
Systems 

GC26-3799-0 

OS/VS Virtual Storage 
Access Method (VSAM) 
Planning Guide 



First Edition (July 1972) 

This edition applies to release 2 of OS/VS1, to release 1 of OS/VS2, and to all subsequent 
releases until otherwise indicated in new editions or technical newsletters. Changes may be 
made to the information in this publication at any time; before using this publication in 
connection with the operation of IBM systems, consult the System/360 and System/370 
Bibliography~ GA22-6822, and the latest System/360 and System/3 70 SRL Newsletter~ 
GN20-0360, for the editions that are applicable and current. 

Requests for copies of IBM publications should be made to your IBM representative or to 
the IBM branch office serving your locality. 

Forms for readers' comments are provided at the back of this publication. If the forms have 
been removed, comments may be addressed to IBM Corporation, Programming Publications, 
Department D78, Monterey and Cottle Roads, San Jose, California 95114. Comments 
become the property of IBM. 

© Copyright International Business Machines Corporation 1972 



USING THIS PUBLICATION 

This publication is intended to enable prospective users of VSAM (virtual storage 
access method), an access method of OS/VS (operating system/virtual storage), to 
prepare for using VSAM. The intended audience is data-processing managers whose 
decisions will influence the use of VSAM, system and application programmers who 
will make detailed preparations, and others seeking an introduction to VSAM. 

This planning guide has six chapters: 

"Introducing VSAM" outlines how VSAM meets the requirements of an access method 
in today's data-processing environment. 

"Getting to Know What VSAM Is and Does" explains the concepts and functions of 
VSAM and is required reading for the following chapters. 

"Communicating with VSAM" discusses, primarily for programmers, the multifunction 
service program Access Method Services, the macros of VSAM, and the use of JCL Uob 
control language) with VSAM. ' 

"Preparing for VSAM" indicates, for the planners, the programming languages and 
optional features of OS/VS that VSAM can be used with. 

"Optimizing the Performance of VSAM" outlines, for application and system 
programmers, ways to achieve the best throughput of which VSAM is capable. 

"Protecting Data with VSAM" describes, for managers and system programmers, 
VSAM's standard and optional features for data integrity and security. 

This publication also has a glossary and an index. 

The reader is expected to be familiar with basic concepts such as access method, 
direct-access storage, and the distinction between data-set organization and data-set 
processing. The sections dealing with those concepts in OSjVS Data Management 
Services Guide. GC26-3783, are suitable for preparatory reading. 

In the chapter "Preparing for VSAM," the section "How Can Existing Programs That 
Use ISAM Be Used with VSAM?" is intended for those who use ISAM (indexed 
sequential access method). Other readers may ignore this section and any other 
references to ISAM. The section of the Data Management Services Guide that 
discusses ISAM is suitable for reference. 

The discussion on JCL in the chapter "Communicating with VSAM" presupposes the 
reader's familiarity with the sections of OS jVS JCL Reference. GC28-0618, that 
discuss the JCL parameters described in this planning guide. 

Other publications referred to in this publication are: 

Introduction to Virtual Storage in System/370, GR20-4260 
OSjVS CheckpoinTj Restart, GC26-3784 
OSjVS Master Index, GC28-0602 
OS/VS Service Aids, GC28-0633 
OS/VS System Management Facilities, GC35-0004 
OSjVS2 Time Sharing Option, GC38-0220 

iii 





CONTENTS 

iii Using This Publication 

Introducing VSAM 
What Is VSAM? 

2 What Are the Requirements for an Access Method? 
2 How Does VSAM Meet These Requirements? 
5 What Machines Can VSAM Be Used \Vith? 

7 Getting to Know What VSAM Is and Does 
7 What Are VSAM's Two Types of Data Sets? 
7 The Use of Control Intervals 
9 Key-Sequenced and Entry-Sequenced Data Sets 

13 How Are VSAM Data Sets Created? 
13 In What Ways Can VSAM Data Sets Be Processed? 
14 Keyed Access for Key-Sequenced Data Sets 
16 Addressed Access for Both Types of Data Sets 
18 What Are the Master Catalog and User Catalogs For? 
18 A VSAM Catalog's Use in Data and Space Management 
19 Information Contained in the Entries of a Catalog 
20 The Special Uses of User Catalogs 

23 Communicating with VSAM 
23 How Is Access Method Services Used? 
23 Defining and Deleting Data Sets and Listing Catalog Entries 
25 Copying and Listing Data Sets 
25 Moving Data Sets from One Operating System to Another 
27 Recovering from Damage to Data 
28 What Are the Macros for Processing a VSAM Data Set? 
28 Connecting and Disconnecting a Processing Program and a Data Set 
29 Specifying Parameters That Relate the Program and the Data 
32 Manipulating the Information Relating the Program and the Data 
32 Requesting Access to a Data Set 
33 How is JCL Used? 
33 Defining a VSAM Data Set 
33 Processing a VSAM Data Set 
33 Specifying VSAM Catalogs 
33 Using Other JCL Parameters 

35 Preparing for VSAM 
35 What Programming Languages Can VSAM Be Used With? 
35 How Can the Time Sharing Option (TSO) Be Used with VSAM? 
36 How Can System Management Facilities (SMF) Be Used with VSAM? 
36 How Can Existing Programs That Use ISAM Be Used with VSAM? 
36 Comparison of VSAM and ISAM 
38 How to Convert an Indexed Sequential Data Set to a 

Key-Sequenced Data Set 
39 What the ISAM Interface Does 
39 Restrictions in the Use of the ISAM Interface 

41 Optimizing the Perfonnance of VSALVl 
41 How Can Control-Interval Size Be Used to Influence Performance? 
41 How Does Distributed Free Space Improve Performance? 

v 



42 What Index Options Are There to Improve Performance? 
42 Index-Set Records in Virtual Storage 
42 Index and Data Set on Separate Volumes 
43 Sequence-Set Records Adjacent to the Data Set 
43 Replication of Index Records 
43 How Can VSAM Catalogs Affect Performance? 
43 Searching a VSAM Catalog 
44 Sharing Services with User Catalogs 

45 Protecting Data with VSAM 
45 How Does VSAM Achieve Data Integrity? 
45 Method of Inserting Records into a Key-Sequenced Data Set 
45 Control-Interval Principle 
46 Method of Indicating the End of a Data Set 
46 Verifying Write Operations 
47 How Is Shared Data Protected? 
47 Cross-System Sharing 
47 Cross-Region Sharing 
47 Subtask Sharing 
48 How Can Passwords Be Used to Authorize Access? 
48 How Are Programs Restarted Following a Failure? 
48 Recording Checkpoint Information 
49 Restarting the Processing Program 
49 Restrictions and Options for Restarting a Program 
50 How Can the Causes of Problems Be Determined? 
50 Exits to Your Error-Analysis Routines 
50 VSAM Messages 
50 Generalized Trace Facility (GTF) 

51 Glossary 

55 Index 

vi 



FIGURES 

Figure 1. 

8 Figure 2. 

8 Figure 3. 
9 Figure 4. 

10 Figure 5. 

11 Figure 6. 
12 Figure 7. 
16 Figure 8. 
19 Figure 9. 

26 Figure 10. 
38 Figure 11. 
44 Figure 12. 

Position of VSAM between a processing program and auxiliary 
storage 

Relationship between control intervals and blocks in auxiliary 
storage 

Relationship among storage volumes, data spaces, and data sets 
Placement of data records and control information in a control 
interval 

Comparison of a key-sequenced data set and an 
entry-sequenced data set 

Relationship among the levels of an index and a data set 
Distribution of free space in a key-sequenced data set 
Splitting a control interval for record insertion 
Cataloging both VSAM and non VSAM data sets in a VSAM 
catalog 

Comparison of volume portability and data-set portability 
Use of ISAM programs to process VSAM data sets 
Replication of a sequence-set index record adjacent to its 
control area 

vii 





INTRODUCING VSAM 

This chapter is intended for all readers new to VSAM (virtual storage access method). 
It introduces VSAM, outlines the access-method capabilities that are required in today's 
data-processing environment, shows how VSAM has those capabilities by describing its 
area of applicability and summarizing its basic features, and indicates the CPUs (central 
processing units) and auxiliary-storage devices that VSAM can be used with. 

What Is VSAl'VI? 

VSAM is a high-performance access method of OS/VS (operating system/virtual 
storage), option 1 or 2, for use with direct-access storage. 

VSAM resides in virtual storage along with the processing program using it. Figure 1 
illustrates VSAM's position between the program and the data stored on a direct-access 
storage device. 

Processing 

Program 

Virtual Storage 

OS!VS 

Processing Region 

Physical Data 

Figure 1. VSAM relays data between the processing program and auxiliary storage. 

Introducing VSAM 1 



What Are the Requirements for an Access Method? 

In data processing today, it is common for a computer installation to do a number of 
different types of processing. An installation must provide for one combination or 
another of data-base processing, online processing, batch processing, inquiry and 
transaction processing, communications, and multiple CPUs under the control of 
different operating systems. This variety requires an access method that provides: 

• High performance of retrieval and storage-independent of previous insertions of 
records into data sets and uninterrupted by requirements to reorganize data sets or 
copy them for backup 

Applicability to different types of processing that require different kinds of access 
and different levels of performance (such as online and batch processing) 

Simplicity of use by means of a common set of instructions for different types of 
access, simplified JCL (job control language), and optimization of the use of space 
in auxiliary storage 

Protection of data: security against unauthorized access and integrity through 
prevention of intentional or accidental loss of data 

• Central control over the creation, access, and deletion of data sets and over the 
management of space by keeping data-set and storage information in one place and 
making it independent of JCL and processing programs 

• Ability to move data from one operating system to another in a format that is 
common to both systems 

Independenc~ from type of storage device: freedom from blocksizes, control 
information, and record deblocking 

Ease of conversion of data and programs from other access methods to the new 
access method 

How Does VSAM Meet These Requirements? 

VSAM provides an approach to meeting these requirements through: 

A format for storing data independently of type of storage device 

Routines for sequential or direct access and for access by key or by relative address 

• Options for optimizing' performance 

• A comprehensive catalog for defining data sets and auxiliary-storage space 

A multifunction service program (Access Method Services) for setting up catalog 

entries and maintaining data sets 

2 OS/VS Virtual Storage Access Method Planning Guide 



High Performance 
VSAM's high performance is due to an efficiently organized index, performance 
options for reducing disk-arm movement and rotational delay, and distributed free 
space for fast insertion of records and minimal reorganization. 

VSAM's use of virtual and auxiliary storage for the index of a data set is 
self -optimizing: VSAM keeps in virtual storage as many index records as it can in the 
space you allow it, and it reduces the size of the index by compressing keys to 
eliminate redundant information. The type of index used for a data set is also used for 
VSAM catalogs to give fast catalog access. 

VSAM's method of inserting records into a data set provides access whose speed 
following a large number of insertions is equivalent to the speed of access without 
previous insertions. Free space is used for efficient automatic reorganization of data 
sets: inserted records are stored and addressed in the same way as original records, and 
space given up by deletions is reclaimed as free space. There is seldom need with 
VSAM to reorganize a data set offline. 

Applicability to Different Types of Processillg 

VSAM is designed to meet most of the common data-organization needs of both batch 
and online processing. Batch processing requires the efficiency of sequential and 
indexed data; online processing requires efficient direct access for random requests. 
VSAM permits both direct and sequential access; access can be by key or by relative 
address. Different types of processing can be intermixed in the processing of a 
common data base. You can select the type of access or the combination of types that 
best suits your application. 

You can use VSAM with OS/VS's TSO (Time Sharing Option) for conversational time 
sharing from remote terminals. 

Simplicity of Use 

There is a common way of requesting the different types of access (sequential or direct, 
by key or by relative address), so that the same instructions are learned and used for 
achieving different results. 

All VSAM data sets are cataloged, so JCL is simplified. Minimal JCL parameters are 
required for describing data sets. 

VSAM automatically calculates the optimum-sized units in which to store data and the 
total amount of auxiliary-storage space required for the number of records you want to 
store. It optimizes the use of virtual-storage space for I/O (input/output) buffers. 
Programmers can think in terms of the application, not in terms of the internal 
workings of VSAM. 

Individual data records are passed to a processing program without any system control 
information: application data alone is processed by the program. Application 
programmers do not need to know the format of control blocks. They need not be 
concerned either with storage devices and device addresses or with different formats for 
fixed-length or variable-length records. 

Introducing VSAM 3 



Protection of Data 

Central Control 

VSAM protects data by means of its design and its integrity and security options. 
Integrity means the safety of data from inadvertent destruction or alteration; security 
means the protection of data from unauthorized use or purposeful destruction or 
alteration. VSAM writes records in a way that does not expose data to loss, even if an 
I/O error occurs. You can specify optional passwords for levels of protection 
(read-only, update, and full access) and include your own routine to check a requester's 
authority to gain access to data. You can select options for formatting data sets before 
data is stored in them and for verifying write operations for data integrity. 

The VSAM catalog brings together extensive information about data sets and storage 
space. Access Method Services controls the definition and deletion of data sets and the 
alteration of information about them in the catalog. Its use is authorized by passwords 
assigned to the data sets or to the catalog itself. Consequently, the management of 
your inventory of data sets is centralized and made independent of the use of JCL or 
the actions of processing programs. Space for data sets can be allocated or deallocated 
without mounting volumes, since the information describing the contents of VSAM 
spaces on those volumes is contained in the catalog. You can assign a data set to 
volumes by ranges of keys that are controlled by the catalog. 

Portability of Data Between Systems 

VSAM's technique for storing records uses a format that is common to OS/VS and 
DOS/VS (disk operating system/virtual storage). Communication with VSAM is the 
same for both operating systems, except for JCL. Access Method Services includes 
functions that facilitate moving data sets and volumes from one operating system to 
another. 

Device Independence 

VSAM is independent of particular types of storage devices, because it addresses a 
record in a data set without respect to the physical attributes of auxiliary storage, but 
with respect to the displacement of the record from the beginning of the data set. The 
unit in which data is transmitted between virtual and auxiliary storage does not depend 
on the size of the blocks in which data is stored physically on a volume. 

Ease of Conversion 

VSAM provides for easy conversion of indexed sequential data sets to VSAM format 
and the continued use of your existing ISAM (indexed sequential access method) 
programs to process converted data sets and new VSAM data sets. Access Method 
Services converts a sequential or an indexed sequential data set to VSAM format. To 
process the converted data set with the ISAM program, a set of interface routines 
within VSAM interpret each ISAM request and issue the appropriate VSAM request. 

4 OS/VS Virtual Storage Access Method Planning Guide 



What Machines Can VSAM Be Used With? 

You can use VSAM on IBM System/370 CPU Models 135 (OS/VSl only), 145, 155, 
and 165. Each of these CPUsmust have the dynamic address translator that is 
required by OS/VSl and OS/VS2. VSAM is designed to take full advantage of the 
benefits of virtual storage. See the Introduction to Virtual Storage in System/3 70, 
GR20-4260, for a discussion of virtual storage. 

The IBM direct-access storage devices that you can use are the IBM 2314 Direct 
Access Storage Facility, the 2319 and 3330 Disk Storage, and the 2305 Fixed Head Storage 
(Models 1 and 2). 

Introducing VSAM 5 





GETTING TO KNOW WHAT VSAM IS AND DOES 

Familiarity with the VSA~ concepts and terminology introduced in this chapter is 
presupposed in the following chapters. The concepts are especially important for 
application programmers who will design and code programs to process data with 
VSAM, and to system programmers who will maintain the VSAM installation. 

This chapter explains the two types of VSAM data sets, discusses creating VSAM data 
sets and gaining access to them, and describes the master catalog and user catalogs. 

What Are VSAM's Two Types of Data Sets? 

VSAM has key-sequenced and entry-sequenced data sets. The primary difference 
between the two is the sequence in which data records are stored in them. 

Records are loaded into a key-sequenced data set in key sequence: that is, in the order 
defined by the collating sequence of the contents of the key field in each of the 
records. Each record has a unique value in the key field, such as employee number or 
invoice number. VSAM uses an index and optional free space to insert a new record 
into the data set in key sequence. 

Records are loaded into an entry-sequenced data set without respect to the contents of 
the records. Their sequence is determined by the order in which they are physically 
arranged in the data set: their entry sequence. New records are stored at the end of 
the data set. 

VSAM stores the records of each type of data set in the same way in a fixed-length 
area of auxiliary storage called a control interval. We can better discuss the two types 
of data sets if we first look at the control interval in perspective with the other logical 
divisions of a data set and see how and why VSAM uses it for storing records. 

The Use of Control Intervals 

A control interval is a continuous area of auxiliary storage that VSAM uses for storing 
data records and control information describing them. It is the unit of information that 
VSAM transfers between virtual and auxiliary storage. Its size may vary from one data 
set to another, but for a given data set the size of each control interval in it is fixed, 
either by VSAM or by you, within limits acceptable to VSAM. VSAM chooses the size 
that is optimal for the type of direct-access storage device used to store the data set, 
depending on the size of your data records and the smallest amount of virtual-storage 
space your processing program will provide for VSAM's 110 buffers. 

