‘@l

Systems

SY26-3857-0
File No. S370-30

0OS/VS2 SVS
Independent Component:

Virtual Storage Access Method
(VSAM) Logic

Release 1.7

Feature Numbers 5083
5084
5472
5473

JLIBIML

First Edition (January 1977)

This edition applies to Release 1.7 of OS/VS2 and to any.subsequent releases of that system
unless otherwise indicated in new editions or technical newsletters.

The Feature Numbers that apply for OS/VS2 SVS (Program Number 5742-017) are:

Number Meaning

5083 Basic material; 1600 bpi, 9-track tape
5084 Basic material; 6250 bpi, 9-track tape
5472 Optional material; 1600 bpi, 9-track tape
5473 Optional material; 6250 bpi, 9-track tape

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers’ comments are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California 95150. All comments and suggestions
become the property of IBM.

© Copyright International Business Machines Corporation 1977

C

PREFACE

This book describes the internal logic of the Virtual Storage Access Method
(VSAM) and contains diagnostic information. It is directed to maintenance
personnel and development programmers who require an in-depth knowledge
of VSAM’s design, organization, and data areas.

Organization of This Book

This book has the following major divisions:

“Introduction,” which describes the use of VSAM, how VSAM fits into the
operating system, how VSAM interacts with the operating system and the
user’s program, and the major components of VSAM.

“Method of Operation,” which describes the functions performed by
VSAM.

“Program Organization,” which describes the information contained in
VSAM program listings and the flow of control between modules.

“Directory,” which lists VSAM modules and the Method of Operation
diagrams related to each module.

‘“Data Areas,” which describes control blocks used by VSAM and
describes the format of VSAM data, index, and catalog records.

“Diagnostic Aids,” which contains useful information for locating the
cause of problems in the VSAM procedures.

“Glossary,” which defines terms relevant to VSAM, and lists abbreviations
used in this book and in the VSAM program listings.

“Index,” which is a subject index to the book.

The following books should be read and understood before using this one:

Required Reading
Related IBM Publications

O0S/VS2 SVS Independent Component: Virtual Storage Access Method
(VSAM) Programmer’s Guide, GC26-3868, which introduces VSAM
concepts and contains definitive explanations of VSAM macro instructions.

OS/VS2 SVS Independent Component: Access Method Services,
GC26-3867, which describes the catalog record processing commands:
DEFINE, ALTER, DELETE, LISTCAT, and CONVERTV.

Introduction to the IBM 3850 Storage System (MSS), GA32-0028
OS/VS Mass Storage System (MSS) Planning Guide, GC35-0011

OS/VS Mass Storage System (MSS) Services: General Information,
GC35-0016

OS/VS Mass Storage System (MSS) Services: General Reference,
GC35-0017

OS/VS DADSAM Logic, SQ66-3787

Preface 3

e OS/VS Data Management Macro Instructions, GT00-0132

o« OS/VS Catalog Management Logic, ST00-0181

e OS/VS JCL Reference, GT28-0618

e OS/VS JCL Services, GT00-0141

e« OS/VS Message Library: VS2 System Messages, GT38-1002
e OS/VS Open/Close/EOV Logic, ST00-0138

o OS/VS Service Aids, GT28-0633

» OS/VS Supervisor Services and Macro Instructions, GT27-6979
e OS/VS System Management Facilities (SMF), GT00-0134

e OS/VSI VSAM Cross Reference, SYB6-3844

e OS/VS2 Checkpoint/Restart Logic, SQ66-3820

e OS/VS2 Data Areas, ST68-0606

o OS/VS2 Debugging Guide, GT28-0632

e OS/VS2 I/O Supervisor Logic, SQ66-3823

e OS/VS2 Supervisor Logic, SY27-7244

e OS/VS2 SVS Independent Component: Access method Services,
GC26-3867

e OS/VS2 SVS Independent Component: (VSAM) Options for Advanced
Applications, GC26-3870

e OS/VS2 SVS Independent Component: Virtual Storage Access Method
(VSAM) Programmer’s Guide, GC26-3868

Using This Book

This book is designed to be used with the VSAM program listings in the
microfiche for VSAM and with OS/VS1 VSAM Cross Reference,
SYB6-3844, also on microfiche cards. Cross-reference reports are described
in “Microfiche Reference Aids” in “Diagnostic Aids.”

The diagrams in “Method of Operation” describe the major functions
performed by VSAM; these diagrams are intended to be your key to a module
name (and procedure name, as appropriate) in the listing. See “Reading
Method of Operation Diagrams” in ‘““Method of Operation” for a description
of how to read these diagrams. For information on what is available in the
program listings, ‘‘Program Organization.”

4 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

CONTENTS

PTEACEeveeeeeeeeeeeeeee ettt e e rrre e e s et e e e s s e e e e s et e e s essebere s anaessenans 3
Organization of ThiS BOOKccceevveieuereeieeeeseseseaesseesssesssssesensseseesesenesens 3
Required Readingc.cceeeveiiiiieiiiiieiiieicicnnie e 3
Related IBM PubLICAtIONSccociiiieeiiieciiiiieeinreiitieeeseeireree s eeinte e sree s e ennne 4
Using This BOOKcoiiiiiiiiiieeiiierreee sttt ittt 4
IHIUSEEAGIOMScccoiiveiiieeeeeiiiieeeeeeeieeeeeeesitaeeeeeseesseareeesessnsrnnesseseseaessssnnaesesannee 9
FAGUIES ..ooneeieiiiiiee ittt ettt st st s ba s s sb e s an e s s an e snbe s 9
| DT 4 1 11 SRR 11
Summary of Enchancementscccoccoeiiiiiiiniiicinniieninieeeie e 15
INEPOAUCHIONoooeeiiiiiiiie ettt serae e eare e et e s sne s sbe e eenbaeesseeesans 19
Method of OPerationcccooociiiiiiiiiiiiiiiiereerereeeeee e e erre e 23
Reading Method of Operation Diagramsc..cccceevvveeeieeeenieeceneeennens 23
OVEIVIEWuiiiiiieieeiiiieeeeeeciteetesestarteeesesaasataeeesssessnreaeessssseetessasssseeesesssneens 28
Open, Close, and End-of-Volume (Includes ISAM Interface
OPEN/CLOSE) ..ocvvientieeieitieeeeeteeeesteeiee st et e sttesae s saesstesseessesssessensseseens 30
Record Managementooceeevuieiiiiniiciieniieenees e ssee e et s 73
ISAM INtErfaceccooiiimieeiiiiiiiiiin et 156
Control Block Manipulationcccceeceiereiiierinineerenieeieineesesieesseeeessvenanns 160
Catalog Managementccceecuuieeriieeriiiireniiieeeniieeseereeesssaeesseessneeesssenas 167
Catalog Management SEIVICESccccevvviiirneieriiieiieinitiesieeeeieeseeee e e 225
Program Organizationcccooeeiiiiiiiiiiiiiiiie e ccccinree e e seneee s senees 279
Module ProlOUESccccuiiiiiiieiniiiiieiiteeeeiieeeereee e e sree e st essiaessreaeseaes 279
Module Flow Compendiumsc.cccueeeeiiieeiiiiiereneieecieeeeseeesneessaeesnenns 280
Reading Module Flow Compendiumsccccecceveeeiieeeecereeeciieeecreeennen. 280
Open, Close, and End-of-Volume Compendiumsccccceeveeeeeinnnnnens 283
Record Management Compendiumsccceeevieeiviieeeceeecciiesseeeenne 307
Catalog Management Compendiumsccceeeeeeerieeeiniiiennieeeesnneennn. 357
Catalog Management I/O FUncCtionscccc.coouveeeeeneeinveeireeneeeeeeeneeennens 392
DIHFECLOTYooeiiiiiiiieteii ettt e s e e e e seaeae s s sbaeaeeessraeea s 413
MOdUle DITECLOTYvvveiiieeiiiiiieeieiiciireeeseeeeeiieeee e s eebrreeesesareeeseeenbeesessssaeees 413
Module Packagingc.cccceocuiieriiiieniiiieieniieieeiiee s esreesssiee s sveeseeeeseeeeeenes 422
External Procedure Dir€CtOrycccceeviiiiiieeeeeiiiiieeeececreieeeeeeveeeeeesnneeeeens 424
Procedure Calls DITECLOTYccccceeeeiieieeeiieeeeereeeeeteeescireeeeveeeesanessreeenees 434
Procedure Calls Directory: Open/Close/EOV Modules 434
Procedure Calls Directory: Checkpoint/Restartc.coceevveervevrerneennens 434
Procedure Calls Directory: Record Management Modules 434
Procedure Calls Directory: Catalog Management Procedures 437
Procedure Called-By DIr€Ctorycccccevieeeeeiiuireniiieniieeeensieessseneesveesenes 454
Open/Close/EOV Procedure Called-By
(Backward-Reference) Tablecccccccvueeiiieiiiiniiiiiiiriiiiniiieeeaenans 454
Record Management Procedure Called-By
(Backward-Reference) Tablecccccccveviiviiiiiiiiiiiiiiiiiiiieenereeeeenn, 454
Catalog Management Procedure Called-By
(Backward-Reference) Tableccccccovvvviiiiiiiiiiiiiiiiiiiccesiceieee e, 458

Contents 5

DALA ATEASovunniiieieiiiiieeeeeeeee e e et eeseseseeeeeer s bt baa e b enes 467

VSAM Data-Set FOrmatccccoieiieiiiiiiiiiieiececiieerccesnnrree e e ssnne e esveee s 467
VSAM RECOTAocvvviieiieceeteeeeecteree e eeete e ce et ae s s searesaes s s e e eeessnnanes 467
Control INtervalccceiiiiiieiiiiecee ettt ser e ana s 467

RDF—Record Definition Fieldccccoccvveviiiiccivennieeeerrcereeseneeeens 469
CIDF—Control Interval Definition Fieldcccccceeveeeirnecnnennnnen. 470
CONLIOL ATCAeovivreiieeieeireereiiesriraestesseresstessassenaeesseessesasaesseessassssenns 470

J §76 120) o141 AR S PRRR 470

Format of Records in a Prime Indexcccccccevviciniciennciiiinie e 471
Index Record Headercooouveiiiieiceieiceceeeeeeeeeeveee s 472
Free Data-Control-Interval POINtersc.ccccveevevveveeireneeeeceennnens 473
Index ENHES ...ceviiiiiiiiciieeccceie ettt et sae e s e e anaens 473

INdex-Entry SECLIONSccevveieeveirviieiiiensieeeteeseeseteeeessrnseseesseeesanessanne 474

Format of Records in an Alternate Indexccccoceveveivceinieiiiceeeennen. 474

L1 21 Lo 7SO OO OTRPORRT 475
High-Address Range of the Catalogc..ccccooverieciicnnenncnenneccnnens 476
Low-Address Range of the Catalogccceocvevvivieiicveiinnceennceen e 477
Sets of Fields in the Catalog Recordsccccieeiivecineenrienicneccniccienennne 480
Catalog Records that Describe the Catalogcccccccveveevercciiereecceenne 481
Locating Fields in Catalog Recordsccccovvevrvenriieeneennriniennnieennennne 482

Recoverable Catalog SUPPOTTooveiiiiirreeiieieirereeeerreee s s sae e 482

Catalog Recovery Area Record Descriptionsccccceeevcverevieereiceerenieenens 483

True Name Catalog Record Formatccceevviiiiiennineniniceinnciee e 484

Catalog Control Record (CCR) FOrmatcccoccevreverreciinniiienniieeniieeenans 485

Free Catalog Record FOrmatcccccccoooviiriiiieninicncterceccsensnes e 486

Data and Index Catalog Record Formatccccccevireviveneeiincveinieeneeeeenn. 487
AMDSB (Access Method Data Set Statistics Block)

Set of Fields FOrmatccccoeeveiiiiiiiiiieiineeese e eseee e see e 490
Association (Cluster) Set of Fields FOrmatcooveveeiveriveeiveeeeeeenirens 491
Volume Information Set of Fields Formatc..ccccveeeiivveieniiiiicnnrienennes 491
Password Set of Fields Formatc.ccceiiiiiiiiviiiiieiiiieeecceccn e 493

Cluster Catalog Record FOrmatcccccvviierrivvnirennencenieriiieneeesseseeneeeeenene 493
Association (Data and Index) Set of Fields Formatccccouvvevreneneen. 495
Password Set of Fields Formatccccoceeiiiviiieieiiniiiiie e ceeeeeene 496

Alternate Index Catalog Record Formatccccoieiiiiiiiniiiniieiniiiiienn e 496
Association Set of Fields FOrmatccccooevivviiiiinivecenieeneeeecen e 498
Password Set of Fields FOrmatc.ccoovvereiieiirineeeiinreeeesseee s eeeneeeees 499

Path Catalog Record Formatcccocveeviiinmiiicnnniciiieecicncnneccnecne 499
Association Set of Fields Formatc.ccccoiiiiiiiiiiiiiiciini e 501
Password Set of Fields Formatccccooovimiiiiieeeieiiier e 502

Upgrade Catalog Record Formatccccccvevviiiniienciincninceneeneeneneene 503
Association Set of Fields Formatccccoeevceeiiccinicciinniineeies e 504

NonVSAM Catalog Record FOImALtc.uuiieeeiiiriiiiieeiieeeeeeenninaneeenns 505
Volume Information Set of Fields Formatccccooeeveiiiinniniennnereennnne. 507

User-Catalog Catalog Record Formatcccccooevveiieiiiieceinicien e e 507
Volume Information Set of Fields Formatcccocoiiiiiiiiiiiininiiennen. 509

Volume Catalog Record FOrmatcoccooveeiiniioieeinieiceee e 510
Space Map Set of Fields Formatcccocooooimiiiiiiiiiieecnceveeseieeeeeeens 512
Data Space Group Set of Fields Formatccccccooeiiiiiiiiiiciiniiineecennn. 513

Derived Data Space Informationccooceieiiiinnininieniineeencieneennene 514

Data Set Directory Entry Set of Fields Formatccccoevviiiiiinnennns 515
Derived Data Set Informationceeeeevvviiivereeeneeneeenes eerevenreereerenns 515

Extension Catalog Record Formatcccccoeoieniiniiiiiiiiniiccininen e, 516

CRA Free Record FOrmatccccocecuvereeirerieerererir s eeresensennnvennrennesennessesnes 518

6 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

CRA Data Record FOIrmatccccocovveiiiiiiiieriiieiieeereiteieeeesnssesesersnnneesesesaes 518

AMDSB Set of Fields FOrmatccooviiiiiiiiiiiiieiiiieeecccicinreeees e 519
Association (Cluster) Set of Fields Formatcccoovviviiiniiieeenninnnenne 519
Volume Information Set of Fields Formatccccceoiiiiiiniiiiiieenennnnnne 520
CRA Cluster Record FOrmatcoeeeeiiiiiiiiiiieniiiieecieeiireeeceteeeseeseeesanene 520
Association (Data) Set of Fields Formatcooceeeiiiiiiiiiecieeeennnn. 520
CRA Catalog Control Record Formatccccceiriveiiniiienniininiiniicennnen, 521
CRA Data Extension Record Formatccooeeeiiiiiiiccciiviiieeeeceese e 521
Volume Information Set of Fields Formatccccccceveeiveieninnnneennennee 522
Field Name DiCiONAryceeeiiiiiiiiiiiieeeiieiiiieeeeessesireeetessssneeessssseeesssnnes 523
Combination Field Namesccoooiiiiieiciiieiieereireree e es e cvsnenees 524
Field Name Dictionary ENtriesccccoeevvviveereriiiinieeeensiesiiieeseeeiveeecennne 525
Dictionary EXample 1coooiiiiiiiiiiiiiiiiiieeeee it eeeec e seeeeeeeane 531
Dictionary EXample 2cccccoiiiiiiiiiiiiiiniiiicnieieececesniie e s 531
Control Block Interrelationshipsoceevivieeiiiiiieeieeieiiiiieieeecceerereeeees 532
Catalog Management Control Block Interrelationshipscccccceevueennnee. 543
VSAM Control Block DesCriptionsccccceveeerriiieerecceeeenieeeesnessseessnnens 547
ACB—Access Method Control Blockccccceveiviiiiiieiiiiieeecccreveeens 547
AMB—Access Method BIOCKccoovveiiiiiieiiiiiieeecc e e 550
AMBL—Access Method Block Listccccccevviviiiciiiiienicciiieeeeiieee e 552
AMCBS—Access Method Control Block Structure Block 555
AMDSB—Access Method Data Set Statistics Blockccccceeeuenennen. 555
ARDB—Address Range Definition BIOckcc.ccccovviiiiniiiieninennnnnenn. 557
BIB—Base Information BIOCKcccoveviiiiiiiiiiiiiiiicccccceeeeee e 558
BLPRM—Resource Pool Parameter Listcccocevveiiiiieeeeeiiineeeeenns 559
BSPH—Buffer Subpool Headercccoccouiiieiiinniiiieeiiicciee e 561
BUFC—Buffer Control BIOCKcoooviiiiiiieiiiieieeeeeeeee s 562
CAXWA—Catalog Auxiliary Work Areacccccevvivviviveeeeeniinnereeennns 564
CCA—Catalog Communications AT€accccccuvrreeeerureeeeeesieveeeesennnns 566
CLW—CI0S€ WOTK AT€acceeeetninninininntiinteeeeie e eeeeeeeeeeessssareneeees 577
CMB—Cluster Management BlOCKcccceevvviviieiiiiiiiiieeccieeee s 577
CPA—Channel Program AT€acccccvvuvveeeeeeeriirieeeeeeeireeeeeessneeenennns 578
Channel Programsccocceeeieiiiiiiiiiiniiieeecieeesiee e s seeeesreeessnneessveeenns 580
Read Channel Programccccccccevivriiiiieeeiiieiiieee e eeeieeeesseveeeeeanns 580
Format Write Channel Programcccccccvvvvviiieieeiiiieiieieecinnnnenennen. 581
Update Write Channel Programccccccveeeevveeniineeenieeeecneeennnens 581
Write Check Channel Programcccocoveeeiieeeecieeecnieeeciie e, 582
CSL—Co0re Save LiStccoiiiiiiiiiieieeeieciieeeeee ettt e ceevree e e 583
CTGCV—VSAM Catalog Control Volume Listcccceeeeeevvveerennnnes 583
CTGFL—TField Parameter Listcccccovviurmerririiiiiiiieeeeeeeeeeeeeeennneeee 584
CTGFV—Field Vector Tablecccceeeieiiniiineireeeeeeeeeeee e 585
CTGPL—Catalog Parameter Listcccceeevvviiirieeieciiee e 586
CTGVL—/V0oIUME LiStccevvviiiiiiiiiiiiiiieccieecceccccee e e e 588
CTGWAWOTIK AT€Qcoeeevieeiieeeieieeee e eceecvee e re e e e ee e s naannees 589
DIWA—Data Insert WOrk Areaccccovvvvieevecciieeee e eeieeee s 589
DSL—DEB Save LiStcccoviimiiiiiiiiiiiiciiieeee et saee e e 590
EDB—Extent Definition BIOCKc.ccvvveiiiiiiiiieniiiiiiiiieeeeeeeeeene 591
ESL—Enqueue Save LiStcccevvviiiiiieiiiiiieiiieireereeeeeceseeeireneeereeee e 591
EXLST—EXIt LiSt ...cccceiciiiiiiiiiiiiieiiieees e eeeeeectrrree e eeserrreeeecsrrnneeesnnns 592
HEB—Header Element BIOCKcccoevviiiiiiiiiiiiiiiiiireereeeeeeeeeeeene 593
ICWA—Index Create WOrk AT€ac...cccouvevreiieiiunreeeriernneeesicireneennns 593
IICB—ISAM Interface Control BIOCKcoevviveiiiiiiiiiirireeeeee e, 595
IMWA—Index Insert WOrk Areacccccevvvveeeeiciireneeeeeeinnreeeeecnneeeeennns 596
IOB—Extension to Support VSAM Processingccceeecvvveeeevivenenenns 597
IXSPL—Index Search Parameter Listccoeveieiiiiiiinniieieeeeeeeee e, 598

Contents 7

KEYWDTAB—Keyword Processing Tableccccocveevrveeecneeeneennnnn. 599

LPMB—L ogical-to-Physical Mapping BIockc.cccceeveueirrrericrnrennnen. 600
OPW—O0Dpen WOTK ATEaccccerreiuiireeiereeeiririenireecisreesesnnreesssesesseesssenses 600
PCCB—Private Catalog Control BIockccceecveeiiniiiicciiicciercneeeeee, 604
PLH—PIacehOldercccccevreerrverrrverrserereersermseeniersnsnesseesesesrsessesssnens 605
RPL—Request Parameter Listcccceeveverevereircnereeceeereeeseeeeeenesnnes 609
RPLE—RPL EXtensioncccceccccevreiimrerneeeiesreesiccneeseseessesesseeeesssenseesens 612
SSL—SWap Save LiStc.ccceveieiirerrireeeiietieeteensiee e cneeseessaeessseessseneens 613
UPT—Upgrade Tableccccccovveeeriiiiireieeeieiineieeeseeieeeeessnesesesseseneeeeees 613
VAT—Valid-AMBL Tableccccoecceirrciiriierceercctercreeneee e 615
VCRT—VSAM Checkpoint/Restart Tablec..ccceevvererieeeerereeennns 616
VCRWA—VSAM Checkpoint/Restart Work Areacoceeevvennnne. 618
VMT—Volume Mount Tablecccccooreviicimrinennenieenriensnneienieeseeens 620
VSRT—VSAM Shared Resource Tableccccceeceiervicvennvericeenivenienenne 620
WAX—Work Area for Path Processingcccccccvevvrercvirecreeresnennnen 621
WSHD—Working Storage Headercccccvvviciiieiiiinineicnniieeeceecevieenenn. 622
Diagnostic AidScoooiiiiiiiiie et 623
Microfiche Cross-Reference Aidscccccccerieeeereiirecenrneneerisinneeesessnneeenens 624
How To Read the Symbolic-Name Usage Tablecccccceevveervreriannenne 624
How To Read the Macro-Instruction Usage Tablecccceeeeverrcneeennn. 625
MESSALES .ovverreeeeniiirnreereresrereesesssscareesseasessessesassssaessessraessssssssaasssssssnransss 626
Function Codes for VSAM Open, Close, and EOV Messages 628
MacCro INSIIUCLIONS ..cooccvviirecreiireriernieticcie ettt et rsse s st e senes 631
Mapping Macro InStructionscccceecvceecereeneereenenieeesenenscreeesereeeeneees 631
Action Macro INStruCHiONScevveirreirierieiciirenereeeieteerereseeeeneneneneeeenes 634
Using the CVT’s VSAM Debug Switchesccooovireiiiniiieiniiciineneneen. 637
Getting a Dump of Open, Close, and End-of-Volume
WOTK ATCAS ..cooiiiiiniiiiiiiiieieerctie et rrec e eee s e e s anese e eeaas 637
Using the VSAM Catalog Debug Aidcccovmevviirciiiniicniiiniieeniienne 637
Defining Debug Aid OPtionsccoceeiviiiiiiiiinininiicniciecinee e 638
Selecting Debug Aid OPtionsScccccevmiieeiireninricnineirrencecseniee e 638
Generalized Trace FacCilitycoccoeieiieiiiiiiinecriiiene e ccreesscenne s s sevnnseessesnes 639
Catalog Communication Area Register Save Areac.cccveeeeerevemrvecnreenes 639
EITOT COUESeeiiieiiiieeeireieeeesreeeseete s e seeeesssstecsrete s seesssna e s sreessnsaasnns 640
Record Management Error Codescccceveveeiervecnrecnnecnnneecnennneeneens 640
Function Codes for Logical and Physical ErTorsccccocvveeiiennnene 641
LERAD Exit Routine: Logical Error Analysiscccccccvereeereereninonens 641
SYNAD Exit Routine: Physical Error Analysisc....cocccvererecivenenenenes 644
Open, Close, and End-of-Volume Error Codesccccoceerreerecerirnnnen. 647
Catalog Management Error Codesccooceevvenuciiieniincnieineenneennnenne 650
Alphabetic List of the Catalog Management Error Return
Code Symbolic Namesccccccvereerererenrerrenrererererenreeeseeesneresenseees 653
Control Block Manipulation Error Codesc..cccoccceviiiinvecireiincnnninnnes 653
Virtual-Storage Managementc.cccoeevvriiiiiimnnininniiieiceen e 654
GIOSSATY ..ottt sttt ar bt s sae s ar e ssate s s besssbsssabans 659
ADDIeVIationsccceiiiviiiieiieiieiireerirereettee st e ssrrr et esesre e et esenenesennenen 659
Definitions of Terms Used In This BOOKccccoereeereecerrcrrrressnerenenrnes 661
INAEX oottt ree e e e e s es e e e e s e s aa e e e s e s rae et e e essrataaeeseebanaesanerne 665

8 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

C

ILLUSTRATIONS

Figures

Figure 1.

N

Figure
Figure

w

Figure
Figure
Figure
Figure

~N O\ A

Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13,
Figure 14.
Figure 15.
Figure 16.

Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

Figure 28.
Figure 29.

Figure 30.
Figure 31.

Figure 32.
Figure 33.

