
GC28-0646-3
File No. S370-39

OS/VS2 TSO
Systems Command Language Reference

VS2 Release 3.7

Fourth Edition (January, 1976)

This is a major revision of, and obsoletes, GC28-0646-2 'and Technical Newsletters
GN28-2597 and GN28-2602. See the Summary of Amendments following the
Contents. Changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

This edition applies to release 3.7 of OS/VS2 and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Changes are continually
made to the information herein; before using this publication in connection with the
operation of IBM Systems, consult the latest System/370 Bibliography, GC20-0001, for the
editions that are applicable and current. .

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Publications
Development, Department D58, Building 706-2, PO Box 390, Poughkeepsie, N. Y.
12602. Comments become the property of IBM.

@ Copyright International Business Machines Corporation 1972,1974,1975,1976

Preface

This publication describes the syntax and function of the commands and
subcommands of the TSO command language. It is intended for use at a
terminal. The level of knowledge required for this publication depends upon
the command being used. Most commands require little knowledge of TSO

and of the Operating System; however, some commands require a greater
knowledge of the system. As a general rule, the description of each
command requires an understanding of those elements being manipulated by
the command.

The prerequisite publication, TSO Terminal User's Guide, describes the
commands used to perform the following functions:

• Start and end a terminal session.
• Enter and manipulate data.
• Program at the terminal.
• Test a program.
• Write and use command procedures.

Once a user is familiar with the Terminal User's Guide, he can use this
publication to code the TSO commands.

The TSO Terminals manual describes how to use the terminals supported
by TSO.

The major divisions in this book are:

• Introduction
• Basic Information For Using TSO

• The Commands
• Command Procedure Statements
• Index

The Introduction describes the TSO command language. The section
entitled "Basic Information For Using TSO" contains general information
necessary to use TSO commands.

The section entitled "The Commands" describes the syntax and function
of each command, its operands and its subcommands. Examples are
included.

The commands are presented in alphabetical order, except that the
foreground-initiated background (FIB) commands are in Appendix A, the
program product commands are in Appendix B, and the Access Method
Services commands are in Appendix C. Subcommands are presented in
alphabetical order following the command to which they apply. The END

and WHEN commands, which are used with command procedures, are
included in sequence instead of appearing in the Command Procedures
section. Statements, variables, functions, and operators are in the Command
Procedures section.

"Command Procedure Statements" describes the control statements used
in command procedures,

The prerequisite publication for this book is OS/VSl TSO Terminal User's
Guide, GC28-064S.

Preface 3'

The publications referred to in this book are:

OSlMVf and OSlVSl TSO Tenninais, GC28-6762

OS/VSl Access Method Services, GC26-384t

OS/VS Message Library: VSl System Messages, GC38-too2

OS/VSl JC4 GC28-0692

OS/VSl SPL: System Generation Reference, GC26-3792

OS/VSl SPL: TSO, GC28-0629

IBM System/370 Reference Summary, GX20-1850

4 OS/VS'J. TSO C Laagaage Reference (VS'J. Release 3.7)

IatrodIIctioD • • .

Basic lDfonnatioll For UsiDg TSO
Using a Terminal

Entering Information at a Terminal
Standard Terminal Conventions
Character and Line Deletion
Line by Line Data Entry

Using 1'80 Commands
Positional Operands
Keyword Operands .
Comments
Delimiters
Line Continuation .
Subcommands
Syntax Notation Conventions

Using System-Provided Aids . . .
The Attention Interruption
Messages
Mode Messages

Using the HELP Command
Explanations of Commands
Syntax Interpretation of HELP Information
Explanation of Subcommands . .

Using Data Set Naming Conventions
Data Set Names In General . . .
TSO Data Set Names
How to Enter Data Set Names
Specifying Data Set PassWords

Using Commands for VSAM and NonVSAM Data Sets

ALLOCATE COIWDMd

A TI'RIB COIIIDJaIId

CALL COIIIIaIId . •

DELETEc

EDITC
Modes of Operation .
Tabulation Characters
Executing User Written Programs
Terminating the EDIT Command
Recovering Data After a Terminal Line Has Been Disconnected . . .

~forEDlT •••••••
ALLOCATE Subcommand of EDIT
BOTTOM Subcommand of EDIT
CHANGE Subcommand of EDIT
COpy Subcommand of EDIT

Numbered Messages
DELETE Subcommand of EDIT
DOWN Subcommand of EDIT
END Subcommand of EDIT . .
EXEC Subcommand of EDIT
FIND Subcommand of EDIT
HELP Subcommand of EDIT
INPUT Subcommand of EDIT

Contents

11

15

17
17
17
17
17
18
19
19
19
20
20
21
21
21
23
23
24
24
26
26
26
27
27
27
28
29
31
31

33

35

45

53

55

59
65
69
70
70
70

72
73
75
77
83
85
91
93
95
97
99

tOt
103

INSERT Subcommand of EDIT
Insert/Replace/Delete Function of EDIT
LIST Subcommand of EDIT . .
MOVE Subcommand of EDIT .

Messages
PROFILE Subcommand of EDIT
RENUM Subcommand of EDIT
RUN Subcommand of EDIT .
SAVE Subcommand of EDIT
SCAN Subcommand of EDIT
SEND Subcommand of EDIT
SUBMIT Subcommand of EDIT
T ABSET Subcommand of EDIT
TOP Subcommand of EDIT . .
UNNUM Subcommand of EDIT
UP Subcommand of EDIT . . .
VERIFY Subcommand of EDIT

END Command

EXEC Command

FREE Command

HELP Command

LINK Command

LIST ALe Command

LISTBC Command .

LISTCAT Command

LISTDS Command .

LOADGO Command

LOGOFF Command

LOGON CoIlllD8Dd

PROFILE COIIIIII8IId

PROTECT Command
Passwords ...
Types of Access
Password Data Set

RENAME Command

RUN Command

SEND Command

TERMINAL Command

TEST Command
Assignment of Values Function of TEST
AT Subcommand of TEST
CALL Subcommand of TEST
COpy Subcommand of TEST ..
DELETE Subcommand of TEST
DROP Subcommand of TEST .
END Subcommand of TEST . . .

6 OS/VSl TSO Command Languaae Reference (VS2 Release 3.7)

105
107
109
111
113
119
121
122
127
129
131
133
135
137
139
141
143

145

147

151

155

159

165

169

171

175

181

181

183

185

191
191
191
193

195

197

201

205

209
215
217
221
223
227
229
231

EQUATE Subcommand of TEST
FREEr-..1A..TN Subcom...-nand of TEST
GETMAIN Subcommand of TEST
GO Subcommand of· TEST
HELP Subcommand of TEST
LIST Subcommand of TEST . . .
LISTDCB Subcommand of TEST
LISTDEB Subcommand of TEST
LISTMAP Subcommand of TEST
LISTPSW Subcommand of TEST
LISTTCB Subcommand of TEST .
LOAD Subcommand of TEST . .
OFF Subcommand of TEST ...
QUALIFY Subcommand of TEST
RUN Subcommand of TEST . .
WHERE Subcommand of TEST

TIME Command .

WHEN Command

Command Procedure
Definitions of Command Procedure Terminology
Operators

Arithmetic
Comparison
Logical

Evaluating Complex Expressions
Symbolic Substitution

Rules for Symbolic Variables
Symbolic Substitution Examples

Built-In Functions ..
&DATATYPE
&EVAL ..
& LENGTH
&STR ..
&SUBSTR

Control Variables .
&LASTCC .
&MAXCC .
&SYSDATE
&SYSDLM
&SYSDVAL
&SYSICMD
&SYSNEST
&SYSPCMD
&SYSPREF
&SYSPROC
&SYSSCAN
&SYSSCMD
&SYSTIME
&SYSUID .

Command Procedure Statements
Character Set Supported in Command Procedure Variables

A TIN Statement

CWSFILE Statement

CONTROL Statement

DATA-ENDDATA Sequence

DO-WHILE-END Sequence

ERROR Statement

EXIT Statement .

GETFILE Statement

233
235
237
239
241
243
247
249
251
253
255
257
259
261
263
265

267

269

271
271
274
274
274
275
275
276
276
278
279
279
279
279
280
280
280
280
281
281
281
281
282
282
282
282
282
283
283
283
283
284
284

285

287

289

291

293

295

297

299

Contents 7

GLOBAL Statement

GOTO Statement

IF-THEN-ELSE Sequence

OPENFILE Statement

PROC Statement

PUTFILE Statement

READ Statement

READDV AL Statement

RETURN Statement

SET Statement

TERMIN Statement

WRITE and WRITENR Statements

Appendix A: Foreground Initiated Background Commands
Using Foreground-Initiated Background (FIB) Commands
Processing Batch Jobs ...
Submitting Batch Jobs
Displaying the Status of Jobs
Cancelling Batch Jobs
Controlling the Output of Batch or Foreground Jobs
CANCEL Command
OUTPUT Command
CONTINUE Subcommand of OUTPUT
END Subcommand of OUTPUT
HELP Subcommand of OUTPUT
SAVE Subcommand of OUTPUT
STATUS Command
SUBMIT Command

Appendix B: Program Product Commands
ASM Command
COBOL Command .
CONVERT Command
COPY Command . .
FORMAT Subcommand of EDIT
MERGE Subcommand of EDIT
FORMAT Command
FORT Command ..
GOFORT Command
LIST Command
MERGE Command .
PLI Command
PLIC Command
TESTCOB Command
TESTFORT Command

Appendix C: Access Method Senices Commands

Index

8 OS/VS2 TSO Command Language Reference (VSl Release 3.7)

301

303

305

307

309

311

313

315

317

319

321

323

325
327
327
227
329
329
330
335
337
343
345
347
349
351
353

355
355
355
355
356
356
356
356
357
357
357
358
358
358
358
359

361

363

Figures
Figure 1. Descriptive Qualifiers 29
Figure 2. Default Names Supplied by the System 30
Figure 3. Descriptive Qualifiers Supplied by Default 30
Figure 4. Commands Preferred for VSAM/Non-VSAM Data Sets 31
Figure 5. Default Values For LINE or LRECL and BLOCK or BLKSIZE Operands

. 64
Figure 6. How EDIT Subcomma,nds Affect the Line Pointer Value 68
Figure 7. Subcommands of the EDIT Command 72
Figure 8. Source Statement/Program Product Relationship . . 123
Figure 9. Default Tab Settings 135
Figure 10. Information Available Through the HELP Command 157
Figure 11. System Defaults for Control Characters 185
Figure 12. Source Statement/Program Product Relationship . . 197
Figure 12.1 Command Procedure Coding Reference (Parts 1 thru 3) 272
Figure 12.2 Command Procedure Statement Catagories 284
Figure 12.3 Command Procedure Statement Error Codes 324
Figure 13. Submitting a Program As a Batch Job . . . 328
Figure 14. Language Conversions Using the CONVERT Command 355

Contents 9

10 OS/VS2 TSO Command Language Reference (VS2 Release 3.7)

Summary of Amendments
for GC28-0646-3
OS/VS2 Release 3.7

Changes have been made throughout this publication to
reflect a Service Update - - OS/VS2 Release 3.7. In
addition, pertinent technical and editorial changes have
been made. All references to ITF:BASIC and ITF:PLI
Program Products have been deleted from this manual. As
announced in P73-70, these program products have been
withdrawn and reclassified to programming service
classification "c" effective June 28, 1974.

Corrections have been made to the following commands:

ALLOCATE
ATfRIB
CALL
EDIT
LINK
LOGOFF
LOGON
PROFILE
RENAME
RUN
OUTPUT
SlJBMIT

Summary of Amendments
for GC28-0646-2
As Updated by GN28-2597
OS/VS2 Release 3

Changes to this material reflect corrections, rather than
additions to the base pUblication. The major corrective
action is to the "Command Procedures" section.

Corrections have been made to the following subcommands:

CHANGE (EDIT)
COpy (EDIT)
END (EDIT)
RENUM (EDIT)
RUN (EDIT)
SAVE (EDIT)
SCAN (EDIT)
SUBMIT (EDIT)
TABSET (EDiT)
UNNUM (EDIT)
AT (TEST)
LIST (TEST)
WHERE (TEST)

Summary of Amendments 11

Summary of Amendments
For GC28-0646-1
OS/VSl Release 3

TIle felowillC Me c:MBees to exbtiIg TSO eN:o--dsk or
5111k. =+ for 0S/VS1. Release 3:

AlLOCATE

New operands added:
• DSNAME(dsname - list or *)- specifies the name of

the data set to be aD.ocated. Same as DATASET.
• BLKSIZB(value) - specifies the average length(in bytes)

of the records that will be wriUen to a data set. Same as
BLOCK.

• DDNAME(name) - specifies the name to be ~ated
with the data set. Same as FILE.

• MSVGP(identifier) - specifies an insta1lation deimed .
group of MSS volumes to be used for system selection of
a volume or volumes which are to be mounted.

EDD'

New operands added:
• BLKSIZE(integer) - specifICS the maximum length (in

bytes) for blocks of records of a new data set. Same as
BLOCK.

• LRECL(integer) - specifies the length of records to be
created for a new data set. Same as LINE.

END subcoIIImaad of EDIT

New operands added:
• SAVE - specifICS that the modified data set is to be

saved.
• NOSA VE - specifies that the modified data set is not

to be saved.

SAVE sabccMnmand of EDIT

New operands added:
• RENUM - performs a renumbering function on a data

set.
• UNNUM - performs a function that removes line

numbers from a data set.

SUBMIT Subconunand of EDIT

New operands added:
• * - may be used to represent the data set being edited.

and a list of data sets may be specified.

FREE

New operands added:
• DSNAME - specifies one or more data set names that

identify the data sets to be freed. Same as DATASET.
• DDNAME - specifies one or more file names that

identify the data sets to be freed. Same as FILE.

HELP

New operands added:
• MSGID(llst) - specifies that you wish to get additional

information about VSBASIC messages whose message
identifiers are given in the list.

usrCAT
New operands added:
• CREATION - specifies that entries are to be listed on

condition.
• E..XPIR.-\ nON - specifies that entries are to be listed

on condition.
• IDSTORY - specifies that the name. owner

identification, creation date, expiration date of the
entries are to be listed.

TIle f Me aew OIC' __ =+IS or __ "c:ec __ ".tlsb ... dteir

assodUeti openads.

COPY/MOVE Sllbc:Mwaawl of EDIT

Operands:
• * - Value of the current line pointer.
• LINE 1 - specifies the first line of a range to be copied.
• UNE2 - specUICS the last line of a range to be copied.
• LINE3 - specifies the beginning line number where the

copied data set will be positioned.
• STRING - specifies a sequence of characters

representing the first line of a range.
• COUNT - specifies the total number of lines to be

copied.
• UNE4 - specifies the relative line number at which the

data will be placed for NONUM data sets. For NUM
data sets. UNE4 has the same meaning as LlNE3.

• INCR(n) - specifies the increment to be used.

EXEC Subcommand of EDIT

Operands: See the EXEC command for operand
explanation.

UNNUM Subcommand of EDIT

No operands: Used to delete line numbers from a data set
containing line numbers.

12 OS/VSl TSO C~ J..uauage Reference (VSl Release 3.7)

The f cIIaages apply to dIis book for OS/VSl Relase
3:
• The ACCOUNT and OPERATOR commands and

subcommands are documented in OS/VSl SPL: 1'80.
• The writing and execution of command procedures

(CUST usage) and extended symbolic variable functions
are documented in OS/VSl 1'80 Tend ... User's Gui_.

New Command Procedure statements are:

• ATfN
• CLOSFILE
• CONTROL
• DATA-ENDDATA
• DO-WHILE-END
• ERROR

• EXIT
• GETFILE
• GLOBAL
• GOTO
• IF-THEN-ELSE
• OPENFILE
• PROC
• PUTFILE
• READ
• READDVAL
• RETURN
• SET
• TERMIN
• WRITE-WRITENR

s....ary of AmendaaeDts 13

14 OS/VS2 TSO Command Language Reference (VS2 Release 3.7)

Introduction

TSO allows you and a number of other users to use the facilities of the
system concurrently and in a conversational manner. You can communicate
with the system by typing requests for work (commands) on a terminal,
which may be located far away from the system installation. The system
responds to your requests by performing the work and sending messages
back to your terminal. The messages tell you such things as what the status
of the system is with regard to your work and what input is needed to allow
the work to be done.

By using different commands, you can have different kinds of work
performed. You can store data in the system, change the data, and retrieve
it at your convenience. You can create programs, test them, have them
executed, and obtain the results at your terminal.

When you use a command to r~quest work, the command establishes the
scope of the work to the system. To provide flexibility and greater. ease of
use, the scope of some commands' work encompasses several operations
that are identified separately. After entering the command, you may specify
one of the separately identified operations by typi)1g a subcommand. A
subcommand, like a command, is a request for work; however, the work
requested by a subcommand is a particular operation within the scope
established by a command.

This reference manual describes what each command can do and how to
enter a command at your terminal.

Additional commands and subcommands are available for a license fee as
optional program products. Appendix B lists the program product
commands and subcommands.

Appendix C lists the Access Method Services Commands that are
available.

In this manual; references are made to IBM program products in various
applications. These references are not intended to state or imply that only
tM IBM program product mentioned may be used in the given application;
any functionally equivalent program may be used instead.

Introduction 15

16 OS/VS2 TSO Command Language Reference (VS2 Release 3.7)

Basic Information For Using TSO

Before using TSO you should know how to use:

• Terminals
• TSO Commands
• System provided aids
• Data set naming conventions

Using a Terminal
A terminal session is designed to be an uncomplicated process for a
terminal user: he identifies himself to the system and then issues commands
to request work from the system. As the session progresses, the user has a
variety of aids available at the terminal which he can use if he encounters
any difficulties.

Entering Information at the Terminal

All TSO terminals have a typewriter-like keyboard through which you enter
information into the system. The features of each keyboard vary from
terminal to terminal; for example, one terminal may not have a backspace
key, while another may not allow for lowercase letters. The features of each
terminal as they apply to TSO are described in the publication, TSO
Terminals. The examples in this book are addressed to a user of an IBM
2741 Communication Terminal.

Standard Terminal Conventions

Certain conventions apply to all TSO terminals. They are:

• Any lowercase letters you type are interpreted by the system as
uppercase letters. For example, if you type in:

abcDe8-fg

the system interprets it as:

ABCDE8-FG

The only exceptions are certain text-handling applications which allow
you to type in text with both uppercase and lowercase lett~rs.

• All messages or other output sent to you by the system come out in
uppercase letters. The only exception is the output from the special
text-handling applications mentioned previously, which comes out both
in uppercase and lowercase.

Character and Line Deletion

TSO provides a method for you to correct typing mistakes. You can request
that the character you just typed be deleted or that all the preceding
characters in the line be deleted. You can define your own
character-deletion and line-deletion control characters, or you can use the
default characters in the system. For example, if the control characters are

Basic Information For Using TSO 17

the quotation mark (ii) for deleting the preceding character, and the percent
sign (0/0) for deleting the current line, and you type the following message:

first ent%Sect"onft""d ENR"try

it is received by the syste·m as:

SECOND ENTRY

Note that you can use the character-deletion character repetitively (to
delete more than one of the preceding characters in the line).

The blank space produced when you hit the space bar is also considered
to be a character, and you can delete it using the character-deletion or
line-deletion characters. For example, if you type the following line:

a b%cd "E "f

it is received by the system as:

CD EF

Normally, you will use the default characters in the system, (usually the
backspace and the attention key). However, you can use the PROFILE
command to establish your own character-deletion and line-deletion
characters. The PROFILE command is described in the section "Starting and
Ending a Terminal Session" in OS/VS2 TSO Terminal User's Guide. The
ability to change the character-deletion and line-deletion characters is useful
when you use more than one type of terminal. For example, any time you
have to use a terminal that does not have backspace and attention keys,
you can use the PROFILE command to select two other suitable characters
as the character-deletion and line-deletion characters.

Line by Line Data Entr)'

After you type a line and make any necessary corrections, you can enter
that line as follows:

• Press the RETURN key on an IBM 2741 Communication Terminal.
• Press the RETURN key on an IBM 1052 Printer-Keyboard. (If the

1052 does not have the automatic EOB feature, hold down the ALTN
coding key and press the EOB(S) key,)l

• Hold the CTRL key and press the XOFF key on a Teletype2 terminal.

Note:

1. This manual assumes that you are using an IBM 2741 terminal, and
that you must press the RETURN key to enter a line.

2. If you want to enter a null line, press the key used to enter a line
(RETURN key on the 2741) after entering at least one blank.

You cannot use the character-deletion and line-deletion characters to
make corrections to the line after you enter it. If the line you entered was a
command, you must use the attention interruption (described later in this

1 For information about the terminal you are using, refer to TSO Tenninals.
2 Trademark of the Teletype Corporation.

18 OS/VS2 TSO Command Language Reference (VS2 Release 3.7)

section) to cancel the line. If the line you entered was data, you can change
it by using the EDIT command. See the section "Entering and Manipulating
Data" in OS/VS2 TSO Terminal User's Guide.

Using TSO Commands
A command consists of a command name followed, usually, by one or more
operands. Operands provide the specific information required for the
command to perform the requested operation. For instance, operands for
the RENAME command identify the data set to be renamed and specify the
new name:

RENAME OLD NAME

/' t
command name operand-l

(old data-set-name)

NEWNAME ,
operand-2

(new data-set-name)

Two types of operands are used with the commands: positional and
keyword.

Positional Operands

Positional operands follow the command name in a prescribed sequence. In
the command descriptions within this manual, the positional operands are
shown in lower case characters. A typical positional operand is:

data-set-name

You must replace "data-set-name" with an actual name when you enter
the command.

When you want to enter a positional operand that is a list of several
names or values, the list must be enclosed within parentheses. The names or
values must not include unmatched right parentheses.

Keyword Operands

Keywords are specific names or symbols that have a particular meaning to
the system. You can include keywords in any order following the positional
operands. In the command descriptions within this book, keywords are
shown in upper case characters. A typical keyword is:

TEXT

You can specify values with some keywords. The value is entered within
parentheses following the keyword. The way a typical keyword with a value
appears in this book is:

LINESIZE(integer)

Continuing this example, you would select the number of characters that
you want to appear in a line and substitute that number for the "integer"
when you enter the operand:

LINESIZE(80)

Note: If conflicting keywords are entered, the last keyword entered
overrides the previous ones.

Basic Information For Using TSO 19

Abbreviating Keyword Operands

You can enter keywords spelled exactly as they are shown or you may use
an acceptable abbreviation. You may abbreviate any keyword by entering
only the significant characters; that is, you must type as much of the
keyword as is necessary to disting-.:ish it from the other keywords of the

command or subcommand. For instance, the USTBC command has four
keywords:

MAIL
NOMAIL

NOTICES

NONOTICES

The abbreviations are:

M for MAIL (also MA and MAl)

NOM for NOMAIL (also NOMA and NOMAI)

NOT for NOTICES (also NOTI, NOTIC, and NOTICE)

NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC,

and NONOTICE)

In addition, the DELETE and LISTCAT commands allow unique
abbreviations for some of their keywords. They are shown with the syntax
and operand descriptions of DELETE and USTCAT.

Co •• eats

Comments may be added to a command anywhere a blank might appear.
Simply enter them within the colnments detimiters /* and * /. A comment
may be continued to the next line by using a line continuation character (+
or -) at the end of the line with an immediate carrier return.

or

listd (data-set-list) /* my data sets */

listd (data~set-list) /* this is a list of my -
active data sets */

When you type a command, you must separate the command name from
the first operand by' one or more blanks. You must separate operands by
one or more blanks or a comma. Do not use a semicolon as a detimiter
because the characters entered after a semicolon are ignored. Using a blank
or a comma as a detimiter, you can type the LISTBC command like this:

LISTBC NOMAIL NONOTICES

or like this:

LISTBC NOMAIL,NONOTICES

or like this:

LISTBC NOMAIL NOTICES

Enter a blank by pressing the space bar at the bottom of your terminal
keyboard. You can also use the TAB key to enter one or more blanks.

20 os/Vm TSO COIIIIIUIIId Lanpage Refereace (VS2 Release 3.7)

When it is necessary to continue to the next line) use a plus or minus sign
as the last character of the line being worked on. Caution: a plus sign will
cause leading delimiters to be removed from the continued line.

or

list (data-set-list) /* this is a list of my -
active data sets */

alloc dataset(out.data) file(output) new +
space(10,2) tracks release

The work done by some of the commands is divided into individual
operations. Each operation is dermed and requested by a subcommand. To
request one of the individual operations, you must fIrSt enter the command.
You can then enter a subcommand to specify the particular operation that
you want perforiDed· You cali continue entering subcommands until you
enter the END subcommand.

The commands that have subcommands are EDIT. OUTPUT, and TEST.

When you enter the EDIT command you can then enter the subcommands
for EDIT. Likewise, when you enter the OUTPUT or TEST commands you
can enter the appropriate subcommands.

SYJltax Notatioll COIIVefttiollS

The notation used to define the command syntax and format in this
publication is described in the following paragraphs.

1. The set of symbols listed below is used to define the format, but you
should never type them in the actual statement.
hyphen
underscore

braces {}

brackets []

ellipsis

The special uses of these symbols are explained in the following
paragraphs.

2. You should type uppercase letters, numbers, and the set of symbols
listed below in an actual command exactly as shown in the statement
defInition.
apostrophe

asterisk. *
comma

equal sign

parentheses 0
period

3. Lowercase letters, and symbols appearing in a command definition
represent variables for which you should substitute specific
information in the actual command.
Example: H name appears in a command defInition, you should
substitute a specific value (for example, ALPHA) for the variable
when you enter the command.

Ba\ic 1IIf...aio�� For Using 1'80 :U

4. Stacked items represent alternatives. You shouid select only one item.
Example: The representation

A
B
C

indicates that A or B or C is to be selected.
5. Hyphens join lower-case words and symbols to form a single

variable.
Example: If member-name appears in a command definition, you
should substitute a specific value (for example, BET A) for the variable
in the actual command.

6. An underscore indicates a default option. If you select an underscored
alternative, you need not specify it when you enter the command.
Example: The representation

A
B
C
indicates that you are to select A or B or C; however, if you select B,
you need not specify it, because it is the default option.

7. Braces group related items, such as alternatives.
Examples: The representation

ALPHA=({ ~}, D)

indicates that you must choose one of the items enclosed within the
braces. If you select A, the result is ALPHA=(A,O).

8. Brackets also group related items; however, everything within the
brackets is optional and may be omitted.
Example: The representation

ALPHA=([~}D)
indicates that you may choose one of the items enclosed within the
brackets or that you may omit all of the items within the brackets. If
you select only 0, you may specify ALPHA=(,O).

9. An ellipsis indicates that the preceding item or group of items can be
repeated more than once in succession.
Example:

ALPHA [,BETA .•.]

indicates that ALPHA can appear alone or can be followed by ,BET A
any number of times in succession.

10. Stacked items - alternatives; specify only one item from the stack.

Note: Items in a stack may be either simple (single-line) or complex
(multiple-choice) .
Example:

{~~ }
cc

represents a three-item stack.

22 OS/VS2 TSO Command Language Reference (VS2 Release 3.7)

Using System-Provided Aids

Several aids are available for your use at the terminal:

• The attention interruption allows. you to interrupt processing so that
you can enter a command.

• The HELP command provides you with information about the
commands.

• The conversational messages guide you in your work at the terminal.

The Attention Interruption

The attention interruption allows you to interrupt processing at any time so
that you can enter a command or subcommand. For instance, if you are
executing a program and the program gets in a loop, you can use the .
attention interruption to halt execution. As another example, when you are
having the data listed at your terminal and the data that you need has been
listed, you may use the attention interruption to stop the listing operation
instead of waiting until the entire data set has been listed.

If, after causing an attention interruption, you want to continue with the
operation that you interrupted, you can do so by pressing the return key
before typing anything else; however, input data that was being typed or
output data that was being printed at the time of the attention interruption
may be lost. You can also request an attention interruption while at the
command level, enter the TIME command, and then resume with the
interrupted operation by pressing the return key.

Note: One output record from the interrupted program may be printed at
the terminal after you enter your next command. This is normal for some
programs.

If your terminal has an interruption facility, you can request an attention
interruption by pressing the appropriate key (the ATTN key on IBM 2741
Communication Terminals). Whether or not your terminal has a key for
attention interruptions, you can use the TERMINAL command to specify
particular operating conditions t~at the system is to interpret as a request
for an attention interruption. More specifically, you can specify a sequence
of characters that the system is to interpret as a request for an attention
interruption. In addition, you can request the system to pause after a certain
number of seconds of processing time has elapsed or after a certain number
of lines of output has been displayed at your terminal. When the system
pauses, you can enter the sequence of characters that you define as a
request for an attention interruption.

Note: If you are using the attention key as a line-delete indicator, pressing
the attention key (after entering characters in a line, and before pressing
t~e carrier return,) will cause the line you entered to be ignored by the
system. Another depression of the attention key is required to cause an
interruption.

Basic Infonnation For Using TSO 23

Tnese are three types of responses to an attention internlption entered
by a terminal user:

System Response

I

D

"attention message"

Messages

Explanation

Ignored

Input line has been deleted.

Indicates mode.

There are four types of messages:

• Mode messages.
• Prompting messages.
• Informational messages.
• Broadcast messages.

Mode Messages

A mode message tells you when the system is ready to accept a new
command or subcommand. When the system is ready to accept a new
command it prints:

READY

When you enter a command that has subcommands and the system is
ready to accept that command's subcommands, it prints the name of the
command, which can be one of the following:

EDIT
OUTPUT
TEST

You can then enter the subcommands you want to use. The TEST

message also appears after each TEST subcommand has been processed. If
the system has to print any output or other messages, as a result of the
previous command or TEST subcommand, it does so before printing the
mode message.

Sometimes you can save a little time by entering two or more commands
in succession without waiting for the intervening READY message. The
system then prints the READY messages in succession after the commands.
If you enter the following commands without waiting for the intervening
mode messages, your listing will be:

READY
delete .. .
free .. .
rename .. .
READY
READY
READY

There is a drawback to entering commands without waiting for the
intervening mode messages. If you make a mistake in one of the commands,
the system sends you messages telling you of your mistake, and then it
cancels the remaining commands you have entered. After you correct the
error, you have to reenter the other commands.

Unless you are sure that there are no mistakes in your input, you should
wait for a READY message before entering a new command.

24 OS/VS2 TSO Command Language Reference (VS2 Release 3.7)

Note: Some terminals "lock" the keyboard after you enter a command,
and therefore you cannot enter commands without waiting for the
intervening READY message. Terminals which do not lock the keyboard

. may occasionally do so, for example when all buffers allocated to the
terminal are used. See the publication TSO Terminals for information on
your terminal.

Prompting Messages

A prompting message tells you that required information is missing or that
information you supplied was incorrectly specified. A prompting message
asks you to supply or correct that information. For example,
partitioned-data-set-name is a required operand of the CALL command; if
you enter the CALL command without that operand the system will prompt
you for the data-set-name and your listing will look as follows:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested operand, in this case the
data set name, and by pressing the RETURN key to enter it. For example if
the data set name is ALPHA.DATA you would complete the prompting
message as follows:

ENTER DATA SET NAME­
alpha.data

If you wish, you will receive prompting messages when appropriate.
However, the PROFILE command can be used to suppress prompting.

Sometimes you can request another message that explains the initial
message more fully. If the second message is not enough, you can request a
further message to give you more detailed information. An indication that a
second or additional message level is available is a plus sign (+) at the end
of the message.

To request an additional level of message:

1. Type a question mark(?) in the first position of the line.

2. Press the RETURN key.

If you enter a question mark, and there are no messages to provide
further detail, you receive the following message:

NO INFORMATION AVAILABLE

You can stop a prompting sequence by entering the requested
information or by requesting an attention interruption to cancel the
command.

Basic InfonnatioD For Using TSO 25

Informational Messages

An informational message tells you about the status of the system and your
terminal session. For example, an informational message can tell you how
much time you have used. Informational messages do not require a

If an informational message ends with a plus sign (+) you can request an
additional message by entering a question mark (?) after READY, as
described in "Prompting Messages." Informational messages have only one
second level message, while prompting messages may bav~ more than one.

Broadcast Messages

Broadcast messages are messages of general interest to users of the system.
Both the system operator and any user of the system can send broadcast
messages. The system operator can send messages to all users of the system
or to individual users. For example, he may send the following message to
all users:

DO NOT USE TERMINALS #4, 5 AND 6 ON 6/30. THEY ARE
RESERVED FOR DEPARTMENT 791.

You, or any other user, can send messages to other users or to the
system operator. For example, you may send, or receive, the following
message:

DEPARTMENT NO. 4672 WILL BE CHANGED TO 4675 on 8/15

A message sent by another user will show his user identification so you
will know who sent you the message.

Using the HELP Command

The HELP command can be used by a terminal user to receive all the
information necessary to use any TSO command. The information requested
will be printed out at the user's terminal.

Explanations of Commands

To receive a list of all the TSO commands in the SYSl.HELP data set along
with a description of each, enter the HELP command as follows:

help

Information about installation-written commands may be placed in the
SYSl.HELP data set. You can also get all the information available on a
specific command in SYS I.HELP entering the specific command name as an
operand 011 the HELP command, as follows:

help command-name

Syntax Interpretation of HELP Information

The syntax notation used to present HELP information is different from the
syntax notation used in this publication because it is restricted to characters
that can be printed by your terminal. You can get the syntax interpretation
by entering the HELP command as follows:

READY
help help

26 OS/VS2 TSO Command Language Reference (VS2 Release 3.7)

Explanations of Subcommands

When HELP exists as a subcommand, you may use it to obtain a list of
subcommands or additional information about a particular subcommand.
The syntax of HELP as a subcommand is the same as the HELP command.

Using Data Set Naming Conventions
A data set is a collection of related data. Each data set stored in the system
is identified by a unique data set name. The data set name allows the data
to be retrieved and helps protect the data from unauthorized use.

The data set naming conventions for TSO simplify the use of data set
names. When a data set name conforms to the conventions, you can refer
to the data set by its fully qualified name or by an abbreviated version of
the name. The following paragraphs:

1. Describe data set names in general.

2. Define the names that conform to the naming conventions for TSO.

3. Tell how to enter a complete data set name, and how to enter the
abbreviated version of a name that conforms to the TSO data set
naming conventions.

Data Set Names ;n General

A data set name consists of one or more fields. Each field consists of one
through eight alphameric characters and must begin with an alphabetic (or
national) character.

Caution: The National Characters $, @, and # are accepted as the first
character in a data set name. The characters hyphen (-) and
ampersand-zero (12-0 punch) are not accepted in a data set name.

A simple data set name with only one field may be:

PARTS

A data set name that consists of more than one field is a "qualified"
data set name. The fields in a qualified data set name are separated by
periods. A qualified data set name may be:

PARTS.OBJ

or

PARTS.DATA

Partitioned Data Sets: A partitioned data set is simply a data set with the
data divided into one or more independent groups called members. Each
member is identified by a member name and can be referred to separately.
The member name is enclosed within parentheses and appended to the end
of the data set name:

PARTS.DATA(PART14)

~ername

BasIc Information For Using TSO 27

TSO Data Set Names

A data set name must be qualified in order to conform to the TSO data set
naming conventions. The qualified name must consist of at least the two
required fields of the following three:

1. Your user-prefIX (required; defaults to userid; may be redefined using
PROFILE command).

2. A user-supplied name (optional for a partitioned data set).

3. A descriptive qualifier (required).

Normally all three names are used:

USER-PREFIX.USER-SUPPLIED-NAME.DESCRIPTIVE QUALIFIER

The total length of the data set name must not exceed 44 characters,
including periods. A typical TSO data set name is:

WRRID.PARTS.DATA

USER-PREFIX - WRRID

user-supplied name - PARTS

descriptive qualifier - DATA

The TSO data set naming conventions also apply to partitioned data sets.
A typical TSO name for a member of a partitioned data set is:

WRRID.PARTS.DATA(PART14)

USER-PREFIX: The USER-PREFIX is always the leftmost qualifier of the full
data set name. For TSO, this qualifier is the prefIX selected in the PROFILE

command H no prefIX has been selected, the userid assigned to you by
your installation will be used.

User-supplied Name: You cboose a name for the data sets that you want to
identify. It can be a simple name or several simple names separated by
periods.

Descriptive Qualiiter: The descriptive qualifier is always the rightmost
qualifier of the. full data set name. To conform to the data set naming
conventions, this qualifier must be one of the qualifiers listed in Figure 1.

28 OS/VS2 TSO COIDIDaDd Laaguage Refereaee (VSl Release 3.7)

DesaiptiYe QaifJel'
ASM
CLIST
CNTL
COBOL
DATA
FORT

LINKUST
LIST
LOAD
LOADLIST
OBJ
OUTLIST
PLI

TESTLIST
TEXT
VSBASIC

Figwe 1. Descriptive Qalrters

Data Set CODtents
Assembler (F) input
TSO commands
JCL and SYSIN for SUBMIT command
American National Standard COBOL statements
Uppercase text
FORTRAN (Code and Go, 01, H)
statements
Output listing from linkage editor
Listings
Load module
Output listing from loader
Object module
Output listing from OUTPUT command
PL/I(F), PL/I Checkout, or PL/I Optimizing
compiler statements.
Output listing from TEST command
Uppercase and lowercase text
VSBASIC statements

How to Enter Data Set Names

The data set naming conventions simplify the use of data set names. If the
data set name conforms to the conventions, you need specify only the
user-supplied name field (in most cases) when you refer to the data set.
The system will add the necessary qualifiers to the beginning and to the end
of the name that you specify. In some cases, however, the system will
prompt you for a descriptive qualifier. Until you learn to anticipate these
exceptions to the naming conventions, you may wish to specify both the
user-supplied name and the descriptive qualifier when referring to a data
set. When you are using the LINK command for example, the system will
add both the user identification and the descriptive qualifier, allowing you
to specify only the user-supplied name. For instance, you may refer to the
data set named USERID.PARTS.OBJ by specifying only PARTS (when you are
using LINK) or by specifying PARTS.OBJ (when you are using other
commands). You may refer to a member of a partitioned data set
USERID.PARTS.OBJ(PARTI4) by specifying PAR1'8(PARTI4) when you are
using LINK or by specifying PARTS.OBJ(PARTI4) when you are using other
commands.

When you specify an entire fully qualified data set name, as you must do
if the name does not conform to the 1'80 data set naming conventions, you
must enclose the entire name within apostrophes; as fonows:

"WRRID.PROO.Usr where WRRID is not your user identification
or

"WRRID.PROG.FIRST where FIRST is not a valid descriptive qualifier.

The system will not append qualifiers to any name enclosed in
apostrophes.

Defaults for Data Set Names: When you specify only the user-supplied
name, the system adds your user identification and, whenever possible, a
descriptive qualifier. The system attempts to derive the descriptive qualifier
from available information. For instance, if you specified ASM as an
operand for the EDIT command, the system will assign ASM as the
descriptive qualifier. If the information is insufficient, the system will issue a
message at your terminal requesting the required information. If you specify
the name of a partitioned data set and do not include a required member

Basic lIIfonDatioD For Using TSO 29

name, the system will use TEMPNAME as the default member name. (If you
are creating a new member, the member name will become TEMPNAME: if
you are modifying an existing partitioned data set, the system will search
for a member named TEMPNAME.) Figure 2 illustrates the default names
supplied by the system.

If you specify:

EDIT PARTS ASM
LINK PARTS or
LINK (PARTS)

CALL PARTS

EDIT PARTS(JAN) ASM
LINK PARTS (JAN) or
LINK (PARTS(JAN»
CALL PARTS (JAN)
EDIT (PARTS) ASM
LINK (PARTS»
CALL (PARTS)

The input data
set name is:
UID.PARTS.ASM

UID.PARTS.OBJ

UID.PARTS.LOAD
(TEMPNAME)
UID.PARTS.ASM(JAN)

UID.PARTS.OBJ(JAN)
UID.PARTS.LOAD(JAN)
UID.ASM(PARTS)
UID.OBJ(PARTS)
UID.LOAD(PARTS)

Figure 2. Default Names SuppHed by the System

The output data set
name will be:
UID.PARTS.ASM

UID.PARTS.LOAD
(TEMPNAME)

UID.PARTS.ASM(JAN)

UID.PARTS.LOAD(JAN)

UID.ASM(PARTS)
UID.LOAD(PARTS)

Note: Member names must be enclosed in parentheses to distinguish them
from data set names.

Descriptive Qualifiers
Command Input Output UstiDg
ASM ASM OBJ LIST
CALL LOAD
COBOL COBOL OBJ LIST
CONVERT FORT FORT
EXEC CLIST
FORMAT TEXT LIST
FORT FORT OBJ LIST
LINK OBJ LOAD LINKLIST

LOAD
LOAD GO OBI LOADLIST

LOAD
OUTPUT OUTLIST
RUN ASM

FORT
COBOL

SUBMIT CNTL
TEST OBJ TESTLIST

LOAD

Figure 3. Descriptive Qualifiers SuppHed by Default

30 OS/VS2 TSO Command Language Reference (VS2 Release 3.7)

Specifying Data Set Passwords

When referencing password protected data sets, you may specify the
password as part of the data set name (you will be prompted for it
Qtherwise). The password is separated- from the data set name by a slash
(I) and optionally, by one or more standard delimiters (tab, blank, or
comma). See the discussion on "Password Data Set" that appears under the
PROTECT command for non-VSAM data sets. For VSAM data sets, see
DEFINE and ALTER in OS/VS2 Access Method Services.

Using Commands for VSAM and Non-VSAM Data Sets
Figure 4 gives recommended commands, by function, for VSAM and
non-VSAM data sets. Numbers in parentheses after the commands ind~cate
order of preference. Program product commands are identified with an
asterisk (*). Refer to OS/VS2 Access Method Services for commands not
covered in this document.

Function Non-VSAM VSAM
Build lists of attributes ATTRIB (None)

Allocate new DASD space ALLOCATE DEFINE
Connect data set to terminal ALLOCATE ALLOCATE
List names of allocated LISTALC LISTALC
(connected) data sets
Modify passwords PROTECT DEFINE,ALTER
List attributes of one or LISTDS (1) LISTCAT (1)
more objects LISTCAT (2) LISTDS (2)

List names of cataloged data sets
Limit by type LISTCAT LISTCAT
Limit by naming convention LISTDS LISTDS

Catalog data sets DEFINE (1) DEFINE
ALLOCATE (2)

List contents EDIT,LIST* PRINT
Rename RENAME ALTER
Delete DELETE DELETE

I Copy data set COpy* REPRO

Figure 4. Commands Preferred for VSAM/Non-VSAM Data sets

Basic Information For Using TSO 31

32 OS/VS2 TSO Command Language Reference (VS2 Release 3.7)

The Commands

This section contains descriptions of the TSO commands. The commands are
presented in alphabetical order. Subcommands are presented in alphabetical
order following the command to which they apply.

The Commands 33

34 OS/VS2 TSO Command Language Reference (VS2 Release 3.7)

ALLOCATE Command

Use the ALLOCATE command or the ALLOCATE subcommand of EDIT
I (function and syntax is identical to the ALLOCATE command) to

dynamically allocate the data sets required by a program that you intend to
ex~cute. You may use the A TTRIB command to build a list of attributes for
non-VSAM data sets that you intend to allocate dynamically. During the
remainder of your terminal session you can have the system refer to this list
for data set attributes when you enter the ALLOCATE command. The
ALLOCATE command will convert the attributes into the DCB parameters

I for data sets being allocated.