A control interval is independent of particular types of storage devices. For instance, a 
control interval that fits on a track of one type of device might span several tracks if 
the data set were moved to another type of device, as Figure 2 illustrates. 

The Control Interval in Perspective 

How does a data set relate to the physical attributes of auxiliary storage? And how 
does a control interval relate to a data set'? 

A volume can contain areas for VSAM's use and areas for the use of other access 
methods or the operating system. A storage area defined in the volume table of 
contents for VSAM's exclusive use is called a data space. It can be extended beyond 

Getting to Know What VSAM Is and Does 7 



Blo cks 

~ 
Contra I Interval Control Interval Control Interval 

I I I I I I I I I , 
Track 1 Track 2 Track 3 

Control Interval Control Interval Control Interval 

I I I I I I 
Track 1 Track 2 Track 3 Track 4 

Figure 2. Control intervals are independent of blocksize. 

Data 
Space 1 

its original size to include up to 16 continuous areas (extents) that need not be 

adjacent to one another on the volume. 

A data set is stored in a data space or data spaces on one or more volumes on 
direct-access devices of the same type. When you define a data set, you can allocate 
enough space to have some left at the end of the data set for additions. Otherwise, 
when additional space is needed, VSAM automatically extends the data set by the 
amount of space indicated in the definition of the data set in the catalog. It can be 
extended beyond its original size to include up to 255 extents, or to a maximum size of 
2 32 (approximately 4,290,000,000) bytes. Figure 3 illustrates the relationships among 
volumes, data spaces, and data sets. 

Data 

/ 
Data Set A3 Space 3 Data Set D 

Data Set A1 
Data Set C1 

Data Set C3 

Data Set B 
NonVSAM NonVSAM 

Data Set A2 

Data Set C
2 

Data 
Space 4 Available Available 

Available 

Figure 3. Portions of data sets A and C are stored in different data spaces on different volumes. 

8 OS/VS Virtual Storage Access Method Planning Guide 



A data set is made up of control intervals. A group of control intervals makes up a 
control area. It is the unit of a data set that VSAtvI preformats for data integrity as 
records are added to the data set. (See the section "Method of Indicating the End of a 
Data Set" in the chapter "Protecting Data with VSAM.") In a key-sequenced data set, 
control areas are also used for distributing free space throughout the data set as a 
percent of control intervals per control area and for placing portions of the index 
adjacent to the data set. 

VSAM fixes the number of control intervals for each control area in the data set. The 
number depends on the optimal amount of storage for preformatting. For a 
key-sequenced data set, the number is equal to the number of control intervals 
associated with an index record in the index for the data set. If 50 were the number 
chosen, for example, the first 50 control intervals would be the first control area; the 
next 50 would be the second control area, and so on. \Vhenever the space for a data 
set is extended, it is extended by a whole number of control areas. 

The Method of Storing a Record in a Control Interval 

The records of a data set may be either fixed or variable in length: VSAM treats them 
the same. It puts control information at the back of a control interval to describe the 
data records stored in the control interval: the combination of a data record and its 
control information, though they are not physically adjacent, is called a stored record. 
Figure 4 shows how data records and control information are stored in a control 
interval. 

Control Interval 

I Data Data Data Data Data Data Control 

Record Record Record Record Record Record Information 

I 

Figure 4. Data records are stored in the front of a control interval, and control 
information in the back. 

Stored records do not span control intervals. When you define a data set, you must 
specify enough buffer space for the control intervals in the data set to be large enough for 
your largest record. The maximum control-interval size is 65,536 bytes. 

A data record is addressed not by its location in terms of the physical attributes of the 
storage device (such as the number of tracks per cylinder), but by its displacement, in 
bytes, from the beginning of the data set, called its REA (relative byte address). The 
RBA does not depend on how many extents belong to the data set or on whether they 
are in different data spaces or on different volumes. For relative byte addressing, 
VSAM considers the control intervals in the data set to be contiguous, as though the 
data set were stored in virtual storage beginning at address o. 

Key-Sequenced and Entry-Sequenced Data Sets 

The purpose of this section is to describe VSAM's two types of data sets in detail and 
to explain further how VSAM uses the control interval for data storage. Figure 5 
contrasts the two types of data sets by listing the attributes of each. 

Getting to Know What VSAM Is and Does 9 



Key-Sequenced Data Set 

Records are collating sequence 
by key field 

Access is by key through an 
index or by R SA 

A record's R BA can change 

Distributed free space is used 
for inserting records and 
changing their length in place 

Space given up by a deleted or 

Entry-Sequenced Data Set 

Records are in the order in 
which they are entered 

Access is by R BA 

A record's R BA cannot change 

Space at the end of the data 

set is used for adding records 

A record cannot be deleted, but 
shortened record is automatically you can reuse its space for a 
reclaimed record of the same length 

Figure 5. Key-sequenced and entry-sequenced data sets differ in the use of an index 
and free space and in the changeability of RBAs. 

Key-Sequenced Data Sets 

The index and distributed free space are the most distinctive features of a 
key-sequenced data set. In discussing them we can cover all the important points about 
this type of data set. 

The Index for a Key-Sequenced Data Set 

A key-sequenced data set is always defined with an index. An index provides a 
directory that relates key values to the relative locations of the data records in a data 
set. A key in the index is taken from a record's key field, whose size and position are 
the same for every record in the data set, and whose value cannot be altered. VSAM 
uses an index to locate a record for retrieval and to locate the collating position for 
insertion. 

An index has one or more levels, each of which is a set of records that contain entries 
giving the location of the records in the next lower level. The index records in the 
lowest level are collectively called the sequence set; they give the location of control 
intervals. The records in all the higher levels are collectively called the index set; 
they give the location of index records. The highest level always has only a single 
record. The index of a data set with few enough control intervals for a single 
sequence-set record has only one level: the sequence set itself. 

Figure 6 illustrates the levels of an index and shows the relationship between a 
sequence-set index record and a control area. 

An entry in an index-set record consists of the highest key that an index record in the 
next lower level contains, paired with a pointer to that index record. An entry in a 
sequence-set record consists of the highest key in a control interval, paired with a 
pointer to that control interval. Not all data records have sequence-set entries, for 
there is only one entry for each control interval in the data set. 

10 OS/VS Virtual Storage Access Method Planning Guide 



A } Index Set 

Index 

l } Sequence Set 

Data ~t { 

Control Intervals of First Control Area Control Intervals of Second Control Area 

Figure 6. The highest-level index record (A) controls the entire next level (records B through Z); each 
sequence-set index record controls a control area. 

For direct access by key, VSAM follows vertical pointers from the highest level down 
to the sequence set to find a vertical pointer to data; for sequential access by key, 
VSAM refers only to the sequence set. It uses a horizontal pointer in a sequence-set 
record to get from that sequence-set record to the one containing the next key in 
collating sequence so it can find a vertical pointer to data. Figure 6 shows both vertical 
pointers and horizontal pointers. 

VSAM increases the number of entries that an index record of a given size can hold by 
a method of key compression: it eliminates from the front and the back of a key those 
characters that aren't necessary to distinguish it from the adjacent keys. Compression 
helps achieve a physically smaller index by reducing the size of keys in index entries. 
For example, a two-level index, the size of whose records is 2048 bytes, with key field 
of 16 bytes, and the size of whose entries, including compressed key and pointer, is 8 
bytes on the average, can control approximately 62,500 control intervals, each of which 
may contain numerous data records. 

The number of control intervals in a control area equals the number of entries in a 
sequence-set index record. This equality has important uses in: 

Placing the sequence-set index record adjacent to the control area on a single 
cylinder (see the section "Sequence-Set Records Adjacent to the Data Set" in the 
chapter "Optimizing the Performance of VSAM") 

Distributing free space throughout a data set as a percent of free control intervals in 
each control area 

Distributed Free Space for Data-Set Growth 

When you define a key-sequenced data set, you can specify that free space is to be 
distributed throughout it in two ways: by leaving some space at the end of all the used 
control intervals and by leaving some control intervals completely empty. The amount 

Getting to Know What VSAM Is and Does 11 



Free 

Records Records Space 

Control Information 

Sequence - Set Index Record 

• • • 

Highest-Key 
Entries 

Free­

Space 

Entries 

Data Free 
Records Space 

Control Intervals of a Control Area 

Free Space Free Space 

Figure 7. There are two kinds of distributed free space: space left in used control intervals and empty 
control intervals. 

of free space in a used control interval and the number of free control intervals in a 
control area are independent of each other. Figure 7 shows how free space might be 
set aside in each control area of a data set. The sequence-set record for a control area 
contains an entry for each free control interval, as well as for each of those that 
contain data. 

Besides the space that you distribute when you create a key-sequenced data set, space 
that becomes available when a record is shortened or deleted from the data set is 
automatically reclaimed by VSAM and can be used when a record is lengthened in 
place or inserted into the data set. 

Reclaiming space and using distributed free space may cause RBAs of some records to 
change. As Figure 7 illustrates, free space within a used control interval is between the 
data in the front and the control information in the back. If a record is deleted or 
shortened, any succeeding records in the control interval are moved to the left and their 
RBAs are changed so that the space vacated can be combined with the free space 
already in the control interval. Conversely, an insertion or a lengthening causes any 
succeeding records in the control interval to be moved to the right into free space and 
their RBAs to be changed. 

Entry-Sequenced Data Sets 

No index is associated with an entry-sequenced data set. When a record is loaded or 
subsequently added, VSAM indicates its RBA to you. You must keep track of the 
RBAs of the records yourself to gain access to them directly. One way to keep track is 
to build your own index. 

Sequential access with an entry-sequenced data set is similar to that of QSAM (queued 
sequential access method), except that you can use tape storage with QSAM. 

You can use direct access with an entry-sequenced data set in a way similar to BDAM 
(basic direct access method) by preformatting the data set with records of your choice 

12 OS /VS Virtual Storage Access Method Planning Guide 



(filled with blanks, for instance) and providing a routine that randomly associates an 
RBA with the key field of a record in the data set and thus distributes records 
throughout the data set. 

To store a record initially, you convert its key field to an RBA, retrieve the 
preformatted record at that RBA, and store the new record back at that RBA. The 
routine must have a procedure for determining an alternate RBA when two or more 
keys are converted to the same RBA. To retrieve a record subsequently, you convert 
its key field to its RBA and determine the alternate RBA, if one is required. 

How Are VSAM Data Sets Created? 

This short discussion on creating data sets is intended merely to introduce the following 
description of data access and VSAM catalogs. See the section "How Is Access 
Method Services Used?" in the chapter "Communicating with VSAM" for a more 
detailed discussion of defining data sets and loading records into them. 

To define a VSAM data set, you use Access Method Services to allocate storage space 
for it and catalog it in either the master catalog or a user catalog. You can load data 
records into a data set by having Access Method Services copy them from a sequential, 
an indexed sequential, or another VSAM data set, or you can load them with your own 
processing program. 

In What Ways Can VSAM Data Sets Be Processed? 

VSAM allows both sequential and direct access for each of its two types of data sets. 
Sequential access of a record depends on the position, with respect to the key or the 
agdress, of the previously processed record; direct access does not. With sequential 
access, records retrieved by key are in key sequence; records retrieved by address are 
in entry sequence. To retrieve or store records after initial positioning, you don't need 
to specify a key or an RBA. VSAM automatically retrieves or stores the next record in 
order-either next in key sequence or next in entry sequence, depending on whether 
you're processing by key or by address. With direct access, the retrieval or storage of a 
record is not dependent on the key or the address of any previously retrieved record. 
You must fully identify the record to be retrieved or stored by key or by address. 

VSAM allows a processing program or its sub tasks to process a data set with multiple 
concurrent sequential or direct requests, or both, with a single opening of the data set. 
Such concurrent access is called multiple-request processing. Access can be to the 
same part or to different parts of a data set. For sequential access, VSAM maintains 
positioning separately for each request. VSAM protects the requests from each other, 
by preventing them from inadvertently attempting to alter the contents of the same 
control interval at the same time. 

For a key-sequenced data set, the primary form of access is keyed access, using the 
index; for an entry-sequenced data set, the only form of access is addressed access, 
using the RBA determined for a record when it was stored in the data set. You can 
also use addressed access to process a key-sequenced data set, but since previous keyed 
insertion and deletion may change the RBAs of records, you must keep track of each 
record's RBA by providing a routine to record RBA changes during processing. VSAM 
exits to the routine at the appropriate time. 

Getting to Know What VSAM Is and Does 13 



When your processing program retrieves a record, VSAM reads into virtual storage the 
contents of the whole control interval in which it is stored (unless the contents have 
been read in previously). VSAM does not require the processing program to deblock 
records. VSAM indicates the length of the data record to your program and either 
places the record in your program's work area or gives your program the record's 
address in VSAM's I/O buffer. You need not concern yourself with any physical 

VSAM provides programmers of utilities and systems with control-interval access. They retrieve 
and store the contents of a control interval, rather than a single data record, by specifying 
control-interval access in the macros and giving the RBA of the control interval. They are 
responsible for maintaining the control information at the back of the control interval. The 
format of this information may change in future releases of VSAM. 

Keyed Access for Key-Sequenced Data Sets 

Keyed access is only for a key-sequenced data set with an index. An entry-sequenced 
data set has no index, and thus cannot be processed by keyed access. 

Keyed access provides for retrieval, update (including lengthening or shortening a 
record, as well as altering its contents), insertion, addition, and deletion. Each of these 
actions can be either sequential or direct. 

Keyed Sequential Retrieval and Keyed Direct Retrieval 

Keyed sequential access depends on where the previous macro request positioned 
VSAM with respect to the key sequence defined by the index. When the processing 
program opens the data set and its index for keyed access, VSAM is positioned at the 
first record in the data set in key sequence to begin keyed sequential processing. The 
POINT macro instruction positions VSAM for keyed sequential processing at the 
record whose key is specified. If the key specified is a leading portion of a key, or 
generic key, the record positioned to is the first of the records having the generic key. 
A subsequent GET macro retrieves the record VSAM is positioned at. The GET itself 
positions VSAM at the next record in key sequence. 

With direct access, you may optionally specify for GET to position VSAM at the next 
record in key sequence: your program can then process the following records 
sequentially. 

For retrieving records in sequence here and there throughout a data set, the processing 
program can specify skip sequential access. When the program indicates the key of 
the next record to be retrieved, VSAM skips to its index entry by using horizontal 
pointers in the sequence set to get to the appropriate sequence set index record to scan 
its entries. 

Direct retrieval does not depend on previous positioning; VSAM follows vertical 
pointers from the highest level of the index down to the sequence set to retrieve a record 
that is specified entirely by the present request. The record to be retrieved can be 
specified by: 

The exact key of the record 

• An approximate key less than or equal to the key field of the record 

A leading portion of the key (generic key) of the record 

14 OS/VS Virtual Storage Access Method Planning Guide 



Approximate specification can be used when the exact key is unknown. If a record 
actually has the key specified, VSAM retrieves it; otherwise it retrieves the record with 
the next greater key. Generic-key specification causes VSAM to retrieve the first 
record having that generic key. If all the records with the generic key are to be 
retrieved, the processing program should shift to sequential access to retrieve the rest of 
the records. 

Keyed Sequential Deletion and Keyed Direct Deletion 

An ERASE macro instruction following a GET for update deletes the record that the 
GET retrieved. To delete a record, you must previously have retrieved it for update. 

Keyed Sequential Storage and Keyed Direct Storage 

A PUT macro instruction stores a record. A PUT for update following a GET for 
update stores the record that the GET retrieved. To update a record, you must 
previously have retrieved it for update. 

When VSAM detects that two or more records are to be inserted in sequence into a 
collating position in a data set, VSAM uses a technique called mass sequential insertion 
to buffer the records being inserted to save I/O operations. Using sequential instead of 
direct access to insert two or more records in sequence between two records in a data 
set enables you to take advantage of this technique. 

To store records in sequence in collating positions here and there throughout a data set, 
you can use skip sequential access or direct access. With skip sequential access, VSAM 
skips to the next collating position by scanning the sequence set of the index; with 
direct access, it finds the next collating position by searching the index from top to 
bottom. 

The Use of Free Space for Processing a Key-Sequenced Data Set 

VSAM uses free space for efficient insertion and lengthening of records in a 
key-sequenced data set and automatically combines the space that is given up by 
deletion or shortening of records with any free space already in the affected control 
interval. 

The following discussion applies to insertion of a new record and to lengthening of an 
existing record. For simplicity, only insertion is referred to explicitly. 

The simplest case is insertion of a record into a control interval that has enough free 
space to accommodate the record. Depending on the relationship of the key of the 
new record to the keys of existing records in the control interval, VSAM may move 
some of the existing records over to keep the records physically in key sequence within 
the control interval. 