Relationship of VSAM, OS/VS, User’s Processing

Program, and Staged Dataccccccconvirnineiniciinniniieninnen 19
. Method of Operation Diagramcccoceverineniiinninniieveninnnnne 23
. Graphic Symbols Used in Method of Operations

DIAZIAMSooiiiiiiiiieeeeieieenreiee e siee e sieessmrreesees e s e meeeeaseeesannaesas 24
. Notes to Method of Operation Diagramc.ccoccevviviinnnnnnnnn. 25
. Program Organization Compendium Figurec..ccccoceeeenes 280
. Notes to Program Organization Compendium Figure 281

. Open/Close/End-of-Volume Program Organization

(00031175 110 JEPTT SRRt 283
Open a VSAM Cluster (From an ISAM-User’s Program) 284

Open a VSAM Cluster (From A VSAM-User’s

i3 (0741 111 SO UR U UTP U RUPTPIPPPI 286
Open a VSAM Catalog (From the OS/VS Scheduler) 288
Add a String Dynamicallycccccccevrvveiiirieeeinieenenneeeneeenens 290

Close a VSAM Cluster (From an ISAM-User’s Program) 292

Close a VSAM Cluster (From a VSAM-User’s Program) 294
Close A VSAM Catalog (From the OS/VS Scheduler) 296
Temporary Close (TYPE=T) of a VSAM Cluster 298
Verify a NonVSAM Caller’s Authorization to

Process Each Data Set in a VSAM Data Spaceccceeuueeen. 300

VSAM End of Volume (From VSAM Record Management:
IDAEOVIF Procedure (in Module

IDAOIOIRS)) ittt e e 302
Build or Delete a VSAM Resource Poolcccceevvecneneiiecnnnen, 304
Record Management Program Organization Contents 307
GET: Direct and Skip Sequential

Processing (ESDS, KSDS)cooiiiciiiiiiiieicceteecee e s 308
GET: Sequential Processingc...cccevuveeeveerivneessveerrnsnerennens 310

Obtain the Control Interval Containing a Specified Record

and Establish the Position of the Record in the

Control Interval (ESDS, KSDS) ..ccoovviiiiiiiieeee et 312
GET Processing (RRDS)cccccovveirviieineienieesieenienseesssenssneens 314
PUT Processing (ESDS, KSDS)coovemieiiriieeienrteeieeseeennanns 316
Update/Erase Processing (ESDS, KSDS)coocevvevrvevviveenreenne. 318
Obtain the Next Control Interval: Create Processing and
Entry-Sequenced Data Set Processingccocceeeevveeenennnennne 320
Split a Control Interval: Key-Sequenced Data Set,
NonCreate-Time Processingcccccceeveiviernniinnvennieenneennnenns 322
Split @ CONLrol ATEAccceeevvvirviiinieerseerriteesreessreessessseeessessseenne 324
Create-Time Sequence Set Record Processing:

Build an Entryccoooeiiiiiiiiieiieieniiceriseecccee e e e e e e e e s s 326
Create-Time Sequence Set Record Processing:

Write the Record (End of Control Area)ccceeeeevveveeeeveeennee 328
Create-Time Sequence Set Record Processing:

Write the Record (Closing the Data Set)ccccocvveevvcrircennnnne 330
NonCreate-Time Sequence Set Record Processing 332
Update the Index: Adding to the End of a

Key Range or Data Setccccceeieireieercnienirennineceecsiennessnenns 334

Illustrations 9

Figure

Figure
Figure
Figure
Figure,
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure

34.

35.
36.
37.
38.
38.1.
38.2.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.

49.

50.

S1.

51.1.
51.2.
51.3.
51.4.
51.5.

51.6.

51.7.
51.8.

51.9.
51.10.

51.11.
51.12.
51.13.
51.14.
51.15.
51.16.

51.17.

51.18.
51.19.

52.
53.
54.
53.
56.

Update the Index: Splitting a Control Area (Not at the
End of a Key Range or Data Set)cccccocoevcvveecriciecneeennnes
PUT/ERASE Processing (RRDS)cccoovvviinieeiiecir e
Path Processingccccccevvvervveeeriieciiinieiecee ettt e
Upgrade Processingcccccecvievrrrernersesensrensesseennesnensones
Buffer Managementcccocceveiiieeeiciieecceece e e
Checkpoint Processingc.ccecoveeericeeeecieenvereeeereeeceeneens
Restart Processingccceevoveieeeiiiececiiiieeeeccieececreienes e
Catalog Management Program Organization Contents
VSAM Catalog Management Processingcccocccerceeeuaee.
LOCATE/Extract ProCessingcccccveeerreervevrecivresersseeneens
UPDATE/Modify Processingccccevuerevectionesseesennns S
UPDATE-Extend Processingc..cccceeeveeerieercnieenssncennueens
Reusable Data Set Processingccccooevverericceneeeeneennenens
Insert a New Set of Fields (IGGPADGO Processing)
Modify Field Data (IGGPALT?2 Processing)cccceu....
Remove a Set of Fields IGGPDEL?2 Processing)
Move a Set of Fields from a Catalog Record
into its EXteNSIONccoveeiiiiririeciiiei ittt
Allocating Part of a Data Space’s Space
(IGGPSALS Processing)ccccceeeerervvueeereensneneeceencnneeesaeeens
VSAM Catalog Management Services Processing
DEFINE Processingcccccccccccieermricciiiininininnnineeieceecsin.
Retrieve a Catalog Record (IGGPGET)cccocvevreennneen.
Write (Update) a Catalog Record (IGGPPUPC)
Write (Add) a Catalog Record (IGGPPAD)
Delete a Catalog Record (IGGPPDE)cccccccvieveennnes
Assign Catalog Control Intervals to the Caller
(IGGPAOCI) ..ooeieeeeecteieesteeeteee e eseeesaeesteesee e teeeeseenns
Assign a Catalog Control Interval for an Extension
Record (IGGPAXCI) ..cooeveeiiiiieeciieceeieeeerere e eevee e
Update and Rewrite the CCR (IGGPCCCR)
Call VSAM Record Management for Catalog Request
(00€€) 3, € () RS SOSRRRSR
Ensure Availability of Catalog Control Intervals
(IGGPISCI) ..cuvieveieniinrteerireectresteeeseeestaeseeesseeeseessseassnnns
Read the CCR and Update Control Fields and RBAs
(IGGPRECCRY) ..ciriiiiiiiieeeeniecstessteesnresnreesseesneasssasasasenes
Write (Update) a CRA Record (IGGPRAPU)
Write (Add) a CRA Record (IGGPRAPA)oeevenee...
Delete a CRA Record (IGGPRAPD)ouueieieeieeeeeen
Orient to the CRA (IGGPRAOR)ccccoeeriviiiirereeeennen,
Open a CRA (IGGPRAOP) ...
Assign Control Interval Numbers to CRA Records
(IGGPRARA)ooeeteeticie ettt teesv e sneessaesrse s ss e naeennen
Ensure Availability of CRA Control Intervals
(IGGPRASC) ...ttt teeeteestre s ree s te s ssaee s saeeeas
Return from CRA 1/0 Function (IGGPRAX)cc......
Call VSAM Record Management for CRA Request
(IGGPXRIO) ..cconeeieiieeiinteeie e rstree e er e sre e srae s n e
Control Interval Formatccccoeeiiieriiniiiineecercineeeeeenes

Index Record FOrmatcccoeevverereerinieeerenneneneeerinveneenenns
Index Entries Grouped into Sectionsccccceeeevevneennnne.
Index-Entry Section Pointersc..ccccccovvevcenieiceincrieeennen.

10 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Diagrams

Figure 57. Parts of a VSAM Catalogccccovevieiiiiniiniininiir s 476
Figure 58. Catalog Record—General Formatccooveviiviininiinnnnnens 478
Figure 59. Catalog Record AsSOCIationscccoevviriniiiiininnennieniennns 480
Figure 60. Resolution of a Combination Field Namecccccoooeeiinnnns 525
Figure 61. VSAM Control Block Structure for a Key-Sequenced
Data Set (VSAM USET) .ovvviviiieiieiieeiiireriereeeees e eerecsceneneeeeene e 532
Figure 62. VSAM Control Block Structure for a Key-Sequenced
Data Set (ISAM USEL) .ovvvvvviieiriiriiriiiieiieeeeeeeeeeeeereseeirvareeseeeseeanas 533
Figure 63. VSAM Data Set Control Blocks Before and After Data Set
SRATINE oottt e 534
Figure 64. VSAM Control Block Structure for a Key-Sequenced
Data Set Accessed through a Pathccoeiviiiiiiiiiiniiieine 536
Figure 65. Shared VSAM Control Block Structure for
a Key-Sequenced Data Set Accessed through Two Paths 537
Figure 66. Data AMB Control Block Structureccccccccevviieeiiineenceennne 538
Figure 67. Alternate-Index AMB Control Block Structurecc.ccc........ 539
Figure 68. Index AMB Control Block Structureccooceiiiiniinnnnnn. 540
Figure 69. Local Shared Resources Control Block Structure 541
Figure 70. AMB Control Block Structure with
Local Shared RESOUICEScccooriiimmiiieieniiieeenieeiiice e 542
Figure 71. Catalog Management Control Blockscccecciiiiieiinnnnenn. 544
Figure 72. Open Catalog Control BIOckScc.cccevieeiieiiiivinniececnrene 545
Figure 73. VSAM Control Blocks that Describe a Catalog
(A Key-Sequenced, Key-Range VSAM Data Set) 546
Figure 74. Symbolic-Name Usage Tablec.occcceeiiiiiiiiiirciniieccene, 625
Figure 75. Macro-Instruction Usage Tableccccccoovviiriininiriiiiiinnn. 626
Figure 76. Format of Physical-Error Messagescccoovveeeeeciiienecnnen. 646
Figure 77. Storage Blocks Used for Virtual Storage Management 655
Figure 78. Virtual Storage Management Control Block Structure 657
Diagram AA. Method of Operation Contentscccoceeeeeeeiireeennneen.. 217
Diagram AB. VSAM OVEIVIEWcooiiiiiiiiiiriiiiircrieeee et enrr e rvree s 28
Diagram AC. VSAM Open: Connect a User to a VSAM Data Set 30
Diagram AD. VSAM Close: Disconnect a User from
2 VSAM Data Setccoovveiiiiiiiiiiiie e 46
Diagram AE. VSAM End-of-Volume: Obtain the VSAM Object’s Next
VOIUME ..ooiiiiiiiicii ettt e 58
Diagram AF. BLDVRP/DLVRP: Build or Delete a VSAM
Resource Poolcooooeiiiiiiiieiiii e 62
Diagram AG. VSAM Checkpoint: Checkpointing
VSAM Control Blocksocccceiiiiiiiiiiriieniieiieeeieeee 64
Diagram AH. VSAM Restart: Rebuild VSAM
Control BIOCKScccvvviiiieiieieceeee e 66
Diagram AI. VSAM Restart: PREFRMAT procedure
to reposition data Seto.ooiiiieviiiiii e 70
Diagram BA. Record Management Table of Contentsccccceeeen. 73
Diagram BB. VSAM Request Processingccccovvevveeeciiieieeeiiiveeeeennn.. 74
Diagram BC. GET-Direct Processing: Direct Retrievalccccceeevneen... 78
Diagram BD. GET-Sequential Processing: Sequential Retrieval 80
Diagram BE. PUT-Entry-Sequenced Processing: Create or
Insert at End of Data Setcccoiiiiiiiiiiiiiii e 82
Diagram BF. PUT-Key-Sequenced Processing: Createcccceeuveie.. 84
Diagram BG. Creating a Key-Sequenced Data Setccccoevviveieieiiennnn, 86

Illustrations 11

Diagram BH.
Diagram BI.

Diagram BJ.

Diagram BK.
Diagram BL.
Diagram BM.
Diagram BN,
Diagram BO.

Diagram BP1.
Diagram BP2.

Diagram BP3.

Diagram BQ.
Diagram BR.
Diagram BS.
Diagram BT.
Diagram BU.

Diagram CA.
Diagram CB.

Diagram DA.
Diagram DB.
Diagram DC.
Diagram DD.
Diagram DE.
Diagram DF.
Diagram DG.
Diagram DH.
Diagram DI1.

Diagram DI3.
Diagram DJ.

Diagram DK.
Diagram DL.
Diagram DM.
Diagram EA.
Diagram EB.
Diagram EC.

Diagram ED1.
Diagram ED3.
Diagram EDS.
Diagram EE1.
Diagram EE3.

Diagram EF.

Diagram EG.
Diagram EH.
Diagram EI1.
Diagram EI2.
Diagram EJ.

Modifying a Key-Sequenced Data Setc..ccoueeveennennene. 96
ERASE Processing: Key-Sequencedc.cccvveunennee. 116
POINT ProCessingcceeeevueverncnvrenveesiesveeneensenensseseenses 118
ENDREQ: Terminate a Record-Processing Request 120
CHECK Processingcccceevveevrceeeisieeeeeeeecereeseeeevee e 124
VERIFY Processingcccccceveeieeirieersivieesneesiseescseesennenns 126
Processing By Control Intervalccccccevecvviececveeencenneen, 128
Creating or Modifying a Relative Record Data Set 134
MRKBFR: Marking a Buffer in the Buffer Pool

(With Local Shared ReSOUICeS)cocovvvvvvreeeeerirneenniinns 138
WRTBFR: Writing a Buffer in the Buffer Pool

(With Local Shared Resources)cccceveveeveeivveevennneennnnns 140
SCHBFR: Searching the Buffer Pool

(With Local Shared ReSOUICes)cooovevvvmereeireierieseeiinenns 142
Processing a Pathcccooivviviiiniiiiien e eneee 144
Upgrading Alternate Indexescccccceveeveeevierreceriesennnas 146
Buffer Managemertccocvvrereeiireirieeneesneneseenssreesnnns 148
I/O Managementccceeeveereenieeeereeceereenseesseeseeeseenns 154
ISAM-Interface: Processing a VSAM Data Set

with an ISAM User’s Programc..cccocceveevvreeesvccnneennnnn 156
GENCB: Build a New Control Blockc.cccoeeveivienninnns 160
MODCB, SHOWCB, TESTCB: Modify, Display,

or Test a Control BlOckccceveviirveienniiieeniien e 162
VSAM Catalog Management Table of Contents 167
VSAM Catalog Management OVEIVIEWccceevvveeernnnnne 168

SEARCH: Retrieve the Base Catalog Record 172

Check the Passwordcccoevervveeiriceinnieeenniecse e 176
LOCATE: Retrieve Catalog Informationccccouuee 180
GENDSP: List the Contents of a Data Space 184
SUPERLOCATE: List a Data Set’s Volumes 186
UPDATE: Modify Catalog Informationcccc.....c.... 194

UPDATE-Extend: Obtain Additional Space for
VAT VLY 8) o} 1= ot AP 196

REUSE: Reset a VSAM Data Setccccoevevrveeeeriierrceennne 200
SUBALLOCATE: Obtain Additional Space from a
Nonunique VSAM Data Spaceccceeeevvienrencinnneeesrineees 208
LSPACE: Build an ‘““Available Space” Report 212
Obtain a Catalog Record Field’s Valueccoovuerrnneen. 214
Modify a Catalog Record Field’s Valueccccoeeveenneenn. 218
Catalog Management Services Table of Contents 225
Catalog Management Services OVerviewcccceevneeene 226
DEFINE: Create a VSAM Catalog or Cluster 230
DEFINE CLUSTER: Create a Clusterccceevvvvveenennee 232
DEFINE AIX: Create an Alternate Indexcc......... 236
DEFINE PATH: Create a Pathccceeevvevvnvinivnennnnnes 240
DEFINE CATALOG: Create a VSAM Catalog 242
DEFINE CRA: Create a Catalog Recovery Area 246
DEFINE NONVSAM: Define a NonVSAM

Data Set in @ VSAM Catalogcccovvemicivnceiniienicnnneeenn, 248
DEFINE SPACE: Initialize a VSAM Data Space 250
ALTER: Modify a Catalog Recordc.cccoeemiveiicncnnnenee 254
LISTCAT: Retrieve a Catalog Record’s Contents 260
SHOWCAT: Display Fields of a VSAM Catalog 262

DELETE: Remove a VSAM or NonVSAM Data Set 264

12 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Diagram EK.

Diagram EL.
Diagram EM.

DELETE SPACE: Release All of the Empty VSAM

Data Spaces on a VOIUMEcccceecemeveeennieiniieniinneceeees 272
DELETE CATALOG: Release a VSAM Catalog 274
CONVERTYV: Convert a Volume to or

from Mass StOTAZEcccoeereeiecverenienicenee et sneeeeresnennes 276

Illustrations 13

C

SUMMARY OF ENHANCEMENTS

New Data Areas

Technical Changes

Editorial Changes

The following work areas have been added:

« Resource pool parameter list (BLPRM) is used by Record Management for
dynamic string addition and by data set management for internal
processing

« Close work area (CLW) is used for communication among the Close and
temporary Close modules

« Open work area is used by the VSAM Open modules

« Keyword table (KEYWDTAB) is a branch table that controls execution of
module IDA0191C and supports processing for the control block
manipulation macros

Diagrams CA and CB have been changed to support improved control block
manipulation macro processing.

A new control block manipulation return code is issued when a block to be
displayed or tested does not exist because the data set is a dummy data set.

Each CAXWA in the CAXWA chain contains a pointer to the CRA ACB.
That pointer and the associated control block structure were added to Figure
72, Open Catalog Control Blocks.

Flowcharts that describe Catalog Management I/O functions have been given
figure numbers 51.1 through 51.19. The new figure numbers are in the List of
Figures following the Table of Contents, and they are referred to from the
module directory.

VSAM has several new functions and data structures for this release of SVS;
alternate indexes, spanned records, reusable data sets, relative record data set,
processing the index of a key-sequenced data set, shared resources among
data sets, improved control-interval processing, backward sequential
processing, catalog recovery, data staging for the IBM 3850 Mass Storage
System, and virtual-storage management. These additions to VSAM change
this logic manual in all its sections: method of operation diagrams (HIPOs),
program organization figures (compendiums), directories, data areas, and
diagnostic aids. The directories identify all the new modules and external
procedures and indicate which HIPOs and compendiums refer to them.

HIPOs and compendiums have been added for Record Management to
document Buffer Management and I/O Management.

Summary of Enhancements 15

Alternate Indexes

Spanned Records

Reusable Data Sets

Relative Record Data Set

Alternate indexes for key-sequenced and entry-sequenced data sets add
control blocks and complicate control block interrelationships. Opening and
closing a path (a base cluster and the alternate index through which access is
gained to it) more than double the number of HIPOs for Open and Close.
Access by way of a path and alternate-index upgrading change and add
HIPOs to Record Management. Defining and deleting alternate indexes,
paths, and upgrade sets add HIPOs for the DEFINE and DELETE functions
of Catalog Management, add types of catalog records, and change many
catalog control blocks.

Having data records longer than one control interval changes a number of
HIPOs in Record Management. It changes the contents of control information
in the RDFs in a control interval.

The catalog record processing required when a VSAM data set or alternate
index is reused adds a HIPO to Catalog Management.

The relative record data set brings to three the number of types of VSAM
data sets. It changes the contents of control information in the RDFs in a
control interval. It changes HIPOs and adds a HIPO to Record Management.

Processing the Index of a Key-Sequenced Data Set

User access to the control intervals of a prime index changes HIPOs in
Record Management to include the GETIX and PUTIX macros.

Shared Resources among Data Sets

Shared buffers, I/O-related control blocks, and channel programs among data
sets for processing add control blocks and change control block
interrelationships. Building and deleting a VSAM resource pool add a HIPO
to Open/Close/End of Volume for the BLDVRP and DLVRP macros.
Managing I/O buffers adds HIPOs to Record Management for the
MRKBFR, WRTBFR, and SCHBFR macros.

Improved Control-Interval Processing

Improved control-interval processing changes HIPOs in Record Management
to show the bypassing of certain functions for faster processing.

Backward Sequential Processing

Backward sequential processing changes HIPOs in Record Management to
include processing data records in descending sequence by RBA or key.

16 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Catalog Recovery

The optional recovery function that enables users to recover or restore data
sets changes many HIPOs and adds a HIPO to Catalog Management. Catalog
recovery changes the format of the catalog record header, adds types of
catalog records, and adds field to various catalog control blocks.

Data Staging for the IBM 3850 Mass Storage System

Staging and destaging of data between mass storage and direct-access storage
for the IBM 3850 Mass Storage System changes HIPOs for Open/Close/End
of Volume and adds a HIPO to Catalog Management.

Virtual-Storage Management

The management of virtual storage has been cnetralized in Virtual-Storage
Management, which controls most requests for storage. It adds control blocks,
which are described in “Virtual-Storage Management™ in “Diagnostic Aids.”

Summary of Enhancements 17

INTRODUCTION

Virtual Storage Access Method (VSAM) is an access method for use with
0S/VS2 SVS. VSAM is used with direct-access storage devices to provide
fast storage and retrieval of data.

VSAM'’s record format is different from that of other access methods. All
VSAM records are stored in control intervals; a control interval is a
continuous segment of auxiliary storage. A data set’s records can be ordered
according to when the records are stored, where the records are stored, or
what values are in each record’s key field. With key-sequenced data sets, the
user can access a record by specifying its key or its relative byte address
(RBA). With entry-sequenced data sets, the user can access a record only by
specifying its RBA. With relative record data sets, the user can access a
record by specifying its relative record number. For additional information on
VSAM records and how they are stored, see “Data Areas.”

User programs that contain indexed-sequential access method (ISAM) macro
instructions can be used to process records in a VSAM data set. The ISAM
interface program that allows the use of ISAM macro instructions builds the
necessary VSAM control blocks when an OPEN macro instruction is issued
and ensures that VSAM control blocks are properly initialized when
subsequent requests are made for reading or writing records.

VSAM resides in the pageable link pack area along with the user’s processing
program, Figure 1 illustrates VSAM’s relationship to OS/VS, the processing
program, and the data stored on a direct-access storage device and in mass
storage.

Virtual Storage C p

0Ss/Vs | VSAM <:Physical Data]S)ti;igtg-é\ccess

Logical
Data
Staged
T Data
I Processing Program
L _ "
Program’s Address Space ass
Storage

Figure 1. Relationship of VSAM, OS/VS, User’s Processing Program, and Staged Data

Introduction 19

VSAM is controlled by user macro instructions. For additional information on
user macro instructions, see OS/VS2 SVS Independent Component: Virtual
Storage Access Method (VSAM) Programmer’s Guide and OS/VS2 SVS
Virtual Storage Access Method (VSAM) Options for Advanced
Applications.

VSAM catalogs can contain entries for data sets that are stored on a mass
storage volume with the IBM 3850 Mass Storage System, which is described
in Introduction to the IBM 3850 Mass Storage System (MSS).

VSAM communicates with other parts of the operating system through the
SVC processor and through OS/VS control blocks used by VSAM. In
addition to the OS/VS control blocks used by VSAM, VSAM builds and uses
the access method control block (ACB). The ACB describes a VSAM data
set in much the same way that a DCB describes a nonVSAM data set.

In addition to processing records and data sets, VSAM opens and closes data
sets and does most of its own direct-access device space management, that is,
VSAM makes only minor use of OS/VS Open and Close and relies on
0OS/VS DADSM for only part of its direct-access device space management.
To do much of this work, VSAM uses its own catalogs. VSAM catalogs
contain a description of VSAM direct-access device space: where available
space is, how space is used, and the location of data sets. For additional
information on the VSAM catalog, see “Catalog” in “Data Areas” and
OS/VS Virtual Storage Access Method (VSAM) Programmer’s Guide.

VSAM modules are logically grouped into the following components:

« Open, which connects a user’s program to a VSAM data set and builds the
control blocks required to permit the user to read from and write to the
data set.

« Close, which disconnects a user’s program from a data set and releases the
data set’s control blocks built by Open. Close also updates statistics in the
VSAM catalog.

o End of Volume, which mounts volumes and allocates space. End of volume
modifies the existing control blocks to reflect the newly mounted volumes
and newly allocated space.

« Record management, which reads and writes records in response to
user-issued VSAM and ISAM macro instructions. This component also
reads and writes records for the catalog management component and
causes volumes to be mounted and demounted when it detects
end-of-volume.

« ISAM Interface, which allows user programs that contain ISAM macro
instructions to process VSAM data sets. The ISAM Interface routines
translate a user’s ISAM macro instructions into appropriate VSAM macro
instructions and control blocks. The ISAM Interface routines next issue the
VSAM macro instruction to read or write the user’s VSAM record. When
the VSAM read/write operation completes, the ISAM Interface routine
interprets the VSAM record management return codes and translates them
into appropriate ISAM return-code information for the user’s program.

20 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

« Catalog management, which writes and updates catalog records. Catalog
management processes the catalog to obtain and store information for
Open, Close, End-of-Volume, and Access Method Services.

o Control block manipulation, which allows the user program to create,
modify, display, and test the contents of some VSAM control blocks (the
ACB, EXLST, and RPL, which are described under ‘“Data Areas” in this
publication).

Introduction 21

METHOD OF OPERATION

‘ A method of operation diagram describes one of the VSAM functions by _
listing the process steps required to complete the function, and by showing
the data required for each process step and the data produced by each process
step.

Reading Method of Operation Diagrams

Method of operation diagrams are functional descriptions of VSAM. The
diagram and descriptive notes, keyed to the diagram, are on facing pages.

The diagrams contain three blocks of information: input, processing, and
output. The left-hand side of the diagram shows the data that serves as input
to the processing steps in the center of the diagram, and the right-hand side
shows the data that is output from the processing steps. Input is anything a
program function refers to or gets. Processing is the steps required to fulfill
the function represented by the diagram. Output is any change effected by a
function; for example, register contents, or control blocks created or
modified. The processing steps are numbered; the numbers correspond to
notes on the facing page. The notes include cross-references to the listings.
Figure 2 shows a method of operation figure.

Diagram AC1. VSAM OPEN: Connect a User to a VSAM Data Set

ISAM-User's Address Space ISAM-User's Address Space
Thé ISAM-user’s program issued OPEN (SVC 19) for a
R1 VSAM data set. OS/VS Open enters VSAM here. bDCB licB
——3 DCBs |:,(—— EXLSTJ
\ Open
Parameter ACB

List
tnce .
ISAM-Interface Open Processing
DSORG ~{~|_ N / Open

tDCB Data Set > 1. Build the ISAM Interface control block — IICB — Parameter (€
Information [~[~|~|_ _ N for each DCB for a VSAM data set being opened. R1 List
DDNAME _ [—4-> 2. Build the VSAM user control blocks — ACB and tACB
EXLST - using information in the ISAM DCB.
SYS1.SYSIOBQE 3. Issue OPEN, SVC 19, to open the ACB.
Data Set
Data Set
JFCB Organization
VSAM-User's Address Space, or
ISAM-User’s Address Space after Step 3 VSAM- or ISAM-User’s Address Space
. - The VSAM-user’s program or ISAM-Interface Open .
R ter 2 Al
cgistor 2 cB issued OPEN (SVC 19), OS/VS Open enters VSAM fob Step TCB - DEBs
[IUser ALH here
. Offset to —>
Register 9 Entry in TIOT VSAM Open Processing 'DEB
For Catalog or
SCRA Open | tPassword o]
. Initialize for processing the user ACB.
UCBs TIOT . Mount and verify volumes, ACH
B DD Entry . Open the object.
for Dat, s
S‘:rgs :]:_‘Bs . If a base cluster is being opened for output ACBDEB
1 and has an upgrade set, open the upgrade
Register 4 set.
. If the dsname on the DD statement names

Common Wo. a path, open the alternate index associated

rk Area
JFCB: —_—

DSNAME

—_
L— —
Volsers ’@

. Terminate Open processing.

L Figure 2. Method of Operation Diagram

Method of Operation 23

The left-hand side of the diagram shows the input required by the function
shown in the diagram. For example, register 1 points to a list of DCB pointers
for an ISAM user. The SYS1.SYSJOBQE contains the JFCB, which indicates
the data set’s organization. The data-set information in the DCB is input to
steps 1 and 2 in the processing portion of the diagram. The DDNAME is
input to step 2 in the processing portion of the diagram.

The processing portion of the diagram shows the processing steps required to
fulfill the function described by the diagram. Note that the function described
by one diagram might be performed by one or more VSAM modules; that is,
the diagrams describe functions, not physical parts of the program.

