
Preface

This publication describes supervisor facilities that can be influenced by the
system programnier.

Part I: Supervisor Services discusses supervisor functions restricted to
system programmers and installation-approved personnel, and the macro
instructions and parameters used to obtain the functions.

Part I is divided into seven topics. For conv~nience and compatability, these
services are grouped in the same manner as in OS/VS2 Supervisor Services
and Macro Instructions, GC28-0683. Accordingly, some of the subjects
discussed are merely continuations of previous coverage, but are extended
to ~nclude discussions of the new functions. However, some subjects
discussed under the topics are completely new, but are restricted in use to
the system programmer.

Part II: Macro Instructions contains the formats and descriptions of the
supervisor macro instructions. It provides system programmers with the
information necessary to code the macro instructions.

Publications referenced:

OS/VS2 System Programming Library: Data Management, GC26-3830.
IBM System/370 Principles of Operation, GA22-7000.
OS/VS2 Supervisor Services and Macro Instructions, GC28-0683.
OS/VS2 Scheduler and Supervisor Logic, SY28-0624,SY28-0625,SY28-0626.
(3 volumes)
OS/VS • DOS/VS • VM/370 Assembler Language, GC33-4010.
OS/"S2 System Programming Library: System Generation Reference,
GC26-3792.
OS/VS2 System Programming Library: Debugging Handbook, GBOF-8211.
OS/VS2 System Programming Library: Initialization and Tuning Guide,
GC28-0681.

Preface 3

4 . 9S/VS2 System Progra~ng Library: Supervisor (VS2 Release 3.7)

I

Summary of Amendments

Part I: Supervisor Services

Subtask Creation and Control
Creating a New Task

User Modifications ...
Operator Communication with a Problem Program
Providing an EXTRACT Answer Area

Program Management
Synchronous Exits.
Multiprocessing Programming Considerations

Checkpoint/Restart
Re-entrant Modules
Priority

Contents

. 9

11

13
13
14
15
16

17
17
17
17
17
18

Resource Control 19
Locking 19

Classes of Locks 20
Types of Locks 20
Locking Hierarchy 21
Locking Considerations 21
Resource Serialization 22

Serialization Considerations 22
Serialization Requirements 22

SETLOCK Macro Instruction 23
The Must Complete Function 23

Characteristics of the Must Complete Function 24
Programming Notes 24

Shared Direct Access Storage Devices (Shared DASD) 25
Devices that Can be Shared 25
Volume/Device Status 25
System Configuration . . . 26
Volume Handling 26
Macro Instructions Used with Shared DASD 26

Releasing Devices . 26
Preventing Interlocks 27
Volume Assignment 27
Program Libraries . 27
Finding the UCB Address 28

Authorized Program Facility (APF) 31
Restricting SVC Service Routines 31
Restricting Load Module Access 31
Defining APF-Authorized Libraries 32
Link Edit APF-Authorization Code 32
APF Summary . . . 33

Changing System Status 34
Generating an SVC . 34
Generating Inline Code 34

Interprocessor Communications OPC) 34
Service Classes . 35
Status Conditions 36

Event Completion . 37
Cross Memory POST 37
Bypassing the POST Routine 37
Waiting for Event Completion 38

System Integrity 38
Documentation on System Integrity 38
Installation Responsibility 39
Elimination of Potential Integrity Exposures 39

User-Supplied Addresses for User Storage Areas 39
User-Supplied Addresses for Protected Control Blocks 40
Resource Identification 41
SVC Routines Calling SVC Routines 41

Contents 5

Control Program and User Data Accessibility
Control Program Extensions

Interruption, Recovery/Termination, and Dumping Services
SPIE Processing
Recovery/Termination

Invoking the Recovery/Termination Manager
CALLRTM
ABEND

Types of Recovery Routines
Functional Recovery Routines (FRRs)
Task Recovery Routines (ST AE/ST AI EST AE/EST AI)

Establishing Recovery Routines
Functional Recovery Routines
Task Recovery Routines

RTM/Recovery Routine Interface
Interface to Functional Recovery Routines
Interface to Task Recovery Routines

RTM/Retry Routine Interface ..
FRR-Requested Retry Routine
Task Recovery Retry Routines

Recovery Routine Guidelines '
FRRs
Task Recovery

Clean-Up Routines .
Support for Installation-Written Clean-Up Routines
Programming Considerations

Dumping Virtual Storage
Using the SDUMP Macro Instruction

SQA Buffer
Using the CHNGDUMP Command

Virtual Storage Management .
The BRANCH Parameter
The KEY Parameter

Real Storage Management
Fixing/Freeing Virtual Storage Contents
Completion Consideratio'ns . .' . .
Virtual Subarea List (VSL)
Reconfiguration Using Vary Storage
Multiprocessing Configuration. Considerations

Miscellaneous Services
Writing Operator Messages

Routing the Message
Writing a Multiple-Line Message

Message Routing Exit Routines . .
Characteristics of MCS
Programming Conventions'for'WTO/WTOR Routines

Messages Not Using Routing Codes
Writing a 'WTO/WTOR Exit Routine

Adding a WTO/WTOR Exit Routine to the Control Program
Service Management

Scheduling Service Requests : . .
Service Request Blocks (SRBs)
Priorities
Characteristics of Service Requests

Purging Service Requests
PURGEDQ Parameters

Creating Interruption Request Blocks
Writing SVC Routines

Characteristics of SVC Routines .
Programming Conventions for SVC Routines
Inserting SVC Routines Into the Control Program

Specifying SVC Routines '. .
Inserting SVC Routines During the System Generation Process
Type 5 SVC Facility ..

Missing Interruption Handler .
Establishing a Time Interval

6 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

42
42

43
43
44
44
44
45
46
46
46
46
46
47
49
49
50
52
52
52
54
55
55
57
58
58
58
59
59
59

61
61
61

63
63
64
64
65
67

69
69
69
70
70
70
71
72
72
72
73
74
74
75
75
76
76
77
77
78
78
81
81
81
82
82
83

Writing Code for the Machine Check Handler Appendage
Coding Considerations

Writing Code for the Master Scheduler Initialization Routine
Coding Considerations
Control Track Record

I Limiting User Region Size - IEALIMIT
Branch Entering POST
Branch Entering WAIT

Part II: Reference - Macro Instructions
Macro Instruction Forms . . .
Coding the Macro Instructions
Continuation Lines
ATT ACH -- Create a New Task
CALLDISP -- Force Dispatcher Entry
CALLRTM -- Call Recovery/Termination Manager
CIRB -- Create Interruption Request Block
DEQ -- Release a Serially Reusable Resource
DEQ (List Form)
DEQ (Execute Form)
DSGNL -- Issue Direct Signal
ENQ -- Request Control of a Serially Reusable Resource
ENQ (List Form)
ENQ (Execute Form)
EST AE -- Extended ST AE
EST AE (List Form) . . .
EST AE (Execute Form)
EVENTS -- Wait for Events
EXTRACT -- Extract TCB Information
EXTRACT (List Form)
EXTRACT (Execute Form)
FREE MAIN -- Free Virtual Storage
FREEMAIN (List Form)
FREEMAIN (Execute Form) . . .
GETMAIN -- Allocate Virtual Storage
GETMAIN (List Form)
GETMAIN (Execute Form)
MODESET -- Change System Status
MODESET (List Form)
MODESET (Execute Form)
NIL -- Provide a Lock Via an AND IMMEDIATE (NO Instruction
OIL -- Provide a Lock Via an OR IMMEDIATE (00 Instruction
PGFIX -- Fix Virtual Storage Contents
PGFIX (List Form)
PGFREE -- Free Virtual Storage Contents
PGFREE (List Form)
POST -- Signal Event Completion
POST (List Form)
POST (Execute Form)
RGEDQ -- Purge SRB Activity
PURGEDQ (List Form)
PURGEDQ (Execute Form)
QEDIT -- Command Input Buffer Manipulation
RESERVE: Reserve a Device (Shared DASD)
RESERVE (List Form)
RESERVE (Execute Form)
RISGNL -- Issue Remote Immediate Signal
RPSGNL -- Issue Remote Pendable Signal .
SCHEDULE -- Schedule System Services for Asynchronous Execution
SDUMP -- Dump Virtual Storage
SDUMP (List Form)
SDUMP (Execute Form)
SETFRR -- Set Up Functional Recovery Routines
SETLOCK -- Control Access to Serially Reusable Resources
SETRP -- Set Return Parameters
SPIE - Specify Program Interruption Exit
SPIE (List Form)
SPIE (Execute Form)
SPOST - Synchronize POST
ST AE -- Specify Task Abnormal Exit
ST AE (List Form)

84
85
86
87
88
89
91
92

95
96
96
98
99

103
104
106
109
112
113
114
116
119
120
121
123
124
125
126
128
129
130
132
133
134
136
137
138
141
142
143
145
147
150
151
153
154
155
156
157
158
159
160
161
165
166
167
169
171
172
175
176
178
180
187
191
192
193
194
195
198

Contents 7

ST AE (Execute Form)
STATUS -- Change Subtask Status
SYNCH -- Take a Synchronous Exit to a Processing Program
TEST AUTH -- Test Authorization of Caller
WTO -- Write to Operator
WTO (List Form)
WTOR -- Write to Operator with Reply
WTOR (List Form)

Index

Figures
Figure 1. EXTRACT ECB and CIB Pointers
Figure 2. Command Input Buffer Contents
Figllre 3. EXTRACT Answer Area Fields
Figure 4. Summary of Locking Characteristics
Figure 5. Valid Volume Characteristic and Device Status Combinations
Figure 6. Example of an Interlock Environment
Figure 7. Example of Subroutine Issuing RESERVE and DEQ
Figure 8. Assigning Authorization via SETCODE
Figure 9. Authorization Results
Figure 10. Bypassing the POST Routine
Figure 11. EST AE Environment . . : .
Figure 12. Virtual Subarea List Entries .
Figure 13. IPL Designation of Processor Storage Units
Figure 14. Programming Conventions for SVC Routines
Figure 15. Changing the Missing Interruption Handler Time Interval
Figure 16. Logical Placement of Your Code in the Machine Check Handler Appendage
Figure 17. Logical Placement of Your Code in the Master Scheduler Initialization Module
Figure 18. Control Track Record
Figure 19. Storage Assignments on MP Systems
Figure 20. The Effects of IEALIMIT and REGION Values on Various GETMAINs
Figure 21. POST Function and Branch Entry Points
Figure 22. POST Branch Entry Input .
Figure 23. POST Branch Entry Output
Figure 24. Macro Instruction Coverage
Figure 25. Sample Macro Instruction .
Figure 26. Continuation Coding . . .
Figure 27. Return Code Area Used by DEQ
Figure 28. Return Code Area Used by ENQ
Figure 29. Return Code Area Used by RESERVE
Figure 30. MCSFLAG Fields

8 OS/VS2 Systern Prograrnming Library: Supervisor (VS2 Release 3.7)

199
200
204
205
207
210
211
213

215

15
15
16
21
25
27
30
33
33
38
49
64
66
79
83
85
86
88
89
90
91
92
92
95
97
98

110
117
163
208

Part I: Supervisor Services

The supervisor provides the resources that your programs need while assuring that as many of
these resources as possible are being used at a given time. Well designed programs use system
resources efficiently. Knowing the conventions and characteristics of the VS supervisor will
help you design more efficient programs.

This section describes those supervisor services that should be restricted in use to systems
programmers and installation-approved personnel. In most cases, the services correspond to
macro instructions and parameters that are described in part II.

For convenience and compatibility, the services you can request from the supervisor are
grouped in the same manner as in OS/VS2 Supervisor Services and Macro Instructions. The
service groupings may be described as follows:

Subtask Creation and Control: Occasionally, you can have your program executed faster and
more efficiently by dividing parts of it into subtasks that compete with each other and with
other tasks for execution time.

Program Management: The supervisor can be us~d to aid communication between segments of
a program. Save areas, addressability, and passage of control from one segment of a program
to another are included in this topic.

Resource Control: Portions of some tasks depend on the completion of events in other tasks,
thus requiring planned task synchronization. Planning is also required when more than one
program uses a serially reusable resource.

Interruption, Termination, and Dumping Services: The supervisor provides facilities for writing
exit routines to handle specific types of interruptions. It is not likely, however, that you will be
able to write routines to handle all types of abnormal conditions. The supervisor therefore
provides for termination of your program when you request it by issuing an ABEND macro
instruction, or when the control program detects a condition that will degrade the system or
destroy data.

Virtual Storage Management: While virtual storage. allows you to write large programs without
the need for complex overlay structures, virtual storage must be obtained for your job step.
Virtual storage is allocated by both explicit and implicit requests.

Real Storage Management: The supervisor administers the use of real storage and directs the
movement of virtual pages between auxiliary storage and real storage in page size blocks. The
services provided allow you to release virtual storage contents, load virtual storage areas into
real storage, and page out virtual storage areas from real storage.

In addition to the services outlined above, the supervisor provides the facilities for timing
events, extended precision floating-point simulation, and operator communication with both the
system and application programs.

Part I: Supervisor Services 11

12 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Subtask Creation and Control .

One task is created by the control program as a result of initiating execution of the job step
(the job step task). You can create additional tasks in your program. If you donot,however,
the job step task is the only task in a job. being executed. The benefits of a multiprogramming·
environment are still available even with only one task in the job step; work is still being
performed for other jobs when your task is waiting for an event, such as an input operation,' to
occur.

The advantage in creating additional tasks within the job step is that more tasks are
competing for control than the task in the job you are concerned with. When a wait condition
occurs in one of your tasks, it is not necessarily a task from some other job that gets . control; .
it may be one of your tasks, a portion of your job.

The general rule is that parallel execution of a job step (that is, more than one task in a job
step) should be chosen only when a significant amount of overlap between two or more tasks
can be achieved. The amount of time taken by the control program in estalllishirig and
controlling additional tasks, and your increased effort to coordinate the tasks and provide for
communications between them must be taken into account. . .

Most of the information concerning subtask creation and control appears in OS/VS2
Supervisor Services and Macro Instructions. This chapter continues discussion in the following
areas:

• task creation (ATTACH macro instruction)
• communication with a problem program (EXTRACT and QEDIT macro instructions)

Creating a New Task

The ATTACH macro instruction causes the control program to create a new task. The
complete use of the macro instruction is described in OS/VS2 Supervisor Services and Macro
Instructions.

The macro instruction has nine' parameters which permit the authorized user (protection key
0-7 or supervisor state) greater flexibility in using the services of the macro instruction. If the
parameters are not used by authorized tasks, the default values are assigned. These defaults
include: .

• JSTCB=NO -- the attached task is a task in the present job step.

• SM=PROB -- the new task is to run in problem program mode.

• SV AREA = YES -- a save area is needed for the new task.

• KEY = PROP -- the protection key of the newly created task is the same as the task using
ATTACH.

• DISP=YES -- the subtask is to be dispatchable.

• TID=O -- the task identifier of the new task is O.

• JSCB -- omission of this parameter specifies that the address of the job step control
block of the attaching task is also used for the new task. .

• NSHSPV and NSHSPL -- omission of these parameters specifies that. subpools 236. and'
237, if they exist, are to be shared with the subtask.

Subtask Creation and Control 13

User Modifications

I Rather than accepting the default values, (assuming the task is authorized), you can extend the
facilities of the ATTACH macro instruction by coding the following values:

• JSTCB= YES -- the attached task is a new job step task. In this case, the address of the
TCB of the newly created task is placed in the TCBJSTCB field of the attaching TCB.

The first load of a job is attached as a job step task by the initiator. For such an attach,
the program manager will not search the job library of the attaching task. When the job
step task issues ATTACH, LOAD, LINK, or XCTL, the job library of the job step task
may be searched for the load module being fetched.

Also, only under a job step task can a system program (system key or supervisor state)
attach a load module from a nonsystem library.

In order to attach a job step task, the attaching task (and any of its subtasks) must be
job step tasks. If one of these conditions is not met, the new task will not be created.

• SM=SUPV -- the system is to run in supervisor mode when executing the attached task.

Supervisor state is a requirement before privileged instructions (for example, LPSW) can
be executed. You can specify supervisor mode via this parameter or via the MODESET
macro instruction.

• SVAREA=NO -- a save area is not needed for the new task.

The save area is obtained from the user's region. Since it may not always be desirable to
have a save area (for example, the user's region may not be defined at the time of a
system ATTACH), this parameter may be used to specify that no save area should be
created.

• KEY=ZERO -- the protection key of the newly created task is zero.

Protection key zero allows the new task to reference any defined storage and pass all
validity checks.

• DISP=NO -- the subtask is to be nondispatchable.

This parameter causes the primary nondispatchability bit TCBANDSP to be turned on in
the new TCB. As a result, the new TCB will not be dispatched. Thus, this allows the
originating task to alter the new TCB. The new task will remain nondispatchable until
TCBANDSP has been reset via the STATUS macro instruction with the RESET option.
(Note: STATUS START TCB will not make the new TCB dispatchable.)

• TID=task id -- the task identifier specified is to be placed in the TCBTID field of the
attached task.

The task identifier can be set to identify critical system tasks. Other uses of this
parameter· are not recommended.

• JSCB=jscb address -- the address specified for the JSCB is to be used for the new task.

This parameter sets the TCBJSCB to the address of a job step control block. This action,
normally associated with the creation of a job step task, is not required by ATTACH.

• NSHSPV=subpool number and NSHSPL=subpoollistaddress -- subpools 236 and 237
are not to be shared with the new task.

Subpools 236 and 237 are known as the scheduler work area (SWA). This parameter
allows the scheduler to control these subpools.

14 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Operator Communication with a Problem Program
The operator can pass information to a problem program by issuing a STOP or a MODIFY
command. In order to accept these commands, the program must be set up in the following
manner.

An EXTRACT macro instruction is issued to obtain a pointer to the communications ECB
and a pointer to the first command input buffer (CIB) on the CIB chain for the task. The
ECB is posted whenever a STOP or a MODIFY command is issued. The EXTRACT macro
instruction is written as follows, and will return what is indicated in Figure 1.

EXTRACT answer area,FIELDS=COMM

Answer area

Address of the ECB address

communication area CIB address

Figure 1. EXTRACT ECB and CIB Pointers

The CIB contains the information specified on the STOP or the MODIFY command, as
shown in Figure 2. If the job was started from the console, the EXTRACT macro instruction
will point to the START CIB. If the job was not started from the console, the address of the
first CIB will be zero.

o
8

10

Address of next CI B Verb code CIB length

Reserved I TSO terminal ID Console ID Reserved

Verb code X'04' START
X'40'STOP
X'44' MODIFY

Variable length data specified on the command.

Reserved

Length of data field

Figure 2. Command Input Buffer Contents

If the address of the START CIB is present, the QEDIT macro instruction should be used
to free this CIB after any parameters passed in the START command have been examined.
The QEDIT macro instruction is written as follows:

QEDIT ORIGIN=address of pOinter to CIB,BLOCK=address of C~B

The cm counter should then be set to allow CIBs to be chained and MODIFY commands
will be accepted for the job. This is also accomplished by using the QEDIT macro instruction:

QEDIT ORIGIN=address of pointer to CIB,CIBCTR=n

The value of n is any integer value from 0 to 255. If n is set to zero, no MODIFY
commands will be accepted for the job. STOP commands, however, will be accepted for the
job regardless of the value set for CIBCTR.

For the duration of the job, the communications ECB may be waited on or checked at any
time to see if a command has been entered for the program. The verb code in theCIB should
be examined to determine whether a STOP or a MODIFY command has been entered. After
the data in the CIB has been processed, a QEDIT macro instruction should be issued to free
the CIB.

Subtask Creation and Control IS

The communications ECB will be cleared when no more CIBs remain. Care should be taken
if multiple subtasks are examining these fields. Any CIBs not freed by the task will be
unchained by the system when the task is terminated. The area addressed by the pointer
obtained by the EXTRACT macro instruction, the communications ECB, and all CIBs are in
protected storage and may not be altered.

Providing an EXTRACT Answer Area

The EXTRACT macro instruction is used to provide TCB information for either the active
task or one of its subtasks. The information from the requested field is returned in the relative
order shown in Figure 3. If the information from a field is not requested, the associated
fullword is omitted.

GRS

FRS

Reserved

AETX

PRI

CMC

TIOT

COMM

TSO

PSB

TJID

ASID

Answer Area Address

00

00

00 00

00

00 00

00

00

00

00

00

00 00

00 00

r--- 1 Byte --",,;"~I C"-- 1 Byte

Figure 3. EXTRACT Answer Area Fields

Address

Address

00 I 00

Address

Value I Value

Completion Code

Address

Address

Address

Address

Value

Value

1 Byte 1 Byte ~

You must provide an answer area consisting of contiguous fullwords, one for each of the
codes specified in the FIELDS parameter, with the exception of ALL. If ALL is specified, you
must provide a 7 -word area to accomodate the GRS, FRS, reserved, AETX, PRI, CMC, and
TIOT fields. The ALL code does not include the COMM, TSO, PSB, TJID, and ASID fields.

Addresses are always returned in the low-order three bytes of the fullword, and the
high-order byte is set to zero. Fields for which no address or value has been specified in the
task control block are set to zero.

For example, if FIELDS=(TIOT,GRS,PRI,TSO,PSB,TJID) is coded, a 6-fullword answer
area is required, and the extracted information will appear in the same relative order as shown
in Figure 3. (That is,GRS will be returned in the first word, PRI in the second word, TIOT in
the third word, etc.)

If FIELDS=(ALL,TSO,PSB,COMM,ASID) is coded, an Il-fullword answer area is
required, and the extracted information will appear in 'the answer area in the relative order
shown above.

16 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Program Management

The supervisor can be used to aid communication between segments of a program. The
descriptions of load module structures, facilities for passing control between programs, and the
use of associated macro instructions are available to all users and are described in OS/VS2
Supervisor Services and Macro Instructions.

Following is a description of synchronous exits and the SYNCH macro instruction
associated with it. The facility should only be used by system programmers or other
installation-approved personnel.

Synchronous Exits

In general, the SYNCH macro instruction is used when a control program in the supervisor
state is to give temporary control to a processing program routine, and when the processing
program is expected to return control to the supervisor state. The program to which control is
given must be in virtual storage when the macro instruction is issued. When the processing
program returns control, the supervisor state bit, the storage protection key bits, the system
mask bits, and the program mask bits of the program status word are restored to the settings
they had before execution of the SYNCH macro instruction.

The use of the SYNCH macro instruction is similar to that of the BALR instruction in that
register 15 may be used for the entry name address.

As an example of the use of the SYNCH macro instruction, label processing as the result of
an OPEN macro instruction may be carried out to a point at which a user's processing
program indicates that' private processing is desired (or necessary). The control program's
Open routine would then issue a SYNCH macro instruction giving the entry name address of
the subroutine required for the user's private label processing.

Multiprocessing Programming Considerations

Many of the following programming considerations are true in a multi-tasking environment
(such as OS/MVT) as well as in a multiprocessing system. However, because of their
increased importance in a multiprocessing environment, they should be closely reviewed.

Checkpoint / Restart

When issuing checkpoints and then restarting a task, the restarted task must request control
of all resources required to continue processing. Resources are not automatically returned to
the task upon restart.

Re-entrant Modules

When link editing modules as re-entrant, be sure that all the modules and the macro
instructions they call are re-entrant. This is important since in a multiprocessing system:

• two tasks in the same address space making use of the module might cause the module to
be executed simultaneously on two different CPUs.

• asynchronous appendages can operate on one CPU simultaneously with an associated
task on the other CPU.

• recovery routines can execute on either CPU, not necessarily on the one on which the
error was detected.

Program Management 17

The CSECTs must be unchanged during execution or their critical sections must be explicitly
serialized. The general method for ensuring re-entrancy of macros is to use the LIST and
EXECUTE forms of the macro instructions with a dynamically acquired parameter list.

Priority

Programs that use priority or precedence as a serialization mechanism are sensitive to changes
in the dispatching algorithms used by the system. For example, the CHAP macro instruction
will not ensure that tasks are dispatched in the expected order, due to dispatching on two
CPUs. Also, the PRIORITY and DPRTY JCL parameters can no longer be used to accomplish
serialization. First, the system resources manager might allow a task or job with a lower
dispatching priority to execute prior to a task with a higher priority. Second, since tasks are
executed on both CPUs, tasks of different priority might be executed on both CPUs, tasks of
different priority might be executed on both CPUs simultaneously.

Note: Tasks might not be redispatched on the CPU on which they were previously executing.
Therefore, storage from 0-4K should not be used because redispatch on a different CPU will
result in different data being referenced.

For further multiprocessing considerations see the section "Locking".

18 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Resource Control

Planning is required when more than one program uses a serially reusable resource. Planning is
also required when portions of some tasks depend on the completion of events in other tasks.

This chapter discusses some of the services available to control resources, and thus to help
you plan ahead for a more efficient installation. The services discussed include:

• locking (SETLOCK macro instruction)
• must complete function (ENQ and DEQ macro instructions)
• shared DASD (RESERVE and EXTRACT macro instructions)
• authorized program facility (TEST AUTH macro instruction)
• system status (MODESET macro instruction)
• interprocessor communications (DSGNL, RISGNL, and RPSGNL macro instructions)
• event completion (POST, SPOST, and EVENTS macro instructions)

Locking

Adequate control of serially reusable resources is a significant problem in a multiprocessing
environment. Since some uniprocessor serialization techniques (for example, disablement), are
no longer effective, there is the possiblity of multiple tasks, even multiple tasks in the same job
step, using the same serially reusable resource while running concurrently on different CPUs.

To eliminate this problem, a locking mechanism is provided to control access to serially
reusable resources. The lock manager will handle. all functions related to the locks (for
example, obtaining or releasing locks, or checking the status of a CPU with respect to a
particular lock). However, a locking technique can not be effective unless all routines that have
the potential for changing the protected resource, or that depend on its status remaining
unchanged for a given period, make use of the locking mechanism.

In MVS, a locking manager controls a new hierarchical locking structure with multiple types
of locks and synchronizes the use of serially reusable resources. Use of the locking manager is
restricted to key 0 programs running in supervisor state, which prevents unauthorized problem
programs from interfering with the serialization process.

To enhance performance, each kind of serially resuable resource is assigned a separate lock.
In this way, a lock held by a CPU on one resource does not prevent the other CPU from
using a different resource.

The ~ocks provided jn MVS are:

• Global dispatcher lock (DISP) -- serializes all functions associated with the dispatching
process.

• Auxiliary storage manager lock (ASM) -- serializes use of the global ASM control blocks.

• Real storage manager and virtual storage manager space allocation lock (SALLOC) -­
serializes the global functions of real storage management and virtual storage
management.

• lOS synchronization lock (IOSYNCH) -- serializes global lOS functions.

• lOS channel availability table lock (IOSCAT) -- serializes access and updates to the
channel availability table.

• lOS unit control block lock (IOSUCB) -- serializes access and updates to the unit control
blocks. There is one lock per UCB.

• lOS logical channel queue lock (IOSLCH) -- serializes access and updates to the lOS
logical channel queues. There is one lock per channel queue.

Resource Control 19

• System resources manager lock (SRM) -- serializes use of the SRM control algorithms
and associated data.

• Cross memory services lock (CMS) -- serializes on more than one address space where
this serialization is not provided by one or more of the other global locks.

• Local storage lock (LOCAL) -- serializes functions and storage, used by the local
supervisor, within local address space. There is one lock per address space.

Classes of Locks

Two classes of locks exist:

• Global locks -- protect serially resuable resources related to more than one address space.
(For example, a unit control block is protected by a global lock since it relates to the
entire system. Also, a system-related GETMAIN for a global subpool, or a global ENQ,
requires a global lock.)

• Local locks -- protect the resources assigned to a particular address space. When a CPU
holds a local lock, the queues and control blocks associated with that address space can
be manipulated only by the CPU holding the lock. (For example, an address
space-related GETMAIN for a user subpool requires a local lock.)

All of the locks described above, with the exception of the local lock, are global locks.
These global locks provide system-wide services or use control information in the common area
and must serialize across address spaces. The local locks, on the other hand, do not serialize
across address spaces, but serialize functions executing within the address space.

Types of Locks

Two types of locks exist. The type determines what happens when a CPU makes an
unconditional request for a lock that is held by the other CPU. The types are:

• Spin locks -- prevent the requesting CPU from doing any work until the lock is cleared
by the other CPU. The requesting CPU enters a loop that keeps testing the lock until the
other CPU releases it. As soon a~ the resource is free, the first CPU can obtain the
resource and continue processing.

• Suspend lock~ -- prevent the requesting program from doing work until the lock is
available, but allow the CPU to continue doing other work. The request is queued and
the requesting CPU is dispatched to do other work. Upon release of the lock, the highest
priority queued requestor will be given control of the lock.

All of the locks described above, with the exception of the local and cross memory services
locks, are spin locks. The LOCAL and CMS locks run enabled and can be interrupted to run
higher priority work. If there is another request for the lock while it is held, the requestor is
suspended and other work is dispatched.

The CMS lock was provided as an enabled global lock for the following reasons:

• Since disabled page faults are not allowed in the system, some global functions could use
a lock which did not require the functions to fix all their code and control blocks.

• Some functions require significant amounts of time under the lock and could impact the
responsiveness of the system. By running these Junctions logically disabled. under the
lock, responsiveness is retained at the expense of some increased contention for the lock.

The other locks were left as disabled spin locks because normally the functions which run
under the locks are of short duration, and the cost in system overhead to perform the status
saving necessary to accept interruptions and allow switching would offset the gain in
responsiveness. Also, the more frequently used functions (for example, lOS interruption

20 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

handler, dispatcher, and storage manager) are needed to perform interruption handling and
task switching, and thus have to remain disabled.

If a lock is unconditionally requested, the lock will be unconditionally obtained. If the lock
is conditionally requested, the requestor will be given the lock if it is available; if the lock is
unavailable, control will be returned to the caller without the lock. (See the COND and
UNCOND parameters on the SETLOCK ma~ro instruction.)

Figure 4 summarizes the characteristics of the locks.

lock
DISP
ASM
SALLOC
IOSYNCH
IOSCAT
IOSUCB
IOSLCH
SRM
CMS
LOCAL

global
X
X
X
X
X
X
X
X
X

Figure 4. Summary of Locking Characteristics

Locking Hierarchy

local

X

spin
X
X
X
X
X
X
X
X

suspend

X
X

To prevent a deadlock between CPUs, the locks are arranged in a hierarchy, and a CPU may
unconditionally request only locks higher in the hierarchy than locks that it currently holds.
The locking hierarchy is the order in which the locks are listed in Figure 4, with DISP being
the highest lock in the hierarchy.

As noted above, some locks are single system locks (for example, DISP), and some locks
are multiple locks in which there is more than one lock within the lock type (for example,
IOSUCB).

For those global lock types which have more than one lock, a CPU may only hold one lock
of each type. For example, if a CPU holds an IOSUCB lock, it may not request a different
IOSUCB lock.

The LOCAL lock must be held by the caller when requesting the CMS lock. Also, the
LOCAL lock cannot be released while holding the CMS lock.

It is not necessary to obtain all locks in the hierarchy up to the highest lock needed.
Although only the needed locks have to be obtained, they do, however, have to be obtained in
hierarchy sequence.

Locking Considerations

In MVS the locking function is provided to replace disabling in the control program with a
form of logical disabling which works across both CPUs. Locking, however, is not completely
equivalent to disablement in VS2 Release 1, and required some changes in the system. The
significant differences are:

• In VS2 Release 1, a disabled program could issue an SVC and receive control back
disabled. In MVS, a locked routine is not allowed to issue an SVC .

• All user-written functions which disable using the MODE SET macro instruction, the SSM
(set system mask) instruction, or some other method, should be changed to use the
locking function. The SYSMASK and ENABLE parameters of MODE SET are no longer
supported; the SSM instruction causes a program check.

Resource Control 21

• In VS2 Release 1, disablement prevented storage from being freed or paged out while the
storage was being referenced. In MVS, it is necessary to hold the local lock to prevent a
FREEMAIN from being executed on the other CPU even thought a global spin lock is
held on one CPU. To prevent page stealing, it is necessary to either fix the pages or hold
the SALLOC lock.

Resource Serialization

Resource serialization is a potential source of integrity problems. An integrity exposure can
result when serialization controls on sensitive control program resources are nonexistent, or
inadequate. That is, an unauthorized problem program can directly, or indirectly, through a
part of the control program, change the content or status of a system resource while another
portion of the control program is using that resource or is in some way dependent on its
content or status remaining unchanged for a given period of time. An example of this exposure
would be if an unauthorized problem program issued an SVC and changed the content of a
control block while another SVC was using that same control block (resource).

Adequate control of serial resources becomes even more significant in a multiprocessing
environment since some uniprocessor serialization techniques (such as disablement) are no
longer effective because of the possibility of multiple tasks using the same serial resource and
running concurrently on different CPUs.

Serialization Considerations

To eliminate the potential exposures described above, a locking technique is used to serialize
access to the resources in question. This locking technique is only effective, however, if all
routines that have the potential for chaiging the resource, or that depend on its status
remaining unchanged for a given period, make use of the same locking mechanism. Effective
use of a locking technique, therefore, requires considerable investigation and effort. You must
both determine and then keep track of system resources that must be serialized and the
routines that access such resources.

Another integrity problem is the time-of-check-to-time-of-use consideration. That is, from
the time of a validity check, until the completion of the operation associated with that validity
check, the variables on which the outcome of the validity check is based must not be allowed
to change to the extent that the result of the validity check would be changed. While this is a
relatively obvious statement, the requirement it imposes has considerably influenced the
direction of the integrity support in MVS.

In some cases, this requirement can be met automatically through the use of hardware
serialization mechanisms such as checking the validity of fetch/store operations by assuming
the user's protenction key. In other cases, techniques such as saving validated data in protected
storage (storage keys 0-7) and use of the previously described locking mechanism are required.

Serialization Requirements

The only safe serialization is explicit serialization by means of one of the following methods:
ENQ/DEQ; WAIT/POST/EVENTS; RB precedence at the TCB level; locking at the TCB
level; CS (compare and swap instruction); and TS (test and set instruction). Such forms of
serialization are required in the following cases:

• Scanning of the CIB chain. Manipulation of the CIB chain should be done by means of
the QEDIT macro instruction.

• The use of data in subpoolsshared between tasks.
• Data referenced by more than one task. (For example, attached tasks can execute at the

same time as the mother task on different CPUs.)

22 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

• References to system control block fields that dynamically change after IPL. The
serialization technique in this case must match that used by the system. Also, bits within
a byte all require the same serialization technique, if the byte might be updated
simultaneously by both CPUs.

• The access of data sets shared between tasks in the same address space, if the tasks
update the data and if the access method is not VSAM or BDAM.

• Any common data references between an EST AE exit and asynchronous exits, if EST AE
with ASYNCH=YES is issued.

SETLOCK Macro Instruction

The SETLOCK macro instruction is used to obtain, release, or test a specified lock or set of
locks (using the OBTAIN, RELEASE, and TEST parameters). To use SETLOCK, you must
be executing in supervisor state with protection key O.

Disabled/Enabled State for OBTAIN: When a global spin lock is successfully obtained, control is
returned to the SETLOCK caller with the CPU in a physically disabled state (except for
machine check interruptions).

When a LOCAL lock or CMS lock is successfully obtained, control is returned to the
SETLOCK caller with the CPU in the physically enabled or disabled state that existed prior to
the SETLOCK request. This is also true for unsuccessful attempts to obtain any of the locks
where control is returned to the caller.

Disabled/Enabled State for RELEASE: When a global spin lock is successfully released, control
is returned to the caller with the CPU in a physically enabled state if no other global spin
locks are held by that CPU; control is returned in a physically disabled state if other global
spin locks are held. Control will also be returned in the disabled state if any disabled
supervisor indicators are on when the RELEASE request is made or if the DISABLED
parameter was specified.

When the LOCAL lock or CMS lock is released, control is returned with the CPU in the
enabled or disabled state that existed prior to the RELEASE request.

For all locks, if the RELEASE operation is unsuccessful and no ABEND condition exists,
control is returned with the CPU in the physically enabled or disabled state that existed prior
to the RELEASE request.

For multiple RELEASE requests (via SPIN, ALL, or (reg) subparameters), the final state is
the same as what would have existed had the locks been released one at a time.

The Must Complete Function
System routines (routines operating under a storage protection key of zero) often engage in
updating and/or manipulation of system resources such as system data sets, control blocks, and
queues. These resources contain information critical to continued operation of the system. The
system routines must complete their operations on the resource; otherwise, the resource. may
be left incomplete or may contain erroneous information.

The ENQ service routine ensures that a routine queued oli a critical resource(s) can
complete processing of the resource(s) without interruptions leading to termination. ENQ can
place other tasks in a wait state until the requesting task -- the task issuing a ENQ macro
instruction with the set-must-complete (SMC) parameter -- has completed its operations on the
resource. The requesting task releases the resource and terminates the must complete condition
by issuing a DEQ macro instruction with the reset-must-complete (RMC) parameter.

Resource Control 23

Because the must complete function serializes operations to some extent, its use should be
minimized -- use the function only in a routine that processes system data whose validity must
be ensured.

As an example, in multitask environments the integrity of the volume table of contents
(VTOC) must be preserved during updating so that all future users may have access to the

I latest, correct 'Version of the VTOC. Thus, in this case, ENQ on the VTOC and use the must
complete function (to suspend processing of other tasks) when updating a VTOC.

Just as the ENQ function serializes use of a resource requested by many different tasks, the
must complete function serializes execution of tasks.

Characteristics 0/ the Must Complete Function

The must complete function can be used only at the step level, where only the current task in
an address space is allowed to execute. All other tasks, including the initiator task, are placed
in a wait state.

When the must complete function is requested, the requesting task is marked as being in the
must complete mode when the resource(s) queued upon are available. All asynchronous exits
from the requesting task are deferred. The initiator and all other tasks in the job step are set
nondispatchable. Thus, tasks external to the requesting task are prevented from initiating
procedures that will cause termination of the requesting task. Other external events, such as a
CANCEL command issued by an operator, or a job step time expiration, are also prevented
from terminating the requesting task.

The failure of a task which owns a must-complete resource results in the abnormal
termination of the entire job step. The programmer receives a message stating that the failure
occurred in the step must complete status.

Programming Notes

1. All data used by a routine that is to operate in the must complete mode should be
checked for validity to ensure against a program-check interruption.

2. If a routine that is already in the must complete mode calls another routine, the called
routine also operates in the must complete mode. An internal count is maintained of the
number of SMC requests; an equivalent number of RMC requests is required to reset
the must complete function.

3. Interlock conditions can arise with the use of the ENQ fun<;;tion. Additionally, an
interlock may occur if a routine issues an ENQ macro instruction while in the must
complete mode. The wanted resource may already be queued on by a task made
nondispatchable due to the must complete request already made. Since the resource
cannot be released, job step tasks are abnormally terminated, and system tasks are
retried.

4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be used, unless
extreme care is taken, by a routine operating in the must complete mode. An interlock
condition will result if a serially reusable routine requested by one of these macro
instructions has been requested by one of the tasks made nondispatchable by the use of
the SMC parameter or was· requested by another task and has been only partially
fetched.

5. The time a routine is in the must complete mode should be kept as short as possible -­
enter at the last moment and leave as soon as possible. One suggested way is to:

a. ENQ (on desired resource(s»

24 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

b.ENQ (on same resource(s)),RET=HAVE,sMC=STEP

Item a gets the resource(s) without putting the routine into the must complete mode.
Later, when appropriate, issue the ENQ with the must complete request (Item b). Issue
a DEQ macro instruction to terminate the must complete mode as soon as processing is
finished.

6. The STATUS macro instruction changes the dispatchability status of tasks for users in
supervisor state, with. a protection key of 0-7, or APF -authorized. STATUS can also
change the must complete status of a task. In all cases, the task remains enqueued.

Tasks set nondispatchable by the corresponding ENQ macro instruction are m~de
dispatchable and asynchronous exits from the requesting task are enabled.

Shared Direct Access Storage Devices (Shared DASD)
The Shared DASD facility allows computing systems to share direct access storage devices.
Systems can share common data and consolidate data when necessary. No change to existing
records, data sets, or volumes is necessary to use the facility. However, reorganization of
volumes may be desirable to achieve better performance.

Devices that Can be Shared

The following control units and devices are supported by the Shared DASD option:

• IBM 2314 Direct Access Storage Facility equipped with the two-channel switch -- IBM
2314 Disk Storage Module.

• IBM 2314 Direct Access Storage Facility combined with the IBM 2844 Auxilliary Storage
Control -- IBM Disk Storage Module. Device reservation and release are supported by
this combination with or without the presence of the two-channel switch. Two channels
-one from System A .and one from System B -- may be connected to the combination. In
addition, the two-channel switch may be installed in either or both of the control units,
thus permitting as many as four systems to share the devices.

• IBM 2835 Storage Control Unit with two-channel switch -IBM 2305 Fixed Head Storage
Facility.

• IBM 3830 Storage Control Unit with two-channel switch -- IBM 3330 Series Disk
Storage Drive. The IBM 3330, 3340/3344, 3350 Series devices may also be configured
for shared use via the string switch feature.

Alternate channels to a device from anyone system may only be specified for the IBM
2314 Direct Access Storage Facility, or the IBM 3330, 3340/3344, 3350 Series Storage Unit.

Volume / Device Status

The Shared DASD facility requires that certain combinations of volume characteristics and
device status be in effect for shared volumes of devices. Figure 5 shows the combinations that
must be in effect for a volume or device:

System A

Permanently resident
Reserved
Removable
Offline

Systems B, C, D

Permanently resident
Reserved
Offline
Removable, reserved, or permenently resident

Figure 5. Valid Volume Characteristic and Device Status Combinations

Resource Control 25

If a volume/device is marked removable on anyone system, the device must be in offline
status on all other systems. The mount characteristic ofa volume and/or device status may be
changed on one system as long as the resulting combination is valid for other systems sharing
the device. No other combination of volume characteristics and device status is supported.

System Configuration

Operating system configurations do not have to be identical to share a data set. The only
additional equipment needed for the Shared DASD option is either a two-channel switch or a
2844 Auxiliary Control unit. The user must also observe certain restrictions about the data sets
that are shared. The following data sets cannot be shared:

PASSWORD SYS1.NUCLEUS
SYS1.LOGREC SYS1.SVCLIB
SYS1.LPALIB VSAM page spaces
SYS1.MANX Master catalog
SYS1.MANY

Volume Handling

Volume handling on the Shared DASD option must be clearly defined since operator actions
on the sharing system must be performed in parallel. The following rules should be in effect
when using the Shared DASD option:

• Operators should initiate all shared volume mounting and demounting operations. The
system will dynamically allocate devices unless they are in reserved or permanently
resident status, and only the former can be changed by the operator.

• Mounting and demounting operations must be done in parallel on all sharing systems. A
VARY OFFLINE must be effected on all systems before a device may be dismounted.

• Valid combinations of volume mount characteristics and device status for all sharing
systems must be maintained. To IPL a system, a valid combination must be established
before device allocation can proceed. This valid combination is established either by
specifying mount characteristics of shared devices in VA TLST, or varying all sharable
devices offline prior to issuing START commands and then following parallel mount
procedures.

Macro Instructions Used with Shared DASD

The RESERVE macro instruction is used to reserve a device for use by a particular system; it
must be issued by each task needing device reservation. The EXTRACT macro instruction is
used to obtain the address of the task input/output table (TIOT) from which the DCB address
can be obtained. The topic "Finding the DCB Address" explains this procedure.

Notes on RESERVE: The Set-Must-Complete (SMC) parameter available with the ENQ
macro instruction may also be used with RESERVE.

If a restart occurs when a RESERVE is in effect for devices, the system will not restore the
RESERVE; the user's program must reissue the RESERVE.

Releasing Devices

The DEQ macro instruction is used in conjunction with RESERVE just as it is used with
ENQ. It must describe the same resource and its scope must be stated as SYSTEMS; however,
the DCB=pointer address parameter is not required. If the DEQ macro instruction is not
issued by a task which has previously reserved a device, the system will free the device when
the task is terminated.

26 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Preventing Interlocks

The more often device reservations occur in each sharing system, the greater the chance of
interlocks occurring. Allowing each task to reserve only one device minimizes the exposure to
interlock. The system cannot detect interlocks caused by program use of the RESERVE macro
instruction and enabled wait states will occur on the system or systems.

Volume Assignment

Since exclusive control is by device, not by data set, consider which data sets reside on the
same volume. In this environment it is quite possible for two tasks in two different systems -­
processing four different data sets on two shared volumes -- to become interlocked. For
example, as shown in Figure 6, data sets A and B reside on device C, and data sets D and E
reside on device F. Task X in system X reserves device C in order to use data set A; task Y in
system Y tries to reserve device F in order to use data set D. Now task X in system X tries to
reserve· device F in order to use data set E and task Y in system Y tries to reserve device C in
order to use data set B. Neither can ever regain control, and neither will complete normally.
When the system has job step time limits, the task, or tasks, in the interlock would be
abnormally terminated when the time limit expires. Moreover, an interlock could mushroom,
encompassing new tasks as these tasks try to reserve the devices involved in the existing
interlock.

Task X
"-

.......

"
Reserves

if'

" /
....... /

....... / ,/ /,
/ "-

/
/

r'---"""""'I~ ~ Interlock

~ .../

A

B

Device C

Figure 6. Example of an Interlock Environment

Program Libraries

Task Y

/
/

/

Reserves

,

D

E

Device F

When assigning program libraries to shared volumes, precaution must be taken to avoid
interlock. For example, LINKLIB for system A resides on volume X, while LINKLIB for
system B resides on volume Y. Task A in system A invokes a direct access device space
management function for volume Y, resulting in that device being reserved. Task B in system
B invokes a similar function for volume X, reserving that device. However, each load module
transfers to another load module via XCTL. Since the LINKLIB for each system resides on a
volume reserved by the other system, the XCTL macro instruction cannot complete the
operation. An interlock occurs; since no access to LINKLIB is possible, both systems will
eventually enter an enabled wait state.

Resource Control 27

Finding the UCB Address

This topic explains procedures for finding the UCB address for use by the RESERVE macro
instruction; it also shows a sample assembler language subroutine which issues the RESERVE
and DEQ macro instructions and can be called by higher level languages.

Providing the Unit Control Block Address to RESERVE: The EXTRACT macro instruction is
used to obtain information from the task control block (TCB). The address of the TIOT can
be obtained from the TCB in response to an EXTRACT. Prior to issuing an EXTRACT
macro instruction, the user sets up an answer area in main storage which is to receive the
requested information. One full word is required for each item to be provided by the control
program. If the user wishes to obtain the TIOT address, he must specify FIELDS=TIOT in the
EXTRACT macro instruction.

The address of the TIOT is then returned by the control program, right adjusted, in the full
word answer area.

The TIOT is constructed by job management routines and resides in virtual storage during
step execution. The TIOT consists of one or more DD entries, each of which represents a data.
set defined by a DD statement for the jobstep. Each entry includes the DD name. Associated
with each DD entry is the UCB address of the associated device. In order to find the UCB
address, the user must locate the DD entry in the TIOT corresponding to the DD name of the
data set for which he intends to issue the RESERVE macro instruction.

The UCB address can also be obtained via the data extent block (DEB) and the data
control block (DCB). The DCB is the block within which data pertinent to the current use of
the data set is stored. The address of the DEB is contained at offset 44 decimal after the DCB
has been opened. The DEB contains an extension of the information in the DCB. Each DEB
is associated with a DCB and the two point to each other.

The DEB contains information concerning the physical characteristics of the data set and
other information that is used by the control program. A device dependent section for each
extent is included as part of the DEB. Each such extent entry contains the UCB address of the
device to which that portion of the data set has been allocated. In order to find the UCB
address, the user must locate the extent entry in the DEB for which he intends to issue the
RESERVE macro instruction. (In disk addresses of the form MBBCCHHR, the M indicates
the extent number starting with 0).

Procedures for Finding the UCB Address of a Reserved Device: For data sets using the queued
access methods in the update mode or for unopened data sets:

1. Extract the l'IOT from the TCB.

2. Search the TIOT for the DD name associated with the shared data set.

3. Add 16 to the address of the DD entry found in step 2. This results in a pointer to the
UCB address in the TIOT.

4. Issue the RESERVE macro specifying the address obtained in step 3 as the parameter of
the UCB keyword.

For opened data sets:

1. Load the DEB address from the DCB field labeled DCBDEBAD.

2. Load the address of the field labeled DEBDVMOD in the DEB obtained in step 1. The
result is a pointer to the UCB address in the DEB.