ALLOCATE Command 3S

{
ALLOCATE}
ALLOC

({DATASET} {(*) }rF1LE(name)]) J :::;E IdsnamHistl LDDNAMElnamel ~

hFILElname } [DATASET { 1*1 }Jj

~
~~~AMElnamel] DSNAME (dsname-list) 

NEW 
-SYSOUT[(class)] 

[
VOLUME(ser,iaHist)l 
MSVGP(identifier) J 

[

PACE (quantitv [,increment] ) 1 BLOCK(value) ~J 
BLKSIZE(value) 
AVBLOCK(value) 
TRACKS 
CYLINDERS 

[PI R(integer)] 

[DEST(userid)] 

[
HOLD J 
NOHOLD 

[UN IT (type)) 

[ 
UCOUNT(count)l 
PARALLEL J 

[LABELhype)] 

[POSITION (sequence-no.)] 

[MAXVOL(count») 

[PRIVATE] 

[VSEQ(vol-seq-no) ] 

[USING(attr-list-name)] 

[RELEASE) 

[ROUND] 

[

KEEP J DELETE 
CATALOG 
UNCATALOG 

36 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



DATASET(chname-list 01' *) or DSNAME{chname-1ist or *) specifies the name 
of the data set that is to be allocated. If a list of data set names is 
entered, ALLOCATE will allocate and concatenate non-VSAM data sets. 
The data set name must include the descriptive (rightmost) qualifier and 
may contain a member name in parentheses. 
IT you specify a password, you will not be prompted for it when you 
open the data set. 
You may substitute an asterisk (*) for the data set name to indicate that 
you want to have your terminal allocated for input and output. If you 
use an asterisk (*), only the FILE or DDNAME, BLOCK or BLKSIZE, and 
USING operands should be entered. All other operands are ignored. No 
message is issued to notify the user. 

Note: If you allocate more than one data set to your terminal, the blocksize 
and other data set characteristics which default on the first usage will also 
be used for all other data sets. This happens for input or output. The 
A TfRIB command and the USING keyword of ALLOCATE can be used . to 
control the data set characteristics being used. 

The system generates names for SYSOUT data sets; therefore, you should 
not specify a data set name when you allocate a SYSOUT data set. If you 
do, the system ignores it. 

Nt*: The following items should be noted when using the concatenate 
function: 

1. The data sets specified in the list must be cataloged. You may use the 
CATALOG operand of either ALLOCATE or FREE to catalog a data set. 

2. The maximum number of data sets that can be concatenated is 255 
sequential or 16 partitioned data sets. The data sets to be 
concatenated must be either all sequential or all partitioned. 

3. The data set group will be permanently concatenated. The group must 
be freed in order to be deconcatenated. The filename specified for the 
FILE or DDNAME operand on ALLOCATE must be specified for the 
FILE or DDNAME operand on FREE. 

DUMMY specifies that no devices or external storage space is to be 
allocated to the data set, and no disposition processing is to be 
performed on the data set. Entering the DUMMY keyword will have "the 
same effect as specifying NULLFILE as the data set name on the 
DATASET or DSNAME operand. If DUMMY is specified, only the FILE or 
DDNAME, BLOCK or BLKSIZE, and USING operands should be entered. 
All other operands are ignored. 

ALLOCATE COIIIIDaDd 37 



FILE(name) or DDNAME(name) specifies the name to be associated with the 
data set. It may contain no more than eight characters. (This name 
corresponds to the name on the Data Definition (DD) statement in Job 
Control Language and must match the ddname in the Data Control 
Block (DCB) that is associated with the data set.) For PL/I, this name is 
the file name in a DECLARE statement and has the form "DCL fiiename 
FILE"; for instance, DCL MASTER FILE. For COBOL, this name is the 
external-name used in the ASSIGN TO clause. For FORTRAN, this name 
is the data set reference number that identifies a data set and has the 
form "FTxxFyyy;" for instance FT06F002. 
If you omit this operand, the system assigns an available file name 
(ddname) from a data definition statement in the procedure that is 
invoked when you enter the LOGON command. 

OLD indicates that the data set currently exists and that you require 
exclusive use of the data set. The data set should be cataloged. If it is 
not, you must specify the VOLUME operand. OLD data sets are retained 
by the system when you free them from allocation. The DATASET or 

DSNAME parameter is required. 

SUR indicates that the data set currently exists but that you do not require 
exclusive use of the data set. Other tasks may use it concurrently. 
ALLOCATE assumes the data set is cataloged if the VOLUME operand is 
not entered. SHR data sets are retained by the system when you free 
them. The DATASET or DSNAME parameter is required. 

MOD indicates that you want to append data to the end of the data set. 
MOD data sets will be retained by the system when you free them. The 
DATASET or DSNAME parameter is required. 

NEW (non-VSAM only) indicates that the data set does not exist and that it 
is to be created. For new partitioned data sets you must specify the DIR 

operand. A NEW data set will be kept and cataloged if you specify a data 
set name. If you do not specify a data set name, it will be deleted when 
you free it or log off. 

SysouT(class») indicates that the data set is to be a system output data 
set. An optional subfield may be defined giving the output class of the 
data set. Output data will be initially directed to the job entry subsystem 
and may later be transcribed to a final output device. The final output 
device is associated with output class by the installation. After 
transcription by the job entry subsystem, SYSOUT data sets are deleted. 

Note: If you do not specify OLD, SHR, MOD, NEW or SYSOUT, a default 
value is assigned, or a value is prompted for, depending on the other 
operands specified: 

1. If any space parameters (SPACE, DIR, BLOCK, BLKSIZE, A VBLOCK, 
TRACKS or CYLINDERS) are specified, then the status defaults to 
NEW. 

2. If none of the space parameters are entered, and the 
DATASET /DSNAME parameter is entered, then the status defaults to 
OLD. 

3. If neither the DATASET or DSNAME parameter is specified or any 
space parameters, then you are prompted to enter a value for status, 

38 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



VOLUME(serial) specifies the serial number(s) of an eligible direct access 
volume(s) on which a new data $et is to reside or on which an old data 
set is located. If VOLUME is specified for an old da~a set, the data set 
must be on the specified volume(s) for allocation to take place. If you do 
not specify VOLUME, new data sets are allocated to any eligible direct 
access volume. Eligibility is determined by the UNIT information in your 
procedure entry in the User Attribute Data Set(UADS). 

MSVGP specifies an installation defined group of MSS volumes to be used 
for system selection of a volume or volumes to be mounted. This 
keyword is used for new data set allocation on MSS(3330V) devices only. 
It is ignored for old data sets,DUMMY, SYSOUT and terminal data sets. 
The users UADS data set must contain the MOUNT attribute. Use of this 
keyword implies PRIVATE. 

SPACE(quantity, increment) specifies the amount of space to be allocated for 
a new data set. If this parameter or the primary space quantity is 
omitted, the default space is (10,50) AVBLOCK (lOOO). To indicate the 
unit of space for allocation, you must· specify one of fhe forrowing: 
BLOcK(value) or BLKSIzE(value), AVBLOCK(value), TRACKS, 
CYLINDERS. The amount of space requested is determined as follows: 

BLOCK(value) or BLKSIZE(value) - Multiply the value of the 
BLOCK/BLKSIZE operand by the "quantity" value of the SPACE 
operand. 

AVBLOCK(value) - Multiply the value of the AVBLOCK operand by the 
"quantity" value of the SPACE operand. 

TRACKS - The "quantity" value of the SPACE operand is the number of 
tracks you are requesting. 

CYLINDERS - The "quantity" value of the SPACE operand is the number 
of cylind~rs you are requesting. 
SPACE may be specified for SYSOUT, NEW, and MOD data sets. You 
must specify a unit of space when you use the SPACE operand. 

quantity specifies the number of units of space to be allocated initially for a 
data set. 

increment specifies the number of units of space to be added· to the data 
each time the previously allocated space has been filled. 

BLOCK(value) or BLKS~E(value) specifies the average length (in bytes) of 
the records that will be written to the data set. The block value will be 
the unit of space used by the SPACE operand. You may specify BLOCK 
(value) or BLKSIzE(value) for SYSOUT, NEW, MOD, DUMMY, or terminal 
data sets if the--default value is not acceptable. 

Note: The value supplied for BLOCK or BLKSIZE also becomes the value 
recorded in the DCB BLKSIZE for the data set unless you specify the USING 
operand. When the USING operand is specified, the value recorded in the 
DCB BLKSIZE is taken from the attribute list. 

AVBLOCK(value) specifies only the average length (in bytes) of the records 
that will be written to the data set. 

TRACKS specifies that the unit of space is to be a track. 

CYLINDERS specifies that the unit of space is to be a cylinder. 

Note: The keywords BLOCK, BLKSIZE, A VBLOCK, TRACKS and CYLINDERS 

ALLOCATE Command 39 



may be specified for SYSOUT, NEW or MOD data sets. The keywords 
BLOCK or BLKSIZE can also be specified for dummy or terminal data sets. 

DIR(integer) specifies the number of 256 byte records that are to be 
allocated for the directory of a new partitioned data set. This operand 
must be specified if you are allocating a new partitioned data set. 

DEST(stationid) specifies a remote work station to which SYSOUT data sets 
will be directed upon unallocation. The stationid is the one to eight 
character name of the remote work station receiving the SYSOUT data 
set. 

HOLD specifies that the data set is to be placed on a HOLD queue upon 
unallocatjon. 

NOHOLD specifies that the data set is not to be placed on a HOLD queue 
upon unallocation. NOH OLD is the default if neither HOLD nor NOHOLD 

is specified. 

UNIT (type) specifies the unit type to which a file or data set is to be 
allocated. You may specify an installation-defined group name, a generic 
device type, or a specific device address. If volume information is not 
supplied, (volume and unit information is retrieved from a catalog) the 
unit type that is coded will override the unit type from the catalog. This 
condition exists only if the coded type and class are the same as the 
cataloged type and class. 

UCOUNT(count) specifies the maximum number of devices to be allocated, 
where count is a value from. 1-59. 

PARALLEL specifies that one device is to be mounted for each volume 
specified on the VOLUME operand or in the catalog. 

LABEL(type) specifies the kind of label processing to be done. Type may be 
one of the following: 
SL, SUL, AL, AUL, NSL, NL, L TM, or BLP. These types correspond to the 
present JCL label-type values. 

POSmoN(sequence-no.) specifies the relative position (1-9999) of the data 
set on a multiple data set tape. The sequence number corresponds to the 
data set sequence number field of the label parameter in JCL. 

MAXVOL(count) specifies the maximum number (1-255) of volumes a data 
set can use. This number corresponds to the count field on the VOLUME 

parameter in JCL. 

PRIVATE specifies that the private volume use attribute be assigned to a 
volume that is not reserved or permanently resident. This operand 
corresponds to the PRIVATE keyword of the VOLUME parameter in JCL. 

Note: If VOLUME and PRIV ATE operands are not specified and the value 
specified for MAXVOL exceeds the value specified for UCOUNT, the system 
will not demount any volumes when all of the mounted volumes have been 
used, causing abnormal termination of your job. If PRIVATE is specified, the 
system will demount one of the volumes and mount another volume in its 
place so that processing can continue. 

VSEQ(voi-seq-no.) specifies at which volume (1-255) of a multi~volume 
data set processing is to begin. This operand corresponds to the volume 
sequence number on the VOLUME parameter in JCL. VSEQ should only 
be specified when the data set is cataloged. 

40 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



USING(attr-Hst-name) specifies the name of a list of attributes that you 
want to have assigned to the data set that you are allocating. The 
attributes in the list correspond to, and will be used for, data control 
block (DCB) parameters. (Note to users familiar with conventional batch 
processing: these DCB parameters are the same as those normally 
specified by JCL and data management macro instructions.) 
An attribute list must be stored in the system before you use this 
operand. You can build and name an attribute list by using the A TTRIB 
command. The A TTRIB command allocates a file with t}le name being the 
(attr-list-name) specified in the ATTRIB command. The name that you 
specify for the list when you use the A TTRIB command is the name that 
you must specify for this USING(attr-list-name) operand. 

RELEASE specifies that unused space is to be deleted when the data set is 
freed. 

ROUND specifies that the allocated space be equal to one or more 
cylinders. This operand should be specified only when space is requested 
in units of blocks. This operand corresponds to the ROUND keyword on 
the SPACE parameter in JCL. 

I Note: The final disposition of the following operands can be modified by a 
command processor. 

KEEP specifies that the data set is to be retained by the system after it is 
freed. 

DELETE specifies that the data set is to be deleted after it is freed. 

CATALOG specifies that the data set is to be retained by the system in a 
catalog after it is freed. 

UNCATALOG specifies that the data set is to be removed from the catalog 
after it is freed. The data set is still retained by the system. 

Example 1 

Operation: Allocate an existing cataloged data set containing input data for 
a program. The data set name conforms to the data set naming 
conventions, and you need exclusive use of the data. 

Known: 
The name of the data set: MOSER7.INPUT.DATA 

allocate dataset(input.data) old 

Example 2 

Operation: Allocate a new data set. 

Known: 
The name that you want to give the data: MOSER7.0UTPUT.DATA 
The number of tracks expected to be used: 10 
DCB parameters are in an attribute list named A TTR. 

allocate dataset(output.data) new space( 10,2) tracks 
using(attr) 

ALLOCATE Command 41 



Example 3 

Operation: Allocate your terminal as a temporary input data set. 

allocate dataset(*) file(ft01f001) 

Example 4 

Operation: Allocate an existing data set that is not cataloged and whose 
name does not conform to the data set naming conventions. 

Known: 
The data set name: SYSl.PTIMAC.AM 

The volume serial number: B99RS2 

The DD name: SYSLIB 

alloc dataset( 'sys1.ptimac.am') file(syslib) 
volume(b99rs2) shr 

Example 5 

Operation: Allocate a new partitioned data set. 

Known: 
The data set name: MOSER7.0VERHEAD.TEXT 

The block length: 256 bytes 
The number of blocks: 500 
The number of directory records: 50 

alloc dataset(overhead.text) new block(256) space(500) 
dir(50) 

Example 6 

Operation: Allocate a new data set to contain the output from a program. 

Known: 
The data set name: MOSER7.0UT.DATA 

The file name: OUTPUT 

You don't want to hold unused space. 

alloc dataset(out.data) file(output) new space( 10,2) 
tracks release 

Example 7 

Operation: Allocate an existing multi-volume data set to SYSDA, with one 
device mounted for each volume. 

Known: 
Data set name - MOSER7.MULTIVOL.DATA 

volumes - D95 vLl 

D95VL2 

D95VL3 

filename - SYSLIB 

42 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



alloe dataset( 'moser7.multivol.data') old parallel 
file(syslib) volume(d95vI1,d95vI2,d95vI3) 
unit(sysda) 

Example 8 

Operation: Allocate an existing data set on the second file of a 
standard-label tape. 

Known: 
Data set name -
volume -
unit-

MOSER7. TAPE 1.DA T A 

TAPEVL 

2400 

alloe dataset( 'moser7.tape1.data') label(sl) 
unit(2400) volume(tapevl) position(2) 

ALLOCATE Command 43 



44 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



ATfRIB Command 

Use the ATTRIB command to build a list of attributes for non-VSAM data 
sets that you intend to allocate dynamically. During the remainder of your 
terminal session you can have the system refer to this list for data set 
attributes when you enter the ALLOCATE command. The ALLOCATE 
command will convert the attributes into DCB parameters and LABEL 
parameters for data sets being allocated. See also the subparameters of the 
DCB parameter in OS/VS2 JCL. 

Note: The A TTRIB command allocates a file with the same name as your 
attribute-list-name. You can use the LIST ALC command with the STATUS 
keyword to list your active attribute lists. The data set name is NULL FILE 
which is also the data set name for files allocated with the DUMMY 
keyword of the ALLOCATE command. 

A TIRIB Command 4S 



---------------------------------------------------
{

ATTRIB} 
ATTR 

attr-list-name 

[8lKSIZE(blocksize)] 

[BUF L(buffer-Iength)] 

[8UFNO(number-of-buffers)] 

[ lR ECl (~IOgiCal-rec~rd-length}) ] 

[NCP(no.-of-channel-programs)] 

[
INPUT ] 
OUTPUT 

[ 
EXPOT (year-day) ] 
R ETPO(no.-of-days) 

[BFALN ({~})J 
[OPTCO(A,8,C,E,F,H,Q,T,W, and/or Z)] 

[RECFM(A,8,O,F,M,S,T,U, and/or V)] 

[OIAGNS(TRACE)] 

(LI MCT (search-number)] 

[BUFOFF ({ bl0Ck"pr~fiX"length } ) ] 

OSORG OA 
OAU 
PO 
POU 
PS 
PSU 

46 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



attr-list-name specifies the name for the attribute list. This name can be 
specified later as a parameter of the ALLOCATE command. The name 
must consist of one through eight alphameric and/or national characters, 
must begin with an alphabetic or national character, and must be 
different from all other attr-list-names and ddnames that are in existence 
for your terminal session. 

BLKSIZE(blocksize) specifies the block size for the data sets. The block size 
must be a decimal number and must not exceed 32,760 bytes. 
The block size that you specify must be consistent with the requirements 
of the RECFM operand. If you specify: 

• RECFM(F), then the block size must be equal to or greater than the 
logical record length. 

• RECFM(F B), then the block size must be an integral multiple of ~he 
logical record length. 

• RECFM(V), then the block size must be equal to or greater than the 
largest block in the data set. (Note: For unblocked variable-length 
records, the size of the largest block must allow spac-e for the four 
byte block descriptor word in addition to the largest logical record 
length. The logical record length must allow space for a four byte 
record descriptor word. 

• RECFM(V B), then the block size must be equal to or greater than the 
largest block in the data set. (Note: For block variable length records, 
the size of the largest bl9Ck must allow space for the four byte block 
descriptor word in addition to the sum of the logical record lengths 
that will go into the block. Each logical record length must allow 
space for a four byte record descriptor word. Since the number of 
logical records 'can vary, you must estimate the optimum block size 
(and the average number of records for each block) based on your 
knowledge of the application that requires the I/O. 

BUFL(buffer-length) specifies the length, in bytes, of each buffer in the 
buffer pool. Substitute a decimal number for buffer-length. The number 
must not exceed 32,760. 
If you omit this operand and the system acquires buffers automatically, 
the BLKSIZE and KEYLEN operands will be used to supply the 
information needed to establish buffer length. 

BUFNO(nuinber-of-buffers) specifies the number of buffers to be assigned 
for data control blocks. Substitute a decimal number for 
number-of-buffers. The number must never exceed 255, and you may be 
limited to a smaller number of buffers depending on the limit established 
when the operating system was generated. The following table shows the 
condition that requires you to include this operand. 

When you use one of the following 
methods of obtaining the buffer pool... then: 

( 1) BUILD macro instruction 
(2) GETPOOL macro instruction 

(3) Automatically with BPAM or BSAM 
(4) Automatically with QSAM 

(1) You must specify BUFNO. 
(2) The system uses the number 

that you specify for 
GETPOOL. 

(3) You must specify BUFNO. 
(4) You may omit BUFNO and 

accept two buffers. 

A TIRIB Command 47 



LRECL(logical-record-length) specifies the length, in bytes, of the largest 
logical record in the data set. You must specify this operand for data sets 
that consist of either fixed-length or variable-length records. 
Omit this operand if the data set contains undefined-length records. 
The logical record length must be consistent with the requirements of the 
RECFM operand and must not exceed the block size (BLKSIZE operand) 
except for variable-length-spanned records. If you specify: 

• RECFM(V) or RECFM(V B), then the logical record length is the sum of 
the length of the actual data fields plus four bytes for a record 
descriptor word . 

• RECFM(F) or RECFM(F B), then the logical record length is the length 
of the actual data fields. 

• RECFM(U), then you should omit the LRECL operand. 

Note: For variable-length spanned records (VS or VBS) processed -by °QSAM 

(locate mode) or BSAM, specify LRECL (X) when the logical record exceeds 
32,756 bytes. 

NCP(number-of-channel-programs) specifies the maximum number of ~EAD 
or WRITE macro instructions allowed before a CHECK macro instruction 
is issued. The maximum number must not exceed 99 and must be less 
than 99 if a lower limit was established when the operating system was 
generated. If you are using chained scheduling, you must specify an NCP 

value greater than 1. If you omit t1!e NCP operand, the default value is 1. 

INPUT specifies that the data set will be used only as input to a 
processing program. 

OUTPUT specifies that tht: data set will be used only to contain output from 
a processing program. 

EXPDT(year-day) specifies the data set expiration date. You must specify 
the year and day in the form 'yyddd', where 'yy' is a two digit decimal 
number for the year and "ddd" is a three digit decimal number for the 
day of the year. For example, January 1, 1974 is 74001 and December 
31, 1975 is 75365. 

RETPD(number-of-days) specifies the data set retention period in days. The 
value may be a one to four digit decimal number. 

BFALN( {~} 

specifies the boundary alignment of each buffer as follows: 
F each buffer starts on a fullword boundary that is not a doubleword 

boundary. 
D each buffer starts on a doubleword boundary. 
If you do not specify this operand and it is not available from any other 
source, data management routines assign a doubleword boundary. 

48 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



OPTCD(A,B,c,E,FJI,Q,T,W aDd/or Z) specifies the following optional services 
that you want the system to perform. (See also the OPTcn subparameter 
of the DCB parameter in OS/VSl JCL for a detailed discussion of these 
services.) 
A specifies that actual device addresses be presented in READ and 

WRITE macro instructions. 
B specifies that end-of-ide (EOF) recognition be disregarded for tapes. 
C specifies the use of chained scheduling. 
E requeSts an extended search for block or available space. 
F specifies that feedback from a READ or WRITE macro instruction 

should return the device address fu the form it is presented to the 
control program. 

H . requests the system to check for and bypass. 
Q requests the system to translate a magnetic tape from ASCll to EBCDIC 

or from EBCDIC to ASCll. 

T requests the use of the user totaling facility. 
W requests the systemto perform a validity check when data is written 

on a direct access device. 
z requests the control program to shorten its normal error recovery 

procedure for input on magnetic tape. 
(You can request any or all of the services by combining the values for 
this operand. You may combine the characters in any sequence, being 
sure to separate them with blanks or commas). 

DOFf( l:~) 

specifies the option that you want executed if an error occurs when a 
record is read or written. The options are: 

ACC- accept the block of records in which the error was found. 

SKP:- skip the block of records in which -the error was found. 

ABE- end the ~ abnormally .. 

) 

specifies the type of buffering that you want the system to use. The 
types that you can specify are: 

S simple buffering. 

E exchange buffering. 

A automatic record area buffering. 

R record buffering. 

ATfRIB C--.d ., 



RECFM(A,B,D,F,M,S,T,U, and/or V) specifies-the format and characteristics of 
the records in the data set. The format and characteristics must be 
completely described by one source only. If they are not available from 
any source, the default will be an undefined-length record. (See also the 
RECFM subparameter of the DCB parameter in OS/VSZ JCL for a 
detailed discussion of the formats and characteristics.) 
Use the following values with the RECFM operand. 
A indicates that the record contains ASCII printer control characters. 
B indicates that the records are blocked. 
D indicates variable-length ASCII records. 
F indicates that the records are of fixed-length. 
M indicates that the records contain machine code control characters. 
S indicates that, for fixed-length records, the records are written as 

standard blocks (there must be no truncated blocks or unfilled tracks 
except for the last block or track). For variable-length records, a 
record may span more than one block. Exchange buffering -BFfEK(E)­
must not be used. 

T indicates that the records may be written onto overflow tracks if 
required. Exchange buffering -BFfEK(E)- or chained scheduling 
-OPTCD( C)- cannot be used. 

U indicates that the records are of undefined-length. 
v indicates that the records are of variable-length. 
You may specify one or more values for this operand (at least one is 
required). 

DIAGNS(TRACE) specifies the Open/ Close/EOY trace option that gives a 
module-by-module trace of the Open/Close/EOY work area and the 
user's DCB. 

LIMCT(search~number) specifies the number of blocks or tracks to be 
searched for a block or available space. The number must not exceed 
32,760. 

BUFOFF( t~-prefix-leogtb} 

specifies the buffer offset. The block prefix length must not exceed 99. 
"L" is specified if'the block prefix field is four bytes long and contains 
the block length. 

DSORG( DA ) 

DAU 

PO 
POU 
PS 

PSU 

specifies the data set organization as follows: 

DA - direct access 

DAU - direct access unmovable 

PO - partitioned organization 

POU - partitioned organization unmovable 

PS - physical sequential 

PSU - physical sequential unmovable 

50 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



·DEN( 

specifies the magnetic tape density as follows: 

o - 200 bpi/7 track 

1 - 556 bpi/7 track 

2 - 800 bpi/7 and 9 track 

3 - 1600 bpi/9 track 

4. - 6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or equivalent) 

TRTCH({~r 
spec-ifies the· r-ec.erding ·te.£.bnktue for 7 -t.rack t.ape as follows: 
C data conversion with odd parity and no translation. 
E even parity with no translation and no conversion. 
T odd parity and no conversion; BCD to EBCDIC translation when 

reading and EBCDIC to BCD translation when writing. 
ET even parity and no conversion; BCD to EBCDIC translation when 

reading and EBCDIC to B~D translation when writing. 

KEYLEN(key-length) specifies the length in bytes of each of the keys used 
to locate blocks of records in the data set when the ·data set resides on a 
direct access device. 

The key length must not exceed 255 bytes. If an existing data set has 
standard labels, you can omit this operand and let the system retrieve the 
key length from the standard label. If a key length is not supplied by any . 
source before you issue an OPEN macro instruction, a length of zero (no 
keys) is assumed. This keyword is mutually exclusive with TRTCH. 

Example 1 

Operation: Create a list of attributes to be assigned to a data set when the 
data set is allocated. 

Known: 
The following attributes correspond to the DCB parameters that you want 

assigned to a data set. 
Optional services: chained-scheduling, user totaling. 
Expiration date: Dec. 31, 1977. 
Record format: variable-length spanned records. 
Error option: abend when READ or WRITE error occurs. 
Buffering: simple buffering. 
Boundary alignment: doubleword boundary. 
Logical record length: records may be larger than 32,756 bytes. The 

name for this attribute list is DCBPARMS. 

attr dcbparms optcd(c t) expdt(77365) recfm(v s)­
eropt(abe) bftek{s) bfaln(d) lrecl(x) 

A TTRIB Command 51 



Example 2 

Operation: This example shows how to create an attribute list, how to use 
the list when allocating two data sets, and how to delete the list so that 
it cannot be used again. 

Known: 
The name for the attribute list: DSATTRS 
The attributes: EXPDT(99365) BLKSIZE(24000) BFfEK(A) 
The name for the first data set: FORMAT.lNPUT 

The name of the second data set: TRAJECT.lNPUT 

attrib dsattrs expdt(99365) blksize(24000)­
bftek(a) 

allocate dataset(format.input) newblock(80)­
space( 1,1) volume( 111111) using(dsattrs) 

dlloc da(traject.input) old bl(80) volume( 111111) -
using(dsattrs) 

free attrlist(dsattrs) 

52 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



CALL Command 

Use the CALL command to load and execute a program that exists in 
executable (load module) form. The program may be user-written, or it may 
be a system module such as a compiler, sort, or utility program. 

You must specify the name of the program (load module) to be 
processed. It must be a member of a partitioned data set. 

You may specify a list of parameters to be passed to the specified 
program. The system formats this data so that when the program receives 
control, register one contains the address of a fullword. The three low order 
bytes of this fullword contain the address of a halfword field. This halfword 
field is the count of the number of bytes of information contained in the 
parameter list. The parameters immediately follow the halfword field. 

If the program terminates abilorrnaHy, you are notified of the condition 
and may enter a TEST command to examine the failing program. 

CALL 
{ 

dsname } 
dsname(membername) 

[ 'parameter-string'] 

dsname(membemame) specifies the name of a partitioned data set and the 
membername (program name) to be executed. The membemame must be 
enclosed in parentheses. 

If the name of the partitioned data set does not conform to the data set 
naming conventions, it must include the member name in the following 
manner: 

dsname(membername) 

If you specify a fully qualified name, enclose it in apostrophes (single 
quotes) in the following manner: 

'wrrid.myprogs.loadmod(a), 
'sys1.1inklib(ieuasm)' 

parameter string specifies up to 100 characters of information that you 
want to pass to the program as a parameter list. When passing 
parameters to a program, you should use the standard linkage 
conventions. 

CALL Command 53 



Example 1 

Operation: Execute a load module. 

Known: 
Tne name oi the ioad moduie: JUDAL.PEARL.LOAD(TEMPNAME) 

Parameters: 10,18,23 

call pearl '10,18,23' 

Example 2 

Operation: Execute a load module. 

Known: 
The name of the load module: JUDAL.MYLIB.LOAD(COS1) 

call rnylib(cos1) 

Example 3 

Operation: Execute a load module. 

Known: 
The name of the load module: JUDAL.LOAD(SINl) 

call (sin1) 

S4 OS/VSl TSO Command Language Reference (VS2 Release 3.7) 



DELETE Command 

Use the DELETE command to delete one or more data set entries or one or 
more members of a partitioned data set. 

The catalog entry for a partitioned data set is removed only when the 
entire partitioned data set is deleted. The system deletes a member of a 
partitioned data set by removing the member name from the directory of 
the partitioned data set. 

Members of a partitioned data set and aliases for any members must 
each be deleted explicitly. That is, when you delete a member, the system 
does not remove any alias names of the member; likewise, when you 'delete 
an alias name, the member itself is not deleted. 

If a generation-data-group entry is to be deleted, any generation data 
sets that belong to it must have b~en deleted. 

For MVS, the original TSO DELETE command has been replaced by the 
Access Method Services command with the same name. The explanations 
given below provide the information required to use these services for 
normal TSO operations. The TSO user who wants to manipulate VSAM 
objects or who wants to use the other Access Method Services from his 
terminal should refer to OS/VS2 Access Method Services. For error message 
information, refer to OS/VS Message Library: VS2 System Messages. 

The DELETE co~and. supports unique operand abbreviations in 
addition to the usual abbreviations produced by truncation. The syntax and 
operand explanations show these unique cases. 

After you delete a protected non-VSAM data set, you should use the 
PROTECT command to update the password data set to reflect the change. 
This will prevent your having insufficient space for future entries. 

DELETE Command 55 



{
DELETE} 
DEL 

(entfyname [/password] [ .. .]) 

[CATALOG(catname[!password] )] 

[FI LE(ddname)] 

[{
PURGE} ] 
PRG 

{~~:~RGE} 

[ {~~:::SE}] NERAS 

[ 

SCRATCH ] 

{~~~~RATCH} 
CLUSTER 

{
USERCATALOG} 
UCAT 

{
SPACE} 
SPC 

{
NONVSAM} 
NVSAM 

ALIAS 

{
GENERATIONOATAGROUP} 
GOG 

{
PAGESPACE} 
PGSPC 

entryname(/password)( ... J is a required parameter that names the entries to 
be deleted. When more than one entry is to be deleted, the list of entry 
names must be enclosed in parentheses. This parameter must be the first 
parameter following DELETE. 

If you want to delete several data set entries having similar names, you 
may insert an asterisk into the data set name at the point of dissimilarity. 
That is, all data set entries whose names match except at the position where 
the asterisk is placed will be deleted. However, you may use only one 
asterisk per data set name, and· you must not place it in the first position. 

For instance, suppose that you have several data set entries named: 

VACOT.SOURCE.PLI 
VACOT.SOURCE2.PLI 

VACOT.SOURCE2.TEXT 

VACOT.SOURCE2.DATA 

If you specify: 

delete source2.* 

56 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



the only data set entry remaining will be 

VACOT.SOURCE.PLI 

password specifies a password for a password-protected entry. Passwords 
may be specified for each entry name or the catalog's password may be 
specified through the CATALOG parameter fot the catalog that contains 
the entries to be deleted. 

CATALOG(catname[/password)) specifies the name of the catalog that 
contains the entries to be deleted. 

catoame identifies the catalog that contains the entry to be deleted. 

password specifies the master password of the catalog that contains the 
entries to be deleted. 

FILE(ddname) specifies the name of the DD statement that identifies the 
volume that contains the data set to be deleted or identifies the entry to 
be deleted. 

PURGE or PRG specifies that the VSAM entry is to be deleted even if the 
ret-ention period, specified in the TO or FOR parameter~ has not expired. 

NOPURGE or NPRG specifies that the VSAM entry is not be deleted if the 
retention period has not expired. When NOPURqE is coded and the 
retention period has not expired, the entry is not deleted. If neither 
PURGE nor NOPURGE is coded, NOPURGE is the default. 

ERASE specifies that the data component of a cluster (VSAM only) is to be 
overwritten with binary zeros when the cluster is deleted. If ERASE is 
specified, . the volume that contains the data component must be 
mounted. 

NOERASE or NERAS specifies that the data component of a cluster (VSAM 
only) is not to be overwritten with binary zeros when the cluster is 
deleted. 

SCRATCH specifies that a non-VSAM data set is to be scratched (removed) 
from the Volume Table of Contents (VTOC) of the volume on which it 
resides. SCRATCH is the default if neither SCRATCH nor NOSCRA TCH is 
specified. 

NOSCRA TCH or NSCR specifies that a non-VSAM data set is not to be 
scratched (removed) from the VTOC of the volume on which it resides. 

CLUSTER specifies that the entry to be deleted is a cluster entry for a 
VSAM data set. 

USERCAT ALOG or UCAT specifies that the entry to be deleted is a 
user-catalog entry. This parameter must be specified if a user catalog is 
to be deleted. A user catalog can be deleted only if ~t is empty. 

SPACE specifies that the entry to be deleted is a data-space entry. This 
parameter is required if a data space is to be deleted. A data space can 
be deleted only if it is empty. 

NONVSAM or NVSAM specifies that the entry to be deleted is a non-VSAM 
data set entry. 

ALIAS specifies that the entry to be deleted is an alias entry. 

GENERA TIONDATAGROUP or GOO specifies that the entry to be deleted is a 
generation-data-group entry. A generation-data-group base can be 
deleted only if it is empty. 

PAGESPACE or PGSPC specifies that a page space is to be deleted. A page 
space can be deleted only if it is inactive. 

DELETE Command S7 



If the FiLE parameter is omitted the entryname is dynamicaHy aUocated 
in the following cases: 

• A non-VSAM entry is to be deleted and scratched. 
• An entry is to be deleted and erased. 
• An entry that resides in a data space of its own is to be deleted. 

Example 

Operation: Delete an entry. In this example, a non-v SAM. data set is 
deleted: 

Known: 
Your userid is D27UCATI 

delete example.nonvsam scratch nonvsam 

The DELETE command deletes the non-VSAM data set 
(D27UCAT.EXAMPLE.NONVSAM). Because the catalog in which the entry 
resides is assumed not to be password protected, the CAT ALOa parameter 
is not required to delete the non-V SAM entry. 

SCRATCH removes the VTOC entry of the non-VSAM data set. Because 
FILE is not coded, the volume that contains D27UCATl.EXAMPLE.NONVSAM 
is dynamically allocated. 

NONVSAM ensures that the entry being deleted is a non-VSAM data set. 
However, DELETE can still find and delete a non-VSAM data set if 
NONVSAM is omitted. 

58 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



EDIT Command 

The EDIT command is the primary facility for entering data into the system. 
Therefore, almost every application involves some use .of EDIT. With EDIT 

and its subcommands, you can create, modify, store, submit, retrieve, and 
delete data sets with sequential or partitioned data set organization. The 
data sets may contain: 

• Source programs composed of program language statements (PL/I, 
COBOL, FORTRAN, etc.) 

• Data used as input to a program. 
• Text used for information storage and retrieval. 
• Commands, subcommands, and/or data (command procedure). 
• Job Control Language (JCL) statements for background jobs. 

The EDIT command will support only data sets that have one of the 
following formats: 

• Fixed blocked, unblocked, or standard block; with or without ASCII 

and machine record formats .. 
• Variable blocked or unblocked; without ASCII or machine control 

characters. 

EDIT support of print control data sets is "read only." Whenever a SAVE 

subcommand is entered for an EDIT data set orginally containing print 
control characters, the ability to print the data set on the printer with 
appropriate spaces and ejects is lost. If you enter SAVE without operands 
for a data set containing control characters, yOlt will be warned that the 
data set will be saved without control characters, and you can ~lect to 
either save into the original data set or enter a new data set name. If the 
data set specified on the EDIT command is partitioned and contains print 
control characters, a save into it will not be allowed. 

EDIT Command 59 



data-set-name [!password] 

[
NEW] 
OLD 

PLiF 

ASM 

COBOL 

GOFORT rfREE 1 
LFIXEDJ 

FORTGI 

FORTH 

TEXT 

DATA 

CLiST 

CNTL 
VSBASIC 

[
SCAN ] 
NOSCAN 

[
NUM ] [(integer1 [integer2])] 
NONUM 

rBLOCK(integer) 1 
U3LKSIZE(integerU 

rLi N E (i nteger) ] 
l!-R ECL(integer) 

[CAPsl 
(t\SIS J 

data-set-name specifies the name of the data set that you want to create or 
edit. 

password specifies the password associated with the data-set-name. If the 
password is omitted and the data set is password protected, you will be 
prompted for the data set's pa~sword. Read protected partitioned data 
sets will cause a prompt for the password twice, provided it is not 
entered on the EDIT command, or is not the same password as your 
LOGON use rid password. 

60 OSiVS2 1'SO Command Language Reference (VS2 Release 3.7) 



NEW specifies that the data set named by the first operand does not exist. 
If an existing cataloged data set already has the data set name that you 
specified, the system notifies you when you try to save it; otherwise, the 
system allocates your data set when you save it. If you specify NEW 

without specifying a member name, the sequential data set for you when 
you save it. If you specify NEW and include a member name the system 
allocates a partitioned data set and creates the indicated member when 
you try to save it. 

OLD specifies that the data set named on the EDIT command already exists. 
When you specify OLD and the system is unable to locate the data set, 
you will be notified and you will have to reenter the EDIT command. 
If you specify OLD without specifying a member name, the system will 
assume that your data set is sequential: if the data set is in fact a 
partitioned data set, the system will assume that the member name is 
TEMPNAME. If you specify OLD and include a member name, the system 
will notify you if your data set is not partitioned. 

If yea de not SJ)e-cif-y OLD or NEW, the system uses a t-entativ-e tlefaaHof 
OLD. If the data set name or rp.ember name that you specified, cannot be 
located, you will be prompted to enter NEW or OLD. If you enter NEW, 

EDIT processing will continue. If you enter OLD, the system will notify 
you why the data set or member could not be located. You can then 
enter EDIT or another command. 

Note: Any user-defined data set type (specified at system generation) is 
also a valid data-set-type keyword and inay have subfield parameters 
defined by the user's installation (see Figure 5, note 4). 

PLI specifies that the data identified by the first operand is for PL/I 

statements that are to be held as V-format records with a maximum 
length of l04 bytes. The statements may be for the PL/I Optimizing 
compiler or the PL/I Checkout compiler. 

PLIF specifies that the data set identified by the first operand is PL/I 

statements that· are to be held as fixed format records 80 bytes long. The 
statements may be for the PL/I Optimizing compiler or the PL/I 

Checkout compiler. 

integerl and integer2 the optional values contained within the parentheses 
are applicable only when you request syntax checking of a data set for 
which the PUP operand has been specified. The integer 1 and integer2 
values define the column boundaries for your input statements. The 
position of the first character of a line, as determined by the left margin 
adjustment on your terminal, is column 1. The value for integerl 
specifies the column where each input statement is to begin. The 
statement can extend from the column specified by integerl up to and 
including the column specified as a value for integer2. If you omit 
integerl you must omit integer2, and the default values are columns 2 
and 72; however, you can omit integer2 without omitting integer1. 

CHAR48 or CHAR60 CHAR48 specifies that the PL/I source statements are 
written using the character set that consists of 48 characters. CHAR60 

specifies that the source statements are written using the character set 
that consists of 60 characters. If no value is entered, the default value is 
CHAR60. 

EDIT Command 6 t 



ASM specifies that the data set identified by the first operand is for 
assembler language statements. 

COBOL specifies that the data set identified by the first operand is for 
COBOL statements. 

CLiST specifies that the data set identified by the first operand is for a 
command procedure and will contain TSO commands and subcommands 
as statements or records in the data set. The data set will be assigned 
line numbers. 

CNTL specifies that the data set identified by the first operand is for Job 
Control Language (JCL) statements and SYSIN data to be used with the 
SUBMIT command or subcommand. 

TEXT specifies that the data set identified by the first operand is for text 
that may consist of both uppercase and lowercase characters. 

DATA specifies that the data set identified by the first operand is for data 
that may be subsequently retrieved or used as input data for processing 
by an application program. 

FORTGI specifies that the data set identified by the first operand is for 
FORTRAN IV (01) statements. 

FORTH specifies that the data set identified by the first operand is for 
FORTRAN IV (H) EXTCOMP statements. 

GOFORT(FREE or FIXED) specifies that the data set identified by the first 
operand is for statements that are suitable for processing by the Code 
and 00 FORTRAN progr3.m product. You may use FORT as an 
abbreviation for this operand. This is the default value if no other 
FORTRAN language level is specified with the FORT operand. 
FREE specifies that the statements are of variable-lengths and do not 
conform to set column requirements. This is the default value if neither 
FREE nor FIXED is specified. FIXED specifies that statements adhere to 
standard FORTRAN column requirements and are 80 bytes long. 

VSBASIC specifies that the data set identified by the first operand is for 
VSBASIC statements. 

I Note: The ASM, CLIST, CNTL, COBOL, DATA, FORTOI, FORTH, OOFORT, PLI, 

PLIF, TEXT, and VSBASIC operands specify the type of data set you want to 
edit or create. You must specify one of these whenever: 

• The data-set-name operand does not follow data set naming 
conventions (Le., it is enclosed in quotes). 

• The data-set-name operand is a member name only (Le., it is enclosed 
in parentheses). 

• The data-set-name operand does not include a descriptive qualifier; or 
the descriptive qualifier is such that EDIT cannot determine the data 
set type. (See Figure 3 for a list of valid descriptive qualifiers.) 

The system prompts the user for data set type whenever the type cannot 
be determined from the descriptive qualifier (as in the 3 cases above), or 
whenever the user forgets to specify a descriptive qualifier on the EDIT 

cmnmand. 

Note: When the descriptive qualifier FORT is entered with no data set 
type, the data set type default is OQFORT(FREE). If PLI is the descriptive 
qualifier, the data set type default is PLI. To use data set types 

62 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



GOFORT(FIXED), FORTGI, FORTH or PLIF, you must enter the data set type 
keyword to save it. 

SCAN specifies that each line of data you enter in input mode is to be 
checked statement by statement for proper syntax. Syntax checking is 
available only for statements written in GOFORT, FORTGI, FORTH. 

Note: User-defined data set types can also use this keyword if a syntax 
checker name was specified at system generation time. 

NOSCAN specifies that syntax checking is not to be performed. This is the 
default value if neither SCAN nor NOSCAN is specified. 

NUM(integer 1 integer2) specifies that the lines of the data set records are 
numbered. You may specify integer 1 and integer2 for ASM type data sets 
only. Integerl specifies, in decimal, the starting column (73-80) of the 
line number. Integer2 specifies, in decimal, the length (8 or less) of the 
line number. Integerl plus integer2 cannot exceed 81. If integer 1 and 
integ~r2 . are n()t specifi~d, tbe line numbers will assume appropriate 
default values. 

NONUM specifies that your data set records do not contain line numbers. 
Do not specify this keyword for the GOFORT, VSBASIC, and CLIST data 
set types, since they must always have line numbers. The default is NUM. 

BLOCK(integer) or BLKSIZE(integer) specifies the maximum length, in 
bytes, for blocks of records of a new data set. Specify this operand only 
when creating a new data set or editing an empty old data set. You 
cannot change the block size of an existing data set except if the data set 
is empty. If you omit this operand, it will default according to the type 
of data set being created. Default block sizes are described in Figure 5. 
If different defaults are established at system generation (SYSGEN) time, 
Figure 5 values may not be applicable. The block size (BLOCK or 
BLKSIZE), for data sets that contain fixed-length records must be a 
mUltiple of the record length (LINE or LRECL); for variable-length 
records, the block size must be a multiple of the record length plus 4. 

LINE(integer) or LRECL(integer) specifies the length of the records to be 
created for a new data set. Specify this operand only when creatin.g a 
new data set or editing an empty data set. The new data set will be 
composed of fixed-length records with a logical record length equal to 
the specified integer. You cannot change the logical record size of an 
existing data set unless the data set is empty. If you specify this operand 
and the data set type is ASM, FORTGI; FORTH, GOFORT(FIXED), COBOL 

or CNTL the integer must be 80. If this operand is omitted, the line size 
defaults according to the type of data set being created. Default' line 
sizes for each data set type may be found in Figure 5. This operand is 
used in conjunction with the BLOCK or BLKSIZE operand. 

CAPS specifies that all input data is to be converted to uppercase 
characters. If you omit both CAPS and ASIS, CAPS is the default except 
when the data set type is TEXT. 

ASIS specifies that input is to retain the same form (uppercase and 
lowercase) as entered. ASIS is the default for TEXT only. 

EDIT ColIIID8Dd 63 



LRECL Block Size Line Numbers 
Data I 
Set DSORG LlNE(n) BLOCK(n) I NUM (n, m) CAPS/AS IS 

Type 
default speclf default 

ASM PS/PO 80 =80 3120 

CLiST PS/PO 255 (Note 2) 3120 

CNTL PS/PO 80 =80 3120 

COBOL PS/PO 80 =80 400 

DATA PS/PO 80 :S.255 3120 

FORTGI, 400 

FORTH, 400 

GOFORT J PS/PO 255 I 3120 

(or user supplied data set type - See Note 4) 

PLI PS/PO 104 i 100 400 

PLiF PS/PO 80 .$.,100 400 

TEXT PS/PO 255 (Note 2) 3120 

VSBASIC PS/PO 255 =80 3120 

Notes: 
1. The default or maximum allowable block size may be 

specified at SYSGEN time. 

2. Specifying a LINE value results in fixed length records with 
a LRECL equal to the specified value. The specified value 
must always be equal to or less than the default. If the 
LINE keyword is omitted, variable length records will be 
created. 

3. The line numbers will be contained in the last eight bytes 
of all fixed length records and in the first eight bytes of all 
variable length records. 

4. A user can have additional data set types recognized by the 
EDIT command processor. These user-defined data set 
types, along with any of the data set types shown above, 
can be defined at system generation time by using the EDIT 
macro. The EDIT macro causes a table of constants to be 
built which describes the data set attributes. For more 

1 I CAPS specif. default (n, m) spec. default 
Required IA.I_.A:_ 4: \ 

\1'\IUll:: I, 

:;'default Last873<n<80 CAPS Yes - -
.$..default (Note 3) CAPS Yes 

.$..default Last 8 CAPS Yes 

.:S,default First 6 CAPS Yes 

:s.default Last 8 CAPS No 

I 

I 
~default I First 8 CAPS Yes 

.$..default (Note 3) CAPS No 

,:5.default Last 8 CAPS Yes 

~default (Note 3) ASIS No 

:S. =32,760 First 5 CAPS Yes 

information on how to specify the EDIT macro at system 
generation time, refer to OS/VS2 SPL: System Generation 
Reference. 

When a user wants to edit a data set type that he has defined 

himself, the data set type is used as the descriptor (right­
most) qualifier. The user cannot override any data set types 
that have been defined by IBM. The EDIT command 
processor will support data sets that have the following 
attributes: 

Data Set Organization: Must be either sequential or 
partitioned 

Record formats: Fixed or Variable 
Logical Record Size: 
Block Sizes: 

Sequence Numbers: 

Less than or equal to 255 characters 
User specified - must be less than or 
equal to track length 
V type: First 8 characters 
F type: Last 8 characters 

I Figure 5. Default Values for LINE or LRECL and BLOCK or BLKSIZE Operands 

64 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Modes of Operation 
The EDIT command has two modes of operation: input mode and edit 
mode. You enter data into a data set when you are in input mode. You 
enter subcommands and their operands when you are in edit mode. 

You must specify a data set name when you enter the EDIT command. If 
you specify the NEW keyword, the system places you in the input mode. If 
you do not specify the NEW keyword, you are placed in the edit mode if 
your specified data set is not empty; if the data set is empty, you will be 
placed in input mode. 

You can limit access to your data Set by specifying a password when you 
use the EDIT command. To specify a r:assword, enter a slash (/) followed 
by the password of your choice after the data set name operand of the 
EDIT command. 

Input Mode 

In input mode, you type a line of data and then enter it into the data set by 
pressing your terminal's carrier return key. You can enter lines of data as 
long as you are in input mode. One typed line of input becomes one record 
in the data set. 

Caution: If you enter a command or subcommand while you are in input 
mode, the system will add it to the data set as input data. Enter a null-line 
to return to edit mode before entering any subcommands. 

Line Numbers: Unless you specify otherwise, the system assigns a line 
number to each line as it is entered. The default is an interval of 10. Line 
numbers make editing much easier, because you can refer to each line by its 
own number. 

Each line number consists of not more than eight digits, with the 
significant digits justified on the right and preceded by zeros. Line numbers 
are placed at the beginning of variable-length records and at the end of 
fixed-length records (exception: line numbers for COBOL fixed-length 
records are placed in the first six positions at the beginning of the record). 
When you are working with a data set that has line numbers, you can have 
the new line number listed at the start of each new input line. If you are 
creating a data set without line numbers, you can request that a prompting 
character be displayed at the terminal before each line is entered. 
Otherwise, none will be issued. 

All input records will be converted to uppercase characters, except when 
you specify the ASIS or TEXT operand. The TEXT operand also specifies 
that character-deleting indicators and tabulation characters will be 
recognized, but all other characters will be added to the data set 
unchanged. More specific considerations are: 

All assembler source data sets must consist of fixed-length records 80 
characters in length. These records mayor may not have line numbers. If 
the records are line-numbered, the number can be located anywhere within 
columns 73 to 80 of the stored record (the printed line number always 
appears at the left margin). 

I You can create a variety of FORTRAN data sets: FORTOI; FORTH; and 
OOFORT. You can enter OOFORT input statements in "free form," that is, 

EDIT Command 6S 



there are no specific colums into which your statements must go. Free form 
FORTRAN statements will be stored in variable-length records. 

Syntax Checking: You can have each line of input checked for proper 

I syntax. The system will check the syntax of statements for data sets having 
I FORT descriptive qualifiers. Input lines will be collected within the system 

until a complete statement is available for checking. 

When an error is found during syntax checking, an appropriate error 
message is issued and edit mode is entered. You can then take corrective 
action, using the subcommands. When you wish to resume input operations, 
press your terminal's carrier return key without typing any input. Input 
mode is then entered and you can continue where you left off. Whenever 
statements are being checked for syntax during input mode, the system will 
prompt you for each line to be entered unless you specify the NOPROMPT 

operand for the INPUT subcommand. 

Continuation ofa Line in Input Mode: In input mode there are three 
independent situations that require you to indicate the continuation of a line 
by ending it with a hyphen or plus sign (Le., a hyphen or plus sign followed 
immediately by a carrier return). The situations are: 

• The syntax checking facility is being used. 
• The data set type is GOFORT(FREE). 

• The data set type is CLIST (variable-length records). 

If none of these situations apply, avoid ending a line with a hyphen 
(minus sign) since it will be removed by the system before storing the line 
in your data set. 

You must use the hyphen when the syntax checking facility is active to 
indicate that the logical line to be syntax checked consists of multiple input 
lines. The editor will then collect these lines (removing the hyphens) and 
pass them as one logical line to the syntax scanner. However, each 
individual input line (with its hyphen removed) is also stored separately in 
your data set. 

You must use the hyphen or plus sign to indicate logical line continuation 
in a GOFORT(FREE) data set, whether or not syntax checking is active. 
Since the Code and Go FORTRAN free-form input format requires a hyphen 
to indicate continuation to its syntax checker and compiler, the hyphen is 
not removed from the input line by EDIT but becomes part of the stored 
line in your data set. 

The hyphen is also used to indicate logical line continuation in command 
procedures. If the command procedure is in variable-length record format 
(the default), the hyphen is not removed by EDIT but becomes part of the 
stored line in your data set and will be recognized when executed by the 
EXEC command processor. If the command procedure is in fixed-length 
record format, a hyphen, placed eight character positions before the end of 
the record and followed by a blank, will be recognized as a continuation 
when executed by the EXEC command processor. (This assumes that th~ 
line number field is defined to occupy the last eight positions of the sto~d 
record.) For example, if the parameter LlNE(SU) was specified on the EDIT 
command when defining the command. procedure data set, the hyphen must 
be placed in data position 72 of the input line followed immediately by a 
blank. (Location of a particular input data column is described under the 
TABSET subcommand of EDIT.) 

66 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Note that these rules apply only when entering data in input mode. 
When you use a subcommand (e.g., CHANGE, INSERT) to enter data, a 
hyphen at the end of the line indicates subcommand continuation; the 
system will append the continuation data to the subcommand. 

To insert a line of data ending in a hyphen in situations where the 
system would remove the hyphen (i.e., while in subcommand mode or in 
input mode for other than a command procedure data set), enter a hyphen 
in the next-to-Iast column, a blank in the last column, and an immediate 
carrier return. 

Edit Mode 

You can enter subcommands to edit data sets when you are in edit mode. 