The figure shows two conditions for which VSAM Open is called: (1) at step
1 when processing is to be done for an ISAM user program and (2) at step 4
when processing is to be done for a VSAM user program or for an ISAM user
program that has been processed by steps 1 through 3. The numbers 1, 2, 3,
4, and 5 are keys to the notes for this diagram.

The output created by each processing step is shown in the diagram. Step 1,
for example, builds a control block (the IICB); step 2 builds VSAM user
control blocks (the ACB and EXLST).

Reading the method of operation diagrams requires that you understand the
symbols they use. Figure 3 shows the symbols and describes their meaning.

Flow of control on the same page;
‘3’ indicates a number of a process
step on the same page.

Flow of control between pages;
‘AA3’ is the diagram number and
‘2" is the number of a process step
on that diagram.

3

Pointers

Reference to data or
testing of data by a

process step; ‘H' is an
arbitrary designation.

Input to process steps
and output from process
steps; ‘A’ is-an arbitrary

—-—@®

H-——>

——

—>0) A
C’D_——_—-> designation.
PZEZZZ>

ezzz>(P)

Modification ot data by
PP P2 e a process step; ‘P’ is an
arbitrary designation.
SIS

Figure 3. Graphic Symbols Used in Method of Operations Diagrams

24 0S/VS52 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Figure 4 shows part of the notes to Figure 2.

Notes for Diagram AC1
OS/VS Open: Initial Processing:
When the caller issues the GPEN macro instruction, SVC

19. 1IGC00011 (OS/VS Open) is entered by the OS/VS
SVC Interruption handler.

OS/VS Open reads the JFCB from the SYS1.SYSJOBQE
data set.

ISAM Interface Open Processing:

If the JFCB data-set organization (JFCDSORG) field
indicates a VSAM data organization and the DCB
data-set organization (DCBDSORG) indicates indexed
sequential organization, IFG0196V (OS/VS Open) sets
the identifier for each DCB-for-VSAM-data-organization
entry in the WTG table to ‘21", the identifier of the
ISAM-Interface Open routine.

1 IDA01921: BLDIICB, INITIICB

The 1ICB serves as a bridge between the ISAM user
program’s DCB and the VSAM control blocks that
allow the user’s program to read and write VSAM
records.

See ""Data Areas” for details about the 11CB.

Sec OS/182 Data Areas tor details about the
neB.

2 1DA0192i: BLDIICB, INITHCB, ACBMERGE

The ISAM-Interface Open routine builds an ACB and
an EXLST for each DCB for a VSAM data set being
opened. The ACB is initialized with the DCB
DDNAME and MACREF fields.

See ""Data Areas” for details about the ACB and
EXLST

3 IDA0192I: OPENACB

The ISAM-Interface Open routine builds an open
parameter list and issues SVC 19 to open the ACB.

When VSAM Open processing completes (the ACB

built in step 2 is open). ISAM Interface Open

processing continues at step 58 (see Diagram AC7).
VSAM Open Processing:
If the open-parameter-list entry addresses a VSAM ACB.
OS/VS Open sets the identifier field for each ACB entry
in the WTG table to C'2A". the identifier of the VSAM
Open routine. All further OS/VS Open processing is
bypassed for each ACB entry until the VSAM Open
routine returns control to OS/VS Open at step 57

4 See Diagram AC2.

5§ See Diagram AC3.
This step is skipped for a dummy data set.
6 See Diagram AC4.

The object could be an alternate index that is itself
being opened for processing by the user.

7 See Diagram ACS.

This step is skipped for a dummy data set.
8 See Diagram AC6.

This step is skipped for a dummy data set.
9 IDAO192A: BLDDDEB

VSAM Open builds a "dummy DEB” for the user
ACB and adds its address to the job step's TCB DEB
chain. {The device-dependent section of the DEB is set
t0 0.) Each open ACB is identified by a dummy DEB
in the chain. If the user’s program ends abnormally.
ABEND closes the ACB or DCB associated with each
DEB in the chain.

10 See Diagram AC7
Note: Dynamic String Addition

When OPEN is issued. not to open a data set. but to
dynamically add a string to the user’s capability to process
multiple requests concurrently, the string is added and
Open returns to the caller. VSAM Record Management
requests dynamic string addition when more strings are
required than the user specified.

Record Management indicates dynamic string addition by
aflag in the ACB.

IDA0192Y (ENQBUSY) issues ENQ on ‘'SYSVSAM' with
‘B’ (busy) indicated to prevent Open from using the
control block structure that is affected by dynamic string
addition.

IDAOI92Y (INITPLH) builds and initializes an additional
PLH. 10B. and PFL. IDAOI92Y (BLDBUFC) builds and
initializes an additional BUFC and buffer. IDA0192W
builds an additional CPA and chains it to the BUFC.
IDAO0I92Y (DYNSTRAD) chains these new control
blocks into the existing control block structure. (PLHDR
points to the PLH. and BUFDR points to the BUFC.)

Figure 4. Notes to Method of Operation Diagram

The notes provide details about the processing shown in the diagram. For
example, the entry process and conditions are described by the first
(unnumbered) note. This note tells which OS/VS Open modules allow an
ISAM user’s program to open an ACB for a VSAM data set; note 1 describes
the use of the IICB and directs you to ‘““Data Areas” in this publication for
detailed information on the IICB. The notes also name the modules and
routines that perform the functions represented. The module and procedure
names allow you to relate a process step to a unit of code in the VSAM

program listings.

Method of Operation 25

£z uonesadQ jo poylaW

~

Diagram AA1. Method of Operation Contents

Macro
Instructions:

OPEN, CLOSE,
CLOSE (TYPE=T),
BLDVRP, DLVRP,
CHKPT

GET, PUT,
POINT, CHECK,
ENDREQ, ERASE,
GETIX, PUTIX,

MRKBRF, SCHBFR,

WRTBFR

GENCB,
MODCB,
SHOWCB,
TESTCB

CATLG
(From
VSAM)

CATLG
(From
AMS)

VSAM Open, Close, and

“End-of Volumn, and

VSAM Checkpoint/Restart

Diagrams A‘Cl-All

Record
Management

Diagrams BA1-BT1

VSAM Control Block
Manipulation

Diagrams CAl -CPE

VSAM Catalog
Management

Diagrams DA 1-DM3

VSAM Catalog
Management Services

Diagrams EA1-EM1

ISAM Macro
Instructions:

OPEN

CLOSE

GET, PUT, PUTX,
SETL, ESETL,
RELSE, READ,
WRITE, CHECK,
FREEDBUF

ISAM Interface
Open

Diagrams AC1, AC7

ISAM Interface
Close

Diagrams ADI ,FAD()

ISAM Interface
Processing

Diagrams BUI-BU2

LEGEND

—_

H

—-————>

@
-—-->

10

Flow of control on the sume page:
*3" indicates a number of a process
step on the sume page.

Flow of control between pages:
*AA3is the diagram number and
*2'is the number of a process step
on that diagram.

Pointers

Reference to data or testing of
data by a process step: "H' is an
arbitrary designation.

Input to process steps and output
from process steps: "A”is an
arbitrary designation.

Modification of data by a process
step: ‘P’ is an arbitrary designation.

21807 (IWVSA) POUIDIA §5990y 93eI0)S [BNnMIIA ‘Jusuodwo)) Juapuadapul SAS ZSA/SO 8¢

Diagram ABI1.

VSAM
Data
Set
(Open)

Closed or
Shared Status

~ User-Issued ISAM Macros:

VSAM Overview

1. Open Processing (see Diagrams AC1, “VSAM OPEN:
Connect a User to a VSAM Data Set” and AF1,
“BLDVRP/DLVRP: Build or Delete a VSAM
Resource Pool”

Allow a user to store or retrieve records ina VSAM
User-Issued OS/VS OPEN

Macro (SVC 19) or ‘ data set—or build a VSAM resource pool for

User’s Virtual Storage

BLDVRP Macro processing with shared resources.
———————— L

2. Record Management Processing

ISAM-Intérface Processing (see Diagram BU1, BU2

BISAM —

QISAM —

WRITE, READ, CHECK, “ISAM-Interface: Processing a VSAM Data

and FREEDBUF Set with an ISAM User’s Program”’).
PUT, GET, PUTX, SETL, - - - - -
ESETL, and RELSE Translate the request into its VSAM equivalent

User-Issued VSAM PUT or PUTIX Macro

User-Issued VSAM GET or GETIX Macro

4

(if necessary).

VSAM Request Processing (see Diagram BB1).

VSAM Control
Block Structure

3

\

/1

Store a record or control interval.

Record(s)

Retrieve a record or control interval.
Delete a record. _

User-Issued VSAM ERASE Macro

User-Issue

Close-Issued VSAM.ENDREQ Macro

User-Issue

User-Issued VSAM MRKBFR Macro
User-Issued VSAM SCHBFR Macro
User-Issued VSAM WRTBFR Macro

Locate a record.

|l

Terminate request processing.

d VSAM POINT Macro Ensure completion of an asynchronous request.

Mark a buffer in the VSAM resource pool for
output or release. Search a buffer pool in the
VSAM resource pool for a control interval.
Write a buffer or buffers in the VSAM resource
pool.

d VSAM CHECK Macro

Restore processing statistics for a newly created
data set following a system crash.

Record

Free
Space

RDFs|CIDF

Control
Interval

VSAM
Data

[Set
(Open)

—

67 uoneradQ jo poylaW

(\

Diagram AB2. VSAM Overview

User-Issued OS/VS
CLOSE Macro (SVC
or DLVRP Macro

User’s Virtual Storage
- - User-Issued VSAM
Record] GENCB Macro
~ M User-Issued VSAM
Control MODCB, SHOWCB
Interval TESTCB Macros

%

3. Close Processing (see Diagrams AD1, “VSAM
CLOSE: Disconnect a User from a VSAM Data
Set” and AF1, BLDVRP/DLVRP: Build or
Delete a VSAM Resource Pool™).

Disconnect a user’s processing program from its
20) associated VSAM data set or delete the VSAM

resource pool.

4. Control Block Manipulation Macro Processing (see
Diagram CA1, “GENCB”’ and Diagram CB1,
“MODCB, SHOWCB, and TESTCB”).

User’s Record Area

—=—=
Record |

————

—

Modify, display, or test a control block.

I Build 4 new control block. oo |
—_—
or

Control Interval

ACB, RPL, or EXLST

31807 (INVSA) POUIS SS900y a8e101§ [eniiA lusuodwo) juapuadapu] SAS ZSA/SO 0€

Diagram AC1. VSAM OPEN: Connect a User to a VSAM Data Set

ISAM-User’s Address Space
R1
DCBs
Open
Parameter]
List L—-
tDCB -
DSORG ~
tDCB 1
Data Set EL

Information

DDNAME [—

SYS1.SYSIOBQE
Data Set

==

Data Set
Organization

VSAM-User’s Address Space, or
ISAM-User’s Address Space after Step 3

Register 2 ACB
tUser ACB
. Offset to
Register 9 Entry in TIOT
For Catalog or
SCRA tPassword
UCBs TIOT
—
DD Entry
for-Data
Set’s UCBs
Register 4

Common Work Area
JFCB: —
DSNAME }—

-{(2)

Volsers

C

The ISAM-user’s program issued OPEN (SVC 19) for a
VSAM data set. OS/VS Open enters VSAM here.

ISAM-Interface Open Processing

. Build the ISAM Interface control block — [ICB —
for each DCB for a VSAM data set being opened.

. Build the VSAM user control blocks — ACB and
EXLST — using information in the ISAM DCB.

3. Issue OPEN, SVC 19, to open the ACB.

The VSAM-user’s program or ISAM-Interface Open
issued OPEN (SVC 19). OS/VS Open enters VSAM
here.

VSAM Open Processing

. Initialize for processing the user ACB.
. Mount and verify volumes.
. Open the object.

. If a base cluster is being opened for output
and has an upgrade set, open the upgrade

. If the dsname on the DD statement names

. Prepare for subtask sharing and job step
termination,

10. Terminate Open processing.

st EE—————— (3 5)

a path, open the alternate index associated
with the path. ﬁ.

¢

ISAM-User’s Address Space

DCB

IICB

R1

EXLST

ACB

Open
Parameter
List _

st

tACB

® ©® G

VSAM- or ISAM-User’s Address Space

Job Step TCB

DEBs

tDEB

ACB

ACBDEB

ALLLILRIL LR

\
\
)

1€ uoneiadQ jo poylap

(\

Notes for Diagram AC1
OS/VS Open: Initial Processing:
When the caller issues the OPEN macro instruction, SVC

19, IGC00011 (OS/VS Open) is entered by the OS/VS
SVC Interruption handler.

OS/VS Open reads the JFCB from the SYS1.SYSJOBQE
data set.

ISAM Interface Open Processing:

If the JFCB data-set organization (JFCDSORG) field
indicates a VSAM data organization and the DCB
data-set organization (DCBDSORG) indicates indexed
sequential organization, IFG0196V (OS/VS Open) sets
the identifier for each DCB-for-VSAM-data-organization
entry in the WTG table to ‘2I’, the identifier of the
ISAM-Interface Open routine.

1 IDA0192I: BLDIICB, INITIICB

The IICB serves as a bridge between the [SAM user
program’s DCB and the VSAM control blocks that
allow the user’s program to read and write VSAM
records.

See “‘Data Areas” for details about the [ICB.

See OS/VS2 Data Areas for details about the
DCB.

2 IDA01921: BLDIICB, INITIICB, ACBMERGE

The ISAM-Interface Open routine builds an ACB and
an EXLST for each DCB for a VSAM data set being
opened. The ACB is initialized with the DCB
DDNAME and MACREF fields.

See “‘Data Areas” for details about the ACB and
EXLST.

3 IDA0192I: OPENACB

The ISAM-Interface Open routine builds an open
parameter list and issues SVC 19 to open the ACB.

When VSAM Open processing completes (the ACB
built in step 2 is open), ISAM Interface Open
processing continues at step 58 (see Diagram AC7).

VSAM Open Processing:

If the open-parameter-list entry addresses a VSAM ACB,
0OS/VS Open sets the identifier field for each ACB entry
in the WTG table to C'2A’, the identifier of the VSAM
Open routine.All further OS/VS Open processing is
bypassed for each ACB entry until the VSAM Open
routine returns control to OS/VS Open at step 57.

4 See Diagram AC2.

(\

5 See Diagram AC3.
This step is skipped for a dummy data set.
6 See Diagram AC4.

The object could be an alternate index that is itself
being opened for processing by the user.

7 See Diagram ACS.

This step is skipped for a dummy data set.
8 See Diagram AC6.

This step is skipped for a dummy data set.
9 IDAO192A: BLDDDEB

VSAM Open builds a ““dummy DEB” for the user
ACB and adds its address to the job step’s TCB DEB
chain. (The device-dependent section of the DEB is set
to 0.) Each open ACB is identified by a dummy DEB
in the chain. If the user’s program ends abnormally,
ABEND closes the ACB or DCB associated with each
DEB in the chain.

10 See Diagram AC7.
Note: Dynamic String Addition

When OPEN is issued, not to open a data set, but to
dynamically add a string to the user’s capability to process
multiple requests concurrently, the string is added and
Open returns to the caller. VSAM Record Management
requests dynamic string addition when more strings are
required than the user specified.

Record Management indicates dynamic string addition by
a flag in the ACB.

IDAO0192Y (ENQBUSY) issues ENQ on ‘SYSVSAM’ with
‘B’ (busy) indicated to prevent Open from using the
control block structure that is affected by dynamic string
addition.

IDA0192Y (INITPLH) builds and initializes an additional
PLH, IOB, and PFL. IDA0192Y (BLDBUFC) builds and
initializes an additional BUFC and buffer. IDA0192W
builds an additional CPA and chains it to the BUFC.
IDA0192Y (DYNSTRAD) chains these new control
blocks into the existing control block structure. (PLHDR
points to the PLH, and BUFDR points to the BUFC.)

180T (IWVSA) POYIRA $5300Y 98e101§ [enpiA iusuodwio) uapuadapul SAS ZSA/SO €

Diagram AC2. VSAM OPEN: Initialize for Processing the User ACB

Same Control
Blocks as Diagram AC1

Built by Open

CTGFLs
For Data
| Set Tyvpe 1
For Catalog’s
ACB Address 12.
For Cl =5 No
of Components
of all Data Sets
Associated with 13
User's ACB

CTGPL

'CTGFL

For CRA

- Volser @
For
Password :> 14

VSAM Catalog

Pusswurdl(}ude Numil 15

1@ 16.
/

Console or
TSO Terminal

Password
from Operator

17
“ANo
1sCB VATs /
/
,/
JSCBSHR VATPAMBL y; 18.
//
/ 19.
/
AMBL Primary AMBLs
20.
AMBLPCH

. Build the Open Work Area.

Is the object to be opened a dummy data set?
Yes

. Confirm that the user is authorized to process

the data sets associated with his ACB. (See
Diagram DD1, “Check the Password.")

. Obtain information from the catalog for the

object named on the DD statement and for all
data sets associated with the object.

Build save lists for cleaning up storage during
task termination.

Prevent other tasks from opening the data sets
during this open.

. Is the object already open afor this job step?

Yes

| 96

Build the base information block for the object
being opened and its associated data sets.
Unless a catalog or a catalog recovery area is
being opened or processing will be with shared
resources, build a working storage header.

Load the routines required for the rest of
Open processing.

Open Work Area

Register 4 s Save Lists
[1opw l——; [0S Type | ENO SLs
{Catalog ACB m
CTGFLs CRA Volser
Control-Interval | I
Numbers of Data DEB SLs
and Index Comp's
of Base Cluster H
and of Alternate
Index
Number of E—
Upgrade Alternate| Core SLs
Indexes
Control-Interval]
Numbers of Data
and Index Comp’s
of Upgrade L
Alternate Indexes Swap SLs
Console

Msg.
to Operator

ENQ Parameter List

“Supply Correct Password
for [Code Name| Data Set"”’

T™ajor —-4 ‘SYSNSAM'
Resource '
!Minor
Resource CI = for | Catalog B’
Data Set | ACB Addr.
JsCB VATs User's ACB
JSCBSHR VATPAMBL ACBAMBL
| I |
Base AMBL Path AMBL
AMBLXPT
AMBLXPT
AMBLBIB

¢¢ uonesadQ jo poyldW

-

Notes for Diagram AC2

11 IDA0192A: INIT192A

The open work area is mapped by the IDAOPWRK
macro.

13 IDA0192C

The user establishes the numberof times the operator
may attempt to supply the correct password, as
described in OS/VS2 SVS Independent Component:
Access Method Services. If the correct password isn’t
supplied, VSAM Open sets the ““ACB not opened’
return code in register 15 and the “‘user password
invalid’ flag in ACBERFLG.

14 IDA0192C: LOC1

LOC1 issues a LOCATE (SVC 26) to obtain data-set
type, catalog ACB address, catalog recovery area
volume serial number, and control-interval number for
each data set associated with the object named on the
DD statement.

15 IDA1092A: BLDLISTS

During termination the ENQs indicated in the ESL
(enqueue save list) will be dequeued, the DEBs
indicated in the DSL will be unchained, and the
storage (‘“‘core’’) indicated in the CSL will be freed,
the SSL enables Open to chain control blocks at the
end of Open processing.

16 IDA0192A: BLDENQPL, INIT192A

Open enqueues on each data set to prevent it from
being opened by other tasks during the current Open
processing.

17 IDA0192A: CONBASE

If the IDF field in the AMBL of the data set being
opened matches the IDF field of an AMBL on the
primary chain, the control blocks for the base cluster
already exist.

Diagram AC3. VSAM OPEN: Mount and Verify Volumes

Register 4

| topw |

21. Is the object already open?

Yes No

} Lo

- 22. Are the required volumes already mounted?

Open Work Area VMTs
BIB
OPWBIB —i_
BIBVMT
OPWTIOT
—{OPWCOMWA

80T (JNVSA) POYISI Ss200y a8elolg [enuiA jusuodwio) juapuadapu] SAS ZSA/SO +€

Common Work

TIOT Entry
DDNAME

tucB
1UCB

UCBs

Area

JFCB
Volsers

JFCB
and
Extensions

No Yes

@k 23. Increment the use count for the volumes.

24. Are the required volumes already mounted?

Yes No

$

\@

VMTs

Console

25. Mount the required volumes. [

26. Describe the mounted volumes. gz,

a0

BIB

‘“Mount Volume
Message [xxxxxx] on
> to Operator Unit [yyy]”

VMTs (One per

Device Type)

BIBVMT

)

of Entries

One per Volser
Volume

Device Type

tUCB

A

¢¢ uonesadQ jo poyrPW

I

Notes for Diagram AC3
21 IDAO0192F: VOLMNT
22 IDA0192F: OLDDEY
24 IDAO192V

A volume in the JSCB and extensions is already
mounted if a UCB allocated to the DD statement that
is associated with the user ACB indicates so.

26 IDA0192V: OLDDEY, NEWDEVY

A volume mount table is built for each device type
allocated to the DD statement that is associated with
the user ACB. Each VMT contains an entry for each
successfully mounted volume of that device type. If a
VMT already exists for a device type, the new VMT
replaces the old one.

21807 (INVSA) POYIRN $5320Y 38€101S [ENMIA usuodwo)) Juapuadapu] SAS ZSA/SO 9¢

Diagram AC4. VSAM OPEN: Open the Base Cluster

Register 4 JSCB VATs
27. Build an AMBL for the base cluster.
28. Is the base cluster already open in this job JSCBSHR VATPAMBL
Open Work Area step?
No Yes
Cl1 #s for
Components 29. Connect the AMBL to the existing n)
ase AMBL
of Path \ control block structure. ACB Base AMB
Alternate \
Index Y
@ ACBAMBL AMBLBIB CMB)
CTGPL CTGFLs AMBLCMB
I‘or Data For Data
Component Record Size 30. Build a CMB for the base cluster.
Catalog : . — . .
Record g‘::e:;"l‘:]‘;‘:r;]';‘:ion F————"> 31. Retrieve fields from the data component
catalog record (associatgd with the cluster CTGFLs Open Work Area
CTGPL CTGFLs catalog record). (See Diagram DEI, “LOCATE: -
. T, % - Data Record Size
For Index F/_) For Index Retrieve Catalog Information.”) o S
Component Record Size . . X olser an
Caw,':,g PETI— ™S 32. If the cluster is keyed, retrieve fields from the l > Extent for Each
Record) Ex:en‘: l‘:,'}:";mmm index component catalog record. - Volume
CTGFLs
Register 2 Index Record Size
tACB Volser and
:> Extent for Each
l Volume
ACB AMBL
/33. Ensure that required volumes are mounted. Register 2
ACBAMBL / AMBLBIB |~ 7 34. Build the VSAM control blocks and buffers fACB
yd needed to process the base cluster.
J . . ACB AMBL
/ 35. Is the ACB for improved control-interval access
J with control blocks fixed in real storage?
BIB { VMTs No Yes ACBAMBL
36. Fix the control blocks in real storage. I‘
BIBVMT o
@——-9 37. If the DD statement names a path, build interval
control blocks to process the base cluster Base Data
Control Block
T through the path. Structure
“Dummy” “Dummy”
ACB AMBL BIB
BIBDACB

@ ¢ C

L€ uonexad(Jo poylol

~

Notes for Diagram AC4
27 IDA0192F: OPNBASE, BLDAMBL, CHNAMBL,
VATUPD

Unless the user ACB indicates that a catalog is to be
opened or that a catalog recovery area is to be built in
system storage (SCRA), the AMBL is added to the
chain and its address is added to the valid-AMBL
table. The VAT is used for checking AMBLSs for
validity. AMBLVC identifies the VAT and the entry in
the VAT that contains the address of the AMBL.

28 IDA0192F: CHNAMBL
29 IDA0192F: CHNAMBL

The AMBL is put on the secondary chain, off the
primary AMBL for the base cluster.

30 IDA0192F: BLDCMB

31 IDA0192B, IDA0192C: OPCAT1 (calls LOC2 and
LOC3)

A separate CTGFL is built for each catalog record
field requested by VSAM Open. A CTGFL gives the
field’s length and its address in the open work area.

See “‘Data Areas’ for details about the data set
catalog record, the CTGPL, and the CTGFL.

32 IDA0192B, IDA0192C: LOC2, LOC3

The index catalog record is pointed to by the cluster
catalog record. See ‘‘Data Areas” for details about the
index catalog record.

33 IDA0192B

A volume mount table must exist for each device type
required by the cluster.

34 IDA0192Z, IDA0192W

The following figures in “Data Areas’’ show the
VSAM control block structure:

« VSAM Control Block Structure for a
Key-Sequenced Data Set (VSAM User)

+ VSAM Control Block Structure for a
Key-Sequenced Data Set Accessed through a Path

» Shared VSAM Control Block Structure for a
Key-Sequenced Data Set Accessed through Two
Paths

« Data AMB Control Block Structure
« Alternate-Index AMB Control Block Structure

» Local Shared Resources Control Block Structure

~

« AMB Control Block Structure with Local Shared
Resources

“Data Areas’’ also describes each VSAM control
block.

36 IDA0192F: OPNBASE, PAGEFIX

The user must be authorized to have pages fixed in
real storage—his program must be in supervisor state
with protection key 0 or link-edited with APF
authorization.

All storage identified by the cluster management block
is fixed.

37 IDA0192F: OPNBASE

21807 (JNVSA) POYIIN $S330Y 38el0l§ [enuiA jusuodwo)) juspuadapu] SAS ZSA/SO S€

Diagram ACS5. VSAM OPEN: Open the Upgrade Set

JSCB

VAT

JSCBSHR

VATPAMBL

Control Blocks of a Previous Task

Repeat steps 40-44 for each alternate index in the up-
grade set.

38. Build an upgrade table for the upgrade set.m

Build control blocks for processing each alter-
nate index in the upgrade set.

BIB

BIBUPT

UPT

One Entry

ACB PATH AMBL Base AMBL 39
ACBAMBL AMBLXPT AAMBLXPT
AMBLSCHN
— —I-) 40.
Register 2 ACB AMBL
ACBAMBL —>T

41.
Same as for Steps 31, 32 —'_.B 42,

Same as for Step 33 — — ¥ 43

44

. Ensure that required volumes are mounted.

. Build the VSAM control blocks and buffers neededt

If the alternate index is already open for processing
by way of a path, build additional control blocks
for upgrading the alternate index and process the
next alternate index in the upgrade set.

Build a CMB for the alternate index. 22222 r P

Retrieve fields from the data and index component
catalog records.

UPTRPL per Upgrade
Alternate Index
RPL ACB
N —>
—
AMBL
; Alternate Index
m m Data Control
Block Structure
4
CMB

llllllnannsnnsiiiniilnnninininninininininnniingg

to process the alternate index.

6¢ uonesadQ jo poylap

r

Notes for Diagram AC5
38 IDA0192F: OPNUPGR

The upgrade table contains an entry for each alternate
index in the upgrade set.

