ~IUT AN(lCf PIVT3le;) HiE ~OCCDOOC (OB670FG rOb~GOOO RSVu 0000 LNC2 (:(lA4 ~,~Vl. C00C~~OO ~OCOtCOQ 

fd:MLlt: (,f-l(·Dl UICll( 1:7 nl~:t-: lC0021l[l li':Cll"'''CO ; Of}G3'-'0 CO 
TEXT C4LIE3Cl ~OCZCIE~ t54CC187 0703(9C3 Clt:3C9D6 *OA1A ~~Sl A~PLI(ATIO* 

054CDCfC5 £.287Db(\5 !'2Ce; /tCDlo C~E2f2C 1 C7C54040 *N kE~PON~~ HES~~lt: '" 404~4(40 ~c4t4r4C 404C4n~C 4n404G4C 4P4J4C40 * * 
404t~C4n 40404(40 4040404( 40404C4C 40404040 * * 
404(4C40 404 r 4C4C >I' * 

lIM[ 41991. ~?7:J79 
76 kNIC ASCh U~F.4~9C CPU C001 JObN TRAC~~0~ UUT It 0 0211D l~nlG004 C058:390 Or(4C}E3 C140('2Ll 

TJM:; 4199 1. 33;" '163 --- -- - - -- - -
17 LCe 9 f'CF q TIME 07 ~CF 4~ PDf 7F LCu 9 PCF 9 TIME 07 ~('f "'5 PDF 71:; 

LCD '1 P(.F Q TlMf 07 SCf 40 P[~F Cl LCD 9 PCF ,Q TIMF 01 SCf 40 PDF Fl 
LCu 9 I-'CF " TIME 07 SCF 40 PDF 33 LCD 9 PC': 9 TIME 07 SCF 40 PDF 3A 
LCD 9 f'CF 9 TIME 01 SCF 45 PDF 1F LCD 9 PCF 9 TIME 01 SCF 1t5 PDF FF 
LCD 9 PCf 5 TlMf 01 SCF 45 PDF FF 

lIMf- 42085.93Y817 
78 USRFD FF2 ASCb rCFOCD6C JOhN VTAM 

LHH ut-.(,DE P~P73bA [P 00 TIME 00 
LCD 9 PCf 6 TIME 09 SCF CD PDF FF LtD 9 PCF 7 TIME 09 SCF 49 PDF C'l 
LCD 9 PCf 7 TIMF 09 SCF 49 PDF !:.E LCD 9 PCF 1 TIME 09 SCF 49 PDF 2C 
LCU 9 f'CF 1 TIME 09 SCF 49 PDF CO LCD 9 PCF 1 TIME 09 SCF 49 PDF 01 
LCD 9 PCF 7 TIME 09 SCF 49 PDF 01 LCD 9 PCF 1 TIME 09 SCF 49 PDF 00 
LCD 9 PCF 7 TIME 09 SCF 49 PDF OC LCD 9 PCF 1 TIME' 09 SCF 49 PDF 03 
LCD 9 Pc.F 7 TIME 09 SCF 49 PDF 90 LCD 9 PCF 7 TIME 09 SCF 49 PDF CO 
LCD 9 PCF 1 TIME (i9 SCF 49 PDF C9 LCD 9 PCF 7 TIME 09 SCF 49 PDF D5 
LCD 9 PCf 7 TIME 09 SCF 49 PDF 08 LCD 9 PCF 7 TIME 09 SCF 49 PDF f4 
LCD 9 PCf- 1 TIME 09 SCF 49 f'OF C9 LCD 9 PCF 7 TIME 09 SCF 49 PDF 09 
LC[j 9 PCF 7 TIME C9 SCF 49 PDF E8 

TIME 42085.942128 
79 USRF~ FF2 ASCB rOFDCD60 JDBN VTAM 

LINE uNDO£: Pl:-P736A f:P 00 TIME 08 
LCD 9 PCF 7 TIME 09 SCF 49 PDF 40 LCD 9 PCF 7 TIME 09 SCF 49 PDF F3 
LCD 9 f'CF 1 TIME 09 SCF 49 PDF F6 LCD 9 PCF 7 TIME 09 SCF 4'1 PDF, FO 
LCD 9 PCF 1 TIME 09 SCF 49 PDF FO LCD 9 PCF 7 TIME OA SCF 49 PDF 40 
LC[! 9 PCF 7 TIME OA SCF 49 PDF FO LCD 9 PCf 7 TIME OA SCF 49 PDF H 
LCD 9 PCF 1 TIME OA SCF 49 PDF F1 LCD 9 PCF 7 TIME OA SCF 49 PDF 40 
LC[I 9 PCF 7 TIME OA SCF 49 PDF E4 LCD 9 PCF 7 TIME OA SCF 49 PDF FI 
LCD 9 PCF 7 TIME OA SCF 49 PDF C3 LCD 9 PCF 7 TIME OA SCF 49 PDF FI 
LCD 9 PCF 7 TIMl OA SCF 49 PDF CB LCD 9 PCF 7 TIMe; OA SCF 49 PDF 85 
LCD 9 PCF 6 TIME OA SCF 00 PDF 85 LCD 9 PCF 9 TIME OA SCF 45 PDF 00 
LCD 9 PCF 9 TIME,OA SCF 45 PDF 7f 

TIME 42(-85.942605 
80USRFD FF2 ASCB OOFDC060 JOBN VTAM 

LINE ONODE PE:P73tA [P 00 TIME' OB 
LCD 9 PCF 9 TIME OA SCF 45 PDF 7E LCD 9 PCF 9 TIME OA SCF 45 PDF 1E 
LCD 9 PCF 9 TIME: OA SCF 40 PDF CI lCO 9 PCF 9 TIME OA SCF 40 P.OF 11 
LCD 9 PCF 9 TIME OA SCF 40 PDF 3D LCD 9 PCF 9 TIME OA SCF 40 PDF 00 
LCD 9 PCF 9 TIME OA SCF 45 PDF 7E LCD 9 PCF 9 TIME OA SCf 45 PDF FF 
LC[) 9 PCF 5 TIME OA SCf 45 PDF FF 

TIME- 42085.943443 
"",.....,., - -

Figure 4-3. VT AM and GTF Traces (Part 7 of 13) 

::-J 

a 
~ a 
fIj 

.­
() 
o a s· 
~ 
~ 



.-, 

~XTERNAL TRACE - DO TAPE 

81 USRFD FEF ASCS 00FE4390 JObN TRAC3600 
TPIOS IN ANODE PIVT360C FOB 00000000 00B67369 00150000 RSVD 0812 lNG2 OOCO 

REMOTE ONOOE U1CllOE7 F~B 022COOOO 00000000 10012110 OOOCOOOO 00000000 OOOOOOO'\) oooooooe 00180000 
THRH 1COOI001' 2110(100C-00180390 OC 
TEXT C90508E4 C9D9E840 F3FbFOFO 40FOFIF1 4OE4FIC3 *INQUIRY 3bOO Oil UIC* 

FI *1 * 
TIME 42085.948765 

USRFO FF1 ASCB 00FE4390 JOE:;N TRAC3600 
ell IN ANODE PIVT3600 TEXT C9D5v8E4 C909f84C F3F6FOFO 40FOF1Fl 40E4FlC3 *INQUIRY 3600 011 UIC* 

ONOOE UIC'1l0E7 Fl *1 * 
TIME 42085.956048 . 

USRFO FF1 ASCB 00~E4390 JOBN TRAC3600 
C/l OUT ANODE PIVT3000 TEXT C4CIE3CI 40C2Cl£:2 C540CI07 0703C9C3 C1E3C90b *OATA BASE APPlICATIO* 

ONODE UICILOf7 0540D9C5 E207D605 E2C540D4 C!1E2E:2Cl C7C54040 *N RESPONSE ME:SSAGE * 
40404040 4('404040 40404040 40404040 404C4040 * * 
4C404040 40404040 4C40404r 404n4C4C 40404040 * * 

82 USRFD FEF ~sce OOFF4390 JOSN TRAC36fO ~ 
.." 

TPIOS OUT ANODE PIVT3600 FOb 00000000 00867348 C06~00OO RSVD 0000 LNG2 00A4 RSVD 00000000 OOOCOOOO .." 
REMOTE DNODE UICILOE:7 THRH IC00211D 10010000 00000390 CO .. 

TEXT C4Clf3Cl 40C2tlE2 C540C1D7 0703C9C3 CIE3C906 *OATA BASE APPLICATIO* g. 
054009C5 E2070605,E2C540D4 C5E2E2Cl C7C54040 *N RESPONSE MESSAGE *. ;'" 
40404040 4040404C 40404'::40 4040404Q 40404040 * * a 

fIJ 
40404·040 404(14040 40404041) 41)4(4040 404()4C40 * * .-
4040404~ 4r4"4040 * * 

() 
Q 

TIME 42085.970723 = -83 USRFD FF2 ASCS OtFDCD60 JOEN VTAM s· 
LIM DNODE: PFP7:;;6A E:P co TIME CF ; 

LCD 9 po- 6 lIME DC SC,F 00 POF fF LCO 9 PCF 7 TIME DC SCF 49 PDF CI Q. 
Lce 9 H.F 7 TIME UC SCF 49 PDF 51 LCD 9 PCF 7 TIME DC SCF 49 PDF 39 --LCfI 9 PCF 7 TIME OC StF 49 PDF 9F LCD 9 PC'-: 6 TIME ct SCF 00 PDF 9f 
LCD 9 pet- <.1 TIME OC SCF 45 PDF 00 LCD 9 Pcr- 9 TIMf. (lC SCF 45 PDF 7E 
LtD 9 PCF 'i TIME OC S(.F 45 PDF 7E LCD 9 PCF 9 TIME DC SCF 45 PDF 7E 
LCD 9 PCF S- TIME cc StF 40 PCF Cl LCD 9 PCF 9 TIME Ot SCF 40 PDF 04 
LCD 9 PtF 9 TIME DC SCF 40 PDF 2A LCD 9 PCF 9 HME OC SCF 'to PDF CO 
LCC 9 f'CF 'i TIME OC . SCF 40 PDF 01 LCD 9 PCF 9 TIMf: DC SCF 40 PDF rl 
LC.I. 9 PCF- 9 TIME OC SCF 40 PI)F 00 LCD 9 PCF 9 TIME DC SCF 4C PDF 00 

ff Leo 9 peF 9 TIME (-(. S('F 4C PDF 03 
(') TIME 420&6.537157 ;to 

8 84 USRFD FF2 .ASCS CC.FOC[lb0 JOBN VTAM 
LINE UNODE PfP736A E P 00 TIMI: Of: 

~ LC[) 9 I-'CF C) TIME OC S(.F 4C PDF 90 LCD 9 PCJ-= 9 TIMl: OC S('F 40 PDF riO 
~ LCL 9 P(.F 9 TJ"'E nc SC.F 40 POF C~ L(.9 9 PCF 9 TIME 0(, S('F 40 PDF Cl 
a LCf) 9 PCF 9 TIME OC SCF 40 PLF E3 L(.I:; 9 PCF 9 TIMl: oe S('F 40 PDF Cl 

"I:S LCD 9 P('F C; TIME: OQ SCF 4Ci PDF 40 ·LCD 9 PCF 9 TIMl: OD ::'CF 4(1 Pl.F C2 .... 
·0 LCD 9 PCF CI TIM( O[} SCF 4() P[}F C1 lCD 9 peF 9 UMF OD SCF 40 P[;F E2 a LC[: 9 PCF 7' TIME C·D SCF 4(\ PDF C5 LCD 9 PCF 9 TIM!: Of) SCF '40 PDF- ~o 

~ LC!) 9 H.F .,.. TIMt cn SCF 40 ~DF Cl LCD 9 PCF 9 TIM£. 00 SCF 40 PDF- li7 
'e?, LCu <;, PCF 9 TIME- 0[1 SCF 40 PDF 07 LCD 9 PCF 9 TIM£; O~ SCF 40 PDF 03 
"< LCu 9 PCF 9 UMf:' 0[: SCF .. 0 pt;.F e9 LCD 9 PCF Cj TIME OD SCF- 4f) PDF- C3 ~. 
flO) U .. r, '1 PC.F ':' TIME (o[) SCF 40 PDF Cl 
.t' 11M[ 42(·!<0.537[;43 
"I:S a 
~ =-

- --
~ Figure 4-3. VTAM and GTF Traces (part 8 of 13) 
~ 
~ ..... 



~ 
W 
N I, c, 

EXT~kNAL TRACE - DO TAPE 
N 

85 USRFD FF2ASCB CO~OtOt:O JGbN VTAM 

0 
LINE Dr'WDl PEP736A [P OC lIMr or 

rn LtC. 9 PtF 'i TIME: 0D SCF 4() PDF [3 LCD 9 PCF 9 TIME 0[' SCF 40 PDF C9 
"< LCD 9 PCF <j TIME 00 ~(F 40 PDF [J6 LeL 9 PCF- 9 TIME 00 SCF 40 PDF [,5 
rn LtL 9 peF 9 TIME 0[; SCF 40 P[;F 40 LCD <1 PCF 9 TIMf ClI ~CF 40 PDF 09 N LCD 9 PtF 9 TlMl CO S(f- 40 PDF C~ LCD 9 PCF Cj TIME 00 SCF 40 rn PCF 1:2 
'< LCV 9 PtF 9 TIME OU ~CF 40 PDF 07 LCD 9 PCF 9 TIM~ 00 ~CF 40 PDF rJ6 fI> 

S- LtD 9 PCF '1 TIME 01) SCF 40 PDF ')5 LCD 9 PCF 9 TIME 00 SCF 40 PDF l2 
!3 LCD 9. PCF 9 TIME 00 SCF 4(0 PDF C5 LCD 9 PCF 9 TIM[· 00 SCF 40 PDF 40 
"'CI LCD 9 P(F <;# TIME. 00 SCF 40 P[.F 04 LCG 9 PCF 9 TlME OU SCF 40 PDF. (5 Jot 
0 LC[ c;. PCF 9 TIME G[l SCF 40 P['F 1:2 
~ lIME 42086.53&5C4 r» 

= 86 USRFD FF2 ~SCB COf'DCDtC' JOel'" VTIoM 
!3 LINE DNCDE P!:P136A EP CO T J~I: 11 er LCL' 9 fltF 9 TIME OL SCF 40 P[;F E2 LCD 9 PCF 9 TIM~ Of: SCF'40 PDF Cl OQ 

~ LCD 9 PtF 9 TIME. C[ SCF 40 PDF C1 LCD 9 PCF 9 . TIME OE SCF 40 PDF 42 
~ Lcn 9 f'CF .:; lIMf OF SCF 40 PDF 01 LCD 9 PCF 9 TIM!:' OE SCF 45 PDF 7E: ." ; LCD 9 1'0 '/ TIME: O~ SCF 45 PDF 1£ LCr' 9 PCF 9 lIME OE StF 45 "'DF 1E: ." '3 LCG 9 PCF I.j TIME Of SCF 45 FDF 1£ Lce 9 PCF 9 TIMt Of SCF 40 PDF Cl ... 
0 

a:: LCD 9 reF '7 lIME O~ SCF 40 P~)F 11 LCD 9 PCF 9 TlM~ OE SCF 40 PDF 3D ~ 
-< LCD 9 PCF "I TIME Of SCF 40 I'DF DO LCD 9 PCF 9 TIME ('E SCF 45 PDF 7E tD a .rn LCD 9 PCF q TIMt: ~; E ~CF 45 PDF F-F LCD 9 PCf 5 lIME: OE SCF 45 PDF FF fIJ 

~ LCD 9 PCF b TIME 10 SCf 00 PlJF ~F LCC 9 peF 7 TIME 10 ~CF 49 PDF Cl --~ LC[; 9 PCF -, TIME 1(1 SCF 4'1 PDF 71 () 
0 

TIME 42056.54C84(. 
== 0 .... 

!. 87 USRFD FF2 ~.SCE OOfDC.DbC J(IBN Vl AM 5· 
n LINE DNDlJE P U'13bA '.:P 00 TIMl 11 = ~ LUj 9 PCF 1 TIM!:'. Ie SCF 49 PDF 3B LCD 9 PCF 7 TIM.., 10 SCF 49 P[)F b£: tD 
(D Q. 
n LCD Y PCF t TIME: 10 SCf- DO PDF bE LC[' 9 PCF 9 TIME 10 SCF 45 PDF OC '-' =-e. LCG 9 PCF Y TIME lC SCF 45 PUF 71: Lcr. 4 PCF 9 TIME 10 SCF 45 PDF 11: 
.c Lce Ii PCF .., TIME 10 SCF 4!> F['F 7~ LCl; q PC~ 9 TIME 10 SCF 40 PDF Cl c: 
(D LC[. 9 PCF <f lIME- H~ SCF 4() t'CF (:6 LCD 9 PCF 9 TIME 10 StF 40 PDF 26 fI> 

LCO 9 PCt' 9 TIME 1'" set- 40 PDF oa LCD 9 PCF 9 TIME 10 SCF40 PDF l'l 
L([j 9 PCF 9 TIME" 10 SCF 40 PDF '01 LCD <1 PCF 9 TIMf: 10 SCF 40 PDF 00 
LCD 9 PCF 9 TIME 10 SCF 40 PDF Or\ LCD 9 PCf- q TIME lC' ~CF 4(1 PDF t5 
LCC 9 I'C~ 9 TIMF 10 SCF 40 V()F 4') LCD 9 PCF 9 TIMf 10 SCF 40 PDF 40 
LCD 9 P('F " TIME It SCF 40 PDF 40 

TIME 42Ci8b.54149~ 

88 USRFD FF2 ASCB OCFDCD60 JOBN V1AM 
LINE: DNOOf PI:P736A I:P 00 lIME 11 

LCD 9 PCf- 9 TIME 10 S('F 40 PDF 40 LCD 9 PCF 9 TIME. 10 SCF 40 PDF 40 
LCD 9 PCF 9 TIME 10 SCF 40 . PDF 40 

TIME 42086.542112 
89 USRFD FF2 ASCB ('OFDCObO JOHN V1AM 

LINE:- DNDDE: PE:P7:::,6A EP 00 TIM!: 13 
LCD 9 f>Cf 9 TIMf 11 SCF 40 PDF 40 LCD 9 PCF 9 TIME 11 SCF 40 PDF ~o 
LCD 9 P(.F 9 TIME: 11 SCF 40 PDF- 40 LCD 9 PCF 9 TIME 11 SCF .40 PDF 40 
LCD 9 PtF q TIME 11 SCF 40 PDF 4(1 LCD 9 PCF 9 TIME 11 SCF 40 PDF 4'0 
LCD 9 P(F 9 TIME 11 SCF 40 PDF 40 LCO 9 PCF 9 TIMF 11 SCf 40 P[IF 40 
LCD 9 PCF 9 TIME 11 S(.F 40 PDF 40 lee 9 PCF 9 lIME,l1 SCF 40 PDF 40 
LCD 9 PCF '-I TIME 11 SCF 40 PDF 40 LCD 9 PCF 9 TIME 11 $CF 40 P[)F 40 
LCD 9 P(.F 9 lIME 11 SCF 4CJ f>OF 40 LCD 9 PCF 9 TlMf 11 ~CF 40 PDF 40 

. Figure 4-3. VTAM and GTF Traces (part 9 of 13) 

~ 



f€l 
(') 

d'. 

~ 
f: 

!R a 
"0 
~. 

~ 
ea. 
'< 
~. 
I:fl 

~ 
"0 ... 
o 

.1\) 

go 

~ 

iN 
~ 
IN 

~ 

LCD 9 PCF 9 TIME: 11 
LCD 9 PCF 9 TIME 11 
LCD 9 PCF 9 TIME 11 

TIM!: 42087.037982 
90 USRFC FF2 ASC6 OOFDCObO JOhN VTAM 

LINE DNDDE P!:P736A EP 00 
LCD 9 PCF 9 TIME 11 
LCll 9 PCF 9 TIME 11 
LCD '1 PCF 9 TIME 11 
LCD 9 PCF 9 TIME 11 
LCD 9 PCF 9 TIME 11 
LCD 9 PCF 9 TIM£: 11 
LCD 9 PCF 9 TIME 12 
LCD 9 PCF 9 TIME 12 
LCD 9 PCF 9 TIME 12 
LCD 9 PCF 9 lIME 12 

TIME 42087.03&683 
91 USRFD FF2 ASCB DOFOCD60 JOBN VTAM 

lINE oNDDE PtP736A EP 00 
LCD 9 PCF 9 TIM!:: 12 
LCD 9 PCF 9 TIME 12 
LCD 9 PCF 9 TIME 12 
lCO 9 PCF 9 TIME 12 
LCD 9 PCF 9 TIME 12 
LCD 9 PCF 9 TIMf 12 
LCD 9 PCF 9 TIME 12 
LCD 9 PCF 9 TIME 12 
LCD 9 PCF 9 TIME 12 
LCD 9 PCF 5 TtME 12 

TIMF 42087.039365 
92 USRFD FF2 ASCB OOFDCD60 JOBN VTAM 

LINE DNODE PE.P73bA EP 00 
LCD 9 PCF 6 TIME 14 
LCD 9 PCF 7 TIME 14 
LCD 9 PCF 7 TIME 14 
LCD 9 PCF 9 HME 14 
LCD 9 PCF 9 TIME 14 
LCD 9 flCF 9 TIME 14 
LCD 9 PCF 9 TIME 14 
LCD 9 PCF 9 TIME 14 
LCD 9 PCF 5 TIME 14 
LCD 9 PCF 7 TIME 14 

TIME 42087.041704 
93 USRFD FF2 ASCS 00FDCD60 JOSN VTAM 

LINE DNODE PE:P736A EP 00 
LCD 9 PCF 7 TIME 14 
LCD 9 PCF 7 TIME 14 
LC~ 9 PCF 9 TIME 14 
LCD 9 PCF 9 TIME 15 
LCD 9 PCF 9 TIME 15 
LCD 9 PCF 9 TIME 15 

Figure 4-3. VT AM and GTF Traces (Part 10 of 13) 

-~ 

fXTFRN~L TRACE - DD TAPE 

SCF 40 PDF 40 LCD 9 PCF 9 . TIME- 11 
SCF 4Q PDF 40 LCD 9 PCF 9 TIME 11 
SCF 40 PDF 4(1 

TIME. 13 
SCF 40 PDF 40 LCD 9 PCF 9 TIME 11 
SCF 40 PDF 40 LCD 9 PCF 9 TIME. 11 
SCF 40 PDF 40 LCD 9 PCF 9 TIME 11 
SCF 40 PDF 40 LCD 9 PCF 9 TIME 11 
SCF 40 PDF 40 LCD 9 PCF 9 TIME 11 
SCF 40 PDF 40 LCD 9 PCF 9 TIME 12 
SCF 40 PDF 40 LCD 9 PCF 9 TIME: 12 
SCF 40 PDF 40 LCD 9 PCF 9 TIME 12 
SCF 40 PDF 40 LCD 9 PCF 9 TIME 12 
SCF 40 PDF 40 

TIME 13 
SCF 40 PDF 40 LCD 9 PCF 9 TIME 12 
SCF 40 PDF 40 LCD 9 PCF 9 TIME 12 
SCF 40 PDF 40 LCD 9 PCF 9 TIME 12 
SCF 40 PDF 9F LCD 9 PCF 9 TIME 12 
SCF 45 PDF 7E LCD.9 PCF 9 TIME 12 
SCF 45 PDF 7E LCD 9 PCF 9 TIME 12 
SCF 40 PDF Cl LCD 9 PCF 9 TIME 12 
SCF 40 PDF 3D LCD 9 PCF 9 TIME 12 
SCF 45 PDF 71: LCD 9 PCF 9 TIME 12 
SCE' 45 PDF FF 

TIME 16 
SCF 00 PDF FF LCD 9 PCF 7 TIME 14 
SCF 49 PDF 91 LCD 9 Pt-F 7 TIME 14 
SCF 49 PDF 59 LCD 9 PCF 6 TIME 14 
SCF 45 PDF 00 LCD 9 PCF 9 TIME 14 
SCF 45 PDF 7E LCD 9 PCF 9 TIME 14 
SCF 40 PDF C1 LCD 9 PCF 9 TIME 14 
SCF 40 PDF 30 LCD 9 PCF 9 TIME 14 
SCF 45 PDF 7E LCD 9 PCF 9 TIME 14 
SCF 40 PDF FF LCD 9 PCF 6 TIME 14 
SCF 49 PDF Cl 

liME 10 
SCF 49 PDF 91 LCD 9 PCF 7 TIME 14 
SC.F 49 PDF ~9 LCD 9 PCF 6 TIME 14 
SCF 45 PDF CO LCD 9 PCF 9 TIME 15 
SCF 45 PDF 7E LCD 9 PCF 9 TIME 15 
SCf 40 PDF Cl LCD 9 PCf 9 TIME 15 
SCF 40 PD·F 3D LCD 9 PCF 9 TIME 15 

SCF 40 PDF 40 
SCF 40 .-[iF 40 

SCF 40 PDF 40 
SCF 40 PDF 40 
SCF 40 PDF 40 
SCF 40 PDF 40 
SCF 40 POF 40 
SCF 40 PDF 40 
SCF 40 PDF 40 
SCF 40 PDF 40 
SCF 40 PDF 40 

SCF 40 PDF 40 
SCF 40 PDF 40 
SCF 40 PDF 40 
SCF 40 PDF 02 
SCF 45 PDF 7E 
SCF 45 PDF 7E 
SCF 40 PDF 11 
SCF 40 PDF DO 
SCF 45 PDF FF 

SCF 49 PDF C1 
SCF 49 PDF 35 
SCF 00 PDF 59 
SCF 45 PDF 7E 
SCF 45 PDF 7E 
SCF 40 PDF 11 
SCF 40 PDF DO 
SCF 45 PDF FF 
SCF 00 P(JF FF 

SCF 49 PDf 35 
SCF 00 PDf 59 
SCF 45 PDF 7E 
SCf 45 PDF 1E 
SCf 40 PDf 11 
SCF 40 PDF DO 

'3 

~ 

""" 

J 
a 
fIJ -­() g .... 
~. 

-e 



~ 
W 
N 
~ 

o 
CIl 

"< 
CIl 
~ 

~ 
c:I> 

S­a 
~ 
~ a 
a 
5· 

CJQ 

t:'! 

f 
a:: 
~ 
S2 
«! 
i g. 

~ a. 
i 

c:I> 

lCLI 9 PCF 9 
lCD 9 PCF 5 
lCD 9 PCF 1 
lCD 9 PCF 1 

TIME 42081.042310 

... ~ '---
94 RNIO ASCS 00FE4390 CPU 0001 JObN TRAC3bOO 

TIMf 42224.350661 
95 USRFO FEF ASCB OOFE4390 JObN TRAC3600 

TPIOS IN ANODE P1VT3600 FOB 
REMOTE ONODE UICll0E1 FSB 

THR~ 

TEXT 

TIME 
96 USRFD FFI ASCS 

C/l 

TIME 
97 USRF£: FF 1 ASCf 

C/l 

42224.35366~; 

OOFE4390 JOSN TkAC3600 
IN ANODE P1VT3bOO TEXT 

DNODE UIClLOE7 
42224.351028 

OOFE4390 JObN TRAC3bOO 
OUT ANODE ~IVT3600 TEXT 

ONODE: UIClLOl:1 

TIME 42224.365018 
98 USRFO FEf- ASC£) OOH4390 JOlN TRAC3H,~ 

EXTERNAL TRACE - 00 TAPE 

TIME 15 SCF 45 PDF 1E lCO 9 PCF.9 TIME 15 SCF 45 PDF FF 
TIME 15 'SCF 40 PDF FF lCD 9 PCF b TIME 15 SCF 00 PDF FF 
TIME 15 SCF 49 PDF C1 lCD 9 PCF 1 TIME 15 SCF 49 PDF 91 
TIME 15 SCF 49 PDf 35 

IN 1COOI00121100017 00180390 00C90508 E4C909E8 

00000000 00B61111 ~0150000 RSVO 0812 lNG2 OOCO 
022COOOO 00000000 10012110 00170000 00000000 00000000 00000007 ~1800CO 
lCOOI001 211D0011 00180390 00 
C90508E4 C9D9E8~0 F3F6FOFO 40FOF2F2 40E4FIC3 *INQUIRY 36CO 022 U1C* 
Fl *1 * 

C90508[4 C9D9[840 F3F6FCfO 40FOF2F2 4DE4FIC3 *INQUIRY 3600 022 U1C* 
F1 *1 * 

C4C1E3Cl 40(2CIE2 C54CCI01 0703C9C3 CIE3C906 *OATA BASf APPlI(ATIO* 
054009C5 [2010605 £2(54004 C5E2E2Cl C1C54040 *N RESPONSE MESSAbE * 
40404040 40.404(;40 40404040 40404040 40404040 * * 
40404040 40404040 40404040 40404040 40404040 * * 
40404040 40404Q40 * * 

Tf'lOS OUT ANODE PI VT3600 FOB OO'd)(..OC>O cOB670FO 
REMOT~ DNODE UICll0E7 THRH 1(002110 10010000 

00650000 RSVO 0000 LNG2 OOA4 RSVD COCOOO~ 0 Qr.,OOOOOO 

99 RNIO AStB 

100 RNIO ASC8 

101 USRFD FEF 

TIME 42224.36E637 

TEXT C4C1E3Cl 40C2CIE2 
D~4009C5 E2D7DbD5 
40404~40 40404040 
40404n 40 4C40404r 
40404,:40 404(\4(,40 

00000390 00 
C540CI07 07D3C9C3 
E2C54004 C5E2E2Cl 
4040404C 4C404040 
404~,4{\4':-' 4C4G4040 

Clf3C906 
C7C54040 
40404040 
40404040 

*OATA BASE APPlICATIO* 
*N RESPONSE MESSAGE. * 
* * 
* 
* 

* 
* 

COFF4390 CPU 0001 JObN TRAC36CG OUT lE00211D 10010018 005B0390 OOC4CIE3 C140(2Cl 
lIM[ 42224.375301 
OOFE439( CPU("~~1 JObN A('3bOO IN 1(,001001 21100018 O~180390 COC9D5D8 E4('909E8 
TIME 42231.552094\ 
ASCS COFt4390 JOBN TRAC36~O 

TPIOS LUT ANOOE PIVT36C0 FOb ocoeoooo (0867280 OOOEOOOO RSVD COOO lNG2 COA4 RSVD 00000000 00000000 
kEMnT~ DNODf UICIlOE7 HMH lC002110 10010000 20006B80 00 

T XT Al *. * TIME 4?23f:.C343Q2 . 
102 RNIO ASCo (OF f"4390 CPU COCI JOBN TRAC36C,_ 

lIME 4L23~.b52~~O ' 
103 USRF r HF ASCP 0 vFE439C JOt.N TRAC36';O 

TPI0S IN ANODE PIVT3600 fDB 
klMOT[ DNOOE UICILOE7 FSB 

THRH 
next 

lIHF- 42238.691~21 

-

FigUre 4-3. VTAM and GTF Traces (Part Hof 13) 

~ 

IN IFOOIOOI 21100003 0004EB80 OCA1 

00000000 "0667111 COCIOOOO RSVO 0812 lNG2 OOCO 
0~2COOCO 00000000 I~CI2rlD 0003CDct oooeoooo 00000000 (OeOOOoo OC04COOO 
IFOOIDCl 21100003 0004EB80 00 
Al *. * 

~ 

~ 

~ 

~ 
::p 
g. 
[ 
f'-I -.. 
(') 

g -! 

\ 



~ 
(') 

d". g 
~ 

~ a 
'0 

i 
~ 
~ 
~. 

~ 
'0 

i 
~ 

~ 

- - -- -- -- -EXTERNAL TRACE - DO TAPE 

104 USRFfJ HF ASCB OOH4-390 JO~N TRAC36('.O 
TPIGS OUT ANODE PIVT3bOO 

REMOTE DNOOt U1CILCE7 
FOB 00000000 GOBblQ28 OOOFcono RSVD croe 
THRH lCCC211D 10010000 C:006880 00 

LNG2 C0A4 PSVO OODocaso CQOOGboo 

105 RNIO ASCS 

106 USRFD HF 

TEXT 3201 * •. * TIME 4223E.717014 
OOFE43YO CP~ 0001 JOBN TRAC36CO 
TIME 42239.251781 
ASCB OOFt439Q JOBN TRAC3b~O­

TPIOS IN ANUDe P1VT3bOO FOB 
R~MOTE ~NOOt UIC1LOE7 FSb 

THRH 
TEXT 

TIMr 42239.254&10 

IN IFOOI001 211UCCOl 0004Eb~O 0032 

toco~~oo OOeb75Cl 0001000e RSVD C812 lNG2 OOCO 
C22C0000 00000000 1001211D 00010000 oeOraDOO OOOOOOCO OO~OOOO 00040000 
IFnDl~Ol illDOOOl rOC4fB8C 00 
32 *. * 

1W USRFU FEF ASCB ODFDCD60 JOBN VTAM 
TPIOS OUT ANODE VTAM 

REMOTE DNODE UICILOE7 
FDB 000000:0 OOB~75AO r-OE0000 RSVD 00(;(' lNC;2 rCA4 RSVD 00000000 oooooeoo 

TIME 42253.494622 
108 RNIO ASCB ft"FDCD6(" CPU 0001 JOBN VT AM 

TIME 42253.499154 
109 RNIO ASCB OOFDCObO CPU 0001 JOElN VTAM 

TIME 42254.054066 
110 USRFD FEF ASCB COFDCDbO JOliN VlAM 

TPIOS IN ANODf VTAM 
REMOTE DNOU~ UICILCE1 

TIME 42254.121367 

*** DATE: DAY 168 YEAI<. 1975 

111 USRFD FH ASCB OOFDCD60 JOhN VTAM 
TPIOS OUT ANODE VTAM 

REMPTE DNODE Clll0b7 

TIMf 42263.944e7b 
112 RNIO ASCb 00FDCD60 CPU «01 JDBN 

TIME 42263.952790 
113 RNIO ASCB OOFOCObO CPU COOl JuBN 

TIME 42264.555b~1 

114 USRFD FEF ASC5 00FDCD60 JOBN VTAM 
TPIOS IN ANODE V1AM 

REMOTE UNODE tLll0~7 

VTAM 

VTAM 

THRH lC00211D 100COOOO r0006B8C 00 
TEXT OE *. * 

OUT IFOC211D 1(000002 00046680 OOOf: 

TN IFOOIUOO 21}00002 0004~&~C OOOf 

FDB ooooeOOD UOBb72Al ~OO10000 RSVD 0812 lNC;2 ooco 
FSE 'J22COOOCt :;OO))O}O'; 1(,'02110 0;;020:00 ooocoooo 00000000 00000000 00040000 
THRH IFOOI000 21100002 C004EB80 DO 
HXT uf *. * 

TIME 16.44.23.800573 **. 

FOB 00000000 10B67280 ~~OFCOCO RSVO 0000 LNG2 OOA4 kSVD 00000000 00000000 
THRH lC00211C 10000000 00006e80 00 
TfXT 1202 * •• * 

OUT IF00211C 10000002 00056880 001202 

IN IFOOI000 211C0002 ~~04fB80 C012 

Foe 00000000 008&75(1 00010000 RSVO 0812 lNG2 OOCO 
FSE 022c0600 00(00000 100021]C 00020000 COOCOOOO 00000000 00000000 00040000 
THRH IF001000 211COOC2 nOC4EB8C 00 

TIME 422b4~55q330 

115 USRFD FEF ASCB otFDCDbC JOeN VTAM 
TPIOS OUT ANOCE VTAM 

REMOTE DNOuE PeP730A 

TIME 42264.582179 
116 RNIC ASCB COFDCD60 CPU 0001 JUBN VTAM 

TIME 42264.~665b7 

lEXT 12 

FOB 00000000 GCB675AC ~0120000 RSVD 0000 
THRH lCC02000 10000000 00000BbO 00 
TEXT 01020221 lC 

*. 

lNG2 r;I)A4 

* ••••• 

OUT IfC0200C lSOOC034 OOQ&~B8C OCDIr2C2 lIIC 

-

• 

"SVD 00000000 00000000 

* 

~ Figure 4-3. VTAM and GTF Traces (Part 12 of 13) 

..,;j 
""0 

~ 
0 s: 
('I) 

!3 
fIl --(") 0 
::I -9· 
s:: 
('I) 

~ 



.,.,. 
w 
~ 

o 
~ 
f'-l 
N 

~ 
i a 

f a 
5· 

OQ 

!: 

f 
~ 
f'-l 

52 
c§ 
i (I). 
~ 
So a. 
1 

U> 

- -
117 RNIO A$CE, (lOFDC(;t,O CPU (;001 JOBN VTAM 

TIME 42264.9~~744 

118 USRHI FfF ASC& COFlJCDbC) Jue,'l VTAM 
TPIOS IN ANO~E VT~M 

REMClt DNC'Di:: PEP73t.A 

TIMl 4~264.9592b3 

119 USRFD HF ASCI: 00F[lCU60 JObN VHM 
TPlcis GUT ANODE VTAM 

REM0Tf ONUOE P~P73~A 

TIME 4226~.197C3& 

120 RNIO ASCf:i OOFCCD60 CPU O{)C 1 JOf.N VTAM 
TIME 422b5.2C2C27 

121 RNIO AseB (OmCDoD CPU COOl JUBN Vl AM 
TIM~ 42210.35~ao4 

122 USRFO HF ,ASCB COfDCDtO JOPN VTAM 
TPIOS IN ANODE VTAM 

REMOTE DNO~f Pf~736A 

TIME 42270.35~397 

Figure 4-3. VTAM and GTF Traces (Part 13 of 13) 

-rXTtkNAlTkAC[ - DO TAP[ 

IN 1~DC1300 2C~QCC34 C0069SAC GOOI0202 

~Db 00000000 (Oh672Al CCC30COC Rsvn 0812 LNG? roce 
FSB 622C0000 (0000000 ]~C~2~CS C034COCO r00cCono JCOOOOCG [00"00eO O~CbCOOO 
THRH lEOOlf00 2CD00)34 ~OC69BHC 0r 
TlXT 01~202 *... * 

FOL (OOOOODe CClb7?RD (0120000 RSVD 0000 lNC2 ~DA4 kSVV ~OOCOCOO 00000000 
THRH lCG02000 Il000000 ~CCCCB8( O~ 
T~Xl QIC20b21 IB * ••••• * 

OUl I£Ot2[00 I 0 0C0035 C00BC~6C 0001~20f 211t 

IN 1[001000 2~OOD035 000698eo 00010208 

FOE OCOOCOOC tOb675Cl 00030000 RSVD 0812 lNG2 O~CO 
fSb 022COOOO 00000000 100C2COO 00350[OC 00000000 00000000 00000000 00060000 
THRH If 001000 20000035 00069ErD 00 
lEXl 0102)b * ••• * 

~ 

J 
fIJ -­() g ... 
~. 

! 



TP Problems (continued) 

Notes on Examples 1 and 2 

1. Mappings of the data in the various trace entries are not included. Blocks such as 
FDB and FSB are described in VTAM manuals, OS/VS2 VTAM Logic and 
OS/VS2 VT AM Data Areas. 

PIU formats can be found in the 3704/3705 Program Reference Handbook. 
Those PIUs that accomplish a function other than transfer of data between an 
application and a terminal have a network command in the RU (as shown in 
entry 3 of the examples). Most are detailed in the "Network Commands" 
section of the 3704/3705 Program Reference Handbook. Network commands 
that the NCP must process are shown in more detail in the "Network 
Commands" appendix in IBM 3704 and 3705 Communications Controller 
Network Control Program/VS Logic. 

For a full understanding of the line trace entries, refer to 3704/3705 
Communications Controller Principles of Operation for ICW field definitions. 
SDLC commands and N(R) - N(S) processing can be seen in the trace examples 
(at entries 83-93). The IBM 3704 and 3705 Program Reference Handbook 
section "SDLC Commands and Responses", and IBM Synchronous Data Link 
Control General Information may be useful. 

2. Data flow between the application and the LU is on an exception-response-only 
basis. Other PIUs request positive FME acknowledgement, and the FMEs can be 
seen in the trace examples (at entry 8). 

3. No pacing is used; it was not included in the NCP definition. 

4. Note that the line trace shows the outbound PIU (see entry 82) changed from 
the FIDI TH (transmission header) format that was transferred to the NCP, 
into a FID2 format TH that is sent to a cluster controller (see entry 83). Also 
note that the NCB segmented the PIU during transmission to the controller. 
The length of the PIU was greater than the MAXDATA operand for the 
controller in the NCPgeneration (66 in this NCP), so it was broken into two 
segments. The second segment is sent (starting in entry 87). 

5. At the beginning of each PIU transmission, there are three or four flags set 
(X'7E') because a temporary "superzap" was made in the-NCP at the time the 
trace was made. Normally only one flag would be sent. 

Section 4: Symptom Analysis Approach 4.3.27 



TP Problems (continued) 

Summary 

Wh~n symptoms are intermittent or confusing, the debugger should be aware that 
there is some variable present that he hasnot recognized. In such situations, 
assumptions are dangerous, yet it is very easy and common to focus immediately 
on the wrong process as the location of a problem and assume that other steps 
must be correct. Using the traces in the TP components should help the debugger 
to make fewer assumptions. 

A less obvious benefit of these traces is their educational value. NCP line traces, 
for example, illustrate from actual examples the workings of TP line protocols and 
their use with different devices. These protocols are important when "what if' 
situations need to be projected and when line errors or terminal errors can be 
translated into some of the none-too-obviou.s external symptoms that sometimes 
result. Then, symptoms may be seen later in terms of possible component errors 
and traces or traps can be used to confirm suspicions. 

As discussed earlier, an operator command turns on (or off) a trace for one 
node. Sometimes, many or all terminals of a certain class or on a set of lines need 
to be traced. Depending on when an error is occurring, or on the connection 
design of a network, tracing sometimes should start as soon as the NCP is activated. 
A trace can be started when the NCP is activated (see Operator's Library: VTAM 
Network Operating Procedures or, Operator's'Library: OS/VS TeAM Level 10), 
buf if several must be started, the following technique has proven useful. 

In the NCP definition, code INITEST=YES on the PCCU macro, but do not put 
an INITEST DD card in the VTAM procedure. Upon activation of the NCP, VTAM 
asks the operator if he wants to bypass initial test. At this point the network is 
defined inside VT AM so traces can be started by, operator command, but the NCP 
has not yet been loaded. Start as many traces as desired and reply to bypass initial 
test. After your reply, the NCP will activate. -This technique was used to trace the 
initialization sequences shown in the first trace example. 

4.3.28 OSNS2 System Programming Library: MVS Diagnostic Techniques 



TP Problems (continued) 

VTAM Buffer Trace Modification 

Many operator commands are required if all nodes are to be traced. However, 
VTAM modules can be superzapped to trace unconditionally. The examples that 
follow are intended only to illustrate a technique for gathering information. They 
may be applied differently to suit individual situations. 

Various techniques can be used for a VT AM buffer trace. Buffer trace for a 
node is indicated by bits in the 'RDTE (resource defmition table entry) and in 
the FMCB (function management control block) that describe a session. Module 
lSTOCCFB creates the FMCB and, by temporarily modifying it to create all 
FMCBs with trace bits on, causes buffer trace to always be done. 

NAME 

ver 

ver 

ver 

rep 

ISTOCCRT 

08BA 

08BE 

08C2 

08BE 

ISTOCCFB 

9110A015 

47EOB8AE 

9604E020 

4700 

test RDTE trace bit 

turn on in FMCB 

cause fall-thru 

Alternately, each traced path can be "superzapped" in the logic that checks a, 
trace bit. For buffer trace, four "zaps" are required: for C/L and TPIOS buffer 
trace, and each IN and OUT. By zapping at these locations, selectivity is possible, 
and alternate control can be introduced by changing the logic from checking the 
trace bit in FMCB to checking some other global indicator, such as a flag in the 
PSA. This technique is illustrated in the following discussion of I/O trace. 

VT AM I/O Trace (RNIO) Modification 

The same alternatives apply to the I/O trace that applied to the VTAM buffer trace. 
To create every NCB (node control block) with the RNIO trace indicator on (so 
that everything is traced), the ZAP is: 

NAME ISTOCCRT ISTOCCFB 

ver 06BA 91087015 check flag in RDTE 

ver 06BE 47EOB6AE 

ver 06C2 9201AOID turn on flag in NCB 

rep 06BE 4700 cause fall-thru 

Section 4: Symptom Analysis Approach 4.3.29 



TP Problems (continued) 

Using the second approach of altering the checking at the time of the tracing, 
two zaps are required .. The following zap will cause tracing of all inbound PIUs if a 
byte in the PSA(s) (iocation X'xxx') is set non-zero: 

NAME ISTZCEAB ISTZFMIB 

ver 68 9500301D check NCB flag 

rep 68 95000xxx check low-core flag instead 

ver 7A 9500401D check NCB flag 

rep 7A 95000xxx check low-core 

Two paths exist within ISTZFMIB, so two locations must be changed. 

For ,outbound PIUs, the logicin VTAM is slightly more complex. An indication of 
whether or not to perform RNIO trace is transferred from the NCB to the PIUs 
buffer area before the buffer is queued for output. However, the trace is not 
performed until the I/O is complete, so although the indicator is used at that time, 
VTAM also checks to see if the GTF RNIO trace is still active. Therefore, in 
addition to the following "zap," the GTF RNIO trace must be active before VTAM 
attempts to make the trace entry: 

NAME 

ver 

rep 

D2 

D2 

ISTZCEAB 

91406011 

95000xxx 

Other Tracing Methods 

ISTZFFDB 

47 EOyyyy 

4780y),ryy 

check trace flag 

check low~core instead 

If there is a single point to be made in thls section, it is to minimize assumptions 
about what or how data is travelling through a network. There are other sources 
of information besides standard traces that can provide snapshots of mes~ages at 
various points enroute. An application program may log every message received 
and sent. It may be important to know exactly at what point in the flow the 
logging occurs, but in general the log can be used as another trace point when 
access method traces have been followed as far toward the application as they go. 

Access method or component buffers may sometimes be used to see if a 
message got as far as a buffer, or to see what form a message had when it was put 
into a buffer by a component. Dumps of buffer areas and dumps of TCAM queues, 
from disk or main storage, would be used in place of traces. The limitation here 
is buffer or queue reuse, which often creates confusion when half of the message 
to be examined is found but critical information has been lost because 
of reuse. Nevertheless, these sources can be valuable. In the NCP, for example, 
because only one line can be traced, buffers usually provide the last snapshot of a 
message as it appeared before going to a terminal. Status indicators in buffer 
headers often can be used 'to tell how a message was processed; if the buffer is still 
in use, then backtracking to find a work element or process that refers to the buffer 
can provide the key to understanding why a message is stuck. The following 
example shows such a case. 

4.3.30 OS/VS2 System Programming Library:MVS Diagnostic Techniques 



TP Problems (continued) 

Assume a heavy-running 3600 network in which a few logical units do not 
receive a response message after input is entered. The problem is intermittent and 
strikes any LU any time over a period of several hours. The GTF VT AM traces 
are run for all LUs during a typical run and when one LU fails to receive a 
response message~ traces are stopped and all network components dumped. 

It is not possible (without writing a user exit) to print the GTF trace for selected 
tenninals~ so the entire trace is printed for a short period surrounding the time of 
failure. Activity on the problem LU shows the last input message came into VTAM 
and the application and a response message was sent all the way out to the 3705. 
Line trace is not used because only one line can be traced and the problem line 
is not predictable. . 

Other variations are tried with the LU; it can be closed (via CLSDST) and 
reconnected and run~ so a hardware problem is unlikely. No MDR records in 
SYSl.LOGREC indicate an error on the line. At this point the problem is 
isolated to the NCP or beyond in the network. Using other indicators (in this case 
the NCP~s logical unit block~ LUB)~ an analysis of the message path from the time 
the NCP receives it shows that the last outbound PIU did not go out over the TP 
line. (NCP keeps the sequence number of the last PIU sent and the number in the 
GTF trace is the next higher sequence number than the one in the LUB.) The NCP 
buffers are searched and the missing PIU is found intact in a buffer. The problem is 
isolated to the NCP; the buffer is still in use~ and indicators in the buffer header 
reveal how much processing was done in the NCP; this leads eventually to the bug 
in the NCP. 

Section 4: Symptom Analysis Approach 4.3.31 



4.3.32 OS/VS2 System Programming Libraty: MVS Diagnostic Techniques 



Performance Degradation 

This chapter describes how to investigate performance degradation problems. 
It is not intended to serve as a tuning guide or as a reference for general perform­
ance analysis (which should be performed through SMF, GTF, etc.). 

The following points should be considered when a problem is suspected in the 
operating system itself or in the manner in which applications use the operating 
system. 

Operator Commands 

When a bottleneck or system failure, hardware or software, is degrading 
throughput, the following operator commands can help identify the source of 
degradation and, possibly eliminate it. 

D A,L 

D R,L 

DM 

Displays current system status. A job step with a name of STARTING 
indicates initiation has not successfully completed. Also, if a job step 
is marked with an'S,' it is considered swapped out. Other jobs may 
be queuing behind these jobs in an allocation/ deallocation path. 

Displays any outstanding requests. Operator action is required (for 
example, to mount a volume). Other jobs may need to wait until 
action has been taken. 

Displays configuration information. The loss of a hardware component 
(for example, a channel) may have been noted on a hard copy console 
and missed by the operator. 

If a resource queue "snooper" program exists, it should be started and out-
put examined to find any ENQ bottlenecks. If no such program is available, take a 
dump of an address space, the nucleus, and request SQA. The PRDMP service aid 
(with the QCBTRACE option) can then be used to print the dump so the resource 
queue can be examined. 

Use the job entry subsystem display commands to fmd the status of jobs, 
queues, printer setups, requirements of SYSOUT data sets, etc. to find reasons 
why JES2 is not able to schedule work. Some JES2 commands that may be useful 
are shown in Figure 44. 

Section 4: Symptom Analysis Approach 4.4.1 



Performance Degradation (continued) 

$D J1-9999 

$AJ 

S1-9999 
T1-9999 

$DF 
$DU,PRTS 
$TPRTN 

$LJ 1-9999 ,H 
$OJ1 

$DO 
$AO 

$AA 

Status of jobs, started tasks, or time-sharing users. If a range of jobs 
has been held they may be released using $AJ. 

Release jobs. 

Status of output forms queue. 
Status of printer setup characteristics. 
Change setup to needs of queue output. 

List held SYSOUT data sets 
Release held SYSOUT data sets 

Display queue. 
Release queue. 

Release all jobs held by a $H A command. 

Figure 4-4. JES2 Commands for Status Information 

If the use of previous commands does not make it obvious why JE82 is not 
scheduling work, take a dump of the JE82 address space. Print the 8YS1.DUMPxx 
data set to help determine the problem. 

Find the number of the IPS member that should be active and issue T IPS=na to 
ensure that it is active. Print the IP8 member in 8YS1.PARMLIB and analyze the 
IPS for an explanation of degraded service. Then, enter the W command to 
print the system log to obtain the history of system execution. 

Figure 4-5 shows important hardware components used by the system that 
should be understood when a degradation problem is suspected. 

Dump Analysis Areas 

The following areas in a storage dump may provide a starting point for further 
analysis. Problems in these areas may indicate a bug or some unexpected use of 
system services. 

1. ENQ/DEQ - A check of ENQ/DEQ's processing queues may indicate conten­
tion problems. The in-use blocks are anchored in the CVT at CVT+ X'280' 
(CVTFQCB, first QCB element) and at CVT+X'284' (CVTLQCB, last QCB 
element). A queue of many QELs off a particular major or minor QCB should 
be explained. An indication of a possible problem is a mixture of shared 
and exclusive requests intertwined for one resource. The state (running! 
waiting/swapped-out/etc.) of the holder of the resource should be determined. 

4.4.2 OS!VS2 System Programming Library:. MVS Diagnostic Techniques 



Perfonnance Degradation (continued) 

No 

DASD 
Seek 
Analysis 

Primary Tools 

o SMF 

Yes 

Yes 

Yes 

G Hardware Monitor 

® MF/1 

@ GTF 

Find 
Dominant 
Jobs 

No 

~ 
Find 
Major 
Contributors 

Find 
Major 
Contributors 

Figure 4-5. System Use of Hardware Components 

@®' 

Ye~, Profile 
Services 

® 
-Yes Build PAK 

(lEAPAKxx) 
List 

®® 
Concurrent 
Analysis 

Section 4: Symptom Analysis Approach 4.4.3 



Performance Degradation {continued} 

Also check the free elements. The ENQ/OEQ global save area, mapped in 
lEA VENQ 1, contains six addresses , each of which points to the first element 
of a free queue. The ENQ/OEQ global save area is found through: 
CVT+X'2AC' (CVTSPSA) which points to the global save area table; the 
global save area table +X'20', points to the ENQ/OEQ global save area. 
There are multiple queu~s, each containing blocks of all one size. These blocks 
occupy SQA. Merging the free ele'ments with the in-use elements should 
provide an indication of ENQ SQA fragmentation. Because fixed storage is 
involved, the fragmentation may be reducing the number of frames available 
for paging. 

2. lOS storage manager queues should be inspected. The anchors for the various 
pools (small, medium, and large block pools) are located at the end of 
IECVSMGR at external symbol IECVSHO~, which should show up in a 
NUCMAP. Generally there should be one 2K page of small blocks (used for 
10QEs) and one 4K page of medium blocks (used for RQEs). Examine the 
large blocks in detail. If the system was quiesced, there should be two 4K 
pages of large blocks and all blocks should be on the free queue. Many heavily­
loaded systems require 8-10 pages oflarge blocks. If the actual number is 
much higher than this, determine the ASIO that each in-use block is assigned 
to (the two bytes at block address-8 contains the ASIO address). System 
address spaces can have many blocks, but any user address space with a large 
m.imber of blocks should be explained. 

Common problems are: I/O loop, I/O errors, and storage not being freed at 
. I/O termination time. These page frames occupy real storage, which depletes 

the pool of available real storage and possibly causes excessive paging. 

3. Check page frame table entries (PFTEs) for large fix counts. The 
CVT=X'164' contains the address of the PVT; PVT+X'C' contains the address 
of the apparent PFTE origin - you must index several hundred bytes 
(X'10' times the number of pages in the nucleus). Large fix counts may , 
indicate a page fix macro loop, or page fix without page free. Frames 
allocated to a private area space may indicate a user errOL Try to analyze the 
contents of the page for a clue as to;who is page fixing without page freeing. 

4. Check PFTEs for bad frames caused by hardware storage errors that rendered 
these frames unusable (in PFTE+ X'C', the X'04' flag should be set if this is the 
case). Contact hardware personnel to determine if a machine malfunction has 
occurred. 

S. COE (contents directory entry). These blocks represent modules loaded 
into virtual storage; COEs reside in SQA and the queue is anchored at 
CVTQLPAQ (CVT+X'BC'). The loaded module's name and starting address 
reside in the COE. Those with starting addresses less than the value in 
CVTLPDIA (CVT+X'168') were members of either an IEAFIXnn list or an 
IEALPAnn list. For members of these lists, COEs are built by ,~IP and they occupy 
real, fixed storage even when the module is not in use. If fixed storage or 
fragmentation is a problem, moving these modules to LP A can provide a 
partial solution. 

4.4.4 OS/VS2 System ·Programming Library:' MVS Diagnostic Techniques 



Perfonnance Degradation (continued) 

6. The BLDL table, pOinted to by the nucleus external symbols IEARESBL 
and/or IEARESBS, should be checked. The address(es) should be less than the 
value at CVTNUCB, the upper nucleus boundary. If not, try changing the . 
BLDL=nn system initialization parameter to BLDF=nn. This will cause the 
BLDL list to occupy real storage at all times. If the number of entries is less 
than 93, one frame is used. 

7. In a quiesced system, the number of paging requests received should equal the 
number of paging requests completed by ASM. The fields ASMIORQR 
(ASMVT+X'IDO') and ASMIORQC (ASMVT+X'lD4') in the ASMVT 
represent the number of tequests received and completed, 
respectively. The difference between the two counts represents requests not 
completed. A large number of uncompleted requests can indicate ASM is either 
not processing at all or is taking considerable time for each operation. 
Examine the PAT (page allocation table) to determine whether the page data 
sets are almost full. Also examine ASMERRS (ASMVT+X'74'), PAREFLGS 
(pART+X'8'), and the 10SB for paging requests (IOSCOD=X'41') to determine 
if I/O errors have occurred and the data sets are no longer in use. 

8. CSA use should be examined. If SQA is depleted, requests are filled from 
CSA. This can be determined by inspecting the SQA DQE (descriptor queue 
element): 

• the CVT+X'230' points to the GDA (global data area) 

• the GDA+X'18' points to the SQA SPQE (subpool queue element) 

• the SPQE+ X'4' points to the SQA DQE. 

The DQEs are chained together. If more than one DQE exists for the SQA, 
it has expanded into the CSA. This causes the frame to be fixed. Also, often 
CSA users page fix. In this case fragmentation, if present, could cause 
performance degradation. 

9. Possible real frame shortage can be indicated by inordinately large counts in 
the PVT fields: PVTRSQA (a count of the number of times the SQA reserved 
frame was allocated), and PVTDFRS (a count of the number of times real 
frame allocation was deferred because of a lack of frame availability). These 
counts by themselves mean little,"but can be of some use when analyzing an 
overall problem. 

.. Section 4: Symptom Analysis Approach 4.4.5 



4.4.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Incorrect Output 

The problem of missing, unexpected, or erroneous output is one of the most 
difficult. This incorrect output might take the form of a message on the console 
log or in SYSOUT, or an incorrect total in a report. There is usually very little 
documentation that assists the debugger in analyzing incorrect output. 

Ini tial Analysis Steps 

To resolve the problem of missing or incorrect output the analyst must have a 
complete understanding of the job environment. There is no fast, clear cut 
approach to these errors. This section only tries to assist your thought processes 
as you begin to work on a problem of this type. 

There are four basic categories of incorrect output: missing, unexpected, 
erroneous, or a combination of these. The steps in resolving the problem must 
take the category into account. 

Initially, consider the following steps: 

1. Gather all possible documentation. You will probably need additional 
information as you begin to understand the problem in more detail. 

2. Consider all recent hardware and software changes to the system and to the 
application(s) if relevant. A change to an application that updates a data base 
affects all other data base users. 

3. Remember that output requires input. Consider the possibility of bad input. 

4. Consider whether the problem is associated with some new function or 
application. Most incorrect output errors occur in the installation and test 
phase. 

Isolating the Componen t 

Next, attempt to locate the component causing the error. Do this by thinking 
through the flow. listed below are some questions that might assist you. 

• Is the problem related to a user function or application? If yes, have there 
been recent changes or is testing still in progress? 

• Is the job control language correct? Have there been recent changes to the 
JCL? 

• Have any user exits been added or modified? 

• Have any user supervisor calls (SVCs) been added or modified? 

• Are there operator interactions that could affect the input/output? 

Section 4: Symptom Analysis Approach 4.5.1 



Incorrect Output (continued) 

• From which access method or function is the output expected? Some 
examples are: JES, VSAM, BTAM, TCAM, and WTO. 

• Was RJE involved in the input and/or output? 

• Was there any cross-address-space communication involved in the data 
movement? In MVS, most telecommunication requires data passing between 
address spaces. 

• Is there any evidence of I/O error activity? Refer to the console log and 
LOG REC data. 

• Do you have a storage dump, or should you obtain one? See the chapter on 
"Additional Data Gathering" in Section 2. 

• Would a trace be helpful in understanding the flow? Consider tracing the 
activity with GTF. 

Many of the above questions have to be answered in order to get a better under­
standing of the problem area. In many cases, the problem has to be recreated 
with various traces or traps. These questions help to determine what data is 
needed to solve the problem. 

Analyzing System Functions 

To solve an incorrect output problem, you must understand the mode of 
operation and the processes required to accomplish the function in question. 

The first question must be the following: where does the output originate? 
Then you must be able to verify that the activity did occur. There must be some 
means for understanding the path the data should take from the origin to the fmal 
location (device). . 

Consider the following example: 

I . A TSO user invokes his program which should write a message to the terminal 
and then wait. 

2. The program waits after the I/O but no message appears. 

3. What are the system functions involved? 

a. A language translator and the linkage editor that created the load module. 

b. OPEN code necessary to complete the link between the device and the 
user PUT macro. 

c. TSO TIOC flow. The user issues PUT which branches to the TIOC module 
IGG019T4. This module issues TPUT. What is the TPUT path through 
TIOC? 

d. TSO TIOC interfaces with TCAM. What is the data path through TCAM ? 

e. TCAM interfaces with the I/O supervisor. Can evidence be found of the 
SIO? What types of trace would be helpful? 

In this example it may be necessary to take a series of dumps to resolve where 
the message was lost. But first be certain that the correct message is in the correct 
buffer at the time of the user PUT macro. 

4.5.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Summary 

Incorrect Output (continued) 

It could be necessary to apply this type of thinking all the way down to the 
CSECT level. ' 

In analyzing incorrect' output, there are two key points. The first is that a better 
understanding of the system flow is probably required for this type of problem 
than for any other. The second point is that it is very important to be able to 
obtain the correct documentation at the correct time. 

Note: The chapter on TP (teleprocessing) problem analysis earlier in this section 
provides some specific steps for analyzing incorrect output in the TP environment. 
Many of the techniques in that chapter can be applied to incorrect output 
analysis. 

Section 4: Symptom Analysis Approach 4.5.3 



4.5.4 OS/VS2 System Programming Library: MVS Diasnostic Techniques. 



Section 5: Component Analysis 

This section describes the operating characteristics and recovery procedures of 15 
system components and provides debugging techniques for determining the cause 
of an error that has been isolated to a component. 

The components described in this section are contained in the following 
chapters: 

• Dispatcher 

• lOS 

• Program Manager 

• VSM 

• RSM 

• ASM 

• SRM 

• VTAM 

• VSAM 

• Catalog Management 

• Allocation/Unallocation 

• JES2 

• SSI 

• RTM 

I • Communications Task 

Section s. Component Analysis 5.1.1 

• 



5.1.2 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Dispatcher 

For effective problem analysis, it is important to understand how work is processed 
by the MVS system. The MVS dispatcher plays a large role in processing work by 
controlling the initiating of all work within the system. An understanding of the 
dispatcher's processing and control block structure is imperative for the debugger. 

This chapter describes the following items about the MVS dispatcher: 

• Important dispatcher entry points 

• Dispatchable units and sequence of dispatching 

• Dispatchability tests 

• Dispatcher recovery considerations 

• Dispatcher error conditions 

Important Dispatcher Entry Points 

The dispatcher's main entry points are the following: 

lEA ODS - Entered disabled, key 0, supervisor state, no locks held. 

This entry point is called by the following: 

• Exit prologue (lEA VEEXP), when control is not returned to the issuer of an 
SVC. 

• Lock manager (IEAVELK), when it is suspending a task that unconditionally 
requested a local lock that was unavailable. 

• Program check FLIH (lEA VEPC), when a TCB or SRB was suspended because 
of a page fault that required I/O or because no frames were available. 

• External FLIH. 

• RTM (recovery termination manager). 

IEAPDS7 - Entered disabled, key 0, supervisor state, no locks held. 

This entry point is called by I/O FLIH and by SVC FLIH when the SVC requires 
., a local lock that is not available. 

IEAPDS6 - Entered disabled key 0, supervisor state, no locks held. 

This entry point is called by RTM on an EOT (end of task) condition. 

IEAPDS2 - Entered disabled, key 0, supervisor state, the dispatcher lock held. 

This entry point is called by the lock manager (lEA VELK), when suspending an 
SRB that has requested the local or CMS lock, and when suspending an address 
space that has requested the CMS lock. 

Section 5. Component Analysis 5.1.3 



Dispatcher (continued) 

IEAPDSRT - Entered enabled or disabled, any key, supervisor state, no locks held. 

This entry point is the termination return address for all SRBs. 

Ds.{STCSR - Job step timing subroutine. Calculates an.P accumulates job step 
timing. 

This entry point is called by the following: 

• Lock manager (lEA VELK), when common suspend routine of the lock manager 
is suspending an SRB or locally 10cked'TCB because of a lock request or a page 
fault suspension. 

• Dispatcher. The dispatcher calls this subroutine internally when it is saving the 
status of a previously executed unit of work. 

• Timer SLIH. The timer SLIH calls this subroutine before it gives control to 
SRM. 

Dispatchable Units and Sequence of Dispatching 

This section describes the unique dispatchable units of work and the queues where 
they are located. The dispatchable units are described below and are listed 
according to the priority with which they are dispatched. 

1. Special Exit 

A special exit is made known to the dispatcher by a unique flag setting in the 
LCCADSF 1 (LCCA + X'21 C') field. The LCCADSF 1 bits and the exits they 
indicate are: 

Bit 

LCCAACR 
LCCAVCPU 
LCCATIMR 

Exit 

ACR 
Vary CPU 
Timer Recovery 

The dispatcher enters these exits via a branch. 

2. Global SRBs 

IEAGSMQ is the header for the global SRB staging queue. If it is not zero, it 
points to the global SRB queue. (See Figure 5-1.) Requestors use the 
SCHEDULE macro to compare and swap global SRBs onto the queue. The 
dispatcher obtains the DISP lock and removes the SRBs from the queue with 
the compare and swap (CS) instruction. The dispatcher then calls CSECT 
lEA VESCO at entry lEA VESC I in order to move the SRBs to the appropriate 
priority level (0 or 4) on the GSPL (global system priority list) queue. 

IEAGSPL is the global SRB dispatching queue. The queue is divided into 
non-quiescable (priority level 4) and system level (priority level 0) SRBs. The 
dispatcher removes the SRB from the GSPL queue, updates the PSAAOLD 
with the SRBASCB address, loads its STOR value, and dispatches the SRB. 
PSAANEW is not updated. 

5.1.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Dispatcher (continued) 

Global SRB Staging Queue 

10 

CVTGSMQ 
X'264' 

Global SRB Dispatching Queue 

10 

CVTGSPL 
X'26C' 

PSAANEW PSAAOLD 

I 125CO I 125CO I 

IEAGSPL 

IEAGSMQ 

SRB 

o 

IEAGSPL 

X'S' 

o 

ASCB (at location FFE300) 

X'2C' ASCBSTOR 
o 

NOTE: 0 and 4 in SRBs represent system priority level 

Figure 5-1. Global SRB Queue Structure and Control Block Relationships 

Section 5. Component Analysis 5.1.5 



Dispatcher (continued) 

3. Local SRBs 

IEALSMQ is the header for the local SRB staging queue. If it is not zero, it 
points to the local SRB queue. (See Figure 5-2.) Requestors use the 
SCHEDULE macro to compare and swap local SRBs onto the queue. The 
dispatcher tests this queue if it cannot fmd any special exits or global SRBs to 
dispatch. If this queue is not empty, the dispatcher obtains the DISP lock and 
removes the entire queue with compare and swap instructions. The disp~tcher 
then calls CSECT lEA VESCO at entry lEA VESC2 in order to move the SRBs to 
the appropriate priority level (0 or 4) on the LSPL. lEA VESC2 also notifies 
SRM via the SYSEVENT macro if the address space is swapped ou t. Memory 
switch is then invoked to direct the dispatcher to the highest prionty work. 

(Note that no work is dispatched. -The SRBs are simply moved to the 
appropriate dispatching queues' (ASCBSPLs).) 

5.1.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Dispatcher (continued) 

After a user request to schedule local SRBs: 

10 

CVTLSMQ 
X'268' 

IEALSMQ 

SRB 

SRBASCB 

After the dispatcher has determined there are SRBs to be processed and moves them to the 
appropriate ASCBlevel: 

10 

X'1C' 

Figure 5-2. Local SRB Queue Structure and Control Block Relationships 

Section 5. Component Analysis 5.1.7 



Dispatcher (continued) 

4 .. Address Space Dispatcher 

This is not actually a unique dispatchable unit of work, but rather an anchor for 
the real dispatchable units of work (that is, local SRBs or TCBs). The address 
space dispatcher is entered to select the next address space (memory) in which 
work will be dispatched. If an address space is dispatchable, the priority of 
dispatching within the address space is the following: 

a) Local SRBs 

b) Local Supervisor (locally locked, interrupted work) 

c) TCBs 

If the dispatcher finds any SRBs on the LSPL (pointed to by the ASCBSPL), 
the top SRB is de queued and dispatched. If there are no SRBs on the local SPL 
queue, the local lock is tested for the interrupt id, X'FFFFFFFF'. If the 
interrupt id is in the local lock, the id is changed to the current CPU ID via 
compare and swap, and the status (FRRs, GPRs, FRR stack, CPU timer value, 
PSATOLD, PSATNEW and resume PSW) is restored from the IHSA (Interrupt 
Handler Save Area). The ASCBASXB points to the ASXB; ASXBIHSA 
(ASXB + X'20') in turn points to the IHSA. Status is saved in the IHSA when 
a locally-locked program is interrupted and control is switched away from it 
because there is higher priority work to handle. 

The dispatcher does a compare and swap to obtain the local lock: 

• If the local lock is available and the number of ready TCBs exceeds the 
number of processors active in the address space, 

• or if the ASCBS3S bit (ASCB + X'67') indicates that there is work for the 
Stage 3 Exit Effector to process. 

If the dispatcher is successful in obtaining the lock, it will go to the Stage 3 
exit effector, if necessary, and then select the first dispatchable TCB that is 
not active on another processor. 

The dispatcher may dispatch the above units (SRBs, supervisor, TCBs) with­
out going through the memory dispatcher if the address space was current when 
the dispatcher was entered and if there was no indication that a memory switch 
was required. (PSAANEW = PSAAOLD). 

5. Wait Task 

The wait task is dispatched when the dispatcher reaches the bottom of the 
ASCB ready queue and can find no ready work after a recursive search of the 
SRB queu~s and the ready queue. 

Figure 5-3 provides an overview of the processing sequence through the MVS 
dispatcher. 

5.1.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



START 

YES 

WAIT 

Dispatcher (continued) 

EXIT 

UPDATE 
PSAANEW 

, PSAAOLD 

INDICATE 
SRB MODE 

RESTORE 
STATUS FROM 
IHSA 

RESTORE REGS, 
PSW FROM 
IHSA 

INDICATE 
SRB MODE 

LPSW 

LPSW 

GET HIGHEST 
READY TCB 

RECURSIVE SEARCH OF THE SRB QUEUE AND THE 
READY QUEUE TO VERIFY THAT NO READY WORK EXISTS .. 

Figure 5-3. Dispatcher Processing Overview 

Section 5. Component Analysis 5.1.9 



Dispatcher (continued) 

Dispatchability Tests 

The dispatcher conducts the following dispatchability checks: 

SRB Tests 

Test * 

1 . ASCBRCTF / / ASCBOUT 

. 2. CSDSCFLI//CSDSYSND 

Condition 

Address space swapped out. 

System non-dispatchable . 

(al ASCBFLG2/ /ASCBXMPT (a) If the system is non-dispatchable, the 

3. ASCBDSPII!(any bit on) 

. 4. ASCBFLG2/ / ASCBSNQS 

. 5. ASCBSSRB 

6. SRBCPAFF 

7. SSRBFLG 1/ /SSRBLLH 

SRB must have been scheduled to an 
exempt address space. 

Address space non-dispatch able . 

All SRBs stopped. 

System level SRBs stopped (This does not 
apply to NONQ SRBs.) 

Does SRB have affinity to this processor? 
(PCCACAFM defines the current processor) 

If set, compare and swap (via CS instruction) 
CPUID into local lock word, ASCBLOCK, 
which has the suspend ID in it 
(X'7FFFFFFF'). 

*Format of test description is "field/ /bit within field." 

S.I.10 OS/VS2 System Programming'Libruy: MVS Diagnostic Techniques 



Dispatcher (continued) 

Address Space and Task Tests 

The following address space test criteria must be met before the task dispatcher gets 
control. 

Address Space Tests 

1 . ASCBDSPI / / ASCBNOQ 

2. ASCBDSPI / /ASCBF AIL 

Condition 

The ASCB is not on the ready queue. The 
address space will not be dispatched. 

The ASCB is in failure mode and in the 
process of being terminated. The address 
space will not be dispatched. 

3. CSDSCFLI / /CSDSYSND System non-dispatchable. 

(a) ASCBFLG2/ /ASCBXMPT (a) If the system is non·dispatchable, the 

4. LOCAL LOCK//ASCBLOCK 

Suspend ID 
(X'7FFFFFFF') 

Interrupt ID 
(X'FFFFFFFF') 

Own CPUID 

Free 
(X'OOOOOOOO') 

Other CPVID 

5. ASCBFLG 1 / / ASCBS3S 

6. ASCBTCBS > ASCBCPVS 

SRB must have been scheduled to an 
exempt address space. 

Cannot process the address space unless an 
SRB owned the local lock and was 
suspended and is now re-scheduled to be 
dispatched. 

Compare and swap CPUID into local lock 
and restore the status (FPRs, GPRs, FRR 
stack, CPU timer value, PSATOLD 
PSATNEW, and resume PSW) from the 
IHSA. 

Restore GPRs (general purpose registers) 
and PSW from the IHSA. 

If ready work is in the address space, 
compare and swap (via CS instruction) the 
CPVID into ASCILOCK. 

Bypass the address space. 

Go to the task dispatcher and interface with 
Stage 3 exit effector. 

There are more TCBs ready than there are 
processors currently executing in the address 
space; the address space can be dispatched. 

After these six tests indicate that the dispatcher should dispatch in an address 
space, the following task indicators are tested . 

. SecUOR S. COIRponeat.\aaly~ 5.1.11 



Dispatcher (continued) 

Task Tests 

1. RBWCF 

2. TCBFLGS4 

3. TCBFBYT 1 / /TCBACTN 

4. TCBAFFN 

Miscellaneous Notes about the Dispatcher 

Condition 

RB must not be waiting. 

TCB primary non-dispatchability flags must 
not be set. 

If TCB is active, it must be a redispatch 
situation; otherwise, this TCB is active on 
the other processor (TCBCCPVI). 

TCB affInity, if any, must match this 
processor's physical address (which is 
located in PCCACAFM). 

1. You can determine the last dispatch by examining the PSW at location X'300'. 
The TOD of the last dispatch is located at LCCADTOD (LCCA + X'2S8') . 

. 2. The dispatcher sets the following mode indicators before dispatching work. 

a. For a global SRB - LCCADSF2/ /LCCASRBM, LCCAGSRB, and 
LCCADSRW 

PSA TNEW /PSATO LD = O's 

b. For a local SRB - LCCADSF2//LCCASRBM, and LCCADSRW 

PSATNEW/PSATOLD = O;s 

c. For a task - LCCADSF2//LCCADSRW 

PSATNEW/PSATOLD =f O's TCB address 

5.1.12 OS/VS2 System-Programming Library: MVS Diagnostic Techniques 



Dispatcher (continued) 

Dispatcher Recovery Considerations 

Dispatcher recovery is designed to record information about the error, reconstruct 
critical dispatching queues, and to retry to continue normal dispatching functions. 

The data that the dispatcher records in the system diagnostic work area (SDW A) 
is the following: 

Fixed Data: 

SDWAMODN 

SDWACSCT 

SDWAREXN 

Variable Data: 

IEAVEDSO, dispatcher module name 

IEAVEDSO, dispatcher CSECT name 

IEAVEDSR, dispatcher recovery routine 

SDWAURAL - Seven full words' of data as follows: 

PSAHLHI 

ASCBLOCK 

LCCASPLJ 

PSAAOLD 

- Locks held at time of error. 

- Value of locallockword for current address space at the 
time of error. 

-SRB queue journal word. Contains the address of the 
top SRB on the staging queue when dequeued by the 
dispatcher and passed to IEAVESCO. 

- Current ASCB address at the time of error. 

Control Register 1 - Value of STOR (CRt) at the time of error. 

PSATOLD 

LCCADSFl 

- Current TCB address at the time of error. 

- Dispatcher flag bytes that were on at the time of error. 

If the dispatcher lock was held at the time of error, the following recovery 
routines are called by the dispatcher recovery routine: 

• IEAVESCR - Schedule recovery routine; it recovers SRB queues. 

• IEAVEQV3 - Verifies, and possibly reconstructs, the ASCB Ready Queue. 

• IEAVEGAS - Verifies each ASCB on the ready queue. 

If the local lock was held by the dispatcher, the error was not a DAT (dynamic 
address translation) error; and if the current ASCBSTOR value equaled the 
CRl value, then the following recovery routines are invoked by the dispatcher: 

• IEAVEEER - Exit effector recovery routine (if the ASCBS3S is on). 

• lEA VEQV3 - Verifies, and possibly reconstructs, the TCB queue. 

• IEAVETCB - Verifies each TCB on the TCB queue. 

Note: The queue verification routine, IEAVEQV3, also records error information 
in the SDWAURAL about any changes to the queue structure. 

Section s. Component Analysis 5.1.13 



Dispatcher (continued) 

By removing elements that have been overlaid (or "clobbered") from the queue, 
the dispatcher recovery routine attempts to keep the system up at the cost of a 
particular user,job, address space, etc. There is a certain exposure in this 
philosophy.because the element that has been lost might have owned a critical 
system resource or might be a critical function in itself (for example, a TCB that 
represents the user's main application program). Once the element is lost, there 
might be no indication that it was a critical resource (a valid control block, for 
example) or that it owned a critical resource. 

Dispatcher Error Conditions 

• The abend COD is issued from CSECT lEA VESCO when a local SRB is 
scheduled t6 an invalid ASCB. 

• Program check interrupts (usually of the page, addressing, or segment 
exception variety) occur when: 

PSAANEW is overlaid and the dispatcher attempts to switch address spaces 
into the value in the PSAANEW 

- PSALCCA V or PSAPCCA V values are overlaid 

The CVT pointer is overlaid 

The ASCB ready queue is overlaid 

- The TCB queue or the TCBRBP field is overlaid 

5.1.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



lOS 

The purpose of the I/O supervisor (lOS) is to provide a central facility to control and 
conduct I/O activity through· the operating system. The structure of lOS in MVS 
is somewhat different than that of previous operating systems. In MVS, lOS 
"front end processing" is responsible for device control and I/O initiation; lOS 
"back end processing" is responsible for processing interrupts, providing sense 
information in error situations, and scheduling the posting of the I/O requestor at 
completion time. (Figure 5-4 provides an overview of lOS front-end and back-end 
processing. Figure 5-5 shows the major lOS and EXCP control block relationshlps.) 

Front-End Processing 

The major portion of the I/O process (the queueing of I/O requests and starting 
them) is contained in CSECT IECIOSCN (microfiche name IECIOSAM), which is 
called the channel scheduler. The channel scheduler is invoked through an 
interface provided by the ST ARTIO macro via a branch entry. The channel 
scheduler assumes that all channel program translation and page fixing of buffers 
and CCWs is performed by the caller. The control block interface is the SRB/IOSB 
combination, which must be non-pageable and commonly addressable from any 
address space (that is, SQA and fixed CSA). The channel scheduler operates in 
physically disabled mode. Invokers (called "drivers") of the channel scheduler 
include EXCP, VSAM block processor, VTAM TPIOS, and PCI fetch; they are 
identified by the driver ids located in the IOSB+4. 

Back-End Processing 

When lOS is invoked for an I/O interrupt, processing starts in the I/O first level 
interrupt handler (FLIH) which branches to an entry point, IECINT, within the 
channel scheduler. Back-end lOS executes physically disabled in the address space · 
that is active on the processor at the time of the I/O interrupt. lOS then schedules 
the SRB/IOSB to the address space of the requestor. The module IECVPST (post 
status) receives control under the SRB and interfaces with the driver's special exits 
and termination routines (channel end, abnormal endappendages). Figure 5-4 
shows an overview of the lOS process using EXCP as the I/O driver. 

lOS Problem Analysis 

Problems in the I/O process can cause three symptoms: 

I. Abend codes 
2. Loops 
3. Wait states 

These symptoms are discussed in the following sections. 

Section 5. Component Analysis 5.2.1 



lOS (continued) 

Front· End,Processing 

User 

SVCO 

... IECVSMGR ... 
Gets storage 

... ~ BR for SRB/IOSB, 
~ TCCW, BEB, 

EXCP FIXLlST, ROE 
Driver 

I ECVTCCW - CCW 

BR Translation 
~ Fixing ~ 

BALR 
SRB/IOSB (input parameter) 

, 
IECIOSCN ... IECVSMGR 

po 

(lOS) BR 
Gets storage for 
100E (I/O .... 
Oueue Element) -

BR 

EXCP Driver 

t 
User 

Figure 5-4. lOS Processing Overview 

Back· End Processing 

IECINT 

(lOS) BR 

Scheduled via SRB/IOSB 

EXCP Driver 

• POST 
• Appendage Interface 

• IECVTCCW 

- Retranslation 

- Unfixing 

• IECVSMGR 

- Free blocks 

5.2.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 

tECVSMGR 

Frees 100E 



lOS (continued) 

Major lOS Control Block Relationships Major EXCP Control Block Relationships 

CVT 

8e 

lOB 

LCH DCB 

0 • 1st 100 ROE 14 ~ 
,/ 

• Last 100 
SRB - • UCB 2C ~ / 4 I 0 

/ ( .J ..J I 4 

\ 
~(DEB 

8 

8 I 8 
\ 

I 100 10SB C 

" -Va I 10 '\ 
I 

8 ASCB I ( .... -- I ~ 
\ UCB Prefix 

/ I ./ 
.... TCB , ..... 1C .- / 

20 
) 

-4 --------
lI' 

---
UCB 34 

EWA '.,..TCCW 
-f-

~I I 14 '1\ 0 -
4 

---48 Virtual - ~CHANPGM 
4C Real .~l--A'" CCW1 

Common UCB CCW2 

Extension 
CCWn 

I L.-", .... _J 

Figure 5·5. Major lOS and EXCP Control Block Relationships 

Section 5. Component Analysis 5.2.3 



lOS (continued) 

lOS ABEND Codes 

lOS abends are generally caused by an invalid control block. The error can be 
caught by validity checking or it can cause a program check. The recovery 
routines, generally FRRs, receive control on a program check. For either a 
validity check or a program check, the error is converted to an abend code. 
EXCP FRR processing saves the abend code and the relevant status (that is, 
error PSW, and error registers) at the time of error in the EXCP problem 
determination area, which is pointed to by the TCB (X'CO'). lOS abend codes 
are documented in OS/VS Message Library: VS2 System Codes. The EXCP 
problem determination area is documented in OS/VS2 I/O Supervisor Logic. 

Note: DUring abend processing, the EXCP problem determination areas are, 
not freed. When you find the area pointed to by the TCB, scan that area for 
previously-obtained areas to help with lOS analysis. 

Loops 

If an invalid control block is passed to lOS and it is not caught by the validity 
check routines, a loop is often the result. The traditional problem has been caused' 
by the storage manager (IECVSMGR) passing a bad address back to a requestor. 
Consequently, the requestor initializes the bad block and overlays or clobbers some 
valuable piece of storage. On occasion the bad address passed by IECVSMGR is O. 
The fact that most of the I/O process runs in supervisor state, key 0 means that the 
PSA can be overlaid. This usually causes a program check loop whenever any type 
of interrupt is subsequently received by the processor. 

At this point, pattern recognition is importari~ to determine whether the storage 
manager has been involved in the problem. (pattern recognition is discussed in the 
"Miscellaneous Debugging Hints" chapter in Section 2.) Try to determine whether 
o has been used as the address of an SRB/IOSB or EWA control block. The first . 
X'AO' bytes ofPSA may be affected. The routine responsible for this could be an 
lOS driver or recovery routine. Look for addresses of exit routines which are 
pointed to by the 10SB; they give an indication of the driver and potentially, 
some idea of the process. Remember that the hardware stores the current PSW as 
an old PSW (at locations X'18' - X'40') if any interrupt occurs. Therefore these 
locations may not look bad. 

The main thing to keep in mind is that generally IECVSMGR is not the cause of 
the problem. For performance optimization reasons, the storage manager has 
minimal validity checking and thus trusts that the invoker is operating correctly. 
Historically the cause of this type of problem is that the same block is freed twice, 
which causes the storage manager's free queue to contain invalid pointers. 

Often this double freeing has occurred some time earlier, which makes the 
recreation of the erroneous process very difficult. Extensive analysis and piecing 
are required. Multiple dumps may help provide the pieces necessary to recognize a 
pattern or common occurrence. Or, a trap might have to be devised. 