If the record to be inserted will not fit in the control interval, there is a control-interval 
split: VSAM moves some of the stored records in the control interval to an empty 
control interval in the same control area, and inserts the new record in its proper key 
sequence. The number of records moved depends on the position of insertion of the 
new record. 

Figure 8 illustrates a control-interval split and shows the resulting free space available 
in the two affected control intervals. Because the number of records in the first control 
interval is reduced, subsequent insertions revert to the simpler case, instead of 
becoming more complex. 

Getting to Know What VSAM Is and Does 15 



Control Information 

01 04 07 I Free 
Space I( 01 I 04 I 07 I Fre. 

• Space II 
Free Space 

I 55 56 57 59 IIf I 55 56 57 
Free II Space 

0 
Insertion of 

I II 60 61 Free Space 
Record 58 

60 61 Free Space 
Splits a 

Control Interval 

Free Space II I 58 59 Free Space II 
Control Intervals in Control Area Control Intervals in Control Area 

Before Insertion After Insertion 

Figure 8. Some of the records in the control interval that is too full for insertion are moved to a free control 
interval, and the new record is inserted into the control interval dictated by the key sequence. 

If the control intervals involved in a split are not adjacent, the entry sequence of data 
records is no longer the same as their key sequence. In Figure 8, the entry sequence of 
the records in the last three control intervals on the right is: 55,56,57,60,61,58,59. 
But the sequence-set index record reflects the key sequence, so that, for keyed 
sequential requests, the data records are retrieved in the order: 55, 56, 57, 58, 59, 60, 
61. 

Should there not be a free control interval in the control area, an insertion requiring a 
free control interval causes a control-area split: VSAM establishes a new control area, 
either by using space already allocated or by extending the data set, if you provided for 
extensions when you defined the data set. VSAM moves the contents of approximately 
half of the control intervals in the full control area to free control intervals in the new 
control area and inserts the new record into one of the two control areas, as its key 
dictates. Since about half of the control intervals of each of these control areas are 
now free, subsequent insertions won't require control-area splitting. Splitting should be 
an infrequent occurrence for data sets with sufficient distributed free space; splitting a 
control area does make it possible, however, to insert records into a key-sequenced 
data set without previously distributed free space. 

Addressed Access for Both Types of Data Sets 
Addressed access can be sequential or direct and can be used to gain access to 
key-sequenced and entry-sequenced data sets, but actions allowed for a key-sequenced 
data set are different from the actions allowed for an entry-sequenced data set. With a 
key-sequenced data set, you can use addressed access for retrieval, update of the 
contents of a record (except its key field), and deletion. With an entry-sequenced data 
set, you can use addressed access for retrieval, update of the contents of a record, and 
addition of a new record at the end of the data set. 

16 OS/VS Virtual Storage Access Method Planning Guide 



The discussions of free space in a key-sequenced data set pointed out some of the ways 
keyed access may change RBAs. If you use addressed access to process a 
key-sequenced data set, you should consider the possibility that RBAs may have 
changed during previous keyed access. 

Addressed Sequential Retrieval and Addressed Direct Retrieval 

Positioning for addressed sequential retrieval is done by entry sequence rather than by 
key sequence. When a processing program opens a data set for addressed access, 
VSAM is positioned at the first record in the data set in entry sequence to begin 
addressed sequential processing. A POINT positions VSAM for sequential access 
beginning at the record whose RBA is indicated. A sequential GET causes VSAM to 
retrieve the data record at which it is positioned and positions VSAM at the next 
record in entry sequence. 

With direct access, you may optionally specify for GET to position VSAM at the next 
record in entry sequence: your program can then process the following records 
sequentially. 

Addressed sequential access retrieves records in entry sequence. If you use addressed 
sequential retrieval for a key-sequenced data set, you may not get records in their key 
sequence if there have been control-interval or control-area splits. 

Addressed direct retrieval requires that the RBA of each individual record be specified, 
since previous positioning is not applicable. The address specified for a GET or a 
POINT must correspond with the beginning of a data record, otherwise the request is 
invalid. 

Addressed Sequential Deletion and Addressed Direct Deletion 

You can use the ERASE macro only with a key-sequenced data set to delete a record 
that you have previously retrieved for update. 

With an entry-sequenced data set, you are responsible for marking inactive a record 
that you want to delete, using your own indication for inactivity. In other words, the 
record is inactive, not with respect to VSAM, but with respect to your application. 
You can reuse the space for a record marked inactive by retrieving the record for 
update and storing in its place a new record of the same length. 

Addressed Sequential Storage and Addressed Direct Storage 

VSAM does not insert new records into an entry-sequenced data set, but adds them at 
the end. With addressed access of a key-sequenced data set, VSAM does not insert or 
add new records. 

A PUT macro instruction stores a record. A PUT for update following a GET for 
update stores the record that the GET retrieved. To update a record, you must 
previously have retrieved it for update. You can update the contents of a record with 
addressed access, but you cannot alter the record's length. Neither can you alter the 
key field of a record in a key-sequenced data set. 

With an entry-sequenced data set, if you change a record's length, you must store the 
record either at the end of the data set (as a new record) or in the place of an inactive 
record of the same length (as an update). You are responsible for marking inactive the 
old version of the record whose length you're changing. 

Getting to Know What VSAM Is and Does 17 



What Are the Master Catalog and User Catalogs For? 

A VSAM catalog is arranged as a key-sequenced data set with an index. A master 
catalog is required with VSAM, and any number of user catalogs are optional. Almost 
everything that is true of the master catalog is true of user catalogs, but user catalogs 
have special uses that we will discuss after we consider the general functions of a 
VSAM catalog. 

A VSAM Catalog'S Use in Data and Space Management 

VSAM catalogs are a central information point for all VSAM data sets and the 
direct-access storage volumes containing them. The information describing a volume 
and the data sets on it is extensive enough to enable VSAM to allocate and deallocate 
data sets on the volumes without the volumes' being mounted on a desice of the_ 
system. 

VSAM catalogs provide VSAM with the information to allocate space for data sets, 
verify authorization to gain access to them, compile usage statistics on them, and relate 
RBAs to physical locations. 

You must catalog all of your VSAM data sets and indexes in a VSAM catalog. That is, 
a data set's name and many more facts about it must be entered in the catalog when 
you define the data set. All VSAM data sets on a volume must be cataloged in the 
same VSAM catalog, either the master catalog or a user catalog. A data set has an 
entry in only one catalog. 

Each VSAM catalog defines itself; that is, it contains an entry that describes itself. In 
addition to being defined in this way, the master catalog is pointed to by the system 
catalog, and user catalogs are pointed to by the master catalog. 

When you execute a program to process a data set, the order in which catalogs are 
searched is: 

1. Any user catalog or catalogs specified for the job step 

2. Any user catalog or catalogs specified for the job 

3. The master catalog 

4. The system catalog 

It is recommended that you define not only your VSAM data sets, but also the other 
data sets in your installation, in a VSAM catalog. Data sets of generation data groups 
cannot be defined in a VSAM catalog, however. 

Figure 9 illustrates how data sets can be divided up for cataloging among the system 
catalog, the master catalog, and user catalogs. 

You use Access Method Services to define both VSAM data sets and other data sets in 
a VSAM catalog. Access Method Services also allocates spac~ for new data sets. With 
VSAM catalogs, you do not use JCL either to catalog data sets or to allocate space for 
them. 

18 OS/VS Virtual Storage Access Method Planning Guide 



."",.""". 
",.,-."",-' 

System Catalog 

.".."".. ./ 
Data-Set and Volume Entries 

".,"""""- "", ", 

VSAM 

and Other 

Data Sets 

VSAM 

Data Sets 

VSAM 

and Other 

Data Sets 

Optional 

User 

Catalog 

Generation 

Data Groups 

Optional 

User 
Catalog 

I t 
Data-Set and Volume Entries 

I I 

VSAM 

Data Sets 

VSAM 

Data Sets 

Figure 9. All VSAM data sets are cataloged in a VSAM catalog, and data sets of other access methods may 
also be cataloged in a VSAM catalog. 

Information Contained in the Entries of a Catalog 

Besides data-set entries, a VSAM catalog has entries describing direct-access volumes 
in terms of the allocation of data spaces and the location of available space. VSAM 
can allocate and deallocate space on cataloged volumes that are not mounted. 

Getting to Know What VSAM Is and Does 19 



However, when allocating space to a data set, if there is not sufficient space available 
in the data space or data spaces on a volume, VSAM requires you to mount the volume 
so it can extend a data space. 

Information in a Data-Set Entry 

Data-set entries provide the information required to make the connection between a 
record's RBA and its physical location in terms of a storage volume's physical 
attributes. Besides the type of storage device and a list of volume serial numbers 
(which the system catalog contains for each data set cataloged in it), a VSAM catalog 
keeps other data-set information, including: 

• A pointer to the location of each extent of the data set 

• Statistics on the results of operations performed on the data set and its records, 
such as the number of insertions and deletions and the amount of free space 
remaining 

Attributes of the data set determined when it was defined, such as control-interval 
size, blocksize, number of control intervals in a control area, and, for a 
key-sequenced data set, location of the key field 

Password protection information 

• An indication of the connection of a key-sequenced data set and its index 

• Information used to determine whether either a key-sequenced data set or its index 
has been processed without the other 

Information in a Volume Entry 

Volume information in a VSAM catalog provides the information required to keep 
track of data spaces and free storage areas. A VSAM catalog contains this sort of 
volume information: 

The volume serial number and device type of each volume 

The location of data spaces on a volume 

The location of data sets within data spaces on a volume 

The location and size of free areas available for allocation to data sets 

The Special Uses of User Catalogs 

User catalogs can improve catalog-processing performance and VSAM reliability and 
facilitate volume portability. 

Improving Performance and Reliability 

A large number of requests for information from a VSAM catalog may result in some 
of the requests being answered more slowly than they would be if several catalogs had 
parts of the information. You might have the master catalog primarily contain pointers 
to user catalogs, which would contain entries for most data sets, indexes, and volumes. 
By decentralizing data-set entries, you also reduce the time required to search a given 
catalog and minimize the effect of a catalog's being inoperative or unavailable. 

20 OS/VS Virtual Storage Access Method Planning Guide 



Moving Volumes from One Operating System to Another 

Since all VSAM data sets must be cataloged, moving a volume from one operating 
system to another requires that catalog information describing the volume and the data 
sets on it be moved along with the volume. 

If you want to be able to move a volume or volumes from one OS/VS system to 
another, define a user catalog on one of the volumes and define the volumes and the 
VSAM data sets on them in the user catalog. You can then transport the volumes by 
demounting them and removing them from the first system, taking them to the second 
system, and remounting them. You use Access Method Services to disconnect the user 
catalog from the master catalog of the first system and to define a pointer to it in the 
master catalog of the second system. Any number of user catalogs can be used in this 
way. 

You can move volumes between OS/VS and DOS/VS systems, but user catalogs are 
not used with VSAM on DOS/VS. You must treat the user catalog from an OS/VS 
system as the master catalog of a DOS/VS system. 

You can also move individual data sets from one system to another by using Access 
Method Services. (See the section "Moving Data Sets from One Operating System to 
Another" in the chapter "Communicating with VSAM.") But the use of user catalogs 
for single volume portability is the most convenient way to achieve data-set portability. 

Getting to Know What VSAM Is and Does 21 





COMMUNICATING WITH VSAM 

This chapter introduces programmers to communicating with VSAM by using the 
commands of Access Method Services, the macros for connecting a processing program 
to a data set and gaining access to it, and the JCL parameters affected by VSAM. An 
application programmer doesn't need to know the format of control blocks, as he does 
with some other access methods: he just specifies the name of the action he wants. 

How is Access Method Services Used? 

Access Method Services is a multifunction service program that you use to define a 
VSAM data set and load records into it, convert a sequential or an indexed sequential 
data set to the VSAM format, list VSAM catalog entries or records of a data set, copy 
a data set for reorganization, create a backup copy of a data set, recover from certain 
types of damage to a data set, and make a data set portable from one operating system 
to another. 

You tell Access Method Services what to do by giving a command and descriptive 
parameters through an input job stream or by calling it in a processing program and 
passing it a command statement. You can also execute Access Method Services from a 
TSO (Time Sharing Option) terminal, either by executing a program that calls it or by 
executing it directly and giving commands and parameters through an input data set. 
For more information about the use of TSO with VSAM, see the section "How Can 
the Time Sharing Option (TSO) Be Used with VSAM?" in the chapter "Preparing for 
VSAM." 

A set of conditional statements (IF, ELSE, DO, END, SET) allow you to alter the 
sequence of execution of a series of commands by testing or resetting codes that 
Access Method Services sets to indicate the completion status of each command. 

There are sets of Access Method Services commands for: 

Defining and deleting data sets and listing catalog entries 

Copying and listing data sets 

• Moving data sets from one operating system to another 

Recovering from damage to data 

Defining and Deleting Data Sets· and Listing Catalog Entries 

You must use Access Method Services to define all VSAM data spaces, data sets, indexes, and 
catalogs. It makes entries for them in a VSAM catalog and allocates space for them. 
Four commands enable you to define data sets, alter the definitions, allocate and free 
auxiliary-storage space, and list catalog entries: DEFINE, ALTER, DELETE, and 
LISTCATALOG. 

DEFINE: Defining a Data Set and Allocating Space 

To define a data space, entry-sequenced data set, key-sequenced data set and its index, 
or catalog, you specify the DEFINE command, the object to be defined, and the 
catalog that is to contain an entry defining it. You define the relationship between a 
key-sequenced data set and its index, as well as define the two themselves, with a 

Communicating with VSAM 23 



single DEFINE command. You also use DEFINE to catalog data sets of other access 
methods in a VSAM catalog. 

There are parameters for specifying initial auxiliary-storage allocation, amount of space 
for extensions, erasure of data in a deleted data set, passwords and other authorization 
information, size and other attributes of data records, minimum amount of 
virtual-storage space for I/O buffers, percents of free space in control intervals and 
control areas of a key-sequenced data set and other performance options, retention 
period, identification of the owner of the data set defined in the entry, whether a data 
set can be shared across regions or systems, data-set preformatting options, and 
whether write operations are to be verified. 

You specify the amount of auxiliary-storage space for the object you are defining as the 
number of data records that it is to contain or as a number of physical units, such as 
tracks or cylinders. Specifying the number of records, independent of type of storage 
device, leaves the calculation of the number of physical units of space up to VSAM. It 
calculates the size of the control interval and control area to be used. You may specify 
the control-interval size, and VSAM will use it so long as the size falls within the 
acceptable limits that VSAM calculates. 

When you define a key-sequenced data set, you may specify that its space' is to be 
allocated on volumes according to ranges of key values. The space for each range is 
extended separately when additional space is required. 

For convenience, you may specify an existing catalog entry as a model for a new entry, 
so long as they are of the same type (entry-sequenced data set, key-sequenced data set 
and its index, or user catalog). The information in the model will be used in the new 
entry unless you override it. 

ALTER: Modifying a Catalog Entry 

Many of the attributes that you define, either explicitly or by default, when you create 
a catalog entry may be modified subsequently by way of the ALTER command, most 
of whose parameters are the same as the DEFINE parameters. You can change the 
name of a data set, the indication of whether to erase the data in a deleted data set, 
passwords and other authorization information, minimum amount of virtual-storage 
space for I/O buffers (which you may increase, but not decrease), percents of free 
space in new control intervals and control areas of a key-sequenced data set, retention 
period, name of the owner of a data set, the indication of whether to share a data set, 
and the indication of whether to verify write operations. 

Certain attributes of the data set, such as control-interval size and placement of the 
index in auxiliary storage relative to a key-sequenced data set, cannot be modified. 
Changing these attributes amounts to a reorganization of the data set and requires that 
you define a new data set and copy the old data set into it. 

DELETE: Removing a Catalog Entry and Freeing Space 

The DELETE command enables you to remove the entry for any previously defined 
object and, in effect, cause it to cease to exist. The space is freed for use by new 
objects and, if the erase option is specified in the entry, overwritten with binary Os. 

You must use Access Method Services to delete data spaces, data sets, indexes, and 
catalogs: you cannot delete them by way of the JCL disposition parameter or operating 
system utilities. 

24 OS/VS Virtual Storage Access Method Planning Guide 



LISTCATALOG: Listing Catalog Entries 

The LISTCAT ALOG command enables you to list individual entries, all entries of a 
particular type, or all entries of a given catalog. You see the entire entry, except that 
passwords in an entry are not listed unless you specify the master password for the data 
set defined by the entry or the master password for the catalog itself. 

Copying and Listing Data Sets 

The COpy and PRINT commands enable you to copy and list sequential, indexed 
sequential, and VSAM data sets. 

COPY: Converting and Reorganizing Data Sets 

The COpy command instructs Access Method Services to get records from a 
sequential, indexed sequential, or VSAM data set and put them into a sequential or 
VSAM data set. You may use it to convert an indexed sequential data set to a 
key-sequenced data set with an index. First, define a new key-sequenced data set and 
its index. Then copy the indexed sequential data set into the key-sequenced data set. 
Access Method Services converts data records to the VSAM format and builds an 
index. 