You can edit data sets that have line numbers by referring to the number of 
the line that you want to edit. This is called line-number editing. You can 
also edit data by referring to specific items of text within the lines. This is 
called' context editing. A data set having no line numbers may be edited 
only by context. Context editing is performed by using subcommartos that 
refer to the current line value or a character combination, such as with the 
FIND or CHANGE subcommands. There is a pointer within the system that 
points to a line within the data set. Normally, this pointer points to the last 
line that you referred to. You can use subcommands to change the pointer 
so that it points to any line of data that you choose. You may then refer to 
the line that it points to by specifying an asterisk (*) instead of a line 
number. Figure 6 shows where the pointer points at completion of each 
subcommand. 

Note: A current-line pointer value of zero refers to the position before the 
first record, if the data set does not contain a record zero. 

When you edit data sets with line numbers, the line number field will not 
be involved in any modifications made to the record except during 
renumbering. Also, the only editing operations that will be performed across 
record boundaries will be the CHANGE and FIND subcommands, when the 
TEXT and NONUM operands have been specified for the EDIT command. In 
CHANGE and FIND, an editing operation will be performed across only one 
record boundary at a time. . 

EDIT Command 67 



EDIT Subcommands Valoe of tbe Pointer at Completion of Subcommand 

ALLOCATE No change 

BOTTOM Last line (or zero for empty data sets) 

CHANGE Last line changed 

COpy Last line copied 

DELETE Line preceding deleted line (or zero if the first line 
of the data set has been deleted) 

DOWN Line n relative lines below the last line referred to, 
where n is the value of the "count" parameter, or 
bottom of the data set (or line zero for empty data 
sets) 

END No change 

EXEC No change 

FIND Line containing specified string, if any; else, no 
change 

FORMAT(a program product) No change 

HELP No change 

INPUT Last line entered 

INSERT Last line entered 

Insert/Replace/Delete Inserted line or replaced line or line preceding the, 
deleted line if any (or zero, if no preceding line 
exists) 

LIST Last line listed 

MERGE(a program product) Last line 

MOVE Last line moved 

PROFILE No change 

RENUM Same relative line 

RUN No change 

SAVE No change or same relative line 

SCAN Last line scanned, if any 

SEND No change 

SUBMIT No change 

T ABSET No change 

TOP Zero value 

UNNUM Same relative line 

UP Line n relative ljnes above the last line referred to, 
where n is the value of the 'count' parameter, (or 
line zero for empty data sets). 

VERIFY No change 

Figure 6. How EDIT Subcommands Affect the Line Pointer Value 

68 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Changing From One l\tlode to Another 

If you specify an existing data set name as an operand for the EDIT 

command, you begin processing in edit mode. If you specify a new data set 
name or an old data set with no records, as an operand for the EDIT 

command, you will begin processing in input mode. You will change from 
edit mode to input mode when: 

• You press the carrier return key without typing anything first. 

Note: If this is the first time during your current usage of EDIT that input 
mode is entered, input will begin at the line after the last line of the data 
set (for data sets which are not empty) or at the first line of the data set 
(for empty data sets). If this is not the first time during your current usage 
of EDIT that input mode is entered, input will begin at the point following 
the data entered when last in input mode. 

• You enter the INPUT subcommand. 

Note: If you use the INPUT subcommand without the R keyword and the 
line is null (that is, it contains no data), it begins at the specified line; if the 
specified line contains data, input begins at the first increment past that 
line. If you use the INPUT subcommand with the R keyword, input begins at 
the specified line, replacing existing data, if any. 

• You enter the INSERT subcommand with no operands. 

You will switch from input mode to edit mode when: 

• You press the carrier return key without typing anything first. 
• You cause an attention interruption. 
• There is no more space for records to be inserted into the data set 

and resequencing is not allowed. 
• When an error is discovered by the syntax checker. 

Data Set Disposition 

The system assumes a disposition of (NEW,CATLG) for new data sets and 
(OLD,KEEP) for existing data sets. 

Tabulation Characters 
When you enter the EDIT command into the system, the system establishes 
a list of tab setting values for you, depending on the data set type. These 
are logical tab setting values and mayor may not represent the actual tab 
setting on your terminal. You can establish your own tab settings for input 
by using the T ABSET subcommand. A list of the default tab setting values 
for each data set type is presented in the T ABSET subcommand description. 
The system will scan each input line for tabulation characters (the 
characters produced by pressing the TAB key on the terminal). The system 
will replace each tabulation character by as many blanks as are necessary to 
position the next character at the appropriate logical tab setting. 

When tab settings are not in use, each tabulation character encountered 
in all input data will be replaced by a single blank. You can also use the 
tabulation character to separate subcommands from their operands. 

EDIT Command 69 



Executing User Written Programs 
You can compile and execute the source statements contained in certain 
data set types by using the RUN subcommand. The RUN subcommand 
makes use of optional program products; the specific requirements are 
discussed in the description of the RUN SubcoIT'~1Jland. 

Terminating the EDIT Command 
You can terminate the EDIT operation at any time by switching to edit 
mode (if you are not already in edit mode) and entering the END 

subcommand. Before terminating the EDIT command, you should be sure to 
store all data that you want to save. You can use the SA VE subcommand or 
the SAVE operand of the END subcommand for this purpose. 

Recovering Data Mter a Terminal Line Has Been 
Disconnected 

If a terminal is disconnected during an EDIT session, the system will attempt 
to save a copy of the edited data set (with all changes) into another data 
set. The data set used for saving is named by applying data set naming 
conventions to an intermediate qualifier name of EDITSA VE. This data set 
can be edited when you log on again. 

Example 1 

Operation: Create a data set to contain a COBOL program. 

Known: 
The user-supplied name for the new data set: PARTS 

The fully qualified name will be: WRR05.PARTS.COBOL 

Line numbers are to be assigned. 

edit parts new cobol 

Example 2 

Operation: Create a data set to contain a program written in FORTRAN to 
be processed by the FORTRAN (Gt) compiler. 

Known: 
The user-supplied name for the new data set: HYDRLICS 

The fully qualified name will be: WRR05.HYDRLICS.FORT 

The input statements are not to be numbered. 
Syntax checking is desired. 
Block size: 400 
Line length must be: 80 
The data is to be changed to all upper case. 

edit hydrlics new fortgi nonum scan 

70 OS/VS2 TSO Command Language lteference (VS2 Release 3.7) 



Example 3 

Operation: Add data to an existing data set containing input data for a 
program. 

Known: 
The name of the data set: WRROS.MANHRS.DATA 

Block size: 3120 
Line length: 80 
Line numbers are desired. 
The data is to be upper case. 
Syntax checking is not applicable. 

e manhrs.data 

Example 4 

Operation: Create a data set for a command procedure. 

Known: 
The user supplied name for the data set: CMDPROC 

e crndproc new clist 

EDIT Command 71 



Subcommands for EDIT 

Use the subcommands while in edit mode to edit and manipulate data and 
to communicate with the system operator and with other terminal users. 
The format of each subcommand is similar to the format of all the 
commands. Each subcommand, therefore, is presented and explained in a 
manner similar to that for.a command. Figure 7 contains a summary of 
each subcommand's function. 

Note: For a complete description of the syntax and function of the 
ALLOCATE, EXEC, HELP, PROFILE, SEND, and SUBMIT subcommands, refer 
to the description of the TSO command with the same name. 

ALLOCATE 
BOTTOM 

CHANGE 
COPY 
DELETE 
DOWN 

END 
EXEC 
FIND 
FORMAT (available as an 

optional 
program product) 

HELP 
INPUT 
INSERT 
Insert/Replace/Delete 
LIST 
MERGE (available as an 

optional 
program product) 

MOVE 
PROFILE 

RENl,JM 
RUN 

SAVE 
SCAN 
SEND 

SUBMIT 

TAB SET 
TOP 
UNNUM 
UP 

VERIFY 

Allocates data sets and filenames. 
Moves the pointer to the last record in 
the data set. 
Alters the contents of a data set. 
Copies records within the data set. 
Removes records. 
Moves the pointer toward the end of 
the data. 
Terminates the EDIT command. 
Executes a command procedure. 
Locates a character string. 
Formats and lists data. 

Explains available subcommands. 
Prepares the system for data input. 
Inserts records. 
Inserts, replaces, or deletes· a line. 
Prints out specific Jines of data. 
Combines all or parts of data sets. 

Moves records within a data set. 
Specifies characteristics of your 
user profile. 
Numbers or renumbers lines of data. 
Causes compilation and execution of 
data set. 
Retains the data set. 
Controls syntax checking. 
Allows you to communicate with the 
system operator and with other 
terminal users. 
Submits a job for execution in the 
background. 
Sets the tabs. 
Sets the pointer to zero value. 
Removes line numbers from records. 
Moves the pointer toward the start 
of data set. 
Causes current line to be listed 
whenever the current line pointer 
changes or the text of the current 
line is modified. 

Figure 7. Subcommands of the EDIT Command 

72 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



ALLOCATE Subcommand of EDIT 

Use the ALLOCATE subcommand to dynamically allocate tbe data sets 
required by a program that you intend to execute. 

Refer to the ALLOCATE command for the description of the syntax and 
function of the ALLOCATE subcommand. 

ALLOCATE Subcommand of EDIT 73 



74 OS/VSl TSO Command Language Reference (VS2 Release 3.7) 



BOTTOM Subcommand of EDD' 

Use the BOITOM subcommand to change the current line pointer so that it 
points to the last line of the data set being edited or so that it contains a 
zero value, if the data set is empty. This subcommand may be useful when 
subsequent subcommands such as INPUT or MERGE must begin at the end 
of the data set. 

BOTTOM Subcommand of EDIT 75 



76 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



CHANGE Subcommand of EDIT 

Use the CHANGE subcommand to modify a sequence of characters (a 
character string) in a line or in a range of lines. Either the first occurrence 
or all occurrences of the sequence can be modified. 

[~ne-number-1 [,ine-number-2]1 
* [count 1] J 

{
string1 [string2 [ALL] ]} 
count2 

line-number-l specifies the number of a line you want to change. When 
used with line-number-2, it specifies the first line of a range of lines. 

line-number-2 specifies the last line of a range of lines that you want to 
change. The specified lines are scanned for first occurrence of the 
sequence of characters specified for string!. If you specify the ALL 

operand, each occurrence of string! in the range of lines is replaced by 
the sequence of characters that you specify for string2. If you do not 
specify the ALL operand, only the first occurrence of string 1 will be 
replaced by string2. 

* specifies that the line pointed to by the line pointer in the system is to be 
used. If you do not specify a line number or an asterisk, the current line 
will be the default value. 

countl specifies the number of lines that you want to change, starting at 
the position indicated by the asterisk (*). 

stringl specifies a sequence of characters ( a character string) that you 
want to change. The sequence must be (l) enclosed within single quotes, 
or (2) preceded by an extra character which services as a special 
delimiter. The extra character may be any printable character other than 
a single quote (apostrophe), number, blank, tab, comma, semicolon, 
parenthesis, or asterisk. The hyphen (-) can be used but should be 
avoided due to possible confusion with its use in continuation. The extra 
character must not appear in the character string. Do not put a standard 
delimiter between the extra character and the string of characters unless 
you intend the delimiter to be treated as a character in the character 
string. 
If stringl is specified and string2 is not, the specified characters are 
displayed at your terminal up to (but not including) the sequence of 
characters that you specified for stringl. You can then complete the line 
as you please. 

string2 specifies a sequence of characters that you want to use as a 
replacement for string!. Like stringl, string2 must be (1) enclosed within 
Single quotes, or (2) preceded by a special delimiter. This delimiter must 
be the same as the extra character used for string!. 

CHANGE Subcommand of EDIT 77 



ALL specifies that every occurrence of string 1 within the specified line or 
range of lines will be replaced by string2. If this operand is omitted, only 
the first occurrence of stringl will be replaced with string 2. 

Note: If you cause an attention interuption during the CHANGE 

subconunand when USLllg the ALL keyword~ your data set may only be 
partially changed. It is good practice to list the affected area of your data 
set before continuing. 

Note: If the special delimiter form is used, string2 must be terminated by 
the delimiter before typing the ALL operand. 

count2 specifies a number of characters to be displayed at your terminal, 
starting at the beginning of each specified line. 

Quoted String Notation 

As indicated above, instead of using special de1iIp.iters to indicate a 
character string, you can use paired single quotes (apostrophes) to 
accomplish the same function with the CHANGE subcommand. The use of 
single quotes as delimiters for a character string is called quoted-string 
notation. Following are the rules for quoted-string notation for the stringl 
and string2 operands: 

• You cannot use both special-delimiter and quoted-string notation in 
the same subcommand. 

• Each string must be enclosed with single quotes, e.g., 'This is stringl' 
'This is string2.' Quoted strings must be separated with a blank. 

• -A single quote within a character string is represented by two single 
quotes, e.g., 'pilgrim"s progress'. 

• A null string is represented by two single quotes, e.g., ". 

You can specify quoted.,.string notation in place of special delimiter 
notation to accomplish any of the functions of the CHANGE subcommand 
as follows: 

*Special Delimiter Quoted String 
Function Notation Notation 

Replace !ab!cde! 'ab"cde' 
Delete !ab!!or!ab! 'ab' 
Print up to lab 'ab' " 
Place in 
front of !!cde! " 'cde' 

*-using the ! as the delimiter. 

Note: Choose the form that best suits you (either special delimiter or 
quoted string)'and use it consistently. It will help you use the subcommand. 

Note: If you hit attention during the CHANGE subcommand your data set 
might not be completely changed. You should list the affected part of your 
data set before entering other subcommands. 

Combinations of Operands 

You can enter several different combinations of these operands. The system 
interprets the operands that you enter according to the following rules: 

• When you enter a single number and no other operands, the system 

78 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



assumes that you are accepting the default value of the asterisk (.) 
and that the number is a value for the count2 operand. 

• When you enter two numbers and no other operands, the system 
assumes that they are line-number-l and count2 respectively. 

• When you enter two operands and the first is a number and the 
second begins with a character that· is not a number,· the system 
assumes that they are line-number-l and stringl. 

• When you enter three operands and they are all numbers, the system 
assumes that they are line-number-l, line-number-2 and count2. 

• When you enter three operands and the first two are numbers but the 
last begins with a chacter that is not a number, the system assumes 
that they are line-nUJ;nber-l, line-number-2 and stringl. 

Example 1 

Operation: Change a sequence of characters in a particular line of a 
line-numbered data set. 

Known: 
The line number: 57 
The old sequence of characters: parameter 
The new sequence of characters: operand 

change 57 XparameterXoperand 

Example 2 

Operation: Change a sequence of characters wherever it appears in several 
lines of a line-numbered data set. 

change 24 82 !i.e. !e.g. !all 

The blanks following the stringl and string2 examples (i.e. and e.g. ) are 
treated as characters. 

Example 3 

Operation: Change part of a line in a line-numbered data set. 

Known: 
The line number: 143 
The number of characters in the line preceding the characters to be 

changed: 18 
change 143 18 

This form of the subcommand causes the first 18 characters of line 
number 143 to be listed at your terminal. You complete the line by typing 
the new information and enter the line by pressing the RETURN key _ A 11 of 
your changes will be incorporated into the data set. 

Example 4 

Operation: Change part of a particular line of a line-numbered data set. 

Known: 
The line number: 103 
A string of characters to be changed: 315 h.p. at 2400 

CHANGE Subcommand of EDIT 79 



change 103 m315 h.p. at 2400 

This form of the subcommand causes line number 103 to be searched 
until the characters "315 h.p. at 2400" are found. The line is displayed at 
your terminal up to the string of characters. You can then complete the line 
and enter the new version into the data set. 

Example 5 

Operation: Change the values in a table. 

Known: 
The line number of the first line in the table: 387 
The line number of the last line in the table: 406 
The number of the collilllIl containing the values: 53 

change 387 406 52 

Each line in the table is displayed at your terminal up to the column 
containing the value. As each line is displayed, you can type in the new 
value. The next line will not be displayed until you complete the current 
line and enter it into the data set. 

Example 6 

Operation: Add a sequence of characters to the front of the line that is 
currently referred to by the pointer within the system. 

Known: 
The sequence of characters: in the beginning 

change * //in the beginning 

Example 7 

Operation: Delete a sequence of characters from a line-numbered data set. 

Known: 
The line number containing the string of characters: 15 
The sequence of characters to be deleted: weekly 

change 15 /weekly// or change 15 /weekly/ 

Example 8 

Operation: Delete a sequence of characters wherever it appears in a 
I line-numbered data set containing line numbers 10 to 150. 

Known: 
The sequence of characters to be deleted: weekly 

change 10 999/weekly//all 

80 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Examples Using Quoted Strings 

Example lA 

Operation: Change a sequence of characters in a particular line of a line 
numbered data set. 

Known: 
The line number: 57 
The old sequence of characters: parameter 
The new sequence of characters: operand 

change 57 'parameter' 'operand' 

Example 6A 

Operation: Add a sequence of characters to the front of the line that is 
currently referred to b-y the. pointer within the system. 

Known: 
The sequence of characters: In the beginning 

change * I' 'in the beginning' 

Example 7A 

Operation: Delete a sequence of characters from a line-numbered data set. 

Known: 
The line number containing the string of characters: 15 
The sequence of characters to be deleted: weekly 

change 15 'weekly' " 

CHANGE Subcommand of EDIT 81 



82 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



COpy Subcommand of EDIT 

Use the COpy subcommand of EDIT to copy one or more records that exist 
in the data set being edited. The copy operation moves data from a source 
location to a target location within the same data set and leaves the source 
data intact. Existing lines in the target area are shifted towards the end of 
the data set as required to make room for the incoming data. No lines are 
lost. 

The target line cannot be within the source area, with the exception that 
the target line (the first line of the target area) can overlap the last line of 
the source area. 

Upon completion of the copy operation, the current line pointer points to 
the last copied-to line, not to the last line shifted to make room in the 
target area. 

Note: If you cause an attention interruption during the copy operation, the 
data set may be only partially changed. As a check, list the affected part of 
the data set before continuing. 

[lNCR(lineS)]] 

[INCR(lines)] 

Note: If COpy is entered without operands, the line pointed to by the 
current line pointer is copied into the current-line + EDIT-default-increment 
location. 

line 1 specifies the first line or the lower limit of the range to be copied. If 
the specified line number does not exist in this data set, the range begins 
with the next higher line number. 

line2 specifies the last line or the upper limit of the range to be copied. If 
the specified line number does ~9t exist in this data set, the range ends 
with the highest line number that is less than line2. If line2 is not 
entered, the value defaults to the value of line 1; that is, the source 
becomes one line. Do not enter an asterisk for line2. 

Note: If COpy is followed by two line-number operands, the system 
assumes them to represent linel and line3, and defaults line2 to the value 
of linel. 

COpy Subcommand of EDIT 83 



line3 specifies the target line number: that is, the line at which the 
copied-to data area will start. If the line3 value corresponds to an 
existing line, the target line is changed to line3 + INCR(lines) and either 
becomes a new line or displaces an existing line at that location. Once 
the copy operation begins, existing lines encountered in the target area 
are renumbered to make room for the incoming data. The increment for 
renumbered lines is one (1). Specifying zero (0) for line3 puts the copied 
data at the top of the data set only if line 0 is empty: if line 0 has data, 
enter TOP followed by COpy with line3 set to *. Note that line3 defaults 
to *. 

Note: value of line3 should not fall in the range from line 1 to line2: that is, 
the target line must not be in the range being copied. Exception: line3 can 
be equal to line2. 

* represents the value of the current line pointer. 

INCR(lines) specifies the line number increment to be used for this copy 
operation. The default is the value in effect for this data before the copy 
operation. When the copy operation is complete, the increment reverts to 
the value in effect before COpy was issued. Range: 1-8 decimal digits 
but not zero. 

Note: The increment for any renumbered lines is one (1). 

'string' specifies a sequence of alphameric characters with a maximum 
length equal to or less than the logical record length of the data set being 
edited. When a character string is specified, a search starting at the 
current line is done for the line containing the string. When found, that 
line is the start of the range to be copied for either numbered or 
unnumbered data sets. 

count specifies the total number of lines (the range) to be copied. The 
default for count is one (1). Enter 1-8 decimal digits but not zero (0) or 
asterisk (*). 

line4 applies to both numbered and unnumbered data sets. For 
unnumbered data sets, line4 specifies the target line (the . line at which 
the copied-to data area will start) as a relative line number (the nth line 
in the data set). For numbered data sets, line4 is specified the same as 
line3. Specifying zero (0) for line4 puts the copied data at the top of the 
data set only if line (0) is empty; if line (0) has data, enter TOP followed 
by COpy with line4 set to *. Note that line4 defaults to *. 

84 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Messages 
The COpy subcommand of EDIT causes error messages to be displayed at 
the terminal under specific conditions. To show these conditions, the 
following data- set is assumed: 

0010 A 
0020 BB 
0030 CCC 
0040 DDDD 
0050 EEEEE 
0060 FFFFFF 
0070 GGGGGGG 
0080 HHHHHHHH 
0090 IIIIIIIII 
0100 JJJJJJJJJJ 
011 0 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

1. Entering 

copy * * * 

causes: 

INVALID OPERANDS * INVALID FOR COUNT OR END OF RANGE 

SPECIFICATION 

2. Entering 

copy 10000* 

causes: 

INVALID OPERANDS FIRST LINE TO BE MOVE/COPIED DOES NOT EXIST 

3. Entering 

copy 'xyz' * 
causes: 

INVALID OPERANDS QUOTED STRING NOT FOUND 

4. Entering 

copy 2010 * 
causes: 

INVALID OPERANDS END OF RANGE MUST BE GREATER THAN OR EQUAL TO 

THE BEGINNING OF THE RANGE 

5. Entering 

copy 20 '*' 100 

causes: 

INVALID OPERANDS STRING INVALID FOR END OF RANGE 

SPECIFICATION 

6. Entering 

copy * 0 100 

causes: 

INVALID OPERANDS 0 INVALID FOR COUNT 

7. Entering 

copy 104020 

causes: 

INVALID OPERANDS TRYING TO MOVE/COPY INTO LINE RANGE 

COpy Subcommand of EDIT 85 



In the iollowing exampies, CLP reiers to the current line pointer. 

Example 1 

Operation: Copy the current line right after itself in a line-numbered data set. 

Known Data set contains lines 10 through 120; current line pointer is at 50; EDIT provides an increment of 
10. 

BefOTe: Enter: After: 

0010 A copy 50 50 50 0010 A 
0020 BB 0020 BB 
0030 eee or 0030 eee 
0040 DDDD 0040 DDDD 
0050 EEEEE copy 50 50 0050 EEEEE 
0060 FFFFFF eLP 0060 EEEEE 
0070 GGGGGGG or 0061 FFFFFF 
0080 HHHHHHHH 0070 GGGGGGG 
0090 111111111 copy 50 0080 HHHHHHHH 
0100 JJJJJJJJJJ 0090 111111111 
0110 KKKKKKKKKKK or 0100 JJJJJJJJJJ 
0120 LLLLLLLLLLLL 0110 KKKKKKKKKKK 

copy 0120 LLLLLLLLLLLL 

or 

copy 'ee' 

Example 2 

Operation: Copy the current line righ~ after itself in an unnumbered data set. 

Known: Data set contains 12 lines of sequential alphabetic characters. Current line pointer is at the seventh 
line. 

Before 

A 
BB 
eee 
DDDD 
EEEEE 
FFFFFF 
GGGGGGG 

I HHHHHHHH 
111111111 
JJJJJJJJJJ 
KKKKKKKKKKK 
LLLLLLLLLLLL 

Enter: 

copy * * 
or 

copy * 
or 

copy * 
or 

copy 

or 

copy 'gg' 

86 OS/VSl TSO Command Language Reference (VSl Release 3.7) 

After: 

A 
BB 
eee 
DDDD 
EEEEE 
FFFFFF 
GGGGGGG 

eLP GGGGGGG 
HHHHHHHH 
111111111 
JJJJJJJJJJ 
KKKKKKKKKKK 
LLLLLLLLLLLL 



Example 3 

Operation: lliustrate an attempt to copy a line to a line before it. 

Known: Data set contains lines 10 through 120; source line is 60; target line is 50; EDIT supplies increment 
of 10. 

Before: Enter: After: 

0010 A copy 60 50 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF CLP 0060 FFFFFF 
0070 GGGGGGG 0061 FFFFFF 
0080 HHHHHHHH 0070 GGGGGGG 
0090 111111111 0080 HHHHHHHH 
0100 JJJJJJJJJJ 0090 111111111 
0110 KKKKKKKKKKK 0100 JJJJJJJJJJ 
0120 LLLLLLLLLLLL 0110 KKKKKKKKKKK 

0120 LLLLLLLLLLLL 

Example 4 

Operation: Find the line containing a specific word and copy it to the bottom of the data set. 

Known: Data set contains nine lines of text; word to be found is "men"; data set is unnumbered. 

Before: 

NOW IS 
THE TIME 
FOR ALL 
GOOD MEN 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

Example 5 

Enter 

top 
copy 'men' 

After: 

NOW IS 
99999999 THE TIME 

FOR ALL 
GOOD MEN 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

CLP GOOD MEN 

Operation: Copy lines 10, 20, and 30 into a target area starting at line 100, using an increment of 5. 

Known: Data set contains lines 10 through 120; EDIT provides increment of 10. 

Before: Enter: After: 

0010 A copy 10 30 100 incr(5) 0010 A 
0020 BB 0020 BB 
0030 CCC or 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE copy 9 31 100 incr(5) 0050 EEEEE 
0060 FFFFFF 0060 FFFFFF 
0070 GGGGGGG or 0070 GGGGGGG 
0080 HHHHHHHH 0080 HHHHHHHH 
0090 111111111 copy 39 100 incr(5) 0090 111111111 
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
OHO KKKKKKKKKKK 0105 A 
0120 LLLLLLLLLLLL 0110 BB 

CLP 0115 CCC 
0116 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

COpy Subcommand of EDIT 87 



Exampie 6 

Operation: Copy four lines from a source area to a target area that overlaps the last line of the source, using 
the default increment. 

Known: Data set contains lines 10 through 120; source lines are 20 through 50; target area starts at line 50; 
EDIT provides increment of 10. 

&fore: Eller: Af-: 

0010 A copy 20 50 50 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF 0060 BB 
0070 GGGGGGG 0070 CCC 
0080 HHHHHHHH 0080 DDDD 
0090 111111111 CLP 0090 EEEEE 
0100 JJJJJJJJJJ 0091 FFFFF.F 
0100 KKKKKKKKKKK 0092 GGGGGGG 
0120 LLLLLLLLLLLL 0093 HHHHHHHH 

0094 111111111 
0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Example 7 

Operation: Copy five lines into a target area that starts before but overlaps into the source area. 

Known: Data set contains lines 10 through 120; soU1'C7 range is line 70 through line 110; target location is 
line 50; increment to be 10. 

&fore: EItar: Af-: 

0010 A copy 70 110 50 incr(10) 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF 0060 GGGGGGG 
0070 GGGGGGG 0070 HHHHHHHH 
0080 HHHHHHHH 0080 111111111 
0090 111111111 0090 JJJJJJJJJJ 
0100 JJJJJJJJJJ CLP 0100 KKKKKKKKKKK 
0110 KKKKKKKKKKK 0101 FFFFFF 
0120 LLLLLLLLLLLL 0102 GGGGGGG 

0103 HHHHHHHH 
0104 111111111 
0105 JJJJJJJJJJ 
0110 KKKI<.KKKKKKK 
0120 LLLLLLLLLLLL 

Example 8 

Operation: Copy three lines to the top of the data set at line O. 

Known: Data set contains lines 10 through 120; line 0 doesn't exist; source Jines are 80, 90, and 100; target 
area starts at line O. 

88 OS/VSl TSO C~ Language Reference (VS2 Release 3.7) 



Ik/«e: EIRr: 14./ .. : 
0010 A top 0000 HHHHHHHH 
0020 BB copy 80 100 * incr(50) 0050 111111111 
0030 eee eLP 0100 JJJJJJJJJJ 
0040 DDDD or 0101 A 
0050 EEEEE 0102 BB 
0060 FFFFFF copy 80 100 a incr(50) 0103 CCC 
0070 GGGGGGG 0104 DDDD 
0080 HHHHHHHH 0105 EEEEE 
0090 111111111 0106 FFFFFF 
0100 JJJJJJJJJJ 0107 GGGGGGG 
0110 KKKK.KKKKKKK 0108 HHHHHHHH 
0120 LLLLLLLLLLLL 0109 111111111 

0110 JJJJJJJJJJ 
0111 KKKK.KKKKKKK 
0120 LLLLLLLLLLLL 

Example 9 

Operatioo: Copy three lines to the top of the data set at line 0, using an increment of 50. 

Known: Data set contains fines 0 through 120; line 0 contains data; source lines are 80~ 90~ and 100; target 
area starts at line O. -

Ik/«e: 
0000 
0010 
0020 
0030 
0040 
0050 
0060 
0070 
0080 
0090 
0100 
0110 
0120 

ZIP 
A 
BB 
eee 
DDDD 
EEEEE 
FFFFFF 
GGGGGGG 
HHHHHHHH 
111111111 
JJJJJJJJJJ 
KKKK.KKKKKKK 
LLLLLLLLLLLL 

top 
copy 80 100 * incr(50) 

eLP 

14./ .. : 
0050 
0100 
0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 
0163 

The attempt to copy into 
line 0 gets the target data 
to the top of the data set 
but shifts the target line 
by the increment value 

Note: An entry of 

copy 80 100 a incr( 50) 

produces the results­
shown at right. The target 
data is inserted between 
line 0 and the remainder 
of the data set. 

0000 
0050 
0100 

eLP 0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 

HHHH'rlHHH 
111111111 
JJJJJJJJJJ 
ZIP 
A 
BB 
eee 
DDDD 
EEEEE 
FFFFFF 
GGGGGGG 
HHHHHHHH 
111111111 
JJJJJJJJJJ 
KKKK.KKKKKKK 
LLLLLLLLLLLL 

ZIP 
HHHHHHHH 
111111111 
JJJJJJJJJJ 
A 
BB 
eee 
DDDD 
EEEEE 
FFFFFF 
GrJGGGGG 
HHHHHHHH 
111111111 
JJJJJJJJJJ 
KKKK.KKKKKKK 
LLLLLLLLLLLL 



90 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



DELETE Subcommand of EDIT 

Use the DELETE subcommand to remove one or more records from the 
data set being edited. 

Upon completion of the delete operation, the current line pointer will 
point to the line that preceded the deleted line. If the first line of the data 
has been deleted, the current line pointer will be set to zero. 

{
DELETE} 
DEL [~ne-number-1 [line-nUmber-21l 

* [countl IJ 

line-number-l specifies the line to be deleted; or the first tine of a range of 
lines to be deleted. 

line-number-2 specifies the last line of a range of lines to be delet~d. 

* specifies that the first line to be deleted is the line indicated by the 
current line pointer in the system. This is the default if no line is 
specified. 

count specifies the number of lines to be deleted, starting at the location 
indicated by the preceding operand. 

Example 1 

Operation: Delete the line being referred to by the current line pointer. 

delete * 
or 

delete 

or 

del * 
or 

del 

or 

* 

Any of the preceeding command combinations or abbreviations will 
cause the deletion of the line referred to currently. The last instance is 
actually a use of the insert/replace/delete function, not the DELETE 

subcommand. 

DELETE Subcommand of EDIT 91 



Example 2 

Operation: Delete a particular line from the data set. 

Known: 
The line number: 00004 

delete 4 

Leading zeroes are not required. 

Example 3 

Operation: Delete several consecutive lines from the data set. 

Known: 
The number of the first line: 18 
The number of the last line: 36 

delete 18 36 

Example 4 

Operation: Delete several lines from a data set with no line numbers. The 
current line pointer in the system points to the first line to be deleted. 

Known: 
The number of lines to be deleted: 18 

delete * 18 

Example 5 

Operation: Delete all the lines in a data set. 

Known: 
The data set contains less than 100 lines and is not line-numbered. 

top 
delete * 100 

92 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



DOWN Subcommand of EDIT 

Use the DOWN subcommand to change the current line pointer so that it 
points to a line that is closer to the end of the data set. 

DOWN [count] 

count specifies the number of lines toward the end of the data set that you 
want to move the current line pointer. If you omit this operand, the 
default is one. 

Example 1 

Operation: Change the pointer so that it points to the next line. 

down 

Example 2 

Operation: Change the pointer so that you can refer to a line that is 
located closer to the end of the data set than the line currently pointed 
to. 

Known: 
The number of lines from the present position to the new position: 18 

down 18 

DOWN Subcommand of EDIT 93 



94 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



END Subcommand of EDIT 

Use the END subcommand to tern:".mate the EDIT command. This 
subcommand may be used with or without the optional keywords SAVE or 
NOSA VE. In either case, new commands may be entered after entering the 
END subcommand. If you have modified your data set and have not entered 
the SAVE subcommand or one of the optional keywords, the system will ask 
you if you want to save the data set. At this point, you may enter the SA VE 

subcommand. If you do not wish to save the data set, reenter the END 

subcommand. 

END rSAVE 1 
LNOSAVEJ 

I. Note: There are no defaults. If a keyword is not specified, and SAVE was 
not entered after the last modification, the user will be prompted by the 
system. 

SAVE specifies that the modified data set is to be saved. 

NOSAVE specifies that the modified data set is not to be saved. 

END Subcommand of EDIT 95 



96 OSIVS2 TSO Command Language Reference (VS2 Release 3.7) 



EXEC Subcommand of EDIT 

Use the EXEC subcommand to execute a command procedure. Refer to the 
EXEC command for the description of the syntax and fuitction of the EXEC 

subcommand. 

EXEC SaItcommand of EDIT 97 



98 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



FIND Subcommand of EDIT 

Use the FIND subcommand to locate a specified sequence of characters. 
The system begins the search at the line referred to by the current line 
pointer in the system, and continues until the character string is found or 
the end of the data set is reached. 

string [position] 

Note: If you do not specify any operands, the operands you specified the 
last time you used FIND during this current usage of EDIT are used. The 
search for the specified string will begin at the line following the current 
line. Successive use of the FIND subcommand without operands allows you 
to search a data set, line' by line. 

string specifies the sequence of characters (the character string) that you 
want to locate. This sequence of characters must be preceded by an 
extra character that serves a special delimiter. The extra character may 
be' any printable character other than a number, apostrophe, semicolon, 
blank, tab, comma, parenthesis, or asterisk. You must not use the extra 
character in the character string. Do not put a delimiter between the 
extra character and the string of characters. 
Instead of using special delimiters to indicate a character string, you can 
use paired single quotes (apostrophes) to accomplish the same function 
with the FIND subcommand. The use of single quotes as delimiters for a 
character string is. called quoted-string notation. Following are the rules 
for quoted-string notation for the string operand: 

1. A .string must be enclosed within single quotes, e.g., 'string character'. 
2. A single quote within a character string is represented by two. single 

quotes, e.g., 'pilgrims"s progress'. 
3. A null string is represented by two single quotes, e.g., ". 

position specifies the column within each line at which you want the 
comparison for the string to be glade. This operand specifies the starting 
column of the field to which the string is compared in each line. If you 
want to consider a string starting in column 6, you must specify the digit 
6 for the positional operand. When you use this operand with the special 
delimiter form of notation for "string", you must separate it from the 
string operand with the same special delimiter as the one preceeding the 
string operand. 

Example 1 

Operation: Locate a sequence of characters in a data set. 

Known: 
The sequence of characters: ELSE GO TO COlP.'ITER 

find xelse go to counter 

FIND Subcommand of EDIT 99 



Example 2 

Operation: Locate a particular instruction in a data set containing an 
assembler language program. 

Known: 
The sequence of characters: LA 3,BREAK 

The instruction begins in column 10. 

find 'la 3,break ' 10 

100 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



HELP Subcommand of EDIT 

Use the HELP subcommand to obtain the syntax and function of EDIT 

subcommands. 

Refer to the HELP command for a description of the syntax and function 
of the HELP subcommand. 

HELP Subcommand of EDIT 101 



102 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



INPUT Subcommand of EDIT 

Use the INPliT subcommand to put the system in input mode so that you 
can add or replace data in the data set being edited. 

[~ne-number [inCrementl] 

[~J 
[

PROMPT ] 
NOPROMPT 

line-number specifies the line number and location for the first new line of 
input. If no operands are specified, input data will be added to the end 
of the data set. 

increment specifies the amount that you want each succeeding line number 
to be increased. If you omit this operand, the default is the last 
increment specified with the INPUT or RENUM subcommand. If neither of 
these subcommands has been specified with an increment operand, an 
increment of 10 will be used. 

* specifies that the next new line of input will either replace or follow the 
line pointed to by the current line pointer, depending on whether you 
specify the R or I operand. If an increment is specified with this 
operand, it is ignored. 

R specifies that you want to replace existing lines of data and insert new 
lines into the data set. This operand is ignored if you fail to specify 
eith~r a line number or an asterisk. If the specified line already exists, 
the old line will be replaced by the new line. If the specified line is 
vacant, the new line will be inserted at that location. If the increment is 
greater than 1, all lines between the replacement lines \\-ill be deleted. 

specifies that you want to insert new lines into the data set without 
altering existing lines of data. This operand is ignored if you fail to 
specify either a line number or "an asterisk. 

PROMPT specifies that you want the system to display either a line number 
or, if the data set is not line numbered, a prompting character before 
each new input line. If you omit this operand, the default is: 

a. The value (either PROMPT or NO PROMPT) that was established the 
last time you used input mode. 

b. PROMPT, if this is the first use of input mode and the data set has line 
numbers. 

c. NOPROMPT, if this is the first use of input mode and the data set does 
not have line numbers. 

NOPROMPT specifies that you do not want to be prompted. 

INPUT Subcommand of EDIT 103 



Example 1 

Operation: Add and replace data in an old data set. 

Known: 
TIle data set is to contain line numbers. 
Prompting is desired. 
The ability to replace lines is desired. 
The first line number: 2 
The increment value for line numbers: 2 

input 2 2 r prompt 

The listing at your terminal will resemble the following sample listing 
with your input in lower case and the computers response in upper case. 

edit quer cobol old 

EDIT 

input 2 2 r prompt 

INPUT 

00002 identification division 
00004 program-id.query 
00006 

Example 2 

Operation: Insert data in an existing data set. 

Known: 
The data set contains text for a report. 
The data set does not have line numbers. 
The ability to replace lines is not necessary. 
The first input data is "New research and development activities will" 

which is to be placed at the end of the data set. 
The listing at your terminal will resemble the following sample listing: 

edit forecast. text old nonum asis 
EDIT 
input 
INPUT 
New research and development activities will 

104 OS/VSl TSO Command Language Reference (VSl Release 3.7) 



INSERT Subcommand of EDIT 

Use the INSERT subcommand to insert one or more new lines of data into 
the data set. Input data is inserted following the location pointed to by the 
line pointer in the system. (If no operands are specified, input data will be 
placed in the data set line following the current line.) You may change the 
position pointed to by the line pointer by using the BOTIOM, DOWN, TOP, 

UP, FIND and LIST subcommands. 

[insert-data] 

mseH-aam specifies tbe C()mplete seqUence of characters that you wish to 
insert into the data set at the location indicated by the line pointer. 
When the irrst character of the inserted data is a tab, no delimiter is 
required between the command and the data. Only a ~ingle delimiter is 
recognized by the system. If you enter more than one delimiter, all 
except. the first are considered to be input data. 

Example 1 

Operation: Insert a single line into a data set. 

Known: 
The line to be inserted is: 

"UCBLFG DS ALl CONTROL FLAGS" 

The data set is not line numbered. 
The location for the insertion follows the 71st line in the data set. 
The current line pointer points to the 74th line in the data set. 
The user is .operating in edit mode. 

Before entering the INSERT subcommand, the current line pointer must be 
moved up 3 lines to the location where the new data will be inserted. 

up 3 

The INSERT subcommand is now entered. 

INSERT UCBFLG DS ALl CONTROL FLAGS 

The listing at your terminal will be similar to the following sample listing. 

up 3 
insert ucbflg ds all control flags 

INSERT Suhconnaad of EDIT 185 



Example 2 

Operation: Insert several lines into a data set. 

Known: 
The data set contains iine numbers. 
The inserted lines are to follow line number 00280. 
The current line pointer points to line number 00040. 
The user is operating in EDIT mode. 
The lines to be inserted are: 
"J.W. HOUSE 13-244831 24.73" 
"T.N. HOWARD 24-782095 3.05" 
"B.H. IRELAND 40-007830 104.56" 

Before entering the INSERT subcommand the current line pointer must be 
moved down 24 lines to the location where the new data will be inserted. 

down 24 

The INSERT subcommand is now entered: 

insert 

The system will respOnd with 

INPUT 

The lines to be inserted are now entered. 

The listing at your terminal will be similar to the following sample listing: 

down 24 
insert 
INPUT 
00281 j.w.house 13-244831 24.73 
00282 t.n.howard 24-782095 3.05 
00283 b.h.ireland 40-007830 104.56 

New line numbers are generated in sequence beginning with the number 
one greater than the one pointed to by the current line pointer. When no 
line can be inserted, you will be notified. No resequencing will be done. 

106 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Insert/Replace/Delete Function of EDIT 

The Insert/Replace/Delete function lets you insert, replace, or delete a line 
of data without specifying a subcommand name. To insert or replace a line, 
all you need to do is indicate the location and the new data. To delete a 
line, all you need to do is indicate the location. You can indicate the 
location by specifying a line number or an asterisk. The asterisk means that 
the location to be used is pointed to by the line pointer within the system. 
You can change the line pointer by using the UP, DOWN, TOP, BOTTOM, 

and FIND subcommands so that the proper line is referred to. 

[string] 

be number specifies the number of the line you want to insert, replace, or 
delete. 

* specifies that you want to replace or delete the line at the location 
pointed to by the line pointer in the system. You can use the TOP, 

BOTTOM, UP, DOWN, and FIND subcommands to change the line pointer 
without modifying the data set you are editing. 

string specifies the sequence of characters that you want to either insert iilto 
the data set or to replace an. existing line~ If this operand is omitted and 
a line exists at the specified location, the existing line is deleted. When 
the first character of "string" is a tab, no delimiter is required between 
this operand and the preceding operand. Only a single delimiter is 
recognized by the system. If you enter more than one delimiter, all 
except the first are considered to be input data. 

How the System Inte1'JllYdS the Opertllldf: 

When you specify only a line .number or an asterisk, the system deletes a 
line of data. When you specify a line number or asterisk followed by a 
sequence of characters, the system will replace the existing line with the 
specified sequence of characters or, if there is no eXisting data at the 
location, the system will insert the sequence of characters into the data set 
at the specified location. 

Example 1 

Operation: Insert a line into a data set. 

Known: 
The number to be assigned to the new line: 62 
The data: ("OPEN INPUT PARTS.:FILE") 

62 open input parts-file 

Insert/Replace/Delete Function of EDIT t07 



Example 2 

Operation: Replace an existing line in a data set. 

Known: 
The number of the line that is to be replaced: 287 
The replacement data: "GO TO HOURCOUNT;" 

287 go to hourcount; 

Example 3 

Operation: Replace an existing line in a data set that does not have line 
numbers. 

Known: 
The line pointer in the system points to the line that is to be replaced. 
The replacement data is: "58 PRINT USING 120,S" 

* 58 print using 120,s 

Example 4 

Operation: Delete an entire line. 

Known: 
The number of the line: 98 
The current line pointer in the system points to line 98. 

98 
or 

* 

108 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LIST Subcommand of EDIT 

Use the LIST subcommand to display ope or more lines of your data set at 
your terminal. 

[ 
line-number-l [line-number-21] 
* [count] 

[
NUM ] 
SNUM 

line-number-l specifies the number of the line that you want to be 
displayed at your terminal. 

line-number...;2 sp-ecifies the DUJ::I1b-er of the last line that you want displayed.­
When you specify this operand, all the lines from line number 1 through 
line number 2 are displayed. 

* specifies that the line referred to by the current line pointer is to be 
displayed at your terminal. You can change the line pointer by using the 
UP, DOWN, TOP, BOTTOM, and FIND subcommands without modifying 
the data set you are editing. 

Note: If the current line pointer is at zero (for example, as a result of a 
TOP command), and line zero isn't already in the data set, the current line 
pointer moves to the first existing line. 

count specifies the number of lines that you want to have displayed, 
starting at the location referred to by the line pointer. 

Note: If you do not specify any operand with LIST, the entire data set will 
be displayed. 

NUM specifies that line numbers are to be displayed with the text. This is 
the default value if both NUM and SNUM are omitted. If your data set 
does not have line numbers, this operand will be ignored by the system. 

SNUM specifies that line numbers are to be suppressed, i.e., not printed on 
the listing. 

Example 1 

Operation: List an entire data set. 

list 

LIST Subcommand of EDIT 109 



Example 2 

Operation: List part of a data set that has line numbers. 

Known: 
The line number of the first line to be displayed: 27 
The line number of the last line to be displayed: 44 
Line numbers are to be included in the list. 

list 27 44 

Example 3 

Operation: List part of a data set that does not have line numbers. 

Known: 
The line pointer in the system points to the first line to be listed. 
The section to be listed consists of 17 lines. 

list * 17 

llO OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



'\, 

MOVE Subcommand of EDIT 

Use the MOVE subcommand of EDIT to move one or more records that 
exist Lfl the data set being edited. The move operation moves data from a 
source location to a target location within the same data set and deletes the 
source data. Existing lines in the target area are shifted towards the end of 
the data set as required to make room for the incoming data. No lines are 
lost in the shift. 

The target line cannot be within the source area, with the exception that 
the target line (the first line of the target area) can overlap the last line of 
the source area. 

Upon completion of the move operation, the current line pointer points 
to the last moved-to line, not to the last line shifted to make room in the 
target area. 

''\'\'' Note: If you cause an attention interruption during the move operation, 
"the data set may be only partially changed. As a check, list the affected 

part of the data set before continuing. 

Note: MOVE without operands is ignored. 

[INCR(lines)] } 

[INCR(lines)] 

line 1 specifies the first line or the lower limit of the range to be moved. If 
the 'specified line number does not exist in this data set, the range begins 
the next higher line number. 

line2 specifies the last line or the upper limit of the range to be moved. If 
the specified line number does not exist in this data set, the range ends 
with the highest line number that is less than line2. If line2 is not 
entered, the value defaults to the value of line 1; that is, the source 
becomes one line. Do not enter asterisk for line2. 

Note: If MOVE is followed by two line-number operands, the system 
assumes them to repIesent line 1 and line3, and defaults line2 to the value 
of linel. 

MOVE Subcommand of EDIT 111 



Iioe3 spec:Jies the target line number; t..1}at is, the tine at which the 
moved-to data area will start. U the line3 value. corresponds to an 
existing line, the target line is changed to line3 + INCR(lines) and either 
becomes a new line or displaces an existing line at that location. Once 
the move operation begins, existing lines encountered in the target area 
a.re rennmbered to make room for the incoming data. The increment for 
renumbered lines is one (1). Specifying zero (0) for line3 puts the moved 
data at the top of the data set only if line 0 is empty; if line 0 has data, 
enter TOP followed by MOVE with line3 set to *. Note that line3 defaults 
to *. 

NIM: The -v.aIue of line3 should not fall in the range from line 1 to line2; 
that is, the target line must not be in the range being moved. Exception: 
line3 can be equal to line2. 

* represents the value of the current line pointer. 

INCR(Iaes) specifies the line number increment to be used for this move 
operation. The default is the value in effect for this data before the move 
operation. When the move operation is complete, the incremeJ;lt reverts 
to the value in effect before MOVE was issued. Range: 1-8 decimal digits 
but not zero. 

NIM: The increment for any renumbered line is one 1). 

'string' specifies a string of alphameric characters with a maximum length 
equal to or less than the logical record length of the data set being 
edited. When a character string is specified, a search starting at the 
current line is dODe fot the line containing the string. When found, that 
line is the start of the range to be moved for either numbered or 
unnumbered data sets. 

count specifies the total number of lines (the range) to be moved. The 
default for count is one (1). Enter 1-8 decimal digits but not zero (0) or 
asterisk (*). 

Iine4 applies to both numbered and unnumbered data sets. For 
unnumbered data sets, 1ine4 specifies the target line (the line at which 
the moved-to data area will start) as a relative line number (the nth line 
in the data set). For numbered data sets, line4 is specified the same as 
line3. Specifying zero (0) for line4 puts the moved data at the top of the 
data set only if line 0 is empty; if line 0 has data, enter TOP followed by 
MOVE with line4 set to *. Note that line4 defaults to *. 

112 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Messages 
The MOVE subcommand of EDIT causes error messages to be displayed at 
the terminal under specific conditions. To show these conditions, the 
following data set is assumed: 

0010 A 
0020 BB 
0030 CCC 
0040 DDDD 
0050 EEEEE 
0060 FFFFFF 
0070 GGGGGGG 
0080 HHHHHHHH 
0090 111111111 
0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 r.r.r.r.r.r.LLLLLL 

1. Entering 
I ~ve •• • 

causes: 
IKJ52579I INVALID OPERANDS * INVALID FOR COUNT OR END OF 

RANGE SPECIFICATION 

2. Entering 
move 100000 • 

causes: 
IKJ52579IINVALIDOPERANDSFIRSTLINETOBEMOVE/COPIED 

DOES NOT EXIST 

3. Entering 
move 'xyz' • 

causes: 
IKJ52579I INVALID OPERANDS QUOTED STRING NOT FOUND 

4. Entering 
move 20 to 10 • 

causes: 
IKJ52579I INVALID OPERANDS END OF RANGE MUST BE GREATER THAN 

OR EQUAL TO THE BEGINNING OF THE RANGE 

5. Entering 
move 20 '.' 100 

causes: 
IKJ52579IINVALIDOPERANDSSTRINGINVALIDFORENDOFRANGE 

SPECIFICATION 

6. Entering 
move· 0 100 

causes: 
IKJ52579I INVALID OPERANDS 0 INVALID FOR COUNT 

7. Entering 
move 104020 

causes: 
IKJ52579I INVALID OPERANDS TRYING TO MOVE/COPY INTO LINE 

RANGE 

MOVE Sabcommand of EDIT 113 



in the following examples, eLP refers to the current line pointer. 

Example 1 

Operation: Move the current line right after itself in a line-numbered data set. 

Known: 
Data set contains lines 10 through 120; current line pointer is at 50; EDIT provides an increment of 10. 

Before: Enter: After: 

0010 A move 50 50 50 0010 A 
0020 BB 0020 BB 
0030 CCC or 0030 CCC 
0040 DODD 0040 DODD 
0050 EEEEE move 50 50 CLP 0060 EEEEE 
0060 FFFFFF 0061 FFFFFF 
0070 GGGGGGG or 0070 GGGGGGG 
0080 HHHHHHHH 0080 HHHHHHHH 
0090 111111111 move 50 0090 111111111 
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KK.KKKKKKKKK or 0110 KK.KKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

move 'ee' 

Note: MOVE is ignored without operands. 

Example 2 

Operation: Move the current line right after itself in an unnumbered data set. 

Known: 
Data set contains 12 lines of sequential alphabetic characters. Current line pointer is at the seventh line. 

Before Enter: After: 

A move * 1 * A 
BB BB 
CCC or CCC 
DODD DODD 
EEEEE move * 1 EEEEE 
FFFFFF FFFFFF 
GGGGGGG or CLP GGGGGGG 
HHHHHHHH HHHHHHHH 
111111111 move * 111111111 
JJJJJJJJJJ JJJJJJJJJJ 
KK.KKKKKKKKK or KKKKKKKKKKK 
LLLLLLLLLLLL LLLLLLLLLLLL 

move 'gg' 

Note that the effect of the operation is an unchanged data set. 

114 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Example 3 

Operation: illustrate an attempt to move a line to a line before it. 

Known: 
Data set co)}taLns lines 10 through 120; source line is 60; target line is 50; EDIT supplies increment of 10. 

Before: Elller: After: 

0010 A move 60 50 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF CLP '0060 FFFFFF 
0070 GGGGGGG 0070 GGGGGGG 
0080 HHHHHHHH 0080 HHHHHHHH 
0090 111111111 0090 111111111 
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

Example 4 

Operation: Find the line containing a specific word and move' it to the bottom of the data set. 

Known: 
Data set contains nine lines of text; word to be found is "men"; data set is unnumbere<;l. 

Before: 

NOW IS 
THE TIME 
FOR ALL 
GOOD MEN 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

Example 5 

Enter After: 

top NOW IS 
move 'men' 99999999 THE TIME 

FOR ALL 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

CLP GOOD MEN 

Operation: Move lines 10, 20, and 30 into a target area starting at line 100, using an increment of 5. 

Known: 
Data set contains line 10 through 120; EDIT provides increment of 10. 

Before: Enter: After: 

0010 A move 10 30 100 incr(5) 0040 DDDD 
0020 BB 0050 EEEEE 
0030 CCC or 0060 FFFFFF 
0040 DDDD 0070 GGGGGGG 
Ar'\rr.. ~'-'T':"1T."1""" move ("\ 31 1("\("\ incr(5) 0080 HHHHHHHH uu:>u WJ:.J:.J:.J:. :::J IUU 

0060 FFFFFF 0090 111111111 
0070 GGGGGGG or 0100 JJJJJJJJJJ 
0080 HHHHHHHH 0105 A 
0090 111111111 move 1 39 100 incr(5) 0110 BB 
OlOO JJJJJJJJJJ CLP 0115 CCC 
0110 KKKKKKKKKKK 0116 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

MOVE Subcommand of EDIT 115 



Example 6 

Operation: Move four lines from a source area to a target area that overlaps the last line of the source, 
using the default increment. 

ICnown: 

Data set contains lines 10 through 120; source lines are 20 through 50; target area starts at line SO; EDIT 
provides increment of 10. 

Before: Enter: A.f*': 

0010 A move 20 50 50 0010 A 
0020 BB 0060 BB 
0030 CCC 0070 CCC 
0040 DDDD 0080 DODD 
0050 EEEEE CLP 0090 EEEEE 
0060 FFFFFF 0091 FFFFFF 
0070 GGGGGGG 0092 GGGGGGG 
0080 HHHHHHHH 0093 HHHHHHHH 
0090 IIIIIIIII 0094 1111-11111 
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

Example 7 

Operation: Move five lines into a target are-a that starts before but overlaps into the source area. 

Known: 
Data set contains lines 10 through 120; source range is line 70 through line 110; target location is line 

SO; increment to be 10. 

Before Enter: A.fter: 

0010 A move 70 110 50 incr{ 10) 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DODD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF 0060 GGGGGGG 
0070 GGGGGGG 0070 HHHHHHHH 
0080 HHHHHHHH 0080 111111111 
0090 IIIIIIII1 0090 JJJJJJJJJJ 
0100 JJJJJJJJJJ CLP 0100 KKKKKKKKKKK 
0110 KKKKKKKKKKK 0101 FFFFFF 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

116 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Example 8 

Operadon: Move three lines to the top of the data set at line o. 
Known: 

Data set contains lines 10 through 120; line 0 doesn't exist; source lines are 80, 90, and tOO; target area 
starts at line O. 

Be/OI'e: EIrt. A/t.: 

0010 A top 0000 HHHHHHHH 
0020 BB move 80 100 * incr(50) 0050 111111111 
0030 eec eLP 0100 JJJJJJJJJJ 
0040 DDDD or 0101 A 
0050. EEEEE 0102 BB 