39 IDA0192F: OPNUPGR, BLDAMBL

An RPL, an ACB, and an AMBL are built for each
alternate index.

40 IDA0192F: OPNUPGR

The AMBLs for paths already open in the job step are
searched for the alternate index being processed.

IDA0192Y

To provide an additional string for upgrading an
alternate index that is already open for processing by
way of a path, IDA0192Y builds the PLH, BUFC,
10B, CPA, and buffers. These control blocks are
described in ‘‘Data Areas.”

41 IDA0192F: BLDCMB

42 See notes for steps 31 and 32.
43 See note for step 33.

44 See note for step 34.

21307 (WVSA) POYIS S5290Yy 38ei0lg [enuiAp Huauodwo) 1uapuadapu] SAS ZSA/SO OF

Diagram AC6. VSAM OPEN: Open the Alternate Index Associated with the Path

Register 2 0
ACB Base AMBL
ﬂ 45
(Output of 4
ACBAMBL Step 27) 6
14 No
/
JSCB VAT !
II
JSCBSHR 7] VATAMBL / 43
I A
I ! No
\| Base AMBL Path AMBL /
Y| /
]
AMBLXPT AMBLXPT | /
Register 4 AMBL
1OPW
Open Work Area ACB
UPT
OPWUPT
UPTRPL TRPL

Same as for Steps 31, 32

Same as for Step 33

. Build an AMBL for the path.

. Is the alternate index already open for this

path in this job step?
Yes

¥

47. Connect the AMBL to the existing
control block structure.

. Is the alternate index already open for upgrading

in this job step?
Yes

49. Build additional control blocks for using
the alternate index to process the base

cluster. #@

. Retrieve fields from the data and index

component catalog records.

. Ensure that required volumes are mounted.

. Build the VSAM control blocks and buffers

needed to gain access to the alternate index.

4
®

Register 2 ACB
tACB
ACBAMBL
\(Path AMBL Base AMBL
AMBLXPT AMBLXPT
—\
|
y

Alternate Index
Data Control
Block Structure

[+ uoneradQ jo poyldA

(\

Notes for Diagram AC6
45 IDAO0192F: OPNPATH, BLDAMBL

The AMBL is chained off the current AMBL for the
base cluster. Its address is added to the valid-AMBL
table. The VAT is used for checking AMBLs for
validity. AMBLVC identifies the VAT and the entry in
the VAT that contains the address of the AMBL.

46 IDA0192F: CONPATH

The alternate index is already open for this path if one
of the path AMBLs contains the same ID as this
alternate index.

47 IDA0192F: OPNPATH

The AMBL is chained off the existing AMBL for the
path.

48 IDA0192F: CONPATH

The alternate index is already open for upgrading if
one of the AMBLs pointed to by the upgrade table
contains the same ID as this alternate index.

49 IDA0192F: CONPATH

For each string required for processing the path,
IDAO0192F builds the PLH, BUFC, CPA, IOB, and
buffers. These control blocks are described in “‘Data
Areas.”

50 See notes for steps 31 and 32.
51 See note for step 33.
52 See note for step 34.

31307 (JNVSA) POYIRI $S300y 35ei0lg [enuiA Jusuodwo) juspusdspu] SAS TSA/SO Tt

Diagram AC7. VSAM OPEN: Terminate Open Processing

VSAM- or ISAM-User’s Address Space

Register 4

ToPW

Open Work Area

ENQ Save Lists

Register 2

TACB

ACB

L/

(B)

—

L |

DEB Save Lists

—

I

Core Save Lists

=

[

L |

19

—

\

53. Is System Management Facilities (SMF) active? -
No Yes

54. Write SMF record type 62 — Cluster Opened

T >3s,

-

56.

‘-OS/VS Open — Final Processing

or Open Attempted.

If Open processing was unsuccessful, restore
the system and the user ACB to pre-OPEN

/ status.
®)

———> (5 7)

Dequeue busy enqueues and free work areas.

57.

\
N

Return to the caller or ISAM interface.

SMF Data Set

VSAM- or ISAM-User’s
Address Space

ACB

Set to Status
Before Open

Error Flags

Open Bit

DEQ Parameter List

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

tMajor Resource ‘SYSVSAM’®
tMinor Resource
CI # for Catalog ‘B’
Data Set ACB Address
R15

Return Code

¢t uonesad(Jo poylo|y

~

Notes for Diagram AC7

53 IDA0192A: TERM192A, UPSMF
54 IDA0192S

See OS/VS System Management Facilities (SMF) for
details about SMF record type 62.

55 IDA0192A: TERM192A, CLNUP

CLNUP resets open indicators in the VSAM catalog
for data sets that were processed. It unchains AMBLs
and deletes entries from the valid-AMBL table. It
unchains DEBs. It decrements any use counts that
were incremented.

CLNUP deletes all volume mount table entries that
were added.

56 IDA0192A: DEQBUSY

A DEQ is issued for each data set that was enqueued
busy (in step 16) to allow other tasks to open them.

57 IDA0192A

The VSAM Open routine sets the ACB’s open bit
(ACBOFLGS) on if the ACB is opened successfully. If
an error occurs while opening an ACB, the VSAM
Open routine or OS/VS Open sets the appropriate
error flag.

OS/VS Open: Final Processing (after VSAM Open
Processing completes):

The VSAM Open routine returns control to OS/VS Open
by putting the identifier of the Open Final Termination
routine, C'8N’, in the WTG table and transferring control
(through the IECRES macro instruction) to the
O/C/EOQV resident routine. The resident routine
examines the open parameter list and, if all ACB entries
have been processed by the VSAM Open routine, returns
to the OS/VS Open Final Termination routine. If not, the
next ACB entry in the open parameter list is processed
(return to step 4, Diagram AC1).

0S/VS Open modules (IFG0196V and IFG0196W)
ensure that an ACB entry in the open parameter list is not
processed by any access method executor routine.

IFGO196V sets the identifier for each VSAM ACB entry
in the WTG table to 0.

IFGO196W sets the identifier for each VSAM ACB entry
in the WTG table to C'8N’, the identifier of the OS/VS
Open Final Termination routine.

[FGO198N sets the return code in register 15.

~

See “Diagnostic Aids” for details about the VSAM Open
return codes and error codes.

3130 (IWVSA) POYISI S5320Yy adeiol§ [enuiA :Jusuodwoy wapuadapu] SAS ISA/SO ¥

Diagram ACS.

ISAM User’s
Address Space

DCB

ISAM
Information
for User

tUser's
DCB Exit

-

Routine

SYS1.SVCLIB

ISAM-
Interface
Processing

ISAM-
Interface

h_ Routines _J

SYNAD
Routine

VSAM OPEN: Connect a User to a VSAM Data Set

&

4.
___,__—_—::-'_.:> 6

ISAM-Interface Open Processing

'58. Was the ACB opened succeséf{lllrf?-
Yes i
l 59. Return to the ISAM-user’s program.

Y

60. Modify the DCB for use by the ISAM-user’s

program.
Take the user DCB exit, if it is available.

If the data set attributes are incorrect, issue
an ABEND 038.

Build a DEB for the task’s TCB’s DEB chain.

Load the ISAM Interface processing routines
and the ISAM Interface SYNAD routine into
the user’s address space.

Build and initialize all RPLs and buffers that
subsequent ISAM record processing requests
will require.

>
61.

62.

63.

65.

——

—

R15

Return Code

ISAM-User’s Address Space

\

0S/VS Open — Final Processing

66. Return to the ISAM-user’s program.

/

G,
>0

TCB

DEB

IICB

0=

SYNAD Routine

=

ISAM-Interface
Processing
Routines

RPLs

Buffers

Sy uoneradQ jo poyrd|

~

Notes for Diagram AC8

ISAM Interface Open Processing (continued):
58 IDA01921: OPENACB

The ISAM-Interface Open routine sets the DCB open
bit (DCBOFLGS) to 1 if the DCB’s associated ACB
was opened correctly.

60 IDA01921: DCBMERGE and AMSMERGE

61

See OS/VS2 Data Areas for details about the
DCB.

IDA01921: DCBEXIT

Register contents passed to the user’s DCB exit
routine are:

+ R1: address of DCB

« R2:through 13: User’s registers

+ R14: return address

« R15: address of user’s DCB exit routine
IDA01921: BFRMERGE

Merge buffer-related information into the DCB.

62 IDA01921: VALIDCHK

63

ABEND 038 is issued when:

» Access Method Services and DCB values for
LRECL, KEYLE, and RKP are not equal, or when

« Reload is attempted—the DCB is opened for
OUTPUT with DISP=OLD and the DCB’s data set
contains records.

IDA01921: BUILDDEB

The ISAM-Interface Open routine builds a DEB so
that:

« There is meaningful DEB information for the
user’s program to examine;

« The DEB fields on which COBOL, PL/1, and the
ISAM System Integrity Feature depend are
properly initialized;

« The checkpoint/restart or abnormal end (ABEND)
routines can examine the task’s DEB chain and
close all of the user’s DCBs and ACBs; and

o The user’s program cannot modify the [ICB
address or other fields in the DEB.

The DEB’s ISAM-Interface indicator is now set on.

(\

See OS/VS2 Data Areas for details about the
DCB, DEB, and TCB.

64 IFG01921: LOADMOD

The appropriate ISAM Interface modules are loaded.
DCB fields are initialized to point to the ISAM
Interface processing routine that will translate an
ISAM record-processing request into a VSAM request.

The ISAM SYNAD routine is loaded when it is
specified in the user’s JCL AMP parameter.

The EXLST (built in step 2, Diagram AC1) addresses
ISAM Interface exit routines.

See “‘Data Areas” for details about the EXLST.

The DEB (built in step 63) is initialized to point to the
ISAM Interface FREEDBUF routine.

65 IDA01921: BLDRPL, INITRPL, BLDBUFR

RPLs and ISAM Interface buffers are built for each
ACB (the number of RPLs and buffers is based on the
ACB’s STRNO value for BISAM; one of each is built
for each QISAM DCB) that the ISAM user opens.
Two of the uses of the ISAM Interface buffers are to
support ISAM locate mode and dynamic buffer
processing.

IDA01921: DCBINIT

When the ISAM Interface Open processing completes,
the DCB open flags (DCBOFLGS) field contains:

« Busy bit off (set to 0)

+ Open bit on (set to 1)

o Lock bit off (set to 1)

OS/VS Open: Final Processing (after ISAM Interface
Open Processing completes):

0S/VS Open modules (IFG0196V and IFG0196W)
ensure that a DCB for a VSAM entry in the open
parameter list is not processed by any access method
executor routine.

IFGO196V sets the ID field for each DCB-for-VSAM
entry in the WTG table to 0.

IFGO196W sets the identifier field for each
DCB-for-VSAM entry in the WTG table to C'8N’, the
identifier of the OS/VS Open Final Termination
module (IFGO198N).

IFGO198N sets the return code in register 15.

(\

If the ACB (built by the ISAM Interface Open routine
in step 2, Diagram AC1) is not opened correctly by the
VSAM Open routine, the ISAM-Interface Open
routine sets the DCB open bit to 0 (DCBOFLGS) and
sets all DCB module-address fields to 0. If the user’s
ISAM program issues an ISAM record processing
request without confirming that the DCB is
successfully opened, an ABEND 0C4 results, caused
by a branch to address 000.

wsuodwo) uspuadapu] SAS ZSA/SO 9+

2180 (WVSA) POYIR §5300Y 382101S [enMIA

Diagram AD1. VSAM CLOSE: Disconnect a User from a VSAM Data Set

VSAM-User’s
Data Set

Records

Written

VSAM-User’s
Index

Records

Written

ISAM-User’s Address Space
R1 The ISAM-user’s program or an ABEND
DCBs for the ISAM-user’s program issued
I l CLOSE (SVC 20) for a VSAM data set.
Close Data Set 0S/VS CLOSE enters VSAM here.
Parameter Organization
List 1ICB
tDCB tRPLs ISAM-Interface Close Processing
tDCB 1. Complete the user’s output requests.
. SYNAD Routines i 2. Delete the ISAM interface processing and ISAM
ISAM:-Interface interface SYNAD routines from the user’s address
Processing space
Routines .
3. Issue CLOSE, SVC 20, to close the ACB.
VSAM- or ISAM-User’s
Address Space
The VSAM-user’s program, an ABEND
ISch VATs for the VSAM-user’s program, or the
ISAM-Interface Close routine issued CLOSE
SV . \4 S ters VSAM here.
JSCBSHR VATPAMBL (SVC 20). OS/VS CLOSE en T
VS AM Close Processing
Base AMBL
4. Build work areas. PZZPPPPPPZP PP Prrrrs
Bast . .
AMBLXPT Co;g‘;‘;lock 5. If a dummy data set is being closed.-@
Structure
AMBLBIB
Register 2 ACB

| tuser acB ——>

11—

Problem
Determination
Parameter List

¢

'VSAM- or ISAM-User’s
Address Space

-~
-
z
-
z
-
-
-
-
-
-
=,

Close Work Area

Module Work Area

Common Work Area

CLWCOMWK

ACBAMBL Inner RPL FLHDR
ACBDEB ,—»—-—J->6. Complete all pending 1/0. RPLPLHPT PLH
(e L= (| RPLDACB PLHNRIL
Job Step TCB Path AMBL
ob Step 9 2 { 7. If a path is being closed. MEG——-—1 1) PLHCRPL
I | () | 8 1fabase cluster is being closed. mum——mp(2)
—| TCBDEB AMBLXPT i i AMB
<’ | @ 9. If the last ACB associated with the base cluster X
{ is being closed. Register 2
| @ 10. Terminate close processing. f‘| tUser ACB —I AMBPH
DEBs 1
Alternate-Index
\»{ Data Control
Block Structure @ ACB AMBL
Upgrade Control §
Block Structure
ACBAMBL
Common Work Area
oo —ork Aled

Ly uonesadQ jo poyiap

(‘\

Notes for Diagram AD1

Note: If CLOSE (TYPE=T) is issued, the data set’s
catalog information is updated to reflect its current status
and an SMF record is written. See “Temporary Close
(TYPE=T) of a VSAM Cluster” in the Program
Organization compendiums for details on the CLOSE
(TYPE=T) process.

ISAM Interface Close Processing:

If the DCB data-set organization (DCBDSORG) field
indicates that an ACB is being processed and if the
DEBFLGSI field (in the DEB) indicates ISAM Interface
processing, OS/VS Close modules (IGC00020 and
IFG0200V) do the following:

1GC00020: Bypasses purging of the outstanding EXCP
requests.

IFG0200V: Bypasses DSCB processing and transfers
control to the ISAM Interface Close routine, ID A0200S.

1 IDA0200S: FLUSHBFR

The ISAM Interface Close routine issues a SYNCH
macro instruction to transfer control to the ISAM
Interface Load routine, which issues the final PUT
request, if all of these conditions exist:

« The DCB was opened for output in the locate
mode and a PUT request was issued prior to the
CLOSE request (indicated in the DCBMACRF
field).

« No errors occurred (indicated in the DCBEXCD
field).

« The ACB associated with the user program’s DCB
was not previously closed (indicated in the
ACBOFLGS field).

See “‘Data Areas” for details about the ACB.

See OS/VS2 Data Areas for details about the
DCB and DEB.

2 IDA0200S: DELETRTN

The ISAM Interface Close routine resets each DCB
module address field. Virtual storage for the routines
is released to the system by issuing a DELETE macro
instruction against the ISAM Interface routines that
were loaded by ISAM Interface Open processing.

3 IDA0200S: CLOSEACB

The ISAM Interface Close routine issues a CLOSE
macro instruction (SVC 20) to close the VSAM ACB.

~

When VSAM Close processing completes (the ACB
built during ISAM Interface Open processing is
closed), ISAM Interface Close processing continues at
step 68 (see Diagram AD6).

VSAM Close Processing:

0S/VS Close modules (1IGC00020 and IFG0200V) allow
an ACB to be closed.

IGC00020 bypasses the DEB validity check and the
purging of outstanding EXCP requests and, if a VSAM
catalog is being closed, calls IFGO200N to locate the
TIOT entry and read the JFCB for the catalog ACB.

IFG0200V reads the JFCB for non-catalog ACBs and
tests for the user program’s diagnostic options (i.e.
Generalized Trace Facility), and sets the ID field for each
ACB entry in the WTG table to C'0T’, the identifier of
the VSAM Close module.

The input is from IFG0200T.
4 [IDA0200T: INIT200T, GETCORE

The module work area and the close work area are
built.

If neither a catalog nor a catalog recovery area in
system storage (SCRA) is being closed, the dummy
DEB is verified. Unless a dummy data set is being
closed, IDA0200T (ENQFUNC, ENQINIT,
PARMINIT) builds an ENQ parameter list and issues
ENQ for every data set associated with the user ACB.
The parameter list indicates ‘SYSVSAM’ as the major
resource and control-interval number of the data set,
catalog ACB address, and ‘B’ (busy) as the minor
resource.

6 IDA0200T: FLQUIS, ENDIO

If the close is not for an ABEND and is not for
improved control-interval access to load a data set or
process the mass storage volume inventory data set,
the data set is flushed and quiesced (that is, any I/O
activity yet to be done or already started is done):

An inner RPL is built and pointed to the user ACB.
The PLH chain is searched for PLHs connected to the
user ACB. The inner RPL is connected to each PLH
and an ENDREQ macro is issued. No record is
returned for an incomplete input request (GET or
POINT). The output buffer is written to the VSAM
data set for an incomplete output request (PUT or
ERASE). After I/0 completes, the inner RPL is freed.

7 IDA0200T: CLSPATH

The alternate index in a path is closed before the base

C

cluster. See Diagram AD2.

8 IDA0200T: CLSBASE

The cluster being closed may be a base cluster (part of
a path), a cluster that was not processed through a
path, or an alternate index that was itself processed by
the user. See Diagram AD3.

9 IDA0200T: CLSPHERE

This processing is not done if an ACB for the cluster is
still open. For example, two users might have been
processing a cluster, and the first user is closing his
ACB. See Diagram ADA4.

10 IDA0200T: TERM200T

Before termination processing, the base AMBL is
freed. See Diagram AD®6.

2130 (JAVSA) POYIDI S5399Yy 35el01§ [enlip :jusuoduwio)) juapuadapu] SAS ZSA/SO 8t

Diagram AD2. VSAM CLOSE: Close the Alternate Index in a Path

Primary Secondary
Path AMBL Path AMBL
AMBLSCHN —3 AMBLPRIM=0
AMBLDTA AMBLDTA
" AMBLIX AMBLIX
AMBs AMBs
AMBPAMBL \
BIB
BIBPAMBL
Primary Secondary Secondary
Base AMBL Base AMBL Base AMBL
AMBLSCHN AMBLSCHN AMBLSCHN
Primary Secondary Secondary
Path AMBL Path AMBL Path AMBL
AMBLSCHN AMBLSCHN AMBLSCHN
A\
JSCB % VAT Path AMBL
VATAMBL(1)
JSCBSHR VATAMBL(2)
VATAMBL(3)

Register

w A9

Return Code

11. Is this the only path associated with the base
cluster?

No Yes

12. Unless an upgrade AMBL exists for the
alternate index, indicate a primary close is

being done.

13. Is the alternate index’s AMBL a primary AMBL?

-
No >Yes

14. Change the first secondary AMBL to a

primary AMBL. @@

15. Indicate a secondary close is being done
16. Disconnect the AMBL from the chain.
. Indicate a secondary close is being done.@(@

. Close the alternate index in the path.

. Was there an error in the close?
Yes

20. Remove the AMBL from the valid-AMBL table.

21. Turn off all close indicators in the close work @@
area.

(B)

®

Close Work Area

CLWPARCL=1 I

o

CLWPRMCL=1
CLWSECCL=1
Secondary Path AMBL
Primary Becomes
‘Path AMBL Primary Path AMBL
AMBLSCHN AMBLPRIM=1
AMBLDTA AMBLDTA
AMBLIX" AMBLIX
AMBs AMBs
AMBPAMBL AMBPAMBL

. Secondary
Primary - Secondary
Path AMBL Path AMBL Path AMBL
AMBLSCHN AMBLSCHN AMBLSCHN
VAT
VATAMBL(1)
o
VATAMBL(3)

6 uoneisdQ jJo poyew

e

Notes for Diagram AD2

Except for step 20, all the processing in this diagram is
done by IDA0200B.

12
When an upgrade AMBL exists for the alternate indes
being closed, a partial close is.indicated for Diagram
AD5 processing. For a partial close, only the string
blocks for the path, not for the upgrade set, are closed.

For a primary close, the last user is closing his ACB
for the base cluster—no primary AMBL or related
control blocks need be kept for further user
processing.

15
For a secondary close, at least one more user still has
an ACB open for the base cluster—the primary
AMBLs and related control blocks must be kept for
further user processing.

17
See note for step 15.

18
See Diagram ADS.

20 IDA0200T: RMOVAMBL
The storage for the AMBL is freed.

913077 (IWVSA) POYIR 55330y 38e10)§ [enpIp Jusuodwo)) yuspuadapul SAS ZSA/SO 0§

Diagram AD3. VSAM CLOSE: Close the Base Cluster (or a Cluster Not in a Path)

—>
BIB AMBL AMBL BIB AMBL AMBL
BIBPAMBL / AMBLSCHN / AMBLSCHN 22. Is the cluster’s AMBL a primary AMBL? BIBPAM BL AMBLSCHNJ AMBLSCHN
Yes No
— .
23. Disconnect the AMBL from the —>
VAT AMBL AMBL secondary chain. VAT AMBL AMBL
VATPAMBL[| AMBLPCHN} | AMBLPCHN \ VATPAMBL (P - [AMBLPCHN
24. Disconnect the AMBL from the primary chain. ottt
25. Is there a secondary AMBL?
Yes No)
VAT AMBL AMBL ' H VAT AMBL
gl :>26. Change the first secondary AMBL to a >
VATPAMBL AMBLPCHN AMBLSCHN primary AMBL. VATPAMBL AMBLPCHN AMBLSCHN
AMBLPCHN 27. Is a catalog, a catalog recovery area in system
storage, or the mass storage volume inventory AMBLPCHN
First Secondary data set being closed?
BIB Output " AMBL Yes No BIB Primary AMBL
of Step 24 AMBLPRIM=0 J “|AMBLPRIM=1
BIBPAMBL LJ 28. Indicate a secondary close is being done. BIBPAMBL
N — e
AMBLPCHN
Close Work Area Close Work Area
29. Indicate a primary close is being done.
CLWPATH=1 —_— 30. Is the cluster beipg closed a base cluster in a cLwseceL=1| | =o
T — path? @
No ~DYes ICLWPRMCL=1] | =0
Register 2 . .
31. Use the inner ACB for the close (not %Regmer ;
tUser ACB the user’s ACB). tinner ACB
BIB Inner ACB
Register 15 32. Close the cluster. -
BIBDACB /

Return Code

_______ >

33. Was there an_grror in the close?
No Yes

34. Turn off all close indicators in the close work area.

C

Y a Z

1§ uonesadQ jo poylaw

(\

Notes for Diagram AD3

The cluster being closed can be a base cluster that was
being processed through a path, a cluster that was not
being processed through a path, or an alternate index that
was itself processed by the user.

Except for some processing following step 33, IDA0200B
does all the processing in this diagram.

24
For disconnecting the AMBL and changing AMBL
pointers (step 26), an ENQ is issued to exclusively
control the resources for the job step.

26
After AMBL pointers are changed, a DEQ is issued to
free the resources for the job step.

28
See note for step 15.

29
See the explanation for a primary close in the note for
step 12.

31
The inner ACB is used because the user ACB contains
parameters for closing a path, not for closing a base
cluster.

32
See Diagram ADS.

33 IDA0200T: RMOVAMBL

If there was no error, register 2 is pointed back to the
user ACB. Unless a catalog, a catalog recovery area in
system storage (SCRA), or the mass storage volume
inventory data set is being closed, the AMBL is
removed from the valid-AMBL table.

218077 (JNVSA) POYIS]N SS900Yy 93e101§ [enliiA Juduodwio) juspuadapu] SAS ZSA/SO TS

Diagram AD4. VSAM CLOSE: Close Upgrade Alternate Indexes and Free Storage

36. Indicate a primary close is being done.m

Is there an upgrade table?
No

Repeat steps 37 and 38 for each alternate index in
the upgrade set:

Point to the upgrade ACB.

Close the upgrade alternate index.

AMBL BIB
> 35.
— Yes
— -
AMBLBIB TUPT -
or 0
37.
@ 38.
Register 15 ‘ 39.
Return Code [——"—""_ ~ 3)
40
AMBL WSHD Working
o Storage 41
AMBLBIB @
$
v 42.
Py
43.
BIB 44
Sphere Working
BIBWSHD Block Storage :>45.
BIBSPHPT
46.
BIBPRSPH
47.
Protected Working
Sphere Block / Storage 48.
&~

Was there an error in a close?
Yes

Remove the upgrade AMBL(s) from the valid-
AMBL table.

Turn off the close indicator in the close work

area.
Decrement UCB use counts.

Free volume mount tables.

Remove the AMBL pointed to by the BIB from
the valid-AMBL table.

Free working storage, sphere block, and
protected sphere block.

Delete modules loaded by Open.

If the user’s SYNAD routine was loaded by
Open, delete it.

Free the base information block.

If processing was with shared resources,
decrement the VSRT use count.

(19

Close Work Area

Register 2

tUpgrade ACB

CLWPRMCL=1 =0

\IACB

UPT RPL
UPTRPL //;'RPLDACB ACBAMBL
TIOT UCB
TIOEFSRT UCBDMCT
BIB UCB
VMTUCB(1)
BIBVMT VMTUCB(2) UCBDMCT
Y \\
A
VAT 1&3
VSRT

€6 uoneradQ Jo poyldW

F

Notes for Diagram AD4
35 IDA0200T: CLSUPGR
37 IDA0200T: CLSUPGR

After the last upgrade alternate index is closed,
register 2 is pointed back to the user ACB.

38 IDA0200T calls IDA0200B
See Diagram ADS.
40 IDA0200T: RMOVAMBL
42 IDA0200T: VMTPROC, DCRUCBCT

Use counts are decremented one way for closing a
catalog and another way for closing other data sets:

For closing a catalog, the UCB use count is
decremented if the UCB indicated by the task 1/0
table is the same UCB as that indicated in the volume
mount table.

If neither a catalog nor a catalog recovery area is
being closed and restart isn’t indicated, the UCB use
counts in the volume mount table are decremented for
those volumes with valid serial numbers.

43 IDA0200T: FREECORE
44 IDA0200T: RMOVAMBL
45 IDA0200T: FREECORE, FREESPHR

For information about the sphere block and the
protected sphere block, see ‘‘Virtual-Storage
Management” in ‘‘Diagnostic Aids.”

48 IDA0200T: FREECORE

The base information block is described in
“Virtual-Storage Management” in ‘‘Diagnostic Aids.”