You can reorganize an old data set by copying it into a newly defined data set of the 
same type. With key-sequenced data sets, you can optionally specify different percents 
of distributed free space and different performance options for the new data set. 
Copying the old key-sequenced data set into the new one redistributes free space, 
makes the entry sequence of the data records the same as their key sequence, and 
builds a new index. 

The data set into which records are copied may either be newly allocated (by way of 
the DEFINE command) or contain records already. Records copied into a 
key-sequenced data set are merged with any existing records; records are added at the 
end of an entry-sequenced data set. You may specify a range of records to be copied 
by number of records, by key in an indexed sequential or a key-sequenced data set, or 
by address in either type of VSAM data set. 

PRINT: Listing Data Records 

The PRINT command instructs Access Method Services to list some or all of the 
records of a sequential, indexed sequential, or VSAM data set in one of three formats: 
each byte as 2 hexadecimal digits, each byte as a single character, or a combination of 
these two, side-by-side. You may specify a range of records for listing as you do for 
copying. 

Moving Data Sets from One Operating System to Another 

We discussed volume portability between OS/VS systems and between OS/VS and 
DOS/VS systems in the section "The Special Uses of User Catalogs" in the chapter 
"Getting to Know What VSAM Is and Does." The EXPORT and IMPORT commands 
allow you to transport individual data sets between OS/VS systems or between OS/VS 
and DOS/VS systems without user catalogs. Figure 10 compares volume and data-set 
portability. 

Communicating with VSAM 25 



Volume Portability with a User Catalog Data-Set Portability with Access Method Services 

"...---, 
,,--__ --1 
I I First System 

I I 
I I 
~ J 
--1-" 

Disconnect User Catalog Demount Extract Catalog Information Copy in Sequential Format 

Export Export 

Second System 

Import Import 

Connect User Catalog Mount Define the Data Set Copy in Original Format 

---+---f ____ --~ 
I I 
I I 
I I 
l J 
"""-------' 

Figure 1 O. Data portability is achieved by moving volumes or by moving individual data sets. 

26 OS /VS Virtual Storage Access Method Planning Guide 



EXPORT: Extracting Catalog Information and Making a Data Set Portable 

The EXPORT command instructs Access Method Services to copy an entry-sequenced 
data set or a key-sequenced data set and its index in the format of a sequential data set 
onto a storage volume to be transported to another operating system. The transporting 
volume may be magnetic tape or disk. Access Method Services also extracts 
information from the catalog entry that defines the object to be transported and copies 
it onto the transporting volume. The information is used to define the object 
automatically in a VSAM catalog in the other operating system. 

Exportation is either permanent or temporary. In permanent exportation, Access 
Method Services deletes the catalog entry and frees the storage space; in temporary 
exportation of an object, both the sending and the receiving operating systems have a 
copy of it, and you may specify that one or both of the copies are not to be modified. 
A copy so protected can only be read. You may free the copy for full access with the 
AL TER command. 

You use EXPORT to disconnect a user catalog from a master catalog when you are 
moving the user catalog to another system. The user catalog is not copied, but remains 
on its original volume in its original form. 

IMPORT: Loading a Portable Data Set and Its Catalog Information 

The IMPORT command instructs Access Method Services to define the 
entry sequenced data set or the key-sequenced data set and its index on the 
transporting volume in the catalog that you specify, using the catalog "information 
extracted in exportation. The object itself is stored in its VSAM format in a data space 
that is defined in the specified catalog. 

You use IMPORT to define a pointer to a user catalog in the master catalog. The user 
catalog is not copied, but remains on its original volume in its original form. 

You can use the EXPORT and IMPORT commands to prepare a backup copy of an 
entry-sequenced data set and its catalog entry or a key-sequenced data set, its index, 
and their catalog entries and to load the backup copy if it is needed. When you import 
a backup copy, the catalog entry is regenerated. 

Recovering from Damage to Data 

With the VERIFY command, you can instruct Access Method Services to investigate 
whether an entry-sequenced data set or a key-sequenced data set and its index have 
been properly closed. 

VERIFY: Testing and Reestablishing a Data Set's Accessibility 

The end of a data set is indicated by an end-of-file indicator at the end of the data set 
and by information in the data set's catalog entry. The end may be improperly 
indicated in the catalog if an error prevented VSAM from closing the data set. You 
can instruct Access Method Services to check and notify you whether the catalog 
end-of-file information corresponds with the end-of-file indicator in the data set and to 
close the data set properly. It modifies the catalog information, if necessary, to 
correspond with the data set. 

Communicating with VSAM 27 



What Are the Macros for Processing a VSAM Data Set? 

You code the VSAM macros in a processing program to gain access to your data. 
There are macros for: 

Connecting and disconnecting a processing program and a data set. These prepare 
a bridge for VSAM between the program and the data. 

Specifying parameters that relate the program and the data. These identify the data 
set and describe the kind of processing to be done. 

• Manipulating the information relating the program and the data. These are used to 
specify changes in processing. 

• Requesting access to a data set. These initiate the transfer of data between 
auxiliary and virtual storage. 

Connecting and Disconnecting a Processing Program and a Data Set 

You use the OPEN macro to connect a processing program to a data set, so VSAM can 
satisfy the program's requests for data; you use CLOSE to complete processing and 
free resources that were obtained by the Open routine. 

OPEN: Connecting a Processing Program to a Data Set 

The Open routine verifies that a processing program has the authority to process a data 
set, by calling a VSAM authorization routine and your own routine, if you have 
indicated one in the data set's catalog entry. 

Open constructs VSAM control blocks and loads into virtual storage the routines 
required for the processing that you indicate in the ACB macro (described after 
CLOSE). By examining the DD statement indicated by the ACB macro and the 
volume information in the catalog, Open calls for the necessary volumes to be mounted 
and checks whether each volume matches its catalog information. If you are opening a 
key-sequenced data set and its index, Open checks whether the data set has been 
updated separately from its index, and indicates to your program whether it has or 
hasn't. 

CLOSE: Disconnecting a Processing Program from a Data Set 

The Close routine completes any operations that are outstanding when a processing 
program issues a CLOSE macro for a data set. For instance, VSAM buffers index 
records and data records, so the contents of a control interval may need to be stored or 
an index record updated and stored. 

Close updates the catalog for any changes in the attributes of a data set. The addition 
of records to a data set may cause its end-of-file indicator to change, in which case 
Close updates the end-of-file indicator in the catalog. These end-of-file indicators help 
ensure that the entire data set is accessible. If an error prevents VSAM from updating 
the indicators, the data set is flagged as not properly closed. When a processing 
program subsequently issues an OPEN macro, it is given an error code indicating the 
failure. For more information on correcting this condition, see the discussion of the 
Access Method Services VERIFY command and the section "Method of Indicating the 
End of a Data Set" in the chapter "Protecting Data with VSAM." 

28 OS/VS Virtual Storage Access Method Planning Guide 



Close releases unused auxiliary-storage space in a data set, if you specify for it to be 
released, and updates the catalog's space information for the data set. Close restores 
control blocks to the status that they had before the data set was opened, deletes from 
virtual storage the routines that Open loaded, and frees the virtual-storage space that 
Open used to construct VSAM control blocks. 

Temporary CLOSE: securing records added to a data set. You can issue a CLOSE 
macro temporarily to complete outstanding operations and update the catalog. 
Processing may continue without reopening the data set. 

Specifying Parameters That Relate the Program and the Data 

To open a data set for processing, you must identify the data set and the types of 
processing to be done. You use the macros ACB, EXLST, and RPL to specify a data 
set you want to process, the types of access you want to use, the addresses of your own 
exit routines, and the specific options for a particular request. The GENCB macro can 
be used in place of the ACB, EXLST, or RPL macro to generate processing 
specifications during the execution of a processing program, rather than during 
assembly or compilation of the program. 

ACB: Defining the Access-Method Control Block 

You use the ACB macro to define a control block for each entry-sequenced data set or 
key-sequenced data set and its index that your processing program will gain access to. 
You give the name of the JCL DD statement that describes the entry-sequenced data 
set or the key-sequenced data set and its index, so the Open routine can connect the 
program to the data. If you use more than one ACB with the same DD statement, 
VSAM uses the same set of I/O buffers for all requests to the specified data set. 

The other information that you specify enables Open to prepare for the kind of 
processing to be done by your program: 

The address of a list of exit-routine addresses that you supply. You use the EXLST 
macro, described next, to construct the list. 

For multiple-request processing, the number of requests that are defined for 
processing the data set. (See the discussion of the RPL macro following EXLST.) 

The size of the virtual-storage space for I/O buffers and the number of I/O buffers 
that you are supplying for VSAM to process data and index records. The minimum 
number of buffers is two for data control intervals and one for index records for a single 
request. For multiple-request processing, each additional request requires a 
minimum of one buffer for data control intervals and one buffer for index records. For 
example, multiple-request processing with three requests requires a minimum of four 
buffers for data control intervals and three buffers for index records. 

The password that is required for the type of processing desired. 

The processing options to be used: keyed, addressed, or control-interval or a combination; 
sequential, direct, or skip sequential access, or a combination; retrieval, storage, or update 
(induding deletion), or a combination. 

EXLST: Defining the Exit List 

You use the EXLST macro to specify the addresses of optional exit routines that 
you may supply for analyzing physical and logical errors, end-of-data-set processing, 
noting RBA changes, writing a journal, and managing your own I/O buffers. Any 

Communicating with VSAM 29 



number of ACB macros in a program may indicate the same exit list for the same exit 
routines to do all the special processing for them, or they may indicate different exit 
lists. 

Analyzing physical errors. When VSAM encounters an error in an I/O operation that 
the operating system's error routine cannot correct, the error routine formats a message 
for your physical-error analysis routine to act on. 

Analyzing logical errors. Errors not directly associated with an I/O operation, such as 
an invalid request, cause VSAM to exit to your logical-error analysis routine. 

End-of-data-set processing. When your program requests a record beyond the last 
record in the data set, your end-of-data-set routine is given control. The end of the 
data set is beyond either the highest-addressed or the highest-keyed record, depending 
on whether your program is using addressed or keyed access. 

Noting RBA changes. To process a key-sequenced data set by way of addressed access, 
you need to know whether any RBAs changed during keyed processing. When you're 
processing by key, VSAM exits to your routine for noting RBA changes before 
transmitting to auxiliary storage the contents of a control interval in which there is an 
RBA change. 

Writing a journal. To journalize the transactions against a data set, you may specify a 
journal routine, which VSAM exits to before moving your data to the control-interval 
buffer. 

Managing your own I/O buffers. If you want to manage your own I/O buffers, VSAM 
exits to your buffer-management routine whenever VSAM: 

frees a buffer by transmitting the contents of a control interval to auxiliary storage, 
or 

must be provided a buffer for transmitting the contents of a control interval to 
virtual storage. 

RPL: Defining the Request Parameter List 

The RPL macro defines the request parameter list, or the list of parameters required for 
a particular request for access. It identifies the data set to which the request is directed 
by naming the ACB macro that defines the data set. 

You can use a single RPL macro to define parameters that apply to all of the requests 
(GET, PUT, POINT, and ERASE, described under "Requesting Access to a Data 
Set") for access to a data set. You use the MODCB macro (described following 
GENeB) to modify some of the parameters to change the type of processing. For 
example, you can change from direct to sequential or from update to nonupdate 
processing. 

For multiple-request processing, you may use any number of RPL macros to specify 
requests that your processing program or its sub tasks can issue asynchronously to gain 
access to the same data set concurrently. The requests can be sequential or direct or 
both, and they can be for records in the same or different parts of the data set. 

30 OS/VS Virtual Storage Access Method Planning Guide 



You need specify only the RPL parameters appropriate to a given request: 

Address of the next request parameter list in a chain. You can chain request parameter 
lists together to define a series of actions for a single GET, PUT, or ERASE. For 
example, each request parameter list in the chain could contain a unique search 
argument and point to a unique work area. A single GET macro would retrieve a 
record for each request parameter list in the chain. A chain of request parameter lists 
is processed as a single request (chaining request parameter lists is not the same as 
multiple-request processing). 

Processing options for a request. A request is to gain access to a data record or a control 
interval. It is addressed or keyed sequential, skip sequential, or direct; and for updating 
or not updating. A nonupdate direct request to retrieve a record can optionally cause 
positioning at the following record for subsequent sequential access. 

A request (including a request defined by a chain of request parameter lists) is either 
synchronous, so that VSAM does not give control back to your program until the 
request is completed, or asynchronous, so that your program may continue to process 
or issue other requests while the request is active and later use the CHECK macro to 
suspend processing until the request has been completed. 

For a keyed request, you specify either a generic key or a full key to which the key 
field of the record is to be matched. A generic search argument is matched for a 
less-than-or equal comparison to the key field, and a full argument is matched for 
either an equal or a less-than-or-equal comparison to the key field. 

For retrieval and for update that doesn't change the length of a record, a request 
is either for a data record to be placed in a work area in the processing program or for 
the address of the record within VSAM's I/O buffer to be passed to the processing 
program. For all other requests, the work area contains the data record. 

Address and size of the work area to contain a data record. You must provide a work 
area. It contains a data record or the address of the record within VSAM's I/O buffer. 
Having a work area that is too small is considered a logical error. 

Length of the data record being processed. For storage, your processing program 
indicates the length to VSAM; for retrieval, VSAM indicates it to your program. 

Length of the key. This parameter is required only for processing by generic key. For 
ordinary keyed access, the full key length is available to the Open routine from the 
catalog. 

Address of the area containing the search argument. The search argument is either a key 
value or an RBA. 

Address and length of an area for error messages from VSAM. Your routine for 
analyzing physical errors receives messages in this area. 

Communicating with VSAM 31 



You use the GENCB macro in place of an ACB, EXLST, or RPL macro to generate 
an access-method control block, exit list, or request parameter list during the execution 
of your processing program, rather than producing it with the corresponding macro. 
You code GENCB the same as the other macros, but it enables you to generate one or 
more copies of a control block or list. 

Manipulating the Information Relating the Program and the Data 

The macros MODCB, SHOWCB, and TESTCB are for modifying, displaying, and 
testing the contents of an access-method control block, exit list, or request parameter 
list. 

MODCD: Modifying the Contents of Control Dlocks and Lists 

You use the MODCB macro to specify a new value for fields in an access-method 
control block, exit list, or request parameter list in the same way you defined them 
originally. For example, to use a single request parameter list to directly retrieve the 
first record having a certain generic key and then to sequentially retrieve the rest of the 
records having that generic key, you would use MODCB to alter the request parameter 
list to change from direct to sequential access. 

SHOWCD: Displaying Fields of Control Blocks and Lists 

SHOWCB allows you to examine the contents of fields in an access-method control 
block, exit list, or request parameter list. VSAM gives the contents to you in an area 
you provide and in the order you specify the fields. You may display the contents of 
fields additional to those that you define in the macros. For example, when a data set 
is open, you can display various counts, such as number of control-interval splits, 
number of deleted records, and number of index levels. 

TESTCD: Testing the Contents of Control Blocks and Lists 

The TESTCB macro enables you to test the contents of a field or combination of fields 
in an access-method control block, exit list, or request parameter list for a particular 
value and alter the sequence of your processing steps as a result of the test. 

Requesting Access To a Data Set 

All of the preceding macros are for preparing to process a data set. The request 
macros, GET, PUT, POINT, and ERASE, initiate an access to data. Each of these 
macros is associated with a request parameter list (or chain of request parameter lists) 
that fully defines the request: the only parameter that is specified with a request macro 
is the identity of the request parameter list. 

The CHECK macro synchronizes a request initiated by a macro in the asynchronous 
form. In asynchronous processing, VSAM gives control back to your program before 
completion of the request. You use CHECK to suspend processing until the request 
has been completed. You use the ENDREQ macro to terminate a request that is not 
required to be completed. 

32 OS/VS Virtual Storage Access Method Planning Guide 



The options for using GET, PUT, POINT, and ERASE ~re outlined in the discussion of 
the RPL macro, and the use of each macro is discussed in the section "In What Ways 
Can VSAM Data Sets Be Processed?" in the chapter "Getting to Know What VSAM 
Is and Does." -

How is JCL Used? 

VSAM uses a minimum number of JCL parameters. It has two optional DD 
statements, JOBCAT and STEPCAT, for specifying catalogs and an optional JCL DD 
parameter, AMP, for overriding parameters specified by a processing program. 

Definillg a VSAM Data Set 

When you define a data set, no DD statement is required if Access Method Services 
can allocate space for the data set from an existing data space. If a data space must be 
created or extended to allocate space for the data set that you're defining, you need a 
DD statement for OS/VS job management to provide device allocation: you specify 
storage unit, volume, and a disposition of OLD. You never specify space parameters 
(SPACE, SPLIT, SUBALLOC) or a disposition of NEW, DELETE, CATLG, or 
UNCATLG, since you use Access Method Services to define and delete all VSAM data 
sets. 