5.2.4 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



lOS (continued) 

If there is evidence of a recent error in the I/O process, searching the in-storage 
LOGREC buffer or SYSl.LOGREC records for an lOS error helps recreate the 
process. Generally the lOS recovery routines attempt to free control blocks and 
might inadvertently free one that has just been freed. Try to determine if there is 
any way that the channel scheduler or I/O driver and its associated exits could have 
freed blocks before or after recovery processing. In a retry situation, normal 
termination procedures could have freed a block that was already freed by 
recovery. Again, traps might be required. 

lOS WAIT States 

Another problem is an enabled wait state with work remaining I 
for lOS to accomplish. To analyze a wait state, it is necessary to determine the 
cl,Jrrent status of lOS. To determine current lOS status, scan the UCBs for valid 
10QEs in UCBIOQ (UCB-4). The 10QE is valid ifUCBPST (UCB+6, bit X'20') is 
on. The 10QE address is valid only when it is active. Understand that once, 
a block is freed, it is generally reused quickly when a subsequent request for: 
an I/O operation is encountered. Because of this, it is very uncommon to find a 
significant 10QE pointed to by the UCB prefix once lOS has returned the block. 
The block usually represents another request. If the UCB pointer in the 10SB 
pointed to by the 10QE does not equal the address of the UCB you started with, 
the blocks have been reused and the data is invalid. 

Additionally the 10QEs can be found in the storage manager areas. These are 
located by CVT+X'7C' which points to IOCOM+X'24' which points to module 
IECVSMGR. Label IECVSHOR is an external symbol for the storage pool headers 
for small blocks (IOQEs). These are foliowed by the pool headers for medium 
(RQEs) and large (SRB/IOSBs, BEB, TCCW, ERPWA, fix lists) blocks. The pool 
headers are 16 bytes long and the last word points to segment headers for 2K bytes 
(small block) or 4K bytes (medium and large blocks) of storage. The IOQE+5 
contains an allocated indicator. If all X'3C' bits are on, the block is allocated and, 
in the case of 10QEs, represents I/O requests that are started or that have been 
requested by a driver but have not been started because of a busy or not ready 
condition (UCBFLA). 

After the storage manager (medium and large) blocks are found, notice their 
g-byte prefixes, the first halfword of which contains the ASIO of the address space 
to which the block is allocated. Note that the ASIO is 0 when the block is not 
allocated and in special cases such as when unsolicited device ends are not 
associated with any address space. Scanning these prefixes for an ASIO that. 
matches the problem address space can help in finding blocks 
associated with I/O requests related to that address space. Medium and large blocks 
that contain aX'17' in the fourth byte of the prefix are not allocated. A value of 
X'7S' for medium blocks, and X'76' for large blocks, indicates that they are 
currently allocated. (Note that the third byte of this first word of the prefix is 
unused.) 

The 10QE points to the associated 10SBs which contain information about the 
channel programs and pointers to the requestor's control blocks. 

Section S. Component Analysis S.2.S 



lOS (continued) 

In general, VCBs and associated 10QEs/IOSBs indicate active I/O. Any flag bits. ~ 
set in the VCB + 6/7 help identify the status of the requestor. Also, investigate 
VCB flags indicating the quiesce option, DAVV (direct access volume verification) 
processing, I/O restart, missing interrupt handler (MIH), or message pending. 

Another place to look is the LCHs (logical channel queues). When a STARTIO 
macro is issued,if both the channel and device are available, lOS attempts to issue 
the SIO instruction. If any bit in VCBFLA (VCB+6) is on, the device is considered 
busy. The TCH instruction is used to determine if the channel is busy. If ei ther is 
busy, the 10QE for the request is queued to the LCH. This queue then indicates' 
all requests that have been accepted for processing but for which either no SIO has 
yet been issued or an SIO was issued but a non-zero condition code was received. 
The first LCH is pointed to by CVT+X'8C'. Each LCH is X'20' bytes long. 
VCBLCI (VCB+ X'A') is an index to the LCH for the given VCB. Each LCH is a 
double-headed, single-threaded queue of 10QEs. The LCH + 0 points to the first 
10QE and LCH+4 points to the last, or only, 10QE. If LCH + 0 is all Fs or Os the 

.~ __ -----9ueue is emm. in which case ther.uue_lliLLe_qlte_stsJnL1haLchanneL---.The~QQEs __ _ 
themselves are linked with 10QELNK (IOQE+O). 10QEIOSB (IOQE+8) points to 
the 10SB for the request it represents. Note that 10QENQ (IOQE+4, bit X'40') 
must be on for all 10QEs on the LCH. 

General Hints For lOS Problem Analysis 

1 . Saveareas. lOS does not use save areas in the standard manner. When registers 
are saved, the order is often 0-15 at offset 0 into the save area. If the local 
lock is obtained (as is generally the case), IECVPST, the first module to 
execute in the user's address space after an I/O interrupt, uses the local lock 
save area (ASXBFSLA at ASXB+ X'24') to pass the address of the local lock 
save area to the exit routines. An exception is I/O interrupt processing for a 
paging pack where a storage manager or ASM area is used. Basic lOS uses the 
lOS save area (LCCA+X'218' points to the CPV work save area vector table! 
(WSAVTC); WSAVTC+X'18' points to the lOS save area). This save area is 
also passed to DIE (Disable Interrupt Exit) routines. Also, the TCCW control 
block contains a save area. EXCP passes the address of the associated 
TCCW+X'48' (in Register 13) to appendages for use as a save area. 

2. EXCP back-end processing does all the interfacing to the traditional 
appendages. In MVS, appendages are entered in SRB mode, physically 
enabled, and with register 13 containing the address of a save area. 

It is EXCP's responsibility to map the 10SBto the lOB to maintain 
compatability. Also on return from the appendage, EXCP re-maps the lOB to 
the 10SB. 

5.2.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



lOS (continued) 

3. The EWA (ERP work area) can be important in problem analysis. The 
IOSB+X'34' points to EWA, which contains infonnation, including sense data, 
passed to the ERPs from lOS as well as work areas and counters for the ERPs. 
The ERPIB, which is useful for channel errors, is contained in the EWA. 

See the topic "Error Recovery Procedures (ERPs)" later in this section for a 
description of ERP processing. 

Several problems have been uncovered where ERPs constantly retry an I/O 
operation that constantly fails. The EWA can contain the number of retries. 
and other control information helpful in determining the reason why. EWAs 
often contain the retry CCWs. 

4. The LCCA of each processor contains an IRT (lOS recovery table). lOS uses 
various fields in the IRT to checkpOint its progress. The IRT also contains 
pointers to the active control blocks on whose behalf lOS is processing. 

5. Two 10SB flags (IOSEX, 10SERR) are used to control error processing. For a 
permanent error the general flow is: 

• Abnormal or nonnal exit entered with IOSCOD=7F, 10SEX=1, 
IOSEl<R=O. 

• ERPexit entered with IOSCOD=7F, 10SEX=1, 10SERR=O. 

• SVC F or branch entry back to IECVPST for direct access (DA) ERP: 
with 10SERR=1, 10SEX=O for retry 
with 10SERR=O, 10SEX=1 for permanent error 

• Assuming retry, SVC F issues STARTIO. 
• At I/O completion, IECVPST returns control to ERP with 10SERR=1, 

10SEX=1. 

• ERP returns to IECVPST with IOSERR=O, IOSEX=l to indicate a 
permanent error. 

• IECVPST enters abnonnal exit for second time with IOSCOD=41, 
10SERR=O,IOSEX=1. 

• Abnormal exit returns to IECVPST for termination processing. 

In general, the 10SB flag settings are defined as: 

10SERR=O t 
10SEX=O ~ no error or corrected error 

10SERR=1 t 
IOSEX=l ~ ERP retry in progress 

10SERR=1 t ERP requesting retry 
10SEX=O ~ 

10SERR=O t 
10SEX=1 ~ permanent error 

Section 5: Component Analysis 5.2.7 



lOS (continued) 

6. I/O error processing during ACR has caused several problems. The chapter ~ 
"Miscellaneous Debugging Hints" in Section 2 addresses the ACR processing 
and potential exposures. 

7. Check the trace table for unit check/unit exception interrupts. These interrupts 
often cause abnormal processing which may contribute to the problem. (For 
information on "MVS Trace Analysis", see that chapter in Section 2.) The 
fourth word of the SIO trace entry is the 10SB address associated with the. I/O 
request. The SRB + X'l C' points to the 10SB address associated with the 
interrupt that caused the post status module (IECVPST) to be scheduled. 

8. Check the LOGREC buffers created by lOS modules (the CSECT name in the 
record will be ali lOS module name). Register 2 quite often is the lOSS 
address associated with a request to be processed at the time of error. 

Error Recovery Procedures (ERPs) 

This topic describes ERP routines aI1d helps you determine the module responsible 
fQJ--pr-O-blem-sy-m-p-t-em-s. 

lOS and ERP Processing 

Error recovery procedures (ERPs) are scheduled by the lOS post status routine 
(IECVPST). When lOS receives an interrupt with a unit check, unit exception, 
incorrect length, program check, chaining check, or channel data check, the 10SEX 
bit (in the 10SB) is turned on. If the interrupt shows a unit check, the sense 
information is read into the ERP work area (EWA). 

lOS Sequence 

The sequence of lOS post status events is: 

1. Inspect the 10SERR (in thelOSB) to determine if error recovery is already in 
progress, if it is, step 2 is bypassed. 

2. Turn on 10SEX (in the 10SB) and issue a BALR to the abnormal end 
appendage. 

3. Upon return from the appendage, or if ERP is already in progress: 
- For DASD error recovery - issue a BALR to IECVDERP. 
- For nonDASD error recovery - branch to IEAOEFOO (the exit effector). 

4. Upon return from the ERP, lOS takes action to perform the ERP requirements 
listed instep 3 of the following topic "ERP Sequence". 

5.2.8 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



lOS (continued) 

ERP Sequence 

The sequence of ERP events is: 

1. The required ERP inspects the status and sense information using an ERP error 
interpreter table and an lOS routine referred to as the lOS error interpreter 
(IECVITRP). 

2. The lOS error interpreter routine makes a branch vector return to a label 
within the ERP for.a given error. 

3. For a given error, the ERP determines the requirement for and initiates one or 
more of the following actions: 

Retry/restart the channel program 
Issue console message IEAOOOI or IEAOOOA 
Log the error 
Indicate that the error is permanent 
Indicate that the error has been recovered 

.Identifying ERP Module Names 

The name of an ERP routine (for nonDASD devices) must be of the form 
IGEOxxxx, where xxxx is a positive decimal number. The decimal number xxxx 
corresponds to the one-byte binary value in the UCBETI. When an error routine is 
needed, this byte is converted to decimal, unpacked, and substituted for the value 
xxxx to complete the name. For example, the ERP routine for the IBM 2540 is 
IGEOOOlC. The UCBETI for a 2540 contains X'OD'. When this byte is converted 
to decimal, it becomes a plus 013. When the plus 013 is unpacked, it becomes 
FOFIC3, which is printed as OlC to complete the name IGEOOOIC. 

How ERP Transfers Control 

ERP routines frequently transfer control. They may give control to another load 
module of the same ERP, to the outboard recorder (OBR), to an lOS statistics 
update routine (IGE0025D), or to the lOS write-to-operator routine (IGE0025C). 
The CVT+ X'2C' points to the transfer control routine that uses the contents of 
register 13 to determine which module should receive control. The technique used 
is the same as described in the previous topic "Identifying ERP Module Names". 
The contents of register 13 are converted to decimal, unpacked, and placed in the 
low-order halfword of IGEOxxxx. The following table shows a few examples: 

Contents of Register 13 

00000009 
OOOOOOOE 
00000017 
OOOOOOFE 
000007D6 

Control Given to Module 

IGEOOOOI 
IGEOOOlD 
IGE0002C 
IGE0025D 
IGE0200F 

Section 5: Component Analysis 5.2.9 



lOS (continued) 

Abnormal End Appendages 

Abnormal end appendages are of critical importance to ERP. Within lOS, the 
BALR issued to the appendages is located immediately before a return vector table. 
Two important facts are: 

• The ability to modify the necessary control blocks allows the appendage to turn 
off error indicators, or to perform error recovery actions, without ERP being 
invoked. 

• Because lOS gives control to the appendage via a BALR instruction immediately 
before a return vector table, the appendage can branch back to lOS as follows: 

- Return register + 0 - IOBFLAG 1 in the lOB is examined for the IOBERRTN 
and IOBIOERRbitsand the following actions are taken: 

IOBERRTN IOBIOERR Action 

o 0 The user channel program is posted 
complete. 

1 

o 
o 

---~h.e-E-RP--is-sehed-\lled-=-. -------

Should not occur during error recovery. 

1. If this is the first time the appendage 
was entered (IOBECB=X'7F'), 
schedule error recovery if allowed by 
the DCBIFLG field in the DCB. If 
error recovery is not allowed, handle 
as a permanent error. 

2. If this is the second time the 
appendage was entered (IOBECB not 
equal to X'7F'), handle as a permanent 
error. 

Return register + 4 - channel program not posted complete. 

Return register + 8- the request is retried. 

Return register + C - DDR processing required. 

The abnormal end appendage should be examined when analyzing possible error 
recovery problems. 

S.2.1& OS/VS2System Programming Library: MVS Diagnostic Techniques 



lOS (continued) 

Retry /Restart the Channel Program 

For retry, errors are retried from the first CCW. For restart, errors are restarted 
from the failing CCW. An ERP's decision to retry or to restart a channel program is 
primarily dependent upon the type of chaining, and secondarily dependent upon 
the type of error. For channel programs using data chaining or no chaining, the 
request should be retried beginning with the first CCW. On a request using 
command chaining, the restart is done from the failing CCW. The 10SB address of 
the real channel program (IOSRST) is updated with the real address of the CCW at 
which restart is to begin. 

After a retry or restart has been successful, the ending status is presented to lOS, 
but the ERP is given control again because the 10SERR bit is still on (indicating 
that error recovery is in control). ERP performs error inspection using the error 
interpreter table to asSure a cleanup of the 10SB. The 10SERR and 10SEX bits 
(in the 10SB) are turned off, the error. count fields are cleared, the abnormal status 
bits in the CSW are turned off, and return is made to lOS. 

Error Interpreter 

AnERP module usually contains subroutines to handle various errors for the device 
types for which the module is responsible. In order to test the two CSW bytes and 
the first two sense bytes, ERP uses a common lOS routine (IECVITRP) pointed to 
by CVT+ X'44'. This routine uses the ERP module's error interpreter table to 
determine which subroutine within the calling ERP module should be branched to 
for handling the error condition detected by lOS. The error interpreter table 
establishes the priority and sequence in which errors are handled. Each entry in the 
table represents an error condition, and in the entry there is a label for the sub­
routine to be branched to when the error condition is detected by the lOS routine. 
The label names vary from module to module, but the technique used is consistent 
throughout ERP. 

Example of an Error Interpreter Table 

The following table shows an example of an error interpreter table. 

DC X'ID',ALI(CCC-*+I) 
DC X'IE',ALI(ICC-*+I) 
DC X'08',ALI(PERM-*+I) 
DC X'03',ALI(EQUP-*+I) 
DC X'2F',ALI(ENDI-*+I) 

Channel control check 
Interface control check 
Permanent error 
Equipment check 
End of test 

Section 5: Component Analysis 5.2.11 



lOS (continued) 

In this example, if ERPis entered with a status of channel control check, the 
entry shows that a branch is taken to the label CCC. If ERP is entered with sense 
bytes indicating only a permanent error, then a branch is taken to label PERM. The 
table shows that the lOS routine. checks for four error conditions, and if none of 
the conditions is satisfied, then a branch is taken to END!. 

The lOS routine tests the table from the top, and the first error condition 
. detected results in a branch to the label within the entry. Because ERP handles 
only one error condition at a time, if two or more error conditions are indicated, 
only a branch to the first label is taken. For example, if both the interface control 
check and eqUipment check are indicated, then a branch is taken only to the label 
ICC. 

Note that the DCB, IOSB, and EWA are required for ERP to inspect the status 
and sense information. 

---.EttMe.s.sag~aruLLo~ __________ _ 

ERP causes an error message to appear on the console or an OBR or MDR record 
to be written to SYS 1.LOGREC based on the IOSMSG and IOSLOG bits in the 
IOSB. The following table shows the action taken for the possible settings of the 
bits. . 

Bit Setting Action 

IOSMSG IOSLOG 

o 
1 
o 
1 

o 
o 

1. No message, no SYS1.LOGREC entry 
2. Console message, no SYS 1.LOGREC entry 
3. No message, SYSl.LOGREC entry 
4. Console message, SYSl.LOGREC entry 

• Action 1: Certain permanent errors do not require logging or error messages, 
such as no record found. 

• Action 2: Certain errors require only an error message, such as intervention 
required. 

• Action 3: Certain errors are logged but messages are not issued. For example, 
if a DASD equipment check is recovered, the error is logged, but a message is 
not issued because the recovery was successful. 

• Action 4: Some errors are logged and an error message issued to the operator. 
For example, if a DASD equipment check is not recovered, an OBR type record 
is logged and message IEAOOOI is issued. 

ERP transfers control to lOS module IGE0025C for messages and logging. If 
logging is required, IGE0025C transfers control to the outboard recorder (OBR). 

5.2.11 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



lOS (continued) 

Intercept Conditions 

The conditions that cause entry to an ERP occur at SIO time (indicated by a con­
dition code of one), or at channel end time. However, if an error condition occurs 
at device end time after channel end has been handled, there is no lOSE because it 
was freed with channel end posting. In this case, lOS saves the two CSW status 
bytes and complete sense information, and sets the intercept flag (UCBITF) in the 
UCB. When the next request for this device is processed, lOS detects the UCBITF 
flag and moves the CSW and sense data to the new 10SB. lOS sets X'7E' in the 
completion code field of the 10SB and passes control to ERP via the abnormal end 
appendage route. 

Some intercept conditions are recoverable (such as the 1403 device end with the 
channel 9 or 12 sense, or device end with intervention required sense for any 
device). If the intercept condition is recoverable, ERP changes the code X'7E' in 
the completion code field of the 10SB to X'7F'. However, most intercept condi­
tions cannot be recovered. In this case, ERP marks the 10SB in error, turns off the 
ERP in-control bit in the 10SB, and returns to lOS which changes the X'7E' to 
X'44'. 

Unit Check on Sense Command 

lOS handles a unit check on the sense command as an equipment check. To do 
this, lOS simulates an equipment check by setting the equipment check in sense 
byte zero of the 10SB, and X'7E~ in sense byte one. The ERP can then distinguish 
a unit check on a sense command from an ordinary equipment check. 

Compound Errors 

A compound error is one that occurs when a previous error has been successfully 
retried. In most cases, this condition is handled by normal flow through the ERP. 
However, if the compound error is either a unit exception or wrong length 
indication in the CSW, special processing must take place to guarantee that the 
channel end appendage is entered before the ERP tests the condition. This pro­
cessing is needed because lOS does not enter the channel end appendage if ERP 
is in control. Therefore, on conditions of unit exception and wrong length indica­
tion, ERP turns off the exception (IOSEX) and error (IOSERR) bits in the 10SB 
and returns to lOS. lOS then enters the channel end appendage, and later, the ERP 
is scheduled because the CSW in the 10SB still contains the error status. 

Section 5: Component Analysis 5.2.13 



lOS (continued) 

Diagnostic Approach 

The ERP diagnostic approach has two major objectives: 

L To determine the recovery action that is being performed by the ERP module. 

2. To determine what recovery action should be performed, according to the 
manuals that provide the component description for the devices. 

The previous topics have explained how to perform the first objective. This 
topic explains the use of IBM documentation to perform the second objective. 

If the manuals mentioned in this topic do not show that error recovery action is 
required, or if the referenced "priority" figures do not show the priority in which a 
given error is to be handled, the problem may not be suitable for an AP AR. The 
component description manuals show the required/suggested error recovery actions, 
and these, actions are the specifications for the ERP software. If there are no 
specifications for a given error condition, or if the specifications seem incorrect, 
then the hardware CE should assume responsibility for any necessary changes. 

F or brevity, only those manuals for the devices that require the greatest PSR, 
field support, and APAR activity are shown. 

DASDERP 

The error recoyery actions for DASD are documented in the following manuals in 
the topic "Error Condition Table" or "Recovery Action Table". 

Order Number 

GA26-3599 
GA26-1589 
GA26-1615 
GA26-1619 

GA26-1638 

IBM Device Type 

2314 Direct Access Storage Facility 
2305 Fixed Head Storage and 2835 Storage Control 
3330 Disk Storage 
3340 Direct Access Storage Facility and 
3344 Direct Access Storage 
3350 Direct Access Storage 

The manuals indicate a required action number for each valid combination of 
error status and sense information, whether the error condition should be logged, 
and the action to be taken for each action number. The description includes the 
CCWs that must be prefixed to the channel program being retried or restarted. 

DASD ERP is totally contained in the ERP module IECVDERP. A BALR is 
issued by IECVPST to IECVDERP for DASD ERP. If console messages or logging 
are required, control is given to IGE0025C via IDS. 

5.2.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



lOS (continued) 

Tape ERP 

The error recovery actions for tape devices are documented in the following 
manuals in the topic "Error Recovery Procedures". 

Order Number 

GA32-0020 

GA32-0021 

GA26-1647 

GA32-0022 

IBM Device Type 

3803 Tape Control Modell and 3420 Magnetic Tape 
Unit Models 3, 5, and 7. 
3803 Tape Control Model 2 and 3420 Magnetic Tape 
Unit Models 4, 6, and 8. 
3803 Tape Control Model 3 and 3420 Magnetic Tape 
Unit Models 3 and 5. 
3410 Magnetic Tape Unit and 3411 Magnetic Tape 
Unit and Tape Control. 

The manuals indicate a required action number for each valid combination of 
error status and sense information, and the action to be performed for each action 
number. The action description includes a verbal description of CCWs to be used 
for error recovery, such as "Set the correct mode (if seven track) and reposition the 
tape". Also, the priority assignment given to the valid combinations of error status 
and sense information is shown in the manuals in the topic "Status and Sense 
Indicator (Bits) Checking Sequence". 

Printer ERP 

For the IBM 3211 Printer, the manual GA24-3543 describes the error recovery 
actions to be performed in the topic "Suggested Error Recovery Procedures". The 
priority assignment for handling valid error status and sense combinations is shown 
in the figure "Error Recovery Priority Sequence". 

For the IBM 3800 Printing Subsystem, the manual GA26-1635 describes error 
recovery actions in the chapter "Error Detection, Recovery, and Recording". The 
figure "3800 Error Conditions and Suggested Recovery Actions" describes various 
statl,ls and sense error indicators, the possible cause of the error conditions, and 
what the ERP should do to recover the error. Within the same chapter is a topic for 
permanent errors with the required content of operator messages, and a topic for 
error logging that specifies the types of SYS1.LOGREC entries (CCH, SDR, OBR, 
and MDR). Also, 'the figure "3800 Error Recording Actions" specifies which error 
conditions require SYS1.LOGREC recording and the type of SYS1.LOGREC entry 
to be created for specific errors. 

Section 5: Component Analysis 5.2.15 



lOS (continued) 

ERPTraps 

The previous topic "Error Interpreter" explains how to determine the assigned 
label for various error routines within an ERP module. These labels are excellent 
places from which to branch to the module trap area for traps. However, 
extra care should be used because the module location to which an error interpreter 
table causes a branch may be used by more than one entry. It is possible that more 
than one table entry can contain the same name, and that different label names can 
reside at the same module displacement if defined as DS. It is important, therefore, 
th.at code placed in the patch area test the reason for receiving control. If the patch 
area verifies the expected reason for receiving control (by testing the status and 
sense information), then a program check or one-instruction loop is an excellent 
trap/documentation technique. 

MVS systems run with ERP enabled, in supervisor state, and under the RCT 
TCB. DASD ERP runs in SRB mode. Checking the ERP program is effective when 
an OC3 abend is caused (use an EXECUTE instruction to execute itself), and a 
SLIP command is used to catch the abend before the sys1~lILFRR has_fLeed_th~ ______ _ 
10SB and EWA control blocks. 

An abend (such as a program check) in an ERP module causes the address space 
to remain unusable until a re-IPL is performed. 

When possible, a one-instruction loop in the ERP patch area should be followed 
by a stand-alone dump for documentation of the ERP's action and failure. 

A GTF trace or CCW trace is usually required to debug ERP problems. When 
possible, use a full trace; but for intermittent problems, it may be useful to modify 
the interrupt handler so that the trace occurs only for the desired I/O or selected 
SVC operations. 

Diagnostic Approach . Summary 

In summary, debugging ERP problems consists of: 

1. Determining which ERP module and subroutine receives control for error 
recovery (if the abnormal end appendage and DCBIFLG field permit ERP to 
execute). 

2. Inspecting the routine to determine if it conforms to the specifications for 
error recovery provided in the component description of the device. 

3. Assigning responsibility for the problem to the CE if ERP operates according 
to the specifications, or document the problem using GTF, dumps, and traps 
within ERP to assure adequate APAR documentation. 

5.2.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Program Manager 

The program manager controls the various means by which programs are located, . 
brought into storage, and subsequently given control for execution. This chapter 
describes the program manager and includes the following topics: 

• Functional Description 
• Basic Functional Flow 
• 806 ABEND 
• APF Authorization 
• Module SUbpools 
• Fetch/Program Manager Work Area (FETWK) 
• RB Extended Save Area (RBEXSA VE) 

Functional Description 

The program manager's primary functions are to create and maintain control block 
queues necessary to fetch load modules into virtual storage and delete load modules 
from virtual storage, and to transfer control between load modules during program 
execution. 

Load modules fetched into virtual storage reside in one of the link pack areas 
(fixed, modified, or pageable) or in ajob step's job pack area. External 
communication to the program manager during program execution is accomplished 
by means of the system macros: LINK, XCTL, LOAD, DELETE, SYNCH, and 
IDENTIFY. 

Program Manager Organization 

The program manager consists of six modules, lEA VLKOO, lEA VLKO 1, 
IEAVLK02, IEAVLK03, IEAVIDOO, and IEAVNP05. Their major functions are 
described in Figure 5-6: 

Program Manager Control Blocks 

The major program manager control blocks and work areas are the contents 
directory entry (CDE), the link pack directory entry (LPDE), the load list element 
(LLE), the fetch work area (FETWK), the extent list (XL), the program request 
block (PRB), and the DE (directory entry) save area. These control blocks and 
work areas are described in Figure 5-7. 

Section 5. Component Analysis ~ 5.3.1 



Program Manager (conthmed) 

Program Manager Queues 

The job pack queue (JPQ), active link pack area queue (ALPA.Q), the load list (LL), 
and the SVRB suspend queue (SSQ) are the four basic queues maintained by the 
program manager. These queues which are summarized in Figure 5-8, are 
described below: 

lPQ Each job step has a job pack queue. The queue consists of CDEs (built 
in sub pool 255) representing modules (or minor entry points of 
modules) explicitly requested by one or more tasks in the step via the 
LINK, LOAD, XCTL, or IDENTIFY macros, but not available in one 
of the link pack areas. This queue is empty at the initiation of the job 
step. 

ALPAQ - The active link pack area is a system queue consisting of CDEs (built 
in sub pool 245) representing modules (and minor entry points of 
modules) that are in the: 

-----------------------------------------------------------.--Mudtfie1ttirrk-p-a-crare-a-------------------------------------------

Module CSECT Residence 
Name Name 

IEAVLKOO IEAVLKOO Nucleus 

IEAVLK01 IEAVLK01 Nucleus 

IEAVLK02 IEAVLK02 Nucleus 

IEAVLK03 IEAVLK03 Nucleus 

IEAVIDOO IGC041 Pageable 
LPA 

IEAVNP05 IEAVNP05 Exists only 
during 
system 
initialization 

Figure 5-6. Program Manager Modules 

• Fixed link pack area 

• Pageable link pack area and listed in the IEALODOO member of 
SYS l.P ARMLIB 

• Pageable link pack area, with no CDE already on the queue, and 
currently in use 

This queue initially consists of CDEs representing modules belonging to 
the first. three categories listed above. 

Major External Primary Function 
Entry Points 

IGCOO6 Contains the entry points for LINK (I GC006) , XCTL 
IGCOO7 (lGC007), LOAD (lGC008), DELETE (lGC009), and 
I GC008 SYNCH (lGC0121. Along with module IEAVLK01, it services 
IGCOO9 each of these fu nctions. 
IGC012 
IEAQCS01 
IEAQCDSR 
IEAVVMSR 

None Along with module IEAVLKOO, it services the LINK, XCTL, 
and LOAD functions. 

IEAPPGMA Cleans up resources in case of an ABEND (lEAPPGMA) and 
IEAPPGMX whenever a PRB exits (I EAPPGMX). 

FRRPGMMG Program Manager Functional Recovery Routines. 
FRRPGMX 

IGC041 Service routine and FRR for IDENTIFY. 

IEAVNP05 Creates the modified, fixed, and pageable link pack areas. 
Creates the initial active link pack area queue. Creates the 
pageable link pack area directory. 

5.3.2 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Program Manager (continued) 

Area Mapping Size Subpool Usage Created by Deleted by 
Macro (Bytes) Number 

CDE IHACDE 32 245 or 255 A CDE represents a copy of a module Program Manager Program Manager 
in virtual storage (called a major (LINK, XCTL, 
CDE). Minor CDEs are also used to LOAD, or 
represent minor entry points. IDENTIFY) 

LPDE IHALPDE 40 252 Similar to CDE, except are used for System Not deleted 
the load modules in the pageable I nitia lization 
link pack area. 

LLE IHALLE 12 255 An LLE is used to control LOAD and Program Manager Program Manager 
DELETE references to a module. (LOAD) 

FETWK IHAFETWK 1540 253 Used as a work area and communica- Program Manager Program Manager 
tion area by FETCH and program when a FETCH is 
manager. necessary 

XL IHAXTLST 16 255 Contains the load point and size of FETCH, or Program Manager 
a load module fetched into virtual Program Manager, 
storage. or OS/LOADER 

PRB IHARB 136 253 Controls the execution of a load Program Manager Exit Processing 
module. 

DE None 64 255 Used to save the user-supplied BLDL Program Manager Program Manager 
Save entry while program manager is or ATTACH 
Area processing. Processor 

Figure 5-7. Program Manager Control Blocks and Work Areas 

Queue Serial ization Type of Elements 
Queue Wh~m Element is Enqueued 

Queue Header 

JPQ local lock push down CDE field TCBJPQ When a module is fetched 
Note 1 in the job step into virtual storage or an 

TCB IDENTIFY is used to define 
an embedded entry point 

ALPAQ CMS lock push down CDE field At system initialization and 
Note 1 IEAQLPAQ thereafter whenever a 

pointed lo by pageable LPA module is 
CVTQLPAQ activated 

LL local lock push down LLE field Whenever a module, not 
TCBLLS previously loaded by the 

task, is loaded 

SSQ local lock in order SVRB field Whenever a request within 
ofTCB Note 2 CDRRBP the job step cannot be 
priority satisfied because a module 

is being fetched or it is 
reusable, but in use 

Notes: 
1. Queue is push down except when minor CDEs are enqueued. Minor CDEs are always 

queued following the associated major CDE. 

2. If the suspend queue is 'for a serially-reusable module that is in use, the PRB using the 
module will be queued between the CDE and the first SVRB. 

Figure 5-8. Program Manager Queues 

When Element is Dequeued 

When the module is no 
longer needed - that is, its 
use count goes to zero. 

When an activated pageable 
LPA module is no longer 
needed. CDEs er:lqueued 
during system initialization 
are never dequeued. 

Whenever the load count 
goes to zero or when the 
task terminates. 

When the module becomes 
available. 

Section 5. Component Analysis 5.3.3 



Program Manager (continued) 

LL The load list is a task-oriented queue consisting of LLEs representing 
load modules the task has accessed via the LOAD macro. Each LLE 
points to the CDE on the IPQ or the ALP AQ representing the module 
LOADed. The loaqlist for each task is initially empty. 

SSQ - The SVRB suspend queue is a CDE-headed queue consisting of program 
manager SVRBs representing requests within the job step for that 
particular module. The request could not be immediately satisfied 
either because the module is currently being fetched into virtual 
storage by a previous request or because the module is serially reusable 
and currently in use. 

PLPAD - The pageablelink pack area directory is a table of LPDEs built at 
system initialization time. Each LPDE in the table represents a module 
(or an alias entry point of a module) in the pageable link pack area. 
Once built, the table is static and read-only. 

Queue Validation) 

JPQ and ALPAQ 

The program manager functional recovery routine (module lEA VLK03) calls the 
queue verifier (module IEAVEQVO) to verify and repair CDE elements on the IPQ 
and on the ALPAQ. Queue verifier validity checks the parameter list, then verifies 
and corrects the queue structure, removing elements with bad data. Errors 
encountered are recorded as 16-byte entries in the queue verification output data 
(QVOD) area. For program management, the QVOD is mapped in the SDWA 
variable recording area starting at SDWAVRA + X'E'. On exit to the caller, register 
15 contains return information as follows: 

• Byte 0, bit 0 = 0 indicates that any error encountered has been recorded in the 
QVOD area. 

• Byte 0, bit ° = 1 indicates that there were more errors than could be recorded 
in the QVOD area. Errors were detected but not recorded. 

• Byte 1 = count of errors recorded. 

• Byte 2 = count of errors detected. 

• Byte 3 contains one of the following return codes: 

° No errors detected 

4 Elements with bad data were removed from the queue. Their addresses 
were recorded in the QVOD area. 

8 Damage to the queue structure -- the queue is operational but an 
undetermined number of elements may have been lost. 

24 - Invalid input parameters - the queue verifier has not performed its 
function. 

5.3.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Program Manager (continued) 

Load List 

The load list is validated by the program manager FRR itself, beginning at the 
queue's header in the TCB (TCBLLS). When an invalid LLE is encountered the 
queue is truncated. 

System Initialization 

During system initialization the program manager RIM (resource initialization 
module), IEAVNP05, is called to create the modified LPA, the fixed LPA, the 
pageable LPA, the initial ALPAQ, and the PLPAD. IEAVNP05 fetches modules 
into the link pack areas from SYSl.LINKLIB, SYSl.LPALIB, SYSl.SVCLIB, and 
user libraries. It is driven by SYSI.PARMLIB members IEAFIXxx, IEALPAxx, 
IEALODOO, lEAP AKOO, LNKLSTxx, and by the CLPA system parameter. 
(See Figure 5-9.) 

Basic Functional Flow 

The following section describes the program manager's major functiqns. 

LINK 

Module lEA VLKOO is called by the SVC FLIH when the LINK SVC (SVC 6) is 
issued. Its first function is to locate a useable copy of the requested load module. 
An abend occurs if it cannot. If a useable copy is found, but not in virtual 
storage~ module IEAVLKO 1 brings it in. 

If a useable copy is found already in virtual storage, the requestor can use the 
module immediately or may be suspended until it becomes availabie. In the latter 
case, a module can be unavailable if either: 

• A previous request to fetch it into storage is being processed (indicated by bit 
CDNIC being on in the CDE) or 

• It is a serially reuseable module currently in use (indicated by the CDREN bit 
being off, the CDSER bit being on, and a non-zero CDRRBP field. 

Section·S. Component Analysis 5.3.5 



LPALIB 
Modules 

.......... -----~ 

LlNKLIB 
Modules 

SVCLlB 
Modules 

~ Modules ./ t--------v ... 

~ 
1------' :; 

"0 
1------.. 0 

:2E 

:> ---........ / 

~ --y 

Figure 5-9. IEAVNP05 Initialization 

Program Manager (continued) 

IEAVNP05 

If CLPA is specified, 
builds pageable LPA 
and PLPAO for all 
modules on 
SYS1.LPALIB. 

/ COEs > 
v 

LPOEs 

MOduleslb 

~----------------------~,-'" 

Builds fixed LPA 
(via IEAFIXxx) 
and puts COEs on the 
ALPAO. 

Note: Some modules 
can now be in both 
the pageable and fixed 
LPAs. 

Builds modified LPA 
(via IEALPAxx). 
Fetches modules and 
enqueues CO Es on 
bottom of ALPAO 
only if modules are 
not already in the 
fixed LPA. 

Uses lEA LO 000 
to build 
"permanent" COEs 
for specified 
pageable LPA 
modules. 

.... 

"> -----...", 
--' 

r1 

r1 

... 
" Modules> .... 

5.3.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 

Virtual Storage 

ALPAO 
(SOA) 

Pageable 
LPA 

PLPAO 

Modified 
LPA 

Fixed LPA 



Program Manager (continued) 

If a useable copy of the requested module is not immediately available, the 
requestor's program manager SVRB is put into a wait state and enqueued on the 
SVRB suspend queue (SSQ). The SVRB is dequeued and posted out of its wait 
when the desired module becomes available. For "not in storage" suspends, 
module IEAVLKOI posts all SVRBs queued on a CDE's SSQ when it successfully 
completes a module fetch. Each of these SVRBs then restarts the LINK request 
essentially from the beginning at entry point IEAQCS02 in module IEAVLKOO. 
For the serially reuse able case, module IEAVLK02 posts the top SVRB on a CDE's 
SSQ when the PRB that was using the module represented by the CDE exits. In 
this case, execution resumes in module IEAVLKOO at entry point IEAQCS03. The 
logic at this entry point assumes the requested module is in storage and 
immediately available. 

Once a module becomes available to a request, the module-use count in the CDE 
is increased by one. This use count is decreased by one when the current requestor 
no longer needs the module. 

Next, LINK processing gets storage for a PRB out of sub pool 253. The PRB 
is initialized (including setting the RBOPSW to point to the entry point of the 
requested module) and enqueued on the current TCB's RB queue. It is enqueued 
after the program manager SVRB, but before the linking module's RB. The 
program manager then exits, thus causing the requested load module to gain 
control next. (See Figure 5-10.) 

PRB How initialized by IEAVLKOO for LINK 
Field (and ATTACH) 

RBPREFIX zero 

RBSIZE 13 double words 

RBSTAB1 zero 

RBSTAB2 from PM SVRB except RBATTN=O 

RBCDFLGS zero 

RBCDE1 + requested CDE (may be a minor) Note 1 

RBOPSW-LH from caller's RB (or AABCODOO) Note 2 

RBOPSW-RH module entry point from CDENTPT 

RBPGMQ from PM SVRB 

RBWCF from PM SVRB 

RBLINKB + caller PRB (or 'TCB if ATTACH) 

RBGRSAVE from PM SVRB 

Notes: 
1. RBCDE1 will point to the CDE containing the requested load module name. This 

may be a minor CDE. CDRRBP of the major CDE however will point to the new 
PRB. Field CDRRBP in a minor CDE has no meaning. 

2. If ATTACH, RBOPSW (left half) is set to AABCODOO where, 

AA = from current PM PSW 

B = from TCB protect key (TCBPKF) 

C = X'C' if TCBFSM = 1; X'D', otherwise 

D = from PICA if there is one, else 0 

Figure 5-10. New PRB Initialization - LINK 

Section 5. Component Analysis 5.3.7 



Program Manager (continued) 

ATTACH 

When the ATTACH service routine completes the initialization of the requested 
daughter TCB, it gives control to LINK in order to establish the first PRB for the 
daughter TCB. ATTACH simulates the SVC FLIH by creating a program manager 
SVRB under the daughter TCB and then causing the daughter to branch enter 
module IEAVLKOO at entry point IEAQCS01. Processing is essentially the same as 
for LINK except for APF considerations which are explained later. 

XCTL 

Module IEAVLKOO gets control from the SVC FLIH at entry point IGC007 when 
the XCTL SVC (SVC 7) is issued. With XCTL, unlike LINK, the first function of 
module lEA VLKOO is to establish the new RB. The method used depends on the 
type of caller, as follows: 

• If the caller is an SVRB, the caller's SVRB is reused for the new module. It 
remains in the TCB RB queue in the same position as it was when IEAVLKOO 
got control. 

• If the caller is an IRB, storage is obtained from subpool 255 for a new PRB. 
The new PRB is then enqueued on the TCB RB queue between the IRB and 
the program manager SVRB. 

• If the caller is a PRB, storage is obtained for a new PRB from subpool 255 and 
then it is enqueued upon the TCB RB queue following the program manager 
SVRB. The caller's PRB is then put on top of the queue. The program 
manager then issues the EXIT SVC (SVC 3) forcing the caller's PRB, since it 
now is on top of the queue, through exit processing. This results in the storage 
for the caller's old module being freed before the new module is obtained. The 
program manager then resumes execution at entry point IEAQCS02 in module 
IEAVLKOO. 

Figure 5-11 shows how the new PRB (SVRB in the case where the caller is an 
SVRB) is initialized for an XCTL. Figure 5-12 shows how the new RB is enqueued 
in the TCB RB queue before the program manager locates the new load module. 

The next function in the XCTL process is to locate the desired module. If the 
caller is an SVRB, the module is searched for via the ALPAQ; if it is not found, it 
is searched for via the PLPAD. If it is not found by either the ALP AQ or the 
PLPAD, an 806 abend is generated. If the load module is found, final initializa­
tion in the RB is completed and the program manager exits. The following 
exceptions to normal processing occur when an SVRB issues an XCTL macro 
(they are made for performance reasons): 

• Only the ALPAQ and PLPAD are searched. 

• If the CDE on the ALPAQ is found useable, the use count is not increased. 

5.3.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Program Manager (continued) 

• If an LPDE in the PLP AD is found useable, no CDE is built or enqueued on 
the ALPAQ. Furthermore, the RBCDEI field is made to point to the LPDE 
rather than a CDE. 

If the caller is not an SVRB, the requested load module is located as it is in 
LINK. Once found, initialization is completed on the already existing PRB and 
return is made to the caller. 

How initialized by IEAVLKOO for XCTL 
RB field 

Caller is a PRB Caller is an I RB Caller is an SVRB 

RBPREFIX zero zero left as is 

RBSIZE from caller PRB 17 double words left as is 

RBSTAB1 
from caller PRB zero left as is except 

RBTRSVRB, Note 1 

RBSTAB2 
from caller PRB from caller IRB left as is 

except RBFOYN=1 

RBCOFLGS zero zero left as is 

RBCOE1 t requested COE t requested COE + COE or + LPOE 

RBOPSW-LH from caller PRB from caller IRB left as is 

RBOPSW-RH t module entry point t module entry point t module entry point 

RBPGMQ zero zero left as is 

RBWCF from caller PRB from caller IRB left as is 

RBLINKB + caller's 
caller RB 

t calling IRB left as is 

RBGRSAVE from caller PRB from caller IRB left as is 

Note: 
1. Bit RBTRSVRB indicates (for a dump routine) the location of the load module. It 

will be set to 0 if the module was located via a COE on the ALPAQ. It willi;>e set to 
1 if the module was located in the pageable LPA. 

Figure 5·11. New RB Initialization - XCTL 

Section 5. Component Analysis 5.3.9 



Program Manager (continued) 

XCTL by PRB 

At Start: TCB Program XCTL- XCTL-
Manager ... issuing 

~ 
issuing 

~ 

SVRB PRB PRB's 
calling RB 

Before the SVC 3: TCB XCTL- Program New PRB XCTL-
issuing ... Manager 

~ ~ 
issuing .. PRS SVRB PRB'.s 
calling RB 

After the SVC 3: TCB Program New PRB XCTL-

... Manager 
~ 

issuing 
SVRB PRB's 

calling RB 

I resumes at I EAQCS02 

XCTL by IRB 

TCB Program New PRB IRB XCTL-

... Manager ... ----. ~ 
issuing - SVRB - PRB's 
calling RB 

XCTL by SVRB 

TCB Program New XCTL-

... Manager .. SVRB 
~ 

issuing 
SVRB .. PRB's 

calling RB 

Lwas XCTL·issuin PRB g 's SVRB 

Figure 5-12. XCTL RB Manipulation 

5.3.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Program Manager (continued) 

LOAD 

Module IEAVLKOO is called by the SVC FLIH at entry point IGC008 when the 
LOAD SVC (SVC 8) is issued. For a LOAD request, the TCB's load list is first 
searched for an LLE representing a useable copy of the requested module. If found, 
the LLE total responsibility count is increased by one. In addition, if the caller is 
in supervisor state and/or key 0-7, the system responsibility count is updated. A 
separate system count is maintained to prevent a non-system user from deleting a 
module loaded by a system routine. 

If the load list does not yield a useable copy of the requested module, the 
module is located and CDEs are manipulated as explained earlier for LINK. The 
final step for LINK processing is the building of the PRB. For LOAD, however, no 
PRB is built; instead, an LLE is built and enqueued at the top of the TCB's load 
list queue. This LLE points to the CDE (whether it be on the JPQ or the 
ALPAQ) of the requested module. The total responsibility count is initialized to 
one, and the system responsibility count to zero or, if a system request, to one. 

DELETE 

Module lEA VLKOO is called by the SVC FLIH at en try poin t IGC009 when the 
DELETE SVC (SVC 9) is issued. Since the module to be deleted must have been 
previously loaded by the same task, lEA VLKOO searches the TCB's load list queue 
for the module. If it is not found, the program manager exits with a return code of 4. 

If the module is found, the total responsibility count in the LLE is decreased by 
one. The system responsibility count is also decreased by one if the DELETE was 
issued by a system program. Finally, the use count in the CDE is decreased by one. 

The LLE is dequeued and freed if the total responsibility count goes to zero. If 
the use count in the CDE also goes to zero, routine CDHKEEP in module 
IEAVLK02 is called. This routine frees the CDE and all its minor CDEs, the 
associated extent list, and the module itself. Once control is returned to 
IEAVLKOO, the program manager exits. 

Exit Resource Manager 

Module lEA VLK02 is called by the exit prologue at entry point IEAPPGMX when­
ever a PRB exits. The purpose is to clean up the program resources that were being 
used by the PRB. First, the program manager decreases by one the use count in the 
CDE being used by the PRB. 

SectionS. Component Analysis 5.3.11 



Program Manager (continued) 

If the module is serially reuseable, and there are SVRBs suspended on the CDE's 
SSQ, the top SVRB is posted so it can begin using the module. 

If the CDE's use count goes to zero, then the CDE, all its minor CDEs, the 
extent list, and the module itself are freed. When the module is freed (by sub­
routine CDHKEEP) it is freed from: 

• Sub pool 0, jf bit CDSPZ is 1 

• Subpool 251, if bit CDSPZ is 0 and bit CDJPA is 1 

• Subpool 252, if bit CDSPZ isO and bit CDJP A is 0 

(See the discussion of "Module Sub pools" later in this chapter.) 

If the exiting PRB is the last in the rCB's RB queue, lEA VLK02 also does end­
of-task clean up. This consists of cleaning up and freeing all LLEs remaining on the 
TCB's load list queue. 

SYNCH 

Module lEA VLKOO is called by SVC FLIH at en try point IGCO 12 when the 
SYNCH SVC (SVC 12) is issued. SYNCH essentially uses the tail end of LINK 
processing to build and enqueue a PRB for the user exit. No module searching, 
CDEs, LLEs, etc. are involved. 

IDENTIFY 

Module IEAVIDOO is called by the SVC FLIH at entry point IGC041 when the 
IDENTIFY SVC (SVC 41) is issued. 

IDENTIFY builds a minor CDE for the requested name and entry point. The 
CDE is enqueued on the JPQ or ALPAQ following the major CDE that represents 
the module containing the entry point. One exception to this is if the requestor is 
not authorized (not supervisor state, not in a system key, and not executing in an 
APF-authorized step) and the embedded entry point is in a module from an APF­
authorized library. In this case, for integrity reasons, a major CDE for the 
embedded entry point is built and enqueued on the JPQ. Since the CDE is 
initialized to represent the module as not coming from an authorized library, no 
authorized user is allowed to use this user-defined entry point. 

Module lEA VIDOO also accommodates as/LOADER with special processing. 
When as/LOADER issues the IDENTIFY SVC, it has loaded a module into sub­
pool 0, built an extent list, and now wants to be represented by a major CDE and 
extent list built and enqueued on the JPQ. This request is called a "major request" 
and is indicated when Register 0 contains 0 upon entry to IEAVIDOO. Register 1 
contains a pointer to the module name and extent list. 

Figure 5·13. illustrates CDE initialization by IDENTIFY. 

5.3.12 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Program Manager (continued) 

Normal Request 

Non-authorized 
requestor and 
module from an 
APF-authorized 

COE Field Normal library Major Request 

COCHAIN (behind major) (top of JPQ) (top of JPQ) 

CORRBP zero zero zero 

CONAME as per input as per input as per input 

COENTPT as per input as per input as per input 

COXlMJP • major COE zero + Xl (at end of CO E) 

. couse zero zero zero 

CONIP as in major coe 0 0 

CONIC 0 0 0 

COREN 1 as in major coe 0 

COSER 1 as in major COE 0 

CONFN 0 0 0 

COMIN 1 0 0 

COJPA 0 1 0 

CONlR 1 as in major coe 1 

COSPZ 0 0 1 

COXle 0 0 1 

CORlC 0 0 0 

COOlY 0 1 0 

COSYSLIB 0 0 0 

COAUTH as in major coe 0 0 

Figure 5-13. CDE Initialization by IDENTIFY 

ABEND Resource Manager 

Module IEAVLK02 is called by RrM at entry point IEAPPGMA under two 
circumstances: when a rCB is going to abnormally terminate; and when a program 
manager SVRB is going to be forced through exit processing because of a recovery 
retry. 

When IEAVLK02 is called, its function is to clean up CDE SVRB suspend 
queues. If the current rCB has any program manager S VRB on an SVRB suspend 
queue for any CDE on the lPQ, the SVRB is dequeued. Furthermore, when a rCB 
is going to abnormally terminate, if any CDE on the lPQ has the CDNIC bit on and 
a program manager SVRB on the abending rCB's RB queue is responsible for 
fetching the module into virtual storage, all other SVRBs waiting for the module 
are posted and the CDE is dequeued and freed. 

Section 5. Component Analysis 5.3.13 



Program Manager (continued) 

806 ABEND 

If the program manager cannot locate a load module in response to a LINK, 
ATTACH, XCTL, or LOAD request, it issues an 806 abend. Two key areas in 
the program manager should be understood if an unexpected 806 abend occurs 
or if the program manager uses a copy of a module that was not anticipated. These 
are (1) the module search sequence or search order and (2) the criteria used in 
determining whether or not a module already in virtual storage is useable. 

1 . Search Sequence 

For a LOAD request,CDEs located on the task's load list queue are first 
searched for a useable module. If this search fails, the search sequence for 
LOAD is then the same as it is for LINK, ATTACH, and XCTL. 

The search sequence for LINK, ATTACH, XCTL, and LOAD (if the LLE scan 
is unsuccessful) is shown in Figures 5-14 and 5-15. 

2. Useability Criteria 

When searching for a module, the program manager looks for a CDE already 
enqueued on the JPQ or ALPAQ with a CDNAME the same as that of the 
requested name. If a matching name is found and the CDE is on the ALPAQ, 
the module is immediately available to the requestor because all these CDEs 
represent modules that are reentrant and from APF-authorized libraries. If 
the CDE is on the JPQ, however, certain tests have to be made to determine if 
the module represented by the CDE can be used by the requestor. The routine 
CDALLOC (CDE Allocation) performs this testing. The CDE with the 
matching name is the input to CDALLOC. Output is a return code indicating 
the useability of the associated module. Figure 5-16 describes tests and actions 
taken by CDALLOC. 

APF Authorization 

'The program manager performs two APF-related functions. The first function deter­
mines whether or not ajob step is APF-authorized when the job step TCB is attached. 
The second function prevents any authorized program from accessing, via LINK, 
ATT ACH, XCTL or LOAD, a module that is not from an APF-authorized library. 

5.3.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



See Figure 5-15 

Search CDEs 
via TCB's 
Load List 
Queue 

Search 
Private 
Libraries 

Search 
SVCLlB 

Program Manager (continued) 

Search JPQ 

No 

No 

Search ALPAQ 

Search PLPAD 

Yes 

Search LlNKLIB 

Figure 5-14. Module Search Sequence for LINK, A IT ACH, XCTL and LOAD 

Note: For XCTL, if caller is 
an SVRB, only the ALPAQ 
and PLPAD are searched 

Order of COEs on ALPAQ 

First: Modules activated from the 
pageable LPA - newest modules 
first 

Second: Modules listed in 
I EALODOO - in inverse order of 
specification in list 

Third: Modules in fix lists in 
inverse order of specification in 
lists. Lists also in inverse order of 
their specification 

Fourth: Modules in MLPA lists - in 
inverse order of specification in 
lists. Lists also in inverse order of 
their specification 

Section 5. Component Analysis 5.3.15 



Z Byte> 1. 

Search the Parent 
Job/Step/Task 
Libraries Via 
Z Byte 

Program Manager (continued) 

Yes 

Search Library 
Via Given DCB 

Yes 

No 

Search 
Library Via 
Given DCB 

Z Byte = 1 

Search All 
Job/Step/T ask 
Libraries 

No 

No 

Z Byte:::i 1 

Conti nue Search 
with the ALPAQ 

Figure 5-15. Module Search Sequence of Private Libraries 

5.3.16 OS!VS2 System Programming Library: MVS Diagnostic Techniques 

Yes 

Search Current 
Job/Step/T ask 
Libraries 

Z Byte> 1 

Search the Parent 
Job/Step/Task 
Libraries Via Z 
Byte 



Program Manager (continued) 

Type of Request Module Condition via the Input COE 

Requestor is Module from non APF-authorized library 

Authorized* 
From APF-authorized library = same as non-authorized request 

Module being fetched (CDNIC = 1) 

Reentrant or serially reuseable 

No Load Fetched by Program Manager 
Restrictions 

Module in (CDNLR = 1) Non-
USECT =0 LOAD reusable Loaded by 

Storage 
as/LOADER (CDNIC = 0) USECT )0 

Load Reentrant or serially reuseable 

Requestor is 
Only Non-reuseable 

Non-authorized 
Module being fetched (CDNIC = 1) 

No Load 
LINK Module in Restrictions 
ATTACH Storage (CDNLR = 1) 
XCTL (CDNIC =0) 

0: Module not available via JPO 

4: Module is immediately available 

8: Module not available - continue JPO search 

12: Module not immediately available - suspend requestor 
until module is no longer in use 

16: Module not immediately available - suspend requestor 
until fetch is complete 

*In supervisor state, in system key, or as part of an 
APF-authorized step 

Figure 5.16. CDE Allocation 

Reentrant (CDR EN = 1) 

Serially 
In use (CDRRBP +0) 

Reuseable 
Not in use (CDRRBP = 0) 

Non-
Used (CDNFN = 1) 

reuseable Never used (CDNFN = 0) 

Load only (CDNLR = 0) 

COALLOC 
Return 
Code 

8 

-

16 

4 

0 

4 

0 

4 

0 

16 

4 

12 

4 

8 

4 

406 
ABEND 

Section 5. Component Analysis 5.3.17 



Program Manager (continued) 

1. Establishing APF Authorization 

An APF-authorized job step is executing if bit JSBAUTH is on in the JSCB. 
This bit is turned on by the program manager if the following conditions exist 
when LINK is called by ATTACH: 

• It must be a job step ATTACH. The program manager considers it a job 
step ATTACH if field TCBJSTCB in the attached TCB points to itself and 
if there is a JSCB for the step indicated by a non-zero TCBJSCB field. 

• The load module being attached must have been link edited with an APF 
authorization code of 1. This is indicated to the program manager when 
bit PDSAPF is on in the module's directory entry. 

• The load module being attached must be from an APF-authorized library. 
This is determined by FETCH and indicated to the program manager by 
bit WKA UTH being on in the FETWK. 

In summary, a job step is APF -authorized if the first program executed in the 
step is both from an APF-authorized library and is link edited with an APF 
authorization code of one. 

2. 306 ABEND 

An authorized program is one that is executing in supervisor state, or with a 
system protect key (0-7), or as part of an APF-authorized job step. An 
authorized program must LINK to, ATTACH, LOAD and XCTL to modules 
exclusively from APF-authorized libraries. The program manager issues an 
abend code of 306 if the only useable copy of a module requested by an 
authorized program is on a non-APF-authorized library. 

When a load module is fetched into virtual storage, FETCH indicates to the 
program manager via the FETWK bit, WKAUTH, whether it is (bit on) or is 
not (bit off) from an APF-authorized library. If the requested module is 
already in virtual storage, the program manager determines whether or not it is 
from an APF-authorized library by examining the CDE bit, CDSYSLIB. If it 
is on, the module can be used by an authorized program. 

Bit CDSYSLIB = 1 if the associated module is from an APF-authorized library 
except in the following cases: 

• The bit = 0 if the module is reentrant but is still fetched into subpool 251 
because of TSO TEST considerations (see the following discussion on 
"Module Subpools"). 

• The bit = 0 when IDENTIFY creates a major CDE because a non­
authorized user indicates an embedded entry point in a module from an 
APF-authorized library. 

5.3.18 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Program Manager (continued) 

Module Subpools 

All modules represented by CDEs on the ALPAQ are loaded into the pageable LPA, 
the fIXed LPA, and the modified LPA. These modules are never freed. 

Modules represented by CDEs on the JPQ however, are freed by the program 
manager and can occupy storage in subpool 0, subpool 251, and subpool 252. 

Modules loaded by the OS/LOADER always use subpool O. This is indicated by 
bit CDSPZ being set to one. 

When bit CDSPZ is zero, modules fetched by the program manager use sub pool 
251 if bit CDJP A is set on orsubpool 252 if bit CDJPA is set off. 

Reentrant modules from APF-authorized libraries are always fetched into sub­
pool 252 if the requestor is a system program (a program in supervisor state or with 
a system key). Reentrant modules from APF-authorized libraries requested by non­
system programs are also fetched into subpool 252 provided TSO test (TCB bit 
TCBTCP=O) is not running. All other modules are fetched in to subpool 251. 

FETCH/Program Manager Work Area (FETWK) 

Module IEAVLKOI obtains the FETWK (mapped by DSECT IHAFETWK) from 
subpool253 when a load module is to be fetched into virtual storage. A pointer to 
the FETWK is placed in RBCSWORK of the program manager SVRB. FETWK is 
logically divided into three areas. The first area, up to but not including field 
WKADDR, is used exclusively by FETCH as a work area. The second area, up to 
but not including WKPREFX, is used as a work area by the program manager. 
Field WKIOADDR and bits WKAUTH and WKSYSREQ in this area are also 
addressed by FETCH, as follows: 

• WKIOADDR is always set to zero by the program manager. This instructs 
FETCH to do the GETMAIN for the load module. 

• WKAUTH is set to one by FETCH to tell the program manager when a load 
module is from an APF-authorized library. 

• WKSYSREQ is set to one by the program manager to tell FETCH that the 
requesting program is in supervisor state and/or system key. FETCH uses this 
indication to bypass DEB checking. 

The third area of the FETWK, .starting with WRPREFX, is the BLDL area. This 
area contains the directory entry used by FETCH to obtain the requested module. 
The directory entry is placed there by the program manager either by moving a 
caller-supplied directory entry into the area or by issuing a BLDL. 

Section 5. Component Analysis 5.3.l9 



Program Manager (continued) 

RB Extended Save Area (RBEXSA VEl 

The 48-byte extended· save area (RBEXSA VE at RB+ X'60') of the program 
manager SVRB is used by the program manager as a work area. This area, along 
with the FETWK, is a key area in analyzing program manager problems. 
RBCSNAME (at RB+X'60') contains the module name requested by the caller, and 
RBCSDE (at RB+X'68') points to a copy of the caller-supplied directory entry if 
one was supplied. If EP or EPLOC is specified, then this pointer is zero. Other 
key areas of the extended save area are RBCSWORK (at RB+X'74'), which points to 
the FETWK if FETWK was obtained, and bit RBCSSYSR (RB+ X'70' = X'40'), 
which is on if the caller is a system program. 

5.3.20 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VSM 

Virtual storage management (VSM) is responsible for allocating virtual storage, 
keeping track of what is allocated and, for certain subpools, recording to whom it is 
allocated. These services are performed both for the system and problem programs. 
(See Figure 5-17.) 

The following are the five basic functions that VSM performs: 

Function 

Nucelus initialization (NIP) 

Address space initialization 

Step initialization/termination 

Virtual storage allocation 

Cell pool management 

Module 
Performing 
Function 

IEAVNP08 

IEAVGCAS 

I EAVPRTO 

IEAVGMOO 

l
IEAVGTCL 
IEAVFRCL 
IEAVBLDP 
IEAVDELP 

Comments 

IPL parameters are: SQA=, 
CSA=, REAL=, VRREGN= 

Called by memory create 

GETP ART /FREEPART 

GETMAIN/FREEMAIN 

GETCELL (get cell) 
FREECELL (free cell) 
BLDCPOOL (build cell pool) 
DELCPOOL (delete cell pool) 

The nucleus initialization program (NIP) is not discussed in this book. The 
remaining VSM functions, and the related FRRs (functional recovery routines), 
are described in the following topics: 

• Address Space Initialization 

• Step Initialization/Termination 

• Virtual Storage Allocation 

• VSM Cell Pool Management 

• Miscellaneous Debugging Hints 

Section 5. Component Analysis 5.4.1 



VSM (continued) 

64K boundary 

sed Cannot be relea 
via FREEMAIN 

4K boundary 

64K boundary 

These can be 
intermixed 
on a 4K bas is 

-< 

r 

'-

These can b 
intermixed e{ 

64K boundary 

..... 
.. -
-... 

LSQA 

SWA 

U keY_l 

.. -

SP 245 - Key 0, not fetch protect 
SQA 

LPA 

SP 231/241/227/228/239 
CSA 

SP 253 - Key 0, not fetch protect, not pageable 
- AQE for task 

SP 254 - Key 0, not fetch protect, not pageable 
-'- AQE for any job step task 

SP 255 - Key 0, not fetch protect, not pageable 

SP 236, SP 237 - Key 1, not fetch protect, pageable 

SP 229 - User key, fetch protect, pageable 
SP 230 - User key, not fetch protect, pageable , 

These are not allowed to cross. 

I Top of SP 0-127,251,252 is CURRGNTP 
in contro.1 block local data area - (LOA) 

SP 252 - Key 0, not fetch protect, pageable 
SP 251 - User key, fetch protect, pageable 
SP 0 - SP 127 - User key, fetch protect, pageable 

SYSTEM REGION 
16K chained out of RCT's TCa (TcaPQE at Tca + X'98') 

NUCLEUS 
(FREEMAIN cannot be issued for the NUCLEUS) 

Figure 5-17. Virtual Storage Management's View ofMVS Storage 

5.4.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 

~ 
I---
I-

I-
I--

Common 
Area 

User Area 
(Private 
Apdress 
Space) 

J System 
Area 



VSM (continued) 

Address Space Initialization 

The create address space module (IEAVGCAS) initializes the VSM address space. 
lEA VGCAS creates the local data area (LOA). The LOA is the key anchor block 
and VSM save area for space allocation within an address space. lEA VGCAS builds 
all the blocks labeled "C" in Figure 5·18. lEA VGCAS also builds the initial 
allocation of 16·byte LSQA elements for VSM's local cell pool. GETMAIN then 
allocates VSM's internal control blocks from this pool. 

lEA VGCAS also contains VSM's task termination and address space 
termination resource managers. The task termination routine frees all non-shared 
space anchored in the TCB. (See Figure 5-18). The address space termination 
routine frees any WAIT or POST elements of a V=R (virtual=real) job that are 
associated with the terminating address space and are chained out of VSM's GOA 
(global data area). These V=R WAIT/POST elements exist only when ajob is 
waiting for V=R address space. 

lEA VGCAS's functional recovery routine (FRR) is lEA VCARR. IEAVCARR 
is divided into the following three sections, corresponding to those of lEA VGCAS. 

1. Entry lEA VCARR, which protects the create address space portion of 
IEAVGCAS. 

2. Entry IEAVTTRR, which protects the task termination portion of 
IEAVGCAS. 

3. Entry lEA VF ARR, which protects the address space termination portion of 
IEAVGCAS. 

lEA VCARR does not place data in the variable recording area of the SOW A 
(STAE diagnostic work area). It does invoke SOUMP and either retries at the 
beginning of the function that detects the error or continues with termination. 

Section 5. Component Analysis 5.4.3 



VSM (continued) 

Current ASCB 
I J 

SPQEfO/ 
V 

DOE V FOE 

I 
ASCBLDA h 

(Release 3 only) 
VSM's pool of 16-byte 
LSOA cells for VSM's 

~IJ 
LSOA 

~LDA (C) 

(C) 

~_LS_O_A_P_T_R_---tlJ _________ 

LDASRPOE 

LCLCELL 

chain 

(C) 

POE for system 
region (16K 

V 

/ po. 

except in (C) V 
Master 
Scheduler's 
address space) _ 

\ 
.... 

_AS_D_PO_E __ -~ 

internal control blocks ..310. .Dummy POE 

Current TCB 

( TCBAOE 

TCBPOE 

TCBSWA 

(~ 8 ~~-------~ not V=R jo POE for 
address V _....L.._-- space / 0 POE 

/ 

(C) 

.Jio. exists only for V=R job 

POEforV=R I ~ 
user region ~V 

chain 

(C) 

8-byte FOEs 

FBQE 
chain 

(C) 

-

-------

I 

FBOE 
chain 

(C) 

~ 

-

TCBMSS -
I 

FBOE 
chain 

po.'"" 

TCBUKYSP 

\. 
AOE chain 

AOE 
chain* , 

po. 

I 

SPOE chain 
subpools 236 
and 237 (SWA) 

SPOE chain 
sub pools 0-127, 
251, and 252 

-
SPOE chain r--
subpools 229 I ____________ 
and 230 ~ 

...- I-
po. I-

'---------

*AOEs will be for SP 254 for a job step task or 
for SP 253 If not a Job step TCB 

C = built by IEAVGCAS 

Note: Updates of all control blocks and queues in this figure are serialized by the local lock. 

Figure 5-18 .. Virtual Storage Management's Control Block Usage 

5.4.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques 

DOE 
chain 

/ 

J--------' 

built on V=R GETPART 

I 

FOE 
chain 

'-------.-~ 
16-byte FOEs 

~ 



VSM (continued) 

Step lnitializationtrennination (lEA VPRTO - GETPART /FREEPART) 

IEAVPRTO is invoked by lEA VGMOO (GETMAIN/FREEMAIN) via a branch entry 
as a result of a GETMAIN/FREEMAIN request from an initiator for subpools 242 
(V=R) or 247 (V=V). IEAVPRTO does not return to lEA VGMOO; it returns 
directly to the initiator. 

IEAVPRTO performs four functions, as follows: 

1. For a V~V GETPART request: 

Sets TCBPQE to point to the dummy address space partition queue 
element (PQE) that was created at address space initialization time. 

Calls the initiator exit routine IEALIMIT in order to establish the 
LDALIMIT which is the value used by GETMAIN as an upper limit for 
problem program subpool GETMAIN's requests. The OS/VS2 System 
Programming Library: SupenJisor contains a discussion on LDALIMIT, 
REGION=, and variable GETMAIN requests. 

2. For a V=R GETPART request: 

Performs IEALIMIT processing as described above. 

Attempts to obtain V=R space by interrogating V=R FBQEs chained from 
the GDA. 

• If unsuccessful - Creates V=R wait element 

• If successful 

- Chains the V=R wait element from the GDA 

- Indicates the V=R wait element is waiting for 
space 

- Interfaces with RSM's (real storage manager) 
IEAVEQR to obtain real frames 

- Builds V=R dummy PQE, V=R PQE, and V=R 
FBQEs, and updates TCBPQE 

3. For a V=V FRE~PART request: 

Frees all task-related space by calling FREEMAIN, and freeing one sub­
pool at a time. 

Frees SPQEs and task-related subpools. 

Sets TCBPQE=O. 

4. For a V=R FREEPART request: 

Performs the same functions as for V=V FREEPART. 

Returns space to V=R FBQEs chained from the GDA. 

Attempts to satisfy V=R waiting requests by posting the waiting initiator. 
The waiting initiator reissues the request; lEA VPRTO will move the 
WAIT elements to the POST queue anchored in the GDA. This POST 
element is freed by GETPART when the initiator's new request is 
received. 

Section 5. Component Analysis 5.4.5 



VSM (continued) 

lEA VPRTO's FRR, lEA VGPRR, does not use the variable recording area of the 
SDWA. It attempts a retry back into lEA VPRTO based on footprints set in the 
FRR's six-word parameter area. Refer to the IEAVPRTO code (microfiche) for 
a detailed description of this FRR parameter area. 

Virtual Storage Allocation (lEA VGMOO - GETMAINJFREEMAIN) 

lEA VGMOO satisfies all GETMAIN requests for virtual storage. The control block 
structure it uses is shown in Figures 5-18 and 5-19. All GETMAIN processing for the 
private area subpools and all associated control blocks are serialized by the local 
lock. All common area sub pools and associated control blocks are serialized by the 
SALLOC lock. 

A detailed process flow through GETMAIN for a virtual storage allocation request 
can be found in Appendix A in the GETMAIN/FREEMAIN process flow description. 

In debugging GETMAIN, the most important information is contained in the 
original request for virtual storage. This information can be obtained from the 
trace table, from a parameter list passed by the problem program code, or some­
times from the LDA (local data area). 

The LDA cannot always be relied upon to provide information about the request 
unless the system is stopped immediately. Unless you insert a code or SLIP trap 
and take a stand-alone dump on error, the LDA is overlaid by another request 
during the dumping procedure. 

If an immediate stop has been obtained upon encountering an error, the most 
useful information in the LDA is obtained from the flags in the LDARQST A 
(LDA + X'10') field. The LDARQSTA contains the current request status. 
Compare the flags in this field to the request and determine if the two are 
consistent. Then check through the control block chain, the LDA and GDA chains 
that are set up when subpools are requested to find out why the abend or error 
occurred. 

Offset 

o 

2 

3 

LDARQSTA (LDA+X'lO') 

1. .. 
· 1. . 
· . l. 
· .. 1 .... 

1. .. 
· 1. . 
· . 1. 
· .. 1 

1. .. 
· 1. . 
· . 1. 
· . .1 

1. .. 
· 1 .. 
· .1 . 
· . .1 

· . 1. 
· . .1 

Subpool 254 Requester has TCBABGM on 
Explicit V=V Region reached 
Variable Request, Pass 2 
SQA or LSQA Expansion 
Deferred Error I/O Flag 
FMAINB or MRELEASR Request 
GETMAINB Request 
Branch Entry 

4096-byte Request from Subpool 253/254 
An AQE is needed 
Fetch Protected Subpool 
Authorized User Key Subpool 
SWA Subpool 
LSQA Sub pool 
CSA Subpool 
SQA SUbpool 

SVC Number 

Subpool FREEMAIN 
Supervisor Mode. (if zero) 

5.4.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VSM (continued) 

Note: The GOA is always at the very end of SQA; 
X'FFFFC8' in Release 2, X'FFFFCQ' in 
Release 3. 

GOA 

CVTGOA 

private area 
start and size 

SQA space left,------f 
includes CSA 
ava i lab Ie for 
SQA expansion 

V=R virtual is 
now available; 
the initiator is 
posted to re-issue 
the request. 

jobs waiting 
for V=R 
virtual space 

V=R post 
element 

V=R wait 
element 

CSAPQEP 

VRPQEP 

PASTART 

PASIZE 

SQASPQEP 

SQASPLFT 

VRPOSTQ 

VRWAITQ 

PFSTCPAB 

CSASPQEP 

GLBLCELL 

GBLCELCT 

count of 
free cells 

(Release 3 only) 
VSM's pool of 
,1 6-byte SQA 
cells for VSM's 
internal control 
blocks 

Note: Updates of all the control blocks and queues in this figure, 
except PFSTCPAB, are serialized by the SALLOC lock. 
PFSTCPAB is read only after NIP. 

Figure 5-19. Virtual Storage Management's Global Data Area (GDA) 

SQA 
SPQE 

permanent cell 
pool CPABs 

CSA 
, SPQE 

CPAB 
CPAB 
CPAB 

(CPAB Table is shown 
in Figure 5-21.) 

Section 5. Component Analysis 5.4.7 



VSM (continued) 

GETMAIN's Functional Recovery Routine - lEA VGFRR 

Whenever GETMAIN's FRR (lEA VGFRR) fmds an error in a queue, an entry is 
made in the SDWA variable recording area, SDWAVRA (SDWA + X'194') to 
indicate the error that has been found, its location, and the corrective action taken. 
Each entry is added to the next available location and the length of the user­
supplied data is increased (fieldSDWAURAL, SDWA + X'193'). The high-order 
byte (byte 0) of the first word contains FF if the space in the variable 
recording area was exceeded and data entries were lost. The low order byte (byte 
3) of the first word contains a digit indicating the type of error that caused 
lEA VGFRR to get control. This digit comes from FRRBRNDX (branch index 
FRR) in the LDA where it is set up by IEAVGMOO. FRRBRNDX is X'lF' into the 
GETMAIN/FREEMAIN work area (GMFMWKAR); GMFMWKAR is the portion 
of the LDA that is used by lEA VGMOO as a work area. It is mapped at the end of 
this chapter. 

The second word of the SDWA variable recording area contains the LDA field 
LDARQSTA at the time of error. The contents ofLDARQSTA are described in 
the previous topic "Virtual Storage Allocation (IEAVGMOO - GETMAIN/ 
FREEMAIN)" . 

The next 16 words usually contain the registers (ordered 0-15) at the time 
IEAVGMOO was entered. These registers are useful for debugging problems that 
occur on branch entry requests. Register 14 contains the caller's return address. 

The remaining SDWA VRA entries consist of one to three words each. The first 
word of each entry will have a code in the high-order byte and a data length in the 
low-order byte. If this length is 0, there is no additional data for this entry." A 
length of 4 or 8 indicates one or two additional words of data. These data words 
always contain the address of the affected field or control block. These are all 
shown in the table in Figure 5-20. Control blocks are checked to determine if they 
are in the correct subpool, for example, SQA or LSQA; queues are checked for 
validity. 

5.4.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VSM (continued) 

Data Data Addresses 
Code Length First Second Explanation 

01 4 PVTLCSA PVTLCSA is incorrect - it will remain 
unchanged. 

02 4 PASTRT PASTRT in GOA is incorrect - it is 
reset using PVT. 

03 4 PASIZE PASIZE in GOA is incorrect - it is 
reset using PVT. 

04 0 All three sources of CSA start addresses 
(GOA, PVT, CSA, PQE) disagree - no 
change will be made. 

05 4 PVTHQSA PVTHQSA is incorrect - it will remain 
unchanged. 

06 4 Bad TCB TCB pointer is not valid - no queue 
pointer repairing is attempted. 

B1 4 SPQE with Next SPQE pointer is incorrect - the 
bad pointer SPOE queue is tru ncated (by setting 

the bad pointer to zero). 

B2 4 SQA SPQE SQA SPQE flagword is incorrect - it 
will remain unchanged. 

B3 4 LSQA SPQE LSQA SPQE flagword is incorrect - it 
will remain unchanged. 

B4 4 SPQE Next SPQE pointer = 0, but last SPQE 
flag is not on - the last SPQE flag is 
set on. 

e1 4 Cell with Next cell address is incorrect - the 
bad pointer cell pool chain is truncated. 

01 4 SQA SPQE First SQA OQE pointer (in SPQE) is 
incorrect; it points outside SQA so all 
of SQA may be lost - it will remain 
unchanged. 

02 8 OQE with bad Bad OQE OQE pointer is not in SQA or LSQA -
pointer address OQE queue is truncated (by setting 

the bad pointer to zero). 

03 -4 OQE OQE area address or length is incorrect 
- this OQE is removed from the queue. 

04 8 Current Overlapped Current OQE area overlaps a previous 
OQE OQE DQE - current OOE is removed from 

queue. 

05 8 Current Previous Circular OQE queue - queue is 
OQE OQE truncated after previous OQE. 

06 4 OQE First SQA OQE area address or length. 
is incorrect - address and length are 
corrected. 

F1 4 FQE Incorrect type flag in FQE - the flag 
is corrected. 

F2 4 OQE or FBQE Next FQE pointer is incorrect (if SQA 
with bad or LSQA, then previous FQE length 
pointer could be too large) - FQE queue is 

truncated (by setting the bad pointer 
to zero). 

F3 4 FQE I ncorrect (too long) length in FQE -
FQE queue is truncated. 

Figure 5-20. SDWA VRA Error Indicators 

Section: 5. Component Arialysis 5.4.9 



VSM (continued) 

VSM Cell Pool Management 

VSM's cell pool management consists of the following functions: 

Module Macro Function 

IEAVGTCL GETCELL Gets a cell from a preformatted pool of cells 

IEAVFRCL FREECELL Frees a cell to a preformatted pool of cells 

IEAVBLDP BLDCPOOL Builds a pool of formatted cells 

IEAVDELP DELCPOOL Deletes a pool of formatted cells 

The key to the VSM cell pool management function is the cell pool anchor block 
(CPAB). The layout of the cell pools is shown in Figure 5-21. Note that the 
permanent cell pools have IDs that are negative, for example, RSM01 
(X'D9E2D401'), while the dynamic cell pools have IDs that are the address of the 
first CPAB divided by 4 (shift right 2). 

The four VSM cell pool management modules are small enough that processing 
can be determined from studying the CPAB mapping along with the code. 

Miscellaneous Debugging Hints 

1. Most common problems with GETMAIN/FREEMAIN occur in the interface 
processing. There is usually a bad TCB or ASCB address or the local lock is 
not held upon entry. The ASCB is used only to find the LDA which is in the 

I :same location in all address spaces except the master scheduler's. 
Note: On a branch entry to GETMAIN, register 7 contains the address of the 
ASCB; however, on return from the branch entry, register 7 no longer 
contains this address. 

2. You can catch callers who do not hold the local lock on entering GETMAIN 
within routine CSPCHK. To do this, test for all of the following conditions: 

• Not NIP (CVTNIP) 

• Not GLBRANCH entry (SALHELD flag offset X'1E' in LDA) 

• Not GETMB or FREEMB (offset X'lO' in LDA) 

• Local lock not held (pSAHLHI) 

I. Not in the address space creation process (ASXBTCBS not equal to 0)\ 

3. A valid GETMAIN/FREEMAIN that is issued for zero bytes is treated as a 
no-op. 

4. The routine CSPCHK is a good place for a GETMAIN/FREEMAIN trap to 
occur because CSPCHK is called for every request during the beginning of 
lEA VGMOO processing. 

5.4.10 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



VSM (continued) 

CVT 

X'230' CVTGDA, 

GOA 

X'30' PFSTCPAB 

Dynamic pools 

cells 

Permanent CPAB (Cell 
Pool Anchor ilock) Table 
4 pools are currently 

cells 

/ 
// 

// 
/ . 

A-----r-t in use: 

/ / 

Figure 5-21: VSM Cell Pool Management 

SRBOO 
RSM01 
RM103 
RT104 

. Pointer to next CPAB 
; for this pool 

Contains CPID when 
JIo.._-...ii..-~--I cell in use 

~ ____ i..-_ ....... Pointer to next 
,available cell 

Section 5 •. Component AJlalysis 5.4.11 



VSM (continued) 

5. GETMAIN makes few queue manipulation errors. If lEA VGMOO rejects a 
request, it is usually because the caller made an error on the interface; the 
message lEA 7001 is issued. 

6. Subpool queue elements (SPQEs) are not freed even on a subpool FREEMAIN, 
and multiple keys for a problem program sub pool on the same rCB are not 
allowed. This can result in a problem if a user changes TCBPFK. The 
following is an example of such a situation: 

Set TCB key TCBPFK=6 
GETMAIN SP I 

FREEMAIN SP I 

Causes SPQE to be built, storage in 
key 6 

SPQE for SP I is not destroyed 

Change rCB key TCBPFK =8 
GETMAIN SP 1 lEA VGMOO uses old SPQE and assigns 

storage in key 6 

7. On branch entry to GETMAIN, IEAVGMOO saves registers at field 
BRANCHSV in the LDA and turns on the BRENTRY flag at offset X'10' in 
LDA. To be sure these sayed registers are for the request in question, it is 
necessary to stop the system via a trap. (See "Using the SLIP Command" and 
the "System Stop Routine" topics in the chapter "Additional Data Gathering 
Techniques" in Section 2.) 

8. Since the GDA occupies the last few bytes of storage, a random store at -4 or 
-8 overlays the GDA. 

9. MVS has added a new register type GETMAIN/FREEMAIN SVC and branch 
entry. It is SVC 120. The parameters differ from those of SVC 10 as follows: 

Register 1 

Register 15 
(SVC only) 

Zero for a GETMAIN; address to be freed for FREEMAIN. 

Bytes 0 and 1: Reserved, set to O. 

Byte 2: Subpool ID 

Byte 3: Following flag values: 

Bits 0-4 Reserved, set to 0 
Bit 5 = 0 Double word boundary 

Bit 6 

Bit 7 

= 1 
=0 
= 1 
=0 
= 1 

Page boundary 
Conditional request 
Unconditional request 
GETMAIN 
FREEMAIN 

For the branch entry SVC 120, register 15 contains the entry point address 
14 and register 3 is used for the parameters. Register 3 is set up the same as 

register 15 above with one exception: Byte 1 is the protect key for subpools 
227-231 and subpool 241. The address that was obtained via GETMAIN is 
returned in register 1 as in SVC 10. 

5.4.12 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VSM (continued) 

10. Some GETMAIN failures are recorded in an information list contained in the 
nucleus. This list is similar to a trace table and is pointed to by the CVTQMSG 
(CVT + X'10C'). Each entry contains data such as: ABEND code, ASCB 
address, TCB address, register 14 ifGETMAIN was branch entered, and the 
parameters passed. Refer to the DSECT INFO LIST in module IEAVGMOO for 
additional information. 

GMFMWKAR (IN LDA AT + X'18') 

OFFSET 
IN HEX (FROM START OF LOA) 

18~--------------------------------------~ 

ABNDATA(VAR.DATA) 
1C~--------~--------~--------~~------~ 

MSGLEN I FREESW I LOCKFLAG I FRRBRNDX 
20~--------~--------~----------~------~ 

-,.... 
E8 

FO 

FC 

104 

-..... 

REGSAVE SAVE AREA USED 
FOR SRM AND RSM 
(18 FULL WORDS) 

MSAVE SAVE AREA USED 
FOR MRELEASE 

(16 FULL WORDS) 

GNOTSAVE SAVE AREA USED 
FOR GNOTSAT 

(16 FULL WORDS) 

LOCKSAVE 
(OVERLAPS INTO GFSMFSVE AND MPTRS) 

GFSMFSVE/CSPCKSAV 
(SMF CORE ROUTINES SAVE AREAl 

CSPCHK SAVE AREA) 

MPTRS 
(PREVIOUS AND NEXT PTRS SAVE AREA) 

DUMYDOE 

-..... 

I 
-~ 

-..... (DUMMY DOE FOR L/SOA EXPANSION) 

11~r _______________ (_4_F_U_L_L_W_O __ R_D_S_) ______________ Jr~ 
J: TEMPDOE JL 

121 

(TEMPORARY DOE FQR FMCOMMUN) 

_ (4 FULL WORDS) r 
DUMFBOE 

(DUMMY FBOE FOR MRCLEASE) 
-I'-

13 4 

140 

14 4 

14C 

150 

154 -... 

-,.... 
(4 FULL WORDS) 

SAV911 
SAVE AREA FOR REGS 9-11 

(BRANCH ENTRY) 

LASTSAVE (LAST LIST ENTRY) 

MINMAX 
MAX & MIN LENGTH FOR VARIABLE REOUEST 

LASTLSTA (LAST LIST ENTRY ADDRESS) 

LSTINDEX (INDEX FOR LIST REOUEST) 

FMARCAS (PTR TO AREAS TO BE FREEMAINED) -... 

MSGLEN - REASON CODE AND LENGTH OF VAR. 