0060 FFFFFF move 80 100 0 inc~(50) 0103 eee 
0070 GGGGGGG 0104 DDDD 
0080 HHHHHHHH 0105 EEEEE 
0090 111111111 0106 FFFFFF 
0100 JJJJJJJJJJ 0107 GGGGGGG 
0110 KKKKKKKKKKK 0110 KKKKKKKKKKK 
0120LLLLLLLLLLLL D12D LLLLLLLLLLLL 

Example 9 

Operadon: Move three lines to the top of the data set at line 0, using an increment of 50. 

Known: 
Data set contains' lines 0 through 120; line 0 contains data; source lines are 80, 90, and tOO; target area 

starts at line O. 

Be/ore: 

0000 ZIP 
0010 A . 
0020 BB 
0030 eee 
0040 DDDD 
0050 EEEEE 
0060 FFFFFF 
0070 GGGGGGG 
0080 HHHHHHHH 
0090 IIIIIIIII 
0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Ell .. : 

top 
move 80 100 * incr(50) 

eLP 
The attempt to move into 
line 0 gets the target data 
to the top of the data set 
but shifts the target line 
by the increment value. 

lVo*: An entry of 
move 80 100 0 incr(50) 
produces the results 
shown at right. The 
target data is inserted 
between line 0 and the 
remainder of the data eLP 
set. 

After: 

0050 HHHHHHHH 
0100 111111111 
0150 JJJJJJJJJJ 
0151 ZIP 
0152 A 
0153 BB 
0154 eee 
0155 DDDD 
0156 EEEEE 
0157 FFFFFF 
0158 GGGGGGG 
0159 KKKKKKKKKKK 
0160 LLLLLLLLLLLL 

0000 ZIP 
0050 HHHHHHHH 
0100 111111111 
0150 JJJJJJJJJJ 
0151 A 
0152 BB 
0153 eec 
0154 DDDD 
0155 EEEEE 
0156 FFFFFF 
0157 GGGGGGG 
0158 KKKKKKKKKKK 
0159 LLLLLLLLLLLL 

MOVE Subcommand of EDIT 117 



118 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



PROFILE Subcommand of EDIT 

Use the PROFILE subcommand to change the characteristics of your user 
profile. Refer to PROFILE command for a discussion of the syntax and 
function of PROFILE subcommand. 

PROFILE Subcommand of EDIT 119 



120 OSIVS2 TSO Command Language Reference (VS2 Release 3.7) 



RENUM Subcommand of EDIT 

Use the RENUM subcommand to: 

• Assign a line number to each record of a data set that does not have a 
line number. 

• Renumber each record in a data set that has line numbers. 

New line numbers are placed· in the last eight character positions if the 
data set being edited contains fixed-length records. There are three 
exceptions to this general rule: 

• Data set type COBOL - first six Positions 
• Data set type VSBASIC - first five positions 
• Data set type ASM and NUM keyword specified on EDIT command -

positions indicated in NUM keyword subfield. 

If fixed-length record data sets -are being numbered for the first time, 
any data in the positions indicated above is. overlaid. 

If variable length records without sequence numbers are being edited, the 
records will be lengthened so that an eight-digit sequence field (five-digits if 
VSBASIC) is prefIXed to each record. You are notified if any records have 
been truncated in the process. (Records are truncated when the data length 
plus the sequence length exceeds .the maximum record length of the data set 
befug edited). 

In all cases the specified (or default) increment value becomes the line 
increment for the data set. 

{
RENUM} 
REN 

[new-line-no. [increment [Old-line-no. [end-line-no.] ] ]] 

I new-Hoe-number specifies the new line number to be assigned to the first 
line renumbered. If this operand is omitted, the first line number will be 
10. 

increment specifies the amount by which each succeeding line number is to 
be incremented. (The default value is 10.) You cannot use this operand 
unless you specify a new line number. 

oId-line-number specifies the location within the data set where 
renumbering will begin. If this operand is omitted, renumbering will start 
at the beginning of the data set. You cannot use this operand unless you 
specify a value for the increment operand or when you are initially 
numbering a NONUM data set. 

end-Hoe-number specifies the line number at which renumbering is to end. 
If this operand is omitted, renumbering continues to the end of the data 
set. You cannot use this operand without specifying all the other 
operands. 

RENUM s.IKoIIImand of EDIT III 



Example 1 

Operation: Renumber an entire data set using the default values for each 
operand. 

renum 

Example 2 

Known: 
The old line number: 17 
The new line number: 21 
The increment: 1 

ren 21 1 17 

Example 3 

Operation: Renumber part of a data set from which lines have been 
deleted. 

Known: 
Before deletion of the lines, the data set contained lines, 10, 20, 30, 40, 

and 50. 
Lines 20 and 30 were deleted. 
Lines 40 and 50 are to be renumbered with an increment of 10. 

ren 20 10 40 

Note: The lowest acceptable value for a new line number in this example 
is 11. 

Example 4 

Operation: Renumber a range of lines so that new lines may be inserted. 

Known 
Before renumbering, the data set lines are numbered 

10,20,23,26,29,30,40, and 50. 
Two lines are to be inserted after line 29. 
Lines 23-29 are to be renumbered with an increment of 2. 
The first new number to be assigned is 22. 

ren 22 2 23 29 

122 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



f 

RUN Subcommand of EDIT 

Use the RUN subcommand to compile, load, and execute the source 
statements in the data set that you are editing. The RUN subcom .... nand is 
designed specifically for use with certain program products; it selects and 
invokes the particular program product needed to process your source 
statements. Figure 8 shows which program product is selected to process 
each type of source statement. 

Notes: 

1. Any data sets required by your problem program may be allocated 
before you enter EDIT mode or may be allocated using the ALLOCATE 

subcommand. 

2. If you wish to enter a value for 'parameters,' you should enter this 
prior to any of the other keyword operands. 

If your program or data set contains Then the following Program Product 
statements of this type (or equivalent) can be used: 
(see EDIT): 

ASM TSO ASM Prompter 

COBOL TSO COBOL Prompter and OS Full 
American National Standard COBOL Version 
3 or Version 4 

FORTGI TSO FORTRAN Prompter and 
FORTRAN IV (G1) 

GOFORT Code and Go FORTRAN 

PLI PUI Checkout Compiler or PL/I 
Optimizing Compiler. 

VSBASIC VSBASIC 

You can use the CONVERT command to convert Code and Go FORTRAN free-form 
statements to a form suitable for the FORTRAN compiler. 

When the descriptive qualifier for your data set name is .FORT, the Code and Go 
FORTRAN compiler is invoked unless you specify another compiler with the EDIT 
command. 

Note: User-defined data set types can be ~xecuted under the RUN subcommand of EDIT 
if a prompter name was specified at system generation time. The RUN command will not 
recognize these same data set types. 

I Figure 8. Source Statement/Program Product Relationship 

RUN Subcommand of EDIT 123 



[ 'parameters'] 

[~~~~ST ] 
rLMSGl 
LSMSGJ 

[
CHECK] 
OPT 

[LI B (data-set-list)] 

[
STORE ] 
NOSTORE 

[~gGO] 
[SIZE(value)] 

[
PAUSE ] 
NOPAUSE 

'parameters' specifies a string of up to 100 characters that is passed to the 
program that is to be executed. You may specify this operand only for 
programs which can accept parameters. 

TEST specifies that testing will be performed during execution. This 
I operand is valid for the VSBASIC program product only. 

NOTESf specifies that/no testing will be done. If you omit both TEST and 
NOTEST, the default value is NOTEST. 

LMSG specifies that you want to receive complete diagnostic messages. This 
I operand is valid for the optional Code and Go FORTRAN program 

product only. 

Note: The default value for the LMSG/SMSG operand pair depends on the 
program product being used, as follows: 

Program Product 

Code and Go 

Default Operand 

SMSG 

SMSG specifies that you want to receive the short, concise diagnostic 
I messages. 

CHECK specifies the PL/I Checkout compiler. This operand is valid for the 
PL/I program product only. If you omit this operand, the OPT operand is 
the default value for data sets having the PLI descriptive qualifier. 

OPT specifies the PL/I Optimizing compiler. This operand is valid for the 
PL/I program product only. This is the default value for data sets having 
the PLI descriptive qualifier if both CHECK and OPT are omitted. 

LIB(data-~t-list) specifies the library or libraries that contain subroutines 
needed by the program you are running. These libraries are concatenated 
to the default system libraries and passed to the loader for resolution of 
externai references. This operand is vaiid oniy for the foliowing data set 
types: ASM, COBOL, FORTGI, and PLI(Optimizer). 

124 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



STORE specifies that a perm.anent OB] data set is to be created. The 
dsname of the OBl data set. is based on the data set name entered on the 
EDIT command. This operand is valid only for VSBASIC statements. 

NOSTORE specifies that a permanent OBJ data set is not to be created. This 
operand is valid only for VSBASIC statements. 

GO specifies that the compiled program is to be executed. This operand is 
valid only for VSBASIC statements. 

NOGO specifies that the compiled program is not to be executed. This 
operand is valid only for VSBASIC statements 

SIzE(value) specifies the size (1-999) of the user area for VSBASIC. 

PAUSE specifies that the user is to be given the chance to add or change 
certain compiler options before proceeding to the next chain program. 
This operand is valid only for VSBASIC statements. 

NOPAUSE specifies.that the user is not to be given the chance to add or 
change certain compiler options before proceeding -to the next chain 
program. This operand is valid only for VSBASIC statements. 

I Example 1 

Operation: Execute an assembler language program contained in the data 
set referred to by the EDIT command. 

Known: 
The parameters to be passed to the program are: '1024,PAYROLL' 

run '1024,payroll' 

Example 2 

Operation: Run a FORTRAN IV (GJ) program that calls an assembler 
language output program to manipulate bit patterns. 

Known: 
The assembler language subroutine in load module form resides in a 

library called USERID.MYLIB.LOAD. 

run lib(mylib.load) 

RUN Subcommand of EDIT 125 



126 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



SAVE Subcommand of EDIT 

Use the s1\ VE subcommand to have your data set retained as a permanent 
data set. If you use SAVE without an operand, the updated version of your 
data set replaces the original version. When you specify a new data set 
name as an operand, both the original version and the updated version of 
the data set are available for further use. 

RENUM 

UNNUM 

[(new-line-num [inCdOld-line_num]] 
[end-line-num]] ] )] 

* specifies that the edited version. of your data set is to replace the original 
version. This is the default, if there are no operands entered on the 
subcommand. 

dsname specifies a data set name that will be assigned to your edited data 
set. The new name may be different from the current name. (See the 
data set naming conventions.) If this operand or an asterisk is omitted, 
the name entered with the EDIT command will be used. 
If you specify the name of an existing data ~et or a member of a 
partitioned data set, that data set or member is replaced by the edited 
data set. (Before replacement occurs, you will be given the option of 
specifying a new data set name or member name.) 
If you do not specify the name of an existing data set or partitioned data 
set member, a new data set (the edited data set) will be created with the 
name you specified. If you specified a member name for a sequentially 
organized data set, no replacement of the data set will take place. If you 
do not specify a member name for an existing partitioned data set, the 
edited data set is assigned a member name of TEMPNAME. 

Note: The following operands cannot be included unless data set name or 
an * is specified. 

RENUM means, perform a function that will renumber a data set before 
saving it. 

new-line-num specifies the first line number to be assigned to the data set. 
If this operand is omitted, the first line number will be 10. 

SAVE Subcommand of EDIT 127 



incr specifies the amount by which each succeeding line number is to be 
incremented. The default is 10. This operand cannot be included unless 
the new-line-num is specified. 

oId-line-num specifies the line location within the data set where the 
renumber process will begin. H this operand is omi~ renumbering will 
start at the beginning of the data set. The old-line-num must be equal to 
or less than the new-~e-num. This operand cannot be included unless 
uincr" is specified. 

end-6ne-num specifies the line location within the data set where 
renumbering is to end. H this operand is omitted, renumbering stops at 
the end of the data set. The end-line-num must be greater than the 
old-line-num. This operand cannot be included unless the old-line-num is 
specified 

I UNNUM means, perform a function which will unnumber a data set before 
saving it. 

N,.: H the data set being edited originally contained control characters 
(ASCII or machine), and you enter SAVE without operands, the following 
actions apply. 

Sequential data set 

• You will be warned that the data set will be saved without control 
characters, i.e., the record format will be changed. 

• You will be prompted to enter another data set name for SAVE or a 
carrier return (null line) to reuse the EDIT data set. 

Partitioned data set 

Saving into the EDIT data set is not allowed when it is partitioned with a 
control character attribute. You must save into another data set by 
specifying a data-set-name on a subsequent SAVE subcommand entry. 

Example 1 

Operation: Save the data set that has just been edited by the EDIT 

command. 

Known: 
The system is in edit mode. The user supplied name that you want to 

give the data set is INDEX. 

save index 

Example 1 

Operation: Save the data set that has just been edited, renumbering it first. 

Known: 
new-line-num 
increment(INCR) 

save * renum(100 50) 

128 OS/VSl TSO Command I..ang.ge Reference (VSl Release 3.7) 

100 
50 



SCAN Subcommand of EDIT 

Use the SCAN subcommand to request syntax checking services for 
statements that will be procesSed by the PL/I(F), or FORTRAN(H) compiler 
or by the Code and Go FORTRAN, or FORTRAN IV (Gl), program products. 
You can have each· statement checked as you enter it in input mode, or any 
or all existing statements checked. You must explicitly request a check of 
the syntax of statements you are adding, replacing, or modifying, via the 
CHANGE subcommand, the INSERT subcommand with the insert-data 
operand, or the insert/replace/delete function. 

[ 
line-number-l Uine-nUmber-21] 
* [count1 

6ne-nmnber-l specifies the number of a line to be checked for proper 
syntax. 

6ne-number-2 specifies that all lines between line number 1 and line 
number 2 are to be checked for proper syntax. 

• specifies that the line at the location indicated by the line pointer in the 
system is to be checked for proper syntax. The line pointer can be 
changed by the TOP, BOTTOM, UP, DOWN, and FIND subcommands. 

count specifies the number of lines, beginning with the current line, that 
you want checked for proper syntax. 

ON specifies that each line is to be checked for proper syntax as it is 
entered in input mode. 

OFF Specifies that each line is not to be checked as it is entered in input 
mode. 

Nt*: If no operands are specified, all existing statements will be checked 
for proper syntax. 

ExampleJ 

Operation: Have each line of a FORTRAN program checked for proper 
syntax as it is entered. 

scan on 

SCAN Subcommaad of EDIT 129 



Example 2 

Operation: Have all the statements in a data set checked for proper syntax. 

scan 

Example 3 

Operation: Have several statements checked for proper syntax. 

Known: 
The number. of the first line to be checked: 62 
The number of the last line to be checked: 69 

scan 62 69 

Example 4 

Operation: Check several statements for proper syntax. 

Known: 
The line pointer points to the first line to be checked. 
The number of lines to be checked: 7 

scan * 7 

130 OS/VS2 TSO Conimand Language Reference (VS2 Release 3.7) 



SEND Subcommand of EDIT 

Use the SEND subcommand to send a message to another terminal user or 
to the syst~m operator. Refer to the SEND command for a description of 
the syntax and function of the SEND subcommand. 

SEND Subcommand of EDIT 131 



132 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



SUBMIT Subcommand of EDIT 

Use the SUBMIT subcommand of EDIT to subn:llt one or more batch jobs 
for conventional processing. Each job submitted must reside in either a 
sequential data set, a direct-access data set or in a member of a partitioned 
data set. Submitted data sets must be fixed blocked, 80 byte records. Using 
the EDIT command to create a CNTL data set will provide the correct 
format. 

Any of these data sets can contain part of a job, one job, or more than 
one job that can be executed via a single entry of SUBMIT. Each job must 
comprise an input job stream (lCL plus data). Do not submit data sets with 
descriptive qualifiers TEXT or PLI if the characters in these data sets are 
lower case. 

Job cards are optional The generated jobname will be ygyr userid plu-s­
an identifying character. SUBMIT will prompt you for the character. SUBMIT 
will insert the job accounting information from the user's LOGON command 
on any generated job card. The system or installation default MSGCLASS 
and CLASS are used for submitted jobs unless MSGCLASS and CLASS are 
specified on the job card(s) being submitted. See the first section in 
Appendix A for an example of a generated lOB card. 

{
SUBMIT} 
SUB { 

* } [NOTIFY l 
(data-set-list) LNONOTI FVJ 

* Specifies that the data set being edited defines the input stream to be 
submitted. This is the. default if no operands are entered on the 
subcommand. 

data-~t-list specifies one or more data set names or names of members of 
partitioned data sets that define an input stream (lCL plus data). If you 
specify more than one data set name, enclose them in parentheses. 

Note: Either an asterisk or the data-set-list must be specified if any 
keywords are used. 

NOTIFY specifies that you are to be notified when your job terminates in 
the background if a lOB statement has not been provided. If you have 
elected not to receive messages, the message will be placed in the 
broadcast data set. You must then enter LISTBC to receive the message. 
Notify is the defaUlt value if a JOB statement is generated. 

If you supply your own lOB statement, use the NOTIFY=userid keyword 
on the JOB statement if you wish to be notified when the job terminates. 
SUBMIT ignores the NOTIFY keyword unless it is generating a JOB 
statement. 

SUBMIT Subcommand of EDIT 133 



NONOTIFY specifies that a tennination message will not be issued or placed 
in the broadcast data set. The NO NOTIFY keyword is only recognized 
when a JOB statement has not heen provided with the job that you are 
processing. If you supply your own JOB statement, you must use the 
NOTIFY = userid keyword on the JOB statement to receive notification. 

Notes: 

• If any of the above types of data sets containing two or more jobs is 
submitted for processing, certain conditions apply. 
The SUBMIT processor will build a job card for the first job in the 
first data set, if none was supplied, but will not build job cards for 
any other jobs in the data set(s). 
If the SUBMIT processor determines that the first job contains an 
error, none of the jobs are submitted. 
Once the SUBMIT processor submits a job for processing, errors 
occurring in the execution of that job have no effect on the 
submission of any remaining job(s) in that data set. 

• Any job card you supply should have a job name consisting of your 
userid and a single identifying character. If the jobname is not in this 
format, you will not be able to refer to it with the CANCEL command. 
You will be required to specify the jobname in the STATUS command 
if the IBM-supplied exit has not been replaced by your installation and 
your job name is not your userid plus a single identifying character. 

• If you wish to provide a job card but you also want to be prompted 
for a unique jobname character, put your use rid in the jobname field 
and follow it with blanks so that there is room for SUBMIT to insert 
the prompted-for character. This allows you to change jobnames 
without re-editing the JCL data set. 

• Once SUBMIT has successfully submitted a job for conventional batch 
processing, it will issue a 'jobname(jobid) submitted' message. The 
jobid is a unique job identifier assigned by the job entry subsystem. 

• This subcommand may be used only by personnel who have been 
given the authority to do so by the installation management. 

• SUBMIT does not support job entry subsystem control cards which 
precede the JOB card. 

Example 

Operation: Submit the data set being edited for batch processing. 

Known: 
The data set has no job card and you do not want to be notified when 

the job is completed. 

submit * nonotify 

134 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



TABSET Subcommand of EDIT 

Use the TAB SET subcommand to: 

• Establish or change the logical tabulation settings. 
• Cancel any existing tabulation settings. 

The basic form of the subcommand causes each strike of the tab key to 
be translated into blanks corresponding to the column requirements for the 
data set type. For instance, if the name of the data set being edited has 
FORT as a descriptive qualifier, the first tabulation setting will be in column 
7. The values in Figure 9 will be in effect when you first enter the EDIT 

command. 

Data Set Name Descriptive Qualifier 

I ASM 
CLIST 
CNTL 
COBOL 
DATA 

Def-ault. T.ab Settings C-oIumns 
10,16,31,72 
10,20,30,40,50,60 
10,20,30,40,50,60 
8,12,72 
10,20,30,40,50,60 

FORT FORTRAN(H) compilers, FORTRAN IV (GO 7,72 
and Code and Go FORTRAN program 

I product data set types. 
PLI PL/I Checkout and 

Optimizing compiler data set types. 
TEXT 
VSBASIC 
User-defined 

Figure 9. Default Tab Settings 

5, to, 15,20,25,30,35,40,45,50 

5, to, 15,20,30,40 
10,15,20,25,30,35,40,45,50,55 
10,20,30,40,50,60 

You may find it convenient to have the mechanical tab settings coincide 
with the logical tab settings. Note that, except for line-numbered COBOL 

data sets, the logical tab columns apply only to the data that you actually 
enter. Since a printed line number prompt is not logically part of the data 
you are entering, the logical tab positions are calculated beginning at the 
next position after the prompt. Thus, if you are receiving five-digit line 
number prompts and have set a logical tab in column 10, the mechanical 
tab should be set 15 columns' to the right of the margin. If you are not 
receiving line number prompts, the mechanical tab should be set 10 
columns to the right of the margin. 

In COBOL data sets the sequence number (line number) is considered to 
be a logical (as well as physical) part of each record that you enter. For 
instance, if you specify the NONUM operand on the EDIT command, while 
editing a COBOL data set, the system assumes that column 1 is at the left 
margin and that you are entering the required sequence numbers in the first 
six columns; thus, logical tabs are calculated from the left margin (column 
1). In line-numbered COBOL data sets (the NONUM operand was not 
specified), the column following a line number prompt is considered to be 
column 7 of your data - the first 6 columns being occupied by the 
system-supplied sequence number(line number). 

T ABSET Subcommand of EDIT 135 



{
TABSET} 
TAB 

[

ON [(integer-liSt)]] 
OFF 
IMAGE 

ON(integer-list) specifies that tab settings are to be translated into blanks 
by the system. H you specify ON without an integer list, the existing or 
default tab settings are used. You can establish new values for tab 
settings by specifying the numbers of the tab columns as values for the 
integer list. A maximum of ten values is allowed. H you omit both ON 

and OFF the default value is ON. 

OFF specifies that there is to be no translation of tabulation characters. 
Each strike of the tab key will produce a single blank in the data. 

IMAGE specifies that the next input . line will derme new tabulation settings. 
The next line that you type should consist of "t"s, indicating the column 
positions of the tab settings, and blanks or any other characters except 
"t". 10 settings is the maximum number of tabs allowable. Do not use 
the tab key to produce the new image line. A good practice is to use a 
sequence of digits between the "t"s so you can easily determine which 
columns the tabs are set to. (See Example 3.) 

Example 1 

Operation: Re-establish standard tab settings for your data set. 

Known: 
Tab settings are not in effect. 

tab 

Example 1 

Operation: Establish tabs for columns 2, 18, and 72. 

tab on(2 18 72) 

Example 3 

Operation: Establish tabs at every 10th column. 

tab image 
123456789t123456789t123 ... 

136 OS/VSl TSO Command Language Reference (VSl Release 3.7) 



TOP Subcommand of EDIT 

Use the TOP subcommand to change the line pointer in the system to zero. 
That is, the pointer will point to the position preceding the Imt line of an 
unnumbered data set or of a numbered data set which does not have a line 
number of zero. The pointer will point to line number zero of a data set 
that has one. 

This subcommand is useful in setting the line pointer to the proper 
position for subsequent subcommands that need to start their operations at 
the beginning of the data set. 

In the event that the data set is empty you will be notified but the 
current line pointer still takes -on a zero value. 

TOP 

Example 1 

Operation: Move the line pointer to the beginning of your data set. 

Known: 
The data set is not line-numbered. 

top 

TOP Subcommand of mIT 137 



138 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



UNNUM Subcommand of EDIT 

Use the UNNUM subcommand to remove existing line numbers from the 
records in the data set. 

{
UNNUM} 
UNN 

Example 1 

Operation: Remove the line numbers from an ASM-type data set. 

Known: 
The data set has line numbers. 

unnum 

UNNUM Subcommand of EDIT 139 



140 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



UP Subcommand of EDIT 

Use the UP subcommand to change the line pointer in the system so that it 
points to a record nearer the beginning of your data set. If the use of this 
subcommand causes the line pointer to point to the first record of your data 
set, you will be notified. 

UP [count] 

count specifies the number of lines toward the beginning of the data set 
that you want to move the current line pointer. If count is omitted, the 
pointer will be moved only one line. 

Example 1 

Operation: Change the pointer so that it refers to the preceding line. 

up 

Example 2 

Operation: Change the pointer so that it refers to a line located 17 lines 
before the location currently referred to. 

up 17 

UP Subcommand of EDIT 141 



142 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



VERIFY Subcommand of EDIT 

Use the VERIFY subcommand to display the line that is currently pointed to 
by the line pointer in the system; whenever the cu...~ent line pointer has 
been moved, or whenever a line has been modified by use of the CHANGE 

subcommand. Until you enter VERIFY you will have no verification of 
changes in the position of the current line pointer. 

[~~FJ 

ON specifies that you want to have the line that is referred to by the line 
pointer displayed at your terminal each time the line pointer changes or 
each time the line is changed by the CHANGE subcommand. This is the 
default if you omit both ON and OFF. 

OFF specifies that you want to discontinue this service. 

Note: Subcommands that change the current line pointer and cause it to be 
displayed if the VERIFY subcommand is activated are BOTI'OM, CHANGE, 

COPY, DELETE, DOWN, FIND, MOVE, RENUM, UNNUM and UP. 

Example 1 

Operation: Have the line that is referred to by the line pointer displayed at 
your terminal each tim~ the line pointer changes. 

or 
verify 

verify on 

Example 2 

Operation: Terminate the operations of the VERIFY subcommand. 

verify off 

VERIFY Subconunand of EDIT 143 



144 OS/VS2 TSO COIIIIDMId Language Reference (VS2 Release 3.7) 



END Command 

You may use the END command to end a command procedure. When the 
system encounters an END command in a command procedure, execution of 
the command procedure is halted. This function is better performed by the 
EXIT statement. 

END 

END COIIIIIIIUId 145 



146 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



EXEC Command 

Use the EXEC command to execute a command procedure. 

You can specify the EXEC command or the EXEC subcommand of EDIT 

in three ways: 

• The explicit form: enter EXEC followed by the name of the data set 
that contains the command procedure. 

• The implicit form: Do not enter EXEC but only enter the name of 
the member of a command procedure library. A command procedure 
library is a partitioned data set that must be allocated to the SYSPROC 

file name either dynamically by the ALLOCATE command or as part of 
the LOGON procedure. TSO will determine if the name is a system 
command before searching SYSPROC for the procedure. 

• The extended implicit form: Enter a percent sign followed by the 
implicit procedure name. TSO will only search the SYSPROC file for the 
specified name. If the procedure resides in SYSPROC, this form is the 
fastest of the implicit forms. 

Some of the commands in a command procedure may have symbolic 
variables for operands. When you specify the EXEC command, you may 
supply actual values for the system to use in place of the symbolic 
variables. 

Note: For more information concerning symbolic variables and command 
procedures, refer to the section on "Command Procedures" in this book. 

The EXEC command and the EXEC subcommand of EDIT perform the 
same basic functions. However, a command procedure which is executed 
with the EXEC subcommand of EDIT can only execute command procedure 
statements and EDIT subcommands. 

or 

data-set-name 

['val ue-I ist'] 

[
NOLlST] 
LIST 

[
NOPROMPT] 
PROMPT 

[%] procedure-name [value-list] 

data-set-name specifies the name of the data set containing the command 
procedure to be executed. If the descriptive qualifier for the data set is 
not CLIST, you must enclose the fully qualified name within apostrophes 
and the data set must contain line numbers according to the following 
format: 

Variable blocked - columns 1-8 
Fixed blocked - columns last 8 bytes of each record 

EXEC Command 147 



Since any data contained in these columns is lost, you should not enter 
data in these columns. 

Note: Command procedures are explained in greater detail in the OS/VSl 
Terminal User's Guide. 

procedure-name specifies a member of a command procedure library. The 
library must previously have been defined with the SYSPROC DD 

statement of the LOGON procedure or with the ALLOCATE command. 

%procedure-name specifies a member of a command procedure library in 
an extended implicit form that causes an immediate attachment of the 
EXEC command processor. 

value-list specifies the actual values that are to be substituted for the 
symbolic. values in the command procedure. The symbolic values are 
defined by the operands of the PROC statement in the command 
procedure. The actual values to replace the positional operands in the 
PROC statement must be in the same sequence as the positional 
operands. The actual values to replace the keywords in the PROC 

statement must follow the positional values, but may be in any sequence. 
A keyword defined on the PROC statement may have a value consisting 
of a character string with delimiters, provided that the character string is 
enclosed in quotes. When you use the explicit form of the command, the 
value list must be enclosed in apostrophes. If apostrophes appear Within 
the list, then you must provide two apostrophes in order to print one. If 
a quoted string appears as the value of a keyword within the value list, 
the number of quotes must be doubled again (see example 3). 

NOLIST specifies that the commands and subcommands will not be listed at 
the terminal. The system assumes NOLIST for implicit and explicit EXEC 

commands. 

LIST specifies that commands and subcommands will be listed at the 
terminal as they are executed. This operand is valid only for the explicit 
form of exec. 

PROMPT specifies that prompting to the terminal will be allowed during the 
execution of a command procedure. The PROMPT keyword implies LIST, 

unless NOLIST has been explicitly specified. Therefore, all commands and 
subcommands will be listed at the terminal as they are executed. This 
operand is valid only for the explicit form of EXEC. 

NO PROMPT specifies no prompting during the execution of a command 
procedure. This is the default if neither PROMPT nor NO PROMPT is 
specified. 

Notes: 

1. The PROMPT keyword is not propagated to nested EXEC commands. 
PROMPT must be specified on a nested EXEC command if you wish to 
be prompted during execution of the' command procedure it invokes. 

2. No prompting will be allowed during the execution of a command 
procedure if the NOPROMPT keyword operand of PROFILE has been 
specified, even if the PROMPT option of EXEC has been specified. 

3. The following is a list of options resulting from specific keyword 
entries: 

148 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Keyword specified 

PROMPT 
NOPROMPT 
LIST 
NOLIST 
PROMPT LIST 
PROMPT NOLIST 
NO PROMPT LIST 
NOPROMPT NOLIST 
No keywords 

Resulting options 

PROMPT LIST 
NOPROMPT NOLIST 
LIST NOPROMPT 
NOLIST NOPROMPT 
PROMPT LIST 
PROMPT NOLIST 
NOPROMPT LIST 
NOPROMPT NOLIST 
NOPROMPT NOLIST 

Suppose the following command procedure exists as a data set named 
ANZAL: 

proc 3 input output list lines( ) 
allocate dataset(&input) file(indata) old 
allocate dataset(&output) block( 100) space(300,100) 
allocate dataset( &list) file(print) 
call proc2 '&lines' 
end 

Note: If t-hesymb0lic vaillemustbeimmediatelyf~wedby a peood, the 
symbolic value must end with a period. (A single period following a 
symbolic value is ignored.) 

The PROC statement indicates that the three symbolic values, & INPUT, 

&OUTPUT and &LIST, are positional (required) and that the symbolic value 
&LINES is a keyword (optional). 

To replace ALPHA for INPUT, BETA for OUTPUT, COMMENT for LIST 

and 20 for LINES, you would enter: (implicit form) . 

anzal alpha beta comment lines(20) 

Example 1 

Operation: Execute a command procedure to invoke the PL/I compiler. 

Known: The name of the data set that contains the command procedure is 
RBJ21.PLIR.CLIST. 

The command procedure consists of: 

proc 1 name 
allocate dataset (&name .. pli) file(sysin) 
~llocate dataset(&narne .. list) file(sysprint) block(80)­

space( 300, 100 ) 
allocate dataset(&name .. obj) file(syslin) block(80) -

space(250,100) 
allocate file(sysutl) block( 1024) space(60,60) 
allocate file(sysut3) block(80) space(250,100) 
call 'sysl.1inklib(iernaa)' 'list,atr,xref,strnt' 
free file(sysut1,sysut3,sysin,sysprint) 

Note: If the symbolic value must be immediately followed by a period, the 
symbolic value must end with a period. 

The name of your program is 'EXP'. 

You want to have the names of the commands in the command 
procedure displayed at your terminal as they are executed. 

exec plir 'exp' list 

EXEC Command 149 



The listing at your te!1!'jnal will be sLwnilar to: 

allocate dataset(exp.pli) file(sysin) 
allocate dataset(exp.list) file(sysprint) block(80) -
space(300,100) 
allocate dataset(exp.obj) file{syslin) block(80) -
space(250,100) 
allocate file(sysutl) block(1024) space(60,60) 
allocate file(sysut3) block(80) space(250,100) 
call 'sys1.1inklib(iemaa)' 'list,atr,xref,stmt' 
free file{sysutl,sysut3,sysin,sysprint) 
ready 

Example 2 

Operation: Suppose that the command procedure in Example 1 was stored 
in a command procedure library. Execute the command procedure using 
the implicit form of EXEC. 

Known: The name of the member of the partitioned data set that contains 
the command procedure is PLIA. 

plia exp 

Example 3 

Operation: Enter a fully qualified data set name as a keyword value in an 
EXEC command value list. 

Known: 
The procedure named SWITCH is contained in a command procedure 
library named "MASTER.CLIST" which is allocated as SYSPROC. 

The command procedure consists of: 

PROC 0 DSN1( ) DSN2( ) 
RENAME &DSN1 TEMPSAVE 
RENAME &DSN2 &DSNl 
RENAME TEMPSAVE &DSN2 

If a user whose userid is "USER33 H wishes to switch the names of two 
datasets "MASTER. BACKUP" and "USER33.GOODCOPY", he could invoke 
the procedure as follows: 

Explicit form: 

exec 'master.clist(switch), + 
'dsn1(' "" 'master.backup"'", ) + 
dsn2( good copy )' 

extended Implicit form: 

%switch dsn1(' "master.backup"') dsn2(goodcopy) 

Note that when the implicit forms are used the specification of quoted 
strings in the value list is made si.~pler since the value list itself is not a 
quoted string. 

150 OSiVS2 1'80 Command Language Reference (V82 Release 3.7) 



FREE Command 

Use the FREE command to release (deallocate) previously allocated data 
sets that you no longer need. You can also use this command to change the 
output class of SYSOUT data sets, to delete attribute lists, and to change the 
data set disposition specified with the ALLOCATE command. 

There is a maximum number of data sets that may be allocated to you 
at anyone time. The allowable number must be large enough to 
accommodate: 

• Data sets allocated via the LOGON and ALLOCATE commands . 
• Data sets allocated dynamically, and later freed automatically, by the 

system's command processors. 

The data sets allocated by the LOGON and ALLOCATE commands are not 
freed automatically. To avoid the possibility of reaching your limit and 
being denied necessary resources, you should use the FREE command to 
release these data sets when they are no longer needed. 

When a SYSOUT data set is freed, it is immediately available for output 
processing, either by the job entry subsystem (not-held data sets) or by the 
OUTPUT command (held data sets). 

When you free SYSOUT data sets, you may change their output class to 
make them available for processing by an output writer or route them to 
another user. 

When you enter the LOGOFF command, all data sets allocated to you 
and attribute lists created during the terminal session are freed. by the 
system. 

Note:' Data sets that are dynamically allocated by a command processor 
are not automatically freed when the command processor terminates. You 
must explicitly free dynamically allocated data sets. 

FREE {DSNAME(dataset_name-liSd l Note: 
. DATASET(dataset-name-list) Choose 

DDNAME(file-name-lisd one 
FI LE (file-name-lisd or 
ATTR LlST(attr-list-names) more 

[DEST(userid)] [SYSQUT(ClaSS)ll 

[HOLD ] [SYSOUT(class)] 
NOHOLD 

[EEP ] 

J 
DELETE SYSOUT(class) 
CATALOG 
UNCATALOG 

FREE Command 151 



DATASET or DSNAME(data-set-name-Iist) spe.cifies one or more data set 
names that identify the data sets that you want to free. The data ·set 
name must include the descriptive (rightmost) qualifier and may contain 
a member name in parentheses. If you omit this operand, you must 
specify either FILE or DSNAME or the A TIRLIST operand. 

FILE gr DDN~~l\o!E(r!le-!!a!!!e-!ist) specifies one or more file names that 
identify the data sets to be freed. If you omit this operand, you must 
specify either the DATASET or DSNAME or the A TTRLIST operand. 

AlTRLISf(6st-of-attr-list-names) specifies the names of one or more 
attribute lists that you want to delete. If you omit this operand, you must 
specify either the DATASET or DSNAME or the FILE or DDNAME 

operand. 

DEST(lfierid) specifies that the SYSOUT data set is to be routed to the user 
whose user identification corresponds to that given for "userid." If this 
keyword is omitted on ·a FREE command for SYSOUT data sets, the data 
sets will remain directed to the user specified at the time of allocation. 

HOLD specifies that the data set is to be placed on the HOLD queue. 

NOHOLD specifies that the data set is not to be placed on the HOLD queue. 

KEEP specifies that the data set is to be retained by the system after it is 
freed. 

DELETE specifies that the data set-- is to be deleted by the system after it is 
freed. DELETE is not valid for data sets allocated SHR or for members of 
a PDS. Only DELETE is valid for SYSOUT data sets. 

CATALOG specifies that the data set is to be retained by the system in a 
catalog after it is freed. 

UNCA T ALOG specifies that the data set is to be removed from the catalog 
after it is freed. The data set is still retained by the system. 

Note: If HOLD, NOHOLD, KEEP, DELETE, CATALOG, and UNCATALOG are 
not specified, the specification indicated at the time of allocation remains in 
effect. 

SYSOUT( class) specifies an output class which is represented by a single 
character. All of the system output (SYSOUT) data sets specified in the 
DATASET or DSNAME and FILE or DDNAME operands will be assigned 
to this class and placed in the output queue for processing by an output 
writer. In order to free a file to SYSOUT, the file must have previously 
been allocated to SYSOUT. 

Note: A concatenated data set that was allocated in a LOGON procedure or 
by the ALLOCATE command can be freed only by entering the ddname on 
the FILE or DDNAME operand. 

Example 1 

Operation: Free a data set by specifying its data set name. 

Known: 
The data set name: TOC9C3.PROG.A~.LO.A~ 

free dataset(proga.load) 

152 OS!VS2 TSO Command Language Reference (VS2 Release 3.7) 



Example 2 

Operation: Free three data sets by specifying their data set names. 

Known: 
The data set names: APRIL.PB99CY.ASM, APRIL.FIRSTQTR.DATA, 

MAY.DESK.MSG 

free dataset(pb99cy.asm,firstqtr.data,'may.desk 
.msg' ) 

Example 3 

Operation: Free five data sets by specifying data set names or data 
definition names. Change the output class for any SYSOUT data sets 
being freed. 

Known: 
The name of a data set: WIND.MARCH.FORT 

The Iuenames (dala defirution names) of 4 data sets: SYSUTI SYSUTI 

SYSIN SYSPRINT 

The new output class: B 

free dataset(march.fort) file(sysut1,sysut3,sysin, 
sysprint) sysout(b) 

Example 4 

Operation: Delete two attribute fists. 

Known: 
The names of the lists: DCBP ARMS A TTRIBUT 

FREE ATTRLIST(DCBPARMS ATTRIBUT) 

FREE Command 153 



154 OS/VS2 TSO Command Language Reference (VSl Release 3.7) 



HELP Command 

Use the HELP command or subcommand to obtain information about the 
function, syntax, and operands of commands and subcommands. This 
reference information is contained Within the system and is displayed at 
your terminal in response to your request for help. By entering the HELP 

command or subcommand with no operands you can obtain a list of all the 
TSO commands grouped by function or subcommands of the command you 
are using. 

The HELP command may also be used to get additional information 
about a VSBASIC message or messages. 

[

(SUb)COmmand-name [[ [FUNCTION] [SYNTAX] ] ] ] 
[OPERANDS [(list)] ] 

[ALL] 
[MSGID(list)] 

command-name or subcommand-name specifies the name of the command 
or subcommand that you want to know more about. 

FUNCfION specifies that you want to know more about the purpose and 
operation of the command or subcommand. 

SYNTAX specifies that you want to know more about the syntax required to 
use the command or subcommand properly. 

OPERANDS(Hst-of-operands) specifies that you want to see explanations of 
the operands for the command or subcommand. When you specify the 
keyword OPERANDS and omit any values, all operands will be described. 
You can specify particular keyword operands that you want to have 
described by including them as values within parentheses following the 
keyword. If you specify a list of more than one operand, the operands in 
the list must be separated by commas or blanks. 

ALL specifies that you want to see all information available concerning the 
command or subcommand. This is the default value if no other keyword 
operand is specified. 

MSGID(Hst) specifies that you wish to get additional information about 
VSBASIC messages whose message identifiers are given in the list. 
Information includes what caused the error and how to prevent a 
recurrence. The FUNCTION, SYNTAX, OPERANDS or ALL keywords 
cannot be specified with MSGID. 

Help Information: The scope of available information ranges from general 
to specific. The HELP command or subcommand with no operands produces 
a list of valid commands or subcommand and their basic functions. From 
the list you can select the command or subcommand most applicable to 
your needs. If you need more information ~bout the selected command or 
subcommand, you may use HELP again, specifying the selected 
(sub)command name as an operand. You will then receive: 

HELP Command 155 



• A brief description of the function of the (sub )command. 
• The format and syntax for the (sub )command. 
• A description of each operand. 

You can obtain information about a command or subcommand only 
when the system is ready to accept a command or subcommand. 

if you do not want to have ail of the detailed information, you may 
request only the portion that you need. 

The information about the commands is contained in a cataloged 
partitioned data set named SYSl.HELP. Information for each command or 
subcommand is kept in a member of the partitioned data set. The HELP 

command or subcommand causes the system to select the appropriate 
member and display its contents at your terminal. 

figure 10 shows the hierarchy of the sets of information available with 
the HELP command or subcommand. Figure 10 also shows the form of the 
command or subcommand necessary to produce any particular set. 

Example 1 

Operation: Obtain a list of all available commands. 

help 

Example 2 

Operation: Obtain all the information available for the ALLOCATE 

command. 

help allocate 

Example 3 

Operation: Have a description of the XREF, MAP, COBLIB, and OVLY 

operands for the LINK command displayed at your terminal. 

h link operands(xref,map,coblib,ovly) 

Example 4 

Operation: Have a description of the function and syntax of the LISTBC 

command displayed at your terminal. 

h listbc function syntax 

156 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Wher. the systa~~eadY ---~-l 
to accept a command, you 1---------------------. 
may request: When the system is ready to accept 

a subcommand, you may request: 

1 List of commands 

2 List of subcommands 

Command function 
Subcommand function 

Command syntax 
Subcommand syntax 

List of operands 
List of operands 

6 Each operand 10 Each operand 

11 VSBASIC message data or: 

12 MSG ID (list) 

This form of the command ............................................................... produces: 

Q) 

"0 
o 
E 
>­c 
« 
w 
a: 

HELP 

HELP commandname 

HELP commandname ALL 

HELP commandname FUNCTION 

HELP commandname SYNTAX 

HELP commandname OPERANDS 

HELP commandname OPERANDS (list of keyword operands) 

HELP commandname MSGID (list of VSBASIC message ids) 
'-.. 

HELP 

HELP subcommandname 

HELP subcommandname ALL 

HELP subcommandname FUNCTION 

HELP subcommandname SYNTAX 

HELP subcommandname OPERANDS 

HELP subcommandname OPERANDS (list of keyword operands) 

HELP subcommandname MSGID (list of message ids) 

Figure 10. Information Available Through the HELP Command 

1 

345 

345 

3 

4 

5 

6 

11 

2 

789 

789 

7 

8 

9 

10 

12 

HELP Command 157 



158 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LINK Command 

Use the LINK command to invoke the linkage editor service program. 
Basically, the linkage editor converts one or more object modules (the 
output modules from compilers) into a load module that is suitable for 
execution. In doing this, the linkage editor changes all symbolic addresses in 
the object modules into relative addresses. 

The linkage editor provides a great deal of information to help you test 
and debug a program.· This information includes a cross-reference table and 
a map of the module that identifies the location of control sections, entry 
points, and addresses. You can have this information listed at your terminal 
or saved in a data set on some device. 

You can specify all the linkage editor options explicitly or you can accept 
the default values. The default values are satisfactory for most uses. By 
accepting the default values, you simplify the use of the LINK command. 

If the module that you want to process has a simple structure (that is, it 
is self contained and does not pass control to other modules) and you do 
not require the extensive listings produced by the linkage editor and you do 
not want a load module, you may want to use the LOAD GO command as an 
alternative to the LINK command. 

Note: You should not link an object module with the TEST option and 
then attempt to execute the resulting load module in the background 
because an abnormal termination may result. 

LINK Command 159 



LINK (data-seHist) 

[LOAD [(data-set-name)] ] 

r PRINT ({ :ata~t-name}) 1 
L NOPRINT .. J 
[L1 B{data-set~list}] 

[PULlB] [REFR ] [TERM ] 
[PLlCMIX] NOREFR NOTERM 

[PUBASE] [SCTR ] [DCBS(blocksi ze) ] 
NOSCTR 

[FORTLlB] 
[AC(authorization-[OVlY ] [COBUB] NOOVLY code)] 

[MAP ] 
NOMAP [RENT ] 

NORENT 

[NCAl ] 
NONCAL 

[SIZE(integerl integer2)] 

[LIST ] [~~NEJ 
NO LIST 

[lET ] [~~OlJ 
NOLET 

[~gDC ] [XCAL ] 
NOXCAL 

[TEST ] [XREF ] NOTEST 
NOXREF 

[REUS ] 
NOREUS 

(data-set-Ust) specifies the names of one or more data sets containing your 
object modules and/or linkage editor control statements. (See the data 
set naming conventions). The specified data sets will be concatenated 
within the output load module in the sequence that they are included in 
this operand. If there' is only a single name in the data-set-list, 
parentheses are not required unless the single name is a member name of 
a partitioned data set; then, two pairs of parentheses are required, as in: 

1 ink( ( parts) ) 

You may substitute an asterisk (*) for a data set name to indicate that 
you will enter control statements from your terminal. The system will 
prompt you to enter the control statements. A null line indicates the end of 
your control statements. 

LOAD(data-set-name) specifies the name of the partitioned data set that will 
contain the load module after processing by the Hnkage editor (see the 
data set naming conventions). If you omit this operand, the system will 
generate a name according to the data set naming conventions. 

160 OS/VSl TSO COIIIIIIaDd Language Reference (VSl Release 3.7) 



PRINT<data-set-name or *) specifies that linkage editor listings are to be 
produced and placed in the specified data set. When you omit the data 
set name, the data set that is generated is named according to the data 
set naming conventions. This is the default value if you specify the LIST, 

MAP, or XREF operand. You may substitute an asterisk (*) for the data 
set name if you want to have the listings displayed at your terminal. 

NOPRINT specifies that no linkage editor listings are to be produced. This 
operand causes the MAP, XREF, and LIST options to become invalid. This 
is the default value if both PRINT and NO PRINT are omitted, and you do 
not use the LIST, MAP, or XREF operand. 

LIB <data-set-list> specifies one or more names of library data sets to be 
searched by the linkage editor to locate load modules referred to by the 
module being processed, that is, to resolve external references. When you 
specify more than one name, the names must be separated by a valid 
delimiter. 

PLILIB specifies that the partitioned data set named SYS1.PLlLIB is to be 
searched by the linkage editor to located load modules that are referred 
to by the module being processed. 

PLIBASE specifies that the partitioned data set named SYS 1.PLIBASE is to be 
searched to locate load modules referred to by the module being 
processed. 

PLICMIX specifies that the partitioned data set named SYSl.PLICMIX is to 
be searched to located load modules referred to by the module being 
processed. 

FORTLIB specifies that the partitioned data set named SYS1.FORTLIB is to 
be searched by the linkage editor to located load modules referred to by 
the module being processed. 

COBLIB specifies that the partitioned data set named SYSl.COBLIB is to be 
searched by the linkage editor to locate load modules referred to by the 
module being processed. 

MAP specifies that the PRINT data set is to contain a map of the output 
module consisting of the control sections, the entry names, and (for 
overlay structures) the segment number. 

NOMAP specifies that a· map of the output module is not to be listed. This 
is the default value if both MAP and NO MAP are omitted. 

NCAL specifies that the automatic library call mechanism is not to be 
invoked to locate the modules that are referred to by the module being 
processed when the object module refers to other load modules. 

NONCAL specifies that the modules referred to by the module being 
processed are to be . located by the automatic library call mechanism 
when the object module refers to other load modules. This is the default 
value if both NCAL and NONCAL are omitted. 

LISf specifies that a list of all linkage editor control statements is to be 
placed in the PRINT data set. 

NOLISf specifies that a listing of linkage editor control statements is not to 
be produced. This is the default value if both LIST and NOLIST are 
omitted. 

LET specifies that the output module is permitted to be marked as 
executable even though a severity 2 error is found (a severity 2 error 
indicates that execution of the output module may be impossible). 

LINK Command 161 



NOLET specifies ihat the output module be marked non-executable when a 
severity 2 error is found. This is the default value if both LET and 
NOLET are omitted. 

XCAL specifies that the output module is permitted to be marked as 
executable even though an exclusive call has been made between 
segments of an overiay structure. Because the segment issuing an 
exclusive call is overlaid, a return from the requested segment can be 
made only by another exclusive call or a branch. 

NOXCAL specifies that both valid and invalid exclusive calls will be marked 
as errors. This is the default value if both XCAL and NOXCAL are 
omitted. 

XREF specifies that a cross-reference table is to be placed on the PRINT 

data set. The table includes the module map and a list of all address 
constants referring to other control sections. Since the XREF operand 
includes a module map, both XREF and MAP cannot be specified for a 
particular LINK command. 

NOXREF specifies that a cross-reference listing is not to be produced. This 
is the default value if both XREF and NOXREF are omitted. 

REUS specifies that the load module is to be marked serially reusable if the 
input load module was reenterable or serially reusable. The RENT and 
REUS operand are mutually exclusive. The REUS operand must not be 
specified if the OVL Y or TEST operands are specified. 

NOREUS specifies that the load module is not be be marked reusable. This 
is the default value if both REUS and NOREUS are omitted. 

REFR specifies that the load module is to be marked refreshable if the 
input load module was refreshable and the OVL Y operand was not 
specified. 

NOREFR specifies that the load module is not to be marked refreshable. 
This is the default value if both REFR and NOREFR are omitted. 

SCTR specifies that the load module created by the linkage editor can be 
either scatter loaded or block loaded. If you specify SCTR, do not specify 
OVLY. 

NOSCTR specifies that scatter loading is not permitted. This is the default 
value if both SCTR and NOSCTR are omitted. 

OVLY specifies that the load module is an overlay structure and is therefore 
suitable for block loading only. If you specify OVLY, do not specify 
SCTR. 

NOOVL Y specifies that the load module is not an overlay structure. This is 
the default value if both OVLY and NOOVLY are omitted. 

RENT specifies that the load module is marked reenterable provided the 
input load module was reenterable and that the OVL Y operand was not 
specified. 

NORENT specifies that the load module is not marked reenterable. This is 
the default value if both RENT and NORENT are omitted. 

SIZE(integerl,integer2) specifies the amount of real storage to be used by 
the linkage editor. The first integer (integerl) indicates the maximum 
allowable number of bytes. Integer2 im;licates the number of bytes to be 
used as the load module buffer, which is the real storage area used to 
contain input and output data. If this operand is omitted, SIZE defaults to 
the size specified at system generation (SYSGEN). 

162 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



NE specifies that the output load m()dule cannot be processed again by the 
linkage editor or loader. The linkage editor will not create an external 
symbol dictionary. If you specify either MAP or XREF, this operand is 
invalid. 

NONE specifies that the output load module can be processed again by the 
linkage editor and loader and that an external symbol dictionary is 
present. This is the default value if both NE and NONE are omitted. 

OL specifies that the output load module can be brought into real storage 
only by the LOAD macro instruction~ 

NOOL specifies that the load module-is not restricted to the use of the 
LOAD macro instruction for loading into real storage. This is the default 
value if both OL and NOOL are· omitted. 

De specifies that)the output module can be reprocessed by the linkage 
editor (E). 

NODe specifies that the load module cannot be reprocessed by the linkage 
editor (E). This is the default if both DC and NODC are omitted. 

TEST specifies that the symbol tables created by the assembler and 
contained in the input modules are. to· be placed into the output module. 

NOTEST specifies that no symbol table is to be retained in the output load 
module. This is the default value if both TEST and NOTEST are omitted. 

TERM specifies that you want error messages directed to your terminal as 
well as to the PRINT data set. This is the default value if both TERM and 
NO TERM are omitted. 

NOTERM specifies that you want error messages directed only to the PRINT 

data set and not to your terminal. 

DeBS(block.size) specifies the blocksize of the records contained in the 
output load module. The "blocksize" must be an integer. 

AC(authorization-code) specifies an authorization code (0-255) used to 
maintain data security. 

Example 1 

Operation: Combine three object modules into a single load module. 

Known: 
The names of the object modules in the sequence that the modules must 

be in: TPB05.GSALESA.OBJ TPB05.GSALESB.OBJ TPB05.NSALES.OBJ 

You want all ~f the linkage editor listings to be produced and directed to 
your terminal. 

The name for the output load module: 
TPB05.SALESRPT.LOAD(TEMPNAME) 

link (gsalesargsalesb,nsales) load(salesrpt) print(*) -
xref list 

LINK Command 163 



Exampie 2 

Operation: Create a load module from an ()bject module, an existing load 
module, and a standard processor library. 

Known: 
The name of the object module: VACID.M33THRUS.OBJ 

The name of the existing load·module: VACID.M33PAYLD.LOAD(MODl) 

The name of the standard processor library used for resolving external 
references in the object module: SYS1.PLILIB 

The entry name of the load module is MOD2. 