218307 (JNVSA) POYISIA §5320y 95ei0)S [enuIA Jusuoduio)) juspuadapu] SAS ZSA/SO +§

Diagram ADS. VSAM CLOSE: Close a Cluster
18132069

50. Check the validity of the ACB’s AMBL and

:55. Decrement use counts for devices associated
with the ACB.

56. Does the OS/VS system include System
Management Facilities (SMF)?
No Yes

| I

Job Step TCB

- TCBDEB

57. Write SMF record type 64 — Data Set
Status.

Close Work Area@

CLWPRMCL ¥/

_. —» 58. Isasecondary close being done?
Yes No

¥

=»59. Is a partial close being done?

No Yes
§$ =
60

CLWSECCL P~ —

CLWPARCL p—= — — — —,

Data Set . Delete VSAM DEBs from DEB table and
Activity Information unchain them.
61. Demount volumes associated with the
Volume Usage ACB.
User’s Data @
Set Statistics 62. Free storage of control blocks associated with
the ACB.

C ¢

I

Register 2 ISCB A DEBs.
tACB P " 51. For processing with shared resources, write
AiscasHr v buffers marked for output.
ACB 7 52. Is a primary close being done?
7 No Yes
g v
ACBAMBL vAT
> 53. Release all shared resources that are no
ACBDEB longer used.
(] A~VATPAMBL &
DEBs 54. Update the catalog records for the data and
index components with statistics of the activity
T AMBL that occurred while the cluster was open.

VSAM Catalog

Data Component

Record

Index Component

Record

VMT

(1)
(2)

SMF Data Set

Register 15

Return Code

¢¢ uonesadQ Jo poylsN

~

Notes for Diagram ADS
50 IDA0200B: INIT200B, VALCHECK, PROBDT (calls
IDA0192P)

The DEBCHK SVC is used to check the validity of
DEBs.

51 IDA0200B: WRITBUFR, GETCORE, WRBUFFER,
CBINIT, FREECORE, PROBDT

Inner control blocks are built and the WRTBFR macro
is issued to write data still in buffers.

52
See the explanation for a primary close in the note for
step 12.

53 IDA0200B: SHARE, SHAREDEQ
DEQ is issued.

54 IDA0200B: UPCATACB, UPCATDEQ (calls
IDA0192C), PROBDT

55 IDA0200B: YMTPROC
57 IDA0200B: UPSMF (calls IDA0192S)

One SMF record type 64, is written for each AMB (for
data set or index) connected to the ACB’s AMBL.

See OS/VS System Management Facilities (SMF) for
a description of SMF record type 64—Data Set Status.

See ‘‘Data Areas” for details about the AMDSB,
AMB, AMBL, and ACB.

58
See note for step 15.

59
See the explanation of a partial close in the note for
step 12. If neither a partial nor a secondary close is
being done, a primary close is being done.

60 IDA0200B: DEHOOK

The DEBCHK SVC is used. It removes VSAM DEBs
from the TCB DEB chain.

61 IDA0200B:

IDAO0192D destages data from the direct-access
storage staging drive to mass storage.

62 IDA0200B: CBRELE

21307 (INVSA) POYIDIA S5320y 28eI01S [ENUIA :jusuodwo)) Juapuadapu] SAS Z8A/SO 9§

Diagram AD6. VSAM CLOSE: Terminate Close Processing

VSAM- or ISAM-User’s Address Space

OIS

ACB DEB
L~
ACBDEB 1 1
Dummy DEB
~—
DEB
ISAM-User’s Address Space
11CB SYNAD
Routines
tRPLS -
ISAM-Interface
Processing
Routines

VSAM Close Processing

VSAM- or ISAM-User’s Address Space

storage.

was opened.

65. Free work areas.

_63. Ifa dummy data set is being closed, unchain its
dummy DEB and free the dummy DEB’s

64. Reset the user’s ACB to its condition before it

ACBDEB

s,

0S/VS Close — Final Processing

Dummy DEB

=

DEB

Ll

ACB

ATTLLTITATLTILILL DL L LD

Reset to

66. Bypass access method executor processing for all
VSAM ACBs being closed.

67. Return to the caller or ISAM interface.

A\

Conditions
Before Open

Wt ol A //,_’,

=

Error Flags

ISAM:-Interface Close Processing

'68. Delete the ISAM-Interface control blocks and
buffers that allow the ISAM-user’s program to
read and write records in a VSAM data set.

Return Code

69. Reset the DCB so that it can be opened again. .

0S/VS Close — Final Processing

ISAM-User’s Address Space

DCB
Set to Conditions

[70. Return to the ISAM-user’s program.

I Before Open

C

C

LS uonesad(Q jo poylo

~

Notes for Diagram AD6
63 IDA0200T: DEHOOK, DECHNDEB

IDA0200T calls IDA0192C

If a catalog is being closed, IDA0192C issues a dummy
LOCATE to indicate that the closing of the catalog is
complete.

Unless a dummy data set has been closed (see note
between notes for steps 4 and 6), a DEQ parameter list
is built and a DEQ is issued for every data set
associated with the user ACB. The parameter list
indicates “SYSVSAM” as the major resource and
control-interval number of the data set, catalog ACB
address, and ‘B’ (busy) as the minor resource.

64 IDA0200T: RESTORE

65

The ACB condition before it was opened is:
« Open bit (ACBOFLGS) is off

¢ Address of the VSAM interface routine
(IDAO19R1) is 0

e Address of the AMBL is 0

« DDNAME field contains the DDNAME from the
TIOEDDNM field in the TIOT DD entry

IDA0200T: FREECORE

The storage for the close work area and the module
work area is freed.

66 IDA0200T

The VSAM Close routine sets the ACB’s open bit
(ACBOFLGS) off if the ACB is closed successfully. If
an error occurs while closing an ACB, the VSAM
Close routine or OS/VS Close sets the appropriate
error flag.

The VSAM Close routine returns control to OS/VS
Close by putting the identifier of the Close Final
Termination routine, X‘2L’, in the WTG table and
transferring control (through the IECRES macro
instruction) to the O/C/EOQOV resident routine. The
resident routine examines the close parameter list and,
if all ACB entries have been processed by the VSAM
Close routine, returns to the OS/VS Close Final
Termination routine. If not, the next ACB entry in the
close parameter list is processed (return to step 4).

0OS/VS Close modules (IFG0200W and IFG0200Y)
ensure that an ACB entry in the close parameter list is
not processed by any access method executor routine.

(\

IFGO0200W sets the identifier for each VSAM ACB
entry in the WTG table to 0.

IFG0200Y sets the identifier for each VSAM ACB
entry in the WTG table to C‘2L’, the identifier of the
0S/VS Close Final Termination routine.

IFGO202L sets the return code in register 15.

See ‘““Diagnostic Aids” for details about the VSAM
Close return codes and error codes.

ISAM Interface Close Processing (continued):
68 IDA0200S: FREEBFRS, FREEDEB, RESETDCB,

FREEWA, FREEMAIN

The ISAM Interface Close routine releases the virtual
storage obtained for the ACB, the IICB, the DEB, the
RPLs, and the ISAM Interface buffers.

69 1IDA0200S: RESETDCB

The DCB conditions before open are:

« DCBOFLGS: Open bit off, Lock bit off (set to 1),
and Busy bit off

« DCBDSORG: ISAM-Interface bit off

913077 (JAVSA) POYIRIA S5300Yy 98e101G [enui Jusuoduwio)) juapuadapu] SAS ZSA/SO 8§

Diagram AE1. VSAM End-of-Volume: Obtain the VSAM Object’s Next Volume

Note: An “object” can be a VSAM data set, index,
catalog, or catalog recovery area.
VSAM Record Management routine

' OS/VS EOV Initial Processing

BG2 | BO1 | BO1
4 5 8

Virtual Storage Obtained for
VSAM Record Management

R1 AMB

'—) Type of Request — —3@

Type of Object

TRBA or Key
Work Area
RBA or Key
N\
\
N\
AN
\
\
N
. 1 \
Virtual Storage Obtained for
VSAM End-of-Volume
R1 CTGFLs
I ‘
For Extent /
Information /
4
For Volume V4
CTGPL Serial
To Retrieve Numbers
the Object’s For Object’s
Catalog | — Allocation
Record Requirements

VSAM Catalog

Object’s
Catalog
Record

Volume
Catalog
Record

Issues
SVC 55

J—

1. Is the-object a VSAM catalog or

No

2. Modify the JFCB and build an
Alternate TIOT entry to allow -]

catalog recovery area?

Yes

VSAM EOV to process the VSAM

catalog as a key-sequenced data set.

A

3. Is this a request to update the catalog?

No Yes

4. Update the data set’s AMDSB
in the catalog. nE————)

VSAM End-of-Volume:
y Locate and Mount the Object’s Next Volume

@/

5. Identify the volume that contains the caller-
specified RBA or key value. (See Diagram DEI,
“LOCATE: Retrieve Catalog Information.”)

6. Mount the volume identified in Step 5. N

7. Is more space to be allocated to the object?
Yes No

} &

Allocate additional space to the object

volume?

| g
9. Is the additional space for one of the data set’s

or catalog’s key-ranges?
No Yes

8. Can the object’s allocation requirements be met
by the available space on the currently mounted

C

Alternate
TCB TIOT
T Alternate tJFCB
TIOT
/ JFCB

Describes

VSAM

Catalog

Virtual Storage Obtained for
End-of-Volume Work Area

Volume Serial Number

Device Type

Extent Information

Serial Number of Object’s
Next (Candidate) Volume

Console

“Demount Volume [XXXXX1]
from Unit [YYY]”

“Mount Volume [XXXXX2]
on Unit [YYY]”

Message
to Operator

65 uonesadQ jo poylop

~

Notes for Diagram AE1

Diagram AE1 describes VSAM end-of-volume (EOV)
processing. VSAM end-of-volume is called by OS/VS
EOV when SVC 55 is issued by VSAM Record
Management routines. VSAM end-of-volume provides
these services:

When the GET routine detects that the requested
record is not on any of the currently mounted volumes
for the data set, a volume is demounted, if necessary,
and the volume that contains the requested record is
mounted.

When a PUT request cannot be completed because
there is no more space in the object, additional space
is allocated to the object. The amount is based on the
object’s space allocation requirement. If enough space
is available to satisfy the object’s space allocation
requirement, the space is allocated from the free space
in:

First, the VSAM data space containing the object.

— Next, the volume containing the object. If an
object’s key range is assigned more space, space is
allocated from the volume containing the key range
if the object has not been assigned an overflow
volume. Otherwise, (for key range only) space is
allocated from another volume that has been
assigned to the key range’s object as an overflow
volume.

— Finally, another VSAM volume that has been
assigned to the object as a candidate volume.

IGCO005E, IFGOS51F

If register 1 addresses an AMB (for VSAM EOV
processing), the OS/VS EOV routine sets the ID field
in the where-to-go (WTG) table to C*7A’, the
identifier of the VSAM EQV routine. The WTG table
built for an EOV request contains only one entry. All
further OS/VS EOV routines are bypassed.

IFGO550Y
IDAO557A

The request is either to handle an end-of-volume
condition or to update information in the catalog.

IDAO557A: CATUPD (which calls IDA0192C)
The AMDSB contains statistics for the data set.
IDA0557A: VOLLOC (calls ARDBSCH)

The volume information sets of fields (in the object’s
catalog record) contain the volume serial number of

e

each volume (used or candidate) assigned to the
object. The volume information sets of fields also
contain the low and high key values of each key range,
and the low and high RBA values of each extent in the
object.

If the end-of-volume request is for more space on the
currently mounted volume, the volume’s serial number
is in the end-of-data ARDB.

IDA0557A: VOLLOC (calls YOLMNT)

The VSAM Volume Mount and Verify routine
(IDA0192V) confirms that the specified volume is
mounted. If no device is available for the volume, the
VSAM Volume Mount and Verify routine requests
that the operator demount a volume not in use. If all
devices contain volumes currently in use, the VSAM
Volume Mount and Verify routine sets the
volume-not-mounted return code and returns to the
caller.

IDA0557A: ALLOCSPC

If the AMB’s allocate-space request option indicator is
on, the VSAM end-of-volume routine gets more space
for the object.

See “‘Data Areas” for details about the AMB.
IDA0557A: ALLOCSPC (calls (CATALC)

The volume catalog record defines a VSAM direct
access volume in terms of the objects it contains, the
VSAM data spaces it contains, and the available (free)
space in each of it’s data spaces.

See ‘“Data Areas” for details about the volume catalog
record.

51307 (JAVSA) POUIDJA $5200Yy 23eI01S [enuiA juauodwo) uapuadapu] SAS ZSA/SO 09

Diagram AE2. VSAM End-of-Volume: Obtain the VSAM Object’s Next Volume

User’s Data Set
Volumes

Data Set
- ‘ Freespace
New Extent

Data Set

TCB

DEB
C (New)

Virtual Storage Obtained
for VSAM End-of Volume Allocate additional space to a key-range
CTGFLs Work Area -
Volume Serial 10. Mount the overflow volume assigned to the
Numbers key-range.
}‘:"f‘e“‘ R 11. Obtain an amount of space based on the key-range’s
1: ormation \ space allocation requirements. (See Diagram DI 1,
[;fe::“;zcgo n L\ “UPDATE-Extend: Obtain Additional Space for N
N~ a VSAM Object.”)
"~ :
Update Data \ ~ P 12. Can the available space on the overflow volume VSAM Catalog
\ satisfy the space allocation requirements of the
Virtual Storage Obtained \ key-range? Updated
for End-of-Volume No Yes Data Set
\ ‘ I @ Catalog
R1 Record
i CTGPL CTGFLs , Allocate additional space to an object ==
For Volume g%’AI:a'a Set’s 13. Mount the object’s capdidate volume in place of
Catalog TorDan the volume mounted in step 6.
Rec‘_"d Set’\s, E;X'eﬂts 14. Obtain an amount of space based on the object’s / . .
l Work Area. on Youme space allocation requirements. (See Diagram DI 1, X“t““; i{torage Obtained for
Extent | _,@ “UPDATE-Extend: Obtain Additional Space for ecord Management
Information a VSAM Object.”)
AMB
RBAs
Freespace Update system control blocks that describe the
on Volume object’s space on the newly mounted volume.
l"‘;‘“m"'t_ (——J B) . Build a new DEB that contains a direct-access EDBs
nrormation storage device section for each of the object’s '3
» extents on currently mounted volumes.
Virtual Storage Obtained . Build an EDB for each extent (on the newly
for Record Management mounted volume) associated with the object.
AMB DEB /
Type of . Does the OS/VS system include the system
Request (O1d) management facilities (SMF)? SMF Data Set

Data
Set o]
Statistics

Yes

18 Write SMF record type 64 — Data Set Status.

ﬁ

R15
% 19. Return to the caller, "ZZZZZZe>

BO1 | BO1
6 9

C

19 uonjesadQ jo poyre|

(\

Notes for Diagram AE2
10 IDA0S57A: VOLSW (calls CATLOCNC and VOLMNT)

If the key range’s object has an overflow volume
assigned to it, additional space for the key range is
allocated from the overflow volume. If no overflow
volume is assigned to the object, steps 8 through 10
are bypassed and the space is allocated from the
object’s candidate volume.

11 IDAO557A: VOLSW (calls CATALC and CATUPDVYO)

The object’s catalog record describes its space
allocation requirements.

12 IDA0557A: YOLSW (calls CATLOCNC)

If there is not enough available space on the overflow
volume to satisfy the allocation requirements of the
key range, space is allocated from the object’s
candidate volume.

13 IDA0557A: ALLOCSPC (calls YOLSW)

If the volumes are full, and no other volume
(candidate) is assigned to the object, the VSAM EOV
routine sets the space-not-allocated return code and
returns to the caller.

See OS/VS2 SVS Independent Component: Access
Method Services for a description of how candidate
volumes are assigned to VSAM objects.

14 IDAO557A: CATALC

The object’s catalog record describes its space
allocation requirements.

See “‘Data Areas” for details about the catalog record
details, and the volume information set-of-fields.

15 IDA0557A: CTLBLK (calls DSCTLBLK)

See ‘“‘Data Areas” for details about the ACB and EDB.

See OS/VS2 Data Areas for details about the DEB.

The VSAM EOV routine builds a new DEB and EDB
that replaces the existing DEB and EDB. The new
DEB and EDB contain extent information that
describe:

« Each of the object’s extents (on currently mounted
volumes) that was not affected by the EOV
process.

« Each extent that defines the object’s newly
obtained space (if any).

« None of the object’s extents on volumes that were
demounted.

-

16 IDA0557A: DSCTLCLK (calls CATLOCXT and
CATLOCRB)

See ‘““Data Areas” for details about the data set catalog
record, the volume information set of fields, and the
EDB.

18 IDA0557A: SMFUPD (calls CATLOCDS)

See OS/VS System Management Facilities (SMF) for
a description of SMF record type 64.

19 IDA0557A: TERM, PROBDET

See “Diagnostic Aids” for details about the VSAM
End-of-Volume return codes and error codes.

If an error is detected, the VSAM End of Volume
routine attempts to determine the type of error and
builds a message describing the error.

913077 (JAVSA) POYISIN $s200Y 98ei0lg [enuiA jusuodwo)) juspuadapul SAS ZSA/SO 29

Diagram AF1. BLDVRP/DLVRP: Build or Delete a VSAM Resource Pool

Register 2

TBLPRM

BLPRM

t Buffer
Subpool
List

Buffer Subpool List

Build a Resource Pool

> 1. Check the validity of the parameter list.
2. If there is no valid-AMBL table, build one.
. Build the VSAM shared resource table.
. Build a working storage headcr and CPA header.

. Build a pool of placeholders.

. Build the buffer subpools requested.

N N N AW

. Return the caller.

Delete a Resource Pool

8. Check the validity of the parameter list.

9. Is there a VSAM shared resource table?
No Yes

10. Unchain it from the valid-AMBL table. 222{(C)

11. Free all storage used for the resource pool.

12. Return to the caller.

JSCB

JSCBSHR

VSRT

tWSHD

tCPAHDR

TPLHDR

tBSPH

PLHDR

PLH

{e):}

tNext PLH

PLH PLH
S

BSPH

BUFC Buffer

1LBUFC

A t Buffer -—{

JSCB

VAT

JSCBSHR

tVSRT=0

€9 uonerdadQ Jo poyra|y

(\

Notes for Diagram AF1
BLDVRP
1 IDA0192Y: DBDCVAL

BLPRM is the BLDVRP parameter list. There must be
no conflicting parameters, and buffer sizes must be
valid.

IDA0192Y: BLDVAT
3 IDA0192Y: BLDVSRT

The VSAM shared resource table is initialized to
receive pointers in subsequent processing. The control
block structure for processing with shared resources is
illustrated in ‘“‘Control Block Interrelationships’ in
“Data Areas.”

IDA0192Y: BLDWSHD
IDA0192Y: INITPLHP
IDA0192Y: BLDBUFC
IDA0192Y: BLDVRP

The address of the VSAM shared resource table is put
into the valid-AMBL table. If this chaining couldn’t be
done, the DLVRP procedure gets control to delete the
resource pool.

8 DLVRP

There must be no conflicting parameters and no ACBs
optn to use the resource pool. If an ACB is open to use
it, the DLVRP is rejected.

If DLVRP is issued without a previous BLDVRP,
there is no VSAM shared resource table.

10 IDA0192Y: DELVRP
11 IDA0192Y: FREEVSRT

213077 (INVSA) POUISI SS90y a8euol§ [enuiA jusuodwo)) juapuadapu] SAS ZSA/SO +9

Diagram AG1l. VSAM Checkpoint: Checkpointing VSAM Control Blocks

VCRT'S

ACB ,Iy\ < !
/’ \& a. Build VSAM checkpoint/restart table (VCRT). M_
T == ===~ b. Issue CLOSE TYPE=T to complete 1/O and
flush buffers.

c. Perform VSAM reposition processing as
required.

d. All VSAM data sets processed.

Yes No
VSAM VSAM
Data Data
Sets Sets

3. Return to IGC 0206C.

JSCB
VAT VCRWA
1. Obtain storage and initialize VCRWA.
AMBL’S ACB
— — — =3 2. For each VSAM data set:
N Py '

69 uonerddQ jo poyPW

C

Notes for Diagram AG1

IDAOCO06C receives control from IGC0206C via
BALRI14,15.

1 Obtain and initialize VCRWA. The JSCBSHR field is
saved in the VCRWA so that VSAM restart can
restore it.

2 For each VSAM data set, build a VCRT and chain to
the primary AMBL'’s BIB (each VCRT points to the
VCRWA), issue CLOSE TYPE=T, and perform
reposition processing. The current Cl is gotten from
the data set and is reflected to the restart half of
checkpoint/restart.

7 Control returns to IGC0206C.

21807 (IWVSA) POYIRIA 5300y 28e101§ [emuiA Jusuodwo)) judpuadapu] SAS ZSA/SO 99

Diagram AH1. VSAM Restart: Rebuild VSAM Control Blocks

R2 ACBor AMB

JSCB VAT AMBL
_7 1. Restore address of VAT in JSCBSHR. m tVAT —{TAMBL tBIB
P)
,/ - 2. For each open and upgrade entry.
7
7 / A a. Free all fixed string and fixed upgrade string A
,/ // A HEB’s. tFree HEB's
7 / b. Free the VSAM subpool 253 IRB from the
/ / data set DEB.
// / c. Rebuild all PFL’s and their associated CMB cMB HEB PrL
/ // strings which describe storage locations. m tHEB —>{ tPFL
/
/ Model IRB
/ 3. Issue CIRB to obtain mogel IRB in caller’s key
// and state. W Subpool 253 m :)
/
/
/ Data AMB DEB IRB
4. For each open upgrade entry, issue GETMAIN tIRB —> Subpool 254
_ /’,7/7 for VSAM IRB’s in subpool 254 and copy contents Hhpoo
_ o of model IRB to getmained IRB. M
P Index AMB DEB
t1RB >
~ ~ - -
_97 5. For each open and update entry, rebuild all VSAM ACB Dummy DEB
(:)" dummy DEB’s in subpool 252 and add them in m Subpool 252
the DEB chain. opeo

lDI
(| tAMBL
AMBL VCRWA
~—{ tBIB] tvat d
KB!B
/
VCRT /
/
tVCRWA —J /
tOpen /
/
tUpgrade /
~~ tUpdate //
/ /
Upgrade / Open /
,,F,ntries / Entries
tAMBL 1AMBL
tACB
\\ Update Entries AMBL
| tacs 1CMB
¢ +tAMB

tBIB

19 uoneiadQ jo poylo

~

Notes for Diagram AH1

VSAM restart

1 IDAOAOSB restores the address of the VAT in the
JSCB. IDAOAOSB is called from IGC"A05B.

2a IDAOAOSD: INITLSQA,FREEHEBS.

For each primary AMBL, free all fixed string and
fixed upgrade string HEBs associated with aii VCRT
open and upgrade entries.

2b IDAOAOSB: INITLSQA,FREEIRBS.

For each primary AMBL, free all subpool 253 IRBs
associated with all VCRT open and upgradc entries.
2¢ IDAOAOSB: INITLSQA,BUILDBLK.

For each primary AMBL, rebuild all PFLs and their
associated CMB HEBs. Open module IDA0192M is
called to obtain the storage.

2¢ IDAOAOSB: INITLSQA,BUILDBLK.

For each primary AMBL, rebuild all PFLs and their
associated CMB HEBs. Open module IDAO192M is
called to obtain the storage.

3 IDAOAO5B: INITLSQA,GETIRBS.

Obtain a model IRB via CIRB in the caller’s key and
state, and reconstruct all VSAM DEBs in subpool 254.

5 IDAOAOSB: INITLSQA,GETDEBS.

Rebuild all VSAM dummy DEBs in subpool 252. The
DEBs obtained by VS restart are freed.

21307 (INVSA) POYIdI $s323Yy 33elo)§ JeniiA :jusuoduwio)) jyuapuadapu] SAS ZSA/SO 89

Diagram AH2. VSAM Restart: Rebuild VSAM Control Blocks

BIB

VCRT

VCRT

tOpen

tUpgrade

Upgrade
Entries

®

VSAM Catalog

C

Open Entries

AMDSB

14.

. Get core for RWA (this includes restart ACB’s) and @

. Build and open restart ACB’s and update VCRT

. Build VCRT upgrade entries for restart. %

. Update user ACB and AMB TIOT offset and EZZ

. Check for data set (catalog) modified error.

. Pass control via call to VSAM restart 2nd load.

chain VCRT, VCRWA | and RWA.

open entries for restart.

D
VCRWA
RWA JSCB
tRWA
VAT
VCRT
tOpen
0)
tUpgrade
Restart
AMBL
Open Entry
tAMBL AMB
tACB E

tAMBL

A

catalog ACB pointers.

. Close all restart ACB’s open for current data set m

being processed.

VSAM restart.

Return to 1GC 0AOQOSB.

Return via BR 14,

C

Upgrade Entry 0

 AMBL

S
A

Restart
ECB

/
. Free VCRT. VCRWA. and all storage gotten by m@

7

AMB

7,
(PP PP PP PP PP IPP PP

AULLLLLLLLLLLL LT

69 uonerad(Q Jo POyl

(&

Notes for Diagram AH2

VSAM Restart
6 IDAOAOSB: INITLZ

Get storage for the restart ACBs, RWA, and RPL.
7 IDAOAOSB: OPENACB

The restart ACBs are opened, and the VCRT open
entries are updated to reflect the locations of the
restart AMBLs and ACBs.

8 IDAOAO5SB: UPGRADE,UPDATE

The immediate upgrade entries are built, and the
VCRT upgrate entries are updated. The catalog ACB
address and AMB/ACB TIOT offsets are updated to
reflect restart time pointers.

11 IDAOAOSB:

Restart load 2 (IDAOBO5B) is called to complete
repositioning or data set verification. On return, close
all restart ACBs, free restart work areas, and return to
IGCOAOSB. IGCOAO05B will XCTL to VS restart
module IGCOVO5B.

213077 (IWVSA) POYIS §5200Y 3Feiolg [enuip Jusuodwo)) juapuadapu] SAS ZSA/SO 0L

Diagram All. VSAM Restart: Rebuild VSAM Control Blocks

Restart CMB

Restart AMDSB

Restart ARDB

Restart HEB's

AMBL

N

. Call PREFORMAT procedure if required to

. Call VERIFY procedure if required to obtain

. Call PUT (data) procedure if required to reposition

. Call COPYRTN procedure to update user control
blocks.
User ARDB

. Call PAGEFIX procedure if required to pagefix

VSAM
Data Set
reposition data set.

current high water mark.

data set.

. Call PUTIX (index) procedure if required to
reposition index set.

User AMDSB

User CMB

User HEB’s

Call HEBSWAP procedure to swap certain header

element blocks. PP

VSAM control blocks.