FREESW· 
X'80' 
X'40' 
X'20' 
X'10' 
X'08' 
X'04' 

DATA 

FREEMAIN IN PROGRESS 
LENGTH HAS BEEN INCREMENTED 
ADDRESS HAS BEEN DECREMENTED 
NOT 1ST DOE (FOR L/SOA) 
FQE WAS BELOW FREED AREA 
FURTHER PAGE RELEASE NEEDED 

LOCKFLAG 
X'02' SALLOC LOCK OBTAINED 
X'01' SALLOC LOCK ALREADY HELD 

FRRBRNDX 
X'OT SUBPOOL FREEMAIN, AOE AREA NOT 

IN DOE 
X'06' PAGE RELEASE RETURN CODE OF 1 
X'05' SALLOC OBTAIN RETURN CODE NOT 

X'04' 
X'03' 
X'02' 
X'01' 
X'OO' 

OOR 4 
ON L/SOA EXPANSION, GFRECORE FAILED 
FINDPAGE RETURN CODE NOT 0 OR 4 
CREATE SEGMENT RETURN CODE>O 
SALLOC RELEASE RETURN CODE >0 
UNEXPECTED ERROR,SEE STATUS 

Section 5. Component Analysis 5.4.13 



VSM (continued) 

OFFSET 
IN HEX (FROM START OF LOA) 

,- ...... 158 

15C 

160 

164 

168 

16C 

....1""" 

170 

174 

178 

17C 

180 

184 

188 

18C 

190 

194 

198 

19C 

1AO 

1A4 

1AC 

1BO 

1B4 

lB8 

lBC 

1CO 

1C4 

1CC 

100 

104 

lOB 

1DC 

1EO 

lE4 

1E8 

lEC 

1FO 

lF4 

1F8 

lFC 

200 

PARMLDA I FRRPARM (FRR PARM AREA ADD) 

CLOPREV (PREVIOUS FOE TO CLOSEST) 

CLOSEST (CLOSEST INSIZE FOE) 

LARGESTA (LARGEST AVAILABLE) 

LARGEST (LARGEST AVAILABLE FBOE) 

LENSAVE (SAVE AREA FOR LENGTH LIST PTR) 

SAVESIZE (SIZE OF MULTIPLE OF 4K CORE) 

ENDADD (END ADDRESS) 

STRTADD (START ADDRESS) 

DIFF/SAVEPOE (DIFFERENCE/POE PTR IN FBOESPCH) 

FIXSTART (STARTING ADDRESS TO CLEAR) 

FIXEND (ENDING ADDRESS TO CLEAR) 

NOTSATSV (LEN PTR USED BY GNOTSAT) 

NOTSATSI (LDAROSTA SAVE AREA FOR GNOTSAT) 

SAVESEG (ADDRESS OF MULTIPLE OF 4K CORE) 

LARSOFAR (LARGEST AVAILABLE IN FBOE) 

RSTRTADD (ROUNDED START ADDRESS) 

RENDADD (ROUNDED END ADDRESS) 

VPFP (FIND PAGE ADDRESS TO BE USED) 

DOESAVE 
SAVE DOE PTR AND PREVIOUS DOE PTR 

FMSAVE (SAVE RETURN REG FOR FREEMAIN) 

PREVFOSV (SAVE AREA FOR PREVIOUS FOE PTR) 

FOESAVE (SAVE AREA FOR FOE) 

SPOESAVE (SAVE AREA FOR SPOE) 

S\(RLB (SAVE AREA FOR RLB) 

SVSIZE (SAVE AREA FOR ROUNDED SIZE) 

DOESAVE1 
SAVE DOE INFO WHEN USING FMAINB 

FMSAVE1 (SAVE RETURN REG IN FMAINB) 

FOESAVEl (SAVE FOE INFO IN FMAINB) 

PREVFOS1 (SAVE PREVIOUS FOE IN FMAINB) 

SPOSAVEl (SAVE SPOE IN FMAINB) 

SVRLBl (SAVE RLB FOR FMAINB) 

SVSIZEl (SAVE ROUNDED SIZE FOR FMAINB) 

.SAVSVTSV (SAVE LDAROSTA IN FMAINB) 

FOENXTSV (FOE NEXT SAVE AREA) 

OLDFOELN (OLD FOE LENGTH) 

NEWFOELN (NEW FOE LENGTH) 

SEGTEST (END SEG TEST AREA) CODE1 CLEARSW 

GMFMSW FETCH OUTSW CODE2 

SAVFRESW SPID LSPOEKEY ROSTRKEY 

SAVSPID SAVSPID2 

PARMLDA 
X'80' GLOBAL REOUEST (GLBRANCH OR 

MRELEASE ON GLOBAL REOUEST) 
X'40' SALLOC LOCK OBTAINED BY GM/FM 
X'04' FIRST FLAG BYTE IN FRR PARM 
X'OO' LOA ADDRESS IN FRR PARM 

CODE1 - (SAVE AREA FOR OPTION CODE) 
X'CO' LIST INDICIO.TOR (MIXED IF LIST) 
X'20' CONDITIONAL INDICATOR 
X'10' MASK FOR PAGE BOUNDARY 
X'04' SVC 120 PAGE BOUNDARYREOUEST 
X'02' SVC 120 UNCONDITIONAL REOUEST 
X'Ol' SVC 120 FREEMAIN REOUEST 

CLEARSW - (CLEARSW FOR GFRECORE) 
X'Ol' FOECPB INDICATOR ON IN FOE 

GMFMSW - (GM/FM SWITCH FOR MRELEASE) 
X'04' FIRST TIME SW FOR MRELEASE 
X'02' INDICATES FM FOR FBOE 
X'Ol' INDICATES GM FOR FBQE 

FETCH - (KEY AND FETCH PROTECT) 
X'08' FETCH PROTECT ON 

OUTSW - (SWITCH FOR OUT OF REALIVIRT.) 
X'OO' REAL INDICATOR FOR OUTSW 
X'FF' VIRT. INDICATOR FOR OUTSW 

CODE2 - (SAVE AREA FOR OPTION CODE) 

SAVFRESW - (SAVE FREESW IN FMAINB) 

SPID - (SPIO FOR MRELEASE) 

LSPOEKEY - (PROTECT KEY FROM CURRENT SPOE) 

ROSTRKEY - (REOUESTER KEY OR KEY = PARM) 

SAVSPID - (SAVE SPID FOR FREEMAIN) 

SAVSPID2 - (SPID FOR MESSAGES) 

5.4.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Real Storage Manager (RSM) 

The real storage manager (RSM) manages the real storage of the system. To do 
this, it divides all potentially pageable real storage into 4K-byte frames. Within 
RSM, the page frame table entry (PFTE) describes the frame according to type, 
current use, or its most recent use. 

The current or last state of a request for RSM pageable services is described by 
the pagecontrol block (PCB) within RSM: the requestor supplies information 
about his request and RSM reformats this data into a PCB. As the request is 
processed, RSM adds other internal RSM information to the PCB. 

RSM is a queue-driven component. Both PFTEs and PCBs are queued based on 
their current state. Simply stated, frames that can be used immediately are queued 
on the available frame queue; their PFTEs describe the frame's last use. Similarly, 
free request elements are queued on the FIFO PCB free queue; these PCBs describe 
the final state of previously processed requests. (This historical nature of PCBs is 
often useful in problem analysis.) To manipulate these control blocks and manage 
the queues, RSM has a PFTE manager (lEA YPFTE) and a PCB manager 
(lEA YPCB). Besides being queued, PFTEs are located in a contiguous table starting 
at (PYTPFTP) + (PYTFPFN) and ending at (PYTPFTP) + (PYTLPFN). PCBs, 
however, are obtained (via GETMAIN) in groups and are spread out in SQA. They 
can be found only by following queue pointers. 

Major RSM Control Blocks 

RSM's major control blocks are the PFTE, PCB, page table entry (PGTE), external 
page table entry (XPTE), paging vector table (PYT), RSM header (RSMHDR), and 
swap control table (SPCT). An RSM service routine called find page (lEA YFP) 
locates the PGTE and XPTE control blocks. The table in Figure 5-22 lists the 
control block functions. 

Control Block Function 

PFTE describes the last use of a frame 

PCB describes the current or last state of a request 

PGTE describe the current real frame and virtual page relationship for a 
XPTE particular virtual address 

PVT basically these are RSM anchors and work areas 
RSMHDR 

SPCT related only to swapping, it describes the RSM requirements necessary to 
swap in an address space (the swap out process formats the SPCT) 

Figure 5-22. Major RSM Control Blocks and Their Functions 

Section 5. Component Analysis 5.5.1 



The contents of PVTPFTP plus 
RBNO equal the address of the 
PFTE. 

PCB 

Real Storage Manager (RSM) (continued) 

Only the leftmost 12 bits of either a real or virtual address are needed to 
describe a specific real frame or virtual page (a modulo 4K-bytes real and virtual 
addressing scheme). These 12-bit numbers are multiplied by 16 to form block 
numbers; for example, VBNO and RBNO are four-digit, hexadecimal, virtual and 
real block numbers. Also, note the following: 

• PGTEs contain RBNx values. 

• The contents of PVTPFTP plus RBNO is the address of the PFTE for the frame 
whose real address is RBNOOO through RBNFFF. 

Of all the RSM control blocks, the most critical are the PCB, PFTE and SPCT. 
The important fields in each block are described below. Figure 5-23 shows the 
relationship among the blocks. 

PGT 

XPT 

t XPTE 

t PGTE 

RBNO VBNO 

AlA [I--______ -A-IA_R_P_N ..... 

r Virtual Page Index 

_---:1_ VBNO = SSPO 

'l. Virtual Segment Index 

Figure S-23. Relationship of Critical RSM Control Blocks 

5.S.2 OS/VS2 System· Programming Library: MVS Diagnostic Techniques 



Real Storage Manager (RSM) (continued) 

PCB (Page Control Block) 

Important fields in the PCB are: 

+0 PCBCQN - indicates the current queue location of this PCB as follows: 

X'10' - PCB is not currently in use. It is queued on the PCB 
free queue anchored in the PVT. 

X'18' - PCB is currently waiting for frame allocation to occur. 
It is queued on the PCB defer queue anchored in the 
PVT. 

X'20' - PCB represents a common area I/O operation. Actual 
physical I/O mayor may not be complete. It is queued 
on the PCB common-I/O queue anchored in the PVT. 

X'88' - PCB represents a private area I/O operation. Actual 
physical I/O mayor may not be complete. It is qu~ued 
on the PCB local-I/O queue anchored in the RSMHDR 
for the address space indicated by PCBASCB; ASCBRSM 
points to the RSMHDR. 

X'FF' - PCB is probably in use. The not-queued state means 
only that the PCB is not on the primary forward/back­
ward chain of the above mentioned major PCB queues. 
It can be a related PCB, a root PCB, or an associated 
PCB. 

+8 PCBFL1: PCBSRBMD=X'20' - PCBSRB is the address of a page-fault .. 
suspend SSRB. The use of this address is 
the only means of locating page-fault­
suspended SRBs. 

PCBROOT=X'04' - PCBRTCA is the address of a root PCB. 
Root PCBs are only valid if their PCBCQN 
field is X'FF'. 

+9 PCBRTP A - When the PCBROOT bit is on, this contains the address of a PCB 
that controls a block page operation. 

+X'D' PCBRLPA - The address of a chain of PCBs for the same PCBVBN/ 
PCBRBN. The related chain of PCBs are dequeued PCBs that 
are chained via the PCBRLPA field (not via PCBFQP/ 
PCBBQP). 

+X'10' PCBFL2: PCBRESET=X'10' - The function indicated by the PCB has 
been suspended for a page fault because 
no frames were available or paging I/O 
had to be completed before redispatching 
the page faulter. PCBASCB, PCBRTPA, 
and PCBSRB define the ASCB, TCB, and 
RB to be RESET when PCBSRBMD is O. 
When PCBSRBMD is 1, PCBASCB and 
PCBSRB define the ASCB and SSRB that 
will be RESET. 

Section 5. Component Analysis 5.5.3 



Real Storage Manager (RSM) (continued) 

+ X' 11' PCBXPT A Is either 0 or the address of the XPTE. 

+X'lS' PCBPGTA Is either 0 or the address of the PGTE. 

+X'18' PCBRBN This value when added to the address in PVTPFTP gives the 
address of the associated PFTE. 

+X'lA' PCBVBN - This field is often zero; when it is zero, the operation has 
either been NOPed with page I/O still in progress or the I/O 
is complete and the PCB is only serving a scheduling/tracking 
function. The operation is considered to be complete when 
PCBVBN=O; no other paging request should be able to 
relate to it; that is, it cannot be found via an equal compare 
on PCBVBN. When PCBVBN is zero, its previous value can 
be determined from the AIARPN field in the AlA. The AlA 
is the last 28 bytes of the PCB. 

The following information about roots is useful to the problem solver. 

• Root PCBs can generally be recognized because most of the PCB is still zero. 

• The SPCT points to active roots for SWAP; RSMSPCT in the RSMHDR points 
to the SPCT. 

• V=R waits for region roots are queued from PVTVROOT in the PVT. 

• Vary offline roots are queued from PVTOROOT in the PVT. 

• PAGE FIX and PAGE LOAD roots can only be found via PCBRTPA of the 
queued FIX/LOAD PCBs. 

For non-root PCBs: PCBCQN, PCBFLI , PCBFL2, and PCBFL3 are the key 
fields. They describe the current state of the paging request for which the non-root 
PCB was last used. 

5.5.4 OSjVS2 System Programming Library: MVS Diagnostic Techniques 



Real Storage Manager (RSM) (continued) 

SPCT (Swap Control Table) 

The SPCT is mapped in modules IEAVSOUT, IEAVSWIN, IEAVCSEG, and 
IEAVITAS. Space for the SPCT is obtained via GETMAIN and is initialized in 
IEAVITAS. As segments are created, IEAVCSEG updates the SPCT. IEAVSOUT 
initializes the SPCT with the pages that make up the working set (such as, LSQA and 
fixed pages plus recently referenced pages). IEAVSWIN uses the information 
IEAVSOUT put in the SPCT in order to start up a previously swapped-out address 
space. 

The first portion of the SPCT contains the _address of the swap root PCB 
(SPCTSWRT); the number of fixed and LSQA entries in this SPCT 
(SPCTFIX and SPCTLSQA); the number of segment entries and the number of 
active segment entries (SPCTNSEG and SPCTSSEG); and the working set size 
(SPCTWSSZ). The flags at offset X' A' are defined as follows: 

X'80' Swap-in in progress 

X'40' Swap-out in progress 

X'20' Paging was purged during swap-out 

X'lO' There is at least one fix entry with a fix count greater than 255 

X'08' Page data set used for LSQA 

X'04' Swap-out requested by IEAVEQRP 

The next portion of the SPCT (SPCTSW AP) is the SPCT extension and is 56 
(decimal) bytes long. It contains a maximum of six fix swap entries or eight 
LSQA swap entries, or a combination of the two. In a combination, LSQA entries 
precede all fix entries. LSQA entries are six bytes each and fix entries are eight 
bytes each. Both entries contain the following flags in the first byte: 

X'80' LSID in this entry is valid. 

X'40' This is an LSQA entry. 

X'20' The VBN in this entry is for common. 

X'lO' The page was flagged defer release at swap time. 

This flag byte is followed by a three-byte LSID and a two-byte VBN. If the 
entry is for LSQA, there is nothing more, but if the entry is a fix entry, the next 
two bytes contain the fix count. The last portion of the SPCT contains a variable 
number of six-byte segment entries. The first byte is the segment number and it is 
followed by the address of the page table. The next two-byte field (SPCTBITM) 
is a 16-bit map indicating which pages are to be brought in at swap-in time. 

Section 5. Component Analysis 5.5.5 



Real Storage Manager (RSM) (c,ontinued) 

PFTE (Page Frame Table Entry) 

Important fields in the PFTE are: 

PFTIRRG - indicates the format of the first word of the PFTE. This bit is 
located in PFTFLAG2 at offset X'D' and is a X'lO'. If it is on, the 
first word of the PFTE is mapped as PFTPGID and contains a VIO 
LGN and RPN. If PFTIRRG is off, the first word of the PFTE is 
mapped as PFTASID and PFTVBN. An ASID of X'FFFF' indicates 
a common area page.' Note that a VIO LGN can be the same as an 
address space ASID; address space ASIDs and LGNs are seldom 
the same but could be. 

PFTPCBSI - indicates there is a PCB on an I/O queue for this page; there can be 

Page Stealing 

a string of related PCBs for this page. This bit is located in 
PFTFLAG 1 at offset X'C' and is a X'08'. This bit is turned off by 
the process that validates the page when the I/O completes, or, for 
output I/O, after the I/O completes but before the PFTE is sent to the 
free queue. Note that I/O queues sometimes contain several 
"no-op" PCBs; these appear to point back to a frame and its 
associated PFTE. When a PCB is made into a "no-op," PFTPCBSI 
is turned off and the association between that PCB and that frame 
and its associated PFTE is broken. These "no-op" PCBs are either 
output PCBs with incomplete I/O or inputPCBs with complete I/O. 

Figure 5-24 shows the flow of the page stealing process. The circled numbers in the 
figure correspond to the notes below. 

CD lEA VRFR scans the local frame queue (LFQ) or common frame queue 
(CFQ); the queue it scans is determined by the parameter list received 
from SRM. 

G) lEA VRFR checks the hardware reference bits and then updates the 
unreferenced interval count (VIC). lEA VRFR orders the LFQ and the 
CFQ so that the PFTEs with the highest VICs are at the top of the queue. 
The queues are in descending order, with zero VICs at the bottom. 

C]) Frames are selected to be stolen based on their VIC and pageability; that 
is, flxed/LSQA/bad pages, and pages that are V= R allocated cannot be 
stolen. 

5.5.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Real Storage Manager (RSM) (continued) 

For common --~ 
area steal 

Parameter list is in 
module I RARMSTM 
(Label RFRLST1) 

o 
and 
(0 

and 

1(0 

® 

RFR 
parameter list 

Flags 

A (ASCS) 

Flags 

A (0). 

Flags 

A (ASCS) 

IEAVRFR (Free Page) 

Invalidates PGTE and 
builds PCS if changed 
page 

Figure 5-24. Page Stealing Process Flow 

IEAVRFR calls a common routine, FREEPAGE, to invalidate selected 
pages and build a PCB for the page-out process if the page is changed. 

If the frame queue from which frames are being selected does not 
correspond to the current address space or the CFQ, lEA VRFR must 
schedule an SRB (STEAL) to the appropriate address space in order to get 
to the PGTE in LSQA. 

Finally, IEAVRFR calls ASM to start output paging. 

Entry IEAVRFRA scans the LFQ of the address space it is scheduled into. 
If PFTSTEAL= 1 and if a frame is still stealable and has not been 
referenced since "Select," IEAVRFRA sets the steal flag. FREEPAGE is 
then called to steal the frame. 

After the frame queue has been scanned, ASM is called and given a string 
of AlAs. 

® 

IRARMSTM 

SRM branches to 
IEAVRFR 

IEAVRFR (SELECT) 

CD Obtains queue headers 

® Selects frames to be stolen 

@ Stops scanning the frame 
queue when the UIC is 
less than the criteria number o Calls FREEPAGE or 
schedule steal 

® Starts accumulated I/O 

IEAVRFR 
Entry IEAVRFRA (Steal) 

• Locates frames with 
PFTSTEAL=1 

• If still stealable, 
calls FREEPAGE 

• Starts accumulated 
I/O 

ILRPAGIO 

Starts page-out I/O 

Section 5. Componeni Analysis 5.5.7 



Reclaim 

Relate 

Real Storage Manager (RSM) (continued) 

Reclaim is an RSM function that revalidates a page/real frame pair that was 
previously iiwalidated. IEAVGFA performs the reclaim for the normal case after 
a page fault on an address space or common area virtual address. IEAV AMSI 
handles the VIO case. 

In the virtual address case , lEA VG F A handles work as follows: 

1. PCBVBN is used to locate the PGTE. 

2. The PGTE is used to obtain the last-used RBNO value. 

3. The RBNO is used to address the PFTE. 

4. PFTIRRG is checked to ~etermine if the first word of the PFTE is in 
PFTPGIDor PFTASID/PFTVBN format. 

S. If PFTIRRG=O, PFTVBN is compared to PCBVBN. 

6. If the VBNs match and the VBN is in the common area, the reclaim is 
successful. If the VBN is in the private area and PFT ASID matches ASCBASID 
(which PCBASCB points to), the private area reclaim is successful. 

In the VIO case, IEAVAMSlhandles work as follows: 

1. lEA V AMSI is supplied with both a RBNO and a DSPID. 

2. The RBNO is used to address the PFTE. 

3. PFTIRRG is checked to determine ifPFTPGID is in PGID format. 

4. IfPFTIRRG=I, PFTPGID must match the DSPID; if it matches, the reclaim is 
successful. 

When reclaim fails, normal frame allocation paths are followed just as though the 
page had never been in storage. 

Relate is an RSM function that associates independently-generated page requests 
(PCBs) for the same virtual address. When the physical action required to satisfy 
one of these requests (I/O or frame allocation) is completed, all related requests are 
also satisfied. A PCB-related chain is produced for all cases except the VIO data 
set. The same modules that do reclaim, lEA VG F A and lEA V AMSI, handle the 
relate process, which only follows after a successful reclaim. 

In the virtual address case, lEA VGF A handles work as follows: 

1. The relate function is invoked for one of two cases: 

• The reclaim function has successfully completed and PFTPCBSI is on, 
indicating page I/O is in progress; a PCB I/O queue is searched. 

• The XPTDEFER bit is on, indicating that the previous PCBs have been 
delayed because frames were not available. The GF A defer queue will be 
searched to do the relate fUnction. 

5.5.8 OS!VS2 System ProgramMing Library: MVS Diagnostic Techniques 



Real Storage Manager (RSM) (continued) 

2. The search argument is PCBVBN in all cases except that of the G F A defer 
queue; in that case PCBASCB and PCBVBN are the search arguments. 

3. When the correct queued PCB is located, the current'PCB is inserted in the 
related PCB chain between the queued PCB and the previous, first-related PCB. 

In the VIO data set case, IEAVAMSI handles work as follows: 

1. The PCB local I/O queue is scanned for a match on PCBRBN because PCBVBN 
is always set to 0 for move-out PCBs. If PCBRBN matches, PCBV AM must be 
on. 

2. 'When the correct PCB is found, it is updated with the information the I/O 
completion portion of RSM needs to place the page of the VIO data set in the 
new window location (this is not necessarily a new page). 

RSM Recovery 

RSM recovery consists of a SETFRR at all major entry points to the, 
RSM: 

• The issuer of the SETFRR places the address of the FRR in PVTPRCA. 

• Each SETFRR returns a six-word parameter list in the recovery communica­
tions area (RCA). 

• RSM has only one FRR - lEA VRCV. 

• The IHARCA macro maps the RCA; this macro can be found in most RSM 
modules. 

• lEA VPSI contains the RCA macro in assembler language format. 

Whenever an unexpected error or COD abend occurs, the RCA is copied into 
SDW A VRA. The CSECT ID and the module-entered flag in the RCA can be used 
to determine the path taken through RSM to the point of error. To determine this 
path, you must understand the RSM flow and know which module issues SETFRR. 
The follOWing RSM modules issue SETFRR at their main entry point: 

IEAVAMSI IEAVPIOP IEAVSOUT 

IEAVCSEG IEAVPIX IEAVSQA 

IEAVEQR IEAVPRSB IEAVSWIN 

IEAVIOCP IEAVPSI IEAVTERM 

IEAVITAS IEAVRCF lEA VRELS at lEA VRELV (entry) 
IEAVPIOI 

pomt 
IEAVRCV lEA VFRSB at IEAVPRSR 

IEAVRFR 

Section 5. Component Analysis 5.5.9 



Real Storage Manage .. (RSM) (continued) 

RSM'sFRR does not attempt complex rec()very. Its main objective is to record 
the error and issue an SDUMP. It has some special logic based on where the error 
occurred, as follows: 

Error Occurred III FRR Actioll 

lEA VEQRI or lEA VRCFI 

IEAVPIX 

Restore registers for return to IEAVPFTE. 

Attempt to reset page faulter. 

IEAVSIRT 

IEAVSWIN 

IEAVPIOI 

IEAVINV 

IEAVPSI 

Other 

"Memterm" swapping in address space. 

"Memterm" swapping in address space. 

Retry for cleanup or "Memterm." 

Set "GO" indicator and PTLB or retry to PTLB. 

If error occurred while checking input parameters, 
set abend of 171. 

If it is a non-zero retry address, retry; otherwise 
continue with termination. 

Recursion is not allowed. The PVT and PFTEs are dumped on the SDUMP. 

The following reason codes are put into the RCARCRD field when real storage 
management issues abend with a code of COD. All COD abends are retried at 
the next sequential instruction. 

Real Storage. Mallagemellt ABEND Reasoll Codes 

Code (hex) 

01 

02 

03 

04 

05 

06 

Meaning 

Findpage, translate real to virtual, or the LRA instruction returned, 
an unexpected code for a segment, page, or frame whose existence 
was implied by some RSM control block or function. Findpage, 
translate real to virtual, or LRA is assumed to be correct. 

A GETCELL or FREECELL for the RSM cell pool failed. If 
FREECELL, the error is ignored; if GETCELL, asynchronous retry 
is attempted where possible. 

A FREEMAIN failed for space originally obtained by RSM or VSM 
using GETMAIN. The error is ignored. 

The return code from ASM (ILRSWAP, ILRPAGIO, or ILRTRPAG) 
indicates an invalid request. The recovery action taken by RSM 
varies with the type of reql,lest, but the RSM function being per­
formed is usually terminated if ASM resources were being requested, 
or continued if ASM resources were being returned. 

A GETMAIN for RSM control block space was unsuccessful. The 
function for which the space was required is terminated. 

An attempt was made to release a lock which was not held. RSM 
tables might be damaged due to the loss of serialization. RSM 
attempts to continue normal operation. 

5.5.10 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Real Storage Manager (RSM) (continued) 

Code (hex) 

07 

08 

09 

OA 

OB 

OC 

OD 

OE 

OF 

10 

11 

12 

13 

14 

IS 

16 

17 

Meaning 

RSM control information indicated a PCB for a page should exist. on 
an I/O active queue or on the defer queue, but searching of the. 
queue(s) failed to find the PCB. It is assumed the control informa­
tion is in error and no such PCB exists. 

The existence of a V=R or offline root PCB was implied but no 
appropriate PCB could be found on the V=R or offline root queue. 
The error is ignored and indicators are reset. 

Swap-in's XMPOST error exit was entered, so restore will not run. 
The target address space is terminated. 

An incorrect fix count was detected in a PFTE. The count is 
adjusted to the expected value. 

The interprocessor communication service routine (RISIGNL) could 
not signal another processor as requested by lEA VINV. The 
condition is ignored and normal operation continues. 

IEAVPIOP has discovered an undefined combination of I/O 
completion status flags in the AlA after a page-in or page-out. The 
condition is treated as an I/O error. 

lEA VDSEG was requested to destroy a non-existent or common 
area segment. The request is denied. 

A PCB was required but none were available. The routine needing a 
PCB is terminated. 

The attempt to complete processing of a previously deferred 
FREEMAIN release has failed. 

An FOE could not be found on the specified TCB's fix ownership, 
list. 

An internal RSM invocation of the PGOUT function was 
unsuccessful. The page remains in real storage. 

A swap (in or out) was requested for an address that already has a 
swap in progress, or no SPCT exists for the address space to be 
swapped. The request is denied. 

Swap-in could not re-establish the address space due to missing or 
incorrect control information (SPCT or PCBs). The address space is 
abnormally terminated. 

An internal invocation ofPGFREE failed. The error is ignored~ 

Swap-out has detected an inconsistency in the SPCT fix entries it 
has created. The error is suppressed and recovery attempted. ' 

ASCBCHAP could not enqueue or dequeue an ASCB during a swap­
in or swap-out operation. The address space is terminated. 

Swap-out has detected an error in the allocated frame count 
(ASCBFMCT) for the address space. If possible, the count is 
corrected and the swap-out continued; otherwise, the swap-out is 
suppressed. 

Section 5. Component Analysis 5.5.11 



Real Storage Manager (RSM) (continued) 

Code (hex) 

18 

19 

lA 

IB 

lC 

ID 

IE 

Meaning 

No SPCT segment entry could be found for a segment whose 
existence was implied by other RSM control information. The error 
is ignored and the SPCT update is skipped. 

An internal RSM function issued a return code which was either 
invalid or not applicable. System action depends on the nature of 
the function. 

Swap-in detected a common area page that was not obtained using 
GETMAIN among the input working set. The page is not made 
available to the incoming address space. Some other address space 
must have freed the page using FREEMAIN while the current one 
was swapped-out. Probable user error. 

During an attempt to free the frames backing a V=R region, it has 
been determined that the virtual space is not backed by real storage, 
or that the virtual-to-real mapping is not 1 to 1. 

lEA VPSI attempted to flx the ECB for a page service that will 
complete asynchronously, but lEA VFXLD returned a code 
indicating the flx was not accomplished. 

A PCB marked I/O complete (indicating that it was previously 
processed by lEA VPIOP) has been passed to lEA VPIOP by ASM. 

A software error has been found in the AlA passed from ASM to 
RSM for an I/O request. Possible errors are: 
• The AlA contains data inconsistent with previous AlAs. 
• The original input chain (to ASM) was invalid. 
• The LSID in the XPTE was invalid. 
• The LPID in the XPTE was invalid. 
• A hardware I/O error occurred on a pageout PCB (this should not 

occur). 

1 F An invalid real storage address was returned to IEAVPRSB at entry 
point lEA VPRSR. 

21 IEAVPFTE detected a discrepancy in the SQA reserve queue count 
controls. Use of the SQA reserve queue is discontinued until after 
re-IPL. RSM attempts to continue normal operation. 

22 lEA VTERM has found an FOE flx count that is greater than the flx count 
in the corresponding PFTE. The PFTE flx count is not changed, but the 
FOE is freed. 

RSM Debugging Tips 

1. Because the PCB free queue is a FIFO queue, it represents recent history in 
RSM. Start your search of the PCB free queue with the youngest PCB 
(PVTFPCBL) and look for the appropriate VBN in the PCBVBN or AIARPN. 
This approach often reveals what has most recently happened to the page in 
question. 

2. Whenever the system wants to break the logical connection between the PCB 
and the page, it sets PCBVBN to zero. Therefore, look at AIARPN to 
determine what VBN the PCB was associated with (A IARPN=PCBV BN! 16). 

5.5.12 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Real Storage Manager (RSM) (continued) 

3. The PVT contains several work/save areas that belong to a unique module. 
These are often useful to determine the last thing a module did. 

4. At any time, there should never be more than one input PCB with a given 
PCBVBN on the I/O-active or GFA-deferred PCB queues. Output PCBs are 
never related. 

5. The XPTVIOLP flag can be confusing. If it is on, XPTXAV must be on. 
SV AUX=l means the LPID in the XPT is a VIO LPID and not an adqress 
space LPID. -

When a page with XAV=l and SVAUX=l is stolen, it is paged out under an 
address sp~ce LPID and SV AUX is set to zero. If the next operation on the 
page is a VIO move out, RSM tells ASM to logically transfer the address space 
LPID contents to the VIO LPID contents. 

6. It is sometimes useful to observe the AIANXAIA pointers in PCBs on the PCB 
free queue. These pointers probably indicate the order in which I/O completed 
for a group of requests. 

7. To help diagnose a COD abend, the PVTDUMP bit (byte 0, bit 7 of the PVT) 
can be turned on (using superzap) to cause the RSM FRR to dump the PVT, 
PFT, SQA, and current LSQA data areas. 

Converting a Virtual Address to a Real Address 

A virtual address contains the segment number in the first byte, the page number in 
the next four bits, and the page displacement in the remaining twelve bits (that is, 
sspddd - segment, page, displacement). The ASCB for the address space points to 
the RSMHD. The first word (RSMVSTO) of the RSMHD is the virtual address of 
the segment table (SGT). Multiply the segment number (ss) by the length of a 
segment table entry (4) to locate the SGT entry (SGTE). The SGTE contains the 
real address of the page table (PGT). 

A real address consists of a real block number (RBN) in the first twelve bits and 
a page displacement in the remaining twelve bits (that is, rrrddd - RBN, displace­
ment). The RBN portion of the real address of the PGT is concatenated with zero 
(RBNO) to form an index into the page frame table (PFT). This index is added to 
the apparent origin of the page frame table (PVTPFTP) in order to obtain the 
virtual address of the page frame table entry (PFTE). The PFTE identifies the 
frame that contains the page in which the page table resides. 

The second half of the first word of the PFTE is the virtual block number 
(VBN). The VBN is concatenated with the displacement portion of the real address 
of the page table to form the virtual address of the page table (VBNllddd). 
Multiply the page number (p) of the virtual address being converted by the length 
of a page table entry (2) to locate the PGT entry (PGTE). The PGTE contains the 
RBN portion of the real address that corresponds with the initial virtual address. 
This RBN is concatenated with the displacement portion of the initial virtual 
address to obtain the desired real address (RBNllddd). 

Figure 5-25 shows the relationship of the control blocks used to convert a virtual 
address to a real address. 

Section 5. Component Analysis 5.5.13 



Real Storage Manager (RSM) (continued) 

Given a virtual address - find the corresponding real address. 

Definitions: Virtual address = sspddd = VBNllddd 
ss segment number 
p page number 
ddd displacement within page 
VBN virtual block number 

Real address = RBNllddd 
RBN real block number 
ddd displacement within page 

G) Find the real address of the page table (RBNlld'd'd'). 

ASCB RSMHD SGT 

RSMVSTO 

ASCBRSM + (4*ss) SGTE 

SGTE contains the real address of the page table 

® Convert the real address of the page table to a virtual address (VBNlld'd'd'). 

PVT PFT 

I 
~ 

PVTPFTP +RBNO PFTE -p 

,/ 
from SGTE 

PFTE contains the VBN portion of the virtual address of the page table. 

® Find the RBN portion of the real address. 

PGT 

+(2*p) PGTE 

PFTE SGTE 

PGTE contains the RBN portion of the desired real address. 

Concatenate the displacement portion of the virtual address (ddd) with the real 
block number (RBN)to form the real address that corresponds to the given 
virtual address. 

real address = RBNllddd 

Figure 5·25. Converting Virtual Addresses to Real Addresses. 

5.5.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Real Storage Manager (RSM) (continued) 

Example: Converting a Virtual Address to a Real Address 

This example shows how a virtual address of A9ECO was converted to a real address. 
The values used in this example (such as ASCBRSM = FC7380) were obtained from 
a sample dump. 

Given: Virtual address = A9ECO (sspddd) 

ss OA (segment number) 
p 9 (page number) 
ddd ECO (displacement within page) 

Step 1: Find the real address of the page table (PGT). 

ASCBRSM = FC7380 (address of RSMHD) 
RSMVSTO = 89FCOO (address of SGT) 

89FCOO (RSMVSTO) 
+ 28 (4*ss) 

89FC28 (address of SGTE) 

SGTE = F0307F20 

Real address of PGT = 307F20 

Step 2: Convert the real address of the PGT to a virtual address. 

RBN = 307 and RBNO = 3070 
d'd'd.' = F20 

PVTPFTP = 78760 

78760 (PVTPFTP) 
+ 3070 (RBNO) 

7B7DO (address of PFTE) 

PFTVBN = 87BO 

Virtual address of the PGT = VBNlld'd'd' = 87BF20 

Step 3: Find the RBN portion of the real address. 

87BF20 (virtual address of PGT) 
+ 12 (2*p) 

87BF32 (virtual address of PGTE) 

PGTE = 3811 

RBN portion = 381 

Step 4: Form the real address for the sample. 

Real address = RBNllddd = 381ECO 

Section 5: Component Analysis 5.5.15 



5.5.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) 

The auxiliary storage manager (ASM) controls all system direct access storage that 
is allocated for virtual address space paging and for virtual input/output (VIa) 
data sets. ASM supports the dynamic paging requirements of the real storage 
manager (RSM) and the data set storage and retrieval requirements of the virtual 
block processor (VBP). For MVS paging, ASM has the responsibility of selecting 
the auxiliary storage location (slot), maintaining the slot/page mapping, and 
coordinating the slot/frame transfer. 

The auxiliary storage manager consists of four sections: 

• I/O control 

• I/O subsystem 

• VIa control 

• VIa group operators. 

I/O control is the link between RSM and the I/O subsystem for paging requests, 
and between RSM and the I/O supervisor (IDS) for swapping requests. RSM 
initiates all swapping requests; the I/O is executed by the I/O subsystem and IDS. 
I/O control accepts the paging/swapping requests from RSM, determines the type 
of I/O to be done and when it can be started, and notifies RSM when the I/O is 
completed. I/O control also records the auxiliary storage locations of all virtual 
pages. 

The I/O subsystem communicates with lOS to cause the physical transfer of 
data between real and auxiliary storage. It allocates auxiliary storage slots, builds 
paging channel programs, passes them to IDS for execution, and processes I/O 
completions. 

VIO control coordinates all the ASM processing required to support VIa data 
sets (called logical groups by ASM). Operations on a logical group are classified 
as group operations and page operations. A group operation is not allowed to 
process while another group operation or page operation is processing for a 
logical group. The virtual block processor (VBP) initiates group-related opera­
tions and VIO control passes them to the VIO group operators to be processed. 
RSM initiates page-related operations and I/O control and VIO control jointly 
process them. 

VIO group operations maintain the logical group information that VBP 
requires. The VBP group operators perform all processing necessary to create, 
save, restore, and delete a logical group. These operators are invoked only by 
VIO control as a result of requests from VBP. 

Section 5. Component Analysis 5.6.1 



Auxiliary Storage Manager (ASM) (continued) 

Modules (CSECTs) belonging to each section are: 

I/O Control I/O Subsystem VIO Control VIO Group Operators 

ILRPAGIO ILRPTM ILRPOS ILRACT 
ILRPAGCM ILRSRT ILE-GOS ILRSAV 
ILRSWAP ILRCMP ILRVIOCM ILRRLG 
ILRSWPDR ILRMSGOO ILRSRBC ILRTMRLG 
ILRFRSLT ILRJTERM ILRVSAMI 

Component Functional Flow 

ASM provides seven functional services. The first four are invoked by the use of 
the ILRCALL macro, the remaining three via BALR: 

• ASSIGN LG obtains a logical group identifier from ASM and creates a logical 
group for a VIO data set. 

• SA VE preserves the status of a logical group for recovery at a later time. 

• A CTIV ATE places a logical group into active status after it has been saved and 
the saved status of the group is desired. (Used for step restart of VIO data 
sets.) 

• RELEASE LOGICAL GROUP deletes an entire logical group; this allows ASM 
to reuse all slots associated with that logical group (VIO data set). 

• TRANSFER PAGE moves the logical slot identifier (LSIO) for a page from an 
address space to a VIO logical group. 

• REQUEST I/O transfers page-sized blocks between real storage and ASM's 
auxiliary storage. 

• REQUEST SWAP I/O transfers LSQA between real storage and ASM's auxiliary 
storage. Page~size blocks are transferred if page data sets are used. Swap-set 
size (up to 12 pages) blocks are transferred if swap data sets are used. 

The following descriptions track three of these services through the com­
ponent: SAVE, which is similar to assign LG,activate, and release logical group; 
request I/O; and request swap I/O. 

Saving an LG 

SAVE requests ASM to write the ASPCT containing the slot numbers (LSIOs) of a 
VIO data set to SYS 1 .STGINOEX. ILRGOS receives control from VBP in task 
mode with an ASM control area (ACA) containing the LGN of the VIO data set as 
input. ILRGOS builds an ASM control element (ACE), queues it to the logical 
group entry (LGE) process queue (LGEPROCQ)..for that LGN, and calls ILRSAV. 

5.6.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

ILRSA V calls ILRVSAMI, which calls VSAM to write the ASPCT to the 
SYSl.STGINDEX data set. An'S' symbol is returned by ILRVSAMI. (The'S' 
symbol is part of the VSAM key used to save this ASPCT and can be used to 
uniquely identify the ASPCT for an activate request). ILRSAV puts the'S' symbol 
in the ACE and returns to ILRGOS. ILRGOS copies it into the ACA, frees the 
ACE, and returns to VBP. 

Requesting I/O 

RSM calls ILRP AGIO for I/O requests. An ASM I/O request area (AlA), or string 
of AlAs describes the request. ILRPAGIO determines if the request is for a VIO 
page and, if it is, calls ILRPOS to process it. Otherwise, ILRP AGIO continues to 
process the request. 

For write requests, the previous slot for this page is freed. For read requests, 
the LSID is obtained from the extended page table entry (XPTE), and put into the 
AlA. The AlA is queued to the ASM staging queue (ASMST AGQ) and ILRQIOE is 
called. 

ILRQIOE builds an I/O request element (IOE) for each AlA on the staging 
queue, and queues 10Es to the paging activity reference table (PART) header or 
to a PART entry. Each PART entry represents a paging data set and controls 
activity on the data set. Since a read request is for a particular data set, the read 
10E is queued to the PART entry identified by the PART index contained in the 
LSID. Write 10Es are queued to the PART header because the data set to be used 
is still unknown. 

If an SRB is not already scheduled for ILRPTM, ILRQIOE schedules one. The 
PART monitor (lLRPTM) scans the PART entries for work and available resources 
(I/O control blocks) to process the 10Es. For each PART entry with I/O to be 
done, slot sort routine (ILRSRT) is called. ILRSRT allocates slots for writes inter­
spersed between reads (to minimize arm movement), builds PCCW 
chains, and issues a STARTIO macro to initiate lOS processing. 

When I/O completes, lOS calls ASM's disable interrupt exit (DIE) routine 
(ILRCMPDI - an entry pOint in ILRCMP). ILRCMPDI checks for errors, and if 
one occurred, returns to lOS indicating that the I/O should be handled by the 
post status lOS routine and ASM's appendages (ILRCMPAE and ILRCMPNE). 
If the I/O is successful, ILRCMPDI calls page completion (lLRPAGCM). 
ILRP AGCM calls VIO completion (ILRVIOCM) if the I/O is for a VIO page. If it is 
a non-VIO write request, ILRPAGCM takes the LSID that ILRSRT put into the 
AlA and puts it in the XPTE for the page in the correct address space. The AlA 
is then returned to RSM (lEA VPIOP). . 

Section 5. Component Analysis 5.6.3 



Auxiliary Storage Manager (ASM) (continued) 

Requesting Swap I/O 

RSM calls ILRSWAP with a chain of AlAs for either a swap-in or swap-out 
request. The following discussion traces a swap-out operation. 

ILRSWAP separates the non-LSQA AlAs from the LSQA AlAs and calls 
ILRP AGIO to process the non-LSQA pages as a regular request I/O function. 
The LSQA AlAs are queued to the ASM header of the address space (ASHSWAPQ). 
If there were no non~LSQA AlAs, ILRSWAP immediately calls ILRSLSQA to 
process the LSQA AlAs. Otherwise, ILRSWAP returns to RSM. 

As non-LSQA AlAs complete, ILRPAGCM isgiven control (see Requesting I/O). 
When alI non-LSQA AlAs have completed, ILRPAGCM calls ILRSLSQA to process 
the LSQA AlAs. ILRSLSQA, called by ILRPAGCM or ILRSWAP, calls ILRPAGIO 
to process the LSQA AlAs if there are no available swap sets. Otherwise, 
ILRSLSQA assigns swap sets and initializes swap channel control workareas 
(SCCWs) for all the AlAs queued to ASHSWAPQ. A count of LSQA pages 
(ASHSWPCT) is incremented for each AlA. The completed SCCWs are chained to 
the swap activity reference table (SART) entry SCCW queue (SRESCCW). If an 
SRB is not already scheduled for swap driver (ILRSWPDR), ILRSLSQA schedules 
one. ILRSWPDR searches each SART entry for a non-zero SCCW queue, chains the 
SCCWs to an 10RB for that data set, and issues a ST ARTIO macro to initiate I/O 
processing. Completed I/O is handled by ILRCMPDI as in the "Requesting I/O" 
function, and ILRP AGCM is called. ILRPAGCM processes LSQA AlAs by putting 
the LSID for each page into the SPCT control block for this address space, putting 
the AlA on the capture queue (ASHCAPQ), and decreasing the swap count 
(ASHSWPCT) by 1. When the swap count is 0, ILRPAGCM returns all the AlAs 
on the capture queue to RSM (IEAVSWPC module). 

Figure 5-26 shows the relationships among the important ASM control blocks. 

Component Operating Characteristics 

The following topics discuss characteristics of ASM's operating environment. 

System Mode 

ASM uses the SALLOC lock in most page and swap processing in I/O control 
modules. I/O control"modules interface directly with RSM, the principle user 
of the SALLOC lock. The SALLOC is held throughout processing, including the 
calls to the VIO control routines ILRPOS and ILRVIOCM. The local lock is 
used during assign and release logical group requests processed by ILRGOS and 
ILRRLG. 

5.6.4 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

INPUT PAGE FAULT PROCESSING 

ILRPAGIO 

LPID 
Non-VIO I or I 

LslD AlA I Create 
I I 

from AlA 

~ I ~ IIOE 
I 

1+ AlA __ --1 ILRPOs 

Page Operation 
Starter 

Use LPID to Find 
LPME 

AlA 

~ 

.... LGVT ASHMD PARTES Q) 
C) Header CIJ 
c: 
CIJ 

{. LGE 
~ 
Q) + ASCB C) 

~ 
0 LGVTEs + LGE en 
m + ASCB Q) 

II: 

CVT + 2CO "....." 
./' I 

<' I I Flags I NN I Slot No. 

'---..,--J 
LslD 

I Figure 5-26. Relationship of Important ASM Control Blocks 

'-... 
"'-

'-... 
"'-

......... 

Works With. 

Start 
Macro 

/ '-... 
/ ......... 

/ "-,,-
/ "-

/ ' PART 10sB', 

• PCT 

+ PAT 

+ PCT 

+ EDB 

Header 

Header 

0001111 
1111111 
10110111 

tccw 

SRB 

PCCW 

CCW 

CCW 

CCW 

uu 
Section 5. Component Analysis 5.6.5 



Auxiliary Storage Manager (ASM) (continued) 

An ASM class lock exists for each active address space (lockword in ASMHD). 
The ASM class lock is used by the VIO control modules. ILRPTM uses an ASM 
class lock (lockword in PART) to serialize the IOE write queues. The 
ILRCMPDI entry of ILRCMP (ASM's DIE routine) runs in physically-disabled 
mode since it is running under the I/O interrupt handler. The rest of ASM modules 
simply run in task Or SRB mode using compare and swap instructions where 
necessary. 

For additional information on locking, refer to the topic "ASM Serialization" 
later in this section. 

Address Space, Task, and SRB Structure 

I/O control modules receive control in the address space of the caller with the 
exception of ILRSWPDR, which is an SRB executing in master's address space. 
Note also that ILRPAGCM transfers to the correct address space (TRAS) to update 
the external page table entry (XPTE), which is in LSQA. 

I/O subsystem modules run in SRB mode under master's address space, except 
for the ILRCMPDI entry of ILRCMP and the modules it calls, which execute in the 
address space interrupted by the I/O completion. 

VIO group operator modules, as well as ILRGOS (VIO control module), are 
tasks (locked mode) executing in the address space associated with the VIO 
requests. ILRTMRLG runs in task mode, but in master's address space. 

VIO control modules ILRPOS and ILRVIOCM receive control in the address 
space of the caller. ILRSRBC executes in SRB mode in the address space 
associated with the VIO requests. 

Storage Considerations 

ASM maintains four-cellpoois for its internal control blocks. These cell pools are 
pushdown stacks and the elements at the top of the cellpools represent the last 
control blocks used by ASM. There are three expandable cell pools for work areas, 
ACEs, BWKs, and SWKs. The 10E cellpool is not expandable. The cellpools are 
anchored in the ASMVT and the control blocks reside in SQA. The ASMVT is 
in the nucleus, but most of the other ASM control blocks are in SQA. One 
exception is the ASpeT, which resides in the LSQA of the associated address space. 

MP Considerations 

ASM takes advantage of MP by allowing both the I/O subsystem ahd the 
ILRSWPDR module of I/O control, to execute concurrently on both processors. 
This is achieved through extensive use of compare and swap logic. An individual 
PART entry or SART entry is 'flag' locked by the processing processor, but ASM 
can process a request for another entry on the second processor. 

5.6.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

Interfaces With Other Components 

Four other components interface with ASM: 

• RSM with I/O control for page and swap I/O requests, and with VIO control 
for transfer page requests. 

• VBP with VIO control for assign, save, activate, and release logical group 
requests. 

• IDS with I/O subsystem and ILRSWPDR routine of I/O control to process 
I/O requests. 

• VSAM with VIO group operators to handle I/O to SYS1.STGINDEX. RSM and 
VBP call ASM, and ASM calls IDS and VSAM. 

Register Conventions 

ASM modules adhere to the following register conventions when calling other 
ASM modules. There are some exceptions where certain addresses are not required. 

REGISTER: 0 - Parameter register, if required. 

1 - Parameter register, if required. 

2 RSMHD address for the current address space or the 
address space identified by an input parameter in 
register 0 or 1. The ASMHD is addressable as part of the 
RSMHD. 

3 - ASMVT address. 

4 - Address of AT A or EPATH currently active for recovery 
tracking. 

13 - Address of register save area, if required. 

14 Return address. 

15 Entry point address. 

The I/O subsystem does not use the ASMHD and therefore does not maintain 
register 2 convention. 

Footprints and Traces 

The most useful traces of ASM processing are its control blocks and queues, 
because they document the movement of requests through ASM. 

The processor work/save area vector table (WSAVT), which is pointed to by 
LCCACPUS, will point to the work/save areas for the last I/O processed on the pro­
cessor. WSACASMD points to the 256 byte save/work area for ILRCMPDI (ASM's 
DIE routine). WSACASMS points to two contiguous 256-byte save/work areas, the 
first for ILRPTM, and the second for ILRSRT. The first one is also used by 
ILRSWPDR and ASM's I/O appendages (ILRCMPAE, ILRCMPNE, and ILRCMP). 

Section 5. Component Analysis 5.6.7 



Auxiliary Storage Manager (ASM) (continued) 

ASMVT contains save areas for ASM's other I/O-related modules. ASMBWKPC 
is a poolof work areas used by VIO-related modules (ILRGOS, ILRACT, ILRSAV, 
and ILRRLG). Bits in the X'O I' byte of the ASMVT indicate whether the IPL was 
a cold, quick, or warm start. 

The LGE process queues (LGEPROCQ) contain AlAs and ACEs in process, or 
waiting for processing for VIO requests. 

If the PARTE is locked, part monitor (ILRPTM) has called or is about to call 
slot sort (ILRSRT). If ASMTMECB (ASMVT + x,AB') is a posted ECB, 

ILRTMRLG is or was about to process the task portion of a release logical group 
request. 

When an ASM-Iocked or SRB-mode routine is processing, its functional 
recovery routine is on the current FRR stack. The first word of the parameter 
area passed to the FRR contains a one-byte id of the ASM module that established 
the FRR, followed by three bytes of flags indicating the ASM module or entry 
point in process at the time of the error. The different ids are discussed in 
"Recovery Footprints." 

When ASM's I/O completionmodule encounters the first bad slot, an error 
record is built with its address at X'14' into the ASMVT. It contains the LSIDs of 
the unusable slots. The first three bytes in the record are the address of the current 
entry filled, beginning address of the record, and ending address of the record. An 
entry contains one byte of flags and the three-byte LSID. If bit 0 is on, the error 
occurred on a swap data set. If bit 4 is on, there was a read error. I/O error counts 
are found in the ASMVT, PART entries and SART entries. ASMERRS (ASMVT + 
X'7C') is the total of error slots found on local page data sets. PARERRCT (PART 
entry + X'lB')and SRERRCNT (SART entry + X'lB') are the error slots 
encountered on the particular data set represented by the entry. 

In the ASMVT there are two counts, ASMIORQR (ASMVT + X'2B') and 
ASMIORQC (ASMVT + X'2C'), which contain both the number of I/O requests 
ASM has received and the number completed. If more requests have been received 
than completed and the system is waiting, there is something wrong with ASM or 
lOS. 

General Debugging Approach 

This description helps isolate paging problems, the most difficult problems to 
debug. Paging problems (not all of which are ASM problems) fall into two main 
groups - paging interlocks and incorrect or duplicate pages. 

Paging Interlocks 

Paging interlocks result in: an enabled wait state. There are two indicators that hint 
that the enabled wait is a paging interlock: 

• The I/O request counts in the ASMVT (ASMIORQR and ASMIORQC) are not equal. 

5.6.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

• The ASMIOCNT contains a count of the number of I/O requests sent to lOS but 
not received by ILRCMP. It is necessary to determine why paging requests 
received by ASM are not completing. To learn more about these requests, it is 
necessary to follow I/O control block chains . 

• The ASMSRBCT field indicates whether ASM's SRB for ILRPTM (ASM PART 
monitor) has been scheduled. If this field is not zero, ASM's SRB has been 
scheduled but not dispatched. It is necessary to determine why the SRB has 
not been dispatched. 

The blocks discussed here are in the Debugging Handbook. To find the I/O 
request blocks for a given page space, start with the PART entry. The PART entry 
points to the first 10RB. 

There is one 10RB for each page data set on a disk, and four for each page 
data set on a drum. The first bit of the fourth byte indicates whether or not ASM 
has passed the 10SB to lOS. If the bit is 0, the 10RB/IOSB is available. If the bit is 
1, the 10RB/IOSB is in use. The 10RB points to the 10SB and to the first of a 
queue of PCCWs. For an active I/O request, the third word into the PCCW points 
to the associated AlA, and the second word points to the next PCCW on the chain. 

If the request has been sent to lOS and not returned, it is necessary to trace lOS 
processing. If I/O processing has caused a page-fault or a request for an enabled 
lock, the interlock is probably explained. Either ASM could not get the resources· 
to handle the page fault, the page is already in use and this request is backed up 
behind the previous one, or the holder of the lock has page-faulted and the page 
fault cannot be resolved. 

Incorrect Pages 

It is almost impossible to determine from a dump what caused the wrong page to be 
written or read. At best, a dump provides clues as to which general area is causing 
the problem. Intensive code reviews are then necessary to find it. Frequently, 
traps must be applied to narrow the area further. 

The following paragraphs contain descriptions of how to find various pieces of 
useful information. There is no attempt to describe how to use them because 
there is no general method. 

It is first necessary' to determine which page contains bad data and whether the 
whole page or only part of it is bad. If possible, also determine which page has 
overlaid the bad page. If only part of the page is bad, the.error probably occurred 
while handling a track overflow record to or from an alternate track. Check for 
an invalid first or last part of a page. ASM is unlikely to be the cause of invalid 
data in the middle of the page. 

Incorrect pages cause a system failure when the page is used by a system task or 
by a routine holding a critical system resource. The invalid page is more likely to 
cause an address space to fail because of program checks that result from invalid 
data. These failures are rarely attributed to invalid pages. 

Section 5: Component Analysis 5.6.9 



Auxiliary Storage Manager (ASM) (continued) 

Scan the SYSI .LOGREC data set for any improbable program checks and obtain 
any associated dumps. Multiple versions of the same problem are helpful in 
suggesting a pattern for the error. For example, the error might only occur for the 
second page of LSQA or only on a page associated with an overfl9w record. 

Finding the LSID for a Given Page 

A virtual address contains the segment numoer in the first byte, the page number in 
the next four bits, and the page aisplacement in the remaining bits in the form 
sspddd (segment, page, displacement). The ASCB for the address space points to 
the RSMHD. The first word of the RSMHD is the virtual address of the segment 
table. Multiply the segment number (ss) by the length of the segment table entry 
(4) to locate the correct entry. It contains the real address of the page table (PGT). 
Convert this address to a virtual address. Then locate the correct extended page 
table entry (XPTE) by adding 16 times the length of the page table entry (2), and 
adding the page number (p) times the length of a X PTE (12). 

The XPTEcontains information about the status of this page on auxiliary 
storage. If either the XPTVALID or XPTVIOLP flag is on, there is a slot assigned 
to this page. If XPTV ALID is on, the LSID (slot identifier) is in the XPTE. If the 
page is duplexed, two LSIDs are in the XPTE (one for each slot). If XPTVIOLP 
flag is on an LPID instead of an LSID, is in the XPTE. To relate the LPID to an 
LSID, see the following topic "Finding LSIDs of VIO Data Sets". 

Finding LSIDs of VIO Data Sets 

The ASPCT is used to record the auxiliary storage locations (LSIDs) of VIO data 
set pages. Only a 1088 byte base ASPCT is created at ASSIGN LGN time. This 
ASPCT can handle up to 1 megabyte of VIO data set space. If more than 1 mega­
byte of VIO space is used, the ASPCT is expanded as follows: 

1. For each 256 megabytes of space up to 1 billion bytes, an ASST extension 
is built. 

2. For each megabyte of space, a LMPE extension is built. 

Each ASST or LPME extension requires 1088 bytes of storage. Each ASST 
extension contains a vector table of LPME extension addresses. The ASPCT 
(base and all extensions) resides in the LSQA of the associated address space. 

The LPID is eight bytes. The first four bytes contain an LGID, logical group 
(VIO data set) identifier. The second four bytes contain a relative page number 
(RPN). 

5.6.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

When given an LGID, there are two methods to locate an ASPCT: 

1. The ASCB (of the desired address space) points to the RSMHD. The 
ASMHD is part of the RSMHD. ASHLGEQ in the ASMHD is the queue of 
LGEs (active VIO data sets) related to this address space. Searching through 
the address space's ASHLGE queue, one of the LGEs will have an LGELGID 
field that matches this LGID. This same LGE has the address of the needed 
ASPCT (LGEASPCT) .• 

2. Another way to locate an ASPCr from an LGID is to follow the CVT to the 
LGVT (CVTASMVT, ASMLGVr). Using the LGID as an index, locate the 
appropriate LGVT entry. The LGVT entry contains the address of the LGE 
that contains the address of the needed ASPCT. 

With the appropriate ASPCT, now use the RPN portion of the LPID as an index 
to locate the LPME containing the associated LSID. 

Figure 5·27 shows the pointers and control blocks described in the following 
paragraphs. 

If A' and AA are both zero, use the LL to index ASPLPMES In the ASPCT 
base for the LPME containing the LSID. 

Otherwise, use A' to index ASPASSTP for the address of the appropriate ASST 
extension. Use AA to index the ASPSECTAof the ASST extension for the address 
of the appropriate LPME extension. And use LL to index the ASPSECT A of the 
LPME extension for the LPME containing the LSID. 

The LSID is the slot identifier for this page of the VIO data set. This LSID can 
be related to the ASM control blocks PART and PAT and to the actual paging 
device. See the following topic "Locate PART and PAT Bit". 

LPID: 

RPN: 

o 2 3 

Figure 5·27. Locating An LSID From An LPID (part 1 of 2) 

Section 5: Component Analysis 5.6.11 



Auxiliary Storage Manager (ASM) (continued) 

indexes the base ASPCT, ASPASSTP. 

indexes the ASST extension, ASPSECTA. 

indexes the LPME extension, ASPSECTA. 

ASPCT Base 

Header 

+A' C 
ASPASSTP I 

ASPLPMES 

+AA 

ASPCT ASST 
Extension 

Header 

Figure 5-27. Locating An LSID From An LPID (Part 2 of 2) 

Locate PART and PAT Bit 

+LL ( 

ASPCT LPME 
Extension 

Header 

ASPSECTA I 

Suppose LSID 0004E3BO was found in the XPTE that represents the sample 
address 07 AI2C: 

PART entry index is 04. 

Relative byte address (RBA) is E3BO. 

The PART has one entry for each page data set, each having a pointer to its 
PAT. The PAT is a cylinder bit mapping of this page data set. PATCYLMW is 
the number of words that map a cylinder. PATCYLSZ, slots per cylinder, is the 
number of significant bits in each cylinder mapping. 

For device 2305-2: 

P ATCYLMW is 1 

PATCYLSZ is lA (26). 

To locate the bit in the PAT map for slot E3BO(58288): 

1. address of map word = (address of PAT MAP) + 8964 = (address of 
PATMAP) + ((58288/26) x PATCYLMW x (bytes in a word» 

2. bit in the map word (origin 0) = 58288/26 = 22. 

Figure 5-28 shows the control blocks involved in relating a virtual address to 
the PART and PAT. 

5.6.12 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

PSA - CVT ASMVT 

~ / +10 FLCCVT ASMPART 

+224 PSAAOLD +2CO CVTASMVT 

(PART 
PAT 

/ 
Header 

Header PARTE 

• ~ 
PAT 

• BIT 

• MAP 
PAREPATP 

~ 
PAREEDB 

-----....... EDB • -- LPMB 
• / • • +4 EDBLPMBA • 

ASCB ~RSMHD 
__ SGT PGT 

~ 

V 
...... 

+0 RSMVSTO • PGTE 

• • • 
• 

+34 ASCBRSM SGTE • >- 16 PGTEs 

• • • • 
• • PGTE 

-' 

16 XPTEs { 

XPTE 

• • • • • 

----- XPTE 

I 40 I 80 I 00 I 04 I E3 I BO I 00 I 00 I 00 1 00 1 _____ 

12-byte XPTE 

Figure 5-28. Relating the Virtual Address to the PART and PAT 

Section 5: Component Analysis 5.6.13 



Auxiliary Storage Manager (ASM) (continued) 

Converting a Slot Number to Full Seek Address 

The full seek address can be used to read the record from the disk and determine 
exactly what it does contain. 

The PART entry points to the AMB extent descriptor block (EDB) for the data 
set. The EDB and its associated LPMB(s) describe the data set on the device. The 
EDB consists of an 8-byte header followed by entries, one' for each extent. The 
second byte of the header contains the number of entries and the next two bytes 
contain the length of an entry; 

The relative byte address (RBA) is calculated by multiplying the slot number by 
4K. The extent containing this slot is found by comparing the RBA to the low and 
high RBAs in each extent. These are found at X'C' and X'10' in the EDB entry. 
The second word of the entry thus found points to an LPMB. 

To find the relative cylinder, subtract the low RBA of the extent from the RBA 
and divide by the allocated unit size (LPMB + 4). To find the relative track, take 
the remainder in the division just performed and divide it by the bytes per track 
(LPMB + 8). 

The remainder of the bytes-per-track division is the first step toward finding the 
record number. Add 4095 to the remainder, divide the result by 4096, and add 1. 
The result is the R of MBBCCHHR. 

To find the CCHH, multiply the relative cylinder by the number of tracks per 
allocated unit (LPMB + X'10') and add the relative track (as computed by the 
m~thod just shown) and the starting track from the EDB entry + 8. Divide this 
result by the number of tracks per cylinder (LPMB + X'12'). The quotient is the 
CC and the remainder is the HH. 

For example, when given an RBA of X'E3BO' (58288), calculate the 
MBBCCHHR for device 2305-2. 

(Reference IDAEDB and IDALPMB macros for fields) M 
BB 

Relative CC (RBA -,- EDBLORBA)/LPMAUSZ 
= 58,288 - 0/53,248 = 1 

extent number = 0 
return code = 00 

Relative HH (RBA - EDBLORBA)//LPMAUSZ/LPMBPTRK 
= 5040/13,312 = 0 

CC (ReI CC * LPMTRRAU + ReI HH + EDBSTTRK)/LPMTPC 
= (1 * 4 + 0 + 8)/8 = 1st cylinder 

5.6.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

HH (ReI CC * LPMTRRAU + ReI HH + EDBSTTRK)/ /LPMTPC 
= 12/ /8 = 4th tnick 

R = [««RBA - EDBLORBA)/ !LPMAUSZ)/ /LPMBPTRK) + 
LPMBLKSZ-l )/LPMBBLKSZ] + 1 

«5040 + 4095)/4096) + 1 = 3rd record 

Therefore: MBBCCHHR = 0000000001000403 

Un useable Paging Data Sets 

Certain types of I/O errors received at completion of I/O indicate that ASM is 
either unable to, or would be ill-advised to access a particular auxiliary storage 
data set any longer. ILRCMP AE, an entry in ILRCMP, receives these errors and 
marks the data set as unuseable. For page data sets, the DSBD flag in the PART 
entry is turned on. For swap data sets, the DSBD flag in the SART entry is turned 
on. Both flags are X'OA' into the respective entries, and are set to X'04'. 
ILRMSGOO is then called to determine whether ASM can continue processing 
without the data set. 

If ASM is unable to continue processing, ILRMSGOO issues message ILR008W 
and terminates the system with a X'02E' wait state. 

At this point, a stand-alone dump should be taken to determine which of the 
above conditions occurred. The console sheet, if available, might also help because 
ASM may have previously issued message(s) ILR0091. 

If ASM is able to continue processing without the unuseable data set, message 
ILR009I is written to the operator. This message indicates which volume contains 
the unuseable data set. If this message occurs, use the DUMP command to take 
an SVC dump of master's address space to detennine what error occurred. The 
options specified should include NUC and SQA. 

To determine from the dump what error occurred, the PART or SART entry for 
the unuseable data set and the 10SB for the failing request must be located. Use 
the AMDPRDMP service aid (print dump) with ASMDATA control statement to 
print the dump. One of the following conditions occurred on the data set to make 
it unuseable: 

• If the number of write errors (X'18' into the entry: PARERRCT or 
SRERRCNT) is 175, ASM has stopped using the data set because it has incurred 
too many write errors (one way for this to happen is if the data set was not 
formatted). 

• If the completion code (X'OD') in the 10SB is a X'5 1 " ASM has stopped using 
the data set because there is no longer a path to the device (this could happen as 
a result of an ACR condition). 

• If the completion code in the 10SB is a X'6D', ASM has stopped using the data 
set because the channel or the device has become non-operational. 

Section 5: Component Analysis 5.6.15 



Auxiliary Storage Manager (ASM) (continued) 

• If the completion code in the IOSH is a X'41 " the device status in the IOSH 
(offset X'lB') is X'02' and the sense data in the IOSH (offset X'2A') is 
X'1000', ASM has stopped using the data set because an equipment check 
occurred. 

• If the completion code in the IOSH is a X'41 ' and the channel status in the 
IOSH (offset X'19') is X'OB', X'04', or X'02', ASM has stopped using the data 
set because a channel check occurred. 

The system is terminated only if this unuseable data set (or several unuseable 
data sets) caused one of the following conditions: 

• The unuseable paging data set contains PLPA pages and the duplex data set, 
if any, is already unuseable or full. 

• The unuseable paging data set is the duplex data set and not all PLPA pages 
are accessible (that is, the PLPA paging data set or a data set containing PLPA 
pages is unuseable). 

• The unuseable paging data set is the last local paging data set. 

5.6.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

Page/Swap Data Set Errors 

Figure 5·29 shows the messages issued and the actions taken by the ASM I/O sub· 
system for various error conditions with the page and swap data sets. 

Duplex 
Status Error Conditions 

Common * Available 
PLPA Full 

Common **Unavailable 

PLPA Bad 

PLPA Available 
Common Full 

PLPA Unavailable 

Common Bad 

Duplexing 
Active PLPA or Common Available 

Duplex Full 
PLPA and Common 
Unavailable 

PLPA and Common Available 

PLPA or Common Full 
Duplex Bad 

PLPA or Common Bad 

PLPA and Common 
Unavailable 

PLPA Full 

PLPA Bad 

Duplexing 
Not Common Full 

Active 
Common Bad 

PLPA and Common Full 

Local Bad 

Last Local Bad 
In Either 
Case Swap Bad 

Last Swap Bad 

* Available - Data Set Neither Full Nor Bad 
**Unavailable - Data Set Either Full or Bad 

!Fi_gure 5·29. Page/Swap Data Set Error Action Matrix 

Message(s) 
Issued ASM Action Taken 

ILROO51 Spill to Common 

ILR0101 Duplex Only 

ILROO91, 
Duplex Only 

ILR0101 

ILROO61 Spill to PLPA 

ILR0101 Duplex Only 

ILROO91, 
Duplex Only 

ILR0101 

ILROO71 Suspend Duplexing 

ILROO8W Wait X'03C' 

ILROO71 Suspend Duplexing 

ILROO71 Suspend Duplexing 

ILROO8W Wait X'02E' 

ILROO8W Wait X'02E' 

ILROO51 Spill to Common 

ILROO8W Wait X'02E' 

ILROO61 Spill to PLPA 

ILROO8W Wait X'02E' 

ILROO8W Wait X'03C' 

ILROO91 Stop Writes to Bad 
Data Set 

ILROO8W Wait X'02E' 

ILROO91 Stop Swap-outs to 
Bad Data Set 

ILROO91 All Swap-outs Done 
to Page Data Sets 

SectionS: Component Analysis 5.6.17 



Auxiliary Storage Manager (ASM) (continued) 

Error Analysis Suggestions 

The following are some guidelines for determining ASM problems: 

• Print the dump specifying ASMDATA as a control statement to AMDPRDMP. 

I • Check SYSI.LOGREC and the LOGREC buffer to see if ASM's mainline has 
abended. If it has, a request might have been lost or mishandled. 

• Check the trace table for recent ASM activity. The key trace table entries are 
SRB dispatches for ILRPTM (address of SRB in ASMPSRB, X'58' into ASMVT), 
or ILRSWPDR (address of SRB is SARSRBP, X'30' into SART). Also look for 
schedules of the post status SRB closely following an interrupt for ASM I/O 
(CSW points to the nucleus area), which could be temporary or permanent I/O 
errors coming to ILRCMP or one of its entry points. 

• Check for outstanding I/O requests and determine the status of the I/O by 
looking at the VCB and 10SB. 

• Check for I/O errors on the paging packs, either on the error record (X'14' 
into the ASMVT), or on SYSI.LOGREC. 

• Scan the ASMHD's LGE process queues (LGEPROCQ) for current VIO 
activity. Determine the extent of ASM processing for these LGEs. Determine 
the logical group for which a VIO group operator has been requested. 

• Scan the PART entries for the PAREFSIP flag which indicates that the PART 
entry is locked and that sort slot or part monitor should be processing. Check 
the PART and PARTE 10E queues for requests waiting for I/O. Also scan the 
SART for the SRELOCK flag indicating that ILRSWPDR should be processing. 

• If you are interested in a specific request, find the request on ASM queues and 
determine the extent of ASM processing for the request. For an I/O request, 
convert the virtual page number to an LSID. 

• Scan the BWK and SWK cell pool for a work area that is not chained to another 
work area (offset 0). An unchained work area indicates current ASM processing 
or a lost work area. 

• Check for suspended ILRPTM or ILRSWPDR SRBs by scanning the PCB I/O 
queues (painted to by the RSMHD and the PVT) for a suspended SRB whose 
address matches ILRPTM or ILRSWPDR SRB's address. Although this situation 
should not occur, it does occur occasionally. 

5.6.18 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

Validi ty Checking 

ASM is a nucleus-resident, performance-oriented component. For this reason, there 
is minimal validity checking in mainline code. In addition, few of ASM's problems 
can be attributed to invalid control blocks; this is probably because ASM 
communicates only with other system components. In both mainline and recovery 
code, critical global control blocks such as the ASMVT, PART, and SART, are used 
without any validity checking. ASM's recovery routines do validity check control 
blocks (and queues of these control blocks) that represent work to be processed by 
ASM. Some of these control blocks are the ACE, AlA, LGE, and PCCW. In most 
cases, if a control block fails the validity check, it is no longer used by ASM. The 
only exception is the 10RB-IOSB-SRB combination, which is refreshed. 

ASM Serialization 

Serialization of ASM processing is done using the SALLOC and ASM global locks, 
the local lock of the current address, compare-and-swap (CS) logic and control 
block queueing. 

SALLOC Lock 

ASM uses the SALLOC lock to serialize most page and swap processing in I/O 
control. The I/O control modules interface directly with RSM, the principle user 
of SALLOC, either as the called routine or the calling routine. The SALLOC is 
held throughout processing including calls to the VIO ILRPOS and completion 
routines. The SALLOC is used to serialize most processing of: 

XPTEs 
PCB/AlAs 
SPCTs 
SART 
SATs 

complete coverage. 
.complete coverage, except AlA noted below. 
complete coverage. 
complete coverage, except where noted below. 

- complete coverage. 

Specific areas of other control blocks serialized by the SALLOC lock are: 

ASMVT Work save areas. 
I/O control section fields: 
Flags -

ASMDUPLX 
ASMNOCWQ 
ASMCALLQ 
ASMNODPX 
ASMPLPAF 
ASMCOMMF 

LGVT pointer 

Section 5: Component Analysis 5.6.19 



Auxiliary Storage Manager (ASM)·(continued) 

ASMVT 
(continued) 

ASMHD 

ASCB 

LGVT 

PART 

Non-Via slot allocated count. 
Expansion of ASM pools. 

I/O control flags. 
Swap and page counters. 
Swap queue. 

Non-VIO slot allocated count. 

Available LGVTE queue. 
Expansion of the LGVT. 

Count of local page data sets. 

Modules whose processing is serialized by the SALLOC lock are: 

ILRPAGIO 

ILRPAGCM 

ILRFRSLT 

ILRSWAP 

ILRPTM 

ILRCMP 

ILRMSGOO 

ILRPOS 

ILRVIOCM 

ILRGOS 

ILRPGEXP 

ILRTERMR 

ILRPEX 

ASM Class Locks 

complete coverage, held by caller. 

complete coverage, obtained at entry. 

complete coverage, except ILRFRSL 1 entry point where caller 
mayor may not hold the lock. The lock is not obtained by 
this module, held only if by caller. 

complete coverage, held by caller. 

only obtained to process data set full conditions for non-local 
page data sets. 

only obtained to process I/O completion error conditions that 
may require operator notification. 

complete coverage for main entry point, held by caller. 

complete coverage, held by caller (except for ILRTRANS 
entry point). 

complete coverage, held by caller. 

only obtained for LGVT processing and 
GETMAIN/FREEMAIN requests. 

only obtained to adjust the SART to reflect addition of a new 
swap set data and update the count of local page data sets on 
the PART. 

obtained when referencing above control blocks. 

obtained when expanding an ASM pool. 

The ASM lock is a global spin class lock. A lockword must be provided when 
obtaining or releasing an ASM class lock. A class Jock exists for each active address 
space. The lockword is in the ASMHD. It is used by the VIa controller modules. 
A class lock is also defined for the PART write queues with its lock word in the 
PART header. This lock serializes the four FIFO 10E write queues in the PART. 
The address space class locks serialize processing of the following control blocks: 

AlA 

ASMHD 

VIa controller flags, LPID field. 

VIa controller flags, LGE queue base pointer. 

5.6.20 OS/VS2 System Programming Library: MVSDiagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

ASCB 

LGE 

ACE 

ASPCT 

VIO slot allocation count. 

complete coverage. 

complete coverage. 

complete coverage while group operations are in progress. 
Group operations and page operations can be executed in 
parallel. VIO controller processing of the LGE process queue 
provides this serialization. 

The address space class locks serialize processing in the following modules: 

ILRGOS 

ILRPOS 

ILRSRBC 

ILRVIOCM 

ILRJTERM 

partial, obtained where processing above control blocks. 

complete coverage. 

partial, obtained when searching LGE queue and LGE process 
queues. 

complete coverage. 

partial, obtained when adding ACEs to LGE process queue. 

Local Lock of Current Address Space 

The local lock is used by VIO controller and VIO group operator modules to 
serialize certain VIO related operations. It is used by ILRGOS (held on entry) and 
ILRJTERM (obtained) to serialize release LG requests with the internal ASM 
deactivate function used to clean up VIO logical groups for a terminating job. The 
local lock is also used by most VIO-related modules to allow use of branch entry 
GETMAIN, rather than the SVC route. 

Compare and Swap (CS) Serialization 

Certain modules of ASM run without locks, requiring CS serialization of pointers, 
flags, and counts. Where routines running with the locks change fields used by 
unlocked routines, CS must be used. The I/O subsystem and VIO group operators 
run unlocked and are the principle users of compare and swap. Control blocks 
serialized via CS include: 

PART 

PATs 

ASMVT 

SART 

a special CS lock exists for each PARTE controlled by PART 
monitor. This lock is used mainly for execution control. Most 
fields are still serialized by CS. The 10E write queues are the 
exception described above. 

complete coverage . 

I/O subsystem and group operator sections. 
I/O error count. 
unreserved slot count. 
pool controllers. 
VIO slot count. 

A special CS lock exists in each SARTE to serialize swap driver 
processing of the swap data sets. Other fields updated by swap 
driver or I/O completion processing of the I/O subsystem are 
updated with CS. 

Section 5: Component Analysis 5.6.21 



Auxiliary Storage Manager (ASM) (continued) 

The ASM modules that run without locks, using CS to serialize control block fields 
are: 

ILRSWPDR 
ILRPTM 
ILRSRT 
ILRCMP 
ILRSAV 
ILRACT 
ILRRLG 
ILRTMRLG 
ILRVSAMI 

Serialization via Control Block Queues 

Certain ASM control blocks are serialized via their available queues. The blocks 
are kept on available queues and removed when needed. While in use the block is 
so marked and associated with a specific operation and/or control block. Control 
blocks included in this category are PCCWs, IORBs, and SCCWs. 

The ASPCT is a special case. VIO control enforces the rule that page and group 
operations cannot be performed in parallel for a given logical group and its ASPCT. 
This is controlled by the LGE process queue. While paging operations are being 
performed, the ASPCr is serialized via the ASM class lock of the owning address 
space. While a group operation is in progress, ASPCT serialization is maintained 
by the ACE for the group operation that is on the LGE process. This ACE 
prevents any other processing of ASPCT until the group operation completes. 

Recovery Considerations 

The philosophy of ASM's recovery is to allow the system and ASM to continue 
processing. To accomplish this, the first step in ASM's recovery routines is to 
validity check any control block or queue that might have been affected by the 
error, for example, the AlAs on the ASMSTAGQ. This is to allow future ASM 
processing to proceed without error. The second step in ASM's recovery is to 
notify ASM's caller that an error has occurred. In.a few instances w~ere ASM is 
directly invoked by RSM (such as ILRPAGIO or ILRSWAP), ASM recovery 
attempts retry to return to RSM with a failing return code. When an error occurs 
during ASM processing that runs asynchronously, ASM recovery queues the failing 
request for eventual return to RSM. When an error occurs during ASM processing 
of a VIO group operator request, ASM recovery cleans up its resources and allows 
the associated task to terminate. 

5.6.22 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

Recovery Traces 

A dump of SYSl.LOGREC is a prerequisite to debugging ASM problems. ASM's 
recovery always records the SDWA to the SYSl.LOGREC data set. It is the most 
convenient way of determining that recovery has been invoked. The recovery 
routine id in the SDWA indicates which recovery routine was invoked. 

ASM has a number of system abend completion codes ('08x' series) that are 
always set up for retry. The purpose of these ABENDs is to record to 
SYSl.LOGREC logical errors that have occurred in ASM's mainline processing. 

Recovery Structure 

ASM has eight recovery routines for ASM mainline: 

\ 

• ILRIOFRR is an FRR that provides recovery for ILRPAGIO, ILRPOS, 
ILRPAGCM, and ILRVIOCM. It also acts as a router, giving control to the 
routines in ILRSWPO 1. 

• ILRSWPOI contains recovery routines for ILRSWPDR and ILRSWAP. 

• ILRSRTO 1 is an FRR that provides recovery for part monitor (ILRPTM) and 
slot sort (ILRSRT). 

• ILRCMPOI is an FRR that provides recovery for the I/O completion routine 
(ILRCMP). 

• ILRGOSO 1 is both an FRR and an EST AE that provides recovery for ILRGOS, 
for the group operators ILRSAV, ILRACT, and ILRRLG, and for ILRVSAMI. 

• ILRTMIOI is the ESTAE that provides recovery for ILRTMRLG and for its path 
through ILRVSAMI. 

• ILRSRBOI is an FRR that provides recovery for ILRSRBC. 

• ILRFRRO 1 is a validity check routine called by most of the recovery routines. 

Additional recovery routines are: 

• TERMRFRR is an FRR that is an entry point into and provides recovery for 
ILRTERMR. 

• ILRJTMOI is an FRR that is an entry point into and provides recovery for 
ILRJTERM. 

• ILRMSGO 1 is an FRR that is an entry point into, and provides recovery for 
ILRMSGOO. 

Section 5: Component Analysis 5.6.23 



Auxiliary Storage Manager (ASM) (continued) 

• ESTAER is an ESTAE that is the entry point into and provides recovery for 
ILRPGEXP. 

• ESTAEXIT is an ESTAE that is an entry point into and provides recovery for 
ILRPREAD. 

Recovery As a Debugging Tool 

Recovery has a benetlcial effect on problem solving primarily because having it 
invoked isolates the problem to a specific area of ASM. If there is a paging inter­
lock or duplicate page problem subsequent to an abend in ASM, the two are 
probably related and the first error provides information useful in debugging 
the second problem. 

Recovery ignores invalid control blocks and truncates some of ASM's internal 
queues in order to allow ASM to continue processing. Therefore, recovery will 
cover up valid problems that cause code overlays in ASM and other system com­
ponents. 

The primary culprit in covering up errors is the non-historical nature of ASM 
resource queues that results in rapid reuses of critical control blocks. The only 
valuable information left by the recovery is the SDWA with its variable recording 
area in the SYSl.LOGREC data set. At the very least, this record provides 
sufficient information to trap the problem when it recurs. 

Recovery Footprints 

FRR/ESTAE Work Areas 

ILRATA and ILREPATH are mapping macros that define the areas required by 
ASM modules to provide tracking information for the FRRs and ESTAEs. 

• ILRATA defines the six-word parameter area passed to the ASM routine issuing 
the SETFRR macro, or it defines the parameter area passed to the ASM routine 
issuing the ESTAE macro. It contains a module ID in the first byte, flags in the 
next three bytes, and four words which have module-dependent contents. 
The IDs of the ASM modules are: 

ILRPAGIO 
ILRPAGCM 
ILRSWAP 
ILPTRPAG 

('01 'X) 
('02'X) 
('03'X) 
('04'X) 

ILRSWPDR 
ILRGOS 
ILRPTM 
ILRSRBC 

('OS'X) 
('06'X) 
('07'X) 
('08'X) 

ILRCMPDI ('09'X) 
ILRCMPNE ('OA'X) 
ILRCMP AE ('OB'X) 
ILRCMP ('OC'X) 

• ILREPATH defines a variable-length area containing any additional recovery 
audit-trail data required for recovery by ASM recovery routines. The address of 
the EPATH, if present, is in the AT A. There are four variations of the EPATH 
area. 

5.6.24 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

The formats of ILRAT A (ASM tracking area - AT A) and ILREP ATH 
(recovery audit trail area - EP ATH) are described later in this chapter in the 
topic "ASM Recovery Control Blocks". 

SDWA Variable Recording Area 

ASM uses the SDW A variable recording area (SDW A VRA) to save the 
contents of the ATA (and EPATH, if present) upon entry to some of the recovery 
routines. This preserves the original state of the error before recovery took place. 
ILRIOFRR saves the ATA. ILRGOSOI, ILRCMPOl, and ILRSRTOI save the ATA 
and EPATH. ILRTMIOI saves only the EPATH. 

ASM Diagnostic Aids 

This section contains diagnostic aids that are helpful in debugging problems in 
ASM. Topics included are: 

• COD ABEND Meanings for ASM 
• ASM Recovery Control Blocks 
• Additional ASM Data Areas 

Section 5: Component Analysis 5.6.25 



Auxiliary Storage Manager (ASM) (continued) 

COD ABEND Meanings for ASM 

An RSM routine has found one of the following conditions which should not occur 
and has set the appropriate return code in register 15: 

RC 4 - The count of available swap sets· for a specific swap data set is non-zero 
but no available swap sets could be found. 

RC 8 - The total count of available swap sets is non-zero but none of the swap 
data sets contain available swap sets. 

RC 12 - The group operations starter has returned from one of the group 
operators but the ACE is not the first one on the LGE queue. 

RC 16 - The memory termination resource manager for ASM has found that 
LSQA is not available for an address space that is abnormally terminating 
for one of the following reasons: 

1. address space is not swapped in 
2. address space is in process of being swapped in 
3. RSMLSQA frame queue is unusable. 

RC 20 - The ASM SRB controller has found an AlA or ACE on the LGE process 
queue which does not have the LPID converted flag on. 

A software error record is written to SYS I.LOGREC and recovery processing 
continues. 

ASM Recovery Control Blocks 

During error recovery and cleanup processing, the ASM recovery routines com­
municate with other routines by using the ASM tracking area (AT A) and recovery 
audit trail area (EP ATH). 

ASM Tracking Area (AT A) 

The AT A contains information necessary for the recovery or cleanup processing 
performed by the ASM recovery routines. The ATA is mapped to the six word 
work area returned by SETFRR when an FRR is established. For task mode 
routines, the ATA is mapped to the parameter area that is passed via the ESTAE 
macro. 

5.6.26 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

\ 
The mapping macro name is: ILRATA. 

Disp Name Size Description 

0 ATA 24 ASM Tracking Area 
0 ATAMODID 1 ID of module establishing recovery routine. 

ATAMPGIO 01 ILRPAGIO module ID. 
ATAMPGCM 02 ILRPAGCM module ID. 
AT AM SWAP 03 ILRSWAP module ID. 
ATAMTRPG 04 ILRTRPAG module ID. 
ATAMSWPD 05 ILRSWPDR module ID. 
ATAMGOS 06 ILRGOS module ID. 
ATAMPTM 07 ILRPTM module ID. 
ATAMSRBC 08 ILRSRBC module ID. 
ATAMCMPD 09 ILRCMPDI module ID. 
ATAMCMPN OA ILRCMPNE module ID. 
ATAMCMPA OB ILRCMPAE module ID. 
ATAMCMP OC ILRCMP module ID. 

ATASFLGS 3 Bit map representing logical sections of ASM 
routines; set to 1 on entry, set to 0 on exit. 