The alias name of the load module is MOD3. 

The name of the output load moduie: VACID.M33PERFO.LOAD(MOD2) 

link(m33thrus,*) load(m33perfo(mod2» print(*) -
plilib map list 

Choosing Id2 as a filename to be associated with the existing load module, 
the listing at your terminal will be: 

allocate dataset(m33payld.load) file(ld2) 
link (m33thrus,*) load(m33perfo(mod2) print(*) -

plilib map list 
IKJ76080A ENTER CONTROL STATEMENTS 

include ld2(mod1) 
entry mod2 
alias mod3 
(null line) 

IKJ761111 END OF CONTROL STATEMENTS 

164 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LISTAJLC Conunand 

Use the LIST ALC command to obtain a list containing both the names of 
the data sets allocated by you and the names of the data sets temporarJy 
allocated by previous TSO command processors. Also, this command 
specifies the number of data sets that the system will allow to be allocated 
to you dynamically. Included in the number of data sets that the system will 
allow a user to allocate dynamically, are data sets that had been previously 
allocated for temporary use by a command processor. 

{
LiSTALC} 
LlSTA 

[STATUS] 

[HISTORY] 

[MEMBERS] 

[SYSNAMES] 

Note: The LIST ALC command without operands will produce a list of all 
data set names (including those that are not partitioned) which have either 
been allocated by you or temporarily allocated by previous TSO command 
processors. This list includes terminal data sets, indicated by the word 
"TERMINAL" and also attr-list-names created by the A TTRIB command, 
indicated by the word "NULLF~LE". 

STATUS specifies that you want information 'about the status of each data 
set. This operand provides you with: 

• The data definition name (DDNAME) for the data set allocated and 
the attr-list-names created by the ATTRIBcommand. 

• The scheduled and conditional dispositions of the data set. The 
keywords denoting the dispositions are CATLG, DELETE, KEEP and 
UNCATLG. The scheduled disposition is the 'normal disposition and, 
precedes the conditional disposition when listed. The conditional 

, disposition takes effect if an abnormal termination occurs. CATLG 
means that the data set is retained and its name is in the system 
catalog. DELETE means that references to the data set are to be 
removed from the system and the space occupied by the data set is to 
be released. KEEP means that the data set is to be retained. UNCA TLG 
means that the data set name is removed from the catalog but the 
data set is retained. 

HISTORY specifies that you want to obtain information about the history of 
each data set. This operand provides you with: 

• The creation date. 
• The expiration date. 
• An indication as to whether or not the data set has password 

protection (Non-vsAM only). 

L1STALC Command 165 



The data set orgarJzation (DSORG). The listing will contain: 

PS for sequential 
PO for paritioned 
IS for indexed sequential 
D A for direct access 
VSAM for VSAM data entries 
** for unspecified 
?? for any other specification 

Note: Use the LISTCAT command for further information pertaining to 
VSAM data entries. 

MEMBERS specifies that you want to obtain the library member names of 
each partitioned data set having your user's identification as the leftmost 
qualifier of the data set name. Aliases will be included. 

SYSNAMES specifies that you want to obtain the fully qualified names of 
data sets having system-generated names. 

Example 1 

Operation: Obtain a list of the names of all the data sets allocated to you. 

listalc 

Example 2 

Operation: Obtain a list of the names of all the data sets allocated to you. 
At the same time obtain the creation date, the expiration date, password 
protection, and the data set organization for each data set allocated to 
you. 

lista history 

Example 3 

Operation: Obtain all available information about the data sets allocated to 
you. 

lista members history status sysnames 

166 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



The output at your terminal will be similar to the following listing: 

listalc mem status sysnames history 

--DSORG--CREATED--EXPIRES---SECURITY---DDNAME---DISP 

RRED95.ASM 
PS 00/00/00 00/00/00 WRITE EDTDUMYl KEEP 

RRED95.EXAMPLE 
PO 00/00/00 00/00/00 PROTECTED EDTDUMY2 KEEP,KEEP 

--MEMBERS--
MEMBERl 
MEMBER2 

SYS70140.T174803.RVOOO.TSOSPEDT.ROOOOOOl 

** 00/00/00 00/00/00 NONE SYSUTl 

ALLOCATION MUST BE FREED BEFORE RESOURCES CAN BE 
RE-USED 

EDTDUMY3 
SYSIN 
SYSPRINT 

READY 

Example 4 

DELETE 

Operation: List the names of all your active attribute lists (allocated with 
ATTRIB command). 

lista status 

The output at your terminal will be similar to the following listing: 

lista status 
--DDNAME---DISP-­
SYS1.LPALIB2 

STEPLIB KEEP 
SYS1.UADS 

SYSUADS KEEP 
SYS1.BRODCAST 

SYSLBC KEEP 
TERMFILE SYSIN 
TERMFILE SYSPRINT 
*SYS1.HELP 

SYS00005 KEEP,KEEP 
D95BAB1.SEPT30.ASM 

SYS00006 KEEP,KEEP 
NULLFILE A· 
NULLFILE B 
READY 

LlSTALC Command 167 



168 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LISTBC Command 

Use the LISTBC command to obtain a listing of the contents of the 
SYS1.BRODCAST data set. The SYS1.BRODCAST data set contains messages 
of general interest (NOTICES) that are sent from the system to all terminals 
and messages directed to a particular user (MAIL). The system deletes MAIL 

messages from the data set after they have been sent. NOTICES must be 
deleted explicitly by the operator. 

{
lISTBC} 
lISTB [

MAIL ] 
NOMAIL 

[
NOTICES ] 
NONOTICES 

MAIL specifies that you want to receive the messages from the broadcast 
data set that are intended specifically for you. This is the default value if 
both MAIL and NOMAIL are omitted. 

NOMAll. specifies that you do not want to receive messages intended 
specifically for you. 

NOTICFS specifies that you want to receive the messages from the 
broadcast data set that are intended for all users. This is the default 
value if both NOTICES and NONOTICES are omitted. 

NONOTICFS specifies that you do not want to receive the messages that are 
intended for all users. 

Example 1 

Operation: Specify that you want to receive all messages. 

listbc 

Example 2 

Operation: Specify that you want to receive only the messages intended for 
all terminal users. 

listbc nomail 

LISfBC Command 169 



170 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LISTCAT Command 

The LISTCA T command is used to list entries from a catalog. The entries 
listed can be selected by name or entry type, and the fields to be listed for 
each entry can additionally be selected. 

For MVS, the original TSO LISTCA T command has been replaced by an 
Access Method Services command of the same name. The explanations 
below provide the information required to use these services for normal TSO 

operations. The TSO user who wants to manipulate VSAM objects or to use 
the other Access Method Services from the terminal should refer to OS/VS2 
Access Method Services. For error message information, see OS/VS Message 
Library: VS2 System Messages. 

The LISTCA T command supports unique operand abbreviations in 
addition to the usual abbreviations produced by truncation. The syntax and 
operand explanations show these unique cases. 

Note: When LISTCA T is invoked and no operands are specified, the userid 
or the prefix specified by the PROFILE command becomes the highest level 
of entryname qualification. Only those entries associated with the userid are 
listed. 

LISTCAT Command 171 



{
LiSTCAT} 
LlSTC 

[CATALOG(catname [/password] )] 

-[OUTFI LE(ddname~ 
OFI LE(ddname) J 
r ENTR I ES(entryname [/password] [ .. .] ) 1 

l{LEVELOeVel)} J 
LVL(level) 

[CLUSTER] 

[DATA] 

[:~DEX] 

[
SPACE] 
SPC 

[
NONVSAM] 
NVSAM 

[
USE RCATALOG] 
UCAT 

[
GENERATIONDATAGROUP] 
GDG 

[
PAGESPACE] 
PGSPC 

[ALIAS] 

[CREATION(days)] 

[EXPI RATION(days)] 

[

ALL ] NAME 
VOLUME 
ALLOCATION 
HISTORY 

CATALOG(catname(/password)) specifies the name of the catalog that 
contains the entries that are to be listed. When CATALOG is coded, only 
entries from that catalog are listed. 

catname is the name of the catalog. 

password specifies the read level or higher level password of the catalog 
that contains entries to be listed. When the entries to be listed contain 
information about password-protected data sets, a password must be 
supplied either through this parameter or through the ENTRIES 

parameter. If passwords are to be listed, you must specify the master 
password. 

OUTFILE(ddname) or OFILE(ddname) specifies a data set other than the 
terminal to be used as an output data set. The ddname may correspond 
to the name specified for the FILE operand of the ALLOCATE command. 
The data can be listed when the file is freed. The ddname identifies a DD 

statement that in turn identifies the alternate output data set. If OUTFILE 

is not specified, the entries are listed at the terminal. 

172 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



ENTRIEs(entrynamel/password]) I LEVEL(level) specifies the names of the 
entries to be listed. If neither ENTRIES nor LEVEL is coded, only the 
entries associated with the user's userid are listed. See OS/VS2 Access 
Method Services. 

ENTRIEs(entry[/passwordll ••• J) specifies the names or generic names of 
entries to be listed. Entries that contain information about catalogs can 
be listed only by specifying the name of the master or user catalog as the 
entry name. The name of a data space can be specified only when SPACE 
is the only type specified. If a volume serial number is specified, SPACE 
must be specified. 

Note: A qualified name may be made into a generic name by substituting 
an asterisk (*) for one qualifier. For example, A. * specifies all two-qualifier 
names that have A as first qualifier; A.*.C specifies all three-qualifier names 
that have A for first qualifier and C for third qualifier. 

password specifies a password when the entry to be listed is password 
protected and a password was not specified through the CATALOG 
parameter. The password must be the read or higher level password. If 
protection attributes are to be listed, you must supply the master 
password; if no password is supplied, the operator is prompted for each 
entry's password. Passwords cannot be specified for non~VsAM data sets, 
aliases, generation data groups, or data spaces. 

LEVEL(level) or LVL(leveI) specifies the level of entry names to be listed. 

CLUSTER specifies that cluster entries are to be listed. When the only entry 
type specified is CLUSTER, entries for data and index components 
associated with the clusters are 'not listed. 

DATA specifies that entries for data components, excluding the data 
component of the catalog, are to be listed. If a cluster's name is specified 
on the ENTRIES parameter and DATA is coded, only the data-component 
entry is listed. 

INDEX or IX specifies that entries for index components, excluding the index 
component of the catalog, are to be listed. When a cluster's name is -
specified on the ENTRIES parameter and INDEX is coded, only the 
index -component entry is listed. 

SPACE or SPC specifies that entries for volumes containing data spaces 
defined in this catalog are to be listed. Candidate volumes are included. 
If entries are identified by entryname or level, SPACE can be coded only 
when no other entry-type restriction is coded. 

NONVSAM or NVSAM specifies that entries for non-VSAM data sets are to be 
listed. When a generation data group's name and NONVSAM are 
specified, the generation data sets associated with the generation data 
group are listed. 

USERCATALOG or UCAT specifies that entries for user catalogs are to be 
listed. USERCAT ALOG is applicable only when the catalog that contains 
the entries to be listed is the master catalog. 

GENERATIONDATAGROUP or GOG specifies that entries for generation data 
groups are to be listed. 

PAGESPACE or PGSPC specifies that entries for page spaces are to be listed. 

ALIAS specifies that entries for alias entries are to be listed. 

LISTCAT Command t 73 



CREA TION(days) specifies that entries are to be listed only if they were 
created no later than that number of days ago. 

EXPIRATION(days) specifies that entries are to be listed only if they will 
expire no later than the number of days from now. 

ALL/NAME/VOLUME/ ALLOCATION/HISTORY specifies the fields to be 
included for each entry listed. If no value is coded, NAME is the default. 

ALL specifies that all fields are to be listed. 

NAME specifies that the names of the entries are to be listed. The default 
will be NAME. 

VOLUME specifies that the name, entry type, volume serial numbers and 
device types allocated to the entries are to be listed. Volume information 
is not listed for cluster entries (although it is for the cluster's data and 
index entries), aliases, or generation data groups. 

ALLOCATION specifies that the information provided by specifying VOLUME 

and detailed information about the allocation are to be listed. The 
information about allocation is listed only for data and index component 
entries. 

HISTORY specifies that the name, owner identification, creation date, and 
expiration date of the entries are to be listed. 

ii4 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LIS11)S Conunand 

Use the LISTDS command to have the attributes of specific data sets 
displayed at your terminal. You can obtain: 

• The volume identification (vaLID) of the volume on which the data 
set resides. A volume may be a disk pack or a drum. 

• The logical record length (LRECL), the blocksize (BLKSIZE) and for 
non-VSAM data sets, the record format (RECFM) of the data set. 

• The data set organization (DSORG); VSAM for VSAM data entries. 

The data set organization is indicated as follows: 

PS fors~ential 
po for partitioned 
IS for indexed sequential 
DA for direct access 
VSAM for VSAM data entries 
** for unspecified 
?? for any other specification 

Note: Use the LISTCAT command for further information on a VSAM data 
entry. 

• Directory information for members of partitioned data sets if you 
specify the data set name in the form data set name(membername}. 

• Creation date, expiration date, and, for non-VSAM only, security 
attributes. 

• File name and disposition. 
• Non-VSAM data set control blocks (DSCB). 

{
LlSTDS} 
LlSiD 

(data-set-I ist) 

[STATUS] 

[HISTORY] 

[MEMBERS] 

[LABEL] 

[CATALOG(cat.-name)] 

[LEVEL] 

(data-set-list) specifies one or more data set names. This operand identifies 
the data sets that you want to know more about. Each data set specified 
must be currently allocated or available from the catalog, and must reside 
on a currently active volume. The names in the data set list may contain 
a single asterisk in place of any level except the first. When this is done, 
all cataloged data sets whose names begin with the specified qualifiers 
are listed. For example, A.*.C specifies all three-qualifier names that have 
A for first qualifier and C for third qualifier. 

STATUS specifies that you want the following additional information: 

• The (DDNAME) currently associated with the data set. 

LISTDS Command 175 



• The currently scheduled data set disposition and the conditional 
disposition. The keywords denoting the dispositions are CA TLG, 
DELETE, KEEP, and UNCATLG. The scheduled disposition is the 
normal disposition and precedes the conditional disposition when 
listed. The conditional disposition takes effect if an abnormal 
termination occurs. CATLG meanS ,that the data set is cataloged. 
DELETE means that the data set is to be removed. KEEP means that 
the data set is to be retained. UNCA TLG means that the name is 
removed from the catalog but the data set is retained. 

ffiSfORY specifies that you want to obtain the creation and expiration 
dates for the specified data'sets and to find out whether or not the 
non-VSAM data sets are password-protected. 

MEMBERS specifies that you want a list of all the members of a partitioned 
data set including any aliases. 

LABEL specifies that you want to have the entire data set control block 
(DSCB) listed at your terminal. This operand is applicable only to 
non-VSAM data sets on direct access qevices. The list will be in 
hexadecimal notation. 

CATALOG .- specifies the user catalog that contains the names in the data set 
list. CATALOG is required only if the names are in a catalog other than 
STEPCAT or the catalog implied by the first-level qualifier of the name. 

LEVEL specifies that the names in the data set list are to be high-level 
qualifiers. All cataloged data sets whose names begin with the specified 
qualifiers are listed. H LEVEL is specified, the names cannot contain 
asterisks .. 

Example 

Operation: List the basic attributes of a particular data set. 

Known: 
The data set name: ZALD58.CIR.OBJ 

listds cir 

The listing produced at your terminal will be similar to the listing shown 
below. 

listds cir 

ZALD58.CIR.OBJ 
--RECFM-LRECL-BLKSIZE-DSORG 

FB 80 80 PS 

--VOLUMES--
D95LIB 

READY 

176 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LOAD GO Command 

Use the LOADGO command to load a compiled or assembled program into 
real storage and begin execution. 

The LOAD GO command will load object modules produced by a compiler 
or assembler, and load modules produced by the linkage editor. (If you 
want to load and execute a single load module, the CALL command is more 
efficient.) The LOAD GO command will also search a call library (SYSLIB) or 
a resident link pack area, or both, to resolve external references. 

The LOAD GO command invokes the system loader to accomplish this 
function. The loader combines basic editing and loading services of the 
linkage editor' and program fetch in one job step. Therefore, the load 
function is equivalent to the link edit and go function. 

The LOADGO command does not produce load modules for program 
libraries, and it does not process linkage editor control statements such as 
INCLUDE, NAME, OVERLAY, etc. 

{
LOADGO} 
LOAD 

(data-set-list) 

[ 'parameters'] 

[
PRINT ({:ata-set-name})] 
NOPRINT 

[LI B(data-set-lisd] 

[PLI LIB] 

[PLIBASE] 

[PLlCMIX] 

[FORTLlB] 

[COBLlB] 

[
TERM ] 
·NOTERM 

[
RES ] 
NORES 

[
MAP ] 
NOMAP 

[
CALL ] 
NOCALL 

r. E..... -

L~O~ET J 
[SIZE(integer)] 

[EP(entry-name) ] 

[NAM E (program-name)] 

WAOOO Command 177 



(data-set-Ust) specifies the names of one or more object modules and/or 
load modules to be loaded and executed. The names may be data set 
names, names of members of partitioned data sets, or both (see the data 
set naming conventions). When you specify more than one name, the 
names must be enclosed within parentheses and separated from each 
other by a standard delimiter (blank or comma). 

'parameters' specifies any parameters that you want to pass to the program 
to be executed. 

PRINT(data-set-name or *) specifies the name of the data set that is to 
contain the listings produced by the LOADGO command. If you omit the 
data set name, the generated data set will be named according to the 
data set naming conventions. You may substitute an asterisk (*) for the 
data set name if you want to have the listings displayed at your terminal. 
This is the default if you specify the MAP operand. 

NOPRINT specifies that no listings are to be produced. This operand 
negates the MAP operand. This is the default value if both PRINT and 
NO PRINT are omitted, and you do not use the MAP operand. 

TERM specifies that you want any error messages directed to your terminal 
as well as the PRINT data set. This is the default value if both TERM and 
NOTERM are omitted. 

NOTERM specifies that you want any error messages directed only to the 
PRINT data set. 

LIB(data set list) specifies the names of one or more library data sets that 
are to be searched to find modules referred to by the module being 
processed (that is, to resolve external references). 

PLILIB specifies that the partitioned data set named SYSl.PLlLIB is to be 
searched to locate load modules referred to by the module being 
processed. 

PLIBASE specifies that the partitioned data set named SYS 1.PLIBASE is to be 
searched to locate load modules referred to by the module being 
processed. 

PLICMIX specifies that the partitioned data set named SYSl.PLICMIX is to 
be searched to locate load modules referred to be the module being 
processed. 

COBLIB specifies that the partitioned data set named SYSl.COBLIB is to be 
searched to located load modules referred to by the module being 
processed. 

FORTLIB specifies that the partitioned data set named SYSl.FORTLIB is to 
be searched to located load modules referred to by the module being 
processed. 

RES specifies that the link pack area is to be searched for load modules 
(referred to by the module being processed) before the specified libraries 
are searched. This is the default value if both RES and NORES are 
omitted. If you specify the NOCALL operand the RES operand is invalid. 

NORES specifies that the link pack area is not to be searched to locate 
modules referred to by the module being processed. 

M..o\P specifies that a list of external names and their real storage addresses 
are to be placed on the PRINT data set. This operand is ignored when 
NO PRINT is specified. 

178 OS/VS2 TSO Command Language Referenc~ (VS2 Release 3.7) 



NOMAP specifies tha.t external names and addresses are not to be contained 
in the PRINT data set. This is the default value if both MAP and NOMAP 

are omitted. 

CALL specifies that the data set specified in the LIB operand is to be 
searched to located load modules referred to by the module being 
processed. This is the default value if both CALL and NO CALL are 
omitted. 

NOCALL specifies that the data set specified by the LIB operand will not be 
searched to locate modules that are referred to by the module being 
processed. The RES operand is invalid when you specify this operand. 

LET specifies that execution is to be attempted even if a severity 2 error 
should occur. (A severity 2 error indicates that execution may be 
impossible. ) 

NOLET specifies that execution is not to be attempted if a severity 2 error 
should occUr. This is the default value if both LET and NOLET are 
omitted. 

SIZE(integer) specifies the size, in bytes, of dynamic real storage that can 
be used by the loader. If this operand is not specified, then the size 
defaults to the size specified at System Generation (SYSGEN). 

EP(entry-name) specifies the external name for the entry point to the 
loaded program. You must specify this operand if the entry point of the 
loaded program is in a load module. 

NAME(program-name) specifies the name that you want assigned to the 
loaded program. 

Example 1 

Operation: Load and execute an object module. 

Known: 
The name of the data set: SHEPD58.CSINE.OBJ 

load csine print(*) 

Example 2 

Operation: Combine an object module and a load module, and then load 
and execute them. 

Known: 
The name of the data set containing the object 
module: LARK.HINDSITE.OBJ 

The name of the data set containing the load 
module: LARK.THERMOS.LOAD(COLD) 

load (hindsite thermos(cold)) print(*) 
lib( 'sys1.sortlib') 
nores map size(44k) ep(start23) name(thermsit) 

LOADGO Command 179 



180 OS/VSl TSO Command Language Reference (VSl Release 3.7) 



LOGOFF Command 

Use the LOGOFF command to terminate your terminal session. When you 
enter the LOGOFF command, the system frees all the data sets allocated to 
you; data remaining in main storage will be lost. 

I Note: If you intend to enter the LOGON. command immediately to begin a 
new session using different attributes, you are not required to LOGOFF. 

Instead, you can just enter the LOGON command as you would enter any 
other command. 

LOGOFF 
[

DISCONNECT] 
HOLD 

DISCONNECT specifies that the line is to be disconnected following logoff. 
This is the default if no operand is specified. 

HOLD specifies that the line is not to be disconnected following logoff. 

* 

Example 1 

Operation: Terminate your terminal session. 

logoff 

LOGOFF Command 181 



182 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LOGON Command 

Use the LOGON command to initiate a terminal session. Before you can use 
the LOGON command, your installation must provide you with certain basic 
information. 

• Your user identification (1-7 characters) and, if required by your 
installation, a password (1-8 alphameric characters). 

• An account number (may be optional at your installation). 
• A procedure name (may be optional at your installation). 

You must supply this information to the system by using the LOGON 

command and 6J;lerands. The information that you enter is used by the 
system to start a'nd control your time sharing terminal session. 

You can also use the operands to specify whether or not you want to 
receive messages from the system or other users. 

LOGON user-identity [Ipassword] 

[ACCT(account) ] 

[PROC(procedure) ] 

[SI ZE (integer)] 

[
NOTICES ] 
NONOTICES 

[
MAIL ] 
NOMAIL 

[PERFORM(value)] 

[R ECON N ECT] 

user-identity and password specifies your user identification and, if required, 
a valid password. Your user identification must be separated from the 
password by a slash (I) and, optionally, one or more standard delimiters 
(tab, blank, or comma). Your identification and password must match 
the identification contained in the system's User Attribute Data Set 
(UADS). If you omit any part of this operand, the system will prompt 
you to complete the operand. (Printing is suppressed for some types of 
terminals when you respond to a prompt for a password.) 

ACCT(account) specifies the account number required by your installation. 
If the UADS contains only one account number for the password that 
you specify, this operand is not required. If the account number is 
required and you omit it,· the system will prompt you for it. 
For TSO, an account number must not exceed 40 characters, and must 
not contain a blank, tab, quotation mark, apostrophe, semicolon, comma, 
or line control character. Right parentheses are permissible only when 
left parentheses balance them somewhere in the account number. 

PROC(procedure-name) specifies the name of a cataloged procedure 
containing the Job Control Language (JeL) needed to initiate your 
session. 

LOGON Command 183 



SIZE(integer) specifies the maximum region size allowed for a conditional 
GETMAIN during the terminal session. The UADS contains a default value 
for your region size if you omit this operand. The UADS also contains a 
value for the maximum region size that you will be allowed. This 
operand will be rejected if you specify a region size exceeding the 
maximum region size allowed by the UADS (in this case, the UADS value 
MAXSIZE will be used). 

NOTICES specifies that messages intended for all terminal users are to be 
listed at your terminal during LOGON processing. This is the default 
value if both NOTICES and NONOTICES are omitted. 

NONOTICES specifies that you do not want to receive the messages 
intended for all users. 

MAIL specifies that you want messages intended specifically for you to be 
displayed at your terminal. This is the default value if both MAlL and 
NOMAlL are omitted. 

NOMAIL specifies that you do not want to receive messages intended 
specifically for you. 

PERFORM(vaiue) specifies the performance group to be used for the 
terminal session. The value must be an integer from 1-255. The 
performance group entered must be defined for you in the User Attribute 
Data Set (UADS). The default value is performance group 2. 

RECONNECT specifies that you want to re-Iogon after your line has been 
disconnected. If a password was specified in the disconnected session, 
the same password must be specified with the RECONNECT option. Any 
operands other than userid and password will be ignored if RECONNECT 

is specified. 

Example 1 

Operation: Initiate a terminal session. 

Known: 
Your user identification and password: WRRID/23XA$MBT 

Your installation does not require an account number or procedure name 
for LOGON. 

logon wrrid/23xa$mbt 

Example 1 

Operation: Initiate a terminal session. 

Known: 
Your user identification and password: WRRID/MO@ 

Your account number: 288104 
The name of a cataloged procedure: TS951 
You do not want to receive messages: 
Your real storage space requirement: 90K bytes 

logon wrrid/mo@ acct(288104) proc(ts95 1 )­
size(90) nonotices nomail 

]84 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



PROFILE Command 

Use the PROFILE command or subcommand of EDIT to establish, change, or 
list your user profile; that is, to tell the system how you want to use your 
terminal. You can: 

• Define a character-deletion or line-deletion control character. 
• Specify whether or not prompting is to occur. 
• Specify the frequency of prompting under the EDIT command. 
• Specify whether or not you will accept messages from other terminals. 
• Specify whether or not you want the opportunity to obtain additional 

information about messages from a command procedure. 
• Specify whether or not you want message numbers for diagnostic 

messages that may be displayed at your terminal. 

Note: The s-yntax-and function of the PROFILE subcommand of EDIT is the 
same as that of PROFILE. 

Initially, a user profile is prepared for you when arrangements are made 
for you to use the system. The authorized system programmer creates your 
userid and your user profile. The system programmer is restricted to 
defining the same user profile for every userid that he creates. This 
"typical" user profIle is defined when a User ProfIle Table (UPT) is 
initialized to hexadecimal zeroes for any new userid. Thus, your initial user 
profile is made up of the default values of the operands discussed under this 
command. The system defaults shown in Figure 11 provide for the 
character-delete and the line-delete control characters depending upon what 
type of terminal is involved: 

TSO Terminal 
Character-Delete Line-Delete 

Control Character Control CIuncter 

IBM 2741 Communication Terminal BS (backspace) ATTN (attention) 

IBM 1052 Printer-Keyboard BS (backspace) 
_. 

IBM 2260 Display Station None None 

IBM 2265 Display Station None None 

IBM 3270 Information Display System None None 

Teletype* Model 33 ** ** 

Teletype* Model 35 ** ** 

.. Trademark of Teletype Corporation . 

.. Refer to the publication OSIMVT and OSIVS2 TSO Terminals.. 

Figure 1 i. System Defauits ior Control Characters 

Note: If deletion characters, prompting, and message activity are not what 
you expect, check your profile by displaying it with LIST operand. 

Change your profile by using the PROFILE command with the 
appropriate operands. Only the characteristics that you specify explicitly by 
operands will change; other characteristics remain unchanged. The new 
characteristics will remain valid from session to session. You must specify at 
least one operand or the system will ignore the command 

PROFILE C~ 185 



{
PROFILE} 
PROF 

[

CHAR ( ta~~cter})] 

NOCHAR 

l
r-UNE('{I ATTN \}\)""'j 

character 
CTLX 

NOLINE 

[
PROMPT ] 
NOPROMPT 

[
INTERCOM ] 
NOINTERCOM 

[
PAUSE ] 
NOPAUSE 

[
MSGID ] 
NOMSGID 

[
MODE ] 
NOM ODE 

[LIST] 

[
PREFIX(dSname-prefiX)] 
NOPREFIX 

[
WTPMSG ] 
NOWTPMSG 

CHAR (character) specifies the EBCDIC character that you want to use to tell 
the system to delete the previous character entered. You should not 
specify a blank, tab, comma, asterisk, or parentheses because these 
characters are used to enter commands. You should not specify 
terminal-dependent characters which do not translate to a valid EBCDIC 

character. 

Note: Do not use an alphabetic character as either a character-delete or a 
line-delete character. If you do, you run the risk of not being able to enter 
certain commands without accidentally deleting characters or lines of data. 
For instance: if you specify R as a character-delete character, each time you 
tried to enter a PROFILE command t~e R in PROFILE would delete the P 
that precedes it. Thus it would be impossible to enter the PROFILE 

command as long as R was the character-delete control character. 

CHAR(BS) specifies that a backspace signals that the previous character 
entered should be deleted. This is the default value set when your user 
profile was created. 

NOCHAR specifies that no control character is to be used for character 
deletion. 

LINE (character) specifies a control character that you want to use to tell the 
system to delete the current I1ne. 

186 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LINE(A TIN) specifies that an attention interruption is to be interpreted as a 
line-deletion control character. This is the default value set when your 
user profile was created. 

Note: If an invalid character and/or line delete control character is entered 
on the PROFILE cOllunand, an error message will Lrtform the user whjch 
specific control character is invalid; the character or line delete field in the 
User Profile Table will not be changed. You may continue to use the old 
character or line delete control characters. 

LINE(CTLX) specifies that the X and CCTRL keys (depressed together) on a 
teletype terminal are to be interpreted as a line-deletion control 
character. This is the default value set when your user profile was 
created, if you are operating a teletype terminal. 

NOLINE specifid that no line-deletion control character ·(including ATTN) is 
recognized. 

PROMPT specifies that you wantthe system to prompt you for missing 
information. This is the default value set when your user profile was 
created. 

NOPROMPT specifies that no prompting is to occur. 

INTERCOM specifies that you are willing to receive messages from ether 
terminal users. This is the default value set when your user rtfytile was 
created. 

NOINTERCOM specifies that you do not want to receive messages 
other terminals. 

PAUSE specifies that you want the opportunity to obtain additional 
information when a message is issued at your terminal while a command 
procedure (see the EXEC command) is executing. After a message that 
has additional levels of information is issued, the system will display the 
word PAUSE and wait for you to enter a question mark (?) or a carrier 
return. 

NOPAUSE specifies that you do not want prompting for a question mark or 
carrier return. This is the default value when your user profile was 
created. 

MSGID specifies that diagnostic messages are to include message identifiers. 

NOMSGID specifies that diagnostic messages are not to include message 
identifiers. This is the default value set when your user profile was 
created. 

LIST specifies that the characteristics of the terminal user's profile be listed 
at the terminal. If other operands are entered with LIST, the 
characteristics of the user's profile will be changed first, and then the 
new profile will be listed. 

Note: After a new userid is ~reated and before the character-delete and/or 
line-delete control character is changed, entering PROFILE LIST will result in 
CHAR(O) and LINE(O) being listed. This indicates that the terminal defaults 
for character-delete and line-delete control characters will be used. 

MODE specifies that a mode message is requested at the completion of each 
subcommand of EDIT. 

PROFILE Conunand 187 



I 
I NOMODE specifies that, when this mode is in effect, the mode message (E 

or EDIT) will be issued after a SAVE, RENUM or RUN subcommand is 
issued and also when changing from input to edit mode. 

PREFIX(dsname-prefix) specifies a prefix which will be appended to all 
non-fully qualified dsnames. The prefix is composed of 1-7 alphameric 
characters that begin with an aiphabetic or nationai character. 

NOPREFIX specifies no prefixing of dsnames by any qualifier will be 
performed. 

Note: The default prefix in the foreground is the userid. No prefixing of 
data set names is the default in the background. 

WTPMSG specifies that the user wishes to receive all write to programmer 
messages at his terminal. 

NOWTPMSG specifies that the user does not want to receive write to 
programmer messages. This is the default if neither operand is specified. 

Example 1 

Operation: Establish a complete user profile 

Known: 
The character that you want to use to tell the system to delete the 

previous character: # 
The indicator that you want to use to tell the system to delete the 

current line: ATTN. 

You want to be prompted. 
You do not want to receive messages from other terminals. 
You want to be able to get second level messages while a command 

procedure is executing. 
You do not. want diagnostic message identifiers. 

profile char(#) line(attn) prompt nointercom pause 
nomsgid 

Example 2 

Operation: Suppose that you have established the user profile in Example 
1. The terminal that you are using now does not have a key to cause an 
attention interrupt. You want to change the line delete control character . 
from A TIN to @ without changing any other characteristics. 

PROF LINE(@) 

188 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Example 3 

Operation: Establish and use a line-deletion character and a 
character-deletion character. 

Known: 
The line-deletion character: & 
The character-deletion character: ! 

profile line(&) char(!) 

Now, if you type: 

now is the ti&ac!bcg!. 

and press the carrier return key, you will actually enter: 

abc. 

PROFILE Command 189 



190 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



PROTECT Command 

Use the PROTECT command to prevent unauthorized access to your 
nOn-YSAM data set. (Use the Access Method Services ALTER and DEFINE 

commands to protect your VSAM data set. These commands are described 
in OS/VS Access Method Services.) This command establishes or changes: 

• The passwords that must be specified to gain access to your data. 
• The type of access allowed. 

Data sets that have been allocated (either during a LOGON procedure or 
via the ALLOCATE command) cannot be protected by specifying the 
PROTECT comm,and. To password-protect an allocated data set, you would 
have to de-allocate it via the FREE command before you could protect it via 
the PROTECT command. 

Passwords 

You may assign one or more passwords to a data set. Once assigned, the 
password for a data set must be specified in order to access the data set. A 
password consists of one through eight alphameric characters. You are 
allowed two attempts to supply a correct password. 

Types of Access 

Four operands determine the type of access allowed for your data set. They 
are PWREAD, PWWRITE, NOPWREAD, NOWRITE. 

Each operand, when used alone, defaults to one of the preceding types 
of access. The default values for each operand used alone are: 

OPERAND DEFAULT VALUE 

PWREAD 

NOPWREAD 

PWWRITE 

NOWRITE 

PWREAD 

NOPWREAD 

NOPWREAD 

PWREAD 

PWWRITE 

PWWRITE 

PWWRITE 

NOWRITE 

A combination of NOPWREAD and NOWRITE is not supported and will 
default to NOPWREAD and PWWRITE. 

is: 
If you specify a password but do not specify a type of access, the default 

• NOPWREAD PWWRITE if the data set does not have any existing 
access restrictions. 

• The existing type of access if a type of access has already been 
established. 

When you specify the REPLACE function of the PROTECT command the 
default type of access is that of the entry being replaced. 

. PROTECT Command 191 



{PROTECT~ ,PROT , 
data-set-name 

fADD (password 2) 
REPLACE (password 1 
DELETE (password 1) 

LUST (password 1) 

[
PWREAD ] 
NOPWREAD 

[
PWWRITE] 
NOWRITE 

(DATA('stringf) ] 

data-set-name specifies the name of the data set that will be subject to the 
functions of this command. 

NoIe: H the data set is not cataloged, the user must specify the fully 
qualified name. For example: 

protect 'userid.dsn.qual' list(password) 

ADD(~) specifies that a new password is to be required for access 
to the named data set. This is the default value if ADD, REPLACE, 

DELETE, and LIST are omitted. 
H the data set exists and is not already protect by a ~ord, its 
security counter will be set and the password being assigned will be 
flagged as the control password for the data set. The security counter is 
not affected when additional passwords are entered. 

REPLA~onIl, passwonl2) specifies that you want to replace an 
existing password, access type, or optional security information. The first 
value (password 1) is the existing password; the second value 
(password2) is the new password. 

DELET~onIl) specifies that you want to delete an existing password, 
access type, or optional security information. 
H the entry being removed is the control entry (see the discussion 
following these operand descriptions), all other entries for the data set 
will also be removed. 

L~ordl) specifies that you want the security counter, the access 
type, and any optional security information in the Password Data Set 
entry to be displayed at your terminal. 

~onll specifies the existing password that you want to replace, delete, 
or have its security information listed. 

pas\'WOI'd2 specifies the new password that you want to add or to replace 
an existing password. 

PWREAD specifies that the password must be given before the data set can 
be read. 

NOPWREAD specifies that the data set can be read without using a 
password. 

PWWIUTE specifies that the password must be given before the data set can 
be written upon. 

191 OS/VSl TSO C ........ 1...aoguage Reference (VSl Relea..~e 3.7) 



NOWRITE specifies that the data set cannot be written upon. 

DATA('string') specifies optional security information to be retained in the 
system. The value that you supply for 'string' specifies the optional 
security information that is to be included in the Password Data Set 
entry (up to 77 bytes). 

Password Data Set 

Before you can use the PROTECT command, a Password Data Set must 
reside on the system residence volume. The Password Data Set contains 
passwords and security information for protected data sets. You can use the 
PROTEcr command to display this information about your data sets at your 
terminal. 

The Password Data Set contains a security counter for each protected 
data set. This counter keeps a record of the number of times an entry has 
been referred to. The counter iC) set to 'zero' at the time an entry is placed 
into the data set, and is incremented each time! the. enJry . is ae.cessed. 

Each password is stored as part of an entry in the Password Data Set. 
The first entry in the Password Data Set for each protected data set is 
called the control entry. The password from the control entry must be 
specified for each access of the data set via the PROTECT command, with 
one exception: the UST operand of the PROTECT command does not 
require the password from the control entry. 

IT you omit a required password when using the PROTECT command, the 
system will prompt you for it; and if your terminal is equipped with the 
'print-inhibit' feature, the system will disengage the printing mechanism at 
your terminal while you enter the password in response. However, the 
'print-inhibiC feature is not use if the prompting is for a new password. 

Example 1 

Operation: Establish a password for a new data set. 

Known: 
The name of the data set: ROBID.SALES.DA TA 

The password: L82GRIFN 

The type of access allowed: PWREAD PWWRITE 

The logon id was: ROBID 

protect sales.data pwread add (l82grifn) 

PROTECf COIIIID8Dd 193 



Example 2 

Operation: Replace an existing password without changing the existing 
access type. 

Known: 
The name of the data set: ROBID.NETSALES.DATA 

The existing password: MTG@AOP 

The new password: PAO$TMG 

The control password: ELHA VJ 

The logon id was: ROBID 

prot netsales.data/elhavj replace(mtg@aop,pao$tmg) 

Example 3 

Operation: Delete one of several passwords. 

Known: 
The name of the data set: ROBID.NETGROSS.ASM 

The password: LETGO 

The control password: APPLE 

The logon id was: ROBID 

prot netgross.asm/apple delete(letgo) 

Example 4 

Operation: Obtain a listing of the security information for a protected data 
set. 

Known: 
The name of the data set: ROBID.BILLS.CNTRLA 

The password required: D#JPJAM 

protect 'robid.bills.cntrla' list(d#jpjam) 

Example 5 

Operation: Change the type of access allowed .for a data set. 

Known: 
The name of the data set: ROBID.PROJCTN.LOAD 

The new type of access: NOPWREAD PWWRITE 

The existing password: DDA Y6/6 

The control password: EEYORE 

The logon id was: ROBID 

protect projctn.load/eeyore replace(dday6/6)­
nopwread pwwrite 

194 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



RENAME Command 

Use the RENAME command to: 

• Change the name of a non-VSAM cataloged data set. 
• Change the name of a member of a partitioned data set. 
• Create an alias for a member of a partitioned data set. 

Notes: 

1. The Access Method Services ALTER command changes the name of 
VSAM data sets and is described in OS/VS2 Access Method Senrices. 

2. When a password protected data set is renamed, the data set does not 
retain the password. You must use the PROTECT command to assign a 
password to the data set before you can access it. 

{
RENAME} 
REN 

old-name new-name 

[ALIAS] 

old-name specifies the name that you want to change. The name that you 
specify may be the name of an existing data set or the name of an 
existing member of a partitioned data set. 

new-name specifies the new name to be assigned to the existing data set or 
member. If you are renaming or assigning an alias to a member, you may 
supply only the member name and omit all other levels of qualification. 

I ALIAS specifies that the member name supplied for new name operand is to 
become an alias for the member identified by the old name operand. 

You can rename several data sets by substituting an asterisk for a 
qualifier in the old name and new name operands. The system will change 
all data set names that match the old name except for the qualifier 
corresponding to the asterisk's position. 

Example 1 

Operation: You have several non-VSAM data sets named: 

userid.mydata.data 

userid.yourdata.data 

userid.workdata.data 

that you want to rename: 

userid.mydata.text 

userid.yourdata.text 

userid.workdata.text 

RENAME Command 195 



you must specify either: 

rename 'userid.*.data' ,'userid.*.text' 

or 

rename *.data,*.text 

Example 2 

Operation: Assign an alias "SUZIE" to the partitioned data set member 
named "ELIZBETH(LIZ)". 

REN 'ELIZBETH(LIZ), (SUZIE) ALIAS 

196 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



RUN Command 

Use the RUN command to compile, load, and execute the source statements 
in a data set. The RUN command is designed specifically for use with 
certain program products; it selects and invokes the particular program 
product needed to process the source statements in the data set that you 
specify. Figure 12 shows which program product is selected to process each 
type of source statement. 

If your program or data set contains Then the following program product 
statements of this type (see ED IT): (or equivalent) can be used: 

ASM TSO ASM Prompter 

COBOL TSO COBOL Prompter and OS Full American 
National Standard COBOL Version 3 or Version 
4 Compiler 

FORTGI TSO FORTRAN Prompter and FORTRAN IV 
(Gil Compiler 

GO FORT Code and Go FORTRAN 

PLI PUI Checkout Compiler or 
PUI Optimizing Compiler 

VSBASIC TSO VSBASIC Prompter 

You can use the CONVERT command to convert Code and Go FORTRAN free-form 
statements to a form suitable for the FORTRAN compiler. 

Figure 12. Source Statement/Program Product Relationship 

The RUN command and the RUN subcommand of EDIT perform the same 
basic function. 

RUN Command 197 



{
RUN\ 
R J 

Note: 

data-set-name 

[ 'parameters'] r ASM [LIB(data-set-list)] 

I COBOL[LlB(data-set-list)] 
FORT [L I B (data-set-I ist)] 

I PLI [CHECK] [LI B(data-set-list)] 
I OPT 

GOFORT [FIXED] [LMSG] 
FREE SMSG 

1 

Choose 
only 
one if 

.any. 

.. 

.. VSBASIC [LPREC] [TEST ] [GO ] [STORE ] 
SPREC NOTEST ~ NOSTORE 

[
PAUSE ] [SOURCE] [SIZE(value)] 
NOPAUSE OBJECT 

data-set-name 'parameters' specifies the name of the data set containing 
the source program. (See the data set naming conventions.) A string of 
up to 100 characters can be passed to the program via the "parameters" 
operand (valid only for data sets which accept parameters). 

ASM specifies that the TSO Assembler Prompter program product and the 
Assembler (F) compiler are to be invoked to process the source program. 
If the rightmost qualifier of the data set name is ASM, this operand is not 
required. 

LIB{data-set-Ust) specifies the library or libraries that contain subroutines 
needed by the program you are running. These libraries are concatenated 
to the default system libraries and passed to the loader for resolution of 
external references. This operand is valid only for the following data set 
types: ASM, COBOL, FORT, and PLI (Optimizer). 

COBOL specifies that the TSO COBOL Prompter and the OS Full American 
National Standard COBOL (Version 3 or Version 4) Program Products 
are to be invoked to process the source program. If the rightmost 
qualifier of the data set name is COBOL, this operand is not required. 

FORT specifies that the TSO FORTRAN Prompter and the FORTRAN IV (Gt) 
program products are to be invoked to process the source program. If the 
rightmost qualifier of the data set name is FORT, the Code and Go 
FORTRAN compiler will be invoked unless you specify this operand. 

PLI specifies that the PL/I Prompter and either the PL/I Optimizer compiler 
or the PL/I Checkout compiler are to be invoked to process the source 
program. If the rightmost qualifier of the data set name is PLI, this 
operand is not required. 

CHECK specifies the PL/I Checkout compiler. If you omit this operand, the 
OPT operand is the default value. 

OPT specifies the PL/I Optimizing compiler. This is the default value if 
I both CHECK and OPT are omitted. 

I GOFORT specifies that the Code and Go FORTRAN program product is to 
be invoked for interactive processing of the source program. 

TEST specifies that testing of the program is to be performed. This operand 
is valid only for the VSBASIC, program product. 

198 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



I 
NOTEST specifies that the TEST function is not desired. This is the default 

value, and is valid only for the VSBASIC program product. 

LMSG specifies that the long form of the diagnostic messages are to be 

I provided. This operand is applicable to the Code and Go FORTRAN 

program product. The default value is SMSG. 

SMSG specifies that the short form of the diagnostic messages is to be . 

I provided. This operand is applicable to the Code and Go FORTRAN 

program product. 

LPREC specifies that long precision arithmetic calculations are required by 

I the program. This operand is valid only for the VSBASIC program 
product. 

SPREC specifies that short precision arithmetic calculations are adequate for 

I 
the program. '\fhis operand is valid only for the VSBASIC program product 
and is the default value. 

FIXED specifies the format of the source statements to be processed by the 
Code and Go FORTRAN program product. The statements must be in 
standard format when this operand is specified. If you omit this operand, 
the FREE operand is the default value .. 

FREE specifies that the source program consists of free form statements 
applicable only to the Code and Go FORTRAN program product. 

VSBASIC specifies that the VSBASIC program product is to be invoked to 
process the source program. 

GO specifies that the program is to receive control after compilation. This 
is the default if neither GO nor Noao are specified. This operand is valid 
only for VSBASIC. 

NOGO specifies that the program will not receive control after compilation. 
This operand is valid only for VSBASIC. 

STORE specifies that the compiler is to store an object program. This 
operand is valid only for VSBASIC. 

NOSTORE specifies that the compiler is not to store an object program. 
This is the default if neither STORE nor NOSTORE are specified. This 
operand is valid only for VSBASIC. 

PAUSE specifies that the compiler is to prompt to the terminal between 
program chains. This operand is valid only for VSBASIC. 

NOPAUSE specifies no prompting between program chains. This is the 
default if neither PAUSE nor NOPAUSE is specified. This operand is valid 
only for VSBASIC. 

SOURCE specifies that new source code is to be compiled. This is the 
default if neither SOURCE nor OBJECT is specified. This operand is valid 
only for VSBASIC. 

OBJECT specifies that the compiler is to re-use an old object program. This 
operand is valid only for VSBASIC. 

SIZE{value) specifies the number of thousand-byte blocks of user area 
where value is an integer of 1-3 digits. This operand is valid only for 
VSBASIC. 

Determining Compiler Type: The system uses two sources of information to 
determine which compiler will be used. The first source of information is 

I the optional operand (ASM,. COBOL, FORT, PLI, or GOFORT) that you may 
specify for the RUN command. If you omit this operand, the system checks 

RUN Command 199 



the descriptive qualifier of the data set name that is to be executed (see the 
data set naming conventions for a list of descriptive qualifiers). If the 
system cannot determine the compiler type from the descriptive qualifier, 
you will be prompted. 

The RUN command uses standard library names, such as SYSI.FORTUB 

and SYS1.COBLIB, as the automatic call1ibrary. This is the library searched 
by the linkage editor to locate load modules referred to by the module 
being processed for resolution of external references. 

Example 1 

Operation: Compile, load, and execute a source program composed of 
I VSBASIC statements. 

Known: 
The name of the data set containing the source program is 

DDG39T.MNHRS.VSBASIC. 

run mnhrs.vsbasic 

Example 2 

Operation: Compile, load and execute a Code and Go FORTRAN source 
program contained in a data set that does not conform to the data set 
naming conventions. 

Known: 
The data set name TRAJECT.MISSILE FORTRAN statements conform to 

the standard format. Complete diagnostic messages are needed. 
Parameters to be passed to the program are: 50 144 5000 

run 'traject.missile' '50 144 5000' gofort fixed lmsg 

200 OS/VSl TSO Command Language Reference (VSl Release 3.7) 



SEND Command 

Use the SEND command or SEND subcommand of EDIT to send a message 
to another terminal user or to the system operator. A message may be sent 
to more than one terminal user. If the intended recipient of a message is 
not logged on, the message can be retained within the system and presented 
automatically when he logs on. You will be notified when the recipient is 
not logged on and the message is deferred. 

Note: The syntax and function of the SEND subcommand of EDIT is the 
same as that of SEND command. 

"text" 

[USER ({user~-Im}) GE~j[:~~AfT]] 

[
OPERATOR(2) ] 
OPE RATOR (route-code) 

[eN (console-id) ] 

'text' specifies the message to be sent. You must enclose the text of the 
message within apostrophes (single quotes). The message must not 
exceed 115 characters including blanks. If no other operands are used, 
the message goes to the console operator. If you want apostrophes to be 
printed you must enter two in order to get one. 

USER(user-list) specifies the user identification of one or more terminal 
users who are to receive the message. A maxirilum of 20 identifications 
can be used 

USER(*) specifies that the message will be sent to the userid associated with 
the issuer of the SEND command. If an '*' is used with a SEND command 
in a command procedure, the message will be sent to the user executing 
the command procedure. If used with the SEND command at a terminal, 
an '*' will cause the message to be sent to the same terminal. 

NOW specifies that you want the message to be sent immediately. H the 
recipient is not logged on, you will be notified and the message will be 
deleted. This is the default value if NOW) LOGON, and SAVE are omitted. 

LOGON specifies that you want the message retained in the 
SYSLBRODCAST data set if the recipient is not logged on or is not 
receiving messages. When the recipient logs on, the message will be 
removed from the data set and directed to his terminal. If the recipient is 
currently using the system and receiving messages, the message will be 
sent immediately. 

SAVE specifies that the message text is to be entered in the mail section of 
SYS1.BRODCAST without being sent to any user. Messages stored in the 
broadcast data set can be retrieved by using either LISTBC or LOGON 

commands. 

SENDC ........ 201 



WAIT specifies that you will wait until system output buffers are available 
for all specified logged-on terminals. This ensures that the message will 
be received by all specified logged-on users but it also means that you 
may be locked out until all such users have received the message. 

NOWAIT specifies that you do not want to wait if system output buffers are 
not immediately available for all specified logged-on terminals. You will 
be notified of all specified users who did not receive the message. If you 
specified LOGON, mail will be created in the SYS1.BRODCAST data set for 
the specified users whose terminals are busy or who have not logged-on. 
NOW AIT is the default value if neither WAIT nor NOW AIT is specified. 

OPERATOR(route-code) specifies that you want the message sent to the 
operator indicated by the route-code. If you omit the route-code, the 
default is two (2); that is, the message goes to the master console 
operator. This is the default value if both USER (identifications) and 
OPERATOR are omitted. The integer corresponds to· routing codes for the 
WTO macro. 

CN(console-id) specifies that the message is to be queued to the indicated 
operator console. The value for "console-id" must be an integer between 
0-64. 

Example 1 

Operation: Send a message to the master console operator. 

Known: 
The message: What is the weekend schedule? 

send 'what is the weekend schedule?' 

Example 2 

Operation: Send a message to two other terminal users. 

Known: 
The message: If you have data set 'Mylib.Load' allocated, please free it. 

I need it to run my program. 
The user identification for the tepninal users: JANET5 

LYNN6 

The message is important and you want to make sure the specified user 
gets it now. 

send 'if you have data set "mylib.load" allocated, -
please free it. i need it to run my program.' -
user(janet5,lynn6) wait 

202 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Examvle 3 

Operation: Send a message that is to be delivered to 'BETTY7' when she 
begins her terminal session or now if she is currently logged on. 

Known: 
The recipients's user identification: BETTY7 

The message: Is your version of the simulator ready? 
If her terminal is busy, you want to put the message into the 

SYSl.BRODCAST data set. There is no rush for her to get it and 
respond. 

send 'is your version of the simulator ready?' -
user(betty7) logon nowait 

SEND Command 203 



204 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



TERMINAL Command 

Use the TERMINAL command to define the operating characteristics that 
depend primarily upon the type of terminai that you are using. You can 
specify the ways that you want to request an attention interruption and you 
can identify hardware features and capabilities. The TERMINAL command 
alows you to request an attention interruption whether or not your terminal 
has a key for the purpose. 

The terminal characteristics that you have defined will remain in effect 