3. Issue the RESERVE macro specifying the address obtained in step 2 as the parameter of
the UCB keyword.

28 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

For BDAM data sets the user may reserve the device at any point in the processing in the
following manner:

1. Open the data set.

2. Convert the block address used in the READ/WRITE macro to an actual device address
of the form MBBCCHHR.

3. Load the DEB address from the DCB field labeled DCBDEBAD.

4. Load the address of the field labeled DEBDVMOD in the DEB.

S. Multiply the "M" of the direct access by 16.

6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the
next READ/WRITE operation. The sum is also a pointer to the UCB address for this
extent.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the parameter of
the UCB keyword.

If the data set is an ISAM data set, QISAM in the load mode should be used only at system
update time. Further, if it is a multivolume ISAM data set, it must be assumed that all jobs will
access the data set through the highest level index. The indexes should never reside in virtual
storage when the data set is being shared. In this case, by issuing a RESERVE macro for the
volume on which the highest level index resides, the user effectively reserves the volumes on
which the prime data and independent overflow areas reside. The following procedures can be
used to achieve this:

1. Open the data set.

2. Locate the actual device address (MBBCCHHR) of the highest level index. This address
can be obtained from the DCB.

3. Load the DEB address from the DCB field labeled DCBDEBAD.

4. Load the address of the field labeled DEBDVMOD in the DEB.

S. Multiply the "M" of the actual device address located in step 2 by 16.

6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the.
next READ/WRITE operation. The sum is also a pointer to the UCB address for this
extent.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the· parameter of
the UCB keyword.

RES and DEQ Subroutines: The assembler language subroutine in Figure 7 can be used by
assembler language programs to issue the RESERVE and DEQ macro instructions. Parameters
that must be' passed to the RESDEQ routine, if the RESERVE macro instruction is to be
issued, are:

DDNAME - the eight character name of the DDCARD for the device to be reserved:

QNAME - an eight character name.

RNAME LENGTH - one byte (a binary integer) that contains the RNAME length value.

RNAME - a name from 1 to 255 characters in length.

The DEQ macro instruction does not require the UCB=pointer address as a parameter. If
the DEQ macro is to be issued, a fullword of binary zeros must be placed in the DDNAME
field before control is passed.

Resource Control 29

RESDEQ

*PROCESS

NEXTDD

FINDUCB

* *PROCESS
WANTDEQ

*PROCESS

*
*

ISSUEDEQ
RETURN

MOVERNAM
ADDRTIOT
SAVE
QNAME
RNAME
RNLEN

CSECT
SAVE
BALR
USING
ST
LA

ST
LR
LR
L

CLC

(14,12),T
2,0
*,2
13,SAVE+4
11,SAVE

11,8(13)
13, 11
9,1
3,0(9)

° (4,3), =F' 0'

BE WANTDEQ

SAVE REGISTERS
SET UP ADDRESSABILITY

ADDRESS OF MY SAVE AREA IS
STORED IN THIRD WORD OF CALLER'S
SAVE AREA
ADDRESS OF MY SAVE AREA
ADDRESS OF PARAMETER LIST
DDNAME PARAMETER OR WORD OF
ZEROS
WORD OF ZEROS IF DEQ IS
REQUESTED

FOR DETERMINING THE UCB ADDRESS USING THE TIOT
XR 11,11 REGISTER USED FOR DD ENTRY
EXTRACT ADDRTIOT,FIELDS=TIOT
L 7,ADDRTIOT ADDRESS OF TASK I/O TABLE

ENTRY LA 7,24(7) ADDRESS OF FIRST DD
CLC o(8,3) ,4(7) COMPARE DDNAMES
BE FINDUCB
IC 11,0(7)
LA 7,0(7,11)
CLC 0,(4,7),=F'0'
BNE NEXTDD
ABEND 200,DUMP
LA 8, 16(7)

FOR DETERMINING THE QNAME
L 7,4(9)
MVC QNAME (8) , ° (7)

FOR DETERMINING THE RNAME
L 7,8(9)
MVC RNLEN+3(1),0(7)
L 7,RNLEN
STC 7,RNAME

L 6,12(9)
BCTR 7, °
EX 7,MOVERNAM
CLC 0(4,3),=F'0'
BE ISSUEDEQ

LENGTH OF DD ENTRY
ADDRESS OF NEXT DD ENTRY
CHECK FOR END OF TIOT

DDNAME IS NOT IN TIOT, ERROR
ADDRESS OF WORD IN TIOT THAT
CONTAINS ADDRESS OF UCB

REQUESTED
ADDRESS OF QNAME LENGTH
MOVE IN QNAME

AND THE LENGTH OF RNAME
ADDRESS OF RNAME LENGTH
MOVE BYTE CONTAINING LENGTH

STORE LENGTH OF RNAME IN THE
FIRST BYTE OF RNAME PARAMETER
FOR RES/DEQ MACROS
ADDRESS OF RNAME REQUESTED
SUBTRACT ONE FROM RNAME LENGTH
MOVE IN RNAME

RESERVE (QNAME,RNAME,E,0,SYSTEMS),UCB=(8)
B RETURN
DEQ (QNAME,RNAME,O,SYSTEMS)
L 13,SAVE+4 RESTORE REGISTERS AND RETURN
RETURN (14,12),T
BCR 15,14
MVC RNAME+1(0),0(6)
DC F'O'
DS 18F
DS 2F
DS CL256
DC F'O'
END

Figure 7. Example of Subroutine Issuing RESERVE and DEQ

30 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Authorized Program Facility (APF)
The authorized program facility (APF) provides two services. First, it limits the use of sensitive
system SVC service routines and, optionally, sensitive user SVC service routines to authorized
programs; that is, to system or user problem programs that are under the control of the
installation manager. If an installation has its own special SVCs that bypass normal system
security and integrity checks, then the APF facility should be used to restrict their use to
authorized programs. Second, it ensures that load modules accessed by authorized programs,
via the LINK,XCTL, LOAD, and ATTACH macro instructions, are always from authorized
libraries.

A program is authorized if it is executing in supervisor state, is executing in a system key
(0-7), or is executing as a part of an APF-authorized job step. A job step is APF-authorized if
the first program executed in the step is from an APF -authorized library and it is link edited
with the APF-authorization code (AC= O.

Note: If a job step is established APF -authorized, then it will stay APF -authorized until it
completes. Similarly, if a job step is established non-APF-authorized, it will stay
non-APF-authorized until it completes.

Restricting SVC·Service Routines

MVS provides two methods of restricting sensitive SVC service routines:

• Sensitive SVCs may be restricted to authorized job steps via the FCOI parameter on the
SVCTABLE macro instruction issued at system generation time. The SVC first level
interrupt handler will ensure that SVC routines so restricted are accessible only to
authorized programs. A 047 abend will result if an unauthorized program attempts to
access a restricted SVC service routine.· Sensitive IBM-supplied SVCs are automatically
restricted.
Note: The user of APF should be aware that APF authorization is defined such that any
SVC that is restricted by the APF mechanism can be executed by any system key (0-7)
or supervisor state routine. However, this is not true in reverse. A program executing as
part of an APF -authorized step will not automatically· be allowed system services that are
restricted by system key or privileged mode tests .

• When only a portion of an SVC's function is sensitive, then the TESTAUTH macro
instruction can be used to restrict particular paths through the SVC. TESTAUTH tests
for the presence of system key (0-7), supervisor state, and APF authorization; if any of
these conditions is present, the SVC invoker is authorized. The TEST AUTH macro
cannot be used to control the use of 110 appendages. Appendages are controlled by
means of the IEAAPPOO member of SYS I.P ARMLIB. (See the description of this
member in the Initialization and Tuning Guide.) The TESTAUTH macro instruction,
inserted at appropriate locations in the SVC, returns an authorizated or unanthorized
indication. The SVC should take appropriate action based upon this return.

Restricting Load Module Access

APF automatically prohibits access by authorized programs via the LINK, LOAD, XCTL, and
ATTACH macro instructions to any load module which is not form an APF-authorized library.
A· 306 abend will result if the only available copy of a module accessed by an authorized
program resides on a non-APF-authorized library. It is the responsibility of the authorized
program to recover from the 306 abend in a way which would not allow the accessed module
to execute.

As long as a load module resides on an APF-authorized library, it may be accessed by an
authorized program. To preclude access to an incorrect module (e.g., via a STEPLIB), it is the

Resource Control 31

installation's responsibility to ensure that duplicate module names are not permitted across
APF -authorized libraries.

Defining APF-Authorized Libraries

A module must reside on an APF-authorized library if it is to be accessed, via LINK, XCTL,
LOAD, or ATTACH, by an authorized program. SYSI.LINKLIB and SYSI.SVCLIB are
automatically considered as APF -authorized. SYS l.LP ALIB and SYS2.LP ALIB are also
automatically considered APF -authorized, but only during system initialization when the link
pack areas are built.

Any library may be designated as an APF-authorized library by inclusion of its name in the
SYS l.P ARMLIB member IEAAPFOO or IEAAPFxx prior to IPL. It is the installation's
responsibility to control the contents of such libraries.

If libraries are concatenated in a JOBLIB or STEPLIB, then the concatenation will be
considered APF-authorized only if each and every library in the concatenation is
APF -authorized.

Any library that is concatenated to SYS l.LINKLIB and contained in LNKLSTxx is
designated APF-authorized. However, if the library is specified separately via JOBLIB or
STEPLIB, it is no longer considered authorized unless it is also included in IEAAPFxx.

Link Edit APF-Authorization Code

For a job step to execute APF-authorized, the first program executed in the step must not
only be from an APF -authorized library, but it must also be link edited with the
APF -authorization code.

The linkage editor permits an installation to assign the APF -authorization code to load
modules either through the P ARM field on the link edit step or through a linkage editor
control statement.

To assign an authorization code via the JCL parameter, AC= 1 should be coded in the
PARM field of the EXEC statement as follows:

//LKED EXEC PGM=HEWL,PARM='AC=1' , ...

If no authorization code is assigned in the linkage editor step, the default is
non-authorization. The authorization code for a given output module can be overridden with
the SETCODE control statement.

The SETCODE statement is used to establish authorization for a specific output load
module. If it is used, it must be placed before the NAME'statement for the load module. The
format of the SETCODE statement is:

SETCODE AC(1)

If more than one SETCODE statement is assigned to a given output load module, the last
statement found will be used.

In the example in Figure 8, the SETCODE statement assigns an authorization code to the
output load module MODI.

32 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

IILKED
IISYSPRINT
IISYSUT1
IISYSLMOD
IISYSLIN
II
II

1*

SETCODE
NAME

EXEC
DD
DD
DD
DD

DD

Figure 8. Assigning Authorization via SETCODE

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(10,5))
DSNAME=SYS1.LINKLIB,DISP=OLD
DSNAME=&&LOADSET,DISP=(OLD,PASS),
UNIT=SYSDA

* AC(1)
MOD 1 (R)

Note: The authorization code of a load module has meaning only when it resides on an
APF-authorized library and when it is executed as the first program of a job step.

APFSummary

The table in Figure 9 summarizes the action taken when an SVC service routine is accessed
via an SVC instruction or when a load module is accessed via the LINK, XCTL, LOAD, or
ATT ACH macro instruction.

Called Program
Calling Results

Program SVC Load
Routine Module

Q)
~

~ 0
Q)

.c U
.~
0 .. ~

.- Q)

.c s: .~ ..
~ 0 :;,

~ e(.. .c .- .. Q) u.. ~ :;,
~ .~ 0- we(

e(~ ~ , cLi. :G C :5! ._ 0-
a: O..J ..Je(

YES Successful

NO Successful

Authorized* NO NO 306 Abend 1
1------

NO YES 306 Abend 1

YES NO Successful 2

YES YES Successful

YES 047 Abend

NO Successful

Not Authorized NO NO Successful

NO YES Successful

YES NO Successful

YES YES Successful

*A program is authorized if it is executing in supervisor state, or with a system
key, or as part of an APF-authorized job step .

......

Figure 9. Authorization Results

In these cases,

}

the called
program will

_ fail if it
executes
func~ions which
require
authorization.

Note 1: When the load module is being attached as a job step TCB, the linkage is successful;
a 306 abend does not occur. The initiator attaching a job step task is an example of this case.

Note 2: If the load module (the called program) is the first program in the job step task (that

Resource Control 33

is, the linkage is ATTACH of a job step TCB), then the linkage will be successful. However,
the program is APF-authorized only if it was link edited as being APF-authorized. For
example, if the initiator (an authorized program) attaches a job whose program comes from an
APF-authorized library, but where the load module is not link edited as APF-authroized, then
the attach is successful but the job runs non-APF authorized.

Changing System Status

The MODE SET macro instruction alters selective fields of the program status word (PSW).
The standard form of MODESET may be coded in two separate ways: one form generates an

,SVC and the other form generates inline code.

Generating an SVC

This form of MODESET,executable as APF-authorized, in supervisor state, or under
protection key 0-7, changes the status of programs between supervisor state and problem
program state, and key zero and non-key zero. The parameters that must be specified to
perform the chap.ges are MODE and KEY respectively.

The MODE parameter specifies whether bit 15 of the PSW is to be turned on or off; When
bit 15 is one, the CPU is in the problem state. When bit 15 is zero, the CPU is in the
supervisor state.

The KEY parameter specifies whether bits 8-11 are to be set to zero or set to the value in
the caller's TCB. Bits 8-11 form the CPU protection key. The key is matched against a key in
storage whenever information is stored, or whenever information is fetched from a location
that is protected against fetching .

.
Generating Inline Code

This form of MODESET, executable only in s~pervisor state, is used to ensure that storage
areas and the control program functions they are associated with have the same protection key.
The EXTKEY parameter of MODESET may be coded to indicate the key to be set in the
current PSW.

The following keys may be set:

• Scheduler
• Job entry subsystem
• Real storage management
• Virtual storage management
• System resource management
• Supervisor
• Data management
• Telecommunications access method
• Key of zero
• Key of TCB
• Key of type 1 SVC issuing MODE SET
• Key of type 2, 3, or 4 SVC issuing MODE SET

Other parameters of MODE SET allow the original key to be saved and restored upon
completion of the desired changes.

Interprocessor Communications (IPC)

Interprocessor communications is a function in a multiprocessing system that provides
I communication between CPUs sharing the same control program. Those executing functions

34 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

which require a CPU or program action on one or more CPUs will use the IPC interface to
invoke the desired action. The IPC function uses the signal processor (SIGP) instruction to
provide the necessary hardware interface between the CPUs.

Service Classes

The SIGP instruction provides twelve distinct hardware functions to support two classes of IPC
services -- direct and remote:

Direct class - These services are defined for those control program functions which require
the modification or sensing of the physical state of one of the configured CPUs. Ten of the
twelve SIGP hardware functions are defined as IPC direct services, and are accessible via the
DSGNL macro instruction.

Sense: The specified CPU presents its status to the issuing CPU. No other action is caused at
the specified CPU.

Start: The specified CPU is placed in the operating state. The CPU does not necessarily enter
the operating state during the execution of the SIGP instruction. No action is caused at the
specified CPU if that CPU is in the operating state when the order code is accepted.

Stop: The specified CPU stops. The CPU does not necessarily enter the stopped state during
the execution of the SIGP instruction. No action is caused at the specified CPU if that CPU is
in the stopped state when the order code is accepted.

Restart: The specified CPU restarts. The CPU does not necessarily perform the function
during the execution of the SIGP instruction.

Initial Program Reset: The specified CPU performs initial program reset. The execution of the
reset does not affect other CPUs and does not affect channels not configured to the CPU
being reset. The reset operation is not necessarily completed during the execution of the SIGP
instruction.

Program Reset: The specified CPU performs program reset. The execution of the reset does
not affect other CPUs and does not affect channels not configured to the CPU being reset.
The reset operation is not necessarily completed during the execution of the SIGP instruction.

Stop and Store Status: The specified CPU stops and stores status. The CPU does not
necessarily complete the operation, or even enter the stopped state, during the execution of the
SIGP instruction.

Initial Microprogram Load: The specified CPU performs initial program reset and then initiates
the initial-microprogram-load function. The latter function is the same as that which is
performed as part of manual initial micro-program loading. The operation is not necessarily
completed during the execution of the SIGP instruction. /'

Initial CPU Reset: The specified CPU performs initial CPU reset. The execution of the reset
does not affect other CPUs and does not cause any channels, including those configured to the
specified CPU, to be reset. The reset operation is not necessarily completed duril1g the
execution of the SIGP instruction.

CPU Reset: The specified CPU performs CPU reset. The execution of the reset does not
affect other CPUs and does not cause any channels, including those configured to the specified
CPU, to be reset. The reset operation is not necessarily completed during the execution of the
SIGP instruction.

Remote class - These services are defined for those control program functions which require

Resource Control 35

,I

the execution of a software function on one of the configured CPUs. The two remaining SIGP
functions are defined as remote services:

External Call: An" external call" external-interruption condition is generated at the specified
CPU. The interruption condition becomes pending during the execution of the SIGP
instruction. The associated interruption occurs when the CPU is interruptible for that
condition. Only one external-call condition can be kept pending in a CPU at a time. The
external-call function is accessible via the RPSGNL macro instruction.

Emergency Signal: An" emergency-signal" external-interruption condition is generated at the
specified CPU. The interruption condition becomes pending during the execution of the SIGP
instruction. The associated interruption occurs when the CPU is interruptible "for that
condition. At anyone time the receiving CPU can keep pending one emergency-signal
condition for each CPU of the multiprocessing system, including the receiving CPU itself. The
emergency-signal function is accessible via the RISGNL macro instruction.

Status Conditions

Eight status conditions are defined whereby the issuing and specified CPUs can indicate their
response to the designated hardware function. The status conditions are contained in register 0
and are:

Equipment Check: This condition exists when the CPU executing an instruction detects
equipment malfunctioning that has affected. only the execution of the instruction and the
associated hardware function. The order code mayor may not have been transmitted, and may
or may not have been accepted, and the status bits provided by the specified processor may be
in error.

External Call Pending: This condition exists when an external-call interruption condition is
pending in the specified CPU because of a previously issued SIGP instruction. The condition
exists from the time an external-call function is accepted until the resultant external
interruption has been completed. The condition may be due to the issuing CPU or another
CPU. The condition, when present, is indicated only in response to sense and to external call.

Stopped: This condition exists when the specified CPU is in the stopped state. The condition,
when present, is indicated only in response to sense.

Operator Intervening: This condition exists when the specified CPU is executing certain
operations initiated from the console or the remote operator control panel. The particular
manually initiated operations that cause this condition to be present depend on the model and
on the specified functions. This condition, when present, can be· indicated in response to all
functions. Operator intervening is indicated in response to sense if the condition is present and
precludes the acceptance of any of the installed orders. The condition may also be indicated in
response to unassigned or uninstalled orders.

Check Stop: This condition exists when the specified CPU is in the check-stop state. The
condition, when present, is indicated only in response to sense, external call, emergency signal,
start, stop, restart, and stop and store status. The condition may also be indicated in response
to unassigned or uninstalled functions.

Not Ready: This condition exists when the specified CPU uses reloadable control storage to
perform a function and the required microprogram is not loaded. The not-ready condition may
be indicated in response to all functions except IMPL.

Invalid Function: This condition exists during the communications associated with the execution
'of SIGP when the specified CPU decodes an unassigned or uninstalled function code.

36 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Receiver Check: This condition exists when the specified CPU detects malfunctioning of
equipment during the communications associated with the execution of SIGP. When this
condition is indicated, the function has not been initiated and, since the malfunction may have
affected the generation of the remaining receiver status bits, these bits are not necessarily
valid. A machine-check condition mayor may not have been generated at the specified CPU.

For more details on the SIGP instruction, see IBM System/370 Principles of Operation.

Event Completion

Cross Memory POST

The POST macro instruction is used to signify the completion of an event by one routine to
another routine. Usually, the completion of the event is posted in the user's address space.

The authorized user (executing in supervisor state, under protection key 0-7, or
APF-authorized) of the POST macro instruction can use the ASCB and ERRET parameters to
schedule an SRB to be dispatched in an address space other than his own. If the caller is
authorized to specify the ASCB and ERRET parameters, no check is made to determine if the
requested address space is the issuing address space. This use of the POST macro instruction is
sometimes known as "cross-memory post."

The ERRET routine is given control in the user's address space when the error condition is
detected. It will receive control enabled, unlocked, in SRB mode, and with the following
register contents:

register

o
1
2
3
4-13
14
15

contents

ECB address
ASCB address
original completion code
completion code from failing address space
unpredictable
return address
ERRET address

The ERRET routine must return control unlocked and enabled.

If cross-memory post is being used, a synchronization problem arises when it becomes
necessary to eliminate an ECB which is a potential target for a cross-memory post request. To
ensure that all outstanding cross-memory post requests for the ECB have completed, the user
must invoke the SPOST macro instruction. (The ECB mayor may not be posted, depending
on existing conditions. See OS/VS2 Scheduler and Supervisor Logic for details.) Since SPOST
invokes the PURGEDQ SVC, see the description of PURGEDQ for the restrictions on its use.

Bypassing the POST Routine

The problem programmer may bypass the POST routine whenever the corresponding WAIT
has not yet been issued. To do this, it is necessary to issue a TEST UNDER MASK (TM)
instruction to determine if the wait bit in the ECB is on. If the wait bit is on, the normal
POST routine must be executed. If the wait bit is not on, a COMPARE AND SW AP (CS) of
the ECB to the posted condition should be issued. At this time, if the wait bit is on, the
normal POST routine must be executed; if the wait bit is not on, the CS will, in effect, post
the completion of the event.

Resource Control 37

Figure 10 demonstrates an example of this use of POST.

CSLOOP

DOPOST
POSTDONE

L
L

TM
BO
CS

BZ
POST
EQU

RX,ECB
RY,='40000000'

ECB,X'80'
DOPOST
RX,RY,ECB

POSTDONE
ECB
X

Figure to. Bypassing the POST Routine

Waiting for Event Completion

Get contents of ECB.
Completion bit and code to be
compared and swapped
Wait bit on?
If yes, then execute post.
Compare and swap completion bit
and code.
Branch if CS is successful.

The EVENTS macro instruction allows a user to wait for the completion of one of a series of
events and be directly informed by the system which of the events have completed. Branch
entry to this function, significantly more efficient than SVC entry, is available to users
executing in key 0, supervisor state, and holding only the local lock.

Branch entry is accomplished by specifying BRANCH= YES on the EVENTS macro
instruction. If this parameter is used, the branch entry routine will perform all normal WAIT
processing and ECB initialization. BRANCH= YES may be specified in conjunction with either
WAIT=YES, WAIT=NO, or ECB= .

. • If WAIT = YES is specified, control will later be returned to the dispatcher, even though
there may be ECBs posted to the EVENTS table. The local lock will be freed by
EVENTS. Before the EVENTS macro instruction with the WAIT=YES option is
specified, the caller is responsible for establishing the return environment (the PSW and
registers in the RB and TCB). EVENTS will store a pointer to the first completed
EVENTS entry into the TCB register 1 save location. (This service is not available to
Type 1 SVCs or SRBs.)

• If WAIT = YES is not specified, control will later be returned to the caller. The local lock
will not be freed by EVENTS.

System Integrity

System integrity is defined as the ability of the system to protect itself against unauthorized
user access to the extent that security controls cannot be compromised. That is, there is no
way for an unauthorized problem program using any system interface to bypass store or fetch
protection, bypass password checking, or obtain control in an authorized state.

Note: An authorized program in MVS is one that executes in a system key (keys 0-7), in
supervisor state, or is authorized via the Authorized Program Facility (APF).

Documentation on System Integrity

This section contains information about MVS system integrity. The related topic of security in
regard to the physical environment of a computing system is discussed in Data Security and Data
Processing, GC20-1370 through GC20-137S.

Restricted functions (those that can be requested only by authorized programs) are
documented separately from non-restricted functions in OS/VS2 System Programming Library:
Data Management, GC26-3830.

38 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

These publications describe the restricted functions and the means of authorizing
appropriate programs to use those functions. Macro instructions that require the issuing
program to be authorized are listed in the contents and described in the text of these books.
Review the contents of these books to determine what functions require authorization.

Installation Responsibility

To ensure that system integrity is effective and to avoid compromising any of the integrity
controls provided in the system, the installation must assume responsibility for the following:

• Physical environment of the computing system.
• Adoption of certain procedures (for example, the password protection of appropriate

system data sets) that are a necessary complement to the integrity support within the
operating system itself.

• That its own modifications and additions to the control program do not introduce any
integrity exposures. That is, all installation-written authorized code (for example, an
installation SVC must perform the same or an equivalent type of validity checking and
control that the MVS control program employs to maintain system integrity.

Elimination of Potential Integrity Exposures

MVS system integrity support restricts only unauthorized problem programs. It is the
responsibility of the installation, to verify that any authorized programs added to the system
control program will not introduce any integrity exposures. To do this effectively, an
installation should consider these areas for potential integrity exposure:

• User-supplied addresses for user storage areas.
• User-supplied addresses for protected control blocks.
• Resource identification.
• SVC routines calling SVC routines.
• Control program and user data accessibility.
• Resource serialization. (See the section "Locking".)

Each of the following descriptions is a guideline to aid the installation in:

• Eliminating that area as a potential integrity exposure.
• Determining whether an impact on existing installation-written code might occur,

especially where that code is dependent on the use of non-standard interfaces to the
system control program.

There should be no impact on installation-written routines that use standard interfaces
(problem program/system interface described in an SRL) becuase no standard interfaces for
system integrity support have been removed from the MVS system control program. However,
some routines now require authorization for use.

User-Supplied Addresses for User Storage Areas

A potential integrity exposure exists whenever a routine having a system protection key (key
0-7) accepts a user-supplied address of an area to which a store or fetch is to be done. If the
system routine does not adequately validate the user-supplied address to ensure that it is the
address of an area accessible to the user for storing and fetch data, an integrity violation can
occur when the system-key routine:

• Stores into (overlays) system code or data (for example, in the nucleus or the system
queue area), or into another user's code or data.

• Moves data from a fetch-protected area that is not accessible to the user (for example,
fetch-protected portion of the common service areas) to an area that is accessible to the
user.

Resource Control 39

The elimination of this problem requires that system-key routines always' verify that the
entire area to be stored into, or fetched from, is accessible (for storing qr fetching) to the user
in question. The primary validation technique is the generally established MVS convention that
system-key routines obtain the protection key of the user before accessing the user-specified
area of storage. For example, MVS data management SVC routines (which generally execute
in key 5) assume the user's key before modifying a data control block (DCB) or an I/O block
(lOB).

User-Supplied Addresses for Protected C~ntrol Blocks

A potential integrity exposure exists whenever the control program (system key/privileged
mode) accepts the address of a protected system control block from the user. For most system
control blocks this situation should not be permitted to exist. However, in certain cases it is
necessary to allow the user to provide the address of a system control block that describes his
allocation/ access to a particular resource (for example, a data set), in order to identify that
resource from a group of similar resources (for example, a user may have many data sets
allocated). Inadequate validity checking in this situation can create an integrity exposure, since
an unauthorized problem program could provide its own (counterfeit) control block in place of
the system block and thereby gain the ability to:

• Access a resource in an uncontrolled manner (since the control block in this case would
normally define the restrictions, such as read-only for a data set, on the user's allocation
to the resource).

• Gain control in a privileged state (because such control blocks might contain the
addresses of routines that run in privileged mode or with a system (0-7) key).

• Cause various other problems depending on exactly what data is in the control block
involved.

To avoid this type of exposure, the control program must verify, for every such address
accepted from a problem program, that the address is that of:

1. A protected control block created by the control program.

2. The correct type of control program block (for example, a TCB versus a DEB, or a
QSAM DEB versus an ISAM DEB).

3. A control block created for use in connection with the user (job step) that supplied the
address.

In MVS, verification is generally accomplished by establishing a chain or table of the
particular type of control block to be validated. This chain or table is located via a protected
and jobstep-related control block that is known to be valid. Addresses that are not allowed to
be supplied by the user, will be located via a chain of protected control blocks that begins with
a control block known to be valid or fixed at a known location at IPL time, such as the CVT.
Therefore, a control block can only be entered in the chain/table by:

• An authorized program satisfying point 1.
• Definition, where the chain/table establishes the type of control block satisfying point 2.
• Definition, where each chain/table is located only through a jobstep-related control block

satisfying point 3.

Note: This does not imply that a system routine must go back to the CVT or similar control
block every time it wants to establish a valid chain. Typically, a control block address not too
far down on such a chain is available already validated in a register. For example, the first load
of an SVC can receive control with a valid TCB address in a register.

40 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Resource Identification

Resource identification is another area that can be subject to integrity exposures. Exposures
can result if the control program does not maintain and use sufficient data to uniquely
distinquish one resource from other similar resources. For example, a program must be
identified by both name and library to distinguish it from other programs. The consequences of
inadequate resource identification are problems such as the ability of an unauthorized problem
program to create counterfeit control program code or data, or to cause varying types of
integrity problems by intermixing incompatible pieces of control program code and/or data.

The genrral solution can only be stated as the reverse of the problem; that is, the control
program must maintain and use sufficient (protected) data on any control program resource, to
distinquish between that resource and other control program or user resources. The following
are examples of the controls that MVS employs to comply with the requirement:

• In general, authorized program requests to load other authorized programs are satisfied
only from authorized system libraries (see the topic "Control Program Extensions"
described in this section.)

• MVS takes explicit steps to ensure that routines loaded from authorized system libraries
are used only for their intended purpose. This includes expanded validity checking to
remove any potential for the unauthorized program to specify explicitly which of the
authorized library routines are to gain control in any given situation.

• Sensitive system control blocks are validated as being the I I correct I I blocks to be used in
any given control program operation. (See the topic "User-Supplied Addresses of
Protected ·Control Blocks II described in this section.)

SVC Routines Calling SVC Routines

A potential problem area exists whenever a problem program is allowed to use one SVC
routine (routine A) to invoke a second SVC routine (routine B) that the problem program
could have invoked directly. An integrity exposure occurs if:

• SVC routine B bypasses some or all validity checking based on t~e fact that it was called
by SVC routine A (an authorized program) or

• User-supplied data passed to routine B by routine A either is not validity checked by
routine A, or is exposed to user modification after it was validated by routine A.

These problems will not exist if the user calls SVC routine B directly, because the validity
checking will be performed on the basis of the caller being an unauthorized program.

SVC routine A, which is aware that it has been called by an unauthorized program, must
ensure that the proper validity checking, etc., is accomplished. However, it is usually not
practical for SVC routine A to do the validity checking itself, because of the potential for user
modification of the data prior to or during its use by SVC routine B. The general solution
should be for SVC routine A to provide an interface to SVC routine B, informing routine B
that the operation is being requested with user-supplied data in behalf of an unauthorized
problem program (implying that normal validity checking should be performed).

In practice, in MVS, most SVC B-type routines that could be subject to this problem use
the key of their caller as a basis for determining whether or not to perform validity checking.
Therefore, most SVC A-type MVS routines have simply adopted the convention of assuming
the key of their caller before calling the SVC B routine. (For additional information see the
section "Writing SVC Routines" later in this book.f

Resource Control 41

Control Program and User Data Accessibility

Important in maintaining system integrity is the consideration of what system data is sensitive
and must be protected from the user, and what data can be exposed to user manipulation. The
implications of the exposure of the wrong type of data are obvious.

In general, it is necessary to store protect the following types of data:

• Code, and the location of code, that is to receive control in an authorized state.
• Work areas for such code, including areas where it saves the contents of registers.
• Control blocks that represent the allocation or use of system resources.

MVS maintains such items in system storage, or in a separate address space in the case of
some APF-authorized programs.

It may also be necessary to protect, for a limited period, certain data that is normally under
the control of the user (for example, to prevent its modification during a critical operation). In
this case MVS provides fetch protection for such data if:

• The data consists of proprietary information (such as passwords).
• The control program cannot determine the nature of the contents of the data area.

Control Program Extensions

This potential problem area involves the somewhat hazy distinction that exists between the
control program and certain types of problem programs. In most installations, there are
problem state/user key (keys 8-15) programs that are actually extensions to the control
program in that they are allowed (by means of various special SVCs, etc.) to bypass normal
system controls over access to system resources. For example, a special utility program that
scans all the data on a pack might be able to avoid the normal system extent checking on a
direct access volume.

If an installation has its own control program extensions and SVCs that allow the bypass of
normal system security or integrity checks (for example, an SVC that returned control in key
0), and if such SVCs are not currently restricted from use by an unauthorized program, thee
APF facility should be used to restrict them and to authorize the control program extensions
that use them.

Installation personnel should understand the distinction between an authorized program and
an authorized user. A program that utilizes a restricted function must be authorized. Any user,
however, can submit a job to execute an authorized program. Any program that must be
restricted to an individual or a class of users must be restricted by means of existing data set
security facilities. The program must be placed placed on a separate password-protected library
other than LINKLIB, SVCLIB, or LP ALIB. IEH utilities might be placed on a separate
password-protected library to limit their use to system programmers.

42 OS/VS2 System Programming Library: Supervisor (VS2 Release 3~7)

Interruption, Recovery/Termination, and Dumping Services

The supervisor offers many services to assist in the detection and processing of abnormal
conditions during the execution of the system. Certain types of abnormal conditions are
detected by the hardware and cause program interruptions to occur (for example, if an attempt
is made to execute an instruction with an invalid operation code). Other abnormal conditions
are detected by the software (for example, an attempt to open a data set which is not defined
to the system causes an ABEND to be issued by the Open routine).

The supervisor provides facilities for writing exit routines to handle specific types of
interruptions and abnormal conditions. The supervisor initiates the recovery/termination
process of your program when you request it by issuing an ABEND macro instruction, or
when the control program detects a condition that will degrade the system or destroy data.

The services discussed in this chapter include:

• program interruption processing SPIE macro instruction)
• recovery/termination (CALLRTM macro instruction)
• functional recovery routines (SETFRR macro instruction)
• task recovery (STAE and ESTAE macro instructions)
• installation-written clean-up routines
• virtual storage dumping (SDUMP macro instruction and CHNGDUMP commami)

SPIE Processing

The SPIE macro instruction provides a problem program with a means of specifying an error
exit routine in response to one or more program error interruptions. SPIE and its related
services are discussed in detail in OS/VS2 Supervisor Services and Macro Instr.uctions.

For the problem programmer, interruptions 1-15 may be specified in the SPIE macro
instruction. For the installation-authorized system ,programmer, interruption 17 may also be
specified. Interruption 17 designates page faults and may be specified so that a user-written
SPIE routine will get control on a page fault before any supervisor routine. The user-provided
SPIE routine only gets control in problem program state on a page fault for the program
issuing the SPIE 17. The SPIE 17 routine covers page faults at the task level and any RBs
executing under the task for which the SPIE was issued. Since the SPIE 17 user may not be in
supervisor state, the routine will generally not be able to resolve the page fault in a manner
compatible with the operation of the system. Hence, the SPIE 17 routine will usually resolve
the page fault by invoking PGLOAD/PGFIX functions of the paging supervisor.

The SPIE 17 routine will get control in problem program state. If the program is in
supervisor state at the time the SPIE 17 is issued, it will be abnormally terminated with a 30E
abend completion code. If the program is in supervisor state and takes a page fault while the
SPIE 17 routine is active, the SPIE 17 exit routine will not get control. Supervisor routines will
resolve the page fault and continue program processing without abending the program.

During SPIE processing, the Program Check First Level Interrupt Handler (FLIH) will pass
control directly to the SPIE routine after some set-up processing via a LPSW. The Program
Check FLIH sets a recursion indicator to cover any PIE/PICA references during the setup
processing done to handle· a page fault incurred in the problem program. If a page fault occurs
on a reference to the PIE/PICA, the Paging Supervisor will be given control to handle the
original page fault. Processing will continue in the problem program once the page fault is
resolved. The SPIE exit routine does not receive control at all since the FLIH is not able to
obtain the information needed by the SPIE routine as input parameters.

Interruption, Recovery/Termination, and Dumping Services 43

If interruption 17 is· to be used, the programmer must page fix the PIE, PICA, and SPIE
exit programs and data areas. The SPIE exit routine must be aware that page faults can occur
after issuing the SPIE macro instruction for interruption 17 and prior to fixing the required
control blocks. If the page fault occurs at this time, the Program FLIH will try to pass control
to the SPIE 17 routine after the setup processing mentioned. If the PIE/PICA can be validly
referenced, control will be passed to the SPIE 17 routine. If the SPIE 17 routine page faults,
the page fault will be resolved by the Paging Supervisor if the routine is not running disabled.
A disabled page fault will cause a OC4 abend. Once the page fault is resolved, normal
processing will continue in the SPIE 17 routine.

It is important to note that the SPIE 17 routine may not get control on every page fault due
to the recursion logic mentioned above.

Recovery ITermination
The recovery/termination manager (R TM) monitors the flow of control of software recovery
processing and supplies the services of normal and abnormal task and address space
termination. Its purpose is to select the appropriate recovery or termination process according
to the status of the system and the request of its invokers.

The RTM may be called to perform its recovery and termination services on behalf of the
caller or to direct its services to another routine. It is invoked by two macros: the ABEND
macro and the CALLRTM macro. .

The recovery/termination process is invoked for the following events:

• Unanticipated program checks - Program checks protected by SPIE routines are not
handled by the RTM.

• Machine checks.
• Invalid issuance of an SVC while locked, disabled, or in SRB mode.
• 170 error on page-in request.
• Restart Key - An operator-initiated recovery action, requested by depressing the console

RESTART key.
• Request by an authorized caller to terminate a task or a memory.
• ABEND macro - This may be system-issued or user-issued.

When one of these events occurs, the R TM is given control. If a recovery exit has been
specified (via SETFRR, STAE, or ESTAB) it is invoked to recover or clean up for the process
in control. Should this recovery routine be unable to recover from the incident (request
termination or fail itself) the previously established recovery exit will be invoked. This process
is called percolation. In the event that all recovery routines are unable to recover, the process
is terminated.

The recovery routines are given control in LIFO (last in, first out) order. If all recovery
routines established via SETFRR percolate, the related task is abended, if one exists. Then the
STAB/EST AE routines which were created by the task are invoked.

Invoking the Recovery I Term ination Manager

CALLRTM

. A routine should use CALLRTM to direct the Recovery/Termination services to a task or
routine other than itself or its ancestors (callers). CALLRTM may be issued only by key 0
priviledged routines. Control is returned to the issuer of the macro if the TYPE=ABTERM or
TYPE=MEMTERM options are coded.

The following locking, workarea, and special considerations should be noted when using
CALLRTM.

44 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

TYPE=ABTERM

If TYPE=ABTERM is specified in the CALLRTM macro instruction, the RTM processing is
directed towards another task. In this situation, the following locking and save area
requirements should be considered:

• If the TCB parameter is specified as 0 (or defaulted to 0), and the ASID parameter is
omitted, the current task in the current address space is abnormally terminated. In this
situation, the caller must be disabled (for example, hold any of the spin locks) and need
not pass a save area via register 13. If dump options are supplied, they must be contained
in fixed pages.

• If the TCB parameter is specified as an address, and the ASID parameter is omitted, the
task associated with the specified TCB in the current address space is abnormally
terminated. In this situation, the caller must own the local lock, and a save area is not
required ..

• If the ASID parameter is specified, the ABTERM function is scheduled as a service
request block SRB. Although there is no specific lock requirement, the caller must pass
the address of an 18-word work area in register 13. In this way, the ASID parameter
allows processing across address spaces and allows processing in the current address
space for routines that cannot acquire the proper locks (possibly beca,use of hierarchy
conflicts) .

TYPE=MEMTERM

If TYPE=MEMTERM is specified in the CALLRTM macro instruction, the RTM processing
is directed towards an address space. In this situation, the following information should be
considered: .

• If the ASID parameter is specified as nonzero, the specified address space is abnormally
terminated. The caller need not be disabled or own any locks. The caller must pass the
address of an 18-word work area in register 13.

• If the ASID parameter is specified as 0 or is omitted, the current address space is
abnormally terminated. The caller need not be disabled or own any locks. The caller must
pass the address of an 18-word work area in register 13.

Since the MEMTERM process circumvents all task recovery and task resource manager
processing, its use is restricted to a select group of routines which can determine that task
recovery and task resource manager clean-up is either not warranted or will not successfully
operate in the address space being terminated. These routines include:

• Paging supervisor, when it determines that it cannot swap in the LSQA for an address
space.

• Memory create, when it determines that an address space cannot be initialized.
• RTM or supervisor control FRR, when it determines that uncorrectable translation errors

are occuring in the address space.
• RTM, when it determines that task recovery and termination cannot take place in the

current address space.
• Region control task, when it has determined that the address space may become

permanently deadlocked--that is, unusable--or the status of the address space is
unpredictable due to an error during swap-out processing.

• RTM, when all tasks in the address space have terminated.

ABEND

The ABEND macro instruction should be used by any routine, including supervisor state,
locked, disabled or SRB routines, to request the services of the R TM to be directed to itself
(cause entry into its recovery routine) or to its callers. The issuer of ABEND should remove

Interruption, Recovery/Termination, and Dumping Services 45

its own recovery exit if it wishes its caller to receive the services of the R TM. Control is never
returned to the issuer of the macro (except by using the STA/ESTA/FRR retry mechanism).
See OS/VS2 Supervisor Services and Macro Instructions for a description of the ABEND macro.

Types of Recovery Routines

Functional Recovery Routines (FRRs)

FRRs are recovery routines established to protect locked, disabled, or SRB mode routines. An
FRR is identified to the RTM by coding the SETFRR macro instruction. When a functional
recovery routine is invoked it will run in the state of the system (enabled or disabled) and with
the locks that were held at the time of the error, or as modified by previous FRRs.

Task Recovery Routines (ST AE/ST AI ESTAE/EST AI)

Task recovery is accomplished through STAE/STAI or ESTAE/ESTAI routines. Issuance of
the ST AE or EST AE macro instruction, or the ATTACH macro instruction with the ST AI or
ESTAI parameter, allows the user to intercept a scheduled ABEND. Control is given to a
user-specified exit routine in which the user may diagnose the cause of the ABEND, and
specify perform pre-termination processing, or specify a retry address if he wishes to prevent
the termination.

Establishing Recovery Routines

Functional Recovery Routines

The SETFRR macro instruction provides control program functions with the ability to define
their recovery in the FRR LIFO stack which is used during system recovery management. The
LIFO stack is maintained by the recovery termination manager and contains the addresses of
the FRRs established to protect a single path through supervisor control and SRB code.

The issuer of SETFRR must be key 0 as the stack is maintained in protected storage.
Furthermore, the SETFRR issuer must be disabled, locked, or in SRB mode (and therefore
supervisor state) to maintain FRR stack integrity. The FRR stacks are serialized by
disablement or ownership of a global spin lock. For owners of suspend locks (CMS or
LOCAL) and SRB functions, the stack is saved and restored as part of the paths operating
environment by the supervisor control functions on interruptions and redispatch.

If RTM is invoked, the last FRR established is given control and executes in the system
mode (locks held, disablement, SRB mode) at the time of the error.

The FRR must indicate to the RTM the action to be performed. This is done via settings in
the system diagnostic work area (SDW A) which is used for communication between FRRs and
the RTM. If the FRR requests percolation (no retry) the previously established FRR will be
given control. Each FRR is given control in LIFO order until retry is requested' or the stack is
exhausted.

When FRR processing is exhausted, the R TM determines if a task should be terminated
(current or related task if in SRB mode). The RTM then sets the task up for ABEND and task
recovery will take place if task recovery exits exist, otherwise, the task will be abnormally
terminated.

An FRR environment is canceled when a routine issues SETFRR with the delete option,
when that FRR requests percolcation or when the system becomes enabled task mode and an
interruption and redispatch occurs. The FRR entry should be deleted before the function
returns to its caller, otherwise, the FRR may get control for its caller's error.

46 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

All SETFRR users must include the DSECTs for the FRR stack (via the IHAFRRS
mapping macro instruction) and the PSA (via the IHAPSA mapping macro instruction) prior to
using the SETFRR macro instruction. In addition, all disabled, locked, and SRB routines which
define recovery must be key 0 supervisor state when using the SETFRR macro instruction. It
is necessary to copy IHAPSA from MODGEN into MACLIB.

Note: The size of all FRR stacks satisfies the recovery needs of the control program. If
additional FRRs are placed on the stack, thereby causing the size to be exceeded, the routine
issuing the SETFRR macro instruction will be abnormally terminated. Any user-written
routines outside the control program may add one, and only one, FRR to the stack; if more
than one is added, abnormal termination may occur. This applies to all of the recovery stacks,
including the normal stack. The normal FRR stack is used by control program routines which
are invoked on behalf of the user.

Task· Recovery Routines

STAE/STAI Exit Routines: The STAE macro instruction causes a recovery routine address to
be made known to the control program. This recovery routine is associated with the task and
the RB which issued STAE. Use of the STAI option on the ATTACH macro instruction also
causes a recovery routine to be made known to the control program, but the routine is
associated with the subtask created via ATTACH. Furthermore, ST AI recovery routines are
propagated to all lower-level subtasks of the subtask created with ATTACH that specified the
ST AI parameter.

If a task is scheduled for abnormal termination, the exit routine specified by the most
recently issued ST AE macro instruction is given control and executes under a program request
block created by the SYNCH service routine. Only one ST AE exit routine will receive control.
The STAE exit routine must specify, by a return code in register 15, whether a retry routine is
to be scheduled. If no retry routine is to be scheduled (return code = 0) and this is a subtask
with ST AI recovery routines, the ST AI recovery routine is given control. If there is no ST AI
recovery routine, abnormal termination continues.

If there is more than one ST AI recovery routine existing for a task, the newest one receives
control first. If it requests that termination continue (return code = 0), the next STAI routine
will receive control. This will continue until either all ST AI routines have received control and
requested that the termination continue, a ST AI routine requests retry (return code = 4 or
12), or a STAI routine requests that the termination continue but no further STAI exits receive
control (return code = 16).

Programs running under a single TCB may issue more than one ST AE macro instruction
with the create (CT) parameter. Each issuance makes the previous ST AE environment
temporarily inactive. The environment will become active when the current ST AE environment
is canceled.

A ST AE environment is canceled when the RB which created it goes away (unless it issues
XCTL and specified the XCTL=YES parameter on the STAE macro instruction), when the
STAE macro instruction is issued with the CANCEL option, or when the STAE routine
receives control. If a ST AE exit routine receives control and requests retry, the retry routine
will have· to reissue the ST AE macro instruction if it wants continued ST AE protection.

A ST AI environment is canceled if the task completes or if it requests that termination
contitiue and no further ST AI processing be done. In the later case, all ST AI exits for the task
are canceled.

EST AE/ESTAI Exit Routines: The EST AE macro instruction, like the ST AE macro
instruction, causes a task and RB-related recovery environment to be created. Use of the
EST AI option on the ATTACH macro instruction also identifies a recovery routine to the

Interruption, Recovery/Tennination, and Dumping Services 47

control program, but the routine is associated with the subtask created via ATTACH.
Furthermore, EST AI recovery routines are propagated to all lower-level subtasks of the
subtask created with the ATTACH that specified the ESTAI parameter. (See Figure 11.)

If a task is scheduled for abnormal termination, the recovery routine specified by the most
recently issued EST AE macro instruction is given control and executes under a program
request block created by the SYNCH service routine. On return, the exit routine may indicate
whether a retry routine should be scheduled or whether termination should continue. If it
requests that termination continue, the next ESTAE routine for the task receives control. If all
EST AE routines request that termination continue, or if none exist, the EST AI routines, if any,
receive control.

Before the initial recovery routine receives control, the purge and asynchronous processing
requests specified when the exit was created are performed by the control program. The I/O
processing requested will be performed only for the first exit routine selected. Subsequent
routines will receive an indication of the I/O processing previously performed, but no
additional I/O processing will be performed. The asynchronous processing request, however,
will be performed for each routine.

Each EST AE exit established by a task is eligible to receive control. If an error occurs, the
most recently created EST AE will be entered. If it requests that termination continue, or it
fails itself, the next ESTAE exit, if any, will be entered. This will continue until an ESTAE
exit requests retry or all exits for the task are exhausted.