ATAQIOE 800000 ILRQIOE flag. 
ATASLSQA 400000 ILRSLSQA flag. 
ATASCOMP 200000 SWAPCOMP flag. 
ATAVIOCM 100000 ILRVIOCM flag. 
ATAPCOMP 080000 PAGECOMP flag. 
ATAPOS 040000 ILRPOS flag. 
ATAPAGIO 020000 ILRPAGIO flag. 
ATAPAGCM 010000 ILRP AGCM flag. 
ATASWAP 008000 ILRSW AP flag. 
ATATRPAG 004000 ILRTRPAG flag. 
ATASWPDR 002000 ILRSWPDR flag. 
ATASRT 001000 ILRSRT flag. 

The remaing flags are reserved: 

ATARFLGS 2 Other recovery flags. 
ATACNVRT 8000 ILRSLSQA flag-converting between forward 

chained AlA's and lateral chained AT A's. 
ATASGNST 4000 ILRSLSQA flag-in ASSIGNSET subroutine. 
ATASCCWP 2000 ILRSLSQA flag-in SCCWPROC subroutine. 
ATABADPK 1000 ILRCMPAE flag-in BADPACK subroutine. 

Section 5: Component Analysis 5.6.27 



Auxiliary Storage Manager (ASM) (continued) 

Disp Name Size 

The remaining flags are reserved: 

6 

7 

ATARCRSN 
ATARCRF1 
ATARCRF2 
ATARCRF3 
ATARCRF4 
ATARCRFS 
ATARCRF6 
ATARCRF7 
ATARCRF8 
ATARCODE 

1 
80 
40 
20 
10 
08 
04 
02 
01 
1 

Description 

Recursion flags. 
Recursion flag-function 1. 
Recursion flag-function 2. 
Recursion flag-function 3. 
Recursion flag-function 4. 
Recursion flag-function S. 
Recursion flag-function 6. 
Recursion flag-function 7. 
Recursion flag-function 8. 
Reason code for ASM-issued ABEND's. 

The mapping of the remaining four words is dependent on the recovery routine 
involved. 

For the recovery routine ILRIOFRR: 

8 ATAWORDS 16 Maximum size of four-word area. 
8 ATAAIA 4 Address of in-process AlA. 
8 ATAACE 4 Address of in-process ACE. 
C ATAASCB 4 Address of in-process ASCB, or TRAS'd-to 

address space. 
C ATALGE 4 Address of in-process LGE. 
C ATAAIAQ 4 Address of AlA queue. 

For the recovery routine ILRSWP01: 

8 ATACLEAR 16 Definition allowing next four words to be 
cleared. 

8 ATAAIA 4 Address of in-process AlA. 
C ATASARTE 4 Address of SART entry. 

10 ATASCCW 4 Address of in-process SCCW. 
14 ATAIORB 4 Address of in-process IORB. 

For the recovery routine ILRGOSO 1 : 

8 ATAWORKA 4 Address of work-area cell. 
C ATAEPATH 4 Address of EPATH. 

For the recovery routine ILRSRT01: 

8 ATAWORKA 4 Address of PTM work-area cell. 
C ATAEPATH 4 Address of EPATH. 

5.6.28 OS/VS2System Programming Library: MVS Diagnostic Techniques 

li.l 

~ 



Auxiliary Storage Manager (ASM) (continued) 

Disp Name Size 

For the recovery routine ILRSRB01: 

8 
C 

10 
14 

ATAAIACE 
ATAAIAQ 
ATAACEQ 
ATAEPATH 

4 
4 
4 
4 

For the recovery routine ILRCMP01: 

8 ATAIOSB 4 
C ATAPCCWQ 4 

10 ATACOMPQ 4 

14 ATACPCCW 4 

For the recovery routine ILRJTM01: 

8 
8 

ATASAVE 
ATAACEQ 

4 
4 

Description 

Address of in-process AlAI ACE. 
Address of AlA queue. 
Address of ACE queue. 
Address of EPA TH. 

Address of in-process IOSB. 
Queue of PCCWs to be put back on PCCW 
available queue. 
Queue of AlAs to be returned to 
ILRPAGCM. 
Address ofin-process PCCW, not on IORB 
queue and not on ATAPCCWQ. 

Address of register save area. 
Address of ACE queue. 

For the recovery routine TERMRFRR: 

8 ATARMPL 4 

C ATAWORKA 4 

Recovery Audit Trail Area (EP ATH) 

Address of RMPL, resource manager 
parameter list. 
Address of work-area. 

The EPATH is a communication area between the mainline routine and its 
corresponding recovery routine. The EPATH is necessary when the 6 word ATA 
is not large enough to accomodate the data to be tracked. The mapping of the 
EPATH is dependent on the recovery routine or mainline routine including the 
macro. 

EPATH for ILRPTM, ILRSRT, and recovery routine ILRSRTOI: 

Disp Name Size Description 

0 EPAPARM 4 Address of parameter list. 
4 EPAIOEIP 4 Address of IOE currently being processed. 
8 EPAIOEQP 4 Address of first IOE on 'WORK' read IOE 

queue. 

Section 5: Component Analysis 5.6.29 



Auxiliary Storage Manager (ASM) ( continued) 

Disp Name Size Description 

C EPAFFIOE 4 Address of-first IOE on free IOE internal 
queue. 

10 EPALFIOE 4 Address of last IOE on free IOE internal 
queue. 

14 EPAWRTQ 4 Address of write queue from which last 
write IOEs removed. 

18 EPAWTPAT 4 Address of SCYLWRT which is used to 
update current CYL Map. 

IC EPACYLA 4 Address of current CYL Map. 
20 EPAMSPAD 4 Address of 2 word parameter list for 

ILRMSGOQ. Also serves as a switch for 
ILRPTM. 

24 EPAWRTCT 2 Number of writes prepared for current CYL. 
26 EPACPUID 2 Processor locking count for current part 

monitor processing. 

EPATH for VIa group operators and their recovery routines - ILRGOS, ILRSAV, 
ILRRLG, ILRACT, ILRVSAMI, ILRGOSOl, ILRTMRLG, ILRTMIOO, ILRTMlOl, 
ILRSRBC, and ILRSRBOl. ILRGOSOI is the recovery routine for ILRGOS which 
callsILRSAV, ILRRLG, and ILRACT which call ILRVSAMI. ILRTMIOI is the 
recovery routine for ILRTMRLG which calls ILRVSAMI and ILRTMIOO. 
ILRSRBO 1 is the recovery routine for ILRSRBC which calls ILRRLG. The first 
section is common because of the use of ILRVSAMI. The second section is 
dependent on the recovery routine involved. 

Disp Name Size Description 

0 EPAOWKA 4 Group Operator's or ILRTMRLG's work-
area address. 

4 EPAVWKA 4 ILRVSAMI workarea address also points to 
RPL in workarea. 

4 EPATMWKA 4 ILRTMIOO workarea address. 
4 EPASWKA 4 ILRSRBC workarea address. 
8 EPAAASP 4 Address of active ASPCT. 
8 EPADSLST 4 Address of data set name list storage. 
C EPABASP 4- Address-of buffer ASPCT. 
C EPATMIBA 4 Base address value for ILRTMIOO. 

10 EPA RASP 4 Ada-ress of retrieved ASPCT. 
10 EPATMACB 4 Address of storage used to build ACB for 

STGINDEX in ILRTMIOO. 
14 EPARTYRG 4 Address of 15 word save area containing 

retry_registers RO-RI4 for record-only abends. 
14 EPABKSLT 4 Backing slots, only used for assign 

processing. 

5.6.30 OS/VS2 System Programming Library: MVS Diagnostic Techniques_ 



Auxiliary Storage Manager (ASM) (continued) 

Disp Name Size Description 

18 EPAFLAGI Recovery flags. 
EPAVSAMI X'80' ILRVSAMI currently processing. 
EPAGRPOP X'70' One of group operators processing. 
EPARLG X'40' ILRRLG is currently processing. 
EPASAVE X'20' ILRSA V is currently processing. 
EPAACT X'IO' ILRACT is currently processing. 
EPAACASR X'08' Activate or assign request. 
EPAASGN X'04' Assign processing - backing slots count 

(ASMBKSLT) has been updated. 
EPAUNSAV X'02' Mark slots unsaved in active ASPCT. 
1ft X'OI' Reserved. 

19 EPAFLAG2 I Recovery flags. 
EPATMXIT X'80' ILRTMIOO completed processing. 
EPAWARM X'40' ILRTMIOO warm start is processing. 
EPACOLD ')('20' ILRTMIOO CVIOSTRT is processing. 
EPABUlLD X'IO' ILRTMIOO BUILDSNL is processing. 
E~AMAST X'08' Master scheduler initialization has been 

posted. 
EPATMI X'04' ILRTMIOO is currently processing. 
EPARECUR X'02' Recursion indicator for retry into mainline 

ILRTMRLG. 
1ft X'OI' Reserved. 

For ILRGOSO I, ILRSA V, ILRACT, ILRRLG, ILRSRBC, and ILRSRBO I : 

Disp Name Size Description 

IA EPALSIZE 2 Size of LGVT expansion. 
IC EPALGVTP 4 New LGVT address for LGVT expansion 

in ILRGOS. 
20 EPALGEP 4 Logical group entry for request being 

processed. 
24 EPASRB 4 Address of SRB for SRB controller. 
28 EPAACE 4 Address of current ACE being processed. 
2C EPARBASP 4 Address of rebuilt ASPCT (LSQA). 
30 EPARSIZE 2 LSQA block storage size for rebuilt ASPCT. 
32 * 2 Reserved. 

Section 5: Component Analysis 5.6.31 



• "xiliary Storage Manager (ASM) (continued) 

For ILRTMI01 and ILRTMRLG, andILRTMIOO: 

Disp Name Size Description 

1A * 2 Reserved. 
1C EPAACE 4 Address of ACE currently being processed. 
1C EPAMSECB 4 Address of master scheduler initialization 

ECB. 
20 EPATMRSV 4 Address of ILRTMRLG save area. 
24 EPAABEND 4 Retry address for record-only abends. 
24 EPATMIRT 4 Current retry address for failure in 

ILRTMIOO. 
28 EPATPART 4 Address of TPARTBLE while in ILRTMIOO. 

Additional ASM Data Areas 

The following four ASM data areas (BSHEADER, BUFCONBK, DSNLIST, and 
MSGBUFER) are not contained in OS/VS2 Data Areas. For debugging ASM, 
BSHEADER (bad slot record) may be especially helpful. 

BSHEADER 

Acronym: BSHEADER 

Full Name: ASM error record (bad slots) . 

Macro ID: None. 

Size: 1024 bytes. 

Function: Trace table of the last 253 slots that ASM has found to be bad. 

Location: 

Offset 

0(0) 

4 (4) 

8 (8) 

12 (C) 

Patterns of bad LSIDs can indicate where and what paging data sets 
are having difficulties. 

Pointed to by ASMVT (ASMEREC). 

Length Name Description 

4 BSCURR Current bad slot entry filled. 

4 BSFIRST Beginning address of table. 

4 BSLAST End address of table. 

1012 BSLIST 253 four-byte bad slot identifiers (LSIDs). 

5.6.32 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Auxiliary Storage Manager (ASM) (continued) 

BSLIST entry 

0(0) 

1. .. 

1 ... 

1 (1) 

BUFCONBK 

3 

BSFLAG 

BSSPLSID if 1, LSID entry is swap. 
if 0, LSID entry is page. 

BSRDLSID if 1, LSID entry is for a read error. 
if 0, LSID entry is for a write error. 

BST ABNTY LSID that is bad. 

Acronym: BUFCONBK 

Full Name: VSAM buffer control block. 

Macro ID: None. 

Size: 12 bytes. 

Function: Queue VIO group operation for later processing until VSAM 
resources are available. 

Location: Pointed to by ASMVT (ASMGOSQS). 

Offset 

0(0) 

4 (4) 

8 (8) 

DSNLIST 

Length 

4 

4 

4 

Name Description 

BUFCHAIN Pointer to next BUFCONBK. 

BUFASCB 

BUFACE 

Pointer to ASCB. 

Pointer to ACE. 

Acronym: DSNLIST. 

Full Name: Data Set Name List (ASM). 

Macro ID: None. 

Size: 44 times number of possible page/swap data sets. There are two 
DSNLISTs, one for page data sets and one for swap data sets. 

Function: Make data set names available in non-fixed (pageable) storage. 

Location: Pointed to by PART (PARTDSNL) for page data sets, and by SART 
(SARDSNL) for swap data sets. 

Offset 

0(0) 

Length 

44 

Name Description 

DSNENTRY Data set name left-justified and padded 
with blanks. 

Section 5: Component Analysis 5.6.33 



Auxiliary Storage Manager ( ASM) (continued) 

MSGBUFER 

Acronym: MSGBUFER. 

Full Name: ASM message buffer. 

Macro ID: None. 

Size: 376 bytes. 

Function: Ensure that WTOR ~ith LOGREe request will have a buffer 
to use. 

Location: Pointed to by ASMVT (ASMMSGBF). 

Offset Length Name Description 

0(0) 4 MSGCURR Pointer to current buffer used. 

4 (4) 4 MSGFIRST Pointer to first buffer. 

8 (8) 4 MSGLAST Pointer to last buffer. 

12 (C) 4 MSGTERM Pointer to special termination buffer. 

16 (10) 240 MSGBFRS Three 80-byte buffers .. 

256 (100) 120 MSGTBFR Special termination buffer. 

5.6.34 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



System Resources Manager (SRM) 

The system resources manager (SRM) is a component of the MVS control pro­
gram. It determines which, of all active address spaces should be given access to 
system resources, and the rate at which each address space is allowed to consume 
the resources. 

An installation controls the MVS system primarily through the SRM. 
The evaluations and resulting decisions made by the SRM are dependent 
on the constants and parameters with which it is provided. The reader should 
understand the philosophy inherent in the use of these constants and parameters, so 
that their use will produce the desired effect. Part 3 of OS/VS2 System Pro­
gramming Library: Initialization and Tuning Guide, provides the background 
information necessary to understand the controls available through the SRM, 
and the implementation of these controls. 

SRM Objectives 

The SRM bases its decisions on two fundamental objectives: 

I. To distribute system resources among individual address spaces in accordance 
with the installation's response, turnaround, and work priority requirements. 

2. To achieve optimal system-throughput through use of system resources. 

An installation specifies its requirements for the first objective in a member of 
SYSl.PARMLIB called the installation performance specification (IPS). Through the 
IPS, the installation divides its types of work into distinct groups called domains, 
assigns relative importance to each domain, and specifies the desired performance 
characteristics for each address space within these domains. A secondary input to 
the SRM is another member ofparmlib, the OPT member. Through a combina-
tion of IPS and OPT parameters, an installation can exercise a degree of control 
over system throughput characteristics. 

When the need arises, trade-offs can be made between SRM's objective.s. That is, 
the installation can specify whether, and under what circumstances, throughput 
considerations take priority over turnaround reqUirements. The SRM attempts to 
ensure optimal use of system resources by periodically monitoring and balancing 
resource utilization. If resources are under~utilized, the SRM attempts to increase 
the system load. If, on the other hand, resources are over-utilized, the SRM 
attempts to reduce the system load or to shift commitments to low-usage 
resources such as the processor, logical channels, auxiliary storage, and pageable 
real storage. 

Section 5 •. Component Analysis 5.7.1 



System Resources Manager (SRM) (continued) 

Address Space States 

The SRM recognizes address spaces as being in one of three general states. Each 
state corresponds in concept to a queue on which SRM places the SRM user 
control block (OUCB) which describes the address space. These three states are: 

1. In 

2. Wait 

The working set of an address space in this state occupies real storage. 

The working set of an address space in this state does not occupy real 
storage. It has been swapped-out, because it cannot be put into 
execution. 

3. Out ~ The working set of an address space in this state does not occupy real 
storage; however, the address space is capable of executing and can 
be considered for swapping-in. 

It is important to recognize that the correspondence between these states and 
presence on the associated queue is not precise; an address space can be in transit 
between two states (for example, it may be in the process of being swapped-out). 
Thus, the presence on a particular queue might not exactly mirror the physical state 
of affairs. Further, these classes are necessarily broad, and SRM recognizes sub­
classes; this is especially true among address spaces belonging to the "In" class. 
The use of the swap transition flags, in conjunction with the presence of an OUCB 
on a particular queue, mirrors the exact physical state of an address space. For wait 
state analysis, the exact state of given address spaces is important. If you can 
determine precisely what state SRM considers the various ~ddress spaces to be in, 
and the reasons why, you will gain insight for further analysis. The OUCB is the 
primary address-space-related control block in which much of the above 
information can be found. 

In the OUCBQFL field (OUCB + X'10'), when the OUCBGOB bit is on, the 
SRM's OUCB repositioning routine is to be invoked. The destination of this 
pending OUCB repositioning is indicated by the following bit settings: 

1. OUCBOUT='O'B ~ The OUCB will be placed on the "In" queue. 

2. OUCBOUT='l 'B and OUCBOFF='l 'B The OUCB will be placed on the 
"Wait" queue. 

3. OUCBOUT='l 'B and OUCBOFF='O'B ~ The OUCB will be placed on the 
"Out" queue. 

When the repositioning is completed, the OUCBGOB bit is turned off; the 
setting of the OUCBOUT and OUCBOFF bits indicates the location of the OUCB. 

The setting of the swap transition flags for swap-out processing occurs in the 
following order: 

1. If swap-out is initiated successfully, the OUCBGOO bit is set. 

2. At quiesce-complete time, the repositioning of the OUCB takes place. 

3. At swap-out-complete time, the OUCBGOO bit is turned off. 

5.7.2 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



System Resources Manager (SRM) (continued) 

The setting of the swap transition flags for swap-in processing occurs in the 
following order: 

1. If swap-in is initiated successfully, the OUCBGOI bit is set. 

2. At restore~complete time, the repositioning of the OUCB takes place and the 
OUCBGOI bit is turned off. 

SRM Indicators 

It is helpful to understand how SRM views the total MVS system, as well as the 
individual address spaces. This understanding can assist you in further problem 
analysis, especially of enabled wait state situations. A discussion of some of the 
SRM system and individual user indicators follows. Figure 5-30 shows the 
relationships among important SRM control blocks and queues. 

A study of several counters and flags aids in further understanding of SRM 
processing. The counters and flags that pertain to the entire system are located in 
the SRM constants module (IRARMCNS), which resides in the nucleus. The 
counters and flags that pertain to a specific user are found in that user's OUCB. 

System Indicators 

The SRM control table (RMCT) is located at the start of module IRARMCNS. 
This address is found at the CVT + X'25C'. Generally, when SRM is in control, 
the address of the RMCT is contained in register 2. In the module IRARMCNS, 
the following fields provide information concerning SRM's current processing: 

MCTAVQl (RMCT + X'IDB'; bit 2) 

MCTSQAI 

This bit indicates that the count of available pages has fallen below 
the PVTAFCLO value, so the real storage manager (RSM) has 
called SRM to steal pages in order to increase the count of available 
pages. If this bit is on, it could indicate a normal condition. 

(RMCT + X'IDB'; bit 0) 

Indicates that the number of available SQA pages is critically low. 
If MCTSMSI (RMCT + X'I09'; bit 4) is 1, the operator was 
notified of this situation. 

MCTSQA2 (RMCT + X'IDB'; bit 1) 

Indicates that the number of available SQA pages has fallen below 
a second, more critical threshold than the one noted 
above. If MCTSMS2 (RMCT + X'I 09'; bit 5) is I, the operator was 
notified of this situation. 

MCTASMI (RMCT + X'109'~ bit 0) 

Indicates that the SRM has detected that less than 30% of all local 
slots are available. The SRM has informed the operator of this fact 
and has taken appropriate action to relieve the shortage. 

Section 5. Component Analysis 5.7.3 



System Resources Manager (SRM) (continued) 

~ IRARMCNS 

\Y------:l:.--~ RMCT 
CVT 

(SRM Tables and Entry Points) 

~ - 4 CCT 
25C • RMCT - 4 ICT 

- 4 MCT -- .. RMPT 
0# 4 RMCA "' 

~ 4 WMST (IPS Information) 

+ R LCT (Logical Channel 
Information) 

OUCBs 

.J ~eferred Aciion ~ - • RMEX - + RMSB· ,0UCBs 

0# + EPDT 1 Anchor Queues OUCBs " for RMEPs in - + EPAT the EPAT, EPDT 
''Wail' V 

+ WAST (Workload Activity OUCBs 
Specifications) WTQE 

+ WAMT (Workload Activity 
TMQE RMEPs 11+ Wait 'I Information for MF/1) 

4 H + Timed Entry Point I Queue OUCBs TMQE 
Actions Descriptions 

I ~ OTQE L" '0 t' 
4 ACTION QUEUE 

... Oul '11 O~CBS 
Queue 

• WTQE 
INQE 

.OTQE 
~I+ In OUCBs 

• INQE .. -, Queue 

I ~ 'In' Algorithm Request Bits I OUCBs 
Immediate Algorithm 
Request Bits 

+ Request Service Work 
Area (RQSV) 

+ DMDT (Domain Descriptor 
Table) 

4 DMDT (Last Entry) 

J CCT 

ICT CPU Usage Information 

I MCT I/O Usage Information 

RCT Storage Usage Information 
Resource Control 

RMPT Information 

RMCA Swap Analysis Parameters 

RMEX Swap Analysis Variables 

External Entry POint 

RMSB Descriptors 

~ EPAT Subroutine Entry Points 

Algorithm Entry Point 

EPDT Descriptors 

Serialized Action Entry 

EPST Point Descriptors 

Scanned Action Entry 
Point Descriptors 

I Figure 5-30. SRM Control Block Overview (Part 1 of 2) 

5.7.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



SRM Registers 

+ RRPA 
,...... 

+RMCT ~ 

WMST 
Bf--~=~---

System Resources Manager (SRM) (continued) 

RRPA (Recovery Parameters) 

Register 0 Contents on Entry 
(ASID, PGN, SYSEVENT Code) 

Register 1 Contents on Entry 
(I nput Parameter Address) 

RMEP 
"7' 

Entry point descriptor 
of routine most 

t RMEP 
recently entered 

...-------1 Pointer to and indexes into performance group descriptor table + PGVT 1 
• PGDT (entry location similar to that for domain descriptor table) 

+ POVT J 
~ + PODT 

Pointer to and indexes into performance objective table 
(entry location similar to that for domain descriptor table) 

• DMDT 1--------------..... DMDT f---.-
D
-
M
-
V
-
T
----4 (domain descriptor table) 

ASCB 

~----I~ t OUCB I \ 

/J-f_O_U_X_B -I 

I t ASXB 
J 

+ 
x 

- --

OUCB 

SRM User 
Statistics 

"- t ASCB 

~ + IMCB 

I Figure 5-30. SRM Control Block Overview (part 2 of 2) 

SRM User 
Statistics 
(Temporary) 

\OUSB 

SRM User 
Statistics 
(Swapped) 

~ Entry for i th domain 

.~ 

IMCB 

f I/O 

J 

Measurement 
Information 

Section S. Component Analysis 5.7.5 



System Resources Manager (SRM) (continued) 

MCTAMS2 (RMCT + X'ID9'; bit 3) 

Indicates that the SRM has detected that less than 15% of the total 
local auxiliary storage slots are available. The SRM has informed the 
operator of the slot shortage, and has taken appropriate action to 
relieve the shortage. 

MCTFAVQ (RMCT+X'ID8'; bit 3) 

This bit indicates that the count of fixed pages in the system is 
above the threshold value, PVTMAXFX, and the real storage man-
ager (RSM) has called SRM to swap-out the users responsible for the 
shortage of pageable frames. If MCTFXI (RMCT + X'1 D9'; bit 6) is 
1, the operator was informed of this situation. 

RCVUICA (RMCT+ X'21E'; halfword) 
RCVCPUA (RMCT + X'220'; halfword) 
RCVASMQA (RMCT + X'224'; halfword) 

These values are the system contention indicators that the resource 
monitor examined for the last interval. They represent in the order 
given; the average unreferenced interval count (UIC), the average 
processor utilization, and the average ASM queue length. Based on these 
values, the target MPL for a domain is altered. 

RMCAINUS (RMCT + X'29E'; halfword) 

Indicates the count of address spaces currently residing in storage. 
This count includes non-swappable address spaces; If this count is 
high, look at the next field. 

CCVENQCT (RMCT + X'138'; halfword) 

Indicates the count of address spaces currently residing in storage 
and marked non-swappable because they are holding ENQ resources 
that other address spaces want. 

Individual User Indicators 

The SRMuser control block (OOCB) contains flags and counters to provide 

information about a specific user. There is one OUCB for each address space, 
pointed to by ASCBOUCB (ASCB + X'90'). 

The following fields help in the understanding of specific user 
characteristics. 

OUCBMWT (OUCB + X'15'; bit 7) 

If this bit is on, the SRM has detected that this user has not been 
dispatched, but was occupying storage for at least ~ seconds. (This 
interval is processor-model dependent.) The user will be swapped­
out until the dispatcher informs SRM that the address space has 
work to do. 

5.7.6· OS/VS2 System Programming Library: MVS Diagnostic Techniques 



System Resources Manager (SRM) (continued) 

OUCBAXS (OUCB + X'12'; bit 5) 

When this bit is on, the user has been swapped-out of storage 
because the user's address space was obtaining auxiliary storage slots 
at the fastest rate in the system when an ASM slot shortage 
occurred. 

OUCBENQ (OUCB + X'il'; bit 6) 

A different address space has tried to ENQ on a resource held by this 
address space. This user is treated as non-swappable for an installa­
tion-defined time perioQ. 

OUCBYFL (OUCB + X'12') See specific bit deSignations below: 

• Bit 1 - indicates that the user was created via a.START 
command. 

• Bit 2 - indicates that the user was created via a TSO LOGON 
command. 

• Bit 3 - indicates that the user was created via a MOUNT 
command. 

OUCBFXS (OUCB + X'12'; bit 7) 

When this bit is on, it indicates that the user has been swapped-out 
of storage because the user's address space had allocated to it the 
greatest number of fixed frames when a pageable frame shortage 

~, occurred. 

OUCBJSAS (OUCB + X'I7'; bit I) 

When this bit is on, it indicates that, at the time of job select 
processing for this user, there was an auxiliary slot shortage. This 
user's initiation is being delayed until the shortage is relieved. 

OUCBJSFS (OUCB + X'I7'; bit 0) 

OUCBSRC 

When this bit is on, it indicates that there was a pageable frame 
shortage at the time of job select processing for this user. This 
user's initiation is being delayed until the shortage is reHeved. 

(OUCB + X'2S'; 1 byte) 

This field contains a code describing why this user was 
last swapped-out. The codes are: 

01 Terminal output wait 
02 - Terminal input wait 
03 - Long wait 
04 - Auxiliary storage shortage 
OS Real storage shortage 
06 Detected wait 
07 Reqswap or transwap SYSEVENT issued 

Section S. Component Analysis 5.7.7 



System ResQurcesManager (SRM) (continued) 

08 ENQexchange by swap analysis 
09 Exchange based on recommendation values by swap 

analysis 
OA - Unilateral swapout by swap analysis. 

OUCBRDY (OUCB + X'56'; bit 0) 

This flag indicates that ready work became available for this address 
space which was swapped-out due to a long wait. The address space 
is now capable of executing and is a candidate for swap-in. 

Other Indicators 

TheSRM domain descriptor table can be useful in pinpointing a problem involving 
SRM's MPL control. Mapping of the table can reveal why a user is kept out of 
main storage, why erratic response time occurs, and other user and system 
information. 

SRM Error Recovery 

SRM maintains two functional recovery routines (FRRs) that are located in 
IRARMERR. One FRR (recovery routine 1 - RR1) gets control whenever 
errors occur after SRM is branch-entered by a routine that holds a lock higher in 
the lock hierarchy than the SRM lock. The other FRR (recovery routine 2 -
RR2) gets control whenever errors occur and SRM is running with the SRM lock. 

If it is suspected that SRM is entering error recovery and a stop is necessary at 
the time of error, RMRR2INT is a subroutine common to both RRI and RR2. 

Recovery routine 1 (RR1) retries if a retry routine exists. If no routine exists, 
or if the error recurs, RRI percolates the error. 

With recovery routine 2 (RR2), many special situations such as the following 
are first checked: 

• Is RMF active and should it be terminated? 

• Is SET IPS active and should abend code be converted? 

• Is OUCB valid and should abend code be converted? 

Then RR2 retries if a retry routine exists. If no retry routine exists, or if the 
error recurs, RR2 percolates the error. 

Module Entry Point Summaries 

I Figure 5-31 shows a cross reference between SRM modules and entry points. 
Descriptions of selected SRM modules and entry points are: 

5.7.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques 

( 

( 

( 



System Resources Manager (SRM) (continued) 

IRARMINT - SRM Interface Routine 

IGC09S - SVC entry pOint to SRM. 

IRARMIOO -Branch entry point to SRM. 
Handle all external SYSEVENTs. 

IRARMI48 - Branch entry point to the SRM. 
Handle the internal SYSEVENT (48). 

IRARMIOI - Entry point from IRARMEVT or IRARMCTL. 
Return to the SYSEVENT issuer. 

IRARMIIO - Entry point from IRARMEVT. 
Abend a user of the SRM. 

IRARMEVT - SRM SYSEVENT ROUTER 

IRARMEVT - SYSEVENT processor. 
Begin to process the indicated SYSEVENT. 

IRARMXVT - SYSEVENT retry. 
Prepare a retry of a SYSEVENT that had incurred a system error. 

IRARMDEL - Synchronize address-space delete processing. 

IRARMIPS - Set new IPS. 
Invoke IRARMSET to establish a new IPS. 

IRARMVXB - Synchronize OUXB deletion at swapout-completion time. 

IRARMSTM - Storage Management Routine 

IRARMPRI - Page Replacement Normal Processing. 
Examine each user in main storage and the system pageable area, 
and call RSM real frame replacement to update VICs for each 
user. 

IRARMPRS - Page Replacement Real Page Shortage Force Steal. 
Steal as many pages as required to relieve a real page frame 
shortage. The steal decision is made at entry IRARMMS2. The 
oldest unreferenced pages are stolen first. 

Section 5: Component Analysis 5.7.9 



System Resources Manager (SRM) (continued) 

IRARMMS2, ' - Real Page Shortage Prevention. 
Calculate the number of frames necessary to reach the O.K. 
threshold, and schedule IRARMPRS processing (if a real page 
shortage eXists). Inform the operator of users that have the 
greatest number offixed frames and direct the swaps of these 
users (if a pageable real page shortage eXists). 

IRARMMS6 - Main Storage Occupancy Long Wait Detection. 
Discover users who have gone into long wait without notifying 
SRM. Swapout such users, if swappable. 

IRARMASM - Auxiliary Storage Shortage Monitoring. 
Monitor the extent of auxiliary shortage allocation. If auxiliary 
pages are in short supply, inform the operator and direct swaps of 
users who are most rapidly acquiring auxiliary storage slots. 

IRARMSQA - SQA Shortage Message Writer. 

STEAL 

Inform operator of system queue area shortages. 

Internal STM Steal Subroutine. 
Add users to RFR interface list until full, then call RSM real 
frame replacement (RFR) routine (via IRARMI03) and record 
the number of pages stolen. 

lRARMSRV - SRM Service Routine. 

IRARMI02 

IRARMI03 

IRARMI04 

IRARM 10 5 

IRARMI06 

IRARMI07 

IRARMI09 

I TR"D~Mn1oL" I 1 i\.~ l~l 

Interface to ASCB CHAP. 

Interface to RSM's real page frame replacement. 

Obtain or free SQA storage. 

Requeue SRM TQE routine. 

Cross-memory post entry point. 

SWAP SRB SCHEDULE routine. 

RECORD entry point. 

Set a return code of 16 in register 15 and return. (Dummy routine) 

IRARMERR - SRM'sFunctional Recovery Routine. 

IRARMRRI Functional recovery for globallY-locked entries (entries to 
SRM in which the SRM lock could not be obtained). 

Retry the failing SRM routine when possible. Otherwise, 
percolate the error. 

5.7.10 OS/VS2System Programming Library: MVS Diagnostic Techniques 



System Resources Manager (SRM) (continued) 

IRARMRR2 - Functional recovery for non-globally-locked entries (entries 
to SRM in which the SRM lock was obtained). Validate 
queues and clean up. Retry the failing routine if possible; 
otherwise percolate the error. 

RMRR2RTY Return to RTM indicating retry. 

RMRR2PER Return to R TM indicating perc,olation. 

RMRR2INT FRR initialization. 

RMRR2VLD - Validate control blocks. 

RMRR2GST - Release the dispatcher lock in order to call IRARMI04. 

RMRR2CKQ - Verify the location of an OUCB. 

RMRRIVFB 

RMRR2REQ 

RMRR2SPR 

IRA RM CPM 

IRARMAPI 

IRARMEQI 

IRARMCLO 

IRARMCLI 

IRARMCL3 

Verify addresses. 

OUCB enqueue routine entry point. 

Return with the return code in register 15. 

Processor Management. 

Automatic Priority Group Reorder Processing. 
Recompute dispatching priorities for all APG users in main 
storage. Invoke ASCBCHAP for each user whose dispatching 
priority has chan.ged. 

ENQ/DEQ Algorithm ENQ Time Monitoring. 
Stop giving extra CPU service to users with ENQHOLD 
SYSEVENTs outstanding who have already received their 
guaranteed processor service. 

Processor Load Balancing User Swap Processing. 
Compute user processor usage profile at QSCECMP SYSEVENT. 

Processor Utilization Monitoring. 
Compute processor utilization variables for processor load 
balancing and resource management algorithms. 

Processor Load Balancing User Swap Evaluation. 
Produce a numerical recommendation value that reflects the 
desirability of swapping a user based on processor utilization. 

SectionS: Component Analysis S. 7.11 



System Resources Manager (SRM) (continued) 

CHAP ~ IRARMCPM Internal Chapping Subroutine. 
Search queue for APG users with changed dispatching priorities. 
Put them in a list and call ASCBCHAP. 

CPLRVSWF - IRARMCPM Internal Wait Factor Computation Subroutine. 

CPUWAIT 

CPUTLCK 

NEWDP 

Compute system wait factor for CPU load balancing 
recommendation value. 

- IRARMCPM Internal Wait Time and Processor Utilization 
Compute Subroutine. 

Compu te accumulated system wait time total for all processors 
and compute recent processor utilization. 

IRARMCPM Internal Processor Utilization Checking Routine. 
Ensure that the computed processor utilization percentage falls 
between 0 and 100 percent. If 100 percent and lowest priority 
user has not been dispatched, set to 101 percent. 

IRARMCPM Internal APG Computation Routine. 
Compute mean time to wait and a new dispatching priority for 
the APG user. 

IRARMIOM - I/O Management. 

IRARMILO I/O Load Balancing User I/O Monitoring. 
Compute I/O usage profile for all swappable problem-state users. 

IRARMILI - I/O Load Balancing Logical Channel Utilization Monitoring. 
Compute channel utilization values for I/O load balancing, page 
replacement algorithms, and the device allocation SYSEVENT. 

IRARMIL3 I/O Load Balancing User Swap Evaluation. 
Compute numerical recommendation value that reflects 
desirability of swapping a user based on logical channel 
utilization. 

IRARMIL4 I/O Load Balancing IMCB Deletion Routine. 
At the end of the user job step, clean up the control blocks used 
in monitoring a heavy I/O user. 

LCHUSE Internal I/O Subroutine. 
Compute logical channel utilization, request rate, and I/O load 
balancing recommendation value computation factor. 

5.7.12 OS/VS2 System Progtamming Library: MVS Diagno~tic Techniques 



System Resources Manager (SRM) (continued) 

IRARMRMR 

IRARMRMI 

Resource Manager 

Resource Monitor Periodic Monitoring. 
Accumulate, at periodic sample intervals, several system resource 
contention indicators and the number of ready users for each 
domain. 

IRARMRM2 - Resource Monitor MPL Adjustment Processing. 
Compute the average system resource utilization and determine if 
the system MPL should be raised or lowered. 

IRARMCTL - SRM Control Algorithms. 

IRARMCTL - Mainline Control Processing. 
Transfer to deferred user action processing (IRARMCEN) and 
then to the algorithm request routine (IRARMCEL). 

IRARMCEN Deferred User Action Processing. 
Examine the OUCBACN field of the OUCBs on the action queue 
and routes control to all routines whose request bits have been set 
in that field. Dequeue each OUCB after its indicated actions 
have been performed. 

IRARMCEL - Algorithm Request Routine. 
Examines the RMCTALR and RMCTALA fields in the RMCT. 
Routes control (via IRARMCRT) to each algorithm whose 
request bit has been set in either of the two fields. Reset the 
individual request bit after each algorithm completes. 

IRARMCET - Periodic Entry Point Scheduler. 
Accept timer interrupts, schedule the algorithms currently due 
for execution, and requeue the SRM timer element to permit 
interrupts again when the next algorithm is due for execution. 

IRARMCED - SRB-Dispatched Original Entry Processor. 
Receive control under an SRB scheduled by the dispatcher and 
set up an entry to the mainline of SRM (IRARMCEN) by invoking 
SYSEVENT 48. 

IRARMCQT - Periodically-Invoked Entry Point Rescheduler. 
Accept a request to reschedule the execution of a periodically­
invoked algorithm, and requeue the corresponding RMEP block 
on the timed entry queue. 

IRARMCRD - SRB Scheduling Routine. 
Accept a request to schedule the SRM SRB which, if available, is 
scheduled to obtain the SRM lock. 

Section 5: Component Analysis 5.7.13 



System Resources Manager (SRM) (continued) 

IRARMCRL - Algorithm Scheduling Routine. 
Accept requests for an algorithm to be run. Turn on the bit in 
the RMCTALA or RMCTALR associated with the algorithm. 

IRARMCRN - Action Request Routine. 
Accept requests for an action requiring the SRM lock. If the 
SRM lock is held, control is given to the action immediately via a 
routing routine. If the SRM lock is not held, the bit is set in the 
OUCBACN field of the OUCB associated with the requesting 
user, to indicate that the action requested is deferred. 

IRARMCRT - Entry Point Table Scanner. 
Accept an 'invocation bit pattern and an entry point table 
address. Compare the bit pattern to invocation flags in the entry 
point table entries. When a match is found, invoke the routine 
identified by the entry point. 

IRARMCRY User Swap Request Receiving Routine. 
Accept a request for a user swap and check to see if such a swap 
is already in progress. Route control to IRARMCSO or 
IRARMCSI if a swap is not in progress and the SRM lock is held. 

IRARMCSI User Swap-In Request. 
Accept a swap-in request, allocate an OUXB for the user, and 
initiate the swap-in. 

IRARMCSO - User Swap-Out Request. 

IRARMRPS 

IRARMWMY 

Accept a swap-out request and post the region control task's 
quiesce routine to initiate the swap-out. 

OUCB Repositioning Routine. 
Dequeue an OUCB and requeue it at the end of the queue 
specified in its OUCBQFL field. 

Periodic Entry Point RequeUing Routine. 
Requeue all of the members on the timed algorithm queue and 
adjust all the time-due fields. 

IRARMCAP - Swap Analysis Algorithm. 
Attempt to keep the multiprogramming level (MPL) at its target 
level in each domain by performing user swaps. 

IRARMCPI - Select Swap-In Candidate Subroutine. 
Scan the OUT queue for the user in a particular domain with the 
highest recommendation value. 

IRARMCPO Select Swap-Out Candidate Subroutine. 
Scan the IN queue for the user in a particular domain with the 
lowest recommendation value. 

5.7.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



System Resources Manager (SRM) (continued) 

IRARMCVL - User Swap Evaluation Routine. 
Compute a numerical value representing the recommendation for 
a user to be swapped in. This recommendation value is the sum 
of the user's workload level and the recommendations of the I/O 
and processor resource managers. 

IRARMWAR - Workload Activity Recording 

IRARMWRI - Workload Activity Recording Initialization Subroutine. 
Constructs and initializes the workload activity measurement 
table (WAMT) in the buffer (storage from SQA obtained by 
MF /1 and input with SYSEVENT 45). 

IRARMWR2 - Workload Activity Recording WAMT Initialization Subroutine. 
Build the W AMT in a format suitable for updating by the SRM. 

IRARMWR3 - SRM Workload Activity Recording Data Collection Subroutine. 
Move the contents of the WAMT into a collection buffer capable 
of containing the data. (Note that the buffer is obtained by 
MF/l from LSQA, storage key 0, and must be fixed in storage). 
If the IPS has not been changed, add to the collected data the 
transaction data for the current in-storage interval for each in­
storage address space with an active transaction, re-initialize the 
data collection buffer for the next collection interval, and cal­
culate the workload level for each performance group period that 
contains transaction data. 

IRARMWR4 - SRM Workload Activity Recording Transaction Data Update 
Subroutine. 

IRARMWR5 

IRARMWR6 

Add the service and transaction active time to the appropriate 
WAMT performance group period accumulator in the data 
collection buffer. 

SRM Workload Activity Recording Workload Level Calculation 
Subroutine. 
Calculate the workload level for each W AMT performance group 
period entry in which a transaction has been accumulated during 
the data collection interval. Note that for those W AMT entries 
in which the service rate calculated can be associated with 
multiple workload levels, or is zero (even through at least one 
transaction has been active during the data collection interval), 
the negative value of the workload level is calculated to 
indicate an estimated value to MF /1. 

SRM Workload Activity Recording Transaction End Update 
Subroutine. 
Add the transaction elapsed time to the appropriate W AMT 
performance group period accumulator and count the number 
of transactions that terminated during the current data collec­
tion interval. 

Section 5: Component Analysis 5.7.15 



System Resou~ces Manager (SRM) (continued) 

IRARMWR7 - SRM Workload Activity Recording WAMT Entry Determination 
Subroutine. 

IRARMWR8 

Obtain addressability to the W AMT performance group period 
entry used to accumulate user transaction information. 

SRM Workload Activity Recording. 
Terminate workload activity data collection whenever an IPS 
change occurs. 

lRARMWLM - SRM Workload Manager 

IRARMWMI - Workload Manager Service Calculator Routine. 
Calculate the amount of service provided to a user since 
the beginning of the current workload manager measurement 
for that user. Service is calculated using the following 
equation: 

Service = (MP)/K)+(CT/K)+EI where: 

. T the TCB processor time elapsed for the current interval. 

K the time required to execute 10,000 instructions. 
(dependent on the processor mode!). 

M = the MSO service coefficient scaled by 1/50. 

P the number of page-seconds used by the user. 

C the processor service coefficient. 

E the Excp count for this interval. 

I the I/O service coefficient. 

This routine calculates each of the three service factors and the 
total service for the user for the interval. 

IRARMWM2 - Swappable User Evaluation Routine. 
Scan the in-storage queue and the out-of-storage-but­
ready queue, and evaluate each swappable user, . 
assigning each his current workload level. 

IRARMWM3 - Individual User Evaluation Routine. 
Evaluate a swappable user on the in queue or the out 
queue, assigning acurrent workload level. 

IRARMWM4 - Workload Manager Workload Level Calculator Subroutine. 
Accept a service rate and a performance objective, and 
calculate the corresponding workload level. 

5.7.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



System Resources Manager (SRM) (continued) 

IRARMWMS - Workload Manager Update Performance Group Period Sub­
routine. 
Test whether a user has accumulated enough service/time 
to be assigned to a new performance group period. If so, 
adjust the pointers that indicate the performance group 
period, the performance objective, APG priority, and the 
domain applicable to the transaction current for the user. 
Note that the frequency (resolution) at which the test for 
period-end is made depends on how often IRARMWMS i.s 
called for any given user. 

IRARMWM7 - WLM Recommendation Calculation Routine. 
Calculate a workload manager recommendation value for 
a user, based on the service that was received and on the 
performance objective currently associated with the user. 
Users who have not yet received an amount of service equal to 
their interval service value (ISV) specification while in storage 
are given a recommendation value boost. The boost gives 
preferential treatment to users in their ISV as compared to 
users not in their ISV, or to users between job steps. 

IRARMHIT - Workload Manager User Ready SYSEVENT Swap-In Scheduling 
Routine. 

Reposition the now-ready user from the wait queue to the out 
queue. Receive control as the result ofa decision to apply 
swap-in processing to a now-ready user. 

IRARMWMI - Workload Manager In Storage Interval Change Subroutine. 

Update the transaction accumulators with the service 
and the time received by the user during the preceding 
in-storage interval. 

IRARMWMJ - Routine to Determine the Scope of ApplicabilitY' of Analysis to 
a User. 
Examine the current swap status and the performance 
specification for a user. Indicate if the resource manager 
algorithms are applicable to this user. 

IRARMWMK - WLM Dontswap/Okswap User Analysis Routine. 
Calculate the current service and ensure that the user is in 
the correct performance group period. Set applicable 
algorithm indicators based on the new swap status of the 
user. 

Section 5: Component Analysis 5.7.17 



System Resources Manager (SRM) (continued) 

IRARMWMN - Workload Manager Transaction Start Routine. 
This routine receives control as the result of a SYSEVENT that 
has been defined by the workload manager to signify that a new 
transaction should be started for that user. If the user is not in 
storage; a flag is set to cause the IRARMWMN routine to be 
reentered during the swap-in of the user. Otherwise, any existing 
transaction is stopped by calling IRARMWMO, and the user 
transaction fields are reset to reflect the new transaction field 
being started. 

IRARMWMO - Workload Manager Transaction Stop Routine. 
This routine receives control as the result of a SYSEVENT that 
has, been specified by the workload manager as defining the end 
of any current user transaction. If a new transaction is to be 
created for the user, IRARMWMO indicates the end of the 
current transaction. If the next user event is known, 
IRARMWMO leaves the transaction accumulated values for later 
resumption of the transaction. In any case, IRARMWMO causes 
the preceding time and service to be properly recorded for the 
current transaction. 

IRARMWMQ - Workload Manager Quiesce Completed SYSEVENT Processing 
Routine. ~ 

This routine receives control when a user has stopped executing 
and is being swapped out so that the workload manager can 
record the service given that user while he was in storage. The 
workload manager determines if a user event caused the swap­
out, and flags the user to indicate whether previous service is to 
be considered when the user is next swapped in. 

IRARMWMR - Workload Manager Restore Completed SYSEVENT Processing 
Routine. 
This routine receives control when a user has been swapped in 
and is ready to begin executing. The workload manager sets up 
the fields used to calculate the service rate received by the user 
during the forthcoming in-storage residency period. 

IRARMSET - Set to New IPS Non-Resident Action Routine. 
Replace the internal IPS currently in use by the SRM with a 
new IPS. All references to the old IPS in the SRM's control 
blocks are resolved with offsets or addresses in the new 
one. 

IEEMB812 - Set IPS Processor. 

IEEMB812 Open PARMLIB. Processes the IPS 
parameter of the SET command. 

IRARMRDR - Obtain a buffer and 
reads records from PARMLIB. 

IRARMWTR - Write a message to system log. 

5.7.18 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



System Resources Manager (SRM) (continued) 

I RARM IPS - SRM List Processor. 

I EAVNP 1 0 

IEEDISPD 

IEE8603D 

IRARMIPS - Scan the IPS List in the SYS I.P ARMLIB 
member, and if valid, build control blocks 
containing the IPS information. 

IRARMFRE Free the obsolete IPS tables. 

IRARMOPT - Scan the IEAOPTxx member of PARMLIB. 

SRM Initialization. 

IEAVNPI0 1. Initialize constants in SRM tables. ~ 

2. Initialize sysgened address spaces for the 
SRM. 

3. Process the APG, OPT, and IPS system 
parameters. 

IRARMRDR - Obtain a buffer and read a record from 
SYSl.PARMLIB. 

Display Domain Processor. 
Write a console display of entries in the domain descriptor 
table to a target console. 

SETDOMAIN Command Processor. 
Process the SETDMN command by altering the domain 
descriptor table. 

Section 5: Component Analysis 5.7.19 



System Resources Manager (SRM) (continued) 

~ 
MODULES en ~ -I a: I- ~ (!) a: 

I- > ~ a: ~ 
Q 0 N 0 Z Q.. t; a: > I- en en ~ w a: I- ~ 

-I 
Q.. co a () () w w z Q ~ ~ a: en en en ~ Q.. 

Z ~ CD ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
SRM > 0 ~ 

co a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: 00 
ENTRY « w w w « « « « « « « « « « « « « « « 
POINTS !:!:! w ~ w !!: !!: !!: 9: !!: ~ !!: !!: 9: !!: !!: 9: 9: !!: a: -
CHAP X 
CPLRVSWF X 
CPUTLCK X 

CPUWAIT X 

IGC095 X 

IRARMAP1 X 

IRARMASM X 
IRARMCAP X 

IRARMCEO X 

IRARMCEL X 

IRARMCEN X 

IRARMCET X 

IRARMCLO X 

IRARMCL1 X 

IRARMCL3 X 

IRARMCPL X 

tRARMCPO X 

IRARMCQT X 

IRARMCRO X 

IRARMCRL X 

IRARMCRN X 

tRARMCRT X 

IRARMCRY X 

IRARMCSI X 

IRARMCSO X 

IRARMCVL X 

IRARMDEL X 
tRARMEQ1 X 

IRARMFRE X 

IRARMHIT X 

IRARMIOO X 
IRARMI01 X 
IRARMI02 X 

IRARMI03 X 

IRARMI04 X 

IRARMI05 X 

IRARMI06 X 

IRARMI07 X 

IRARMI09 X 

IRARMI10 X 

t,RARMI48 X 

IRARMILO X 

IRARMIL 1 X 

IRARMtL3 X 

IRARMIL4 X 

IRARMIPS X 

IRARMMS2 X 

IRARMMS6 X 

IRARMNQP X 

Figure 5-31. SRM Module/Entry Point Cross Reference (part 1 of 2) 

5.7.20 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



System Resources Manager (SRM) (continued) 

~ 
a: :E MODULES en :E ..J a: ~ I- :E (!) I- > :E a: 

Q 0 ("II 0 Z Q. ~ a: z Q 
en en :E w a: t; « ..J 

Q. Q. co 8 (.) (.) w w 2:: :E a: en en :: :: 
z ~ m :E :E :E :E :E :E :E :E :E ~ :E :E :E :E :E 

SRM > 0 :E <0 a: a: a: a: a: a: a: a: a: a: a: a: a: a: a: co 
ENTRY « w w w « « « « « « « « « « « « « « « 
POINTS !:!:! ~ ~ !:!:! ! ! ! ~ ! a: ! ! ! ! ! ! ~ ! ! 
IRARMOPT X 
IRARMPR1 X 
IRARMPR5 X 
IRARMRDR X X 
IRARMRM1 X 
IRARMRM2 X 
IRARMRPS X 
IRARMRR1 X 
IRARMRR2 X 

IRARMR16 X 
IRARMSOA X 
IRARMUXB X 
IRARMWM1 X 
IRARMWM2 X 
IRARMWM3 X 
IRARMWM4 X 
IRARMWM5 X 
IRARMWM7 X 
IRARMWMI X 
IRARMWMJ X 
IRARMWMK X 
IRARMWMN X 
IRARMWMO X 
IRARMWMO X 
IRARMWMR X 
IRARMWMY X 
IRARMWR1 X 
IRARMWR2 X 
IRARMWR3 X 
IRARMWR4 X 
IRARMWR5 X 
IRARMWR6 X 
IRARMWR7 X 
IRARMWR8 X 
IRARMWTR X X 
IRARMXVT X 
IRARMXTL X 
LCHUSE X 
NEWDP X 
RMRR1CKO X 
RMRR2GST X 
RMRR21NT X 
RMRR2PER X 
RMRR2REO X 
RMRR2RTY X 
RMRR2SPR X 
RMRR2VFB X 
RMRR2VLD X 
STEAL X 

I 'Figure 5-31. SRM Module/Entry Point Cross Reference (part 2 of 2) 

Section 5: Component Analysis 5.7.21 



5.7.22 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VTAM 

This chapter outlines the important aspects of VTAM problem analysis. It is 
important that the problem solver have some understanding of how VTAM 
works. 

The following publications provide important VT AM structure, logic, control 
block format, and debugging information: 

• OS/VS2 VTAM Logic 

• OS/VS2 System Programming Library: VTAM 

• OS/VS2 VTAM Data Areas 

• OS/VS2 MVS VTAM Debugging Guide 

VTAM is a subsystem in itself. For VTAM problem determination, it is 
especially important to understand how work progresses through VT AM via its 
internal dispatching mechanism, process scheduling services (PSS). 

Some of the VT AM concepts that are discussed in this section are: 

• Process scheduling services (PSS) 

• VTAM's Relationship With MVS 

• Processing Work Through VTAM (PABs, FMCBs) 

• VT AM Locking 

• VT AM Recovery/Termination 

• VTAM Debugging 

VTAM's Relationship with MVS 

VTAM has its own address space to manage the network control program (NCP) 
network. Under VTAM's main task, the following services are performed: 

• VT AM initiation and termination. 

• VARY, DISPLAY, and MODIFY network operator commands. 

• An access method control block (ACB) is opened to VTAM so that VTAM 
services can be used to communicate with an NCP. 

The VARY processor obtains and releases IBM 3704/3705 communications 
controllers through the system dynamic allocation services. A waiting subtask is . 
posted to build an NCP resource definition table (RDT) which provides a table 
definition of the network. Another subtask is attached to actually load the 370x 
NCP. This procedure allows multiple 370x's to be activated concurrently. 

If TOLTEP and NETSOL are selected, each has its own subtasks operating in 
VTAM's address space. Each is also connected to VTAM with an OPEN ACB. 

Section 5. Component Analysis 5.B.1 



VT AM (continued) 

Because the VT AM address space owns the 370x, lOS schedules global SRBs to 
this address space for POST STATUS processing. Normally, however, VTAM uses 
a disable interrupt exit (DIE) to run its channel end appendage. The DIE 
schedules SRBs (physically located in the I/O buffer) into the application 
program's address space to run the posting process. POST STATUS is used only to 
handle error situations or when RNIO is beirig traced with GTF active. 

VTAM operates in the application program's address space when a service is 
requested by the application program. Local SRBs are used for all VT AM I/O 
processing to terminals or logical units. Other VTAM services such as 
OPNDST /CLSDST are run under an IRB from the task that opened the VT AM 
ACB. VT AM exits, ACB and request parameter list (RPL), are given control. 
when VTAM issues a SYNCH under the IRB. This means that a VT AM exit runs 
as a parameter request block (PRB) under the.task that opened the VTAM ACB. 
VTAM macros (for I/O or other services) can be issued from these exits; however, 
if the SYN option is used on the macro, a serialization bottleneck can result. 

As seen from this explanation, VT AM's address space is hot used for normal 
I/O activity. In analyzing VTAM problems, do not l?e concerned if several 
tasks are waiting in VTAM's address space. These tasks .are the operator control, 
NCP communication, and initiation/termination tasks, and are normally waiting·' 
in VTAM's address space. 

Processin~ Work Through VT AM 

Following is an explanation of the dispatching mechanism and the associated key 
control blocks that the problem solver should understand. 

VTAM satisfies an application program's request by executing a series of 
processes. Examples of processes are control layer and TPIOS; each process is a 
discrete piece of work. 

Each process is represented by a process anchor block (PAB) which is four 
words long and serves as a serialization mechanism for a resource. See Figure 5-32. 

A PAB always resides within some larger control block called a major control 
block such as an FMCB or an ACDEB. A process is always executed for a 
particular terminal, logical unit, or option as defmed by the major control block 
PAB. 

5.8.2 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



VTAM (continued) 

PAB 

Major Control 
Block 

~ PST 

8 r. WEL 

8 ~ CHAIN 

Off- 1 DVT. 
set T 

Flag + RPH 

Register l' 

~ RPH 

WEL 
(Work Element) 

I Figure 5-32. VTAM Control Block Structure 

CRA (Component 
Recovery Area) 

PSS CRR 
(lSTAPCRR) 

PROCESS 
CRR 

'MPST' 

Section 5. Component Analysis S.S.3 



VTAM (continued) 

The first word of a PAB contains a work element pointer. A work element is a 
parameter list for the process. A request parameter list (RPL) and it logical 
channel program block (LCPB) are examples of work elements. The high-order 
bit (byte O,X'80') of this first word is a gate bit which indicates that a 
work element has been queued to the PAB. The gate bit serves as a serialization 
mechanism; as more work elements are queued to the PAB, the gate bit prevents 
rescheduling of the PAB until it can handle the work. The gate bit is needed to 
prevent double scheduling of the PAB, because for many VT AM processes the 
process scheduling service (PSS) dequeues the work element before it gives the 
process control. 

The TPQUE macro is always used to queue work elements. This in-line macro 
checks the gate bit to determine if scheduling is required and, if so, executes an 
inner macro, TPSCHED. 

The second word ,of the P AB is the P AB chain field. As a general convention, 
PSS and its macros (for example, TPQUE) use the second word of any control 
block as a chain field. The end of the chain is indicated by X'80000000' in the 
chain field. The PAB chain field is used to chain the PAB to some queue, for 
instance, a dispatching queue. The chain field's high-order bit is a gate bit. The 
gate bit indicates that the PAB has been scheduled for dispatching. 

Following are the three ways to schedule a PAB for dispatch: 

• While running under a VT AM process, queue the P AB to the P ABQ in the 
request parameter header (RPH). The P AB will be dispatched when the 
current process completes. 

• If not running as a VT AM process, queue the P AB to the process scheduling 
table (PST) for task-related work, or to the memory process scheduling 
table (MPST) for address-space related or cross-address-space related 
work. 

• DIRECT scheduling causes an SRB, with the PAB address as a parameter, to be 
scheduled to a special PSS entry point. TPIOS uses this method to initiate 
inbound processing from the DIE. 

Note that if the PAB chain gate is off while the work element gate is on, the PAB is 
probably suspended. A TPSCHED macro is required to reactivate the process. 

The third word in the PAB contains the P AB offset and the destination vector· 
table (DVT) pointer. 

5.8.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VT AM (continued) 

The P AB offsetis used to locate the beginning of the major control block. It 
is necessary to locate the beginning of the major control block because there is a 
PSS convention that uses the third word of the major control block as a pointer 
to the process scheduling table (PST). The fourth word of the PST points to the 
memory process scheduling table (MPST), which is related to a particular address 
space. The PAB offset then provides a means to identify task and address space 
relationships for a given P AB. As a rule, the PST is used to schedule processes to 
run under the IRB of a particular task, while the MPST is used for scheduling a 
local SRB into the address space. 

The PAB DVT pointer points to the beginning of a module list, that is, a list of 
addresses that are entry points to the modules to be given control during the 
process. Because the DVT defines a whole process that is to be executed, many 
PABs will have DVT pointers to the same DVT. The next entry in the DVT to be 
given control is kept in the request parameter header (RPH); the RPH is updated 
each time the TPESC macro is used to pass control to the next module in the DVT. 

The fourth and last word of the P AB contains a byte of flags and a pointer to 
the request parameter header (RPH). The flag byte contains scheduling indicators 
for PSSand a bit to indicate whether or not PSS should dequeue the work element 
for the process. The RPH pointer is set by PSS when the PAB is to be dispatched 
and is reset to zero when the process completes. Register I always points to the 
RPH when the process is given control. All of the information relating to the 
process is stored in the RPH. This information includes such items as pointers to 
the work element (RPHWEA), the PST (RPHTSKID), a resume address 
(RPHRESMA) and a register save area (RPHWORK) if the process is suspended, 
and back pointers to the PAB (RPHMAJCB). The RPH resides within the 
component recovery area (CRA). 

VT AM Function Management Control Block (FMCB) 

The function management control block (FMCB) is the primary control block 
used in controlling I/O processing between an application program and a 
destination node (terminal, component, logical unit (LV), etc). This block usually 
contains the most information when a problem develops in the I/O processing to a 
particular node. The FMCB is created at OPNDST time; at least one FMCB exists 
for each open connection. All FMCBs for an application are chained together 
(at offset X'4') out of the application's ACDEB (at offset X'40'). In addition to 
the application FMCBs, VT AM maintains FMCBs for such things as dial-in lines 
. and cluster control units. For logical units, there is also an SSCP FMCB chained 
from VTAM's ACDEB that is used for network control. 

The FMCB contains the PABs that control processing through control layer 
(inbound/outbound) and TPIOS (outbound). Although there is aPAB in the 
FMCB for TPIOS inbound, the PAB in the DNCB is normally used to control it. 
In addition to the PABs, the FMCB contains many flags and indicators and some 
queue headers. These flags and headers are described in the OS/VS2 Data Areas 
(microfiche). 

Section 5. Component Analysis 5.S.S 



VTAM (continued) 

The wait queues at offset X'110' and X'll~e FMCB are important in 
debugging. These fields are used to queuerOgical channel program blocks (LCPBs) 
that have had channel programs built and queued to be shipped out to the 370x 
or local 3270. The LCPBs are dequeued from the wait queues when the 
requested operation completes. Expect to se~ read-type operations queued to 
the wait queue because these operations do not complete until data is entered 
and received from the associated terminal. However, if write or control type 
operations are not completing, investigate the situation further. 

VT AM Operating Characteristics 

Th~following topics describe characteristics ofVTAM's operating environment. 

Module Naming Convention 

Each VT AM module name indicates the type of processing that it performs. 
,Following are the major VTAM module naming groups and the processes 
associated with them: 

Module Group 

ISTAICxx 

ISTAPCxx 

ISTDCCxx 

ISTRCCxx 

ISTZxxxx 

ISTORFxx 

ISTOCCxx 

ISTINxxx 

ISTRAMxx 

IS TSDCxx 

Process 

Application program interface 

Process scheduling services ('.RSS - VTAM's dispatching' 
mechanism) 

Basic and common contro~ layer 

Record format control layer 

TPIOS 

Storage management 

OPNDST, CLSDST, OPEN, CLOSE 

SSCP(VARY, DISPLAY) 

Task termination and address space termination resource, 
manager 

SYSDEF 

Address Space Usage 

VTAM's modules reside in the nucleus, the VTAM address space private area, and 
the LPA. The nucleus contains the attention handling routine and type 1 SVC' 
routine. The private area contains modules for initialization, termination, initial 
command processing, SYSDEF, and NETSOL. The LPA contains all of the other 
VTAM modules. 

Most of the VT AM control blocks are lo~ated in the CSA. The data buffers as 
well as the majority of the control blocks occupy the 11 buffer pools that are 
allocated at VTAM initialization with the CSA. 

5.8.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VT AM (continued) 

Locking 

Because VTAM uses a number of SRBs and TCBs, it is important to serialize 
VTAM's internal use of shared resources (that is, to prevent simultaneous update 
of a control block by two different processes). The VT AM locking structure 
accomplishes this serialization. The VTAM locking structure is an internal VTAM 
function not visible to the user or MVS. VT AM's locking structure is totally 
independent of the MVS locking structure. 

In storage, the locks exist as full words in various areas of the VTAM control 
blocks. Following is the organization of the lockword: 

Lockword 

x 

o,,----_______ v~----------~,----------~v-------------
1 byte - Count of lock 22 bits - Chain of RPHs Low-order bit on 
holders of this lock. (request parameter indicates lock is 

headers) when process(es} held exclusively. 
is waiting for this lock. 

Each lock is defmed as being of a certain lock level. This allows a lock to be 
maintained according to a predetennined hierarchy. These lock levels are usually 
not of significance to the debugger except that he needs to know that they exist 
so he can interpret the lock level bits in the component recovery area (CRA) as 
described below. 

Locks are obtained and released by using VTAM internal macro instructions. 
The access to the locks is controlled as follows: 

• A shared request for a lock that is free or held as shared (with no outstanding 
exclusive requests) is honored immediately. 

• An exclusive request for a lock that is held as shared is queued until all current 
shared requests are released. 

• Any request for a lock that is held as exclusive, or has an exclusive request 
outstanding, is queued until the exclusive use is complete. 

The locks held by a process are indicated by the lock level bits in the CRA 
(at offset X'B'). The pointers to the various locks are located at X'C' through 
X'30' of the CRA. The pointers to the locks are filled in when a lock request is 
made; therefore, only the locks currently held have valid pointers. Locks are held 
only for the duration of a VTAM process; all locks must have been released when 
a process exits. 

Section 5~ Component Analysis S.B.7 



VT AM (continued) 

Examples of a locking situation: 

CRA+X'8' I 6 5 4 3 2 1 I 
~_O_-_-_-_-_-_-_-_-_-_-__ -_-_-_-_-_-_-_~_O __ O __ 1 __ 0 __ 0 __ 0~. 

(Bit 32) + (Bit 1) 

Lock level 
Bit setting 

L indicates Level 4 
lock held 

CRA+X'18'~I ______ ~t_' l_e_ve_I_4_'_o_ck __________________ __ 

If the CRA lock accounting word appeared as above, it would mean that a level 
4 lock was held by the process currently active. Offset X'18' (level 4 lock pointer) 
of the CRA contains the pointer to the lock in question. Refer to OS/VS2 Data 
Areas (microfiche) for details .. 

RPHs that are waiting for a lock will be queued onto that lock. Multiple RPHs 
waiting for the same lock will be chained together. This relationship is shown in 
Figure 5-33. 

Summary of VT AM Locking: The main concern of the debugger regarding 
locks is that a process can be forced to wait because it cannot obtain a 
lock. The lock is unavailable because it is held by some other process. This 
situation is reflected by an active CRA with a resume address that points to 
code that follows a lock request. Layout the CRAs, etc., as shown in Figure 5-33 
and investigate those processes that are waiting, determine what lock is being 
requested, locate the current lock holder, and determine why the lock has not been 
released. 

VT AM Recovery/Termination 

VTAM recovery/termination is accomplished by means ofSTAE, EST AE, FRR, 
and resource manager routines. 

The exact recovery action attempted by VT AM depends on conditions at the 
time of the errors. However, for debugging purposes, the basic functions 
ofVTAM are the following: 

• To record the SDWA in SYS 1.LOGREC 

• To take an SDUMP. 

• To terminate the application program or VTAM. (Note, if the error occurs in 
the VT AM address space, VT AM generally attempts to simulate a normal 
shutdown.) 

5.8.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VTAM (continued) 

LPBUF 

A lockword, CRA 1 
somewhere in 
storage 

@ of a lock 

10 0000 0000 
! RPH 

CRA 2 

@ of a lock 

CRA3 10 00000000 
! RPH 

@ of a lock 
A lockword, 
somewhere in 
storage @ RPH 

0000 0000 Resume @ 

@ofa lock 

4 0000 0000 

CRA 5 10 Resume @ 

4 ~O_O_O_O_O_O_O_0-l l RPH 

10 Resume @ f 

Non-waiting RPH (CRA 1) holds the lock that RPH 3 (CRA 3) and RPH 4 (CRA 4) are 
waiting for. Non-waiting RPH 2 (CRA 2) holds a lock no RPHs are waiting for. 
Waiting RPH 3 (CRA 3) holds a lock that no RPH is waiting for. Waiting RPH 4 
(CRA 4) holds a lock that RPH 5 (CRA 5) is waiting for. 

Figure 5-33. Several RPHs Waiting for the Same Lock 

Section 5. Component Analysis 5.8.9 



VT AM (continued) 

The termination of VT AM or VT AM applications causes the VT AM resource 
managers to get control. The resource manager routines clean up the VTAM 
resources allocated to the terminating task or address .space. 

VTAM recovery/termination functions affect debugging in the following ways: 

1. A dump and SDWA in SYSI LOGREC are provided for the error condition. If 
the error was in a VTAM application address space, VTAM and other VTAM 
applications continue to run. This allows you to debug certain problems 
without having a major impact on the installation's operation. 

2. Subsequent errors can occur in termination, in VTAM, or in other VTAM 
applications as a result of the original error that was undetected. If this is the 
case, a dump can be very difficult to understand because cleanup was attempted 
or performed on behalf of the original error. Always be aware of any problems 
that have occurred prior to the particular problem being diagnosed. To detect 
these previous problems, inspect the in-storage LOGREC buffer and 
SYSI.LOGREC. 

In addition to the major recovery action described above, there are other 
recovery actions: 

• A failure during command interpretation (but not during command execution) 
results in the loss of the current operator command, but continued availability 
of the operator control function. 

• Failure during various SSCP functions can result in the immediate termination of 
VTAM without simulating a normal shutdown. 

• Failure in the storage management services (SMS) modules, ISTORFBA and 
ISTORFBD, results in a failure of the storage request, but does not cause 
termination. The module requesting SMS service is informed of this action by 
return codes. 

• Authorized path entry/exit errors are retried or the RPL is posted with an error 
indication. 

VT AM Debugging 

Because VT AM is a large component that interacts with other components and 
application programs, when you debug VTAM you must look at a number of 
factors besides the storage dump. Begin the debugging process by 
considering the operating environment and all the conditions that could have led 
to the suspected error. 

5.8.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VT AM (continued) 

Following are some items you should look at when attempting to solve VTAM 
problems: 

• Console sheet 

• GTF traces (especially for VTAM I/O activity) 

I • SYSl.LOGREC entries for program checks or MDR records 

• NCP generation listing 

• PTF level of the system 

Waits 

VTAM waits can happen to the following groups: 

• Entire VTAM component and all VTAM applications 

• One or more applications only 

• VT AM network operator commands only (possibly only VARY) 

• One or more terminals only 

Also, a wait can occur when VTAM will not halt. 

VT AM process scheduling services (PSS) routines control the flow of work 
through VT AM by performing an internal VT AM dispatching function. In 
debugging, the most important control block in determining the status of the 
dispatching activity and the wait states is the request parameter header (RPH), 
which is located within the component recovery area (CRA). 

If a VT AM internal process is waiting for a VTAM lock, for storage to become 
available, or for another process to complete, this condition is reflected by an 
active CRA. CRAs are found in the LPBUF buffer pool. (See Figure "How to 
Locate the CRA" in OS/VS2 MVS VTAM Debugging Guide.) This pool is located 

I as shown in Figure 5·34. The RPH is located X'34' bytes into the CRA; it can be 
recognized by the string X'016C' in the first halfword. Offset X'lO' into the RPH 
is the RPHRESMA field; this field contains zeros if the RPH is not waiting or a 
resume address if it is waiting. 

Once you find a waiting RPH, the best way to determine why it is waiting is 
to find the module at the address in the resume address field, and then look at 
the module listing. Unless the wait is for a lack of buffers (which can be resolved 
by increasing the number of buffers), further analysis is necessary to determine 
why the process is not being posted or why a lock is not being freed. 

Section 5. Component Analysis 5.8.11 



VTAM (continued) 

RPHs waiting for a VTAM lock are queued onto that lock. Multiple 
RPHs waiting for the same lock are chained together (as shown in Figure 5-33). 
If a process holds any locks, the lock level bit at offset 8 in the CRA indicate 
the level of the lock(s) being held. Pointers to the various locks are located at 
offsets X'C' through X'30' of the CRA. Note that although all these pointers can 
contain addresses, only the pointers to the locks held or requested during the 
dispatching of the current process are valid. 

A VT AM internal process can often be waiting for storage. VTAM routines 
obtain and release buffers by using VTAM internal macro instructions. These 
macro instructions branch to the VT AM storage management modules that control 
the buffer pools allocated at VTAM start time. Because the number of buffer 
pools is specified at VTAM initialization and is constant, it is possible to encounter 
a shortage condition in unusual situations. See the section on tuning VTAM in the 
OS/VS2 System Programming Library: VTAM for information on specifying the 
proper storage pool values, the threshold value effect, and slowdown processing. 

To determine if a buffer pool is in a slowdown state, do the following: 

I • Locate the buffer pool control blocks (BPCBs)as shown in Figure 5~34. 

• Look at offset X'lO' of each BPCB. If the X'40' bit is on, the buffer pool is in 
a slowdown state. (The BPCBs are located in contiguous storage and can thus 
be scanned quickly.) 

If a dump has been taken because of a wait-type problem in VTAM, and the 
dump shows a buffer pool in slowdown, you can usually conclude that a buffer 
shortage has caused the wait problem. If you increase the number of buffers in the 
appropriate pool, this usually eliminates the problem. However, the problem 
should be investigated further to determine if a VTAM logic error has caused 
the buffers to be wasted and thus depleted. 

VTAM routines that request buffers can choose to wait or not to wait if there 
are not enough buffers available to fulfill the buffer request. 

If a routine chooses to wait (and most do) when buffers are unavailable, the 
process is represented by an active CRA with a non-zero resume address. 
In addition to the slowdown bit being on in the BPCB, the RPH for the process 
is queued onto the BPCB. The queue headers in the BPCB are located at 
offsets X'18' and X'IC'; X'18' for queuing priority requests and X'lC' for 
queuing normal requests. Figure 5-35 represents the queuing of RPHs and Figure 
5-34 shows how to fmd the BPCBs. Any address in either of the queue headers of 
a BPCB indicates a buffer problem with that pool. The RPHs queued from the 
BPCB have a resume address that points to code following the buffer request. 
Examine the routine in question to determine if an error in the code has caused the 
buffer problem or if the condition exists because the buffer specification was too 
small. 

5.8.12 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VTAM (continued) 

Address of ATCVT 

~ V000400 86578881 60FE3000 00B2EA40 00000000 00000000 00000000 00000000 00000000 

Beginning of ATCVT 

0 VB2EA40 40000000 00C2D400 00000000 
VB2EA60 80A9D098 00B2D800 80A9D098 
VB2EA80 00000000 00000000 00000000 
VB2EAAO 00000000 00C26190 00C26160 

0 VB2EACO 00B2COOO 00BF4B08 000C2D50 

Address of BPDTY 

Beginning of BPDTY Beginning of BPEs 

0 VB2cOOO ooocoooc 00000000 00B2C4B8 00B2C5D8 00000000 00B2DOOO 00000000 00B2C278 
VB2C020 00B2COAO 00B2EA40 00000000 000003E8 005800FD 00B2C038 00280000 001DOOOO 
VB2C040 00320000 00320000 00320000 00250000 00140002 OOOCOOOO 00320000 00320000 
VB2C060 00320001 00320000 02000000 01 FC00(V 02000033 02000000 0100001A 01000000 
VB2C080 0064000A 00510000 00640000 00580e 5 E2D4E2F1 60000000 00B2C278 00000000 
VB2COAO E2C6FOFO 60000058 00B2C2D8 0000001l1' E2D7FOFO 40000048 00B2C338 00000000 
VB2COCO D3C6FOFO 60000080 00B2C398 00000('0 D3D7FOFO 400003A8 00B2C3F8 00000000 
VB2COEO E4C5C3C2 50000070 00B2C458 OOOOOO\;;. C9D6FOFO 6COOOOCO 00B2C4B8 00000000 
VB2C100 C6D4C3C2 40000148 00B2C518 00000000 C1C3C540 40000040 00B2C578 00000000 
VB2C120 C4C1E3C1 440000D8 00B2C5D8 00000000 D5D7FOFO 42000148 00B2C638 00000000 
VB2C140 C3D9 40000070 00 00000 578 4 000 

LPBUF BPENT Address 

Beginning address of pool 

Ending address of pool Beginning of BPCB 

VB2C3EO 
VB2C400 
VB2C420 
VB2C440 

00C26550 00B2C398 00000000 
00B28000 00B253BO 0144000B 
000403A8 00B2C42C D6D9C4DB 

00000000 00000000 400000E7 00B27ECO 
00000000 00000000 00B2COOO 00B2C458 
00000000 00FF2590 00000006 00000000 

OOOO~~--~~~~ 000 

Notes: 
1. Locate the address of the ATCVT (VTAM communication vector table) by going to 

absolute storage location X'408.' 

2. Go to the specified address to locate the ATCVT. 

3. Locate the address of the BPDTY (buffer pool directory) by indexing into the 
ATCVT a value of X'80: 

4. Go to the specified address to locate the BPDTY. 

5. Locate the BPEs (buffer pool entries) by indexing into the BPDTY a value of X'90: 

6. The BPEs contain the name of the pool in the first 4 bytes - the length of the pool 
element in the second 2 bytes of the second word - and the address of the BPCB 
(buffer pool control block) in the third 4 bytes. Each BPE is X' 10' bytes long. 
(Note that the example shows the LPBUF.) 

Figure 5-34. Sample Storage Pool Dump 

Section 5. Component Analysis 5.S.13 



VTAM (continued) 

LPBUF 

----------- ~ ACRA A BPCB 

la 
@RPH 

'> RPH 

18 or 1C @ of RPH 

ACRA 
I Resume @ 
I 

I 4. 0 

} RPH \ACRA 
10 Resume@ 

4 @RPH 

' } RPH 

10 Resume @ 

I Figure 5-35. Queuing of RPHs While Waiting for Storage 

If a routine chooses not to wait when buffers are unavailable, return codes 
notify the routine of the lack of buffers. There are no specific flags that are always 
set to indicate that the request was rejected. Therefore, you cannot easily 
determine if a particular routine requested buffers but did not get them. However, 
you can tell that there is a buffer problem because this is usually indicated by 
the slowdown bit being on in one of the BPCBs. 

Usually there is an active CRA for problems that are described as VT AM 
waits. However, for some problems (for example, one or more terminals waiting), 
a dump might be obtained that has no active CRAs. The best place to start with a 
problem such as this one is to locate the FMCB/DNCB for the terminal(s)in 
question. The FMCB/DNCB control blocks contain the following: 

• various flags 

• PABs to control the inbound and outbound request processing 

• queues of outstanding requests 

Investigate further any work elements found unprocessed on the PABs or queues 
of these control blocks. 

To find the FMCB/DNCB for a particular node name, look at the following: 

LOC X'408' + ATCVT 

ACTCVT + X'C' = + QAB 

QAB + X'8' 

RDT+X'4C' 

4 first RDT segment 

.• next RDT segment 

5.8.14 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



VTAM (continued) 

ROTs are segmented tables and each segment contains information ab.out a 
major node as defined in SYSl.VTAMLST. Each segment contains entries for the 
groups, lines, clusters, terminals, components, etc., for the major node, as shown 
below: 

Segment 
~ __ --~w~--- NCPname 

Entry <0:::::::::-----:.----1 ... subelement name 

subelement name 

The node name is in the first eight bytes of each ROT entry. Stop chaining 
through the RDT entries when the major node name (that is, NCP or LBUILD) is 
found; then scan down the RDT entries of this major node until the node in 
question is found. Offset X'28' of the appropriate RDT entry points to the DNCB 
(offset X'28' from beginning of name). DNCB + X'10' points to the FMCB. 

Another way to find the FMCB/DNCB for a process that is waiting (but has an 
active CRA and an RPH with a non-zero resume address) is to look at the module 
that is waiting and determine its register usage. Find the registers that were saved 
in the RPH + X'28'. See the module for the order in which the registers were 
saved. 

Program Checks 

The information generally available on VTAM program checks is in the SDWA and 
the SDUMP that the EST AEs Or FRRs provide. This information is used in the 
normal manner to determine the cause of the program check. However, there can 
be cases where more exact or timely information is required. This additional 
information might have to be obtained through the use of traces or traps. Traps at 
the en try point of the FRRs or EST AEs (1ST APC61 and 1ST APC62 , in particular) 
are often useful. 

Miscellaneous Hints On VT AM 

1. VTAM waits can occur because of buffer depletion. Such a situation 
usually occurs just after VT AM is installed and before the actual buffer 
requirements are determined. Running GTF (with the USR trace option) at 
this time can be helpful because VT AM creates an SMS trace record when­
ever a storage request is queued. Because VARY ACTIVATE/INACTIVATE 
of an NCP puts the heaviest stress on the buffer pools, start GTF 
before an NCP is activated. 

Section 5. Component Analysis 5.B.15 



VTAM (continued) 

2. VTAM places warmstart copies of major nodes into the data set 
SYSl.VTAMOBJ the first time that anode is activated. These warmstart 
copies are used for subsequent activations of the node. If a node definition is 
changed in SYS 1.VT AMLST, be sure to scratch the corresponding member 
in SYS 1.VTAMOBJ to ensure that the new defmition is used by VT AM. Also 
scratch the members of SYSl.VTAMOBJ after PTFs have been installed 
because some of the bit defmitions might have changed. 

3. Most VTAM control blocks are in the 11 VTAM buffer pools. By simply 
scanning the buffer pools and looking for unusual conditions you can often 
uncover many of the problems. Each buffer in the buffer pools is preceded by 
a two-word buffer header. The high-order bit of the first word indicates whether 
the buffer is allocated or available: on = allocated, off = available. The address 
portion of the first word points to the module that last released the buffer. The 
second word contains a pointer to the buffer pool control block. 

5.8.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VSAM 

The virtual storage access method (VSAM) consists of three major subcomponents: 

• Record management 
• Open/ close/end-of-volume 
• I/O manager 

Record Management 

Record management processing produces no messages. Problem determination 
normally begins with an examination of the request parameter list (RPL). If a 
physical error occurs and the user has provided a large enough message area 
(pointed to by RPLERMSA), VSAM (IDAOI9R5) builds a SYNADAF-type record 
in that area for the user to examine. For both logical and physical errors, VSAM 
sets return codes in the RPL. 

RPL 

Three fields in the RPL are used to indicate an error: 

1. RPLERREG - (RPL + X'D') a one-byte value which is also returned in 
register 15 after a request: 

o request completed normally 

8 a logical error occurred 

12 a physical error occurred. 

2. RPLCMPON -- (RPL + X'E') a one-byte value that indicates which 

3. RPLERRCD 

component was being processed at the time of the error if 
the request involved alternate indexes. This value also 
indicates whether upgrading was valid or was incorrect 
because of the error. 

CODE COMPONENT STATUS OF UPGRADE 

0 base cluster valid 

1 base cluster might be incorrect 

2 alternate index valid 

3 alternate index might be incorrect 

4 upgrade set valid 

5 upgrade set might be incorrect 

(RPL + X'F') a one-byte value describing the error (see the 
Diagnostic Aids section of OSjVS2 VSAM Logic). 

Section 5. Component Analysis 5.9.1 



VSAM{ continued) 

Other important fields in the RPL are: 

RPLREQ 

RPLPLHPT 

RPLECB 

RPLDACB 

RPLAREA 

RPLARG 

RPLOPTCD 

RPLDDDD 

PLH 

(+ X'02') request type 

(+ X'04') pointer to the PLH 

(+X'OB') ECB or pointer to the ECB 

- (+X'lB') pointer to ~he ACB 

- (+X'20') pointer to the user's record area 

- (+X'24') pointer to the user's search argument 

- (+ X'2B') two bytes of option flags 

- (+X'40') last successful request's RBA value 
(returned to user by VSAM). 

Once the information in the RPL has been evaluated, the next block to examine is 
the placeholder (PLH). The PLH contains current information about the request, 
including positioning and pointers to associated control blocks such as buffer 
control blocks (BUFCs) and the I/O management block (IOMB). 

The following fields are important for understanding the request: 

PLHFLG1 - (+X'02') status flags 

PLHFLG2 - (+X'03') status flags 

PLHEFLGS - (+X'04') two bytes of ex~eption flags 

PLHFLG3 -(+X'06') status flags 

PLHAFLG3 - (+X'07') statusflags 

PLHCRPL - (+X'14') pointer to the current RPL 

PLHDBUFC - (+X'34') pointer to the current data BUFC 

PLHDIOB - (+X'4C') pointer to 10MB 

PLHRETO - (+X'74') halfword offset into register 14 pushdown save area. 
If the halfword at + X'76' is zero, PLHRETO is an 
offset from + X'7S' into a 14-word save area and 
points to the next available word. If the halfword at 
+X'76' is not zero, then it is the offset from +X'7B' to 
the beginning of a 20-word save area at the end of the 
PLH, and PLHRETO is an offset from + X'7B' into 
that save area. 

PLHIBUFC - (+X'BC') pointer to the current index BUFC 

PLHIXSPL - (+ X'CS') 32-byte index search parameter list (IXSPL) 
containing information about the results of the last 
index search. 

PLHKEYPT - (+X'FS') pointer to the current key value or relative record 
number. 

5.9.2 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



VSAM (continued) 

BUFC 

The buffer control block (BUFC) contains function codes, status indicators, and 
relative byte address (RBA) values describing the associated buffer. 

BUFFLG 1 - (+ X '0 1 ') BUFC status flags 

BUFCIOFL - (+X'02') I/O status flags 

BUFCDDDD - (+ X'08') RBA for input if BUFCV AL is on 

BUFCORBA - (+X'OC') RBA for output if BUFCMW is on 

BUFCBAD - (+X'14') pointer to associated buffer 

During record management processing, register usage is as follows: 

Rl RPL pointer 

R2 PLH pointer 

R3 pointer to the access method block (AMB) of the component being 
processed 

R4 BUFC pointer 

Use the register 14 save area in the PLH to find the path taken by a request through 
record management. 

Record Management Debugging Aids 

It is not always desirable to cause program checks as a method of getting dumps, 
because some applications have sophisticated error recovery routines that can 
possibly change the environment. It is preferable to get documentation of the 
error before such routines get control, and then allow these routines to do their 
cleanup function after the dump is taken. The following code is an example of a 
console-activated communications vector table (CVT) trap for record management 
errors that causes the failing application to loop, allowing a console dump' to be 
taken. Following the dump the trap can be deactivated, allowing the application 
to continue processing. The code can be inserted into CSECT IDA019Rl at label 
'POSTRPL', label 'POSTRPL2', and the patch area at the end of the module. 