. Return to IDA 0AOS5B.

&

C C

1L uonesddQ jo poyle|y

~

Notes for Diagram All

1

IDAOBOS5B receives control from IDAOAOSB
IDAOBOSB: PREFRMAT

PREFRMAT is called if reposition is required (create
mode KSDS or ESDS output CRPS = NCK;NRE, or
speed not specified and data set has been used).

IDAOBOSB:VERIFYHU

If data set is not in create mode and the immediate
upgrade data sets exist or if data set is KSDS/RRDS,
call VSAM VERIFY to obtain current high used RBA
for data set.

IDAOBOSB:PUTRTN

Call VSAM PUT to rewrite the data CI for ESDS
(noncreate mode) data sets that require repositioning.

IDAOBOSB:IDXPUT

Call VSAM PUTIX to rewrite the highest index CI of
each index level that existed at checkpoint time.

IDAOBO5B:COPYRTN

Copy, the restart AMDSB and ARDB to the user’s
AMDSB and ARDB respectively, and also swap the
restart AMB DEB and EDB pointers with the DEB
and EDB pointers in the user’'s AMB.

IDAOBOSB:HEBSWAP

Swap certain user HEBs with restart HEBs. The HEBs
to be swapped are the protected string, the DEB
blocks, and the EDB blocks.

IDAOBO5B:PAGEFIX
Perform page fix if ICIP with page fix option specified.
Return to IDAOAOSB via BR14.

€L uonerdadQ jo poylap

Diagram BA1. Record Management Table of Contents

VSAM
Overview
Diagram AB1

ISAM
Interface
Diagram BU1

VSAM
Request
Processing
Diagram BB1

<

T PUT Macro ENDREQ ENDREQ
GET Macro EE Macro Processing ERASE Macro POINT Macro Macro Macro CHECK Macro VERIFY
Processing rocessing (Entry Processing Processing Processing Processing Processing Processing
(Direct) (Sequential) Sequenced) Diagram BI1 Diagram BJ1 (Noncreate) (Create) Diagram BL1 Diagram BM 1
Diagram BC1 Diagram BD1 Diagram BE1 Diagram BK1 Diagram BK2
Creating a Key-Sequenced Data Set Modifying a Key-Sequenced Data Set Processing by Control Interval
PUT Macro PUT Macro PUT Macro | 4 J{
(Ke e Processing Processing
Se zenced) (Insert) (Modify) GET or GETIX PUT or PUTI)§ PUT M:_lcro
D'q BF1 Diagram BH1 Diagram BH2 Macro Processing] |Macro Processing Processing
lagram Diagram BN1 (Update) (Create)
1 I Diagram BN3 Diagram BN2
Getting a New L
Control Interval X]
Diagram BG1 g;zig?ﬁr Processing with Shared Resources
Insertions
Diagram BH3

J'———————)

Creating
Index Records
Diagram BG3

Getting a New
Control Area
Diagram BG2

!

Updating an
Index Structure
Diagram BG4

Creating or Modifying a Relative Record Data Set

W W
PUT Macro PUT or ERASE
Processing Macro Processing
(Insert) (Modify)
Diagram BO1 Diagram BO2

—

Inserting an
index Entry
Diagram BHé6

Splitting a
Control Area
Diagram BH4

T

4

y

v

MRKBFR Macro
Processing
Diagram BP1

WRTBFR Macroj
Processing
Diagram BP2

SCHBFR Macro
Processing
Diagram BO3

Updating
the Index
Structure
Diagram BH38

%

Major Subroutines

)

A

\

Splitting an
Index Record
Diagram BH9

Processing
a Path
Diagram BQ1

Upgrading

an Alternate
Index
Diagram BR1

Buffer
Management
Diagrams

BS1, BS2, BS3

",
1/0

Management
Diagram BT1

21807 (JAVSA) POUIRI SS90y 98e101§ [enuiA :juauoduwio) juapuadspu] SAS ZSA/SO L

Diagram BB1. VSAM Request Processing

User’s Virtual Storage

Register 0

> 1. Is the request a CHECK or ENDREQ?

Request Type

PLH

RPL(s)

PLH(s)

Header

PLH
n

-
Yes
BB2
5

- No
K
\
\
\
\
\
\Common Initialization of Request Processing

l

User’s Virtual Storage

3. Assign a placeholder to the request-string.

. Ensure that the request is consistent with the
4 data set’s characteristics.

. Initialize the RPL(s) in the request-string. PZPZPPPPIZIZPPPPPorZ

QP77 777777277

. Initiate request processing. (Continued on Diagram
BB2.)

VSAM Record Management Processing by Request

Type

\\\\\\\\\\\\\\\\\\

N

GET Macro Processing:
for direct requests (RPL OPTCD=(DIR))
for sequential requests (RPL OPTCD=(SEQ))
(See also ““Control-Interval Access Processing.”)

PUT Macro Processing:
for entry-sequenced data set processing
for creating key-sequenced data sets
for inserting records in key-sequenced data set
for modifying records in key-sequenced data set
for inserting records in relative record data set
for modifying records in relative record data set
(See also “Control-Interval Access Processing.”)

ERASE Macro Processing:

POINT Macro Processing:

RPL(s)

PLH

TRPL(1st)

Diagram BC1
Diagram BD1

Diagram BI1
Diagram BJ 1

C

¢L uoneradQ jJo poyidIN

(\

Notes for Diagram BB1

2

Several RPLs may be chained together to process
more than one record with a single macro request. For
example, a GET request associated with a chain of
three RPLs returns three records to the user’s problem
program.

The number of placeholders is based on the STRNO
parameter in the ACB control block.

Each placeholder is examined to determine whether it
is available for assignment to the request string. (Note:
Once a placeholder is assigned to a request string, this
association is fixed until an ENDREQ macro or a
direct request that doesn’t require placeholder
retention is issued against the RPL at the head of the
request string. After the ENDREQ or direct
processing is completed, the placeholder is available
for reassignment to another request-string.)

When no placeholder is available in the list of
placeholders for assignment to a request or request
string, and resources are being shared or processing is
loading a data set that was empty when it was opened,
an error code is set and a return is made to the caller.
Otherwise, IDAO19R1 calls IDAXGLPH in module
IDAO19RU to obtain additional placeholders. If a
placeholder is available, its identifier is placed in the
RPL associated with the user’s macro request.

If any of the following restrictions are violated, an
error code is set in the associated RPL and the
remaining RPLs (if any) in the request string are
posted as incomplete:

Keyed Request Errors

Keyed requests against an entry-sequenced data set are
not allowed.

Requests based on a generic key must include a
specified key-length value.

Specified key lengths may not exceed the maximum
key length value defined for a data set.

Addressed Request Errors

An addressed PUT-add request against a
key-sequenced data set is not allowed.

An ERASE request against an entry-sequenced data
set is not allowed.

~

An address request against a relative record data set is
not allowed.

Control Interval Request Errors

Control interval requests may not be issued against a
data set unless the data set was opened for control
interval processing.

2807 (INVSA) POUIRIA §5200Y 35eI0IS [enuiA jusuodwo) juapuadspu] SAS TSA/SO 9L

Diagram BB2. VSAM Request Processing

BB1
1

User’s Virtual Storage

RPL(s)

TNext RPL

Synch/
Asynch
Flag

PLH

Request-
Pending
Flag

s. icont'mued)

VSAM Record Management Processing by Request
Type (continued)

ENDREQ Macro Processing:

for request processing related to a newly created

Control Interval Access Processing:

Path Processing:
for processing a request to gain
access to a base cluster by way of

for request processing related to an old data set Diagram BK1

data set Diagram BK 2

CHECK Macro Processing: Diagram BL1
VERIFY Processing: Diagram BM1

for retrieving control intervals Diagram BN1

for creating a data set Diagram BN2

for updating control intervals Diagram BN3
MRKBFR Processing Diagram BP1

WRTBFR Processing Diagram BP2

SCHBFR Processing Diagram BP3

an alternate index Diagram BQ1

6. When the request is a CHECK or ENDREQ, return
to the user’s ISAM problem program.

Common Termination of Request Processing

. Post the request as complete.

. Reinitiate request processing until all RPLs in the
request-string are processed.

. When the request-string processing is synchronous,
ensure that its processing is completed.

. When another request-string has been deferred as
a result of current request-string processing, pass
control to the deferred request.

. Return to the module that issued the macro
being processed.

C

User’s Virtual Storage

ECB

LL uoneidd(jo poylo

(\

Notes for Diagram BB2

10

When two request strings are competing concurrently
for a serially reusable resource, the second string is
deferred.

When the deferred request is synchronous, a WAIT
macro will have been issued against its ECB. When
the DIWA is released by another request string,
control is returned to a synchronous request at the
point at which it issued the WAIT by module
IDAO19RS.

It posts the request-string’s ECB to eliminate the wait
condition.

If an asynchronous request is deferred, a return
address will have been placed in its placeholder, and
when the serially reusable resource becomes available,
a branch is made to that address.

51807 (JNVSA) POYISIA $5900y 93esols [eniiA :yuauodwio)) yuspuadapul SAS ZSA/SO 8L

Diagram BC1. GET-Direct Processing: Direct Retrieval

VSAM
Index

1. Locate the data control interval containing the Register RWORK?2

user-specified key, RBA, or relative record number ~| RBA of Data

VSAM
Data
Set L }

OQutput of

Step 1

VSAM User’s Virtual Storage P
RPL
. Output
tSearch of

Argument Step 4 u
tUser Area (A)

User’s Record Area

Key. RBA, or

Relative Record
Number

B

BB1
5
e and place the control interval in a data buffer. Control Interval
of e
2. Is the record a spanned record?
No Yes

3. Move all segments of the record to the

user’s area. VSAM User’s Virtual Storage

PLH

— — — P 4. Move the record associated with the user-specified
key, RBA, or relative record number into the W

Address of
Buffer

user-specified record area.

—————— > 5. When the contents of the buffer are not needed VSAM Buffer
7 by the next request, release the buffer.
7 \‘\l Data Control Interval l

'6. Return to caller. User Record Area

N7

6L uonesadQ Jo poyls

~

Notes for Diagram BC1
1 Keyed Processing-Key-Sequenced Data Set

IDAO1I9RA

When the request is keyed, an index search must be
performed. The index level where the search begins is
based on the following considerations:

« For skip-sequential processing, the index search
starts at the sequence set—normally at the index
record pointed to by the current PLH. If the PLH is
invalid, the search starts at the first record in the
sequence set.

« For direct processing, the search starts at the
highest level of the index.

IDAO19RA calls IDAO19RB, which calls IDAO19RZ
(IDAGRB)

The index record at which the search is to start is
moved into an index buffer.

IDAO019RB calls IDA019RC

The index record is searched for an entry that is
greater than or equal to the search key.

IDAO19RB

When the search is unsuccessful, the next record in
logical sequence is searched. If the search is successful
and a lower index level exists, the search is performed
on the index records in the lower level.

Keyed Processing—Relative Record Data Set
IDAO19RR

The relative record number that is specified as a
search argument is converted into the RBA of the
control interval that contains the record and the offset
of the record in the control interval.

IDAO19RR calls IDAO19RZ (IDAGRB)
The control interval is read in by RBA.
Addressed Processing

IDAO19RA

The RBA that is specified as a search argument is
converted into the RBA of the boundary of the control
interval within which it falls.

2 Doesn’t apply to a relative record data set.
3 IDAO19R4 calls IDAO19RT (IDADARTYV)

A spanned record is delivered.

e

IDADARTY calls IDA019RZ (IDAFREEB)

A segment is moved to the user’s area. The buffer is
freed.

IDADARTY calls IDA019RZ (IDAGNXT)
The next segment is obtained.
IDAO19R4

If the user is performing locate processing, the address
of the record is moved into the user area. If the
request is for update and an upgrade set exists,
IDAO19RU is called to save the LLOR (least length of
record that contains the prime key and all alternate
key). (See Diagram BR1.)

Relative Record Processing
IDAO19RR

If the user is performing locate processing, the address
of the record is moved into the user area.

IDAO19R4: RLSEBUFS calls IDA0O19RZ

If the request is direct and update,
note-string-position, or locate mode processing
options is not specified, the contents of the buffer are
not needed by the next request and the buffer is
released. If the user’s processing with shared
resources, any index buffer is freed.

Relative Record Processing

IDAO19RR calls IDA019RZ (IDAFREEB)

If the request is direct and update,
note-string-position, or locate mode is not specified,
the buffer is released.

31307 (JNVSA) POYISI §s900y a8eiolg [eniliA sjuduodwio)) juapuadapu] SAS ZSA/SO 08

Diagram BDI.

BBt
VSAM User’s Virtual Storage 5

GET-Sequential Processing: Sequential Retrieval

PLH
Exception fm e e e— 4t — — — —3p 1. When the desired control interval is not already in
Flag the data buffer as a result of processing related to
Record | a prior request in the current sequence of requests,
Position ~—— place the control interval in a data buffer.
b Y ~—
S—
=3 2. Advance the placeholder to position to the record
Data Buffer logically following or preceding the record
associated with the prior request in the current
Data sequence of requests.
Record
3. Is the record a spanned record?
No Yes
RPL
4. Move all segments of the record to the
Address of user’s area. pu—": (6)
User Area User Area
e —D 5. Move the record positioned to by step 2 into the
b1 user-specified record area.
6. Return to caller.
® B2
7
VSAM
Data
Set

VSAM User’s Virtual Storage

p——

PO e L L Ll Ll

Data Buffer

Record

PLH

Record
Position

User Area

Record [

C C

Relative Record Data Set
1 IDAOI9RR

Notes for Diagram BD1

I8 uonesadQ jo poypn

Key-Sequenced or Entry-Sequenced Data Set
IDAO19R4

Forward Processing

IDAO19R4: ADVPLH

Normal GET-sequential processing advances the
record pointer to the next record in RBA sequence in
the data buffer.

If the record pointer points to the end of a control
interval, the following processing is performed:

IDAO19R4 calls IDAO19RZ (IDAFREEB)
The current buffer is released.
IDAO19R4 calls IDAO19RZ (IDAGNXT)

The next control interval is retrieved. If the next
control interval contains all free space, the retrieval
process continues until a control interval containing
data is acquired.

Backward Processing:
IDAO19R4 calls IDAO19RY (IDAADVPH)

Normal processing advances the record pointer to
preceding record in RBA sequence in the data buffer.

If the record pointer points to the beginning of a
control interval, the following processing is
performed:

IDAADVPH calls IDAO19RZ (IDAFREEB)
The current is released.

IDAADVPH calls IDAO19RZ (IDAGNXT)
The preceding control interval is retrieved.
IDAO19R4 calls IDAO19RT (IDADARTY)
A spanned record is delivered.

IDADARTYV calls IDAO19RZ (IDAFREEB)

A segment is moved to the user’s area. The buffer is
freed.

IDADARTY calls IDAO19RZ (IDAGNXT)
The next segment is obtained.
IDAO19R4: DATARTY

If the request is for update and an upgrade set exists,
IDAOI19RU is called to save the LLOR (least length of
record that contains the prime key and all alternate
keys). (See Diagram BR1.)

The data buffer contains the current control interval.
IDAO19RR: ADVPLH

The record pointer is advanced for normal sequential
processing or backed up for backward sequential
processing. If the record pointer points to the end of
the control interval for normal processing, or the
beginning of the control interval for backward
processing, the following processing is performed:

IDAO19RR calls IDAO19RZ (IDAFREEB)
The current buffer is released.
IDAO19RR calls IDAO19RZ (IDAGNXT)

For normal processing, the next sequential control
interval is retrieved, and the record pointer is set to
the first record. For backward processing, the
preceding sequential control interval is retrieved, and
the record pointer is set to the last record.

IDAO19RR

2180 (IAVSA) POUISIN SS90y 98el0)S [enuiA jusuoduio)) juapuadapuj SAS ZSA/SO T8

Diagram BE1.

BB1
5

1.

VSAM
Data
Set 2.
= Unused Space 93-
No
RPL ~Record Length
- —®
— —_
6
User’s Record Area ﬂ
New Record L.>7
/7 a2
BUFC / 8
®, 9
17
VSAM Buffer (Available)
Output
of Step 7

. As control intervals are filled, write them to the

Ensure that the current output buffer is positioned
to the end of the data set and prepared to receive
a new record.

If an upgrade set exists, upgrade the alternate
indexes in it. (See Diagram BR1.)

Is the record to be inserted a spanned record?
Yes

v

Repeat steps 4 and 5 for each segment.

—_— 4. Obtain an empty buffer.

5. Move the segment to the buffer.

. When there is insufficient space to contain the new

record, get the next control interval.

. Move the new record into the data control

interval.

PUT-Entry-Sequenced Processing: Create or Insert at End of Data Set

VSAM Buffer

—

©

or

data set.

. Return to caller.

BB2
7

RDFs | CIDF
N, —— p—
Records Unused Space
VSAM Buffer i
Freespace
VSAM
Data
Set
Unused Space

€8 uoneradQ jo poyrP|N

(\

Notes for Diagram BE1
1 Create Mode Processing

IDAO19R4: SQICHECK calls IDAO19RZ (IDAGNNFL)

When processing is in create mode and the current
request is the first request after opening the data set, a
buffer is assigned to the request.

IDA019R4: SQICHECK

The buffer is initialized and buffer output is positioned
to the first control interval associated with the data
set.

Add-to-End or Mass Insert (Noncreate) Processing

IDA019R4: GETINCI calls IDAOT9RA

The address of the desired control interval is
established by GETINCI, and IDAO19RA determines
whether the control interval in the current data buffer
has that address. When it does not, excess buffers are
released (IDAOI9RA calls IDAOI9R2 (IDASBF)) and
the desired control interval is moved into the buffer
(IDAO19RA calls IDAOI19R2 (IDAGRB)).

IDAO19RH calls IDAO19RU
IDAO19RM calls IDAO19RT

If the buffer is not empty, IDAOI9RT calls IDAO19SA
to obtain an empty buffer.

IDAO19RT

The record segment is moved to the buffer, and the
CIDF and RDFs are built.

IDAO19R4 calls IDAO19RM

When there is insufficient space to contain the new
record, IDAO19RM calls IDAO19SA and the following
processing is performed:

IDAO019SA calls IDAO19RZ (IDAFREEB)
The current data buffer is released to be written.
IDAO19SA: EOCA

When no more control intervals in the current control
area can be used, IDAO19S A calls IDAOI9RZ
(IDAWRBFR) to ensure that all output to the current
control area is completed. Then, after positioning to
the next control area boundary, a test is made to
determine whether the new control area address
exceeds the limits of the data space allocated to the
data set. If the data space is exceeded, IDAOI9SA
(EOCA) calls IDA0O19R5 (IDAEOVIF) to issue an

I

SVC 55 in order to allocate additional extents to the
data set.

IDAO19RM

Before moving the record into the control interval, an
RDF is created for the new record.

Actually, this process occurs at step 6. It is not
determined that a control interval is full until an
attempt is made to insert the next new record.

31307 (IWVSA) POYISIA 5900y 93e101S [enuliA lusuodwo)) juapuadapul SAS ZSA/SO +8

Diagram BF1. PUT-Key-Sequenced Processing: Create

BB1
5

VSAM User’s Virtual Storage

PLH

1st Request Flag [

RPL

Address of
User Area

User Area

P//

Record

—

-7

1. When this is the first request after Open, assign a
data buffer to the.request.

2. Is the record to be inserted a spanned record?
No Yes

3. Process the spanned record segment by

segment. p——(5)

4. Move the new record into the current data buffer
and build/update an RDF. (See Diagram BG1 for
a description of processing when the freespace in
the current control interval is inadequate or
when the current key range is exceeded by the
key of the new record.)

m 5. Return to caller.

BB2
7

VSAM User’s Virtual Storage

PLH

g

Address of
Data Buffer

Data Buffer

BUFC

New

Record

RDFs

CIDF

¢g uonesdadQ Jo poyPW

~

Notes for Diagram BF1

IDAO19R4 calls IDAOI9RZ (IDAGNNFL)

The buffer control block entries are searched for an
unassigned entry. The first unassigned entry found is
assigned to the current request.

IDAO19RM calls IDAO19RT, which calis IDAO19SA

IDAO19SA gets an empty buffer. IDAOIIRT moves a
segment to the empty buffer.

IDAO19R4 calls IDAOI9RM

180T (JAVSA) POYIIW S5900Yy 98e101§ [enlliA :juauodwo) juapuadapu] SAS ZSA/SO 98

Diagram BG1.

Creating a Key-Sequenced Data Set

Get a New Freespace Control Interval

Address of

VSAM User’s Virtual Storage

.BE1

PLH 4

| Address of

(Data Buffer 1
High Key —1“""'———:,
”
- ”
—

Index Buffer

BUFC

14

Index Buffer

Current SS Record

[

BUFC

Data Buffer

Current Data CI

BUFCs (Data)

Available
Status Flag

,—> 3.
|
|
|
| 4
|
|
|
|
I
|
| 5.
i
/ I
|
|
I
|
|
1 /

VSAM User’s Virtual Storage

Return to caller.

Index Buffer

Create, in the sequence-set index record, an
index entry for the current data control interval. m> Key| F | L |Ptr
(See Diagram BG3 for a description of - - .
index processing in support of the 4 | vsam New Entry
create process.) E Data PLH
N 1 Set
. Write the current data control interval.
Address of
Assign a free data buffer to support e —JL ~?|_Data Buffer
continued processing. -
. Position to the next freespace control interval. BUFC
(See Diagram BG?2 for a description of —————
processing when no more control intervals in the —T‘~—\~ —_—— Output
current control area can be used by the current - RBA
request processing.)

Data Buffer

L8 uoneradQ jo poyloy

-

Notes for Diagram BG1
1 IDAO19SA calls IDAO19RG
2 IDAO19SA calls IDAO19RZ (IDAFREEB)

The buffer is made available for assignment to another
request; however, the next request that attempts to use
the buffer must first write the contents to the data set.

3 IDAO19SA calls IDAO19RZ (IDAGNNFL)

The BUFC for the next available buffer must be
written before it can be used. If the buffer must be
written, a call is made to the 1/0O Manager,
IDAO19R3, to perform the write operation, and a wait
is performed to ensure that the I/0 is completed.
(Note: The IDAGNNFL procedure is called when
processing in create mode or when adding to the end
of an entry-sequenced data set in update mode. Write
operations for PUT-sequential processing are initiated
only by IDAGNNFL.)

4 IDAO19SA
IDA019SA: EOCA

More control intervals cannot be added to the current
control area if the key of the last record in the last
data control interval equals the high key of the current
or only key range or if there aren’t enough freespace
control intervals remaining in the control area to hold
the new record and to maintain freespace
requirements (that is, to maintain the number of
freespace control intervals per control area specified
by the user).

21307 (AVSA) POUIRI $5209Y 98€10)S [Bniip Jusuodwo) Juapuadapul SAS 75A/SO 88

Diagram BG2. Creating a Key-Sequenced Data Set
Get a New Freespace Control Area

VSAM User’s Virtual Storage

BUFC(s)

Status

Must Write |

R”
=~

PLH

Address of
Index Buffer

Index Buffer

BUFC

ARDB

RBA

L—

High-Used | ___ |—"

1.

|

Write all completed and unwritten data control C:—::/“"'ﬁ QD

intervals associated with the current control
area.

. Write the current index record, initialize a new @

index record, and place an entry for the index
entry which was just written in a higher-level

index record. (See Diagram BG4.) o
. When the nonrecovery option is specified,

preformat any unused control intervals in the
current control area.

. Establish the RBA of the next control area in

physical sequence. (See Diagram AE1 for a
description of End-of-Volume processing when 9
the next control area is not within the data

space allocated to the current data set.)

. When the recovery option is specified

(SPEED=0FF), preformat the next control area.

Return to caller.

VSAM
Data Set
Freespac
High-Level Record
New
Entry
7
l New SS Record
VSAM User’s Virtual Storage
Index Buffer
ZZ%>| Header RDF | CIDF

BUFC (Data)

@ RBA of
Next CA

68 uonjesodQ Jo poylolW

(\

Notes for Diagram BG2

IDAO19SA: EOCA calls IDAO19RZ (IDAWRBFR)

Other than the current data buffer, all of the data
buffers that have not been previously written are
written to the current control area.

IDAO19SA calls IDAOI9RG

IDAO019SA calls IDAO19RK

IDAO19SA

IDAO19SA calls IDAO19R5 (IDAEOVIF)

The end-of-volume processor is called to allocate
additional extent(s) to the data set if necessary.

IDAO19SA calls IDAO19RK

21307 (INVSA) POYIS $5300Y 958BI01S [enwiA :Jusuoduio)) Juapuadapu] SAS ZSA/SO 06

Diagram BG3. Creating a Key-Sequenced Data Set

VSAM User’s Virtual Storage

ICWA

Current Key (K1)

Previous Key (K2)

PLH

New Key (KO0)

Output
Job Step

e

. When this is the first entry in the index, obtain a E";;

freespace control interval and initialize an index
buffer.

. Compress the new entry’s key. (See Diagram BG4

for a description of processing when the index
entry won’t fit in the index record.)

. Build a complete entry in the current sequence-set

index buffer.

. Return to caller.

VSAM User’s Virtual Storage

-

Index Buffer

Header

RDF

CIDF

ICWA

Current Key (KO0)

Previous Key (K1)

Index Buffer

Key

F L | Ptr

‘,—/

0 New

Entry

16 uoneiadQ Jo poydW

(\

Notes for Diagram BG3
1 IDAO19RG calls IDAO19RN (IDAAQR)

The index address-range-definition block (ARDB),
which governs the range of keys that include the new
index entry’s key, is located. The field in the ARDB
that contains the address of the next available
freespace control interval is placed in the index create
work area (ICWA).

IDAO19RG calls IDAO19RZ (IDAGNFL)
An index buffer is assigned to the request.
IDAO19RG: INTNEWRC

The contents of the index buffer are set to 0 and the
following items in the buffer are initialized to form an
index record: header, dummy entry, CIDF, RDF, and
freespace data control interval pointers (if the request
is for a sequence-set record).

IDAO19RG: IDAIST

Before the new entry’s key is compressed, the current,
previous, and section key values in the ICWA are
updated; the current key becomes the previous key,
the new key becomes the current key, and the section
key is updated if a new section entry has been built.

The new key is compared with the previous section
key, and a count of the common leading characters in
the keys is set as a front compression value. (Note:
The new key is front-compressed as if it were for a
section entry even though it may not be. Because they
front-compress less, section entries are slightly larger
than normal entries.)

When the current index record is a sequence-set index
record, the current key is rear-compressed relative to
the next data-record key, that is, the key of the first
data record in the next data control interval. The next
data-record key is in the record located by the
RPLAREA field.

The characters in the keys are compared from left to
right until two corresponding characters in the
respective keys differ in value. The current key is then
truncated at this point.