until you enter the LOGOFF command. If you terminate a session and begin 
a new one by entering a LOGON command (instead of a LOGOFF command 
followed by a LOGON command), the terminal characteristics defined in the 
earlier session will be in effect during the subsequent session. 

{
TERMINAL} 
TERM [ 

LIN ES( integer)] 
NOLINES 

[
SECONDS(integer)] 
NOSECONDS 

[
I NPUT(string)] 
NOINPUT 

[
BREAK ] 
NOBREAK 

[
TIMEOUT ] 
NOTIMEOUT 

(LI NESIZE(integer)] 

[
CLEAR (stringn 
NOCLEAR J 

[SCRSIZE(rows, length)] 

LINES(integer) specifies an integer from 1 to 255 that indicates you want 
the opportunity to request an attention interruption after that number of 
lines of continuous output has been directed to your terminal. 

NOLINES(integer) specifies that output line count is not to be used for 
controlling an attention interruption. This is the default condition. 

SECONDS(integer) specifies an integer from 10 to 2550 (in multiples of 10) 
to indicate that you want the opportunity to request an attention 
interruption after that number of seconds has elapsed during which the 
terminal has been locked and inactive. If you specify an integer that is 
not a multiple of 10, it will be changed to the next largest multiple of 10. 

NOSECONDS specifies that elapsed time is not to be used for controlling 
an attention interruption. This is the default condition. 

INPUT(string) specifies the character string that, if entered as input, will 
cause an attention interruption. The string must be the only input 
entered and cannot exceed four characters in length. 

NOINPUT specifies that no character string will cause an attention 
interruption. This is the default condition. 

TERMINAL Command 205 



BREAK specifies that your terminal keyboard will be unlocked to allow you 
to enter input whenever you are not receiving output from the system; 
the system can interrupt your input with high-priority messages. Since 
use of BREAK with a terminal type which cannot support it can result in 
loss of output or error, check with your installation system manager 
before specifying this operand. 

NOBREAK specifies that your terminal keyboard will be unlocked only when 
your program or a command you have used requests input. 

Note: The default for the BREAK/NO BREAK operand is determined when 
your installation defines the terminal features. 

TIMEOUT specifies that your terminal's keyboard will lock up automatically 
after approximately nine to 18 seconds of no input. (Applicable only to 
the IBM 1052 Printer-Keyboard without the text timeout suppression 
feature.) 

NOTIMEOUT specifies that your terminal's keyboard will not lockup 
automatically after approximately nine to 18 seconds of no input. 
(Applicable only to the IBM 1052 Printer-Keyboard with the text timeout 
suppression feature.) 

Note: The default for the TIMEOUT /NOTIMEOUT operand is determined 
when your installation defines the terminal features. 

LINESIZE(integer) specifies the length of the line (the number of 
characters) that can be printed at your terminal. (Not applicable to the 
IBM 2260, 2265, and 3270 Display Stations.) Default values are as 
follows: 

IBM 2741 Communication Terminal - 120 characters 
IBM 1052 Printer-Keyboard - 120 characters 
Teletype 33/35 - 72 characters 

The integer must not exceed 255. 

CLEAR(string) specifies a character string that, if entered as input, will 
cause the screen of an IBM 2260,.2265, or 3270 Display Station to be 
erased. The 'string' must be the only input entered and cannot exceed 
four characters in length. 

NOCLEAR specifies that you do not want to use a sequence of characters to 
erase the screen of an IBM 2260, 2265, 3270 Display Station. This is the 
default condition. 

SCRSIZE(rows,length) specifies the screen dimensions of an IBM 2260, 2265, 
or 3270 Display Station. 

'rows' specifies the maximum number of lines of data that can appear on 
the screen. 

'length' specifies the maximum number of characters in a line of data 
displayed on the screen. Valid screen sizes are: 

rows,length 
6,40 

12,40 
12,80 
15,64 
24.80 

206 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Note: The default values for the SCREEN operand are determined when 
your installation defines the terminal features. 

Example 1 

Operation: Modify the characteristics of an IBM 2741 Communication 
Terminal to allow operation in unlocked-keyboard mode. 

Known: 
Your terminal supports the break facility. The installation has defined a 

default of NOBREAK for your terminal. 

terminal break 

Example 2 

Operation: Modify the characteristics of an IBM 1052 Printer-Keyboard 
whose attention key cannot be used to interrupt output and whose 
output line size is greater than 80 characters. 

Known: 
You want an opportunity to request an attention interruption after ten 

consecutive lines of output. You want to limit the output line length to 
80 characters. 

terminal lines( 10) linesize(80) 

Example 3 

Operation: Establish the characteristics of an IBM 2260 Display Station to 
allow for attention interruption and screen erasure requests. 

Known: 
You want an opportunity to request an attention interruption if neither 

input is requested nor output sent for one minute. You want a $ to 
stand for an attention interruption request during a regular input 
operation. You want a % to stand for a screen erasure request. 

terminal seconds(60) input($) clear(%) 

TERMINAL Command 207 



208 OS/VS2 TSO Command L.aoguge Reference (VSl Release 3.7) 



TEST Command 

Use the TEST command to test a program or a command procedure for 
proper execution and to locate any programming errors. To use the TEST 
command and subcommands, you should be familiar with the basic 
assembler language and addressing conventions. For best results, the 
program to be tested should be written in basic assembler language. Also, in 
order to use the symbolic names feature of TEST the program should have 
been assembled and link-edited with the TEST operands. 

Note: If the problem program is loaded from a non-LINK library list, a 
T ASKLIB is not set up. Therefore, if the problem program attempts to 
LOAD, LINK, XCTL, or AITACH another module from the same library, the 
module will not be found. 

Uses of the TFST Conunand~ Before execution begins you can: 

• Supply initial values (test data) that you want to pass to the program. 
• Establish breakpoints (after instructions) where execution will be 

interrupted so that you can examine interim results. (Breakpoints 
should not be inserted into TSO service routines or into any of the 
TEST load modules.) 

You can then execute the program. When you use the TEST command to 
load and execute a program, the program must be an object module or a 
load module suitable for processing. If the program that you want to test is 
already executing, you can begin testing by interrupting the program with 
an attention interruption followed by the TEST command with no operands. 
You can also begin testing after an abnormal ending (ABEND) if the 
program is still in virtual storage. 

N_: If you enter the TEsr command without operands, you can test the 
in-storage copy of your program. If you enter the TEST command with 
operands, a fresh copy of your program will be brought in for you to test. 

Prior to and during execution you can: 

• Display the contents of registers and real storage (as when execution 
is interrupted at a breakpoint). 

• Modify the contents of your registers and real storage. 
• Display the Program Status Word (PSW). 
• List the contents of control blocks. 
• UStep through" sections of the program, checking each instruction for 

proper execution. 

Note: Breakpoints will not be honored in any sections of your program 
when running in privileged mode. 

A~ Conventious Used with TEST: An address used as an operand 
for a subcommand of TEST may be a symbolic address, a relative address, 
an absolute address, or a register which may contain an address. 



A symbolic address consists of one through eight alphameric characters, 
the first of which is an alphabetic character. The symbolic address must 
correspond to a symbol in the program that is being tested. Symbols cannot 
be used if the program being tested is a member of a partitioned data set 
that is part of a LINK library list unless the partitioned data set is named 
SYSl.LINKLIB or is the first one in the iist, or uniess the program is brought 
into main storage by TEST as an operand of the TEST command or a 
subsequent load command. A relative address is a hexadecimal number 
preceded by a plus sign (+). An absolute address is a hexadecimal number 
followed by a period. 

Address Modifiers: An expression consisting of one of the above address 
types followed by a plus or a minus displacement value is also a valid 
address. The plus or minus displacement value can be expressed in either 
decimal or hexadecimal notation, as follows: 

address +- 14n specifies the location that is 14 bytes past that designated by 
"address." 

address +14 specifies the location that is 20 bytes past that designated by 
"address." 

Note: Decimal displacement (either plus or minus) is indicated by the n 
following the numerical offset. 

Qualified Addresses: You can qualify symbolic and relative addresses to 
indicate that they apply to a particular control section (CSECT). To do this, 
you precede the address by either the name of the load module and the 
name of csect or just the name of csect. The qualified address must be in 
the form: 

.csectname.address 

or 

loadname.csectname.address 

For instance, if the user supplied name of the load module is OUTPUT, 
the name of the csect is CTST ART, and the symbolic address is T AXRTN 

you would specify: 

.ctstart.taxrtn 

or 

Qutput.ctstart.taxrtn 

If you do not include qualifiers, the system assumes that the address 
applies to the current control section. 

General Registers: You can refer to a general register using the COPY, LIST 
or Assignment of Values subcommands by specifying a decimal integer 
followed by an R. The decimal integer indicates the number of the registers 
and must be in the range zero through 15. The contents of the registers are 
hexadecimal characters. Other references to the generai registers impiy 
indirect addressing. The term indirect general register is used to refer to the 
general registers when they are used for indirect addressing. 

Note: If your program issues the STIMER macro or involves asynchronous 

210 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



interruptions, the contents of your registers may be changed by 
interruptions even though you are in TEST subcommand mode and your 
program does not get control. 

Floating-Point Registers: You can refer to a floating-point register using the 
COPY, LIST or Assignment of Values subcommand by specifying a dech~al 
integer followed by an E or a D. An E indicates a floating-point register 
With a single precision. A D indicates a floating-point register with double 
precision. The decimal integer indicates the number of the register and must 
be a zero, two, four, or six. You must not use floating-point registers for 
indirect addressing; expressions composed of references to floating-point 
registers followed by a plus or minus displacement value or a percent sign 
are invalid. 

Indirect Addre~s: An indirect address is an address of a location or 
general register that contains another address. An indirect address must be 
followed by a percent sign (the percent sign indicates that the address is 
indirect). For instance, if you want to refer to some data and the address of 
the data is located at address A, you can specify: 

A% 

Graphically, this expression indicates: 

Location A 

address B 

You can indicate several levels of indirect addresses (256 levels are 
permitted) by following the initial indirect address with a corresponding 
corresponding number of percent signs. You can also include plus or minus 
displacement values. For instance, you may specify: 

5R%%+4% 

Graphically, this expression indicates: 

Register 5 

OOOOOA24 
Location A24 

0OOOO1C2 
Location 1C2 

OOOOOA40 

+4 00000922 
Location 922 

data 

Restriction on Symbol Use: You can refer to external symbols in a Load 
Module if: 

• A composite external symbol dictionary (CESD) record exists. 
• The TEST operand of the LINK command was specified. 

TEST Command 211 



• The program was brought into real storage by the TEST command or 
one of its subtasks. 

You can refer to external symbols in an object module if there is room in 
real storage for a CESD to be built. 

You can refer to most internal- symbols if you specify the TEST operand 
when you assemble and link edit your program. Exceptions are: 

• Names on equate statements. 
• Names on ORO, LTORO, and'CNOP statements. 
• Symbols more' than eight bytes long. 

TEST [data-set-name1 

[ 'parameters'1 

[
LOAD ] 
OBJECT 

[~~cpJ 

data-set-name specifies the name of the data set containing the program to 
be tested. The program must be in object module form or load module 
form. 

Caution: The program to be tested should not have the name TEST. 

parameters specifies a list of parameters to be passed to the named 
program. The list must not exceed 100 characters including delimiters. 

LOAD specifie~ that the named program is a load module that has been 
processed by the linkage editor and is a member of a partitioned data 
set. This is the default value if both LOAD and OBJECT are omitted. 

OBJECT specifies that the named program is an object module that has not 
been processed by the liDkage editor.' The program can be contained in a 
sequential data set or a member of a partitioned data set. 

CP specifies that the named program is a command processor. 

NOCP specifies that the named program is not a command processor. This 
is the default value if both CP and NOCP are omitted. 

Subcommands: The subcommands of the TEST command are: 

ASSIGNMENT OF VALUES(=) modifies values in real storage and in registers. 

AT establishes breakpoints at specified locations. 

CALL initializes registers and initiates processing of the program at a 
specified address. 

COpy moves data or addresses. 

DELETE deletes a load module. 

DROP removes symbols established by the EQUATE command from the 
symbol table of the module being tested. 

END terminates all operations of the TEST command and the program being 
tested. 

212 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



EQUATE adds a symbol to the symbol table and assigns attributes and a 
location to that symbol. 

FREEMAIN frees a specified number of bytes of real storage. 

GETMAIN acquires a specified number of bytes of real storage for use by 
the program being processed. 

GO restarts the program at the point of interruption or at a specified 
address. 

HELP lists the subcommands of TEST and explains their function, syntax, 
and operands. 

LIST displays the contents of real storage area or registers. 

LlSTDCB lists the contents of a Data Control Block (DCB) (you must 
specify the address of the DCB). 

LlSTDEB lists the contents of a Data Extent Block (DEB) (you must specify 
,the address of the DEB). 

LlSTMAP displays a real storage map. 

LlSTPSW displays the Program Status Word (psw). 

LlSTI'CB lists the contents of the Task Control Block (TCB) (you may 
specify the address of another TCB). 

LOAD loads a program into real storage for execution. 

OFF removes breakpoints. 

QUALIFY establishes the starting or base location for relative addresses; 
resolves identical external symbols within a load module. 

RUN terminates TEST and completes execution of the program. 

WHERE displays the real address of a symbol or entrypoint or the address 
of the next executable instruction. 

Example 1 

Operation: Enter TEST mode after experiencing either an abnormal 
termination of your program or an interruption. 

Known: 
Either you have received a message saying that your foreground program 

has terminated abnormally, or, you have struck the attention key while 
your program was executing. In either case, you would like to begin 
"debugging" your program. 

test 

TEST Command 213 



Example 2 

Operation: Invoke a program for testing. 

Known: 
The name of the data set that contains the program: TLC 

55.PA YER.LOAD(THRUST) 

The program is a load module and is not a command processor. 
The parameters to be passed: 2048, 80 

test payer(thrust) '2048,80' 

Example 3 

Operation: Invoke a program for testing. 

Known: 
. The name of the data set that contains the 
_. program: TLC55.PA YLOAD.OBJ 

The program is an object module and is not a command processor. 

test payload object 

Example 4 

Operation: Test a command processor. 

Known: 
The name of the data set containing the command 
processor: TLCSS.CMDS.LOAD(OUTPUT) 

test cmds(output) cp 

214 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Assignment of Values Function of TEST 

When processing is halted at a breakpoint or before execution is initiated, 
you can modify values in real storage and in registers. This function is 
implicit; that is, you do not enter a subcommand name. The system 
performs the function in response to operands that you enter. 

address = data-type 'value' 

address specifies the location that you want to contain a new value. The 
address may be a· symbolic address, a relative address, an absolute 
address, or a register. 

data-type 'value",speeifies the type of data and the value that you want to 
place in the specified location. You indicate the type of data by one of 
the following codes: 

Code 
C 

X 
B 
H 
F 
E 
D 
L 
P 
Z 
A 
S 
y 

Type of Data 
Character 

Hexadecimal 
Binary 
Fixed point binary (halfword) 
Fixed point binary (fullword) 
Floating point (single precision) 
Floating point (double precision) 
Extended floating point 
Packed decimal 
Zoned decimal 
Address constant 
Address (base + displacement) 
Address constant (halfword) 

Maximum Length (Bytes) 
One line of input, 
continued lines 
permitted 

64 
64 
6 

11 
9 

18 
16 
32 
17 
10 
8 
5 

You include your data following the code. Your data must be enclosed 
within apostrophes. Any single apostrophes within your data must be coded 
as two single apostrophes. Character data will be entered as is; all other 
data types will be translated into uppercase (if necessary). A list of data 
may be specified by enclosing the list in parentheses. The data in the list 
will be stored beginning at the location specified by the address operand. 

Example 1 

Operation: Insert a character string at a particular location in real storage. 

Known: 
The address is a symbol: INPOINT 

The data: JANUARY 1, 1970 

inpoint=c'january 1, 1970' 

Assignment of Values Function of TEST 215 



Example 2 

Operation: Insert a binary nwnber into a register. 

Known: 
The number of the register: Register 6 
The data: 0000 0001 0110 0011 

6r=b'0000000101100011, 

216 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



AT Subcommand of TEST 

Use the AT subcommand to establish breakpoints where processing is to be 
temporarily halted so that you can examine the results of execution up to 
the point of interruption. Processing is halted before the instruction at the 
breakpoint is executed. 

Not~: A breakpoint should not be established at: 

1. The target of an execute instruction. 

2. An instruction that will be modified by the execution of other in-line 
code prior to the execution of the breakpoint. 

AT 
{

"address [:addresS]} 
(address-fist) 

[(subcommands-list) ] 

[COUNT(integer) ] 

[
NODEFERJ 
DEFER 

[
NOTIFY ] 
NONOTIFY 

a~ specifies a location that is to contain a breakpoint. The address 
may be a symbolic address, a relative address, or a general register 
containing an address. The address must be on a halfword boundary and 
contain a valid op code. 

ad~:address specifies a range of addresses that are to contain 
breakpoints. Each address may be a symbolic address, a relative address, 
an absolute address, or a general register containing an address. Each 
address must be on a halfword boundary. A breakpoint will be 
established at each instruction between the two addresses. When a range 
of addresses is specified, assignment of breakpoints halts when an invalid 
instruction is encountered .. 

address-fist specifies several addresses that are to contain breakpoints. Each 
address may be a symbolic ad~ss, a relative address, an absolute 
address, or a general register containing an address. The first address 
must be on a halfword boundary. The list must be enclosed within 
parentheses, and the addresses in the list must be separated by standard 
delimiters (one or more blanks or a comma). A breakpoint will be 
established at each address. 

subcommands-fist specifies one or more subcommands to be executed when 
the program. is interrupted at the indicated location. If you specify more 
than one subcommand, the subcommands must be separated by 
semicolons (for instance, LISTICB PRINT (TCBS);LISTPSW;GO 

CALCULAT). The list cannot be longer than 255 characters. 

AT Subcommand of TFSf 217 



COUNT(integer) specifies that processing will not be halted at the 
breakpoint until it has been encountered a number of times. This 
operand is directly applicable to· program loop situations, where an 
instruction is executed several times. The breakpoint will be observed 
each time it has been encountered the number of times specified for the 
'integer' operand. The integer specified cannot exceed 65,535. 

DEFER specifies that the breakpoint is to he established in a program that 
is not yet in real storage. The program to contain the breakpoint will be 
brought in as a result of a LINK, LOAD, ATTACH, or XCTL macro 
instruction by the program being tested. You must qualify the address of 
the breakpoint (either LOADNAME.CSECTNAME. RELATIVE or 
LOADNAME.CSECTNAME.SYMBOL) when you specify this operand. All 
breakpoint addresses listed in an AT subcommand with the DEFER 

operand must refer to the same load module. 

Note: If the load module is currently in real storage, the defered 
breakpoints will not be set. 

NODEFER specifies that the· breakpoint i~ to be inserted into the program 
now in real storage. This is the default value if both DEFER and 
NOFDEFER are omitted. 

NOTIFY specifies that when it is encountered the breakpoint will be 
identified at the terminal. This is the default value if both NOTIFY and 
NONOTIFY are omitted. 

NONOTIFY specifies that when it is encountered the breakpoint will not be 
identified at the terminal. 

Example 1 

Operation: Establish breakpoints at each instruction in a section of the 
program that is being tested. 

Known: 
The addresses of the first and last instructions of that 
section that is to be tested: LOOPA EXIT A 

The subcommands to be executed are: LISTPSW, GO 

at loopa:exita (listpsw;go) 

Example 2 

Operation: Establish breakpoints at several locations in a program. 

Known: 
The addresses for the breakpoints: + 8A LOOPB EXITB 

at (+8A loopb exitb) 

218 OS/VS2 TSO Co~and Language Reference (VS2 Release 3.7) 



Example 3 

Operation: Establish a breakpoint at a location in a loop. The address of 
the location is contained in register 15. You only want to have an 
interruption every tenth cycle through the loop. 

Known: 

The address for the breakpoint: 15R 0/0 

at 15r% count(10) 

Example 4 

Operation: Establish a breakpoint for a program other than the one 
presently in real storage. 

Known: 
The csect name: WIND 

The name of the load module: MARCH 

The symbolic address for the breakpoint: PROG 

at march.wind.prog 

AT Subcommand of TEST 219 



220 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



CALL Subcommand of TEST 

Use the CALL subcommand to initiate processing at a specified address and 
to initialize registers 1, 14, and 15. You can pass parameters to the program 
that is to be tested. 

Caution: The contents of registers 1, 14, and 15 are altered by the use of 
the CALL subcommand. To save the contents of these registers, use the 
COpy subcommand of TEST (see Examples 2 and 3 under the COpy 

subcommand). 

CALL address 

[PARM(address-list) ] 

[VL] 

[R ETU R N (address)] 

address specifies the address where processing is to begin. The address may 
be a symbolic address, a relative address, an absolute address, or a 
register containing an address. Register 15 contains this address when the 
program under test begins execution. 

PARM(address-list) specifies one or more addresses that point to data to be 
used by the program being tested. The list of addresses will be expanded 
to fullwords and placed into contiguous storage. Register 1 will contain 
the address of the start of the list. If PARM is omitted, register 1 will 
point to a fullword that contains the address of a halfword of zeroes. 

VL specifies that the high order bit of the last fullword of the list of 
addresses pointed to by general register one is to be set to one. 

RETURN(address) specifies that register 14 is to contain the address that 
you supply as the value for this keyword. After the program executes, 
the system will return control to the point indicated by register 14. If 
RETURN is omitted, register 14 will contain the address of a breakpoint 
instruction. 

Example 1 

Operation: Initiate execution of the program being tested at a particular 
location. 

Known: 
The starting address: + OA 
The addresses of data to be passed: CTCOUNTR LOOPCNT TAX 

call +Oa parm(ctcountr loopcnt tax) 

CALL Subcommand of TEST 221 



Example 2 

Operation: Initiate execution at a particular location. 

Known: 
Tae starting address: STARTED 

The addresses of data to be passed: BDFLAGS 

PRFfTBL COSTTBL ERREXIT 

Set the high order bit of the last address parameter to one so that 
the program can tell the end of the list. After execution, control 
is to be returned to: +24A 

call startbd parm(bdflags prfttbl costtbl errexit)­
vI return(+24a) 

222 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



COpy Subcommand of TEST 

, . 

Use the COpy subcommand to transfer data or addresses from one real 
storage address to another, from one general register to another, from a 
register to real storage, or from real storage to a register . 

. The COpy subcommand can be used to: 

• Save or restore the contents of the general registers. 
• Propagate the value of a byte throughout a field. 
• Move an entire data field from one location to another. 

address 1 address 2 

[LENGTH Cn7er)] 
[

POINTER ] 
NOPOINTER 

addressl specifies a location that contains data to be copied. The address 
may be a symbolic address, a relative address, an absolute address, an 
indirect address, or a qualified address. 

address2 specifies a location that will receive the data after it is copied. 
The address may be a symbolic address, a relative address, an absolute 
address, an indirect address, or a qualified address. 

LENGTH(integer) specifies the length, in decimal, of the field to be copied. 
If an integer is not specified, LENGTH will default to 4 bytes. The 
LENGTH keyword can also be entered in the shorter form, L(integer). 

POINTER specifies that addressl will be validity checked to see that it does 
not exceed maximum real storage size and will then be treated as an 
immediate operand (hexadecimal literal) with a maximum length of 4 
bytes (that is, an address will be converted to its hexadecimal equivalent) 
and will be transferred into the location specified by address2. When 
using the POINTER keyword, do not specify a general register as 
aqdressl. The POINTER keyword can also be entered in the shorter form, 
P. 

NOPOINTER specifies that address 1 will be treated as an address. 
NOPOINTER is the default for POINTER. 

Note: 

1. The COpy subcommand treats the 16 general registers as contiguous 
fields. If you have speCified that 8 bytes be moved from general 
register 0 to another location. 

copy Or 80060. length(8) 

COpy Subcommand of TEST 223 



The COpy subcommand will move the 4 bytes of register 0 and the 4 
bytes of register 1 to real storage beginning at location 80060. When 
a register is specified as address 1, the maximum length of data that 
will be transferred is the total length of the general registers, or 64 
bytes. 

2. When the value of address2 is one greater than address 1, propagation 
of the data in address1 will occur. When the value of address2 is more 
than one greater than the value of address 1, no propagation will 
occur. 

Example 1 

Operation: Transfer two full words of data from one real storage location 
to another. 

Known: 
The starting address of the data: 80680 
The starting address of where the data is to be: 80685 

copy 80680. 80685. 1ength(8} 

Example 2 

Operation: Copy the contents of one register into another register. 

Known: 
The register which contains the data to be copied: 10 
The register which will contain the data: 5 

copy 10r 5r 

Example 3 

Operation: Save the contents of the general registers. 

Known: 
The first register to be saved: 0 
The starting address of the save area: A0200 

c Or a0200. 1(64) 

Example 4 

Operation: Propagate the value in the first byte of a buffer throughout the 
buffer. 

Known: 
The starting address of the buffer: 80680 
The length of the buffer: 80 bytes 

c 80680. 80681. 1(79) 

224 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Example 5 

Operation: Insert a hexadecimal value into the high-order byte of a 
register. 

Known: 
The desired value: x'80' 
The register: 1 

copy 80. lr 1( 1 ) pointer 

Example 6 

Operation: Insert the entry point of a routine into a real storage location. 

Known: 
The module name and the entry point name: IEFBR14.IEFBR14 

The desired real storage location: STARTPTR 

c iefbr14.iefbr14 startptr p 

Example 7 

Operation: Copy the contents of an area pointed to by a register into 
another area. 

Known: 
The register which points to the area that contains the data 
to be moved: 14 
The real storage location which is to contain the data: 80680 
The length of the data to be moved: 8 bytes 

c 14r% 80680. 1(8) nopoint 

COpy Subcommand of TEST 225 



226 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



DELETE Subcommand of TEST 

Use the DELETE subcommand to delete a load module awaiting execution. 

{
DELETE} 
DEL 

load-name 

load name specifies the name of the load module to be deleted. The load 
name is the name by which the program is known to the system when it 
is in real storage. The name must not exceed eight characters. 

Example 1 

Operation: The program being tested has called a subroutine that is in load 
module form. Before executing the subroutine; a breakpoint is 
encountered. You do not want to execute the subroutine because you 
intend to pass test data to the program instead. You now want to delete 
the subroutine since it will not be, used. 

Known: 
The name of the subroutine (load module ): TOTAL 

delete total 

or 

del total 

DELETE Subcommand of TEST 227 



228 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



DROP Subcommand of TEST 

Use the DROP subcommand to remove symbols from the symbol table of 
the module being tested. You can only remove symbols that you established 
with the EQUATE subcommand; you cannot remove symbols that were 
established by the linkage editor. If the program being tested was assembled 
with the TEST option and the EQUATE subcommand was used to override 
the location and type of the symbol within the program, then when the 
DROP subcommand is used to delete that symbol from the symbol table, the 
symbol will reflect the original location and type within the program. 

DROP (symbol-list) 

(symbol-list) specifies one or more symbols that you want to remove from 
the symbol table created by the EQUATE subcommand. When you 
specify only one symbol, you do not have to enclose that symbol within 
parentheses; however, if you specify more than one symbol you must 
enclose them within parentheses. If you do not specify any symbols, the 
entire table of symbols will be removed. 

Example 1 

Operation: Remove all symbols that you have established with the EQUATE 

subcommand. 

drop 

Example 2 

Operation: Remove several symbols from the symbol table. 

Known: 
The names of the symbols: STARTADD TOTAL WRITESUM 

drop (startadd total writesurn) 

DROP Subcommand of TEST 229 



230 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



END Subcommand of TEST 

Use the END subcoffi!!1...and to terminate all functions of the TEST command 
and the program being tested. 

END 

END subcommand of TEST 231 



232 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



EQUATE Subcommand of TEST 

Use the EQUATE subcommand to add a symbol to the symbol table of the 
module being tested. This subcommand allows you to establish a new 
symbol that you can use to refer to an address or to override an existing 
symbol to reflect a new address or new attributes. If no symbol table exists, 
one is created and the specified name is added to it. You can also modify 
the data attributes (type, length, and multiplicity). The DROP subcommand 
removes symbols added by the EQUATE subcommand. Symbols established 
via the EQUATE subcommand are defined for the duration of the TEST 

session, only. 

symbol address data-type 

[LENGTH (integer)] 

[MUL TIPLE(integer)] 

symbol specifies the symbol (name) that you want to have added to the 
symbol table so that you can refer to an address symbolically. The 
symbol must consist of one through eight alphameric characters, the first 
of which is an alphabetic character. 

address specifies a symbolic address, a relative address, an absolute 
address, or a general register containing an address. The address that you 
specify will be equated to the symbol that you specify. 

data-type specifies either the type of data that you want moved into the 
location specified via the "address" operand, or the characteristics you 
wish to attribute to the data at the location given by "address." These 
mayor may not be the same as the original characteristics. You indicate 
the type of data by one of the following codes: 

Code 
C 
X 
B 
I 
H 
F 
E 
D 
L 
P 
Z 
A 
S 
y 

Type of Data 
Character 
Hexadecimal 
Binary 
Assembler instruction 
Fixed point binary (halfword) 
Fixed point binary (fullword) 
Floating point (single precision) 
Floating point (double precision) 
Extended floating po~nt 
Packed decimal 
Zoned decimal 
Address constant 
Address (base + displacement) 
Address constant (halfword) 

Maximum Length (Bytes) 
256 
256 
256 
256 
8 
8 
8 
8 
16 
16 
16 
4 
2 
2 

EQUATE Subcommand of TEST 233 



LENGTH(integer) specifies the length of the data. The maximum value of 
the integer is 256. If you do not specify the length, the following default 
values will apply: 

Type of D-clta 
C,B,P,Z 
H,S,Y 
F,E,A,X 

Default Length (Bytes) 
1 
2 
4 

D 8 
I variable 
L 16 

MULTIPLE(integer) specifies a multiplicity factor. The multiplicity factor 
means that one element of the data appears several times in succession; 
the number of repetitions is indicated by the number specified for 
"integer." The maximum value of the integer is 256. 

Note: If you do not specify any keywords, the defaults are: 

type - X 
multiplicity - 1 
length - 4 

Example 1 

Operation: Add a symbolic address to the symbol table of the module that 
you are testing. 

Known: 
The symbol: EXITRTN 

The address: TOT AL+4 

equate exitrtn total+4 

Example 2 

Operation: Change the address and attributes for an existing symbol. 

Known: 
The symbol: CONSTANT 

The new address: IFAAO. 

The new attributes: type: C 
length: L(8) 
mUltiplicity: M(2) 

eq constant 1faaO. c m(2) 1(8) 

234 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



FREEMAIN Subcommand of TEST 

Use the FREEMAIN subcommand to free a specified number of bytes of real 
storage. 

{ 
FREEMAIN} 
FREE 

integer address 

integer specifies the number of bytes of real storage to be released. 

address specifies a symbolic address, a relative address, an absolute 
address, or a general register containing an address. This address is the 
location of the space to be freed and must be a multiple of 8 bytes. 
The LISTMAP subcommand may be used to help locate previously 
acquired real storage. 

sP(integer) specifies the number of the subpool that contains the space to 
be freed. If you omit this operand, the default value is subpool zero. The 
integer must be in the range zero through 127. 

Example 1 

Operation: Free space in real storage that was acquired previously by a 
GETMAIN subcommand or by a GETMAIN macro instruction in the 
module being tested. 

Known: 
T~e size of the space, in bytes: 500 
The absolute address of the space: 054A20 
The number of the subpool that the space was acquired from: 3 

free 500 054a20. sp(3) 

FREEMAIN Subcommand of TEST 235 



236 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



GETMAIN Subcommand of TEST 

Use the GETMAIN subcommand to obtain a specified number of bytes of 
real storage. 

{
GETMAIN} 
GET 

integer 

[EQUATE(name)] 

EQUATE(naQle) specifies that the address of acquired real storage is to be 
equated to the symbol specified by "name." 

integer specifies the number of bytes of real storage to be obtained. 

sP(integer) specifies the number of a subpool that contains the bytes of 
real storage that you want to obtain. If you omit this operand, the 
default value is subpool zero. The integer must be in the range zero 
through 127. 

Example 1 

Operation: Get 500 bytes of real storage from subpool 3 and equate 
starting address to symbolic name AREA. 

get 500 sp(3) equate(area) 

GETMAIN Subcommand of TEST 237 



238 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



GO Subcommand of TEST 

Use the GO subcommand to start or restart program execution from a 
particuiar address. If the program was interrupted for a breakdown and you 
want to continue from the breakpoint, there is no need to specify the 
address. However, you may start execution at any point by specifying the 
address. 

GO [address] 

address specifies a symbolic address, a relative. address, an absolute 
address, or a general register containing an address. Execution will begin 
at the address that you specify. 

Example 1 

Operation: Begin execution of a program ~t the point where the last 
interruption occurred or initiate execution of a program. 

go 

Example 2 

Operation: Begin execution at a particular address. 

go calculat 

GO Subcommand of TEST 239 



240 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



HELP Subcommand of TEST 

Use the HELP subcommand to obtain the syntax and function of the TEST 

subcommands. Refer to the HELP command for a description of the syntax 
and function of the HELP subcommand. 

HELP Subcommand of TEST 241 



242 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LIST Subcommand of TEST 

Use the LIST subcommand to have the contents of a specified area of real 
storage, or the contents of registers, displayed at your terminal or placed 
into a data set. 

{
-address [ : ~ddreSS]} data-tv 
(address-list) pe 

[LENGTH (integer)] 

[MUL TIPLE(jnteger)] 

[PR I NT{data-set-name)] 

address specifies the location of data that you want displayed at your 
terminal or placed into a data set. The address may be a symbolic 
address, a relative address, an absolute address, or a general or 
floating-point register. 

address:address specifies that you want the data located between the 
specified addresses displayed at your terminal or placed into a data set. 
Each address may be a symbolic address, a relative address, an absolute 
address, or a general or floating-point register. 

(address-list) specifies several addresses of data that you want displayed at 
your terminal or placed into a· data set. The data at each location will be 
retrieved. Each address may be a s~bolic address, a relative address, an 
absolute address, or a general or floating-point register. The list of 
addresses must be enclosed within parentheses, and the addresses must 
be separated by standard delimiters (one or more blanks or a comma). 

data-type specifies the type of data that is in the specified location. You 
indicate the type of data by one of the following codes: 

Code 
C 
X 
B 
I 
H 
F 
E 
D 
L 
P 
Z 
A 
S 
Y 

Type of Data 
Character 
Hexadecimal 
Binary 
Assembler instruction 
Fixed point binary (halfword) 
Fixed point binary (fullword) 
Floating point (single precision) 
Floating point (double precision) 
Extended floating point 
Packed decimal 
Zoned decimal 
Address constant 
Address (base + dispiacement) 
Address constant (halfword) 

Maximum Lengtb (Bytes) 
256 
256 
256 
256 
8 
8 
8 
8 
16 
16 
16 
4 
2 
2 

LIST Subcommand of TEST 243 



LENGTH(integer) indicates the length, in bytes of the data that is to be 
listed. The maximum value for the integer is 256. If you use a symbolic 
address and do not specify length, the value for the length parameter will 
be retrieved from the symbol table residing in the user's region. 
Otherwise, the following default values will apply: 

Type of data 
C,B,P,Z 
H,S,Y 
F,E,A,X 
D 
I 
L 

Default Length (Bytes) 
1 
2 
4 
8 
variable 
16 

When the data type is I, either length or multiple may be specified, but 
not both. If both are specified, the multiple parameter is ignored but no 
error message is printed. 

MULTIPLE(integer) Used in conjunction with the length operand. Gives the 
user the following options: 

• The ability to format the data to be listed (see Example 3, below) 
• A way of printing more than 256 bytes at a time. (The value supplied 

for "integer" determines how may "lengths" or multiples of data-type 
the user wants listed.) The value supplied for integer cannot exceed 
256. 

For I type data, the value supplied for MULTIPLE defines the number of 
instructions to be listed. If you use a symbolic address and do not specify 
MULTIPLE, the value for the MULTIPLE parameter will be retrieved from 
the symbol table residing in the users region. 

PRINT(data-set-name) specifies the name of a sequential data set to which 
the data is directed (see data set naming conventions). If you omit this 
operand, the data will go to your terminal. 

The data format is blocked variable length records. Old data sets with the 
standard format and block size are treated as NEW if being opened for 
the first time, otherwise, they are treated as MOD data sets. 

The LIST subcommands of TEST (LIST, LISTDCB, LISTDEB, LISTMAP, 

LISTPSW, LISTTCB) perform the following functions on each data set they 
process. 

I f your record type was: Fixed, Fixed Blocked, Variable or 
or Undefined Variable Blocked 

._-----------f-- --
Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

Note: Record and block sizes greater than above will be unchanged. 

The specified data set is kept open until: 

• The TEST session is ended by a RUN or END subcommand, or 
• A LIST subcommand is entered specifying a different PRINT data set. 

In this case, the previous data set is closed and the current one 
opened. 

244 OS/VSl TSO Command Language Reference (VS2 Release 3.7) 



Example 1 

Operation: List the contents of an area of real storage. 

Known: 
The area to be displayed is between: COU:r-..YfERA DT ABLE 

The attributes of the data: C L(130) M(t) 

The name for a data set to contain the listed data: DCDUMP 

list countera:dtable c l( 130) m( i) print(dcdump) 

Example 2 

Operation: List the contents of real storage at several addresses 

Known: 
The addresses: TOTAL! TOTAL2 TOTAL3 ALLTOTAL 

The attributes of the data: F L(3) M(3) 

1 (tota11 tota12 tota13 alltotal; f 1(3) m(3) 

Example 3 

Operation: List the first six fullwords in the Communications Vector Table 
(CVT). 

Known: 
The absolute address of the CVT: 10. 
The user is operating in TEST mode. 
The attributes of the data: X L(4) M(6) 

Note: First use the QUALIFY subcommand of TEST to establish the 
beginning of the CVT as a base location for displacement values. 

qualify 10.% 

TEST: The system response 

list +0 1(4) m(6) 

The listing at your terminal will resemble the following sample listing: 

+0 00000000 
+4 00012A34 
+8 00000B2C 
+C 00000000 
+10 001A0408 
+14 00004430 

LIST Subcommand of TEST 245 



246 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LISTDCB Subcommand of TEST 

Use the LISTDCB subcommand to list the contents of a data control block 
DCB. You must provide the address of the begimling of the (DCB). 

If you wish, you can have only selected fields displayed. The field 
identification is based on the sequential access "method DCB for direct 
access. Fifty-two bytes of data are displayed if the data set is closed; 
forty-nine bytes of data are displayed if the data set is opened. 

LlSTDCB address 

[FIELD(names)] 

[PR INT(data-set-name)] 

address specifies a symbolic address, a relative address, an absolute 
address, or a general register containing an address. The specified address 
is the address of the DCB that you want displayed. The address must be 
on a fullword boundary. 

FIELD(names) specifies one or more names of the particular fields in the 
DCB that you want to have displayed at your terminal. The segment 
name will not be printed when you use this operand. If you omit this 
operand, . the entire DCB will be displayed. 

PRINT(data-set-name) specifies the name of the sequential data set to 
which data is to be directed (see data set naming conventions). If you 
omit this operand, the data will be displayed at your terminal. 
The data format is blocked variable-length records. Old data sets with 
the standard record format and blocksize are treated as NEW if they are 
being opened for the first time; otherwise they are treated as MOD data 
sets. 

The specified data set is kept open until: 

• The LIST session is ended by a RUN or END subcommand, or 
• A LIST subCOinmand is entered that specifies a different PRINT data 

set. In this case, the former data set is closed and the current one 
opened. 

Example 1 

Operation: List the RECFM field of a DCB for the program that is being 
tested. 

Known: 
The DCB begins at location: DCBIN 

listdcb dcbin field(dcbrecfrn) 

LISTDCB Subcommand of TEST 247 



Example 2 

Operation: List an entti.>e DCB. 

Known: 
The absolute address of the DCB: 33B4 

listdcb 33b4. 

248 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



USTDEB Subcommand of TEST 

Use the LISTDEB subcommand to list the contents of a data extent block 
(DEB). You must provide the address of the DEB. 

In addition to the 32 byte basic section, you may receive up to 16 direct 
access device dependent sections of 16 bytes each until the full length has 
been displayed. If you wish, you can have only selected fields displayed. 

LlSTDEB address 

[FIELD(names)] 

[PR I NT(data-set-name)] 

a~ specifies a symbolic address, a relative address, an absolute 
address, or a general register containing an address. The address is the 
beginning of the DEB, and must be on a fullword boundary~ 

FIELD(names) specifies one or more names of the particular fields in the 
DEB that you want to have displayed at your terminal. If you omit this 
operand, the entire DEB will be listed. 

PRII\7(data-set-name) specifies the name of the sequential data set to 
which data is to be directed (see data set naming conventions). If you 
omit this operand, the data will be displayed at your terminal. 

The data format is blocked variable length records. Old data sets with the 
standard record format and blocksize are treated as NEW if they are 
being opened for the first time; otherwise they are treated as MOD data 
sets. 

The specified data set is kept open until: 

1. The TEST session is ended by a RUN or END subcommand, or 

2. A LIST subcommand is entered that specifies a different PRINT data 
set. In this case, the former data set is closed and the current one 
opened. 

Exafu.ple 1 

Operation: List the entire DEB for the DCB that is named DCBIN. 

Known: 
The address of the DEB: DCBIN+2C% 

listdeb dcbin+2c% 

USfDEB Subcomnand of TFSf 249 



250 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LISTMAP Subcommand of TEST 

Use the LISTMAP subcommand to display a storage map at your terminal. 
The map identifies the location and assignment of any storage assigned to 
the program. 

All storage assigned to the problem program and its subtasks as a result 
of GETMAIN requests is located and identified by subpool (0-127). All 
programs assigned to the problem program and its subtasks are identified by 
name, size, location, and attribute. Storage assignment and program 
assignment are displayed by task. 

LlSTMAP [PR I NT(data-set-name)] 

PRINT(data-set-name) specifies the name of the sequential data set to 
which data is to be directed (see data set naming conventions). If you 
omit this operand, the data will be displayed at your terminalal. 

The data format is blocked variable length" records. Old data sets with the 
standard record format and blocksize are treated as NEW if they are 
being opened for the first item; otherwise, they are treated as MOD data 
sets. 

the specified data set is kept open until: 

• The TEST session is ended" by a RUN or END subcommand, or 
• A LIST subcommand is entered that specifies a different PRINT data 

set. In this case, the former data set is closed and the current one 
opened. 

Example 1 

Operation: Display a map of real storage at your terminal. 

listrnap 

Example 2 

Operation: Direct a map of real-storage to a data set. 

Knhwn: 
The name for the data set: ACDQP.MAP.TESTLIST 

USTMAP Subcommand of TEST 251 



252 OS/V82 1'80 Command Language Reference (VS2 Release 3.i) 



LISTPSW Subcommand of TEST 

Use the LISTPSW subcommand to display a Program Status Word (psw) at 
your terminal. 

LlSTPSW [ADDR(address}] 

[PR INT(data-set-name)] 

ADDR{address) specifies a symbolic address, a relative address, an absolute 
address, or a general register containing an address. The address 
identifies a particular PSW. If you do not specify an address, you will 
receive the current psw for the program that is executing. (See Appendix 
B for more information about addresses.) 

PRINT{data-set-name} specifies the name of the sequential data set to 
which data is to be directed (see data set naming conventions). If you 
omit this operand, the data will be displayed at your terminal. 
The data format is blocked variable length records. Old data sets with 
the standard record format and blocksize are treated as NEW if they are 
being opened for the first time; otherwise, they are treated as MOD data 
sets. 

The specified data set is kept open until: 

• The TEST session is ended by a RUN or END subcommand, or 
• A LIST subcommand is entered that specifies a different PRINT data 

set. In this case, the former data set is closed and the current one 
opened. 

Example 1 

Operation: Display the current PSW at your terminal. 

listpsw 

Example 2 

Operation: Copy the Input/Output old psw onto a data set. 

Known: 
The address of the PSW (in hexadecimal): 38. 
The name for the data set: ANZAL2.PSWS.TESTLIST 

listpsw addr(38.) print(psws) 

LISTPSW Subcommand of TEST 253 



254 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LISTTCB Subcommand of TEST 

Use the LISTTCB subcommand to display the contents of a task control 
block (TCB). You may provide the address of the beghming of the TCB. 

If you wish, you can have only selected fields displayed. 

LlSTTCB [ADDR (address)] 

[FIELD(names)] 

[PR INT(data-set-name) J 

ADDR(address) specifies a symbolic address, a relative address, an absolute 
address, or a general register containing an address. The address must be 
on a fullword boundary. The address identifies the particular TeB that 
you want to display. If you omit an address, the TCB for the current task 
is displayed. 

FIELD(muyes) specifies one or more names. of the particular fields in the 
TCB that· you want to have displayed. If you omit this operand; the entire 
TCB will be displayed. 

PRINT(data-set-name) specifies the name of the sequential data set to 
which data is to be directed (see data set naming conventions). If you 
omit this operand, the data will be displayed at your terminal. 
The data format is blocked variable length records. Old data sets with 
the standard record format and blocksize are treated as NEW if they are 
being opened for the first time; otherwise, they are treated as MOD data 
sets. 

The specified data set is kept open until: 

1. The TEST session is ended by a RUN or a END subcommand, or 

2. A LIST subcommand is entered that specifies a different PRINT data 
set. In this case, the former data set is closed and the current one 
opened. 

LlSTTCB Subcommand of TEST 255 



Example 1 

Operation: Save a copy of the TeB for the current task on a data set. 

Known: 
The name of the data set: NAN75.TCBS.TESTLIST 

listtcb print(tcbs) 

Example 2 

Operation: Save a copy of some fields of a task's control block that is Dot 
active in a data set' for future information. 

Known: 
The symbolic address of the TCB: MYTCB2 

The fields that are being requested: TCBTIO TCBCMP TCBGRS 

The name of the <;lata set: SCOTT.TESTLIST 

listtcb addr(mytcb2) field(tcbtio,tcbcmp,tcbgrs)­
print( 'scott.testlist' ). 

256 OS/VS2 TSO Command Language Reference ("V'S2 Reiease 3.7) 



LOAD Subcommand of TEST 

Use the LOAD subcommand to load a program into real storage for 
execution. 

LOAD program-name 

program name specifies the name of a member of a partitioned data set 
that contains the load module to be tested. (See the data set naming 
conventions. ) 

Example 1 

Operation: Load a program named ATX03.LOAD(GSCORES) 

load (gscores) 

LOAD Subcommand of TEST 257 



258 OS/VS2 TSO Conunand Language Reference (VS2 Release 3.7) 



OFF Subcommand of TEST 

Use the OFF subcommand to remove breakpoints from a program. 

OFF 
[

a.ddress [:address]] 
(address-I ist) 

address specifies the location of a breakpoint that you want to remove. The 
address may be a symbolic address, a relative address, an absolute 
address, or a general register containing an address. The address must be 
on a halfword boundary. 

address:address specifies a range of addresses. Each address may be a 
symbolic address, a relative address, an absolute address, or a general 
register containing an address. Each address must be on a halfword 
boundary. All breakpoints in the range of addresses will be removed. 

(addregs-list) specifies the location of several breakpoints that you want to 
remove. Each address may be a symbolic· address, a relative address, an 
absolute address, or a general register containing an address. Each 
address must be on a halfword boundary. 

Example 1 

Operation: Remove all breakpoints in a section of the program. 

Known: 
The beginning and ending addresses of the section: LOOPC EXITC 

off loopc:exitc 

Example 2 

Operation: Remove several breakpoints . located at different positions. 

Known: 
The addresses of the breakpoints: COUNTRA COUNTRB EXIT A 

off (countra countrb exita) 

Example 3 

Operation: Remove all breakpoints in a program. 

off 

OFF Subcommand of TEST 259 



260 OSjVS2 TSO Command Language Reierence (VS2 Release 3.7) 



QUALIFY Subcommand of TEST 

Use the QUALIFY subcommand to qualify symbolic and relative addresses; 
that is, to establish the starting or base location to which displacements are 
added so that an absolute address is obtained. The QUALIFY subcommand 
allows you to specify uniquely which program and which csect within that 
program you intend to test using symbolic and relative addresses. 

You can specify an address to be used as the base location for 
subsequent relative addresses. Each time you use the QUALIFY 

subcommand, previous qualifications are voided. 

Symbols that were established by the EQUATE subcommand before you 
enter QUALIFY are not affected by the QUALIFY subcommand. 

f address } 
t load-module-name [.entryname] [TCB (address)] 

address specifies an absolute, relative or symbolic address. 

load-module-name [entry-name) specifies the name by which a load module 
is known, and an externally referable name within the load module. The 
two names are separated by a period. The load module name may be the 
name or an alias of a member of a partitioned data set. The entry name 
is the symbolic address of an entry point into the specified module. The 
entry name may be omitted, in which case the first entry point into the 
specified module will be supplied. 

TCB(address) specifies the address of a task control block (TCB). This 
operand is necessary when programs of the same name are assigned to 
two or more subtasks and you must establish uniquely which one is to be 
qualified, or when the load module request block is not in the TCB chain. 

Example 1 

Operation: Establish a base location for relative addresses to a symbol 
within the currently qualified program. 

Known: 
The base address: QSTART 

qualify qstart 

QUALIFY Subcommand of TEST 261 



Example 2 

Operation: Change the base location for symbolic and relative addresses to 
a different csect in the program. 

Known: 
The moduie name: PROFITS 

The entry name (csect): SALES 

The TCB address: SR % 

qualify profits.sales tcb(SR%) 

Example 3 

Operation: Change the base location for relative addresses to an absolute 
address. 

Known: 
The absolute address of the new base: SF820 

qualify Sf820. 

262 OS/VS2 TSO Command Language Reference (V82 Release 3.7) 



RUN Subcommand of TEST 

Use the RUN subcommand to cause the program that is being tested to 
execute to termination without recognizing any breakpoints, When yon 
specify this subcommand, TEST is terminated. When the program completes, 
you can enter another command. Overlay programs are not supported by 
the RUN subcommand. Use the GO subcommand to execute overlay 
programs. 

[address] 

address specifies a symbolic address, a relative address, an absolute 
address, or a general register containing an address. Execution will begin 
at the specified address. If you do not specify an address, execution 
begins at the last point of interruption or from the entry point if the GO 

subcommand was not previously specified. 

Example 1 

Operation: Execute the program to termination from the last point of 
interruption. 

run 

Example 2 

Operation: Execute a program to termination from a specific address. 

Known: 
The address: +AS 

run +a8 

RUN Subcommand of TEST 263 



264 OS/VS2 TSO Command Language Reference (VSl Release 3.7) 



· ' 
WHERE Subcommand of TEST 

Use the WHERE subcommand to obtain the absolute address serving a~ the 
starting or base location for the symbolic and relative addresses in the 
program. Alternately, you can obtain the absolute address of an entry point 
in a particular module or control section (csect). If you do not specify any 
operands for the WHERE subcommand, you will receive the address of the 
next executable instruction. 

{

address } 
offset 
load-module-name [.entry-name [.offset] ] 

address specifies a symbolic address, a relative address, an absolute address, 
or a general register oontaining an addr-e-ss-.When you -8f}eeify an address 
as the operand for the WHERE subcommand, you will receive the name 
of the load module containing the address. 

load-module-name(.entry-namel specifies the name by which a load module 
is known, and an externally referable name within the load module. The 
two names are separated by a period. The load module name may be the 
name or an alias of a member of a partitioned data set. The entry name 