Section 5. Component Analysis 5.9.3 



VSAM l continued) 

NAME IDA019Ll IDA019Rl 

VERPOSTRPL 9S0C,100D 

VER POSTRPL2 1851,9101,1028 

VERPATCH 0000,0000 X'S4' bytes of patch area 

REPPOSTRPL 4SEO,Bx.xx to PATCH 1 

REPPOSTRPL2 18S1,4SEO,Bxxx to PATCH2 

REP PATCH 1 S8FO,0010, point to CVT 

LOOPI 9102,F108, is trap activated? 

4780,Bxxx, no, go to EXITI 

DSOO,F10A,100D, compare error type 

4770,Bxxx, no, go to EXIT 1 

DSOO,FI0B,100F, compare error code 

4770,Bx.xx, no, go to EXIT 1 

47FO,Bxxx, yes, go to LOOPI. Loop until trap bit 
in CVT is turned off. 

EXIT 1 9S0C,100D, restore instruction 

07FE, branch back inline 

PATCH2 S8FO,0010, point to CVT 

LOOP2 9102,FI08, is trap activated? 

4780 ,Bx.xx, no, go to EXIT2 

D 500 ,F lOA, 1 OOD compare error type 

4770,Bx.xx, no, go to EXIT2 

DSOO,F10B,100F, compare error code 

4770,Bx.xx, no, go to EXIT2 

47 FO ,Bx.xx, yes, go to LOOP2. Loop until trap bit 
in CVT is turned off. 

EXIT2 9101,1028, restore instruction 

07FE branch back inline 

To activate the trap, set CVT + X'10A~10B' to logical error (X'08xx') where xx 
is the error code (RPLERRCD), or to physical error (X'OCOO'). Then 'OR' on bit 6 
(X'02') in CVT + X'108' taking care to leave the other bits in that byte 
undisturbed. After the loop occurs and a console dump of the failing address space 
has been taken, turn off bit 6 in CVT + X'108' to deactivate the trap and allow the 
application to continue processing. Be sure that the dump taken includes the 
region, SQA, and CSA. Note that when using the trap for physical errors the 
RPLERRCD is X'OO' at the point of the trap because VSAM has not yet gone to 
IDAOI9RS. Physical errors caused by unit check (for example - incorrect length, 
no record found on a search id, require that the I/O supervisor block (lOSB) be 
examined. To get a dump with the 10SB still valid, a trap can be inserted into 
nucleus CSECT IDA121A4 (abnormal end appendage) at label 'PERMERR'. Since 
this is in the nucleus, the trap can be set from the console. (See I/O Manager 
Debugging). 

5.9.4 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



VSAM (continued) 

Record management error codes (RPLERRCD) are described in the Diagnostic 
Aids section of OS/VS2 VSAM Logic. It is useful to know which module sets 
each error and the name of each error, so that you can find where it is set in 
the module via the cross reference. 

Error Code (hex) Symbolic Name Moclule (IDAOl'xx) 

Logical 

04 RPLEODER RD, RR, RY, R2,R4, R8 
08 RPLDUP RA,RQ,RX,R4 
OC RPLSEQCK RA,RR,RX,R4 
10 RPLNOREC RA,RR,RY 
14 RPLEXCL RF, RY, R2, R8 
18 RPLNOMNT RW, RY, R2, R5 
lC RPLNOEXT RE, RF, RM, R5, 1t8 
20 RPLINRBA RA,R8 
24 RPLNOKR RM 
28 RPLNOVRT RG,RU,RX 
2C RPLINBUF RR, RT, RY, R4, R8 
40 RPLNOPLII RU,RX,Rl 
44 RPLINACC RQ,R4,R8 
48 RPLINKEY Rl, R8 
4C RPLINADR Rl,R8 
50 RPLERSER RL,RX,R8 
54 RPLINLOC RQ, Rl, R4, R8 
58 RPLNOPTR RD,RR, R4, R8 
5C RPLINUPD RQ, RX, R4, R8 
60 RPLKEYCH RL,RX 
64 RPLDLCER RL,RQ 
68 RPLINVP RA, RR, RY, RX, Rl, R4, R8 
6C RPLINLEN RL, RQ, RU, R4, R8 
70 RPLKEYLC Rl 
74 RPLINLRQ RR, R4, R8 
78 RPLINTCB RP 
84 RPLSRLOC RT 
88 RPLARSRK RT 
8C RPLSRISG R4 
90 RPLNBRCD RX 
94 RPLNXPTR RU 
98 RPLNOBFR RY 
CO RPLIRRNO RQ,RR 
C4 RPLRRADR Rl 
C8 RPLPAACI RX 
CC RPLPUTBK RQ,R4 
DO RPLINVEQ RP 

Section 5. Component Analysis S.9.5 



VSAM (continued) 

Physical 

04 
08 
OC 
10 
14 
18 

RPLRDERD 
RPLRDERI 
RPLRDERS 
RPLWTERD 
RPLWTERI 
RPLWTERS 

RS 
RS 
RS 
RS 
RS 
RS 

Record management processing sometimes requires serialization of internal 
resources, When the needed resource can be acquired, processing proceeds 
normally. However, when another request has control of the resource the request 
is deferred. As each request completes, a scan is made for requests which have 
been deferred. If the resource has become available, the deferred request is 
restarted. While a request is deferred, PLHDRPND is set in the PLH and 
PLHDRRSC points to the resource byte to be tested for availability. 

Open/Close/End-Of-Volume 

O/C/EOV documents errors by means of error messages and access method control 
block (ACB) return codes. The codes returned in the ACB (ACBERFLG) are 
explained in the Diagnostic Aids section of OS/VS2 VSAM Logic, 
along with an indication of the modules that set each error. In the cross 
reference of the modules, these error codes have the symbolic name of OPERRddd, 
where ddd is the decimal error code. The most significant problem determination 
feature of O/C/EOV however, is its message facility. The following messages are 
issued: 

MSGIEC070I - END OF VOLUME 

MSGIECI611 - OPEN 

MSGIEC2S II - CLOSE 

MSGIEC2S2I - CLOSE (TYPE=T) 

The messages contain both problem codes (symbolic PPddd) and function 
codes (symbolic PDFddd). The problem codes that describe the error are 
explained with each message in VS2 System Messages. The function codes are 
described best in the Diagnostic Aids section of OS/VS2 VSAM Logic, along with 
the module that was performing the function at the time of the error. 

5.9.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



VSAM (continued) 

O/C/EOV Debugging Aids 

There is a built-in trap for O/C/EOV (see the Caution later in this topic). There are 
two bits involved. Bit 4 (X'08') at CVT + X'108' can be OR'd on (being careful to 
leave the other bits in that byte undisturbed) to cause an abend dump (U888) when 
the message is issued. Bit 6 (X'02') at CVT + X'10A' when turned on prevents the 
freeing of module work areas. When both these bits are on, the U888 dump pro­
duced contains the module work area for every module gone through in the open 
path. There is a discussion in the Diagnostic Aids section of OSjVS2 VSAM Logic 
on finding the work areas in the dump and a diagram showing how the work areas 
are chained together. 

I GTF trace is also available for debugging. If GTF is active for TRACE=USR 
at the time of the error, VSAM Open (IDAOI92P) writes user records FFF and 
FF5 containing the VSAM control blocks at the time of the failure. The 
standard OPEN work area trace is also available by coding AMP='TRACE' on the 
DD statement. 

The following ENQs are issued by O/C/EOV: 

Major Name Minor Name Modules Reason 

SYSVSAM NNNCCCCB (Note 1) IDA0192A The 'B' or busy ENQ is used 
IDA0200T to serialize the modification 
IDAo231 T of the control block chains 
IDA0557 A by allowing only one of the 

functions (OPEN, CLOSE, 
TCLOSE, or END OF 
VOLUME) to process the data 
set. This resource is held for 
the life of the function 

SYSVSAM NNNCCCCI (Note 1) IDA0192A The 'I' ENQ is issued for each 
component of a data set being 
opened for input processing. 
DEQ is issued when the data 
set is closed. 

SYSVSAM NNNCCCCO (Note 1) IDA0192A The '0' ENQ is issued for each 
component of a data set being 
opened for output processing. 
DEQ is issued when the data set 
is closed. 

Note: If the data set is opened for both input and output, both the 'I' and '0' 
resources will be held for each component. 

Note 1: In the minor name, NNN the 3-byte CI number of the component's 
catalog record 

CCCC = the 4-byte catalog ACB address. 

Section 5. Component Analysis 5.9.7 



VSAM (continued) 

When a VSAM (non-catalog) ACB is opened, data extent blocks (DEBs) are 
constructed and chained as follows: 

• A DEB containing the data set ACBaddress at DEB + X'IS' is chained on the 
DEB chain of the current TCB. This DEB is referred to as the 'dummy' DEB. 
Its purpose is to allow abend to close the VSAM data set if abnormal 
termination occurs. 

• A DEB containing the component access method block (AMB) address at 
DEB + x' IS' is chained on the DEB chain of the jobstep TCB for each 
component being opened. These are the 'real'DEBs and are the ones actually 
used by VSAM processing. 

When an ACB is being opened for DSNAME or DDNAME sharing and the data 
set is already open, the ACB is just connected to the existing control block 
structure and only the 'dummy' DEB is built and chained on the current TCB. 

Caution: When using the O/C/EOV trap be aware that: 

• If the bit is turned on to prevent the freeing of work areas and the job causes 
many calls to O/C/EOV, the region size may have to be increased to prevent 
ABENDSOA. 

• JOBCATs and STEPCATs are opened under the initiator TCB. The work 
area core is owned by the initiator TCB. If this core is not freed because the 
CVT debug bit is on, the initiator may get an ABEND20A when it issues 
FREEMAIN for subpool 247 at jo b termination. 

I/O Manager 

I/O management includes the following modules: 

IDAO 19 R3 Problem state I/O driver; a CSECT of LP A load module 
IDA019Ll 

IGC121 Supervisor state I/O driver (SIOD); a CSECT in the nucleus 

IDA121A2 Actual block processor (ABP); a CSECT in the nucleus 

IDA121A3 Channel end appendage; aCSECT in the nucleus 

IDA121A4 Abnormal end appendage; a CSECT in the nucleus 

The drivers and the ABP translate requests for access to the contents of control 
intervals into requests for reading and writing physical records. They also build the 
channel program to be passed to lOS. 

5.9.8 OS/VS2System Programming Library: MVS Diagnostic Techniques 



VSAM (continued) 

I/O Manager Debugging 

The combination of the I/O management block (IOMB), the I/O supervisor 
block (IOSB), and the service request block (SRB), is used by I/O management to 
control the processing of a request. The PLH (PLHIOB) points to the 10MB. The 
10MB points to the 10SB (IOMIOSB), which in turn points to the SRB (IOSSRB). 

For debugging unit checks (for example: no record found, incorrect length, 
channel program check, channel protection check) the best place to trap for a 
dump is at label 'PERMERR' in nucleus csect IDA121A4. 

Section 5. Component Analysis . 5.9.9 



S.9.10 OS/VS2. System Programming Library: MVS Diagnostic Techniques 



Catalog Management 

Catalog management manages system requests for references and updates to the 
master catalog. The following description of catalog management includes these 
topics: 

• Major Registers and Control Blocks 

• Module Structure 

• VSAM Catalog Recovery Logic 

• Debugging Hints 

Major Registers and Control Blocks 

This section describes the major catalog management registers and control blocks, 
shows how each can be located, and describes those control block fields and flags 
that have proven to be useful in debugging. 

How to Find Registers 

Catalog management runs under control of an SVRB. The registers are saved across 
supervisor-assisted linkages and interruptions in the standard ways. Depending 
upon the nature of the problem, the registers can usually be found in one of the 
following areas: 

• For abends, registers are stored in RTM's SVRB and SDWA. 

• For program checks, registers are stored in RTM's SVRB, the SDWA, and the 
LCCA. 

• For catalog-management-issued type 2, 3, and 4 SVCs, registers are stored in 
the successor SVRB. 

• F or waits, registers are stored in the TCB. 

The registers stored in any of these areas will be the registers that existed when 
the code that was running under a catalog SVRB gave up control. These registers 
will either be the registers of one of the three catalog management routines or the 
registers of a routine that was branch-entered by catalog management. If register 
11 points to the CCA (identifiable vi~ a X'ACCA' in the first word), the registers 
probably belong to IGGOCLAI; register 12 will be the base register for the CSECT 
last in control. Otherwise, if register 11 is a base register, the code that it references 
may be inspected to determine the routine in control. If the routine in control is 
one that was branch-entered by catalog management, then catalog management's 
registers may have been saved in a standard area pointed to by register 13. 

Section S. Component Analysis 5.10.1 



Catalog Management (continued) 

Major Registers 

IG COO 02F 

Register 11 

Register 12 

IGCOCLAI 

Base register 

Work area pointer 

Register 11 - CCA pointer 

Register 12 Base register (current CSECT) 

Register 13 - Register save push down list pointer (see CCAREGS) or 
standard save area pointer 

IGGOCLCA 

Register 11 - Base register 

Register 12 - Work area pointer 

Major Control Blocks 

The control blocks described in this section (AMCBS, PCCB, ACB, CAXWA, 
CTGPL and CCA) are those that are most useful from a debugging standpoint. The 
AMCBS and PCCB are useful in locating the control block structures for open 
catalogs. The ACB and CAXWA relate to a particular catalog or catalog recovery 
area (CRA) data set. The CTGPL and CCA relate to a particular catalog request. 

AMCBS 

The AMCBS (access method control block structure) is essentially a VSAM vector 
table. It is constructed within the SQA during early NIP processing (IEAVNPll) 
and resides there throughout the life of the system. The AMCBS is found through 
CVT+X'100' (field CVTCBSP). Major fields in the AMCBS are: 

Field 

CBSACB 

CBSCMP 

CBSCAXCN 

Descrip tion 

Pointer to the master catalog's ACB. 

Pointer to the IGGOCLAI load module. 

CAXW A chain pointer. The CAXW As 0 f all currently open 
VSAM catalogs are included in this chain. The master catalog's 
CAXW A is the last CAXW A in this chain. 

5.10.2 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Catalog Management (continued) 

PCCB 

A PCCB (private catalog control block) connects a VSAM user catalog to a 
particular initiator or job step. A PCCB is constructed (in SWA) for each user 
catalog opened during the life of ajob step. PCCBs are chained together to form 
an initiator or job-step-oriented PCCB chain. Generally, PCCBs are freed by step 
termination. A PCCB is not required for the master catalog. 

PCCBs are located through the TCB: TCB+X'B4' (field TCBJSCB) points to the 
JSCB; JSCB+ X' 15 C' (field JSCBACT) points to the. active JSCB; the active 
JSCB+X'CC' (field JSCBPCC) points to the first PCCB. PCCBs are chained via 
PCCNEXTP. 

Major fields in a PCCB are: 

Field 

PCCACRO 

PCCNEXTP 

PCCACBP 

PCCDSNAM 

PCCTGCON 

Description 

PCCB identifier ('PCCB'). 

Pointer to the next PCCB. This field is 0 if it is the last PCCB. 

Pointer to the catalog's ACB. 

Catalog's name. 

Catalog's alias name. 

Major flags in a PCCB are: 

Flag 

PCCSTEPC 

PCCACTIV 

PCOSCVOL 

ACB 

Description 

The catalog was specified to the job step through the use of a 
JOBCAT or STEPCAT DD card. 

The catalog is allocated and active. 

The catalog is an OS CVOL. 

There is one ACB (access method control block) for each open VSAM catalog or 
CRA. The ACB is created by the routine that opens the data set. Catalog and 
CRA ACBs generally reside in the CSA. 

An ACB can be located in the following ways: 

1. The master catalog's ACB can be located from the AMCBS (CBSACB). 

2. A particular user catalog's ACB can be located either via the CAXWA chain or 
via the PCCB chain. To locate the ACB via the CAXWA chain, inspect the 
CAXCNAM field of each CAXWA in turn until the desired catalog name is 
found. The first CAXWA!s pointed to by the AMCBS (CBSCAXCN). The 
CAXWAs are chained via CAXCHN. When the desired CAXWA is found, it 
points to the desired ACB (CAXACB). 

Section 5. Component Analysis 5.10.3 



Catalog Management (continued) 

To locate the ACB via the PCCB chain, inspect the PCCDSNAM and 
PCCTGCON fields of each PCCB in turn until the desired catalog name or alias 
name is found. The first PCCB is pointed to by the job step's active JSCB 
(JSCBPCC). The PCCBs are chained via PCCNEXTP. When the desired PCCB 
is found, it points to the desired ACB via PCCACBP. 

3. A particular CRA's ACB can be located as follows: 

a. Find the owning catalog's ACB (via steps 1 or 2). 

b. Find the owning catalog's CAXWA (pointed to by ACBUAPTR). 

c. Find the first CRA's ACB (pointed to by CAXCRACB). 

d. Find the first CRA's CAXWA (pointed to by the CRA ACB's ACBUAPTR 
field at ACB+ X'40'). 

e. Inspect the CAXVOLID field for the desired CRA volume serial number. 

f. If the desired CRA's ACB has not yet been found, then search the 
remaining CAXW As in the CRA CAXW A chain. Inspect the 
CAXVOLID field of each remaining CRA CAXWA in turn until the desired 
CRA volume serial number is found. The remaining CRA CAXWAs are 
chained to the first CRA CAXW A (and to each other) via CAXCHN. When 
the desired CRA CAXW A is located, it points to the desired CRA ACB 
via CAXCRACB. 

4. The ACB representing the VSAM catalog that is currently being processed by a 
particular catalog request can be located via the CCA (CCAACB). 

5. The ACB representing the CRA that is currently being processed by a particular 
catalog request can be located via the CCA (CCARAACB). 

Major fields in the ACB are: 

Field 

ACBID 

ACBAMBL 

ACBERFLG 

ACBUAPTR 

Descrip don 

Control block identifier (X' AO'). 

Pointer to the VSAM record management control block structure. 
This set of control blocks is built at OPEN time, resides in CSA, 
and consists of those control blocks required to support a KSDS 
(catalog) or an ESDS (CRA). 

Error code stored by OPEN or CLOSE when the operation is 
unsuccess ful. 

Pointer to the CAXWA. 

5.10.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Catalog Management (continued) 

Major flags in the ACB are: 

Flag 

ACBCAT 

ACBSCRA 

ACBVCRA 

CAXWA 

Description 

ACB represents a catalog. 

ACB represents a CRA that has been opened for catalog manage­
ment use. 

ACB represents a CRA that has been opened for use by an access 
method services (AMS) utility function. 

There is one CAXW A (catalog ACB extended work area) for each open catalog or 

CRA. The CAXWA is created during the OPEN process (either before the OPEN 
or by the catalog OPEN routines). CAXW As generally reside in the CSA. The 
CAXWA is pointed to by the ACB (field ACBVAPTR). See step 3 for locating the 
ACB under the heading "ACB" earlier in this chapter. Major fields in the 
CAXWAare: 

Field 

CAXID 

CAXCHN 

CAXACT 

CAXACB 

CAXVCB 

CAXRPL 

CAXCNAM 

CAXVOLID 

CAXCRACB 

Descrip tion 

Control block identifier (X'CA'). 

Pointer to the next CAXWA in the CAXWA chain. This is 0 if 
it is the last CAXW A in the chain. 

Count of the number of job steps for which this catalog is 
currently open. 

Pointer to the catalog ACB. 

Pointer to the catalog's or CRA's VCB. 

Pointer to a pool of RPLs. This pool is obtained at OPEN time 
and resides in CSA. (Note: This field is not used in CRA 
CAXW As. CRA RPLs are included within the owning catalog's 
RPL pool.) 

Catalog name (for catalog CAXWA only). 

CRA volume serial number (for CRA CAXWA only). 

For a catalog CAXWA: pointer to the first CRA ACB. 
For a CRA CAXW A: pointer to the CRA ACB. 

Major flags in the CAXWA are: 

Flag 

CAXBLD 

CAXOPN 

CAXCLS 

CAXEOV 

CAXMCT 

CAXF2DT 

Description 

The catalog or CRA is in the process of being created. 

The catalog or CRA is being opened. 

The catalog or CRA is being closed. 

The catalog or CRA is being extended. 

The CAXW A represen ts the master catalog. 

The catalog has been deleted. 

Section 5. Component Analysis 5.10.5 



Catalog Management (continued) 

Flag 

CAXF2NDD 

CAXF2NCR 

CAXF2IOE 

CAXF2REC 

CTGPL 

Description 

Unable to OPEN or CLOSE - DDNAME not found. 

Unable to OPEN or CLOSE ~ insufficient main storage. 

Unable to OPEN or CLOSE - I/O error. 

The catalog is a recoverable catalog (catalog CAXWA only). 

The CTGPL (catalog parameter list) is built by the routines that issue SVC 26 to 
represent the desired catalog management request. The storage area where this 
block resides varies and is controlled by the building routine. When a caller issues 
SVC 26, the caller's registers are saved in the SVRB under which catalog manage­
ment operates. Register 1 of this SVRB's register save area points to the CTGPL. 
The CTGPL may also be located via the CCA (CCACPL). Note: At times, catalog 
management processing uses CCACPL as a pointer to an internal CTGPL. There­
fore, you should be careful when you use this pointer to locate the caller's CTGPL. 

Major fields in the CTGPL are: 

Field 

CTGOPTI 
CTGOPT2 
CTGOPT3 
CTGOPT4 
CTGOPTNS 
CTGTYPE 

CTGENT 

CTGFVT 

CTGCAT 

CTGWKA 

CTGNOFLD 

CTGFIELD 

Description 

These fields contain the codes and flags that indicate the type of 
function requested. 

Pointer to the entry name or CI number (for types of requests 
other than DEFINE or ALTER). 

Pointer to the field vector table (FVT) for DEFINE and 
ALTER requests. 

Pointer to an area that indicates the specific catalog (if any) to be 
used in processing this request. The area may contain either the 
catalog name or a pointer to the catalog's ACB. If no specific 
catalog is indicated, CTGCAT will be O. 

Pointer to the work area. In general, catalog management stores 
the requested information into this area. 

Number of FPL pointers in CTGFIELD. .-
An array of 4-byte FPL pointers. The FPLs describe the data 
fields that the request is to process. 

5.18.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Catalog Management (continued) 

CCA 

The CCA (catalog communications area) is the main VSAM catalog work area. It 
is built upon entry to the VSAM catalog processor and freed just before exit. The 
CCA resides in sub pool 252 of the caller's address space. Register 11 points to the 
CCA. 

Major fields in the CCA are: 

Field 

CCAID 

CCAPROB 

CCATCB 

CCACPL 

CCAACB 

CCAURAB 

CCASRCH 

CCARxREC 

CCARPLI 

CCAEQDQ 

CCAMSSPL 

CCACMS 

CCAREGS 

Description 

Control block identifier (X'ACCA'). 

Error data - consists of a CSECT ID (2 bytes), reason code 
(I byte), and error code (I byte). 

Pointer to the caller's TCB. 

Pointer to the CTGPL. 

Pointer to the ACB of the catalog that is currently being 
processed. 

Pointer to the record area block (RAB) of the record area 
currently in use. 

Search argument for I/O requests. 

Pointer to record area x. (There are six record areas, record 
area 0 through record area 5; x indicates the number of the 
record area in question.) 

Pointer to the RPLthat is currently assigned to this request. 

An ENQ/DEQ parameter list that is used when VSAM catalog 
management issues the RESERVE macro. 

A GETMAIN/FREEMAIN parameter list that the VSAM 
catalog processor uses for most GETMAIN/FREEMAINs. 

Pointer to the catalog management selVices work area 
(CMSWA); it is used only for DELETE, ALTER, DEFINE, 
and LISTCAT ALOG requests. 

An array of small (12·byte) register save areas. When a VSAM 
catalog processor routine calls a lower level (nested) routine, 
the contents of registers 12·14 are saved in the next save area 
by the routine that is called. Registers 12 and 14 contain the 
calling routine's base address and return address, respectively. 
Register 13 is used to maintain position within the array. 
Each time register 13 is saved, it points to the preceding save 
area. During a lower level routine's processing, register 13 
points to the current save area (that is, the area containing the 
caller's registers). When a lower level routine exits, registers 
12-14 are restored which causes register 13 to be auto· 
matically switched (the preceding save area becomes the 
current save area). Whenever VSAM catalog processor routines 
branch·enter external routines, they pass a standard 72·byte 
save area to the external routine. This is accomplished by 
increasing register 13 by 12 during the process of setting up 
the linking conventions for the branch and link. (The 72 bytes 

Section 5. Component Analysis 5.10.7 



Catalog Management (continued) 

Field 

CCAREGS 
( continued) 

CCARAACB 

CCARARPL 

Description 

that follow the current save area are used as the standard save 
area. Note: The register contents stored within this array 
can be used in debugging to identify predecessor routines and 
modules.) 

Pointer to the ACB of the CRA that is currently being 
processed, or zero. 

Pointer to the RPL that is currently assigned to this request 
for CRA I/O use. 

Major flags in the CCA are: 

Flag 

CCAFLG1-4 

CCARPLX 

CCAFLG9 

CCARVFG1 

Descrip tion 

Miscellaneous processing control flags. 

I/O option flags : 

00 ..... 0 PUT direct 

00 ..... 1 PUT sequential 

01. ..... ERASE 

1. ..... 0 GET direct 

1. ..... 1 GET key equal to or greater than 

· .0 . . . .. Use the record area pointed to indirectly by 
CCAURAB 

· .1 . . ... Use record area 0 

· .. 0 . . .. Addressed or CI operation 

· .. 1 . . .. Keyed operation 

· ... 0. . . Update operation 

· ... 1 . .. Non-update operation 

· .... 0 .. Check for errors 

· .... 1 .. Bypass error checking 

· .... ·.0. 50S-byte low-key range record 

· ..... 1. 47 -byte high-key range record 

Miscellaneous CRA processing flags 

Miscellaneous recovery (EST AE) control flags 

5.10.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Catalog Management (continued) 

Module Structure 

Catalog management is packaged into three load modules. These modules are the 
following: 

1 . IGC0002F - Catalog Controller 

2. IGGOCLAI - VSAM Catalog Processor 

3. IGGOCLCA - CVOL Processor 

This set of modules resides within SYS1.LPALIB and can be viewed as a type 4 SVC 
routine consisting of three load modules. Catalog management receives control 
via SVC 26 and operates under an SVRB. Control is passed between the three load 
modules via XCTL. Each load module establishes its own ESTAE routine. A brief 
description of each load module follows. 

1 . IGC0002F - Catalog Controller 

The function of this module is to translate (map) interfaces. The module 
logically processes from a front end and a back end. 

The front end receives control from the SVC SLIB whenever SVC 26 is 
issued. Register 1 points either to an as CAMLIST or a VSAM CTGPL. 
If register 1 points to an as CAMLIST, the as request is translated into an 
appropriate VSAM request (a CTGPL is constructed). Control is then passed 
to IGGOCLAI. 

The back end receives control (at EP IGGOI02F) from IGGOCLAI upon 
completion of a VSAM request for a VSAM catalog. It determines if the 
original request was an as CAMLIST request and if so, it translates the 
CTGPL output and the IGGOCLAI return code into appropriate CAMLIST 
format. It then returns control to the issuer of SVC 26. For a more detailed 
description of this module, see OSjVS2 Catalog Management Logic. 

2. IGGOCLA1- VSAM Catalog Processor 

IGGOCLAI is a large load module that consists of many CSECTs anq 
procedures. Control is passed between the various procedures via CALls. 
This module relates a request to a specific catalog and also determines the 
catalog type. If the catalog is an as CVOL, IGGOCLAI passes control to 
the CVOL processor (IGGOCLCA). Otherwise, IGGOCLAI accesses the 
VSAM catalog and: performs the function indicated by the CTGPL. When 
the function is completed, IGGOCLAI exits by passing control to the back 
end of IGC0002F. For a detailed description ofVSAM catalog management, 
see OSjVS2 Catalog Management Logic. 

3. IGGOCLA. - CVOL Processor 

IGGOCLCA is a load module that consists of several CSECTs and procedures. 
Control is passed between the various procedures via CALLs. This module 
translates CTGPL requests into as catalog requests and accesses as CVOLs 
to perform the indicated function. Upon completion of processing this 
module returns control to the issuer of SVC 26. For a detailed description 
of this module, see OSjVS2 CVOL Processor Logic. 

Section 5. Component Analysis 5.10.9 



Catalog Management (continued) 

VSAM Ca talog Recovery Logic 

This section describes how mairiline VSAMcatalog management supports recovery 
and also how its recovery routine works. 

Mainline VSAM catalog management does the following: 

• Establishes/releases the recovery environment 

• Maintains a pushdown list end mark 

• Tracks GETMAIN/FREEMAIN activity 

• Maintains a CMS (catalog management services) function gate 

Establishing/Releasing a Recovery Environment 

To establish or release a recovery environment, the following actions occur: 

1. Sub function BLDCCA in module IGGOCLC9 issues a branch entry to EST AE 
to establish the recovery environment. This is done immediately after storage 
has been obtained for the CCA via GETMAIN~ 

2. When BLDCCA completes the initialization of the CCA, it sets RVCCAV to 
indicate that the CCA is now valid .. 

3. Sub function IGGPRCLU (request cleanup) in module IGGOCLC9 performs 
the following: 

• Indicates that the CCA is no longer valid (RVCCA V = oft) 

• Frees any GETMAIN/FREEMAIN tracking spill blocks that may exist 

• Branch enters ESTAE to remove the recovery environment 

Maintaining a Pushdown List End Mark 

A pushdown list end mark is maintained so that the ESTAE recovery routine can 
reliably locate the last pushdown list entry. This enables the recovery routine to 
determine: 

1. The address at which the last call to a nested sub function was issued. 

2. The routine to which this call was directed. 

There is an instruction in the exit procedure code contained within each CSECT to 
i~sure that the first byte following the last active entry contains an end-of-list 
marker. (Note that X'OO' and X'FF' are considered end-of-list markers.) 

S.10.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Catalog Management (continued) 

Tracking GETMAIN /FREEMAIN Activity 

GETMAIN/FREEMAIN tracking provides the recovery routine with the informa­
tion it needs to automatically issue FREEMAINs against those areas of main 
storage that have been acquired and not yet freed by VSAM catalog management. 
The GETMAIN/FREEMAIN tracking function is implemented as follows: 

1. A 256-byte contiguous area is defined in the CCA. The area consists of: 

a. A 248-byte tracking buffer. 

b. A single entry GETMAIN/FREEMAIN length list (four bytes) with the 
high-order byte initialized to X'80' and the low-order three bytes defined 
as CCAMNLEN. 

c. The GETMAIN/FREEMAIN address word (CCAMNADR). 

2. The ?GETMS and ?FREEMS macros generate code that: 

a. Track the operation. This is accomplished by an MVC instruction that 
traces the GETMAIN/FREEMAIN length and address by pushing it 
(shifting it left) to the bottom (low address) of the 248-byte tracking area. 

b. Check for a full tracking buffer. If the buffer is full, a spill routine 
(IGGPARFS) is called before the tracking MVC instruction is issued. This 
spill routine: 

(1) Issues GETMAIN to obtain a 256-byte spill buffer. 

(2) Chains this buffer to the end of the spill buffer chain. 
(Note: Chain anchor words are located in the CCA.) 

(3) Copies the CCA tracking buffer into the new spill buffer. 

(4) Clears the CCA tracking buffer. 

c. If the ?GETMS macro call is specified with CLASS(S) for storage (global), 
a flag (MNATSCLS) is set in the first byte of the two-word trace entry to 
indicate this. Refer to the description of CCAMNCAT, a work area that is 
located at CCA+X'308', contained in OS/VS2 Catalog Managemen t Logic. 

eMS Function Gate 

The CMS function gate assists the recovery routine in determining if DEFINE or 
DELETE back out action is required. This gate is represented by a bit (RVCMSFG) 
in field CCARVFG 1. The bit is turned on by the CMS driver (IGGPCDVR in 
module IGGOCLAT) immediately after a successful return from the check 
authorization function. The bit is reset upon entry to the CMS cleanup function 
(IGGPCCLN in module IGGOCLAT). 

Section 5. Component Analysis 5.10.11 



Catalog Management (continued) 

Recovery Routine Functions 

VSAM'scatalog processor recovery routine is labelled IGGPCMRR (CSECT 
IGGOCLA9). This recovery routine is entered from MVS's recovery tennination 
manager (RTM) whenever an error or interruption occurs either in VSAM catalog 
management or in any successor routine that VSAM catalog management can cause 
to receive control. A pointer to the ST AE diagnostic work area (SOW A) is passed 
as input to IGGPCMRR: IGGPCMRR performs the following functions. 
(Functions 2-13 are performe.d only when the CCA is marked valid, that is, 
RVCCA V = ON.) 

1. Retrieves the CCA pointer from the SDWA and puts it into register 11. 

2., Saves the RTM return address in CCARI4S. 

3. Saves the SDWA pointer in CCASDWAP. 

4. Produces diagnostic output. 

5. Initializes register 13 to point to the first register save area. 

6. Cleans up RPLs (if required). 

7. Determines if backout is to be performed. 

8. Checkpoints the CCR (if required). 

9. Drops catalog orientation. 

10. Frees storage (using GETMAIN/FREEMAIN tracking information). 

11. Frees GETMAIN/FREEMAIN tracking spill blocks (if any exist). 

12. Performs DEFINE/DELETE backout (if applicable). 

13. Restores the R TM return address and the SOW A pointer. 

14. Frees the CCA. 

15. Returns to RTM indicating that RTM should continue with termination. 

The following sections describe the more complex of these recovery routine 
functions in greater detail. 

Diagnostic Output (Function 4) 

Diagnostic output is'P{oduced except in those situations where the recovery 
routine is invoked only for-elean up type functions, such as CANCEL. Diagnostic 
output can be produced in two fonns-: 

1. Iriformation is' placed in a vaoable recording ~rea (SDWA VRA) within the 
SOW A. This data is written t~~thN)ys I.LOG~EC data set as part of an entry 
describing the error . 

. 5.10.12 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Catalog Management (continued) 

This variable data is formatted as follows: 

Byte Length Description of Data 

0(0) 8 VSAM catalog processor module name - 'IGGOCLA1' 

8(8) 3 IGGOCLA1 's entry point address 

11(B) 8 Procedure name of the last-called routine 

19(13) 3 Address of the last-called routine 

22(16) 8 Procedure name of the routine that called the last-called 
routine 

30(1 E) 3 Address of the CALL to the last-called routine 

33(21) 4 The characters 'CPL=' 

37(25) 28 A copy of the user's CTGPL 

2. An SDUMP is-taken (if allowed by the system). 

Backout (Function 7) 

°Backout is performed for DEFINE or DELETE requests (except for DEFINE or 
DELETE catalog requests) when the CMS function gate is active (RVCMSFG = 
ON). When backout is to be performed, a switch (RVESBOR) is set. The backout 
function (Function 12) is described later in this chapter. 

Drop Catalog Orientation (Function 9) 

This function uses the normal IGGPRPLF sub function to perform the RPL 
freeup/DEQ functions. 

Storage Freeup (Function 10) 

This function frees all the storage (with the exception of the CCA and any existing 
tracking spill blocks) that has been acquired and is still owned by the current 
VSAM catalog management request. Storage freeup is done as follows: 

1. The GETMAIN/FREEMAIN tracking data is scanned starting at the first spill 
block (if any) and following the chain of spill blocks. When the last spill block 
has been processed, the scan continues with the first valid entry in the CCA 
tracking buffer. This first scan selects and eliminates paired entries; a paired 
entry consists of two entries with matching storage addresses, which indicate 
that the storage area in question has already been freed. 

2. The tracking data is scanned again. During this second scan, each valid 
remaining entry is processed as follows: 

a. The length and address of the storage to be freed are extracted from the 
entry. 

Section 5. Component Analysis 5.10.13 



Catalog Management (continued) 

b. The subpool is determined from a switch setting within the entry. 

c. A ?FREEMS macro is issued to free the main storage. This macro specifies 
"RFR (NO)" to prevent recursive tracking. 

DEFINE/DELETE Backout (Function 12) 

This function attempts to preserve catalog integrity by cleaning up partially­
completed DEFINE or DELETE operations. It uses the normal DELETE function 
to accomplish this. The switch indicating that backout is required is tested. If this 
switch is on, the following actions are performed: 

1. A backout work area is obtained. 

2. A DELETE CTGPL is constructed in the backout work area. This CTGPL is 
set up to cause a DELETE of the object that was being defined (with DEFINE) 
or deleted (with DELETE) whenever the error occurred. 

3. The CCA is rebuilt as follows: 

a. CCACPL, CCASZ, CCATCB, CCASDWAP, CCARI4S, and CCARVFGl 
are saved (in the backout work area). 

b. The complete CCA is cleared. 

c. The previously-saved fields (with the exception of CCACPL) are restored. 

d. CCAPCL is initialized to point to the CTGPL, which was built into the 
backou t work area. 

e. CCAID, CCAURAB, CCAROREC through CCAR5REC, CCAEDXFF, 
CCAMNPTR, CCAMNLLP, CCAMNLL, and register 13 are 
reinitialized to their original values. 

f. CCAF2SYS is set on. 

g. RVESBO is set on to indicate that backout is in control. 

4. The CMS driver (IGGPCDVR) is invoked which then invokes the DELETE 
function; when the DELETE action is complete, control is returned to the 
recovery routine. 

5. The CCR is checkpointed (if required). 

6. Catalog orientation is dropped (via a call to IGGPRPLF). 

7. CCACPL is restored. 

8. The backout work area is freed. 

9. Any spill blocks acquired during the backout process are freed. 

5.10.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Catalog Management (continued) 

Debugging Aids 

The control block structures for the VSAM catalog reside in the CSA. There is a 
built-in communications vector table (CVT) debug word which allows you to get 
a console dump at the time of the failure. This word is located at CVT + X'10B' 
and is examined by module IGGOCLC9 at the end of each catalog request. 
Following are the contents of the CVT debug word: 

Byte 0 (X'10B') bits 0-3 must remain unchanged 

bit 4 not used by catalog 

bit 5= 1 causes message IEC3311 to be issued when condition 
specified in byte 1 (X'109') is met. IEC3311 contains 
the name of the catalog module which detected the 
error. 

bit 6 

bit 7=1 

not used by catalog 

prevents catalog FRR (IGGOCLA9) from freeing the 
catalog communications area (CCA) so that it is 
available in the dump. 

Byte 1 (X'109') Condition for which action specified at location X'10A-I0B' 
is to be taken. 

X'O l' - take action at end of every catalog request 

X'02' - take action for any non-zero catalog return code 

X'03' - take action for return codes other than those 
considered to be "nonnal". (The following are 
considered to be normal return codes - X'OO, OB, 
24, 2B, 2C, 4C, BC' and reason codes X'2B, BC, 
and FO'). 

X'04' to X'FF' - take action only when catalog return code 
equals value in this byte. 

Bytes 2 and 3 (X'10A-I0B') Action to be taken on above condition: 

X'07FE' return immediately to inline catalog 
code and continue processing. This 
setting, in conjunction with bit 5 of 
byte 0, causes no action other than 
message IEC331I. 

X'07FF' - will cause loop here at CVT + X'10A' 
to allow console dump of failing 
ASID. To break job out ofloop. 
either cancel the job or set these bytes 
to X'07FE' to continue processing. 

Section 5. Component Analysis 5.10.15 



Catalog Management (continued) 

When message IEC3311 appears by itself, use the above CVT trap to get a dump 
of the failure. When messages IEC33II, IEC3321, and IEC3331 appear together, 
the error is the result of a call to record management. Message IEC3331 contains 
the record management return code in the form Lxxx (for logical error) or Pxxx 
(for physical error) where xxx = decimal return code. In these cases use the CVT 
trap discussed earlier in the Record Management Debugging Aids section of VSAM 
component analysis. 

In situations where an att~mpt to open a VSAM catalog results in message 
IEC161I 004-080, it is difficult tQ determine the exact nature of the problem 
because there are many conditions which can cause this error. The best place 
to trap dump is at label 'CAPERR' in modules IFG0191X and IFG0191Y. 
Register 14 at that point will be in the calling routine which detected the failure. 

It is sometimes necessary to examine the records in the catalog as part of the 
problem analysis. The following is an example of the access method services job 
necessary for this. 

/ /PRINT EXE~ PGM=IDCAMS 
/ /STEPCAT DD DSN=catalogname, DISP=SHR 
/ /DD 1 DD DSN=catalogname, DISP=SHR 
//SYSPRINT DD SYSOUT=A 
//SYSIN DD * 

PRINT INFILE(DDl) 

/* 

The following ENQs are issued for catalog processing: 

Major Name Minor Name Modules Reason 

SYSIGGVl MCATOPEN IGGOCLAC Open master catalog 
IGGOCLAD 

SYSIGGV2 catalogname 
SYSIGGV2 catalogname IGGOCLA3 Assign RPL processing 

SYSVTOC volser IGGOCLBU Read/Write format 4 DSCB 

SYSZCAXW CAXW IDACATII Open, close, or delete 
IDACAT12 Catalog request 
IGGOCLBG 

SYSZPCCB PCCB IGGOCLA3 While building PCCB for catalog 
open 

SYSZTIOT asid IDACATll Open and close of catalog 
IDACAT12 
IGGOCLAD Component recovery area (CRA) 

orientation 

, IEZIGGV3 addr of caxwa IGGOCLA3 While Caxwa RPL count is being 
altered. 

5.10.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Allocation/Unallocation 

This section is divided into four parts. Part one provides a description of the six 
major functionalareas of allocation/unallocation and the way in which they 
interrelate. Parts two, three, and four contain general debugging aids, debugging 
hints, and reason codes. 

Functional Description 

Figure 5-36 illustrates the control-flow discussion that is presented in the following 
paragraphs. 

Batch 
.JFCB 
Housekeepi n9 

Routine 

I Figure 5-36. The Relationship of the Six Major Functions-of Allocation/Unallocation 

Section 5: Component Analysis 5.11.1 



Allocation/Unallocation (continued) 

Allocation 

The flow through allocation following either batch initialization or dynamic 
initialization is the same: 

• Batch/dynamic initialization and control invokes JFCB housekeeping 

• Batch/dynamic initialization and control then invokes common allocation 

• Common allocation inv()kes volume mount and verify (if volume unloading or 
mounting is needed). 

Unallocation 

At batch/dynamic unallocation, the control flow is as follows: 

• Batch/dynamic initialization and controlinvokes common unallocation 

• Common unallocation invokes volume mount and verify (if any volume 
unloading is needed). 

• Batch initialization and control invokes volume mount and verify (if volume 
unloading is needed). 

Batch Initialization and Control 

Batch initialization and control uses the following control blocks: 

• Job control table (JCT) 
• Step control table (SCT) 
• linkage control table (LCT) 
• Job step control block (JSCB) 

The SCT is needed to locate the chain of step I/O tables (SlOTs) and job file 
control blocks (JFCBs) in the scheduler work area (SWA). A SlOT and its 
corresponding JFCB are constructed by the converter/interpreter for each DD 
statement in a job step's JCL. Allocation allocates one step at a time. The SlOTs 
and JFCBs for a step are read by batch initialization and control when initializing 
for the allocation or unallocation of a step. At step initiation, space for the task 
I/O table (TIOT) is obtained, and the JSCB is initialized to point at the top of the 
chain of data set association blocks (DSABs), which are actually constructed by 
common allocation. At job step allocation, the SlOTs and JFCBs are passed as 
the main input, first to JFCB housekeeping, and then to common allocation. 
At job step unallocation, the SlOTs and JFCBs are passed as the main input to 
common unallocation. At the end of the job, batch initialization and control uses 
a volume unload table (VUT) to determine those private volumes that belong to 
the ending job and that are to be unloaded. Unloading is done by volume mount 
and verify (VM&V). . 

5.11.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Allocation/Unallocation (continued) 

Dynamic Initialization and Control 

When dynamic initialization and control is invoked, the job step's SlOTs and 
JFCBs must be read. This is done only for the first dynamic allocation during a 
given job step. The caller's parameters are syntax- and validity-checked and used to 
build a SlOT and JFCB, just as in a DD statement. EXisting allocations (represented 
by an existing DSAB and TIOT entry) are used where possible to satisfy the 
request. If the requested data set is already allocated, certain information is copied 
from the SlOT and JFCB of the existing allocation to those of the new allocation. 
By using the existing allocation, invocation of JFCB housekeeping and common alloca­
tion is avoided. If an existing allocation cannot be used to satisfy the dynamic 
request, the SlOT and JFCB built by dynamic initialization and control are used, 
first as input to JFCB housekeeping, then to common allocation. After common 
allocation completes, the SIOT(s) representing the request is chained to the step's 
other SlOTs. 

If dynamic unallocation is being requested, the parameters must be syntax­
and validity-checked. The correct SlOT is located and passed to common 
unall oca tion. 

JFCB Housekeeping 

the major input to JFCB housekeeping is the SlOT chain, each SlOT having an 
associated JFCB. JFCB housekeeping completes needed information about either 
batch or dynamic allocation requests that was not placed in SlOTs and JFCBs by 
the converter/interpreter. Allocation parameters that JFCB housekeeping com­
pletes are the name, volume, unit, DCB, and disposition of the data set. Before 
processing these parameters, JFCB housekeeping, using dynamic allocation, 
allocates to the initiator's task control block (TCB) any STEPCAT DD or 
JOBCAT DD statements. A private catalog control block (PCCB) is built for each 
such catalog allocated, and all SlOTs are processed, one at a time. This 
JOBCAT/STEPCAT processing takes place in a batch environment only. Informa­
tion for a request is placed in the JFCB housekeeping work area as a SIOT/JFCB 
pair, is processed and reinitialized for each SlOT. If volume information was not 
specified for an old data set, the passed data set information (PDI) is searched 
(only in a batch environment) in the SWA to locate volume and unit information. 
If not found, or if the data set name is a generation data group (GDG) single 
name, a catalog LOCATE is issued to obtain the volume and unit information. If 
volume reference is specified in the SlOT, either the data set referenced is located 
in the PDI or via catalog LOCATE, or the SIOT/JFCB of the referenced DD state­
ment is found. The source of volume and unit information is recorded in the JFCB 
housekeeping work area; the information is then retrieved and placed into the 
SIOT/JFCB being processed. A DCB reference to a cataloged data set is resolved by 
LOCATE and OBTAIN. A DCB reference to a DD statement is resolved by going 
to the JFCB of the referenced DD statement and then issuing an OBTAIN. Finally, 
disposition-related information is entered into the SIOT/JFCB. 

Section 5. Component Analysis 5.11.3· 



Allocation/Unallocation (continued) 

Common Allocation 

Common allocation receives as input the SlOTs' and JFCBs of allocation requests. 
For requests that do not require a unit to be allocated, namely, DUMMY, Via, and 
subsystems, DSAB and TIOT entries are built and the SlOT is marked "allocated." 
For each request requiring units, a list of eligible devices called the eligible device 
list (EDL) is constructed, and pointed to by the requestor's SlOT. An entry is 
built into the volunit table representing each volume/unit required. Inter-DO 
relationships are represented primarily by setting fields in the VU table for use by 
the remainder of common allocatioll. 

The remainder of common allocation is divided into: 

., Fixed Device Allocation 
• TP Allocation 
• Generic Allocation 
• Recovery Allocation. 

Common allocation control invokes each of these functions in the order: 
indicated. 

If all requests have been allocated, any requests needing volumes mounted have 
volume mount and verify (VM&V) RBs chained to their SlOTs. These VM&V 
RBs are chained to each other and sent to VM&V on input. VM&V mounts the' 
necessary volumes. 

Fixed Device Allocation 

, Allocation for any request that can be allocated to a volume on a permanently­
resident or reserved DASD uses fixed device allocation. The allocation of a 
request (VU entry) involves: 

• The selection of the device 

• The building of the DSAB (pointedto by a SlOT) 

• The building ofa TIOT entry (pointed to by a DSAB) 

• Setting indicators in the unit control block (UCB) of the selected device 

• Issuing DADSM 

• Demounting incorrect volumes (except in the case of fixed device allocation) 

• Scheduling a mount (by building a VM&V request block (VM&V RB) if a 
volume must be mounted) , 

TP Allocation 

This is a small specialized operation for teleprocessing lines. TP lines, once 
allocated, remain allocated whether online or not, and cannot be reallocated. 

5.11.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Allocation/Unallocation (continued) 

Generic Allocation 

Generic allocation attempts to allocate the remaining requests that were not 
allocated by previous processes. Requests for tapes, demountable direct access 
volumes, graphics devices, and unit record devices are not considered until generic 
allocation. A special set of tables, the generic allocation tables are built to 
represent the units eligible for each request (VU entry). These tables are used 
throughout generic and recovery allocation. Generic allocation processes 
requests not sequentially but on the basis of generic device type. The order in 
which generic device types are chosen is determined by a table, built at SYSGEN 
time, called the device preference table. 

Recovery Allocation 

Requests left unallocated by previous steps are allocated by recovery allocation. 
The main functions of recovery allocation are to interface with the operator to 
request that offline devices be brought online, and, once online, to allocate these 
devices to unallocated VU entries. 

Common Unallocation 

The input to common unallocation is a chain of RBs, each of which points to a 
SlOT to be unallocated. Disposition processing uses the SIOT/JFCB and common 
unallocation RB to give the data set a disposition. Units allocated to each SlOT 
are unallocated by using the TIOT entry. Private tape volumes are unloaded and 
the VUT is updated with volume serials to indicate which of the job's volumes 
were left mounted at unallocation time, but need demounting by batch initializa­
tion and control at end of job. Data sets are released (dequeued) by using the 
data set enqueue table to determine if the data set's last use in the job is in the 
current step. All volumes used by a step are released by a generic dequeue if 
unallocation is for a step. In the dynamic unallocation environment, only the 
subject request's volumes are dequeued. 

Volume Mount and Verify 

Volume mount and verify (VM&V) mounts, verifies, and unloads volumes. VM&V 
is driven by a chain of VM&V request blocks. A VM&V count table is built in 
which the numbers of mount, verify, and unload requests are maintained. 
In mounting and verifying direct access volumes, VM&V builds a mount 
verification communication area (MVCA) in CSA. This contains a pointer to an 
MVCA extension (MVCAX), which MV&V builds in the user region. The MVCAX 
contains a device-end ECB and UCB pointers for each device for which a mount has 
been issued. After issuing mounts and building the MVCA/MVCAX blocks, VM&V 
waits for the device-end ECB in the MVCAX. Whenever a device-end occurs on a 
unit that VM&V is waiting for, a nucleus routine (IEFVPOST) posts the device-end 
ECBs in all MVCAXs. Any VM&V that is waiting looks at all UCBs being waited 
for. Volume serials are read and verified when the devices become ready. 

Section s. Component Analysis 5.11.5 



Allocation/Unallocation (continued) 

Volume unloading is accomplished for DASD by issuing an unload message to 
the operator and clearing volume-related data from the VCB. For tape volume 
unloading, a physical rewind/unload operation is also performed. Virtual volume 
unloading is accomplished by issuing an unload SVC (SVC 126), and clearing 
volume-related data from the VCB. 

General Debugging Aids 

Described here in general terms are the following: 

• Allocation Module Naming Conventions 
• Registers and Save Areas 
• Common Allocation Control Block Processing 
• EST AE Processing 

Allocation Module Naming Conventions 

All Allocation module names have the following format: 

IEF B4 - -

IEF indicates the module is a scheduler module. The fourth character has the 
following meaning: 

• If A, the module is part of common allocation, common unallocation, JFCB 
housekeeping, or volume mount and verify. 

• If B, the module is part of batch allocation or batch unallocation. 

• If D, the module is part of dynamic allocation or dynamic unallocation. 

B4 identifies the module as a part of allocation. The last two characters are a 
unique module identifier. 

Regist~/and Save Areas 

Allocation follows standard register saving and usage conventions. Register 13 is 
used as a save area pointer, register 14 as a return address, and register 15 as a 
branch address. Register save areas are chained in the standard manner. 

Since allocation is coded completely in top-down fashion, it is a simple matter 
to find the flow of control leading to the current point of processing by tracing 
back through the save areas. All allocation modules have identifiers just after the 
beginning of the module, which contain the module name in EBCDIC. A graphic 
representation of control flow can be found under "Allocation/Vnallocation" in 
"Module-to-Module Control Flow" of Volume 6 of OS/VS2 System Logic Library. 

5.11.6 OS/VS2 System Programming Libr8lY: MVS Diagnostic Techniques 



Allocation/Unallocation (continued) 

Space for the allocation save areas is obtained in a unique manner, which can be 
of help in debugging. On entry to allocation, a 4K block of space is obtained from 
subpool230. This block is used to contain the save area and data area for each 
module called, until the block is full, at which time another 4K block is obtained. 
Save areas of modules that had been given control but then returned are still 
valid, that is not freed, if the 4K block in which they had been placed has not been 
freed. Allocation does not keep the address of a control block in any particular 
register. Register 13 always points at the save area of the module in control. 
Register 12 is usually the base register of the module in control. 

Common Allocation Control Block Processing 

This section graphically describes the control blocks used by common allocation 
and explains how these control blocks reflect allocation processing. Figure 5·37 
shows the control blocks which are input to common allocation. Data set associa· 
tion blocks (DSABs) and their associated task input/output table (TIOT) entries 
are shown as input. Note that DSABs exist only if common allocation was called 
by dynamic allocation. When batch allocation calls common allocation, there are 
no DSABs, but there is a DSAB queue descriptor block (QDB). 

The first major step in common allocation processing is the construction of the 
allocation work area (ALeW A). Following this, requests that do not require 
units, such as DUMMY and SYSOUT DD requests, are allocated. A DSAB and 
TIOT entry are built for eaGh of these requests as they are allocated. SIOTETIO is 
initialized to point to the DSAB whenever it is created for a given SlOT. Bit 
SIOTALCD is set to 1 whenever a request (SlOT) is fully allocated. 

After allocating these requests, the vol unit table (VU table) is created to 
represent the unit requirements of remaining (unallocated) SlOTs. In addition., 
an eligible devices list (EDL) is created for each remaining SlOT. The EDt" 
contains the unit control block (UeB) pointers to all UeBs representing devices 
eligible for allocation to the SlOT. (A device is "eligible" at this point whether on 
or offline, either logically or physically.) Figure 5·38 shows the relationship of the 
ALeWA, SlOTs, etc., after the VU table and EDLs are built. The first SlOT on 
the chain (SlOT A) represents a SYSOUT DD statement that has already been 
allocated. The second SlOT on the chain (SlOT B) represents a SlOT that requires 
one or more units. It is shown to have 2 volunit entries, which indicates the total 
number of units that can be allocated to that SlOT. SVOLUNNO in the SlOT 
contains the number of VU entries for a SlOT. (Note that the total number of 
units allocated to a request can exceed the number of units requested. This 
happens, for example, if a specifically requested volume were found to be mounted 
with the permanently-resident mount attribute). 

Section S. Component Analysis 5.11.7 



Allocation/Unallocation (continued) 

Problem Program 
JSCB DSAB ODB DSAB (0) TIOT 

DSOFRSTP 

DSOLASTP +X'8' TIOENTRY 
+X'140' JSCDSABO 

+X'10' DSABTIOT UCB 

TIOENTRY 

r I 
+X'8' 

DSABTIOT 

Virtual Address of 1st SlOT to Allocate 

SlOT (1 per data set) JFCB 

I 
+X'98' 

+X'9C' 
JFCBX 

-IJFCBX 

+X'AC' [ JFCBXNXT V SIOTJFX +X'AO' 

C 

SlOT JFCB 

JFCBX 

I Figure 5-37. Common Allocation Input 

5.11.8 OSjVS2 System Programming Library: MVS Diagnostic Techniques 



+ X'2B' (SlOTA LCD) = X'02' 

A LCWA 

+X'8' SIOT1 P ( + 1st SlOT) 

+X'50' VOLUNPTR 

Allocation/Unallocation (continued) 

+X'94' 

+X'98' 

+X'88' 

+X'8C' 

+X'98' 

+X'A8' 

+X'88' 

+X'8C' 

+X'98' 

SlOT 'A' (SYSOUT) 

1-----..... 
~r~~ 

SIOTEDLP 

SVOLUNAD 
~------I 

SIOTNPTR 

t-------..... 

SIOTEDLP 

SVOLUNAD 

-
SIOTNPTR (=0) 

TIOT 

[ :J 
DSABTIOT 

TIOENTRY 

( 

EDL 

VU entry no. 1 for SlOT 'B' 

VU entry no. 2 for SlOT 'B' 

I Figure 5-38. Common Allocation Control Blocks After Construction of Volunit Table and EDLs. 

Section 5. Component Analysis 5.11.9 



Allocation/Unallocation (continued) 

Common allocation processing is reflected by the status of request's SlOT and 
VU entries. As each VU entry requiring a unit is allocated, bit VOLALOC (bit 0 
(X'80') at +7 into the VU entry) is set on. Bit VDEVREQD (bit 2 (X'20) at +7 
into the VU entry), if on, indicates that the VU entry requires a unit. Once all VU 
entries with VDEVREQD=l for a given SlOT are allocated and VOLALOC=l, the 
SlOT is marked allocated by setting on SIOTALCD (bit 6 (X'02') at X'2B' into the 
SlOT). 

As each unit is allocated to a request, that allocation is reflected in (1) the 
unit's UCB by setting UCBALOC (bit 4 (X'08') at +3 in the UCB) on, and in (2) the 
request's TIOT entry by placing the UCB pointer into field TIOUCBP in the TIOT 
entry. (TIODCBP is at a X'lO' into a TIOT entry for the first unit allocated, at 
+X'14' for the second, etc.). The first time a VU entry for a SlOT is allocated, a 
DSAB and TIOT entry are created. For subsequent VU entries allocated to a SlOT, 
the DSAB and TIOT entries are updated. 

EST AE Processing 

All of allocation is protected from abends by ESTAE processing. Only one ESTAE 
is issued during allocation. The batch allocation ESTAE exit routine, IEFAB4E4, 
performs a retry, causing routine IEF AB4E3 to get control. IEFAB4E3 returns to 
the initiator with a failure return code, causing the initiator to fail the job. All 
other ESTAE exit routines percolate to the next higher level of ESTAE protection. 
In a batch unallocation environment, this causes the initiator to terminate. 

When an abend occurs in a batch environment, message IEF197I "SYSTEM 
ERROR DURING ALLOCATION/UNALLOCATION" is issued to SYSOUT by 
ESTAE processing. If the abend occurs in batch allocation or a routine called by 
batch allocation, such as JFCB hou~ekeeping, message IEF1971 is issued to 
the job's SYSOUT. If the abend occurs during batch unallocation, the same 
message goes to the initiator's SYSOUT. 

An SVC dump is always taken if an abend occurs when allocation is in control. 

S.11.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Allocation/Unallocation (continued) 

Debugging Hints 

Hints for debugging specific problem areas are described here including: 

• Allocation Serialization 
• Device Selection Problems (Non-Abend) 
• OBO Abend 
• OC4 Abend in IEFAB4FC, or Loop in IEFDB413 
• Volume Mount and Verify (VM&V) Waiting Mechanism 

Allocation Serialization 

Allocation serializes on several types of resources. This has resulted in deadlocks 
between job steps when a programming change caused incorrect seriJIlization. 

Both dynamic allocation and JFCB housekeeping enqueue on data set names. 
Dynamic allocation enqueues on non-temporary data set names before calling 
JFCB housekeeping. JFCB housekeeping enqueues on real data set names when 
it finds via LOCATE, that the specified data set name is an alias; the fully­
qualified names of GDG single requests (found via LOCATE); the individual names 
in a generation data group; and the data set names of temporary, non-VIO data 
sets. (The initiator enqueues all non-temporary names of JCL-specified data sets 
before a job starts). Data set names are dequeued by unallocation, either batch 
or dynamic, in the last step in which the data set is referenced. 

Common allocation enqueues on volume serials of all specific volume requests 
except for direct-access volumes, which are either permanently resident or reserved. 
This is done after the allocation of permanently resident or reserved direct-access 
volumes, that is, following fixed device allocation. The volume serials of de­
mountable volumes allocated to non-specific volume requests are enqueued either 
when the volume is allocated (if the volume is already mounted) or when 
the volume is mounted (if allocation mounts and verifies it). (When there is a non­
specific request for tape, OPEN enqueues the tape-volume serial numbers because 
allocation only waits for direct-access volumes to be mounted.) Before actually 
allocating a device, common allocation serializes the status of devices by enqueuing 
on several resources all with the major name SYSIEFSD. The minor names and 
functions serialized are as follows: 

1. Q4 - to serialize device allocation with VARY offline processing, which is 
actually done by common allocation 

2. CHNGDEVS - to serialize device allocation with device unloading done by 
the UNLOAD operator command and JES3 

3. DDRDA - to serialize devices allocation with dynamic device reconfigura­
tion (DDR) processing of direct access devices and 

4. DDRTPUR - to serialize device allocation with DDR processing of tape and 
unit record devices 

Section 5. Component Analysis 5.11.11 



Allocation/Unallocation (continued) . 

These four resources are enqueued for shared use by allocation and for exclusive 
use by the other functions. Within common allocation, these resources, with the 
exception of Q4, are dequeued when allocation must wait on an allocation recovery 
WTOR or on an allocation group. 

Allocation serializes, via an internal mechanism, the processing of all devices 
except direct access devices containing. non-demountable (permanently mounted 
or reserved) volumes. The serialization unit is an allocation group. This serializa­
tion is done to serialize the device allocation in one address space with that in 
another. Group serialization" is exclusive, that is, it prevents an allocation in a 
given address space from considering the same device that an allocation in another 
address space is considering. All allocations serialize on groups in the same order; 
this order is specified at sysgen and isrepresented in the csect PREFTAB, which is 
part of allocation load module IEFW21SD. PREFTAB is simply a list of generic 
device types. 

To serialize changes to a specific UCB,allocation and unallocation always obtain 
the local and CMS locks before setting fields in the UCB. 

Dynamic allocation serializes with itself so that only one dynamic allocation 
may proceed in an address space. This is done by an enqueue for exclusive use on 
major name SYSZTIOT, the minor name consisting of the 2-byte ASID and 4-byte 
address of the DSAB QDB. 

Subsystem Allocation Serialization 

Allocation does not serialize when processing subsystem data set requests, but 
provides the capability whereby a subsystem may serialize its own requests if 
it so desires. The mechanism to do this is the subsystem allocation sequence 
table (SAST). A skeletal SAST is built during subsystem interface initialization 
to define the order in which subsystems are to be invoked for the allocation 
of subsystem data sets. During common allocation processing the subsystem 
requests are sorted by subsystem. Using the sequence defined by the SAST, all 
requests for a given subsystem are passed to that subsystem for allocation 
before the next subsystems requests are processed. Thus a subsystem can serialize 
its allocation processing in order to prevent deadlocks. 

Device Selection Problems (Non-Abend) 

The device selection logic of common allocation is heavily dependent on the 
eligible devices table (EDT) which is built at SYSGEN. The EDT describes the unit 
eligibility of any unit name that may be specified either via JCL or dynamic 
request. Users have in the past tried to modify the EDT without doing either a 
full or an I/O SYSGEN. Modification of the EDT can result in incorrect allocation, 
for example, allocation of a 3330 request to a 2314,or failure of a request or job 
ste.p with no error indicated. If such a device selection error occurs after modifica­
tion of an EDT, the modification is suspect and should be carefully verified by 
consulting the EDT descriptions in the OS/VS2 System Logic Library section on 
Data Areas, and/or EDT mapping in OS/VS2 Data Areas (microfiche ),via mapping 
macro IEFZB421. 

5.11.12 OS!VS2 System Programming Library: MVS Diagnostic Techniques. 



Allocation/Unallocation (continued) 

Address Space Termination 

When an address space is being abnormally terminated, the allocation address space 
termination routine, IEFAB4E5, gets control. This routine releases any allocation 
groups held by the address space and un allocates any non-shareable units allocated 
to the address space. Non-shareable units include all units except shareable direct­
access devices. The ASID of the address space allocated to a non-shareable unit is 
at X'E' (halfwonU in the common UCB extension. 

OBO Abend 

OBO abends have occurred in allocation more than once. The code is issued by the 
SW A manager, which handles the reading, writing, and assigning of SWA records. 
Allocation requests all these functions of the SWA manager. Two situations cause 
allocation to receive a OBO abend from the SWA manager: 

1. The address of a SWA record to be read or written, in behalf of allocation, has 
been overlaid. Allocation usually obtains a SWA virtual address (SV A) to read 
or write from another SWA record. When such an SVA has been overwritten by 
a scheduler SUb-component, a OBO abend may occur. 

2. A OBO abend will occur when ~location assigns an SVA for a record and then 
uses the SV A to attempt to read the record without first having written the 
record. 

OC4 Abend in IEFAB4FC, or Loop in IEFDB413 

This error always occurs when the device type in a UCB is changed from one 
generic type to another, and when a JCL statement or dynamic request specifies that 
particular unit. If this error occurs, it can be diagnosed as follows: 

1. Find the device type (+ X'l 0') in the UCB of the specific unit. 

2. In the EDT (a CSECT that is well mapped in its assembly at SYSGEN), find the 
look-up entry representing the device type in the DCB. If the requested unit is 
not among the units represented by the look-up entry, the problem is that the 
device type in the DCB was changed. 

Section 5. Component Analysis 5.11.13 



Allocation/UnaIlocation (continued) 

Volume Mount and Verify (VM&V) Waiting Mechanism 

Volume mount and verify must wait for direct access volumes to be mounted so 
that the labels can be verified, and so that allocation can enqueue the volume 
serials for non-specific volume requests and obtain space (for new data set 
requests). In order to allow for several allocations to be waiting simultaneously, 
the control block structure shown in Figure 5-39 is set up by VM&V. 

Each address space waiting for at least one direct access volume to be mounted 
has its own mount verification control area (MVCA), MVCA extension 
(MVCAX), one or more mount entries, and, in each mount entry, one or more 
UCB entries .. Each MVCAX contains an ECB. When an allocation is waiting for a 
direct-access volume to be mounted, VM&V waits for this ECB in behalf of the 
allocation. The MVCA chain is anchored in the allocation/termination com­
munication area (ATCA) in the nucleus. The ATCA is pointed to by location 
CVTQMWR in the CVT. All devices on which allocation waits for a device end 
(volume mount), will have the scheduler attention table index placed in their 
VCBs (at +3 in the common VCB extension). The index is X'OC'. 

Any destruction of the MVCA/MVCAX structure causes one or more alloca­
tions to wait "permanently." The wait is not truly permanent, however, because 
VM&Valso waits for (in a batch environment) the cancel ECB (in the CSCB­
command scheduling control block), which is posted when the operator cancels 
ajob. In a dynamic environment, VM&V waits for a WTOR ECB, in which case 
the operator can, via reply, cancel the single mount but not the job. 

5.11.14 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Allocation/Unallocation (continued) 

Nucleus 

CSA (Subpool 241) 

Memory A (Sub pool 230) 

Mount Entry 

o t------....... 
4 
t------....... 

8 
t--------I 

C 

o Dev End DCB 

4 
t---------1 

8 

C 

Device Entries 

I Figure 5-39. VM&V Control Block Structure 

ATCA 

4 

8 0 

C 

-~---~ I Memory B (Subpool 230) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

o 
4 1------.... 
8 

C 

Device Entries 

Section 5. Component Analysis 5.11.15 



Reason Code 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

Allocation/Unallocation (continued) 

Allocation/Unallocation Reason Codes 

Dynamic Allocation 
Error Reason Code 

1700 
0244 
0210 
020C 
0458 
0214 

021C 
0480 
0224 
0398 
4714 

47A8 
47AC 

reserved 
039C 
0228 
4704 
4708 
470C 
4710 
4714 
4718 

4734 
4738 
reserved 
4740 
reserved 

The reason codes listed here are divided into three groups: 
.. Reason codes set by batch and cornmon allocation modules and by JFCB 

housekeeping modules. 
• Reason codes set by unallocation modules . 
• Reason codes set by dynamic allocation modules. 

Common and Batch Allocation and JFCB Housekeeping Reason Codes 

The reason codes set by common and batch allocation and by JFCB housekeeping 
are divided into step-related reason codes and DD-related reason codes. 

The following are DD-related error reason codes set by allocation and JFCB 
housekeeping modules and placed in the SIOTRSNC field of the SlOT. The reason 
codes serve as an index into message module IEFBB4M3. The prologue of 
IEFBB4M3 lists the modules which detect the error conditions. 

Message 

IEF2121 
IEF3711 
IEF2111 
IEF2111 
IEF3651 
IEF7021 
IEF2211 
IEF2101 
IE F1951 
IEF1921 
IEF1941 
IEF2461 
IEF7211 
IEF3721 
IEF3181 
IEF7191 
IEF7201 
IEF6881 

IEF2451 
IEF4741 
IEF2531 
IEF2541 
IEF1931 
IEF2561 
IEF2571 
IEF2581 
IEF2601 
IEF2611 
IEF2621 
IEF2631 
IEF2641 
IEF2661 
IEF1401 

IEF2731 

Meaning 

Data set not found. 
Telecommunication device is not accessible. 
Unable to E NO on data set name. 
Unable to E NO on data set name. 
Referenced data set name is GOG ALL. 
Unable to allocate. 
Invalid backward reference to a step. 
Invalid UNIT parameter. 
Maximum number of devices for statement exceeded. 
Not enough eligible devices. 
Volume sequence number incorrect. 
Insufficient space on storage volumes. 
Protection conflict in ISAM requests (SU 32 only). 
VOL=REF to unresolved DO. 
UNIT=AFF to new direct data set. 
Data set previously defined (SU 32 only). 
User not authorized to define this data set (SU 32 only). 
Nullfile and DSNAME conflict in ISAM concatenation. 

Inconsistent unit name and volser. 
Unit or volume in use by system task. 
Duplicate data set name on direct access volume. 
Insufficient space in VTOC. 
Space not obtained because of I/O error. 
Absolute track not available. 
Space requested not available. 
Invalid record length in SPACE parameter. 
Incorrect DSORG or DISP. 
No prime area request for ISAM data set. 
Prime area must be requested before overflow area. 
Space request not on cylinder boundary. 
Duplication of DSNAME element. 
Invalid JFCe or partial DSce pointer. 
Directory space request too large. 

Invalid user label request. 

... - means that the, error cannot be set in dynamic allocation. 

5.11.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Reason Code 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
6~ 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

91 
92 
93 
94 
95 
96 

Dynamic Allocation 
Error Reason Code 

474C 

476C 

4780 

035C 
0390 
0394 

0218 
0494 
022C 
0214 
0220 
4794 
4798 
479C 

0230 
0488 
048C 
47A4 
0214 
0240 
04B8 
04BC 
0234 

0470 
046C 

0490 
17FF 
022C 
024C 
0250 
03AO 
04A4 
0484 
7700 
04A8 

04AC 
04BO 
7704 
Reserved 
04B4 
03A4 

Allocation/Unallocation (continued) 

Message 

IE F1271 
IEF1281 
IEF1291 
IEF1301 
IEF1311 
IE F1321 
IEF1331 
IEF1341 
IEF1351 
I EF1361 
IEF2671 
IEF1451 
IEF1411 
IEF1431 
IEF3661 
IEF2191 
IEF2861 
IEF4661 

IEF7041 
IEF4751 
IEF4671 
~EF4851 

IEF4761 
IEF4771 
IEF4781 
IEF4791 
IEF4811 
IEF4821 
IEF2171 
IEF2181 
IEF7031 

IEF4831 
IEF7261 
IEF7251 
IEF4841 
IEF4931 
IEF4921 
reserved 

IEF4801 
reserved 
IEF7011 
IEF2131 
IEF6871 
IEF7521 

I 
IEF7521 
IEF7521 
IEF7521 
IEF7521 
IEF7521 
IEF7531 

IEF7541 
IEF7551 
IEF7561 

IE F7401 
IEF7411 

Meaning 

No SPACE parameter or zero space request at ABSTR O. 
Invalid request for ISAM index. 
Multivolume index request. 
DSNAME element wrong. 
Multivolume OVFLOW request. 
CYL and ABSTR conflict in SPACE parameter. 
CYL and CONTIG conflict in SPACE parameter. 
Subparameter wrong in SPACE parameter. 
Zero primary space request. 
Index area requested twice. 
Space request for directory larger than primary space request. 
Space request not ABSTR for DOS volume. 
Index request did not precede prime request. 
Last concatenated DO card unnecessary or invalid. 
Relative GOG generation number contains syntax error. 
GOG group name exceeds 35 characters. 
DISP field incompatible with data set name. 
Unable to recover from DADSM failure. 
Mounting required but not allowed. 
Can't access SYSCATLG data set on CVOL. 
Volume on ineligible permanently resident or reserved device. 
Units required not available - waiting not allowed. 
Volumes required not available - waiting not allowed. 
Data sets overlap in VTOC. 
DOS split cylinder data sets overlap. 
Possible VTOC error. 
VTOC error on second or later volume of ISAM prime data set. 
Same unit request twice - conflicts exist. 
Permanently resident or reserved volume on requested unit. 
Volume containing pattern DSCB not mounted. 
Pattern DSCB record not found in VTOC. 
New data set requested on DOS stacked pack format volume. 
Can't wait for offline devices. 
Requested device is a console. 
MSS not initialized. 
MSS select error. 
More units required for demand request. 
Invalid JOBCAT or STEPCAT parameters. 
Invalid data set name for JOBCAT or STEPCAT. 

Unauthorized request"or of subsystem data set. 
Invalid destination requested. 

Error changing allocation assignments. 
Error processing cataloged data set. 
Requested volume mounted on JES3-managed unit. 

The request for a subsystem data set was failed by the subsystem 
attempting to allocate the request. 

A SUBSYS parameter specified a subsystem which does not support 
the allocation of subsystem data sets. 
The subsystem requested on a SUBSYS parameter was not operational. 
The subsystem requested on a SUBSYS parameter does not exist. 
A system error occurred in allocating a subsystem data set. 

Data set/volume could not be RACF protected - RACF not active (SU 32 only). 
Protect request failed - invalid data set/volume specification (SU 32 only). 

• - means that the error cannot be set in dynamic allocation. 

Section 5: Component Analysis 5.11.17 



Reason Code 
Dynamic Allocation 
Error Reason Code 

1 023C 
2 0204 
3 0220 
4 
5 0484 
6 0238 
7 0220 
8 049C 
9 0474 

10 0248 
11 0450 
12 172C 
13 1718 
14 670C 
15 0478 
16 047C 
17 0214 
18 0490 
19 0468 
20 
21 
22 
23 0498 
24 04AO 
25 
26 024C 
27 0250 
28 03AO 
29 04A4 
30 7700 

AUocation/Unallocation (continued) 

The following are step-related error reason codes set by allocation and JFCB 
housekeeping modules in an area pointed to by the allocation work area (ALCWA). 
With· the exception of reason code 1, the reason codes serve as an index into mes­
sage module IEFBB4M2. The prologue of IEFBB4M21ists the modules which detect 
the error condition. Reason code 1 is set by IEFAB469 and is returned to dynamiC 
allocation. 

Message 

IEF1801 
IEF7131 
reserved 
IEF2511 
IEF2401 
IEF4851 
IEF71'1-1 
IEF4731 
IEF7161 
IEF4911 
IEF3631 
IEF3641 
IEF3671 
IEF4651 
IEF4561 
IEF7001 
IEF7011 
IEF3611 
IEF3621 
IEF2021 
IEF2021 
IEF7151 
IEF7171 
IEF7181 
IEF7511 

} IEF7511 
IEF7511 
IEF7511 
IEF751! 

Meaning 

Catalog not mounted. 
GETMAIN error. 
MSS volume not available. 

Job cancelled. 
No space in TIOT. 
Volumes not available and waiting not allowed. 
MSS volume not defined. 
System Resources Manager error. 
Unable to mount MSS volume. 
Number of DDs exceeds 1635. 
Not enough storage for processing cataloged data set. 
Permanent 1/0 error processing cataloged data set. 
I/O error obtaining pattern osce. 
Unable to allocate subsystem data set. 
Error issuing EST AE macro. 
Environment changed - no longer able to allocate. 
Error changing allocation assignments. 
Unal;>le to allocate private catalog. 
Unable to unallocate private catalog. 
Step not run because of condition codes. 
Step not run because of condition codes. 
MVS volume inaccessible. 
Specified virtual volume group (VVGRP) name does not exist. 
Space or virtual volumE! group (VVG RP) required for nonspecific MSS request. 

The job was failed in allocation by a subsystem processing a request to allocate 
one or more subsystem data sets. 

* - means that the error cannot be set in dynamic allocation. 

5.11.18 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Allocation/Unallocation (continued) 

Common and Batch Unallocation Reason Codes 

The following reason codes are set by common and batch unallocation modules. 
Reason codes 1, 2, and 4 serve as an index into message module IEFBB4MS. Reason 
code 3 does not result in a message; it is returned to dynamic allocation. 

Reason Code 

2 

3 

4 

Message 

IEF4681 

IEF4691 

IEF7241 

IEF4S61 

Meaning Mpdule Setting 

GETMAIN error. IEFBB410,IEFBB414, 
IEFBB416,IEFAB4AO 

Data sets not released. IEFAB4AO,IEFAB4A6 

Volumes not released. IEFAB4AO,IEFAB4A8 
(Dynamic allocation only). 
Step catalogs not allocated. IEFAB4A2 
(Warm start only). 

Error issuing ESTAE macro. IEFBB410,IEFAB4AO 

In addition, IEFAB4A2 (disposition processor) receives return codes returned by 
the data management catalog and scratch functions (called by IEFAB4A2 to per­
form disposition processing). If the allocation is dynamic, these return codes are 
returned to dynamic allocation as reason codes in a field in the unallocation request 
block. For batch allocation, the return code is converted to a code for a disposition 
message. 

Dynamic Allocation Reason Codes 

For a description of dynamic allocation reason codes, refer to the topics "Informational 
Reason Codes" and "Error Reason Codes" in OS/VS2 System Programming Library: 
Job Management. 

Section 5: Component Analysis 5.11.19 



5.11.20 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



JES2 

JES2 is a job entry subsystem for OS/VS2 MVS. An overview of the JES2 
structure is presented in this section. For detailed information on JES2 structure, 
logic, and control block formats, see OS/VS2 JES2 Logic. A partial list of major 
JES2 control blocks showing storage location and primary use may be seen in 
Figure 5-49 at the end of this section. 

JES2 is a subsystem that runs as an operator-started job in a separate address 
space. It provides input and output spooling for local and remote unit record 
devices, and simplified batch scheduling. A subsystem support module, provided 
by JES2 and located in the page able link pack area (PLPA), is utilized to com­
municate with other system components in performing job selection and execu­
tion. JES2 may be connected to as many as seven other JES2 subsystems via the 
multi-access spool direct access storage devices. 

Job Processing Through JES2 

JES2 job processing is divided into the following five major phases: 

Input 

Jobs are read into the system from online card readers, remote terminal and 
internal reader interfaces (TSO LOGONs, TSO-submitted j?bs, system tasks, 
or jobs presented to the internal reader from other sources). These jobs are then 

. entered into a priority queue to await processing by the next stage. 

Conversion 

As soon as the converter is available, the JCL for a job is passed through the 
converter, scanned for syntax errors, and converted into internal text. Any jobs 

having JCL errors will bypass execution and be queued for output processing 
immediately. Those jobs that successfully complete conversion are queued by 
priority, within class, to await an eligible initiator for execution. 

Execution 

Jobs are selected by priority, within class, for an eligible initiator. Input cards are 
supplied as required to the executing program. Output records are received and 
written onto JES2 spool devices. At the completion of execution, the job is placed 
in a queue to await output processing. 

Output 

The print data sets created during execution, and messages created during earlier 
stages, are printed. The punch data sets are punched. 

Section 5. Component Analysis 5.12.1 



JES2 (continued) 

Purge 

Upon completion of all processing required for the job, the direct access space 
acquired by JES2 for the job and all JES2 resources associated with the job are 
released. 

JES2 Structure 

JES2 consists of two basic modules. HASJES20, which operates in JES2 address 
space and provides the subsystem's job processing functions; and HASPSSSM, which 
is located in PLPA and provides the interface between the operating system and the 
HASJES20 programs. 

HASJES20 Program Structure 

The HASJES20 module is made up of seven tasks that perform JES2 job pro­
cessing. The JES2 main task provides the basic functions of reading and spooling 
job input, converting JCL, selecting jobs for execution from the JES2 job queue, 
receiving and outputing job output, and job cleanup, all accomplished with a set of 
programs called basic functional processors. These processors are supported by 
another set of programs, the control processors, which provide subsystem control 
and JES2 facilities. Both sets of processors use numerous subroutines called 
control service programs. 

The heart of HASJES20 is the dispatcher, which schedules and dispatches 
various processors under the single TCB of the main task. Since the main task can­
not afford to go into a wait state, any JES2 programs that have the potential for 
waiting are isolated as subtasks. There are six JES2 subtasks: 

1. Conversionsubtask - links to OS/VS2 converter. 

2. Image loader subtask - loads universal character set (UCS) and forms 
control buffer (FCB) images. 

3. System management facility (SMF) sub task - issues SVC 83 to write 
accounting records for main task. 

4. Communications subtask - issues SVC 34 and SVC 35 for main task operator 
communications. 

5. SNA subtask - initializes JES2 use of the VTAM interface with OPEN ACB. 

6. Dynamic spool allocation subtask - initializes JES2's spool volumes 
(SYS I.HASP ACE and SYS I.HASPCKPT). 

5.12.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



JES2 (continued) 

HASJES20 Module Structure 

HASJES20 shown in Figure S-40, consists of ten source modules which contain 
JES2 main flow job processing code and associated directories. The HASPINIT 
module is loaded in JES2 address space to initialize the subsystem. After initializa­
tion HASPINIT is deleted. HASPRDR, HASPXEQ, and HASPPRPU contain the 
functional and control processors needed to effect major job processing steps, 
along with related specialized subroutines and subtasks. The first 4K of HASPNUC 
is fixed in JES2 memory since it contains the system routines which provide 
support to the other modules. HASPNUC also contains the HCT and JES2 module 
directory (see Figure S-4l). HASPRTAM contains all the access method and line 
management functions to support both bisynchronous and systems network 
architecture (SNA) remote job entry terminals. Communication functions are 
isolated to this module. All processing associated with JES2 multi-access spool 
systems is contained in HASPMISC along with spool initialization, checkpoint, and 
job purge operations. 

HASPNUC 

• HCT 

• Dispatcher 

• I/O Supervisor 
JES2 Address Space (Low end) 

• Service Routines 

• Service Processors 

• Module Directory 

HASPRDR 

HASPXEQ 

• Conversion Processor 

• Conversion Subtask 

• Execution Processor 

• Time Excession Processor 

• Process SYSOUT Processor 

HASPPRPU 

• Output Processor 

• Print/Punch Processor 

• Image Loading Subtask 

HASPACCT 

• SMF Subtask 

HASPMISC 

• Purge Processor 

• Checkpoint Processor 

• Track Group Allocation Subroutine 

• Priority Aging Processor 

• Warm Start Processor 

• Dynamic Spool Allocation Subtask 

HASPCON 

• Service Routines 

• Communication Subtask 

HASPRTAM 

• RT AM Service Routines (SSC and SNA) 

• Line Manager Processor (SSC and SNA) 

• Remote Console Processor 

• VTAM Subtask (ACS OPEN, CLOSE) 

• API Routines 

HASPCOMM 

• Command Processor 

HASPINIT 
(Deleted after subsystem initialization) JES2 Address Space (High end) 

I Figure 5-40. HASJES20 Module Map 

Section 5. Component Analysis 5.12.3 



JES2 (continued) 

R11 (BASE 1) 

HASPNUC 

OFFSET 

0008 

HCT 

Module MOP} 

__ ------------A~----------__ 
( " , 

• HASPXEQ 

• • 
HASP/NIT 

IHASPCOMM 

HASPACCT 

~ 

I---

JES2 Modules 

I Figure 5-41. Locating the JES2 Module Directory in HASPNUC 

HASP Control Table (HCT) 

The global directory for HASJES20 is the HASP control table (HCT), which is 
found in HASPNUC. (Figure 5-42 shows the major vector fields of the HCT.) In 
HASJES20, RII may be used to locate the HCT. Eight bytes into the HCT is the 
address of the JES2 module map which contains a symbolic name and YCON entry 
for each of the JES2 modules. 