Both STAE and ESTAE exits can exist for the same task. However, only one STAE exit
will receive control. ST AI and EST AI exits will receive control after all EST AE exits and one
ST AE exit, if any, have been processed.

An ESTAE environment is canceled when the RB which creates it goes away (unless it
issues an XCTL and specified the XCTL=YES parameter on the ESTAE macro instruction),
when the ESTAE macro instruction is issued with the CANCEL option, the exit routine fails,
or the exit routine requests that termination continue.

Figure 11 demonstrates the queuing structure of the EST AE routines and the propagation of
EST AI to subtasks.

48 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

TCB1

RB1 , SCB f

I ESTAE2
I

I
ESTAE1
ESTAE2 SCB It

ATTACH RB2 + ESTAI3 I ESTAE1 I
TCB2

RB2 " SCB ,

l ESTAE4 I
I

ESTAE4
SCB

ATTACH RB3

l ESTAI3 I
TCB3 It

RB3 SCB

l ESTAI3 I
(propagated)

Figure 11. EST AE Environment

RTM/Recovery Routine Iiaterface

Interf ace to Functional Recovery Routines

Prior to giving control to FRRs the R TM locates and initializes a work area which contains
information about the error. This work area is called the system diagnostic work area (SDWA)
and is 512 bytes long. The first word of the SDWA contains the address of the six-word
parameter area returned by the SETFRR macro instruction when the P ARMAD keyword is
specified on the SETFRR macro instruction.

FRRs represented on the system recovery stack receive control via the LPSW instruction.
The most recent FRR address on the stack is merged with the saved error PSW so that the
FRR will get control in the system state representing the CPU status at the time of error.
NQte: The PSW will always be enabled for machine checks and DAT.

Upon entry to the FRR, parameter registers are as follows:

Interruption, Recovery/Termination, and Dumping Services 49

I'

Register
Register

o Address of a 200-byte FRR work area.
Address of the SDW A.

Register 14 Return address.
Register 15 Address of the FRR.

Note that register 13 is not part of the FRR interface. Any register may be used without
saving it, but caution should be used to maintain the return address supplied in register 14.

The locks held and disablement will be the same as at the time of error, except for
percolated-to FRRs in which case, lock status may change if previous exits requested that
locks be freed.

The SDWA contains information pertaining to the error (that is, registers and PSW). The
SDW AFMID field contains an indication of the memory in which an error occured if recovery
is being initiated in another memory. If this field is not zero, no reference may be made to
private (local) area.

An FRR should use the lock freeing capabilities of the RTM (via SETRP) to free locks
obtained by the mainline, if that is the action desired. In any event, an FRR must not free the
last global lock causing enablement, or the local lock. The RTM must be used in these cases. If
the R TM is used to free all locks required, the above checks can be avoided.

RTM freeing of locks will only be honored on percolation. Freeing or obtaining locks for or
in retry situations must be done by the retry routine.

When the FRR has completed, it should use the SETRP macro instruction to inform RTM
of the action it desires. This macro instruction will initialize the SDW A with these options.

The SETRP macrcrinstruction is described in Supervisor Services and Macro Instructions, with
the exception of several restricted parameters which are described in this publication.

Interface to Task Recovery Routines

Interface to a STAE/STAI Exit: Prior to going to a STAE/STAI recovery routine, the control
program attempts to obtain and initialize a work area which contains information about the
error. This work area is called the system diagnostic work area (SDWA), and is 512 bytes
long. The first word of the SDW A contains the address of the parameter list specified on the
ST AE macro instruction or the ST AI parameter or the ATTACH macro instruction.

Upon entry to the ST AE routine, parameter registers are as follows:

If an SDW A was obtained:

register

register
register

o a code indicating the type of I/O processing performed:
o active I/O has been quiesced and is restorable.
4 active I/O has been halted and is not restorable.
8 no active I/O at ABEND time.

16 active I/O, if any, was allowed to continue.
address of the SDWA.

13 save area address.
register 14 return address.
register 15 address of ST AE exit routine.

If no SDWA was available:

register 0 code 12 to indicate that no SDWA was obtained.
register 1 ABEND completion code.
register 2 address of user-supplied parameter list.
register 13 unpredictable.
register 14 return address.
register 15 address of ST AE exit routine.

50 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

When the ST AE or ST AI routine has completed, it should return to the control program via
the contents of register 14. Register 15 should contain one of the following return codes:

return code action
o Continue the termination. The next ST AI, EST AI, or ESTAE exit will be given control. No

other ST AE exits will receive control.
4,8,12 A retry routine is to be scheduled.
16 No further STAI/ESTAI processing is to occur. This code may only be issued by a

ST AI/EST AI exit.

For the following situations, STAE/STAIexits will not be entered:

• If the abnormal termination is caused by an operator's CANCEL, job step timer
expiration, or the detaching of an incomplete task.

• If the failing task has been in a wait state for more than 30 minutes.
• If the ST AE macro instruction was issued by a subtask and the attaching task abnormally

terminates.
• If the recovery routine was specified for a subtask, via the ST AI parameter of the

ATTACH macro instruction, and the attaching task abnormally terminates.
• If a problem other than those above arises while the control program is preparing to give

control to the STAE routine.

Interface to an ESTAE/ESTAI Exit: Prior to going to an ESTAE/ESTAI recovery routine,
the control program attempts to obtain and initialize a work area which contains information
about the error. This work area is called the system diagnostic work area (SDWA) and is 512
bytes long. The first word of the SDW A contains the address of the parameter list specified on
the EST AE macro instruction or the EST AI parameter of the ATTACH macro instruction.

Upon entry to the EST AE exit routine, parameter registers are as follows:

If an SDW A was obtained:

register o a code indicating the type of I/O processing performed:
o active I/O has been quiesced and is restorable.
4 active I/O has been halted and is not restorable.
8 no active I/O at ABEND time.

16 no I/O processing was performed.
register 1 address of the SDWA.
register 13 save area address.
register 14 return address.
register 15 entry point address.

If no SDW A was available:

register
register
register

o code 12 to indicate that no SDWA was obtained.
1 ABEND completion code.
2 address of user-supplied parameter list.

register 13 unpredictable.
register 14 return address.
register 15 entry point address.

When the· EST AE/EST AI routine has completed, it should use the SETRP macro
instruction to inform the control program of the actions it desires. This macro instruction will
initialize the SDW A with these options.

If a work area could not be provided by the control program, a register save area will not
be provided either. If no SDWA is available, register 14 must be saved and used as the return
register to the control program.

When the EST AE or EST AI routine has completed its processing, it should return to the
control program via the contents of register 14. Register 15 should contain one of the
following return codes if an SDW A was not obtained:

Interruption, Recovery/Termination, and Dumping Services 51

return code
o

4
16

action
Continue the termination. Any EST AE exists established prior to this one will receive
control.
A retry routine is to be scheduled, and its address is placed in register O.
Termination should be continued. No further EST AE/EST AI processing should be
performed.

When an EST AE routine requests retry, the RB queue is terminated up to, but not
including, the RB of the program that issued the EST AE macro instruction. This is done by
pointing the RB old PSW to an sve 3 instruction. In addition, open DeBs which can be
associated with the purged RBs are closed and queued I/O requests associated with these
DeBs being closed are deleted from the I/O restore chain.

The RB queue purge is an attempt to cancel the effects of partially executed programs that
are at a lower level in the program hierarchy than the program under which the retry will
occur. However, certain effects on the system will not be canceled by this RB purge. Example
of these effects are as follows:

• subtasks created by a program to be purged
• resources allocated by the ENQ macro instruction
• DeBs that exist in dynamically acquired virtual storage

If there are quiesced restorable input/output operations, they can be restored in the EST AE
retry routine by using word 2 in the SDWA. Word 2 contains the pointer to the purged I/O
request list (PIRL) passed as a parameter to sve Restore. sve Restore is used to have the
system restore all I/O requests on the PIRL.

RTM/Retry Routine Inter/ace

FRR-Requested Retry Routine

If an FRR requests a retry routine be given control, by specifying a return code of 4 on
SETRP, the following interface will be established:

• Registers 0 - 14 are the registers at the time of error with the exception of registers that
the FRR requested be changed. '

• Locks held and disablement are the same as on exit from the FRR.
• Protect key will be O.
• Register 15 will contain the retry routine address. Entry to the retry routine is done via a

branch to register 13.

Task Recovery Retry Routines

STAE/STAI Retry Routines: If the STAE retry routine is scheduled, the system automatically
cancels the active ST AE environment; the preceding ST AE environment, if one exists, then
becomes the active one. Users wanting to maintain STAE protection during retry must
reestablish an active ST AE environment within the retry routine, or must issue multiple ST AE
requests prior to the time that the retry routine gains control.

Like the STAE/STAI exit routine, the STAE/STAI retry routine must be in storage when
the exit routine determines that retry is to be attempted. If not already resident in your
program, the retry routine may be brought into storage via the LOAD macro instruction by
either the user's program or exit routine.

If the ST AE/ST AI routine indicates that a retry routine has been provided (return code =
4, 8, or 12), register 0 must contain the address of the retry routine. The STAE environment
that requested retry is canceled and the request block queue is purged up to, but not including,
the RB of the program that issued the ST AE macro instruction. This is done by pointing the
RB old PSW to an sve 3 (EXIT) instruction. In addition, open DeBs which can be

S2 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

I I

associated with the purged RBs are dosed and queued I/O requests associated with the DeBs
being closed are deleted from the I/O restore chain.

The RB purge is an attempt to cancel the effects of partially executed programs that are at
a lower level in the program hierarchy than the program under which the retry will occur.
However, certain effects on the system will not be canceled by this RB purge. Example of
these effects are as follows:

• Subtask created by a program to be purged.
• Resources allocated by the ENQ macro instructions.
• DeBs that exist in dynamically acquired virtual storage.

If there are quiesced restorable input/output operations, they can be restored, in the ST AE
retry routine, by using word 2 in the SDWA. Word 2 contains the pointer to the purged I/O
request list (PIRL) passed as a parameter to sve Restore. sve Restore is used to have the
system restore all I/O requests on the PIRL. (For additional information on sve Restore, see
OS/VS2 System Programming Library: Data Management.)

If an SDWA was obtained, upon entry to the STAE/STAI retry routine, register contents
are as follows:

Register 0 0
Register Address of the SDW A.
Register 2-13 Unpredictable.
Register 14 Address of an SVC 3 instruction.
Register 15 Address of the ST AE/ST AI retry routine.

The retry routine should use the FREEMAIN macro instruction to free the 512 bytes of
storage occupied by the work area when the storage is no longer needed. This storage should
be freed from subpool 0 which is the default subpool for the FREEMAIN macro instruction.

If the ABEND/STAE interface routine was not able to obtain storage for the work area,
register contents are as follows:

Register 0 12
Register ABEND completion code.
Register 2 Address of the PIRL; or 0 if I/O is not restorable.

EST AE/EST AI Retry Routines: If the EST AE/EST AI routine is specified, the following
actions will be performed by the control program prior to scheduling it:

• A dump will be given if requested.
• FREEMAIN of SDW A will be performed, if requested.
• Registers will be updated with user-supplied values, if requested.
• The RB queue will be purged up to the level of the retrying RB.

Outstanding WTORs are not purged prior to scheduling an EST AE routine.

Retry routines run at the RB associated with the requestor of the EST AE exit routine
causing the retry. RBs on the RB queue are always purged to the level of RB associated with
the EST AE exit prior to the scheduling of the retry routine.

EST AE retry routines get control in the key in which the EST AE macro instruction was
issued. Retry routines should not reissue EST AE to maintain the same exit. They may,
however, issue EST AE to add or change exits.

Like the exit routine, the retry routine must be in storage when the exit routine determines
that retry is to be attempted. If not already resident within the program, the retry routine may
be brought into storage via the LOAD macro instruction by either the user's program or exit
routine.

Interruption, Recovery/Termination, and Dumping Services 53

If an SDW A was obtained, the user has a choice of interfaces to his retry address. The user
can set (in the SDW A) the registers he wishes to have and request that they be passed to the
retry address by coding RETREGS= YES on the SETRP macro instruction. This alternative is
most often used when retrying into mainline processing.

If no SDWA was obtained or if RETREGS=NO was specified on SETRP, only parameter
registers are passed to the retry address. This alternative is more often used if a special retry
routine is to get control.

The parameter registers are as follows:

If no SDW A was obtained:

register 0
register 1
register 2

register 14
register 15

12
address of the user parameter list established via EST AE or A TT ACH with EST AI.
pointer to the PIRL if I/O was quiesced and is restorable; otherwise, O.
address of supervisor-assisted exit linkage.
entry point address of retry routine.

If an SDW A was obtained and the exit did not request register update, or freeing of
SDWA:

register 0 0
register address of SD W A.
register 2 unpredictable.
register 14 address of supervisor-assisted exit linkage.
register 15 entry point address of retry routine.

If an SDW A was obtained and the exit did not request register update, but did request
freeing of SDW A:

register 0
register 1
register 2

register 14
register 15

20
pointer to the user parameter list established via EST AE or A TT ACH with EST AI.
pointer to the PIRL if I/O was quiesced and is restorable; otherwise, o.
address of supervisor-assisted exit linkage.
entry point address of retry routine.

Recovery Routine Guidelines

This section is intended to assist in the writing of recovery routines. The actions a recovery
routine should take are highly dependent on the function being recovered, therefore, these
guidelines are general and intended to serve as suggestions.

The first consideration is that the recovery routine be beneficial. In general, if a function
acquires resources which may be requested by another function, or is not known to be related
to the task, a recovery routine should be established to free the resources. An example of this
type of resource is storage within a subpool which is not task-related (for example, subpool
231). Another case when a recovery routine should be established is when data areas, queues,
data sets, etc. which are used by more than one function are manipulated. The recovery
routine in this case should maintain integrity in case of failure.

Recovery routines may also be used to:

• intercept errors and perform clean-up processing.
• intercept expected program checks and perform desired action.
• isolate an error to a particular section of processing and continue further processing if

possible.
• intercept its own abends and provide tailored dumps.

The second consideration is what type of recovery routine be established. If the function
holds a lock, is physically disabled, or is an SRB, an FRR can be used to intercept errors. If
the function is running under a task and holds a lock during some portion of its processing, an

S4 OS/VS2. System Programming Library: Supervisor (VS2 Release 3.7)

EST AE could be used to catch errors in its processing, an EST AE could be used to catch
errors in its processing if losing the locked status can be tolerated. (For example, if a lock is
used only to read a queue to prevent another from changing it.) Also, if the function is
running as an enabled, unlocked, SRB, an EST AE associated with its related task could be
used to catch errors in the SRB. If an FRR is not required, but a recovery routine is necessary,
an EST AE routine should be used.

If the function attaches any subtasks, and recovery of the subtask is necessary, the
EST AI/ST AI keyword may be specified as an operand of the ATTACH macro instruction.

FRRs

If it is decided that recovery should be via an FRR, the following information should be
reviewed:

• Syntax of the SETFRR macro which is documented in Part II of this manual.
• Guidelines for using SETFRR which are documented in this publication under

"Establishing Functional Recovery Routines."
• The interface to functional recovery routines which is described earlier in this section.
• Syntax of the SETRP (SET return parameters) macro instruction which is described in

OS/VS2 Supervisor Services and Macro Instructions with a description in Part II of this
publication.

• Interface to FRR requested retry routines which is described earlier in this section.
• The contents of the SDWA (mapped by the IHASDW A mapping macro instruction). All

error/recovery information available to an FRR is contained in this work area, and the
commentary in this data area serves as the documentation. This data area is described in
the OS/VS2 System Programming Library: Debugging Handbook.

Task Recovery

If it is decided that recovery via FRR is not necessary, EST AE recovery should be used.
Discussions earlier in this section concerning ST AE routines are primarily documented as they
are supported for OS/VS2 Release 1 compatibility.

Before designing an ESTAE routine, the following information should be reviewed:

• The syntax of the EST AE macro instruction which is described in OS/VS2 Supervisor
Services and Macro Instructions with a description of restricted parameters in Part II of this
publication.

• Rules concerning establishing recovery routines (ESTAE/ESTAI exit routines) earlier in
this section.

• The interface to EST AE/EST AI exits which is documented in this section under
"Interface to Functional Recovery Routines".

• Syntax of the SETRP macro instruction which is described in OS/VS2 Supervisor Services
and Macro Instructions with a description of restricted parameters in Part II of this
publication.

• Interface to ESTAE/EST AI retry routines described earlier in this section.
• The contents of the SDWA (mapped by the IHASDWA mapping macro instruction). All

error/recovery information available to an ESTAE/ESTAI exit is contained in this work
area and the commentary in this data area serves as the documentation. This data area is
described in OS/VS2 System Programming Library: Debugging Handbook.

For any recovery routine that is being written, the following information should be
reviewed:

• When a task recovery routine receives control it should first examine the code in register
o to see if a SDWA was provided. If a SDWA was not provided (register 0= 12) a save

Interruption, Recovery/Termination, and Dumping Services' ss

area is not pointed to by register 13 and the registers should not be saved. (Affects task
recovery routines--ESTAE/ESTAI.)

• An SDWA is always provided to FRRs. (Affects functional recovery routines.)
• A recovery routine should not assume the registers in the SDW A are its own. Many

reasons preclude this such as errors in called routines which have no recovery, errors in
an asynchronous routine (for example SRB and IRB). The safest method to assure a
successful retry is to save volitile information in the parameter list passed to the recovery
routine and use those registers, addresses, and so forth, for retry. (Affects both task
recovery routines--ESTAE/ESTAI, and functional recovery routines.)

• If an FRR requests a dump via SETRP, the following should be considered:
1. No dump will be taken if retry is performed before the error is percolated to task

recovery.
2. The dump will be taken if all FRRs percolate and no subsequent recovery routine

suppresses the dump.
3. The dump will be taken at the task recovery level (after the system is enabled). If

volitile information is required, an SDUMP should be issued with the volitile
information moved into the 4K SQA buffer described later in this section.

(These considerations affect functional recovery routines.)
• Dump options are merged during percolation. Those specified on ABEND or SETRP are

not used exclusively. (Affects both task recovery routines--ESTAE/ESTAI, and
functional recovery routines.)

• The following is additional information about some SDW A fields:
SDWAPERC - indicates this recovery is being percolated to; however, this does not
indicate if a task recovery routine is. being percolated to from an FRR.
SDW AFMID - is zero if recovery is taking place in the address space which suffered the
error.
SDW ACLUP - indicates retry is not permitted; resources should be freed in exit.
(These affect both task recovery routines--ESTAE/ESTAI, and functional recovery
routines.)

• An EST AE exit may request, via a SETRP parameter, that the control program free the
SDW A instead of freeing it itself in a retry routine. (Affects task recovery
routines--EST AB/ESTAI.)

• An ESTAE exit may specify, via a SETRP parameter, what the contents of its registers
should be on entry to the retry routine.
(Affects task recovery routines--ESTAE/ESTAI.)

• An EST AE exit remains in effect when its retry routine receives control. It need not
reissue the ESTAB to reestablish itself. (Affects task recovery routines--ESTAE/ESTAI.)

When using EST AB/EST AI routines the following should be considered:

.• EST AE or ATTACH may be issued by the routine.
• If an EST AE/EST AI exit requests termination or fails EST AE/EST AI percolation and

the accumulation of dump options occurs.
- The asynchronous exit indicator will be reset according to the new exit's request.
- I/O options for the new exit will be ignored.
- A new SDW A will be initialized.
- The new exit will be scheduled.

• If all recovery exits (STAE/STAI and ESTAE/ESTAI) fail or indicate termination, the
task is terminated.

• If a non-jobstep task issues ABEND with the STEP option, exits are entered for the
non-jobstep task. If retry is not requested, the jobstep is terminated with the ABEND
code, and only TERM exits will be entered.

• EST AE exits receive control with the same status (supervisor or problem state) that
existed at the time the program issued the EST AE macro instruction to queue the exit.
EST AE exits created by a program running under any control program protection key

56 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

(keys 0-7) receives control in key 0; otherwise EST AE exits receive control with the
same protection key as the program that established the exit.

• EST AI exits receive control in the key of the TCB of the task that created them.
• In the following cases:

- forced logoff
- job step timer expiration
- wait time limit for job step exceeded
- ABEND condition because of DETACH of an incomplete subtask
- EST AI was issued by a subtask and the attaching task abnormally terminates

The following actions will occur:

- EST AE exit routines will be scheduled if TERM = YES was specified as a parameter
when EST AE was issued.

- All such routines which may exist will get control in LIFO order.
- Any EST AI exit previously suppressed via return code 16, or any exit previously

entered which specified return code 0, will not be entered again during TERM
processing.

- Retry indications on return will be ignored.
- If the TERM option is used on the EST AE macro instruction issued by an EST AE

exit, it will be ignored.

Although the EST AE routines should issue SETRP to allow the system to free the SDW A,
the freeing could also be accomplished by the retry routine. In this case, it is important to note
that the EST AE recovery routine created under any control program protection key will
receive an SDW A in key 0 storage. Therefore, if the retry routine is executing under a key
other than key 0, it must issue MODE SET to become key 0 before issuing the FREEMAIN.

Clean-Up Routines

Task and address space termination is the process of removing a task or address space from
the system, releasing the resources from the task or address space, and making the resources
available for reuse. It is the responsibility of the resource managers invoked to establish
clean-up routines to 'clean up' the queues and control blocks associated with the resources.

The responsibilities of the clean-up routines include:

• For task termination, removing all traces of the fact that the TCB for the terminating
task at one time was connected to, allocated to, or associated with the resource in
question. The resource should be left in such a state that it can be reused by another task
in the address space or in the system .

• For address space termination, releasing all system queue area and common storage area
control blocks obtained for the use of the terminating address space. Also, any buffers,
bit settings, pointers, and so on relating to the terminating address space should be reset
to make the system appear as if the ASID or ASCB of the terminating, address space
never existed.

The clean-up routine is also responsible for establishing a recovery environment when first
entered to protect itself against errors during its own processing. For SRBs, the clean-up
routine issues the PURGEDQ macro instruction to ensure that all undispatched SRBs are
removed from the SRB dispatching queue.

Support for Installation- Written Clean-Up Routines

In order to support installation-written clean-up routines, a CSECT· is provided into which an
installation can assemble the names of subsystem clean-up modules. These modules are given
control at the beginning of both the task and address space termination process'es to do any

Interruption, Recovery/Termination, and Dumping Services 57

special clean-up processing required by the subsystems. (The processing described above is
performed by the IBM system routines.) After the CSECT is assembled, it is used to replace
the existing CSECT lEA VTRML in load module IGCOOOIC in SYS 1.LP ALIB. The
installation-written modules must be placed in LINKLIB or a library concatenated to LINKLIB
via a LNKLSTxx member of P ARMLIB.

Initially, the CSECT consists of four 12-byte entries of all zeros. Each of the first three
12-byte entries is to contain a module name in the first 8 bytes; the last 4 bytes of each entry
are reserved and should contain zeroes. The last entry is to consist of all zeroes.

A typical entry for the CSECT may appear as follows:

DC CL8'MODULENM'
DC XL4'OO'

Programming Considerations

All clean-up routines of the resource manager use a standard interface, available through the
IHARMPL mapping macro. On entry to the clean-up routines, the register contents are as
follows:

register
1

13
14

contents
pointer to a 4-byte field that contains the address of the interface block
pointer to a standard save area
return address

15 entry point of clean-up routine
0,2-12 unpredictable

Registers 0-14 must be saved and restored by the clean-up routine; register 15 is used to
pass a return code back to termination. A return code of ° indicates a successful clean-up, and
a return code of 4 indicates an unsuccessful clean-up.

The clean-up routines receive control on all task and address space terminations prior to any
of the control program resource manager, and receive control in key 0, supervisor state, with
no locks held. Each clean-up routine must acquire and release any locks it may need to do its
processing.

For task termination, the clean-up routine executes under the TCB of the terminating task,
and executes in the address space of the terminating task.

For address space termination, the clean-up routine executes under a task in the address
space of the master scheduler. The clean-up routine will be able to examine the ASCB for the
address space, queues, and other control blocks which reside in the common area; nothing in
the private area for the terminating address space is accessible.

Dumping Virtual Storage

The SNAP and ABEND macro instructions can be used to request dumps, and can be issued
by any user. (These macro instructions are described in OS/VS2 Supervisor Services and Macro
Instructions.) In addition, the system programmer can also use the SDUMP macro instruction
to provide dumps of virtual storage, and the CHNGDUMP command to influence the contents
of the dump.

Using the SDUMP Macro Instruction

The SDUMP macro instruction can be used by system routines to provide fast unformatted
dumps of virtual storage. SDUMP invokes SVC DUMP to provide the services. Only one SVC
DUMP may be taken in the system at anyone time. Issuers of SVC DUMP with entry by
SVC must be authorized via APF or have a control program key.

58 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

The SVC DUMP routine can schedule a dump in the address space specified by the ASID
parameter of SDUMP. If the user cannot issue an SVC, this service can be initiated by a
branch entry, if desired. If the branch entry is used, the branch entry caller must be key 0,
supervisor state, and must be in SRB mode, or own a lock, or be disabled (with supervisor bit
on). The branch entry interface is by standard linkage conventions. Branch entry callers must
issue the CVT mapping macro instruction with the PREFIX = YES parameter.

The SVC DUMP routine with entry by SVC can also schedule a dump from the address
space from which it is issued. The caller of this service only must be authorized via APF or
have a control program protection key.

SQA Buffer

A 4K buffer is reserved in the system queue area for the callers of SVC DUMP. A user may
reserve the buffer and fill it with information before invoking SVC DUMP. The buffer sho~ld
be used by routines that are involved with volatile data which would be changed or must be
changed before SVC DUMP can dump it.

The buffer is pointed to from the CVTSDBF field of the CVT. Since the. buffer is for use
for all callers of SVC DUMP, it must be treated as a serially reusable resource. The high order
bit of CVTSDBF must be checked prior to using the buffer. If the bit is set, it must be
assumed that a dump is in progress and the caller must continue processing as if a dump could
not be taken.

The first word in the buffer is the actual virtual storage address of the data. The next
halfword is the length of the data. A copy of the data follows this 6-byte descriptor field.
More 6-byte fields and data may then be specified in this buffer. If the entire buffer is not
filled, the last data area must be followed by 6-byte zero descriptor field to indicate the end of
meaningful data.

Using the CHNGDUMP Command

The CHNGDUMP operator command is normally not scheduled by the operator, but is
scheduled by the system programmer to override the current system dump options for
SYSABEND, SYSUDUMP, and SDUMP dumps. The system obtains its normal dump options
as follows:

• SDUMP requests -- the options in the system are the ones indicated in the SDUMP
parameter list.

• SYSABEND or SYSUDUMP user dump requests -- the system obtains its dump options
by merging the dump options in the IEAABDOO or IEADMPOO member· of
SYS l.P ARMLIB with the options indicated on the DUMPOPT parameter of the
ABEND, SETRP,and CALLRTM macro instruction.

In order to tailor the dump, the dump option merging may take place in several successive
stages. Suppose an error occurred at a low program level, and the recover exit at that level
specified certain dump options on a DUMPOPT parameter. Suppose also that there are two
other recovery exits between the lowest level exit and the recovery exit that actually
precipitates the dump. One of these two exits also specifies certain dump options on a
DUMP OPT parameter.

As the recovery effort percolates up toward the top level recovery exit involved, all the
dump options from all the exits specifying them merge with the parmlib options to produce the
combination of options for the dump the system actually takes.

The CHNGDUMP command can override any or all of these options, regardless of their
level of origin. There are two major parameters for this command, as follows:

Interruption, Recovery/Termination, and Dumping Services 59

• SET -- to override the existing dump options.
• DEL -- to delete any or all overriding dump options set by a previous CHNGDUMP

SET command.

The overriding options indicated with the SET parameter are the only ones that the system
will use for all subsequent jobs and tasks for the life of the IPL,or until they are nullified with
the DEL parameter in a subsequent CHNGDUMP command.

60 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Virtual Storage Management

The GETMAIN and FREEMAIN macro instructions allocate and free one or more areas of
virtual storage. Although most of the functions of these macro instructions are available to any
user, several functions of the GETMAIN and FREEMAIN macro instructions are available
only to programs executing in supervisor state under protection key zero.

One of the functions permits a branch entry to the GETMAIN and FREEMAIN routines,
rather than an SVC entry. Although use of this Junction requires additional work on the part
of the user, the branch entry is significantly more efficient than the SVC entry and does save
some system overhead. This function is provided via the BRANCH parameter.

Another function available only with the branch entry function, allows the user, executing in
key zero, to specify the actual key in which the requested storage is to be obtained. This
function is provided via the KEY parameter.

The BRANCH Parameter

Branch entry is accomplished by specifying BRANCH= YES on the GETMAIN or
FREEMAIN macro instruction. If the BRANCH parameter is used, the caller must preload
register 4 with the TCB address, preload register 7 with the ASCB address, and hold the local
lock prior to entry. (Note: If the BRANCH parameter is not used, it is still necessary for the
current branch entry user of the macro instruction to alter his code to include the pre loading
of the ASCB address in register 7, and to hold the local lock.)

An additional branch entry point (GLBRANCH) is provided to obtain global storage
without the need for holding the local lock. This entry point is available to programs that
contain no references to particular address spaces (for example, timer routines). It is necessary,
however, to hold the SALLOC lock before entering the routine. Although the TCB address
and ASCB address are not required for this entry, register 4 must be loaded with the· address
of the global s'ave area pointed to by the CVT; this will be done by the macro expansion.

GLBRANCH may be obtained by coding BRANCH=(YES,GLOBAL) on the GETMAIN
or FREEMAIN macro instruction that includes the positional parameter RC or RU. The
subpools that are supported by this entry are limited to the global subpools - common service
area subpools 227, 228, 231 and 241, and system queue area subpools 239 and 245. Any
other subpool will be considered an error.

The KEY Parameter

Since branch entry users are required to be executing in key zero at entry time, the KEY
parameter satisfies the need to specify the actual key in which the requested storage is to be
obtained.

The KEY parameter applies only to six new subpools - 227, 228, 229, 230, 231, and 241.
These subpools allow both global and local storage to be obtained in the requestor's storage
protection key. Subpools 227 (fetch protected) and 228 (not fetch protected) are fixed global
storage in the common service area, and must be freed explicitly. Subpools 229 (fetch
protected) and 230 (not fetch protected) are local storage allocated from the top of the private
area downward and intermixed with LSQA and SW A, and are freed automatically when the
task terminates. Subpools 231 (fetch protected) and 241 (not fetch protected) are global
storage in the common service area, and must be freed explicitly.

Virtual Storage Management 61

62 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Real Storage Management

The real storage manager (RSM) administers the use of real storage and directs the movement
of virtual pages between auxiliary storage and real storage in page size (4096 bytes) blocks. It
makes all addressable virtual storage in each address space appear as real storage. Only virtual
pages necessary for program execution are kept in real storage; the remainder reside on
auxiliary storage. RSM employs the auxiliary storage manager (ASM) of the data manager to
perform the actual paging I/O necessary to transfer pages in and out of real storage. ASM also
provides DASD allocation and management for paging I/O space on auxiliary storage. RSM
relies on the system resource manager (SRM) for guidance in the performance of some of its
operations.

RSM assigns real storage page frames upon request from a pool of available frames, thereby
associating virtual addresses with real storage addresses. Frames are repossessed upon
termination of use, when freed by a user, when a user is swapped-out or when needed to
replenish the available pool. While a virtual page occupies a real storage frame, the page is
considered pageable unless specified otherwise as a system page that must be resident in real
storage. RSM also allocates virtual equals real (V =R) regions upon request by those programs
that cannot tolerate dynamic relocation. Such a region is allocated contiguously from a
predefined area of real storage and is non pageable.

The paging services provided include the following:

• PGFIX -- Fix virtual storage contents.
• PGFREE -- Free virtual storage contents.
• PGLOAD -- Load virtual storage areas into real storage.
• PGOUT -- Page out virtual storage areas from real storage.
• PGRLSE -- Release virtual storage contents.

The PGFIX and PGFREE functions are available only to authorized system functions and
users. The PGLOAD, PGOUT, and PGRLSE are not restricted and are available to all users;
these functions are described in OS/VS2 Supervisor Services and Macro Instructions.

Fixing/Freeing Virtual Storage Contents

The PGFIX and PGFREE macro instructions provide complementary functions. The PGFIX
macro instruction makes specified storage areas resident in real storage and ineligible for
page-out as long as the virtual address space of the requesting TCB remains in real storage.
The PGFREE macro instruction makes specified storage areas, which were previously fixed via
the PGFIX macro instruction, eligible for page-out. Real frames fixed by PGFIX are not
considered page able until the same number of PGFREE and PGFIX requests have been issued
for any virtual area.

Page fixing ties up valuable real storage and is usually detrimental to system performance
unless utilization of the resources is extremely high.

In the PGFIX function, you have the option of specifying the relative real time duration
anticipated for the fix. If you specify LONG= Y, the duration of the fix will be relatively long.
(As a rule of thumb, the duration of a fix is considered long if the interval can be measured on
an ordinary timepiece-that is, in seconds.) Additional processing may be required to avoid an
assignment of a frame to the V =R area or an area that might be varied offline. If you specify
LONG=N, the time duration of the fix is assumed to be relatively short. A long-term PGFIX
is assumed if this option is not specified.

Real Storage Management 63

In both the PGFIX and PGFREE functions, you have the option of specifying that the
contents of the virtual area are to remain intact or be released. If the contents are to be
released, you specify RELEASE = Y; otherwise, you specify RELEASE=N. If you specify
PGFIX with RELEASE=Y, the PGRLSE function will be performed before the PGFIX
function.

If you specify PGFREE with RELEASE = Y, the PGFREE function will be performed and
those pages of the virtual subarea with zero fix counts will be released; that is, the contents of
virtual areas spanning entire virtual pages that were fixed are expendable and no page-outs for
these pages are necessary.

Note: PGFIX does not prevent pages from being paged out when an entire virtual address
space is swapped out of real storage. Consequently, the user of PGFIX cannot assume a
constant real address mapping for fixed virtual areas in most cases.

Completion Considerations

Under normal circumstances, you can reverse the effect of a PGFIX via a PGFREE when the
need for a PGFIX ceases. However, a PGFIX request will sometimes complete asynchronously
if it requires a page-in operation. In such cases, it may be necessary to explicitly purge PGFIX
operations.

For this reason, the PGFIX function provides a mechanism for signalling event completion.
The mechanism is the standard ECB together with WAIT/POST logic. The requestor supplies
an ECB address and waits on the ECB after a request. The ECB is posted when all requested
pages are fixed in real storage.

Explicit purging of a PGFIX is carried out in one of two ways:

• If the PGFIX is known to be complete, the PGFIX is reversed through the usual
PGFREE function .

• If there is any possibility that the PGFIX has not been posted as complete, the PGFREE
should be issued with an ECB address supplied. This ECB parameter identifies the event
control block that was supplied as an input parameter with the PGFIX being purged.
Note that for the purpose of canceling a PGFIX request that has not yet completed, the
ECB must uniquely identify the PGFIX request. Consequently, to provide for explicit
purging, you must ensure that the ECB address for any incomplete PGFIX can be
located in a purge situation, and that the ECB has not been reused at the time the
PGFIX is to be canceled.

The PGFREE function always completes immediately and requires no ECB address except
for purging considerations.

Virtual Subarea List (VSL)

The virtual subarea list provides the basic input to the page service functions: PGFIX,
PGFREE, PGLOAD, PGRLSE, and PGOUT. The list consists of one or more double word
entries, each entry describing an area of virtual storage. The list must be nonpageable (for
example, in SQA or LSQA) and contained in the address space to be processed.

Each parameter list entry has the format shown in Figure 12.

Byte o
FLAGS

1 2 3
START ADDRESS

Figure 12. Virtual Subarea List Entries

64 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

4
FLAGS

5 6 7
END ADDRESS + 1

Byte 0 Flags:
Bit 0 (1...

Bit 1 C1..
Bit 2 C.l.
Bit 3 (...1
Bit 4 C ...
Bit 5 C ...
Bit 6 C ..
Bit 7 C ...

Start Address:

. ...)

....)

....)

....)
1...)
.1..)
..1.)
... 1)

This bit indicates that bytes 1-3 are a chain pointer to the next VSL entry to be
processed; bytes 4-7 are ignored, but the checking of this bit is subject to the
setting of byte 4, bit 1. This feature allows several parameter lists to be chained
as a single logical parameter list.
PGFIX is to be performed; reserved, set by macro instruction.
PGFREE is to be performed; reserved, set by macro instruction.
PGLOAD is to be performed; reserved, set by macro instruction.
PGRLSE is to be performed; reserved, set by macro instruction.
Reserved.
Long-term PGFIX is to be performed; reserved, set by macro instruction .
Reserved.

The virtual address of the origin of the virtual area to be processed.

Byte 4 Flags:
Bit 0 (1...

Bit 1 C1..

Bit 2 C.1.
Bit 3 C .. 1

Bit 4 C ...
Bit 5 C ...
Bit 6 C ..

Bit 7 C ...

End Address + 1:

. ...)

....)

....)

....)

1 ...)
.1..)
..1.)

. .. 1)

This flag indicates the last entry of the list. It is set in the last doubleword entry
in the list.
When this flag is set, the entry in which it is set is ignored. This bit takes
precedence over byte 0, bit o .
Reserved.
This flag indicates that a return code of 4 was issued from a page service
function other than PGRLSE.
Reserved.
PGOUT is to be performed; reserved, set by macro instruction.
KEEPREAL option of PGOUT is to be performed; reserved, set by macro
instruction.
Reserved.

The virtual address of the byte immediately following the end of the virtual area.

Reconfiguration Using Vary Storage

Vary storage permits users of multiprocessing IBM System/370 Models 158 and 168 to more
easily specify reconfigurable storage units for use with the other CPU as a uniprocessor. To
identify the storage units that the operating system will attempt to preserve for reconfiguration,
define the reconfigurable storage unit parameter (RSU =nn) in the IEASYSxx member, where
nn is the number of storage units you would like to be able to take offline for the
reconfiguration.

Note: If power may be turned off for one CPU, all of the high address storage units, except
the highest unit, must be assigned to that CPU. For example, in a system with eight storage
units (0-7), units 3-6 should be attached to the CPU that may have power turned off.

The system will attempt to preserve the frames in the storage units defined by the RSU =nn
parameter for short-term pages and will be known as the non-preferred area. The amount of
time a short-term page is assigned to a processor storage frame should not be measurable on
an ordinary time-piece. In other words, the frames of processor storage will be in use for a
short period of time like a few hundredths of a second. Frames used for long-term resident
storage are clustered in a preferred area. These long-term pages include SQA, non-swappable
LSQA, and non-swapp able long-term page data.

Figure 13 indicates that when the system is IPLed, the nucleus and V =R areas are assigned
to the low-end of processor storage and the SQA is assigned to the high-end of processor
storage. The operating system then defines the low and high end processor storage units as
preferred areas (in this case 0, 1, and 7). Next, the non-preferred area is defined as requested
by the RSU =nn specification and coinciding with the next available high-end processor storage
unit (6). Offline processor storage units (5 and 2) are spanned at this time, but omitted. If the
RSU =nn parameter value exceeds the available processor storage units, then all units are
defined as non-preferred except those previously assigned as preferred at IPL for the nucleus,
V=R and SQA.

Real Storage Management 65

During IPL, and after the non-preferred area has been defined, the operating system defines
the remainder of the processor storage units as the preferred area, for long-term resident
frames. In figure 13, RSU=2 was specified, making processor storage units 6 and 4
non-preferred. Any processor storage units varied online after IPL are designated as
non-preferred. The remaining processor storage unit (3) is defined preferred.

Processor Storage Units Data Mapping

Preferred
® 7 (SQA at IPL)

6 Non-preferred ®

Offline

5 Unassigned

4 Non-preferred ®

3 Preferred CD

Offline

2 Unassigned

1 Preferred 0 f---------

V=R ®
0 '-- -- -_._---

Nucleus (!)

Figure 13. IPL Designation of Processor Storage Units

f+.

r-

~

~

Will be
non-preferred
if units are
brought online

Sequence
of IPL
assign ments

While jobs are processing, short-term pages are assigned to any available processor storage
frame in either non-preferred or preferred areas. Long-term pages are assigned only to
processor storage frames in the preferred area. A condition may arise where a long-term page
requires processor storage space and there are no preferred area frames available. If this
situation occurs, one of the following will result:

• If a short-term page in the common area, or the private area of the current available
storage that has not been changed is using a frame in preferred storage, that short-term
page is removed and the new long-term page is assigned. to the vacated space. This is
called immediate steal.

• If all of the frames in the preferred area are being used for long-term pages, the
operating system looks for a frame in the non-preferred area. Finding such a frame, the
entire processor storage unit is converted from a non-preferred area to a preferred area.
This is called dynamic expansion.

Whenever a non-preferred area is converted into a preferred area, the system operator
cannot expect to place as many processor storage units offline as were originally designated by
the RSU =nn parameter. Therefore, the first time this conversion takes place, message IEA988I
is issued to the system console notifying the operator that the preferred area has expanded and
that reconfigurability may be impaired. The operator can then determine the processor storage
units that are still being preserved for reconfiguration by using the DISPLAY MATRIX (D M)
command.

66 OS/VS2 System Programming Library: Supervisor(VS2 Release 3.7)

Multiprocessing Configuration Considerations

On a 168 MP, and 158 MP Model 3 the CPUs and the storage (in two but not necessarily
equal portions) are each separately powered. On the 158 MP Model 1, however, each CPU
and its half of the storage are powered by the same source. If a CPU is powered down, its half
of storage is also powered down. Therefore, in a 158 MP Model 1 system, if an installation
intends to vary one CPU (CPU 0) offline for maintenance, the user should assign both high
and low address ranges to the other CPU (CPU 1). This allows CPU 0 to be powered down
without requiring an IPL.

Notes:

• The highest (perferred storage area) and lowest address ranges cannot be varied offline.
• When assigning high and low address ranges to the powered up CPU, ensure (1) that the

highest address range is large enough to include all the SQA and preferred storage area,
and (2) that the lowest range is large enough to contain all of the nucleus.

• Since the 158 MP Model 3 uses the Alternate Power Down feature to supply power
independently to both CPUs, and storage, its associated console and channels can be
varied offline and powered on and off without an IPL. Its storage can remain online to
the powered up CPU.

If a 158 MP or 168 MP is configured as two MVS uniprocessors, both systems should be
configured at the highest and lowest addresses for an MP system, to allow reconfiguration to
an MP system without IPL. This will be done automatically by specifying STORAGE = highest
address in the CTRLPROG macro instruction during system generation. For example, in a
4-megabyte system, each uniprocessor should be configured at the following addresses:

0-512
512-1024
3072-3584
3584-4096

To accomplish this, you would specify STORAGE=4,096,000. This leaves a 2-megabyte
"hole" for reconfigured storage; to reconfigure to an MP system, you can fill this hole with the
following address ranges by first adjusting the hardware configuration panel and then entering
the proper VARY commands:

1024-1536
1536-2048
2048-2560
2560-3072

Note: The 158 MP Model 1 and 158 MP Model 3 are compatible and can be interconnected
in an MP configuration. However, when these models are interconnected the Alternate Power
Down and Asymmetric storage features on the 158 MP Model 3 are not functional.

If there is more than one console, one must be specified as the primary console. One reason
is that the communications task must know which to use during IPL. Do not use the same
address for both consoles. In general, no two devices should have the same address. If identical
addresses are used, failure of one console is considered failure of both; with 3066 consoles,
errors on one can result in alteration of the display on the other.

In a multiprocessing environment, the concurrent execution of tasks makes it difficult to
predict the contents of dynamic fields in all system control blocks, (that is, fields whose
contents change during processing from IPL time). Thus, all read-only and write-only
references in user programs to these dynamic fields must be evaluated for their impact on the
user's program and/or the system control program, and should be changed or eliminated
accordingly. Otherwise, the effect (such as program abend or system failure) is dependent
upon the user program's recovery scheme and/or system control program's use of that changed
field.

Real Storage Management 67

68 OS/VS2 System· Progrlll!1llling Library: Supervisor (VS2 Release 3.7)

Miscellaneous Services

Additional services are provided by the supervisor which do not appropriately fit into the
previous chapters. These services, discussed in this chapter, include:

• operator messages (WTO and WTOR macro instructions)
• user-written message routing exit routines
• service management facilities (SCHEDULE and PURGEDQ macro instructions)
• stage 1 exit effector (CIRB macro instruction)
• user-written SVC routines
• missing interruption handler
• power warning feature support

Writing Operator Messages
The WTO and WTOR macro instructions allow you to write messages to the operator. The
WTOR macro instruction also allows you to request a reply from the operator. A complete
description of the use of these two macro instructions is found in OS/VS2 Supervisor Services
and Macro Instructions.

Routing the Message

The WTO and WTOR macro instructions have two special parameters, MSGTYP and
MCSFLAG. The MSGTYP parameter specifies how the message is to be routed; the
MCSFLAG parameter specifies that the macro expansion is to set bits in the MCSFLAG field
as indicated by each name coded. Only programmers familiar with MCS should use these
parameters, since using them inpropedy could impede the entire message routing scheme.

If MSGTYP= Y is specified, the message type specifies that two' bytes are to be reserved in
the WTO or WTOR macro expansion so that flags can be set to describe what MSGTYP
functions are desired. If Y is specified, two bytes of zeros are to be included in the macro
expansion at displacement WTO (or WTOR + 8) + 12 + the total length of the message text,
descriptor code, and routing code fields. If MSGTYP=N is specified, or if the MSGTYP
parameter is omitted, the two bytes are not needed and the message will be routed as specified
in the ROUTCDE parameter.

The bit definitions for MSGTYP=Y are:

Bit 0
Bit 1
Bit 2-4
Bit 5
Bit 6-15

MONITOR JOBNAMES
MONITOR STATUS
Reserved
MONITOR SESS
Reserved

When MSGTYP=Y is specified, the issuer of the WTO or WTOR macroinstruction that
contains the MSGTYP information must set the appropriate message identi~ier bit in the
MSGTYP field of the macro expansion. The MCSFLAG field in the macro expansion has been
set to zero, indicating that the MSGTYP field is to be used for the message routing criteria.
When the message type is identified by the system, the message will be routed to all consoles
and TSO terminals in operator modes that had requested that particular type of information. If
there are no consoles or terminals requesting that particular type of information, the WTO
message will not be sent anywhere; however, a WTOR message will be sent to the master
console. The routing codes and REGO MCSFLAG field, if present, will be ignored.

Miscellaneous Services 69

Writin,g a Multiple-Line Message

The WTO macro instruction is used to write a multiple-line message to one or more operator
consoles. System programs (supervisor staie, protection key 0-7, or APF-authorized) may
create a multiple-line message with more than one WTO request.

The first WTO request supplies the first lines of the message. Other WTO requests can then
add lines to the message. The additional lines would appear at the end of the message, and
would continue until an 'END' line is added.

For the first request in a multiple-line sequence, the leftmost three bytes of register zero
must by zero; you must ensure that this is done.

The first request receives a message identifier back in register 1. To add more lines, the
next multiple-line request must have this identifier in the leftmost three bytes of register zero.

If the conditions on register zero are not met, it would appear to SVC 35 (WTO) that the
multiple-line request is adding lines to an existing message, and the new message will not be
created.

Message Routing Exit Routines
This topic provides detailed information on how to write user exit routines that modify the
routing and descriptor codes of WTO or WTOR messages for the VS2 operating system.
Information is provided on inserting this exit routine into the resident portion of the control
program. In addition, a description of the characteristics and configuration of MCS is supplied.

Characteristics of MCS

The multiple console support (MCS) facility routes messages to different functional areas
according to the type of information that the message contains. In MCS, a functional area is
defined as one or more operator's consoles that are doing the same type of work. (Some
examples of functional areas are: (1) the tape pool area, (2) the disk pool area, and (3) the
unit record pool area.) Each WTO and WTOR macro instruction is assigned one or more
routing codes which are used to determine the destination of the message. There are fifteen
routing codes that can be used. When the message is ready to be routed, the routing codes
assigned to the message are compared to the routing codes assigned to each console. If any of
the routing codes match, the message is sent to that console.