The length of the new entry is established, based on
the compressed key and section pointer, F, L, and
normal pointer field lengths. When there is inadequate
unused space in the current index record to contain
the new entry, a return is made to the caller,
IDAO19SA, to obtain a new control area. (Note:
IDAO19SA recalls IDAO19RG to write the current
index record and to create an entry for the newly

~

completed index record in a higher-level index
record.)

Section Entry Processing
IDAO19RG: IDAIST

Move the F, L, and key values into the dummy entry,
which becomes the new section entry. Then set the
offset to the new dummy’s F field in the new section
entry’s LL field. (Note: The offset in the LL field is
incremented by the displacement to each succeeding
new dummy entry’s F field until a new section entry is
established. The process then repeats for each
succeeding section entry until the record is filled.)

When a previous section entry exists, it is linked to the
new section entry by setting the displacement between
the F fields of the new and previous section entries in
the previous section entry’s LL field.

When the insertion is to a sequence-set record or when
an index-record split was just performed on the index
record to receive the new entry, the next freespace
control interval pointer in the index record is moved
into the dummy record. (Note: A dummy record is
always maintained as the highest possible key in the
index during create processing in order to make the
index complete and searchable even while it is being
created.)

When the new section entry is made in a high-level
index record, the RBA of the current index record in
the next lower index level is converted to an index
entry pointer and placed in the dummy entry. (Note:
There is an ICWA for each level of the index. Each
ICWA has a field containing the RBA of the current
index record at its particular index level.) When the
current index record in the next lower level is
completed, its high key will be placed in the dummy
entry and this cycle continues.

Normal (or Nonsection) Entry Processing
IDAO19RG: IDAIST

The current key is front compressed relative to the
previous key. The front compression performed in
step 2 is based on the assumption that the new entry is
a section entry. Only the rear compression performed
for step 2 is valid in this normal, or nonsection, entry
case.

The key length is calculated and the F, L, and key
values are moved into the new entry.

(\

When a section entry has not been built, the section
entry pointer in the index record header is advanced to
point to the F field in the new dummy entry.

When a section entry has been built, the LL field is
incremented by the displacement between the new
entry’s F field and the new dummy entry’s F field.

See note 3, ““Section Entry Processing,” for a
description of how the dummy entry’s pointer is
derived.

21807 (JNVSA) POUISA $S320y a8ei01g [eniiiA juduodwo) juapuadspu] SAS ISA/SO 76

Diagram BG4. Creating a Key-Sequenced Data Set
Insert an Index Entry for a New Index Record in an Index Record at the Next Higher Level

@w ICWA (Sequence Set)

ICWA (Sequence Base RBA &
Set)) . . Dummy Pointers
1. Save the dummy entry’s pointer in the base RBA
A of the current sequence-set index record.
RBA of e
lcnud';i":{ecord | — < —-3 2. Write the current sequence-set record. Index Buffer
Addr f -7 - Freespace Control Interval I
Curront L 3. Obtain a freespace index control interval.

Index Buffer . .)
Request 4. Initialize the contents of the index buffer with

7

. P rr. / L b

Status index-record control information. Header FIL] t|
r

Address of / F

Freespace

o=l

L D
ICWA for 5. When this is not the first time through this —_— —
Next Level processing, insert the entry that wouldn’t fit Freespace D
N . . y ummy
Index Buffer (see step 12) into the new high-level index record. CI Pointers Section
R|C Entry
Real ol 1L 6. When this is the first t’ime .through this process?ng, (I 412771710019001171
Header FILIt| Lrtries |F|lpfF— put the dummy entry’s pointer and base RBA in
r F the new sequence-set record.

7. Write the new record.
(S| VSAM
Output g Data
of L. Set
Step 3 BGS
8

Output
of
Step 1

€6 uonesadQ Jo POy

~

Notes for Diagram BG4

IDAO19RG

The base RBA is the RBA of the data control area
controlled by the index record. During index create,
the dummy entry points to the freespace control
interval following the last control interval in the
control area in which data records were inserted. At
the end of index-create processing, the dummy points
to the control interval containing the high-key record
of the data set.

IDAO19RG: calls IDAO19RJ (IDAWR)

This operation overlays the index record that was
generated by step 7 when this procedure was
previously entered.

IDAO19RG: calls IDAO19RN (IDAAQR)

The index address range definition block (ARDB) that
governs the range of keys that includes the new index
entry’s key is located. The contents of the field in the
ARDB that contains the address of the next available
freespace control interval is placed in the ICWA.

IDAO19RG: INTNEWRC calls IDAO19RZ (IDAGNFL)

An index buffer is obtained, the buffer is cleared, and
then it is initialized as a sequenced-set or a high-level
index record.

When the index record is high level (see note 5), a
pointer to the lower-level index record just written (see
note 7) is moved into the new higher-level index
record as the dummy entry representing the highest
key of the current level of the index.

Steps 3 through 13 represent a repeating sequence of
operations that retain control until an index entry is
successfully inserted in an index record on the index
level above the level on which a new index record is
created. The first time through this code, processing is
directed at the sequence-set level of the index.
Subsequent iterations are directed at successively
higher levels of the index.

IDAO19RG: IDAIST

The high key of the new lower-level index record is
moved into the new higher-level index record built by
step 4.

(\

Dummy entries are maintained in all levels of the
index as the highest possible key in each level in order
to ensure that the index is complete, or searchable,
even when it is being created. If the index is accessed
while it is being created, an index search, no matter
how high the key of the search argument, is always
satisfied.

For high-level index records (see note 4), the dummy
entry points to the incomplete index record at the next
lower level, and for sequence-set records, it points to a
data control interval.

IDAO19RJ: IDAWR

The new sequence-set or high-level index record is
written to the data set.

On a sequence-set level, this record points back to the
data control interval in the control area belonging to
the previous (just completed) sequence-set record and
is maintained only to make the index complete. It is
destroyed when the next sequence-set index record is
completed and written to the data set (see note 2).

On a higher level, this new record has an entry for the
index record just completed on the next lower level
and a dummy entry for the new incomplete record at
that level.

21307 (WVSA) POYISI §5900y 38e101S [enLIIA Jusuoduio) juspuadapuf SAS ZSA/SO +6

Diagram BGS. Creating a Key-Sequenced Data Set

Insert an Index Entry for a New Index Record in an Index Record at
the Next Higher Level (continued)

ICWA (Sequence
Set)
Address of
ICWA for -
Next Level ~
—> VSAM
Data
Set
=

1st Time u

Processing,

Output of

Step 2; 5 B

Otherwise :> 8. Reread the previous index record at the _ Horizontal Pointer to New Index Record

Qutput of current index level and complete it. [

Step 11. Header LL

9. Rewrite the previous record. J
Output . . s i
ICWA (High Level of Step 8 10. When a higher-level index record doesn’t exist,
create a new high-level index record.
\lndex Buffer
11. Retrieve the current index record for the next New e
—> . RDF |CIDF
g;?r?eg: | — - higher index level above the current level. :> Entry
Index Buffer High Level &
Index Record = 12. Insert (he high-key value of the lower-level index TN (CWA
% // record just completed into the dummy entry of %

High Key — the higher-level index record. % Insertion
of Lower " @ Status

Level Record Q 13. When the new entry doesn’t fit in the high-level BUFC

index record, free the current index buffer.
/ Available
\ 14. Acquire a new index buffer and initialize it for Flag
continued sequence-set index-entry insertions.
PLH BUFC J _ v Index Buffer
2 15. Return to the caller.

§6 uoneiadQ Jo poylo

C C

Notes for Diagram BG5 The processing of steps 3 through 13 is repeated until
an index entry is successfully inserted in an index
8 IDAOI9RJ: IDAR record on the index level above the level on which a
The previous index record at the current index level is new index record is created.
reread. 14
IDAOI9RG When this sequence-set record is completed and this

routine is reentered, this record will be written at step
2, overlaying the dummy sequence-set record written
at step 9.

A horizontal pointer to the new record on the current
index level is set in the previous index record.

IDAO19RG: calls IDAO19RN (IDAER)

The dummy entry in the index record is erased, and
the last (high-key) entry, or entry preceding the erased
dummy entry, is converted to a section entry. The
dummy entry is removed without detracting from the
completeness of the index because a new dummy entry
has been created by steps 6 and 8 (for high-level and
sequence-set records, respectively) and because the
horizontal pointer in the previous record makes the
dummy entry accessible.

9 IDAO19RJ: IDAWR
10 IDAO19RG calls IDAO19RN (IDAAQR)

The index address range definition block (ARDB) that
governs the range of keys that includes the new index
entry’s key is located. An ARDB field contains
information about the next available freespace control
interval; it is placed in the ICWA.

IDAO19RG: INTNEWRC

The buffer is initialized as a high-level index record. A
pointer to the lower-level index record just completed
(see note 8) is moved into the new higher-level index
record as the dummy entry representing the highest
key of the current level of the index.

11 IDAO19RJ: IDAR
12 IDAO19RG

The current key in the ICWA for the current index
level is moved into the current-key field in the next
higher level's ICWA.

IDAO19RG: IDAIST

The value in the higher-level’'s ICWA is then inserted
in the current higher-level record.

13 IDAO19RZ: IDAFREEB

When a new entry will not fit in the higher-level
record, a new higher-level record is built to contain the
new entry.

21307 (JWVSA) POYIR 55330y 98e101§ [enliA usuoduwio)) juapuadapul SAS ZSA/SO 96

Diagram BH1. Modifying a Key-Sequenced Data Set
PUT-Insert Processing (Single or Multiple Record Insertion)

Index {
Data

VSAM User’s Virtual Storage

BB1
5

RPL

Data Buffer

y

/

/

/

/
///
v
/

/ 7/
v/

Record | Key

1. Locate the data control interval whose range of

— — ——-> keysincludes the new record’s key.

» 1'2. Move the control interval into the current data
/A buffer.

3. Is the record to be inserted a spanned record?
No Yes

4. If the current data buffer isn’t empty, split
the control interval to obtain an empty
buffer.

5. If the control area won’t hold the spanned
record, split the control area.

6. Search the sequence set to locate the entry
to be converted to a spanned-record-
segment entry.

Repeat steps 7 and 8 for each segment.

7. Move the segment to a buffer. @

8. Put an entry in the sequence set.

RPARMI

RBA of Data
Control Interval

VSAM User’s Virtual Storage

Data Buffer

> Data Control Interval

Data Buffer

New

Record RDF

CIDF

0

9. Insert the new record into the control interval.

(See Diagram BH3 for a description of processing
when there is insufficient space to contain the
new record.)

10. Return to caller.

BB2
7

L6 uonesadQ jJo poyri

-

Notes for Diagram BH1

1

e ® 3

IDAO19RA

An index search must be performed. The index leve!
where the search begins is based on the following
considerations:

« For skip-sequential processing, the index search
starts at the sequence set. The search normally
starts at the index record pointed to by the current
PLH. If the PLH is invalid, the search starts at the
first record in the sequence set.

« For direct processing, the search starts at the
highest level of the index.

IDAO19RA calls IDAO19RB, which calls IDAO19RZ
(IDAGRB)

The index record at which the search is to start is
moved into an index buffer.

IDAO19RB calls IDAO19RC

The index record is searched for an entry that is
greater than or equal to the search key.

IDAO19RB

When the search is unsuccessful, the next record in
logical sequence is searched. If the search is successful
and a lower index level exists, the search is performed
on the index records in the lower level.

IDAOI9RU

If an upgrade set exists, upgrade the alternate indexes
in it. (see Diagram BR1.)

IDAO19RA calls IDAO19RZ (IDAGRB)
IDAO19RM calls IDAOI9RT

For spanned-record processing.
IDAO19RT calls IDAOI9RE

IDAOI9RE is called until the current buffer, whose
address is given in PLHDBUFC, is empty.

IDAO19RT calls IDAO19RE

The control area is split also, when the sequence-set
record won’t hold enough entries for the
spanned-record insertion.

IDAO19RT calls IDAO19RC
IDAO19RT calls IDAO19RS (IDAMVSEG)
IDAOIIRT calls IDAO19RS (IDAADSEG)
IDAO19R4 calls IDAO19RM

913077 (JNVSA) POYIRI S5390y 35e101§ [eniiA jusuoduwro)) juspuadapu] SAS ZSA/SO 86

Diagram BH2. Modifying a Key-Sequenced Data Set

VSAM User’s Virtual Storage

Data Buffer

Oold
Record
RPL
New
Record
ARDB Ll
High-used
RBA Data Buffer
Free Space Control Interval
vsam | [N~———1
Data A J
Set
v

00008

BB1
S

1. When the new record is not spanned and is the
same length as the old record retrieved by the

Data Buffer

New
Record

|

prior GET-for-update request, move the new

record over the old record.

2. Is the old record a spanned record?
No Yes

3. Find the record’s position in the sequence
set.

4. If the new record has the same number
of segments as the old, move the segments
from the user’s area to buffers.

5. Does the new record have fewer segments
than the old?
No Yes

6. Move the segments from the user’s
area to buffer.

7. Convert unused segments’ control
intervals to free space.

8. If free space isn’t available for the additional
segments, split the control area.

9. Move segments from the user’s area to
the old control intervals and to the
free-space control intervals,

10. When the records are different lengths, erase the

N

old record and insert the new record. [

(See Diagram BH3 for a description of processing
when there is insufficient free space in the control
interval to insert the new record and when
additional space must be acquired.)

11. Return to caller. »
7

C

66 uonesadQ jJo poyldn

e

Notes for Diagram BH2

1
2

IDAO19RL

IDAO19RL calls IDAO19RS

Only if old record is a spanned record.

IDAO19RS calls IDAO19RC

IDAO19RS: IDAMVSEG

A CIDF and RDFs are built for each control interval

that contains a segment.

6
7

See note for step 4.
IDAO19RS: CLEARSEG

An unused buffer is got and filled with binary zeros
and a free-space CIDF. It is written for each freed
segment.

IDAO19RS: DELSEG

Entries for unused segments are removed, and
free-data-control-interval pointers are set up.

IDAO19RS calls IDAO19RF
See note for step 4
IDAO19RS: IDAADSEG

Entries for the additional segments are set up in the
sequence set.

10 IDAO19RL

The old (unspanned) record is erased by overlaying it
with records to its right. If the record is the last record
in the control interval, it is cleared with zeros.
IDAO19RL then calls IDAO19RM to insert the new
(unspanned) record.

IDAO19RM

If an upgrade set exists, the alternate indexes in it are
upgraded. (See Diagram BR1.)

21307 (IWVSA) POYIRIA ss200y a8eu0lg [enuiA :jusuodwo)) yuapuadapu) SAS ZSA/SO 001

Diagram BH3. Modifying a Key-Sequenced Data Set

VSAM User’s Virtual Storage

Create Space to Insert a New or Modified Record in a Data Control Interval

A

BUFCs (Index)

RBA of
Current SS

Read
Required
Flag

Current/Old Data
Control Interval

Sequence Set

Record

]—-> 1. Ensure that the current sequence-set and the

e current data control interval reflect any changes
BUFCs (Data) made by other requests strings (if any).

RBA of > 2. When there isn’t a freespace control interval in the

Current CI @’ current control area, move some control intervals

‘Must to the next freespace control area to create free

Write” space. (See Diagram BH4 for a description of

Flag processing related to splitting a control area.)

3. When the current control interval must be split,

|
|
|
l

/2 move records from the current control interval into
P 4 the next free-space control interval in the current
' : yal control area and adjust RDFs to reflect the new
Current SS Index Record P L .
: : - distribution of records.
R
Pom!ers to S H H -
Freespace 3® s. / > 4. _Insert the new record into the appropriate control
Cls 1~ interval.
- -
-
PLH _ -~ -
s - User’s Area
7z _
Record - 0 N
~— Pointer . .
(Insert o ——— High Key — — — — 4 L — —-> 5. Create an index entry for the new control interval
Point) in the sequence-set index record. (See Diagram
BHG6 for a description of index-entry insertion

processing.)

%lndex Buffer

Valid Sequence Set Index Record

Old Control Interval

Records 0’s

RDFs|CIDF

New Control Interval (Previously

Free Space)

Records

RDFs|CIDF

Data Buffer

New

Records

Index Buffer

Key

Ptr

New
Entry

N

Data Buffer (Previously Freespace CI)
6. Write the updated index record, and when a control
RDFs|CIDF control interval split has occurred, write the old
data control interval. ;>®
Data Buffer 7. When record insertion performed by step 4 is
unsuccessful, repeat steps 2 through 6.
8. Return to caller.
Output of
Steps 3& 5

C

C C

Notes for Diagram BH3 5 IDAO19RE calls IDAO19RH
1 IDAOI9RE calls IDAO19RZ (IDAGRB) The new index entry reflects the high key of the data

101 uonesadQ Jo POy

When the current sequence-set index record has been
updated by another request since it was last read, it
must be reread.

IDAO19RE calls IDAO19RZ (IDAWRBFR)

When the current data control interval has been
updated by another request since it was last written, it
must be rewritten to preserve those updates from
possible loss.

IDAO19RE calls IDAO19RF

If the record is to be inserted at the end of a control
interval or if it is one of a sequence of records to be
inserted at the beginning of a control interval, the
control interval is not split and the record is placed in
the next control interval currently containing
freespace.

If the request is a direct request to insert a record at
the beginning of the control interval or if it is either a
direct or sequential request to insert a record at some
point other than the beginning or end of the control
interval, the control interval must be split.

If the request is a sequential request, the control
interval is split at the point where the data record is to
be inserted.

If the request is a direct request, the record boundary
nearest to the midpoint of the control interval is used
as the split point.

The RDFs are divided among the control intervals so
that they remain associated with their respective
records.

IDAO19RE calls IDAO19RZ (IDAGNFL) and IDAO19RE
(BUILDFS)

A work buffer is obtained, converted to freespace, and
attached to the data insert work area (DIWA). The
work buffer is used to perform the record insertion
processing.

IDAO19RE

Records to the right of the split point in the old control
interval are moved into the new freespace control
interval. Then the moved records are zeroed-out in the
old control interval and the freespace pointers in each
control interval’s CIDF are adjusted.

4 IDAO19RE calls IDAO19RM

records within the new data control interval. If the
new index entry fits in the index record, the buffer that
contains the record is not written to the index until the
new data control interval is written to the data set.

IDAO19RE calls IDAO19RZ (IDAWRBFR)

The new data control interval residing in the work
buffer associated with the DIWA is written.

IDAO19RE calls IDAO19RH (IXIDAWR)

The updated index record residing in the index buffer
associated with the current placeholder is written.

IDAO19RE calls IDAO19RZ (IDAWRBFR)

When a control interval split occurs (see note 3), the
old data control interval associated with the current
placeholder is written.

If the record insertion is unsuccessful after the control
interval has been split, a second pass results in a
successful insertion —IDAO19R4 has verified that the
record fits in a control interval.

21307 (INVSA) POYIR SS90y 98eI031§ [eniiiA lusuodwo)) juapuadapu] SAS ZSA/SO 201

Diagram BH4. Modifying a Key-Sequenced Data Set

DIWA

No. of Used
Control
Intervals

Split-point
Status Flag

High-Used and

g(’““t ‘l)f High-Allocated
ontro | RBAs
Intervals
Moved
Control Area
(Original)
1
2
Data 3
Control
Intervals 4 Control
S Intervals
6 to Move

Data
Set

————————————————— —> 1. Determine the number of control intervals to

move to a new freespace control area.

-» 2. Can the control area be split?
Yes No

v

Initialize a new control area to freespace.

—
-
-

3.
4. Build a sequence-set record for it.
5.

Update the second-level index record for the

new sequence-set record.

7. Position to the next freespace control area in the
current extent.

=)

. Initialize a new buffer for subsequent
processing.

. Copy control intervals into the freespace control
area.

. Zero out the unused space in the new control area.

10. Split the index record to reflect the new
distribution of control intervals among the two
control areas. (See Diagram BH9 for a description
of processing related to splitting an index record.)

PP

DIWA

Intervals to
Move

No. of Control

RBA of Split
Point

RBA of New
Control Area

Control Area (New)

4=

5

6

!

Moved
Control
Intervals

Freespace

€01 uonesadQ Jo poyrK

(“

Notes for Diagram BH4

When the process involves adding a record to the end of a
key range or to the end of the data set, there is no data
transfer between control areas. Steps 7 through 11 are the
only steps performed for add-to-end and end-of-key-range
processing.

1
IDAO19RF

The number of control intervals to be moved to the
new control area from the control area being split is
calculated:

« If the request is a sequential insert request
(RPLSEQ=ON), all data control intervals to the
right of the insert point are moved to the new
control area.

« If the request is a direct request, one half of the
data control intervals are moved to the new control
area.

IDAO19RF calls IDAO19RW (IDAABF)

Buffers are added to the placeholder’s buffer chain
until there is a buffer in the chain for each control
interval to be moved or until there are no more data
buffers in the buffer pool.

2 The control area can be split if it is filled with the
segments of only one (unspanned) record.

4 IDAO19RF calls IDAO19SF, which calls IDAO19RI
(IDANEWRD)

The header of the index record is initialized.
User’s key less than key of record in old control area:

The new sequence-set record is pointed horizontally to
the sequence-set record of the old control area. The
sequence-set record preceding the old control area’s
sequence-set record is located.

IDAO19SF calls IDAO19RZ (IDAGRB)

This preceding sequence-set record is read and pointed
horizontally to the new sequence-set record.

IDAO19SF calls IDAO19RZ (IDAWRBFR)
The preceding sequence-set record is written.

User’s key greater than key of record in old control
area:

IDAO19SF calls IDAO19RZ (IDAWRGFR)

The new sequence-record is pointed horizontally to
the sequence-set record that the sequence-set record of

-

the old control area pointed to and is written.
IDAO19SF calls IDAO19RZ (IDAGRB)

The sequenct-set record of the old control area is read
and pointed horizontally the new sequence-set record.

IDAO19SF calls IDAO19RZ (IDAWRBFR)

The sequence-set record of the old control area is
written.

IDAO19SF calls IDAO19RZ (IDAHLINS)
IDAO19SF calls IDAO19RZ (IDAGNNFL)
IDAO19RF

Before acquiring a freespace control area, the data
buffer control block (BUFC) chain is examined to
determine whether any of them have an RBA under
exclusive control within the range of RBAs for the
control area being split. If there is an exclusive control
conflict, an error code is set and a return is made to
the caller.

If the boundary of the next freespace control area
exceeds the boundary of the current extent, that is, the
high-allocated RBA, VSAM End-of-Volume is called
via an SVC 55 to attempt to acquire more space (see
Diagram AE1, VSAM End of Volume: Obtain the
VSAM Object’s Next Volume). If space is unavailable,
an error code is set in the RPL and a return is made to
the caller.

IDAO19REF calls IDAO19RZ (IDAGRB)

The first control interval is retrieved as a direct
request.

IDAO19RF calls IDAO19RZ (IDAGNXT)

Subsequent control intervals are retreived on a
sequential basis.

IDAO19REF calls IDAO19RZ (IDAFREEB)

As each buffer is filled, its must-write flag is set
(BUFCMW=O0N), and then it is released
(BUFCAVL=ON).

IDAO19RF calls IDAO19RZ (IDAWRBFR)

When all of the control intervals eligible for the move
have been read into buffers, the buffers are written to
the data set.

9 IDAO19RF calls IDAO19RK
10 IDAO19RF calls IDAO19RI, which calls IDAO19RJ

For add-to-end processing, only a new sequence-set
record is created. For other processing, the original

-

control area’s sequence-set record is split, thereby
creating a new sequence-set record with index entries
for the control intervals that were moved to the new
control area.

5180 (JNVSA) POYIRIA SSa00y a8elo)§ [eninip :jusuodwo)) juspuadapul SAS ZSA/SO 01

Diagram BHS. Modifying a Key-Sequenced Data Set

BH4
10

11. Update a high-level index record with an index
entry for the new sequence-set record

VSAM
Data Set

generated by the split. (See Diagram BHS8 for a
@ description of processing related to updating Sequence-Set Index Record (Original)
higher levels of the index.) Header l:'.n;ry Enstry En4try RDF | CIDF
12. When thg control-area Splllt point shnfts asa Sequence-Set Index Record (New)
result of index-record split processing, adjust 5 /5 =
the distribution of control intervals among the 4 |Header '";'Y "2"" "l"" RDF | CIDF
?lgge(;) control areas to coincide with the new split p
point. E Control Area (Original)
%
- 1
\\\\ 13. Zero out the control intervals in the original E 2
Data Buffer \\\ control area which were copied to the new s _ 3 Control Area (New)
S~ control area. 4
~—— > 5
g 14. Update pointers and retrieve data for 6

subsequent processing.

15. Return to caller.

Data Buffer

!

AT DT T oo

’,
(222222 PP P PP PPPPPoLS

Data Control Interval
Containing Insert Point

BUFC (Index)

RBA of Sequence-Set
Index Record Containing
an Entry for the Control
Interval to have a
Record Inserted.

C C

IDAO19RZ: IDAGRB

The sequence-set record for the new control area is
brought into the index buffer.

Notes for Diagram BH5

11 IDAO19RI
12

§01 uonesadQ jo POy

Any control intervals that were copied into the new
control area and that are no longer validly associated
with that control area as a result of distribution
changes effected by the sequence-set split process are
zeroed out in the new control area. The following
procedures effect this change:

All of the buffers in the placeholder’s buffer chain are
zeroed out.

IDAO19REF calls IDAO19RZ (IDAGNNFL)

A buffer in the placeholder’s buffer chain is assigned
as a work buffer.

IDAO19RF calls IDAO19RZ (IDAFREEB)

The work buffer’s must-write flag is set on, and it is
freed. (Note: It is written when the next request for a
free buffer examines its must-write status and causes it
to be written before reassigning it.)

IDAO19REF calls IDAO19RZ (IDAWRBFR)

The previous two steps are repeated until all invalid
control intervals in the new control area have been
erased. All of the work buffers are then written to the
data set.

IDAO19REF calls IDAO19RZ (IDAGRB)

The sequence set of the original control area is then
read into an index buffer.

If the control interval containing the insert-point
address is returned to the old control area by the
process outlined by the previous four steps, the insert
point must be recalculated.

IDAO19RF calls IDAO19RZ (IDAWRBFR)

The buffers are written to the data set.

14 IDAO19RF

Ensure that the PLH points to the sequence-set record
containing an index entry for the data control interval
that contains the new record’s insert point.

IDAO19RZ (IDAFREEB)

If it does not, the index buffer containing the
sequence-set record for the old control area is
released.

IDAO19RZ: IDASBF

The buffers that were added to the placeholder’s
buffer chain to support the control-area-split process
(see note 1 in Diagram BH4) are released from the
chain.

IDAO19RZ: IDAGRB

The control interval that contains the insert point is
retrieved from the data set and placed in a data buffer.