Processing a VSAM Data Set 

The catalog contains most of the information required by VSAM to process a data set, 
so VSAM requires minimal information from JCL. Data-set name and disposition are 
sufficient to describe the data set. A key-sequenced data set and its index are defined 
by a single DD statement. 

To limit a data set to access by a single job step, use a disposition of OLD. Use a 
disposition of SHR in the JCL of separate jobs to enable two or more job steps to 
share a data set, provided the data set's definition in the catalog specifies that sharing is 
permitted. 

Specifying VSAM Catalogs 

The master catalog is always available, without JCL specification. You make user 
catalogs available by describing them in DD statements with special names for a job or 
a job step: JOBCAT and STEPCAT. You describe a catalog sufficiently by giving its 
data-set name and a disposition of OLD. The job catalog or catalogs are available for 
the duration of a job, and the job-step catalog or catalogs for the duration of a job 
step. 

VSAM uses a data set's name as a search argument to search a catalog. It searches the 
job-step catalogs, if you specify any, the job catalogs, if you specify any, and then the 
master catalog. 

Communicating with VSAM 33 



Using Other JCL Parameters 

Some JCL parameters are ignored, are invalid, or bring about the wrong results if used 
with VSAM, and VSAM has a special JCL DD parameter, AMP. 

JCL Parameters Not Used with VSAM 

VSAM ignores parameters for defining tape data sets: data-set sequence number, NSL, 
NL, BLP, and AL. You may not use the parameters for a sequential data set, DATA, 
SYSOUT, and *, for specifying a VSAM data set. These DD names are invalid for 
VSAM data sets: JOBLIB, STEPLIB, SYSABEND, SYSUDUMP, and SYSCHK. 

These DD parameters are also invalid: UCS, QNAME, DYNAM, TERM, and the 
forms of DSNAME for ISAM, PAM (partitioned access method), and generation data 
groups. VSAM does not use temporary data sets or concatenated data sets. 

VSAM's Special DD Parameter: AMP 

The VSAM DD parameter, AMP, has subparameters for specifying attributes that you 
can also specify by way of the ACB or the EXLST macros: size of virtual-storage 
space for I/O buffers, number of I/O buffers for data and index records, number of 
concurrent requests to be processed, and name of an exit routine for analyzing physical 
errors. AMP values override any values specified by way of the macros. 

To mount only some of the volumes on which a VSAM data set is stored, you 'must 
specify the DD parameters VOLUME and UNIT. Specifying these parameters 
prevents a reference to the catalog and requires you to use another AMP subparameter 
to specify that the data set is a VSAM data set. 

Another subparameter is used for specifying checkpoint/restart options. They are 
described in the section "How Are Programs Restarted Following a Failure?" in the 
chapter "Protecting Data with VSAM." 

34 OS/VS Virtual Storage Access Method Planning Guide 



PREPARING FOR VSAM 

This chapter indicates, for all prospective users of VSAM, the programming languages 
in which you can write programs to use VSAM, and the use of TSO (Time Sharing 
Option) and SMF (System Management Facilities) with VSAM. 

The section "How Can Existing Programs That Use ISAM Be Used with VSAM?" is 
for users of ISAM and may be ignored by other readers. It contains detailed 
information for programmers to decide whether existing programs that use ISAM can 
use the ISAM interface to process new key-sequenced data sets with indexes or 
key-sequenced data sets with indexes into which indexed sequential data sets have been 
converted. 

What Programming Languages Can VSAM Be Used With? 

You can use the OS/VS assembler programming language to code all of the macros of 
VSAM. 

You can also code programs in PL/I and COBOL, using ISAM, to process VSAM data 
sets by way of the ISAM interface. 

How Can the Time Sharing Option (TSO) Be Used with VSAM? 

TSO is an optional subsystem of OS/VS2 that provides conversational time sharing 
from remote terminals. You can use TSO with VSAM to: 

• Write a program using VSAM macros 

• Execute a program to process a VSAM data set 

• Execute Access Method Services (but command statements must be entered through 
an input data set to Access Method Services) 

• Execute a program to call Access Method Services 

• Dynamically allocate a VSAM data set during the execution of a job step, provided 
a single volume contains the data set and is already mounted 

• Allocate a VSAM data set by way of a LOGON procedure 

VSAM data sets must be cataloged in the master catalog or in a user catalog. The 
master catalog is allocated when the system is initialized; you can allocate a user 
catalog by way of the LOGON procedure. 

For details about writing and executing programs and allocating data sets with TSO, see 
OS/VS2 Time Sharing Option, GC38-0220. 

Preparing for VSAM 35 



How Can System Management Facilities (SMF) Be Used with VSAM? 

SMF is an optional program of OS/VS that provides the means for gathering and 
recording information that can be used to evaluate system usage. VSAM supplies 
volume and data-set information to SMF. It also uses SMF to record changes to 
VSAM catalogs. You can use this information to manually rebuild a catalog from an 
earlier backup copy. 

For further details about the facilities of SMF and how to use it, see OS/VS System 
Management Facilities, GC35-0004. 

How Can Existing Programs That Use ISAM Be Used with VSAM? 

This section is intended for users of ISAM who are converting to VSAM. VSAM's 
ISAM interface minimizes your conversion costs and scheduling problems by permitting 
programs coded to use ISAM to process VSAM data sets. To use the interface, you 
must convert indexed sequential data sets to VSAM data sets (for which you can use 
Access Method Services), convert ISAM JCL to VSAM JCL, and ensure that your 
existing ISAM programs meet the restrictions for using the interface. 

Comparison of VSAM and [SAM 

In most cases, if you use the performance options described in the chapter "Optimizing 
the Performance of VSAM," you can get better performance with VSAM while 
achieving essentially the same results that you can achieve with ISAM; you can also 
achieve results that you can't achieve with ISAM. The use of your existing ISAM 
processing programs to process key-sequenced data sets depends upon the extent to 
which VSAM and ISAM are similar in what they do, as well as upon the limitations of 
the ISAM interface itself. This subsection describes the similarities and differences 
between VSAM and ISAM in the areas that you are familiar with from using ISAM 
and indicates the functions of VSAM that have no counterpart in ISAM. 

Comparison of VSAM and ISAM in Common Areas 

A number of things that ISAM does are done differently or not at all by VSAM, even 
though the same practical results are achieved. 

Index structure. Both a VSAM key-sequenced data set and an indexed sequential data 
set have an index that consists of levels, with a higher level controlling a lower level. 
In ISAM, either all or none of the index records of a higher level are kept in virtual 
storage. VSAM keeps individual index records in virtual storage, the number 
depending on the amount of buffer space you provide. It optimizes the use of the 
space by keeping those records it judges to be most useful at a particular time. 

Relation of index to data. The relation of a VSAM index to the auxiliary-storage space 
whose records it controls is quite different from the corresponding relation for ISAM, 
with regard to overflow areas for record insertion. 

ISAM keeps a two-part index entry for each primary track that a data set is stored on. 
The first part of the entry indicates the highest-keyed record on the primary track. The 
second part indicates the highest-keyed record from that primary track that is in the 
overflow area for all the primary tracks on the cylinder and gives the physical location 
in the overflow area of the lowest-keyed record from that primary track. All the 

36 OS/VS Virtual Storage Access Method Planning Guide 



records in the overflow area from a primary track are chained together, from the 
lowest-keyed to the highest-keyed, by pointers that ISAM follows to locate an overflow 
record subsequently. Overflow records are unblocked, even if primary records are 
blocked. 

VSAM does not distinguish between primary and overflow areas. A control interval, 
whether used or free, has an entry in the sequence set, and after records are stored in a 
free control interval, it is processed exactly the same as other used control intervals. 
Data records are blocked in all control intervals and addressed, without chaining, by 
way of an index entry that contains the key (in compressed form) of the highest-keyed 
record in a control interval. 

Deleting records. With ISAM, you mark records you want to delete, either for you to 
erase subsequently or for ISAM to drop, should they be moved into the overflow area; 
VSAM automatically reclaims the space in a key-sequenced data set and combines it 
with any existing free space in the affected control interval. Because of its use of 
distributed free space for insertions and deletions, VSAM requires less data-set 
reorganization than ISAM does. 

Defining and loading a data set. You define all VSAM data sets in a catalog and 
allocate space for them by way of Access Method Services, rather than by way of JCL. 
You can load records into a data set with your own processing program or with Access 
Method Services, in one execution or in stages. Access Method Services does not 
merge input data sets, but merges an input data set with an output data set. 

VSAM Functions That Go Beyond ISAM 

VSAM has capabilities that ISAM doesn't have: 

Skip sequential access. You can process a key-sequenced data set sequentially and skip 
records automatically, as though you were using direct access. 

Multiple-request processing. Processing is extended by concurrent sequential or direct 
access, or both, by means of a single access-method control block and without closing 
and reopening a data set. 

Addressed sequential access. You can retrieve and store the records of a key-sequenced 
data set by RBA, as well as by key. With ISAM, you can position by physical address, 
but you must retrieve in a separate request. 

Direct retrieval by generic key. With VSAM, you can retrieve a record directly, not 
only with a full-key search argument, but also with a generic search argument. ISAM 
enables you only to position at a record by generic argument: you must retrieve the 
record separately. 

Secondary allocation of storage space. When you define a VSAM data set, you can 
specify the amount of auxiliary-storage space that is to be allocated automatically, 
when required, beyond the primary space allocation. You can specify the amount in 
terms of a number of data records or in terms of a number of tracks or cylinders. 

Preparing for VSAM 37 



Automatic data-set reorganization. VSAM partially reorganizes a key-sequenced data 
set by splitting a control area when it has no more free control intervals and one is 
needed to insert a record. 

No abnormal terminations by Open. The VSAM Open routine does not abnormally end, 
but returns an explanatory message in all cases where it cannot carry out a request to 
open a data set. 

How to Convert an Indexed Sequential Data Set to a Key-Sequenced Data Set 

Indexed 

Sequential 

Data Sets 

To convert an indexed sequential data set to a VSAM data set that you can process 
either with an ISAM program by way of the ISAM interface or with a VSAM program, 
you must convert the ISAM J CL to VSAM J CL and use Access Method Services to 
define a key-sequenced data set and its index in a VSAM catalog and allocate space for 
them. You may use your ISAM load program by way of the ISAM interface to convert 
the data set, or you may use Access Method Services COPY. For more details about 
the procedure, see the discussion of the Access Method Services DEFINE and COPY 
commands in the section "How Is Access Method Services Used?" in the chapter 
"Communicating with VSAM." 

Figure 11 summarizes converting indexed sequential data sets to key-sequenced data 
sets with indexes and processing them either with programs that have been converted 
from ISAM to VSAM or with programs that still use ISAM. 

ISAM 

Interface 

I nterpret Each Request 

Access 

VSAM 

Existing ISAM Programs 

Unmodified 

Modified to 
Meet Restrictions 

ISAM Programs 

Converted to 

New Data Sets VSAM Programs 

(To take advantage of additional 
functions of VSAM) 

Figure 11. Most existing programs that use ISAM require little or no modification to use the ISAM interface 
to process VSAM data sets. 

38 OS/VS Virtual Storage Access Method Planning Guide 



What the ISAM Interface Does 

When a processing program that uses ISAM opens a VSAM data set, the Open routine 
detects the need for the ISAM interface and calls the interface's Open routine to 
construct control blocks and lists that are required by VSAM, load the indicated VSAM 
routines into virtual storage, flag the ISAM DCB (data control block) for the interface 
to intercept ISAM requests, and take any DCB exit requested by the processing 
program. 

The interface intercepts each subsequent ISAM request, analyzes it to determine the 
equivalent keyed VSAM request, defines the keyed VSAM request in the request 
parameter list constructed by Open, and then initiates the request. All VSAM requests 
are handled synchronously: no VSAM CHECK or ENDREQ macro is used. The 
ISAM ESETL instruction causes no action, and ISAM CHECK merely causes 
exception codes in the DECB (data event control block) to be tested. 

For processing programs that use locate processing, the interface constructs buffers to 
simulate locate processing. The ISAM RELSE instruction causes no action, and the 
overflow-record indicator is always set to indicate a single unblocked record. 

The interface receives return codes from VSAM, translates them to ISAM codes, and 
routes them to the processing program by way of the ISAM DCB and DECB. It 
transfers exception codes for logical or physical errors from VSAM to the processing 
program's error-analysis (SYNAD) routine. 

When the processing program closes the data set, the interface's Close'routine issues 
VSAM PUT macros to write unreleased I/O buffers, deletes from virtual storage the 
processing programs loaded by Open, frees virtual-storage space that was obtained by 
Open, and gives control to VSAM Close. 

Restrictions in the Use of the ISAM Interface 

The ISAM interface enables programs that use ISAM to issue only those requests that 
VSAM or the interface can simulate. These are the restrictions for using the interface: 

• VSAM data sets cannot be stored on the IBM 2301 and 2303 Drum Storage, the 
2302 and 2311 Disk Storage Drives, or the 2321 Data Cell Drive. You can use the 
direct-access storage devices listed in the section "What Machines Can VSAM Be 
Used With?" in the chapter "Introducing VSAM." 

A processing program cannot issue the OPENJ macro. 

A processing program can override record length by way of a DECB specification 
only for changing a previously retrieved record's length. For retrieval, a length 
other than the actual length causes an error. 

A processing program cannot issue the SETL instruction or define a request by 
physical device address; the interface cannot translate a request that depends on a 
specific block or storage device. 

A routine for analyzing physical errors (a SYNAD routine) cannot get at certain 
control-block information, such as the DEB (data extent block), lOB (input/output 
block), and physical device address. It may issue only the CLOSE, ABEND, 
SYNADAF, and SYNADRLS macros. An alternate SYNAD routine that meets the 

Preparing for VSAM 39 



requirements of the interface can be specified by way of JCL through the VSAM 
AMP parameter to be used instead of a routine that doesn't meet the requirements. 

• VSAM allows no temporary data sets. 

• VSAM does not ensure DCB integrity when multiple DCBs are opened for a data 
set. 

• If the RECFM parameter is not specified in a processing program's DCB, you must 
specify it in the AMP parameter in the DD statement for the data set. 

40 OS/VS Virtual Storage Access Method Planning Guide 



OPTIMIZING THE PERFORMANCE OF VSAM 

This chapter is intended for programmers who will choose and implement the VSAM 
options that affect performance through the size of the control interval, the percents of 
distributed free space, and the handling of indexes and VSAM catalogs. 

How Can Control-Interval Size Be Used to Influence Performance? 

A data set's control-interval size affects performance. As a general rule the larger the 
control interval, the better the performance-for a number of reasons: 

Fewer index records required for a key-sequenced data set 

Fewer control-interval accesses 

More efficient distribution of free space in a key-sequenced data set 

You can request a particular control-interval size, but it must fall within the acceptable 
limits determined by VSAM, depending on the smallest amount of virtual-storage space 
you'll ever provide for I/O buffers and the size of your data records. 

I/O-buffer size is important because VSAM transmits the contents of a control 
interval, and the amount of virtual-storage space for I/O buffers limits the size of a 
control interval. The amount of space for I/O buffers is the most flexible variable you 
have for influencing performance through control-interval size. The size and other 
attributes of your data records generally depend on the needs of your application. 

How Does Distributed Free Space Improve Performance? 

. j 

In the section "The Use of Free Space for Processing a Key-Sequenced Data Set" 
under "Keyed Access for Key-Sequenced Data Sets" in the chapter "Getting to Know 
What VSAM Is and Does," we discussed the way VSAM uses distributed free space for 
the insertion of a record into a key-sequenced data set. It was pointed out that 
insertion can be achieved in a data set that hasn't any distributed free space, by means 
of a control-area split. Therefore, the decision to provide free space throughout the 
control intervals and control areas of a data set rests on considerations of performance. 
Free space in the immediate area into which a record is inserted speeds up the insertion 
and avoids control-area splitting, which may move a group of records to a different 
cylinder, away from the preceding and following records in key sequence. 

The question that arises is: How much space do I provide? There is no one answer; 
the decision depends on how much inserting or lengthening of records you plan to do. 
Of course, if the data set will be for reference only, it will need no free space. If 
insertions into the data set are numerous, you might get the best performance by 
leaving half of the space free when you create the data set. In general, you should 
estimate the percent of growth and leave a proportionate amount of free space. For 
example, if you calculated 25 % growth, you might leave 1/5 of the total space free, 
because the data set is now at 4/5 of its eventual size . 

Optimizing the Performance of VSAM 41 



You may estimate that the growth of a data set will continue indefinitely. But if you 
attempted to leave enough free space for indefinite growth, you would end up with 
almost nothing but free space. So you have to decide how long a period of growth you 
want to provide for and count on reorganizing the data set at the end of that period to 
redistribute free space. 

When you estimate data-set growth, remember that if records in a key-sequenced data 
set are deleted or shortened, VSAM makes the space thus freed available as free space. 

What Index Options Are There to Improve Performance? 