If the standard routing codes provided on application and system messages do not cover
special situations at an installation, the routing codes can be modified by coding a user exit
routine. The exit routine receives control prior to the routing of messages so users can examine
the message text and modify the message's routing and descriptor codes. The system will use
the modified routing codes to route the message. Descriptor codes provide a mechanism for
message presentation and deletion, and are explained later in this chapter.

Automatic console switching occurs when permanent hardware errors are detected.
Command-initiated console switching is provided to permit restructuring of the system console
configuration and the hard copy log by system operators. Consoles can be moved into or out
of functional areas at any time during system operation.

A hard copy log records messages, operator and system commands, and operator and system
responses to commands. The hard copy log can be a console device or it can be the system log
(SYSLOG). The number and type of messages recorded on the log is optional. The installation
may wish to record a selected group of messages, or it may wish to record all messages. If
commands are recorded, the system automatically records command responses.

70 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

~

Whenever possible, the hardcopy function should be delegated to an output-only device
(such as a printer) or to the system log.

Programming Conventions for WTO/WTOR Routines

The programming conventions for the WTO /WTOR exit routines are summarized below:

• Exit routine is part of the resident control program. The program should be loaded on a
page boundary.

• Exit routine is any size.

• Exit routine may allow interruptions. The routine will receive control with no locks held;
it should return control with no locks held.

• Exit routine is reenterable and serially reusable. Macro instructions whose expansions
store information into an online parameter list should not be used.

• IEECVXIT is name of routine.

• Registers must be saved at entry and restored prior to returning.

• Exit routine may issue WAIT, XCTL, WTO, or WTOR macro instructions.

Note: The WAIT macro instruction should not be used when the exit routine is entered
under the console communications task. Doing so will permanently terminate console
communications.

• Exit routine is part of WTO SVC. If the exit routine terminates abnormally, the WTO
request will be terminated.

• Exit from the routine is via the RETURN macro instruGtion.

• Format of text and codes is:

Message text (128 characters padded with blanks).

Routing codes (4 bytes). Descriptor codes (4 bytes).

In the routing code field, a bit setting of "1" indicates that the WTO or WTOR was
assigned that particular routing code. Bit assignments and their meanings are:

Bit Assignment Meaning

Byte 0
Bit 0 Routing code 1 Master Console Action
Bit 1 Routing code 2 Master Console Information
Bit 2 Routing code 3 Tape Pool
Bit 3 Routing code 4 Direct Access Pool
Bit 4 Routing code 5 Tape Library
Bit 5 Routing code 6 Disk Library
Bit 6 Routing code 7 Unit Record Pool
Bit 7 Routing code 8 Teleprocessing Control

Byte 1
Bit 0 Routing code 9 System Security
Bit 1 Routing code 10 System Error/Maintenance
Bit 2 Routing code 11 Programmer Information
Bit 3 Routing code 12 Emulators
Bit 4 Routing code 13 Available for Customer Usage
Bit 5 Routing code 14 Available for Customer Usage
Bit 6 Routing code 15 Available for Customer Usage
Bit 7 Routing code 16 Reserved

Byte 2 Reserved

Byte 3 Reserved

MisceUaneous Services 71

In the descriptor code field, a bit setting of "1" indicates that the WTO or WTOR was
assigned that particular descriptor code. Bit assignments and their meanings are:

Bit

Byte 0
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Byte 1
Bit 0
Bit 1

Byte 2

Byte 3

Assignment

Descriptor code 1
Descriptor code 2
Descriptor code 3
Descriptor code 4
Descriptor code 5
Descriptor code 6
Descriptor code 7
Descriptor code 8

Descriptor code 9
Descriptor code 10

11 through 16

Meaning

System Failure
Immediate Action Required
Eventual Action Required
System Status
Immediate Command Response
Job Status
Application Program/Processor
Out-of-Line Message

DISPLA Y or TRACK command response
Dynamic Status Displays
Reserved

Reserved

Reserved

Messages Not Using Routing Codes

There are certain messages that the exit routine does not see. These are messages that have the
MSGTYP parameter in the WTO or WTOR macro instruction coded with the JOBNAMES,
STATUS, or Y parameter, multiple-line WTOs (including status displays) and messages that
are being returned to the requesting console, for example, a response to a DISPLAY A
command. Routing of these messages is on criteria other than the routing codes; therefore, the
system bypasses the exit routine.

Writing a WTO/WTOR Exit Routine

To modify the standard routing codes and descriptor codes, a WTO/WTOR Exit Routine must
be written. This routine will be part of the control program. If a message's routing code field is
used by the operating system to route the message, the routine will receive control prior to the
routing of the message. When the routine receives control, register 1 contains a pointer to a
word that points to the first word of the message text. The message text field is 128 bytes
long, followed by a four-byte routing code field and a four-byte descriptor code field. The exit
routine may examine but not modify the message text.

A message will be sent to only those locations specified in the modified routing codes. All
messages with modified routing codes are sent to the hard copy log when the log is included in
the operating· system. When the log is not included, the exit routine must not suppress
messages that contain a routing code of 1, 2, 3, 4, 7, 8, or 10 since messages with these codes
are necessary for system maintenance. Message suppression is turning off all routing codes of a
message· by setting the routing code field to zero, thus causing the message to be discarded.
WTO messages can be suppressed. If a WTOR message is suppressed, it will be sent to the
master console by the operating system.

Adding a WTO /WTOR Exit Routine to the Control Program

The WTO/WTOR exit routine is standard. If the user does not specify one, the IBM-supplied
module IEECVXIT is included.

To enter the exit routine into the control program before system generation, the linkage
editor should be used to replace the dummy WTO /WTOR exit routine IEECVXIT in
SYS 1.AOSC5 with the WTO /WTOR exit routine. The linkage editor should be instructed to
load IEECVXIT on a page boundary.

72 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

To enter the exit routine into the control program after system generation, the linkage editor
should be used to replace the dummy WTO /WTOR exit routine IEECVXIT in the
SYS 1.LP ALIB with the user-written WTO /WTOR exit routine.

Service Management

Service Management facilities provide a basic set of system services which allow internal
system components to structure themselves to run enabled, nonserialized, and in parallel on a
multiprocessing system with considerably less overhead than would be required by using
existing task management services. The facilities provided by service management are those
services required to:

• Introduce a service request to execute a service routine into the queue of work within the
system.

• Perform priority dispatching of the requested service routine.
• Support the needs of recovery/termination for cleaning up the asynchronous processes.

The first two facilities are accomplished via the SCHEDULE macro instruction; the third
facility is accomplished via the PURGEDQ. macro instruction.

The main features of this support are:

• A control block, called a service request block (SRB), which represents a service request.
This block, like a TCB, identifies a unit of work to the dispatcher. The block is smaller
than a TCB, and requires less information to be specified about each request.

• The SCHEDULE macro service, which enters SRBs into the dispatch able work queue
with a minimum of overhead.

• Changes to the dispatcher to operate under this service request control structure in
addition to the old task structure. Maximum performance is provided when dispatching
service requests. In addition, SRBs may be scheduled to different address spaces either at
a priority equal to the specified address space or at an independent priority higher than
any address space.

Service management provides a system-wide dispatching facility which can be used to
increase parallel processing on mUltiple CPUs. The programs benefiting the most from these
facilities are those which have independently dispatchable units of work, but are forced to run
as a single task.

In addition, service management facilities make the system aware of the smaller units of
work and allow the service requests to be dispatched in parallel on multiple CPUs at a higher
priority than the task work.

The service management facilities also provide a mechanism which is used for almost all
communications between address spaces, and is used to run some parts of interruption handlers
as service requests allowing more enablement and parallelism for these services. For example,
when an interruption occurs, the interruption handler collects the necessary information about
the I/O interruption and schedules a service request block (SRB). The interruptioJ1 handler can
then start I/O requests which were waiting for the I/O path and accept any additional pending
interruptions. By delaying complete processing of the interruption, this approach allows faster
reuse of channels and lower disabled interruption time.

The scheduling of the SRB provides the ability:

• to complete the interruption process on any CPU, not just the one which took the
interruption

• to process the interruption enabled except where specific serialization through locks is
used

Miscellaneous Services 73

• to switch from the random address space where the interruption was taken to the address
space of the user which originally requested the I/O. This latter capability provides the
interruption handler routine with address ability to the user's control blocks necessary to
complete the interruption processing.

Scheduling Service Requests

The introduction of a service request into the queue of work is accomplished via the
SCHEDULE macro instruction. To use this macro, you must provide the following
information:

• The address of a previously obtained and formatted service request block (SRB) that is
to represent the request until it is actually dispatched. The contents of the SRB supplied
define the attributes of the routine to be given control. Once the service routine is given
control, the SRB is no longer needed by the system and may be released.

• The priority of the request relative to other requests in the system. The service may be
scheduled at either local or global priorities.

The SCHEDULE macro instruction does not obtain storage for the SRB. It simply causes
the indicated SRB to be queued at the appropriate priority. When the request subsequently
becomes the highest priority work in the system, the dispatcher will dispatch it in the address
space specified by the SRB.

Service Request Blocks (SRBs)

Service requests are represented by service request blocks (SRBs). SRBs must reside in fixed,
commonly-addressable storage. These control blocks are supplied by the function requesting a
service. The basic information contained in an SRB is documented in the OS/VS2 System
Programming Library: Debugging Handbook, section 6, "Data Areas". The information required
within the SRB at the time of SCHEDULE is as follows:

SRBASCB - contains the address of the ASCB indicating the address space in which the
asynchronous routine will be dispatched.

SRBPKF - indicates, in the high-order 4 bits, the protect key that the routine will assume.
The low-order 4 bits must be zero.

SRBEP - specifies the address of the entry point of the asynchronous routine.

SRBSA VE - contains the address of a status save area. This field must contain all zeroes.

SRBP ARM - contains a fullword to be loaded into register 1 when the asynchronous
routine is dispatched.

SRBCPAFF - defines the CPU affinity. If all zeroes, or all ones, no affinity is implied.
Otherwise, this field contains a bit mask in which the bits that are set 'on' to indicate on
which CPUs the SRB may be dispatched. (The nth bit set 'on' indicates that the SRB may
be dispatched on the CPU with physical address n.)

SRBPRIOR - specifies a code representing the priority level to which the SRB is being
scheduled. The codes are assigned as follows:

o SYSTEM
4 NONQ

SRBRMTR - contains the address of a Resource Manager Termination routine. This routine
will be responsible for cleaning up SRBs which have been scheduled but not yet dispatched.
The address also serves as a function identifier to PURGEDQ when purging SRBs from the
queues. If it is possible for the SRB to be purged, either directly by the resource manager,
or indirectly by task or memory termination, then this field must contain a valid non-zero

74 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

address of a routine to clean up that SRB. The routine must be commonly-addressable to all
address spaces.

SRBPTCB - contains the address of a TCB associated with the asynchronous routine which
serves two purposes:

• If the asynchronous routine encounters a double failure (error in routine and in recovery
routine), this task will be scheduled for abnormal termination.

• An identifier to PURGEDQ during the purge process. If this SRB. is to be purged during
the termination of that task, the address of the associated TCB must be specified in this
field. If this SRB is not related to any task, or purging is not necessary, a zero value
should be specified.

SRBASID - contains the ASID of an address space associated with the asynchronous
routine. If a non-zero value was specified, in the SRBPTCB field, this value must be
specified and must contain the ASID of the address space containing that TCB. Otherwise,
a zero value may be specified.

Priorities

Services may be scheduled for execution at either global or local priorities. Service requests
queued at the global level are given a priority which is above that of any address space,
regardless of the actual address space in which they will be dispatched. Service requests at the
local level are given a priority equal to that of the address space in which they will be
dispatched, but higher than that of any task within that address space.

Within the global and local priorities, there are two additional priority levels. One of the
levels is for general system usage; the other (called the nonquiesceable level) is for specialized
functions necessary to perform a quiesce of SRBs.

Service requests at the nonquiesceable level continue to be dispatched while the address
space is in the process of being quiesced. Requests queued at the system level in an address
space will not be dispatched while the quiesced status is in effect. Usage of the nonquiesceable
level is restricted in the following manner: At times, it is necessary to stop the dispatching of
SRBs in an address space -- that is, prevent new SRBs from being dispatched and allow all
SRBs that have already been dispatched to complete their processing. However, some of the
dispatched SRBs may have been suspended due to lock requests or page faults. Since page
fault processing and rescheduling of the suspended SRBs makes use of SRBs themselves, it is
necessary to have a nonquiesceable level at which these SRBs can be scheduled while the other
SRBs have been stopped.

Characteristics of Service Requests

Service routines have the following characteristics:

• All routines are entered in supervisor state, enabled, and unlocked. On entry, the address
of the SRB is in register 0 and the return address is in register 14. The entry point
address is in register 15 and register 1 contains the user field. The routines cannot enter
problem program mode and must establish a recovery environment.

• The routines may not issue SVCs. (However, ABEND may be issued.)

• The routines are nonpreemptible -- that is, although the routines are run enabled and
may be interrupted by an asynchronous interruption, they will not lose control to higher
priority tasks or SRBs until control is given up voluntarily. However, service routines may
lose control due to synchronous events which cause suspension of the program in control
-- for example, page faults and unconditional requests for suspend-type locks. In this
case, full status of the process is saved and other work is dispatched; the service request
will be redispatched when the problem is resolved.

MisceUaneous Services 75

• The routines may take page faults. Page faults encountered in the unlocked state will be
handled per service request; page faults encountered in the locked state will prevent other
processing which requires the lock from proceeding until the page fault is resolved.

• The routines may request any lock through the SETLOCK interface .

• ' The routines must return control to the address supplied in register 14, and must return
control in supervisor state with no locks held. All cleanup must be performed prior to
exiting.

Purging Service Requests

When a task or address space terminates abnormally, outstanding requests for the task or
address space must also be terminated. The PURGEDQ macro instruction establishes a
standard mechanism for purging these requests. To use this macro, you must provide the
following information:

• The address space identifier of the address space in which the SRB is scheduled to be
dispatched. If none is specified, the current address space is assumed.

• The address space of the task control block of the task associated with the SRB for
which the purge is to be performed. If none is specified, the current TCB is assumed in
the current address space.

• The address of the resource manager termination routine. If no address is supplied, the
purge is performed for all resource managers.

The PURGEDQ routine de queues all nondispatched SRBs and waits for completion of any
I active SRBs if the PURGEDQ was for the current address space. After all of the SRBs have

been dequeued or completed, the resource manager termination routine specified in the SRB is
giv~n control and the required cleanup is performed for each dequeued SRB. No locks should
be held when PURGEDQ is invoked.

PURGEDQ Parameters

The inputs to the PURGEDQ macro instruction are specified by the ASID, ASIDTCB, and
RMTR parameters.

The ASID parameter specifies the address of a half word containing an address space
identifier. PURGEDQ will search for SRBs scheduled to be dispatched into the address space
specified by this parameter. If an address space other than the current address space is
indicated, only SRBs which have not yet been dispatched will be affected as PURGEDQ will
not wait for SRBs already dispatched but not completed. If this parameter is omitted, the
current address space will be assumed.

The caller of PURGEDQ can purge the SRBs associated with a specific task by coding the
ASIDTCB parameter. The ASIDTCB parameter specifies the address of a double word
associated with the TCB for which SRBs are to be purged. If the parameter is omitted, the

, purge will occur for SRBs associated with the current task in the current 'address space. The
following table describes the acceptable values for the ASIDTCB parameter, and the meaning
of the values:

Bytes 0 - 7 zero

Bytes 0 - 1 reserved
Bytes 2 - 3 nonzero ASID
Bytes 4 - 7 zero

Bytes 0 - 1 reserved
Bytes 2 - 3 nonzero ASID
Bytes 4 - 7 nonzero TCB

address

All SRBs are to be purged.

All SRBs associated with the specified
address space (SRBPASID field)
are to be purged.

All SRBs associated with the specified
address space (SRBP ASID field) and the
specified task (SRBPTCB field) are to
be purged.

All other values are unacceptable and will produce unpredictable results.

76 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

The RMTR parameter specifies the address of the resource manager termination routine.

The interface to the RMTR is as follows:

Contents Register
o Contents of register 0 of the caller of PURGEDQ at the time the PURGEDQ SVC was

issued. This provides the ability to pass information from the caller of PURGEDQ to the
RMTR routine.

2
14

15

SRB address of the dequeued SRB.
Contents of SRBPARM of the dequeued SRB.
Return address of PURGEDQ.
Entry point of RMTR.

The PSW is enabled, in supervisor state with key 0 and no locks held.

The RMTR must not leave supervisor state or issue ESTAE with branch entry. The RMTR
must return control enabled, in supervisor state with key 0 and no locks held and via a BR14.
It may, however, acquire locks, issue SVCs and destroy input registers.

This routine must be commonly-addressable from all address spaces. It must be unique to
the resource manager (that is, it should not be the· address of some common system service) if
the PURGEDQ issuer desires the routine to receive control only on a unique PURGEDQ.
These restrictions are required to insure the uniqueness of the identifier and to allow the
RMTR to be invoked from any address space.

Creating Interruption Request Blocks

The CIRB macro instruction causes the Stage 1 Exit Effector routine to create and initialize an
interruption request block (IRB). The IRB is used to control an asynchronous user exit routine
requested by the caller.

The Stage 1 routine obtains a work area in which the caller may construct interruption
queue elements (IQEs), and obtains a register save area in which the user exit routine may
later save the registers of the requesting program. The routine obtains space for the IRBs (and
IQEs) and the work area from local supervisor queue space. The work area follows and is
continguous to the IRB. The register save area, if requested, is obtained from subpool zero of
the user program's region, and is therefore not contiguous to either the IRB or its work area.

After the storage for the IRBs and optional work and storage areas is obtained, the Stage 1
Exit Effector routine initializes the IRB. The initialization is accomplished according to the flag
bits passed to the routine in register 1.

The information initialized in the IRB includes the save area address, the size of the IRB,
the entry point of the user exit, the PSW to be loaded to start execution, and a series of flags
communicating actions to be taken when the asynchronous exit routine terminates.

For details on the Stage 1 exit effector, and for information on the Stage 2 and 3 exit
effectors, see OS/VS2 Scheduler and Supervisor Logic.

Writing SVC Routines

User-written SVC routines become part of the control program, so you must follow the same
programming conventions used by SVC routines supplied with VS2. Four types of SVC
routines are supplied with VS2, and the programming conventions for each type differ. The
general characteristics of the four types are described in the following text, and the
programming conventions for all types are shown in tabular form.

MisceUaneous Services 77

Characteristics of SVC Routines

All SVC routines receive control in the supervisor state. You should keep the following
characteristics in mind when deciding what type of SVC routine to write:

• Location of the routine -- Your SVC routine can be either in storage at all times as part
of the resident control program, or in the fixed or pageable link pack area. Types 1 and 2
SVC routines are part of the resident control program, and types 3 and 4 are in the link
pack areas. No transient areas are provided in MVS.

• Size of the routine -- SVC routines are not limited in size, but should be kept under one
page if disabled global locks are obtained.

• Design of the routine -- All SVC routines must be reenterable. If you wish to aid system
facilities in recovering from machine malfunctions, your SVC routines must be
refreshable.

• Authorization -- At nucleus initialization, all SVC routines that are to be loaded into the
fixed or pageable LP A must be contained in SYS 1.SVCLIB, SYS 1.LPALIB, or
SYS 1.LINKLIB. After the initial load of type 4 SVCs, subsequent loads may be
contained in any authorized library.

• Loads -- Type 3 SVCs have one load; type 4 SVCs may have multiple loads. Since type
4 SVCs require XCTL overhead, and since there are no size limitations for type 4 SVCs,
type 4 SVCs have no advantage over type 3 SVCs. Unless an SVC is to be used in
another system as well as in MVS, type 4 SVC routines should never be used.

• Serialization -- In MVS, locking has generally replaced CPU disablement as the technique
for serializing multiple CPU fuctions. If you write SVC routines which must serialize with
other parts of the control program, you must use the same locking conventions as the
control program. If you write two or more SVC routines which must serialize with each
other, you can use either the locking facilities or the ENQ/DEQ services.

SVC routines can receive control with one or more locks held. You must define which locks
are to be acquired for your SVC routines during system generation. (For more information on
locking, see the discussion under Resource Control.)

SVC routines are normally entered enabled. However, an SVC routine will be entered
disabled if it was specified that a disabled spin lock is to be acquired for the routine. (See
reference code 2 on the following page.)

Programming Conventions for SVC Routines

The programming conventions for the four types of SVC routines are summarized in Figure
114. Details about many of the conventions are in the reference notes that follow. The notes

are referred to by the numbers in the . last column of the figure. If a reference note for a
convention does not pertain to a specific type of SVC routine, that type is indicated by an
asterisk.

78 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Conventions Type 1 Type 2 Type 3 Type 4 Reference Code

Part of resident control
Yes program Yes No No

Size of routine Any Any Any Any

Reenterable routine Yes Yes Yes Yes 1

Refreshable routine No* No* Yes Yes 2

Locking requirements Yes No No No 3

Entry point Must be the first byte of the routine or load module, and must
be on a doubleword boundary

Number of routine Numbers assigned to your SVC routines should be in
descending order from 255 through 200

Name of routine IGCnnn IGCnnn IGCOOnnn IGCssnnn 4

Register contents at entry Registers 3,4,5,6,7, and 14 contain communication pointers; 5
time registers 0, 1, 13, and 15 are parameter registers

Supervisor request block No SVRB 200 200 200 7
(SVRB) size exists

May issue WAIT macro No* Yes Yes Yes 8
instruction

May issue XCT L macro No* No* No* Yes 9
instruction

May pass control to what None Any Any Any 10
other types of SVC routines

Type of linkage with other Not Issue supervisor ca" (SVC) instruction 11
SVC routines Applicable

Exit from SVC routine Branch using return register 14 12

Method of abnormal ABTERM ABEND
termination

Recovery FRR ESTAE or FRR 13

Note: Reference code does not apply to items marked with *.

Figure 14. Programming Conventions for SVC Routines

Miscellaneous Services 79

Reference
Code

1

2

3

4

5

SVC Routine
Types

all

. 3,4

all

all

all

Reference Notes

If your SVC routine is to be reenterable, you cannot use macro instructions
whose expansions store information into an inline parameter list.

Types 3 and 4 in the pageable LP A must be refreshable. Types 3 and 4 in the
fixed LP A must be reenterable, but not necessarily refreshable.

The following conventions on locking requirements apply:
Type 1 SVC routines always receive control with the local lock held and
must not release the local lock. Additional locks may be requested prior
to entry via the SVCT ABLE macro instruction or may be requested
dynamically within the SVC routine.
Types 2, 3, and 4 may also request locks via the SVCTABLE macro
instruction or may obtain them dynamically.
Types 1 and 2 may request that any locks be held on entry. Types 3 and
4 may only request that the LOCAL or LOCAL and CMS lock be held.
If no locks are held or obtained, or only suspend locks (LOCAL and
CMS) are held or obtained, the SVC routine executes in supervisor state,
key 0, enabled mode.
If disabled spin locks are held or obtained, the SVC routine executes in
supervisor state, key 0, disabled mode. No SVCs may be issued.
SVCs may not take disabled page faults. Therefore, if a disabled spin
lock is held, the SVC routines must ensure that any referenced pages are
fixed. For types 3 and 4, all pages containing code must be fixed.
An FRR may be defined for any SVC routine that holds or obtains locks
to provide for abnormal termination (see reference note 9).

You must use the following conventions when naming SVC routines:
Types 1 and 2 must be named IGCnnn; nnn is the decimal number of
the SVC routine. You must specify this name in an ENTRY, CSECT, or
START instruction.
Type 3 must be named IGCOOnnn; nnn is the signed decimal number of
the SVC routine.
Type 4 must be named IGCssnnn; nnn is the signed decimal number of
the SVC routine, and ss is the number of the load module minus one.
For example, ss is 01 for the second load module of the routine.

Before your SVC routine receives control, the contents of all registers are
saved.

In general, the location of the register save area is unknown to the routine
that is called. When your SVC routine receives control, the status of the
registers is as follows:

Register 0 and 1 contain the same information as when the SVC routine
was called.
Register 2 contains unpredictable information.
Register 3 contains the starting address of the communication vector
table (CVT).
Register 4 contains the address of the task control block (TCB) of the
task that called the SVC routine.
Register 5 contains the address of the supervisor request block (SVRB),
if a type 2, 3, or 4 SVC routine is in control. If a type 1 SVC routine is
in control, register 5 contains the address of the last active request
block.
Register 6 contains the entry point address.
Register 7 contains the address of the address space control block
(ASCB).
Registers 8 through 12 contain unpredictable information.
Register 13 contains the same information as when the SVC routine was
called.
Register 14 contains the return address.
Register 15 contains the same information as when the SVC routine was
called.

You must use register 0, 1, and 15 if you want to pass information to the
calling program. The contents of registers 2 through 14 are restored when
control is returned to the calling program.

80 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Reference
Code

7

8

9

10

11

12

13

SVC Routine
Types

2,3,4

2,3,4

4

all

all

all

all

Reference Notes

The SVRB is no longer extendable, but is a fixed size of 200 bytes. When a
type 2, 3, or 4 SVC routine receives control, register 5 contains the address
of the SVRB within this 200-byte area. This SVRB contains a 40-byte
"extended save area." In addition, an area is provided for a ST AE control
block (SCB); this SCB will be used by the recovery termination manager
when an EST AE or EST AI is issued within an SVC routine.

You can issue the WAIT macro instruction if you hold no locks. You can
issue WAIT macro instructions that await either single or multiple-events.
The event control block (ECB) for single-event waits or the ECB list and
ECBS for multiple-event waits must be in virtual stroage.

When you issue an XCTL macro instruction in a routine under control of a
type 4 SVRB, the new load module must be located in the fixed or pageable
link pack area.

The contents of registers 2 through 13 are unchanged when control is passed
to the load module; register 15 contains the entry point of the called load
module.

No SVC routines except ABEND may be called if locks are held. ABEND
may be called at any time.

No locks may be held. If locks are held, branch entry to SVCs is acceptable,
or the locks may be freed, the SVC issued, and the locks reobtained.

Branch using return register 14 should be used. Otherwise, if locks are held,
SVC 3 results in abnormal termination.

If an SVC routine is entered with a lock held or if an SVC routine obtains a
lock, it should specify a functional recovery routine (FRR) for a long as the
lock is held (see SETFRR macro instruction). The FRR receives control if an
error occurs, and ensures the validity of the data being serialized by the lock;
the FRR either recovers or releases the lock and continues with termination.

If no FRR is specified, the recovery termination manager will release the lock
and terminate the task. No cleanup of the data is performed. (Note that the
lock is released before any ST AI/EST AI/EST AE (or ST AE) recovery routine
is entered.

If no locks are acquired for or by an SVC routine, then an EST AE may be
used to define your recovery processing (see EST AE and SETRP macro
instructions) .

Inserting SVC Routines Into the Control Program

You insert SVC routines into the control program during the system generation. Before your
SVC routine can be inserted the routine must be a member of a cataloged partitioned data set
named SYS I.name, where the name is a name of your choice. The data set must be an
authorized library (see discussion on APF).

The following text describes the informaion you must supply during system generation. You
will find a description of the macro instructions required during system generation in the
OS/VS2 System Programming Library: System Generation Reference publication.

Specifying SVC Routines

You use the SVCTABLE macro instruction to specify the SVC number, the type of SVC
routine, and the locks that are required for your SVC.

Inserting SVC Routines During the System Generation Process

To insert an SVC routine during system generation, the name of the partitioned data set and
the names of the members to be included must be specified in the DATASET macro
instruction:

• For each type I or 2 SVC, a member (containing one or more SVC routines) should be
specified in the DATASET macro instruction that is being used to define
SYSI.NUCLEUS.

Miscellaneous Services 81

• For each type 3 or 4 SVC, a member (containing only one SVC routine) should be
specified in the DATASET macro instruction that is being used to define SYSl.LPALIB.

Type 5 SVC Facility

The Type 5 SVC facility permits a user to indicate (at system generation time) that one or
more user-written SVCs will be added to the system after the completion of SYSGEN. This
facility is only used in cases where the SVC routines for the user-written SVC are not
available at the time of the SYSGEN. This facility further permits the user to specify the
authorization characteristic and lock requirements as input parameters to the SYSGEN macro
instruction SVCT ABLE. The name of the entry point to the SVC routine will be supplied at a
later time.

SVC Table Entries

Each entry in the SVC table has the following format:

Offset
o
4

6

Length
4
2

1.
11..
.... 1. ..
..... 1..
2
1.
.1
.. 1
... 1
.... 1. ..

Name
SVCEP
SVCATTPI
SVCTPI
SVCTP2
SVCTP34
SVCAPF
SVCESR
SVCLOCKS
SVCLL
SVCCMS
SVCSRM
SVCALLOC
SVCDISP

Description
SVC Entry Point Address
Attributes
Type 1 SVC
Type 2 SVC
Type 3 or 4 SVC
APF Authorized I-Authorized
SVC is a part of the ESR
Lock Attributes
Local Lock Needed
CMS Lock Needed
SRM Lock Needed
SALLOC Lock Needed
Dispatcher Lock Needed

If a Type 5 SVC is specified at system generation time, the following entry will be
generated:

IGCRETRN
Type 1
Authorization
Locks

Entry Point Address (of IGCRETRN)

Default is unauthorized, unless the user specifies authorized.
Default is no locks; user may specify any lock or combination of locks needed by
his routine.

Note: IGCRETRN is an existing routine which zeroes register 15 and returns via register 14.

Subsequent to SYSGEN, the user is expected to supply the SVC routine and to update the
entry in the SVC Table. Assuming that the other information in the table was correct, the user
need only supply the address of the entry point to the SVC routine. This would require the use
of AMASPZAP. Using AMASPZAP it would be possible to update or replace all attributes
stored in the SVC table entry.

During SYSGEN, if an SVC is not specified, the following type of entry will be generated:

IGCERROR Entry Point Address
Type 2
Unauthorized
No locks needed

If during subsequent operation of the system, an SVC by that number is issued, the routine
IGCERROR will be entered. This will issue an ABEND for the issuing program.

Missing Interruption Handler

The missing interruption handler checks whether expected 110 interruptions occur within a
specified period of time. If the interruptions do not occur, the operator is notified so that steps
can be taken to correct the situation before system status is harmed.

82 OS/VS2 System Prograniming Library: Supervisor (VS2 Release 3.7)

The missing interruption handler checks for pending device ends, channel ends, DDR swaps,
and MOUNT commands. When a pending condition is found, the condition is indicated in the
UCB of the device. After the specified time elapses, another check is made for the pending
condition. If the condition is still pending, a message is issued informing the operator what
condition is pending and what operator action is required.

Establishing a Time Interval
I

The IBM-supplied CSECT IGFINTVL provides a time interval of 3 minutes. If the interval is
not changed or is incorrectly modified, an interval of 3 minutes is assumed.

To change the time interval, specify the desired interval in a modification of the CSECT
IGFINTVL as indicated in Figure 15.

//MODIFY
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

JOB
EXEC
DD
DD
DD
NAME
VERIFY
REP

MSGLEVEL=(1,1)
PGM=AMASPZAP
SYSOUT=A
DSNAME=SYS1.LPALIB,DISP=OLD
*
IGFDIO IGFINTVL
0000 FOFOFOF3
0000 FOFOFXFX

Figure 15. Changing the Missing Interruption Handler Time Interval

In the REP statement in Figure 15, FXFX represents the time interval, and must be
replaced within the range FOFI to F9F9. If FOFO is specified, the time interval defaults to 3
minutes.

If a new time interval is specified, it does not take effect immediately. The new time
interval becomes effective only after the next IPL of the system, and only if the CLP A
parameter is specified at the IPL.

Note: The CSECT IGFINTVL is eight bytes in length, and initially contains the character
string C'00030000', where 3 indicates the time interval.

Adding Code to the Power Warning Feature Support

The Power Warning Feature Support, along with its supporting hardware prevents the loss of
information in real storage at the occurrence of a utility power disturbance. The supporting
hardware must include an Uninterruptable Power Supply to provide alternate power and
equipment to signal the Power Warning Feature Support routines when a disturbance occurs.

The Power Warning Feature Support, after receiving the signal of a power disturbance, and
determining the significance of the disturbance can transfer the contents of real storage to
disk. After utility power is restored, the customer can use the Power Warning Feature Support
'restore' routine to refresh the contents of real storage from disk.

Adding code to the machine check handler appendage •• You can add code that will be executed
after receipt of the signal that indicates that a sustained power disturbance has occurred. Your
code can then permit transfer of real storage to a warn data set or have control returned to the
supervisor. Insert your code in the machine check handler appendage ICFBDFOO.

Adding code to the master scheduler initialization module •• You can add code that will execute
when a warn data set contains an image of real storage and the system operator chooses
FORM during system IPL. Your code will execute just before the warn data sets are erased
and reformatted. Insert your code in the Power Warning Feature Support Initialization module
ICFBIFOO.

MisceUaneous Services 83

'I

. Note: For details on the warn data set, see OS/VS2 System Programming Library: System
Generation Reference, GC26-3792.

Note: Your code must replace instructions, in either of the routines, that are bracketed with
asterisks and specifically identified with comments. Since adding code to the Power Warning
Feature Support requires considerable programming skill, before attempting any addition you
should carefully examine the complexities involved.

Writing Code for the Machine Check Handler Appendage

You can insert code which will be executed when the Power Warning Feature Support is
entered due to a power warning interrupt that would normally cause the transfer of real
storage to the warn data set. After your code executes you can either cause control to be
transferred to the dump routine or have control returned to the machine check handler for the
system to continue processing.

As shown in Figure 16, the machine check handler appendage consists of three parts: 1) the
warning appendage, 2) your code, and 3) the dump routine.

The warning appendage routine, after a power interruption, receives control from the
system's machine check handler. This warning appendage monitors the power interruption
during the time delay you specified in the CTRLPROG macro instruction at system generation.
If a machine check occurs during the time delay, the remainder of the time delay is canceled.

Normally your code receives control at the end of the time delay, assuming the power
interruption is still present. If the utility power returns before the expiration of the time delay,
control returns to the supervisor, via the machine check handler.

The dump routine transfers the contents of real storage to a warn data set. After execution
of the dump routine, the system enters a wait state.

To include you code:

• Obtain the source code for ICFBDFOO.
• Replace the code that is bracketed with asterisks with your code.
• Reassemble the modified ICFBDFOO.
• Re-linkedit the nucleus data set SYSl.NUCLEUS (IEANUC01), replacing the old

ICFBDFOO, with your modified one.
• Re-IPL your system.

84 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

I •
I

Machine Check New PSW

Machine Check
, r I nterrupt Hand ler

Machine Check Handler Appendage
(lCFBDFOO)

r---Warning-- - - - -- - ~ - - - - -- -- --,

I Appendage... ,.

I
I
I
I
I
I
I
I
I
I

Check environment
and time delay

I

Your Code

Return Code 4 •

Return Code 0 _

Dump Routine

Write real storage
to a warn data set

I
System Wait State

• Code X'026' if successful

• Code X'027' if not successful

I .
L _____________ . - __ J
Figure 16. Logical Placement of Your Code in the Machine Check Handler Appendage

Coding Considerations

At entry to your code, Register 9 addresses the PWF Communication area, Register 14
contains the return address, and Register 15 contains the address of your first instruction.
Your code must save and restore all the general registers except register 15, prior to the exit
from your code. You must also restore all control registers and all real storage outside of your
inserted code. Register 15 must be sd to 0 if you wish real storage to be transferred to a warn
data set, or be set to 4 if you wish to resume system operations with all power warning
interrupts disabled~

Your code will be entered:

• Key zero.
• Disabled for all interrupts.
• In supervisor state.

Your code must not:

• Use supervisor services.
• Contain Address Constants A-type or V-type since your code may be relocated.

Note: With a multiprocessing system, your program will be executed by only one CPU.

Miscellaneous Services 85

Writing Code for the Master Scheduler Initialization Routine

You can write a routine that will execute, when there is a real storage image on a warn data
set, just before warn data sets are erased and reformatted.

As shown in Figure 17, during IPL, if the warn data set contains information from real
storage, the system operator can choose to respond either REST or FORM. REST will cause
real storage to be refreshed with the contents of the warn data set. FORM will cause a
transfer of control to your code; after your code returns control, the warn data sets will be
erased and reformatted by the Power Warning Feature Support. If you have not inserted any
code, FORM will immediately cause the warn data set to be erased and reformatted.

To include you code:

1. Obtain the source code for ICFBIFOO.

2. Replace the code bracketed with asterisks, with your code.

3. Reassemble the modified ICFBIFOO.

4. Inserted your modified ICFBIFOO as follows:

• If you have not generated your system -- replace the old ICFBIFOO in the
SYSl.AOSCE data set on the distribution libraries with your modified ICFBIFOO and
generate your system.

• If you have generated your system -- re-linkedit your modified ICFBIFOO found in
SYS I.AOSCE with the master scheduler initialization module found in SYSI.LINKLIB
in the system library. The master scheduler initialization module is IEEMB860 for
MVS.

Master Scheduler Initialization Routine

IPL ,------­ ------,
I
I
I

~-'--------, I
Determine that a warn
data set contai ns an

I
I
I

REST

image of real storage.

L ________ ---,
Restore I

ICFBDE99 Routine I
Refresh real storage I
from warn data set

I

FORM

I
I
I
I
I
I
I
I

L __ __ J
System Wait State

• Restore was successful
Code X'026'

• Restore was not successful
Code X'027'

Return to IPL

I Figure 17. Logical Placement of Your Code in Master Scheduler Initialization Module

86 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Coding Considerations:

At entry to your code: Register 13 addresses the register save area, Register 14 contains the
return address, and Register 1 S contains the address of your first instruction. Register 1 points
to a word that contains the address of the TIOT for the warn data set.

If your code attempts to read information on the warn data set, it should first reference the
control record to get vital information about the data set. The control record is the first record
on logical cylinder 0 on each warn data set. This record indicates if the warn data set contains
information from real storage and indicates its format. The format of the control record is
shown in Figure 18.

When your code gets control the environment is as follows:

• Your code is pageable.
• Your code is transient.
• Your code cannot obtain permanent storage within the region.
• Consoles are available for your code to write to operator.
• Job Scheduler and SYSIN/SYSOUT services are not available.

If your system is an MIS8 or M168 multiprocessor, you must consider that the first address
after the last unused address starts a new cylinder on the warn data set. As shown in Figure
19, addresses 0, 2000K, and SOOOK start new cylinders. An unused address refers to a location
in real storage that is not available because of settings of the console switches.

MisceUaneous Services 87

Control Track Record

This record is located on cylinder 0 on each warn data set.

Size/Bits
Offset Length Name Description

0 (0) 4 ICFCTID This is the identifier of the first word of the control track
record.
It always contains CNTL.

4 (4) 128 ICFCTCF This area contains 128 byte-indicators. One indicator can be
allocated to each of 128 cylinders. (128 cylinders will
accomodate 16 megabytes of real storage.) Each byte indicator
is structured as follows:

00 Indicates no data on this cylinder.
01.. Real storage has been transferred to this cylinder and this

cylinder contains no defecteve tracks.
to Real storage has been transferred to this cylinder, and this

cylinder contains a defective track.
.. xx xxxx Contains the track number of either the defective or spare

track. (The spare track is the last track on the cylinder.)
132(84) 1 ICFCTFLA Status flags.

00 .. 00 .. The data set is formatted, but contains no data.
10 .. 00 .. This data set contains a successful transfer from real storage.
00 .. to .. This data set contains a partial transfer from real storage.
to .. 01.. This data set contains a successful transfer from real storage,

but at least one track was found defective.
.. xx .. xx Reserved. Set to :z;ero .

133(85) 3 Reserved.
136(88) 4 ICFCTTS Track size. Number of bytes in each track.
140(8C) 4 ICFCTAWA The real storage address of the PWF Communication area in

real storage.
144(90) 128 ICFCTBll This area contains eight 16-byte fields. Each 16-byte field

represents a contiguous area of real storage on this data set.
144(90) 16 ICFCTB11 Information concerning 1 st contiguous area of real storage.

4 ICFCTBll Contains the real storage address of the 1 st byte represented by
this field. (In this case, this byte contains O's.)

4 ICFCTB12 Contains the cylinder and track on this data set where this
contiguous real storage begins.

4 ICFCTB13 Contains the real storage address of the last byte represented
by this field.

4 ICFCTB14 Contains the cylinder and track on this data set where this
contiguous real storage ends.

160(AO) 16 ICFCTB21-24 Information concerning 2nd contiguous area of real storage.
176(BO) 16 ICFCTB31-34 Information concerning 3rd contiguous area of real storage.
192(CO) 16 I CFCTB41-44 Information concerning 4th contiguous area of real storage.
208(DO) 16 ICFCTB51-54 Information concerning 5th contiguous area of real storage.
224(EO) 16 ICFCTB61-64 Information concerning 6th contiguous area of real storage.
240(FO) 16 ICFCTB71-74 Information concerning 7th contiguous area of real storage.
256(100) 16 I CFCTB 81-84 Information concerning 8th contiguous area of real storage.
272(1 to) 8 ICFCTST Contains a true reading (binary) of the time-of-day clock when

system was last IPLed: or if after a dump, the time at which
processing of last PLD began.

280(118) 8 ICFCTED Contains a true reading (binary) of time-of-day clock at the
end of the last real storage transfer to the warn data set.

288(120) 4 ICFTTPC Total number of tracks of each cylinder.
292(124) 4 ICFCTRDA The address of this device. This field is set just before entering

the restore routine.

I Figure 18. Control Track Record

88 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Page of GC28-0628-1
Revised May 7, 1976
By TNL: GN28-2740

Physical Real Storage

Storage
configuration
assignments

Address
\ , \ \ \' assignment of

\ \ \ , \ \..Q.:.JOOOK __ _

\ \"
\ \ ' \ '\2000K ~ 3000K

\ '\
\ \, " \.J5~Q!< -.!~OOO~
\ \ \

\ \ _~navailable

1 Megabyte

1 Megabyte

1 Megabyte

1 Megabyte \, ------
\\,-una~~~~ __ 1--------1

1 Megabyte

1 Megabyte

Note: Addresses 1000K to 2000K, and 3000K to 5000K are unused.
The first address after a unused address starts a new cylinder.

Figure 19. Storage Assignments on MP Systems

Limiting User Region Size - IEALIMIT

Warn Data Set

An installation can enforce a region-size limit by writing an exit routine that is invoked once
per step when the initiator is establishing region size. If an installation-written exit routine does
not exist, an IBM-supplied routine receives control.

The installation-written exit routine, which replaces the IBM-supplied routine, must be
named IEALIMIT and must be link-edited into the nucleus. The routine must observe standard
linkage conventions.

Upon entry to the IEALIMIT routine, the register contents are as follows:

Register

Register
Register

o number of bytes requested by the application program for its region (specified explicitly
through the REGION parameter or implicitly through the default JCL value)

1 same as register 0
13 address of standard save area

Register 14 return address
Register 15 entry point address for the IEALIMIT routine

Upon exit from the IEALIMIT routine, the register contents must be as follows:

o number of bytes to be used as the region parameter value Register
Register number of bytes to be used as the limit on all types of requests from subpools 0-127, 251

and 252
Registers 2-13 restored
Registers 14-15 irrelevant

Note: The processing performed by IEALIMIT has no effect on the region size of a step that
executes V=R. Such region sizes may be inspected and modified in the IEFUJV user exit as
described inOS/VS2 System Programming Library: System Management Facilities (SMF).
The IEALIMIT routine may, however, terminate a V =R step by returning in register 1 a
hon-zero value less than that passed to it in register O.

Miscellaneous Services 89

Page of GC28-0628-1
Revised May 7, 1976
By TNL: GN28-2740

If the input register 1 is non-zero when the IBM-supplied IEALIMIT receives control, then
IEALIMIT adds 64K to the contents of register 1 and returns. Register 0 remains unchanged.
The register 1 value is used to limit the total allocation of storage from subpools 0-127, 251,
and 252.

If the IBM -supplied IEALIMIT routine receive.s control and the input register 1 contains a
zero, then IEALIMIT returns a zero in register 1 and no limit is assigned (to a job, a started
program, or a TSO user). No limit is set only when the REGION parameter is not specified
and the default value is zero.

When no limit is set, sufficient space within a region may be obtained via repeated small
GETMAINs 6r via a single large GETMAIN, such that no space remains in the private area
for use by the system. This situation is likely to occur when a variable GETMAIN is issued
which specifies such a large maximum value that most or all of the space remaining in the
private area is allocated to the requestor. Therefore, it is strongly recommended that a region
size be specified on the JOB or EXEC statement, or that the default region size for the job
class not be zero.

After the IEALIMIT routine determines the appropriate limit, it must pass back to
lEA VPRTO, via register 1, a numeric value that represents the imposed limit in bytes. As
noted above, a zero returned in register 1 indicates that a limit is not imposed. The IEALIMIT
routine should pass back, in register 0, a value that is less than that in register 1. Both register
o and 1 should be rounded to a multiple of 4K. IEAVPRTO stores register 0 as the REGION
parameter value and register 1 as the IEALIMIT value for future reference (that is, for use in
processing subsequent GETMAINs as described below).

The REGION parameter value (register 0) should be less than the IEALIMIT value
(register 1) to protect against programs that issue variable-length GETMAINS with very large
maxima, and then do not immediately FREEMAIN part of that space or FREEMAIN such a
small amount that a subsequent GETMAIN (possibly issued by a system service) causes the
job to fail. As an example, suppose that a program issues a variable-length GETMAIN with a

I maximum of 224-1 bytes. If the REGION parameter value is not less than the IEALIMIT
value, alJ the space in the region up to the IEALIMIT value will be allocated, and any
subsequent GETMAIN that cannot be satisfied from free space in an already existing subpool
will cause the job to fail. If however, the REGION parameter value is made less than the
IEALIMIT value, only space up to the REGION parameter value will be allocated for the
GETMAIN. Thus, an amount of space equal to the IEALIMIT value minus the REGION
parameter value will remain for subsequent GETMAIN s.

The REGION parameter value specifies the maximum amount of storage that can be
allocated to a job by any single variable-length GETMAIN request. The IEALIMIT value
specifies the maximum total storage that can be allocated to a job by any combination of
GETMAINs. The relationship between the REGION parameter value and the IEALIMIT value
and their effect upon both fixed-length and variable-length GETMAINs is shown in Figure 20.

90 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Page of GC28-0628-1
Revised May 7, 1976
By TNL: GN28-2740

Type of GETMAIN
Fixed-length:
IEALIMIT value minus currently alloc

space ~ request
IEALIMIT value minus currently alloc

space < request

Results

Satisfied

Rejected

Variable-length: (REGION parm < IEALIMIT or REGION parm > IEALIMIT
and IEALIMIT=O)

REGION parm minus currently alloc
space ~ max

min < REGION parm minus currently
alloc space < max

REGION parm minus currently alloc
space ~ min

Maximum is allocated.

Unallocated amount is allocated.

Minimum is allocated as
long as IEALIMIT is not exceeded (in which case the
request fails unless IEALIMIT=O).

Variable-length: (REGION parm ~ IEALIMIT and IEALIMIT ::F 0)
IEALIMIT minus currently alloc Maximum is allocated.

space ~ max
min < IEALIMIT minus currently alloc

space < max
IEALIMIT minus currently alloc

space ~ min

Unallocated amount is
allocated.
Minimum is allocated as
long as IEALIMIT is not exceeded (in which case the
request fails).

Figure 20. The Effects of IEALIMIT and REGION Values on Various GETMAINs

MisceUaneous Services 90.1

90.2 OS/VS2 System Programming Library: Supervisor (VS2.03.807)

For example, assume that application program A has the following characteristics:

IEALIMIT value l50K
REGION-parameter value lOOK
Currently allocated space 80K

Program A issues the following variable-length GETMAIN requests in the order indicated:

1. Request SK-10K: 10K is allocated; currently allocated space is now 90K. Because the
amount currently allocated (80K) does not exceed the REGION-parameter value (lOOK)
and because the amount unallocated (20K - relative to the REGION-parameter value) is
greater than the maximum amount requested (lOK), the maximum is allocated.

2. Request SK-100K: 10K is allocated; currently allocated space is now lOOK. Because the
amount unallocated (lOK - relative to the REGION-parameter value) is between the
minimum and maximum, the amount unallocated is allocated.