5.12.4 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



JES2 (continued) 

HASJES20 

R11 l 
HCT 

ReI. 4.1 Rei. 4.0 
Offset Offset 

0008 0008 $HASPMAP •• 0 •••••••••• Address JES2 Module Directory 

0010 0010 
001C 001C 

• 0 •••••••••• Entries HASP Dispatcher 

0020 0020 
OOFO OOFO 

• ••• 0 • 0 ••••• Entries Service Routines 

00F4 00F4 o 0 • • 0 • 0 • • • • .TCB and ECB Addresses for 
012C 012C SUbtasks 

0134 0134 $SSVT o 0 • • • • • 0 • • • .Address SSVT 

0138 0138 
0240 0234 

o ••• 0 0 •••••• Control Block Directory 

0244 0238 
0254 0248 

· . . • . . . . . . . .Configuration Constraints 

0256 024A 
029B 028F 

• '0 •••••••••• Operating Constraints 

029C 0290 
02E2 02CE 

· ..•.......• Internal Constraints 

02E4 02DO 
03E8 03CF 

• •.....•..•. Control Fields 

03EC 03DO 
042C 0410 

• •.......... Processor PCE Addresses 

0430 0414 $CURPCE • ••• 0 ••••••• Current PCE Address 

0434 0418 
0436 041A 

• •.•.......• Dispatcher Event Control Fields 

0438 041C 
0490 0474 

- o • • • • • • • • • • .Processor Queue Addresses 

0498 047C 
0540 051A 

· ........... Checkpoint Record 

I Figure 542. HCT Major Vector Fields 

Section 5. Component Analysis 5.12.5 



JE82 (continued) 

HASPSSSM 

Locate.d in PLPA, HASPS SSM interfaces directly with the operating system through 
the formal subsystem interface (SSI) to provide job scheduling, data management 
(SYSIN and SYSOUT), and. operator communications. HASPS SSM contains 
function routines which are invoked through the use of vectors in the subsystem 
vector table (SSVT) shown in Figure 5·43. The vectors are used by the operating 
system to invoke functions which are defined by the IEFJSSOB macro expansion. 
Additional SSVTvectors are used by the HASJES20 module to provide services to 
the rest of the JES2 system. During execution of functions represented by the 
SSVT vectors, additional vectors are set into data extent blocks (DEBs) and access 
method control blocks (ACBs) for data management support. In the performance of 
its functions, HASPSSSM makes requests for services to the HASJES20 module 
running under the JES2 TCB as well as to the operating system. The module is 
entered in the privileged state. The storage relationship of HASPSSSM and 
HASJES20 to the operating system is shown in Figure 5·44. 

SSVT 

Function Map 

Pointers to Function Routines 

Pointers to Service Routines 

Queue Heads 

Spool Control 

Common to all 
Subsystems 

JES2 Extension 

I Figure 5·43. The Subsystem Vector Table 

I HASPSSM I 
I SSVT ] 

USER REGION JES2 REGION . 
HASJES20 

• STC Tasks • HCT 

• TSU Tasks • Supporting Code 

• Batch JO B Tasks 

I Control Blocks I 
Nucleus 

• SVC.111 

I Figure 5·44. HASPSSM - HASJES20 - OS/VS2 Relationship 

5~ 12.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



JES2 (continued) 

Subsystem Interface 

MVS interfaces formally with JES2 by building a subsystem options block 
(SSOB) and issuing the IEFSSREQ macro. This formal subsystem interface is 
shown in Figure 5-45. The subsystem is entered by indexing the SSVT for the 
entry pointer into HASPSSSM. HASPSSSM performs the requested function, if 
necessary communicating with HASJES20 by cross-memory post and returns. 
The SSVT, located in CSA subpool241, contains the pointers necessary for 
MVS/JES2 and HASPSSSM/HASJES20 communication. With the HCT, the major 
control block in HASJES20, the SSVT forms the central directory for JES2. 

The subsystem interface is used for the following: 

A. Job scheduling and control functions 
1. Job selection 
2. Job deletion (termination) 
3. Re-enqueue job 
4. Request job identification 
5. Return job identification 
6. End of memory 
7. End of task 

B. Data set access method functions 
1. Allocation 
2. Open - activates following interfaces: 

a. GET/PUT/PUT ENDREQ/NOTE/POINT 
b. End of block (SVC 111) 

3. Checkpoint 
4. Restart 
5. Close 
6. Unallocation 

C. TSO/external writer communications 
1. Process SYSOUT 
2. CANCEL 
3. STATUS 
4. User identification validity check 

D. Operator communications 
1. Command processing (SVC 34) 
2. Write to operator (SVC 35) 

In addition to the formal SSOB interfaces, the following miscellaneous sub­
system interfaces are defined: 

1. Exit from the OS/VS2 converter 
2. Unsolicited device end 
3. Privilege status from the program properties table. 

Section S. Component Analysis S.1~.7 



JES2 (continued) 

/' 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

... 

, ..... -

User Module 

Build SSOB 
Make Req. 

IEFSSREQ 

Validate 
Set 55113 
Enter SSYS. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

HASPSSSM ~ 

Perform 
Function 
Return 

R 13 

Pointer 
R1 J 

"'1 

I 
I 

i R1 

SSCT 

RO 
," 

R11 
ssvi 11, 

. 

Figure 5-45. Formal Subsystem-Interface Vectors 

5.12.8 OS!VS2 System Programming Library: MVS Diagnostic Techniques 

Save Area .. -
t 

..... SSOB 
... 

Header 

D / Extension 

SSIB 

SJB II 

~ 

... 

" 



JES2 (continued) 

Dispatcher Structure 

The JES2 dispatcher allocates processor time to the JES2 main task processors. Each 
processor is represented by a control block called a processor control element 
(PCE). When a processor is eligible for dispatching, its PCE is on a dispatcher 
queue called the $READY queue. When a processor is waiting on an event, it is 
ineligible for dispatching. If the processor is waiting for a resource, its PCE is 
chained to the designated resource wait queue; if the processor is waiting for a 
specific event, its PCE is queued to itself via a specific event wait field, 'PCEEWF', 
in the PCE. The currently active processor's PCE is at the top of the $READY 
queue and is addressed by the $CURPCE of the HCT. Major queue and event­
control fields in the HCT and SSVT are shown in Figure 5-46. 

$WAIT 

A processor that is currently active remains so until it issues a $WAIT macro 
instruction, at which time the dispatcher is entered at entry point $WAIT (for 
a specific event), or $WAITR (for a general resource). The dispatcher continues 
to dispatch eligible processors from the $READY queue until the queue is found 
to be empty. At this time control is passed to the dispatcher's resource posting 
routine, which looks for waiting PCE's that have been posted for ev:ents and are 
therefore eligible for dispatching. All eligible PCE's are moved to the $READY 
queue, and control passes back to the dispatcher. 

SSVT (PLPA) 

Offset 

0204 $SVECF .............• $$Post Event Control Field 

0208 

02FC 
1 .............. $$Post Elements for HASJES20 Processors 

Rei 41 Rei 40 
HCT (JES2 Address Space) .. 

Offset Offset 

03EC 0300 

042C 040C 
} ••••• peE Addresses for JES2 Processors 

0430 0414 $CURPCE · ..... Current PCE Address 

0434 0418 $HASPECF · ..... Master Event Control Field 

0438 041C 

0480 0464 
1- . . . . . Walt Queue Header Addresses 

0488 046C $EWOABIT · ..... 0 Header for PCEs Awaiting Any Post 

0490 0474 $READY · ..... 0 Header for PCEs Eligible for Dispatching 

Figure 5-46. JES2 Queue Control Fields 

Section 5. Component Analysis 5.12.9 



JES2 (continued) 

$$POST 

The JES2 dispatcher can be notified of work from within its own address space 
by the $POST macro. In addition, the dispatcher can be notified of work from 
other address spaces or from subtasks within its address space by the $$POST 
macro, which causes· a HASPSSSM interface routiJ)e to cross-memory post the 
JES2 main task. In this case, the dispatcher post promulgation routine, which 
receives control when the resource posting routine runs out of work, propagates 
event posts from the SSVT fields used by HASPS SSM interface routines to the 
HCr fields in JES2 address space. Here the resource posting routine can pick 
them up and mark the corresponding processors eligible for dispatching. Control 
then returns to the dispatcher. 

JES2 WAIT 

When the JES2 dispatcher determines that there is no more work to be done, it 
issues an MVS WAIT macro, and waits to be posted for more work. When a 
$$POST macro is issued, the dispatcher post promulgation routine receives control 
and transfers the event notifications to the HCT, where they are picked up by the 
resource posting routine. The corresponding PCE's are transferred to the $READY 
queue. 

Dispatcher Queue Structure 

The dispatcher queues are double headed and double threaded. Each- PCE (as shown 
in Figure 5-47) has a chain field to the following PCE entry and one to the 
preceding entry on the queue. In the special case of the first PCE (referred to as 
PCE zero), the preceding entry field points to the queue headers, offset so that the 
queue header appears to be a PCE itself. The last PCE has a following entry field 
which points back to the queue header. The queue header itself is double, with 
pointers to the first and last'PCE's in the chain. An empty queue has both queue 
header fields pointing to itself, offset to appear as PCE zero. A PCE that is not on 
a queue has both its preceding and following entry fields pointing to its origin. 
In addition to the chain fields, each PCE has a PCEEWF field, which contains 
information about the type of event the processor is waiting for. Figure 5-48 
provides an example of a 4ump of JES2 proces~or queue chains. 

5.12.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



JES2 (continued) 

HCT 

Specific PCE 

Q Header 

T 

r--------I I 
I 
: PCE 0 

Queue Head 

Empty Queue 

PCE not on Queue 

Figure 5-47. JES2 Processor Control Element Relationships 

JES2 Error Services 

The following routines make up the JES2 error services: 

• Disastrous Error Routine 

• JES2 EST AE Routine 

• Catastrophic Error Routine 

• JES2 Exit Routine 

• Input/Output Error-Logging Routine 

Disastrous Error Routine 

This routine is entered at entry point $DSTERR in HASPNUC whenever a physical 
I/O error occurs, or whenever a logical error is detected when reading a job control 
table (JCT) or an input/ output table (lOT). The symbol and module names are 
moved into the message from the $DISTERR macro expansion. A $WTO is issued to 
notify the operator of the error, and control is returned to the calling processor. 
The message to the operator is as follows: 

$HASP096 DISASTROUS ERRORAT SYMBOL symbol IN MODULE module 

Section 5. Component Analysis 5.12.11 



~ -~ -N 

0 JES2 Processor Queues $EWQ1: C"I) 

Queue is Empty if First and Last Pointers < C"I) Point to Queue - 48 (Hex) N 
C"I) 075380 1E 000A7030 000A7910 FFOA7180 000A7188 000A7200 00000000 000A7298 000A7536 '< r;n 

075400 1E 000A7010 )00A70FO 000A7FOO 000A0488 000A7400 000A8000 000A8000 000A8878 S-a 
075420 1E FFFFOOOO 000753DC 000753DC 00075334 000753E4 00075320 000753EO 000756F4 "1:1 

lot 

c§ 075440 1E 000753F4 000B7A88 000A7B78 000A8688 000A8F10 00075400 00075400 00075414 
~ 075460 1E 00075414 00075410 00075410 00075424 00075424 00075420 00075420 000A8870 a a 075480 1E 000A5478 00000000 00000000 00000000 00000000 00000000 00000000 00000000 5° 

OQ 
Register 15 in the PCE c.... 

t""' PCENEXT Points to Next ~ c;: 
peE in Chain of all PCEs. is the Resume Point c:Il 

lot JES2 Processor Control Element N 
~ When Processor is Dispatched ---< (') .. 0 

a:: OA8680 1C 85B71140 00000000 00009000 00000700 00000000 00000000 100100C3 02000200 ::s 
~ 

<: OA8680 1C 7FOOC1C1 OOOFEOOO 00000000 000A8560 000A8878 A007FB26 8007F842 00000000 ei" 
C"I) 

8-~ OA86AO 1C 000A0800 00000000 00000000 00000000 00000000 00001AEO 00000000 00080AEO , '-' 

0 OA86CO 1C 00000000 00000000 00075000 0007FAEO 000A8A68 00075404 000 8107 00000000 
r;n OA86EO 1C 00000000 00000000 00000000 00010000 000A8800 00000000 00001060 00000000 Q"o 
(') 

too3 OA8700 1C 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 (I) 
(') 

OA8720 1C NEXT LINE ADDRESS SAME AS ABOVE =-= .EO OA8740 1C 00000000 00000000 00000000 02800009 00000000 00000000 00000000 00000000 = (I) 

OA8760 1C 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 r;n 

OA8780 1C NEXT LINE ADDRESS SAME AS ABOVE 
OAS800 1C 00000000 00000000 00000000 500A8888 00000000 00AD5190 000A5888 00200200 
OA8820 1C 000A09FO D7D~C9D5 E3C3D9F1 00000000 00000000 00000000 00000000 00000000 
OA8840 1C 20010000 E2E3C44B F0404040 F0404040 30088900 5C5C585C 5C5C5C5C 5C5C5C5C 
OA8860 1C 50505050 50505050 50505050 000000C1 01404040 40404040 4007FF2A 000A8686 
OA8880 1C OOOAOAOO 600778FO 00075000 00FF83EE OOODFOOO 000A09AO OOOODOOO 00000000 

PCEPCEA Points to the Next PCE 
PCEID 

PCEPCEB Points to the Processor 8107 = Local Printer 
Waiting on this Q. Queue - 48 if this is the First 

PCE on the Q 

I Figure 548. Example Dump of JES2 Processor Queue Chains 



JES2 (continued) 

JES2 should be qUiesced and restarted as soon as it is practicable in order to 
recover any direct-access space that might have been lost as a result of the error. 

JES2 EST AE Routine 

This routine is e.ntered at entry point $ABEND in HASPNUC whenever JES2 
abends for any reason. The catastrophic error routine is called with an error code 
of ABND and control is passed to the JES2 exit routine .. 

Catastrophic Error Routine 

This routine is entered at entry point $ERRORTN in HASPNUC whenever an 
unrecoverable error is discovered by JES2. Register 0 contains the address of a 
three or four character left-justified error code. The four byte error code field 
is moved into the operator message which is then written on the operator's 
console (using a WTO macro instruction) as follows: 

$HASP095 JES2 SYSTEM CATASTROPHIC ERROR. CODE=code. 

Control is then passed to the JES2 exit routine. The error codes and their 
meanings are listed in OS/VS Message Library: VS2 System Codes. 

JES2 Exit Routine 

This routine is entered from the catastrophic error routine whenever JES2 is to 
terminate under abnormal circumstances, and whenever a $P JES2 command is 
successfully executed. When entered from the catastrophic error routine, the 
following WTOR message is issued: 

$HASP098 ENTER TERMINATION OPTION 

The routine waits for the operator to respond with one of the following 
replies: 

• EXIT 
• PURG 
• DUMP text 

If the reply is EXIT, the subsystem vector table (SSVT) telmination complete 
flag and the $SVPOSTP byte are set on. Control is returned to the system in the 
case of JES2 error detection, by an SVC 3 instruction with register 15 set to 24; 
or in the case of a JES2 task abend, by a branch to the location in register 14. 

Section 5. Component Analysis 5.12.13 



JES2 (continued) 

If the reply is PURG, the routine attempts to clean up commonly addressable 
control blocks. If the subsystem is the primary subsystem: the UCB attention 
index values are set to zero; tasks waiting for CANCEL/STATUS, process-sysout, 
and storage cell expansion queues are posted; a system management facility 
(SMF) record may be optionally written, and JES2 sub tasks are terminated and 
detached. Control is then returned to the system as with the EXIT option. 

If the reply is DUMP, a $DUMP macro instruction is executed with the text 
(if any) used as the header. Processing continues as with the PURG reply. 

If entry to the routine is through the normal execution of the $P JES2 
command, processing is the same as with thePURG option for abnormal 
terminations, except that control is returned to the system by an SVC 3 instruc­
tion with register 15 set to zero. 

Input/Output Error Logging Routine 

This routine is entered whenever an unrecoverable input/output error occurs on a 
JES2 spooling volume, or whenever a line error occurs which may require the 
attention of the operator. A message to the operator is generated as follows: 

• The channel status, channel command code, sense information, track address, 
and line status are retrieved from the lOB (pointed to by register 1) and 
formatted. 

• The unit address and volume serial are obtained from the UCB. 

• The device name (if applicable) is acquired from the device control table 
(DCT). 

The format of the message is described in OS/VS Message Library: 
VS2 System Codes. 

JES2 $DEBUG Functions in a Multi-Access Spool Configuration 

JES2 systems in a multi-access spool configuration share a single job queue, job 
output table, master track group map, and remote message spooling queues, all 
of which are kept on the JES2 checkpoint record. In addition, the checkpoint 
record contains shared system queue elements (QSEs) and other miscellaneous 
information needed for inter-system control. The checkpoint record is allocated 
to one processor at a time. Access to any part is controlled by a system's JES2 
checkpoint processor, found in the HASPMISC module. The processor has four 
major sections: 

• Initialization 

• Read 
• Write 
• Release 

5.12.14 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



JES2 (continued) 

Initialization 

Initialization is executed once when the processor is first activated by the JES2 
dispatcher. If the debug option has been selected (&DEBUG=YES), storage is 
obtained, if possible, for debug copies of the job queue and the job output table' 
(JOT). If sufficient storage is not available, message $HASP452 is issued and 
processing continues. 

Read 

This is executed at the beginning of each shared queue ownership period by systems 
in a multi-access spool configuration. If parameter &DEBUG=YES, the job queue 
and JOT areas are compared with copies saved just prior to the last checkpoint 
write. A mismatch indicates an invalid alteration to these shared queue areas and 

I )ES2 is terminated with a KOt catastrophic error. This step is skipped for 
the first read following initialization. All checkpoint records are read from DASD. 
A lockout warning timer (parameter &WARNTIM) is started and the read is started 
by $EXCP. lOS performs the actual hardware reserve of the checkpoint device. 
The processor then wait~ for read completion or timer expiration. 

If the timer expires before read completion, warning message $HASP260 is 
issued and the warning timer is restarted. The message is issued repeatedly, at 
warning intervals, until read completion occurs. 

If a permanent read error occurs, JES2 is terminated with a K02 catastrophiC 
error. 

After a successful read completion, the time stamps in this system's QSE, and in 
any QSE for which the $ESYS command had been entered, are compared with a 
time stamp saved in the HCT. A mismatch indicates that another system has 
illegally taken ownership of a QSE owned by this system, or that the reserve 
mechanism (hardware or lOS) has failed to prevent simultaneous access to the 
multi-access spool checkpoint records. JES2 is terminated with a K03 catastrophic 
error. 

Write 

This is executed repeatedly as a loop, in response to various requests by other 
processors or timers. In a multi-access spool environment, the loop operates only 
during an ownership or hold period. 

Section 5: Component Analysis 5.12.15 



JES2 (continued) 

If parameter ~DEBUG=YES, the saved copies of the job queue and JOT areas 
are compared with the current job queue and JOT areas. If a record has been 
modified, but its corresponding checkpoint control byte does not indicate so, 
JES2 is terminated with a K05 abend. A K05 abend indicates failure to issue a 
. $QCKPT or $#CKPT macro prior to executing a $WAIT macro, after modifying 
the job queue or JOT. 

The current hardware time-of-day (TOD) clock is recorded in the HCT, along 
with this system's QSE and a QSE for which any $ESYS command had been 
entered. In multi-access spool systems, these stamps are verified following the 
next read operation to ensure the integrity of QSE ownership. 

If parameter &DEBUG=YES, copies of the job queue and JOT areas to be 
written are saved. In multi-accessed spool systems, these are used prior to the 
next read operation to detect invalid updates to shared but not owned information. 

The write is started by $EXCP and the processor waits for completion. If a 
permanent error occurs, JES2 is terminated with a K04 catastrophic error. 
Following a successful completion, the $CKPTACT bit in theHCT is cleared. 

Release 

Release is executed only by systems in a multi~access spool configuration at the 
end of each shared queue ownership period. 

Miscellaneous Hints on JES2 

Starting JES2 - Enqueue Wait on STCQUE 

The installation can choose the option to manually start JES2 by changing 
MSTRJCL with AMASPZAP. When MSTRJCL is changed, JES2 parameters are 
entered on an operator-issued START command (that must be issued before MVS 
processing can occur). If the operator misspells JES2 on the START command 
(such as entering JES), a wait occurs with no indication other than STC 
(IEESB605) being exclusively enqueued on SYSIEFSD STCQUE behind 
IEEVW AIT, which does not release the resource until JES2 is initialized. Also note 
that the CSCB (command scheduling control block) pointed to by the parm list to 
IEFJSWT is not formatted in the dump. 

Therefore, if you encounter an enqueue wait on STCQUE, check that the 
ST ART command is entered correctly. This also holds true for any normally 
started tasks (such as mounts or installation started tasks) which cannot be started 
until the primary job entry subsystem is started. 

5.12.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



JES2 (continued) 

TYPE ABBR. NAME STORAGE TYPE PRIMARY USE 

Organizational SSVT Subsystem Vector CSA Contains system pointers and parameters for 
Table SUBPOOL 241 HASPSSSM interface routines. 

HCT HASP control table JES2 Address space, Major directory for HASJES20. Contains 
HASPNUC module queue headers, control blocks pointers, 

module and entry pointers and system 
parameters. 

Processor PCE Processor Control JES2 Address Space Unit of JES2 dispatcher. Has associated work 
Management Element space and save areas for JES2 processors. 

Buffer BUFFER Buffer JES2 Address Space Basic building block for JES2 control blocks 
Management (JCT, lOT, Special) 

JOB JCT Job Control Table SYS1.HASPACE Primary job oriented control block. Contains 
Management User address space accounting information and pointers to other 
(TRANSI ENT) during XEO job information. 

lOT Input Output Table SYS1.HASPACE Contains job DASD information and PDDB's 
User address space for input/output data sets. 
during XEO 

PO DB Peripheral Data SYS1.HASPACE Describes a job input or output data set. 
Definition Block User address space 

during XEO 

OCT Output Control Table SYS1.HASPACE Contains output control records (OCB's) to 
User address space describe data output records (forms, route, 
during XEO etc,) 

Job Management JOE Job Oueue Element In JOB (JES2 Represents a job in process. Resides on 
(RESIDENT) address space) appropriate job queue chain. 

JOB Job Oueue Buffer SYS1.HASPCKPT & Contains the job queue chain header's JOE's 
JES2 address space and I/O parameters for checkpointing. 

JOT Job Output Table SYS1.HASPCKPT & Central control block for all JES2 output. 
JES2 address space Contains three kinds of JOE's. 

JOE Job Output Element IN JOT (JES2 Represents output data set by units of work, 
address space) characteristics of data set, and class of output. 

SJB Subsystem Job Block CSA SUBPOOL 231 Represents a job in process toOS/VS2 used 
by HASPSSSM interface routines. 

SOB Subsystem Data Block User address space Used by HASPSSSM to control processing of 
SUBPOOL 229 data set using HASP Access Method (HAM). 

Job Management PIT Partition Information CSA Completely describes a JES2 logical partition, 
(MIS- Table its job classes and current state. 
CELLANEOUS) CAT Class Attribute Table JES2 Address Space Describes the attributes of a job class. 

SCAT SYSOUT Class In SSVT Space Describes output classes by print, punch, 
Attributes Table plot, etc. characteristics. 

Unit Management OCT Device Control Table JES2 Address Space Represents a unit record device or RJE line. 
Contains all the information necessary to 
set up EXCP. 

RAT Remote Attribute Table JES2 Address Space Consists of one entry per remote device, 
containing attributes of device. 

Multi-System OSE Shared Oueue Control SYS1.HASCKPT & One per system of a Multi-Access Spool 
Management Element JES2 address space environment, containing identification and 

(JOB) cross-system communication parameters. 

I Figure 5-49. Major JES2 Control Blocks 

Section 5 •. Component Analysis 5.12.17 



5.12.18 OS/VS2 System Progtartlining Library: MVS Diagnostic Techniques 



Subsystem Interface (SSI) 

In the course of HASP/ASP installation, hooks were put into OS and SVS operating 
systems to establish an interface. With the job entry subsystem (JES), an interface 
was designed to eliminate the need for these hooks. 

The subsystem interface (SSI) is primarily used to communicate with the job 
entry subsystem (either JES2 or JES3), but is flexible enough to communicate 
with any trace subsystem. 

System Initialization Processing 

At SYSGEN, the name of the primary job entry subsystem and secondary sub­
systems are listed on the SCHEDULR macro and put in the job entry subsystem 
names table (CSECT IEFJESNT). Alternatively, secondary subsystems may be 
specified in the subsystem names table in load module IEFJSSNT. 

The master scheduler base initialization module (IEEVIPL) gives control to the 
subsystem interface initialization module (IEFJSINT). This module builds a 
subsystem communication vector table (SSCVT) for each unique name in the JES 
name table and in the subsystem names table. The SSCVTs are chained together 
with the primary job entry subsystem SSCVT first, and the master subsystem 
SSCVT second. These are followed by (in the same order as in their respective 
tables) the SSCVTs in the JES names table and in the subsystem names table. 
IEFJSINT also puts the name of the primary job entry subsystem in the JES 
control table (JESCT). The subsystem vector table (SSVT) for the master 
subsystem is built and initialized. The subsystem allocation sequence table (SAST) 
is built for later use in allocating subsystem data sets. IEFJSINT then returns 
control to IEEVIPL. 

The job entry subsystem builds and initializes its own SSVT when the system 
is initialized. All other subsystems must do likewise. A subsystem can be 
initialized as follows: 

• By being started (for example: START JES2) or, 

• By having an initialization routine specified in the subsystem names table. 

Additional subsystem initialization processing is performed by module IEEMB860. 
This module has two subsystem initialization functions. The first is to issue 
operator messages for errors that occurred during subsystem interface initialization; 
the second is to LINK to the subsystem initialization routines specified in 
IEFJSSNT. 

Section S. Component Analysis S.13.1 



Subsystem Interface (SSI) (continued) 

Operator messages are issued by IEEMB860 rather than IEFJSINT because 
IEFJSINT executes before the communications task has been initialized. Message 
IEE730I is issued to indicate that a duplicate subsystem has been specified in the 
subsystem names table. A subsystem is a duplicate if it is: 

• A respecification of the primary job entry subsystem 

• A respecification of the MSTR subsystem, or 

• A respecification of a subsystem that has been initialized previously. 

Message IEE858I is issued if the subsystem names table (IEFJSSNT) could not 
be found; message IEE859I is issued for each subsystem initialization routine 
which could not be found. It is the responsibility of the subsystem initialization 
routine to inform the operator of and recover from errors in that routine. If the 

. subsystem initialization routine fails to recover from these errors, the next entry 
in IEFJSSNT is processed and the failing subsystem may not be completely 
initialized. 

Subsystem Interface Major Control Blocks 

Subsystem interface's major control blocks are the JES control table (JESCT), 
the subsystem communications vector table (SSCVT), the subsystem vector table 
(SSVT), the subsystem information block (SSIB), the subsystem options block 
(SSOB), and the extension to the SSOB or function dependent area. The 
following table summarizes each of these control blocks which are described in the 
Debugging Handbook. 

5.13.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Subsystem Interface (SSI) (continued) 

Control Created By Sub pool Key Size 
Pointed 

Function 
Mapping 

Block ToBy Macro 

JESCT SYSGEN NUCLEUS 0 44 bytes CVT Contains information needed by IEFJESCT 
the Subsystem Interface and 
addresses of Scheduler routines. 

SAST IEFJSINT 241 0 Note 1 JESCT Defines the order in IEFJSAST 
which subsystems will 
be invoked to allocate 
subsystem data sets. 

SSCVT IEFJSINT 241 0 24 bytes JESCT Identifies each subsystem defined IEFJSCVT 
to the system and points to the 
SSVT for each subsystem. 

SSVT Subsystem Any - determined Any Note 2 SSCVT Contains the indications of func- IEFJSSVT 
owning the by the subsystem tions of a subsystem and the 
SSVT, at addresses of the routines that 
initialization of perform those functions. 
subsystem. 

SSIB The user of User's Subpool Any 36 bytes SSOB, Identifies the subsystem to the IEFJSSIB 
Subsystem JSCB Subsystem· Interface and passes 
Interface information between the sub-

system and its caller. 

SSOB The User of User's Subpool Any 20 bytes SSWA, The parameter list for the Sub- IEFJSSOB 
Subsystem IEL system Interface. 
Interface 

Function The User of User's Subpool Any Variable SSOB Passes. information to the function IEFJSSOB 
Dependent Subsystem of the subsystem the user wishes to 
Area Interface invoke. 

Notes: 
1. The SAST size is 8 bytes plus 12* (the number of subsystems in the SSCVT chain). 
2. The SSVT size is 260 bytes plus 4* (the number of functions suppored by the subsystem). 

Minimum size is 264 bytes, maximum - 1284 bytes. 

Control Block Usage is shown in Figures 5-50 and 5-51. 

Section 5. Component Analysis 5.13.3 

• 



• 

Subsystem Interface (SSI) (continued) 

Lac X'10' 

I 
CVT' 

X'128' CVT JESCT ~ 

(JESCT 

X'14' JESSSREQ 

X'18' JESSSCT 

JESPJESN 
X'1 C' 1------1 

r 
x '30' J ESSAST A, 

SSCVT SSCVT SSCVT 

X'O' 'SSCT' If 'SSCT' If 'S5CT' 

SSCTSCTA SSCTSCTA SSCTSCTA X'4' 

X'8' SSCTSNAM 

X'10' SSCTSSVT 

J 
SSVTCOD-
256·byte 
Function Matrix 

X'1 04' .... S_S_V_T_R_T_N-t ] Function Pointer 
i Matrix can be 
Maximum 256 Words 

SSCTSNAM 

SSCTSSVT. 

~SSVT 

SSVTRTN 

, Figure 5·50. Subsystem Interface Control Block Usage 

SSCTSNAM 

.SSCTSSVT 

SSVT 

SSVTRTN 

5.13.4 OS{VS2 System Programming Library: MVS Diagnostic Techniques 

• 



Subsystem Interface (SSI) (continued) 

Requesting Subsystem- Services 

To request subsystem services, a system routine enters the correct function code 
(see Subsystem Interface Summary in OS/VS2 System Logic Library) 
in the subsystem options block (SSOB), and the name of the desired subsystem in 
the subsystem information block (SSIB). The IEFSSREQ macro is then issued, 
causing control to pass to the subsystem interface routine IEFJSREQ. The 
specified function code and subsystem name indicates to the interface routine 
the subsystem routine to receive control. 

Invoking the Subsystem Interface 

Storage is acquired for the SSIB, the SSOB, and the function dependent area of 
the SSOB if required. The following entries are made in the SSOB header: 

SSOBID - 'SSOB'. 

SSOBLEN - The length of the SSOB header. 

SSOBFUNC - The function ID of the function to be invoked. 

SSOBSSIB - The address of the SSIB or zero. Zero means that the life-of-job 
SSIB is to be used. Its address is in the active JSCB, field 
JSCBSSIB. The request will thus be directed to the subsystem 
that started the initiator under which the job is running. (See 
Figure 5·52).-

SSOBINDV - The address of the function dependent area or, if not needed by 
the function, zero. 

The following entries are made in the SSIB: 

SSIBID - 'SSIB' 

SSIBLEN - The length of the SSIB 

SSIBSSNUM - The name of the subsystem to which the request is being made. 

SSIBJBID 
SSIBDEST 

- If the function requires these fields 

The entries made in the function dependent area are: 

length 

* 
- The length of the function dependent area (first halfword) 
- Any fields required by the function 

Section 5. Component Analysis 5.13.5 



Subsystem Interface (SSI) (continued) 

Register 1 

SSOB Header 

X'O' 'SSIB' 

X'4' X'4' SSIBLEN 

X'S' X'S' SSIBSSNM 

X'C' SSOBRETN } Function 
Dependent 

X'10' SSOBINDV 

Function Dependent Area (SSOB Extension) 

16:;;::'on 
~-----""j TvpeofFunctlon 

~-----.., 

I Figure 5-51. Control Block Structure for Invoking Subsystem Interface 

TCB 

X'B4' TCBJSCB 

JSCB JSCB 

X'15C' JSCBSACT 
( 

JSCBSSIB X'13C' 

~SSIB 
X'O' 'SSIB' 

X'4' SSIBLEN I 
Note: The active JSCB may be the X'8' SSIBSSNM 

same as TCBJSCB. 

Figure 5-52. Finding the SSIB for a Job When SSOB Pointer is Zero 

5.13.6 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Subsystem Interface (SSI) (continued) 

Register 1 points to a one-word parameter list which points to the SSOB. 
(See Figure 5-51). 

Macro IEFSSREQ is invoked which passes control to routines which handle the 
Subsystem Interface request. The communications vector table (CVT) and the 
JES control table (JESCT) must be mapped if IEFSSREQ is invoked. 

The subsystem interface returns a code in register 15. Possible return 
codes are: 

o - Successful completion - request went to subsystem 

4 - Subsystem does not support this function 

8 Subsystem exists, but is not active 

12 Subsystem does not exist 

16 Function not completed - disastrous error 

20 Logical error (such as invalid SSOB format, incorrect length) 

The field SSOBRETN in the SSOB contains a return code from the subsystem if 
the request was successful. The return code depends on the function being invoked 
(see the SSOB description in the Debugging Handbook.) 

Logic Flow Examples 

Thi$ section provides an overall logic flow from a task making a request, through 
the subsystem interface to the subsystem, and then back to the task. Two 
examples are described. 

Notifying a Single Subsystem 

1. A task (TSO/cancel) wants to inform JES2 that a job is to be canceled. 

2. The task creates an SSOB, SSIB, and a function dependent area. 

a. The SSOB is filled in. A function code of 2 is used. (See OS/VS2 System 
Logic Library, Volume 3, for a complete function code list.) 

b. The SSIB is filled in. The subsystem name is JES2. 

c. The function dependent area is filled in with the necessary information that 
the subsystem needs for this type of request. 

3. Macro IEFSSREQ is invoked which branches to module IEFJSREQ 
(IEF JSREQ's address is in the JESeT). Register 1 points to a parameter list 
which points to the SSOB .. 

4. IEFJSREQ checks: 

a. Are the pointers to the SSOB and SSIB valid? No, then return with a return 
code of 16 in register 15. 

Section 5. Component Analysis 5.13.7 



Subsystem Interface (SSI) (continued) 

b. Are the formats of the SSOB and SSIB correct? No, then return with a 
return code of 20 in register 15. 

c. Find the requested subsystem's SSCVT. If not found, return with a return 
code of 12 in register 15. 

d. Find the requested subsystem's SSVT. If not found, return with a return 
code of 8 in register 15. 

e. Is the requested function code valid? No, then return with a return code of 
16 in register 15. 

f. Is the requested function code supported by the requested subsystem? 
No, then return with a return code of 4 in register 15. 

g. Index into the SSVT and get the address of the function routine. 

h. Branch to the function routine. Register 0 = Address of the SSCVT, 
register 1 = Address of the SSOB. 

5. Module HASPSSSM at label HOSCANC receives control. It is the function 
routine for JES2 for function code 2 (CANCEL request). 

a. Process the request and place a return code in the SSOB (SSOBRETN). 

b. Return codes for this function code are as follows: 

o - CANCEL completed. 

4 - Job name not found. 

8 - Invalid JOBNAME/JOB ID combination. 

12 - Job not canceled - Duplicate jobnames and no job ID given. 

20 - Jobnot canceled- Job is on output queue. 

24 -' Job ID with invalid syntax for subsystem. 

28 . - Invalid CANCEL request. Cannot cancel an active TSO user or a 
started task. 

6. Control is then returned to the requesting task directly from the function 
routine. The task then examines register 15 and SSOBRETN and acts 
accordingly. 

Notifying All Active Subsystems 

1. A task wants to notify all active subsystems of a WTO message. 

2. The task creates an SSOB and a function dependent area. No SSIB need be 
created if the task's life-of-job SSIB has the master subsystem's name (MSTR) 
in it. If it does not, and that SSIB is used, only one subsystem would be 
notified. The SSOB ·and the function dependent area are mled in. A function 
code of9 is used. (A list .of all function codes is in OS/VS2 System Logic 
Library, Volume 3.) 

5.13.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques 



Subsystem Interface (SSI) (continued) 

3. Macro IEFSSREQ is invoked which branches to IEFJSREQ (address is in the 
JESCT). Register 1 points to a parameter list which points to the SSOB. 

4. IEFJSREQ checks: 

a. Are the pointers to the SSOB and SSIB valid? No, return with a return 
code of 16 in register 15. 

b. Are the formats of the SSOB and SSIB correct? No, return with a return 
code of 20 in register 15. 

c. Find the requested subsystem's SSCVT. If not found, return with a return 
code of 12 in register 15. 

d. Find the requested subsystem's SSVT. If not found, return with a return 
code of 8 in register 15. 

e. Is the requested function code valid? No, return with a return code of 16 
in register 15. 

f. Is the requested function code supported? No, return with a return code 
of 4 in register 15. 

g. Index into the SSVT and get the address of the function routine. 

h. Branch to the function routine. Register 0 = address of the SSCVT. 
Register 1.= address of the SSOB. 

5. The SSIB points to the master subsystem, so module IEFJRASP is the function 
routine that receives control. 

a. IEF JRASP makes a copy of the SSIB. 

b. For each SSCVT, th~ name of the subsystem is copied into the SSIB copy. 
(The master sUbsystem's SSCVT is skipped.) IEFSSREQ is then invoked for 
each subsystem. 

c. The highest return code from the subsystems is placed in the requesting 
task's SSOB, and the lowest return code from the subsystem interface is 
put in register 15. 

6. Control is then returned to the requesting task directly from the function 
routine. The task then examines register 15 and SSOBRETN and acts 
accordingly. 

Debugging Hints 

• Paging must be possible at the time subsystem interface is entered since the 
code for subsystem interface may not already be paged in at the time the call 
is made. 

• For the same reason, the processor must not be physically disabled. 

• The mapping macro IEFJSSVT maps the SSVT. Only the master subsystem's 
SSVT matches the mapping exactly. JES2 and JES3 SSVTs have additional 
material appended to the end of the area mapped by IEFJSSVT. For JES3, 
the mapping macro is IATYSVT. For the contents of the JES2 SSVT, refer to 
OS/VS2 JES2 Logic. . 

Section 5. Component Analysis 5.13.9 



Subsystem Interface (SSI) (continued) 

• Some functions requested at theinaster subsystem cause the function to be 
broadcast to every active subsystem. These function codes are: 

4 - Notify the subsystem of end-of-task. 

8 - Notify the subystem of end-of-address space. 

9 - Notify the subsystem of a WTO message. 

10 - Notify the subsystem of an operator command. 

14 - Notify the subsystem of a delete operator message (DOM). 

32 - Notify the subsystem of a failing START command. 

• Function code 9 is used in an SSOB with the pointer to the SSIB always zero. 
This causes the SSIB pointer in the JSCB to be used. If that SSIB is for the 
master subsystem, the request is ~v(m to every active subsystem. If the 
SSIB is not for the master sub&ystem, the request is given to only the 
subsystem named in the SSIB. 

• If a subsystem verification request (function code 15) is made to the master 
subsystem, (field SSIBSSNM in the SSIB contains 'MSTR'), and the name in 
the SSIBJBID field of the SSIB is not that of a job entry subsystem, then 
upon return from the subsystem interface, field SSIBSSNM will contain 
the name of'the primary job entry subsystem. Ajob entry subsystem is 
dermed as a subsystem that can provide its own sysout services. This is 
indicated by bit SSCTUPSS being offin the subsystem's SSCVT. 

S.13.10 OS!VS2 System Programming,'Library: MVS Diagnostic Techniques 



Recovery Termination Manager (RTM) 

The recovery termination manager (RTM) cleans up system resources when a task 
or address space tenninates, either normally or abnonnally. 

Functional Description 

Logically, RTM consists of four related processes. 

1. RTMl attempts recovery for software or hardware errors; it is entered via the 
CALLR TM macro instruction issued by supervisory routines. Functional 
recovery routines (FRRs) are processed in this logical phase. 

2. RTM2 performs normal and abnormal task termination for both system and 
problem program routines. The ABEND macro (SVC13) requests RTM2 services. 

3. Address space tennination provides normal and abnonnal address space 
termination for supervisory routines. The CALLRTM macro instruction is used 
to request this function. 

4. RTM support functions such as error recording, formatting of dumps*, and 
creating recovery control blocks for error exit processing. 

*Note: RTM generates an error id that ensures that information recorded in 
SYS1.LOGREC concerning a problem, can be readily correlated with SVC dump 
infonnation concerning the same problem. See 'Error Id' later in this topic. 

Work Areas 

For details of RTM work areas see "Use of Recovery Work Areas for Problem 
Solving" in Section 2. 

Major RTM Modules 

RTM 1, which is part of the nucleus, comprises four modules: 

1. IEAVTRT1 - RTM entry point processor 

2. IEAVTRTM - RTM1 mainline 

3. lEA VTR TS system recovery manager 

4. IEAVTRTR RTMI recovery routines 

Section 5. Component Analysis 5.14.1 



Recovery Termination Manager (RTM) (continued) 

RTM2, which resides in the link pack area (LPA), is entered via SVC 13. The 
mainline for RTM2 comprises the following three modules: 

1.IEAVTRT2 
2.IEAVTRTC 
3.IEAVTRTE 

- initialization 
- controller 
- exit handler 

Other important RTM2 modules are: 

• IEAVTAS1 
• IEAVTAS2 
• IEAVTAS3 
• IEAVTSKT 
• IEAVTMRM 
• IEAVTRML 

Process Flow 

pre-exit processing 
post-exit processing 
control recovery 
task termination purges 
R TM2 resource manager 

- installation resource manager list 

The following charts depict the process flow for: 

• Hardware error processing 
• Normal end-of-task termination 
• Abnormal end-of-task termination 
• Retry 
• Cancel 
• Address-space termination. 

Hardware Error Processing 

Depicted here is the processing for a hard type machine check in a global routine 
that has FRR recovery. It shows the interfaces and control flow between the 
machine check handler and RTM1 for both hardware error processing and the 
resulting sofi:ware recovery attempt by the FRR. It indicates that software 
recovery continues in task mode because, in this example, the FRR does not 
recover the error. 

The use of extended error descriptors (EEDs) allows the LOGREC buffer to be 
available for further possible machine checks and is the mechanism for passing 
information to RTM 1 and RTM2. The information in the global system diagnostic 
work area (SDW A) used by RTM 1 recovery was obtained from the EEDs. RTM2 
obtains an SDW A, but also uses the EEDs as its source of error data to be passed 
to recovery routines. 

RTM 1 uses the RTM processor-related work save area (WSACRTMK) to alter 
the registers and the PSW that MCH reloads, thereby determining whether MCH 
resumes the interrupted process (soft error), or reenters RTM1 for software 
recovery (or hard error). 

5.14.2 OS!VS2 System Programming Library: MVS Diagnostic Techniques 



Recovery Termination Manager (RTM) (continued) 

MCH 

• Processing a storage 
check in a global 
routine that has 
established an FRR . 

• Invokes RTM1 for 
software repair: 
CALLRTM .. 
TYPE=MACHCK I. 

Logree Buffer 

Information 
about 
hardware 
error 

~ RTM1 

~~II~E~A~V_T_R_T~1 ____ ~.~~ ~IEAVTRTM 
L...i... • Sets up environ- ..... Calls lEA VTRTH 
~ ment for MACHCK (Hardware error 

entry. processor). 

01EAVTRTH ... • Preserve hardware 
data in EED's 
(RTM's internal 
control blocks). 

• Call appropriate 
repair routine. 

.. 

Legend: 

~Pointer 

--+ Control flow 

c:::=;> Data flow 

EED 

Registers EED 
and PSW 
at time of Repair 
MACHCK status 

informa-

I tion 

• Record hardware 
error to logrec. 

WSACRTMK 

WSACRTMK 

MCH 

• Returns to caller 
(MCH) with pointer 
to WSACRTMK. 

I 

• Passes back pOinter 
to re-e ntry data 
(stored in 
WSACRTMK). 

... • Establish 
environment for 
re-entry to RTM in 
WSACRTMK. 