Four options influence performance through the use of the index with a key-sequenced 
data set. Each option improves performance, but some of them require that you 
provide additional virtual- or auxiliary-storage space. The options are: 

Index-set records in virtual storage 

Index and data set on separate volumes 

Sequence-set records adjacent to the data set 

Replication of index records 

Index-Set Records in Virtual Storage 

To retrieve a record from a key-sequenced data set or store a record in it using keyed 
access, VSAM needs to examine the index of that data set. Before your processing 
program begins to process the data set, it must specify the amount of virtual-storage 
space it is providing for VSAM to buffer index records. Enough space for one I/O 
buffer for index records is the minimum, but a serious performance problem with a 
space large enough for only one or two index records is that an index record may be 
continually deleted from virtual storage to make room for another and then retrieved 
again later when it is required. Ample space to buffer index records can improve 
performance by preventing this situation. 

You ensure that index records will be in virtual storage by specifying enough 
virtual-storage space for I/O buffers for index records when you begin to process a 
data set. VSAM keeps as many index-set records in virtual storage as the space will 
hold. Whenever an index record must be retrieved to locate a record, VSAM makes 
room for it by deleting from the space the index record that VSAM judges to be the 
least useful under the circumstances then prevailing. It is generally the index record 
that belongs to the lowest index level then represented in the space and that has been 
in the space the longest. 

Index and Data Set on Separate Volumes 

You may place the index of a key-sequenced data set on a separate volume from the 
data set, either on the same or on a different type of storage device. 

Using different volumes eliminates the contention between gaining access to index 
records and gaining access to data records when you are using keyed access. The 
smaller amount of auxiliary-storage space required for an index makes it economical to 
use a faster storage device for it than for the data set. 

42 OS/VS Virtual Storage Access Method Planning Guide 



Sequence-Set Records Adjacent to the Data Set 

In using disk storage, you should minimize disk-arm movement. Having the sequence 
set accompany the data set is one way to reduce the movement for a key-sequenced 
data set. When you define the data set, you can specify that the sequence-set index 
record for each control area is to be on the first track of the control area. This avoids 
two separate seeks when access to a data record requires VSAM to examine the 
sequence-set index record of the control area in which the data record is stored. One 
arm movement enables VSAM to retrieve or store both the index record and the 
contents of the control interval in which the data record is stored. When this option is 
taken, sequence-set records are replicated, as described next. 

Replication of Index Recerds 

The last option is the replication of an index record on a track of a direct-access 
storage volume as many times as it will fit. The object of replication is to reduce the 
time lost waiting for the record to come around to be read (rotational delay). 
Rotational delay is, on the average, half the time it takes for the volume to rotate. 
Replication of a record reduces this time. For instance, if ten copies of an index record 
fit on a track, rotational delay is, on the average, only one-twentieth of the time it 
takes for the volume to rotate. 

This option costs auxiliary-storage space; it requires a full track of storage for each 
index record replicated. You have to weigh the relative values of auxiliary-storage 
space and processing speed. 

You can replicate index records in these combinations of sequence set and index set: 

Sequence set separated from index set and only sequence-set records replicated 

Sequence set separated from index set but all index records replicated 

Sequence set and index set together and all index records replicated 

Separating the sequence set from the index set is for placing the sequence set adjacent 
to the data, which is the previous option we discussed. Figure 12 illustrates replication 
of a sequence-set record that has been placed adjacent to its control area. 

How Can VSAM Catalogs Affect Performance? 

Both the required master catalog and optional user catalogs can be used to improve 
performance. 

Searching a VSAM Catalog 

Because a VSAM catalog is organized as a key-sequenced data set with an index, 
searching it is faster than searching the system catalog. For this reason, VSAM 
catalogs are searched before the system catalog, for both VSAM data sets and data sets 
of other access methods. You can improve the performance of catalog-information 
retrieval by cataloging in a VSAM catalog not only your VSAM data sets, but also data 
sets of other access methods, except data sets that belong to generation data groups. 

Optimizing the Performance of VSAM 43 



Cylinder of Disk 

First Track I Sequence-Set I 
Record r Copy I r COpy I I .. Copy I r Copy I 

Second Track I Control Interval II Control Interval II Control Interval I 
Third Track I Control Interval II Control Interval II Control Interval I Control Area 

Fourth Track I Control Interval II Control Interval II Control Interval I 

Figure 12. On disk storage, the sequence-set record may be placed adjacent to the control area to avoid 
moving the arm separately for index and for data; the index record is replicated to reduce 
rotational delay. 

Sharing Services with User Catalogs 

User catalogs are useful for improving performance. By putting the catalog information 
of some of your data sets and storage volumes into user catalogs, you reduce the search 
time for a given catalog and reduce the contention for the services of the master 
catalog. 

44 OS/VS Virtual Storage Access Method Planning Guide 



PROTECTING DATA WITH VSAM 

How safe is your data with VSAM? What provisions does VSAM make to ensure that 
data is not lost or destroyed by errors in the system, or sabotaged or pilfered by 
unauthorized persons? How easy is it to determine what the cause of a problem is and 
to do something about it? This chapter is intended for installation managers and 
system programmers interested in the answers to these questions. 

The protection of data includes data integrity, or the safety of data from accidental 
destruction, and data security, or the safety of data from theft or intentional 
destruction. We'll discuss the attributes and options of VSAM that ensure data 
integrity, the protection of data shared by operating systems, regions, and subtasks, the 
use of passwords and various authorization routines to prevent unauthorized access to 
your data, and the methods of restart and problem determination. 

How Does VSAM Achieve Data Integrity? 

The attributes and options of VSAM that affect data integrity are: 

Method of inserting records into a key-sequenced data set 

Control-interval principle 

Method of indicating the end of a data set 

Verifying write operations 

Method of Inserting Records into a Key-Sequenced Data Set 

We discussed the method of inserting new records into a key-sequenced data set with 
an index in the section "The Use of Free Space for Processing a Key-Sequenced Data 
Set" under "Keyed Access for Key-Sequenced Data Sets" in the chapter "Getting to 
Know What VSAM Is and Does." Free space distributed throughout used control 
intervals allows VSAM to insert a record into a control interval held in virtual storage 
by shifting records in it without an I/O operation. VSAM splits control intervals and 
control areas, when necessary, in a way that does not expose any data to loss, even if 
an I/O error occurs before the split is completed. 

Control-Interval Principle 

With a key-sequenced data set, the control interval is the unit pointed to by entries in a 
sequence-set index record. Only a record addition or a record insertion that splits a 
control interval or a control area causes a modification of the index. For instance, even 
though a record insertion might change the RBA of the record with the highest key in 
the control interval, the index entry is not altered, since the pointer in it is to the 
control interval, not to the record. Minimal index handling and modification lessen the 
chance of error. 

Protecting Data with VSAM 45 



Method of Indicating the End of a Data Set 

VSAM combines two procedures for achieving data integrity: 

• Preformatting the last control area of a data set 

Updating the catalog to indicate: 

the RBA of the end of the data set 

the highest-keyed record in the data set 

Preformatting a Data Set 

Updating the Catalog 

Pre formatting the end of a data set as each control area comes into use ensures greater 
data integrity than formatting it only at the end of processing. VSAM formats a 
control area before using its control intervals by putting control information in them 
and putting an end-of-file indicator in the last control interval. The end-of-file 
indicator helps prevent data that has been added to a data set from being lost. 

VSAM optionally preformats control areas when loading records into a data set and 
always preformats them when subsequently adding records to the data set. You have 
two options when loading records into a data set, whether you use the COpy command 
of Access Method Services or your own processing program: 

The first option is to improve load speed: VSAM does not format the last control 
area of a data set until a CLOSE macro instruction is issued. An error that 
prevents further processing will result in the loss of all of the data that has been 
loaded. 

• The second option is to improve the ability to recover from a failure and complete 
loading. Each time a control area is filled with records, VSAM formats the next 
control area before storing records in it. In this way each set of new records is 
protected against loss as it is added to the data set. 

The addresses kept by the catalog for the end of the data set enable VSAM to keep 
track of the physical end and, for a key-sequenced data set, the logical end of the data 
set. VSAM updates these addresses at intervals determined by a processing program's 
issuance of a temporary CLOSE macro instruction and at the end of data-set 
processing, when the data set is fully closed. By using the VERIFY command of 
Access Method Services, you can recover data in cases where VSAM was unable to 
close a data set properly and update the end-of-file indicator in the catalog. See the 
discussion of the VERIFY command in the chapter "Communicating with VSAM." 

Verifying Write Operations 

To improve the integrity of data written to auxiliary storage, you can request VSAM to 
verify each write operation for accuracy. Verification takes additional time, but it 
decreases the chance of introducing errors into the data set. 

46 OS/VS Virtual Storage Access Method Planning Guide 



How is Shared Data Protected? 

Data can be shared by different operating systems, by different regions in a system, 
and by different sub tasks in a region. There are provisions for protecting data 
appropriate to each situation. 

Cross-System Sharing 

Job steps of two or more OS/VS systems may gain access to the same data set 
regardless of the disposition specified in each step's JCL. To get exclusive control of 
the data set, a task in one system must issue a RESERVE macro instruction. 

VSAM provides protection for a job step to do direct processing of a data set that the 
job step does not have exclusive control over. Restrictions are that the data set cannot 
be lengthened; it must be defined as shareable in the catalog and in its DD statement; 
and it must be stored on a shareable direct-access storage device. When these 
restrictions are met, VSAM retrieves a fresh copy of the contents of a buffer for each 
request. 

Cross-Region Sharing 

Subtask Sharing 

Independent job steps in a system may request the use of a data set at the same time. 
Each job step must specify a disposition of SHR in its DD statement for the data set. 
The type of processing allowed depends on whether the data set is defined in the 
catalog as shareable. If it is not, only input processing is permitted; if it is, update and 
output processing, as well as input processing, are permitted. 

When a job step opens a data set for update or output, and another job step has 
already opened it for update or output, VSAM warns the new job step that the data set 
will be exposed to error if it processes the data set while the other job step is 
processing it. If the new job step opens the data set for input only, VSAM warns it 
that its processing will be exposed to error if it processes the data set while the other 
job step is processing it. 

Subtasks within a region may share a data set through a single DD statement or 
through separate DD statements. With a single DD statement, several sub tasks can 
update a data set concurrently. VSAM provides complete protection by giving a 
subtask exclusive control of the contents of a control interval to update, delete, or 
insert a record. Exclusive control is not required to read a record. With separate DD 
statements, several subtasks can share a data set under the same rules as cross-region 
sharing. 

If you use TSO, you must specify a disposition of OLD in the DD statement for a data 
set to ensure data and processing integrity. TSO permits sharing of a data set only for 
input processing. 

Protecting Data with VSAM 47 



How Can Passwords Be Used to Authorize Access? 

Passwords are optional: you do not have to have them to gain access to a data set. But 
for added security, you can define passwords for data sets, indexes, and VSAM 
catalogs. There are different passwords for various degrees of data integrity: 

Full access. This is the master password, which allows you to gain access to a data 
set and any index and catalog entry associated with it for all operations (retrieving, 
updating, inserting, deleting). Using this password to gain access to a catalog entry 
gives you the ability to delete an entire data set and to alter password information 
or any other information in the catalog about a data set, index, or catalog. 

Update access. This password authorizes you to retrieve, update, insert, or delete 
records in a data set. It gives you limited access to catalog entries: you can define 
objects and alter their definitions, but you cannot delete entries. 

Read access. This is the read-only password, which allows you to examine data 
records and catalog entries, but not to add, alter, or delete them. 

The passwords associated with a data set, index, or catalog are specified through 
Access Method Services when you define it. This information is kept in the catalog, 
and when a processing program attempts to open a data set, the security-verification 
routine checks whether a password is required and whether the correct one is given. 
Computer operators and communications-terminal users may also be given the 
opportunity to supply the correct password, and you can specify how many times they 
may try to do so. 

Besides VSAM password protection, you may also have your own routine to check a 
requester's authority. You can define security-authorization records in the master 
catalog or in a user catalog to contain whatever special password information you wish, 
for use by your authorization routine. VSAM transfers control to your routine when a 
requester gives a correct password other than the master password. 

How Are Programs Restarted Following a Failure? 

In general, the checkpoint/restart program for VSAM data sets is similar to that 
provided by OS/VS for ISAM and BDAM. 

Recording Checkpoint Information 

To restart after a failure that terminated processing, it is necessary to determine the 
status of processing programs when the failure occurred. A processing program defines 
a checkpoint by issuing a CHKPT macro instruction. The checkpoint program issues a 
VSAM temporary CLOSE macro to store the contents of buffers in the data set and 
complete outstanding operations. It then records information about VSAM data sets in 
a checkpoint data set. If a failure occurs, the latest checkpoint record can be used to 
reconstruct the situation that prevailed before the failure. 

48 OS/VS Virtual Storage Access Method Planning Guide 



Restarting the Processing Program 

Restart is the procedure of processing the checkpoint record and giving control back to 
the processing program interrupted by the failure. Different types of restart are 
distinguished for VSAM, for: 

Key-sequenced output data sets. A key-sequenced output data set that was opened 
with its index at the checkpoint is restored to its checkpoint status by the erasure of 
all records with a key higher than the key that was highest at the checkpoint. 

Entry-sequenced output data sets. An entry-sequenced output data set is restored 
by the elimination of all records that have been added at the end since the 
checkpoint. 

Input data sets or key-sequenced data sets open for addressed access. A data 
set that was open for input at the checkpoint or a key-sequenced data set that was 
open for addressed access is prepared for restart by the restoration of any statistical 
information (such as number of records inserted) to its checkpoint status. 

Restrictions and Options for Restarting a Program 

The VSAM DD parameter, AMP, has a subparameter for specifying checkpoint/restart 
options that handle two special situations in restarting a processing program: 

Modifications other than records added sequentially to the end of a data set. The 
restart program cannot restore a data set to its checkpoint status if there have been 
internal modifications to it since the checkpoint, and the restart program will 
normally not attempt to restart processing. 

Addition of records to the end of a data set by way of a job step other than the job 
step that issued the checkpoint. Any records added to the end of a data set will 
normally be erased in restoring the data set to its checkpoint status. 

The AMP options for checkpoint/restart are: to let restart takes its normal action for 
either situation, to override either one or the other of the two actions, or to override 
both. If you override the check for internal modification, your processing program is 
restarted, even though the data set it was processing cannot be restored; if you override 
the erasure of data at the end of a data set, your processing program is not restarted, 
unless you also override the check for modification. 

A third situation that restart may encounter is a data set that was not closed following 
the failure and that cannot be restarted because of the resulting loss of end-of-file 
information in the catalog. You need to use the VERIFY command of Access Method 
Services to enable you to restart processing in such a case. 

For more information about checkpoint/restart with OS/VS, see OS/VS 
Checkpoint/Restart, GC26-3784. 

Protecting Data with VSAM 49 



How Can the Causes of Problems Be Determined? 

VSAM offers several diagnostic aids for you to determine what's wrong when things 
don't work. 

Exits to Your E"or-Analysis Routines 

VSAM Messages 

VSAM provides two optional exits to routines you supply to handle error situations. 
If you provide the exit routines for analyzing errors, your processing program can 
investigate many errors and decide what to do in an orderly manner. Not only 
physical errors, but also logical errors that may arise out of unlikely combinations 
of events in a complex application can be handled by exits. 

The operator and programmer messages put out by VSAM are designed to help them 
understand both the nature of the problem and the exact steps to take to correct it. 
Other messages that originate with VSAM are the diagnostic messages that are made 
available to your physical-error analysis routines in a special message area provided by 
your processing program. 

Generalized Trace Facility (GTF) 

GTF is an optional program of OS/VS that continually records, as they occur, events 
of selected classes that are necessary to trace a processing program. You must weigh 
the relative values of this diagnostic ability and the added processing time required. It 
is a debugging tool and a maintenance aid: it produces unformatted output. To format 
and print this output, use the Edit function of the HMDPRDMP or AMDPRDMP 
service aid. For information about GTF or the Edit function, see OS/VS Service 
Aids, GC28·0633. 