3. Request 40K-100K: 40K is allocated; currently allocated space is now 140K. Because
the amount unallocated (OK - relative to the REGION-parameter value) is less than the
minimum amount requested (40K), the minimum amount is allocated.

4. Request lSK-SOK: the GETMAIN request fails. The amount unallocated (OK - relative
to the REGION-parameter value) is less than the minimum amount requested (lSK). If
the minimum amount were allocated, the currently allocated amount would become
lSSK, which exceeds the IEALIMIT value (lSOK). Therefore, the request fails.

Branch Entering POST
Branch entry to POST provides all the normal ECB/RB POST processing. In general, the
caller must hold the local lock and be in key zero, supervisor state. Upon completion of the
POST process, control is given back to the caller in key zero, supervisor state, with the local
lock held.

The following tables illustrate the POST function and the branch entry points through which
those functions can be performed, input parameters to POST, and output parameters from
POST.

IEAOPTOl IEAOPT02

Local ECB POST X X

Local POST without ECB X X

Cross address space POST Xl

I The local lock does not need to be held for a cross address space
POST at this entry point.

Figure 21. POST Function and Branch Entry Points

Miscellaneous Services 91

Registers IEAOPTOI IEAOPT02

0

1

10 Completion code l Completion code

11 ECB Address2 ECB Address

12 Erret Address3

13 ASCB Address3

14 Return Address Return Address

15 Entry Point Address Entry Point Address

(CVTOPTOl) (CVTOPT02)

1 If POST -without-ECB, contains RB address.
2 If POST -without-ECB, set zero; if local address space POST, insure high-order byte of register is
zero; if cross adCiress space POST, set high-order byte of register to X'BO'.
3 Only necessary when performing cross address space POST.

Figure 22. POST Branch Entry Input

IEAOPTOl l Registers saved/restored - 0-9, 12,2 13,2 14
Registers not saved" - 10-11, 15

IEAOPT02 Registers saved/restored - 0-9, 12-14
Registers not saved - 10, 11, 15

1 If performing a cross address space POST and the local lock is not held, only registers 9 and 14
will be retained; all other register contents will be unpredictable.
2 If performing a cross address space POST, will not be saved and restored; the contents will be
unpredictable.

Figure 23. POST Branch Entry Output

Branch Entering WAIT
Branch entry to WAIT provides all the normal ECB/RB WAIT processing; this function is not
available to Type 1 SVCs or SRBs. The caller must be in key zero, supervisor state, and hold
the local lock. While holding the local lock and before branching to WAIT, the caller must
establish the PSW and register return environment in his RB and TCB, respectively. When
WAIT is invoked, only the local lock should be held by the caller. WAIT will:

• store the ECB/ECBLIST address into the register 1 location of the TCB register save
area, (user data cannot be passed through this fieldl register).

• purge all FRRs.
• release the local lock.
• return control to the dispatcher (control is not returned to the caller even though the

number of events to be waited on have already occurred.

92 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

WAIT can be branch entered without any ECBs identified. This results in the wait count in
the current RB being set to the specified value. The corresponding POSTs-without-ECB
would then activate the RB. Caution must be exercised to insure that the
WAIT -without-ECB always preceeds the POST -without-ECB. Failure to follow this
sequence will result in the RB waiting indefinately.

The parameters for branch entry to WAIT are as follows:

Register

Register

Register

o Contains the WAIT count in the low-order byte. The high-order bit on indicates long-wait
(LONG=YES).
Contains the ECB pointer value. If only one ECB is being waited on, place that ECB
address in register 1. If a list of ECBs is being waited on, place the complimented ECBLIST
address in register 1. If the W AIT-without-ECB function is being requested, set register 1 to
a value of zero.

15 Contains the branch entry address to WAIT (lEA VW AIT) which is obtained from the CVT
(CVTVW AIT).

Miscellaneous Services 93

94 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

~

Part II: Reference - Macro 'Instructions

You can communicate service requests to the control program using a set of macro instructions
provided by IBM. Whereas most of the macro instructions have no restrictions on use by
applications programmers some of the macro instructions should be restricted in use to systems
programmers and installation-approved personnel.

This section describes those Supervisor macro instructions that should be
installation-controlled. Some macro instructions should be totally restricted in use; these are
described fully in this book. Other macro instructions are not restricted in use, but do contain
some parameters that should be restricted; in these cases, only the parameters that should be
restricted are fully described in this book. In all cases, however, the format of the complete
macro instruction is described.

Figure 24 lists all macro instructions described in this book, and indicates which ones are
fully described and which ones are partially described.

Macro Instruction Fully Partially
Described Described

CALLDISP X
CALLRTM X
CIRB X
DSGNL X
EXTRACT X
MODESET X
NIL X
OIL X
PGFIX X
PGFREE X
PURGEDQ X
QEDIT X
RESERVE X
RISGNL X
RPSGNL X
SCHEDULE X
SDUMP X
SETFRR X
SETLOCK X
SPOST X
STAE X
SYNCH X
TESTAUTH X

ATTACH X
DEQ X
ENQ X
ESTAE X
EVENTS X
FREEMAIN X
GETMAIN X
POST X
SETRP X
SPIE X
STATUS X
WTO X
WTOR X

I Figure 24. Macro Instruction Coverage

Part II: Reference - Macro Instructions 95

· The macro instructions are available only when programming in the assembler language, and
are processed by the assembler program using macro definitions supplied by IBM and placed in
the macro library when the system was generated. The processing of the macro instruction by
the assembler program results in a macro expansion, generally consisting of data and
executable instructions in the form of assembler language statements. The data fields are the
parameters to be passed to the requested control program routine; the executable instructions
generally consist of a branch around the data, instructions to load registers, and either a
branch instruction or a supervisor call (SVC) to give control to the proper program. The exact
macro expansion appears as part of the assembler output assembler output listing.

Macro Instruction Forms

When written in the standard form, some of the macro instructions result in instructions that
store into an inline parameter list. The option of storing into an out-of -line parameter list is
provided to allow the use of these macro instructions in a reenterable program. You can
request this option through the use of list and execute forms. When list and execute forms
exist for a macro instruction, their descriptions follow the description of the standard form.

Use the list form of the macro instruction to provide a parameter list to be passed either to
the control program or to a problem program, depending on the macro instruction. The
expansion of the list form contains no executable instructions; therefore registers cannot be
used in the list form.

Use the execute form of the macro instruction in conjunction with one or two parameter
lists established using the list form. The expansion of the execute form provides the executable
instructions required to modify the parameter lists and to pass control to the required program.

The descriptions of the following macro instructions assume that the standard begin, end,
and continue columns are used -- for example, column 1 is assumed as the begin column. To
change the begin, end, and continue columns, code the ICTL instruction to establish the
coding format you wish to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see OS/VS - DOS/VS - VM/370 Assembler Language.

Coding the Macro Instructions

The table appearing near the beginning of each macro instruction indicates how the macro
instruction is to be coded. The table does not attempt to explain the meanings of the
parameters; the parameters are explained following the table.

I Figure 25 presents a sample macro instruction, TEST, and summarizes all the coding
information that is available for it. The table is divided into three columns.

96 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

name

b

~TEST
b

MATH
~HIST

GEOG

,DAT A=data addr

@....---I .. ~ ,LNG=data length

~ ,FMT=HEX
~ ",FMT=DEC

,FMT=BIN

,PASS=value

Figure 25. Sample Macro Instruction

name: symbol. Begin name in column 1.

One or more blanks must precede TEST.

One or more blanks must follow TEST.

data addr: RX-type address, or register (2) - (12).

data length: symbol or decimal digit, with a maximum value of 256.

Default: FMT=HEX

value: symbol, decimal digit, or register (1) or (2) - (12).
Default: P ASS=65

• The first column,@, contains those parameters that are required for that macro
instruction. If a single line appears in that column,@, the parameter on that line is
required and must be coded. If two or more lines appear together, §, the parameter
appearing on one and only one of the lines must be coded.

• The second column,@, contains those parameters ~t are optional for that macro
instruction. If a single line appears in that column,~, the parameter on that line is
optional. If two or more lines appear together,@ .. althOugh the entire parameter is
optional, if you elect to make an entry, one and only one of the lines may be coded.

• The third column,@, provides additional information for coding the macro instruction.
When substitution of a variable is required, the following classifications should be
understood:

symbol: any symbol valid in the assembler language. That is, an alphabetic character followed
by 0-7 alphameric characters, with no special characters and no blanks.

decimal digit: any decimal digit up to the value indicated in the parameter description. If both
symbol and decimal digit are indicated, an absolute expression is also allowed.

register (2) - (12): one of general registers 2 through 12, specified within parentheses,
previously loaded with the right-adjusted value or address indicated in the parameter
description. The unused high-order bits must be set to zero. The register may be designated
symbolically or with an absolute expression.

register (0): general register 0, previously loaded as indicated under register (2) - (12) above.
Designate the register as (0) only.

register (1): general register 1, previously loaded as indicated under register (2) - (12) above.
Designate the register as (1) only.

RX-type address: any address that is valid in an RX-type instruction (for example, LA).

A-type address: any address that may be written in an A-type address constant.

Part II: Reference - Macro Instructions 97

default: a value that is used in default of a specified value, and that is assumed if the parameter
is not coded.

Use the parameters to specify the services and options to be performed, and write them
according to the following general rules:

• If the selected parameter is written in all capital letters (for example, STEP, DUMP, or
RET=USE), code the parameter exactly as shown.

• If the selected parameter is written in italics (for example, value or comp code),
substitute the indicated value, address, or name.

• If the selected parameter is a combination of capital letters and italics separated by an
equal sign (for example, EP=entry point), code the capital letters and equal sign as
shown, and then make the indicated substitution for the italics.

• Read the. table from top to bottom.

• Code commas and parentheses exactly as shown.

• Positional parameters (parameters without equal signs) appear first and must be coded in
the order shown. Keyword parameters (parameters with equal signs) may be coded in
any order.

• If a parameter is selected, read column 3 before proceeding to the next parameter.
Column 3 will often contain notes pertaining to restrictions on coding the parameter.

Continuation Lines

You can continue the parameter field of a macro instruction on one or more additional lines
according to the following rules:

1. Enter a continuation character (not blank, and not part of the parameter coding) in
column 72 of the line.

2. Continue the parameter field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the parameter
field through column 71, with no blanks, and continue in column 16 of the next line; or
truncate the parameter field by a comma, where a comma normally falls, with at least one
blank before column 71, and then continue in column 16 of the next line. Figure 26 shows an
example of each method.

NAME 1 OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAX
ND5,OPERAND6 THIS IS ONE WAY

NAME 2 OP2 OPERAND1,OPERAND2, THIS IS ANOTHER X
OPERAND3 , WAY X
OPERAND4

I Figure 26. Continuation Coding ,

98 OS/VS2 System Programming Library.: Supervisor (VS2 Release 3.7)

ATTACH - Create a New Task

The ATTACH macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the JSTCB, SM, SVAREA, KEY, DISP, JSCB, TID,
NSHSPV, and NSHSPL parameters. These parameters are restricted in use and should only be
used with tasks in supervisor mode, having a system protection key. If they are used with other
tasks, the default values are used.

The syntax of the complete ATTACH macro instruction is shown below. However, only the
explanation of the restricted parameters is presented. Explanation of the other parameters can
be found in OS/VS2 Supervisor Services and Macro Instructions.

The standard form of the ATTACH macro instruction is written as follows:

ATfACH - Create a New Task ·99

name

b

ATTACH

b

EP=entry name
EPLOC=entry name addr
DE=list entry addr

,DCB=deb addr

,LPMOD=limit prior nmbr

,DPMOD=disp prior nmbr

,PARAM=(addr)
,PARAM=(addr), VL= 1

,ECB=eeb addr

,ETXR=exit rtn addr

,GSPV=subpoo! nmbr
,GSPL=subpoo! list addr

,SHSPV =subpoo! nmbr
,SHSPL=subpoo! list addr ,

,SZERO=YES
,SZERO=NO

,t ASKLIB =deb addr

,ST AI=(exit addr)
,STAI=(exit addr,parm addr)
,ESTAI=(exit addr)
,ESTAI=(exit addr,parm addr)

,PURGE=QUIESCE
,PURGE=NONE
,PURGE=HALT

,ASYNCH=NO
,ASYNCH=YES

,TERM=NO
,TERM=YES

,JSTCB=NO
,JSTCB=YES

,SM=PROB
,SM=SUPV

,SV AREA= YES
,SVAREA=NO

,KEY=PROP
,KEY=ZERO

,DISP=YES
,DISP=NO

,JSCB=jseb addr

,TID=task id

,NSHSPV=subpoo! nmbr
,NSHSPL=subpoo! list- addr

,RELATED=va!ue

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH.

One or more blanks must follow ATTACH.

entry name: symbol.
entry n(,lme addr: A-type address, or register (2) - (12).
list entry addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

limit prior nmbr: symbol, decimal digit, or register (2) - (12).

disp prior nmbr: symbol, decimal digit, or register (2) - (12).

addr: A-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For
example, PARAM=(addr,addr,addr)

eeb addr: A-type address, or register (2) - (12).

exit rtn addr: A-type address, or 'register (2) - (12).

subpoolnmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).

Default: SZERO= YES

deb addr: A-type address, or register (2) - (12).

exit addr: A-type address, or register (2) - (12).
parm addr: A-type address, or register (2) - (12).

Note: PURGE may be specified only if ST AI or ESTAI is specified.
Default for STAI: PURGE=QUIESCE
Default for EST AI: PURGE=NONE

Note: ASYNCH may be coded only if ST AI or EST AI is specified.
Default for STAI: ASYNCH=NO
Default for ESTAI: ASYNCH=YES

Note: TERM may be specified only if EST AI is specified.
Default:· TERM=NO

Default: JSTCB=NO

Default: SM=PROB

Default: SV AREA= YES

Default: KEY=PROP

Default: DISP=YES

jseb addr: A-type address, or register (2) - (12).

task id: decimal digits 0-255, or register (2) - (12).
Default: TID=O

subpoo! nmbr: symbol, decimal digit, or register (2) - (12).
subpoo!list addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

100 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

The parameters restricted in use are explained below. The other parameters are explained in
OS/VS2 Supervisor Services and Macro Instructions.

,JSTCB=NO
,JSTCB=YES

specifies whether the attached task is a new job step (YES) or a task in the present job step
(NO). If YES is specified, the address of the TCB of the newly created task is placed in the
TCBJSTCB field of the TCB; if NO is specified, the TCBJSTCB field of the task using
ATTACH is propagated to the new task.

,SM=PROB
,SM=SUPV

specifies that the system is to run in problem program mode (PROB) or in supervisor mode
(SUPV) when executing the attached task.

,SV AREA = YES
,SVAREA=NO

specifies whether a save area is needed for the attaching task. If YES is specified, the
ATTACH routine will obtain a 72-byte save area. If both attaching and attached task share
subpool zero, the save area is obtained there; otherwise, it is obtained from a new 4K-byte
block.

,KEY = PROP
,KEY = ZERO

specifies whether the protection key of the newly created task should be zero (ZERO) or
copied from the TCBPKF field of the TCB for the task using ATTACH (PROP).

,DISP = YES
,DISP=NO

specifies whether the subtask is to be dispatchable (YES) or nondispatchable (NO). (Note:
If DISP=NO is specified, the attaching task must use the STATUS macro instruction to
reset the TCBANDSP nondispatchability bit to 0, before the ATTACH processing can be
completed for the new task.)

,JSCB = jscb addr
specifies the address of the job step control block. If specified, the JSCB is used for the
new task. Otherwise, the JSCB of the attaching task is also used for the new task.

,TID = task id
specifies the task identifier to be placed in the TCBTID field of the attached task.

,NSHSPV = subpool nmbr
,NSHSPL = subpool list addr

specifies the virtual storage subpool number 236 or 237, or the address of a list of virtual
storage subpool numbers 236 and 237. The subpools specified will not be shared with the
subtask.

If NSHSPL is specified, the first byte of the list contains the number of bytes remaining in
the list; each of the following bytes contains a virtual storage subpool number.

,RELATED = value
specifies information used to self -document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

ATTACH - Create a New Task 101

The parameter may be used, for example, as follows:

GET1 GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE')

FREE1 FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04
08

Meaning

Successful completion.
ATTACH was issued in a ST AE exit; processing not completed.
Insufficient storage available for control block for ST AI/EST AI. request; processing not
completed.

OC Invalid exit routine address or invalid parameter list address specified with ST AI
parameter; processing not completed.

14

18

Authorized task specifying JSTCB= YES was not itself a job step task; processing not
completed.
Attempt to create a new subtask would result in both job step tasks and non-job step
tasks being subtasks of current task; processing not completed.

Note: For any return code other than 00, register 1 is set to zero upon return.

Note: The program manager processing for ATTACH is performed under the new subtask,
after control has been returned to the originating task. Therefore, it is possible for the
originating task to obtain return code 00, and still not have the subtask successfully created
(for example, if the entry name could not be found by the program manager). In such cases,
the new subtask is abnormally terminated.

Ignored Parameters

The following parameters, available with Release 1 of OS/VS2, are ignored if coded in MVS:

GIVEJPQ= YES
GIVEJPQ=NO

. TSLOGON=YES
TSLOGON=NO
LSQA=n

Example 1

Operation: Attach program SYSPROGM, which will run with protection key ° and in
supervisor mode. Subpool 0 is not to be shared, and the new task is not to have a savearea
provided.

ATTACH EP=SYSPROGM,KEY=ZERO,SM=SUPV,SZERO=NO,SVAREA=NO'

Example 2

Operation: Attach as a new job step the program name addressed in register 7. The new task
is to run in problem program mode, a savearea is to be provided, a job step control block is
provided, subpool ° is not to be shared, a task library DCB is provided, and the new task is to
be nondispatchable.

ATTACH EPLOC=(7),SM=PROB,JSTCB=YES,SVAREA=YES,SZERO=NO,
JSCB=(S),DISP=NO,TASKLIB=(8)

102 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

CALLDISP - Force Dispatcher Entry

The CALLDISP macro instruction expands into an SVC that results in the caller's status being
saved in the current TCB/RB, then the dispatcher is entered. The dispatcher then searches for
the highest priority ready work to dispatch. When this task is redispatched, control is returned
to the next sequential instruction.

The CALLDISP macro instruction is written as follows:

name

t>

CALLDISP

t>

name: symbol. Begin name in column 1.

One or more blanks must precede CALLDISP.

One or more blanks must follow CALLDISP.

Note: CALLDISP contains no optional or required parameters.

Example 1

Operation: Pass control to a higher priority ready task.

CALLDISP - Force Dispatcher Entry 103

CALLRTM - Call Recovery ITermination Manager

The CALLR TM macro instruction is used to direct the services of the recovery/termination
manager to a task or address space other than itself or its callers. The recovery / termination
manager selects the appropriate recovery or termination process according to the status of the
system and the requests of its invokers.

CALLR TM may be used only by key 0 supervisor state routines. After execution of the
macro instruction, control is returned to the caller.

The CALLRTM macro instruction is written as follows:

name

b

CALLRTM

b

TYPE=ABTERM
TYPE=MEMTERM

. ,COMPCOD=comp code

,ASID=ASID addr

,TCB =tcb addr

,DUMP=YES
,DUMP=NO

,STEP=NO
,STEP=YES

,DUMPOPT=parm list addr

name: symbol. Begin name in column 1.

One or more blanks must precede CALLR TM.

One or more blanks must follow CALLRTM.

comp code: symbol, decimal digit, or register (2) - (12) .

ASID addr: decimal digits 0 - 32,765 or register (2) - (15).

tcbaddr: 0, or register (0) or (2) - (12).
Note: This parameter may only be specified with TYPE=ABTERM.

Default: DUMP=YES
Note: This parameter may only be specified with TYPE=ABTERM.

Default: STEP=NO
Note: This parameter may only be specified with TYPE=ABTERM.

parm list addr: register (3) - (15).

The parameters are explained below:

TYPE = ABTERM
TYPE = MEMTERM

specifies that the services of the recovery/termination manager is being directed towards
another task (ABTERM) or that an address space is to be terminated (MEMTERM). For
MEMTERM, all recovery processing in the address space is circumvented.

,COMPCOD = comp code
specifies the completion code associated with the abnormal termination. This parameter can
be specified as a hexadecimal code (x'80A'), a decimal code (2058), or a register containing
a hexadecimal code; in all cases, the result is hexadecimal.

,ASID=ASID addr
specifies the address space identifier of the address space to be terminated (for
MEMTERM) . or the address space identifier containing the TCB of the task to be
terminated (for ABTERM).

,TCB = tcb addr
specifies the TCB address of the task to be terminated.

104 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

,DUMP = YES
,DUMP=NO

specifies that a dump is (YES) or is not "(NO) to be taken. If the DUMP OPT parameter is
not also specified, the contents of the dump is defined by the / /SYSABEND or
/ /SYSDUMP DD statement and the system or user defined defaults.

,STEP=NO
,STEP = YES

specifies that the entire job step is (YES) or is not (NO) to be abnormally terminated.

,DUMPOPT = parm list addr
specifies the address of a parameter list valid for the SNAP macro instruction. The
parameter list is used to produce a tailored dump, and may be created by using the list form
of the SNAP macro instruction, or a compatible list 'may be created. The TCB and DCB
options available on SNAP will be ignored if they appear in the parameter list; the TCB
used will be for the task that received ABEND, the DCB used will be provided by the
ABDUMP routine. If a / /SYSABEND or / /SYSDUMP DD statement is not provided, the
DUMPOPT parameter is ignored.

Example 1

Operation: Terminate the current address space with a completion code of 123.

CALLRTM TYPE=MEMTERM,COMPCOD=123,ASID=Q

Example 2

Operation: Schedule ABTERM of the TCB whose address is specified in register 8. The
ABTERM of this TCB will take place in the address space identified by the ASID specified in
register 5, and will have a completion code of 123.

CALLRTM TYPE=ABTERM,COMPCOD=123,ASID=(5),TCB=(8)

CALLRTM - Call Recovery/Termination Manager 105

CIRB - Create Interruption Request Block

The CIRB macro instruction is included in SYS 1.MACLIB and must be included in the system
at system generation time if the macro instruction is to be used. The issuing of this macro
instruction causes a supervisor routine (called the exit effector routine) to create an

I interruption request block (IRB). In addition, other parameters of this macro instruction may
specify the building of a register save area and/or a work area to contain interruption queue
elements, which are used by supervisor routines in the scheduling of the execution of user exit
routines.

The CIRB macro instruction is written as follows:

name

b

CIRB

b

EP=entry name addr

,KEY=PP
,KEY=SUPR

,MODE=PP
,MODE=SUPR

,SVAREA=NO
,SVAREA=YES

,RETIQE= YES
,RETIQE=NO

,STAB=(DYN)

,WKAREA=workarea size

,BRANCH=NO
,BRANCH= YES

,RETRN=NO
,RETRN=YES

name: symbol. Begin name in column 1.

One or more blanks must precede CIRB.

One or more blanks must follow CIRB.

entry name addr: RX-type address, or register (0) or (2) - (12).

Default: KEY =PP

Default: MODE=PP

Default: SVAREA=NO

Default: RETIQE= YES

workarea size: Decimal digit, or register (2) - (12).
Default: zero

Default: BRANCH=NO

Default: RETRN=NO
Note: This parameter has meaning only if RETIQE=NO is specfied
above.

The parameters are explained below:

EP = entry name addr
specifies the address of the entry name of the user's asynchronous exit routine.

,KEY=PP
,KEY=SUPR

specifies whether the asynchronous exit routine will operate with a key of zero (SUPR) or
with a key obtained from the TCB of the task issuing the CIRB macro instruction (PP).

,MODE=PP
,MODE = SUPR

specifies whether the asynchronous exit routine will be executed in problem program (PP)
or supervisor (SUPR) mode.

106 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

,SVAREA=NO
,SV AREA = YES

specifies whether a 72-byte. register save area is to be obtained from the virtual storage
assigned to the problem program. If a save area is requested, CIRB places the save area
address in the IRB. The address of this area is passed to the user routine via register 13.

,RETIQE = YES
,RETIQE=NO

specifies whether the associated queue elements are request queue elements (YES) or
interruption queue elements (NO).

,STAB = (DYN)
specifies that the IRB (including the work area) will be freed by EXIT.

Branch En·try Interface

For BRANCH= YES, the branch entry interface is as follows:

• The caller must be in supervisor state, key 0, and own the local lock and no locks above the
SALLOC in the locking hierarchy.

• The caller must pass a TCB address in register 4 to be used by GETMAIN when allocating
space for the IRB and for the problem program save area. Also, if a problem key is
specified in the KEY = parameter of the CIRB, the TCBPKF field of that TCB will be
used.

• Upon return, register 1 will contain the address of the created IRB, registers 0, and 2-14
will be unchanged, and register 15 will be unpredictable.

• Control will be returned in supervisor state, key 0, with the same locks held as on entry.

Note: If the STAB parameter is omitted from the CIRB macro instruction, the IRB will
remain available for later use by. the task issuing the macro.

,WKAREA = workarea size
specifies the size, in doublewords, of the work area to be included in the IRB. The area may
be used to build IQE's. The maximum size is 255 ~ouble words.

,BRANCH = NO
,BRANCH = YES

specifies that branch linkage (YES) or SVC linkage (NO) to CIRB will be provided.

,RETRN=NO
,RETRN=YES

specifies that the IQE will (YES) or will not (NO) be returned to the available queue when
the asynchronous exit terminates.

Ignored Parameters

The following parameters, available with Release 1 of OS/VS2, are ignored if coded in MVS:

TYPE = IRB
ENABLE = YES
STAB=(RE)

The following parameters are no longer acceptable:

TYPE = TIRB
ENABLE = NO

CIRB - Create Interruption Request Block 107

Example 1

Operation: Create an IRB to be used in scheduling an asynchronous exit. The exit will be
scheduled via the IQE interface to Stage 2 Exit Effector, and will receive control in the
supervisor state. The IRB will be freed when it terminates. The exit will receive control at the
IQERTN label.

CIRB EP=IQERTN,MODE=SUPR,RETIQE=NO,STAB=(DYN),BRANCH=NO

Example 2

Operation: Create an IRB to be used in scheduling an asynchronous exit. The RQE interface
to Stage 2 Exit Effector will be used to schedule the routine. The exit will get control at the
RQETEST label.

CIRB EP=RQETEST,KEY=SUPR,MODE=SUPR,STAB=(DYN),BRANCH=NO

108 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

DEQ - Release a Serially Reusable Resource

The DEQ macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the RMC, GENERIC, TCB, and UCB parameters. These
parameters are restricted in use and should only be used with tasks that are authorized. The

I ~ CB p~rameter is used to release a device that was reserved with a RESERVE macro
mstructlon.

The syntax of the complete DEQ macro instruction is shown below. However, only the
explanation of the restricted parameters is presented. Explanation of the other parameters can
be found in OS/VS2 Supervisor Services and Macro Instructions.

The standard form of the DEQ macro instruction is written as follows:

name

b

DEQ

b

qname addr

,mame addr

,mame length

,
,STEP
,SYSTEM
,SYSTEMS

,var1234

,RET=HAVE
.RET=NONE

,RMC=NONE
,RMC=STEP
,GENERIC=NO
,GENERIC=YES

,TCB=teb addr

,UCB=ueb addr

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

qname addr: A-type address, or register (2) - (12).

mame addr: A-type address, or register (2) - (12).

mame length: symbol, decimal digit, or register (2) - (12).
Note: mame length must coded if a register is specified for mame
addr. .

Default: STEP

var1234: The preceding 4 parameters may be repeated up to 65,535
times.

Default: RMC=NONE
Default: GENERIC=NO
Note: If GENERIC= YES is specified, you must also specify
RET =HA VE above.

teb addr: A-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above.

ueb addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters restricted in use are explained below. The other parameters are explained in
OS/VS2 Supervisor Services and Macro Instructions.

,RMC=NONE
,RMC = STEP
,GENERIC = NO
,GENERIC = YES

specifies optional parameters available to the system programmer:

DEQ - Release a Serially Reusable Resource 109

,I

RMC specifies that the reset-must-complete function is not to be used (NONE) or that the
requesting task is to release the resources and terminate the must complete function
(STEP). The NONE or STEP subparameter must agree with the subparameter specified in
the SMC parameter of the corresponding ENQ macro instruction.

GENERIC specifies whether or not (YES or NO) all queue elements for the task under the
specified. major name will be de queued, regardless of whether they have control of the
resource.

,TCB = tcb addr
specifies the address of a fullword on a fullword boundary that contains the address of a
TCB on whose behalf the DEQ is. to be done. The caller (not the directed task) will be
abnormally terminated if the RET· parameter is omitted and an attempt is made to DEQ a
resource not requested or not owned by the directed task.

,UCB=ucb addr
specifies the address of a fullword that contains the address of a DCB for a reserved device
that is now being released.

Return codes are provided by the control program only if RET=HAVE is designated. If all
of the return codes for the resources named in DEQ are 0 register 15 contains O. If any of the
return codes are not 0 register 15 contains the address of a virtual storage area containing the
return codes as shown in Figure 27.

Address
Returned in
Register 15

12

24

36
A.

2 3

.......

Return
Codes

!
RC 1

RC 2

RC 3

4 12

<

j

-

C~I ~-"'~I RCN TID
Figure 27. Return Code Area Used by DEQ

110 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the DEQ macro instruction. The return codes are
shown below.

Hexadecimal
Code
o
4

8

Example 1

Meaning
The resource has been released.
The resource has been requested for the task, but the task has not been assigned
control. The task is not removed from the wait condition. (This return code could
result if DEQ is issued within an exit routine which was given control because of an
interruption.)
Control of the resource has not been requested by the active task, or the resource has
already been released.

Operation: Unconditionally release control of the resource in Example 1 of ENQ, and reset
the 'must-complete' state.

DEQ (MAJOR1,MINOR1,8,STEP),RMC=STEP

Example 2

Operation: Conditionally release control of the resource in Example 2 of ENQ.

DEQ (MAJOR2,MINOR2,4,SYSTEM),TCB=(R2),RET=HAVE

Example 3

Operation: Unconditionally release control of the resource (device) in Example 1 of
RESERVE.

DEQ (MAJOR3,MINOR3"SYSTEMS),UCB=(R3)

DEQ - Release a SeriaUy Reusable Resource III

DEQ (List Form)

The list form of the DEQ macro instruction is written as follows:

name

b

DEQ

b

qname addr

,rname addr

,rname length

,
,STEP
,SYSTEM
,SYSTEMS

, var1234

,RET=HAVE
,RET=NONE

,RMC=NONE
,RMC=STEP
,GENERIC=NO
,GENERIC= YES

,TCB=teb addr

,UCB=ueb addr

,RELA TED=value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

qname addr: A-type address.

rname addr: A-type address.

rname length: symbol or decimal digit.

Default: STEP

var1234: The preceding 4 parameters may be repeated up t065,535
times.

Default: RET=NONE

Default: RMC=NONE
Default: GENERIC=NO
Note: If GENERIC= YES is specified, you must also specify
RET=HAVE above.

teb addr: A-type address.
Note: TCB cannot be specified with RMC above, and must be
specified on Ithe list form if used on the execute form.

ueb addr: A-type address.

value: any valid macro keyword specification.

The parameters restricted in use are explained under the standard form of the DEQ macro
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro
Instructions.

112 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

DEQ (Execute Form)

The execute form of the DEQ macro instruction is written as follows:

name

t;

DEQ

t;

qname addr

,rname addr

,rname length

,STEP
,SYSTEM
,SYSTEMS

,var1234

,RET=HAVE
,RET=NONE

,RMC=NONE
,RMC=STEP
,GENERIC=NO
,GENERIC=YES

,TCB=teb addr

,UCB=ueb addr

,RELA TED=value

,MF=(E ,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

Note: (and) are the beginning and end of a parameter list. The
entire list is optional. If nothing in the list is desired, then (,), and
all parameters between (and) should not be specified. If something
in the list is desired, then (,), and all parameters in the list should
be specified as indicated at the left.

qname addr: RX-type address, or register (2) - (12).

rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digit, or register (2) - (12).

var1234: The preceding 4 parameters may be repeated up to 65,535
times.

Note: See note opposite (above.

Note: If GENERIC= YES is specified, you must also specify
RET=HAVE above.

teb addr: RX-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above, and must be
specified on the execute form if used on the list form.

ueb addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

etrl addr: RX-type address, or register (1) or (2) - (12).

The parameters restricted in use are explained under the standard form of the DEQ macro
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro
Instructions.

DEQ (Execute Form) 113

DSGNL - Issue Direct Signal

The DSGNL macro instruction uses the signal processor (SIGP) instruction to modify or sense
the physical state of one of the CPUs in a tightly coupled multiprocessing system. Ten of the
twelve SIGP hardware functions are defined as direct services and are accessible via the
DSGNL macro instruction. The other two SIGP functions are accessible via the RISGNL and
RPSGNL macro instructions.

The DSGNL macro instruction is written as follows:

name

1:>

DSGNL

1:>

SENSE
START
STOP
RESTART
IPR
PR
SSS
IMPL
ICPUR
CPUR
(0)

,CPU =PCCA addr

name: symbol. Begin name in column 1.

One or more blanks must precede DSGNL.

One or more blanks must follow DSGNL.

PCCA addr: RX-type address, or register 0).

The parameters are explained below:

SENSE
START
STOP
RESTART
IPR
PR
SSS
IMPL
ICPUR
CPUR
(0)

specifies the action to be performed. If (0) is specified, the code indi~ating the desired
function has already been loaded into bits 24-31 of register O. The actions and codes are:

SENSE
START
STOP
RESTART
IPR
PR
SSS
IMPL
ICPUR
CPUR

Code
01
04
05
06
07
08
09
OA
OB
OC

Action
State of specified CPU is to be sensed
Start function
Stop function
Restart function
Initial program reset function
Program reset function
Stop and store status function
Initial microprogram load function
Initial CPU reset function
CPU reset function

Note: Codes OA, OB, and OCare only valid on a Model 168.

114 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

,CPU=PCCA addr
specifies the address of the physical configuration communication area (PCCA) of the CPU
on which the function is to be executed.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code
00
04

08
12
16

Meaning
Function successfully initiated, but not necessarily completed.
Function not completed because access path to the addressed processor was busy or
the addressed processor was in a state where it could not accept and respond to the
function code.
Function unsuccessful. Status returned in register O.
Specified CPU is either not installed, not configured into the system, or powered off.
CPU is a uniprocessor and does not have signal processor sending and receiving
capabilitites.

With a r~turn code of 8, register 0 contains:

Bits
o
1-23
24
25
26
27
28
29
30
31

Example 1

Meaning
Equipment check
Reserved
External call pending
Stopped
Operator intervening
Check stop
Not ready
Reserved
Invalid function
Receiver check

Operation: The state of the CPU whose PCCA is located at PCCA is requested. If the CPU
is executing or is in a wait state, a return code of 0 in register 15 will be provided; otherwise,
a return code of 8 with status indicators in register 0 will be returned.

DSGNL SENSE,CPU=PCCA

Example 2

Operation: The CPU whose PCCA address is in register 1 will be placed in the STOP state.

DSGNL STOP,CPU=(1)

DSGNL - Issue Direct Signal 115

ENQ - Request Control of a Serially Reusable Resource

The ENQ macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the SMC, ECB, and TCB parameters. These parameters are
restricted in use and should only be used with tasks that are authorized.

The syntax of the complete ENQ macro instruction is shown below. However, only the
explanation of the restricted parameters is presented. Explanation of the other parameters can
be found in OS/VS2 Supervisor Services and Macro Instructions.

The standard form of the ENQ macro instruction is written as follows:

name

b

ENQ

b

qname addr

,rname addr

,
,E
,S

,rname length

,
,STEP
,SYSTEM
,SYSTEMS

, var12345

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,SMC=NONE
,SMC=STEP
,ECB=ecb addr
,TCB =tcb addr

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname addr: A-type address, or register (2) - (12).

mame addr: A-type address, or register (2) - (12).

Default: E

mame length: symbol, decimal digit, or register (2) - (12).
Default: assembled length of mame
Note: mame length must be coded if a register is specified for
mame addr.

Default: STEP

var12345: The preceding 5 parameters may be repeated up to
65,535 times.

Default: RET=NONE

ecb addr: A-type address, or register (2) - (12).
tcb addr: A-type address, or register (2) - (12).
Default: SMC=NONE
Note: ECB cannot be specified with RET above.
Note: TCB cannot be specified with RET=HAVE or RET=NONE
above.

value: any valid macro keyword specification.

The parameters restricted in use are explained below. The other parameters are explained in
OS/VS2 Supervisor Services and Macro Instructions.

116 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

,SMC = NONE
,SMC=STEP
,ECB = ecb addr
,TCB = tcb addr

specifies optional parameters available to the system programmer:

SMC specifies that the set-must-complete function is not to be used (NONE) or that it is to
place other tasks for the step nondispatc,hable until the requesting task has completed its
operations on the resource (STEP).

ECB specifies the address of an ECB, and conditionally requests all of the resources named
in the macro instruction.

TCB specifies the address of a fullword on a fullword boundary that contains the address of
a TCB on whose behalf the ENQ is to be done.

Return codes are provided by the control program only if you specify RET = TEST,
RET=USE, RET=CHNG, or RET = HAVE; otherwise return of the task to the active
condition indicates that control of the resource has been assigned to the task. If all return
codes for the resources named in the ENQ macro instruction are 0, register 15 contains 0. If
any of the return codes are not 0, register 15 contains the address of a storage area containing

I the return codes, as shown in Figure 28.

Address
Returned in
Register 15

12

24

36
,..

2

--

I Figure 28. Return Code Area Used by ENQ

3

Return
Codes

!
RC 1

RC 2

RC 3

4

.....

12

< <
Return codes are
12 bytes apart,
starting 3 bytes
from the address

(C in register 15.

<

ENQ - Request Control of a Serially Reusable Resource 117

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the ENQ macro instruction. The return codes are
shown below.

Hexadecimal
Code
o

4

8

20

Example 1

Meaning
For RET=TEST, the resource was immediately available.
For RET=USE, RET=HAVE, or ECB=, control of the resource has been assigned to
the active task.
For RET=CHNG, the status of the resource has been changed to exclusive.
For RET=TEST or RET=USE, the resource is not immediately available.
For RET=CHNG, the status cannot be changed to shared.
For ECB=, the ECB will be posted when available.
For RET=TEST, RET=USE, RET=HAVE, or ECB=, a previous request for control
of the same resource has been made for the same task. Task has control of resource.
For RET=CHNG, the resource has not been queued.
If bit 3 is on - shared control of resource; if bit 3 is off - exclusive control.
A previous request for control of the same resource has been made for the same task.
Task does not have control of resource.

Operation: Unconditionally request exclusive control of a serially reusable resource that is
known only within the address space (STEP), and place other tasks for the step
nondispatchable until the requesting task has completed its operations, on the resource.

ENQ (MAJOR1,MINOR1,E,8,STEP),SMC=STEP

Example 2

Operation: Conditionally request control of a serially reusable resource in behalf of another
task. The resource is known by more than one address space, and is only wanted if
immediately available.

ENQ (MAJOR2,MINOR2,S,4,SYSTEM),TCB=(R2),RET=USE

118 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

ENQ (List Form)

The list form of the ENQ macro instruction is written as follows:

name

b

ENQ

b

qname addr

,rname addr

,
,E
,S

,mame length

,
,STEP
,SYSTEM
,SYSTEMS

, var12345

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,SMC=NONE
,SMC=STEP
,ECB=ecb addr
,TCB=O

,RELATED=value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname addr: A-type address.

mame addr: A.:.type address.

Default: E

rname length: symbol or decimal digit.
Default: assembled length of rname

Default: STEP

var12345: The preceding 5 parameters may be repeated up to
65,535 times.

Default; RET=NONE

ecb addr: A-type address.
Default: SMC=NONE
Note: ECB cannot be specified with RET above.
Note: TCB cannot be specified with RET=HAVE or RET=NONE
above, and must be specified on the list form if used on the execute
form.

value: any valid macro keyword specification.

The parameters restricted in use are explained under the standard form of the ENQ macro
instruction. The other parameters are explained in OS/VSl Supervisor Services and Macro
Instructions.

ENQ (List Form) 119

ENQ (Execute Form)

The execute form of the ENQ macro instruction is written as follows:

name

b

ENQ

b

qname addr

,mame addr

,
,E
,S

,mame length

,
,STEP
,SYSTEM
,SYSTEMS

, var12345

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,SMC=NONE
,SMC=STEP
,ECB=ecb addr
,TCB =lcb addr

,RELATED=value

,MF=(E ,clrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

Note: (and) are the beginning and end of a parameter list. The
entire list is optional. If nothing in the list is desired then (,), and
all parameters between (and) should not be specified. If something
in the list is desired, then (,), and all parameters in the list should
be specified as indicated at the left.

qname addr: RX-type address, or register (2) - (12).

marne addr: RX-type address, or regi~ter (2) - (12).

mame length: symbol, decimal digit, or register (2) - (12).

var12345: The preceding 5 parameters may be repeated up to
65,535 times.

Note: See note opposite (above.

ecb addr: A-type address, or register (2) - (12).
lcb addr: A-type address, or register (2) - (12).
Note: ECB cannot be specified with RET above. ,
Note: TCB cannot be specified with RET=HAVE or RET=NONE
above.

value: any valid macro keyword specification.

clrl addr: RX-type address, or register (1) or (2) - (12).

The parameters restricted in use are explained under the standard form of the ENQ macro
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro
Instructions.

Note: If ECB (or TCB) is specified in the execute form, ECB=O (or TCB=O) must be
specified in the list form.

120 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

EST AE - Extended ST AE

The ESTAE macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the RECORD, BRANCH, and SVEAREA parameters.
These parameters are restricted in use and should only be used by types 2, 3, and 4 SVCs
executing in supervisor state, under protection key 0, and owning the local lock.

The syntax of the complete ESTAE macro instruction is shown below. However, only the
explanation of the restricted parameters is presented. Explanation of the other parameters can
be found in OS/VS2 Supervisor Services and Macro Instructions.

The standard form of the ESTAE macro instruction is' written as follows:

name

ESTAE

b

exit addr
o

,CT
,OV

,PARAM=list addr

,XCTL=NO
,XCTL=YES

,PURGE=NONE
,PURGE=QUIESCE
,PURGE=HAL T

,ASYNCH= YES
,ASYNCH=NO

,TERM=NO
,TERM=YES

,BRANCH=NO
,BRANCH= YES,

SVEAREA=save area

,RECORD=NO
,RECORD= YES

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow EST AE.

exit addr: A-type address, or register (2) - (12).

Default: CT

list addr: A-type address, or register (2) - (12).

Default: XCTL=NO

Default: PURGE=NONE

Default: ASYNCH= YES

Default: TERM= NO

Default: BRANCH=NO
save addr: A-type address, or register (2) - (12) or (13).

Default: RECORD=NO

value: any valid macro keyword specification.

The parameters restricted in use are explained below. The explanation of the other parameters
is as explained in OS/VS2 Supervisor Services and Macro Instructions.

,BRANCH = NO
,BRANCH = YES,SVEAREA= save addr

specifies that an SVC 60 entry to the ESTAE service routine is to be performed (NO) or
that a branch entry is to be performed (YES). (The branch entry is for type 2, 3, or 4
SVCs only.) The save area is a 72-byte area used to save the general registers. If
BRANCH = YES is specified, the caller must be in key 0 and own the local lock.

,RECORD=NO
,RECORD = YES

specifies that the SDWA workarea will not be written to SYSl.LOGREC (NO) or that the
entire SDWA workarea, both fixed and variable, will be written to SYSl.LOGREC (YES).

EST AE - Extended STAE 121

Control is returned to the instruction following the EST AE macro instruction. When control is
returned, register 15 contains one of the following return codes:

Hexadecimal
Code
00
04

08

OC

10
14

Example 1

Meaning
Successful completion of EST AE request.
EST AE OV was specified with a valid exit address, but the current exit is either
nonexistent, not owned by the user's RB, or is not an ESTAE exit.
BRANCH= YES was issued for the current SVRB with a create request; the previous
BRANCH= YES exit is canceled and the new exit is made the current exit.
Cancel or an exit address equal to zero was specified, and either there are no exits for
this TCB, the most recent exit is not owned by the caller, or the most recent exit is not
an EST AE exit.
An unexpected error was encountered while processing this request.
ESTAE was unable to obtain storage for an SCB.

Operation: Take the EST AE exit specified by register 4, allow asynchronous exit processing,
do not allow special error processing, do not branch enter SVC 60, and default to CT (create)
and PURGE=NONE.

ESTAE (4),ASYNCH=YES,TERM=NO,BRANCH=NO

122 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

ESTAE (List Form)

The list form of the EST AE macro instruction is used to construct a remote control program
parameter list.

The list form of the ESTAE macro instruction is written as follows:

name

b

ESTAE

b

exit addr

,P ARAM=list addr

,PURGE=NONE
,PURGE=QUIESCE
,PURGE=HALT

,ASYNCH= YES
,ASYNCH=NO

,TERM=NO
,TERM=YES

,RECORD=NO
,RECORD= YES

,RELA TED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow EST AE.

exit addr: A-type address.

list addr: A-type address.

Default: PURGE=NONE

Default: ASYNCH= YES

Default: TERM=NO

Default: RECORD=NO

value: any valid macro keyword specification.

The parameters restricted in use are explained under the standard form of the EST AE macro
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro
Instructions.

ESTAE (List Form) 123

ESTAE (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the EST AE macro instruction. The control program parameter list can be generated by the
list form of the EST AE macro instruction. If the user desires to dynamically changed the
contents of the remote EST AE parameter list, he may do so by coding a new exit address
and I or a new parameter list address. If exit address or PARM= is coded, only the associated
field in the remote EST AE parameter list will be changed. The other field will remain as it was
before the current EST AE request was made.

The execute form of the EST AE macro instruction is written as follows:

name

b

ESTAE

b

exit addr
o

,CT
,OV

,PARAM=list addr

,XTCL=NO
,XCTL=YES

,PURGE=NONE
,PURGE=QUIESCE
,PURGE=HALT

,ASYNCH= YES
,ASYNCH=NO

,TERM=NO
,TERM=YES

,BRANCH=NO
,BRANCH= YES,

SVEAREA=save addr

,RECORD=NO
,RECORD= YES

,RELA TED=value

,MF=(E , ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow EST AE.

exit addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

save addr: RX-type address, or register (2) - (12) or (13).

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters restricted in use are explained under the standard form of the ESTAE macro
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro
Instructions.

Example 1

Operation: Take the EST AE exit labeled ADDR, allow synchronous exit processing, halt. 110,
allow special error processing, branch enter SVC 60, provide 72-byte save area at SADDR,
and execute the execute form of the macro instruction. EXEC is the label of the EST AE
parameter list built by the list form of the macro instruction.

ESTAE ADDR,ASYNCH=YES, PURGE=HALT,TERM=YES, BRANCH=YES,
SVEAREA=SADDR,MF=(E,EXEC)

124 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

EVENTS - Wait for Events

The EVENTS macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the BRANCH parameter. This parameter is restricted in use
and should only be used by programs executing in supervisor state, under protection key 0,
and owning the local lock.

The syntax of the complete EVENTS macro instruction is shown below. However, only the
explanation of the restricted parameter is presented. Explanation of the other parameters can
be found in OS/VS2 Supervisor Services and Macro Instructions.

The EVENTS macro instruction is written as follows:

name

t>

EVENTS

t>

name: symbol. Begin name in column 1.

One or more blanks must precede EVENTS.

One or more blanks must follow EVENTS.

ENTRIES=nmbr nmbr: decimal digits 1-32767.
ENTRIES=DEL,TABLE=tab addr tab addr: symbol, RX-type address, or register (2) -(12).
T ABLE=tab addr Note: If the ENTRIES parameter is specified as indicated in the

first two formats, no other parameters may be specified.

,ECB=ecb addr
,LAST=last addr

,WAIT=YES
,WAIT=NO

,BRANCH=NO
,BRANCH= YES

ecb addr: symbol, RX-type address, or register (2) - (12).
last addr: symbol, RX-type address, or register (2) - (12).
Note: If LAST is specified, WAIT must also be specified.

Default: BRANCH=NO

The parameters restricted in use are explained below. The other parameters are explained in
OS/VS2 Supervisor Services and Macro Instructions.