is the symbolic address of an entry point into the specified module. The 
entry name may be omitted, in which case the first entry point into the 
specified module will be supplied. When you specify this operand for 
WHERE, you will receive the real storage address of the load module. 

I offset specifies a relative address within a CSECT. When you specify this 
operand, you will. receive the address of the offset. 

Example 1 

Operation: Obtain the real address of the module named CSTART. 

where cstart 

Example 2 

Operation: Obtain the real address of the CSECT named JULy in the 
module named NETSALES. 

where netsales.july 

Example 3 

Operation: Determine in which program an absolute address is located. 

Known: 
The absolute address: 3E2B8 

where 3e2b8. 

Nue: You will also get the TCB address and the relative address. 

WHERE Sabcommand of TEST 265 



Example 4 

Operation: Determine the absolute address of the next executable 
instruction. 

where 

Example 5 

I Operation: Determine the virtual address of + 1 CA. 

Known: 
The CSECT is WHOOPIE. 

The module is GOODTIME. 

Where goodtime.whoopie.+1ca 

I Note: You will also get the TCB address with the virtual address. 

266 OSiVS2 TSO Command Language Reference (\'S2 Release 3.7) 



TIl'v'lE Command 

Use the TIME command to obtain the follm:ving information: 

• Cumulative CPU titlie (from logon) 
• CUMulative session time (from logon) 
• Service units used 
• Local time of day 
• Today's date 

To enter the command while a program is executing, you must first cause 
an attention interruption. The TIME command has no effect upon the 
executi:ijg program. 

TIME 

TIME Command 267 



268 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



WHEN Command 

Use the WHEN command to test return codes from programs invoked via an 
immediately precedin.g CALL or LOADGO command, and to take a 
prescribed action if the return code meets a certain specified condition. 

WHEN [SYSRC(operator integer)] 

[
END ] 
command-name 

SYSRC specifies that the return code from the previous function (the 
previous command in the command procedure) is to be tested according 
to the values specified for operator and integer. 

operator specifies one of the following operators: 

EQ or means equal to 
NE or ...,= means not equal to 
GT or > means greater than 
LT or < means less than 
GE or >= means greater than or equal to 
NG or ...,> means not greater than 
LE or <= means less than or equal to 
NL or -.< means not less than 

integer specifies the numeric constant that the return code is to be 
compared to. 

END specifies that processing is to be terminated if the comparison is true. 
This is the default if you do not specify a command. 

command-name specifies any valid TSO command name and appropriate 
operands. The command will be processed if the comparison is true. 

Note: Successive WHEN commands may be used to determine an exact 
return code and then perform some action based on that return code. 

Example 1: Using successive WHEN commands to determine an exact 
return code. 

CALL 
WHEN 

WHEN 

WHEN 

compiler 
SYSRC(=O) EXEC LNKED 

SYSRC(=4) EXEC LNKED 

SYSRC(=8) EXEC ERROR 

WHEN Command 269 



270 OS/VS2 TSO Command L3Dg!Jage Reference (VSl Release 3.7) 



Command Procedures 

A command procedure is a prearranged executable sequence of TSO 

commands, subcommands, and control information. Command procedures 
reside in data sets that are stored and cataloged just as any other data sets 
except that the descriptive qualifier of the fully qualified data set name is 
normally CLIST (command list). Command procedures are often referred to 
as CLIST. 

A command procedure may be invoked by issuing the EXEC command or 
the EXEC subcommand of EDIT. The EXEC command and subcommand also 
have an implicit entry facility in normal and extended form. On an implicit 
entry, enter only the procedure name and the value list. On an extended 
implicit entry, prefix the procedure name with 0/0; this limits the system 
search to the file called SYSPROC. (See the EXEC command description for 
information on ways to invoke a command procedure.) 

Use the PROMPT and NO PROMPT operands on the EXEC and PROFILE 

commands to control prompting during the execution of command 
procedures. Note that if you specify NOPROMPT on PROFILE, no prompting 
is allowed ~ven if you specify PROMPT on ·EXEC. 

For a description of line continuation, see the section entitled "Line 
Continuation" in the introduction of this book. 

Definitions of Command Procedure Terminology 

Coding information for command procedures consists of built-in functions, 
control variables, operators, and statements, in addition to the set of 
commands and subcommands. Figure 12.1 is a reference list of this coding 
information. This lists, in alphabetic order, the character strings entered to 
control command procedures, an abbreviated meaning for each, and the 
heading in the book under which to find them. 

Refer to OS/VS2 Terminal User's Guide for more how-to information on 
writing and using command procedures. 

Expressions are part of command procedure terminology. Three types are 
defined. 

• Simple Expressions consist of whole numbers, character strings, 
symbolic variables, system control variables and built-in functions; 
these are combined by arithmetic operators, parentheses, 
concatenation, and nesting of built-in functions. 

Examples 

3+4 
(&A+&B/&C) - .(3*&D+4) 
&STR(ANS=)&SUBSTR( &EVAL(&N-2):&EVAL( &N+3),&BUF) 
&VAL//2 

• Comparative Expressions consist of simple expressions combined by 
comparison operators. 

Command Procedures 271 



3+4=4+3 
&N=&K 
&X LT &Y 
&A*2&Bjj3-5*(&C+6) <= &GOODVAL 
&SUBSTR(1:3,&ALPHABET)=&STR(ABC) 

• Logical Expressions consist of comparative expressions combined by 
logical operators. 

Examples 

3+4=4+3 && &N >= &K 
3+4 EQ 4+? AND &N GE &K 

&N >= &K I &X < &y 
&N GE &K OR &X LT &Y 

• Expressions with no modifiers are assumed to be simple expressions. 

See OS/VSl 1'80 Terminal User's Guide for explanations of three topics 
that you should understand before using command procedure statements: 

• Symbolic Variables 
• Dynamic Symbol Substitution 
• Concatenation 

Name MeaniDg See 

< (or LT) Less than Operators, Comparison 
<= (or LE) Less than or equal Operators, Comparison 
+ Addition Operators, Arithmetic 

I (or OR) Or Operators, Logical 
&& (orAND) And Operators, Logical 
&DATATYPE Determine expression type Built-In Functions 

&EVAL Evaluate arithmetic expression Built-In Functions 
&LASTCC Get last return code Control Variable5 
& LENGTH Determine expression length Built-In Functions 

&MAXCC Get highest return code Control Variables 
&STR Define character string Built-In Functions 
&SUBSTR Define substring Built-In Functions 

&SYSDATE Current date Control Variables 
&SYSDLM Terminal delimiter Control Variables 
&SYSDVAL Terminal delimiter parameters Control Variables 

&SYSICMD Implicit execution member name Control Variables 
&SYSNEST Nested procedure indicator Control Variables 
&SYSPCMD Current primary command name Control Variables 

&SYSPREF Data set name prefix Control Variables 
&SYSPROC Logon procedure name Control Variables 
&SYSSCAN Symbolic substitution scan limit Control Variables 

&SYSSCMD Current subcommand name Control Variables 
&SYSTIME Current time Control Variables 
&SYSUID Current userid Control Variables 

Fagure 12.1. COIDDWId Procedure Coding Reference (Part 1 of 3) 

272 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Name Meaning See 

* Multiplication Operators, Arithmetic 

** Exp6nentiation Operators, Arithmetic 
..... > (or NO) Not greater than Operators, Comparison 

..... < (or N)..) Not less than Operators, Comparison 

..... = (or NE) Not equal Operators, Comparison 
Subtraction Operators, Arithmetic 

I Division Operators, Arithmetic 
II Remainder Operators, Arithmetic 
> (or GT) Greater than Operators, Comparison 

>= (or GE) Greater than or equal Operators, Comparison 
= (or EQ) Equal Operators, Comparison 
AND And Operators, Logical 

ATTN Attention exit Statements 
CLOSFILE Close open file Statements 
CONTROL Control options Statements 
DATA(-ENDDATA) Starts DATA group Statements 
DO(-WlllLE-END ) Start DO group Statemen1$ 
(IF-THEN-)ELSE Start IF-not action Statements 
(DO-WHILE-)END End DO group Statements 
END End the command procedure END Command 
(DATA-)ENDDATA Ends DATA group Statements 
EQ Equal Operators, Comparison 
ERROR Error exit Statements 

EXEC Invoke a command procedure EXEC Command 
EXIT Exit from nested procedure Statements 
GE Greater than or equal Operators, Comparison 
GETFILE Get record from open file Statements 
GLOBAL Define global symbolic variables Statements 
GOTO Unconditional branch Statements 

GT Greater than Operators, Comparison 
IF( -THEN-ELSE) Tests IF condition Statements 
LE Less than or equal Operators, Comparison 

LT Less than Operators, Comparison 
NE Not equal Operators, Comparison 
NG Not greater than Operators, Comparison 

Figm'e 12.1. Command Procedure Coding Reference (Part 2 of 3) 

CODmIIIIId Proced.es 273 



Name Meaning See 

NL Not less than Operators, Comparison 
OPENFILE Open a file Statements 
OR Or Operators, Logical 

PROC Set and use symbolic parameters Statements 
PUTFILE Put record into open file Statements 
READ Get input from terminal Statements 

READDVAL Get input from &SYSDVAL Statements 
RETURN Return control from attnl err exit Statements 
SET Assign values to variables Statements 

TERMIN Request terminal input Statements 
(IF-)THEN(-ELSE) Start IF action Statements 
WHEN Inspect program return code WHEN Command 
(DO-)WHILE(-END) DO loop control Statements 
WRITE Send output to terminal Statements 
WRITENR Send output to terminal with Statements 

no return at end 

Figure 12.1. Command Procedure Coding Reference (Part 3 of 3) 

Operators 

Command procedure operators specify operations to be performed on 
operands or on the terms in an expression. Operators are characterized as 
arithmetic, comparison, and logical. 

Arithmetic 

Arithmetic operators specify fixed-point arithmetic operations to be 
performed on numeric operands. The operands may be any simple 

expressions with numeric values. 

The operator symbols may be either closed up to the associated operands 
or separated by one or more blanks. 

For tbis function: 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

Remainder 

Comparison 

Enter: Notes: 

+ 

* 
I 
** Negative exponents are assumed 

to be exponents of zero. 
II 

Comparison operators specify compare operations to be done between two 

operands or expressions. The operands may be character or numeric values. 

The comparison operators are specified either as characters or as 

symbols. When entered as characters, separate the operator from the 
operands with one or more blanks. When entered as symbols, the operator 

can be either contiguous with or set off by blanks from the operands. 

274 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



For this function: Enter symbols: 

Equal 
Not Equal ...,= 
Less Than < 
Greater Than > 
Less Than or Equal <= 
Greater Than or Equal >= 
Not Greater Than ..., > 
Not Less Than -.< 

Logical 

or characters: 

EQ 
NE 
LT 
GT 
LE 
GE 
NG 
NL 

Logical operators specify logical connections between expressions or 

conditions. The logical operators are specified either as characters or as 

symbols. If the character representation is used, the operators must be set 

off from their operands by blanks. 

For this function: 

And 
Or 

Enter symbols: 

&& 
I 

Evaluating Complex Expressions 

or characters: 

AND 
OR 

In complex. expressions, the order of associating operands with operators in 
the expression is determined by the priority of the operator. The operands 
connected by the highest priority operator (lowest number) are associated 
first. The operands connected by the second highest priority operator are 
associated next until all the considerations have been depleted. 

If more than one operator of priority 1 appears in the expression, 
association of their operands is done from right to left. If more than one 
operator of the same priority, other than priority 1, appears in the 
expression, association of their operands is done from left to right. 

If you want to change the order of association, you may use parentheses. 
Operators and operands enclosed in parentheses are associated first and are 
associated by priority. 

For example: 

SET &A=2*( 3+4) 

Note: (3+4) is associated first; the result is multiplied by 2. 

SET &B=M*(N*(P/Q-R)) 

Note: (P /Q-R) is associated first; the result is multiplied by N; the result 
of multiplication is multiplied by M. 

Command Procedures 275 



Operator 

+ 

** 
II 
* 
I 

I 

+ 

&& 
I 

Operation 

Prefix plus 
Prefix minus 
Exponentiation 
Remainder 
Multiplication 
Division 
Addition 
Subtraction 
Assignment 
Comparison 

Operators 
AND 
OR 

Priority 

nn 
:J Arithmetic 
4 expressions 
4 
'S Comparative 

expressions 
5 
6 Logical 
7 expressions 

Note: The above example shows the priority structure for the three 
different types of expressions. 

Symbolic Substitution 

Symbolic substitution causes real values (numeric or character data) to 
replace the symbolic variable names in the TSO commands, subcommands, 
and command procedure statements in a command procedure. Symbolic 
variables add flexibility to command procedures by symbolizing real values, 
which can change dynamically during command procedure, execution. 
Because a variable may have different values at different times, command 
procedures using symbolic variables can execute multiple functions, or the 
same functions with multiple sets of values. 

The term "symbolic variable" as used in this publication is a general one 
that refers to any command procedure character string for which differing 
values may be substituted at different times. This publication also refers to 
other specific kinds of symbolic variables: 

• Symbolic parameters 
• System control variables 
• Global variables 
• File names on file 110 statements 

Parameters are the special variable names on PROC, READ, and 
READDV AL statements. They constitute a subset among symbolic variables 
because they represent values that pass from the user to the command 
procedure. 

Rules for Symbolic Variables 

The rules for symbolic variables apply uniformly to all symbolic 

representation in command procedures, whether they are parameters, 

control variables, or built-in functions. 

• Symbolic variables consist of an ampersand symbol (&) and 31 or 
fewer alphameric characters, the first of which is alphabetic. 

• The leading ampersand is mandatory, with the following exceptions: 

STATEMENT 

SET 
READ/READDVAL 
GLOBAL 
PROC 
File I/O Statements 

276 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 

USE OF AMPERSAND 

Optional on left side of equal sign 
Optional 
Optional 
Not permissible 
Not permissible for evaluated filename 



• Establishing symbolic variables consists of including their previously 
unused symbolic variable names on SET, GLOBAL, READ, READDVAL, 

PROe, or OPENFILE statements. Symbolic substitution and 
concatenation can be used to establish variables on SET and OPENFILE 

statements. 
• Substitution of symboiic variables occurs line by line. Substitution is the 

process of replacing the variable names with real values. 
• Line scanning progresses from left to right. For lines with unnested 

variables, substitution occurs in line scanning order. 
• Nested symbolic variables are those for which the symbolic substitution 

routine cannot make all substitutions in a single scan because the 
values substituted for some variables are in tum symbolic variables. 

• The line scanning limit is a value in the &SYSSCAN control variable. It 
limits the number of times symbolic substitution may scan a line to 
substitute values for all symbolic variables. 

• Concatenation of symbolic variables consists of writing their names one 
after another with their ampersands, but with no intervening 
delimiters, for example: 

&A&B&C 

• Substitution of concatenated variables is from left to right, in normal line 
scanning order. 

• Concatenating variables to character strings consists of following the 
variable name immediately with a period and the string, for example: 

&VARIABLE.ALPHA 

• Substitution for double ampersands results in a single ampersand for 
each pair before execution. This substitution takes place only after all 
other substitution in a line is complete, provided the scanning limit 
permits complete substitution. Substitution for double ampersands 
results regardless of the scanning limit, because the symbolic 
substitution routine groups pairs of ampersands for later substitution 
independent of any scanning for the substitution of values for 
variables. Therefore, symbolic substitution regards the expression 
"& &X" as a string consisting of a pair of ampersands followed by the 
characters "X", and" & & &X" as a string consisting of a pair of 
ampersands followed by the symbolic variable name" &X". For 
example, consider the following statement: 

SET &X &STR( &&X) 

I 
Note: One exception to the general rule of substitution for the double 
ampersand is the file variable, where the double ampersands will remain. 

After symbolic substitution, the value of &X is the string" &X", which is 
a symbolic variable name in terms of command procedure execution. 

Note: A single ampersand, by itself, is an invalid command procedure 
expression, which will cause an error. See the sections "Command 
Procedure Operators" and "The AND Operator" in the OSjVS2 Terminal 
Users Guide. 

Command Procedures 277 



Symbolic Substitution Examples 

The following examples illustrate the major rules for symbolic substitution. 

Example 1 

This example illustrates the substitution of the innermost built-in functions 
prior to substitution of the outer levels in an expression with nested 
symbolic variables. In the following expression, assume these initial values 
for the symbolic variables: 

&START = 2; &FINISH = 3; &STRING = ABCDE 

Then consider the following lines as the sequence through which 
symbolic substitution substitutes values for all the" variables: 

Original expression:&LENGTH(&SUBSTR(&START:&FINISH,&STRING» 
Intermediate result:&LENGTH(&SUBSTR(2:3,ABCDE» 
Resul t of scan 1: &LENGTH( Be) 
Result of scan 2: 2 

Complete substitution in this example takes only two scans. The 
"intermediate result" shown is for clarifying the substitution part of the 
process that occurs during the first scan of the line. The complete resolution 
of scan 1 also includes the evaluation of the built-in function" &SUBSTR", 

.which by definition is an immediate evaluation. Therefore, the result of 
bOth the sYmbolic substitution of values for variables and the evaluation of 
the built-in function appear in the following line, as the "result of scan 1." 
Scan 2 then resolves the built-in function" & LENGTH" to produce the final 
result of "2". 

Example 2 

This example illustrates concatenation. Assume that a procedure uses the 
following three assignment statements: 

SET &P1 = CONCA 
SET &P2 = ATION 
SET &A = VAR 

Then the substitution will take place in the following statement as 
shown: 

Original statement: 
End of substitution: 

SET &NEW&A.1 
SET &NEWVAR 1 

&P1.TEN&P2 
CONCATENATION 

Note that a period is necessary to concatenate a character string to a 
symbolic variable. Omission of the period would cause TSO to try to find a 
value for the variable & AI. An error would result from this notation if the 
procedure did not elsewhere establish a value "for the variable & AI. 

Example 3 

Example 3 illustrates how to use concatenation and symbolic substitution on 
the left side of the SET statement to create subscripted variable names: 

278 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



set &x = 1 1* j_ni tial ize x */ 
do while &x ie 2 /* x-dimension 1S 2 */ 

set &y = 1 /* initialize y */ 
do while &y Ie 3 1* y-dimension is 3 */ 

set x&x.y&y o /* create 2-by-3 array of zeros */ 
set &y = &y + 1 /* increment the y-dimension */ 

end /* */ 
set &x = &x + 1 /* increment the x-dimension */ 

end 1* */ 

This command procedure creates an array consisting of the following six 
symbolic variables: 

&X1Yl 
&X2Yl 

&X1Y2 
&X2Y2 

Built-In Functions 

&X1Y3 
&X2Y3 

Built-in functions perform evaluations of data expressions, character strings, 
and substrings. To use a built in function, include the appropriate symbolic 
vanao1e on an commarutproceduren statement: TSO substitutesn data for the 
symbolic variable at execution time. 

&DATATYPE 

&DATATYPE(expression) 

Use &DATATYPE to find out whether an expression is entirely numeric. 
TSO replaces the variable with either NUM for all numeric or CHAR for 
anything else. 

& EVAL 

&EVAl(expression) 

Use &EVAL to find the result of an arithmetic expression. TSO replaces the 
variable with the calculated numeric value. 

& LENGTH 

&lENGTH(expression) 

Use &LENGTH to find the number of characters in a result calculated for 
an expression. The numeric value that TSO substitutes for the variable 
pertains to the calculated result, not to the number of characters in the 
expression itself. 

Command Procedures 279 



&STR 

&STR(string) 

Use &STR to enter a specific value in place of the variable. This function 
suppresses the evaluation of the string but does not suppress symbolic 
substitution or the evaluation of built-in functions within the string. 

&SUBSTR 

&SUBSTR(expression [:expression) ,character-string) 

Use &SUBSTR to select a range from a character string and put that range, 
or substring, in place of the variable. The start and end of the substring are 
specified numerically as the nth positions of the character string. The range 
can be from one to all the characters in the string. The numeric values can 
be directly entered or can be the calculated results of symbolic expressions. 

To select a one-character substring, you may enter thestart-of-substring 
parameter and the character string. The system assumes the 
end-of-substring value to be the start-of-substring value. 

Control Variables 

Control variables contain character-format information about the current 
command procedure environment and user. This information can be used by 
command procedures to establish, for example, conditions for branching. 

Four of the control variables can be set by command procedures. The 
remaining control variables are maintained by the system; attempts to 
modify them produce errors. The variables you can set are &LASTCC, 

&MAXCC, &SYSDVAL, and &SYSSCAN. 

&L4STCC 

&LASTCC 

Use· &LASTCC to get the return code form the last operation, whether TSO 

command/ subcommand or statement. The system return codes are in 
OS/VS Message Ubrary: VSl System Codes. The command procedure return 
codes are in Figure 12.2. &LASTCC is modifiable. 

280 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



&MAXCC 

&MAXCC 

Use &MAXCC to find the highest return code issued up to now in the 
procedure, or passed back from any nested procedures that are executed. 
&MAXCC is modifiable, The return code will be returned in decimal format. 

&SYSDATE 

&SYSDATE 

Use&SYSDA.TEtogetthe ptesent date in the format mm/dd/yy where tnII1 

is month, dd is day of month, and yy is year. &SYSDATE is not modifiable. 

&SYSDLM 

&SVSDLM 

Use &SYSDLM to identify which delimiter string of those specified by the 
TERMIN statement the user entered to give up control. This allows a user to 
select options that a command procedure may provide. &SYSDLM is not 
modifiable. 

&SYSDVAL 

&SYSDVAL 

Use &SYSDV AL for either of two purposes: 

• When TERMIN passes control to the terminal user, get the value of 
any parameters the user enters besides the delimiter string entered to 
pass control back to the procedure. 

• When READ requests specific terminal input, get the value of the user 
response line. & SYSDVAL is modifiable. 

Command Procedures 281 



&SYSICMD 

&SYSICMD 

Use &SYSICMD to get the name by which'the user implicitly invoked the 
, currently executing command procedure. The name value will be null if the 
user invoked this command procedure explicitly. &SYSICMD is not 
modifiable. 

&SYSNEST 

&SYSNEST 

Use &SYSNEST to get a character string YES or NO, signifying whether the 
currently executing command procedure is;nested (invoked from another 
command procedure instead of from the terIninal directly). & SYSNEST is 
not modifiable. 

&SYSPCMD 

&SYSPCMD 

Use &SYSPCMD to get the name of the most recently executed TSO 

command in this procedure. The initial value is 'EXEC' in the command 
environment and 'EDIT' in the subcommand environment. &SYSPCMD is not 
modifiable. 

&SYSPREF 

&SYSPREF 

Use &SYSPREF to get the data-set-nameprefix specified in the user profile 
table of the command procedure user. The user can set & SYSPREF by 
issuing the PROFILE command but cannot modify it from the command 
procedure. 

&SYSPROC 

&SYSPROC 

Use &SYSPROC to get the logon procedure name for the current command 
procedure user. & SYSPROC is not modifiable. 

282 OS/VS2 1'SO Command Language Ref oerence (VS2 Release 3.7) 



"SYSSCAN 

aSYSSCAN 

Use &SYSSCAN to get the maximum value for the number of times that 
symbolic substitution is allowed to rescan a line to resolve symbolic 
variables. &SYSSCAN is modifiable; default value is 16, minimum value is 0, 
maximum is largest fixed-point number. 

aSYSSCMD 

aSYSSCMD 

Use &SYSSCMD to get the name of the subcommand currently executing. 
The initial value is null if EXEC is issued in the command environment and 
'EXEC' when issued as a subcommand of EDIT. The value is null whenever 
the procedure is in the command environment. &SYSSCMD is not 
modifiable. 

&SYSTIME 

aSYSTIME 

Use &SYSTIME to get the present time in the format hh:mm:ss where hh is 
hours, mm is minutes, and ss is seconds. &SYSTIME is not modifiable. 

&SYSUID 

aSYSUID 

Use &SYSUID to get the user identification (userid) of the individual 
currently executing the command procedure. &SYSUID is not modifiable. 

Command Procedures 283 



Command Procedure Statements 

Command procedure statements assign values~ set controls~ select options~ 
and control the conditions under which command procedures execute. 
Statements operate in both the command and subcommand environment~ 
which means that statements will work in command procedures invoked 
either by the EXEC command or by the EXEC subcommand of EDIT. In 
general, statements fall into control, assignment, conditional, and file access 
categories. See Figure 12.3. 

Control Assignment Conditional 

ATTN 
CONTROL 
DATA-ENDDATA 
ERROR 
EXIT 
GLOBAL 
GOTO 
PROC 
RETURN 
TERMIN 
WRITE 
WRITENR 

READ DO-WHILE-END 
READDVAL IF-THEN-ELSE 
SET (WHEN Command) 

Fagure 12.2. Command Procedure Statement Categories 

File Access 

CLOSFILE 
GETFILE 
OPENFILE 
PUTFILE 

Character Set Supported in Command Procedure Variables 

Using command procedure file I/O statements can cause characters other 
than those you can enter at a terminal to become part of the value of a 
symbolic variable. Certain hexadecimal codes are used by the system in 
command procedure internal processing and should not appear in data 
processed by command procedure file I/O statements. Command 
procedures support all codes from x'40' through x'FF', with the 
understanding that lowercase characters are translated to uppercase and 
lowercase numbers (x'BO'-x'B9') are translated to standard numbers 
(x'FO-x'F9'). Additionally. the following control characters are supported: 

• x'OS' 
• x'14~ 

• x'16' 
• x'17' 
• x'24' 
• x'2S' 

HT (Horizontal tab) 
RES (Restore) 
BS (Backspace) 
IL (Idle) 
BYP (Bypass) 
LF (line feed) 

All other codes between x'OO' and x'3P' are reserved for command 
procedure internal processing; the use of file I/O statements to process data 
sets containing these codes is not supported. For example, file I/O 
statements cannot be used to process OBJ or LOAD type data sets. 

I Refer to IBM System/370 Reference Summary, for the characters 
associated with the internal hexadecimal codes. 

284 OS/V82 1'80 Command Language Reference (V52 Release 3.7) 



A TfN Statement 

The ATTN statement sets up an environment that detects attention 
interruptions processed by the terminal monitor program (TMP). The 
detection of an attention interruption invokes a specified action. This action 
can effectively be an attention exit. 

[label:] ATTN [OF.F J 
action 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

OFF specifies that any previous attention action is nullified. When no 
action is specified on the ATTN statement, OFF is the default. 

action specifies any executable statement, commonly a DO-group 
constituting a routine. This routine must specify either a command or a 
null before the RETURN statement. Results: 

Null: Ignore the attention. 

Not-null (a command was specified): Give control to the command that 
was specified. 

Example 

Operation: Pass control to a command on an attention exit. 

ATTN DO 

END 

SET &CMD= /* Default to null */ 
WRITE ATTENTION IN CONTROL 
IF &OKTOTERMINATE=YES THEN + 

DO 
WRITE DO YOU WANT TO TERMINATE (Y OR N) 
READ &ANS 

END 
ELSE + 

IF &ANS=Y THEN + 
SET &CMD=END 

WRITE IGNORING YOUR ATTENTION 
&CMD /* The TSO command */ 
RETURN 

A TIN Statement 285 



186 OS/VS2 TSO Command Language Reference (VSl Release 3.7) 



CLOSFILE Statement 

The CLOSFILE statement is used to close a file that was 1'1 eviously opened 
by an OPENFILE statement. It is not necessary to specify file type. One file 
can be closed with one statement. 

File variables are only scanned once (no rescans) and only on OPENFILE. 

[label:] ClOSFllE filename 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

f"dename spe.cifies the ddname by which the file was allocated and opened 
(via OPENFILE). 

CLOSFILE Statement 287 



288 OS/VSl TSO Command Language Reference (VS2 Release 3.7) 

t, 
I 

4 I 



CONTROL Statement 

The CONTROL statement defines certain processing options to be in effect 
for the command procedure. The options are in effect from the time 
CONTROL executes until either the procedure terminates or another 
CONTROL is issued. 

Command procedures without CONTROL statements execute with options 
MSG, NO LIST, NOPROMPT, NOCONLIST, NOSYMLIST, and FLUSH. The user 
can set PROMPT and LIST by entering them as keywords on the EXEC 

command or subcommand that invokes the command procedure. 

CONTROL has no default operands. If you enter CONTROL with no 
operands, the system uses options already in effect because of system 
predefinition, presetting via EXEC, or setting by a previous CONTROL 

I s~te~ent. In ~~di~~n~'When.there.are n~ope~an~ specified, the system 
wilt display those options wmcli are currently m effect. 

Note: CONTROL operands cannot be entered as symbolic variables. 

[label:] CONTROL [F LUSH ] 
NOFLUSH 

[
PROMPT ] 
NOPROMPT 

[
LIST 1 
NOUST 

[
CONUST ] 
NOCONLIST 

[
SYMLlST ] 
NOSYMLlST 

[~~~SGJ 
[MAIN] 

[END(string)] 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

FLUSH specifies that the system can purge (flush) the queue called the 
I input stack. The system normally flushes the stack on an execution error. 

NOFLUSH specifies that the system cannot flush the stack. 

I PROMPr specifies that the command procedure can prompt the terminal for 
input. 

NOPROMPf specifies that the command procedure cannot prompt the 
terminal for input, even if the procedure has prompting capabilities. 

LISf specifies that commands and subcommands are displayed at the 
terminal after symbolic substitution but before execution. 

CONTROL Statement 289 



NOLlST specifies that commands and subcommands are not displayed at the 
terminal after symbolic substitution but before execution. 

COl'lLlSI specifics that cOlnmalld procedure statements are displayed at the 
terminal after symbolic substitution but before execution. 

NOCONLIST specifies that cO!!lmand procedure statements are not displayed 
at the terminal after symbolic substitution but before execution. 

SYMLlST specifies that executable statements are displayed at the terminal 
once before the scan for symbolic substitution. Executable statements 
include commands, subcommands, and command procedure statements. 

NOSYMLlST specifies that executable statements are not displayed at the 
terminal before symbolic substitution. 

MSG specifies that PUTLlNE informational messages from commands and 
statements in the procedure are displayed at the terminal. 

NOMSG specifies that PUTLlNE informational messages from commands and 
statements in the command procedure are not displayed at the terminal. 

MAIN specifies that this is the main command procedure in your TSO 
environment and cannot be deleted by a stack flush request from the 
system. When MAIN is specified, FLUSH and NOFLUSH are ignored. The 
attention exit in the TMP cannot delete the command procedure and any 
error exit used by this command procedure is protected. 

END (string) specifies that a character string will be recognized by the 
system as an END statement that concludes a DO-group. Enter the string 
as 1-4 characters, the first alphabetic and the rest alphameric. Since END 
no longer signifies the end of a Do-group, the writer of the command 
procedure can include END commands and subcommands without 
prematurely ef' ~;ng ',he DO-group. 

290 05/VS2 TSO Command Language Reference (YS2 Relm'\!ii(C 3,7)' 



DATA-END DATA Sequence 

The DATA and END DATA statements are used to designate a group of 
commands and subcommands that are looked at as data by the command 
procedure but as commands and subcommands by the system. Symbolic 
substitution is performed before execution of the group. Command 
procedure statements included in the DAT A-ENDDA T A group cause failures 
because TSO attempts to execute them· a.~ commands or subcommands. A 
DO-group ignores an END in an included DATA-ENDDATA group, instead of 
terminating the DO-group. 

[label:] DATA 

ENOD-ATA 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. You cannot specify a label for ENDDAT A. 

Example 

Operation: Perform an EDIT operation without ending a DO-group. 

IF &ADDIT=YES THEN -
DO 

END 

ELSE 

DATA 
EDIT OLD.DAT~ 
BOTTOM 
INSERT * &NEW ENTRY 
END SAVE 

ENDDATA 

DATA-ENDDATA Sequence 291 



292 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



DO-WHILE-END Sequence 

The DO, WHILE and END statements are used to form commands, 
subcommands, and statements into DO-groups of related instructions. DO 
and END denote the start and end, respectively, of the DO-group. WHILE 
specifies a condition and causes the DO-group to re-execute as long as the 
condition is true. 

The string specified on the END operand of the CONTROL statement can 
be used instead of the END statement. 

[label: J DO [WHI LE logical-expression] 

[label:] END 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

logical-expression is a group of comparative expressions grouped by logical 
operators. (See "Definitions of Command Procedure Terminology." ) 
The minimal entry for logical-expression is a comparative expression. 

DO-WHILE-END Sequence 293 



294 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



ERROR Statement 

The ERROR statement sets up an environment that checks for nonzero 
(error-condition) return codes from commands, subcommands, and 
command procedure statements in the currently executing command 
procedure. When an error code is detected, an action can be invoked. This 
action is effectively an error exit. 

The error exit must be protected from being flushed from the inptu stack 
by the system. Stack flushing makes the error return codes unavailable. Use 
the MAIN or NO FLUSH operands of the CONTROL statement to prevent 
stack flushing.' 

When ERROR is entered with no operands, the system displays any 
command, subcommand, or statement in the command procedure that ends 
in error. The system then attempts to continue with the next sequential 
statement, if possible. 

[label:] ERROR [OFF] 
action 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

OFF specifies that any action previously set up by an ERROR statement is 
nullified. Note that OFF is not a default. 

action specifies any executable statement, commonly a Do-group 
constituting a routine. 

Example 

Operation: Perform an error analysis routine whenever an error occurs in 
the command procedure. 

ERROR DO 

/* Error analysis routine */ 

END 

ERROR Statement 295 



296 OS/VSl TSO Command Language Reference (VSl Release 3.7) 



EXIT Statement 

The EXIT statement causes control to be returned to the routine that called 
the currently executing command procedure. The return code associated 
with this exit can be specified by the user or allowed to default to the value 
in control variable &LASTCC. 

A procedure that is called by another procedure is said to be nested. A 
called procedure can also call a procedure, which would be considered to be 
nested two levels. Levels of nesting are limited only by the extent of 
storage and the skill of the programmer. The structure of the nesting is 
called the hierarachy. You go "up" in the hierarchy when control passes 
from the called to the calling procedure; TSO itself is at the top. 

Entering EXIT causes control to go up one level. When EXIT is entered 
with the QUIT operand, the system attempts to pass control_upward to the 
nrst procedUre encountered that has MAIN or NOFLUSH in effect (See 
CONTROL Statement). If no such procedure is found, control passes up to 
TSO, the input stack is flushed of aU command procedures, and control 
passes to the terminal. 

[label:] EXIT [CODE(expression)] 
[QUIT] 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

CODE(expreBoD) specifies a user-defined return code for this exit, with the 
code specifiable in most simple form as a number or in most complex 
form as a simple expression. (see "Definitions of Command Procedure 
Terminology." When CODE is not specified, the system uses the contents 
of &LASTCC. 

QUIT specifies that control is passed up the nested hierarchy until a 
procedure is found with the MAIN or NOFLUSH option active or until 
TSO receives control. 

EXIT Statement- .297 



298 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



GETFILE Statement 

The GETFILE statement allows the user to get a record from an open QSA-M: 

file. One record is obtained for one execution of GETFILE. You must know 

I the filename (ddname .. ) by which you allocated and opened (via OPENFILE) 
the file for this terminal session. 

After GETFILE executes, the file variable &FILENAME contains the 
record obtained. 

File variables are scanned only once (no rescans) and only on OPENFILE. 

[label: ] GETFI LE filename 

label: specifies a name to which the command procedure can branch.' 
Enter 1-8 chracters, the first alphabetic and the. rest alphameric, followed 
by a colon and at least one blank. 

idename specifies the ddname by which the file was allocated and opened 
(via OPENflLE). 

GETFILE Statement 299 



300 OSjVS2 TSO Command Language Reference (VS2 Release 3.7) 



GLOBAL Statement 

The GLOBAL statement must precede any statement that uses its variables. 
The GLOBAL statement defines unique symbolic variables that will be used 
globally, which in the application means in all lower nested levels of the 
hierarchy. The first-level command procedure defines global variables; 
lower-level procedures must include a GLOBAL statement if they intend to 
refer to the global variables specified in the first level. The number of 

I global variables defined in the first-level procedure is the maximum number 
that can be referenced by any lower-level procedure. 

The global variables are positional, both in the first-level procedure and 
in all lower-level procedures that reference this same set of variables. This 
means that the Nth name on any level GLOBAL statement refers to the 
same variable, even though the symbolic name at each level may be 
different. Note, however, that the names must still be unique among thtme 
at that level. 

Since the global variables are symbolic variables, they must have an & 
prefix except in READ and READDVAL statements, where the & is optional. 

[label:] GLOBAL name1 [name2 .... nameN] 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and th~ rest alphameric, followed by a 
colon and at least one blank. 

namel-naneN specfy valid symbolic variable names for this procedure. 

Example 

Operation: Specify a set of global variables for three levels of procedures, 
where some names are unique to their level. 

First level procedure: 
Second level procedure: 
Third level procedure: 

GLOBAL 
GLOBAL 
GLOBAL 

NAME I 
FIRST 
PARMI 

NAME2 
SECOND 
PARM2 

NAME3 
THIRD 
PARM3 

NAME4 

PARM4 

Note that &NAME3, &THIRD, and &PARM3 would access the same 
variable. 

GLOBAL Statement 301 



302 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



GOTO Statement 

The OOTO statement causes an unconditional branch within a command 
procedure. Branching to another command procedure is not supported. 
When GOTO is specified, control passes to the statement or command that 
has the label called out as the target. 

[label:] GOTO target 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

target specifies either a label or an expression that reduces to a valid label 
value after symbolic substitution. 

Example 

Operation: illustrate branching within a command procedure. 

BEGIN: SET &RET=NEXT 
GOTO LAB1 

NEXT: WRI TENR TWO, 
SET &N=2 
GOTO LAB&N 

LAB 1 : WRITENR ONE, 
GO TO &RET 

LAB2: WRITE THREE 
EXIT /* ONE,TWO,THREE HAS BEEN WRITTEN 

TO THE TERMINAL*/ 

GOTO Statement 303 



304 OS/VSl TSO Command Language Reference (VS2 Release 3.7) 



IF-THEN-ELSE Statement 

I The IF-THEN-ELSE sequence defines a condition, tests the truth of that 
condition, and initiates an action based on the test results. 

Note that a continuation character is required if the THEN statement 
extends to the next line. 

[label:] IF logical-expression THEN [action] 
[ELSE [action]] 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

logical-expre.Ron is a group of comparative expressions grouped by logical 
operators. (See "Definitions of Command Procedure Terminology.") The 
minimal entry for logical-expression is a comparative expression. 

action specifies an executable statement, which includes commands, 
subcommands, and command procedure statements. The THEN action is 
invoked if the IF condition is true. The ELSE action is invoked if the IF 

condition is false and ELSE is specified. H the IF condition is false and 
ELSE is not specified, control passes to the next sequential statement. 

IF-THEN-ElSE Sequence 305 



306 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



OPENFILE Statement 

The OPENFILE statement opens a specific file for QSAM I/O. One execution 
of OPENFILE opens one file. File variables are scanned only once (no 
rescans) and only on OPENFILE. 

Note: Complete your file I/O on a specific file before you change modes 
from command to subcommand or vice versa. Crossmode file I/O is not 
supported and will cause miscellaneous abnormal terminations. 

Note: Specify NO FLUSH (see the CONTROL statement) for a command 
procedure that uses file I/O. 

If a system action causes you to be flushed because you did not specify 
NOFLUSH, you will have to log off the system to recover. You will 
recognize the condition by getting a message similar to "FILE NOT FREED, 

I DATA SET IS OPEN." 

For reference information on QSAM I/O. see OS/VS Data Management 

Services Guide. 

[label:] OPENFILE filename [INPUT ] 
OUTPUT 
UPDATE 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

rdename specifies the name (ddname) of a file that has been previously 
~ocated by the TSO ALLOCATE command or by step allocation. The 
filename becomes a symbolic variable that will contain either: 

• The results of a GETFILE, or 
• A record that was set by the user for a PUTFILE. 

The filename mime does not have to be previously defined. 

INPUT specifies that the filename will open for input. The default is INPUT 

when no types are entered. 

OUTPUT specifies that the file will open for output. 

UPDATE specifies that the file will open for update. 

OPENFILE Statement 307 



308 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



PROC Statement 

The PROC statement defines the parameters that can be passed to the 
command procedure via the value-list parameter of the EXEC command. 
PROC is optional for a command procedure, but if it is used, it must be the 
first statement in the command procedure. 

Note that a label cannot be entered for a PROC statement. 

PROC positional-specification 

[positional- parameters] 

[keyword-parameters [(values)]] 

positio~specification specifies the number of required positional 
parameters to be passed. Enter 1-5 decimal digits. Enter 0 if none. 

positional-parameters specifies the positional parameters, in sequence, that 
require initial values in the value list before the command procedure is 
invoked. Parse will prompt for an initial value if one is not there, except 
when positional-specification=O and no prompting is needed because 
there are no positional parameters. 

Positional parameter names are 1-252 characters, the first alphabetic and 
the rest alphameric. The values must be character strings without 
delimiters. 

keyword-parameters(Talues) specify the keyword paramet,ers, either with or 
without values, that do not require initial values in the value list before 
the command procedure is invoked. 

Keyword parameter names are 1-31 characters, the first alphabetic and 
the rest alphameric, Keywords without values have nothing appended. 
Keywords with values have the values enclosed in parentheses and 
appended to their names. A value can be a null entry (keep parentheses), 
a quoted character string, or an unquoted character string. A quoted 
character string can include delimiters. These values are defaults and are 
used when a keyword name is not valid and a value is required. 

Note: All symbolic parameters have an initial value at the time the 
command procedure begins execution. The symbolic parameter value can be 
changed dynamically by specifying the symbolic parameter name on the 
READ, SET or READDV AL statements. 

PROC Statement 309 



310 OS/VSl TSO C.--Il..IIIIpIp RefereKe (VS2 .... 3.7) 



PUTFILE Statement 

The PUTFILE statement puts a record into an already open QSAM file. One 
execution oi PUTLlNE transfer one record. This record must be initialized 
each time by an assignment statement such as SET unless you want the 

I same record sent more than once. You must know the filename ( ddname) by 
which you allocated and opened (via OPENFILE) the file for this terminal 
session. 

File variables are scanned only once (no rescans) and only on OPENFILE. 

[label:] PUTFILE filename 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the {JIst alphabetic and the rest alphameric, followed by a 
colon and at least one blank.. 

filename specifies the ddname by which the file was allocated and opened 
(via OPENFILE). The record that is put is the value of the file variable 
& FILENAME. 

Example 

Operation: lliustrate typical file I/O . 

. 
OPENFILE MYOUTPUT OUTPUT 

. 
SET &MYOUTPUT = TEXT STRING 
PUTFILE MYOUTPUT /* TEXT STRING is put to the file */ 

PUTFILE Statement 311 



312 OS/VSl TSO C ......... Lanpace Reference (VSl Release 3.7} 



READ Statement 

The READ statement makes terminal user input available to the command 
procedure as values in symbolic variables. These variables may be named in 
the READ statement or a1ready named elsewhere in the command 
procedure. The READ statement is usually preceded by a WRITE to the 
terminal to identify the expected input. 

[label:] READ [name1 [name2 ... nameN] 1 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the rust alphabetic and the rest alphameric fonowed by a 
colon and at least one blank .. 

Nt*: If READ is entered without parameter names, the value of the 
terminal input line is read into &SYSDVAL. 

namel-nameN specify any syntactically valid parameter names; the & 
prefix is optional. These symbolic parameters need not be previously 
defined. The parameters are positional in the sense that recognizable 
values entered by the command procedure user are set sequentially into 
the names specified here. Recognizable values are: 

• A character string 
• A quoted string 
• A parenthesized string 
• A null value, specified by entering two adjacent commas (,,) or two 

adjacent quotes e '). Double quotes (") will not work. 

Any or all of the types specified may be entered on one RE...t\D 

statement. 

READ Statemeat 313 



314 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



READDV AL Statement 

The READDVAL statement causes the current value of &SYSDVAL to be 
parsed into syntactical words and assigns these words to the symbolic 
parameters specified on the READDV AL statement. The assignment is done 
sequentially on the parameters in the order they are specified; parameters 
not assigned a value will default to null values. H there are more words 
than parameters, the leftover words are not assigned. 

Syntactical words are defined as character strings, quoted strings, 
parenthesized strings, or null values as two adjacent commas (,,) or quotes 
(' '). 

[label:] READDVAl [name1 [name2 .... nameN] ] 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the frrst alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

namel-nameN specify any syntactically valid parameter names; the & is 
optional. These symbolic parameters need not have been previously 
defined. The parameters are positional in the sense that syntactical words 
from &SYSDVAL are set sequentially into the names specified here. 

Note: If READDVAL is entered without symbolic parameters, the statement 
is ignored. 

READDVAL Statement 315 



316 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



RETURN Statement 

The RETURN statement specifically returns control from an error range or 
attention range to the statement foliowing the one that ended in error or 
the one that was interrupted by an attention. 

RETURN is valid only when issued from an activated error action range 
or an activated attention action range from this command procedure. If 
neither of these conditions exists, the RETURN is treated as a no-operation. 

[label:] RETURN 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and one or more blanks. 

RETURN Statement 317 



318 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



SET Statement 

The SET statement assigns a specified value to a specified symbolic variable 
name. One value is assigned to one variable for one execution of SET. The 
variable need not have been predefined elsewhere. 

The variable to be set cannot be a built-in function. 

[label:] SET symbolic-variable-name { ;0 } expression 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the first alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

symbolic-variable-name . specifies the syntactically valid symbolic variable 
(with &) or allowable control variable (with &) that is to be set. 

EQ or = specifies the comparison operator EQUAL. 

expression. specifies a simple expression as defined in "Definitions of 
Command Procedure Terminology." 

SET Statement 319 



320 OS/VS2 TSO Command Language Reference (VS2 Release 3.i) 



TERMIN Statement 

The TERMIN statement passes control from the command procedure 
currently executing to the terminal user." TERMIN also defines the character 
strings that a user can enter to return control to the command procedure. A 
null value can be specified as a character string that the user can enter. 
TERMIN is usually preceded by a WRITE statement that identifies the 
expected response to the terminal user. 

Control returns to the command procedure at the statement after 
TERMIN. 

[label:] TERMIN [str:ngl] [string2 .... stringN] 

label: specifies a name to which the command procedure can branch. Enter 
1-8 characters, the fIrst alphabetic and the rest alphameric, followed by a 
colon and at least one blank. 

stringl-stringN specify character strings that the terminal user can enter to 
return control to the command processor. The &SYSDLM control variable 
contains the number of the string which was entered (1 for stringl, 2 for 
string2, etc.) and &SYSDVAL contains the balance of the entered line. 

,(comma) can be used only in the first string position and specifies that the 
terminal user can enter a null line to return control to the command 
procedure. 

TERMIN Statemeat 321 



322 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



WRITE and WRITENR Statements 

The WRITE and WIUTENR. statements send text to the. terminal user from 
the command procedure. Thus text can be used for messages, information, 
prompting, or whatever the writer of the command procedure wishes. 

[label:) WRITE[NR1 . text 

..... : specifl¢s a name, to which the command procedure can branch. Enter 
1-8 characters, the first alpmtbetic and the rest alphameric, followed by a 
colon and at least one bbulk. 

I MITE statement specifIeS ~t the output at the terminal has a carrier 
return at the end of Ute line. 

I wtITENR statement specifies that the carrier does not return after the text' 
is printed. . 

text specifIeS what is to be sent to the terminal. You can enter any 
character string, including symbolic variables. 

EX8IB,le 

o,..tIoa: Dlustrates, WRITE and WRITENR usage . 

. 
WRITENR ONE 
WRITENR TWO/ 
WRITENR THREE 
WRITE FOUR/-Terminal output, first line:QNETWO/THREEFOUR*/ 
WRlTE FIVE /. T~rminal output next line: FIVE */ 

WRrI'J .... WlUTENR Statements 323 



16 
300 
304 
308 
312 
316 
324 
328 
332 
336 
340 
344 
348 
352 
356 

360 
364 
368 
372 
400 

8xx 
800 
804 
808 
812 
816 
820 
824 
828 
832 
836 
840 
844 
848 
852 
856 
860 
864 
868 
872 
900 
904 
908 

912 
916 
920 
924 
932 

936 
940 
944 
948 
952 
956 
960 
964 

999 
I * Sxxx 
I * Uxxx 

Not enough virtual storage 
User tried to update an unauthorized variable 
Invalid keyword on EXIT statement 
Code specified, but no code given on EXIT statement 
Internal GLOBAL processing error 
TERMIN delimiter greater than 256 characters 
GETLINE error 
More than 64 delimiters on TERMIN 
Invalid file name syntax 
File already open 
Invalid OPEN type syntax 
Underlined OPEN type 
File specified did not open (for example, the filename was not allocated) 
GETFILE - filename not currently open 
GETFILE - the file has been closed by the system (for example, file 
opened under EDIT and EDIT has ended) 
PUTFILE - file name not currently open 
PUTFILE - file closed by system (see code 356) 
PUTFILE - CLOSFILE - file not opened by OPENFILE 
PUTFILE - issued before GETFILE on a file opened for update 
GETFILE end of file (treated as an error, which can be handled by 
ERROR action) 
Evaluation routine error codes 
Data found where operator was expected 
Operator found where data was expected 
A comparison operator was used in a SET statement 
(Reserved) 
Operator found at the end of a statement 
Operators out of order 
More than one exclusive operator found 
More than one exclusive comparison operator 
(Reserved) 
(Reserved) 
Not enough operands 
No valid operators 
Attempt to load character from numeric value 
Addition error - character data 
Subtraction error - character data 
Multiplication error - character data 
Divide error - character data or division by 0 
Prefix found on character data 
Numeric value too large 
Single ampersand found 
Symbolic variable not found 
Error occurred in an error action range that received control because of 
another error 
Substring range invalid 
Non-numeric value in substring range 
Substring range value too small (zero or negative) 
Invalid substring syntax 
Substring outside of the range of the string, for example, 1:3,AB; (AB is 
only two characters) 
A built-in function that requires a value was entered without a value 
Invalid symbolic variable 
A label was used as a symbolic variable 
Invalid label syntax on a GOTO statement 
GO TO label was not defined 
GOTO statement has no label 
& SYSSCAN was set to an invalid value 
& LASTCC was set to an invalid value and EXIT tried to use it as a 
default value 
Internal command procedure error 
A system ABEND code 
A user ABEND code 

* Printed in hexadecimal 

Figure 12.3. Command Procedure Statement Error Codes (Decimal) 

324 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Appendix A: Foreground-Initiated Background Commands 

You may use the foreground-initiated background (FIB) commands to 
submit or control jobs for execution in a batch environment. 

Appendix A: ForegrOlmd Initiated Background Commands 325 



326 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Using Foreground-Initiated Background (FIB) Commands 

Use CANCEL, OUTPUT, STATUS and SUBMIT commands primarily to control 
the submission and processing of jobs in a batch environment. Also, the 
OUTPUT command may be used to control foreground-created output. 

Processing Batch Jobs 
You can submit batch jobs for processing if your installation authorizes you 
to do so. This authorization is recorded in the system with your user 
attributes. If you have this authorization, the system lets you use the four 
commands (SUBMIT, STATUS, CANCEL and OUTPUT) that control the 
processing of batch jobs. You can use those commands to submit a batch 
job, to display the status of a batch job, to cancel a batch job, and to 
control the output of a batch job. 

Submitting Batch Jobs 
Before you submit a batch job with the SUBMIT command you can use the 
EDIT command to create a data set (or a member of a partitioned data set) 
that contains the job or jobs you want to submit. Each job consists of Job 
Control Language (JCL) statements and of program instructions and data. 

The first JCL statement in the data set is usually a JOB statement. The 
jobname in the JOB statement can be up to eight characters in length and 
should consist of your user identification followed by one or more letters or 
numbers. For example; SMITH23 or JONESXYZ. 

If the jobname does not begin with your user identification, you can 
submit it with the SUBMIT command and request its status with the STATUS 

command, but you cannot refer to it with the CANCEL or OUTPUT 

command unless the IBM-supplied installation exit is replaced. 

If the jobname consists of only your user identification, the system will 
prompt you for a single character to complete the jobname. This allows you 
to change jobnames without re-editing the data. For example, you may 
submit the same job several times, and supply a different character for the 
job name each time you are prompted. 

If the first statement of your data set is not a JOB statement, the system 
generates the following JOB statement when you submit it with the SUBMIT 

command. 

Iluserid JOB accounting info, I II userid,** JOB STATEMENT GENERATED BY SUBMIT ** 
II NOTIFY=userid, 
II MSGLEVEL=(1,1) 

You will be prompted for a character to complete the jobname. The job 
accounting information is the information specified for the user at logon. 

When you enter the SUBMIT command, you must give the name of a 
data set (or data sets) containing the batch job (or jobs). You can also 
specify the NO NOTIFY operand to specify that you do not want to be 
notified when a batch job with a generated JOB statement terminates. 

Using Foreground-Initiated Background (FIB) Commands 327 