50 OS/VS Virtual Storage Access Method Planning Guide 



GLOSSARY 

Access Method Services: A multifunction service program that defines VSAM data sets 
and allocates space for them, converts indexed sequential data sets to key-sequenced 
data sets with indexes, modifies data-set attributes in the catalog, reorganizes data sets, 
facilitates data portability between operating systems, creates backup copies of data 
sets and indexes,' helps make inaccessible data sets accessible. and lists data-set records 
and catalog entries. 

addressed direct access: The retrieval or storage of a data record identified by its 
relative byte address, independent of the record's location relative to the previously 
retrieved or stored record. (See also keyed direct access, addressed sequential access, 
and keyed sequential access.) 

addressed sequential address: The retrieval or storage of a data record in its entry 
sequence relative to the previously retrieved or stored record. (See also keyed 
sequential access, addressed direct access, and keyed direct access.) 

application: As used in this publication, the use to which an access method is put or the 
end result that it serves~ contrasted to the internal operation of the access method. 

block: A group of contiguous characters recorded as a unit, from the point of view of 
the physical attributes of auxiliary storage. 

catalog: (See master catalog and user catalog.) 

collating sequence: An ordering assigned to a set of items, such that any two sets in 
that assigned order can be collated. As used in this publication, the order defined by 
the System/370 8-bit code for alphabetic, numeric, and special characters. 

compression: (See key compression.) 

control area: A group of control intervals used as a unit for formatting a data set 
before adding records to it. Also, in a key-sequenced data set, the set of control 
intervals pointed to by a sequence-set index record~ used by VSAM for distributing 
free space and for placing a sequence-set index record adjacent to its data. 

control-area split: The movement of the contents of some of the control intervals in a 
control area to a newly created control area, to facilitate the insertion or lengthening of 
a data record when there are no remaining free control intervals in the original control 
area. 

control interval: A fixed-length area of auxiliary-storage space in which VSAM stores 
records and distributes free space. It is the unit of information transmitted to or from 
auxiliary storage by VSAM, independent of blocksize. 

control-interval access: The retrieval or storage of the contents of a control interval. 

control-interval split: The movement of some of the stored records in a control interval 
to a free control interval, to facilitate the insertion or lengthening of a record that 
won't fit in the original control interval. 

data integrity: Preservation of data or programs for their intended purpose. As used in 
this publication, the safety of data from inadvertent destruction or alteration. 

Glossary 51 



data record: A collection of items of information from the standpoint of its use in an 
application and not from the standpoint of the manner in which it is stored (see also 
stored record). 

data security: Prevention of access to or use of data or programs without authorization. 
As used in this publication, the safety of data from unauthorized use, theft, or 
purposeful destruction. 

data set: The major unit of data storage and retrieval in the operating system, 
consisting of data in a prescribed arrangement and described by control information to 
which the system has access. As used in this publication, a collection of fixed- or 
variable-length records in auxiliary storage, arranged by VSAM in key sequence or in 
entry sequence. (See also key-sequenced data set and entry-sequenced data set.) 

data space: A storage area defined in the volume table of contents of a direct-access 
volume for the exclusive use of VSAM to store data sets, indexes, and catalogs. 

direct access: The retrieval or storage of data by a reference to its location in a data 
set rather than relative to the previously retrieved or stored data. (See also addressed 
direct access and keyed direct access.) 

distributed free space: Space reserved within the control intervals of a key-sequenced 
data set for inserting new records into the data set in key sequence; also, whole control 
intervals reserved in a control area for the same purpose. 

entry sequence: The order in which data records are physically arranged in auxiliary 
storage, without respect to their contents. (Contrast to key sequence.) 

entry-sequenced data set: A data set whose records are loaded without respect to their 
contents, and whose relative byte addresses cannot change. Records are retrieved and 
stored by addressed access, and new records are added at the end of the data set. 

extent: A continuous space allocated on a direct-access storage volume, reserved for a 
particular data space or data set. 

field: In a record or a control block, a specified area used for a particular category of 
data or control information. 

free space: (See distributed free space.) 

generic key: A leading portion of a key, containing characters that identify those 
records that are significant for a certain application. For example, it might be desirable 
to retrieve all records whose keys begin with the generic key AB, regardless of the full 
key values. 

horizontal pointer: A pointer in an index record that gives the location of another index 
record in the same level that contains the next key in collating sequence; used for 
keyed sequential access. 

index: As used in this publication, an ordered collection of pairs, each consisting of a 
key and a pointer, used by VSAM to sequence and locate the records of a 
key-sequenced data set; organized in levels of index records. (See also index level, 
index set, and sequence set.) 

index entry: A key and a pointer paired together, where the key is the highest key (in 
compressed form) entered in an index record or contained in a data record in a control 
interval, and the pointer gives the location of that index record or control interval. 

52 OS/VS Virtual Storage Access Method Planning Guide 



index level: A set of index records that order and give the location of records in the 
next lower level or of control intervals in the data set that it controls. 

index record: A collection of index entries that are retrieved and stored as a group. 
(Contrast to data record.) 

index replication: The use of an entire track of direct-access storage to contain as many 
copies of a single index record as possible; reduces rotational delay. 

index set: The set of index levels above the sequence set. The index set and the 
sequence set together comprise the index. 

integrity: (See data integrity.) 

ISAM interface: A set of routines that allow a processing program coded to use ISAM 
(indexed sequential access method) to gain access to a key-sequenced data set with an 
index. 

key: As used in this publication, one or more consecutive characters taken from a 
data record, used to identify the record and establish its order with respect to other 
records. (See also key field and generic key.) 

key compression: The elimination of characters from the front and the back of a key 
that VSAM does not need to distinguish the key from the preceding or following key in 
an index record; reduces storage space for an index. 

key field: A field located in the same position in each record of a data set, whose 
contents are used for the key of a record. 

key sequence: The collating sequence of data records, determined by the value of the 
key field in each of the data records. !vlay be the same as, or different from, the entry 
sequence of the records. 

key-sequenced data set: A data set whose records are loaded in key sequence and 
controlled by an index. Records are retrieved and stored by keyed access or by 
addressed access, and new records are inserted in the data set in key sequence by 
means of distributed free space. Relative byte addresses of records can change. 

keyed direct access: The retrieval or storage of a data record by use of an index that 
relates the record's key to its relative location in the data set, independent of the 
record's location relative to the previously retrieved or stored record. (See also 
addressed direct access, keyed sequential access, and addressed sequential access.) 

keyed sequential access: The retrieval or storage of a data record in its key sequence 
relative to the previously retrieved or stored record, as defined by the sequence set of 
an index. (See also addressed sequential access, keyed direct access, and addressed 
direct access.) 

mass sequential insertion: A technique VSAM uses for keyed sequential insertion of 
two or more records in sequence into a collating position in a data set: more efficient 
than inserting each record directly. 

master catalog: A key-sequenced data set with an index containing extensive data-set 
and volume information that VSAM requires to locate data sets, to allocate and 
deallocate storage space, to verify the authorization of a program or operator to gain 
access to a data set, and to accumulate usage statistics for data sets. 

Glossary 53 



multiple-request processing: Access to a data set with two or more concurrent 
sequential or direct requests, or both, from a processing program or its subtasks, using 
a single control block to define the data set and with a single opening of the data set. 

password: A unique string of characters stored in a catalog that a program, a computer 
operator, or a terminal user must supply to meet security requirements before a 
program gains access to a data set. 

pointer: An address or other indication of location. For example, an RBA is a pointer 
that gives the relative location of a data record or a control interval in the data set to 
which it belongs. (See also horizontal pointer and vertical pointer.) 

portability: The ability to use VSAM data sets with different operating systems. 
Volumes whose data sets are cataloged in a user catalog can be demounted from 
storage devices of one system, moved to another system, and mounted on storage 
devices of .that system. Individual data sets can be transported between operating 
systems using Access Method Services. 

random access: (See direct access.) 

RBA: Relative byte address. The displacement of a data record or a control interval 
from the beginning of the data set to which it belongs; independent of the manner in 
which the data set is stored. 

record: (See index record, data record, stored record.) 

relative byte address: (See RBA.) 

replication: (See index replication.) 

security: (See data security.) 

sequence set: The lowest level of the index of a key-sequenced data set; it gives the 
locations of the control intervals in the data set and orders them by the key sequence 
of the data records they contain. The sequence set and the index set together comprise 
the index. 

sequential access: The retrieval or storage of a data record in either its entry sequence 
or its key sequence, relative to the previously retrieved or stored record. (See also 
addressed sequential access and keyed sequential access.) 

skip sequential access: Keyed sequential retrieval or storage of records here and there 
. throughout a data set, skipping automatically to the desired record or collating position 

for insertion: VSAM scans the sequence set to find a record or a collating position. 

stored record: A data record, together with its control information, as stored in 
auxiliary storage. 

user catalog: A catalog used in the same way as the master catalog, but optional and 
pointed to by the master catalog, and also used to lessen the contention for the master 
catalog and to facilitate volume portability. 

vertical pointer: A pointer in an index record of a given level that gives the location of 
an index record in the next lower level or the location of a control interval in the data 
set controlled by the index. 

54 OS/VS Virtual Storage Access Method Planning Guide 



INDEX 

Indexes of OS/VS systems publications are consolidated in the OSjVS Master Index, GC28-0602. For additional 
information about any subject listed in this index, refer to the publications that are listed under the same subject 
in the Master Index. 

This index makes no page references to the glossary. 

ACB macro 29 
access (see keyed access and addressed access) 
access method, requirements for 2 
Access Method Services 

ALTER command 24 
altering sequence of command execution 23 
checkpoint/restart 49 
COpy command 25 
DEFINE command 23-24 
DELETE command 24 
EXPORT command 25,27 
how used 23,27 
IMPORT command 27 
LfSTCA T ALOG command 25 
PRINT command 25 
summary o.f functions 23 
VERIFY command 27 

access-method control block 
changing 32 
defining with ACB macro 27 
more than one with same DD statement 29 

accessibility of data, testing 27 
addressed aCcess 

deletion with key-sequenced data set 17 
differences between entry- and key-sequenced data sets 16-17 
marking records inactive with entry-sequenced data set 17 
positioning VSAM for subsequent access 17 
retrieval 17 
storage 17 

addressed direct access 16-17 
addressed sequential access 16-17 
addressing data records 9 
allocating space 

Access Method Services 18 
by ranges of key values 24 
comparison with ISAM 37 
independently of device 24 
on unmounted volumes 19 

restriction 20 
ALTER command of Access Method Services 24 
AMDPRDMP service aid 50 
AMP JCL DD parameter 

checkpoint/restart 49 
general description 34 

ISAM interface 41 
arm movement, minimizing 43 
assembler language 35 
asynchronous processing 31,32 
attributes of a data set, changing 24-25 
authorization to process a data set 48 
auxiliary storage devices 

ISAM can be used with, VSAM can't 39 
minimizing rotational delay 43-44 
space required for index replication 43 
VSAM can be used with 5 

II 
backing up a data set 27 
basic direct access method (BDAM) 12-13 
BDAM (basic direct access method) 12-13 
beginning sequential access 14,17 
block 

illustration 8 
relation to control interval 7 

buffer, I/O 
defining minimum space 24 
effect on performance 41 
exit routine for buffer management 30 
index records resident in virtual storage 42 
relation to processing program work area 14,31 
specifying size and number 29 

catalog (see master catalog, user catalog, and system 
catalog) 

catalog entry 
data set 20 
deleting 24 
listing 25 
modifying 24 
using a model to define 24 
volume 20 

causes of problems, determining 50 
cell, 2321 Data Cell Drive 39 
central processing units (CPUs) 

models 5 
sharing data among 47 

chaining request parameter lists 31 
changes in relative byte address 

Index 55 



changes in relative byte address (continued) 

exit routine for recording 13,30 
key-sequenced data set 12 

changing a record's length (see shortening a record and 
lengthening a record) 

changing attributes of a data set 
by reorganizing data sets 25 
in catalog entry 24 

changing control blocks and lists 32 
character elimination, in keys 11 
CHECK macro 32 
checking write operations for accuracy 46 
checkpoint/restart 

recording checkpoint information 48 
restarting processing 49 
restrictions 49 
specifying in AMP JCL DD parameter 49 

CHKPf macro 48 
CLOSE macro 

disconnecting program from data 28-29 
indicating the end of a data set 46 
ISAM interface 39 

COBOL language 35 
collating sequence 7 

(see also key sequence) 
combining data sets 25 
commands of Access Method Services (see Access Method 

Services) 
(see also macros) 

compression, key 11 
concatenated data sets, not allowed 34 
concurrent access (see multiple-request processing) 
conditional statements, Access Method Services 23 
configuration, system 5 
connecting a user catalog to the master catalog 27 
connecting program to data 28 
control area 

definition 9 
preformatting 46 
relation to control interval 9,11 
relation to extent of data set 9 
relation to sequence set 11,43 

illustration 11,44 
size 9 
split 16 

control block 
access-method control block 29 
changing 32 
exit list 29-30 
request parameter list 30-31 

control information in stored record 9 
control interval 

definition 7 
determining size 7,24 
effect of size on performance 41 
how it helps protect data 45 
maximum size 9 
number in a control area 9 
relation to control area 9,11 
size independent of blocksize 7-8 
split 15-16 

control-interval access 
definition 14 
specifying in the macros 29,31 

56 OS/VS Virtual Storage Access Method Planning Guide 

conversational time sharing 35 
converting data sets to VSAM format 

COpy command of Access Method Services 25 
indexed sequential data sets 38 
sequential data sets 25 

COpy command of Access Method Services 25 
copying data sets 25 
core (see virtual storage) 
CPUs (central processing units) 

models 5 
sharing data among 47 

creating a data set 23-24,13 
cross-region sharing of data 47 
cross-system sharing of data 47 

DASDs (direct-access storage devices) 
ISAM can be used with, VSAM can't 39 
minimizing rotational delay 43-44 
space required for index replication 43 
VSAM can be used with 5 

DAT (dynamic address translator) 4 
data cell, 2321 Data Cell Drive 39 
data format 9 
data integrity 

checkpoint/restart 48-49 
definition 4 
determining causes of problems 50 
multiple-request processing 13 
options 45-46 
passwords 48 
shared data 47 

data management requirements for access method 2-4 
data portability 

data-set 25-27 
illustration comparing data-set and volume portability 26 
volume 21 

data protection 4 
(see also data integrity and data security) 

data record 
illustration 9 
method of addressing 9 

(see also relative byte address) 
method of storing 9 

restriction 9 
data security 

authorization routine 48 
definition 4 
passwords 48 

data set 
allocation 19-20,24 
backup copy 27 
catalog entry 20 
copying 25 
defining 23-24 
deleting 24 
extents 8 
illustration 8 
indexed sequential 25 
listing 25 
maximum size 8 



data set (continued) 
merging data sets 25 
organization 7 
partial volume mounting 34 
preformatting 46 
reorganizing 25 
sequential 25,27 
sharing 47 
transporting 25,27 

data space 
allocation 23-24 
definition 7 
extents 8 
illustra tion 8 

data-set entry in catalog 20 
data-set port:lbility 25,27,26 
DD statement 33-34 
debugging 50 
debugging tool (Generalized Trace Facility) 50 
DEFINE command of Access Method Services 23-24 
defining a data set 23-24 
defining a user catalog in the master catalog 27 
DELETE command of Access Method Services 24 
deleting a catalog entry 24 
deleting a data set 24 
deleting a record 

addressed 17 
changing relative byte addresses 12 
comparison with ISAM 37 
keyed 15 
marking record inactive with entry-sequenced data set 17 
reclamation of space 15 

determining causes of problems 49-50 
devices, auxiliary storage 

ISAM can be used with, VSAM can't 39 
minimizing rotational delay 43-44 
space required for index replication 43 
VSAM can be used with 5 

diagnostic aids 49-50 
direct access 

addressed 16-17 
definition 13 
keyed 14-15 
matching search argument to Key 14-15 
positioning for subsequent sequential access 14,17 

direct-access storage devices (DASDs) 
ISAM can be used with, VSAM can't 39 
minimizing rotational deby 43-44 
space required forindex replication 43 
VSAM can be used with 5 

disconnecting a program from data 28-29 
disconnecting a user catalog from the master catalog 27 
disk storage 

(see also direct-access storage devices) 
minimizing arm movement 43-44 

displaying control blocks and lists 32 
distributed free space 

distribution 11-12 
effect on performance 41-42 
estimating growth 41-42 
for inserting records 15-16 
protecting data 45 
reclamation 12,15 

DOS/VS and OS/VS 
data-set portability 25-27 
volume portability 21 

drum 
2301 Drum Storage 39 
2303 Drum Storage 39 

dynamic address translator (DAT) 5 

end of data set, method of indicating 46 
end-of-data set processing 30 
end-of-file indicator 

preformatting 46 
updated by CLOSE 28 

ENDREQ macro 32 
entry (see catalog entry and index entry) 
entry sequence 

affected by control-interval split 16-17 
definition 7 

entry-sequenced data set 
(see also data set) 
definition 7 
keeping track of relative byte 

addresses 12-13 
EODAD exit routine 30 
ERASE macro 

addressed access 17 
initiating access 32-33 
keyed access 15 

erasing a data set 24 
erasing a record 

addressed 17 
changing relative byte addresses 12 
comparison with ISAM 37 
keyed 15 
marking record inactive with entry-sequenced data set 17 
reclamation of space 15 

error analysis 50,30 
error messages 50,31 
error-exit routine 30,50 
estimating data-set growth 41-42 
evaluating system usage with System 