,BRANCH=NO
,BRANCH = YES

specifies that an SVC entry (BRANCH=NO) or a branch entry (BRANCH = YES) is to be
performed.

EVENTS - Wait for Events 125

EXTRACT - Extract TCD Information

The EXTRACT macro instruction causes the control program to provide information from
specified fields of the task control block or a subsidiary control block for either the active task
or one of its subtasks. The information is placed in an area provided by the problem program.

The standard form of the EXTRACT macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b

EXTRACT

b

One or more blanks must precede EXTRACT.

One or more blanks must follow EXTRACT.

answer addr answer addr: A-type address, or register (2) - (12).

tcb addr: A-type address, or register (2) - (12).
Default: 's'

,'S'
,fcb addr

,FIELDS=(tcb info) tcb info: any combination of the following, separated by commas:
ALL PRI TSO
GRS CMC PSB
FRS TIOT TJID
AETX COMM ASID

The parameters are explained below:

answer addr

,'S'

specifies the address of the answer area to contain the requested information. The address is
of one or more fullwords, starting on a fullword boundary. The number of fullwords
requir~d is the same as the number of fields specified in the FIELDS parameter, unless ALL
is coded. If ALL is coded, seven full words are required.

,teb addr
specifies the address of a full word on a fullword boundary containing the address of a task
control block for a sub task of the active task. If'S' is coded or assumed, no address is
specified and the active task is assumed.

,FIELDS = (teb info)
specifies the task control block information requested:

ALL requests information from the GRS, FRS, reserved, AETX, PRI, CMC, and TIOT
fields. (If ALL is specified, 7 words are required just for ALL.)

GRS is the address of the save area used by the control program to save the general
registers 0-15 when the task is not active.

FRS is the address of the save area used by the control program to save the floating point
registers 0, 2, 4, and 6 when the task is not active.

AETX is the address of the end of task exit routine specified in the ETXR parameter of the
ATTACH macro instruction used to create the task.

PRJ is the current limit(third byte) and dispatching (fourth byte) priorities of the task. The
two high-order bytes are set to zero.

CMC is the task completion code. If the task is not complete, the field is set to zero.

TIOT is the address of the task input/output table.

126 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

COMM is the address of the command scheduler communications list. The list consists of a
pointer to the communications event control block and a pointer to the command input
buffer. The high-order bit of the last pointer is set to one to indicate the end of the list.

TSO is the address of a byte in which a high bit of 1 indicates a TSO address space, and a
high bit of 0 indicates a non-TSO address space.

PSB is the address of the protected· storage control block, which is extracted from the job
step control block.

TJID is the address space identifier (ASID) for a TSO address space, and zero for a
non-TSO address space.

ASID is the address space identifier.

Example 1

Operation: Provide information from all the fields of the indicated TCB except ASID.
WHERE is the label of the answer area, ADDRESS is the label of a fullword which contains
the address of the subtask TCB for which information is to be extracted.

EXTRACT WHERE,ADDRESS,FIELDS=(ALL,TSO,COMM,PSB,TJID)

Example 2

Operation: Provide information from the current TCB, as above.

EXTRACT WHERE,'S',FIELDS=(ALL,TSO,COMM,PSB,TJID)

EXTRACT - Extract TCD Infonnation 127

EXTRACT (List Form)

The list form of the EXTRACT macro instruction is used to construct a remote control
program parameter list.

The list form of the EXTRACT macro instruction is written as follows:

name

b

EXTRACT

b

answer addr

,'S'
,tcb addr

,FIELDS=(tcb info)

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede EXTRACT.

One or more blanks must follow EXTRACT.

answer addr: A-type address.

tcb addr: A-type address.
Default: 's'

tcb info: any combination of the following, separated by commas:
ALL PRI TSO
GRS CMC PSB
FRS TIOT TJID
AETX COMM ASID

The parameters are explained under the standard form of the EXTRACT macro instruction,
with the following exceptions:

,MF=L
specifies the list form of the EXTRACT macro instruction.

128 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

EXTRACT (Execute Form)

The execute form of the EXTRACT macro instruction uses, and can modify, a remote control
program parameter list. If the FIELDS parameter restricted in use is coded in the execute
form, any TCB information specified in a previous FIELDS parameter is cancelled and must
be respecified if required for this execution of the macro instruction.

The execute form of the EXTRACT macro instruction is written as follows:

name

b

EXTRACT

b

answer addr

,'S'
,tcb addr

,FIELDS=(tcb info)

,MF=(E, ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede EXTRACT.

One or more blanks must follow EXTRACT.

answer addr: RX-type address, or register (2) - (12).

tcb addr: RX-type address, or register (2) - (12).

tcb info: any combination of the following, separated by commas:
ALL PRI TSO
GRS CMC PSB
FRS TIOD THD
AETX COMM ASID

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the EXTRACT macro instruction,
with the following exceptions:

,MF=(E, etrl addr}
specifies the execute form of the EXTRACT macro instruction using a remote control
program parameter list.

EXTRACT (Execute Form) 129

FREEMAIN - Free Virtual Storage

The FREEMAIN macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the BRANCH and KEY parameters. These parameters are
restricted in use and should only be used by programs executing in supervisor state, under
protection key o.

Note: This macro instruction requires that the CVT mapping macro be assembled into the
caller's csect.

The syntax of the complete FREEMAIN macro instruction is shown below. However, only
the explanation of the restricted parameters is presented. Explanation of the other parameters
can be found in OS/VS2 Supervisor Services and Macro Instructions.

The standard form of the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC,LA=length addr
LU,LA=length addr
L,LA=length addr
VC
VU
V
EC,L V = length value
EU,LV=length value
E,L V =length value
RC,LV=length value
RC,SP=subpool nmbr
R U ,L V = length value
RU,SP=subpool nmbr
R,L V =length value
R,SP=subpool nmbr

,A=addr

,SP=subpool nmbr

,BRANCH= YES
,BRANCH=(YES,GLOBAL)

,KEY=nmbr

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede FREE MAIN.

One or more blanks must follow FREEMAIN.

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12). If R is
specified, register (0) may also be specified.
subpool nmbr: symbol, decimal digit 0-127, or register (0) or (2) -
(12). If R,SP=(O) is specified, the high order byte of register 0 must
contain the subpool number and the low order 3 bytes must contain
the length value.
Note: For a subpool FREEMAIN, if the formats RC,SP=subpool
nmbr or RU,SP=subpool nmbr or R,SP=subpool nmbr are
specified, no other parameters may be specified.

addr: A-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit 0-127, or register (0) or (2) -
(12). If R,SP=(O) is specified, the high order byte of register 0 must
contain the subpool number and the low order 3 bytes must contain
the length value.

Note: BRANCH=(YES,GLOBAL) may only be specified with RC
or RU above.

nmbr: decimal digits 0-15, or register (2) - (12).
Note: This parameter may be specified only if BRANCH above is
also specified.

value: any valid macro keyword specification.

The. parameters restricted in use are explained below. The other parameters are explained in
OS/VS2 Supervisor Services and Macro Instruction.

,BRANCH = YES
,BRANCH = (YES,GLOBAL)

specifies that a branch entry is to be used instead of an SVC entry. If (YES,GLOBAL) is
specified, the GLBRANCH entry point to service global storage requests without the need
for the local memory lock will be used; the SALLOC lock must be held.

130 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

If BRANCH= YES is specified, the caller must pre-load register 4 with the TCB address,
pre-load register 7 with the ASCB address, and hold the local address space lock prior to
entry. Register 7 will not contain the ASCB address when control is returned to the caller.
Register 3 will also be destroyed if RC or RU was specified.

If BRANCH=(YES,GLOBAL) is specified, registers 4 and 7 need not contain the TCB and
ASCB addresses; and registers 3 and 4 will be changed when control is returned to the
caller. Additionally, the SP parameter may only designate subpools 227, 228, 231, 239, 241,
or 245.

The FREEMAIN macro instruction, with BRANCH= (YES ,GLOBAL) specified, requires
that the IHA WSA VT mapping macro be assembled into the caller's csect.

,KEY = key nmbr
specifies the key (in bits 24-27 of the register) in which the requested storage was obtained.
This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and allows both
global and local storage to be freed in the requestor's storage protection key.

When control is returned, register 15 may contain the following return code:

Hexadecimal
Code
8

Meaning
Part of area being freed is still fixed.

The parameters restricted in use are explained under the standard form of the FREEMAIN
macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro
Instructions.

Example 1

Operation: Free 400 bytes of storage addressed by register 1 via a branch entry. If the
storage is successfully freed, register 15 will contain 0; otherwise, register 15 will contain a
nonzero value.

FREEMAIN EC,LV=400,A=(1),BRANCH=YES

Example 2

Operation: Free all storage in subpool 239. Register 3 has been preset to contain the storage
key of the storage to be released. If the request is unsuccessful, the caller will be abnormally
terminated.

FREEMAIN RU,SP=239,KEY=(3),BRANCH=(YES,GLOBAL)

FREEMAIN - Free Virtual Storage 131

,.1 .

FREE MAIN (List Form)

The list form of the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC
LU
L
VC
VU
V
EC
EU
E

,LA=length addr
,L V = length value

,A=addr

,SP=subpool nmbr

,RELATED=value

,MF==L

name: symbol. Begin name in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: A-type address.
length value: symbol or decimal digit.
Note: LA may only be specified with LC, LU, or Labove.
Note: LV may only be specified with EC, EU, or E above.

addr: A-type address.

sub pool nmbr: symbol or decimal digit 0 - 127.

value: any valid macro keyword specification.

The parameters restricted in use are explained under the standard form of the FREEMAIN
macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro
Instructions.

132 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

FREEMAIN (Execute Form)

The execute form of the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC
LU
L
VC
VU
V
EC
EU
E

,LA=length addr
,LV=length value

,A=addr

,SP=subpool nmbr

,BRANCH=YES

,RELATED=value

,MF=(E ,ctrl prog)

name: symbol. Begin name in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: RX-type address or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12).
Note: LA may only be specified with LC, LU, or Labove.
Note: LV may only be specified with EC, EU, or E above.

addr: RX-type address, or register (2) - (12)

subpool nmbr: symbol, decimal digit, or register (0) or (2) - (12).

value: any valid macro keyword specification.

ctrl prog: RX-type address, or register (1) or (2) - (12).

FREEMAIN (Execute Form) 133

GETMAIN - Allocate Virtual Storage

The GETMAIN macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the BRANCH and KEY parameters. These parameters are
restricted in use and should only be used by progra~s executing in supervisor state, under
protection key O.

Note: This macro instruction requires that the CVT mapping macro instruction be assembled
into the caller's csect.

The syntax of the complete GETMAIN macro instruction is shown below. However, only
the explanation of the restricted parameters is presented. Explanation of the other parameters
can be found in OS/VS2 Supervisor Services and Macro Instructions.

The standard form of the GETMAIN macro instruction is written as follows:

name

b

GETMAIN

b

LC,LA=length addr, A=addr
LU,LA=length addr,A=addr
VC,LA=length addr,A=addr
VU,LA=length addr,A=addr
EC,L V = length value, A=addr
EU,LV=length value,A=addr
RC,LV=length value
RU,LV=length value
R,L V =tength value

,SP=subpool nmbr

,BNDRY=DBLWD
,BNDRY=PAGE

,BRANCH= YES
,BRANCH=(YES,GLOBAL)

,KEY = key number

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12). If R is
specified, register (0) may also be specified.
addr: A-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit 0 - 127, or register (0) or (2) -
(12).
Note: If R,LV =(0) is specified above, SP may not be specified.

Default: BNDRY=DBLWD
Note: This parameter may not be specified with R above.

Note: BRANCH=(YES,GLOBAL) may only be specified with RC
or RU above.

key nmbr: decimal digits 0-15, or register (2) - (12).
Note: This parameter may be specified only if BRANCH above is
also specified.

value: any valid macro keyword specification.

The parameters restricted in use are explained below. The other parameters are explained in
OS/VS2 Supervisor Services and Macro Instructions.

,BRANCH = YES
,BRANCH = (YES,GLOBAL)

specifies that a branch entry is to be used instead of an SVC entry. If (YES,GLOBAL) is
specified, the GLBRANCH entry point to service global storage requests without the need
for the local memory lock will be used; the SALLOC lock must be held.

If BRANCH= YES is specified, the caller must pre-load register 4 with the TCB address,
pre-load register 7 with the ASCB address, and hold the local address space lock prior to
entry. Register 7 will not contain the ASCB address when control is returned to the caller.
Register 3 will also be destroyed if RC or RU was specified.

134 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

If BRANCR=(YES,GLOBAL) is specified, registers 4 and 7 need not contain the TCB and
ASCB addresses; and register 3 and 4 will be changed when control is returned to the
caller. Additionally, the SP parameter may only designate subpools 227, 228, 231, 239, 241,
or 245.

The GETMAIN macro instruction, with this parameter specified, requires that the
IRA WSA VT mapping macro be assembled into the caller's csect.

,KEY = key nmbr
specifies the key (in bits 24-27 of the register) in which the requested storage is to be
obtained. This parameter applies to subpools 227,228,229,230,231, and 241, and allows
both global and local storage to be obtained in the requester's storage. protection key.

When control is returned, register 15 may contain the following return code:

Hexadecimal
Code
8

Example 1

Meaning
On request for SQA or LSQA, no real storage page is available.

Operation: Obtain 248 bytes of storage from the user's region via a branch entry. If the
routine is in supervisor state, subpool 252 will be used; otherwise, subpool 0 will be used. If
the storage cannot be obtained, the caller will be abnormally terminated.

GETMAIN EU,LV=248,A=AREAADDR,BRANCH=YES

Example 2

Operation: Obtain one page of storage from the common service area, and cause the acquired
storage to be initialized with a storage key of 9. A return code of 0 (if successful) or 4 (if
unsuccessful) will be returned.

GETMAIN RC,LV=4096,SP=231,BRANCH=(YES,GLOBAL),BNDRY=PAGE,KEY=9

GETMAIN - Allocate Virtual Storage 135

GETMAIN (List Form)

The list form of the GETMAIN macro instruction is written as follows:

name

b

GETMAIN

b

LC
LV
VC
VV
EC
EV

,LA=length addr
,LV =length value

,A=addr

,SP=subpool nmbr

,BNDRY=DBLWD
,BNDRY=PAGE

,RELATED = value

,MF=L

name: Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: A-type address.
length value: symbol or decimal digit.
Note: LA may be specified with EC or EV above.
Note: LV may not be specified with LC, LV, VC or VV above.

addr: A-type address.

subpool nmbr: symbol or decimal digit 0-127.

Default: BNDRY=DBLWD

value: any valid macro keyword specification.

The parameters restricted in use are explained under the standard form of the GETMAIN
macro instruction. The other parameters are explained in OS/VS2 Supervis'or Services and Macro
Instructions.

136 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

GETMAIN (Execute Form)

The execute form of the GETMAIN macro instruction is written as follows:

name

1'>

GETMAIN

b

LC
LV
VC
VV
EC
EV

,LA=length addr
,LV = length value

,A=addr

,SP=subpool nmbr

,BNDRY=DBLWD
,BNDRY=PAGE

,BRANCH= YES

,RELATED=value

,MF=(E ,etrl prog)

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: RX-type address or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12).
Note: LA may not be specified with EC or EV above.
Note: LV may not be specified with LC, LV, VC,. or VV above.

addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit 0-127, or register (0) or (2) -
(12).

Default: BNDRY=DBLWD

value: any valid macro keyword specification.

etrl prog: RX-type address, or register (t) or (2) - (12).

The parameters restricted in use are explained under the standard form of the GETMAIN
macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro

. Instructions.

GETMAIN (Execute Fonn) 137

MODESET - Change System Status

The MODESET macro instruction is used to change system status by altering the PSW key or
mode indicator. It causes a supervisor routine (lEA VMODE) to alter the RB old program
status word (RBOPSW) so that the desired PSW will be loaded when MODESET returns to
the caller. MODE SET also generates inline code that saves and/or changes the protection key
in the current PSW.

The standard form of the MODESET macro instruction has two forms: the form that
generates an SVC and the form that generates inline code. The form that generates inline code
uses the SPKA instruction (see IBM System/370 Principles of Operation), and is executable only
in supervisor state. The form that generates an SVC is executable by users in supervisor state,
under protection key 0-7, or APF -authorized.

The standard form of the MODESET macro instruction that generates inline code is written
as follows:

name

t>
MODESET

t>

EXTKEY=key
KEY ADDR=key addr

,SA VEKEY =old key addr

,WORKREG=reg

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede MODESET.

One or more blanks must follow MODESET.

key: one of the following:
SCHED SRM ZERO
JES SUPR TCB
RSM DAT AMGT RBTI
VSM TCAM RBT234

key addr: A-type address or register (2).
Note: The WORKREG parameter is required if the following are
specified:

EXTKEY = TCB EXTKEY =RBT234
EXTKEY =RBTI KEY ADDR=A-type address

old key addr: A-type address or register (2).
Note: If KEYADDR=(2) is specified above, then SAVEKEY=(2)
cannot be specified.
Note: The WORKREG parameter is required if SA VEKEY =A-type
address is specified.

reg: decimal digits 0 - 15.

value: any valid macro keyword specification.

The parameters are explained below:

EXTKEY=key
KEY ADDR = key addr

specifies the key to be set in the cutrent PSW or the address of the key.

SCHED - Scheduler key.

JES - Job entry subsystem key.

RSM - Real storage management key.

VSM - Virtual storage management key.

SRM - System resource management key.

SUPR - Supervisor key.

DATAMGT - Data management key.

138 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

TCAM - Telecommunications access method key.

ZERO - Key of zero is to be set.

TCB - Key is to be obtained from TCB field TCBPKF.

RBT1 - Key is to be obtained from the RBOPSW field of the active RB of type 1 SVC
routine issuing MODESET.

RBT234 - Key is to be obtained from the RBOPSW field of the RB preceding SVRB
of type 2, 3, or 4 SVC routine issuing MODESET.

KEYADDR specifies a location 1 byte in length which contains the key in bit positions 0-3.
If register (2) is specified, the key is contained in bit positions 24-27 (bits 28-31 are
ignored). This parameter permits a previously saved key to be restored.

,SA VEKEY = old key addr
specifies a location 1 byte in length where the current PSW key is to be saved, in bit
positions 0-3. If register (2) is specified, the key is left in register 2.

,WORKREG=reg
specifies the register into which the contents of register 2 are to be saved while performing
the SA VEKEY function, or the working register to be used by the EXTKEY or
KEYADDR function. If WORKREG=2 is specified, no register saving takes place.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE')

FREEl FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

Note: This form of the macro instruction does not generate any return codes.

MODESET - Change System Status 139

The standard form of the MODESET macro instruction that generates an SVC is written as
follows:

name

b

MODESET

b

KEY=ZERO
KEY=NZERO

,MODE=PROB
,MODE=SUP

,RELA TED=value

name: symbol. Begin name in column 1.

One or more blanks must precede MODESET.

One or more blanks must follow MODESET.

Note: KEY is required only if no other parameter is specified.

Note: MODE is required only if no other parameter is specified.

value: any valid macro keyword specification.

The parameters are explained below:

KEY = ZERO
KEY = NZERO

specifies that the PSW key (bits 8-11) is to be either set to zero (ZERO) or set to the value
in the caller's TCB (NZERO).

,MODE = PROB
,MODE = SUP

specifies that the PSW mode indicator (bit. 15) is to be either turned on (PROB) or turned
off (SUP).

Note: This form of the macro instruction does not generate any return codes.

Example 1

Operation: Save the current PSW key, and change the key to that of the scheduler.

MODESET EXTKEY=SCHED,SAVEKEY=KEYSAVE,WORKREG=1

Example 2

Operation: Change to supervisor mode and key zero.

MODESET KEY=ZERO,MODE=SUP

140 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

MODESET (List Form)

The list form of the MODE SET macro instruction is written as follows:

name

b

MODESET

b

RELATED = value,

MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede MODESET ..

One or more blanks must follow MODESET.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the MODESET macro instruction,
with the following exceptions:

MF=L
specifies the list form of the MODE SET macro instruction.

MODESET (List Fonn) 141

MODESET (Execute Form)

The execute form of the MODESET macro instruction is written as follows:

name

b

MODESET

b

RELATED=va[ue,

MF=(E ,list addr)

name: symbol. Begin name in column 1.

One or more blanks must precede MODESET.

One or more blanks must follow MODESET.

value: any valid macro keyword specification.

list addr: RX-type address, or register (1).

The parameters are explained under the standard form of the MODESET macro instruction,
with the following exceptions:'

MF = (E , list addr)
specifies the execute form of the MODE SET macro instruction, using a parameter list
address.

Incompatible Parameters

The ENABLE and SYSMASK parameters, available with Release 1 of VS2, are no longer
supported on MODESET. The functions formerly available via ENABLE and SYSMASK are
now provided by the SETLOCK macro instruction and the STNSM and STOSM instructions.

142 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction

The NIL macro instruction is used to provide a lock on a byte of storage on which an AND
IMMEDIATE (NI) instruction is to be executed. The byte of storage exists in a
multiprocessing environment and the possibility exists that the byte may be changed by
another CPU at the same time. Storage modification during NIL processing is accomplished in
the same manner as that used by the COMPARE AND SWAP (CS) instruction

For details on the AND IMMEDIATE and COMPARE AND SWAP instructions, see IBM
System/370 Principles of Operation.

The NIL macro instruction is written as follows:

b

NIL

b

name

byte addr

,mask

,REF=stor addr

,WREGS=(regl,reg2,reg3)
,WREGS=(reg l, reg2)
,WREGS=(regl"reg3)
, WREGS=(,reg2,reg3)
,WREGS=(regl)
,WREGS=(,reg2)
,WREGS=("reg3)

name: symbol. Begin name in column 1.

One or more blanks msut precede NIL.

One or more blanks must follow NIL.

byte addr: A-type address.

mask: symbol or self defining term.

stor addr: A-type address.

reg l: symbol, or decimal digits 0-16.
reg2: symbol, or decimal digits 1-16.
reg3: symbol, or decimal digits 0-16.
Default for regl: 0
Default for reg2: 1
Default for 'reg3: 2

The parameters are explained below:

byte addr
specifies the address of the byte to which the AND function is to be applied.

,mask
specifies the value to be ANDed to the byte at the address specified above.

,REF=stor addr
specifies the address of a storage location on a fullword boundary. This address provides the
means by which the COMPARE AND SW AP instruction may be executed. The address
must be less than or equal to the byte address specified above, and the difference between
the addresses must be less than 4096. The two addresses must be addressable via the same
base register.

,WREGS = (regJ,reg2,reg3)
,WREGS = (regJ,reg2)
,WREGS = (regJ"reg3)
,WREGS = (,reg2,reg3)
,WREGS = (regJ)
,WREGS = (,reg2)
,WREGS = ("reg3)

specifies the work registers to be used to perform the COMPARE AND SW AP instruction.
regJ is used to contain the 'old' byte; reg2 is used to contain the 'updated' byte; and reg3
is used to contain the mask.

NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction 143

Example 1

Operation: Provide a lock on the byte of storage specified by the address STREST AT.
UCBOB is the address used to reference the byte, and FSRTECGS is the mask used.

NIL SRTESTAT,FSRTECGS,WREGS=(15,4,5),REF=UCBOB

144 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

OIL - Provide a Lock Via an OR IMMEDIATE (01) Instruction

The OIL macro instruction is used to provide a lock on a byte of storage on which an OR
IMMEDIATE (01) instruction is to be executed. The byte of storage exists in a
multiprocessing environment and the possibility exists that the byte may be changed by
another CPU at the same time. Storage modification during OIL processing is accomplished in
the same manner as that used by the COMPARE AND SWAP (CS) instruction.

For details on the OR IMMEDIATE and COMPARE AND SWAP instructions, see IBM
System/370 Principles of Operation.

The OIL macro instruction is written as follows:

b

OIL

b

name

byte addr

,mask

, REF =stor addr

,WREGS=(regl,reg2,reg3)
, WREGS=(reg l, reg2)
,WREGS=(regl"reg3)
,WREGS=(, reg2, reg3)
,WREGS=(regl)
, WREGS=(,reg2)
,WREGS=("reg3)

name: symbol. Begin name in column 1.

One or more blanks must precede OIL.

One or more blanks must follow OIL.

byte addr: A-type address.

mask: symbol or self defining term.

stor addr: A-type address.

regl: symbol, or decimal digits 0-16.
reg2: symbol, or decimal digits 0-16.
reg3: symbol, or decimal digits 0-16.
Default for reg l: 0
Default for reg2: 1
Default for reg3: 2

The parameters are explained below:

byte addr
specifies the address of the byte to which the OR function is to be applied.

,mask
specifies the value to be ORed to the byte at the address specified above.

,REF=stor addr
specifies the address of a storage location on a fullword boundary. This address provides the
means by which the COMPARE AND SW AP instruction may be executed. The address
must be less than or equal to the byte address specified above, and the difference between
the addresses must be less than 4096. The two addresses must be addressable via the same
base register.

,WREGS = (reg l, reg 2, reg 3)
,WREGS = reg l, reg2)
,WREGS = (regl"reg3)
,WREGS = (,reg2,reg3)
,WREGS = (regl)
,WREGS = (,reg2)
,WREGS=("reg3)

specifies the work registers to be used to perform the COMPARE AND SWAP instruction.
reg 1 is used to contain the 'old' byte; reg2 is used to contain the 'updated' byte; and reg3
is used to contain the mask.

OIL - Provide a Lock Via an OR IMMEDIATE (01) Instruction 145

Example 1

Operation: Provide a lock on the byte of storage specified by the address SRTESTAT.
UCBOB is the address used to reference the byte, and SRTECHGS is the mask used.

OIL SRTESTAT,SRTECHGS,WREGS=(15,4,5),REF=UCBOB

146 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

PGFIX - Fix Virtual Storage Contents

The PGFIX macro instruction makes virtual storage areas resident in real storage and "ineligible
for page-out while the requesting task's address space occupies real storage. The PGFIX
function is available only to authorized system functions and users.

PGFIX does not prevent pages from being paged out when an entire address space is
swapped out of real storage. Consequently, when using the PGFIX macro instruction, you can
not assume a constant real address mapping for fixed pages that are susceptible to swapping.

The standard form of the PGFIX macro instruction is written as follows:

name

b

PGFIX

b

R

,A=start addr

,ECB=ecb addr

,EA=end addr

,LONG=Y
,LONG=N

,RELEASE=N
,RELEASE=Y

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede PGFIX.

One or more blanks must follow PGFIX.

start addr: A-type address, or register (1) or (2) - (12).

ecb addr: A-type address, or register (0) or (2) - (12).

end addr: A-type address, or register (2) - (12) or (15).
Default: start addr + 1

Default: LONG=Y

Default: RELEASE= N
Note: RELEASE=Y may only be specified with EA above.

value: any valid macro keyword specification.

The parameters are explained below:

R
specifies that no parameter list is being supplied with this request.

,A = start addr
specifies the start address of the virtual area to be fixed.

,ECB = ecb addr
specifies the address of the ECB that is used to signal event completion.
Note: If the user intends to wait on the ECB as part of an ECB list, he must ensure that
the list and associated ECBs are fixed in real storage before issuing the WAIT. The PGFIX
service routine ensures that the specified ECB is fixed.

,EA = end addr
specifies the end address + 1 of the virtual area to be fixed.

,LONG=Y
,LONG=N

specifies that the relative real time duration anticipated for the fix is long (Y) or short (N).

,RELEASE=N
,RELEASE=Y

specifies that the contents of the virtual area is to remain intact (N) or be released (Y).

PGFIX - Fix Virtual Storage Contents 147

,RELATED = value
specifies information used to self-document macro instructions by 'relating; functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and
on 'macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE')

FREEl FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

08

10

Meaning

Operation completed normally; ECB posted complete.
Operation abnormally terminated. Operation incomplete because of invalid address in
virtual subarea list entry; ECB posted complete.
Operation proceeding; ECB will be posted when all requested pages are fixed in real
storage.
Operation abnormally terminated. Virtual subarea list entry or ECB address invalid; no
ECB is posted.

The ECB is unchanged if the request was initiated but not complete (return code 8), or if
an ABEND was issued with return code 10. Otherwise, the ECB is posted complete with code:

o - operation completed successfully.
4 - operation incomplete because of invalid address in VSL entry.

If the return code issued is 8, the ECB is posted asynchronously when paging I/O has
completed, with code:

o - operation completed successfully.
4 - operation incomplete because of paging error; requesting TCB will be abnormally

terminated.

The ECB code is posted in the low-order 3 bytes of the ECB, and is right-justified.

148 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Incompatible Parameters

The following parameters were valid in Release 1 of OS/VS2, but are not supported in MVS:

SUSPEND = N, will be ignored.
SUSPEND = Y, will be ignored.
ECBIND = address, will probably cause errors.

Example 1

Operation: Fix a single byte of virtual storage addressed by register 3. Note that the full
4096-byte page containing the specified byte will actually be fixed. The storage will be long
fixed.

PGFIX R,A=(R3),ECB=(R5)

Example 2

Operation: Fix virtual storage without using a virtual subarea list. Storage will be long fixed.

PGFIX R,A=(R3),EA=(R4),ECB=ECB1

Example 3

Operation: Fix, but not long-fix, virtual storage, and ensure that the pages fully included in
the address range are to be forfeited before fixing the area specified by registers 3 and 4.

PGFIX R,A=(R3),EA=(R4),ECB=(R5),LONG=N,RELEASE=Y

PGFIX - Fix Virtual Storage Contents 149

;PGFIX (List Form)

The list form of the PGFIX macro instruction uses a virtual subarea list.

The list form of the PGFIX macro instruction is written as follows:

name

b

PGFIX

b

L

,LA=list addr

,ECB=ecb addr

,LONG=N
,LONG=Y

,RELEASE=N
,RELEASE=Y

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede PGFIX.

One or more blanks must follow PGFIX.

list addr: A-type address, or register (1) or (2) - (12).

ecb addr: A-type address, or register (0) or (2) - (12).

Default: LONG=N

Default: RELEASE=N

value: any valid macro keyword specification.

The parameters are explained under the standard form of the PGFIX macro instruction, with
the following exceptions:

L
spec~fies that a parameter list is being supplied with this request.

,LA = list addr
specifies the address of the first entry of a virtual subarea list.

Example 1

Operation: Fix virtual storage, providing a virtual subarea list addressed by register 5.

PGFIX L,LA=(R5),ECB=(R6)

150 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

PGFREE - Free Virtual Storage Contents

The PGFREE macro instruction makes virtual storage areas that fixed via the PGFIX macro
instruction eligible for page-out. The PGFREE function is available only to authorized system
functions and users.

Note that a fixed page is not considered pageable until the number of PGFREEs issued for
the page is equal to the number of PGFIXes previously issued for that page. That is, a page is
not automatically removed from real storage as the result of the issuance of a PGFREE macro
instruction.

The standard form of the PGFREE macro instruction is written as follows:

name

1)

PGFREE

1)

name: symbol. Begin name in column 1.

One or more blanks must precede PGFREE.

One or more blanks must follow PGFREE.

R

,A=start addr start addr: A-type address, or register (1) or (2) - (12).

ecb addr: A-type address, or register (0) or (2) - (12).

end addr: A-type address, or register (2) - (12) or (15).
Default: start addr + 1

,ECB=ecb addr

,EA=end addr

,RELEASE=N
,RELEASE=Y

,RELATED=value

Default: RELEASE=N
Note: RELEASE= Y may only be specified with EA above.

value: any valid macro keyword specification.

The parameters are explained below:

R
specifies that no parameter list is being supplied with this request.

,A = start addr
specifies the start address of the virtual area to be freed.

,ECB=ecb addr
specifies the address of the ECB that was used in a prior PGFIX request. This parameter is
used if there is any possibility that the ECB for the previously issued PGFIX was not
posted complete.

,EA = end addr
specifies the end address + 1 of the virtual area to be freed.

,RELEASE=N
,RELEASE=Y

specifies that the contents of the virtual area is to remain intact (N) or be released (Y).

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and

PGFREE - Free Virtual Storage Contents 151

on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE')

FREEl FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

10

Meaning

Operation completed normally.
Operation abnormally terminated. Operation incomplete because of invalid address in
virtual subarea list entry.
Oper~tion abnormally terminated. Virtual subarea list entry or ECB address invalid.

Incompatible Parameters

The following parameters were valid in Release 1 of OS/VS2, but are not supported in MVS:

ECBIND = address, will probably cause errors.

Example 1

Operation: Free the storage in Example 1 of standard-form PGFIX.

PGFREE R,A=(R3)

Example 2

Operation: Free the storage in Example 2 of standard-form PGFIX.

PGFREE R,A=(R3),EA=(R4)

Example 3

Operation: Free the storage in Example 3 of standard-form PGFIX, and forfeit the pages full
included in the address range.

PGFREE R,A=(R3),EA=(R4),ECB=(R5),RELEASE=Y

152 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

PGFREE (List Form)

The list form of the PGFREE macro instruction uses a virtual subarea list.

The list of the PGFREE macro instruction is written as follows:

name

lJ

PGFREE

lJ

L

,LA=list addr

,ECB=ecb addr

,RELEASE=N
,RELEASE=Y

,RELATED=value

name.; symbol. Begin name in column 1.

One or more blanks must precede PGFREE.

One or more blanks must follow PGFREE.

list addr: A-type address, or register (1) or (2) - (12).

ecb addr: A-type address, or register (0) or (2) - (12).

Default: RELEASE= N

value: any valid macro keyword specification.

The parameters are explained under the standard form of the PGFREE macro instruction, with
the following exceptions:

L
specifies that a parameter list is being supplied with this request.

,LA = list addr
specifies the address of the first entry of a virtual subarea list.

Example 1

Operation: Free the storage in Example 1 of list-form PGFIX.

PGFREE L,LA=(R5)

PGFREE (List Form) 153

POST - Signal Event Completion

The POST macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the ASCB and ERRET parameters. These parameters are
restricted in use and should only be used with tasks in supervisor state, APF-authorized, or
with protection key 0-7.

The syntax of the complete POST macro instruction is shown below. However, only the
explanation of the restricted parameters is presented. Explanation of the other parameters can
be found in OS/VS2 Supervisor Services and Macro Instructions.

The standard form of the POST macro instruction is written as follows:

name

b

POST

b

ecb addr

,comp code

,ASCB=addr,ERRET=err addr

,RELA TED = value

name: symbol. Begin name in column 1.

One or more blanks must precede POST.

One or more blanks must follow POST.

ecb addr: RX-type address, or register (2) - (12).

comp code: symbol, decimal or hexadecimal digit, or register (0) or
(2) - (12).
Range of values: 0 - 230_1
Default: 0

addr: RX-type address, or register (2) - (12).
err addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters restricted in use are explained below. The other parameters are explained in
OS/VS2 Supervisor Services and Macro Instructions.

,ASCB = addr, ERRET = err addr
specifies the address of the ASCB of the address space containing the ECB being posted,
and the address of the routine to be given control when an error condition resulting from a
POST failure is detected.

Example 1

Operation: Post an event control block whose address is ECB, where the address space
containing the ECB has an ASCB specified by register 5, and where ERRR TN is the routine
to be given control on error conditions.

POST ECB,ASCB=(REGS),ERRET=ERRRTN

Example 2

Operation: Post the ECB from example 1 with a hexadecimal ~ompletion code of 3FF.

POST ECB,X'3FF' ,ASCB=(REG5),ERRET=ERRRTN

154 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

POST (List Form)

The list form of the POST macro instruction is written as follows:

name

tJ

POST

tJ

ecb addr

,ASCB=addr, ERRET=err addr

name: symbol. Begin name in column 1.

One or more blanks must precede POST.

One or more blanks must follow POST.

ecb addr: A-type address.

addr: A-type address.
err addr: A-type address.

,RELATED=value

,MF=L

value: any valid macro keyword specification.

The parameters are explained under the standard form of the POST macro instruction, with
the following exceptions:

,MF=L
specifies the list form of the POST macro instruction.

POST (List Form) 155

POST (Execute Form)

The execute form of the POST macro instruction is written as follows:

name

b

POST

b

ecb addr

,comp code

,ASCB=addr,ERRET=err addr

,RELATED=value

,MF=(E ,prob addr)

name: symbol. Begin name in column 1.

One or more blanks must precede POST.

One or more blanks must follow POST.

ecb addr: RX-type address, or register (2) - (12).

comp code: symbol, decimal or hexadecimal digit, or register (0) or
(2) - (12).
Range of values: 0 - 230_1

addr: RX-type address, or register (2) - (12).
err addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

prob addr: RX-type address, or register (0 or (2) - (12).

The parameters are explained under the standard form of the POST macro instruction, with
the following exceptions:

,MF = (E , pro bad d r)
specifies the execute form of the POST macro instruction using a remote control program
parameter list.

156 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

PURGEDQ - Purge SRB Activity

The PURGEDQ macro instruction provides the facility for a task to purge particular SRB
activity. Because an SRB routine is dispatched asynchronously to the actual issuance of a
SCHEDULE macro instruction, the conditions that existed in the system at the time the
SCHEDULE was issued may have totally changed by the time the routine is dispatched. If, in
this time interval, the environment that the asynchronous routine requires to run successfully
has been changed, the results would be unpredictable. For this reason, the PURGEDQ macro
instruction is available to:

• Dequeue SRBs not yet dispatched.
• Dequeue or allow completed processing for SRBs previously scheduled.
• 'Clean up' each dequeued SRB.

The standard form of the PURGEDQ macro instruction is written as follows:

name

b

PURGEDQ

b

RMTR=RMTR addr

,ASID=ASID addr

,ASIDTCB=TCB addr

name: symbol. Begin name in column 1.

One or more blanks must precede PURGEDQ.

One or more blanks must follow PURGEDQ.

RMTR addr: RX-type address, or register (2) - (12).

ASID addr: RX-type address, or register (2) - (12).

TCB addr: RX-type address, or register (2) - (12).

The parameters are explained below:

RMTR = RMTR addr
specifies the address of the resource manager termination routine.

,ASID=ASID addr
specifies the address of a halfword containing the address space identifier. PURGEDQ will
search for SRBs scheduled to be dispatched into the address space specified by ASID.

,ASIDTCB = TeB addr
specifies the address of a doubleword in the following format:

bytes 0-1 Reserved
bytes 2-3 ASID or zero
bytes 4-7 TCB address or zero

Example 1

Operation: All SRBS scheduled into the current address space and related to the current
(terminating) task are to be purged by the RMTR routine IEAVRSPG.

PURGEDQ RMTR=IEAVRSPG

PURGEDQ - Purge SRB Activity 157

PU~GEDQ (List Form)

The list form of the PURGEDQ macro instruction is used to construct a remote program
parameter list.

The list form of the PURGEDQ macro instruction is written as follows:

name

b

PURGEDQ

b

RMTR=RMTR addr

,ASID=ASID addr

,ASIDTCB=TCB addr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede PURGEDQ.

One or more blanks must follow PURGEDQ.

RMTR addr: A-type address.

ASID addr: A-type address.

TCB addr: A-type address.

The parameters are explained under the standard form of the PURGEDQ macro instruction,
with the following exceptions:

,MF=L
specifies the list form of the PURGEDQ macro instruction.

158 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

PURGEDQ (Execute Form)

The execute form of the PURGEDQ macro instruction uses a remote control program
parameter list. The parameter list is constructed using the list form of PURGEDQ.

The execute form of the PURGEDQ macro instruction is written as follows:

name

b

PURGEDQ

b

RMTR=RMTR addr

,ASID=ASID addr

,ASIDTCB=TCB addr

,MF=(E, ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede PURGEDQ.

One or more blanks must follow PURGEDQ.

RMTR addr: RX-type address, or register (2) - (12).

ASID addr: RX-type address, or register (2) - (12).

TCB addr: RX-type address, or register (2) - (12).

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the PURGEDQ macro instruction,
with the following exceptions:

,MF = (E, etrl addr)
specifies the execute form of the PURGEDQ macro instruction, using a remote control
program parameter list.

Example 1

Operation: All SRBs scheduled into the address space designated by register 6 are to be
purged by the RMTR routine lEA VRSPG. Register 1 is a pointer to the parameter list, and
register 7 indicates that all SRBs are to be purged.

PURGEDQ MF=(E,R1)),ASID=(~6),ASIDTCB=(R7),RMTR=IEAVRSPG

PURGEDQ (Execute Form) 159

QEDIT - Command Input Buffer Manipulation

The QEDIT macro instruction generates the required entry parameters and processes the
command input buffer for the following uses:

• Dechaining and freeing of a command input buffer (CIB) from the CIB chain for a task.
• Setting a limit for the number of CIBs that may be simultaneously chained for a task.

The QEDIT macro instruction is written as follows:

name

b

QEDIT

b

ORIGIN=CIB addr plr

,BLOCK=CIB addr

,CIBCTR=CIB nmbr

name: symbol. Begin name in column 1.

One or more blanks must precede QEDIT.

One or more blanks must follow QEDIT.

CIB addr plr: RX-type address, or register (2) - (12).

CIB addr: RX-type address, or register (2) - (12).

CIB nmbr: decimal digit, with a maximum value of 255.

The parameters are explained below:

ORIGIN = CIB addr ptr
specifies the address of the pointer to the first CIB chain for the task. This address is
obtained using the EXTRACT macro instruction. If ORIGIN is the only parameter
specified, the caller must be executing under system key 0-7; in this case, the entire CIB
chain will be freed.

,BLOCK = CIB addr
specifies the address of the CIB that is to be freed from the CIB chain for a task.

,CIBCTR=CIB nmbr
specifies the limit for the number of CIBs to be chained at any time for a task.

Example 1

Operation: Free the entire CIB chain, where register 8 contains the address of the pointer to
the CIB chain.

QEDIT ORGIN=(8)

Example 2

Operation: Free the CIB whose address is in register 5 from the CIB chain. Register 8
contains the address of the pointer to the CIB chain.

QEDIT ORIGIN=(8),BLOCK=(5)

160 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

I RESERVE - Reserve a Device (Shared DASD)

The RESERVE macro instruction is used to reserve a device for use by a particular system; it
must be issued by each task needing device reservation. The RESERVE macro instruction
protects the issuing task from interference by other tasks in the system and locks out the other
CPU. When the reserving program no longer needs the reserved device, it should issue a DEQ
macro instruction, specifying the UCB parameter, to release the device. If a task issues two
RESERVE instructions for the same resource without an intervening DEQ an abnormal
termination will result unless the second RESERVE specifies the keyword parameter RET = or
ECB=. (If a restart occurs when a RESERVE is in effect for devices, the system will not
restore the RESERVE; the user's program must reissue the RESERVE.) If a DEQ is not
issued for a particular device, termination routines will release devices reserved by a
terminating task.

To use the shared DASD option in higher level languages, an assembler language subroutine
should be written to issue the RESERVE macro instruction. The following information should
be passed to this routine: ddname, qnameaddress, rnameaddress, rnamelength, and RET
parameter.

The standard form of the RESERVE macro instruction is written as follows:

name

t>

RESERVE

t>

qname addr

,rname addr

,
,E
,S

,rname length

,SYSTEMS

,RET=TEST
,RET=USE·
,RET=HAVE

,ECB=ecb addr

,UCB=ucb addr

,RELA TED=value

name: symbol. Begin name in column 1.

One or more blanks must precede RESERVE.

One or more blanks must follow RESERVE.

qname addr: A-type address, or register (2) - (12).

rname addr: A-type address, or register (2) - (12).

Default: E

rname length: symbol, decimal digit, or register (2) - (12).

ecb addr: A-type address, or register (2) - (12).

ucb addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained below:

specifies the beginning of the resource description.

qname addr
specifies the address in virtual storage of an 8-character name. The name should not start
with SYS, so that it will not conflict with system names. Every task issuing RESERVE
against the same resource must use the same qname and rname to represent the resource.

RESERVE - Reserve a Device (Shared DASD) 161

,rname addr

,E
,S

specifies the address in virtual storage of the name used in conjunction with qname to
represent a single resource. The name can be qualified, and must be from 1 to 255 bytes
long.

specifies whether the request is for exclusive (E) or shared (S) control of the resource. If
the resource is modified while under control of the task, the request must be for exclusive
control; if the resource is not modified, the request should be for shared control.

,rname length
specifies the length of the rname described above. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 to 255 to
override the assembled length, or you may specify a value of O. If 0 is specified, the length
of the rname must be contained in the first byte at the rname addr specified above.

,SYSTEMS
specifies that the resource is shared between systems.

specifies the end of the resource description.

,RET = TEST
,RET = USE
,RET = HAVE

specifies a conditional request for all the resources name above.

RET = TEST the availability of the resources is to be tested, but control of the resources is
not requested.

RET = USE control of the resources is to be assigned to the active task only if the resources
are immediately available.

RET = HAVE control of the resources is requested only if a request has not been made
previously for the same task.

,ECB = ecb addr
specifies the address of an ECB, and conditionally requests the resource named in the
macro instruction.

,UCB=ucb addr
specifies the address of a fullword that contains the address of the DCB for the device to
be reserved.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

GET1 GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE')

FREE1 FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

i62 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Return codes are provided by the control program only if you specify RET = TEST,
RET=USE, RET = HAVE, or ECB=; otherwise, return of the task to the active condition
indicates that control of the resource has been assigned to the task. If return code for the
resource named in the RESERVE macro instruction is 0, register 15 contains 0. If the return
code is not 0, register 15 contains the address of a storage area containing the return codes, as

I shown in Figure 29.

Address
Returned in
Register 15

12

24

36
~

2

Figure 29. Return Code Area Used by RESERVE

3

Return
Codes

RC 1

RC 2

RC 3

4

.

12

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

RESERVE - Reserve a Device (Shared DASD) 163

The return code is placed in the parameter list resulting from the macro expansion. The
return codes are shown below.

Hexadecimal
Code

o

4

8

20

Example 1

Meaning

For RET=TEST, the resource was immediately available.
For RET=USE, RET=HAVE, or ECB=, control of the resource has been assigned to
the active task.
For RET=TEST or RET=USE, the resource is not immediately available.
For ECB=, the ECB will be posted when available.
A previous request for control of the same resource has been made for the same task.
Task has control of resource. If bit 3 is on - shared control of resource; if bit 3 is off
- exclusive control.
A previous request for control of the same resource has been made for the same task.
Task does not have control of resource.

Operation: Unconditionally reserve exclusive control of a device. The length of the rname is
allowed to default.

RESERVE (MAJOR3,MINOR3,E"SYSTEMS),UCB=(R3)

164 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

RESERVE (List Form)

The list form of the RESERVE macro is written as follows:

name

b

RESERVE

b

qname addr

,mame addr

,
,E
,S

,mame length

,SYSTEMS

,RET=TEST
,RET=USE
,RET=HAVE

,ECB=ecb addr

,UCB=O

,RELATED=value

,MP;'L

name: symbol. Begin name in column 1.

One or more blanks must precede RESERVE.

One or more blanks must follow RESERVE.

qname addr: A-type address.

mame addr: A-type address.

mame length: symbol or decimal digit.
Note: mame length must be coded if a register is specified for
mame addr above.

ecb addr: A-type address.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the RESERVE macro instruction,
with the following exceptions:

,MF=L
specifies the list form of the RESERVE macro instruction.

RESERVE (List Form) 165

RESERVE (Execute Form)

The execute form of the RESERVE macro instruction is written as follows:

name

b

RESERVE

b

qname addr

,mame addr

,
,E
,S

,marne length

,
,SYSTEMS

,RET=TEST
,RE'F=USE
,RET=HAVE

,ECB=ecb addr

,UCB=ucb addr

,RELATED = value

,MF=(E, ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RESERVE.

One or more blanks must follow RESERVE.

Note: (and) are the beginning and end of a parameter list. The
entire list is optional. If nothing in the list is desired, the (,), and
all parameters between (and) should not be specified. If something
in the list is desired, then (,), and all parameters in the list should
be specified as indicated at the left.

qname addr: RX-type address, or register (2) - (12).

mame addr: RX-type address, or register (2) - (12).

mame length: symbol, decimal digit, or register (2) - (12).

ecb addr: RX-type address, or register (2) - (12).

ucb addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the RESERVE macro instruction,
with the following exceptions:

,MF=(E, ctrl addr)
specifies the execute form of the RESERVE macro instruction using a remote control
program parameter list.