Figure 13 shows bow to create and submit a batch job. The data set type 
on the EDIT command should be CNTL for better system pedormance. The 
SUBMIT command will pedorm best if the fully-qualified data set name is 
entered in quotes. Submitted data sets must have a logical record length of 
80 bytes, a record format of fixed-blocked (FB), and must not contain 
lowercase characters. 

You may include more than one job in one data set. You can omit the 
JOB statement for the first job, but all jobs after the first must have their 
own JOB statement. Although you submit all jobs in the data set with one 
SUBMIT command, you can subsequently refer to each job with separate 
STATUS, CANCEL, and OUTPUT commands. 

When you submit more than one job with a single command, and TSO 

finds an error while processing the first job, the second job is not 
processed. An error that occurs in the second job does not affect the first. 
Any jobs processed prior to the error are submitted for execution; jobs that 
were not processed because of the error should be resubmitted after the 
error is corrected. 

READY 
Edit backpgm new cntl 
INPUT 

0010//smith3 job 7924,smith,msglevel=(1,1), 
0020// notify=smith3 
0030//stepl exec plllfc,parm.plll='nodeck,list' 
0040//plll.sysin dd * 
0050 source statement 
0060 
0070 
0080/* 
0090//step2 exec plllfclg 
0100//plll.sysin dd * 
0110 source statements 
0120 
0130 
0140/* 
0150//go.sysin dd * 
0160 
0170 
0180 
0190 input data 
0200 
0210 
0220/* 

(null line) 
EDIT 
end save 
READY 
submit backpgm 
ENTER JOBNAME CHARACTER+ -
a-
JOB SMITH3A(JOB00071) SUBMITTED 
READY 

FIg1D'e 13. Submitting a Program as a Batch Job 

The user would get a job-ended message with a time stamp at the 
terminal because the NOTIFY keyword is specified on the JOB card. 

A submitted data set need not contain an entire job. A JCL data set and 
a source data set could be used if both were the proper type of data set, as 
follows: 

328 OS/VSl TSO Command Language Reference (VS2 Release 3.7) 



submit (jclds1 sourceds jclds2 sourceds) 

H each JCL data set contained a job card, then two jobs would be 
submitted above. JCLDSl could contain the JCL needed to print the source 
data set following in the input stream and JCLDS2 could contain the JCL 

needed to assemble the same data set. 

Displaying the Status of Jobs 
Any time after you submit a background job you can use the STATUS 

command to have its status displayed. The display will tell you whether the 
job is awaiting execution, is currently executing, or has executed but is still 
on the output queue. The display will also indicate whether a job is in hold 
status. For example, if you want to display the status of SMITH3A, enter: 

READY 
status smith3a 

H you have submitted two jobs with jobname SMITH3A, but just want 
the status of the job submitted in Figure 13, you should enter the jobid 
with the jobname, as follows: 

READY 
status smith3a(job71} 

H you want to know the status of all the jobs with jobnames consisting 
of your user identification plus one character, enter the STATUS command 
without operands: 

READY 
status 

You may also check the status of data sets held from previous 
foreground sessions by using the STATUS command. 

Cancelling Batch Jobs 
The CANCEL command cancels execution of a batch job. For example, if 
you want to cancel job JONESAB, and cancel its output if it has already 
executed, enter: 

READY 
cancel jonesab,p 

After you enter the CANCEL command, the system will send you a 
READY message and will notify the operator that the job has been 
cancelled. 

Using FOI'egl'QIIDd-1nitiate4 Background (FIB) COIDIIBDds 329 



Controlling the Output of Batch or Foreground Jobs 

The OUTPUT command may be used to manipulate all held output, 
regardless of whether the output is produced during the current LOGON 

session, a previous LOGON session, or by a batch job submitted from any 
source. This output must be held for terminal access either: 

• Explicitly via HOLD= YES on a DD statement or via the ALLOCATE or 
FREE command, or 

Example JCL for an explicitly held data set 

IisMITH6 JOB MSGLEVEL=1,MSGCLASS=C,NOTIFY=SMITH 
PGM=IEBDG II EXEC 

IISYSPRINT DD 
II 

SYSOUT=M,HOLD=YES 

II remainder of JCL statements 
II 

• Implicitly by specifying an installation-defined reserved class for 
SYSOUT and MSGCLASS. It is not necessary to have them reserved in 
the same class. 

IisMITH6 JOB MSGLEVEL=l,MSGCLASS=R,NOTIFY=SMITH 
PGM=IEBDG II EXEC 

IISYSPRINT DD 
II 

SYSOUT=S 

II remainder of JCL statements 
II 

The OUTPUT command can: 

• Direct the JCL statements and system messages (MSGCLASS) and 
system output data sets (SYSOUT) produced by a job to your terminal. 

• Direct the MSGCLASS and SYSOUT output from a job to a specific 
data set. 

• Change an output class used in a job. 
• Route the MSGCLASS and SYSOUT output from a job to a remote 

station. 
• Release the output of a job for printing. 
• Delete the output data sets (SYSOUT) or the system messages 

(MSGCLASS) for jobs. 

If you have NOTIFY =userid on the job cards that were submitted, a 
message is written to your terminal or placed in the broadcast data set 
when the background job terminates. Provided you have held the output, 
you can then use the OUTPUT command to control the held output 
produced by the job. 

For example, assume that job GREEN67 produces held output in classes 
A, B, D, M, G, and 6. If you want the output in classes G and M listed at 
the terminal, enter: 

READY 
output green67 class(g m) print(*) 

330 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



If you want the output of class B to be listed in the 
GREEN.KEEP.OUTLIST data set, enter: 

READY 
output green67 class(b) print(keep) 

If you want to change the output in class A to class C, enter: 

READY 
output green67 class(a) newclass(c) 

If you want to delete the output from class D, enter: 

READY 
output green67 class(d) delete 

If you want to release the output of class 6, and have it printed in the 
background by output services, enter: 

READY 
output green67 class(6) nohold 

You can enter the PAUSE operand in the OUTPUT command to make the 
system stop after each data set is listed on your termin~ or on the data set 
you indicate with the PRINT operand. When the system pauses it sends you 
the message OUTPUT. You then have the option of pressing the RETURN 

key to continue processing or entering the CONTINUE, SAVE, END or HELP 

subcommand. 

The CONTINUE subcommand allows you to continue processing your 
output after an interruption occurs. An interruption occurs when: 

• The printing of a data set completes and you used the PAUSE operand 
in the OUTPUT command. 

• You press the attention key. 

Note: An attention interruption can cause unpredictable results in the print 
processing. When attention is hit, the data set may be checkpointed 10 to 
20 records back. 

To retrieve data created during previous LOGON sessions, issue STATUS 

userid. STATUS will return a jobid and status for each LOGON session as a 
job on the output queue. It will also return jobid and status for the current 
LOGON session as a job in execution. 

When you enter the CONTINUE subcommand, the system will resume 
printing with the next data set to be processed. In the following example 
you request that the held data sets in output classes Band C be listed at 
your terminal. The system pauses after printing the data set in B. You enter 
the CONTINUE subcommand to resume processing with data set in C. 

Using Foreground-Initiated Back.grOlHld (FIB) Commands 331 



READY 
output jones2 class(b c} print(*} pause 

output class B 

OUTPUT 
continue 

output class C 

If the interruption was not caused by a pause, you may prefer to resume 
printing at the beginning of the data set being processed. To resume 
printing at the beginning, enter: 

OUTPUT 
continue begin 

If you prefer to resume printing approximately 10 lines before the 
interruption occurred, enter: 

OUTPUT 
continue here 

The CONTINUE subcommand also lets you respecify the PAUSE operand 
of the OUTPUT command. If you entered PAUSE in the OUTPUT command, 
you can enter NOPAUSE in the CONTINUE subcommand, for example, 

READY 
output srnithc class(d} print(data) pause 

OUTPUT 
continue begin nopause 

If you did not specify PAUSE in the OUTPUT command, you can do so in 
the CONTINUE subcommand. This causes the system to pause at the end of 
each data set processed subsequently. 

The SAVE subcommand allows you to place the data set listed before the 
pause into another data set. This allows you to retrieve the data set later. In 
the following example, if your logon identifier is Brown, you request that 
held data sets in output classes E and F be listed at your terminal. After 
listing the data set in E you request that it be saved in the 
BROWN.OUTDATA.OUTLIST data set. You continue processing the next data 
set after saving the data set in class E. 

Noll!: If you want to list output at a terminal when submitting one or 
more jobs, the name you specify must begin with your userid and optionally 
end with one or more alphameric characters (if the IBM-supplied installation 
exit is used). 

332 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



READY 
output brownb class(e f) print(*) pause 

OUTPUT 
save outdata 
OUTPUT 
continue 

The END subcommand is used to terminate the OUTPUT command. For 
example, 

READY 
output dept30a class(a) print(*) pause 

OUT-PUT 
end 
READY 

Using Foreground-Initiated Background (FIB) Commands 333 



334 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



CANCEL Command 

Use the CANCEL command to halt processing of batch jobs that you have 
submitted irom your terminaL A READY message will be displayed at your 
terminal if the job has been cancelled successfully. A message will also be 
displayed at the system operator's console when a job is cancelled. 

Installation management must authorize the use of CANCEL. This 
command is generally used in conjunction with the SUBMIT, STATUS, and 
OUTPUT commands. 

CANCEL (jobname [(jobid)] -list) 

[
NOPURGE] 
PURGE 

(jobname[(jobid»)-list) specifies the names of the jobs that you want to 
cancel. The jobnames must consist of your user identification plus one or 
more alphameric characters up to a maximum of eigh~ characters unless 
the IBM-supplied exit has been replaced by your installation. 
Also, you cannot cancel a TSO user or a started task that is not on an 
output queue. The optional jobid subfield may consist of one to eight 
alphameric characters (the first character must be alphabetic or national). 
The jobid is a unique job identifier assigned by the job entry subsystem 
at the time the job was submitted to the batch system. The jobid is 
needed if you have submitted two jobs with the same name. 

Note: When you specify a list of several job names, you must separate the 
jobnames with standard delimiters and you must enclose the entire list 
within parentheses. 

PURGE specifies that the job and its output (on the output queue) are to be 
purged from the system. 

NOPURGE specifies that jobs are to be cancelled if they are in execution; 
output generated by the jobs will remain available. If the jobs have 
executed, the output still remains available. 

Example 1 

Operation: Cancel a batch job. 

Known: 
The name of the job: JE024Al 

cancel je024a1 

CANCEL Command 335 



Example 2 

Operation: Cancel several batch jobs. 

Known: 
The names of the jobs: D58BOBTA D58BOBTB(J51) D58BOBTC 

cancel (d58bobta d58bobtb(j51) d58bobtc) 

336 OSIVS2 TSO Command Language Reference (VSl Release 3.7) 



OUTPUT Command 

Use the OUTPUT command to: 

• Direct the output from a job to your terminal. The output includes the 
job's Job Control Language statements (JeL), system messages 
(MSGCLASS), and system output (SYSOUT) data sets. 

• Direct the output from a job to a specific data set. 
• Delete the output for jobs. 
• Change the output class(es) for a job. 
• Route the output for a job to a remote work station. 
• Release the output for a job for printing by the subsystem. 

{
OUTPUT} (jobname [(jobid)] -list) 

OUT fCLASS{classname-tist} ) 

rpRINTr,j~ t\l]~BEGINJ fPAUSE . [KEEP[HOLD l~ 
L L\ldsnameVJ HERE l~OPAUSE NOHOLOJ 

NEXT NOKEEP 

[DELETE] 

[N EWCLASS(classname)] [DEST(remote-station-id)] 

(job-name((jobid»)-list) specifies one or more names of batch or foreground 
jobs. The jobname for foreground session is userid Each jobname must 
begin with your user identification and, optionally, can include one or 
more additional characters unless the mM-supplied installation exit that 
scans and checks the jobname and user identification is replaced by a 
user-written routine. The system will process the held output from the 
jobs identified by the job-name-list. You should include the optional 
jobid for uniqueness to avoid duplicate jobnames. 

CLASS(~) specifies the names of the output classes to be 
searched for output from the jobs identified in the jobname list. H you 
do not specify the name of a class, all held output for the jobs will be 
available. A class name is a single character or digit (A-Z or 0-9). 

pRINT(data-set-oame or *) specifies the name of the data set to which the 
output is to be directed. H unqualified, the data-set-name will have the 
user prenx added and the qualffier OUTLIST appended to it. You may 
substitute an asterisk for the data set name to indicate that the output is 
to be directed to your terminal. If you omit both the data set name and 
the asterisk, the default value is. the asterisk. PRINT is the default value if 
you omit PRINT. DELETE, NEWCLASS, DEST, and HOLD/NOHOLD. 

BEGIN indicates that output operations for a data set are to start from the 
beginning of the data set whether it has been checkpointed or not. 

OUTPUT eon..od 337 



HERE indicates that output operations for a data set that has been 
checkpointed are to be resumed at the approximate point of interruption. 
If the data set is not checkpointed, it will be processed from the 
beginning. HERE is the default value if you omit HERE, BEGIN, and 
NEXT. 

NEXT indicates that output operations for a data set that has been 
previously checkpointed are to be skipped. Processing resumes at the 
beginning of the uncheckpointed data sets. Caution: The checkpointed 
data sets that are skipped will be deleted unless the KEEP operand is 
specified. 

PAUSE indicates that output operations are to pause after each SYSOUT 

data set is listed to allow you to enter a SAVE or CONTINUE 

subcommand. (A carrier return entered after the pause will cause normal 
processing to continue.) This operand can be overridden by the 
NOPAUSE operand of the CONTINUE subcommand. 

NOPAUSE indicates that output operations are not to be interrupted. This 
operand can be overridden by the PAUSE operand of the CONTINUE 

subcommand. This is the default if neither PAUSE nor NOPAUSE is 
specified. 

KEEP specifies that the SYSOUT data set will remain enqueued after 
printing (see also HOLD and NOHOLD). 

NOKEEP specifies that the SYSOUT data set be deleted after it is printed. 
NO KEEP is the default if neither KEEP nor NO KEEP is specified. 

HOLD specifies that the kept SYSOUT data set be held for later access from 
the terminal. 

NOHOLD specifies that the kept SYSOUT data set be released for printing 
by the subsystem. This is the default for KEEP if neither HOLD nor 
NOHOLD is specified. 

DELETE specifies that the classes of output specified with the CLASS 

operand are to be deleted. 

NEWCLASS(classname) is used to change one or more SYSOUT classes to the 
class specified by the "classname" subfield. 

DEST(station id) routes SYSOUT classes to a remote work station specified 
by the "station id" subfield. 

Considerations: The OUTPUT command applies to all jobs whose job names 
begin with your user identification. Access to jobs whose job names do not 
begin with a valid user identification must be provided 'hy an 
installation-written exit routine. The SUBMIT, ST A TUS, and CANCEL 

commands apply to conventional batch jobs. You must have special 
permission to use these commands. 

Note: You can simplify the use of the OUTPUT command by including the 
NOTIFY keyword either on the JOB card or on the SUBMIT command when 
you submit a job for batch processing. The system will notify you when the 
job terminates, giving you an opportunity to use the OUTPUT command. 
MSGCLASS and SYSOUT data sets should be assigned to reserved classes or 
explicitly held in order to be available at the terminal. 

Output Sequence: Output will be produced according to the sequence of 
the jobs that are specified, then by the sequence of classes that are 
specified for the CLASS operand. For example, assume that you want to 
retrieve the output of the following jobs: 

338 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



IIJWSD581 
II 
IISYSPRINT 
IISYSUTl 
II 
II 
II 
IISYSUT2 
IISYSIN 

1* 
IIJWSD582 
II 
IISYSPRINT 
IIDD2 
II 
IISYSIN 

1* 

JOB 91435,MSGCLASS=X 
EXEC PGM=IEBPTPCH 
DD SYSOUT=Y 
DD DSNAME=PDS,UNIT=3330, 
VOL=SER=11112,LABEL=( ,SUL), 
DIPS=(OLD,KEEP), 
DCB=(RECFM=U,BLKSIZE=3036} 
DD SYSOUT=Z 
DD * 

PRINT TYPORG=PS,TOTCONV=XE 
LABELS DATA=NO 

JOB 91435,MSGCLASS=X 
EXEC PGM=I EHPROGM 
DD SYSOUT=Y 
DD UNIT=3330,VOL=SER=333000, 
DISP=OLD 
DD * 

SCRATCH VTOC,VOL=3330=333000 

To retrieve the output, you enter: 

output (jwsd581 jwsd582) class (x y z) 

Your output will be listed in the following order: 

1. Output of job JWSDS81 

a. class X (JCL and messages) 

b. class Y (SYSPRINT data) 

c. class Z (SYSUT2 data) 

2. Output of job JWSDS82 

a. class X (JCL and messages) 

b. class Y (SYSPRINT data) 

c. message (No CLASS Z OUTPUT FOR JOB JWSDS82) 

If no classes are specified, the jobs will be processed as entered. Class 
sequence is not predictable. 

Subcommands: Subcommands for the OUTPUT command are: CONTINUE, 

END, HELP, and SAVE. When output has been interrupted, you can use the 
CONTINUE subcommand to resume output operations. 

Interruptions causing subcommand mode occur when: 

• Processing of a sysout data set completes and the PAUSE operand was 
specified with the OUTPUT command. 

• You press the attention key. 

Note: Pressing the attention key purges the input/output buffers for the 
terminal. Data and system messages in the buffers at this time may be lost. 

Although the OUTPUT command attempts to back up 10 records to 
recover the lost information, results are unpredictable due to record length 
and buffer size. The, user may see records repeated or he may notice 
records missing if he attempts to resume processing of a data set at the 
point of interruption (using the HERE operand of CONTINUE, or in the next 
session using HERE on the command). 

OUTPUT Command 339 



You can use the SAVE subcommand to copy a SYSOUT data set to 
another data set for retrieval by a different method. Use the END 

subcommand to terminate OUTPUT. The remaining portion of a job that has 
been interrupted will be kept for later retrieval at the terminal. 

Checl4.nomted D~t!! Set: A data set is checkpointed if it is interrupted 
during printing and never processed to end of data during a terminal 
session. 

interrUptions which cause a data set to be checkpointed occur when: 

• Processing terminates in the middle of printing a data set because of 
an error or ABEND condition. 

• The attention key is pressed during the printing of a data set and the 
CONTINUE NEXT subcommand is entered. The KEEP operand must be 
present or the data set will be deleted. 

• The attention key is pressed during the printing of a data set and the 
END subcommand is entered. 

Example 1 

Operation: Direct the held output from a job to your terminal. Skip any 
checkpointed data sets. 

Known: 
The name of the job: SMITH2 

The job is in the system output class: SYSOUT=X 

Output operations are to be resumed with the next SYSOUT data set or 
group of system messages that have never been interrupted. You want 
the system to pause after processing each output data set. 

output smith2 class(x) print(*) next pause 

Example 2 

Operation: Direct the held output from two jobs to a data set so that it can 
be saved and processed at a later date. 

Known: 
The name of the jobs: JANA JANB 

The name for the output data set: JAN.AUGPP.OUTLIST 

output (jana,janb) class(r,s,t) print(augpp) 

Example 3 

Operation: Change an output class. 

Known: 
The name of the job: KEANI 

The existing output class: SYSOUT=S 

The new output class: T 

output kean1 class(s) newclass{t) 

340 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Example 4 

Operation: Delete the held output instead of changing the class (see 
Example 3). 

out kean1 class(s) delete 

Example 5 

Operation: Retrieve SYSOUT data from your session at your terminal. 

Known: 
The TSO userid: SMITH 
A JES held SYSOUT class: X 
The filename of the SYSOUT data set: SYSUT2 

free file(sysut2) sysout(x) 
status smith 
SMITH(TSU0001) EXECUTING 
output smith(tsu0001) 

OUTPUT Command 341 



342 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



CONTINUE Subcommand of OUTPUT 

Use the CONTINUE subcommand to resume output operations that have 
been interrupted. 

Interruptions occur when: 

• An output operation completes and the PAUSE operand was specified 
with the OUTPUT command. 

• You press the attention key. 

[~~~~N] NEXT 

[
PAUSE ] 
NOPAUSE 

BEGIN indicates that output operations are to be resumec;l from the 
beginning of the data set being processed at the time of interruption. 

NEXT halts all processing of the current data set and specifies that output 
operations are to be resumed with the next data set. 
The next data set is determined by the BEGIN, HERE, or NEXT operand 
on the OUTPUT command. If BEGIN was specified on the command, 
processing will start at the beginning of the next data set. If HERE was 
specified, processing will start at the checkpoint of the next data set, or 
at its beginning if no checkpoint exists. If NEXT was specified, processing 
will start at the beginning of the next uncheckpointed data set. NEXT is 
the default value if BEGIN ,HERE, and NEXT are omitted. 

Note: The data set that was interrupted and any that are skipped will be 
deleted unless KEEP was specified on the command. 

HERE indicates that output operations are to be resumed at a point of 
interruption. If attention was pressed, processing resumes at the 
approximate point of interruption in the current data set. If end of data 
was reached and PAUSE was specified, processing resutp.es at the 
beginning of the next data set (even if it was checkpointed and HERE 

was specified on the command). 

PAUSE indicates that output operations are to pause after each data set is 
processed to allow you to enter a SAVE subcommand. (A carrier return 
entered after the pause will cause normal processing to continue.) You 
can use this operand to override a previous NOPAUSE condition for 
output. 

NOPAUSE indicates that output operations are not to be interrupted. You 
can use this operand to override a previous condition for output. 

CONTINUE Subcommand of OUTPUT 343 



Example 1 

Operation: Continue uutput operation with the next SYSOUT data set. 

continue 

Example 2 

Operatiom Start output operations over again with the current data set 
being processed. 

continue begin 

344 OS/VS2 TSO Command Language Reference (VSl Release 3.7) 



END Subcommand of OUTPUT 

Use the END subcommand to terminate the operation of the OUTPUT 

command. 

END 

END Subcommand of OUTPUT 345 



346 OS/VS2 TSO Command Language Reference (YS2 Release 3.7) 



HELP Subcommand of OUTPUT 

Use the HELP subcommand to obtain the syntax and function of the 
OlJTPlJT subcommands. Refer to the HELP command for a description of 
the syntax and function of the HELP subcommand. 

HELP Subcommand of OUTPUT 347 



348 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



SAVE Subcommand of OUTPUT 

Use the SAVE subcommand to copy the SYSOUT data set from the spool 
data set to the named data set. This data set can be any data set that would 
be valid if used with the PRINT operand. There is no restliction against 
saving JCL. To use SAVE, you should have specified the PAUSE keyword on 
the OUTPUT command. SAVE will not save the entire SYSOUT output of the 
job, only the data set currently being processed. 

data-set-name 

data-set-name specifies the new data set name to which the SYSOUT data 
set is to be copied. 

Example 1 

Operation: Save an output data set. 

Known: 
The name of the data set: ADT023.NEWOUT.OUTLIST 

save newout 

Example 2 

Operation: Save an output data set. 

Known: 
The name of the data set: BXZ037A.OLDPART.OUTLIST 

The data set member name: MEM5 

The data set password: ZIP 

save oldpart(mem5)/zip 

SAVE Subcommand of OUTPUT 349 



350 OS/VS2 TSO Command Language Refer~nce (VS2 Release 3.7) 



STATUS Command 

Use the STATUS command to have the status of COlIVf::c .. tvnal batch jobs 
displayed at your terminal. You can obtain the status of all batch jobs, of 
several specific batch jobs, or of a single batch job. The information that 
you receive for each job will tell you whether it is awaiting execution, is 
currently executing, or has completed execution but is still on an output 
queue. It will also indicate whether the job is in hold status. 

This command may be used only by personnel who have been given the 
authority to do so by the installation management. 

[(jobnarne [(jobid)] -list)] 

(jobname[(jobid)]-list) specifies the names of the conventional batch jobs 
for which you want to know the status. If two or more jobs have the 
same jobname, the system will display the status of all the jobs 
encountered and supply jobids for identification. Wheil more than one 
jobname is included in the list, the list must be enclosed within 
parentheses. If you do not specify any jobnames, you will receive the 
status of all batch jobs in the system whose jobnames consist of your 
userid and one identifying character (alphameric or national). 
The optional jobid subfield may consist of one to eight alphameric 
characters (the first character must be alphabetic or national). The jobid 
is a unique job identifier assigned by the job entry subsystem at the time 
the job was submitted to the batch system. 

Note: When you specify a list of job names, you must separate the 
jobnames with standard delimiters. 

STATUS Command 351 



352 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



SUBMIT Command 

Use the SUBMIT command to submit one or more batch jobs for 
conventional processing. Each job submitted must reside in either a 
sequential data set, a direct-access data set or in a member of a partitioned 
data set. Submitted data sets must be fixed blocked, 80 byte records. Using 
the EDIT command to create a CNTL data set will provide the correct 
format. 

Any of these data sets can contain part of a job, one job, or more than 
one job that can be executed via a single entry of SUBMIT. Each job must 
comprise an input job stream (JCL plus data). Do not submit data sets with 
descriptive qualifiers TEXT or PLI if the characters in these data sets are 
lower case. 

Job cards are optional. The generated jobname will be your userid plus 
an identifying character. SUBMIT will premf)t yOll for this character. SUBMIT 

will insert the job accounting information from the user's LOGON command 
on any generated job card. The system or installation default MSGCLASS 
and CLASS are used for submitted jobs unless MSGCLASS and CLASS are 
specified on the job card(s) being submitted. See the first section in 
Appendix A for an example of a generated JOB card. 

{
SUBMIT} 
SUB 

(data-set-lisd rNOTIFY 1 
lNONOTIFYJ 

(data-set-fist) -' specifies one or more data set names or names of members 
of partitioned data sets that define an input stream (JCL plus data). If 
you specify more than one data set name, enclose them in parentheses. 

NOTiFY specifies that you are to be notified when your job terminates in 
the background if a JOB statement has not been provided. If you have 
elected not to receive messages, the message will be placed in the 
broadcast data set. You must then enter LISTBC to receive the message. 
NOTIFY is the default value if a JOB statement is generated. 
When you supply your own JOB statement, use the NOTIFY=userid 
keyword on the JOB statement if you wish to be notified when the job 
terminates. SUBMIT ignores the NOTIFY keyword unless it is generating a 
JOB statement. 

NONOTIFY specifies that a termination message will not be issued or placed 
in the broadcast data set. The NONOTIFY keyword is only recognized 
when a JOB statement has not been provided with the job that you are 
processing. 

Nota: 

• If any of the above types of data sets containing two or more jobs is 
submitted for processing, certain conditions apply. 
The SUBMIT processor will build a job card for the first job in the 
first data set, if none was supplied, but will not build job cards for 
any other jobs in the data set(s). 

SUBMIT Command 353 



If the SUBMIT processor determines that the first job contains an 
error, none of the jobs are submitted. Once the SUBMIT processor 
submits a job for processing, errors occurring in the execution of that 
job have no effect on the submission of any remaining job(s) in that 
data set. 
Any job card yeu supply should have a job name consisting of your 
userid and a single identifying character. If the jobname is not in this 
format, you will not be able to refer to it with the CANCEL command. 
You will be required to specify the jobname in the STATUS command 
if, the IBM-supplied exit has not been replaced by your installation and 
your job name is not your userid plus a single identifying character. 

• If you wish to provide a job card but you also want to be prompted 
for a unique jobname character, put your userid in the jobname field 
and follow it with blanks so that there is room for SUBMIT to insert 
the prompted-for character. This allows you to change jobnames 
without re-editing the JCL data set. 

• Once SUBMIT has successfully submitted a job for conventional batch 
processing, it will issue a 'jobname(jobid) submitted' message. The 
jobid is a unique job identifier assigned by the job entry subsystem. 

• This command may be used only by personnel who have been given 
the authority· to do so by the installation management. 

• SUBMIT does not support job entry subsystem control cards which 
precede the JOB card. 

Example 1 

Operation: Submit two jobs for conventional batch processing. 

Known: 
The names of the data sets that contain the jobs: 

ABTJQ. STRESS. CNTL 
ABTJQ.STRAIN.CNTL 

submit (stress, strain) 

Example 2 

Operation: Data sets may be concatenated and submitted as a single job. 

Known: 
JCL.CNTL(ASMFCLG): contains JCL for the job. 
MYDATA.DATA: contains the input data. 

submit (jcl(asmfclg) mydata) 

This will cause a single background job to be submitted and will 
simultaneously concatenate a generated job card (if required), job control 
language, and the data. Each data set will not be submitted as a separate 
job. 

354 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



Appendix B: Program Product Commands 

ASlVt Command 

The ASM command is provided as part of the optional TSO ASM Prompter 
program product, which is available for a license fee. 

Use the ASM command to process assembler language data sets and 
produce object modules. The prompter requests required information and I enables you to correct your errors at the terminal. 

COBOL Command 
The COBOL command is provided as part of the optional COBOL Prompter 
program product, which is available for a license fee. 

Use the COBOL command to compile American National Standard (ANS) 

COBOL programs. This command reads and interprets parameters for the os 
Full American National Standard COBOL Version 3 or Version 4 compiler 
and prompts you for any information that you have omitted or entered 
incorrectly. It also allocates required data sets and passes parameters to the 
compiler. 

COBOL also allows specification of the TEST operand to compile 
I programs .suitable for testing with the COBOL Interactive Debug program 

product (see TESTCOB command). 

CONVERT Command 

I The CONVERT command is provided as part of the Code and Go FORTRAN 

program product, which is available for a license fee. 

The CONVERT command converts language statements contained in data 
sets to a form suitable for a compiler other than the one for which they 
were originally intended. The conversions that can be accomplished with 
this command are shown in Figure 14. 

FROM 

Free-form statements suitable 
for the Code and Go 
FORTRAN compiler 

Fixed-form statements 
suitable for the FORTRAN 
(G 1) compiler or the Code 
and Go FORTRAN compiler 

TO 

Fixed-form statements suitable 
for the FORTRAN compilers. 

Free-form statements suitable 
for the Code and Go FORTRAN 
compiler. 

Figure 14. Language Conversions Using the CONVERT Command 

Appendix B: Program Product Commands 355 



COpy Command 

The COpy command is provided as part of the optional TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE program product, which is available for a 
license fee. 

Use the COpy command to copy sequential or partitioned data sets. You 
can also use this command to: 

• Add members to or merge partitioned data sets. 
• Resequence line numbers of copied records. 
• Change the record length, the block size. and the record format when 

copying into a sequential data set. 

FORMAT Subcommand of EDIT 
The FORMAT subcommand is provided as part of the optional TSO Data 
Utilities: COpy, FORMAT, LIST, MERGE program product, which is available 
for a license fee. 

Use the FORMAT subcommand to format textual output. This 
subcommand provides the facilities to: 

• Print a heading on each page. 
• Center lines of text between margins. 
• Control the amount of space for all four margins. 
• Justify left and right margins of text. 
• Number pages of output consecutively. 
• Halt printing when desired. 
• Print multiple copies of selected pages. 
• Control line and page length. 
• Control paragraph indentation. 

MERGE Subcommand of EDIT 
The MERGE subcommand is provided as part of the optional TSO Data 
Utilities: COPY, FORMAT, LIST, MERGE program product, which is available 
for a license fee. 

Use the MERGE subcommand to: 

• Merge, into the data set being edited, all or part of itself. 
• Merge, into the data set being edited, all or part of another data set. 

FORMAT Command 
The FORMAT command is provided as part of the optional TSO Data 
Utilities: COPY, FORMAT, LIST, MERGE program product, which is available 
for a license fee. 

Use the FORMAT command to format textual output. This command 
provides the facilities to: 

• Print a heading on each page. 
• Center lines of text between margins. 
• Control the amount of space for all four margins. 
• Justify left and right margins of text. 
• Number pages of output consecutively. 

356 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



• Halt plinting when desired. 
• Print multiple copies of selected pages. 
• Control line and page length. 
• Control paragraph identati,on." 
• Store a data set that has already been formatted. 
• Print all or part of a sequential or partitioned data set. 

FORT Command 

The FORT command is provided as part of the optional TSO FORTRAN 

Prompter program product, which is available for a license fee. 

Use the FORT command to compile a FORTRAN IV (GO program. You 
will be prompted for any information that you have omitted or entered 
incorrectly. It also allocates required data sets and passes parameters to the 
FORTRAN IV (Gl) compiler. 

FORT also allows specification of the TEST operand to compile programs 
suitable for testing with the FORTRAN Interactive Debug program product 
(See TESTFORT command). 

GOFORT Command 

The GOFORT command is provided as part of the optional TSO Code and 
Go FORTRAN processor. It may be used to compile, load and execute a 
source program that has previously been saved. The GOFORT command 
permits the execution of programs initially coded using the BCD character 
set; neither the RUN command nor the RUN subcommand of EDIT provides 
this capability. 

GOFORT also allows specification of the TEST operand to compile 
programs suitable for testing with the FORTRAN Interactive Debug program 
product (See TESTFORT command). 

LIST Command 

The LIST command is provided as part of the optional TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE program product, which is available for a 
license fee. 

Use the LIST command to display a sequential data set or a member of a 
partitioned data set. You can arrange fields within records for output; you 
can include or suppress record numbers; you can list all or part of a 
particular line of data; and you can list a single line of data, a group of 
lines, or a whole data set. 

Appendix B: Program Product Commands 357 



MERGE Command 
The MERGE command is provided as part of the optional TSO Data 
Utilities: COPY, FORMAT, LIST, MERGE program product, which is available 
for a license fee. 

Use the MERGE command to: 

• MERGE a complete or part of a sequential or member of a partitioned 
data set into a sequential or member of a partitioned data set. 

• Copy a complete or part of a sequential or member of a partitioned 
data set into a new or (pre-allocated) empty sequential data set. 

• Copy a complete or part of a sequential or member of a partitioned 
data set into a new member of an existing partitioned data set. 

• Copy a complete or part of a sequential or member of a partitioned 
data set into a new or (pre-allocated) empty partitioned data set. 

PLI Command 
The PLI command is provided as part of the optional PL/I Optimizing 
compiler program product, which is available for a license fee. The program 
product includes the PL/I Prompter. 

Use the PLI command to invoke the PL/I Optimizing compiler. The 
prompter will allocate required data sets and prompt you for any 
information that you have omitted or entered incorrectly, then it will pass 
control to the compiler. 

PLIC Command 
The PLIC command is provided as part of the optional PL/I Checkout 
compiler program product, which is available for a license fee. The program 
product includes the PL/I Prompter. 

Use the PLIC command to invoke the PL/I Checkout compiler. The 
prompter will allocate required data sets and prompt you for any 
information that you have omitted or entered incorrectly, then it will pass 
control to the compiler. 

Subcommands of the PLIC command are provided to aid checking-out of 
the PL/I program. These allow the programmer to intervene during 
execution of the program and temporarily modify it. 

TESTCOB Command 
The TESTCOB command is provided as part of the optional COBOL 

Interactive Debug program product, which is available for a license fee. 
Used in conjunction with Full American National Standard COBOL Version 
4, COBOL Interactive conjunction with Code and Go FORTRAN or 
FORTRAN IV (Gl), FORTRAN Interactive Debug provides comprehensive 
capabilities for program monitoring and checkout. 

358 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



TESTFORT Command 

The TESTFORT command is provided as part of the optional FORTRAN 

Interactive Debug program product, which is available for a license fee. 
Used in conjunction with Code and Go FORTRAN or FORTRAN IV(Gl), 

FORTRAN Interactive Debug provides comprehensive capabilities for 
program monitoring and checkout. 

Appendix B: Program Product Commands 359 



360 OS/VSl TSO Command Language Reference (VSl Release 3.7) 



Appendix C: Access Method Services Commands 

Access Method Services is a multifunction service program that primarily 
establishes and maintains Virtual Storage Access Method (VSAM) data sets 
(see also Figure 4,) The following Access Method Services commands 
provide the service functions applicable to VSAM data sets and are used in 
the same way as TSO commands at the terminal: 

ALTER changes attributes in catalog entries. 

BLDINDEX(BIX) builds alternate indexes. 

DEFINE (DEF) creates catalog entries for data sets. Subcommands are: 

ALIAS 

ALTERNATEINDEX(AIX) 

CLUSTER(CL) 

GENERATIONDATAGROUP(GDG) 

NONVSAM(NVSAM) 

PAGESPACE(PGSPC) 

PATH 

SPACE(SPC) 

USERCATALOG(UCAT) 

DELETE (DEL) deletes catalog entries. 

EXPORT (EXP) copies a data set for backup. 

EXPORTRA (XPRA) makes entries and data from a recoverable catalog 
portable. 

IMPORT (IMP) reads a backup copy of a data set. 

IMPORTRA (MPRA) reestablishes entries and data made portable by 
EXPORTRA. 

usrCAT (LISfC) lists catalog entries. 

LISfCRA (LISfR) lists catalog entries in the the catalog recovery area 
(eRA). 

PRINT prints VSAM data sets. 

REPRO copies data sets and converts sequential and indexed-sequential 
data sets to VSAM format. 

VERIFY (VFY) causes a catalog to correctly record the end of a data set 
after a data set closing error may have caused the end to be recorded 
incorrectly. 

CNVTCAT converts the contents oi an OS catalog or control volume into 
entries in an MVS or Release 3 catalog. 

For additional information about the syntax and function of these 
commands, refer to OS/VS2 Access Method Services. 

Appendix C: Access Method Senices Commands 361 



362 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



*operand 
CHANGE subcommand of EDIT 77 
COpy subcommand of EDIT 83 
DELETE subcommand of EDIT '.J 1 

INPUT subcommand of EDIT 103 
INSERT/REPLACE/DELETE function of EDIT 107 
LIST subcommand of EDIT 109 
MOVE subcommand of EDIT 111 
SAVE subcommand of EDIT 127 
SCAN subcommand of EDIT 129 
SUBMIT subcommand of EDIT 133 

%operand (EXEC) 148 

AC operand (LINK) 163 
access method services commands 361 
ACCT operand (LOGON) 183 
ADD operand (PROTECT) 184 
ADDR operand 

LISTPSW (TEST) 253 
LISITCB (TEST) 255 

aids to terminal users 17 
ALIAS operand 

DELETE 57 
LISTCAT 173 
RENAME 195 

ALIAS subcommand (DEFINE) 361 
ALL operand 

CHANGE Subcommand (EDIT) 78 
HELP 155 
LISTCAT 174 

ALLOCATE 
command 35 
subcommand (EDIT) 73 

allocation of data sets 35 
ALLOCATION operand (LISTCAT) 174 
ALTER command 361 
ALTERNATEINDEX subcommand 361 
ampersand 

rules for substitution of 277 
ASIS operand (EDIT) 63 
ASM 

command 355 
operand (EDIT) 62 
operand (RUN) 198 

assignment statements (command procedures) 
READ 313 
READDVAL 315 
SET 319 

assignment of values function of TEST 215 
attention interruption 23 
ATTN statement 285 
ATTRIB 

command 45 
attributes for data sets 45 
A TIRLIST operand (FREE) 152 
A VBLOCK operand (ALLOCATE) 39 

basic TSO information 17 
BEGIN operand 

CONTINUE subcommand (OUTPUT) 343 
OUTPUT 337 

BF ALN operand (A TfRIB) 48 
BFTEK operand (ATTRIB) 49 
BLDINDEX command 361 

BLKSIZE operand 
ALLOCATE 39 
ATTRIB 47 
EDIT 63 

BLOCK operand 
ALLOCATE 39 
EDIT 63 

BOTIOM subcommand (EDIT) 75 
BREAK operand (TERMINAL) 206 
broadcast messages 26 
BUFL operand (ATTRIB) 47 
BUFNO operand (ATTRIB) 47 
BUFOFF operand (ATTRIB) 50 
built-in-functions (command procedures) 

&DATATYPE 279 
&EVAL 279 
&LENGTH 279 
&STR 280 
&SUBSTR 280 

CALL 
command 53 
operand (LOADGO) 179 
subcommand of (TEST) 212 

CANCEL command 335 
CAPS operand (EDIT) 63 
CATALOG operand 

ALLOCATE 41 
DELETE 57 
FREE 152 
LISTCAT 172 
LISTDS 176 

CHANGE subcommand (EDIT) 77 
changing modes of operation 69 
CHAR operand (PROFILE) 186 
character deletion 17 
character string evaluation 

&STR 280 

Index 

CHECK operand (RUN subcommand of EDIT) 124 
CLASS operand (OUTPUT) 337 
CLEAR operand (TERMINAL) 206 
CLIST operand (EDIT) 62 
CLOSFILE statement 287 
CLUSTER operand 

DELETE 57 
LISTCAT 173 

CN operand (SEND) 202 
CNTL operand (EDIT) 62 
CNVTCAT 

command 361 
CaBLIB operand 

LINK 161 
LOADGO 178 

COBOL 
command 355 
operand (EDIT) 62 
operand (RUN) 198 

coding reference 272 
command procedures 271 
command procedure statements 284 

assignment 
READ 313 
READ OVAL 315 
SET 319 

conditional 
DO-WHILE-END 293 
IF-THEN-ELSE 305 

Index 363 



control 
ATTN 285 
CONTROL 289 
DATA-ENDDATA 291 
ERROR 295 
EXIT 297 
GLOBAL 301 
GOTO 303 
PROC 309 
RETURN 317 
TERMIN 321 
WRITE 323 
WRITENR 323 

file-access 
CLOSFILE 287 
GETFILE 299 
OPENFILE 307 
PUTFILE 311 

command procedure terminology (DEF.) 271 
simple expressions 271 
comparative expressions 271 
logical expressions 272 

conditional statements (command procedures) 
&LASTCC 272,280 
&MAXCC 272,282 
&SYSDATE 272,282 
&SYSDLM 272,282 
&SYSDVAL 172,281,321 
&SYSICMD 272,281 
& SYSNEST 272,282 
& SYSPCMD 272,282 
& SYSPREF 272,282 
& SYSPROC 272,282 
&SYSSCAN 272,282 
& SYSSCMD 272,283 
& SYSTIME 272,283 
& SYSUID 272,283 

CONTROL statement 289 
control statements (command procedures) 

ATTN 285 
CONTROL 289 
DATA-END DATA 291 
ERROR 295 
EXIT 297 
GLOBAL 301 
GOTO 303 
PROC 309 
RETURN 317 
TERMIN 321 
WRITE 323 
WRITENR 323 

CONVERT command 355 
COUNT operand 

AT subcommand of TEST 218 
COpy subcommand of EDIT 84 
MOVE subcommand of EDIT 111 

COpy 
command 356 
subcommand (TEST) 223 
subcommand (EDIT) 84 

CP operand (TEST) 212 
CREATION operand (LISTCAT) 172 
CYLINDERS operand (ALLOCATE) 39 

DATA operand 
EDIT 62 
PROTECT 193 

DATA-ENDDATA statement 291 
data set naming conventions 27 

DATASET operand 
ALLOCATE 37 
FREE 152 

DEFER operand (AT subcommand of TEST) 218 
DEFINE command 361 
definitions of command procedure terminology 271 

simple expressions 271 
comparative expressions 271 
logical expressions 272 

DELETE 
command 55,361 
operand 

ALLOCATE 41 
FREE 152 
PROTECT 184 
OUTPUT 338 

subcommand 
EDIT 91 
TEST 227 

delimiters 20 
DEN operand (ATTRIB) 51 
DEST operand 

ALLOCATE 40 
FREE 152 
OUTPUT 338 

DIAGNS operand (ATTRIB) 50 
DIR operand (ALLOCATE) 40 
DISCONNECT operand (LOGOFF) 181 
DO-WHILE-END statements 293 
DROP subcommand (TEST) 229 
DSORG operand (ATTRIB) 50 
DSNAME operand 

ALLOCATE 37 
FREE 152 

DUMMY operand (ALLOCATE) 37 

EDIT command 59 
edit mode 67 
editing 

context 67 
line number 67 

END 
operand 

WHEN 269 
CONTROL 290 

command 145 
subcommand 

EDIT 95 
OUTPUT 345 
TEST 231 

entering information LISTCA T at a terminal 17 
ENTRIES operand 173 
EP operand (LOADGO) 179 
ERASE operand (DELETE) 57 
EROPT operand (ATTRIB) 49 
error codes (command procedures) 324 
ERROR statement 295 
evaluating complex expressions 275 
EXEC 

command 147 
subcommand (EDIT) 97 

EXIT statement 297 
EXPDT operand (ATTRIB) 48 
EXPIRATION operand (LISTCAT) 174 
EXPORT command 361 
EXPORTRA command 361 
expressions 

simple 271 
comparative 271 
logical 272 

364 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



FIELD operand 
LISTDCB subcommand (TEST) 247 
LISTDEB subcommand (TEST) 249 
LISTICB subcommand (TEST) 255 

file access statements 
CLOSFILE 287 
GETFILE 299 
OPENFILE 307 
PUTFILE 311 

FILE operand 
ALLOCATE 38 
DELETE 57 
FREE 152 

FIND subcommand (EDIT) 99 
FLUSH operand (CONTROL) 289 
foreground-initiated background commands 327 
FORMAT 

command 356 
subcommand (EDIT) 356 

FORT 
command 357 
operand (RUN) 198 

FORTGI operand (EDIT) 62 
FORTH operand (EDIT) 62 
FORTLIB oper~d 

LOADGO 178 
FREE 151 

command 
FREEMAIN subcommand (TEST) 235 
FUNCTION operand (HELP) 155 

GENERATIONDATAGROUP operand 
DELETE 57 
LISTCAT 173 
generic name 173,175 

GENERATIONDATAGROUP(GDG) subcommand 361 
GETFILE statement 299 
GETMAIN subcommand (TEST) 237 
GLOBAL statement 301 
GO operand (RUN subcommand of EDIT) 125 
GOFORT 

command 357 
operand 

EDIT 62 
RUN 198 

GOTO statement 303 

HELP 
command 155 
subcommand 

EDI7 101 
OUTPUT 347 
TEST 241 

HERE operand 
CONTINUE subcommand (OUTPUT) 343 
OUTPUT 338 

HISTORY operand 
LISTALC 165 
LISTCAT 174 
LISTDS 176 

HOLD operand 
ALLOCATE 40 
FREE 152 
LOGOFF 181 
OUTPUT 338 

I operand (INPUT subcommand of EDIT) 103 
IF-THEN-ELSE statements 305 
IMAGE operand (T ABSET subcommand of EDIT) 138 

IMPORT command 361 
IMPORTRA command 361 
INCR operand 

COPY subcommand of EDIT 84 
MOVE subcommand of EDIT 112 

INDEX operand (LISTCAT) 173 
informational messages 26 
INPUT 

operand 
ATIRIB 48 
TERMINAL 205 
OPENFILE 307 

subcommand (EDIT) 103 
input mode 65 
INSERT SUBCOMMAND (EDIT) 105 
insert/replace/delete function (EDIT) 107 
INTERCOM operand (PROFILE) 187 
interpretation of HELP information 26 

KEEP operand 
ALLOCATE 41 
FREE 152 

KEYLEN operand (ATTRIB) 48 
keyword operands 19 

LABEL operand 
ALLOCATE 40 
LISTDS 176 

LENGTH operand 
COPY subcommand (TEST) 223 
EQUATE subcommand (TEST) 234 
LIST subcommand (TEST) 244 

LET operand 
LINK 161 
LOADGO 179 

LEVEL operand 
LISTCAT 173 
LISTDS 176 

LIB operand 
RUN subcommand (EDIT) 124 
LINK 161 
LOADGO 178 

LIMCT operand (ATTRIB) 50 
line by line data entry 18 
line continuation 21 
line number editing 67 
LINE operand 

EDIT 63 
PROFILE 186 

LINES operand (TERMINAL) 205 
LINESIZE operand (TERMINAL) 206 
LINE 1 operand 

COPY subcommand of EDIT 83 
MOVE subcommand of EDIT 111 

LINE2 operand 
COPY subcommand of EDIT 83 
MOVE subcommand of EDIT 111 

LINE3 operand 
COpy subcommand of EDIT 84 
MOVE subcommand of EDIT 112 

LINE4 operand 
COPY subcommand of EDIT 84 
MOVE subcommand of EDIT 112 

LINK command 159 
LIST 

command 357 
operand 

EXEC 148 
LINK 161 
PROFILE 187 

Index 365 



PROTECT 192 
CONTROL 290 

subcommand 
EDIT 109 
TEST 243 

LIST ALC command 165 
LISTBC command 169 
LISTCAT command 171 
LISTCRA command 361 
LISTDCB subcommand (TEST) 247 
LISTDEB subcommand (TEST) 249 
LISTDS command 175 
LISTMAP subcommand (TEST) 251 
LISTPSW subcommand (TEST) 253 
LISTTCB subcommand (TEST) 255 
LMSG operand (Run subcommand of EDIT) 124 
LOAD 

operand 
LINK 160 
TEST 212 

subcommand (TEST) 257 
LOADGO command 177 
LOGOFF command 181 
LOGON 

command 183 
operand (SEND) 201 

MAIL operand (LOGON) 183 
MAIN operand (CONTROL) 290 
MAP operand 

LINK 161 
LOAD GO 178 

MAXVOL operand (ALLOCATE) 40 
MEMBERS operand 

LISTALC 166 
LISTDS 176 

MERGE command 358 
MERGE subcommand (EDIT) 356 
messages 

prompting 25 
infonnation 26 
broadcast 26 

MOD operand (ALLOCATE) 38 
MODE operand (PROFILE) 187 
MOVE subcommand (EDIT) 111 
MSG operand (CONTROL) 290 
MSGID operand 

HELP 155 
PROFILE 187 

MSVGP operand 
ALLOCATE 39 

MULTIPLE operand 
EQUATE subcommand (TEST) 234 
LIST subcommand (TEST) 244 

NAME operand 
LISTCAT 174 
LOADGO 179 

naming conventions for TSO data sets 27 
NCAL operand (LINK) 161 
NCP operand (ATTRIB) 48 
NE operand (LINK) 163 
NEW operand 

ALLOCATE 38 
EDIT 61 

NEWCLASS operand (OUTPUT) 338 
NEXT operand 

OUTPUT 338 
CONTINUE subcommand (OUTPUT) 343 

NO BREAK operand (TERMINAL) 206 

NOCALL operand 
LOADGO 179 

NO CLEAR operand (TERMINAL) 206 
NOCONLIST operand (CONTROL) 290 
NO CHAR operand (PROFILE) 186 
NOCP operand (TEST) 212 
NODC operand (LINK) 163 
NODEFER operand (AT subcommand of TEST) 218 
NOERASE operand (DELETE) 57 
NOFLUSH operand (CONTROL) 289 
NOGO operand (RUN subcommand of EDIT) 125 
NOHOLD operand 

ALLOCATE 40 
FREE 152 
OUTPUT 338 

NOINPUT operand (TERMINAL) 205 
NOINTERCOM operand (PROFILE) 187 
NO KEEP operand (OUTPUT) 338 
NOLET operand 

LOADGO 179 
LINK 162 

NO LINE operand (PROFILE) 187 
NOLINES operand (TERMINAL) 205 
NO LIST operand 

EXEC 148 
LINK 161 
CONTROL 290 

NOMAP operand 
LINK 161 
LOAD GO 179 

NOMAIL operand (LOGON) 184 
NOMODE operand (PROFILE) 188 
NOMSG operand (CONTROL) 290 
NOMSGID operand (PROFILE) 187 
NONCAL operand 

LINK 161 
NONE operand (LINK) 163 
NONOTICES operand (LOGON) 184 
NONOTIFY operand 

AT subcommand of TEST 22 
SUBMIT 354 

NONUM operand (EDIT) 63 
NONVSAM operand 

DELETE 57 
LISTCAT 173 

NOOL operand (LINK) 163 
NOOVLY operand (LINK) 162 
NOPAUSE operand 

CONTINUE subcommand of OUTPUT 343 
OUTPUT 338 
PROFILE 187 
RUN subcommand of EDIT 125 

NOPOINTER operand (COpy subcommand of TEST) 
223 

NO PRINT operand 
LINK 161 

NOPROMPT operand (CONTROL) 289 
CONTROL 289 
EXEC 148 
INPUT subcommand of EDIT 103 
PROFILE 187 

NOPURGE operand (DELETE) 57 
NOPWREAD operand (PROTECT) 192 
NOREFER operand (LINK) 162 
NORENT operand (LINK) 162 
NORES operand (LOADGO) 17~ 
NOREUS operand (LINK) 162 
NOSA VE operand (END subcommand of EDIT) 95 
NOSCAN operand (EDIT) 63 
NOSCRATCH operand (DELETE) 57 
NOSCTR operand (LINK) 162 
NOSECONDS operand (TERMINAL) 205 

366 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



NOSTORE operand 
RUN 199 
RUN subcommand (EDIT) 125 

NOSYMLIST operand (CONTROL) 290 
notation 

quoted string 78 
special delimiter 78 

NO TERM operand 
LINK 163 
LOADGO 178 

NOTEST operand 
LINK 163 
LOADGO 178 

NOTEST operand 
LINK 163 
RUN subcommand of EDIT 124 

NOTICES operand (LOGON) 184 
NOTIFY operand 

AT subcommand of TEST 218 
. SUBMIT 354 

NOTIMEOUT operand (TERMINAL) 206 
NOW operand (SEND) 201 
NOW AlT operand {SEND} 2m 
NOWRITE operand (PROTECT) 193 
NOWTPMSG operand (PROFILE) 188 
NOXCAL operand (LINK) 162 
NOXREF operand (LINK) 162 
NUM operand 

EDIT 63 

OBJECT operand (TEST) 212 
OFF 

operand 
ATTN 285 
ERROR 295 
SCAN subcommand of EDIT 129 
T ABSET subcommand of EDIT 136 
VERIFY subcommand of EDIT 143 

subcommand (TEST) 259 
OPENFILE statement 307 
OL operand (LINK) 163 
OLD operand 

ALLOCATE 38 
EDIT 61 

ON operand 
SCAN subcommand (EDIT) 129 
T ABSET subcommand (EDIT) 136 
VERIFY subcommand (ED IT) 143 

. operands 
keyword 19 
positional 19 

OPERANDS operand (HELP) 155 
OPERATOR operand (SEND) 202 
operators (command procedures) 274 

arithmetic 274 
comparison 274 
logical 275 

OPT operand (RUN subcommand of EDIT) 124 
OPTCD operand (ATTRIB) 49 
OUTFILE operand (LISTCAT) 172 
OUTPUT command 387 
OUTPUT operand 

ATTRIB 48 
OPENFILE 307 

OVLY operand (LINK) 162 

PAGES PACE operand 
DELETE 57 
LISTCAT 173 

PAGESPACE subcommand (DEFINE) 361 

P ARM operand (CALL subcommand of TEST) 221 
PARALLEL operand (ALLOCATE) 40 
password data set 191 
passwords, specifying 31 
PATH subcommand (DEFINE) 361 
PAUSE operand 

CONTINUE subcommand (OUTPUT) 343 
OUTPUT 338. 
PROFILE 187 
RUN subcommand (EDIT) 125 

PERFORM operand (LOGON) 184 
PLI 

command 358 
operand 

EDIT 61 
RUN 198 

PLIBASE operand 
LINK 161 
LOAD GO 178 

PLIC command 358 
PLICMIX operand 

LINK 161 
LOADGO 178 

PLIF operand (EDIT) 61 
PLILIB operand 

LINK 161 
LOAD GO 178 

PLIF operand (EDIT) 61 
PLILIB operand 

LINK 161 
LOADGO 178 

POINTER operand (COPY 'Subcommand of TEST) 223 
POSITION operand (ALLOCATE) 40 
PREFIX operand (PROFILE) 188 
PRINT 

command 361 
operand 

LINK 161 
LOAD GO 178 
LIST subcommand (TEST) 244 
LISTDCB subcommand (TEST) 247 
LISTDEB subcommand (TEST) 249 
LISTMAP subcommand (TEST) 251 
LISTPSW subcommand (TEST) 253 
LISTTCB subcommand (TEST) 255 
OlJTPUT 337 

PRIVATE operand (ALLOCATE) 40 
PROC operand (LOGON) 183 
PROC s.tatement 309 
PROFILE 

command 185 
subcommand (EDIT) 119 

program product commands 355 
PROMPT operand 

EXEC 148 
INPUT subcommand (EDIT) 103 
PROFILE 187 
CONTROL 289 

PROTECT command 191 
PURGE operand (DELETE) 57 
PUTFILE statement 311 
PWREAD operand (PROTECT) 192 
PWWRITE operand (PROTECT) 192 

QUALIFY subcommand (TEST) 261 
QUIT operand (CONTROL) 
quoted string notation 78 

R operand (INPUT subcommand of EDIT) 103 
READ statement 313 

Index 367 



READ OVAL statement 315 
RECFM operand (A TTRIB) 48 
RECONNECT operand (LOGON) 184 
REFR operand (LiNK) 162 
RELEASE operand (ALLOCATE) 41 
RENAME command 195 
RENT operand (LIl'"~) 162 
RENUM 

operand (SAVE subcommand of EDIT) 127 
subcommand (EDIT) 121 

REPLACE operand (PROTECT) 192 
REPRO command 361 
RES operand (LOADGO) 178 
RETPD operand (A TTRIB) 48 
RETURN operand (CALL subcommand of TEST) 221 
RETURN statement 317 
REUS operand (LINK) 162 
ROUND operand (ALLOCATE) 41 
RUN 

command 197 
subcommand (EDIT) 123 
subcommand (TEST) 263 

SAVE 
operand 

END subcommand of EDIT 95 
SEND 201 

subcommand (EDIT) 127 
subcommand (OUTPUT) 349 

SCAN 
operand (EDIT) 63 
subcommand (EDIT) 129 

SCRATCH operand (DELETE) 57 
SCRSIZE operand (TERMINAL) 206 
SCTR operand (LINK) 162 
SECONDS operand (TERMINAL) 205 
SEND 

command 201 
subcommand (EDIT) 131 

SET statement 319 
SHR operand (ALLOCATE) 38 
SIZE operand 

LINK 162 
LOADGO 179 
LOGON 184 
RUN subcommand (EDIt) 125 

SMSG operand (RUN subcommand of EDIT) 124 
SNUM operand (LIST subcommand of EDIT) 109 
SP operand 

FREEMAIN subcommand (TEST) 235 
GETMAIN subcommand (TEST) 237 

SPACE operand 
ALLOCATE 39 
DELETE 57 
LISTCAT 173 

SPREC operand (RUN subcommand of EDIT) 124 
statements 

(See command procedure statements) 
STATUS 

command 351 
operand 

LISTALC 165 
LISTDS 175 

STORE operand 
RUN 199 
RUN subcommand (EDIT) 125 

STRING operand 
COpy subcommand of EDIT 84 
MOVE subcommand of EDIT 112 

Subcommand (DEFINE) 361 
special delimiter notation 78 

subcommands 
explanation of 
EDIT 72 
TEST 217 
OUTPUT 343 

SUBMIT 
COIIlmand 353 
subcommand (EDIT) 133 

substitution of 
symbolic variables 276 
concatenated variables 277 
double ampersands 277 

symbolic substitution 176 
rules for symbolic variables 176 

SYMLIST operand (CONTROL) 290 
SYNTAX operand (HELP) 155 
SYSNAMES operand (LIST ALC) 166 
SYSOUT operand 

ALLOCATE 38 
FREE 152 

TABSET subcommand (EDIT) 135 
tabulation characters 69 
TCB operand (QUALIFY subcommand of TEST) 261 
TERM operand 

LINK 163 
LOADGO 178 

TERMIN statement 321 
TERMINAL command 205 
tenninal conventions 17 
terminal, using a 17 
TEST 

command 209 
operand 

RUN subcommand (EDIT) 124 
LINK 163 

TESTCOB 358 
TESTFORT 359 
TIME command 267 
TIMEOUT operand (TERMINAL) 206 
TOP subcommand (EDIT) 137 
TRACKS operand (ALLOCATE) 39 
TRTCH operand (ATTRIB) 51 
TSO, basic infonnation 17 

UCOUNT operand (ALLOCATE) 40 
UNCAT ALOG operand 

ALLOCATE 41 
FREE 152 

UNIT operand (ALLOCATE) 40 
UNNUM 

operand (SAVE subcommand of EDIT) 128 
subcommand (EDIT) 139 

UP subcommand (EDIT) 141 
UPDATE operand (OPENFILE) 307 
USER operand 

SEND 201 
USERCAT ALOG operand 

DELETE 57 
LlSTCAT 173 

USING operand (ALLOCATE) 41 
using a tenninal 17 

VERIFY 
command 361 
subcommand (EDIT) 143 

VL operand (CALL subcommand of TEST) 221 
VOLUME operand 

ALLOCATE 39 

368 OS/VS2 TSO Command Language Reference (VS2 Release 3.7) 



LISTCAT 174 
VSBASIC operand 

EDIT 62 
RUN 199 

VSEQ operand (ALLOCATE) 40 

WAIT operand (SEND) 202 
WHEN command 269 

WHERE subcommand (TEST) 265 
WRITE statement 323 
WRITENR statement 323 
WTPMSG operand (PROFILE) 188 

XCAL operand (LINK) 162 
XREF operand (LINK) 162 

Index 369 



OSiVS2 TSO Command Language Reference 

GC28-0646-3 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

What is your occupation? 

Number of latest Technical Newsletter (if any) concerning this publication: 

Please indicate your address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

READER'S 
COMMENT 
FORM 



Your comments, please ... 

This manual is part of a library that serves as a reference source for system analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and pUblishing 
this material. All comments and suggestions become the property of IBM. 

I 
Fold Fold 

- ------ - - - ---- - -----~ 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S:A. 

Postage will be paid by: 

International Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

First Class 
Permit 81 
Pough k eepsi e 
New York 

I 
I 
I 

o 
~ 
< 
C/) 
N 
-; 
C/) 

o 
g 
3 
3 
Q) 
:::I 
Co 

r 
I ~ c: 

I r8 
I ~ 

at' I @ 
:::I 

I ~ 
I ~ 

o 
I w 
I~ 

I 
-----------------------~ 

Fold 

TIJIDllir 
@ 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(ifiierfiiitionaij 

Fold I 
I 
I 
I 
I 
I 
I 

G') 
(') 
N 
00 
6 
~ 
en 
W 



~l]300 
(!) 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	replyA
	replyB
	xBack