Registers 
and PSWfor 

'" 
re-entry to 
RTM1 

SDWA 
regs and 
PSW 
altered 
by RTM1 

r'\ MACHCK 
rV Information 

JCs) MCH 11 
~~~~I~I~V6----~/~)----~~~----~ 
.....,.. • Load registers and ~_".GI E~A~V~T~R~T~1 ;j~~;;_\~7~ I EAVTRTM 8 I EAVTRTS FRR ~

..

~~ ~ ~
WSACRTMK (causing r • Sets up environment • Attempt system,.. • Routes to FRR to
re-entry to RTM1 _ for MACHCK recovery since error attempt recovery for
type MACHCK _ re-entry. (MACHCK) occurred routine that suffered
RE-ENTRY) for in a global routine. MACHCK.

software recovery

DISPATCHER

The task is
dispatched eventually
and execute the SVC
13 which causes
RTM2 task
recovery/termination
services to be invoked.

• Exits to the
dispatcher.

• Sets up task for
entry to RTM2 by
altering RBOPSW.

~ ~

...
~--------------~ --

TCB

TCBRTM12 • EEDs
RB

~ SVC 13

SDWA A

'--- ..
Continue­
with-term.

• Records the error •

• Returns with a
'Continue-with­
termination'
indicator

~r- ,.
~.. Percolates

Section 5. Component Analysis 5.14.3

• •

Recovery Termination Manager (RTM) (continued)

Normal 'Task Termination

EXIT and parts of RTM2 make up this function. The flow shows how EXIT is
entered and then reentered to complete task termination; it also provides a
perspective of RTM2 functions related to normal termination of a task.

Task issues SVC 3

~ISP
IGC003 - EXIT

PRB SVRB

ASXB

Legend:

--.. Pointer -+ Contrpi Flow

===> Data Flow

\

1 Determine tasks
eligibility for normal
task termination .
• Exit was issued by

last AS or AB queue •

~IASXBTCBS~
• TCBEOT = zero.

DISP

\!\ 2 Issue SVC 13 to pass
control to RTM2.

RTM2

Pass control to task termination
processor.

2 It ASXBTCBS indicates '1' task is left
in the memory - then address space
termination Is necessary. Set the task
non-dlspatchable and issue CALLRTM
TVPE=MEMTERM to SCHEDULE an
SRB Which Initiates address space
termination processing.

3 If only normal task termination. then
branch to exit prolog to get rid of
SVRB.

4 Free the RTM2 work area.

BRANCH

Prolog deletes SVRB

1

IEAQSPET - IEAVGCAS
.... BALR ..

Free storage ... r

BALR ..
IGC062R1 IEAVEEDO

2
,Free TCB & RB core.
"Dequeue TCB.

~
OlSP

\

IEAVTRTC

No abnormal conditions to
handle.

IEAVTSKT

Free resources via Link to F.TM2 and
user defined resources managers,
passing resource managers parameter
list (RMPL).

2 Set PRB resume psw to point to an
SVC 3 Instruction.

3 Set end-of-task indicator for exit in
TCB (TCBEOT).

4 Indicate proper control flow in RTM2
work area.
• If last task in memory. indicates

address space termination
processing.

, • Not last task.

IGC003 - EXIT

Since the end-ot-task indicator
has been set (TCBEOT) BALR'to
resource manager for cleanup of
task, I

0) TRRM BALR .. I

CD
... ..

VSM

CD PGM .. BALR ..
0

,

l OET

Exit to dispatcher.

RTM2WA

Communications are
tor processing within
the RTM2 load
module.

RMPL

• LINK, To all Resource Managers
defined in IEAVTRML

..,. ~ To System Resource
"'II Managers

PRB

IEAVTSBP I
Dequeue/Free SCB's owned by RB or J task.

IEAPPGMX I
Free programs I

EITHER

• Schedule end-ot-task exit BH 14
routln!' ror task.

OR . ,
• Post mother task if attached

Normal Task Termination w/ECB operand.
is Complete

5.14.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques

ABEND

TCB

Recovery Termination Manager (RTM) (continued)

Abnormal Task Termination

Shown here is the logic flow during abnormal termination of a non-critical nature.
If the error is not recoverable at a particular task level, that task and its subtasks
are removed. If the scope of the abend is "Step," then the entire job step is
removed. Optionally, serviceability information (dumps and software error
records) is supplied to the user.

1----...J,,·-;.;ooihb;;ta;T�n;.'"i�-;;n~ltlalize and queue

Control Is
returned from
IEAVTASI

legend

-----.... Pointer

---+ Control Flow

c===) Data Flow

the RTM2 work area.
• Save a copy of the trace
t~le~ _ ... __

IEAVTRTC

• Validity check and process
the dump options.

(Stacking)

IEAVTRTC

• ABTE RM SMC subtasks
with 100.

• Walt for the subtasks In
RTM2 to complete.

• Set the subtasks non·
dispatch able.

• Purge the resources. 1P ~~~~~JI--------~~ ~~IEAVTRT2

normal exit

resource managers •
• Update the RB queue

for exit.

Section 5. Component Analysis 5.14.5

Recovery Termination Manager (RTM) (continued)

Retry

Shown here is the flow through RTM2 when processing a potentially recoverable
error. The recovery exit is supplied environmental data that describes the error
(for example,completion code, register contents, PSW,system state at time of
error) to ilid in diagnosing the error. To retry, the resume PSW in each
request block (RB) up to and including the retry RB is modified. The retry
address supplied by the exit is placed in the resume PSW field of the retrying RB,
and all RBs between the retry RB and the RTM2 RB have their resume PSW set to
either exit prologue or SVC 3. When RTM2 eventually returns to the system,
supervisor-assisted linkage will cause the retry address in the retry RB to be given
control.

r;;sc~ SJ·~Lr_:g __ V_I. ___ ~ __________ ~
IEAVTRTC

Tce

Control from
IEAVTASl via
IEAVTRTC

• Process and validity check the dump
options.

• Select an exit (SCB).
• Obtain and Initialize the SDWA.
• Perform I/O requests and block

asynchronous exits If requested.

.~V:'C~t:,EXI~ ... __ _

IEAVTAS2 •

• Track the SDWA.
• Record, If requested.
• Save the dump OPtions.

IEAVTRT2

• Route control to IEAVTRTE.

IEAVTRTE

• Free the saved copy of the trace
table If available. (RTM2TRTB10).

• Free the RTM2 work area.
• Clear the TCB flags.
• Branch to the exit prologue.

Abnormal
'exit

5.14.6 QS/VS2 System Programming Ubw{ MVS Diagnostic Techniques

User exit

.Dlagn'ose
error

• Select
options

Legend:

---. PoInter

• ••• ~ Contr~1 flow

~Dataflow

RTM1

• Process the EED's.
• SDUMP/SLIP considerations.

IEAVTRTC --..-

• Set the subtasks non­
dispatch able.

• Process the subtasks and current
task. Setting abend bits,
halting I/O and purging
resources.

IEAVTRTC

• Initialize' term oxit processing
until all term exits have been
entered.

Recovery Termination Manager (RTM) (continued)

Cancel

Shown here is the flow of control through RTM when a job is cancelled. The
CANCEL request is indicated by specific completion codes set in the TCB by
RTMI (code='X22'). The CANCEL process is distinctive in that it is considered
a strictly unrecoverable situation. Normal termination procedures are abandoned
in favor of creating an express path through termination. However, term exits
are given control.

IEAVTABD

• Determine the type of dump
(SVSABEND or SVSMDUMP).

• Process the dump data set for
current & SNAP.

• Find the daughters & SNAP If
not SVSMDUMP.

• Reset the TCB flags In current
and daughters.

Legend:

_Pointer

-"control Flow

~DataFIOW

_____ ~--ii61

(Task Termination)

IEAVTSKT'

• Find the deepest subtask.
• Detach the subtask.

L-___ ..J

Resource managers

• Installation resource
managers.

• Initiate task termination until ••••••••• : ~';;~:t~ht~:e~o~~~;~e for

L-~e~ac~h~s~u~b~ta~s~k~h~a~s:.e~x~it~ed~·~. ____ jl............ L-_e_x_lt_. __________________ --J

• IBM resource
managers .

• Free the saved trace table
if available.

Exit prologue
(lEAVEEXP)
Normal exit

Section 5. Component Analysis 5.14.7

Recovery Termination Manager (RTM) (continued)

FORCE Command

The FORCE command is designed to remove a job or TSO user from the system
after the CANCEL command has failed to do so. For example, a job is writing to a
DASD unit when the unit is suddenly made unavailable to the system; in this case,
the CANCEL command is frequently unable to remove the job. If CANCEL does
fail to remove the job, then FORCE can be used. However, FORCE does not use
normal termination or normal cleanup routines, and is intended to be used only as
an alternative to another IPL. '

When FORCE is issued, the job's address space is terminated and any task
running in the address space is terminated. If a job is running under an initiator,
the initiator is also terminated.

FORCE processing is dependent on the recovery termination manager (RTM),
and on the command scheduling control block (CSCB), which contains a new bit
definition in CHAFORCE. When the FORCE command is entered on a console
having system authority, control is given to the CANCEL-FORCE processor which
verifies that the command syntax is correct. The processor then scans the CSCB
chain to, see if the job exists and is cancelable. A bit in the job's CSCB is then
checked to see if a CANCEL has been issued for this job. If not, a call is made to
the message module to issue m~ssage IG~~38I - 'CANCELABLE - ISSUE CANCEL
BEFORE FORCE', and control is returned to the system. If CANCEL has been
issued, a CALLRTM TYPE=MEMTERM is issued. The message module is called to
issue message IEE301I - 'FORCE COMMAND ACCEPTED', and control is then
returned to the system. If an error is found in the command syntax, or the job was
either not found or was non-cancelable, the message module issues an appropriate
message and control is returned to the system.

The FORCE processor uses the, current CANCEL serialization code. The CSCB
chain resource is serialized via ENQUEUE on SYSIEFSD QIO. Because the holder
of CSCB QIO must be non-swappable while holding the resource, the FORCE
command 'processor issues a SYSEVENT DONTSW AP before issuing the
ENQUEUE on QIO.

For' additional information concerning the use of FORCE, see Operator's
Library: OS/VS2 MVS System Commands.

5.14.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Recovery Termination Manager (RTM) (continued)

Address-Space Termination

The process of terminating an address space (memory) is one that cannot be
isolated to one task, module, or logical unit of code. The many parts of the
process, depicting control flow and data flow, are shown here.

Since the MEMTERM process cir­
cumvents all TASK recovery and
TASK resource manager processing,
its use is restricted to a select group
of routines which can determine that
task recovery and resource manager
clean up is either not warranted or
will not successfully operate in the
address space being terminated.
It therefore is restricted to the
following users:

1) Paging supervisor when It de·
termlnel that It cannot swap In the
LSQA for an address space.

2) Address sPace create when It
determines that an address space
cannot be initialized.

3) The RTM or the supervisor can·
trol F R R when they determine
that uncorrectable tranSlation
errors are occurring In·the
address space.

4) The RTM2 when It determines
that task recovery and termination
cannot take place in the current
address space:

5) The RCT when it determines that
the address space is permanently
deadlocked.

6) The RTM2 when all tasks in the
address space have terminated
(IEAVTRTE). This is the only
reQuestor of normal address sPace
termination (that 05 COMPCOD=O).

BALR

CALLRTM
TVPE=MEMTERM
ASIOm
COMPCOO-O (normal)

+0 (abnormal)

queue of
addr .. , spec.(,)
to be terminated.

7) The auxiliary storage management
recovery routine when It suffers an
indeterminate error from which it
cannot recover I while handling a
swap-In or swap-out request.

8) The auxiliary storage management
recovery routine when It deter­
mines that uncorrectable transla"
tlon errors are occurring while ASM
is uSing the control register of
another address space to uPdate the
address space's LSQA.

9) SVC 34 in r.spons. to a FORCE
command.

10) VTIOC In response to an FSTOP
rePly.

Note: Since callers 4. 5, and 6 above are task-related and running in the
address space to be terminated, they will set themselves non-dlspatchable
after Issuance of CALLRTM.

RTCT

I RTCTFASB L­
ASCBQptr ~

~.7 ASCB
POST

, next ASCB I /
Rt

ATMI

IEAVTRTI

Via branch table go to
'TVPE' processor.
TVPE=MEMTERM

IEAVTRTM

Put the ASCB of the
address space to be
termi nated on the address
apace queue.

2 Store the completion
code in tha ASCB with
matching ASIC (or
current).

3 Schedule the SRB to post
the address space termina­
tion task in the master
address space (use of
the SR B routine is
serialized by compare and
swap).

IEAVTRTI

Return to the caller.

\/\
Global SRB dispatcher ,
Address space
termination SRB

Post RTCTMECB
This activates the
address space
termlntlon task In
the master address
space.

Dispatcher
(IEAVEDSO)

Step 1 Identify the requesters
Step 2 The request format
Steps 3.4 Initiate the request
Steps 5.6.7 Process the request

RO

It to dequeued I
ASCB

Rt ~ ________ ~:A:S:ID::::~' RTCTMECB

I ~ Reside~ess space termination CD rt to dequeued ASCBl I MEMTERM I
OPtions

~ controller task in master address space

~ I~ I~ '~_1 __________ I_EA_V_T_M_T_C ____________ -4

I t:::::::::J r-'-"\ Dequeue the last ASCB on the address space
termination queue (QUEUE MOOIFICA-

I TION SERIALIZED via compare and swap.)

Address space
J.. terminator processor taSk

~ IEAVTMTR

I

r-------, I
I

ReSIdent task I I
f~t!~~~~i. I I

'I :~~~tl~;aSt~~~d~tler L..J
IPLl. It remains I

I inactive until I
I poSted for work. I
L _____ --.J

2 Get the local lock _ CMS lock _ dis­
patcher lock.

3 Set th.e address Ipace Indicator by ASCB
non-dilpatchable.

4 MP-W.lt for task and SRB activity for this
addreilipace to stop In other procellor.

5 Free locks.

6 Can SVC I/O purge.
Purge 110 for that
address spee •.

7 CaU RSM (real .torage
management)
to free aU real and
au~iliary storage.

~ ~IGCOOOIF

~ ~IEAVTERM

8 Atteeh a subtask to handle remainder of
purges for the address space (pass ASCB
in Rl).

9 If the address space termination ASCB
queue pointer is not zero, do processing
steps

o to (£) for the n •• t ASCB.

Otherwlle, the talk waltl for work (walt on
RTCTMECBl.

WAIT

~ 1 Set RO to point to this
terminating address
space's ASCB.

-ATTACH

2 I ndicete the
MEMTERM options
in RI.

3 Issue SVC 13 - to
invoke the services of
RTM2.

4 EXIT to the dispatcher.

l
SR 14

SVC 13 ..

Return
to caller.

Legend:

..

RTM2

Perform
address
space
purges

______ Pointer

~ Control flow

~Dataflow

Section 5. Component Analysis 5.14.9

Recovery Termination Manager (RTM) (continued)

Error ID

Error ID ensures that problem information recorded in SYSl.LOGREC, can be
easily correlated with SVC dump information concerning the same problem. The
error id function is invoked whenever the RTM is entered to process an error con­
dition. The RTM determines if the entry is to process a recursive or a new error, a
new error beingone.unrelated to a previous error.

If an error occurs during the processing of a previous error, the error id has the
same sequence number as the original error, but is given a new time stamp. In this
way, the sequence numbers show that the errors are related, and the time stamps
show the history of error processing.

The RTM generates an entirely new error id:

1. Upon entry to RTMI for a machine-check error (module IEAVTRTH)"

2. Upon entry to RTMI in SLIH mode for non-recursive error processing.

3. Upon entry to RTM2 when there has been no previous error processing in
RTMI. Control passed to RTM2 by RTMI does not result in a new error id if
RTMI has already generated one.

RTMI maintains the error id in either the SDWA or an EED. RTM2 maintains
the error id in its work area, RTM2WA. At an appropriate point in the error
processing, the error id is moved to the SDUMP work area (pointed to by
RTCTSDWK), where it is stored until processed by SDUMP. The correct error id is
passed to SySl.LOGREC when a software or hard machine check error record is
written by RTM. Soft machine check error records do not contain an error id
because no subsequent software recovery takes place following a "soft" error.
IFCEREPI recognizes and prints the error id in the LOGREC software or machine
check record. AMDPRDMP recognizes and prints the error id as part of the header
information for an SVC dump, formatted as follows:

ERRORID FOR THIS DUMP = SEOyyyyy CPUzz ASIDaaaa TIMEhh.mm.ss.t

where:
yyyyy represents the sequence number of the error id
zz represents the error id logical processor
aaaa represents the error id ASID
hh.mm.ss.t represents the error id time stamp converted to read as hours,

minutes, seconds, and tenths of seconds

If an error id is not available for a dump (indicated to AMDPRDMP by zeroes in
the error id header field), the message "NO ERRORID ASSOCIATED WITH THIS
DUMP" is printed where the error id is normally found.

To further increase the usefulness of error id, message IEA911 A is changed to
include the error id when an SVC dump is taken. The message reads:

IEA911A COMPLETE/PAR.TIAL DUMP
ON SYS1.DUMPxx/UNIT=ddd
ERRORID=SEOyyyy CPUzz ASIDaaaa TIMEhh.mm.ssit

where xx and ddd have the same meaning as in the current message.

5.14.10 OS/VS2 System Programming Library-: MVS Diagnostic Techniques

Recovery Tennination Manager (RTM) (continued)

, SVC Dump Debugging Aids

The SVC dump function of RTM is invoked when the SDUMP macro is issued. SVC
dump produces dumps of system errors on a SYSl.DUMPxx or user-defined data
set. SVC dump also produces abend dumps requested by SYSMDUMP DD
statements.

Items that are important for you to understand when debugging errors in SVC
dump processing are described in the following topics:

• Important SVC Dump Entry Points

• SVC Dump Error Conditions

• SYSl.LOGREC Entries Produced for SVC Dump Errors

• Control Blocks Used to Debug SVC Dump Errors

• Resource Cleanup for SVC Dump

Important SVC Dump Entry Points

The BRANCH= parameter on the SDUMP macro determines the SVC dump entry
points and mainline processi~g to be used.

BRANCH=YES Option

Entry point lEA VTSDX is used for branch-entry SVC dumps. lEA VTSDX creates
a summary dump in a'real storage buffer (if the SUMDUMP option is requested on
the SDUMP macro), schedules one or more SRBs to invoke dump task (IEAVTSDT)
processing for the requested address spaces, and then returns control to the caller.

The branch-entry option is requested by many FRR routines and some ESTAE
routines. This option is also requested when ACTION=SVCD is specified on the
SLIP command.

BRANCH=NO Option

Entry point lEA V ADOO is used for the SVC entry to SVC dump. For scheduled
dump requests (ASID or ASIDLST is specified on the SDUMP macro), lEA V ADOO
calls lEA VTSDX which schedules one or more SRBs to invoke dump task
(lEA VTSDT) processing for the requested a,ddress spaces, and then returns control
to the caller. For synchronous dump requests (ASID and ASIDLST are not
specified on the SDUMP macro), lEA V ADOO processes the dump and then returns
to the caller.

The SVC entry is requested by many ESTAE routines. It is also requested by
the DUMP command (as a scheduled dump), and by the abend dump processor
(lEAVTABD) for SYSMDUMP DD statements (as a synchronous dump).

SectionS: Component Analysis 5.14.11

Recovery Tennination Manager (RTM) (contipued)

SVC Dump Error Conditions

If the SVC dump function encounters an unexpected abend during its processing,
it produces a software SYS1.LOGREC record and, if possible, continues taking
the dump.

Expected program checks can occur when SVC dump is checking whether a
virtual page that is to be dumped is valid and assigned. These program checks
do not result in SYSl.LOGRECentries.

SVC dump issues abends 133 and 233 if it detects an unauthorized caller or
invalid input parameter. In these cases, LOGREC entries are not created and retry
is not attempted.

SVC dump issues a COD abend for some unexpected errors during its processing.
In this case, retry is attempted.

SYS1.LOGREC Entries Produced for SVC Dump Errors

The best starting place for debugging SVCdump problems is the SYS1.LOGREC
entries contained in the in-storage SYS1.LOGREC buffer or in SYS1.LOGREC,
because a dump of the SVC dump problem is generally not available. (SVC dump
does not take a dump of its own problems.)

Many SVC dump problems can be debugged from the SYS1.LOGREC entries
alone. However, more complex problems may require a stand-alone dump that
can be taken after a SLIP trap with ACTION=WAIT has matched. These problems
include loops and failures to free critical system resources.

Fixed Data

The fixed data that SVC dump places in the system diagnostic work area (SDW A)
for recording on SYS1.LOGREC is:

SDWAMODN - Load module name (generally IGC0005A, which is the SVC 51
load module in SYSl.LPALIB).

SDW ACSCT - CSECT (microfiche) name, which can be any SVC dump
module name. For details of SVC dump module functions,
interfaces, and flow, refer to OS/VS2 System Logic Library.

SDWAREXN - Recovery routine name, which is given as a label. This label
is not always within the failing CSECT shown in SDWACSCT.

5.14.12 O~LVS2 System Programming Library,: MVS Diagnostic Techniques

Recovery Termination Manager (RTM) (continued)

The following table shows the label of the recovery routine, the name of the
containing CSECT, and a description of the recovery processing.

Label CSECT Description

DTEST AEI IEAVTSDT ESTAE routine for scheduled SVC dumps that are
executing under the dump task (IEAVTSDT) in the
requested address space. lEA VTSDT also establishes
SDESTAEX which can percolate to DTESTAEI.

SCHFRR IEAVTSDX FRR routine for branch-entry to SVC dump and
for the timer disabled interrupt element (DIE)
used to free SVC dump's real storage buffer. This
FRR is established by lEA VTSDX.

SDEST AEX lEA V ADOO EST AE routine for mainline SVC dump processing.
This EST AE is established by lEA V ADOO and
IEAVTSDT.

SDFRRRTN lEA V ADOO FRR routine for mainline SVC dump processing.
This FRR is established by SVC dump modules when
a lock is held and a retry is needed in the locked
state. IEAV ADOO and IEAVTSDT are the main
users of this FRR.

SUMFRFRR lEA VTSSD FRR routine for SUMFRR routine processing.

SUMFRR

Variable Data

This FRR is established by the SUMFRR routine.

lEA VTSSD FRR routine for summary dump processing invoked
for branch-entered SVC dumps. This FRR is
established by lEA VTSSD. If SUMFRR abends,
SUMFRFRR receives control; and if it percolates,
SCHFRR receives control.

The variable data that SVC dump places in the SDW A for recording to
SYSI.LOGREC is:

SDWAVRA Contains the 24-byte recovery routine parameter area if
DTESTAEl, SDESTAEX, SDFRRRTN, SUMFRFRR, or
SUMFRR is the recovery routine name in SDWAREXN. This
area contains bits that indicate the resources held, other status
bits, the retry address, the base register value, and the address
of the SVC dump work area (ERRWKADR at X'8 '). The
contents of the parameter area are mapped by the IHASDERR
macro. The common name of the work area is ERRWORK.

To obtain the offset into the failing module, subtract the base register field in
ERRWORK (ERBASEI at X'C') from the address in the failing PSW (found in
the SDW ANXTI field at X'6C').

Section 5: Component Analysis 5.14.13

Recovery Termination Manager (RTM) (continued)

Control Blocks Used to Debug SVC Dump Errors

The following control blocks contain key information that can be used to debug
problems in SVC dump routines.

• Address Space Control Block (ASCB)

• Recovery Termination Control Table (RTCT)

• SVC Dump Work Area (SDWORK)

• Summary Dump Work Area (SMWK)

Address Space Control Block (ASCB)

The ASCB contains the address of the TCB for the SVC dump task (lEA VTSDT)
in the ASCBDUMP field (at offset X'60'). In this TCB, the TCBEXSVC bit (low­
order bit at X'CC') is set on while the SVC dump task is executing.

Recovery Termination Control Table (RTCT)

The RTCT is pointed to by the CVTRTMCT field (at X'23C') in the CVT. It
contains SVC dump information including status bits, an array that describes the
SYSl.DUMPxx data sets, and an array that contains information for the address
spaces to be dumped.

SVC Dump Work Area (SDWORK)

The SDWORK is pointed to by the RTCTSDPL field (at X'9C') in the RTCT. It
contains most of the reentrant storage used by SVC dump including register save
areas, CCWs, and the I/O buffer that contains the 4104-byte SVC dump records
before they are written to the dump data set.

Summary Dump Work Area (SMWK)

The SMWK is pointed to by the RTCTSDSW field (at X'B4') in the RTCT and
contains fields used when a summary SVC dump was requested or defaulted (via
the SUMDUMP option on the SDUMP macro). It includes counter fields that show
how many real frames are used for the real storage buffer that holds the summary
dump created for branch-entry callers of SVC dump. The count of real frames held
.(field SMWKFRHD at X'C6') is zeroed after the summary dump is written to the
dump data set and the frames returned to RSM.

5.14.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Recovery Termination Manager (RTM) (continued)

Resource Cleanup for SVC Dump

Resource cleanup performed by SVC dump includes: setting the system dispatch­
able, setting tasks dispatchable, freeing the summary dump real storage buffer,
deleting the TQE for the storage buffer, restarting the system trace, writing end-of­
file on the dump data set, dequeueing the dump data set, and turning off indicators
that an SVC dump is in progress. These resources are cleaned up by SVC dump's
mainline processing or recovery routines. In special cases, the following routines
also perform resource cleanup.

If an address space terminates during SVC dump processing, SVC dump's
MEMTERM exit (IEAVTSDR) cleans up the resources related to that address
space (such as setting tasks dispatchable). If the address space was the last to be
processed, then all resources are cleaned up and the SVC dump in-progress indica­
tors (high-order bits in the CVTSDBF (at X'24C') and RTCTSDPL (at X'9C')
fields) are turned off so that additional dumps can be taken.

SVC dump also uses a timer DIE exit that is contained in module lEA VTSDX
at label SCHDIE. This exit ensures that the SVC dump real storage buffer is
returned to RSM if SVC dump encounters an error during processing (such as a
loop).

Section 5: Component Analysis 5.14.15

5.14.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Communications Task

The communications task (comm task) handles communications between console
operators and the system (user programs and system routines).

The types of communications that the communications task handles are:

• Operator commands from a console as a result of an attention interrupt (on local
devices).

• Output to the operator caused by the write-to-operator (WTO), write-to­
operator with reply (WTOR), and delete-operator-message (DOM) macro
instructions.

• External interrupts that are caused by the operator pressing the interrupt key on
the operator control panel. The communications task switches the master
console's function to an alternate console.

• Automatic console switching from a failing console to its alternate when an
unrecoverable I/O error occurs.

• Console switching as the result of the VARY CHANNEL, VARY CPU, or VARY
MSTCONS command.

• Console switching as a result of a processor failure in a multiprocessing system as
a part of alternate CPU recovery (ACR).

Before processing WTO, WTOR, and DOM macro requests, the communications
task passes control to the job entry subsystem (JES) responsible for the job issuing
the request. The JES exit routine may suppress the message, or modify the message
text or routing code.

Multiple console support (MCS) is a standard feature that supports up to 99
consoles. With MCS, messages can be routed to up to 15 different functional areas.
according to the type of information in the message.

Device independent display operator console support (DIDOCS) is an optional
feature that provides uniform console services for various display consoles.

Section 5: Component Analysis 5.15.1

Communications Task (continued)

Functional Description

. The. ~ait service routine (lEA VMQWR) detennines the functions to be performed
by the communications task. It is given control by the dispatcher (supervisor
control routine IEAVEDSO) after one of the communications task's event control
blocks (ECBs) has been posted.

Upon each entry to the wait service routine, the entire list of communications
task's ECBs is tested from top to bottom in priority sequence. The posted ECB
identifies the service that will be performed by the communications task. As each
service is completed, control is returned to the wait service routine and the entire
list of ECBs is again tested for an active ECB. When no active ECBs are found, the
wait serVice routine issues the WAIT macro which places the communications task
in the wait state until the next communications task ECB is posted.

In addition to testing for posted ECBs, the wait service routine checks other
indicators (represented by control bits). The communications task ECBs and
control bits are located in the unit control module (UCM) and unit control module
entries (UCMEs).

Figure 5-53 lists and describes the ECBs and control bits in the sequence that the
wait service routine makes the tests.

5.15.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Communications Task (continued)

ECB or
Control Bit Function

UCMARECB Alternate CPU recovery - the process of switching from one processor
(in UCM) to another in multiple processor configurations. The communications

task switches consoles as required.

UCMXECB External interrupt - switches the master console functions from the
(in UCM) current master console to the next available alternate console. This

results when the operator presses the interrupt key on the console
control panel.

UCMAECB Attention interrupt - prepares the console (from which the interrupt
(in UCM) was received) to accept operator input.

UCMECB I/O processing complete - indicates a message has been sent to or
(in UCME) received from a console. Results from the interrupt that an I/O device

causes after performing each I/O operation.

UCMPF Console output pending - indicates a message is queued and ready for
(bit in UCME) some console. Results if (1) one message is queued for several consoles,

or (2) a console is busy when a WTO or WTOR message is queued for
that console.

UCMSYSJ Hardcopy output pending - indicates a message is queued for hardcopy
(bit in UCM) output and ready to be sent to a data set.

Note: Before the following ECB is processed, the communications task tests the WOEs
and may issue message IEA405E (80% of WOEs in use), IEA404A (limit of WOEs
reached), or I EA4061 (shortage relieved).

UCMOECB Queue message for output - prepares the message posted by the WTO
(in UCM) or WTOR macro for output to the appropriate consoles.

UCMSYSI Cleanup WQE chain - eliminates WOEs marked for deletion by system
(bit in UCM) functions (such as task termination).

UCMDECB Delete operator message - indicates that a DOM macro has been issued
(in UCM) to (1) delete a WTOR message that the operator has not responded to,

or (2) delete a WTO message when the issuer has determined that the
requested action was performed.

UCMNPECB Write NIP messages to buffer - indicates that NIP messages stored
(in UCM prefix) during nucleus initialization can be written.

Figure 5-53. Sequence of Communications Task Processing

Section 5: Component J\nalysis 5.15.3

Communications Task (continued)

Comm~nications Task Controll;llocks'

The following control blocks are used by the communications task:

UCM Unit control module - created at system generation. Contains pointers
to the control blocks and routines that support the communications

, task.

UCME Unit controlmodule entry - created at system generation for each
generated device. Contains information about the deVice including
attributes, pointer to the UCB, I/O ECB and message queue for the
device:

WQE Write'queue element - created for each WTO or WTOR request.'
Contains information about the request including message text and
routing code.

ORE Operator reply element - created for each WTOR. Contains informa­
tion about the reply portion of a WTOR request including the buffer
to receive the reply.

CQE Console queue element - created for each console that is to receive a
message. Contains information about messages queued to particular
consoles.

ElL Ev.ent indication list - created at system generation. Contains pointers
to the various ECBs in the UCM and UCME.

RDCM . Residentdisplay control module - created at system generation.
Contains information about a display console.

TDCM Pageable display control module - created at system generation.
Contains DIDOCS work and save areas, pointers to related modules,
and the screen image.

CXSA Communications extended save area - used to communicate among
communications task modules.

Refer to Figure 5-54 for the relationship of these control blocks.

5.15.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Communications Task (continued)

CVT TCB

Communications
CVTCUCB Task

-;:Y_EIL Pointers to
UCM the ECBs in

UCM and UCME

UCMPXA ""
UCMLSTP ~

UCMWTOO

~
WOE (lasd

WOE (firsd

WOETXT
UCMWOEND .~ Next (message) WOELKPA WOE

UCMRPYO WOETXT
(message)

UCMVEA

1-..... IRE Uastl ORE

I
/I UCMVEL

ORELKP ~Next
ORE

, UCME (first) OREWOE
(address of

UCMXB
associated

I~ WOE)
UCMOUTO

"
.. ORERPYor

OREOPBUF

\ UCME (last)
(reply
buffert

f
Pointers to
associated WOEs

__ COE

COEWOEA
RDCM •

•
DCMADTRN (word 6)

COE

TDCM I I

DCMCXSVE --.......... CXSA

1 I
Figure 5·54. Communications Task Control Block Structure

Section 5: Component Analysis 5.15.5

Communications Task (continued)

Debugging Hints

Hints for debugging various problems are described in this topic.

Console Not Responding to Attention

If a console is not responding to an attention interrupt, check the following:

• The console attention processor (lEA VVCRA) may not be posting the attention
ECB (UCMAECB) in the UCM. The communications task will not process the
attention interrupt until the attention ECBis posted. This normally occurs
when the console is inactive (UCMUF indicator in the UCME is off), a CLOSE
is pending for the device (UCMCF indicator in the UCME is on), or the device
does not support interrupts (UCMIF indicator in the UCME is off).

• The attention processor may not be setting the attention pending indicator
(UCMAF in the UCME) on for the console causing the interrupt. It is turned on
when the attention ECB (UCMAECB) is posted.

• If the attention pending (UCMAF) and busy (UCMBF) indicators in the UCME
are both on, the attention interrupt will not be processed until an I/O processing
complete interruption is received from the console. I/O processing is performed
by a specific device support processor (DSP). The busy indicator (UCMBF) is
turned on while the console is waiting for the completion of an I/O operation
and is turned off when the I/O completion operation is processed.

Enabled Wait State

If the communications taskis in an enabled wait state, check the following:

Norma/Case: The communications task has no work to do; that is, no
communications task ECBs have been posted. Check the following ECBs (see
Figure 5-53 f()r descriptions and locations of the ECBs).

UCMXECB UCMAECB
UCMARECB UCMNPECB

UCMOECB
UCMECB

UCMDECB

WQE Limit Reached: The system limit for WQEs or OREs has been reached
(indicated by message IEA404A).

• Check the following fields in the UCM:

UCMWQNR. - indicates the current number ofWQEs in the system.

UCMWQLM indicates how many WQEs can be built.

UCMRQNR

UCMRQLM

indicates the current number of OREs in the system.

indicates how many OREs can be built.

5.15.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques

•

Communications Task (continued)

• Check the following indicators in the UCM prefix:

UCMSYSI - indicates that cleanup of the WQE chain is needed; that is,
eliminate WQEs marked for deletion. This indicator is checked
by the wait service (lEA VMQWR) and device service
(lEAVMDSV) routines; and it is set on by the DaM processing
(lEA VMDOM), wait service (lEA VMQWR), console queueing
(lEAVMWSV), multiple-line processing (lEA VMWTO), and

UCMSYSJ

UCM~YSM

UCMSYSO

WTO!WTOR processing (lEAVVWTO) routines.

indicates that at least one message needs to be sent to the hard­
copy log. Possibly, the WQE space is filled with WQEs
(messages) that need to be sent to the hardcopy log. This
indicator is referenced by the wait service (lEA VMQWR) and
device service (IEAVMDSV) routines, and it is set on by the
wait service (lEA VMQWR) and console switching (lEA VSWCH)
routines .

indicates a failure in a composite console. This indicator is used
by the console switching (IEAVSWCH) routine.

indicates a dummy attention interrupt. This indicator is
checked by the wait service (lEAVMQWR) routine. It is set on
by the WTO/WTOR processing (lEAVVWTO) routine when the
system log is not available and a WTL (write-to-log) is changed
to a WTO macro.

Disabled Wait State -

The communications task issues only one wait state code, code 007. This code is
issued during nucleus initialization when a master console is not available to the
system. See wait state code 007 in OS/VS2 System Initialization Logic.

Messages or Replies Lost

Messages and replies can be lost or routed incorrectly if the WQE, ORE, or CQE
control blocks are not chained correctly.

• To ensure that the WQE chain is intact, check the following:

In the UCM, check fields:

UCMWTOQ - points to the first WQE on the chain.
UCMWQEND - points to the last WQE on the chain.

In each WQE, check:

WQELPKA
WQEORE

points to the next WQE on the chain.
- indicates that an ORE exists for this WQE.

• To ensure that the ORE chain is intact, check the following:

In the UCM, the UCMRPYQ field points to the first ORE.

In each ORE, check:

ORELKP - points to the next ORE on the chain.
OREWQE - points to the WQE associated with this ORE.

SectionS: Component Analysis 5.15.7

Communications Task (continued)

.To ensure that theCQE chain is intact, check the following:

- In the UCME (for each console), the UCMOUTQ field points to the first
group of six CQEs.

- In each group of CQEs, the CQEWQEA field in the last (sixth) CQE points
to the next group of CQEs on the chain ..

Note: Each CQE is one word; one byte for control bits, and three bytes for
a pointer. The. CQEs are built in groups of six. The first five CQEs point to
WQEs and the sixth points to the next group of CQEs.

- In each group of CQEs, the CQEWQEA field in the first five CQEs point to
their associated WQEs.

- In each CQE, the CQEFLAG byte contains the control bits.

No Messages on One Co'nsole

If messages are not being received on a specific console, check the following:

• The device busy indicator (UCMBF) in the failing console's UCME may be on.
A message is not processed until an I/O processing complete interruption is
received from the console. I/O processing is· performed by a specific device
support processO,r (DSP). The busy indicator (UCMBF) is turned on while the
console is waiting for the completion of an I/O operation and is turned off when
the I/O completion operation is processed.

• If the console is not busy, ensure that the CQE chain for the console is intact.
(Refer to the previous topic "Messages or Replies Lost".)

• If the CQE chain is valid, then check for unusual status in the failing console's
UCME and UCB.

Messages Routed to Wrong Console

The console queueing routine (IEAVMWSV) queues messages for specific consoles
and builds the CQE chain. If messages are routed to the wrong console, then:

• Ensure that the CQE chain is correct for the fa,iling console. (Refer to the
previous topic "Messages or Replies Lost".)

• Check the routing codes for each console. The, UCMRTCD field in each
console's UCME defmes the routing codes for the respective consoles.

• Check the routing codes for the messages that are being incorrectly routed:

- In the WTO/WTOR WQE, the WQEROUT field contains the routing codes
for the message.

- In a major multiple-line WQE (for MLWTO), the WMJMRTC field contains
the routing codes.

S.lS.8 OS!VS2 System .Programming Library: MVS Diagnostic Techniques

•

Communications Task (continued)

Truncated Messages

If message text is being truncated (the length of the message text is shortened),
then:

• The message may exceed the maximum allowable bytes for console messages.

• The console operator may have requested that time stamps and/or job names
appear with the messages. Check the following indicators in the UCME for the
failing console:

UCMDISPI indicates that messages are to appear with both time stamps and
job names.

UCMDISPJ - indicates that only job names are to appear with messages.

Console Switching

Console switching is performed by the IEAVSWCH routine for the following error
condi tions:

• An I/O error occurs on a console. The failing console's function is automatically
switched to its alternate (or, if none available, to the master console). Check the
I/O interrupt ECB (UCMECB) in the failing console's UCME. Note that
successful I/O completion is indicated by X'7F' in the first byte of the ECB.

• An abnormal termination in the device support processor (DSP) that services the
failing console. The failing console's function is automatically switched to its
alternate (or, if none available, to the master console). Check the appropriate
DSP in load module IGC0007B.

• A processor failure in a multiprocessing environment as a part of alternate CPU
recovery (ACR). Consoles are switched as required. Check the alternate CPU
recovery ECB (UCMARECB) in the UCM.

DIDOCS Trace Table

A DIDOCS trace table exists in the pageable DCM (display control module
IEETDCM) beginning at field DCMTRACE. The trace table contains the identifiers
of up to 16 of the last DIDOCS modules to receive control on the console
represented by the pageable DCM.

After each DIDOCS module receives control, it places a two-byte identifier in
the trace table. The first byte of the identifier states whether the module is an
"E" module (such as IEECV~TA) or an "F" module (such as IEECV..ETA). The
second byte of the identifier is the last character in the module name. For
example, the identifier for IEECVETA is "EA and the identifier for IEECVFTI is
"F 1 ". (An exception to this rule occurs during DIDOCS recovery processing.
Entries to the ESTAE routine in IEECVETI are indicated by the identifier "ES".)

Section 5: Component Analysis 5.15.9

Communications Task (continued)

When DIDOCS is entered for the first time to perform an operation, the first
DIDOCS module to receive control (module IEECVETI) places two bytes of
asterisks in the trace table before it stores its identifier. The asterisks signal the
beginning of a DIDOCS operation.

DIDOeS-In-Operation Indicator

At offset X'IIF' in a console's page able DCM (display control module IEETDCM)
is a field labeled DCMMCSST. When DIDOCS is processing, bit DCMUSE (X'80')
in DCMMCSST is set on. This bit remains on during any SVC processing initiated
by DIDOCS (SVC34, GETMAIN, FREEMAIN, andEXCP). DIDOCS turns the
bit off when DIDOCS exits (via BRI4).

DIDoes Locking

DIDOCS uses two fields (CSAXB and CSAXC) in the communications extended
save area (CXSA) to control locking during DIDOCS operations.

The two fields are used as follows:

• When the lock is available:

Field CSAXB contains the address of the subroutine that obtains the lock.

Field CSAXC contains the address of a BRl4 instruction.

• After a DIDOCS module obtains the lock, the subroutine that obtains the lock:

Sets field CSAXB to the address of a BRl4 instruction.

Sets field CSAXC to the address of the subroutine that releases the lock.

• After the DIDOCS module releases the lock, the subroutine that releases the
lock:

Resets field CSAXB to the address of the subroutine that obtains the lock~

Resets field CSAXC to the address of a BRl4 instruction.

When the lock is already held by a DIDOCS module (field CSAXB contains the
address of a BRI4), any attempt by another DIDOCS module to obtain the lock
results in a no-operation (NOP).

5.15.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Appendix A: Process Flows

This appendix describes the flow of various MVS processes. These processes are
described in the following chapters:

• RSM Processing for Page Faults

• Swapping

• EXCP/IOS

• GETMAIN/FREEMAIN

• VT AM Process

• TSO

Appendix A: Process Flows A.l.l

•

A~1.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

RSM Processing for Page Faults

This chapter describes the important aspects of the RSM component's page-fault
processing. Figure A-I outlines the major functions in this processing.

During page fault processmg, several important tests are made. The following
describes what these tests are, where they are made, and what they mean during
the course of the RSM page fault process.

lEA VPIX Tests

lEA VPIX performs the following:

• Checks the PGTE to ensure that PGTPVM is still on after the SALLOC lock
has been obtained. This is done because in an MP environment the other
processor might have validated the PGTE (turned PGTPVM off) between the
time this processor page-faulted and the time the SALLOC lock was obtained.

• Checks the PGTE to ensure that PGTPAM is on. If it is not, this is.a logical
protection violation.

lEA VGF A Tests

IEAVGFA performs the following:

• Checks XPTE to ensure that XPTDEFER is off. If it is on, some paging
request (PCB) for this page has been deferred. (The PCB is on the GFA defer
queue anchored in the PVT.) Normally, the fact that a paging request is
currently outstanding is indicated by PFTPCBSI, but in the defer case there is
no frame and therefore no PFTE is yet associated with the request.

• Checks to see if RBNx from the PGTE is non-zero. If it is non-zero, the last
used PFTE can be located. Once that PFTE is located, you can determine if
the frame has been used for another purpose since last backing the requested
VBN.

• Checks the XPTE for XPTFREL. If XPTFREL is on, the RBNx of the PGTE
is zero and there is a paging request (PCB) on an I/O queue for this page that
must be "related to." Because only a swap produces this condition, which
applies only to stage 2 working set pages, this bit can only be on in private
area XPTEs.

• If reclaim is successful, checks PFTONAVQ. If it is on, the reclaimed frame is
available immediately; that is, no page I/O can be in progress for it. If it is
off, the frame must be on either a local queue or the common queue and a
PCB must be on an I/O queue.

Appendix A: Process Flows A.1.3

RSM Processing for Page Faults (continued)

PIC 11

IEAVFP

Locates PGT E
and XPTE

IEAVPCB

Allocates a
PCB from the
PCB free
queue

IEAVPFTE

Moves PFTE
from AFQ to
LFQ or CFQ

IEAVSUSP
(physically located in
IEAVEPC) Suspends
page faulting TCB/SRB
and allocates an SSRB
for an SRB mode page
fault

IEAVEPC
Determines type of
program interrupt

IEAVPIX

Formats page
fault PCB

0
IEAVGFA

0)

IEAVPCB

Queues PCB on
I/O queue

®

@

0

Note: Circled numbers indicate the sequence of processing.

Figure A-I. Page Fault Process Flow (Part 1 of 2)

,A.l.4 OS!VS2' System Programming Library: MVS Diagnostic Techniques

IEAVEDSO

Saves status and
selects next unit
of work to run

ILRPAGIO

Passes AlA (ASM's
request element)
to ASM. If ASM is
not active, schedules
an SRB to the ASM
monitor.

RSM Processing for Page Faults (continued)

Normally given
control via
IECIOSCN

IEAVRSET

(physically located in
IEAVEPC) Sets
dispatchable suspended
TCB/RB or schedules
SSRB

"
"

ILRPAGCM
ASM I/O complete
processor (obtains
SALLOC Lock)

® J@
IEAVPIOP

•

•

•

Runs with the SALLOC
lock held in the address
space interupted at I/O
completion
Schedules SRB to
IEAVIOCP and
validates PGTE for
common area pages

Marks PCB I/O complete
(zeroes PCBVBN for
common area PCBs)

IEAVIOCP

• Runs in page faulting
address space in SRB
mode with SALLOC
lock and sometimes
also with local
lock

• Validates private
area PGTE

Note: Circled numbers indicate the sequence of processing.

Figure A-I. Page Fault Process Flow (Part 2 of 2)

IEAVPCB

Returns PCB to
PCB free queue

Appendix A: Process Flows A.1.S

RSM Processing for Page Faults (continued)

• Checks to see if Pf'TPCBSI is zero. If it is, there is an inconsistency and
IEAVGFAissues"a·COD abend to record the error. IfPFTPCBSI is on, the
VBNO value is used to select the PCB I/O queue to be searched and a PCB
relate functiort is performed.

• If an old frame with or without I/O in progress cannot be found, a frame is
selected from the front of the AFQ. The PFTE is filled in and it is queued on
either the common or the local frame queue. The XPTE (XPTXAV) is now
checked to see if the paging data sets contain a copy of this virtual page.
If XPTXAV is on, a page in operation is started; if it is off, the frame is
cleared to zeroes.

• If the AFQ is empty, the request is deferred by placing the PCB on the PCB
defer queue (PVTGFADF) of the PVT. The XPTDEFER flag is set in the
XPTE.

• If a page~in is needed, the RBNO of the allocated frame is placed in the AlA
(which is always physically adjacent to the PCB) and the AlA is passed to
ASM. Processing then exits as shown by steps 9, 10 and 11 in Figure A-I.

lEA VPIOP Tests

lEA VPIOP receives control from ASM and is passed the AlA when I/O has
completed. lEA VPIOP checks for an I/O error and marks the PCB I/O complete.
If necessary, lEA VPIOP indicates an I/O error in the PCB. lEA VPIOP checks
PCBFREAL to d~.termine if the reason for the page-in still exists.
IfPCBFREAL=I, the page-in has been NOPed for some reason (such as
FREEMAIN) and the frame is sent to the AFQ. If PCB FREA L=O , the PGTE must
be validated. IEAVPIOP validates common area PGTEs but must schedule
IEAVIOCP to validate private area PGTEs because they are in the LSQA of the
page-faulting address space. If IEAVPIOP validates the common area PGTEs,
PCBVBN is set to 0 to prevent a second validation by lEA VIOCP. lEA VIOCP will
be scheduled if PCBRESET=I. PCBRESET is still one unless the PCB has
been NOPed.

lEA VIOCP Tests

IEAVIOCP runs in SRB mode and gets the local lock according to SRBPARM.
SRBPARM is set earlier by IEAVOPBR (a subroutine of IEAVPIOP) if
IEAVIOCP will need the local lock. lEA VOPBR is called from several places
in RSM; its sole function is to determine if lEA VIOCP will need the local
lock and to schedule IEAVIOCP.

A.1.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques

RSM Processing for Page Faults (continued)

lEA VIOCP searches the local and common PCB queues looking for I/O
complete PCBs. Once found, lEA VIOCP calls lEA VRSET for any I/O
complete PCBs with PCBRESET= 1. The reset function (lEA VRSET in
IEAVEPC) is responsible for making the suspended work (TCB/SSRB)
redispatchable. lEA VIOCP validates the PGTE for any I/O-complete PCB
with a non-zero PCBVBN, with PCBFREAL=O, and without an I/O error
(PCBIOERR=O). When this is done, IEAVIOCP returns the PCB to the free
queue.

Because lEA VIOCP is queue-driven, it might not be able to get the local lock
when it requests it. In such a case, it can be held in suspension by a page
faulter whose PCB is on the queue lEA VIOCP is working on. Therefore, up
to two SRBs can be scheduled for IEAVIOCP at one time. If IEAVIOCP does
not hold the local lock and discovers an I/O-complete PCB that needs to be
reset and for which reset requires the local lock (PCBLLHLD=O,
PCBSRBMD=O, PC BPEX= 1 , an unlocked TCB page fault), it can call
IEAVOPBR to reschedule itself (exit to dispatcher). IEAVIOCP continues
its scan of the PCB queues, doing any work possible before it exits to the
dispatcher.

Appendix A: Process Flows A.t.7

A.1.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Swapping

This chapter describes the major considerations and decisions of the swapping
processes (swap-in and swap-out).

Swap-in Process

The numbers in the following descriptions correlate to the circled numbers in
Figure A-2.

CD - G) SRM schedules lEA VSWIN and passes it the address of the ASCB
in SRBPARM. IEAVSWIN obtains working-set size (SPCTWSSZ)
+ 1 PCBs. It then scans the SPCT LSQA entries and fills in a PCB
for each entry. Next IEAVSWIN scans the fix entries. For private
area fix entries, it builds a stage one PCB. For common area fixes,
it adds the SPCT fix count to the PFTE fix count. For common
area fixes not in storage, it builds a PCB. Next, IEAVSWIN scans the
SPCT segment entries and builds a PCB for each bit map entry. It
then returns unused PCBs to the PCB free queue and calls
lEA VGFA. If enough frames are not available for the stage one
pages, IEAVGFA returns a code of eight to IEAVSWIN and sets
PCBRETRY. IEAVSWIN notifies SRM via a SYSEVENT SWINFL
to try the swap-in later.

·1 CD - 0 IEAVGFA allocates frames for both stage one and stage two PCBs
and then calls ASM to start swap-in I/O.

CD After swap-in I/O completes, the IEAVSWIN root exit IEAVSIRT
is called by lEA VPIOP with stage one PCBs chained from the root
PCB. IEAVSWIN does the following:

• Updates PFTFXCT if any fix counts are greater than 255

• Sets ASCBSTO

• Fills in SGTEs in non-translate mode

• Fills in PGTEs in non-translate mode

o lEA VSIRT calls lEA VPCB to free the root and all stage one PCBs.

(j) lEA VSIRT calls ASCBCHAP to put the ASCB back on the ASCB
queue.

@ IEAVSIRT calls status to start both quiesceable and non-quiesceable
SRBs.

Appendix A: Process Flows A.2.1

IEAVPCB
SWIN gets
SPCTWSSZ+1
PCBs

PCBs on entry to
SWI N root exit

Swapping (continued)

IRARMCSI
SRM schedules
swap-in

CD
IEAVSWIN
(MAINLINE)

® Executes in SRB
mode in master
scheduler's
address space.
Builds PCBs and
gets frames
allocated

,0
IEAVGFA 0 Allocates
Stage 1'and
Stage 2 frames

Stage 1 I/O Completes

I LRPAGCM (Normally executes iii the address
space interrupted at the completion
of I/O)

ILRSWAP'
Starts
Swap-in
paging I/O

PCBs on exit
fromSWIN
mainline

'~
Stage 2

IEAVPIOP
Decrements '
SWIN root
count; Calls
root exit
when count=O

IEAVSWIN

Schedules SRB to
swapped-in
address space IEAVSWIN

Entry SWINPOST
Post RCT to
restore address
space

IEAVPCB
Frees root
and Stage 1
PCBs

Entry IEAVSIRT
(root exit)
Rebuilds segment
and page tables

IEAVEACO
(ASCBCHAP)
Places ASCB
on dispatching
Queue

Private Area Stage 1 PCBs chained out of
PCBRWRK1 and PCBRWRK2

IGG079
(entry IGC07903)
Status start SRBs

Figure A-2. Swap-In Process Flow

A.2.20S/VS2 System Programming Library: MVS Diagnostic Techniques

Swapping (continued)

lEA VSIRT obtains an SRB from the RSM cell pool and schedules an
entry point in IEAVSWIN (SWINPOST) into the swapped-in address
space so it can post the region control task. SWINPOST posts
RCT's ASCBQECB to restore the address space.

Note that stage two frames are allocated at the same time as stage
one frames. The XPTFREL flag is on in each stage two PCB's
corresponding XPTE. Then, if a page fault or other request reaches
IEAVGFA prior to stage two I/O complete, IEAVGFA can relate
the request to ongoing I/O (see the chapter on RSM in Section 4 for
a discussion of RSM's relate functions). IEAVIOCP sets the
XPTFREL flag to zero and fills in the PGTRSA field when stage two
I/O completes. lEA VSOUT sets to 0009 all PGTEs for which it
made a bit map entry in the SPCT.

Swap-Out Process

IEAVAR02

SRM (IRARMCSO) posts the region control task (RCT) to swap out the address
space. RCT is responsible for:

• lOS purge processing: I/O requests that have been requested or started are
purged or quiesced, respectively.

• Halting all tasks in the address space with the exception of its own task.

• Preventing quiesceable SRBs from executing.

IEAVSOur

The numbers in the following descriptions correlate to the circled numbers in
Figure A-3.

CD IEAVSOUT receives control from RCT and calls STATUS (IEAVSSNQ) to
stop non-quiesceable SRBs.

lEA VSOUT gets enough PCBs to page out every private area page in the
address space plus one to be used as a swap out root.

lEA VSOUT clears the swap control table (SPCT) LSQA, fix entries
(SPCTSWPE), and all bits in the bit maps in the segment entries (SPCTSEGE).
Prior to this, the SPCT reflects the status of the address space at the last
swap-out. SPCTSEGEs provide a mechanism to check how many and which
segments are obtained via GETMAIN in an address space because there is a
SPCTSEGE for each private area segment that is obtained by GETMAIN.

Appendix A: Process Flows A.2.3

IEAVEACO
(ASCBCHAP)
Removes ASCB
from dispatching
queue

Swapping (continued)

IEAVAR02
Region Control Task

j

IEAVSOut ~

(2) Stops non-quiesceable SRBs

0 Gets ASCBFMCT+1 PCBs
(1 extra for root)

0 In itializes SPCT

0 Builds LSQA entries in SPCT

0 Builds fix entries in SPCT
from FOEs

0 Initializes PCBs including
root

G Purges paging I/O

0 Completes Stage 1 PCBs
(!.-SQA and Fixed)

@ Completes working set PCBs
(changed private area)

@) Frees unused PCBs

@ Schedule I EAVPI 01 to master
scheduler's address space

@ Returns to RCT

After the SRB is dispatched in
the master scheduler's address
space:

@

ILRSWAP
Starts I/O
swapping

IEAVINV
Issues PTLB

Figure A-3. Swap-out Process Flow

A.2.4 OS!VS2 System Programming Library: MVS Diagnostic Techniques

SRB for
IEAVPIOI

PCBs are on local queue
(RSMLlOQ) when
received by PIO I

Swapping (continued)

@ lEA VSOUT next initializes a PCB for each changed page on the local frame (
queue and sets a bit in the bit map (SPCTBITM) for all pages that are not to ...
be stolen. The steal is based on a comparison of a criterion number passed
by SRM in OUXBSTC to PFTUIC.

@ lEA VSOUT returns any unused PCBs to the free queue. This marks where
on the free queue the swap-out began.

@ IEAVSOUT schedules an SRB for IEAVPIOI, releases the SALLOC lock, and
returns to RCT (lEA V AR02), which waits for ASCBQECB to be posted by
swap-in (lEA VSWIN). Because release of the SALLOC lock enables the processor,
an address space is often swapped-out before RCT has gotten a chance to
wait. When analyzing a stand-alone dump, you will see the following if the
above case is true:

• The RCT is dispatchable.

• There is no wait count in RBWCF.

• There are no frames allocated to storage (ASCBFMCT=O).

• The address space is not on the ASCB dispatchability queue.

Do not consider this situation a problem.

/EAVP/O/

lEA VPIOI receives control in the master scheduler's address space. It calls
ASCBCHAP to remove the ASCB from the dispatching queue, calls ASM with the
string of AlAs passed to it from IEAVSOUT via the SRBPARM field, and calls
lEA VINV to PTLB and exits.

A.2.6 OS!VS2 System Programming Library: MVS Diagnostic Techniques

)

:<)

Swapping (continued)

o lEA VSOUT builds a two-byte LSQA entry for each frame on the LSQA
frame queue.

lEA VSOUT builds a four-byte fix entry for each page (private or common)
that has an FOE on any TCB in this address space. The fix count is added
into the ftx entry SPCTSWPE. Note that ftxes done without a TCB address
supplied do not have FOEs.

lEA VSOUT initializes a root PCB to zero and places the address of
IEAVSORT in PCBRGOTO. It initializes the remaining PCBs, which might
be used to swap-out a page as follows:

Partially initialized Swap-Out PCB

AlA

FF 000000

00 000000

06 A(ROOT) Root and output

00 000000

80 000000 PCBFREAL

80 000000 Swap-out

00 000000

00 000000

A(ASCB)

00 000000

00 000000

18 COOOOO Swap-out and write

00 000000

00 000000

00 000000

00 000000

lEA VSOUT purges paging for this address space on the common PCB I/O
queue, local PCB I/O queue, and the GFA deferred queue. The processing is
to post users waiting on ftxes, reset page faulters, and to NO-OP the PCB.
(Fix entries are made for PCBs found for zero TCB ftxes.) The NO-OP
process makes the PCB look like a cancelled page load PCB; that is, no
notification (RESET/POSTING) is to be done and the frame is to be freed.
PCBs on the GFA defer queue are removed. The only exceptions here are for
zero TCB fixes for which no entries could be made in the SPCT (GETMAIN
for SQA failed). These PCBs remain unchanged and the fixed frame remains
fixed throughout the swap ..

IEAVSOUT fills RBNs and VBNs into PCBs for each LSQA or ftx entry now
in the SPCT. Even unchanged fixed or LSQA pages are paged out.

Appendix A: Process Flows A.2.S

EXCP/IOS

Figure A-4 is an overview of the I/O process through MVS using EXCP as the driver.
The following outline correlates to this process.

1. Problem program issues GET/PUT (implied wait).

2. Problem program branches to access method.

3. Access method issues SVC 0 (EXCP) to EXCP front end.

4.

s.

or

Access method issues SVC 114 (EXCPVR) to EXCP front end.

EXCP front end:

a. Validates request.

b. Builds RQE.

c. Queues related requests.

d. If a VIO data set, goes to window intercept processor.

e. Builds SRB/IOSB.

f. If a virtual user, gets TCCW and BEB.

g. Branches to PAGE FIX appendage (if specified and not a V=R region).

h. Branch returns.

i. If EXCPVR request, fixes pages from PAGE FIX appendage.

j. Fixes DEB for V=R user if not already fixed.

k. If a DASD device, branches to END of EXTENT appendage (if seek
address is out of specified extent).

1. Branch returns.

m. Branches to START I/O appendage if specified.

n. Branch returns

o. If virtual user: translates CCWs, fixes pages for buffers, and builds IDAL.

p. Issues START I/O macro (branch entry to IDS front end).

IDS front end.

a. Builds IOQ.

b. Selects physical path (channel scheduling).

c. If path available, adds prefix CCWs and issues SID; otherwise, queues
10Q on LCH.

d. Restarts all queued I/Os to available channels.

e. Branch returns to EXCP front end and branch returns from EXCP front
end to problem program WAIT.

Appendix A: Process Flows .A.3.1

>
~
~

o
rn
"< rn
IV

~
.fIJ

S­
:3
~

i
:3
~.

~
~
~
rn
S!
t
~
::to
(')

~
CD g.
= .c.
= CD
fIJ

User

Enabled, Problem Program, User Key, Under TCB

BR I' Access Mother SVC 0 (EXCP)

EXCP SVC 114 (EXCPVR)
GET/PUT

Enabled, Supervisor, Key 0, Under TCB, Local Lock

PAGE FIX '-- BRANCH

Appendage

r BRANCH

EOE ")
BRANCH

Appendage
BRANCH

BRANCH

APpendage)
SIO ~4 BRANCH

Enabled, Problem Program, User Key, UnderTCB ----'--..... - - - -- -- -- ---

EXCP Processor

Enabled, Supervisor, Key 0, Under TCB, Local Lock

EXCP Front End

Validates Request
Builds RQE
Queues Related Requests
If VIO Data Set, Goes to WINDOW

INTERCEPT PROCESSOR
Builds SRB/IOSB
If Virtual User, Gets TCCW and BEB

Branches (If PAGE FIX Appendage
Specified and Not V=R Region)

I

Fixes DEB For V=R if Not Fixed Yet.

Branches (DASD Device and Seek
Address is Out of Extent)

Branches (If SIO Appendage Specified)

If Virtual User: Translates CCWs,
Fixes Pages For Buffers, Builds IDAL

Issues START 10 (Macro)

WAIT '-) . BRANCH I I BRANCH
ECB=ECBX 4 Returns I I

.J

r+--

lOS

Disabled, Supervisor, Key 0, Under TCB

IDS Front End

Builds 10Q
Selects Physical Path

(CHANNEL SCHEDULING)

Yes

Prefixes CCWs

Queues 10Q on LCH
Return To Caller

Issues SIO (Instruction)
Restarts All Queued I/Os

to Available Channels
Returns

Channel Program
Execution

I/O Interrupt

- -- -- Disabled, Supervisor, Key 0-- -- ---r ---~~ --:-~b~ ~ - --. -- -t- -- Supervisor, Disabled~~ l-· --- --""- -- ---

PCI
Appendage

L

BRANCH

BRANCH

Disabled Interrupt Exit (DIE)

If PCI and V=R or EXCPVR 4 I I

Maps 10SB/IOB

Maps 10B/IOSB

lOS Back End

BRANCH TRAS I

Queues Type 3 Related Requests I I BR1ANCH .. TRAS

(FLIH)

Schedules POST STATUS
(Global SRB)

Channel Restart
Returns to FLiH

- Supervisor, Enabl;d,""U;;;t(ey, Local Lock, Under S~ I --S~isor, Enabled, Key 0, Under SRB--~ -- S~pervisor ~abled, Key 0, Under SRB

IDS POST STATUS

PCI (V=V)

CE

ABE

Appendages

I BRANCH II EXCP Back End I BRANCH I I f
~ Maps IOS8/IOB •. If Exit Processing (PCI, CE, ABE)

• BRANCH .• .. Maps 10B/IOSB _____ -+._ "B...,R_A_N_C_H_t-. --t.--------,
Termination:

Maps 10SB/IOB
Start Related Requests I BRANCH I <-
Free Control Blocks

No

Posts ECB = ECBX
Exits to Dispatcher

Error?
Yes

Schedules ERP
Exits to Dispatcher

Figure A-4. IOS/EXCP Process Flow

From
Dispatcher

~
n
"'tJ --o
00

'(;"
o a
~ .
2---

EXCP/IOS (continued)

6. lOS back end (entry from I/O FLIH) entered as a result of I/O interrupt.

a. If DIE is specified:

(1) TRAS (translates address space - to get addressability to control blocks
in originating address space).

(2) Branch enters DIE.

(3) If PCI and V=R or EXCPVR, maps 10SB to lOB and branch enters
PCI appendage.

(4) PCI processing.

(5) Branch returns to DIE.

(6) Maps lOB to 10SB.

(7) Queues type-3-related requests.

(8) Branch returns to lOS front end.

(9) TRAS (returns to addressability at time of interrupt).

b. Schedules POST STATUS [global] (means POST STATUS will be entered
via dispatcher).

c. Branches to channel restart to start queued 10QEs on LCHs.

d. Returns to FLIH.

e. If system was in SRB mode, loads PSW for SRB or returns to dispatcher.

7. lOS POST STATUS (scheduled from lOS back end).

a. If PCI, CE or ABE appendages specified:

(1) Branch enters EXCP back end.

(2) Maps 10SB to lOB.

(3) Branch enters appropriate appendage.

(4) Appendage processing.

(5) Branch returns to EXCP back end.

(6) Maps lOB to 10SB.

(7) Branch returns to lOS POST STATUS.

b. If error, schedules ERP. (See 8.)

c. Branches to EXCP back end for termination processing.

(1) Maps 10SB to lOB.

(2) Starts related requests.

(3) Unfixes buffer pages.

(4) Posts ECB (the one after the GET/PUT).

(5) Exits to the dispatcher.

Appendix A: Process Flows A.3.3

EXCP/IOS (continued)

8~ ERP interface.

a. If IBM ERP, get ERP work area.

b. If DASD(IECVDERP), branch to ERP.

c. If non .. DASD, schedule ERP loader (IECVERPL) under SIRB.
Use stage II exit effector to queue SRB to ASXBFSRB. Set
stage II exit effector switch in ASCB.

A.3.4 OS!VS2 System Progtamminj Library: MVS Diagnostic Techniques

GETMAIN/FREEMAIN

This chapter describes the processing for virtual storage requests in terms
of GETMAIN processing and FREEMAIN processing. The flow through the
GETMAIN/FREEMAIN process is complicated and the VSM control block
structure should be understood prior to following this process. This process flow
is not intended to explain exactly how GETMAIN/FREEMAIN works but to
provide an understanding of the important considerations of virtual storage
management, how the important control blocks are manipulated, and the common
subroutines of VSM.

GETMAIN Processing

The following describes the processing required to satisfy a given GETMAIN.

1. A problem program issues an SVC 10 GETMAIN for subpool 0 for 256 bytes.

2. GETMAIN (entry at IGCOI0) saves the TCB addresses in LDA, sets
IEAVGMOO's FRR (module IEAVGFRR), sets up the length and subpool
ID for·common processing routines, saves the caller's mode in LDARQSTA,
and goes to the common GETMAIN routine, GMCOMM 1 ..

3. GMCOMMI goes to routine CSPCHK to find the SPQE for the requested
subpool. CSPCHK is a key routine for defining the characteristics of various
subpools. For subpool 0, CSPCHK searches the TCBMSS chain~ If no SPQE
is found, CSPCHK returns a zero for the address of the SPQE and saves the
address of the previous SPQE on the chain in SPQE SAVE.

GMCOMMI then calls routine QSPQESPC to get a 16-byte element to build
and chain-in an SPQE for the requested subpool. The 16-byte blocks for
internal control blocks are obtained via GETMAINC (a simple GETCELL
function).

4. GSPQESPC passes control to (label) ROUND where the request is rounded
up to a doubleword boundary.

5. GMCOMM calls GFRECORE to search the FQEs pointed to by each DQE for
the appropriate subpool. A best-fit algorithm is used to fmd the smallest free
elementlarge enough to satisfy the request. Exception: LSQA/SQA requests
for 4096 bytes or less are not satisfied across page boundaries because the
request can be for page or segment tables that must reside in contiguous real
storage.

6. If storage is found in an FQE, GFRECORE calls GFQEUPDT to maintain and
update the FQE chain. (Control is passed to step 9.)

Appendix A: ProcessFlows A.4.1

Virtual Storage Requests (continued)

7. If storage is not found in an FQE, GFRECORE determines the number of
4K-blocks that are required and calls G4KSRCH to satisfy the request.

8. G4KSRCH performs the following functions:

a. Calls FBQSRCH to search the appropriate FBQE chain to fmd 4K bytes
of free space. (For problem program subpools, TCBPQE points to PQE
which pOints to FBQE.) Once found, FBQSRCH removes the space from
the FBQE and, if the FBQE is empty,frees it via an internal FREEMAIN
(FMAINB) or an internal freecell (FMAINC).

b. Acquires a DQE and chains it onto the DQE chain anchored in the SPQE.

c. Calls RSM (lEA VFP1) to locate the page table entry (PGTE) and the
external page table entry (XPTE) of the new 4K-block. Then at label
SETUPPTE it initializes both the GETMAIN-assigned flag (PGTPAM) in the
PGTE and the XPTPROT (protection key) in the XPTE (+0). Note: This
is the only place XPTPROT is set.

d. Updates the SMF region usage fields of the TCT (task control table).

e. Creates an FQE and chains it from the DQE that was just built.

f. Returns to GMCOMMI.

9. GM~OMMI places the address of the allocated storage in register 1 and sets
the return code. Then GMCOMMI performs housekeeping of any areas
chained from FMAREAS in the LDA, deletes the FRR, and passes control to
the EXIT prologue.

FREEMAIN Processing

The following is a logic flow of the FREEMAIN process when a problem program
issues an SVC 10 requesting 256 bytes from subpool O.

1. Upon entry at IGCOI0, FREEMAIN:

a. Saves the TCB address in LDA.

b. Establishes the FRR (lEA VGFRR).

c. Saves the callers mode in LDARQSTA.

d. Sets up the length and subpool ID for common processing.

e. Passes control to FMCOMM 1.

2. FMCOMMI passes control to FMCOM because the request is not to free an
entire subpool. FMCOM calls CSPCHK to locate the SPQE. The associated
DQEs are searched to locate the one DQE that describes the area to be freed.

A.4.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Virtual Storage Requests (continued)

3. Label QELOCATE ensures that the area is not already described in an FQE
(if it is, the requestor is abnormally terminated). Subroutine CREATFQE
obtains a 16-byte element for an FQE, then builds the FQE and adds it to the
proper FQE chain. Note: If possible, FQEs are combined if the new free
space is adjacent to free space described by an existing FQE.

4. If less than 4K bytes are freed, FREEMAIN has completed its task and control
is passed to the EXIT prologue.

5. a. If all space described by a DQE has become free, FREEMAIN frees the
FQE and DQE and notifies RSM (IEAVRELV) that a page(s) can be
released.

b. If a virtual page is freed, FREEMAIN frees the FQE (and adjusts the DQE
if the free pages exist at either end of the described area) and notifies RSM
(IEAVRELV) to release the page(s).

c. If the free page exists in the middle of the area described by the DQE,
FREEMAIN obtains a new DQE and the two DQEs will now describe the
area (essentially the area has been split into two parts). FREEMAIN
updates the associated FQEs and notifies RSM (lEA VRELV) to release
the page(s).

Note: RSM invalidates the PGTE(s) for the associated pages being freed
and calls ASM to release the auxiliary storage copy of the page. If a page
table has become completely free, lEA VGMOO is passed the PGT address,
which is queued from a field in the LDA (FMAREAS) to be freed at exit
time. FMAREAS is really a list of items no longer required to describe
virtual storage.

6. After restructuring the DQEs, MRELEASE returns virtual space to the
appropriate FBQEs. If possible, MRELEASE places 4K blocks of storage in an
existing FBQE; if not, it builds a new FBQE and includes it in the existing
FBQE chain.

7. FREEMAIN returns to FMCOMM 1 A, which performs FMAREAS book­
keeping, deletes the FRR, and returns to the caller.

Note: FMAREAS anchors a one-way chain of areas to be freed. The area
itself contains the address of the next area at offset +0 and the subpool's ID
and length at offset +4. These areas are not freed immediately by IEAVGMOO
because freeing them might cause register save area overlays on the double
recursion into FREEMAIN processing.

Appendix A: Process Flows A.4.3

A.4.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques

VT AM Process

The following shows the logic ·flow through the VT AM component into
lOS and out to the 3705 when an application issues a SEND request. This descrip­
tion includes the major module flow and the control blocks required in order to
process the request. Note that this is a general processing flow; additional modules
not shown can be entered depending on options and device type. Figure A-5
illustrates the system modes at various stages of the VTAM processing.

1. The application program issues the VT AM SEND macro, passing an RPL
(request parameter list), which points to the data that is to be sent.

2. The SEND macro branches to a VTAM interface routine (ISTAICIR).

3. 1ST AICIR determines that this is a non-authorized request and issues the
VTAM SVC. This is a type 1 SVC (SVC 124).

4. The type 1 SVC routine (1ST APC22) obtains an MQL (MPST queueing
element), places the address of the user RPL in it, and issues the TPQUE macro
to queue the MQL to the TPIO PAB for the application's address space.

5. The TPQUE macro (normally) issues the TPSCHED macro in order to
schedule the TPIO PAB.

6. The TPSCHED macro invokes ISTAPC32, which queues the TPIO PAB to the
memory process scheduling table (MPST), and schedules an SRB to execute
ISTAPC55.

7. ISTAPC32 returns to ISTAPC22.

8. 1ST APC22 issues a Type 1 exit back to ISTAICIR.

9. 1ST AICIR determines if the request was synchronous or asynchronous. If it
was synchronous, it issues the WAIT macro. If it was asynchronous, it returns
control to the application program.

10. When the SRB is dispatched, ISTAPC55 de queues the TPIO PAB from the
MPST, obtains a component recovery area (CRA) from the large pageable
(LP) pool and passes control to 1ST APC57 .

11. ISTAPC57 formats the request parameter header (RPH) (within the CRA),
dequeues the MQL from the TPIO P AB, and passes control to 1ST APC23.

12. ISTAPC23 releases the MQL, obtains a Copy RPL (CRPL) from the CRPL
pool and copies the user RPL into it.

13. ISTAPC23 then issues the TPQUE macro to queue the CRPL to the control
layer outbound PAB in the appropriate FMCB and schedules control layer
processing.

Appendix A: Process Flows A.S.I

VT AM Process (continued)

Application's Address Space I Application's Address Space
Task Mode SRB Mode

VS2 Dispatcher
Via SRB

~

I

Any Address Space
Disabled Mode

I/O interrupt

\

Exits to VS2 Dispatcher

Figure A-S. VTAM SEND Process Flow

A.S.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

I
I
I
I

VT AM Process (continued)

14. ISTAPC23 then issues the VTAM TPE2'IT macro, which passes control to
ISTAPC31.

15. 1ST APC31 recognizes that there is more work to do (control layer processing)
and passes control to ISTAPCS7.

16. 1ST APCS7 reformats the RPH (within the same CRA) for processing by the
control layer .

17. ISTAPCS7 then passes control to the control layer (ISTDCCOO).

18. ISTDCCOO recognizes that this is a SEND request, obtains a logical channel.i
program block (LCPB) from the CRPL pool, and invokes ISTRCC22.

19. ISTRCC22 sets up the logical channel command words (LCCWs) in the
LCPB from the options in the CRPL and issues the TPQUE macro to queue
the LCPB to the TPIOS outbound PAB in the FMCB and schedule TPIOS
processing.

20. ISTRCC22 then passes control to ISTCDDOO, which issues the TPEXIT macro.

21. The TPEXIT macro passes control to 1ST APC31, which recognizes that there
is more work to do (TPIOS processing) and passes control to 1ST APCS7 .

22. 1ST APCS7 reformats the RPH (within the same CRA) for TPIOS processing
and passes control to ISTZAFIB.

23. Within TPIOS, ISTZDFAO allocates the fIxed I/O buffer; ISTZDFCO and
ISTZDFDO move the user data to the I/O buffer.

24. Once the data is moved from the user's buffer, TPIOS invokes a routine
(ISTRCFYO) which calls 1ST AICPT. 1ST AICPT copies the CRPL back to the
user's RPL, frees the CRPL, and POSTs the ECB complete.

25. ISTRCFYO then frees the LCPB and returns control to TPIOS.

26. TPIOS then invokes ISTZEMBB, which obtains the UCB lock for the 370S
and checks the ICNCB (intermediate controller node control block) to see
if there is an active channel program currently executing for the 3705.

27. If the 3705 is busy, ISTZEMBB queues the I/O buffer to the ICNCB write
queue, releases the UCB lock, and returns to TPIOS. (Go to step 29.)

28. If the 3705 is not busy, ISTZEMBB calls ISTZEMAB, which issues the
STARTIO macro to lOS ana then returns to ISTZEMBB, which returns to
TPIOS. The 10SB, which is the "interface to lOS, physically resides within the
ICNCB.

29. After ISTZEMBB returns to TPIOS, TPIOS issues the TPEXIT macro, which
invokes 1ST APC31.

Appendix A: Process Flows A.S.3

VT AM Process (continued)

30. 1ST APC31 recognizes that there is nothing more to do and calls 1ST APC58.

31. ISTAPC58 frees the CRA and exits to the VS2 dispatcher.

32. Sometime later, an I/O in terrupt occurs as a result of the write channel
program completing.

33. lOS passes control to the VTAM DIE (disable interrupt exit) (ISTZFM3B).

34. ISTZFM3B frees the I/O buffer and returns to lOS, indicating that POST
STATUS should not be scheduled.

35. lOS exits to the dispatcher.

A.S.4 OS/VS2 System P~ogramming Library: MVS Diagnostic Techniques

Following are some of the more important processes involved with the
TSO/TIOC/TCAM interface portion ofMVS. The processes are:

• Time Sharing Initialization

• LOGON Processing

• TSO Line Drop Processing

• TMP and Command Processor Interface

• TSO Command Processor Recovery

• TSO Terminal I/O Overview

• TSO/TIOC Terminal I/O Diagnostic Techniques

• TSO Attention Processing

Time Sharing Initialization

The system operator issues the MODIFY command (F TCAM, TS=START) to
initialize the time sharing system. Terminal I/O control (TIOC) logic is
documented in OS/VS TeAM Level 10 Logic.

The major functions that occur during time sharing initialization are:

TSO

1. The SYS 1.P ARMLIB member IKJPRMxx is read to determine the TIOC buffer
size and number, the maximum number of time sharing users allowed to be
logged on at one time, and thresholds for the maximum number of TIOC
buffers a single user can use at one time.

2. The main control block for the time sharing system (TIOC reference table -
TIOCRPT) is initialized. This control block points to the free queue of TIOC
buffers and has status flags indicating whether the system is in an LWAIT (out
of TIOC buffers). The TIOCRPT also points to a pool of terminal status
blocks.

3. The pool of terminal status blocks (TSBs) is built. The number of TSBs is
determined by the maximum user parameter in IKJPRMxx. A TSB is
assigned to a user during logon processing. The TSB connects the ASCB of
the user to the terminal-name table entry of the terminal. From the terminal­
name table entry, TCAM can locate the terminal table entry for the user and
hence the address of the destination QCB. The TSB contains input and output
queues for TIOC buffers that are used by the time sharing user.

The TSB also contains status indicators that record whether the user is in an
input wait (TGET issued and no TIOC buffer on TSB input queue) or an
output wait (maximum number of TIOC buffers used for output).

Appendix A: Process Flows A.6.1

TSO (continued)

Terminal User Issues LOGON

,-- -- -- -- -- -- --I-;a-;; S-;;;'':;;;--'

I
I
I
I
I
I
I

TIOC

IEDAYL
and
IEDAYLL

SVC34

'LOGON'
POST

I Address Space I
I
I

ATTACH 1
IEDAY3
TIOC
LOGON
SYNC

I
I
I

I TeAM Address Space I I
I

L------r----. _I_-
I
I
I

---1

LOGON
Processor

XCTL
STC

New User Address Space

Note: Details of this process are shown in
part 2 of this figure.

Figure A-6. Overview of Logon Processing (Part 1 of 2)

A.6.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

I
I
I

TSO (continued)

LOGON Scheduling

IKJEFLA

STC
XCTL

- Logon Installation
Initialization Exit

I ILiNK

IKJEFLB IKJEFLC IKJEFLE

Logon ATTACH Logon LINK Logon
Scheduler Monitor Verification
Router

IKJEFLH

Calls Job POST Schedules CALL Logon
Scheduling Session Information
Subroutine Routine

IXCTL

IEESB605 IKJEFLJ

Job LINK Pre-TMP
Scheduling Exit
Subroutine
(STC)

ATTACH TMP
Issues
"READY"
Message

Figure A-6. Overview of Logon Processing (Part 2 of 2)

Appendix A: Process Flows A.6.3

TSO (continued)

4. The TIOe buffer pool is bui~.t. The number and size of the buffers is
determined from IKJPRMxx .. If no parmllb member was specified on the
MODIFY TeAM command, SYS1.PARMLIB is searched for the default
parmlib member name - IKJPRMOO. If this member is not found, standard
default values are used. .

S. The 'TSO HAS BEEN INITIALIZED' message is issued (via WTO).

LOGO N Processing

The major functions of LOGON processing are:

1. TeAM handles line I/O and routes the buffer to the TSO message
handler. The message handler routes the buffer to various functional
routines. One of these is logon.

2. The logon routine receives control from the TSO message handler as a result
of the expansion of the LOGON macro. Logon routes the buffer to TSINPUT
s'o that logon scheduling may retrieve it via a TGET sve. TIOe logon then
issues an sve 34 to notify the master scheduler that logon processing should
be started. TIOe then issues QTIP 10 to initialize control blocks. Note: QTIP
is the TIOe code invoked when sve 101 is issued. It performs functions
rel(ited to communication between the TeAM and TSO user address spaces.
The specific function it is to perform is indicated by an entry code (for
example, QTIP 10). A table of entry codes, their callers, the functions
performed, and the modules that provide the function is contained in OS/VS
TeAM Levell 0 Logic.

QTIP issues an XMPOST to inform the master scheduler that TIOe
initialization is complete and that memory create may begin. TIOe then
returns to the message handler for final buffer disposition. If logon
fails or is terminated, TIOe is notified so that the appropriate error
message can be issued.

3. TSINPUT invokes QTIP to move the contents of the TeAM buffer to the
TIOe buffers. This data can then be accessed using TGET services.

4. The master scheduler recognizes that a logon has been requested and attaches
TIOe synchronization. This routine waits until QTIP signals with a post that
memory create can begin. Once an address space has been initialized for the
logon request, the region control task is the first task to be dispatched.

S. Region control establishes an ESTAE routine, attaches the dump task, attaches

started task control, and waits for one of the following:

• An attention request signaled by TIOe via XMPOST

• A swap request signaled by SRM

• A termination request

A.6.4 OS!VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

6. Started task control recognizes that logon is requested and passes control to
logon initialization (IKJEFLA).

7. Logon initialization opens the DADS and broadcast data sets, initializes
control blocks, and calls logon scheduling (IKJEFLB).

8. The logon load module contains four service modules. One,IKJEFLPO,
contains the default values for the number of seconds requested between
'LOGON PROCEEDING' messages and the number of logon attempts allowed
before automatic logoff. Both values are sysgen options on the TSO macro.
The logon scheduler attaches the logon monitor (IKJEFLC). The scheduler
and monitor now begin parallel processing. WAITs and POSTs are used when
synchronization is required.

9. The logon monitor (IKJEFLC) builds the environment control table (ECT),
sets the first element of the input stack to indicate terminal input, and links to
logon verification.

10. Logon verification (IKJEFLE) calls the user's pre-prompt exit if it was coded.
Logon verification makes the· following checks:

• Determines (via ENQ) if the userid is in use.

• Checks the user's password, account number, and procedure name.

• Checks the.performance group requested in the LOGON command.

Logon verification prompts the user for missing parameters if required
parameters do not have defaults in the DADS. After all required parameters
have been obtained, verification builds the JOB and EXEC statement images
for the session. The EXEC statement contains the name of a logon procedure
specified in the DADS or the LOGON command.

11. Logon verification posts the logon scheduler when the parameters are complete
and the job can be scheduled. The scheduler's job now is to cause the broad­
cast messages to be listed at the terminal at the same time that the user's job is
being scheduled. To do this, it posts the monitor task and then XCTLs to the
initiator, passing it the JCL that has been created.

12. The logon monitor regains control when signaled by the logon scheduler,
attaches the LISTBC command processor to write broadcast messages to the
terminal, and then waits for a post from a special initiator logon routine.
This post signals that final processing can be completed.

13. The initiator uses the TSO internal reader to send the logon job to JES2.
JES2 reads the user's procedure from the procedure library specified by the
&TSD job class parameter and changes the JCL to internal text. This is placed
on the spool data set. Once this processing has completed, the initiator
requests the user's job by ID and completes initiation and allocation. Initiation
finally gives control to a special TSO routine (pre-TMP exit, IKJEFLJ). This
routine posts the logon monitor and issues a WAIT. The logon monitor then
terminates. This causes the initiator task to regain control. The logon monitor
is then detached. Once the monitor is detached, the initiator attaches the
TMP and waits.

Appendix A: Process Flows A.6.S

TSO (continued)

14. The TMP (specified as IKJEFTO 1 in the LOGON PROC on the EXEC
statement) performs initialization and then issues a PUTGET to write the
'READY' message a~d request a command from the user. This PurGET
results in a TPUT to send READY and a TGET to request terminal input.
The user is now in an input wait. This signals SRM to perform a swap-out
until input is available.

Figure A-7 shows TCAM's organization after a TSO logon. The following are
detailed descriptions of the logon process including information on control block
manipulation. The numbers in parentheses correlate to the numbers in the
preceding summary of the logon process.

TIDe Logon Processing (2):

• Checks the maximum user count in TIOCRPI'.

• Issues SVC 34 'LOGON'.

• . Places the returned ASID in the QCB for this line.

• Calls QTIP (entry 10) to fmd and initialize the TSB.

- Puts TSB address in the ASCB for the user's address space.

Puts the ASCB address in the TSB.

- Updates the user count.

- Puts the UCB address in. the TSB.

- XMPOSTs 'TIOC SYNC'.

• Sets the QCB to indicate TSO.

• . Pass the logon message buffer to TSINPUT QCB (which is now available to
system logon processing via GETLINE).

A.6.6 OS!VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

Common Storage

CVT ASVT

TCAM's Address Space

MCP ,
"
H MH

7
/

Asce

TSINPUT ace

.............

"'" ."
\

-TSO

\ ,

- User ASID

TS buffers
(with data)

TeAM buffers

4 TSINPUT ace I

Figure A-7. TeAM Organization After a TSO Logon

Appendix A: Process Flows A.6.7

TSO (continued)

Logon Initialization (IKJEFLA) (7): Logon initialization uses the address;
of the ASCB as input and does the following:

• Ensures SYSI.UADS and SYSI.BRODCAST data sets are allocated.

• Gets the LWA (logon work area) from the LSQA. (See Figure A-8.)

• Puts the LWA address in the ASXB.

• Gets the JSEL Gob scheduling entrance list) from the LSQA.

• Puts the CSCB and ASCB addresses in the JSEL.

• Gets the JSXL Gob scheduling exit list) from the LSQA.

• Puts the LWAaddress in the JSXL. JSXL contains pointers to the PRE·TMP,
POST·TMP, and PRE·FREEPART exits.

• Puts the JSXL address in the JSEL.

• Gets the UPT (user profile table) from sub pool 230.

• Issues BLDL for the installation exit routine (Release 2 only).

• Gets the PSCB (protected step control block) from subpool 230.

• Puts the PSCB address in the LWA.

• Puts the UPT address in the PSCB.

• Gets the re-Iogon buffer from subpool 230.

• Puts the re-Iogon address in the PSCB.

• Calls the logon scheduler router.

Logon Scheduler Router (IKJEFLB) (8):

• Frees subpool O.

• Attaches the logon monitor.

• }>osts the monitor with the 'schedule' code.

• Waits for the 'what to do' post from the monitor.

Logon Monitor (IKJEFLC) (9):

• Switches the storage key to '8'.

• Gets the ST AX work area from sub pool 1.

• Gets the ECT (environment control table) from subpool 1.

• Puts the ECT address in the LWA.

• Invokes the STACK macro (input is to come from the terminal).

• Gets the new CSCB (command scheduler control block) from the SQA.

• Sets the CSCB to indicate the job is:

- swapp able

- terminal job

- cancellable

- TSO

A.6.S OS!VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

ASXB

. X'14' ~ LWA

Logon work area

"LWA"

PSCB

ECT

LOGON ECB

PROMPT ECB

SCHED ECB

PROMPT ECB

o

30 t RLGB

34 • UPT

1-:-------.... 4 ,

*The logon work area (IKJEFLWA) is a 148-byte area that is created by IKJEFLA
and is pointed to by ASXB and JSXL. It contains control block pointers, entrance
lists, and parameter lists that are required for logon/logoff.

Figure A-S. Logon Work Area

Appendix A: Process Flows A.6.9

TSO (continued)

• Gets the local and CMS locks.

• Puts the CSCB address in the ASCB.

• Frees the local and CMS locks.

• Calls MGCR to remove the old CSCB from the chain.

• Puts the new CSCB pointer in the JSCB and JSEL.

• Calls MGCR to add the new CSCB to the chain.

• Issue the STAX macro to set up attention handling.

• Unks to logon verification.

Logon Verification (IKJEFLE) (10):

• Calls the installation exit (if necessary).

• Issues GETLINE or uses the installation supplied buffer containing the logon
parameters.

• Calls the command scan service routine to ensure that input is the LOGON
or LOGOFF command (assumes LOGON).

• Calls PARSE for logon parameter parsing.

• Indicates no password required for the UADS.

• Issues ENQ on the UADS (prevents the ACCT CP from changing UADS).

• Opens the UADS.

• Issues FIND for the userid member (userid is taken from the logon parameter).

• Places the userid in the PSCB.

• Posts the logon scheduler.

• Waits for the post from the logon scheduler.

Logon Scheduler (IKJEFLB):

• Enqueues (via ENQ) on SYSIKJUA.USERID.

• Posts logon verification.

• Waits for logon verification.

Logon Verification (IKJEFLE):

• Dequeues (via DEQ) from UADS.

• Puts the userid in the CSCB.

• Puts the userid in the ASCB.

• Enqueues (via ENQ) on UADS.

• Finds userid member.

• Dequeues (via DEQ) on UADS.

• Reads UADS.

• Issues check.

A.6.10 OS/VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

• Places' the parameter in the proper control block.

• Places the password in the TSB.

• Places the procname in the CSCB.

• Places the region size in the PSCB.

• Informs SRM of the performancegroup.

• Builds the JCL:
/'/USERID JOB 'account#', REGION=region size
/ /procname EXEC procname, PERFORM=performance group

• Issues the 'LOGON IN PROGRESS' message to the terminal.

• Closes the UADS.

• Clears 'NO PASSWORD' in the JSCB.

• Dequeues (via DEQ) from UADS.

• Posts the logon scheduler to schedule the session. (11)

• Waits for the logon scheduler.

• Sends the broadcast messages (via the information routine). (12)

• Issues the 'LOGON IN PROGRESS' messages until posted by the initiator.

• Frees subpool 78.

Logon Scheduler (IKJEFLB) (11):

• Sets up the interface to JSS.·

• Posts the logon monitor.

• XCTLs to JSS (initiator).

Job Scheduling Subroutine (IEESB605) (13):

• Calls the PRE-TMP exit.

PRE·TMP Exit (IKJEFLJ):

• Posts the monitor task to terminate.

• Moves the PSCB from (unaccountable) subpool 230 storage to (accountable)
subpool 252 storage. The PSCB address is placed in the active JSCB.

• Moves the UPT and the re-Iogon buffer to 0 (allows updating by CPs).

• Returns to the initiator.

Initiator:

• Attaches TMP (PARM='xxx ... ' is passed).

TMP(I4):

• Issues "READY" message.

• Requests terminal input.

Appendix A: Process Flows A.6.11

TSO (continued)

LOGON Scheduling Diagnostic Aids

The following two figures contain information that can be used for diagnosing
problems that occur during logon scheduling. '

Field Name
and Contents

Name of
Executing Module Common Name of Module

LWAINX1 =1
LWALA =1
LWALB =1
LWALC =1
LWALE =1
LWALEA =1
LWALI =1
LWALH =1
LWALL =1
LWALGM =1
LWALJ =1
LWALK =1
LWALG =1
LWALGB =1
LWALS =1
LWALTBC =1
LWAMCK
LWAPCK
LWAPHASE =0

LWAPHASE =1
LWAPSW
LWATNBT

IKJEFLD
IKJEFLA
IKJEFLB
IKJEFLC
IKJEFLE
IKJEFLEA
IKJEFLI
IKJEFLH
IKJEFLL
IKJEFLGM
IKJEFLJ
IKJEFLK
IKJEFLG
IKJEFLGB
IKJEFLS
IKJEFLH
IKJEFLGB
IKJEFLGB
Any LOGON module
except IKJEFLH
IKJEFLH
IKJEFLGB
IKJEFLG

Installation Exit (written by installation)
LOGON Initialization
LOGON Scheduling
LOGON Monitor
LOGON/LOGOFF Verification
Parse/Scan Interface
Installation Interface
LOGON Synchronizer
LOGO F F Processi ng
LOGON Message Handler
Pre-attach Exit
Post-attach Exit
Attention Exit
LOGON Monitor Recovery
LOGON Scheduling Recovery and Retry
Mail and Notices Processing
ABEND was a machine check
ABEND was a program check
LOGON/LOGOF F Verification

LOGON Synchronizer
Console Restart key depressed
Attention Routine

Figure A-9. LOGON Work Area Bits That Indicate the Currently Executing Module

A.6.12 OS/VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

Module Module Location Condition of Action Taken by
'Issuing Being of Post Module Issuing Module Being
POST . Posted ECB Code POST Posted

IKJEFLB IKJEFLC field 16 Ready to invoke job Invoke LOGON infor-
LWASECB scheduling subroutine mati on routine
in LWA (lEESB605). (lKJEFLH).

24 Terminating for Perform clean-up
LOGOFF or for operations and
unusual termination terminate.
of LOGON monitor
(lKJEFLC)'

IKJEFLC IKJEFLB field 12 Termination or Issue DEQ on user
LWAPECB attention requested. identification.
in LWA 16 Verified and processed Schedule a terminal

the LOGON session.
parameters.

24 Processing a LOGOF F Terminate.
command.

IKJEFLE IKJEFLB field 8 Authorized the user Issue ENQ on user
LWAPECB identification. identification.
in LWA 12 Error processing. Issue DEQ on user

identification.

IKJEFLJ IKJEFLH field 20 Detects that the Finish LlSTBC
LWASECB initiator is ready to processing; return
in LWA attach the TMP. to caller.

IKJEFLH IKJEFLJ field 20 Finished LlSTBC Terminate so the
LWAPECB processing. initiator can attach
in LWA theTMP.

Figure A-I O~ LOGON Scheduling Post Codes

Appendix A: Process Flows A.6.13

TSO (continued)

TSO Line Drop Processing

The following description corresponds to the overvieW of line drop processing
shown in Figure A-II.

IEDA YH (Part of TCAM MCP):

• Gets control from the TCAM dispatcher when either of the following occurs:

A hang up on a monitoring channel program or a message
generation.

Each input or output message ends.

• Tests for and handles several kinds of errors. If it discovers the line has dropped,
it begins terminating the user. Each of the following is considered a line drop:

Entry because of a hang up on a·monitoring channel program or a message
generation

A 3705 control unit error -'- indicated in the SCB (station control block)

A permanent terminal error - indicated in the SCB

A countable error and an appropriate number of retries have been done -
indicated in the SCB

• If a line drops, issues a QTIP 4 (SVC IO I, entry code 4).

QTIP4 (IEDAYHH):

• TSBHUNG=l.

• Issues QTIP 28 to free the TCAM buffers.

• If the reconnect time limit is 0 (in TIOCRPT), then branch enters SIC (system­
initiated-cancel IKJEFLF) with code 622; upon return, returns to caller.

• For a non-O RECONLIM:

- Sets TSBMINLequal to the reconnect time limit.

IfTIOCTECB (in TIOCRPT) is posted, then increases the value in TSBMINL
by one. Otherwise, posts TIOCTECB (which IEDA Y802, running as a
subtask of TCAM, is waiting for).

• Returns.

A.6.14 OS/VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

LINE DROP IN TSO ENVIRONMENT

·TeAM Address Space

TCAMMCP

SVC 101
IEDAYH ... -

P OST
QTIP4 t--

IEDAY802 CALL SIC
~ Subtasks - IKJEFLF

of TCAM -
I

USER Address Space
.- _______ ---1

POST ,---
J

t
SVC

INITIATOR* -

~
'RETURN

I
SCHEDULE

SRB
I

SIC (SRB)
IKJL4TOO

SVC34
CALL

- CALLRTM

-
I
I
I

ABEND
TMP

~ ______ . __ ---..J

Command
Processor

*Upon return, continues with
normal logoff.

Figure A-It. Overview ofTSO Line Dump Process

Appendix A: Process Flows A.6.IS.

TSO (continued)

IEDA Y802 (subtas~ of TeAM): I{e'eps track of users whose lines have dropped
and, if the time limit' expires before they come back, terminates the address space.
IEDAY802 does the following:

• Waits for TIOCTECB.

• Sets the one-minute timer.
I

• Invokes QTIP 27 (IEDA Y88) SVC 101, entry 27 which scans the TSBs for
TSBHUNG=l and TSBMINLfO,

If so, QTIP 27 decreases TSBMINL by 1.

If TSBMINL is now 0, QTIP 27 branch enters SIC (system-initiated-cancel)
with code 622.

QTIP 27 returns a code of 0 if any users have time left or a code of 4 if all
users have been cancelled.

• If the return code is 0, IEDA Y802 goes to the one-minute timer.

• If the return code is 4, IEDA Y802 waits for TIOCTECB.

SIC (system-initiated cancel):

IKJEFLF schedules an SRB in the address space to be terminated, passes a
completion code (622 for line drop), and returns to the caller.

IKJL4TOO runs under the SRB scheduled by IKJEFLF and gets control the next
time the address space is dispatched. IKJL4tOO does the following:

• If TMP is in control, skips to POST.

• Issues STATUS STOP for TCB= (IWAIT/OWAIT dispatchability bits).

• Issues QTIP 24, which sets TSBCANC=l and removes aWAIT for other address
spaces TPUTing to this user.

• POST cancels the ECB in the CSCB (IKJL4 TOO branch enters POST with
completion code 622). The initiator (IEFSD263) waits for the ECB while TMP
is in control.

• If TMP is not in control, issues STATUS START for the logon scheduler and
monitor tasks.

• Exits.

Initiator (IEFSD263):

• Waits for the CANCEL ECB and ATTACH ECB of the TMP task.

• When the CANCEL ECB is posted, issues SVC 34 to abnormally terminate the
user.

A.6.16 OS!VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

SVC 34:

• Issues CALLRTM, which sets the resume PSW of the TMP task to point to an'
SVC D instruction and forces the TMP task to be dispatchable.

SVC D (RTM2):

• Oversees the termination of the TMP task and all daughter tasks.

• When the TMP task terminates, its attach ECB is posted, giving the initiator
control again.

Initiator:

Processing continues the same as for normal logoff except:

IKJEFLK, the POST~TMP exit module, issues QTIP 24.

IKJEFLC issues the "session cancelled" message before the logon scheduler
XCTLs to the STC termination.

If the line drops, IEDAY8, the TIOC resource manager, does not force the
remaining messages out.

TMP and Command Processor Interface

The following is a description of the TMP and command processor flow.

1. The TMP is attached by the initiator as a result of a logon command from a
teJ;minal user or the execution of a batch job. Logon initialization establishes
the s1 AE environment to handle abends and the ST AX exit to handle
attention interrupts.

2. The TMP mainline routine receives control and determines which buffer to
obtain. This can be either:

a. The logon buffer (from PARM= on the EXEC statement of the logon
procedure)

b. The command buffer, as a result of a PUTGET

c. The buffer obtained by the attention prolog

d. The buffer obtained by the STAI exit

3. If the current input is the command buffer, the TMP must check for five
special cases as follows: '

a. PUTGET is responsible for checking for a '?' in the first buffer position in
response to a mode message. When one is detected PUTGET immediately
issues the next available second-level message. This TMP should never
receive a '?' in a buffer, but if the user enters a '~?' (blank ?), PUTGET
lpasses the buffer through to the TMP.

b. A nul11ine.

Appendix A: ProcessFlows A.6.17

TSO (continued)

c. TEST command without operands.

d. TIME command.

e. If scan determines that the data in the buffer is not one of these special
cases and that the data begins with an alphabetic character and is less
than eight bytes, the TMP issues an ATTACH for the command name.
Prior to ATTACH processing a search is conducted (through MLPA, LPA,
joblib, LNKLSTxx, respectively) to assure a successful ATTACH. If the
ATTACH is not successful, the TMP assumes a CLIST and attaches the
EXEC CP to search the user's command procedure library. If the TMP
does not locate either a command or a command procedure whose name
is the same as that found in the input buffer, a 'COMMAND NOT
FOUND' message is issued to the terminal.

4. If the command processor was attached, the TMP waits for an ECB list
containing the following ECBs:

a. STAI ECB:The'TMP's STAI exit routine posts this when a command
processor abnormally terminates and does not recover with its own ST AE
routine.

,b. Attention exit ECB: The TMP's attention exit routine I!osts this when it
gains control. It gains control when the user enters an attention interrupt
and the TMP exit is the current level exit. For more details, see the
discussion of "TSO attention processing" later in this chapter.

c. STOP/MODIFY ECB: this ECB is posted if a stop userid is requested
by the system operator.

d. Command processor ECB: this is the ECB specified in the attach of the
command processor. It is posted when the processor terminates.

5. If the command processor ECB is posted, the TMP repeats step 2 to
determine what' action to take.

6. If the attention exit or STAI ECB is posted, the TMP does one of the
following:

a. If a ~~?' was entered in response to the mode message, the TMP sends
second level messages to tl;te terminal.

b. if a null line was entered, TMP returns control to the command processor.
If an attention interrupt occurred, the TMP continues normal processing.
If an abend occurred, the TMP takes a dump.

c. If TEST was entered without operands, the TMP links to TEST and places
the interrupted command processor under test control. When TEST
processing is ended, the TMP aetaches the current command and prompts
the user with a 'READY' to enter a new command.

d. If the TIME command was en tered, the TMP displays the curren t time. and
prompts the user for anew command. In this case, the user can exercise
any of the preceding options or enter a new command.

c. If the user enters a new command or exercises one of the preceding
options, the TMP detaches the current command and issues a PUTGET
requesting new input.

A.6.18 OS/VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

The following common control blocks are used for communication among the
TMP, command processors, and service routines (PUTGET, PARSE, etc.):

IKJTMPWA (TMP Work Area)

Created by:

Length:

Pointed to by:

IKJEFTOI

1076 bytes

TMPWAPTR,WORKAPTR

Function: Provides communication among
TMP modules. Contains register save
areas, parameter lists for TEST and TMP,
ABEND exit routines, and mappings of
macros commonly used by TMP modules.

IKJCPPL (Command Processor Parameter List)

Created by: IKJEFTO 1

Length: 16 bytes

Pointed to by: Register 1

Function: Provides parameters for the
command processor.

IKJECT (Environment Control Table)

Created by:

Length:

Pointed to by:

IKJEFTOI

40 bytes

TPL,CPPL

Function: Provides communication among
the TMP, CP, and service routines.
Contains current command/subcommand
names, pointers to work areas and
second-level message chains, and return
codes.

3C

14C

158

168

170

2E4

2E8

2EC

2FO

2F4

334

338

33C

340

348

350

TPL MAPPING

, CPPL

, ECT

• PSCB

• UPT

(CPPL), CBUF

~ UPT

• PSCB
~ ECT

(ECT)

~ IOWA

I' SMSG

PRIMARY
COMMAND

SUBCOMMAND

Appendix A: Process Flows A.6.19

TSO (continued)

IKJPSCB (Protected Step Control Block)

Created by:

Length:

Pointed to by:

IKJEFLA

72 bytes

LWA,CPPL

Function: Contains information from
UADS, control bits, and accounting
data for the user ID. (This accounting
data is controlled by the installation
via the ACCOUNT command.)

IKJRLGB (Re-Logon Buffer)

Created by:

Length:

Pointed to by:

IKJEFLA

264 bytes

PSCB

Function: Contains the LOGON/LOGOFF
command entered at the terminal at
th~ end of the session.

IKJUPT (User Profile Table)

Created by:

. Length:

Pointed to by:

IKJEFLA

24 bytes

PSCB,CPPL

Function: Contains information
stored in UADS that is used by
LOGON/LOGOFF, the TMP,
and the command processors.
(This information is all
controlled by the installation
via the PROFILE command.)

A.6.20 OS/VS2 System Programming Library: MVS Diagnostic Techniques

PSCB
0

User 10
8

30
~ RLGB

34
• UPT

RLGB

X'100'M----------I
• ECT

UPT

C
User Line Line
Environmental Delete Delete
Switches Char Char

10
~

DSNAME r--= Prefix
18

1S0 (continued)

TSO Command Processor Recovery

The following describes IBM's TSO command processors. Figure A-12 summarizes
their recovery activity.

ACCOUNT

The STAE exit routine for ACCOUNT flushes the input stack and posts the
ACCOUNT ECB before returning to continue abend processing. ACCOUNT
attaches the HELP command processor, specifying for a STAI exit routine the
same name as the STAE exit routine.

EDIT