166 OS/VS2 Syst~m Programming Library: Supervisor (VS2 Release 3.7)

~

RISGNL - Issue Remote Immediate Signal

The RISGNL macro instruction uses the emergency signal (ES) function of the signal
processor (SIGP) instruction to invoke the execution of a specified software program on one
of the CPUs in a tightly coupled multiprocessing system. The program may be requested to
execute in parallel or serially with the function requesting the program.

Ten of the twelve SIGP hardware functions are defined as direct services and are accessible
via the DSGNL macro instruction. The other SIGP function is accessible via the RPSGNL
macro instruction.

The RISGNL macro instruction is written as follows:

name

b

RISGNL

b

PARALLEL
SERIAL

,CPU=PCCA addr

,EP=entry name addr

name: symbol. Begin name in column 1.

One or more blanks must precede RISGNL.

One or more blanks must follow RISGNL.

PCCA addr: RX-type address, or register (1).

,PARM=parm addr

entry name addr: RX-type address, or register (12).

parm addr: RX-type address, or register (11).

The parameters are explained below:

PARALLEL
SERIAL

specifies that. control is to be returned to the caller when the specified receiving routine has
been given control (PARALLEL) or has completed execution (SERIAL) on the designated
CPU.

,CPU =PCCA addr
specifies the addres~ of the physical configuration communication area (PCCA) of the CPU
on which the function is to be performed.

,EP = entry name addr
specifies the address of the entry name of the receiving routine to be executed on the
specified CPU.

,PARM = parm addr
specifies the address of a user-defined fullword parameter to be passed to the receiving
routine.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04
08

12

16

20

Meaning

Specified receiving routine has been given control or has completed execution, as
requested.
Function not initiated because addressed CPU not online.
Function unsuccessful. Emergency signal could not be generated on CPU. Status
returned in register O.
Function unsuccessful. Specified CPU is either not installed, not configured into
system, or powered off.
CPU is a uniprocessor and does not have signal processor sending and receiving
capabilities.
CPU alive bit was turned off during the remote immediated window spin routine.

RISGNL - Issue Remote Immediate Signal 167

With a return code of 8, register 0 contains:

Bits

o
1-24
25
26
27
28
29
30
31

Example 1

Meaning

Equipment check
Reserved
. Stopped
Operator intervening
Check stop
Not ready
Reserved
Invalid function
Receiver check

Operation: The routine whose address is in register 12 is to be given control on the CPU
whose. PCCA address is in register 1. The routine will execute in parallel with the caller who
invoked RISGNL.

RISGNL PARALLEL,CPU=(1),EP=(12)

Example 2

Operation: The routine whose address is in register 12 is to be given control on the CPU
whose PCCA address is in register 1. The routine will complete before the caller of RISGNL
receives control again. Register 11 will contain the address of a parameter to be passed.

RISGNL SERIAL,CPU=(1),EP=(12),PARM=(11)

168 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

RPSGNL - Issue Remote Pendable Signal

The RPSGNL macro instruction uses the external call (BC) function of the signal processor
(SIGP) instruction to invoke the execution of one of six software programs on one of the
CPU s in a tightly coupled multiprocessing system.

Ten of the twelve SIGP hardware functions are defined as direct services and are accessible
via the DSGNL macro instruction. The other SIGP function is accessible via the RISGNL
macro instruction.

The RPSGNL macro instruction is written as follows:

name

b

RPSGNL

b

SWITCH
SIO
RQCHECK
GTFCRM
MODE
MFITCH

,CPU=PCCA addr

name: symbol. Begin name in column 1.

One or more blanks must precede RPSGNL.

One or more blanks must follow RPSGNL.

PCCA addr: RX-type address, or register (1).

The parameters' are explained below:

SWITCH
SIO
RQCHECK
GTFCRM
MODE
MFITCH

specifies the action to be performed:

SWITCH Memory/task switch function

SIO lOS start I/O function

RQCHECK Timer supervision TQE check function, to ensure that TQE in real time queue
is. being timed.

GTFCRM GTF function, to modify monitor call control registers

MODE RMS function, to modify RMS-oriented control registers

MFI TCH MFl function, to issue TCH instructions on CPU to which channels are attached.

,CPU = PCCA addr
specifies the address of the physical configuration communication area (PCCA) of the CPU
on which the function is to be executed.

RPSGNL - Issue Remote Pendable Signal 169

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04
08

12
16

Meaning

Specified CPU is online and has been notified that the specified service is to be
executed.
Function not initiated because addressed CPU not online.
Furiction unsuccessful. External call signal could not be generated on CPU. Status
returned in register O~
Specified CPU is either not installed, not configured into system, or powered off.
CPU is a uniprocessor and does not have signal processor sending and receiving
capabilities.

With a return code of 8, register 0 contains:

Bits

o
1-25
26
27
28
29-30
31

Example 1

Meaning

Equipment check
Reserved
Operator intervening
Check stop
Not ready
Reserved
Receiver check

Operation: The service routine of memory switch is to be given control on the CPU whose
PCCA address is in register 1.

RPSGNL SWITCH,CPU=(1)

Example 2

Operation: The lOS start 110 routine is to be given control on the CPU whose PCCA address
is in re gister 1.

RPSGNL SIO,CPU=(1)

t 70 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

SCHEDULE - Schedule System Services for Asynchronous Execution

The SCHEDULE macro instruction schedules system services for asynchronous execution.
These services may be scheduled for execution in any address space and may be scheduled at
either global or local priorities.

Services scheduled at a global priority will have a priority that is greater than, and
independent of, any address space priority. Services scheduled at a local priority will have the
priority of the specific address space they execute in, but will still have a priority greater than
that of any task within the address space. To use SCHEDULE you must be in supervisor state,
key zero.

Note: This macro instruction requires that the SRB and CVT mapping macros be assembled
into the caller's csect.

The SCHEDULE macro instruction is written as follows:

name

b

SCHEDULE

b

SRB=SRB addr

,SCOPE=LOCAL
,SCOPE=GLOBAL

name: symbol. Begin name in column 1.

One or more blanks must precede SCHEDULE.

One or more blanks must follow SCHEDULE.

SRB addr: RX-type address, or register (1) or (2) - (12).

Default: SCOPE=LOCAL.

The parameters are explained below:

SRB = SRB addr
specifies the address of the service request block (SRB).

,SCOPE = LOCAL
,SCOPE = GLOBAL

specifies whether the service is to be scheduled at a local or global priority.

Example 1

Operation: Schedule an SRB at a global priority.

SCHEDULE SRB=(1),SCOPE=GLOBAL

Example 2

Operation: Schedule an SRB at a local priority.

SCHEDULE SRB=(1),SCOPE=LOCAL

SCHEDULE - Schedule System Services for Asynchronous Execution 171

SDUMP - Dump Virtual Storage

The SDUMP macro instruction provides a dumping capability for the system routines. It
invokes SVC DUMP to provide a fast unformatted dump of virtual storage to a data set. It is
intended to be used by system routines that suffer errors.

,SVC DUMP is available only to authorized programs. Issuers of SDUMP with entry by
SVC must be authorized via APF or have a control program key. Branch entry callers must be
key 0, supervisor state, and must be in SRB mode, or own a lock, or be disabled (with
supervisor bit on).

The service of initiating an SVC DUMP in any address space is provided for callers who
need to dump an address space other than the one in which they are running. A branch entry
to this service is also provided for callers who wish a dump of their own or another address
space but cannot issue an SVC.

The standard form of the SDUMP macro instruction is written as follows:

name

b

SDUMP

b

HDR='dump title'
HDRAD=dump title addr

,DCB=dcb addr

,ASID=ASID addr

,ECB=ecb addr

,SDATA=(data code)

,STORAGJE=(strt addr,end addr)
,LIST=list addr

,BUFFER=NO
,BUFFER= YES

,QUIESCE=YES
,QUIESCE=NO

,BRANCH=NO
,BRANCH= YES

name: symbol. Begin name in column l.

One or more blanks must follow SDUMP.

One or more blanks must follow SDUMP.

dump title: from 1 to 100 characters.
dump title addr: A-type address; or register (2) - (12).

dcb addr: A-type address, or register (2) - (12).

ASID addr: A-type address, or register (2) - (12).

ecb addr: A-type address, or register (2) - (12).

data code: any combination of the following, separated by
commas:

SQA RGN
ALLPSA LPA
PSA TRT
NUC CSA
LSQA SWA

strt addr: A-type address, or register (2) - (12).
end addr: A"-type address, or register (2) - (12).
list addr: A-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified, separated
by commas. For example:
,STORAGE=(strt addr,end addr,strt addr,end addr)

Default: BUFFER=NO

Default: QUIESCE= YES

Default: BRANCH=NO
Note: If BRANCH is specified, ASID must also be specified.

t 72 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

The parameters are explained below:

HDR= 'dump title'
HDRAD = dump title addr

specifies the title or address of the title to be used for the dump. If HDR is specified, the
title must appear enclosed in apostrophes, although the apostrophes do not appear in the
actual title. If HDRAD is specified, the first byte at the indicated address specifies the
length of the title in bytes.

,DCB=dcb addr
specifies the address of a previously opened data control block for the data set that is to
contain the dump. If this parameter is omitted, one of the SYS 1.DUMP data sets will be
used.

,ASID=ASID addr
specifies the address of a halfword containing the address space identifier of the address
space to be dumped. If this parameter is omitted, the current address space will be dumped.
If 0 is specified, the dump is scheduled in the current address space.

,ECB = ecb addr
specifies the address of a fullword containing the address of an event control block that is
posted on completion of a scheduled dump. If this parameter is omitted, the caller is not
notified of the completion of the scheduled dump.

,SDATA=(data code)
specifies the system control program information to be dumped:

SQA - The system queue area.
ALLPSA - All of the prefixed storage areas in the system.
PSA - The prefixed storage area for the current CPU.
NUC - The nucleus.
LSQA - The local system queue area for the address space being dumped.
RGN - The allocated pages in the private area of the address space being dumped. This
includes the LSQA and the SW A.
LPA - The active link pack area modules and SVCs for the address space being
dumped.
TRT - The GTF trace buffers if GTF tracing is active, or the supervisor trace table if it
is not active. If a dump occurs in a GTF address space, no attempt will be made to
include trace information.
CSA - The common service area subpools.
SW A - The scheduler work area subpools in the address space being dumped.

,STORAGE = (strt addr,end addr)
,LIST = list addr

specifies one or more pairs of starting and ending address or a list of starting and ending
addresses of areas to be dumped. (Each starting address must be less than its corresponding
ending address.) The storage list must contain an even number of addresses, and each
address must occupy one fullword. In the list, the high order bit of the fullword containing
the last ending address of the list must be set to 1 ~ all other high order bits must be set to
o.

,BUFFER=NO
,BUFFER = YES

specifies that the contents of the SQA buffer is (YES) or is not (NO) to be included in the
dump. (The SQA buffer does not include the SDUMP parameter list or any data pointed to
by the parameter list.)

SDUMP - Dump Virtual Storage 173

,QUIESCE= YES
,QUIESCE=NO

specifies that the system is to be set nondispatchable until the contents of the SQA and the
CSA are dumped (YES), or that the system is to be left dispatchable (NO). If SDATA
parameter does not specify SQA or CSA, the QUIESCE= YES request is ignored.

,BRANCH = NO
,BRANCH = YES

specifies that a branch entry is to be used for interfacing with SVC DUMP to schedule a
dump (YES), or that an SVC 51 instruction is to be generated for interfacing with SVC
DUMP. This parameter can only be used by key 0, supervisor state routines that are in SRB
mode, locked, or disabled to schedule a dump.

If the ASID parameter was not specified, register 15 contains one of the following return
codes when control is returned:

Hexadecimal
Code
00
04
08

Meaning
A complete dump was taken.
A partial dump was taken.
The system was unable to take a dump.

If the ASID parameter was specified, register 15 contains one of the following return codes
when control is returned:

Hexadecimal
Code
00

08

Meaning
A dump was scheduled. If an ECB was supplied, it will be posted on completion of the
dump.
The system was unable to schedule a dump.

If an ECB was supplied, one of the following codes is returned:

Hexadecimal
Code
00
04
08

Example 1

Meaning
A complete dump was taken.
A partial dump was taken.
The system was unable to take a dump.

Operation: This example shows how SVC DUMP may be branch entered to initiate a dump in
an address space for callers who cannot issue an SVC. Areas to be dumped are requested via
three parameters (BUFFER, SDATA, and STORAGE). The dump will have the title indicated
in the HDR parameter, and the caller requests to be notified of the completion of the
scheduled dump via the ECB parameter.

SDUMP HDR='USER DATA FOR TEST A' ,DCB=TESTADCB,BUFFER=YES,
ASID=TSTAASID,ECB=(8),QUIESCE=YES,BRANCH=YES,
STORAGE=(A,B,C,D,(9),E),SDATA=(ALLPSA,PSA,NUC,SQA,LSQA,
RGN,LPA,SWA,CSA)

174 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

SDUMP (List Form)

Use the list form of the SDUMP macro instruction to construct a control program parameter
list. You can specify any number of storage addresses using the STORAGE parameter.
Therefore, the number of starting and ending address 'pairs in the list form of SDUMP must be
equal to the maximum number of addresses specified in the execute form of the macro
instruction.

The list form of the SDUMP macro instruction is written as follows:

name

b

SDUMP

b

HD R= 'dump title'
,HDRAD=dump title addr

,DCB=dcb addr

,SDATA=(data code}

,STORAGE=(strt addr,end addr}
,LIST=/ist addr

,BUFFER=NO
,BUFFER= YES

,QUIESCE=YES
,QUIESCE=NO

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede SDUMP.

One or more blanks must follow SDUMP.

dump title: from 1 to 100 characters.
dump title addr: A-type address.

dcb addr: A-type address.

data code: any combination of the following, separated by
commas:

SQA RGN
ALLPSA LPA
PSA TRT
NUC CSA
LSQA SWA

strt addr: A-type address.
end addr: A-type address.
Note: One or more pairs of addresses may be specified, separated
by commas. For example:
,STORAGE=(strt addr,end addr,strt addr,end addr}

Default: BUFFER=NO

Default: QUIESCE= YES

The parameters are explained under the standard form of the SDUMP macro instruction, with
the following exceptions:

,MF=L
specifies the list form of the SDUMP macro instruction.

SDUMP (List Form) t 75

SDUMP (Execute Form)

A remote control program parameter list is referred to and can be modified by the execute
form of the SDUMP macro instruction.

If you code one or more of the SDAT A parameters on the execute form of the macro
instruction, any SDAT A parameters coded on the list form will be lost.

The execute form of the SDUMP macro instruction is written as follows:

name

b

SDUMP

HDR=' dump title'
HDRAD=dump title addr

,DCB=deb addr

,ASID=ASID addr

,ECB=eeb addr

,SDA T A=(data code)

,STORAGE=(strt addr,end addr)
,LIST=list addr

,BUFFER=NO
,BUFFER= YES

,QUIESCE= YES
,QUIESCE=NO

,BRANCH=NO
,BRANCH= YES

,MF=(E, eM addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SDUMP.

One or more blanks must follow SDUMP.

dump title: from 1 to 100 characters.
dump title addr: RX-type address, or register (2) - (12).

dcb addr: RX-type address, or register (2) - (12).

ASID addr: RX-type address, or register (2) - (12).

ecb addr: RX-type address, or register (2) - (12).

data code: any combination of the following, separated by
commas:

SQA RGN
ALLPSA LPA
PSA TRT
NUC CSA
LSQA SWA

strt addr: RX-type address, or register (2) - (12).
end addr: RX-type address, or register (2) - (12).
list addr: RX-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified, separated
by commas. For example:
,STORAGE=(strt addr,end addr,strt addr,end addr)

Note: If BRANCH is specified, ASID must also be specified.

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the SDUMP macro instruction, with
the following exceptions:

,MF = (E, ctrladdr)
specifies the execute form of the SDUMP macro instruction using a remote control program
parameter list.

176 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Example 1

O/IM'fIIItM: The execute form is used to add (SDATA areas) and change (BUFFER and
QUIESCE) options in the SDUMP parameter list. The list form of SDUMP was previously
used to create the basic SDUMP parameter list located by register 1.

SDUMP SDATA=(SQA,LPA),BUFFER=NO,QUIESCE=NO,MF=(E,(1»

SDUMP (Execute Fonn) 177

Page of GC28-0628-1
Revised January 16,1976
By TNL: GN28-2634

SETFRR - Set Up Functional Recovery Routines

The SETFRR macro instruction provides control program functions with the ability to define
their recovery in the FRR (functional recovery routine) LIFO stack which is used during
processing of the system recovery manager. Each branch-entered control program function can
use SETFRR to define its own unique recovery environment.

The SETFRR macro instruction can be used to add, delete, or replace FRRs in the LIFO
stack, or to purge all FRRs in the stack. The macro instruction also optionally returns to the
user the address of a parameter area that is eventually passed to the FRR when an error
occurs. The parameter area can be initialized with information such as tracking data that may
be useful to the FRR.

SETFRR has no external linkages and expands directly inline. Users of SETFRR must be
key 0 supervisor state and must hold a lock or be in SRB mode. All SETFRR users must
include the DSECTs for the FRR stack (via the IHAFRRS mapping macro instruction) and
the PSA via the IHAPSA mapping macro instruction) prior to using the SETFRR macro
instruction. In addition, all disabled, locked, and SRB routines which defined recovery must be
key 0 supervisor state when using the SETFRR macro instruction. Note that it is necessary to
copy IHAPSA from MODGEN into MACLIB.

The SETFRR macro instruction is written as follows:

name

1)

SETFRR

1)

A,FRRAD=FRR addr
R,FRRAD=FRR addr
D
P

, WRKREGS=(regJ,reg2)

,PARMAD=parm area addr

,CLEAR=YES
,CLEAR=NO

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede SETFRR.

One or more blanks must follow SETFRR.

FRR addr: A-type address, or register (0) - (15).

reg}: decimal digits 1-15.
reg2: decimal digits 1-15.

parm area addr: A-type address, or register (I) - (15).
Note: This parameter may only be specified with A or R above.

value: any valid macro keyword specification.

The explanation of the parameter is as follows:

,A,FRRAD=FRRAD addr
R,FRRAD=FR,RAD addr
D
p

specifies the operation to be performed on the FRR LIFO stack:
A - an FRR address is to be added to the stack.
R - the FRR address last added to the stack is to be replaced by another FRR address.
D - the FRR address last added to the stack is to be deleted.
P - all entries in the stack are to be purged.

, FRRAD specifies the address of a fullword containing the FRR address that is to be
added or replaced. The parameter specifies the FRR address in a register or specifies the
address of a storage location containing the FRR address. If a register is specified for
FRRAD it must be different than those specified for the WRKREGS keyword.

t 78 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

)

,WRKREGS - (reg 1 ,reg2)

Page of GC28-0628-1
Revised January 16,1976
By TNL: GN28-2634

specifies two unique general purpose registers to be used as work registers in the code
generated by the SETFRR macro expansion.

,PARMAD - parm area addr
specifies the address of a fullword to receive the address of the 24-byte parameter area
provided by the system to the issuer of SETFRR. This parameter area is associated with the
FRR address which has either been added to or has replaced an FRR address on the stack.
This parameter area is passed to the FRR when an error occurs.

,CLEAR- YES
,CLEAR-NO

specifies whether or not the 24-byte parameter area provided by the macro instruction is to
be cleared to zeros. When CLEAR=NO is specified, the macro expansion is reduced by 6
bytes and the execution time is reduced by 2/3. CLEAR= is valid only when PARMAD=
is. specified. The default value for the add (A) option is CLEAR= YES. The default value
for the replace (R) option is CLEAR=NO.

,RELATED .. value
specifies information used to self-document macro instructions by -relating- functions or
services to corresponding functions or services .. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATIACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and
on, macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE')
FREE1 FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

Example 1

OpnrltiOll: Add an FRR to the FRR stack, and return the address of the parameter list to the
issuer of the SETFRR. The FRR address contained in register (R 1) is placed on the FRR
stack in the next available FRR entry. Register. (R2) will contain the address of the parameter
list associated with this FRR entry. Registers R3 and R4 are work registers used in the code
generated by SETFRR in performing its operations .

. SETFRR A, FRRAD=(R 1), PARMAD=(R2), WRKREGS=(R3., R4)

Example 1

()pMItiolt: Delete the last FRR added to the FRR stack.
·SETFRR D, WRKREGS=(1 ,6)

SETFRR - Set Up Functional Recovery Routines 179

SETLOCK - Control Access to Serially Reusable Resources

The SETLOCK macro instruction is used to control access to serially reusable resources. Each
kind of serially reusable resource is assigned a separate lock. To use SETLOCK, you must be
executing in supervisor state with protection key O. Also, SETLOCK users must include the
DSECT for the PSA· (via IHAPSA mapping macro) prior to using the SETLOCK macro
instruction. Note that it is necessary to copy IHAPSA from MODGEN into MACLIB.

SETLOCK can be used to:

-Obtain a specified lock or set of locks.
- Release a. specified lock or set of locks.
- Test a specified lock or ·set of locks to determine if the lock is held by the requesting

CPU.

Two classes of locks exist: global and local. Two types of locks exist: spin and suspend. The
descriptions of these locks and the hierarchy structure in which these locks are arranged are
described under locking in this pUblication.

The OBTAIN option of SETLOCK macro instruction is written as follows:

name

b

SETLOCK

b

OBTAIN

,TYPE=IOSCAT,ADDR=(1l)
,TYPE=IOSUCB,ADDR=(1I)
, TYPE=IOSLCH,ADDR=(1l)
,TYPE=IOSYNCH,ADDR=(11)
, TYPE=ASM,ADDR=(l1)
,TYPE=DISP
, TYPE=SALLOC
,TYPE=SRM
,TYPE=CMS
,TYPE=LOCAL

,MODE=COND
,MODE=UNCOND
,MODE=UNCOND,DISABLED

,REGS=SAVE
,REGS=USE

,RELA TED = value

name: symbol. Begin name in column 1.

One or more blanks must precede SETLOCK.

One or more blanks must follow SETLOCK.

Note: DISABLED may not be specified if TYPE-CMS or
TYPE=LOCAL is specified above.

valu,e: any valid macro keyword specification.

The parameters are explained below:

OBTAIN
specifies that the lockword is to be obtained or locked on the caller's behalf.

180 OS/VS2 System Programming Library: Sup~rvisor (VS2 Release 3.7)

,TYPE = IOSCAT,ADDR = (11)
,TYPE = IOSUCB,ADDR = (11)
,TYPE = IOSLCH,ADDR= (11)
,TYPE = IOSYNCH,ADDR= (11)
,TYPE = ASM,ADDR = (11)
,TYPE=DISP
,TYPE = SALLOC
,TYPE=SRM
,TYPE=CMS
,TYPE = LOCAL

specifies the type of lock that is to be obtained on the caller's behalf.

ADDR = (11) specifies that the address of the lockword indicated by the TYPE parameter
has been loaded into register 11 prior to the SETLOCK request.

IOSCAT lOS channel availability table lock. It is a global spin lock used by lOS to serialize
access and updates to the channel availability table.

IOSUCB lOS unit control block lock. These locks (one per UCB) are global spin locks used
to serialize access and updates to UCBs.

IOSLCH lOS logical channel queue lock. These locks (one per channel queue) are glocal
spin locks used to serialize access and updates to the lOS logical channel queues.

IOSYNCH lOS synchronization lock. It is a global spin lock used to serialize the global lOS
functions.

ASM Auxiliary storage manager lock. It is a global spin lock used to serialize use of the
global ASM control blocks.

DISP Global dispatcher lock. It is a global spin lock used to serialize all functions
associated with the dispatching of storage.

SALLOC Real storage manager and virtual storage manager space allocation lock. It is a
global spin lock used to serialize the global functions of RSM and VSM.

SRM Systems resource manager lock. It is a global spin lock used to serialize use of the
SRM control algorithms and associated data.

CMS Cross memory services lock. It is a global suspend lock used to serialize on more than
one virtual storage where this serialization is not provided by one or more of the global
locks.

LOCAL Storage· in which lock of the storage the SETLOCK caller is executing. It is a local
suspend lock used by supervisor functions which require serialization within that
particular storage only.

,MODE=COND
,MODE = UNCOND
,MODE = UNCOND,DISABLED

specifies whether the lock is to be conditionally ot unconditionally obtained.

COND specifies that the lock is to be conditionally obtained. That is, if the lock is not
owned by another CPU, it will be acquired on the caller's behalf. If the lock is already
held, control will be returned to the caller indicating that the lock is held and that either
the caller already owns the lock or that another CPU or storage owns the lock.

SETLOCK - Control Access to Serially Reusable Resources 181

UNCOND specifies that the lock is to be unconditionally obtained. That is, if the lock is not
owned by another CPU, it will be acquired on the caller's behalf. If the lock is already
held by the caller, control will be returned to the caller indicating that he already owns
the lock. If the lock is held by another CPU, the caller's CPU will either spin on the lock
until it is released or suspend the SETLOCK caller until the lock· is released.

DISABLED specifies that the caller is already in a physically disabled state.

,REGS = SAVE
,REGS = USE

specifies the use of registers 11 through 1.

SAVE specifies that register contents are to be saved. Registers 11 through 14 will be saved
in the area pointed to by register 13, and will be restored upon completion of the
SETLOCK request. The savearea will consist of at least 5 words. Register 15 will contain
the return code.

USE specifies that registers 14, 15, 0, and 1 are available for use. Registers 11, 12, and 13
will be saved in registers 15, 0, and 1, respectively, and will be restored upon completion
of the SETLOCK request. Register 14 will be used as a link register; register 15 will
contain the return code.

Note: If neither SAVE nor USE is specified, registers 11-14 are destroyed and register
13 contains the return code.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE')

FREEl FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04
08

Example 1

Meaning

The lock was successfully obtained. The lock was free and is now held on the caller's
behalf.
The lock was already held by the caller. The lockword id matches the caller's id.
The obtain process was unsuccessful. The lockword id does not match the caller's id.

Operation: The global dispatcher lock DISP is to be conditionally requested. The RELATED
parameter indicates that the DISP lock serializes the TCB resource, and the lock will either be
freed at the location represented by NAME or SYMI in module IEFVHA or by SYM2 in
module IEFVFA.

SETLOCK OBTAIN,TYPE=DISP,MODE=COND,RELATED=(TCB,IEFVHA(NAME,
SYMl),IEFVFA(SYM2))

182 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

The RELEASE option of the SETLOCK macro instruction is written as follows: .

name

b

SETLOCK

b

RELEASE

,TYPE=IOSCAT ,ADDR=(t 1)
,TYPE=IOSUCB,ADDR=(11)
,TYPE=IOSLCH,ADDR=(t 1)
,TYPE=IOSYNCH,ADDR=(t 1)
,TYPE=ASM,ADDR=(t 1)
,TYPE=DISP
,TYPE=SALLOC
,TYPE=SRM
,TYPE=CMS
,TYPE=LOCAL
,TYPE=SPIN
,TYPE=ALL
, TYPE=(reg)

,DISABLED

,REGS=SAVE
,REGS=USE

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede SETLOCK.

One or more blanks must follow SETLOCK.

reg: decimal digit 2 - 10.

Note: DISABLED may not be specified if TYPE=CMS or
TYPE=LOCAL is specified above.

value: any valid macro keyword specification.

The parameters are explained under the OBTAIN option of the SETLOCK macro instruction,
with the following exceptions:

RELEASE
specifies that the lockword is to be released.

,TYPE = SPIN
,TYPE = ALL
,TYPE = (reg)

specifies the type of lock that is to be released.

SPIN All spin locks currently held by the CPU are to be released.

ALL All locks currently held by the CPU are to be released.

(reg) The specified register contains a bit string identifying the locks to be released. A
value of 1 indicates that the lock held is to be released; a value of 0 indicates that the
status of the lock will not change. The bit meanings are:

Bit 19 DISP
Bit 20 ASM
Bit 21 SALLOC
Bit 22 IOSYNCR
Bit 23 IOSCAT
Bit 24 IOSUCB
Bit 25 IOSLCR
Bit 26 Reserved
Bit 27 Reserved
Bit 28 Reserved
Bit 29 SRM
Bit 30 CMS
Bit 31 LOCAL

SETLOCK - Control Access to Serially Reusable Resources 183

,DISABLED
specifies that control is to be returned to the caller with the CPU in a physically disabled
state (except for machine check) when a lock is successfully released. This form should be
used only by those routines which do not have the disabled supervisor indicator on when
they are executing and which, upon release of a global spin lock, must remain physically
disabled due to noninterruptibility or no recursion restraints.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04
08

Meaning

The lock was successfully released.
The lock was not owned. The lock was free when the release request was issued.
The release process was unsuccessful. The lockword id does not match the caller's id.

Note: No ·'return codes are supported for multiple releases. That is, return code register
contents are unpredictable.

Example 1

Operation: The local lock is requested to be released.

SETLOCK RELEASE,TYPE=LOCAL,RELATED=(TCBRQ,MOD1(NAME1),
MOD2(NAME2))

Example 2

Operation: The IOSUCB lock whose address is in register 11 is requested to be released.

SETLOCK RELEASE, TYPE=IOSUCB,ADDR=(11),RELATED=(AXYZ,MOD1(LABEL))

184 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

The TEST option of the SETLOCK macro instruction is written as follows:

name

b

SETLOCK

b

TEST

,TYPE=IOSCAT
,TYPE=IOSUCB
,TYPE=IOSLCH
, TYPE=IOSYNCH
,TYPE=ASM
,TYPE=DISP
, TYPE=SALLOC
,TYPE=SRM
,TYPE=CMS
, TYPE=LOCAL
,TYPE=SPIN
,TYPE=ALL
, TYPE=(reg)

,ADDR=(reg)

,BRANCH=(HELD, addr)
,BRANCH=(NOTHELD,addr)

,REGS=(reg)

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede SETLOCK.

One or more blanks must follow SETLOCK.

reg: decimal digit 2 - 12

reg: decimal digit 2 - 12
Note: ADDR may not be specified if any of the following was
specified above:

TYPE=DISP
TYPE=SALLOC
TYPE=SRM
TYPE=CMS

addr: RX-type address.

reg: decimal digit 2 - 12.

TYPE=LOCAL
TYPE=SPIN
TYPE=ALL
TYPE=(reg)

Note: REGS may only be specified if any of the following was
specified above:

TYPE=SPIN TYPE=ALL TYPE=(reg)

value: any valid macro keyword specification.

The parameters are explained under the OBTAIN or RELEASE option of the SETLOCK
macro instruction, with the following exceptions:

TEST
specifies that the lockword is to be checked to determine if it is currently held by the
requesting CPU.

,BRANCH = (HELD,addr)
,BRANCH = (NOTHELD,addr)

specifies that the return code setting output of the macro instruction is to be suppressed and
replaced by a direct branch to the specified address.

If HELD is specified, the address will be branched to if the specified lock, or at least one
lock for TYPE=ALL or TYPE = SPIN, or all the specified locks for TYPE=(reg) are held
by the requesting CPU.

If NOTHELD is specified, the address will be branched to if the specified lock is not
currently held by the requesting CPU, or if not all the locks specified for TYPE=(reg) are
held, or if no lock for TYPE=ALL or TYPE=SPIN is held.

,REGS = (reg)
specifies the register containing a bit string identifying which locks are held. If the bit string
is partially correct (that is, one of the locks specified is not held), the connected string is
returned in the register specified.

SETLOCK - Control Access to Serially Reusable Resources 185

When control is returned, register 15 contains one of the· following return codes:

Hexadecimal
Code

00

04

Example 1

Meaning

The lock was held by the requestor, or all the locks were held (if the request was for
several locks via a register), or at least one lock was held (if TYPE=ALL or
TYPE=SPIN was specified).
The lock was not held by anybody, or not all the locks were held (if the request was
for several locks via a register), or no lock was held (if TYPE=ALL or TYPE=SPIN
was specified).

Operation: If the local lock is not held, a branch to DSRLLINT is to be performed; otherwise,
the next sequential instruction is to be executed.

SETLOCK TEST,TYPE=LOCAL,BRANCH=(NOTHELD,DSRLLINT)

186 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

SETRP - Set Return Parameters

The SETRP macro instruction is used to indicate the various requests that a recovery exit may
return.

The macr<? instruction is valid only for exits established via functional recovery exits and
EST AE/EST AI/EST AR exits. The table following the description of the macro instruction
indicates which parameters are valid for each situation.

The SETRP macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the RECORD, RECPARM, FRELOCK and CPU
parameters. These parameters are restricted in use and should be used only by programs
excuting in supervisor state or under protection key 0-7 and executing as a functional recovery
routine.

The syntax of the complete SETRP macro instruction is shown below. However, only the
explanation of the restricted parameters is presented. Explanation of the other parameters can
be found in OS/VS2 Supervisor Services and Macro Instructions.

Note: This macro instruction requires that the IHASDW A mapping macro be assembled into
the caller's csect.

The SETRP macro instruction is written as follows:

SETRP - Set Return Parameters 187

name

b

SETRP

b

WKAREA=(reg)

,REGS = (regJ)
,REGS = (regJ,reg2)

,DUMP=IGNORE
,DUMP=YES
,DUMP=NO

,DUMPOPT=parm list addr

,RC=O
,RC=4
,RC=16

,RETADDR=retry addr

name: symbol. Begin name in column 1.

One or more blanks must precede SETRP.

One or more blanks must follow SETRP.

reg: decimal digits 1-12.
Default: WKAREA=(1)

reg J: decimal digits 0-12, 14, 15.
reg2: decimal digits 0-12, 14, 15.
Note: If regJ and reg2 are both specified, order is 14, 15, 0-12.

Default: DUMP=IGNORE

parm list addr: RX-type address, or register (2) :- (12).
Note: This parameter may be specified only if DUMP=YES is
specified above.

Default: RC=O

retry addr: RX-type address, or register (2) - (12).
Note: This parameter may be specified only if RC=4 is specified
above.

,RETREGS=NO info addr: RX-type address, or register (2) - (12).
,RETREGS= YES Default: RETREGS=NO
,RETREGS= YES,RUB=info addr Note: This parameter may be specified only if RC=4 is specified

above.

,FRESDW A=NO
I,FRESDWA=YES

,COMPCOD=code
,COMPCOD=(code,USER)
,COMPCOD=(code,SYSTEM)

,FRELOCK=(!ocks)

,CPU=reg

,RECORD=IGNORE
,RECORD= YES
,RECORD=NO

,RECPARM=record list addr

Default: FRESDWA=NO
Note: This parameter may be specified only if RC=4 is specified
above.

code: symbol, decimal digit, or register (2) - (12).
Default: COMPCOD=(code,USER)

locks: any combination of the following, separated by commas:
DISP 10 SCAT(lock word)
SRM IOSUCB(lockword)
SALLOC IOSLCH(lockword)
CMS IOSYNCH(lockword)
LOCAL ASM(lockword)

lock word: RX-type address.
Note: This parameter may be specified only if RC=O is specified
above.

reg: decimal digits 2-12.

Default: RECORD=IGNORE

record list addr: RX=type address, or register (2) - (12).
Note: This parameter may be specified only if RECORD=IGNORE
or RECORD=YES is specified above.

The parameters restricted in use are explained below. The other parameters are explained in
OS/VS2 Supervisor Services and Macro Instructions.

188 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

~

,FRELOCK = (locks)
specifies the locks to be freed and the corresponding lockwords:
DISP - Global dispatcher lock.
SRM - Systems resource manager lock.
SALLOC - Real storage manager and virtual storage manager space allocation lock.
CMS - Cross memory services lock.
LOCAL - Storage lock of the storage the caller is executing in.
IOSCAT - lOS channel availability table lock.
IOSUCB - lOS unit control block lock.
IOSLCH - lOS logical channel queue lock.
IOSYNCH - lOS synchronization lock.
ASM - Auxiliary storage manager lock.

,CPU = (reg)
specifies the register that contains the logical CPU identification of the CPU holding the
resource that this CPU is waiting for.

,RECORD = IGNORE
,RECORD = YES
,RECORD=NO

specifies that the entire SDW A, both fixed and variable areas, is to be written on
SYSl.LOGREC (YES), is not to be written on SYSl.LOGREC (NO), or is to be written
as indicated prior to the SETRP macro instruction (IGNORE).

,RECP ARM = record list addr
specifies the address of a user-supplied record parameter list. The parameter list consists of
three 8-byte fields:

• The first field contains the module name (microfiche name).
• The second field contains the CSECT name.
• The third field contains the FRR identification.

The three fields are left-justified, and padded with blanks.

Note: The variable information record, containing two 2-byte length fields at the beginning of
the record consists of:

• The first field, filled in by the system, specifies the total length available to the user
(exclusive of the two length fields). .

• The second field, filled in by the user, contains the actual length of the record.

The following table indicates which parameters are available to functional recovery routines
(FRRs) and which parameters are available to ESTAE/ESTAE exits.

Parameter FRR ESTAE

WKAREA x x
REGS x x
DUMP x x
DUMPOPT x x
RC=O x x
RC=4 x x
RC=16 x
RETADDR x x
RETREGS x x
RUB x x
FRESDWA x
COMPCOD x x
FRELOCK x
CPU x
RECORD x x
RECPARM x x

SETRP - Set Return Parameters 189

Example 1

Operation: Request continue with termination and freeing of the IOSCA T and SRM locks. The
IOSCAT lockword is label X.

SETRP RC=O,FRELOCK=(IOSCAT(X),SRM)

Example 2

Operation: Cause a restart interruption on the CPU identified by the contents of register 7. In
this example, the interrupted function is spinning on a lock currently being held by the CPU
identified in register 7.

SETRP CPU=(7)

190 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

SPIE - Specify Program Interruption Exit

The SPIE macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of interruption type 17. This interruption type designates page
faults and may be specified by an installation-authorized system programmer.

The syntax of the complete SPIE macro instruction is shown below.

The standard form of the SPIE macro instruction is written as follows:

name

b

SPIE

b

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr, (interrupts) exit addr: A-type address, or register (2) - (12).
interrupts: decimal digits 1-15, or 17 expressed as

single values: (2,3,4,7,8,9,10)
ranges of values: «2,4),(7,10»
combinations: «2,4),6,8,(10,13),15)

The parameters are explained below:

exit addr, (interrupts)
specifies the address of the exit routine to be given control when a program interruption of
the type specified occurs. The interruption types are:

Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17

Interruption Type

Operation
Privileged operation
Execute
Protection
Addressing
Specification
Data
Fixed-point overflow (maskable)
Fixed-point divide
Decimal overflow (maskable)
Decimal divide
Exponent overflow
Exponent underflow (maskable)
Significance (maskable)
Floating-point divide
Page fault

Note: If a specified program interruption type is maskable, the corresponding bit is set to 1.
Interruption types not specified above are handled by the control program.

Note: As shown in the table above, iilteITuption types can be designated as one or more
single numbers, as one or more pairs of numbers (designating ranges of values), or as any
combination of the two forms. For example, (4,8) indicates interruption types 4 and 8; «4,8))
indicates interruption types 4 through 8.

Example 1

Operation: Give control to an exit routine for interruptions 1,5,7,8,9, and 10. 'DOITSPIE is the
address of the SPIE exit routine.

SPIE DOITSPIE,(1,5,7,(8,10»

SPIE - Specify Program Interruption Exit 191

SPIE (List Form)

Use the list form of the SPIE macro instruction to construct a control program parameter list
in the form of a program interruption control area.

The list form of the SPIE macro instruction is written as follows:

name

b

SPIE

b

exit addr

, (interrupts)

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: A-type address.

interrupts: decimal digits 1-15, or 17, expressed as
single values: (2,3,4,7,8,9,10)
ranges of values: «2,4,),(7,10»
combinations: «2,4),6,8,(10,13),15)

The parameters are explained under the standard form of the SPIE macro instruction, with the
following exceptions:

,MF=L
specifies the list form of the SPIE macro instruction.

192 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

SPIE (Execute Form)

A remote control program parameter list (program interruptions control area) is used in, and
can be modified by, the execute form of the SPIE macro instruction. The PICA (program
interruptions control area) can be generated by the list form of SPIE, or you can use the
address of the PICA returned in register 1 following a previous SPIE macro instruction. If this
macro instruction is being issued to reestablish a previous SPIE environment, code only the
MF parameter.

The address of the remote control program parameter list associated with any previous SPIE
environment is returned by the SPIE macro instruction.

The execute form of the SPIE macro instruction is written as follows:

name

b

SPIE

b

exit addr

,(interrupts)

,MF=(E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: RX-type address, or register (2) - (12).

interrupts: decimal digits 1-15, or 17, expressed as
single values: (2,3,4,7,8,9,10)
ranges of values: «2,3),(7,10))
combinations: «2,4),6,8, (10,13),15)

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the SPIE macro instruction, with the
following exceptions:

,MF = (E,ctrl,addr)
specifies the execute form of the SPIE macro instruction using a remote control program
parameter list.

SPIE (Execute Form) 193

SPOST - Synchronize POST

The SPOST macro instruction is used in a cross-memory post environment to ensure that all
outstanding cross-memory post requests for the ECB specified have completed. SPOST ,
resolves a synchronization problem that arises when it becomes necessary to eliminate an ECB
which is a potential target for a cross-memory post request.

For explanation of ~he parameters in a cross-memory post request, see the POST macro
instruction.

SPOST invokes the PURGEDQ SVC. For details, see the PURGEDQ macro instruction.

The SPOST macro instruction is written as follows:

name

SPOST

name: symbol. Begin name in column 1.

One or more blanks must precede SPOST.

Note: SPOST contains no optional or required parameters.

Example 1

Operation: Execute the SPOST macro instruction, with a comment.

SPOST ,ISSUE SPOST

194 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

ST AE - Specify Task Abnormal Exit

The ST AE macro instruction enables the user to intercept a scheduled ABEND and to have
control returned to him at a specified exit routine address. The ST AE macro instruction
operates in both problem program and supervisor modes.

Note: The STAE macro instruction is available for compatibility with release 1 of VS2 and
with MFT and MVT. However, it is recommended that ESTAE be used.

The standard form of the STAE macro instruction is written as follows:

name

b

STAE

b

name: symbol. Begin name in column 1.

One or more blanks must precede ST AE.

One or more blanks must follow ST AE.

exit addr
o

exit addr: A-type address, or register (2) - (12).

,CT
,OV

,P ARAM=list addr

,XCTL=NO
,XCTL=YES

,PURG E=QUIESCE
,PURGE=HALT
,PURGE=NONE

,ASYNCH=NO
,ASYNCH=YES

,RELA TED=value

Default: CT

list addr: A-type address, or register (2) - (12).

Default: XCTL=NO

Default: PURGE=QUIESCE

Default: ASYNCH=NO

value: any valid macro keyword specification.

The parameters are explained below:

exit addr
o

specifies the address of a ST AE exit routine to be entered if the task issuing this macro
instruction terminates abnormally. If 0 is specified, the most recent STAE request is
canceled.

,CT
,OV

specifies the creation of a new ST AE exit (CT) or indicates that the parameters passed in
this ST AE macro instruction are to overlay the data contained in the previous ST AE exit
(OV).

,P ARAM = list addr
specifies the address of a user-defined parameter list containing data to be used by the
ST AE exit routine when it is scheduled for execution.

,XCTL=NO
,XCTL = YES

specifies that the STAE macro instruction will be canceled (NO) or will not be canceled
(YES) if an XCTL macro instruction is issued by this program.

ST AE - Specify Task Abnormal Exit 195

,PURGE = QUIESCE
,PURGE = HALT
,PURGE = NONE

specifies that all outstanding requests for I/O operations will not be saved when the STAE
exit is taken (HALT), that I/O processing will be allowed to continue normally when the
STAE exit is taken (NONE), or that all outstanding requests for I/O operations will be'
saved when the STAE exit is taken (QUIESCE). For QUIESCE, at the end of the STAE
exit routine, the user can code a retry routine to handled the outstanding I/O requests.

Note: 'If any IBM-supplied access method, except EXCP, is being used, the PURGE=NONE
option is recommended. If this is done, all control blocks affected by input/output processing
may continue to change during ST AE exit routine processing.

If PURGE=NONE is specified and the ABEND was originally scheduled because of an error
in input/output processing, an ABEND recursion will develop when an input/output
interruption occurs, even if the exit routine is in progress. Thus, it will appear that the exit
routine failed when, in reality, input/output processing was the cause of the failure.

ISAM Notes: If ISAM is being used and PURGE=HALT is specified or PURGE=QUIESCE
is specified but I/O is not restored:

• Only the input/output event on which the purge is done will be posted. Subsequent event
control blocks (ECBs) will not be posted.

• The ISAM check routine will treat purged I/O as normal I/O.

• Part of the data set may be destroyed if the data set is being updated or added to when
the failure occurred.

,ASYNCH=NO
,ASYNCH = YES

specifies that asynchronous exit processing will be allowed (YES) or will not be allowed
(NO) while the ST AE exit is executing.

ASYNCH=YES must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their normal
processing are going to be requested by the ST AE exit routine.

• PURGE=QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE=NONE is specified and the CHECK macro instruction is issued in the STAE
exit routine for any access method that requires asynchronous interruptions to complete
normal input/output processing.

Note: If ASYNCH= YES is specified and the ABEND was originally scheduled because of an
error in asynchronous exit handling, an ABEND recursion will develop when an asynchronous
interruption occurs. Thus, it will appear that the exit routine failed when, in reality,
asynchronous exit handling was the cause of the failure.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

196 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

The parameter may be used, for example, as follows:

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE')

FREE1 FREEMAIN R,LV=4096,A=(1),RELATED=(GET1, 'FREE STORAGE')

Control is returned to the instruction following the ST AE macro instruction. When control
is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04
08
OC

10

Example 1

Meaning

Successful completion of ST AE request.
ST AE was unable to obtain storage for ST AE request.
Attempt was made to cancel or overlay a nonexistent ST AE request.
Exit routine or parameter list address was invalid, or ST AI request was missing a TCB
address. •
Atterript was made to cancel or overlay a STAE request of another user, or an
unexpected error was encountered while processing this request.

Operation: Request an overlay of the existing STAE recovery exit with the following options:
new exit address is ADDR, parameter list is at PLIST, I/O will be halted, no asynchronous
exits will be taken, ownership will be transferred to the new request block resulting from any
XCTL macro instructions.

STAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

STAE - Specify Task Abnormal Exit 197

STAE (List Form)

The list form of the ST AE macro instruction is used to construct a remote control program
parameter list.

The list form of the ST AE macro instruction is written as follows:

name

b

STAE

b

exit addr

,PARAM=/ist addr

,PURGE=QUIESCE
,PURGE=HALT
,PURGE=NONE

,ASYNCH=NO
,ASYNCH= YES

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ST AE.

One or more blanks must follow ST AE.

exit addr: A-type address.

list addr: A-type address.

Default: PURGE=QUIESCE

Default: ASYNCH=NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ST AE macro instruction, with
the following exceptions:

,MF=L
specifies the list form of the ST AE macro instruction.

198 OS/VS2System Programming Library: Supervisor (VS2 Release 3.7)

ST AE (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the ST AE macro instruction. The control program parameter list can be generated by the
list form of the ST AE macro instruction. If the user desires to dynamically changed the
contents of the remote ST AE parameter list, he may do so by coding a new exit address
and/ or a new parameter list address. If exit address or P ARM = is coded, only the associated
field in the remote ST AE parameter list will be changed. The other field will remain as it was
before the current ST AE request was made.

The execute form of the STAE macro instruction is written as follows:

name

b

STAE

b

exit addr
o

,CT
;OV

,PARAM=/ist addr

,XCTL=NO
,XCTL=YES

,PURGE=QUIESCE
,PURGE=HAL T
,PURGE=NONE

,ASYNCH=NO
,ASYNCH= YES

,RELATED=value

,MF=(E, ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ST AE.

One or more blanks must follow ST AE.

exit addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the ST AE macro instruction, with
the following exceptions:

,MF = (E, clrf addr)
specifies the execute form of the STAE macro instruction using a remote control program
parameter list.

Example 1

Operation: Provide the pointer to the recovery code in the register called EXITPTR, contain
the address of the ST AE exit parameter list in register 9. Register 8 points to the area where
the STAE parameter list (created with the MF=L option) was moved.

STAE (EXITPTR),PARAM=(9),MF=(E,(8))

STAE (Execute Form) 199

STATUS - Change Subtask Status

The STATUS macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of those parameters that are restricted in use and available only
to authorized callers. These restricted parameters allow the caller to manipulated the
dispatchability of TCBs, SRBs, ASCBs, a STEP, or the SYSTEM.