Management Facilities 36 
examining control blocks and lists 32 
exclusive control for update 

mUltiple-request processing 13 
sharing 47 

exit list 
changing 32 
defining with the EXLST macro 29-30 

exit routines 29-30,50 
EXLST macro 29-30 
EXPORT command of Access Method Services 25,27 
extent 

control-area split 16 
data set 8-9 
data space 8 
definition 8 
relation to control area 9 

extracting catalog information for data 

Index 57 



extracting catalog information for data (continued) 
portability 27 

II 
failues, determining cause of 50 
fixed-head storage 

2301 Drum Storage 39 
2303 Drum Storage 39 
2305 Fixed Head Storage 5 

fixed-length records 9 
format of stored data 9 
formatting data set before storing records 46 
free space (see distributed free space) 
freeing space of a data set 24 
functions of VSAM 13-17 

GENCB macro 32 
Generalized Trace Facility (GTF) 50 
generating control blocks and lists 32 
generic key (partial key) 

definition 14 
searching for a match 14-15,31 

GET macro 
initiating access 32-33 
positioning 14,17 

getting a record 
addressed 17 
keyed 15-15 
positioning 14,17 
skipping 14 

growth, estimating data-set 41-42 
GTF (Generalized Trace Facility) 50 

III 
high-level languages 35 
HMDPRDMP service aid 50 
horizontal pointer 

definition 11 
illustration 11 
skip sequential access 14-15 

how Access Method Services is used 23-27 
how existing programs that use ISAM can be used with 

VSAM 36-40 
how programs are restarted following a failure 48-49 
how TSO can be used with V AAM 35 

a 
I/O buffer 

defining minimum space 24 
effect on performance 41 

58 OS/VS Virtual Storage Access Method Planning Guide 

exit routine 30 
index records resident in virtual storage 42 
relation to processing program work area 14,31 
specifying size and number 29 

I/O errors 30 
IMPORT command of Access Method Services 27 
in what ways VSAM data sets can be processed 13-17 
index 

comparison with ISAM index 36-37 
illustration 11-12 
performance options 42-44 
purpose 10 
requires minimal updating 45 
structure 10-11 

index entry 
description 10 
free control interval 12 
key compression 11 

index record 
entries 10-11 
kept in virtual storage 42 
key compression 11 
levels 10 
replication 43-44 
sequence-set record adjacent to control area 43-44 

index set 
definition 10 
description 10 
illustration 11 
physical placement in relation to sequence set 43 
records resident in virtual storage 42 

indexed sequential access method (ISAM) 
(see also indexed sequential data set 
and ISAM interface) 

comparison with VSAM 36-38 
indexed sequential data set 

converting to VSAM format 25 
listing 25 

input/output buffer (see I/O buffer) 
inserting a record 

changing relative byte addresses 12 
control-area split 16 
control-interval split 15-16 
mass sequential insertion 15 
protecting data 45 
without split 15 

integrity of data 
checkpoint/restart 48-49 
definition 4 
determining causes of problems 50 
options 45-46 
passwords 48 
shared data 47 

interface (see ISAM interface) 
interpreting ISAM requests 39 
ISAM (indexed sequential access Method) 

(see also indexed sequential data set and ISAM 
interface) 

comparison with VSAM 36-38 
ISAM data set (see indexed sequential data set) 
IS AM interface 

converting data sets and job control language 38 
operation 39 



ISAM interface (continued) 
purpose 36 
restrictions 39-40 

11 
JCL (see job control language) 
job control language (JCL) 

AMP DD parameter 34,39-40,49 
defining a VSAM data set 33 
processing a VSAM data set 33 
restricted parameters 34 
specifying VSAM catalogs 33 

JOBCAT JCL statement 33 
journalizing transactions 30 

key 
allocating space on volumes by range 24 
compression 11 
generic (partial) 14-15,31 
use in index 10 

key field 
description 10 
unique value 7 

key sequence 
definition 7 
sequence set 16 

key-sequenced data set 
(see also distributed fiee space, index, and data set)' 
catalog structure 18 
comparison with entry-sequenced data set 10 
definition 7 
keeping track of relative byte 

addresses 13 
keyed access 

deletion 15 
matching search argument to key 14 
positioning 14 
retrieval 14-15 
skipping 14-15 
space reclamation 15 
storage 15 

keyed direct access 14-15 
keyed sequential access 14-15 

II 
languages, programming 35 
lengthening a record 

changing relative byte addresses 12 
control-area split 16 
control-interval split 15-16 
entry-sequenced data set 17 
without split 15 

levels of index 
illustration 11 
index set 10 
sequence set 10-11 

LISTCATALOG command of Access Method 
Services 25 

listing 
catalog entries 25 
data sets 25 

loading records into a data set 
comparison with ISAM 37 
COpy command of Access Method Services 25 
preformatting options 46 
using a processing program 13,38 

locate processing 
retrieval 14,31 
simulation by ISAM interface 39 

logical record (see data record) 
logical-error analysis exit routine 30 

machines used with ISAM, not with VSAM 39 
machines VSAM can be used with 

central processing units 5 
storage devices 5 

macros 
(see also Access Method Services for commands) 
ACB 29 
CHECK 32 
CHKPT 48 
CLOSE 28-29 
ENDREQ 32 
ERASE 15,17,32-33 
EXLST 29-30 
GENCB 32 
GET 14,17,32-33 
MODCB 32 
OPEN 28 
POINT 14,17,32-33 
PUT 15,17-32-33 
RESERVE 47 
RPL 30-31 
SHOWCB 32 
summary of VSAM macros 28 
TESTCB 32 

main storage (see virtual storage) 
making a data set protable 27 
mass sequential insertion 15 
master catalog 

(see also user catalog) 
cataloging nonVSAM data sets 18,43 

restriction 18 
how to improve reliability of 20 
indicating the end of a data set 46 
information in catalog entries 19-20 
order of catalog search 18 
performance of catalog search 20 
relation to system and user catalogs 19 
specifying with job control language structure 18 

master password 48,25 

Index 59 



maximum size of a control interval 9 
maximum size of a data set 8 
measuring system usage 36 
memory (see virtual storage) 
merging data sets 25 
messages 50,31 
method of indicating the end of a data set 46 
MODen macro 32 
modifying a catalog entry 24 
modifying control blocks and lists 32 
mounting only some volumes of a data set 34 
moving data sets from one operating system to another 25-27 
multiple-request processing 

definition 13 
number of I/O buffers used in 29 
protecting data during 13,47 
specifying the number of requests 29-30 

II 
noting RBA changes 13,30 

OPEN macro 
connecting program to data 28 
ISAM interface 39 

operator entering passwords 48 
optimizing the performance of VSAM 41-44 
options 

in defining a data set 23-24 
in preformatting a data set 46 
in transporting data 21,25-27 
performance (see performance) 
types of access 13-17 
types of data sets 7,9-13 
user catalogs 20 

organization of a data set 7 
(see also data set) 

OS/VS and DOS/VS 
data-set portability 25-27 
volume portability 21 

overflow area 
(see also distribu ted free space) 
comEarison with ISAM 36-37 

• parameter list 
exit list 29-30 
request parameter list 30-31 

partial key (generic key) 
definition 14 
searching for a match 14-15,31 

passwords 4,48 
performance 

catalog 43-44 
general discussion 3 
improved by control-interval size 41 
improved by distributed free space 42-42 
index options 42-43 

illustration 44 

60 OS/VS Virtual Storage Access Method Planning Guide 

permanent exportation 27 
physical record (see stored record) 
physical-error analysis 

exit rou tine 30-31 
ISAM interface 39-40 

PL/I language 35 
POINT macro 

addressed 17 
initiating access 32-33 
keyed 14 

pointer 
catalog 20 
index 10-11,14 

portability 
data-set 25-27 
illustration 26 
volume 21 

positioning for sequential access 
by entry sequence 17 
by key sequence 14 
done by POINT macro 32-33 
with concurrent access 13 

preformatting end of data set 46 
PRINT command of Access Method Services 25 
printing 

catalog entries 25 
data sets 25 

problem analysis 50 
processing types 

(see also keyed access and addressed access) 
specifying 29,31 

program residence (VSAM routines) 
deleted by the Close rou tine 29 
illustration 1 
loaded by the Open routine 28 

programming languages 35 
protecting data 4 

(see also data integrity and data security) 
PUT macro 

addressed 17 
initiating access 32-33 
keyed 15 

II 
QSAM (queued sequential access method) 12 
queued sequential access method (QSAM) 12 

random access (see direct access) 
ranges of key values for space allocation 24 
RBA (see relative byte address) 
reading a record 

addressed 17 
keyed 14-15 
positioning 14,17 
skipping 14 



reclamation of space 
entry-sequenced data set 17 
key-sequenced data set 12,15 

record 
data record 9 
index record 10-11 
maximum size 9 
stored record 9 

recording REA changes 13,30 
regions sharing data 47 
relative byte address (REA) 

changeahility in key-sequenced data set 12 
definition 9 
keeping track of 

entry-sequenced data set 12-13 
key-sequenced data set 13,30 

unchangeability in entry-sequenced data set 10,17 
remote terminals 35 
reorganizing data sets 

automatically through control-area split 16 
by copying 25 
comparison with ISAM 38 

replication of index records 43-44 
request parameter list 

changing 32 
defining with the RPL macro 30-31 

requesting access to a data set 32-33 
requirements 

storage (see storage requirements) 
system 5 

requirements for an access method 2 
RESERVE macro 47 
residence of VSAM routines 

deleted by the Close routine 29 
illustration 1 
loaded by the Open routine 28 

restart 49 
retrieving a record 

addressed 17 
keyed 14-15 
positioning 14-15,17 
skipping 14 

reusing space in a data set 
entry-sequenced data set 17 
key-sequenced data set 12-15 

rotational delay, minimizing 43-44 
RPL macro 30-31 

SAM data set (see sequential data set) 
searching catalogs 

order of 18,33 
performance 43-44 

secondary storage (see auxiliary-storage devices) 
security of data 

au thorization routine 48 
definition 4 
passwords 48 

sequence set 
definition 10 

description 10-11 
determining key sequence 16 
physical placement in relation to index set 43 
r~btion to control areas 11 

sequence-set records adjacent to the data set 43 
sequential access 

addressed 16-17 
definition 13 
keyed 14-15 
positioning 14,17 
skipp ing 14-15 

sequential data set 
converting 25 
listing 25 
form in which a VSAM data set is transported between 
systems 27 

sequential-access storage devices 
(see also sequential data set) 
can't use with VSAM data sets 
data-set transporting 27 

service aids 50 
service program (see Access Method Services) 
sharing data 

between regions 47 
between subtasks 47 
between systems 47 

shortening a record 
changing relative byte addresses 12 
entry-sequenced data set 17 
reclamation of space 15 

SHOWCE macro 32 
skip sequential access 

definition 14 
retrieval 14 
storage 15 

SMF (System Management Facilities) 36 
space reclamation 

entry-sequenced data set 17 
key-sequenced data set 12,15 

special uses of user catalogs 20-21 
speed (see performance) 
split 

control-area 16 
control-interval 15-16 

STEPCAT JeL statement 33 
storage devices 

IS AM can be used with, VSAM can't 39 
space required for index replication 43 
VSAM can be used with 5 

storage requirements 
free space 41-42 
I/O buffers 29 
index options 42-43 
work areas 31 

stored record 
definition 9 
illustration 9 
maximum size 9 

storing a record 
addressed 17 
control information describing a record 9 
keyed 15 
mass sequential insertion 15 

Index 61 



storing a record (continued) 
skipping 15 

substituting processing parameters by way of JCL 34,39-40 
subtasks sharing data 

(see also multiple-request processing) 
protection 47 

SYNAD exit routine 
specifying the exit 30 
using ISAM interface 39-40 

synchronizing asynchronous requests 32 
synchronous processing 31 
system catalog 

order of search 18 
points to master catalog 18 
relation to master and user catalogs 19 

System Management Facilities (SMF) 36 
system requirements 5 
system usage evaluation with System Management Facilities 36 
System/370 

models 5 
sharing data among central processing units 47 

systems sharing data 47 

II 
tape storage 

(see also sequential data set) 
can't use with VSAM data sets 
data-set transporting 27 

tasks sharing data 47 
temporary CLOSE macro 

functions 29 
indicating end of data set 46 

temporary data sets, not allowed 34 
temporary exportation 27 
terminals 35 
terminating a request before completion 32 
TESTCB macro 32 
testing control blocks and lists 32 
Time Sharing Option (TSO) 

actions with VSAM 35 
restriction on data-set sharing 47 

tracing 50 
translating ISAM requests 39 
transporting data between systems 

data-set portability 25-27 
illustration 26 
volume portability 21 

TSO (Tune Sharing Option) 
actions with VSAM 35 
restriction on data-set sharing 47 

updating a record (see storing a record, lengthening a record, and 
shortening a record) 

usage, evaluating system, with System Management Facilities 36 
use of free space for processing a key-sequenced data set 15-16 

62 OS/VS Virtual Storage Access Method Planning Guide 

user catalog 
(see also master catalog) 
connecnng to master catalog 27 
disconnecting from master catalog 27 
job control language 33 
order of search 18 
reducing contention for master catalog 44 
volume portability 21 

utility program (see Access Method Services) 

II 
variable-length records 9 
verification routine, security 48 
VERIFY command of Access Method Services 27 
verifying write operatons 46 
vertical pointer 

definition 11 
illustration 11 
keyed direct access 14 

virtual storage 
dynamic address translator 5 
index records kept resident 42 
(see also I/O buffer) 

Virtual Storage Access Method (VSAM) 
comparison with indexed sequential access method 36-38 
requirements for data processing 2-4 

volume entry in catalog 20 
volume portability 21,26 
VSAM (Virtual Storage Access Method) 

comparison with indexed sequential access method 36-38 
requirements for data processing 2-4 

work area 
relation to I/O buffer 14 
specifying 31 

write operation, verification 46 
writing a record 

addressed 17 
control information describing a record 9 
keyed 15 
mass sequential insertion 15 
skipping 15 

135 Central Processing Unit 5 
145 Central Processing Unit 5 
155 Central Processing Unit 5 
165 Central Processing Unit 5 
2301 Drum Storage 39 
2302 Disk Storage Drive 39 
2303 Drum Storage 39 
2305 Fixed Head Storage Models 1 and 2 5 
2311 Disk Storage Drive 39 
2314 Direct Access Storage Facility 5 
2319 Disk Storage 5 
2321 Data Cell Drive 39 
3330 Disk Storage 5 



READER'S COMMENT FORM 

OS/VS Virtual Storage Access Method Planning Guide GC26-3799-0 

Your comments about this publication will help us to produce better publications for your use. If 
you wish to comment, please use the space provided below, giving specific page and paragraph 

references. 

Please do not use this form to ask technical questions about the system or equipmen t or to make 
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen­
tative or to the IBM Branch Office serving your locality. 

Reply requested Name 

Yes D Job Title 

No D Address 

______________ Zip _____________ _ 

No postage necessary if mailed in the USA 



GC:Lo-3799-0 

YOUR COMMENTS, PLEASE ... 

This publication is one of a series which serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your answers to the y'uestions on the back.of 
/this form, together with your comments, will help us produce better publications for your 
use. Each reply will be carefully reviewed by the persons responsible for writing and 
publishing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A., 

POSTAGE WILL BE PAID BY . 

IBM Corporation 
Monterey & Cottle Rds. 
San Jose, California 
95114 

Attention: Programming Publications, Dept. D78 

fold 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

FIRST CLASS 

PERMIT NO. 2078 

SAN JOSE, CALIF. 

fold 

fold 



READER'S COMMENT FORM 

OS/VS Virtual Storage Access Method Planning Guide GC26-3799-0 

Your comments about this publication will help us to produce better publications for your use. If 
you wish to comment, please use the space provided below, giving specific page and paragraph 
references. 

Please do not use this form to ask technical questions about the system or equipment or to make 
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen­
tative or to the IBM Branch Office serving your locality. 

Reply requested Name 

Yes D Job Title 

No D Address 

______________ Zip _____________ _ 

No postage necessary if mailed in the USA 



GC26-3799-0 

YOUR COMMENTS, PLEASE . .. 

This publication is one of a series which serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your answers to the questions on the back.of 
this form, together with your comments, will help us produce better publications for your 
use. Each reply will be carefully reviewed by the persons responsible for writing and 
publishing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY . 

IBM Corporation 
Monterey & Cottle Rds. 
San Jose, California 
95114 

Attention: Programming Publications, Dept. D78 

fold 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

FIRST CLASS 

PERMIT NO. 2078 

SAN JOSE, CALIF . 

• 

AA 

= 
we 

fold 

Mi. AU 
.t' gee 

fold 





GC26-3799-0 

IntGm~Uonnl 8l.dnCfm r.'~chinc!:l CCI'~oruUcm 
Dcto Procor::~lng Dlvl~lon 
1133 t'lccichot;lcr AvonuD, rlhliG PI::JIr.D, f!ot'} Vorl: 10::;!)!} 
(U.S.!t only) 

IGfj rJorid Trctlo CorpomU~n 
02'1 Ui1Hcd tJr:'timlJ PlnzG, r~st'J Vorl~, ~jGrJ Yor1: 10017 
([rI~::l"i1Qabn=1) 