The ESTAE exit routine for EDIT flushes the input stack, stops automatic line
prompting, and frees any acquired storage still remaining. The EDIT work area,
mapped by IKJEBECA, can be located in a dump to obtain certain data on the
EDIT session. The pointer to the communication area is passed between routines
in register O. By convention, most routines keep the pointer in register 9 during

. execution. A description of IKJEBECA can be found in the data areas microfiche
(OSjVS2 Data Areas).

LOGON

The ESTAE exit routine for LOGON de queues from the userid, closes the UADS
data set, and detaches IKJEFLC. The LOGON work area, mapped by IKJEFLWA,
can be located in the dump (field ASXBLWA in the ASXB) to obtain certain
information on the session. A description of IKJEFLWA can be found in the data
areas microfiche.

LOGON also has an EST AI exit routine, which dcqueues from the userid,
closes the UADs data set, cancels the attention exit, and frees subpools 1 and 78.

OPERATOR

The STAE exit routine for OPERATOR stops all active monitor function if
the abend is caused by a DETACH with ST AE. OPERATOR also has a ST AI
exit routine that is the same name as the STAE exit routine.

The SVC 100 parameter list, mapped by IKJEFFIB and passed to the
OPERATOR command processor, can be located in the dump and certain data on
the session can be obtained. A description of IKJEFFIB can be found in the data
areas microfiche.

. Appendix A: Process Flows A.6.21.

TSO (continued)

OUTPUT

Before returning to continue abend processing, the ESTAE exit routine for
OUTPUT closes any data sets that are being processed. The OUTPUT work
area, mapped by IKJOCMTB, can be located in a dump (while OUTPUT is in
control) and certain data on the session can be obtained.

OUTPUT attaches the HELP command processor specifying a STAI exit routine.
The ST AI exit routine simply returns to continue abend processing.

SUBMIT

The SUBMIT command processor runs under the ST AI environment established by
SVC 100. This STAI routine closes the INTRDR data set before it returns to
continue abend processing. The SVC 100 parameter list, mapped by IKJEFFIB
and passed to the SUBMIT command processor, can be located in the dump and
certain data on the session can be obtained. A description of IKJEFFIB can be
found in the data areas microfiche.

Command STAEI STAll
Processor ESTAE ESTAI RETRY SDUMP LOGREC Messages

ACCOUNT STAE IKJ565541

STAI IKJ565541

EDIT ESTAE I See Note 1

LOGON ESTAE I ,; IKJ564521

ESTAI I IKJ56451I

IKJ564521

I KJ56406 I

OPERATOR STAE ,j IKJ550041

STAI I IKJ550041

OUTPUT ESTAE See Note 2 See Note 3 IKJ563181

STAI

SUBMIT STAI IKJ562941

Notes:
1. Abend codes B37, D37, and E37 point to I KJ524271, I KJ524281; the others point to

I KJ524221. I f the data set is modified, abend codes poi nt to I KJ525551.
2. SDUMP is issued for all abends except for DETACH with STAE, codes 437, 913, and

422.
3. LOGREC is written to except for DETACH with STAE.
4. An effective trapping and problem solving technique for TSO command processors is to

stop the error processing in the appropriate error recovery routine.

Figure A·12. Summary of Command Processor Recovery Activity

A.6.22 OS/VS2 System Program~ing Library: MVS Diagnostic Techniques

TSO (continued)

TSO Tenninal Input/Output Overview

Terminal I/O flow is divided into two parts: input flow and output flow. This
overview highlights each at the SVC level.

TS/TCAM uses the services of three SVCs to communicate between the user's
address space and the TCAM address space:

1. TGET/TPUT (SVC 93): The TMP and command processors issue this SVC to
move data from the user's buffer to an interface buffer in CSA (TIOC buffer).

2. QTIP(SVC 101): This SVC is a set of multipurpose routines that perform
functions for both the user address space and the TCAM address space. For
example, QTIP is used by TCAM to move data from a TCAM buffer to an
interface (TIOC) buffer and is also used by J'GET/TPUT to move data from a
user's buffer to a TIOC buffer.

3. STCC (SVC 94): This SVC is a set of routines used to update TCAM control
blocks from the user's address space. For example, the user can use the
terminal command to change a terminal characteristic. This is
communicated to TCAM via SVC 94.

TS/TCAM data flow also requires a logical connection between a terminal, a
line, and an address space. This is accomplished as follows:

• The terminal macro in the user's MCPestablishes the connection between a
terminal name and it destination (destination QCB).

• At TCAM initialization, OPEN establishes the connection between the
destination and a physical terminal (a line control block is connected to the
terminal name table via an index into the table).

• Logon processing establishes the connection between the destination QCB and
the user's address space (the destination QCB contains the ASID of the user
and the user's terminal status block (TSB) contains an index to the TCAM
terminal name table). Also, a user's TSB and ASCB point to each other. The
station's control block contains the address of the TSINPUT QCB.

Terminal I/O flow also requires the use of two special TCAM subtasks:
TSINPUT and TSOUTPUT. TSOUTPUT acts as the router for all messages
coming from time sharing users. TSOUTPUT is responsible for editing output
messages as it moves the data from the time sharing interface buffers (TIOC
buffers) in CSA to the TCAM buffers in the TCAM address space. Once
TSOUTPUT has moved data to the TCAM buffers, the buffer is routed to the
output side of the message handler and then written to the terminal.

TSOUTPUT also runs as a subroutine of TCAM. TSOUTPUT is the first
subroutine in control of the disk I/O QCB in a TCAM system that supports time
sharing.

Appendix A: Process Flows A.6.23

TSO (continued)

Terminal Output Flow

Assume that a user has logged on, the TMP has been initialized, and a PUTGET has
been issued by the TMP to put out a 'READY' message and request input from the
terminal user. The following now occurs:

1. The TMP invokes the services of thePUTGET service routine, which issues a
TPUT and then a TGET (both SVC 93s). TPUT performs the following basic
functions:

a. Obtains a TIOC buffer from the pool of free buffers. If a buffer is not
available or the user has passed the output buffer limit (OWAITHI
,parameter in IKJPRMOO), the user is placed in an output wait (the
appropriate flag is set in the TSB).

b. If a buffer is available, the 'READY' message is moved from the user's
buffer to the TIOC buffer.

c. The user's terminal status block is placed on TCAM's asynchronous ready
queue. (A siJecial element at TSB + X'40' is used.)

d. An XMPOST is done to alert TCAM.

e. Control is returned to PUTGET.

2. When the TCAM address space is dispatched, and the MCP TCB regains control,
TCAM searches its asynchronous ready queue and discovers the user's TSB.
However, because this -is a TS/TCAM system, TSOUTPUT receives control
instead of the disk I/O routine. ~SOUTPUTperforms the following functions:

a. Builds TCAM buffers from basic TCAM buffer units.

b. 'Uses QTIP services to move the TIOC buffer from the TSB header queue
(queue of complete output messages) to the TSB output trailer queue
(queue of TIOC buffers being moved).

c. Uses special TIOC edit routines (not QTIP) to move and edit data from the
TIOC buffer to the TCAM buffer.

d. Once the data has been moved into the TCAM buffers, the TCAM buffers
are routed to the output side of the message handler and are then written
to the terminal. After the message is successfully written, the TIOC
buffers are freed via a subsequent call to TSOUTPUT.

A.6.24 OS/VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

Terminal Input Flow

The following process can run in parallel with step 2 in the preceding section,
"Terminal Output Flow." It starts when control is returned to PUTGET as
described at the end of step 1 in that section.

1. PUTGET issues a TGET to obtain input. TGET (SVC 93) performs the
following functions:

a. Checks to determine if there is an input buffer on the user's terminal
status input queue. TCAM normally allows users of remote terminals to
enter input while the current input is being processed. Therefore, it is
possible that input could be 'stacked' and an input buffer found on the
TSB input queue. However, TCAM does not allow local devices to 'stack'
input. In this case, assume a local device and no buffer on the TSB input
queue.

b. Therefore, the TGET notifies SRM that an input WAIT has been entered
and sets the appropriate flag in the TSB (IWAIT condition).

c. SRM eventually performs a swap-out on the user.

2. The user now enters a new command at the display station and hits 'ENTER'.
TCAM handles the interrupt, associates it via the LCB to a terminal name
table index, terminal table entry, and destination QCB.

3. The TCAM buffer is routed to the input side of the appropriate message
handler (determined from the DCB for the line). The message handler
normally translates the data from line code to EBCDIC. The message handler
must locate the destination QCB of the terminal that issued the message and
also check that the terminal is logged on to time sharing. If it is logged on,
the message handler routes the buffer to TSINPUT as the common input
destination for all time sharing messages.

4. TSINPUT performs the follOWing functions:

a. From the ASID value in the terminal's destination QCB, TSINPUT
determines which address space should receive a particular message.

b. TSINPUT obtains a TIOC buffer from the free buffer pool. If no TIOC
buffers are available, the TCAM buffer is chained from a special queue in
the TSINPUT QCB until TIOC buffers are made available. In this case,
the time sharing system is placed in an LWAIT (out of TIOC buffers).

c. If a TIOC buffer is available, TSINPUT uses the services of QTIP to move
data from the TCAM buffer to the TIOC buffer. Most line control
characters and all 3270 buffer control characters are edited out ·of the
message during this move.

Appendix A: Process Flows A.6.25

TSO (continued)

d. SRM is"notified that the user is no longer in an input wait and may be
swapped in.

e. The TCAM bufferis routed to the buffer disposition routine for final
processing.

5. Once the TCAM buffer has been freed and final cleanup has been performed
on the line, TCAM searches for additional work on the work-to-do queues.
If there is none, TCAM enters a wait.

6. Once SRM has swapped-in the user, TGET regains control. Using QTIP,
TGET moves the data from the TIOC buffer to the user's buffer.

TSO/TIOC Tenninal I/O Diagnostic Techniques

For terminal hangs or interlocks involving TSO tem1inal I/O, a good place to start
is at the TSB and TIOCRPI'. The TSBs are physically contiguous and adjacent
to the TIOCRPT (aU in CSA), as shown below:

TCX (TCAM CVT extension)

+24
TIOCRPT (reference pointer table)

TSB

A.6.26 OS/VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

TIOCRPT is described in the Debugging Handbook. TSB is described in OS/VS2
Data Areas (microfiche). TIOC is described in OS/VS TCAM Level 10 Logic.

TSBOWIP and TSBWOWIP are used to serialize TPUTs to a user. TSBOWIP is
set at the start of a TPUT SVC, while that SVC holds the local and CMS locks. If
another TPUT is issued before OWIP is reset, then WOWIP is set and the issuer of
the second TPUT is put in OW AlT.

The task that has "seized the TSB" (that is, set OWIP) can be determined by
checking TSBCTCB. (TSBTJIP and TSBTJOW serve approximately the same
function for cross-memory TPUTs.)

TSO Attention Processing

.. The followingsection summarizes the process of TSO attentions. The numbers in
I parentheses correlate to the numbers in Figure A-I3.

TCAM Channel End Appendage (1)

• Ensures TCAM is active.

• Finds the element associated with this terminal.

• Places the element on the asynchronous queue.

• TeAM dispatcher merges the asynchronous queue to the ready queue and
give control to the message handler.

• TCAM recognizes the following forms of terminal attention interrupts:

I/O attention interrupt for a 2741, which is checked in the line end
appendage.

Two separate interrupts for the 3270; (1) a keyboard-invoked I/O
attention interrupt, followed by (2) an I/O complete interrupt for
the read issued by TeAM in response to the first interrupt.

A user character string for a simulated attention, which is checked by the
SIMATTN routine.

Appendix A: Process Flows A.6.27

TSO (continued)

Hardware Attention Simulated Attention

(1)
(3)

(~) Message TeAM Channel .. Message
End Appendage - Handler -- Control

Program(MCP)

I

TIOC
(4) Attention

Handler

/
/ OTIP

/ (5) Attention

/ Handler

/ /
r-:- L --((6) TIme I Sharing t-- RCT -
LBIOC~S~J

/

r-L -,
RCT RCT

I User Issues I (7) Attention (9) Attention STAX L ___ ..J Scheduler Exit

I

.1

Selected

(8) User STAX
Exit

, Figure A·13. TSO Attention Flow

A.6.28 OS/VS2 System Programming Library: MVS Diagnostic Techniques

TSO (continued)

Simulated Attention (2):

The message control program (MCP) reads input from the terminal the same as it
does for normal operation. It then passes the message to the message handler.

Message Handler (MH) (3): .

• Checks for the following conditions and calls TIOC if any exist:

Terminal input (character string)

PAl function key

Terminal output lines

TIDC Attention Handler (4):

• Ensures TSO is active.

• Gets the user's TSB.

• Checks if the attention was caused by a deleted line.

• Invokes QTIP (TIOC/TSO interface).

QTIP Attention Handler (5):

• Checks if the user has issued any STAX macros.

• Ensures the number of unprocessed attentions does not exceed the number of
active STAXs (causes '!I=TOO MANY ATTENTIONS or
'!'=ATlIENTION ACCEPTED to be printed a(the terminal).

• Posts the RCT to schedule the user's attention exit.

• Purges input and output message queues to/from user except ASID type
messages.

RCT (Region Task Control) (6):

• Waits for:

- Termination

- QUIESCE/RESTORE

- Attention

.Appendix A: Process Flows A.6.29

TSO (continued)

RCT Attention Scheduler (7):

• Cancels previously-scheduled attentions that have not been executed.

• Determines the current attention level requested.

• Disables any affected tasks.

• IfOBUF and/or IBUF was specified on the STAX macro, issues TPUT and/or
TGET.

User STAX Exit (8):

• User defined.

RCT Attention Exit (9):

• Enables any affected tasks.

• Checks for another attention pending.

• RCT enters wait.

TSO APAR Documentation

. TSO APAR documentation should include:

• Terminal input and output.

• SYSUDUMP or stand-alone dump, as appropriate.

• Information about how the system differs from PID release in the TSO area:

PTF list.

Information about non-IBM commands that appear in terminal output.

Description of any TMP modifications.

Description of applicable installation exits (LOGON, SUBMIT, etc.).

• listing of the logon procedure, with a list of membernames in STEPLIBs,
if any.

A.6.30 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Overview

Appendix B: Stand-alone Dump Analysis

This appendix contains a procedure that has been used successfully in stand-alone
dump analysis. It is part of the course material in Field Engineering classes that
teach MVS problem determination. This procedure does not attempt to cover all
situations bu t it can be used as a guide through major status areas until you become
thoroughly familiar with the system.

Stand-alone dumps are generally taken by the operator when he detects:

• That the system has stopped in a solid wait state with a wait state code.

• What appears to him to be a system loop.

• That the system is not running or is running slowly.

Usually the 'Title From Dump' reflects what the operator thought happened.

Before becoming too involved in the problem itself, it is a good practice to get
some feel for the status of the system at the time the dump was taken. Some
valuable system status indicators can be obtained from the formatted section of the
dump. Indicators can be obtained from the formatted portion of the dump under
"System Summary" (produced by the SUMMARY control statement) and CSD,
PSA, LCCA, and PCCA (produced by the CPUDATA control statement). Although
it is seldom that anyone indicator definitely points out the problem, when all
indicators are noted and analyzed, a pattern might emerge that points the problem
solver to the proper area for further investigation.

The enabled wait generally occurs as aresult of the lack of some critical system
resource. If the PRINT statement of PRDMP is used, PRDMP identifies the
current task. If the current task is the wait task, the message "Curren t Task = Wait
Task" will appear.

If it appears you have an enabled wait condition, read the chapter on "Waits"
in Section 4 of this book before proceeding with your analysis.

The system can appear or actually prove to be bottlenecked because the
operator cannot communicate with MVS. This is the sign of a problem almost any­
where in MVS, but an error in the communication task or its associated processing
might be the direct cause. The communication task runs as a task in the master
scheduler's address space, usually represented by, the third TCB in the formatted
portion of the stand-alone dump; it is identified by a X'FD' in the TCBTID field
(TCB+X'EE'). By inspecting the RB structure associated with this task, you can
determine the current status. It is not unusual to find one RB with a resume PSW
address in the LP A and an RB wait count of one. If more than one RB is chained
from the TCB and you could not enter commands, analyze the RB structure as this
is not a normal condition.

Appendix B:. Stand-alone Dump Analysis B.1.1

Appendix B: Stand-alone Dump Analysis (continued)

Remember that communicatio"ns task processing is very dependent on the rest
of the operating system. Probably some external service or process has caused the
communications task to back-up, and this possibility should be investigated.

For the system to continue execution, the major components must be opera-
. tional. If any critical system components such as master scheduler, ASM, JES2,
and TCAM for TSO, terminate abnormally and fail to. recover, the system· cannot
continue normal operation. Usually this can be determined from the records in
SYSI.LOGREC. However, check the TCB summary in the formatted section for
completion codes.

The presence of a TCB completion code does not positively identify the
associated task as being inoperative. It is possible that the completion code is
residual and the task has recovered. The presence of a completion code makes
the task suspect, however, and should be investigated.

Unless the operator STORE STATUS command was issued before taking the
dump or the "Title from Dump" reflects a WSC (wait state code), it can be difficult
to determine if a WSC exists and what it is if it does.

Ifhowever, the WSC PSW is dispatched by NIP during IPL, it is generally
located in one of two places:

• In the MCH new PSW if a program check occurred prior to RTM initialization.

• In the nucleus vector table (NYT + X'EO') in the case of a system-detected
error during the NIP process.

The other WSCs (they are few in number) issued by the system are dispatched
by the master scheduler communications task and ASM. The current address space
should identify who loaded the WSC PSW; WSC PSWs are issued when the system
determines that it cannot continue. They are usually preceded by other error
indicators that should be investigated along with the WSC.

Note: A valid WSC always looks like: X'00020000 OOOOOxxx'

A disabled wait normally has a wait state code associated with it. If so, the
messages and codes should contain a problem description.

If there is no wait state code, the trace table should indicate the last sequence
of events leading to the wait state condition. Probably a bad PSW (wait bit on) has
been loaded.

If no valid WSC exists and if the PSW reflects the wait bit, is disabled, and the
STORE STATUS registers are not equal to zero, suspect: a user or Field
Engineering trap or a SLIP trap (with a wait state code ofX'OlB'), a bad branch, or
system damage. Examine the trace table and attempt to define the events that led
up to the wait condition. Was the last entry an SRB dispatch or an SVC I/O
interrupt? Using the PSW address, determine the entry point of the routine if
possible.

B.l.2 OSNS2 System Programming Library: MVS Diagnostic Techniques

Appendix B: Stand-alone Dump Analysis (continued)

The PSA is a system area whose status indicators are dynamically changing. The
status indicators reflect the condition of the system the instant the dump was
taken. Taken out of context, they can be misleading.

Therefore, find out if the operator entered a STORE STATUS command and
keep in mind the status could have been stored any time and not necessarily just
before the dump.

Note: The best evidence that the operator issued STORE STATUS is the content
of 'Current Registers and PSW at Time of Dump.' This is because although the
stored status is put in the PSA +X'IOO' and the registers are put at PSA +X'160-
1 FF', the SADMP program reads this area as the current PSW and registers and
writes them to the dump data set. On a UP, the formatted current data will be the
same as in the PSA. On an MP system, however, the SADMP program issues
SIGP to the other processor to store status. The STORE STATUS command always
stores in the normal PSA at location zero. This means that the normal PSA will
contain the registers and PSW from the other processor. If the SADMP program did
not save the STORE STATUS data before issuing the SIGP instruction to the other
processor, the data from the operator's STORE STATUS command would be overlaid
and the contents lost.

Also note that on an MP system there are three PSAs and the AMDPRDMP
program formats all of them for you. The normal PSA is used only during NIP
(and SADMP). Always be sure you are looking at the right PSA when you
are analyzing the PSA contents.

If the PSW + X'OI' = xE or x2, the PSW = Wait PSW. IfPSW + X'OO' = X'04',
the system was disabled. If PSW + X'OO' = X'OT, the system was enabled.
Determine whether the PSW contains a WSC or an address. Then determine what
key the PSW reflects. PSA + X'lOl' = X'xC' or X'xE' where the x = key, as
follows:

o su pervisor
1 scheduler/JES2/JES3
5 lOS, data management, actual block processor, O/e/EOV
6 TCAM/VTAM
7 IMS
8 virtual problem program

9-F V=R problem program

Check the PSA for a low storage overlay. Critical fields are the CVT pointer at
X~IO', the new PSWlocations at location X'58-78' and at location X'OO', and the
trace table pointer at location X'54'.

Keep in mind that the CVT pointer at location X'lO' is constantly refreshed and
the old PSWs are constantly updated by the hardware. They could have been over­
laid at one time and sti11look okay in the dump from an MP system.

I

In a SADMP on a UP, locations X'OO' through X'18' are always overlaid by the
IPL CCWs and PSW from the IPL of SADMP itself. These locations never contain
valid data.

Appendix B: Stand-alone Dump Analysis B.1.3

Appendix B: Stand-alone Dump Analysis (continued)

If the PSW reflects the wait bit and does not have a zero address and if the
STO RE STATUS registers are zero, check location X'300'. Is it equal to the wait
state PSW? If so, it is possible some task scheduled a bad SRB. Examine the trace
table for the SRB dispatch. Register O's position in the trace table is a pointer to
the SRB. The previous address space before the SRB dispatch is the possible
scheduler of the SRB. Another possibility is an overlaid RB or LCCA. What does
the last entry in the trace table reflect - SRB or task dispatch? Make sure that
the trace table was not stopped by the dump task. Check for an X'80' in the high
order byte of the CPUID field.

Loops can be either disabled or enabled. The best way of determining which has
occurred is by noting the address of the loop if the operator recorded it before
taking the SADMP.

Recorded addresses that fall within the SRM code are usually not indicative of
a loop because this code is entered periodically as a result of a timer interrupt. This
signifies, however, that the system does enable for interrupts and you can
treat the error as an enabled loop. Caution: If the only addresses the operator
furnished are in the timer or SRM code, check that it is not really an enabled wait
condition. The typical disabled loop is quite short, whereas the enabled loop covers
a wide range of addresses. Be careful that the recorded addresses that may reflect
a short loop are not a 'loop within a loop.' Scan the trace table and try to
determine if a pattern of activity exists. Look for SIOs to the same device, SVCs
from the same address, program checks occurring frequently for other than page
faults, or any repetitive activity. If no pattern exists, try to correlate the last trace
entry with what you already know about the loop (for example, I/O interrupts, a
loop in an lOS or SRB dispatch, and a loop in the nucleus in some routine which is
entered via an SRB).

The enabled loop usually reflects a wide range of addresses and can even span
address spaces between a user and the system address spaces. An examination of
the trace table usually shows some pattern of activity that is recognizable as a
loop.

Be especially suspicious of a SVC OD or SVC OA for the same size area, SVC 33,
SVC 4C, and SIOs to the same device with the same 10SB address in register 1.

Trace table entries with SVC OD and/or SVC 33 in a stand-alone dump usually
mean that some task is abending and the system is attempting to recover and'
purge the task from the system.

B.1.4 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Appendix B: Stand-alone Dump Analysis (continued)

If any address within the loop points to the lock manager (module IE~ VELK) ,
the problem is probably caused by someone requesting an unavailable spin lock.
On a UP, this is an invalid condition and always signifies an overlaid lockword. On
an MP system, this signifies that the other processor is holding the lock and failing to
release it. There is a strong possibility that this indicates an overlaid lockword also.
If not, the problem is on the other processor. In either case, register 11 can point to
the lockword requested and Register 14 is the address of the requestor. Check the
value in the lockword. Valid values are a fullword of zeros or three bytes of zeros
and the CPUID in the fourth byte. Any other bit configuration causes the
system to spin in a disabled loop and signifies an overlaid lockword. Register 12
always contains the bit mask to check the locks-held-table in the PSA.

If the lockword is overlaid, you must identify who overlaid it. It is possible that
the lockword was overlaid in conjunction with some other problem.

This procedure is designed to aid the problem solver and to supplement the
diagnostic procedures he has developed over the years. Its main purpose is to call
attention to the new serviceability features within MVS and provide an index into
the correct component analysis procedures in Section 5 of this manual. Once again,
the component analysis procedures are there as hints and helps rather than to provide
a structured approach to all problems.

Appendix B: Stand-alone Dump Analysis B.1.5

Appendix B: Stand-alone Dump Analysis (continued)

Note 12

Note 25

Figure B-1. Stand-alone Dump Analysis Flowchart

B.1.6 OS/VS2 System Programming Library: MVS Diagnostic Techniques

No
Note 11

Ye-'s ____ --,J Note 21

>-N'""O ____ --,J. Note 18

Yes Note 14
PSA+X'2FS' ~ OOOOxxxl

Yes
Note 20

Appendix B: Stand-alone Dump Analysis (contineud)

Analysis Procedure

The following explanations correlate to the "Notes" in Figure B-1.

Note 0 - Dummy Task?

The enabled wait generally occurs as a result of the lack of some critical
system resource.

If the PRINT statement ofPRDMP is used properly (see the chapter
"Additional Data Gathering Techniques" in Section 2), the message
"CURRENT TASK = WAIT TASK" appears in the formatted portion
of the dump.

PSA + X'218/21C' is the new/old TCB pointer. PSA + X'220/224' is
the new/old ASCB pointer.

The ASCB with an ASID=O is the dummy ASCB. If the dummy task is
the current task, go to the TCB summary before going to the next
block and check whether any task has an error completion code. If any
TCBs are abending, continue at Point A and start with the top three
address spaces if they have a completion code.

If the ASCB is the dummy ASCB but the TCB new/old pointers are
zero, then take the "no" path and check for SRB mode.

Note I - System Enabled for I/O?

Is bit 6 on in the current PSW?

Is control register 2 correctly loaded?

The current status of the system is in the PSA if a STORE
STATUS command was entered before the dump was taken.

Note 2 - Dispatchable Work to be Done?

1 . One of the first places to check for system dispatchability is the
common system data area (CSD). For example, CSD+C=40 indicates
that most of the system is non-dispatchable. This bit can be set by
SDUMP. Is any address space abendingand in the process of
taking an SDUMP? Check the TCB summary for completion codes.

2. Dispatchable work within an address space is indicated by:

ASCB+80 = 00000000 or FFFFFFFF
ASCB+66, 67, 72, 73 = 00
ASCB+7C = some value or
ASCB + 1 C = the service priority list has an SRB queued.

Appendix B: Stand-alone Dump Analysis B.l. 7

Appendix B: Stand-alone Dump Analysis (continued)

3. The JES2/JES3 address space can contain work that should be passed
to a waiting initiator or interface that has an address space for SYSIN
or SYSOUT data.

4. Dispatchable work at the system level is indicated by SRBs queued to
the service manager queue and the global service priority list.

For (1), you must determine who set the bit on, who should have reset it,
and why the bit was set. It might be necessary to trap on the setting of this
bit.

For (2), a 7FFFFFFF in the lockword keeps the dispatcher from
dispatching. Most of the flags show the reason for not dispatching.

For (3), check the JES control blocks more closely.

For (4), determine why the dispatcher is not functioning. See the
"Dispatcher" chapter in Section 5 of this manual.

Note 3 - Enqueue Lockout?

As in other systems, an exclusive enqueue prevents other tasks from
using the same resource. However, in MVS, locks are now used
frequently instead of an enqueue.

1: Use the QCB format function to print the QCBs and check for
exclusive enqueues.

2. The CVT+X'280' points to the first major QCB.
Major QCB+8 points to the first minor QCB.
Minor QCB+O points to the next minor QCB.
Minor QCB+8points to the first QEL.

3. Any QEL reflecting exclusive control or reserve status prevents any
other task from using that resource. Any.QEL reflecting shared
status prevents any task requesting exclusive control
from using that resource.

4. The Debugging Handbook defines some of the major and minor
ENQ names.

Note 4 - Incomplete I/O?

Label IECVSHDR in IEANUCO 1 points to a pool of cells used by lOS
to build the 10Q (I/O queue element). The 10Qs are found in two
places:

B.I.8 OS!VS2 System Programming Library: MVS Diagnostic Techniques

Appendix B: Stand-alone Dump Analysis (continued)

I. An 10Q chained to the VCBA indicates an I/O operation is in
progress or has completed on that device. The flag bytes at VCB + 6
determine the current state of the device. The device is available
when the flag byte is zero.

No request for this device should be chained to the LCH during an
enabled waiL

2. The 10Qs are chained to the logical channel queues (LCH) if the
I/O operation has been requested but not started.

The LCH is pointed to by the CVT+X'SC'. The entry for each
logical channel is 20 bytes long. At X'OO' into each entry is a
pointer to the first 10Q queued for that logical channel. The
presence of IOQs on any logical channel is immediately suspect
whet) examining an enabled wait state dump. An empty queue (no
requests) is indicat.ed by a word of FFFFFFFF in the LCH at
X'OO'.

Note 5 - Is Any Task in a Page Wait?

Check the TCB RBs for a wait count not equal to zero.

RB+IC = wait count
RB-S =1=40 (FLAGI)

Note 6 - Explicit Wait in System Code?

Does the address in the PSW fall within the nucleus or LP A code?
Compare the address with a NVCMAP or LPA map.

Check the load list and CDEs for system modules that have been loaded
into the private area.

Note 7 - Real Storage Okay?

If a task remains in a page wait, it could indicate a shortage of page
frames or a real storage failure.

The control blocks that contain status about the use of real storage are:

I. Page vector table (PVT)

PVT+4 = available frame count
PVT+X'24' = free PCB count
PVT+X'140' = deferred for lack of free page frames
PVT+X'14S' = requests sent to ASM

Appendix B: Stand~alone Dump Analysis B.l.9

,,', Appmdix B: Stand-alone Dump Analysis (continued)

2.' Page frame table (PFT)

Shows use of each frame of real storage available for paging.

Note 8 - Is Auxiliary Storage Okay?

If tasks are in a page wait and real storage is not a problem, the
trouble could be within the auziliary storage manager (ASM).

ASM status indicators are:

1. AS MVT+ X'28' = the number of paging I/O requests received
2. ASMVT+X'2C' = the number of paging I/O requests completed
3. ASMVT+X'50' = the number of started I/O requests that have

, not completed
4. ASMVT+X'54' = indicates whether the ASM's SRB for ILRPTM

(ASM PART monitor) has been scheduled

If the number of paging I/O requests completed is equal to the number
of paging I/O requests received, the ASM has no outstanding work.
However, if these counts differ, check the other status indicators for
the following:

1. If I/O requests have been started but not completed, determine
what has happened to the I/O.

2. If ASM's SRB for ILRPTM has been scheduled, determine what the
dispatcher has done with the SRB.

Note 9 - Is lOS Okay?

If the number of started I/O requests that have not completed
(ASMVT+X'50') is zero, then lOS has completely processed all
the I/O that ASM has started.

Note 10 - Interrupted SRB or TeB?

The condition that caused the SRB to be suspended has been resolved.
The suspended SRB (SSRB) is queued on the SPL at the non-quiesceable
level.

The condition that caused the TCB holding the local lock or local and
and CMS locks to be suspended has been resolved. The save area to be
restored upon dispatching is the IHSA.

A TCB holding the local lock or local and CMS locks has been
interrupted by a higher priority task. The save area used for re­
dispatching is the IHSA. See the chapter "Dispatcher" in Section
5 or the chapter "System Execution Modes and Status Saving" in
Section 2 of this manual.

B.1.10 OS/VS2 System Programming Library: 'MVS Diagnostic Techniques

Appendix B: Stand-alone Dumr Analysis (continued)

Note 11 - Not RTM ?

Without the detection of a failure by MVS, which would have caused
entry into RTM, check the following. If the stand-alone dump reflects
the same current task, this could be normal operation or the task could
be in a loop. Check the following for status information:

LCCA
PSA
PCCA
Trace table
TCB
RB/SVRB

If no failure information is found (the system appears to be running
normally), the problem might be that another task or address space
should be running and is unable to. Check the following for status
information:

1. Check each address space that is expected to be running to find
out why it is not running. The information about each address
space and task within that address space can be found in: ASCB,
ASXB, TCB, and RB/SVRB.

2. Or, check the total system to find out why other work is not
being run. Check the status of the system resources:
ENQ lockout of data sets
I/O failures
RSM or ASM failure
Waits in system code for other system resources (such as buffers)

If you are checking other than the current task, the TCBs could be
dispatch able , but not yet dispatched. If the task is non-dispatchable
(non-dispatchability bits on in the TCB), this can indicate an error
situation. Or the task could be simply waiting (indicated by a wait
count in the current RB). Check the dispatchability flags in the
following control blocks for status of this task or select another address
space or task and continue at Point A.

Status information can be found in: ASCB, ASXB, TCB, and _
RB/SVRB.

If this is a system dump, the TCB belongs to a non-abending sister,
mother, or daughter task. Find the task that has a completion code
(by checking the TCB summary) and continue at Point A.

Appendix B: Stand-alone Dump Analysis B.1.11

Appendix B: Stand-alone Dump Analysis (continued)

Note 12 - RTM2, Yes.

The most important place to find information about abend codes is
OSjVS Message Library: VS2 System Codes ..

The RTM2 work area address is stored by RTM2 in TCB+X'EO'. Every
system dump (SYSABEND/SYSMDUMP /SYSUDUMP) should have at
least one TCB with an RTM2WA address at TCB+X'EO'. The error
indicators contained in the RTM2WA are described in the Debugging

'Handbook.

If an Estae routine is in control when an error occurs, RTM builds an
SDWA (described in the Debugging Handbook) and places its address
at the RTM2WA+X'D4'.

Additional information about the failure may be found in the LOGREC
buffer. RTM2WA+X'38' points to RTCT; RTCT+X'20' points to the
LOG REC buffer.

If recursion occurs during RTM processing, other RTM2WAs may exist.
If other work areas were obtained, the last one is pointed to by
the TCB+X'EO'. The last RTM2WA, points to the previous
work area (RTM2WA+X' 168, 16C, 170'). If there is no space in LSQA
to build the work area, SQA is used.

Normally the RTM2WA is obtained from LSQA. It is therefore unique
to each address space. If you are looking at a stand-alone dump, be sure
that the area you are looking at belongs to the failing address space.

If the abending task is one of several abending tasks it is important
to decide which task to look at first. There could be several failures or
one failure causing all the others. Any failure in the system address
spaces (JES2, master scheduler) are important because they might have
caused the user address spaces to terminate.

For the system to continue execution, the major components must
be operational. If any of the critical system components (master
scheduler, ASM, JES2, TCAM for TSO, etc.) abend and fail to
recover, the system cannot continue normal operation. Usually this
can be determined from the records in logrec. However, check the
TCB summary in the format section for completion codes.

The presence of a TCB completion code does not positively identify the
associated task as being inoperational. It is possible that the completion
code is residual and the task has recovered. The presence of a comple­
tioncode makes the task suspect however, and should be investigated.

B.l.12 OS!VS2 System PrograJ11ming Library: MVS Diagnostic Techniques

Appendix 8: Stand-alone Dump Analysis (continued)

Simplify your choice of address spaces by using:

• SYSl.LOGREC external and internal entries

• Console sheets

• Trace table or GTF (check for SVC D or program check entries)

Once you have selected an address space and TCB, continue at Point A.
(Check Section 5 for the component analysis of the involved
component.)

In addition to the RTM2WA, status indicators related to the problem
can be found in::

• Trace table
• EST AE control block (SCB)

• RB/SVRB

• TCB

Note 13 - Local Lock Only?

The current ASCB+X'C' contains the CPU ID. The current
TCB+ X' 110' also contains the CPU ID. The loop is within this task.
Status is saved (if a STORE STATUS was done) in:

• PSA
• LCCA
• Current stack
• Local SDWA (ASCB+6C) - if the task abended while holding

the lock·
• Trace table
• In-storage LOGREC buffer

Is this task looping in the lock managet's code? Check the;
PSA+X'22B' and LCCA+X'20C'. If the task is looping and this is an
MP system, the other processor could be causing the loop by not freeing
a spin lock that it is currently holding. Note: The failure to free or
obtain a lock can be caused by the lockword being overlaid on either
an MP or UP.

If both processors of an MP are looping in lock manager code, then the
failure could be in that code. If only one processor is in lock manager code,
then the failure is likely to be in the processor currently holding the lock.

Within the lock manager code, register 12 contains the bit mask for
the locks-held table in the PSA (PSA+ X'2FB'). Register 11 can
contain the address to the lockword itself and register 14 contains the
return address of the requestor.

Appendix B: Stand-alone Dump Analysis B.1.13

: Appendix 'B: Stand-aIbneDttmp Analysis (continued)

Whe.re is the tasklooping? Why doesn't it free the locks? Is RTM
involved with this task? If it is, continue at Point A.

See the chapters on "Locking" and "Effects of Multi-Processing on
Problem Analys,is" in Section 2 of this manual.

Note 14 - Local Lock Plus Another Lock .

. The current ASCB contains the CPU ID. The current TCB+X'110'
contains the CPU ID. The loop is within this task if only the local and
CMS locks are held. The loop could be a spin loop waiting for the
other processor to release a global lock. In this case, determine why
the lock has not been released.

Status indicators can be found in the following areas (if a STORE:
STATUS was done):

• PSA
• LCCA
• Current stack
• Local SDWA (ASXB+6C) - jfthe task abended while holding

local and CMS locks
• Trace table
.• In-stor~ge LOG~EC buffer

See Note 13 for additional information. Also see the chapters
"Locking" and "Effects of Multiprocessing on Problem Analysis" in
Section 2 of this ~anual.

Note 15 - Global Lock Held.

A global lock loop in an MP system could be normal. The spin loop
continues until the global lock is released by the other processor .

. Determine why the other processor has not released the lock.

Error status indicators can be found in the following areas if a STORE
STATUS was done:

• PSA (current PSW)

• LCCA
• Current stack
• Global SDWA (if there was an abended failure while the global lock

. was held) .

The global SDWA for the super stacks is located at the respective super
stack+ X'2S4'. For the normal stack, the global SDWA immediately
follows the RESTART super stack SDW A.

B.l.14 OS/VS2 System Programming Library: MvS Diagnostic Techniques

Appendix B: Stand-alone Dump Analysis (continued)

Now continue at Point A in the procedure. See Note 13 for additional
infonnation. Also see the chapters "Locking" and "Effects of
MlVtiprocessing on Problem Analysis" in Section 2 of this manual.

Note 16 - lOS Not Okay.

Check the requests sent to lOS from auxiliary storage manager
(ASM). Control blocks containing information are:

1. PART (paging activity reference table) - One entry
per page data set. Each PART entry contains a pointer
to an 10RB (I/O request block) at X'l C' and a pointer
to a UCB at X'2C'.

2. 10RB contains the following I/O related data:
10RB+X'1' = number of 10RBs for this page data set
IORB+X'3' = indicates whether 10RB is in use
10RB+ X'4' = pointer to next 10RB for this page data set
10RB+ X'8' = pointer to the first PCCW
10RB+X'C' = pointer to the 10SB.

Refer to the Component Analysis section for additional lOS
status indicators.

Note 17 - Suspended SRB or TeB With Lock Held.

An SRB can be suspended because of a page fault or a request for a
CMS lock when it is being held by another processor. The save area
for the suspended SRB is the SSRB. If interrupted by a page fault,
the SSRB is pointed to by the corresponding PCB+ X' 1 C'.

For a CMS lock request, the SSRB is on the CMS lock-suspended
queue, which can be located in IEANUCOl at label CMSSRBF. (See
AMBLIST of IEANUCO 1.)

A locked TCB can be suspended for the same reasons as an SRB. The
save area is the IHSA (described in the Debugging Handbook). The
IHSA is valid during a page fault if the corresponding PCB+8 flag is on.
The IHSA is valid for a CMS lock suspend if the ASCB is on the CMS
lock suspend queue in IEANUCOI at label CMSASBF.

The TCB can be suspended because of a page fault while holding the
local lock and the CMS lock. A difference would be that the
ASCB+X'67' flag for the CMS lock is turned on. See the chapter
"Dispatcher" in Section 5 and the chapter "System Execution
Modes and Status Saving" in Section 2 of this manual.

Appendix B: Stand-alone Dump Analysis B.1.15

Appendix B: Stand-alone Dump Analysis (continued)

Note 18 - Not RTM2.

The presence of a TCB completion code does not positively identify
the associated task as being inoperational. It is possible that the
completion code is residual and the task has recovered. The presence
of a completion code makes the task suspect however, and it should be
investiga ted.

The save areas have been released. The status of the error has been
written to SYSl.LOGREC. Continue at Point A with other TCBs in
the dump. Another abending task is likely. If this is a stand-alone
dump, it very likely has the needed LOGREC entry in the in-storage
buffer. CVT+'23C' points to RTCT; RTCT+X'20' points to the
LOGREC buffer.

Note 19 - Real Storage Not Okay.

If page waits seem to be caused by the lack of real frames, check their
usage. The PFT contains information about each frame currently being
used. Importan t items to check are:

Which ASID holds the most real storage?
What are the frames being used for?
Is it valid that they be held or is .there a problem with the freeing of
the frames?

Status information might be found in the PVT, PFT, and RSMHD and
ASCB (X'98') for the ASID that is holding all the frames.

See the "RSM" chapter in Section 5 of this manual for more informa­
tion about RSM.

Note 20 - lOS Okay.

Either something was missed along the way or the failure is in one of
the following areas:

• The lOS interrupt handler has failed to schedule the SRBjIOSB to
the address space.

• The dispatcher has not handled the SRB correctly.

• POST has not functioned properly.

Information on these errors might be found in the trace table or the
in-storage LOGREC buffers.

B.l.16 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Appendix B: Stand-alone Dump Analysis (continued)

Note 21 - RTMllnvolved.

If there is an address at TCB+X'104' there might be two problems to
resolve:

• The failure that caused the system to enter RTM initially.

• A loop between RTMI and RTM2, since the pointer at
TCB+ X' 1 04' normally lasts for only a short time,

The pointer at TCB+X'104' is the EED (described under RTIW in
the Debugging Handbook). This data area is used to pass informa­
tion from RTMI to RTM2. Once RTM2 receives control the
information is moved to the RTM2 work area and the EED is
deleted. Therefore, because of its short life span, the presence of
an EED is unusual.

A SLIP trap may be required to solve the RTM loop. This loop is of
course the most important problem.

If the loop is in the current task, check these status indicators:

• LCCA
• PSA
• Current stack
• RTMIWA
• RTM2WA
• SDWA pointed to by RTMIWA

• EEDs
• LOGREC buffer
• Trace table

If the loop is not in the current task, all the indicators above except the
LCCA, PSA, and current stack are valid. The current FRR stack is also
a valid status indicator. Remember that all disabled or locally locked
code runs under the protection of an FRR routine.

Check the current stack pointer at PSA + X'380'. If the current stack
pointer points to a super FRR it is almost certain that system damage
has occurred.

The normal stack at X'COO' contains a record of FRR activity for the
current address space. Location X'COC' is the pointer to the current
entry on the normal FRR stack. An address at X'COC' or·
X'C34' indicates an empty stack. Any address between X'CS4' and
X'E34' indicates that the system is currently under FRR protection
and the first word in each FRR entry is a pointer to the FRR routine.
Because the FRR routine is usually embedded within the routine it
protects, identifying the FRR routine identifies the "looper."

Appendix B: Stand-alone Dump Analysis B.1.17

Appendix B: Stand-alone Dump Analysis (continued)

The second word in each entry contains an indicator in the first byte.
A X'BO' indicates that this routine is in control. A X'40' indicates that
this nested recovery routine is in control. If any entry on the stack
points to RTM or ABDUMP's FRR, it is almost certain that system
damage has occurred in a SADMP. This is normal in an SVC dump.

If there is an address at either X'C44' or X'C4B', there has been an
entry into RTMI and an RTCA (SDWA) has been obtained. The loop
could be occurring in the FRR routine itself. The first word in the
FRR stack entry points to the FRR routine. TheSDWA (pointed to
by X'C44' or C'4B') is the input passed to the FRR. Examine the
code for the FRR and the module and consider the input passed to
it in the SDWA to gain some insight into the cause of the loop.

Note 22 - Auxiliary Storage Not Okay.

If the count of I/O requests received (ASMVT+X'2B') differs from
the count of I/O requests completed (ASMVT+X'2C'), and the
number of started I/O requests that have not completed (ASMVT+X'50')
is zero, locate those paging I/O requests (represented by an AlA) that
ASM has received but not completed. Control blocks containing
information are:

I. AIA-X'2B' = part of PCB which contains RSM-related data
2. ASMVT+ X'20-24' = queue of AlAs waiting for 10Es
3. The I/O request element (lOE) which points to the AlA is queued

to one of the following PART queues:
PART+X'30-34' = common write queue
PART+ X'3B-3C' = spill write queue
PART+X'40-44' = duplex write queue
PART+X'4B-4C' = local write queue
each PART entry contains an unsorted read queue (X'C') and
a sorted read queue (X'30').

4. Each active 10RB (PART entry+ X' I C') contains a chain of PCCWs
(lORB+ X'B'). Each of these PCCWs points to an AlA (PCCW+ X'B').

5. If the AIAcannot be found by the above means (that is, it was lost
by ASM), PCB/AlA may be found on the common I/O queue
(PVT+X'75C-760') or one of the local I/O queues (RSMHD+X'IC-20').

For further information, see ASM's "General Debugging Approach"
in section 5.

B.l.18 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Appendix B: Stand-alone Dump Analysis (continued)

Note 23 - Local SRB Mode.

This indicates a loop (or enabled wait) within a single address space.

The SRB code cannot be pre-empted. If a loop occurs in the SRB
routine, no higher priority task can be dispatched.

For an MP system there is a second possibility. Determine if the loop
is in the lock manager code. If so, see notes 13, 14, and 15 for
additional information. Continue at Point A.

Status Indicators

• Trace table.

• PSA (current PSW).

• LCCA.

• Current stack.

• RTMI WA (SDWA) - if abend occurred during SRB processing.

• ASCB.

• RTMI WA+X'38' points to an SDWA obtained via GETMAIN
(if RTMI WA+ X'40' = 10).

• RTMI WA+X'34' points to a local SDWA if the GETMAIN for
SDWA failed.

Note: If the system is an MP and the loop is in the lock manager
code, then the other processor might be at fault. See notes 13, 14,
and 15 for additional information. Continue at Point A.

Status Indicators

• PSA (current PSW).

• LCCA.

• Current stack.

• RTMI WA (SDWA) - if failure occurred during SRB processing.

• Trace table.

• RTMIWA+X'38' points to an SDWA obtained via GETMAIN (if
RTMIWA+X'40' = 10).

• RTMI WA+X'34' points to a local SDWA if the GETMAIN failed.
See the chapter "Dispatcher" in Section 5. Also see the chapters
"Locking," System Execution Modes and Status Saving," and
"Effects of MP on Problem Analysis" in Section 2 of this manual.

Appendix B: Stand-alone Dump Analysis B.1.19

Appendi~ B: Stand-alone Dump Analysis (continued)

Note 24 - Global SRB Mode.

This indicates an enabled loop (or enabled wait) within a single address
space .

. The SRB code cannot be pre-empted. If a loop occurs in the SRB

. routine, no higher priority task can be dispatched.

For an MP system there is a second possibility. Determine if the loop
is in the lock manager code. Ifso, see notes 13, 14, and 15 for
additional infomlation. Continue at Point A.

Status Indicators

• Trace table.

• PSA (current PSW).

• LCCA.

• Current stack.

• RTMI WA (SDWA) - if ABEND occurred during SRB processing.

• ASCB.
• RTMIWA+X'38' points to an SDWA obtained via GETMAIN

(ifRTMIWA+X'40' = 10).

• RTMIWA+X'34'points to a local SDWA if the GETMAIN failed.

Note: If this is an MP system and the loop is in the lock manager
code, then the other processor might be at fault. See notes 13, 14,
and 15 for additional information. Continue at Point A.

Status Indicators

• PSA (current PSW).

• LCCA.

• Current stack.

• RTMIWA (SDWA) - if failure occurred during SRB processing.

• Trace table.

• RTMIWA+X'38' points to an SDWA obtained via GETMAIN
(ifRTMIWA+X'40' = 10).

• RTMIWA+X'34' points to a local SDWA if the GETMAIN failed.
See the chapter "Dispatcher" in Section 5. Also see the chapters
"Locking," "System Execution Modes and Status Saving," and
"Effect of MP on Problem Analysis" in Section 2 of this manual.

B.l.20 OS/VS'). System Programming Library: MVS Diagnostic Techniques

Appendix B: Stand-alone Dump Analysis (continued)

Note 25 - Wait in User Code.

This could be normal operation for an explicit wait (SVC 1) issued by
a user routine. Determine if the event waited upon has completed.
Check the TCB non-dispatch ability flags to determine the reason. The
flags normally indicate the area of the problem. For example, if Flags4
= X'04', this indicates a VARY or QUIESCE command is in process on
an MP system; Flags5 = X'80' means the task was terminated.

Note 26 - Non-enabled System.

A disabled wait normally has a wait state code associated with it. If so,
the messages and codes should contain a problem description.

If there is no wait state code, the trace table should indicate the last
sequence of events leading to the wait state condition. Probably a bad
PSW (wait bit on) has been loaded.

Status Indicators

• LCCA

• PSA

• Current stack

• Trace table

• In-storage LOGREC buffer

If no valid WSC exists, if the PSW reflects the wait bit and is disabled,

and if the STORE STATUS registers are not equal to zero, suspect
a user/FE trap, a SLIP trap (wait state code 01 B), bad branch, or
system damage. Examine the trace table and attempt to define events
that lead up to the wait condition. Was the last entry an SRB dispatch
or an SVC or I/O interrupt? Using the PSW address, determine the
entry point of the routine if possible and go to the chapter "MVS Trace
Analysis" in Section 2 of this manual.

If the wait state occurs during system initialization, see the NIP vector
table for error information. If the system is in a disable loop,
determine what code is in control and why it is not returning to the
enabled state.

A disabled loop in the lock manager on an MP system could be okay ..
Read notes 13, 14, and IS. A disabled loop in the SIGP processor on
an MP system could be okay. (The other processor should turn
off its PCCA's parallel/serial bit.)

If the system is looping (no wait bit), follow the SRB mode path.
Check if RTM is involved and if it is, go to Point A.

Appendix B:· Stand-alone Dump Analysis B.1.21

Appendix B: Stand-alone Dump Analysis (continued)

Note 27 - Dispatchable Work'Available.

If the system is dispatchable and an address space has dispatchable
work, the following are possible causes:

• The dispatcher is not functioning.

• CPU affinity may have been requested.

• JES2 might not be sending work to the initiators. In this case,
take a closer look at JES2.

See the chapter "Dispatcher" in Section 5 of this manual to
determine why the dispatcher is not functioning properly.

Note 28 - Enqueue Lockout.

Determine why the top task of a series of exclusive enqueues is not
running or has not dequeued from the resource.

Note: It is valid for the top task to be swapped out. If it does not get
swapped back in, then the failure might be in the system resource
manager (SRM).

Note 29 - Incomplete I/O.

This is a probable hardware error. See the "IDS" chapter in
Section 5 to determine the status of I/O.

Note 30 - Explicit Wait in System Code.

Check in the program listings (on microfiche) for the reason of the
wait. Then determine which resource is being waited upon.

Once the resource is identified, determine if the wait should have been
satisfied. If the wait appears to be a normal operation, con tinue at
Point A for this TCB.

If the last thing done before the wait was an SVC 23 (WTO), related
infoffilation can be found in the UCM base, prefix UCM, UCM
extension and the chain of used WQEs.

8.1.22 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Appendix B: Stand-alone Dump Analysis (continued)

Note 3 J - System Analysis.

If the failing task or component is not known, continue on the "yes"
path of the flowchart.

To determine status about a TCB without doing a total system analysis,
continue on the "no" path of the flowchart.

For a complete system analysis, start with low storage. Check the PSA
for a low storage overlay. Critical fields are the CVT pointer at X' 1 0',
the PSW new locations at location X'S8-78' and at location X'OO',
and the trace table pointer at location X'S4'. Be especially critical of
the interrupt handler new PSWs. Any change to any new PSW will
cause the next interrupt handler for that event to be dispatched in the
wrong mode or key or to the wrong address. Subsequent results can be
very unpredictable.

Keep in mind that the CVT pointer at location X'10' is constantly
refreshed and the old PSWs are constantly updated by the hardware.
They could have- been overlaid at one time and still look okay in the
dump from an MP system.

In a SADMP on a UP, locations X'OO' through X'18' are always over­
laid by the IPL CCWs and PSW from the IPL of SADMP itself. They
will never contain valid data.

Other important fields in the PSA are as follows.

The interrupt code for the various classes of interrupts are located at:

• X'84' external interrupt

• X'88' SVC interrupt

• X'8C' program interrupt

These fields indicate the last type of interrupt associated with each
interrupt class for each processor.

PSA + X'21 0' - address of the LCCA (1 per processor). The LCCA con­
tains many of the status-saving areas that were located in low storage in
previous systems. It is used for software environment saving and
indicators. The registers associated with each of the interrupts you
have discovered in the PSA are saved in this area. In addition, the
system mode indicators for each processor are maintained in the LCCA.

The ASCB and TCB NEW/OLD pointers in the PSA (locations
X'218-227') indicate the currently dispatched task. Note: PSATOLD
can equal zero if an SRB is dispatched.

AppendiX B: Stand-alone Dump Analysis B.1.23

Appendix B: Stand-alone Dump Analysis (continued)

PSA + X'228' - PSASUPER. This is a field of bits that represent
various supervisory functions in the system. If a loop is suspected,
check these fields to isolate the looping process':

PSA + X'2F8' - PSAHLI. This field indicates the current locks held
on each processor. Knowing which locks are held may help isolate
the problem, especially in a Loop situation, By determining the lock
holders you can isolate the current process ..

PSA + X'380' - PSACSTK. This is the address of the active recovery
stack that contains the addresses of the recovery routines to which
control will be routed in case of an error. If the address is other than
X'COO' (normal stack), determining the type of stack (for example,
program check FLIH, restart FLIH should aid in debugging the loop
situation.

Another thing to consider in systems analysis is the possibility of a
storage overlay of some critical system code such as lOS or GETMAIN.

Because of the recovery aspects of MVS (percolation and retry),
evidence of storage overlays can often be found in the LOGREC
recording buffers. To find the LOGREC recording buffers:

CVT + X'23C' = pointer to the recovery termination control table.
(RTCT).

The RTCT + X'20' = pointer to the recording buffers.

The recording buffer (LRB) + 0 = pointer to the first entry.

The recording buffer (LRB) + 4 = pointer to the last entry.

The recording buffer (LRB) + 8 = pointer to the next available buffer.

Each buffer entry for a software record begins with X'408x' or '428x'
where x = the release number. Each software entry is approximately
X'200' bytes long. The first X'20' bytes is header information and
contains the CPUID and serial, the time and date, and the JOBNAME
if entry is made from an ESTAE routine. This is followed by an
SDWA as defined in the Debugging Handbook.

Identify the last entry. Are there entries following it? If so, the buffer
might have been wrapped and it no longer contains the earliest entry.
It is a good idea to have the SYSl.LOGREC records for the time
leading up to the dump. Scan the trace table for SVC 4C. This
represents a call to the logrec recording task and identifies a record
being written to SYS1.LOGREC. If SVC 4Cs appear in the trace,
it is certain that there are SYSl.LOGREC records that may more
closely define the problem. (See the discussion of logrec records in
the chapter "Use of Recovery Work Areas for Problem Analysis" in
Section 2 of this manual).

B.1.24 OS!VS2 System Programming Library: MVS Diagnostic Techniques

Appendix B: Stand-alone Dump Analysis (continued)

As a general approach, follow the flow of FRR activity from the last
entry backwards until a pattern is recognizable or the first entry is
found.

If the abend codes relate to a particular component, refer to that
component's analysis procedure in Section 5 of this manual.

If you can define a function that is consistently failing (lOS, a program
check, etc.), examine the trace table for evidence of successful com­
pletion of this function. If the function completed successfully, the
search for the function that caused the overlay is narrowed to those
functions appearing in the trace between the last successful completion
and the first evidence of error. This should at least narrow the search
to the address space and task level.

Analyze the contents of the overlaid storage. If it appears to contain
registers, determine what data areas or modules the registers are
pointing at. This helps to identify the failing code.

If there is no evidence of a storage overlay, return to your system
analysis at the beginning of Note 31.

If a storage overlay exists, further examination of the reported
problem is usually non-productive until the cause of the system damage
is explained.

It might be necessary to build a trap to identify the cause of the overlay.
The chapter "Additional Data Gathering Techniques" in Section 2 of
this manual helps in building such a trap.

Appendix B: Stand-alone Dump Analysis B.1.25

B.l.26 OS/VS2 System Progr~mming Library: MVS Diagnostic Techniques

ABP
ACA
ACB
ACE
ACP
ACR
ACT
ADA
AFQ
AlA
ALCWA
ALPAQ
AMB
AMBL
AMCBS
AMDSB
AP
APF
APG
ASCB
ASID
ASM
ASMHD
ASMVT
ASPCT
ASST
ASVT
ASXB
ATA
AVT

BPCB
BUFC

CA
CAW
CAXWA
CCA
CCH
CCW
CDE
CFQ
CHAP
CI
CIDF
CMB
CMP

Appendix C: Abbreviations

Actual block processor
ASM control area
Access method control block
ASM control element
Automatic command processing
Alternate CPU recovery
Account control table
Automatic data area
Available frame queue
ASM. I/O request area
Allocation work area
Active link pack area queue
Access method block
AMB list
Access method control block structure
Access method data statistics block·
. Attached processor
Authorized program facility
Automatic priority group
Address space control block
Address space identification
Auxiliary storage manager
Allxiliary storage management header
A$M vector table
Auxiliary storage page correspondence table
Address space sector table
Address space vector table
Address space extension block
ASM tracking area

> TCAM address vector table

Buffer pool control block
Buffer control area

Control area or channel adapter
Channel address word
Catalog ACB extended work area
Catalog communications area
Channel check handler
Channel command word
Contents directory entry
Common frame queue
Change priority
Control interval
Control interval definition field
Console message buffer
Completion field

Appendix C: Abbreviation~ C.I.I

Abbreviations (continued)

CMS
CMSWA
CPA
CPAB
CPB
CPPL
CPU
CPUID
CQE
CRA
CSA
CSCB
CSD
CTGPL
CVT
CXSA

DAT
DAVV
DCB
DCM

Cross memory services or cat~og management services
CMS work area
Channel program area
Cell pool anchor block
Channel program block

,~ Command processor parameter list
Central processing unit
CPU identification

,- Console queue element
Component recovery area

- Common storage area
Command scheduling control block
Common system data area
Catalog parameter list
Communications vector table
Communications extended save area

Dynamic address translation
Direct access volume verification
Data control block
Display control module

DCT
DDRCOM­
DE

Device control table
Dynamic device reconfiguration communication table
Directory entry

DEB
DECB

IIDIDOCS
DIE
DIR
DMDT
DMVT
DQE
DRQ
DSAB
DSCB
DSPCT
DVT

ECB
ECC
ECT
EDB
EDL
EED
ElL
EIP
EMS
EOA
EP
EPATH
EPS

Data extent block
Data event control block
Device independent display operators console support
Disable interrupt exit
Deferred incident record
Domain descriptor table
Domain' vector table
Descriptor queue element
Data ready queue
Data set association block
Data set control block
Data set page corfespondence table
Destination vector table:

Event control block
Error checking and correction
Environment control table
Extent descriptor block
Eligible device list
Extended error descriptor
Event indication list
EXCP intercept processor
Emergency signal
End of address
Emulator program
Error path (recovery audit trail area)
External page storage

C.l.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

Abbreviations (continued)

ERP
ERPIB
ESTAE
ESTAI
EVNT
EWA

FBQE
FDB
FETWK
FIFO
FLIH
FMCB
FOE
FOT
FQE
FRR
FRRS
FSB
FVT

GDA
GPR
GSMQ
GSPL
GSR
GTF

HIR

IC
ICNCB
IHSA
ILC/CC
lOB
10E
10MB
10QE
10RB
10SB
lOT
IOWA
IPC
IPCS
IPL
IPS
IQE
IRB
IRT

Error recovery procedures
Error recovery procedures interface block
Extended ST AE
Extended ST AI
Event table
Common ERP work area

Free block queue element
Feedback data block
Fetch work area
First in first out
First level interrupt handler
VT AM function management control block
Fixed ownership element
Fixed ownership table
Free queue element
Functional recovery routine
FRR stack
Feedback status block
Field vector table

Global data area
General purpose register
Global service manager queue
Global system priority list
Global shared resource
General Trace Facility

Hardware instruction retry

Instruction counter
Intermediate controller node control block
Interrupt handler save area
Instruction length condition code
Input output block
I/O request element
I/O management block
I/O queue element
I/O request block
I/O supervisor block
I/O table
I/O work area
Inter-processor communication
Interactive problem control system
Initial program load
Installation perfonnance specifications
Interrupt queue element
Interrupt request block
lOS recovery table

Appendix C: Abbreviations C.1.3

Abbreviations (continued)

JCL
JCT
JES
JESCT
JFCB
JFCBX
JOE
JOT
JPQ
JQE
JSCB
JSEL
JSXL

KSDS

LCB
LCCA
LCCAVT -
LCH
LCPB
LCT
LDA
LFQ
LG
LGF
LGCB
LGE
LGN
LGVT
LGVTE
LIFO
LIT
LLE
LLQ
LPA
LPDE
LPID
LPME
LRB
LSID
LSMQ
LSPL
LSQA
LVB
LWA

MCH
MCIC
MCP
MCS

Job con trollanguage
Job con trol table
Job Entry Subsystem
JES control table
Job file control block
Job file control block extension
Job output element
Job output table
Job pack queue
Job queue element
Job step control block
Job scheduling entry list
Job scheduling exit list

Key sequence data set

TP line control block
Logical configuration communication area
Logical configuration communication area vector table
Logical channel queue
Logical channel program block
Linkage control table
Local data area
Local frame queue
Logical group
Line group block
Logical group control block
Logical group entry
Logical group number
Logical group vector table
Logical group vector table entry
Last in first out
Lock interface table
Load list element
Load list queue
Link pack area
Link pack directory entry
Logical page identifier
Logical to 'physical mapping entry (or) logical page mapping entry
Logrec buffer
Logical slot ID
Local service manager queue
Local service priority Jist
Local system queue area
NCP logical unit block
Logon work area

Machine check handler
Machine check interrupt code
Message control program
Multiple console support

C.1.4 OS/VS2.System Programming Library: MVS Diagnostic Techniques

Abbreviations (continued)

MFA
MH
MIH
MLPA
MP
MPST
MSS
MVS
MWA

NCP
NCP
NIP

OCR
OCT
OPWA
ORE
OUCB
OUSB
OUXB

PAB
PART
PARTE
PAT
PCB
PCCA
PCCAVT -
PCCB
PCCW
PCE
PDDB
PDS
PEP
PER
PFT
PFTE

I PGT
PGTE
PICA
PIE
PIT
PIU
PLH
PLPA
PLPAD
PQE
PRB
PSA

Malfunction alert
Message handler
Missing interrupt handler
Modified link pack area
Multiprocessing
Memory process scheduling table
Mass storage subsystem
Multiple Virtual Storage
Module work area

VTAM node control block
Network Con trol Program
Nucleus initialization program

Output control record
Output control table
Open work area
Operator reply element
SRM-user control block
SRM-user swapp able block
SRM-user extension block

Process anchor block
Paging activity reference table
PART entry
Page allocation table
Page control block
Physical configuration communication area
PCCA vector table
Private catalog con trol block
Paging channel command work area
Processor control element
Peripheral data definition block
Partitioned data set
Partitioned emulator program
Program event recording
Page frame table
Page frame table entry
Page table
Page table en try
Program interrupt control area
Program interrupt element
Partition information table
Physical information unit
Place holder
Pageable link pack area
PLP A directory
Partition queue element
Program request block
Prefixed save area

Appendix C: Abbreviations C.l.S

Abbreviations (continued)

PSAHLHI­
PSCB
PSS
PST
PSW
PTLB
PVT
PVTAFC -
PWKA

QAB
QCB
QEL

RACF
RB

I RBA
RBN
RCB
RCT

I RDCM
RDF
RDT
RDTE
RIM
RJE
RMCT
RMF
RMS
RPH
RPL
RQE
RSM
RSMHD
RTAM
RTCA
RTCT
RTM

S/A
SART
SAST
SAT
SCCW
SCT
SDWA
SGT
SGTE
SIC
SIGP
SIO

PSA highest lock held indicator
'Protected step control block
Process scheduling service
Process scheduling table
Program status word
Purge translation lookaside buffer
Paging vector table
PVT available frame count
Paging work area

Queue anchor block
Queue control block
Queue element

Resource Access Control Facility (program Product)
Request block
Relative byte address
Real block number
Resource control block
Region control task
Resident display control module
Record definition :field
Resource definition table
Resource definition table entry
Resource initialization module
Remote job entry
Resource m~nager control table
Resource Management Facility (Program Product)
Recovery management support
Request parameter header
Request parameter list
Request queue dement
Real storage manager
RSM header
Remote tenninal access method
Recovery termination control area
Recovery termination control table
Recovery termination manager

Stand.alone (dump program)
Swap activity reference table
Subsystem allocation sequence table
Swap allocation table
Swap channel control work area
Step control table
System diagnostic work area
Segment table
Segment table entry
System initiated cancel

. Signal processor
Start input/output

C.l.6 OS!VS2· System Programming Library: MVS Diagnostic Techniques

Abbreviations (continued)

SlOT
SLIH
SMF
SMS
SNA
SPCT
SPQE
SQA
SRB
SRM
SRR
SSCP
SSCVT
SSI
SSIB
SSOB
SSQ
SSRB
SSVT
STAE
STAI
STC
STCB
STM
STOR
SVC
SVRB
SWA

TCAM
TCB
TCH
TeX
TDCM
TEA

. TH
TIOC
TIOT
TLB
TMC
TME
TMP
TOO
TSB
TSO
TIE

UADS
UCB
UCM

Step I/O table
Second level interrupt handler
System measurement facility
Storage management services
System Network Architecture
Swap control table
Subpool queue element
System queue area
Service request block
System resources manager
Serially reusable resource
System services control point
Subsystem communications vector table
Subsystem interface
Subsystem identification block
Subsystem options block
SVRB suspend queue
Suspended service request block
Subsystem vector table
Specify task abnormal exit
Sub task abend in tercept
Started task control
Subtask control block
Store Multiple instruction
Segment table origin register
Supervisor call
Supervisor request block
Scheduler work area

Telecommunications Access Method
Task control block
Test channel
TCAM
Page able display control module
Translation exception address

- Transmission header
TerminalI/O coordinator
Task input/output table
Translation lookaside buffer
Task mode controller
Task mode element
Terminal monitor program
Time of day

- Terminal statl,ls block
Time Sharing Option
Trace table entry

User attribute data sets
Unit control block
Unit control module

. Appendix C: Abbreviations C.I.7

Abbreviations (contin~ed)

UCME
UIC
UPT

VBN
VBP
VOSCB -VIO
VSAM
VSM
VTAM
VTOC
VUT·.

WAST
WMST

I WQE
WfQE

XL
XPTE

Unit controlmQdule. entry
Unreferencedidterval count
User .profile table

Virtual block number
Virtual block processor
Virtual data set control block·
Virtual I/O
Virtaul Storage Access Method
Virtual storage··management
Virtual Telecommunications Access Method
Volume table of contents
: Volume unload table

. Workload activity specification 'table
Workload manager specification table
Write queue element
Wait queue element

Extent list
External page table entry

C.l.8 OS/VS2 System Prol@JPmingLibrary: MVS Diagnostic Techniques

abbreviations, list of C.l.3
abend codes

ASM 08x series 5.6.14
COD in ASM 5.6.19
started task control 2.7.19
SW A manager 2.7.20
symptoms of lOS problems 5.2.4
OBO in Allocation 5.11.13
OC4 in Allocation 5.11.13
.306 abend in program manager 5.3.18
806 abend in program manager 5.3..14

abend dump debugging 2.7.11 .­
abend resource manager 5.3.13
abnormal end appendages

with ERPs 5.2.10
abnormal task termination (RTM) 5.14.5
ACB (access method control block)

how to locate 5.10.3
major fields in 5.10.4
major flags in 5.10.4

ACCOUNT command processor A.6.19
ACR (see alternate CPU recovery)
active recovery stack 2.1.6
additional data gathering techniques 2.8.1
addresses, commonly bad 2.7.5
address space

analysis 2.1. 7
ASM's 5.6.5
blocks 4.4.4
dispatchable work in B.1.7
dispatcher's 5.1.8
initialization 5.4.3
OUCB queues 5.7.6
states 5.7.2
termination 5.14.9
tests made by dispatcher 5.1.11

allocation
of SRM device 5.7.5
of virtual storage 5.4.6

allocation/unallocation
abends

OBO 5.11.13
OC4 5.11.13

address space termination 5.11.13
allocation

common 5.11.4
fixed device 5.11.4
generic 5.11.5
module naming conventions 5.11.6
recovery 5.11.5
serialization 5.11.11
TP 5.11.4
work area 5.11.7

batch initialization 5.11.2
data set association block (DSAB) 5.11. 7
device selection 5.11.12
dynamic initialization 5.11.3
EST AE processing 5.11.10
JFCB housekeeping 5.11.3
job control table (JCT) 5.11.2
job step control block (JSCB) 5.11.2

allocation/unalloca tion (con tin u ed)
linkage control table (LCT) 5.11.2
reason codes 5.11.16
step control table (SCT) 5.11.2
unallocation

common 5.11.5
dynamic 5.11.3

volume mount and verify (VM&V) 5.11.5
defmition 2.5.2
initiated via EMS 2.5.10
problem analysis 2.7.1

AMCBS, major fields in 5.10.2
AMDPRDMP

control cards 2.8.2
example of use of data 4.1.2
how to copy tapes 2.8.5
QCBTRACE option

function 2.8.4
use for loop analysis 4.2.3
use for wait analysis 4.1.2

APFauthorization 5.3.14,5.3.18
appendages, abnormal end

with ERPs 5.2.10
ASCB (address space control block)

analysis 2.1.7
ASM (auxiliary storage manager)

address space structure 5.6.6
cell pools 5.6.6
component

functional flow 5.6.2
operating characteristics 5.6.4

con trol blocks 5.6.19

Index

converting a slot number to full seek address 5.6.10
COD abend 5.6.19
diagnostic aids 5.6.18
error analysis suggestion 5.6.12
finding the LSID for a given page 5.6.9
footprints and traces 5.6.7
FRR/ESTAE work areas 5.6.15
general debugging approach 5.6.8
incorrect pages 5.6.9
interfaces with other components 5.6.7
MP considerations 5.6.6
page/swap data set errors 5.6.12
paging interlocks 5.6.8
recovery

as a debugging tool 5.6.15
considerations 5.6.13
footprints 5.6.15
structure 5.6.14
traces 5.6.14

register conventions 5.6.7.0
requesting I/O 5.6.3
requesting swap I/O 5.6.4
saving an LG 5.6.2
SDW A variable recording area 5.6.16
serialization 5.6.13.0
SRB structure 5.6.4
storage considerations 5.6.4
system mode 5.6.4
task structure 5.6.4

Index I.i.l

ASM (auxiliary storage manager) (continued)
unuseable paging data sets 5.6.11
validity checking 5.6.13

ATA (ASM tracking area) 5.6.19
ATTACH (program manager function) 5.3.8,5.3.15
attention processing (TSO) A.6.25
attention, console

not responding 5.15.6
audit trail area (EPATH) 5.6.22
auxiliary storage manager (see ASM)

backout (for DEFINE/DELETE) 5.10.13
batch initialization 5.11.2
BLDL table analysis 4.4.5
BPCBs (buffer pool control blocks) 5.8.12
BSHEADER data area 5.6.25
BUFCONBK data area 5.6.25
buffer

emergency signal 2.5.11
external call 2.5.17
LOGREC 2.4.14
translation lookaside 2.5.1
VTAM buffer pools 5.8.16
VTAM buffer trace 4.3.6,4.3.29

cancel process (RTM) 5.14.7
catalog communications area (see CCA)
catalog management

backout 5.10.13
CMS function gate 5.10.11
component analysis 5.10.1
debugging aids 5.10.15
diagnostic output 5.10.12
establishing/releasing a recovery environment 5.10.10
how to fmd registers 5.10.1
maintaining a pushdown list end mark 5.10.10
major control blocks 5.10.2
major registers 5.10.2
module structure 5.10.9
recovery routine functions 5.10.12
tracking GETMAIN/FREEMAIN activity 5.10.11
VSAM catalog recovery logic 5.10.10

catalog parameter list (CTGPL), major fields 5.10.6
CAXWA

major fields 5.10.5
major flags 5.10.6

CCA (catalog communication area)
major fields 5.10.7
major flags 5.10.7

CDE (contents directory entry)
allocation 5.3.17
analysis 4.4.4
initialization by IDENTIFY 5.3.12
order of on ALPAQ 5.3.15

cell pool anchor block (see CP AB)
cell pool management

VSM 5.4.10
channel program

with ERPs 5.2.10
channel scheduler, invoked for lOS 5.2.1
CHNGDUMP command

to change SDUMP contents 2.8.2, 3.1.6
to override SVCDUMP parameters 2.8.5

C/L IN, OUT traces
definition 4.3.6
example 4.3.12

class locks
with ASM 5.6.13.2

CMS function gate 5.10.11
CMS lock 2.3.2
CMS lockword

contents 2.3.5
requests for unavailable 2.3.7
suspend queues 2.3.7

command processor
and TMP interface A.6.15
parameter list A.6.17

COMM task, current status 4.1.15
(see also communications task)

common
allocation 5.11.2
storage area (see CSA)
unallocation 5.11.2

communications task
control blocks 5.15.4
debugging hints 5.15.6
description 5.15.1
sequence of processing 5.15.3

compare and swap
serialization with ASM 5.6.13.3

completion codes in IOSB for ASM errors 5.6.11
console

messages 5.15.9
not responding to attention 5.15.6
switching 5.15.10

contents directory entries (see CD E)
controllayer A.5.1
converting virtual to real addresses 5.5.14
CPAB 5.4.10
CQE control block 5.15.4
CSA (common storage area)

analysis of use of 4.4.5
use by TCAM A.6.7

CTGPL (catalog parameter list), major fields 5.10.6
current recovery stack (see FRR stacks)
CVOL processor 5.10.9
CXSA contro block 5.15.4

DASD ERPs 5.2.14
data gathering techniques 2.8.1
data sets

page/swap errors 5.6.12
DEFINE/DELETE backout 5.10.14
DELETE (function of program manager) 5.3.11
DIDOCS

in-operation indicator 5.15.11
locking 5.15.12
trace table 5.15.11

disabled loop (see loops)
disabled mode 2.2.2
disabled wait (see waits)
DISP lock

description 2.3.2
recovery routines when held 5.1.3

dispatch able units of work
in an address space B.1. 7
priority and location 5.1.4

dispatchability tests
address space 5.1.11
SRB 5.1.10
task 5.1.12

dispatcher
component analysis 5.1.3
determining the last dispatch 5.1.12
dispatchability tests 5.1.10
error conditions 5.1.14

L1.2 OS/VS2 System Programming Library: MVS Diagnostic Techniques

dispatcher (continued)
important entry points 5.1.3
processing overview 5.1.9
recovery considerations 5.1.13

DISPLAY DUMP command 2.8.2
DSNLIST data area 5.6.26
dump analysis

areas 3.5.6
MP 2.5.2
stand-alone 3.1.3, B.1.1
tracing procedure 2.6.5

dumps
how to copy tapes 2.8.5
how to print 2.8.2
sample storage pool dump 5.8.13

DUMP command 2.8.2,5.14.12

EDIT command processor A.6.19
EED, important fields 2.4.18
ElL control block 5.15.4
Emergency Signal instruction (see EMS)
EMS (function of SIGP)

defmition 2.5.7,2.5.10
process flow 2.5.14

enabled loop (see loops)
enabled loop exception 4.2.3
enabled wait (see waits)
enabling PER hardware 2.8.18
ENQ/DEQ

analysis for enabled waits 4.1.12
analysis for performance degradation
common ENQ resource names 4.1.13
enqueue lockout B.1.8
global save area 4.4.4

EP mode traces 4.3.4
EPATH (error path) 5.6.22
ERPs (error recovery procedures)

abnormal end appendages 2.7.3, 5.2.10
description 5.2.8
diagnostic approach 5.2.17
EWA (ERP work area) 5.2.6
traps 5.2.16

error id 5.14.10
error interpreter table 5.2.11
error recovery procedures (see ERPs)
EST AE/EST AI

ASM work areas 5.6.15
processing, allocation 5.11.10

EWA (ERP work area) 5.2.6
EXCP major control block relationships 5.2.3
EXCP/IOS process flow A.3.1
execution modes (see system mode)
exit resource manager 5.3.11
explicit waits 2.1.8, B.1.9
extended error descriptor (EED) 2.4.18,5.14.2
external call (XC function of SIGP)

description 2.5.7,2.5.9
process flow 2.5.12

FETCH, program manager work area (FETWK) 5.3.19
FMCB/DNCB, how to fmd for a node 5.8.14
FORCE command 5.14.8
FORMAT statement (ofPRDMP) 2.8.4
formatted RTM control blocks 2.4.19
formatting (LOGREC buffer) 2.4.15
FRR (functional recovery routine)

ASM's 5.6.14
ASM's FRR work areas 5.6.15
GETMAIN's 5.4.8
RSM's 5.5.9
SRM's 5.7.10

FRR stacks, important field contents 2.4.17, B.1.17
functional recovery routine (see FRR)

GDA (global data area) for VSM 5.4.7
GETMAIN/FREEMAIN

GETMAIN FRR 5.4.8
indication in trace table 2.6.9
process flow A.4.1
SVC 120 5.4.12
virtual storage allocation 5.4.6

GETPART/FREEPART 5.4.5
global data area for VSM 5.4.7
global indicators of current system state
global locks

defmition 2.3.1
error status
spin locks

B.1.14

definition 2.3.2
content of lockword 2.3.5

suspend locks
defmition 2.3.2
content of lockword 2.3.5

global SRBs
control block relationships 5.1.5
dispatching 5.1.4

2.1.3

mode indicators set by dispatcher 5.1.12
queue structure 5.1.5
status indicators B.l.19

global service priority list 2.2.2 (5740-XEl)
global system analysis (chapter) 2.1.3
GSMQ/LSMQ 2.1.7
GSPLs/LSPLs 2.1.7, 2.2.2
GTF (generalized trace facility)

I/O and SIO trace (EP) 4.3.4
I/O and SIO trace (NCP) 4.3.5
output examples 2.8.17
RNIO trace 4.3.5
trace examples 2.6.3

hard ware-detected errors, analy sis 3.1.10
hierarch¥ of locks 2.3.2

IDENTIFY (function of program manager) 5.3.12
lEA VGF A tests by RSM A.l.3
IEAVIOCP tests by RSM A.1.6
lEA VPIOP tests by RSM A.l.6
lEA VPIX tests by RSM A.I.3
IEAVSWIN A.2.1
IHSA 2.2.1
IEAVTABD 5.14.12
IEAVTSDT 5.14.11
ILC/CC important field contents 2.1.4
Incorrect Output (chapter) 4.5.1

analyzing system functions 4.5.2
initial analysis 4.5.1
isolating the component 4.5.1

in-operation indicator
DIDOCS 5.15.11

Installation Performance Specification (IPS) 5.7.1
inter-processor communication 2.5.7
interactive problem control system (lPCS) 1.1.4
intercept condition

ERPs 5.2.13
interrupts, PSA fields B.1.23
I/O

capability in MP 2.5.17
incomplete B.1.8
problems in enabled waits 4.1.10
requesting (ASM) 5.6.3
requesting swap 5.6.4
trace entries 2.6.7

Index 1.1.3

I/O (continued)
VTAM I/O trace (see VTAM)

lOB (see 10MB)
I/O manager

debugging 5.9.9
modules 5.9.8

10MB 5.9.9
I/O request, information in PLH 5.9.2
lOS (I/O Supervisor)

ABEND codes 5.2.4
back-end processing 5.2.1, A.3.3
component analysis S.2.1
ERP processing 5.2.8
EXCP/IOS process flow A.3.1
front-end processing 5.2.1, A.3.1
general hints 5.2.6
loops 5.2.4
major control block relationships 5.2.3
POST STATUS A.3.3
problem analysis 5.2.1
processing overview 5.2.2
save areas 5.2.6
storage manager queues 4.4.4
VTAM interaction A.5.1
wait states 5.2.5

IOSB flags 5.2.7
IOSCAT lock 2.3.2,2.3.6
IOSLCH lock 2.3.2, 2.3.6
IOSUCB lock 2.3.2, 2.3.6
IOSYNCH lock 2.3.2.2.3.6
IPC (see inter-processor communication)
IPCS 1.1.4

JES2 Gob entry subsystem)
&DEBUG parameter 5.12.14
&WAIT macro 5.12.9
control blocks 5.12.17
conversion 5.12.1
dispatcher 5.12.9

queue structure 5.12.10
error routines

catastrophic 5.12.13
disastrous 5.12.11
ESTAE 5.12.13
exit 5.12.13
I/O error logging 5.12.14

execution 5.12.1
HASP Control Table (HCT) 5.12.4
HASPSSSM 5.12.6
multi-access spool configuration 5.12.14

initialization 5.12.15
read 5.12.15
release 5.12.16
write 5.12.15

operator commands for status information 4.4.2
output 5.12.1
processor control element (PCE) 5.12.9
purge 5.12.2
structure 5.12.2
subsystem interface 5.12.7

JFCB housekeeping 5.11.3
job control table (JCT) 5.11.2

LCCA indicator 2.2.4
LCH queues, analysis for enabled waits 4.1.10
LDA, important flags 5.4.6
LG, saving 5.6.2
line drop (TSO processing) A.6.12
linkage control table (LCT) 5.11.2
LINK (function of program manager)

description 5.3.5
module search sequence 5.3.15

LMOD map, how to print 2.8.8
LOAD (function of program manager)

description 5.3.11
module search sequence 5.3.15

local lock
defmition 2.3.1
dispatcher recovery routines 5.1.13
lockword contents 2.3.5
lockword location 2.3.6
requests for unavailable 2.3.7
suspend (defmition) 2.3.3

local SRBs
control block relationship 5.1.7
dispatching 5.1.6
dispatching priority in address space 5.1.8
mode indicators set by dispatcher 5.1.12
queue structure 5.1.7
status indicators B.1.19

locating statu's information in a storage dump 2.2.5
locked mode

defmition 2.2.3
status saving during execution in 2.2.3

locking (chapter) 2.3.1
lock interface table (IEAVESLA) 2.3.5
locks (see also lockwords)

classes 2.3.1,2.3.6
determining which held on a processor 2.3.4
hierarchy 2.3.2
location of 2.3.6
PSAHLSI bits 2.3.4
requests for.unavailable 2.3.7
table of definitions 2.3.2
types 2.3.2
VTAM locking 5.8.7
with ASM 5.6.4,5.6.19
with DIDOCS 5.15.2

lockwords
contents of 2.3.5
how to find 2.3.5

LOGDATAverb 2.4.15
logging, ERPs 5.2.12
logical groups

assigning 5.6.2
releasing 5.6.2

logon
command processor A.6.19
diagnostic aids A.6.11.0
initialization A.6.8
monitor A.6.8
post codes A.6.11.0
process overview A.6.1
scheduler A.6.10
scheduler router A.6.8
verification A.6.10
work area A.6.9, A.6.11.0

LOGREC
analysis 2.4.2
buffer, recording control 2.4.14
for debugging SVC dump 5.14.12
formatting 2.4.15
how to print 2.8.9
listing LOGREC data set 2.4.2
record examples 2.4.3
recording control buffe'r 2.4.14

loops
common loops 4.2.1
disabled

apparent in IEAVERI 2.5.16
definition 4.2.1
intentional 4.2.1
PSASUPER bits to check 2.1.5

1.1.4 OS/VS2 System Pr~grammingLibrary: MVS Diagnostic Techniques

loops (continued)
system mode 4.2.4

enabled
definition 4.2.1
exception 4.2.3

in Lock Manager code B.l.19
symptoms of lOS problems 5.2.4

low storage overlays 2.7.4
LPAMAP (statement in PRDMP) 2.8.4
LPSW, common uses of 4.1.4
LSID, finding

for a page 5.6.9
for VIO 5.6.10.0

LSMQ 2.1.7
LSPL 2.1.7,2.2.2

machine checks
debugging 2.7.6
interrupt code (MCIC) 2.7.6
reference matrix 2.7.10

message flow
through the system 4.3.1
trace examples 4.3.12

messages
ERPs 5.2.12
lost 5.15.8
routed wrong 5.15.9

miscellaneous debugging hints (chapter) 2.7.1
module search sequence

for LINK, ATTACH, XCTL, LOAD 5.3.15
of private libraries 5.3.16

module subpools 5.3.19
MP (multiprocessing)

activity in trace table 2.6.8
ASM's use of 5.6.6
associated data areas 2.5.3
debugging hints 2.5.16
dump analysis 2.5.2
effects on problem analysis 2.5.1
features of MP environment 2.5.1
parallelism 2.5.4
PSA analysis B.1.3
remote pendable services 2.5.9
remote immediate services 2.5.10
SIGP instruction 2.5.7
system stop routine 2.8.20

MSGBUFER data area 5.6.26
multiprocessing (see MP)
multi-access spool configuration 5.12.14
MVS trace (see trace, trace table)

NCP (network control program)
activating several NCP traces 4.3.28
channel adapter traces 4.3.5
line trace

definition 4.3.5
example 4.3.12

node trace 4.3.5
normal stack 2.1.6,2.4.17
normal task termination 5.14.4
no-work wait (see also enabled waits) 4.1.8

O/C!EQV (open/close/end-of-volume)
abends 2.7.5
DEB chaining 5.9.8
debugging aids 5.9.7
ENQs issued by 5.9.7
messages 5.9.6

online problem analysis 1-1.4·

open/close/end-of-volume (see O/C/EOV)
OPERATOR command processor A.6.19
operator commands

for status information 4.4.2
to identify performance degradation 4.4.1

ORE control block 5.15.4
other tracing methods 4.3.30
OUCB (SRM user control block)

important fields 5.7.2
OUTPUT command processor A.6.20
overlays, storage

cause of wait state PSWs 4.1.4
how to locate in trace table 2.6.2
in low storage 2.7.4
pattern recognition 2.7.3

PAB (process anchor block) 5.8.2
page control block (see PCB)
page fault

process flow A.1.3
Reclaim 5.5.8
status saving 2.2.6
trace examples 2.6.3
waits 4.1.10

page frame table entries (see PFTE)
page stealing . 5.5.6
page waits B.1.9
page/swap data set errors 5.6.12
paging

fmding the LSID 5.6.9
incorrect pages 5.6.9
interlocks 5.6.8
process 5.5.6
unuseable data sets 5.6.11

paging requests, analysis 4.4.5
parallelism 2.5.4
PART/PAT bit, locating 5.6.10.3
pattern recognition 2.7.3
PCB (page control block)

important fields in 5.5.3
swap-out A.2.5
use in debugging A.2.5

PeeB major fields and flags 5.10.3
PEP emulator line trace 4.3.4
performance degradation

chapter on 4.4.1
dump analysis areas 4.4.2
operator commands to identify 4.4.1

PER hardware
en~bling to monitor storage 2.8.18
trace example 2.8.19

PFTE (page frame table entries)
analysis 4.4.4
important fields 5.5.6

PGTE, RSM tests on A.1.3
physically disabled mode 2.2.2
PIU (physical information unit)

format 4.3.27
tracing inbound/outbound 4.3.30

PLH (place holder) 5.9.2
post codes, LOGON A.6.11.0
PRB initialization 5.3.7
PRDMP (see AMDPRDMP)
PRE-TMP exit A.6.11
PRINT statement (in AMDPRDMP), use of 2.8.4
printer ERP 5.2.15
private libraries, module search sequence 5.3.16
process flows

page faults (RSM processing) A.1.3

Index 1.1.S

process flows (continued)
EXCP/IOS A.3.1
GETMAIN/FREEMAIN A.4.1
swapping A.2.1
TSO A.6.1
VTAM A.5.1

program checks
example of LOGREC entry 2.4.10
interrupts 5.1.14
VTAM 5.8.15

Program Manager
APF authorization 5.3.14
ATTACH 5.3.8
CDE

allocation 5.3.17
component analysis 5.3.1
control blocks 5.3.1,5.3.3
DELETE 5.3.11
exit resource manager 5.3.11
FETCH/program manager work area 5.3.19
functional description 5.3.1
functional flow 5.3.5
IDENTIFY 5.3.12
LINK 5.3.5
LOAD 5.3.11
module description 5.3.2
module search sequence

for LINK, ATTACH, XCTL, LOAD 5.3.15
of private libraries 5.3.16

module subpools 5.3.19
organization 5.3.1
process anchor block (PAB) 5.8.2
queue validation 5.3.4
queues, description 5.3.2
RB extended save area 5.3.20
SYNCH 5.3.12
system initialization 5.3.5
XCTL 5.3.8
806 ABEND 5.3.14

PSA (preflxed save area)
analysis on MP systems B.1.13
contents of important flelds 2.1.5
indicators 2.2.4
interrupt it: licator B.1.23
using as a patch area 2.8.10
used to determine current system state 2.1.3,2.2.4

PSW (program status word)
analysis 2.1.4
wait state B.1.2

pushdown list end mark, maintaining 5.10.10

QCBTRACE (AMDPRDMP option)
when to use 2.8.4
use for loop analysis 4.2.3
use for wait analysis 4.1.12

QTIP
attention handler A.6.27
processing A.6.4

RB (request block)
analysis 2.1.9
extended save area (RBEXSAVE) 5.3 .20
manipulation by XCTL 5.3.10
new RB initialization for XCTL 5.3.9

RCB (recording control buffer) 2.4.14
RCT (region control task)

attention exit A.6.28
attention scheduler A.6.28
functions A.6.27

RDCM (resident display control module)
con trol block 5.15.4

real addresses, converting 5.5.14
real frame shortage, indicators 4.4.5
real storage manager (see RSM)
reason codes

allocation 5.1-1.16
started task control 2.7.19
SW A manager 2.7.20

reclaim (function of RSM) 5.5.8
record management

debugging aids 5.9.3
processing 5.9.1

recovery audit trail (ASM) 5.6.22
recovery stack 2.2.4
recovery work areas, use of 2.4.1
register conventions

ASM 5.6.7.0
Relate (function of RSM) 5.5.8
replies, lost 5.15.8
requesting

I/O (ASM) 5.6.3
swap I/O (ASM) 5.6.4

retry process (RTM) 5.14.6
retry/restart

with ERPs 5.2.10
RMCT (SRM control table)

system indicators 5.7.3
RNIO trace example 4.3.12
RPHs (request parameter headers)

location of 5.8.11
queuing while waiting for storage 5.8.14
waiting for the same lock 5.8.9

RPL error flelds 5.9.1
RSM (real storage manager)

abend reason codes 5.5.10
component analysis 5.5.1
debugging tips 5.5.12
major control blocks 5.5.1
.page fault processing A.1.3
page stealing process 5.5.6
Reclaim 5.5.8
Recovery 5.5.9
Relate 5.5.8

RTM (recovery termination manager)
cancel 5.14.7
error id 5.14.10
FORCE command 5.14.8
extended error descriptor (EED) 5.14.2
hardware error processing 5.14.2
major RTM modules 5.14.1
process flow 5.14.2
retry 5.14.6
RTM1 5.14.1
RTM2 5.14.2
stack vector table 2.2.4
systept ~iagnostic work area (SDWA) 5.14.2
termmatlOn

abnormal task 5.14.5
address space 5.14.9
normal task 5.14.4

I use in producing SVC dump 5.14.11
RTM2WA

deflnition 2.4.19
status information A.11-A.12

SALLOC lock 2.3.2,2.3.6
with ASM 5.2.13.0

SCHEDULE macro 2.2.2
scheduler work area (see SWA manager)
SDUMPs

analysis 3.1.5
how to change contents of 3.1.6
parameter list 3.1.6

1.1.6 OS!VS2 System Programming library: MVS Diagnostic Techniques

SDW A (system diagnostic work area)
data recorded by dispatcher 5.1.13
use by Catalog Management 5.10.1
use by SYS1.LOGREC 2.4.3,2.4.6-2.4.10
use in FRR stack 2.4.18

SDWA VRA (SDWA variable recording area)
entries 2.4.10,5.4.8
error indicators 5.4.9
use by ASM 5.6.16
use by catalog management 5.10.12

sense command
with ERPs 5.2.13

serialization, ASM 5.6.13.0
SIC (system-initiated cancel) A.6.14
SIGP (signal processor) instruction 2.5.7

EMS function 2.5.10
return codes 2.5.8
XC function 2.5.9

SLIP command, using 2.8.11
SLIP keywords 2.8.11
SLIP trap design 2.8.12
slot number, converting to full seek address 5.6.10
software-detected errors, analysis 3.1.9
software incidents

examples 2.4.3
types 2.4.3

. SPCT (swap control table)
format of 5.5.5
important fields in 5.5.5

special exits, dispatching 5.1.4
spin locks, defmition 2.3.2
SRB (see also local and global SRBs)

dispatching queues 2.1.7,5.1.4
global 5.1.4
local 5.1.6
locally locked interrupted/suspended 2.2.3
mode 2.2.2
suspension 2.1.9,2.2.7,2.3.7
tests made by dispatcher 5.1.10

SRM (system resources manager)
address space states 5.7.2
control algorithms 5.7.12
entry point summaries 5.7.8
error recovery 5.7.8
functional recovery routine 5.7.10
in dica tors 5.7.3
interface routine 5.7.8
I/O management 5.7.12
objectives 5.7.1
processor management 5.7.11
resource manager 5.7.12
service routine 5.7.10
storage management routine 5.7.9
SYSEVENT router 5.7.9
system (RMCT) indicators 5.7.3
user (OUeB) indicators 5.7.6
workload activity recording 5.7.14
workload manager 5.7.15

SSI (subsystem interface)
function codes 5.13.10
function dependent area 5.13.5
initialization processing 5.13.1
lES control table (JESCT) 5.13.2
logic flow examples 5.13.7
major control blocks 5.13.2
requesting services 5.13.5
return codes 5.13.8
subsystem

communications vector table (SSCVT) 5.13.1
information block (SSIB) 5.13.1

su bsystems (COil till II ed)
options block (SSOB) 5.13.1
vector table (SSVT) 5.13.1

stand-alone dump
analysis B.l.1

procedure B.l.7
chapter on 3.1.3
debugging SVC dump 5.14.11
determining system mode from 2.2.4
how to print 2.8.2
special notes 2.1.3

started task control (see STC')
status information, locating in storage dump 2.2.5
STATUS STOP SRB 2.5.6
STC (started task control)

abend codes 2.7.19
reason codes 2.7.19

step initiation/termination 5.4.5
SUBMIT command processor A.6.20
subpools for modules 5.3.19
SUM DUMP output 2.7.14
summary dump 2.7.14
super bits (see PSASUPER)
superzaps

to expand trace table 2.8.21
to force tracing during NIP processing 2.8.21
to modify trace table to monitor low storage 2.8.20
to stop MP system 2.8.21
to trace all inbound PIUs 4.3.30
to trace all outbound PIUs 4.3.30
VTAM buffer trace modification 4.3.29
VT AM I/O trace modification 4.3.29

suspend locks, definition 2.3.2
suspended

locally locked tasks 2.2.6
SRB status 2.1.9
SRB/task with lock held B.1.15
tasks or address space caused by unsatisifed ENQ
request 4.1.12

task status 2.1.8
sve D entries in trace table 2.6.8
SVC dumps

analysis 3.1.5
debugging of

control blocks, use of 5.14.14
fixed data, use in 5.14.12
procedure 5.14.12
recovery routines, use in 5.14.14
SLIP traps, use in 5.14.12
SYS1.LOGREC, use in 5.14.12
variable data, use in 5.14.14
variable data offset determination 5.14.14

how to override parameters 2.8.5
IEAVTSDT, dump task for 5.14.11
invocation of

branch entry 5.14.11
DUMP Command 5.14.12
IEAVTABD 5.14.12

producing
RTM, use in 5.14.11
SYSMDUMP DD', use in 5.14.11

SW A (scheduler work area) manager
reason codes 2.7.20

swap-in process A.2.1
swap transition flags 5.7.2
swapping

process flow A. 2.1
swap-out process A.2.3

Index 1.1.7

swap-out PCB A.2.5
SWIN (lEA VSWIN) A.2.1
SYNCH (function of Program Manager) 5.3.12
SYSABENDs

analysis approach 3.1.9
hardware-detected errors 3.1.10
software-detected errors 3.1.9

system degradation (see performance degradation)
system diagnostic work area (see SDW A)
system execution modes and status saving 2.2.1
system hung (see enabled waits)
system options for SVCDUMP 2.8.5
system modes

at entry to RTMI 2.4.18
determining from Stand-alone dump 2.2.4
locked mode 2.2.3
physically disabled mode 2.2.2
SRB mode 2.2.2
task mode 2.2.1

system resources manager (see SRM)
system stop routine 2.8.20
system options for SVC dump
SYSABENDs 3.1.9
SYSMDUMPs 3.1.9,5.14.1
SYSUDUMPs, analysis approach 3.1.9
SYSZEC16-PURGE 4.1.13
SYSZVARY-x 4.1.3
SYS1.COMWRITE data set, how to print 2.8.8
SYS1.DUMP

how to clear without printing 2.8.7
how to print 2.8.7

SYS1.LOGREC (see LOGREC)
SYS1.STGINDEX, how to recreate 2.8.9
SYS1.UADS, how to rebuild 2.8.6

tape ERP 5.2.15
task

analysis 2.1.8
locally locked interrupted 2.2.3
locally locked suspended 2.2.6,2.3.5,2.3 7,4.1.11
mode indicators set by dispatcher 5.1.12
RB structure 2.1.9
tests made by dispatcher 5.1.12

TCAM
address space A.6.7
buffer trace (EP) 4.3.4
buffer trace (NCP) 4.3.6
channel end appendage A.6.2S
dispatcher subtask trace 4.3.6
EP mode line I/O interrupt trace table 4.3.4
organization after a TSO logon A.6.7
PIU trace 4.3.6
subtask trace 4.3.4
TIOC logon processing A.6.6
TSO terminal I/O diagnostic techniques A.6.24

TCB (task control block)
analysis 2.1.8
dispatching priority in address space 5.1.8
summary report 2.1.6
suspended with lock held B.1.5

TDCM (pageable display control module)
control block 5.15.4

teleprocessing (see TP)
timer value in trace table 2.6.7
time sharing and TCAM data flow A.6.21
TMP (terminal monitor program) A.6.6

EP mode 4.3.4
typical problems 4.3.1

TMP/command processor
interface A.6.15
work area A.6.1 7

TPIOS buffer trace, example 4.3.12
TPIOS IN/OUT REMOTE trace 4.3.6

traces (see also trace table)
activating several NCP traces 4.3.28
analysis of 2.6.1
currency 2.6.8
EP mode 4.3.4
events not traced 2.6.8
examples 2.6.3,4.3.7
interpreting 2.6.5
NCP mode 4.3.5
other tracing methods 4.3.30
output under normal conditions 4.3.7
summary of 4.3.3
to monitor storage 2.8.21
types of 4.3.3

trace table
cautionary notes 2.6.7
how to expand 2.8.21
how to locate 2.6.1
how to modify to monitor low storage 2.8.20
types of entries 2.6.1
with DIDOCS 5.15.11

traps, ERPs 5.2.16 '
TSO (time sharing option)

AP AR documentation A.6.28
attention processing A.6.25
command processor recovery A.6.19
line drop processing A.6.12
message handler A.6.27
overview of logon processing A.6.2
process flow A.6.1
terminal I/O flow A.6.21
time sharing initialization A.6.1
TSO/TIOC terminal I/O diagnostic techniques A.6.24

UCB, analysis for enabled waits 4.1.10
UCM (unit control module)

control block 5.15.4
UCME (UCM entry)

control block 5.15.4
unit check

with ERPs 5.2.13
use of recovery work areas for problem analysis 2.4.1

validity bits for machine checks 2.7.9
virtual addresses, converting 5.5.14
virtual storage access method (see VSAM)
virtual storage manager (see VSM)

. virtual telecommunications access method (see VT AM)
volume mount & verify (VM&V) 5.11.5
VSM (virtual storage manag~r)

addr~ss space initialization 5.4.3
allocation 5.4.6
basic functions 5.4.1
cell pool management 5.4.10
control block usage 5.4.4
debugging hints 5.4.10
GETMAIN/FREEMAIN process flow A.4.1
global data areas (GDA) 5.4.7
step initialization/termination 5.4.5
view of MVS storage 5.4.2

VSAM (virtual storage access method)
component analysis 5.9.1
I/O manager debugging 5.9.9
O/C/EOV debugging aids 5.9.7
O/C/EOV messages 5.9.6
record management

buffer control block (BUFC) 5.9.3
debugging aids 5.9.3
error codes 5.9.5
placeholder (PLH) 5.9.2
request parameter list (RPL) 5.9.1

1.1.8 OS/VS2 System Programming Library: MVS Diagnostic Techniques

VTAM (virtual telecommunications access method)
address space usage 5.8.6
component analysis 5.8.1
control block structure 5.8.3
debugging 5.8.10
function management control block (FMCB) 5.8.5
how work is processed 5.8.2
locating FMCB/DNCB for a mode 5.8.14
locking 5.8.7
miscellaneous hints 5.8.15
module naming conventions 5.8.6
operating characteristics 5.8.6
process flow A.S.l
program checks 5.8.15
recovery/termination 5.8.8
relationship with MVS '5.8.1
sample storage pool dump 5.8.13
SEND process flow A.S.2

VT AM buffer trace
defwtion 4.3.6
modification 4.3.29

VTAM GTF trace example 4.3.12
VT AM I/O trace

defmition 4.3.5
example 4.3.7
modification 4.3.29

waits
chapter on 4.1.3
disabled

analysis approach 4.1.5
characteristics of 4.1.4
locked console exception 4.1.5
with communications task 5.15.7

enabled
analysis approach 4.1.7
analysis via trace table 2.6.7
characteristics of 4.1.3

waits (continued)
with communications task 5.15.6

enabled loop exception 4.2.3
explicit 2.1.8, B.1.9
for VTAM buffer depletion 5.8.15
indications of paging interlocks 5.6.8
in user code B.1.21
in VTAM 5.8.11
no-work wait 4.1.8
OUCB analysis 5.7.6
page fault waits 4.1.10
page waits B.1.9
record managementdebu8ging aids 5.9.3
wait state PSW B.1.2
wait task. dispatching of 5.1.8

window spin 2.5.10
working set sizes 4.1.11
work area bits

logon scheduler A.6.11.0
work queues, TCBs, address space analysis 2.1.6
WQE control block 5.15.4

XC (SIGP external call)
defmition 2.5.9
process flow 2.5.12

XCTL (function of program manager)
deSCription 5.3.8
module search sequence 5.3.15
new RB initialization 5.3.9
RB manipulation 5.3.10

zaps (see superzaps)

OBO abend 5.11.13
306 abend 5.3.18
3705 EP line trace 4.3.4
806 abend' 5.3.14

Index 1.1.9

1.1.10 OS/VS2 System Propamming Library: MVS Diagnostic techniques

E
£
"~

-S
iO

>Q)
en
0
+"'
Q)
0.
f!
i
E
E Q) ;:, c Cl

:J
Q)

Cl ..c
+"' C
0 0

0 «
II) "C
> "0 '';: u.
'iii

0 c
Q)
en

'~ ::s
;:, CJ
en en
Q)

C.
Q)
en
;:,
Q)
en
CO
Q)

ii:

OS/VS2 System Programming Library:
MVS Diagnostic Techniques
GC28-072S-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. This form may be used to communicate your views about this
publication. They will be sent to the author's department for whatever review and action, if any,
is deemed appropriate.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information
you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or to the IBM hranch office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit ___ _

If you wish a reply, give your name and mailing address:

Please circle the description that most closely describes your occupation.

(Q) (U) (X) (Y)

Customer Install System System System
Mgr. Consult. Analyst Prog.

(Z) (F)

Applica. '§ystem
Prog. Oper.

(I)

I/O
Oper.

(L)

Term.
o per.

~
L::J

(S) (P) (A) (B) (C) (D) (R) (G) (J) (E) (N) (T)

IBM System Prog. System System Applica. Dev. Compo System I/O Ed. Cust. Tech.
Eng. Sys. Anilyst Prog. Prog. Prog. Prog. Oper. Oper. Dev. Eng. Staff

Rep. Rep. Rep.

Number of latest Newsletter associated with this publication: _____________ _

Thank you for your cooperation. No pos-tag-e stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments.)

GC28-0725-2

Reader's Comment Form

Fold and tape Please Do Not Staple .

III II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

Fold and tape

--- ------ ----- -------- -.- --.--------_.-
International Business Machines Corporation
Data Processing Division' .
1133 Westchester Avenue, White Plains, N.V. 10604

IBM World Trade Americas/Far East Corporation

Please Do Not Staple

Town of Mount Pleasant, Route 9, North TarrytoWn, N.Y., U.s.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

(')

s.
~
."
0
0:
»
5'
:::l

OQ ,...
5'
(1).

I
I.

I
I -
I .,

c
CJ'.
<
CJ'.
I\:

~
(I)
.-+
(1)

3
'"t ..,
0

(.Q ..,
Q)

3
2
:l

(.Q

C-
O" ..,
Q) ..,
-<
s
<
CJ'.
c::
iii

(.Q
:l
0
(I)
.-+
n
(1)
(')
::r
~
.c
c
(1)
(I)

c;,
c...:
......
c;:
c...:
.::::
'"t
~
:l
.-+
(1)
Q

:;
.C

Cr.
:~

C
\.
I\:
OC
C:
I\:
U
i\;