The description of the STATUS macro instruction has been divided into two parts: the
START/STOP option, and the SET/RESET option.

The START/STOP options of the STATUS macro instruction are written as follows:

name

b

STATUS

b

START
STOP

,TCB =tcb addr
,SRB
,SRB,ASID=ASID addr
,SYNCH

,RELA TED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STATUS.

One or more blanks must follow STATUS.

teb addr: RX-type address, or register (2) - (12), or O.
ASID addr: RX-type address, or register (2) - (12).
Note: ASID may only be specified with START.
Note: SYNCH may only be specified with STOP.

value: any valid macro keyword specification.

The parameters are explained below:

START

STOP

specifies that the START/STOP count is to be adjusted and the dispatchability bits are to
be set/reset.

,TCB = teb addr
,SRB
,sRB,ASID =ASID addr
,SYNCH

specifies the status of the stop/start function:

TCB specifies the address of a fullword on a full word boundary containing the address of
the TCB that is to have its START/STOP count adjusted.

SRB specifies that the STOP function affects the dispatchability of system-level SRBs only;
all other tasks in the address space area set/reset nondispatchable. For START, the
ASID addr specifies the address of a halfword containing the address space identifier.

SYNCH specifies that the STOP function affects all the sub tasks of the caller. If any of the
subtasks are deferring STOPs when the request is issued, the caller is placed in a WAIT
condition. The issuer is taken out of the wait state when all deferred stops are complete.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and

200 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE')

FREE1 FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

STATUS - Change Subtask Status 201

The SET/RESET options of the STATUS macro instruction are written as follows:

name

b

STATUS

b

SET
RESET

,Me
,Me,STEP
,SD
,NO

,SYSTEM
,STEP
,STEP, (mask)
, teb addr, (mask)
" (mask)

,E

,ASIO=ASID addr

,RELATEO = value

name: symbol. Begin name in column 1.

One or more blanks must precede STATUS.

One or more blanks must follow STATUS.

Note: If Me or Me,STEP is specified, no other parameters may be
specified.

mask: for SO, any of decimal digits 1-32 (except 18), separated by
commas; for NO, any of decimal digits 1-16 (except 14), separated
by commas.
teb addr: RX-type address, or register (2) - (12).
Default: STEP

Note: This parameter may only be specified with teb addr,(mask).

ASID addr: RX-type address, or register (2) - (12).
Note: For SET, this parameter may only be specified with teb
addr,(mask). For RESET, this parameter may not be specified with
SYSTEM.

value: any valid macro keyword specification.

The parameters are explained below:

SET
RESET

specifies that the TCBs or ASCBs are to be set or reset nondispatchable.

,Me
,Me,STEP
,SD
,ND

specifies the nondispatchability status:

ND specifies that the primary nondispatchability bits are affected by this request.

SD specifies that the secondary nondispatchability bits are affected by this request.

Me and Me,STEP specifies that the initiator and all TCBs in the job step TCBs (except the
issuer's TCB) are to be set/reset nondispatchable. STEP indicates that the
set-must-complete indicator in the issuer's TCB and a count in the ASCB are to be
set/reset.

,SYSTEM
,STEP
,STEP, (mask)
,teb addr, (mask)
" (mask)

specifies more information on the nondispatchability status:

SYSTEM specifies that all ASCBs are to be set/reset nondispatchable except for certain
exempt ones (for examples, the master scheduler or the issuer).

STEP specifies that all job step TCBs (except the issuer's TCB) are to be set/reset
nondispatchable.

202 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

,E

teb addr specifies that the specified TCB and all its subtasks are to be set/reset
nondispatchable.

(mask) specifies the nondispatchability bits that are to be set/reset.

specifies that only the specified TCB is to be set/reset nondispatchable.

,ASID = A SID addr
specifies' the address of a halfword containing the address space identifier.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide dpposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and
on macro instructions that relate to previous occurrences of the same macro instructions (for
example, CHAP and ESTAE).

The parameter may be used, for example, as follows:

GET1 GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE')

FREE1 FREEMAIN R,LV=4096,A=(1),RELATED=(GET1, 'FREE STORAGE')

Example 1

Operation: Set primary nondispatchability bit 3 for the specified TCB and all its subtasks.

STATUS SET,ND,TCBADDR,(3)

STATUS - Change Subtask Status 203

SYNCH - Take a Synchronous Exit to a Processing Program

The SYNCH macro instruction makes it possible for a supervisor routine to take a
synchronous exit to a processing program. The SYNCH routine initializes a PRB (program
request block) and schedules execution of the requested program. After the processing program
has been executed, the supervisor routine that issued the SYNCH macro instruction regains
control. \

The SYNCH macro instruction is written as follows:

name

b

SYNCH

b

entry name addr

name: symbol. Begin name in column 1.

One or more blanks must precede SYNCH.

One or more blanks must follow SYNCH.

entry name addr: RX-type address, or register (2) - (12) or (15).

The parameters are explained below:

entry name addr
specifies the address of the entry name of the processing program to receive control.

Example 1

Operation: Take a synchronous exit to a processing program whose entry name address is
specified in register 8.

SYNCH (8)

Example 2

Operation: Take a synchronous exit to a processing program labeled SUBRTN.

SYNCH SUBRTN

204 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

TESTAUTH - Test Authorization of Caller

The TESTAUTH macro instruction is used on behalf of a privileged or sensitive function to
verify that its caller is appropriately authorized.

TEST AUTH supports the authorized program facility (APF) - a facility that permits the
identification of programs that are authorized to use restricted functions. In addition,
TESTAUTH provides the capability for testing for system key 0-7 and supervisor state.

The TEST AUTH macro instruction is written as follows:

name

h

TESTAUTH

h

FCTN=!ctn
FCTN =!ctn, AUTH =auth

,STATE=NO
,STATE=YES

,KEY=NO
,KEY=YES

,RBLEVEL=2
,RBLEVEL=l

,BRANCH=NO
,BRANCH= YES

name: symbol. Begin name in column 1.

One or more blanks must precede TEST AUTH.

One or more blanks must follow TEST AUTH.

!ctn: decimal digit 1 or register (2) - (12).
auth: decimal digit 0 or 1, or register (2) - (12).

Default: STATE=NO

Default: KEY =NO

Default: RBLEVEL=2

Default: BRANCH=NO

The parameters are explained below:

FCTN=fctn
FCTN = fctn,AUTH = auth

specifies the authorization (via APF) of a program.

FCTN = 1 specifies that APF-authorization is checked.

AUTH = 0 specifies that the job step is not authorized to perform any restricted function.

AUTH = 1 specifies that the job step is authorized to perform restricted functions.

Note: If FUNC= 1 is specified by itself (that is, without the AUTH parameter), the JSCB is
used to check for authorization. AUTH should only be coded when it is not possible for
TESTAUTH to acquire the code from the JSCB.

,STATE=NO
,STATE = YES

specifies whether or not (YES or NO) a check is to be made for supervisor/problem
program state. (Supervisor state is authorized, problem program state is not authorized.)

,KEY=NO
,KEY = YES

specifies whether or not (YES or NO) a check is to be made of the protection keys.
(Protection keys 0-7 are authorized, protection keys 8-15 are not authorized.)

,RBLEVEL=2
,RBLEVEL= 1

specifies whether the TESTAUTH caller is a type 2, 3, or 4 SVC (RBLEVEL=2), or a
type 1 SVC (RBLEVEL=1).

TESTAUTH - Test Authorization of Caner 205

,BRANCH=NO
,BRANCH = YES

specifies a branch entry (YES) or an SVC entry (NO).

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

Example 1

Meaning

Task is authorized.
Task is not authorized.

Operation: Test jobstep for APF authorization.

TESTAUTH AUTH=1,FCTN=1

Example 2

Operation: Test for APF authorization and supervisor state, and do not check protection keys.

TESTAUTH STATE=YES,KEY=NO,FCTN=1

206 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

WTO - Write to Operator

The WTO macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the AREAID, MSGTYP, and MCSFLAG parameters. The
MSGTYP and MCSFLAG parameters should only be used by system programmers familiar
with MCS, since using the parameters improperly could impede the entire message routing
scheme. The AREAID parameter can only be be used by APF-authorized users.

The syntax of the complete WTO macro instruction is shown below. However, only the
explanation of the AREAID, MSGTYP and MCSFLAG parameters are presented. Explanation
of the other parameters can be found in OS/VS2 Supervisor Services and Macro Instructions.

The standard form of the WTO macro instruction is written as follows:

name

b

WTO

b

'msg'
('text')
('text', line type)

,ROUTCDE=(route code}

,DESC=(desc code}

,AREAID=id char

,MSGTYP=(msg type}

,MCSFLAG=(field name}

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

msg: Up to 124 characters.
text: Up to 124 characters.
The permissable line types and text lengths are shown below:
line type VS2 text

C 34 char
L 70 char
D 70 char
DE 70 char
E

Up to 10 occurrences of the second and/or third formats ('text' or
'text', line type) may be coded.

route code: decimal digit from 1 to 16. The route code is one or
more codes, separated by commas.

desc code: decimal digit from 1 to 16. The desc code is one or
more codes, separated by commas.

id char: alphabetic character A - Z.

msg type: any of the following
N SESS,JOBNAMES
Y SESS , STATUS
SESS JOBNAMES,ST ATUS
JOBNAMES SESS,JOBNAMES,ST ATUS
STATUS

field name: any combination of the following, separated by
commas:

REGO
RESP
REPLY
BRDCST

HRDCPY
QREGO
NOTIME
NOCPY

The parameters restricted in use are explained below. The other parameters are explained in
OS/VS2 Supervisor Services and Macro Instruction.

WTO - Write to Operator 207

" '

,AREAID = id char
specifies a display area of the console screen on which a multiple-line message is to be
written. This parameter is useful only for out-of-line (descriptor code 8 and 9) MLWTO
messages which are be sent to CRT consoles.

The character Z designates the message area (the screen's general message area, rather than
a defined display area); it is assumed nothing is specified.

Note: You must be APF-authorized to use this parameter. Also, if anarea is specified by
this parameter, there exists the possibility that this area will be overlaid by a currently
running dynamic display.

,MSGTYP = (msg type)
specifies how the message is to be routed.

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console and TSO
terminal in operator mode which issued the MONITOR SESS, MONITOR JOBNAMES, or
MONITOR STATUS command, respectively. When the message type is identified by the
operating system, the message will be routed to only those consoles that had requested the
information.

For Y or N, the message type specifies whether flags are to be set in the WTO macro
expansion to describe what functions (MONITOR SESS, MONITOR JOBNAMES, and
MONITOR STATUS) are desired. N, or omission of the MSGTYP parameter, indicates that
the message is to be routed as specified in the ROUTCDE parameter.

,MCSFLAG = (field name)
specifies that the macro expansion should set bits in the MCSFLAG field as indicated by
each name coded. The names and corresponding bit settings are shown in Figure 30.

Name Bit

0
REGO 1

RESP 2
3

REPLY 4
BRDCST 5
HRDCPY 6
QREGO 7

NOTIME 8
9-12

NOCPY 13

14-15

Meaning

Invalid entry.
Message is to be queued to the console whose scource ID is passed in register
o.
The WTO is an immediate command response.
Invalid entry.
The WTO macro instruction is a reply to a WTOR macro instruction.
Message should be broadcast to all active consoles.
Message queued for hard copy only.
Message is to be queued unconditionally to the console whose source ID is
passed in Register O.
Time is not appended to the message.
Invalid entry.
If the WTO or WTOR macro instruction is issued by a program in the
supervisor state, the message is not queued for hard copy. Otherwise, this
parameter is ignored.
Invalid entry.

Note: Invalid specifications are ignored and produce an appropriate error message from the assembler.

I Figure 30. MCSFLAG Fields

Example 1

Operation: Send a WTO message to the hardcopy log only.

WTO 'THIS MSG IS TO HARDCOPY ONLY WITH RC=ALL' ,MCSFLAG=HRDCPY,
ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

208 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

Example 2

Operation: Send a WTO message to all active consoles and broadcast it to all consoles or
terminals which have issued MONITOR commands.

WTO 'THIS MSG IS BROADCAST WITH RC=ALL' , MCSFLAG=BRDCST,
ROUTCDE= (1 , 2 , 3 , 4 , 5 , 6, 7 , 8 , 9 , 1 0, 1 1 , 1 2, 1 3 , 1 4, 1 5 , 1 6)

Example 3

Operation: Send a WTO message to all consoles and TSO terminals which have issued a MN
JOBNAMES command.

WTO 'WTO BY MSGTYP=JOBNAMES WITH RC=ALL,NO CONSOLE MONITORING
JOBNAMES' ,MSGTYP=JOBNAMES,ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,
12,13,14,15,16)

WTO - Write to Operator 209

WTO (List Form)

The list form of the WTO macro instruction is described in the OS/VS2 Supervisor Services and
Macro Instructions, with the exception of the AREAID, MSGTYP and MCSFLAG parameters.
These parameters are restricted in use, and are described below.

The list form of the WTO macro instruction is written as follows:

name

b

WTO

b

<msg'
« text')
(' text', line type)

,ROUTCDE=(route code)

,DESC=(desc code)

,i\REAID=id char

,MSGTYP=(msg type)

,MCSFLAG=(field name}

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

msg: up to 124 characters.
The permissable line types and text lengths are shown below:
line type VS2 text

C 34 char
L 70 char
D 70 char
DE 70 char
E

Up to 10 occurrences of the second and/or third formats ('text' or
'text', line type) may be coded.

route code: decimal digit from 1 to 16. The route code is one or
more codes, separated by commas.

desc code: decimal digit from 1 to 16. The desc code is one or
more codes, separated by commas.

id char: an alphabetic character A-Z.

msg type: anyone of the following:
N SESS,JOBNAMES
Y SESS,ST ATUS
SESS JOBNAMES,ST A TUS
JOBNAMES SESS,JOBNAMES,ST ATUS
STATUS

field name: any combination of the following, separated by
commas:

REGO
RESP
REPLY
BRDCST

HRDCPY
QREGO
NOTIME
NOCPY

The parameters restricted in use are explained under the standard form of the WTO macro
instruction. The explanation of the, other parameters is as explained in OS/VS2 Supervisor
Services and Macro Instructions.

210 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

WTOR - Write to Operator with Reply

The WTOR macro instruction is described in the OS/VS2 Supervisor Services and Macro
Instructions, with the exception of the MSGTYP and MCSFLAG parameters. These parameters
sholl:ld only be used by system programmers familiar with MCS, since using the parameters
improperly could impede the entire message routing scheme.

The syntax of the complete WTOR macro instruction is shown below. However, only the
explanation of the MSGTYP and MCSFLAG parameters are presented. Explanation of the
other parameters can be found in OS/VS2 Supervisor Services and Macro Instructions.

The standard form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

msg

,reply addr

,reply length

,ecb addr

,ROUTCDE=(route code)

,DESC=(desc code)

,MSGTYP=(msg type)

,MCSFLAG=(field name)

name: symbol. Begin name in column l.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

msg: up to 121 characters.

reply addr: A-type address, or register (2) - (12).

reply length: symbol, decimal digit, or register (2) - (12). The
minimum length is 1; the maximum length is 115 when the operator
enters REPLY id, 'reply' and 119 when the operator enters Rid,
'reply'.

ecb addr: A-type address, or register (2) - (12).

route code: decimal digit from 1 to 16. The route code is one or
more codes, separated by commas.

desc code: decimal digit from 1 to 16. The desc code is one or
more codes, separated by commas.

msg type: anyone of the following:
N SESS,JOBNAMES
Y SESS,ST ATUS
SESS JOBNAMES,STATUS
JOBNAMES SESS,JOBNAMES,ST ATUS
STATUS

field name: any combination of the following, separated by
commas:

REGO
RESP
REPLY
BRDCST

HRDCPY
QREGO
NOTIME
NOCPY

The parameters restricted in use are explained below. The other parameters are explained in
OS/VS2 Supervisor Services and Macro Instructions.

,MSGTYP = (msg type)
specifies how the message is to be routed.

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console or TSO
terminal in operator mode which issued the MONITOR SESS, MONITOR JOBNAMES, or
MONITOR STATUS command, respectively. When the message type is identified by the
operating system, the message will be routed to only those consoles that had requested the
information.

For Y or N, the message type specifies whether flags are to be set in the WTO macro
expansion to describe what functions (MONITOR SESS, MONITOR JOBNAMES, and

WTOR - Write to Operator with Reply 211

MONITOR STATUS) are desired. N, or omission of the MSGTYP parameter, indicates that
the message is to be routed as specified in the ROUTCDE parameter.

,MCSFLAG = (field name)
specifies that the macro expansion should set bits in the MCSFLAG field as indicated by
each name coded. The names and corresponding bit settings are shown in Figure 24 that
appears in the description of WTO.

Example 1

Operation: Send a WTOR message to the hardcopy log only.

WTOR

Example 2

'THIS MSG IS TO HARDCOPY ONLY WITH RC=ALL' ,MCSFLAG=HRDCPY,
ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

Operation: Send a WTOR message to all active consoles and broadcast it to all consoles or
terminals which have issued MONITOR commands.

WTOR

Example 3

'THIS MSG IS BROADCAST WITH RC=ALL' , MCSFLAG=BRDCST,
ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

Operation: Send a WTOR message to all consoles and TSO terminals which have issued a MN
JOBNAMES command.

WTOR 'WTOR BY MSGTYP=JOBNAMES WITH RC=ALL, NO CONSOLE·MONITORING
JOBNAMES' ,MSGTYP=JOBNAMES,ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,
12,13,14,15,16)

212 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

WTOR (List Form)

The list form of the WTOR macro instruction is described in the OS/VS2 Supervisor Services
and Macro Instructions, with the exception of the MSGTYP and MCSFLAG parameters. These
parameters are restricted in use, and are described below.

The list form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

'msg'

,reply addr

,
,reply length

,
,ecb addr

,ROUTCDE=(route code)

,DESC=(desc code)

,MSGTYP=(msg type)

,MCSFLAG=(field name)

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

msg: up to 121 characters.

reply addr: an A-type address.

reply length: symbol or decimal digit. The minimum length is 1; the
maximum length is 115 when the operator enters REPLY id, 'reply'
and 119 when the operator enters Rid, 'reply'.

ecb addr: A-type address.

route code: decimal digit from 1 to 16. The route code is one or
more codes, separated by commas.

desc code: decimal digit from 1 to 16. The desc code is one or
more codes, separated by commas.

msg type: anyone of the following:
N SESS,JOBNAMES
Y SESS,ST A TUS
SESS JOBNAMES,ST ATUS
JOBNAMES SESS,JOBNAMES,ST ATUS
STATUS

field name: any combination of the following, separated by
commas:

REGO
RESP
REPLY
BRDCST

HRDCPY
QREGO
NOTIME
NOCPY

The parameters restricted in use are explained under the standard form of the WTOR macro
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro
Instructions.

WTOR (List Form) 213

214 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

A parameter
FREEMAIN macro instruction 130
GET MAIN macro instruction 134
PGFIX macro instruction 137
PGFREE macro instruction 151
SETFRR macro instruction 178

A-type address
meaning 97

ABEND macro instruction 43,45
AC= parameter 31
ADDR parameter' 181
address space termination 44
allocate virtual storage (GETMAIN) 134-137
alternate power down 67
'AND IMMEDIATE (NI) instruction, providing a lock via

143-144
APF (authorized program facility) 31-33
APF authorization code 31
AREAID parameter 208
ASCB parameter 154
ASID parameter

CALLRTM macro instruction 104
PURGEDQ macro instruction 157
SDUMP macro instruction 173
ST A TUS macro instruction 200,203

ASIDTCB parameter 157
ASM (auxiliary storage manager lock) 19
asymmetric storage feature 67
ASYNCH parameter

A TT ACH macro instruction 100
ESTAE macro instruction 121
ST AE macro instruction 196
used for serialization of resources 23

asynchronous execution, scheduling system services for
171

ATTACH macro instruction 99-102,47
use of restricted parameters 13-14

AUTH parameter 205
authorization 31
authorization, testing 205-206
authorized library 32

SVC routines 78
authorized program facility (APF) 31-33
auxiliary storage manager lock (ASM) 19

BLOCK parameter 160
BNDRY parameter 134
branch entering POST 91
branch entering WAIT 92
branch entry

EVENTS 38
GETMAIN and FREEMAIN 61
SDUMP 59

BRANCH parameter
CIRB macro instruction 107
ESTAE macro instruction 121
EVENTS macro instruction 125
FREEMAIN macro instruction 130,61
GETMAIN macro instruction 134,61
SDUMP macro instruction 174
SETLOCK macro instruction 185
TEST AUTH macro instruction 206

BUFFER parameter 173

call recovery/termination manager (CALLRTM) 104-105
CALLDISP macro instruction 103
CALLRTM macro instruction 104-105

use of 37-38
change subtask status (STATUS) 200-203
change system status (MODESET) 138-142
channel ends 82
checkpoint/restart considerations 17
check stop status condition 36
CHNGDUMP, use of 59

CIB (command input buffer) 15
CIB chain

manipulation of 22
CIBCTR parameter 160
CIRB macro instruction 106-108

use of 77
classes of locks 20
CMS (cross memory services lock) 20

SVC routines 80
coding the macro instructions 96-98
command input buffer (CIB) 15

Index

command input buffer manipulation (QEDIT) 160
common service area subpools 61
COMP ARE AND SW AP (CS) instruction

NIL macro instruction 143
OIL macro instruction 145-146
POST macro instruction 37

COMPCOD parameter
CALLRTM macro instruction 104
SETRP macro instruction 188

console switching 70
continuation lines 98
control access to serially reusable resources (SETLOCK)

180-186
control program extensions 42
control track record 88
CPU parameter

DSGNL macro instruction
RISGNL macro instruction
RPSGNL macro instruction
SETRP macro instruction

CPU reset function 35
CPUR parameter 114

115
167
169

189

create a new task (ATTACH) 99-102
create interruption request block (CIRB) 106-108
cross-memory post 37
cross memory services lock (CMS) 20
CS (COMPARE AND SWAP) instruction 143,145
CT parameter

EST AE macro instruction 121
ST AE macro instruction 195

CTRLPROG macro instruction 67
CVTVWAIT 93
CVTOPT01 92
CVTOPT02 92

D parameter 178
DATASET macro instruction 81-82
DCB parameter

ATTACH macro instruction 100
SDUMP macro instruction 173

DDR swaps 83
DE parameter 100
decimal digit

meaning 97
default

meaning 98
defining APF-authorized libraries 32
DEQ macro instruction 109-113,22

and RESERVE 161
execute form 113
list form 112
standard form 109-111
use of restricted parameters 23-25

SC parameter
WTO macro instruction 207
WTOR macro instruction 211

descriptor codes 72
device ends 36
device, reserving a 161-166
direct class 35
direct signal, issuing 114-115
DISABLED parameter 184
disabling 20
DISP (global dispatcher lock) 19

Index 215

DISP parameter 101
DPMOD parameter 100
DSGNL macro instruction 114-115

use of 35
DUMP parameter

CALLRTM macro instruction 104
SETRP macro instruction 188

dump virtual storage (SDUMP) 172-177
DUMPOPT parameter

CALLRTM macro instruction 105
SETRP macro instruction 188

dumps of virtual storage. 58-60

E parameter
ENQ macro instruction 116
FREE MAIN macro instruction 130
RESERVE macro instruction 162
ST A TUS macro instruction 203

EA parameter
PGFIX macro instruction 147
PGFREE macro instruction 151

EC (external call) function 35
EC parameter

FREEMAIN macro instruction 130
GETMAIN macro instruction 134

ECB parameter
A TT ACH macro instruction 100
ENQ macro instruction 117
EVENTS macro instruction 125
PGFIX macro instruction 147
PGFREE macro instruction 151
RESERVE macro instruction 162
SDUMP macro instruction 173

ECBIND parameter
PGFIX macro instruction 148
PGFREE macro in.struction 152

emergency signal (ES) function 36
ENABLE parameter

CIRB macro instruction 107
MODESET macro instruction 142

ENQ macro instruction 116-120,22
execute form 120
list form 119
standard form 116-118
use of restricted parameters 22-24

ENTRIES parameter 125
EP parameter

A TT ACH macro instruction 100
CIRB macro instruction 106
RISGNL macro instruction 167

EPLOC parameter 100
equipment check status condition 36
ERRET parameter 154
ES (emergency signal) function 36
EST AE environment 49
ESTAE exit routine 47-48
ESTAE extended capabilities 47-49
ESTAE macro instruction 121-124

execute form 124
list form 123
standard form 121-122
use of 47-49,51-57

EST AE recovery routine 46
EST AE retry routine 53
ESTAI exit routine 47-48,22
EST AI parameter 100
EST AI recovery routine 46
EST AI retry routine 53
ETXR parameter 100
EU parameter

FREEMAIN macro instruction /130
GETMAIN macro instruction 134

event completion 37-38
EVENTS 38
PGFIX 64
POST 37
SPOST 37

EVENTS macro instruction 125,22
use of 38

examples

ATTACH 102
CALLDISP 104
CALLRTM 105
CIRB 108
DEQ 111
DSGNL 115
ENQ 118
ESTAE 122,124
EXTRACT 127
FREEMAIN 131
GETMAIN 135
MODESET 140
NIL 144
OIL 146
PGFIX 149,150
PGFREE 152,153
POST 154
PURGEDQ 157,159
QEDIT 160
RESERVE 164
RISGNL 168
RPSGNL 170
SCHEDULE 171
SDUMP 174,177
SETFRR 179
SETLOCK 182,184,186
SETRP 190
SPIE 191
SPOST 194
STAE 197,199
STATUS 203
SYNCH 204
TESTAUTH 205
WTO 209
WTOR 212

execute form of macro instruction
use of 96

explicit serialization 22
extended STAE (ESTAE) 121-124
external call (EC) function 35
external call pending status condition 36
EXT KEY parameter 138
EXTRACT macro instruction 126-129

execute form 129
list form 128
standard form 126-127
use of 15-16,28

extract TCB information (EXTRACT) 126-129

FCTN parameter 205
fetch-protected areas 38
FIELDS parameter 126
fix virtual storage contents (PGFIX) 147-150
force dispatcher entry (CALLDISP) 103
frames, page 63
free virtual storage (FREEMAIN) 130-133
free virtual storage contents (PGFREE) 151-153
FREEMAIN macro instruction 130-133

disabling 22
execute form 133
list form 132
standard form 130-131
use of restricted parameters 61

FRELOCK parameter 189
FRESDWA parameter 188
FRRs (see functional recovery routines)
FRR stack 46-47
FRRAD parameter 178
FRRs (functional recovery routines) 52-55,46
functional recovery routines (FRRs) 52-55,46

setting up 178-179

GENERIC parameter 109
GETMAIN macro instruction 134-137

execute form 137
list form 136
standard form 134-135
use of restricted parameters 61

GIVEJPQ parameter 102

216 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

GLBRANCH 61
global dispatcher lock (DISP) 19
global locks 20

user-written SVC routines 78
global priority 75
global storage

subpools 61
global subpools 61
GSPL parameter 100
GSPV parameter 100
GTFCRM parameter 169

hardcopy log 70
HDR parameter 173
HDRAD parameter 173
hierarchy, locking 21

ICFBDFOO 85
ICFBIFOO 86
ICPUR parameter 114
ICTL instruction 96
IEAAPFOO 31
IEALIMIT 89
IEAVTRML 58
IEAVWAIT 93
IEAOPTOI 92
IEAOPT02 92
IGCERROR 82
IGFINTVL 83
IHAFRRS mapping macro instruction 47,178
IHAPSA mapping macro instruction 47,178,180
IHARMPL mapping instruction 58
IHASDWA mapping macro instruction 187
IHA WSA VT 130,134
IMPL parameter 114
initial CPU reset function 35
initial microprogram load function 35
initial program reset function 35
installation-written clean-up routines 57-58
integrity 38-42
interface

to EST AE/EST AI exit 51
to functional recovery routines 49
to ST AE/ST AI exit 50

interlock conditions 27
interprocessor communications 34-37
interruption handler, missing 81
interruption request block, creating 77
interruption, recovery Itermination, and dumping services

43-60
interruption request block (lRB) 106,77
invalid function status condition 36
lOS channel availability table lock (lOSCAT) 19
lOS logical channel queue lock (lOSLCH) 19
lOS synchronization lock (lOSYNCH) 19
lOS unit control block lock (IOSUCB) 19
10SCAT (lOS channel availability table lock) 19
10SLCH (lOS logical channel queue lock) 19
10SUCB (lOS unit control block lock) 19
10SYNCH (lOS synchronization lock) 19
IPR parameter 114
IRB (interruption request block) 77
issue direct signal (DSGNL) 114-115
issue remote immediate signal (RISGNL) 167-168
issue remote pendable signal (RPSGNL) 169-170

job step authorization 32
JSCB parameter 101
JSTCB parameter 101

KEY parameter
A TT ACH macro instruction
CIRB macro instruction 106
FREEMAIN macro instruction
GETMAIN macro instruction
MODESET macro instruction
TEST AUTH macro instruction

101

131,61
135,61
140
205

KEY ADDR parameter 138

L parameter
FREEMAIN macro instruction 130
PGFIX macro instruction 150
PGFREE macro instruction 153

LA parameter
FREEMAIN macro instruction 130
GETMAIN macro instruction 134
PGFIX macro instruction 150
PGFREE macro instruction 153

label processing 17
LAST parameter 125
LC parameter

FREEMAIN macro instruction 130
GETMAIN macro instruction 134

limiting user region size 89·
linkage editor 32
list form of macro instruction

use of 96
LIST parameter 173
LOAD macro instruction 78
LOCAL (local storage lock) 20

GETMAIN and FREEMAIN 61
SVC routines 80

local locks 20
local priority 75
local storage

subpools 61
local storage lock (LOCAL) 20
locking 19-22

classes of locks 20
considerations 21-22
hierarchy 21
locks 19-20
manager 19
types of locks 20-21

LONG parameter 177,61
long-term fix 63
LPMOD parameter 100
LSQA parameter 102
LU parameter

FREEMAIN macro instruction 130
GETMAIN macro instruction 134

LV parameter
FREEMAIN macro instruction 130
GETMAIN macro instruction 134

machine check handler appendage
adding code to 83-84

macro instruction forms 96
master scheduler initialization module

adding code to 86-87
MC parameter 202
MCS (multiple console support) 70
MCSFLAG parameter

WTO macro instruction 208
WTOR macro instruction 212

message routing 70
message routing exit routines 70-73
MF parameter

DEQ macro instruction 112,113
ENQ macro instruction 119,120
EST AE macro instruction 123,124
EXTRACT macro instruction 128,129
FREEMAIN macro instruction 132,133
GETMAIN macro instruction 136,137
MODESET macro instruction 141,142
POST macro instruction 155,156
PURGEDQ macro instruction 158,159
RESERVE macro instruction 165,166
SDUMP macro instruction 175,176
SPIE macro instruction 192, 193
STAE macro instruction 198,199
WTO macro instruction 210
WTo.R macro instruction 213

MF1TCH parameter 169
miscellaneous services, supervisor 69-95
missing interruption handler 82

Index 217

MODE parameter
CIRB macro instruction 106
MODESET macro instruction 140
RPSGNL macro instruction 169
SETLOCK macro instruction 181

MODESET macro instruction 138-142
disabling 21
execute form 142
list form 141
standard form 138-140
use of 34

MOUNT command 83
MP systems 67,17
MSG TYP parameter

WTO macro instruction 208
WTOR macro instruction 211

multiple console support (MCS) 70
multiple-line message 70
multiple locks 21
multiprocessing configuration 67
multiprocessing considerations 17
must complete function 23-24

ND parameter 202
NI (AND IMMEDIATE) instruction 143
NIL macro instruction 143-144
nonquiesceable priority level 75
not ready status condition 36
NSHSPL parameter 101
NSHSPV parameter ~ 0 1

OBTAIN parameter 180
01 (OR IMMEDIATE) instruction 145
OIL macro instruction 145-146
operator

writing to with reply 207-210
writing to without reply 211-213

operator intervening status condition 36
operator messages 69-70
OR IMMEDIATE (01) instruction, providing a lock via

145-146
ORIGIN parameter 160
OV parameter

EST AE macro instruction 121
ST AE macro instruction 195

P parameter 178
page fixing 63
page frames 63
PARALLEL parameter 167
PARAM parameter

ATTACH macro instruction 100
EST AE macro instruction 121
ST AE macro instruction 195

P ARM parameter 167
P ARMAD parameter 179
partitioned data set

SVC routines 81
PGFIX macro instruction 147-150

list form 150
standard form 147-149
use of 63-64
virtual subarea list 64-65

PGFREE macro instruction 151-:t53
list form 153
standard form 151-152
use of 63-64
virtual subarea list 64-65

PGLOAD macro instruction 63
virtual subarea list 64-65

PGOUT macro instruction 63
virtual subarea list 64-65

PGRLSE macro instruction 63
virtual subarea list 64-65

PICA 43
PIE 43
PIRL (see purged I/O request list)
POST ~acro instruction 154-156,22

execute form 156
list form 155
standard form 154
use of restricted parameters 37

POST, synchronizing 194
power warning feature support 83-89
PR parameter 114
priorities 74-75
priority considerations 18
program FLIH 43
program management 17
program reset function 35
provide a lock via an AND IMMEDIATE (NO instruction

(NIL) 143-144
provide a lock via an OR IMMEDIATE (01) instruction

(OIL) 145-146
PURGE parameter

A TT ACH macro instruction 100
EST AE macro instruction 121
ST AE macro instruction 196

purge SRB activity (PURGEDQ) 157-159
purged I/O request list (PIRL) 73
PURGEDQ macro instruction 157-159

and SPOST 194
execute form 159
list form 158
standard form 157
use of 74-75

QEDIT macro instruction 160
uses of 15,22

QUIESCE parameter 174

R parameter
FREEMAIN macro instruction 130
GETMAIN macro instruction 134
PGFIX macro instruction 147
PGFREE macro instruction 151
SETFRR macro instruction 178

RBLEVEL parameter 205
RC parameter

FREEMAIN macro instruction 130
GETMAIN macro instruction 134
SETRP macro instruction 188

real storage manager and virtual storage manager space
allocation lock (SALLOC) 19

real storage management 63-67
real storage manager 63
receiver check status condition 36
reconfiguration using vary storage command 65
RECORD parameter

EST AE macro instruction 121
SETRP macro instruction 189

recovery environment 37
recovery guidelines 75
recovery routines 46-57
recovery/termination 44-57
recovery/termination manager (RTM) 44
recovery/termination manager, calling 104-105,37
RECPARM parameter 189
reenterable SVC routines 78
reentrant modules 18
REF parameter

NIL macro instruction 143
OIL macro instruction 145

reference - macro instructions and commands 96-213
refresh able SVC routines 78
register (0)

meaning 97
register (1)

meaning 97
register (2) - (12)

meaning 97
REGS parameter

SETLOCK macro instruction 182,185
SETRP macro instruction 188

RELATED parameter
ATTACH macro instruction 101
DEQ macro instruction 109

218 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

)

ENQ macro instruction 116
ESTAE macro instruction 121
FREEMAIN macro instruction 130
GETMAIN macro instruction 134
MODESET macro instruction 139
PGFIX macro instruction 147
PGFREE macro instruction 151
POST macro instruction 154
RESERVE macro instruction 162
SETFRR macro instruction 178
SETLOCK macro instruction 182
ST AE macro instruction 196
ST A TUS macro instruction 200,203

release a serially reusable resource (DEQ) 109-113
RELEASE parameter

PGFIX macro instruction 147
PGFREE macro instruction 151
SETLOCK macro instruction 183

remote class 35
remote immediate signal, issuing 167-168
remote pendable signal, issuing 169-170
request control of a serially reusable resource (ENQ)

116-120
reserve a device (RESERVE) 161-166
RESERVE macro instruction 161-166

execute form 166
list form 165
standard form 161-164
use of 26-30

RESET parameter 202
resource control 19-42
resource serialization 22
restart function 35
RESTART parameter 114
restricting

load module access 31
SVC service routines 31

RET parameter
DEQ macro instruction 109
ENQ macro instruction 116
RESERVE macro instruction 162

RETADDR parameter 188
RETIQE parameter 107
RETREGS parameter 188
RETRN parameter 107
retry routines 52-57
return codes

ATTACH macro instruction 102
DEQ macro instruction 111
DSGNL macro instruction 115
ENQ macro instruction 118
EST AE macro instruction 122
FREEMAIN macro instruction 131
GETMAIN macro instruction 135
PGFIX macro instruction 148
PGFREE macro instruction 152
RESERVE macro instruction 162-164
RISGNL macro instruction 167-168
RPSGNL macro instruction 170
SDUMP macro instruction 174
SETLOCK macro instruction 182,184,186
ST AE macro instruction 197
TEST AUTH macro instruction 206

return parameters, setting 187-190
RISGNL macro instruction 167-168

use of 36
RMC parameter 109
RMTR parameter 157,76
ROUTCDE parameter

WTO macro instruction 207
WTOR macro instruction 211

routing codes 71
RPSGNL macro instruction 169-170

use of 36
RQCHECK parameter 169
RTM (recovery/termination manager) 45
RU parameter

FREEMAIN macro instruction 130
GETMAIN macro instruction 134

RUB parameter 188
RX-type address

meaning 97

S parameter
ENQ macro instruction 116
EXTRACT macro instruction 126
RESERVE macro instruction 162

SALLOC (real storage manager and virtual storage
manager space allocation lock) 19

GETMAIN and FREEMAIN 61
SA VEKEY parameter 139
SCHEDULE macro instruction 171

and PURGEDQ 157
use of 73-74

schedule system services for asynchronous execution
(SCHEDULE) 171

SCOPE parameter 171
SD parameter 202
SDAT A parameter

SDUMP macro instruction 173
SDUMP dump requests 59
SDUMP macro instruction 172-177

execute form 176-177
list form 175
standard form 172-174
use of 58-59

SDWA (see system diagnostic work area)
SDWACLUP 56
SDW AFMID 50,56
SDWAPERC 56
sense function 35
SENSE parameter 114
SERIAL parameter 167
serialization 78,22
serially reusable resources

controlling access to 180-186
locking 19-22
releasing 109-113
requesting control of 116-120

service classes 35-36
service management 73-77
service request block (SRB) 73,75
SET parameter 202

ST A TUS macro instruction 202
set return parameters (SETRP) 187-190
set up functional recovery routines (SETFRR) 178-179
SETCODE statement 32
SETFRR macro instruction 178-179

use of 46-47
SETLOCK macro instruction 180-186

use of 23
SETRP macro instruction 187-190
shared DASD 25-30,165
SHSPL parameter 101
SHSPV parameter 101
signal event completion (POST) 151-156
signal processor (SIGP) instruction

DSGNL macro instruction 114
RISGNL macro instruction 167
RPSGNL macro instruction 169

SIGP (signal processor) instruction 34-37
single system locks 21
SIO parameter 169
SM parameter 101
SMC parameter 117
SP parameter

FREEMAIN macro instruction 130
GETMAIN macro instruction 134

special clean-up processing 57
specify program intehlption exit (SPIE) 191-193
specify task abnormal exit (STAE) 195-199
SPIE macro instruction 191-193

execute form 193
list form 192
standard form 191
use of restricted interruptions 43

SPIE processing 43
SPIE 17 routine 43
spin locks 20

SVC routines 80
SPOST macro instruction 194

Index 219

use of 37
SQA buffer 59
SRB (service request block) 73,74
SRB activity, purging 157-159
SRB parameter

SCHEDULE macro instruction 171
STATUS macro instruction 200

SRBASCB field 74
SRBASID field 74
SRBCPAFF field 74
SRBEP field 74
SRBPARM field 74
SRBPKF field 74
SRBPRIOR field 74
SRBPTCB field 74
SRBRMTR field 74
SRBSAVE field 74
SRM (system resource manager lock) 20
SSM instruction 21
SSS parameter 114
STAB parameter 107
STAE environment 47-48
STAE exit routines 47-48
STAE macro instruction 195-199

execute form 199
list form 198
standard form 195-197
use of 47-48

ST AE recovery routine 46,47
ST AE retry routine 52-53
stage 1 exit effector 77
stage 2 exit effector 77
stage 3 exit effector 77
ST AI environment 47-48
STAI exit routines 47-48
ST AI parameter 100
ST AI recovery routine 46,47
ST AI retry routine 52-53
start function 35
ST AR T parameter

DSGNL macro instruction 114
STATUS macro instruction 200

ST ATE parameter 205
status conditions 36-37
ST A TUS macro instruction 200-203
STEP parameter

CALLRTM macro instruction 105
DEQ macro instruction 109
ENQ macro instruction 116
STATUS macro instruction 202

stop and store status function 35
stop function 35
STOP parameter

DSGNL macro instruction 114
STATUS macro instruction 200

stopped status condition 36
STORAGE parameter 173
subpools

common service area 61
fetch protected 61
global 61
not fetch protected 61
sytem queue area 61
227 61
228 61
229 61
230 61
231 61
236 13
237 13
239 61
241 61
245 61

subtask creation and control 13-16
subtask status, changing 200-203
supervisor services 94
suspend locks 20
SUSPEND parameter 148
SV AREA parameter

ATTACH macro instruction 101
CIRB macro instruction 108

SVC DUMP 59-60
SVC routines, user-written 77-82

calling SVC routines 41
characteristics 78
inserting 81
programming conventions 78-81
specifying 81

SVC 34, linking to 160
SVC Table entries 82
SVCTABLE macro instruction 81,31
SVEAREA parameter 121
SVRB

SVC routines 81
SWITCH parameter 169
symbol

meaning 97
SYNCH macro instruction 203

use of 17
SYNCH parameter 200
SYNCH service routine 70
synchronize POST (SPOST) 194
synchronous exits, taking 204
SYSABEND dump requests 59
SYSMASK parameter 142
system diagnostic workarea 49-57
system generation

SVC routines 81
system integrity 38-42
system log 71
SYSTEM parameter

DEQ macro instruction 109
ENQ macro instruction 116
STATUS macro instruction 202

system queue area sub pools 61
system resource manager lock (SRM) 20
system status 138-142,34
SYSTEMS parameter

DEQ macro instruction 109
ENQ macro instruction 116
RESERVE macro instruction 162

SYSUDUMP dump requests 153
SYSUDUMP parameter 80
SYS1.AOSCE 86
SYS I.LlNKLlB

APF authorization 31
power warning feature support 86
SVC routines 78

SYS I.LP ALIB
APF authorization 31
clean-up routines 58
SVC routines 78

SYS2.LPALIB
APF authorization 31

SYS I.NUCLEUS
APF authorization 31
power warning feature support 85

SYS1.SVCLlB
APF authorization 31
SVC routines 78

SZERO parameter 100

TABLE parameter 125
take asynchronous exit to a processing program (SYNCH)

204
task abnormal exit

extended 121-124
specifying 195-199

task, creating a new 36
task recovery routines 46-54
task termination 45-46
T ASKLIB parameter 100
TCB information, extracting 126-129
TCB parameter

CALLRTM macro instruction 104
DEQ macro instruction 110
ENQ macro instruction 117
STATUS macro instruction 200

TERM parameter
ATTACH macro instruction 100
ESTAE macro instruction 121

220 OS/VS2 System Programming Library: Supervisor (VS2 Release 3.7)

test authorization of caller (TEST AUTH) 205-206
TEST parameter 185
TEST UNDER MAST (TM) instruction 37
TEST AUTH macro instruction 205-206

use of 31
TID parameter 101
time interval for missing interruption handler 82-83
TM (TEST UNDER MASK) instruction 37
TYPE parameter

CALLRTM macro instruction 104
CIRB macro instruction 107
SETLOCK macro instruction 181,183

types of locks 20-21
type 5 SVC 81

UCB parameter
DEQ macro instruction 110
RESERVE macro instruction 162

user region size 89
user storage areas 38
user-written message routing exit routines 70-73
user-written SVC routines 77-82

V parameter 130
VARY STOR Command 66
varying storage 65-66
VC parameter

FREEMAIN macro instruction 130
GETMAIN macro instruction 134

virtual storage
allocating 134-137
dumping 172-177 , 5 8-60
freeing 130-133

virtual storage contents
fixing 147-150,63-64
freeing 151-153,63-64

virtual storage, dumping 58-60
virtual storage management 61

virtual subarea list (VSL) 64-65
VL parameter 100
volume handling 26
VSL (virtual subarea list) 64-65
VU parameter

FREEMAIN macro instruction 130
GETMAIN macro instruction 134

wait for events (EVENTS) 125
WAIT macro instruction 22

SVC routines 81
WAIT parameter 125
WKAREA parameter

CIRB macro instruction \ 107
SETRP macro instruction 188

WORKREG parameter 139
WREGS parameter

NIL macro instruction 143
OIL macro instruction 145

write-to-operator (WTO) 207-210
write-to-:,operator-with-reply (WTOR) 211-213
WRKREGS parameter 178
WTO macro instruction 207-210

list form 210
standard form 207-209
use of restricted parameters 69-73

WTOR macro instruction 211-213
list form 213
standard form 211-212
use of restricted parameters 69-73

XCTL macro instruction
SVC routines 81

XCTL parameter
EST AE macro instruction 121
ST AE macro instruction 195

Index 221

GC28-0628-1

ll~llitr
@

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

o
SQ
< en
I\,)

en
iJ
r
en
c:
i ..,
<
in'
Q
en
w
-.....J
o
W
9

C')

s.
~
.."
o
a:
»
0"
::l

OQ ,...
:;.
CD

OS/VS2 System Programming Library:
Supervisor

GC28-0628-1

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however: For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

Are the tables used to describe the macro instructions in this publication
an improvement over the brackets-and-braces syntax?

What is your occupation?

Number oflatest Technical Newsletter (if any) concerning this publication:

Please indicate your address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

READER'S
COMMENT
FORM

GC28-0628-1

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and pUblishing
this material. All comments and suggestions become the property of IBM.

n
S.
g
'TI o
0:
»
0'
::l
IIQ ,...
:i'
ll)

I
Fold Fold

- - - -- --- - - - ---- - -----~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

First Class
Permit 81

I
I
I

Poughkeepsie I
New York

I
I

o
~
< en
I\.)

en
'"0
r

I g>
i

I ~.
I Q

en
I ~

o
I w
I $

I
-----------------------~

Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold I
I
I
I
I ~

I\.)

I 6
I ~
I
I
I
I
I
I
I
I
I

)

Technical Newsletter This Newsletter No. GN28-2634

Date January 16, 1976

OS/VS2 System Programming Library: Supervisor

© IBM Corp. 1975,1976

Base Publication No. GC28-0628-1

File No. 8370-36

Previous Newsletters None

This Technical Newsletter, a part of release 3.7 of 08/V82, provides replacement pages for the
subject publication. These replacement pages remain in effect for subsequent releases unless
specifically altered. Pages to be inserted and/or removed are:

Cover, Edition Notice

9, 10
177 - 180

A change to the text or to an illustration is indicated by a vertical line to the left of the change.
Some pages without changes were reprinted in order to decrease the number of page inserts.

Summary of Amendments

The CLEAR keyword parameter has been added to the SETFRR macro instruction.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications Development, Department 058, Building 706·2,
PO Box 390, Poughkeepsie, New York 12602

© IBM Corp. 1976 Printed in U.S.A.

I

Technical Newsletter

OSjVS2 System Programming
Library: Supervisor

©IBM Corp. 1974,1975,1976

This Newsletter GN28-2740

Date June 15, 1976

Base Publication No. GC28-0628-1

File No. S370-36

Previous Newsletters GN28-2634

This Technical Newsletter, a part of release 3.7 of OS/VS2, provides replacement pages
for the subject publication. These replacement pages remain in effect for subsequent
releases unless specifically altered. Pages to be inserted and/or removed are:

Cover, Edition Notice
9,10

89, 90 (includes 90.1, 90.2)

A change to the text or to an illustration is indicated by a vertical1ine to the left of the
change.

Summary of Amendments

Changes have been made to reflect APAR fixes to Release 3.7.

Note: Please file this cover letter at the back of the manual to provide a record of
changes.

IBM Corporation, Publications Development, Department D58, Building 706-2,
PO Box 390, Poughkeepsie, New York 12602

© IBM Corp. 1976 Printed in U.S.A.