21307 (INVSA) POYISIA 55320y 33eI10)§ [eniIIA Jusuodwo) juspuadapu] SAS ZSA/SO 901

Diagram BH6. Modifying a Key-Sequenced Data Set
Build an Index Entry and Insert It in an Index Record

PLH
PLH

a Processing for Insertion of an Entry in the Sequence Set.

Request Status

. . . Address of Buffers
1. Determine which of the data control intervals passed ZZZZZZZZ2H Containing

l BUFC @/Z has the highest key. High and Low Keys
_) 2. Establish the high key of the old data control
interval for insertion into the sequence-set index IMWA

)'® record and compute the index-entry pointer values thd'esé of New
Buffer . for both the new and the old data control intervals. ny tey

Output RBA

High New and Old
DIWA Key Entry Ptr Values
L 3. Locate the lhnsertlon_pomt'for the new entry for the Compressed Key
old control interval in the index record, and establish Length

a front key-compression value for the new entry’s key

relative to the lower-keyed entry which it follows.
BUFC H
4. When the current processing is the result of a control
Output RBA ©/’7 interval split due to a sequential, or mass, insert
é @ to the old control interval, do the following:
Buffer/ ® Decrement the low key of the new control m@
High > interval by 1 and use this as the high key of IXSPL
RPL Key - the old control interval to be inserted into the
,’© Control Interval @/ index record.

on Which Insert
was Performed

R tT . .
equest Type ® Reestablish (see step 3) the front key-compression ezzzzzrzzrz2> Front Key

; . Compression
value of the new entry’s key relative to the lower Address of Entry

New Control Interval @ key of the entry which it will follow. F Following Insert Point
I}E°“’ ~> 5, Rear compress the new entry’s key relative to the L
£y A low key in the new data control interval and 0
. ndex Record
01d Control Interval ®/ establish the key length of the fully compressed key.
Key| F] L | Ptr
[@ Insert Point
Index Record ,__.C_q @
R|C
Header Key|F L |Ptr|Key | F|L|Ptr 21!)
F
N— —
Higher-Keyed

Entry

L0 uoneadQ Jo poyrs

I

Notes for Diagram BH6

1 IDAOI9RH

2 IDAO19RH

3 IDAO19RH calls IDAO19RC

The index-record search begins with a search of the
section entries.

After a section entry whose key is equal to or greater
than the key being sought is located, the individual
entries governed by the section entry are examined
until a key that is greater than the search key is found.

During the nonsection entry search process, a count of
the common leading characters of each entry relative
to the search key is maintained. When control is
returned to IDAO19RH (index insert), this value is
sometimes used as the front key-compression value of
the new entry’s key, or the search key, relative to the
previous, or lower-keyed, entry in the index record.

Basing the high key of the new control interval on the
low key (minus 1) of the next control interval enables
the sequential insertion process to continue without
having to update the index record for each record in
the group of records that are added to the data control
interval as a mass insert; otherwise, a relatively small
group of records could establish multiple new high
keys for the control interval receiving the records.

5 IDAO19RH: COMPRS

The leading characters of the two keys are compared
until the first unlike character is found. The like
characters are dropped from the new key when it is
compressed.

The front and rear compression values are then used
to determine the length of the compressed key.

213077 (IWVSA) POYISIN §5300Y 38eI0l§ [enlIA Jusuodwo) juapuadspu] SAS ZSA/SO 801

Diagram BH7. Modifying a Key-Sequenced Data Set

Build an Index Entry and Insert It in an Index Record (continued)

E Common Processing for High-Level and Sequence-Set Insertions
IMWA

Higher
Key’s Front

VSAM User’s Virtual Storage
6. When the new entry should be a section entry,

A establish a front key-compression value for the new

Index Buffer /P section entry relative to previous section entries Compression
rlc // and repeat step 5 for sequence-set records. Compressed
Head Next | New DI // Key Length
eader Entry | Entry F|D /) 7. Establish a front key-compression value for the next
F / 4 higher key following the new entry relative to the
T l / / / new entry’s key.
Entries- Previous / /
Pe"sl“m" I Sec"°'l‘ Entry // / / 8. When the new entry does not fit in the index record, Front Key
“ o + _____ -4 7y return to the caller. Compression
e —— — — — — — — — -L -J_) . .
/ 9. Front compress the key field of the next, higher- Point
IMW : e . ointer to
A / keyed, index entry o1d Data
/ Control Interval
Address of' ________ y Index Buffer
New Entry’s
Key _\ P P R
D]I
t
KeyFLrKeyFL: FID
F
User’s Area N —
Key Next New
Entry Entry
N— —
Record

10. Build the new entry and put a new pointer in the

next entry.
Pointer to
New Data

11. Return to caller. Control Interval

601 uoneradQ jJo poyIdW

(_

Notes for Diagram BH7
6 IDAO19RH

For section-entry key compression, the new section
key is compared against each succeeding section entry,
starting with the first, in establishing the front
compression value.

7 I1DAO19RH: HLINSERT

Before establishing a front-compression value, the
front key compression, or F value, in the high-keyed
index entry is compared against the front-key
compression value combined with the key length of
the new index entry. If the F value in the high-keyed
index entry is not greater than the other combined
values, or if the key length, or L value, of the new
index entry is 0, compression is not performed.

8 IDAO19RH

The length of the new entry’s key (L value) plus the
standard F, L, and pointer field lengths are compared
to the amount of freespace in the current index record
combined with the front-compression value
established by step 7. (If the entry is a section entry,
the length of the section entry pointer (LL field) is also
included in these calculations.) If there is insufficient
space for the new index entry, control is returned to
IDAO19RJ (index split), by way of IDAO19RI (index
update), to split the index record.

9 IDAO1I9RH

The higher-keyed entry is moved to the left,
overlaying the front characters in its key which are to
be compressed.

10 IDAOTI9RH

The entries following (to the left of) the insert point
are moved to the left, overlaying the freespace to the
left of the high-keyed entry in the record, until
sufficient space exists at the insert point to contain the
new index entry.

The following higher-keyed index entry contains the
key of the new data or index control interval
generated by IDAO19RE (control interval split) or
IDAO19RIJ (index split). Accordingly, its pointer must
be replaced with a pointer to the new control interval.

213077 (INVSA) PO $5300Y 98eI01§ [enui ‘luauodwo)) Juspuadapuy SAS ZSA/SO 011

Diagram BH8. Modifying a Key-Sequenced Data Set
Update a High Level of the Index with an Entry for the New Sequence-Set Record.

N%

Index
Space

VSAM Data Scet

®

ICWA (Sequence Set)

Index Record
Specifications

V

Register 15

Return Code

/

1.

—— —— —> ® Qbtain the RBA of a freespace index control J

e
e
7

When there is only one index level in the data set,
build a high-level index record as follows:

interval for the high-level record.

® Assign an index buffer to the request and
build the high-level index record.

® Write the high-level record.
® Return to the caller.

Index-Entry Processing When a High-Level Index
Record Exists

2.

Scarch the next higher level of the index for an
index record whose range of keys includes the high
key in the new index record created by the index
split process.

. Insert an entry, which points to the new index

record, in the higher-level index record.

. When the insertion is unsuccessful, locate the split

point and split the higher-level index record to
create space for the new entry. (See Diagram BH9
for a description of processing related to splitting
an index record.)

. After the record is split following an unsuccessful

attempt to insert an entry, insert the new entry in
the unused spuace generated by the split process
(see step 4).

. Repeat steps 2 through 4 until the index level

above the level on which the last split was
performed contains a new entry for the new
record created by the split process.

. Return to caller.

C

ICWA (High Level)

Address of New
Record

Address of Buffer

BUFC
l Index Buffer
Header|FT¢¢ | Dummy New 1 p e | CIDE
space | Entry Entry

Index Space

New High Level

111 uoperadQ jo poylo

e

Notes for Diagram BH8

1

IDAO19RI calls IDAO19RN (IDAAQR)

The index address range definition block (ARDB) that
governs the range of keys that includes the new index
entry’s key is located. The contents of the field in the
ARDB that contains the address of the next available
freespace control interval is placed in the ICWA.

IDAO19RJ calls IDAO19RK

If this is the first time that space governed by the
ARDB located above has been used and if
sequence-set-with-data is specified, the new index
record requires preformatting. Starting at the address
established above, software end-of-file control
intervals (zeros) are built until the end of the track on
which replication is to occur is reached.

IDAO19RI calls IDAO19RZ (IDAGNFL)
A buffer is assigned to the request.

IDAO19RI calls IDAO19RH, which calls IDAO19RZ
(IDAWRBFR)

The high level index record is written.
IDAO19RI calls IDAO19RB
IDAO19RI calls IDAO19RH

If there was insufficient space in the index buffer to
support the index-split process, an attempt is made to
provide more space.

IDAO19RI: FINDSP

The offset to the section entry containing the split
point is established by tracing along the chain of
section entries until a section entry is reached whose
displacement from the start of the index record is less
than the displacement of the split point used in the
prior unsuccessful split operation.

IDAO19RI: LNEXTE

Using this information, a new split point is established
for the next attempt to split the index record.

IDAO19RI calls IDAO19RJ

The index record is split to create space for the index
entry associated with the new index record created by
the split process.

IDAO19RI calls IDAO19RH

3!301 (INVSA) POYIR SS90V QEEJOIS fenlnp Z‘UQUOdl.UOD 1u9puadapu1 SAS ZSA/SO 41

Diagram BH9. Modifying a Key-Sequenced Data Set
Split an Index Record to Create Space for a New Index Entry

ICWA
BHS8
4 Address for
New Record
Block 2 Block 1
ICWA 1. Find the RBA of a free control interval in which to Index Buff Entries Entries
Address of _ ~ insert the new index record. e - = z
— Regordtobe P~ — e R
Split -C___~ 5> 2. Read the index record to be split into the index =~ —————=>| Header Il: E';"y E"3"y II: E"Z"Y E"l"y D })
Addressof | _ _— — — l buffer. FlF
(Index Buffer | —— A
Index Level | 3. Delete the section pointers from the entire index Free space Section Pointers
Indicator
~ record.
R C
Reformat the High-Keyed Block of the Original Header Entry|Entry|Entry|Entryf, ||
4 3 2 1 D
Index Record FIF
\) . \ \ ~— y Yy
4. When the index record is a sequence-s-et record, N Pointers to Pointers Removed
build a new set of control interval pointers. \\\\\\\\\\\\\\\\\\\\\\Q Free Data from Entries
. » N Control (Entries Composed
5. When the index record is a high-level record, N| Intervals of Keys and F and
preserve the existing lower-level index-record § (Sequence-Set L Fields Only)
. . . \ Records Only)
pointers by copying them into the freespace ISTLTEYTETIEYIEYIINYS)
immediately following the header.
Index Buffer
ALY
— 6. Delete the original pointers from within the index
R block.
C
. . . PJR
7. Convert the high-keyed index block into a new —————">{ Header l]j Key|F|L]t[D :)
index record. i 13 =
8. Write the new index record. e
Entry 4 for

Block 2

——
S
——

€11 uonesadQ jo poyP\

-

Notes for Diagram BH9

1

IDAOI9RN: IDAAQR

The index address range definition block (ARDB) that
governs the range of keys that includes the new index
entry’s key is located. The contents of the field in the
ARDB that contains the address of the next available
freespace control interval is placed in the ICWA.

IDAO19RJ calls IDAO19RK

If this is the first time that space governed by the
ARDB located above has been used and if
sequence-set-with-data is specified, the new index
record requires preformatting. Starting at the address
established above, software end-of-file control
intervals (zeros) are built until the end of the track on
which replication is to occur is reached.

IDAO19RJ: IDAR (calls IDAOI9RZ (IDAGRB))

The appropriate index record is in the index buffer
when IDAOI9R] is entered. However, the index is
freed by IDAO19R]J to provide for the contingency that
preformatting of succeeding index records will be
required (see note 1). Accordingly, the index record
must be reread.

IDAO19RJ: DELSECT

Starting with the rightmost, or low-keyed, section
entry, each section entry is moved to the left by the
length necessary to eliminate the section entry’s
section-chaining pointer (LL field). This operation
continues until the last section entry is reached. The
last section entry is identified by a section chaining
pointer containing zeros.

IDAO19RJ

For sequence-set index records, a complete set of
1-byte or 2-byte pointers is built adjacent to the index
header. The number of pointers equals the number of
control intervals per control area.

IDAO19RJ: MOVEPTR

For high-level index records, each index pointer in the
index block is moved into the freespace between the
index header and the index block, moving from left to
right. The pointers within the block are not altered by
this procedure.

IDAO19RJ: DELPTR

The pointers in the index entries are eliminated by
moving each index entry to the left so that it overlays
the pointer field of the next higher-keyed entry.

(\,

7 IDAO19RJ: BUILDREC

The following operations are performed to recreate an
index record from a compressed block established by
the preceding steps:

a) The right end of the buffer that contains the
section of the index record to the right of the split
point is set to zeros.

b) The first (rightmost) pointer in the group of
pointers adjacent to the header is moved to the end
of the index record adjoining the RDF. This
becomes a dummy entry with F and L fields set to
zero.

c¢) IDAO19RJ: RJE

The first (rightmost, or low-keyed)) entry in the
index block is eliminated. This is done to provide
additional space for the Insert routine. The key was
previously saved in the ICWA.

d) IDAO19RJ calls IDAO19RG (IDAIST)

The key that was placed in the ICWA is front
compressed (if necessary) and real values are
established in the dummy entry’s F and L
index-entry fields.

e) If there is insufficient space preceding the dummy
index entry for the Insert routine to insert the key
and if there is freespace to the left of the index
block, the index block is moved to the left to
overlay any freespace that is available. If there is
no freespace available, or if after acquiring all
available space there is still insufficient space to
contain the key, control is returned to the caller,
IDAOI19RI, the split point is adjusted to the left,
and IDAO19RI calls IDAQ19R]J to begin the split
process again.

f) 1f there are two or more keys remaining to be
moved or if the last entry is not a dummy entry, the
ICWA is adjusted for use by the Insert routine as
follows:

The current key is moved into the previous key
field.

The current key length is moved into the previous
key length field.

The next key to the left in the index record is
uncompressed and placed in the current key field.

The key length is placed in the key-length field.

-

g) Steps 7d, e, and f are repeated until the test in step
7f is not satisfied.

IDAO19RJ calls IDAO19RZ (IDAWRBFR)

The index buffer containing the new index record is
written to the data set and then freed after it has been
written.

21307 (INVSA) POYIR 55200y aFe101§ [emIIA juduodwo) juapuadapuf SAS ZSA/SO +I1

Diagram BH10. Modifying a Key-Sequenced Data Set

Split an Index Record to Create Space for a New Index Entry (continued)

VSAM User’s Virtual Storage

BH9
Reformat the Low-Keyed Block of the Original Index Record

9. Reread the original index record into the index
o buffer, Index Buffer
VSAM
Data @’ . A . RlC
Set Freespace 10. Delete the section pointers from the entire index z> Entry|Entry|Entry|Entry D[I
record. Header 4 3 2 1 F l}_?
ICWA 11. Compress the low-keyed index block as follows: ~ v -
J . i . Pointers Removed from
Qf_,’f;ﬁ;s,?fbe ® Count the entries to the left of the split point Entries — Entries
Split — ‘—@ and preserve their pointers. Composed of Keys
~ . and F and L Fields
Address of ® When the record is a sequence-set record, count Only
Index Buffer =¥ entries to the right of the split point and preserve
Index Level P
l:dfc"atoer"e . their pointers.
® Delete the entry pointers in both blocks of the Index Buffer
Index Buffer index record. RIC
B3 Header Entry| Entry|Entry| D]1
. . . . 3 2 1 F{D
R 12. Move the entries to the right of the split point to the F
left to adjoin the pointers.
———— —
A . . F, L, and Keys
13. Convert the low-keyed index block into a new index
record.
. L L P
14. Rewrite the original index record. Header L|Key|FlL]t
r
15. Return to caller. —!
Freespace C1 Entry 3
Pointers
(Sequence
Set Only)
R|C
L P PIp|1
LKeyFL:KeyFL:FD
F
Entry 2 Entry 1

VSAM User’s Virtual Storage

:, VSAM
w Data Set

§11 uonesadQ Jo poyPW

e

Notes for Diagram BH10
9 IDAO19RJ: IDAR (calls IDAO19RZ (IDAGRB))

The original index record is reread.
10 IDAO19RJ: DELSECT

See note 3 of Diagram BH9Y.
11 IDAO19RJ: COUNT

The number of index entries between and including
the first entry to the left of the split point and the
leftmost (high-keyed) entry in the index record are
counted.

IDAO19RJ: MOVEPTRR

If enough space exists between the header and the
leftmost index entry for the entry for the entry pointer
established by the count above, each index pointer in
the index block is moved into the freespace, moving
from left to right.

IDAO19RJ: MOVEPTRI

If there is not enough space for the entry pointer, the
pointers are moved by placing the leftmost pointer in
the index block into the leftmost location in the
freespace, and by placing the next pointer to the right
into the next position to the right in the freespace until
all of the pointers established by the count are moved.

High-level index record processing is not concerned
with pointers that have been moved out of the index
record by the split process. Sequence-set records must
maintain pointers for control intervals that are freed
by a control-area-split operation and retain pointers to
the data control intervals that remain in the control
area being split; whereas, high-level index records
have pointers only to lower-level index records that
are not moved by these processes.

The steps performed by MOVEPTRR and
MOVEPTRL are repeated; however, in this case, the
process is directed against the pointers that are
contained in the index entries to the right of the split
point, instead to the left.

IDAO19RJ: DELPTR
See note 6.
12

Starting with the entry to the right of the split point,
the index block is moved to the left until it reaches the
pointers that were established by prior steps.

(\

13 IDAO19RJ: BUILDREC
See note 7.
14 IDAO19RJ: IDAWR

The index buffer containing the revised index record is
written to the data set, overlaying the original index
record.

130T (JNVSA) POYIDIA SS300y 956101 [BNMIA Jyusuodwo) yuapuadapu] SAS ZSA/SO 911

Diagram BI1.

VSAM
Data
Set

|

ERASE Processing: Key-Sequenced

BB1
5

VSAM User’s Virtual Storage

Data Buffer

1. Ensure that the record to be erased is in the ¢

Data Bufferl/ be Erased

Data Buffer v

Control Interval

Record to

/Ai{DFs CIDFp—1

N — ——— |

N e e =

I—- Freespace

— Records

4

VSAM buffer associated with the request.
2. Is the record to be erased a spanned record?
No Yes
3. Locate the record’s sequence-set entries.

4. Convert the control intervals of the record’s

segments to free space.-

5. Erase the designated record by overlaying it with
existing records.

/——’%

- 6. Adjust or erase the RDF associated with the
———— request. PZPPPPPPPPPP 77777777777 PP PPr2r 0

7. Terminate the request and return to the user’s
processing program.

@ 8. Return to caller.

VSAM User’s Virtual Storage

BB2
7

Control Interval

Data Buffer %

/4

%%RDFS CIDF

Created by Shift

Shifted
Records

ii I— Additional Freespace

L11 uopesadQ Jo poyIdy

~

Notes for Diagram BI1

1

IDAO19RL

An ERASE request must be preceded by a
GET-for-update request that moves the data control
interval containing the desired record into a buffer.

IDAO19RU

If an upgrade set exists, upgrade the alternate indexes
in it. (See Diagram BR1.)

IDAO19RL calls IDAO19RS

For spanned-record processing.
IDAO19RS calls IDAO19RC
IDAO19RS: CLEARSEG

An unused buffer is obtained and filled with binary
zeros and a free-space CIDF. The RBA of each
segment is calculated from the index and placed in the
BUFC. The buffer is written for each segment.

IDAO19RS: DELSEG

Entries for all segments except the first are removed,
and free-data-control-interval pointers are set up. The
entry for the first segment is converted to indicate an
unspanned record.

IDAO19RL
IDAOI9RL

When the RDF is a single RDF, it is erased. When the
RDF is a group RDF (that is, two RDFs are combined
to refer to two or more data records of equal length),
the following processing occurs:

» If the count of the records related to the group
RDF is greater than two, the count is reduced by
one.

» If the count of the records is equal to one (which
should not occur), the two RDFs are eliminated
and the CIDF is adjusted to reflect the increase in
freespace in the control interval.

« If the count of the records is two, one of the two
RDFs is eliminated and the CIDF is adjusted.

5180 (JAVSA) POYISIA 5329y 38e101g [emuiA Juauodwo)) juspuadapu] SAS ZSA/SO 8il

Diagram BJ1. POINT Processing

VSAM User’s Virtual Storage BB1 Register RWORK?2
S RBA of Data
RPL Control Interval
. . VSAM User’s Virt
1ier2'u°l:em 1. Locate the control interval that contains the S ser’s Virtual Storage
_ -~ specified key or RBA. VSAM Buffer
~ - Data
Keyor L |~ 2. Move the control interval into a buffer. VT R:cord
RBA
3. Establish the position of the desired record. PLH
4. Return to caller. N RBA of
Record
VSAM
Data

611 uonesadQ jo poyIs

C

Notes for Diagram BJ1
1 Keyed Processing—Key-Sequenced Data Set:

IDAO19RA

When the request is keyed, an index search must be
performed. The index level where the search begins is
determined as follows:

« For skip-sequential processing, the index search
starts at the sequence set. The search normally
starts at the index record pointed to by the current
PLH. If the PLH is invalid, the search starts at the
first record in the sequence set.

« For direct processing, the search starts at the
highest level of the index.

IDAO19RA calls IDAO19RB which calls IDAO19RZ
(IDAGRB)

The index record at which the search is to start is
moved into an index buffer.

IDAO19RB calls IDAO19RC

The index record is searched for an entry that is
greater than or equal to the search key.

IDAO19RB

When the search is unsuccessful, the next record in
logical sequence is searched. If the search is successful
and a lower index level exists, the search is performed
on the index records in the lower level.

Keyed Processing—Relative Record Data Set:
IDAO19RR

The relative record number that is specified as a
search argument is converted into the RBA of the
control interval that contains the record and the offset
of the record in the control interval.

IDAO19RR calls IDARRDRL

The control interval is read, unless its RBA falls
beyond the end of the data set. If the RBA isn’t within
the data set, then:

« With KGE, end-of-data is indicated and
positioning is established at the end of the data set.

« Without KGE, no-record-found is indicated.
Addressed Processing:
IDAO19RA

The RBA that is specified as a search argument is
converted into the RBA of the boundary of the control

(\

interval that it falls within.

IDAO19RA calls IDAO19RZ (IDAGRB)
Relative Record Processing:
IDARRDRL calls IDAG19RZ (IDAGRB)
The control interval is read by RBA.
IDAG19RA

The control interval is scanned to determine whether
the key or RBA provided as a search argument is
within the retrieved control interval. (Note: The RBA
must represent a valid record boundary within the
control interval.)

When the key search is unsuccessful, a test is made to
determine whether a control interval split has been
performed by another request-string operating
concurrently with the current request. If a split has
occurred, processing returns to step 1 to perform a
new index search.

Relative Record Processing:
IDARRDRL

Positioning is established by saving in the PLH
pointers to the record and the RDF and the RBA of
the control interval.

21307 (WVSA) POYISI $590y 33BI0IS [enuIA 1usuodwio) Juapuadapu] SAS 78,4 /80 021

Diagram BK1. ENDREQ: Terminate A Record-Processing Request

Noncreate

VSAM User’s Virtual Storage

RPL

BUFCHDR
Must-Write-
Status = ON

Error Flag | $®

:I, Data Buffer

Data Buffer

Must-Write = ON

. When processing of the current request is not

complete, issue a WAIT macro against the ECB.

. Write any unwritten data buffers to the data set.
. Perform I/O-error processing if necessary.

. Return to the user’s program or to Close.

New or Modified

Control Intervals

VSAM
Data Set

121 uonesadQ jo POy

(‘««

Notes for Diagram BK1

IDAO19R1: FINDOPLH

The placeholder (PLH) for the request string
associated with the ENDREQ request is located by
searching the placeholder list for a placeholder that
points to the RPL identified by the ENDREQ.

IDAO19RP: IDAENDRQ

Other RPLs (if any) in the request string are prevented
from being processed by setting a flag in the
placeholder that indicates that an ENDREQ request is
being processed. (Note: Once a request-string starts
processing, it continues until all of the RPLs in the
string are processed or until an ENDREQ is issued.
When an ENDREQ is issued, processing against the
request-string is terminated when processing of the
current RPL in the string has completed.) If the
current request is not complete, the WAIT is issued to
ensure completion.

IDAO19RP: IDAENDRQ

Before performing any 1/0, the processing is forced
into synchronous mode to ensure that control is not
returned to the user until I/O associated with the
ENDREQ request is completed. When 1/0 is
completed, asynchronous processing is restored if the
processing was previously asynchronous.

IDAO19RP: IDAENDRQ (calls IDAOI19RZ
(IDAWRBFR))

All unwritten data buffers associated with the current
placeholder are written.

IDAO19RP: calls IDAO19RS

The buffer control block (BUFC) chain for the I/O
block (IOB) in error is searched for a BUFC with an
error indicator.

Error conditions are analyzed and an error message is
built.

IDAO19RP calls IDAO19RS (IDAEXITR)
For processing if a SYNAD routine exists.
IDAO19RP: IDAENDRQ (calls IDA0O19RZ (IDASBF))

Excess data buffers are released from the current
placeholder.

IDAO19RP: IDAENDRQ

The placeholder is released from the current request
string.

21807 (NVSA) POUIRI\ Ss300Y 38€101S [EnuiA iusuodwo) 1uapuadapul SAS ZSA/SO ZTI

Diagram BK2. ENDREQ: Terminate A Record-Processing Request

BB2
5

Create

VSAM User’s Virtual Storage

RPL ECB

I —1

Index Buffer(s)

I Index Record

Data Buffer(s)

I Data Control Interval

Preformat Work Buffer

H————>1

; 2
/3.
— ,

. When processing of the request associated with

. Write the current index record, if necessary, and

the ENDREQ request is not complete, issue a
WAIT macro against the ECB.
write any unwritten data buffers.

When the nonrecovery option is specified (SPEED=
ON), convert unused control intervals in the last-

Preformatted

used control area to freespace.

. Return to the user’s problem program or to Close.

Unused and
Preformatted

VSAM
Index

VSAM
Data Set

€21 uonesadg jo poyro

(\

Notes for Diagram BK2
1 IDAO19R1: FINDOPLH

The placeholder for the request string associated with
the ENDREQ request is located by searching the
placeholder list for a placeholder that points to the
RPL identified by the ENDREQ.

IDAO19RP: IDAENDRQ

Other RPLs (if any) in the request string are prevented
from being processed by setting a flag in the
placeholder that indicates that an ENDREQ request is
being processed. (Note: Once processing for a
request-string starts, it continues until all of the RPLs
in the string are processed or until an ENDREQ is
issued. When an ENDREQ is issued, processing
against the request-string is terminated when
processing of the current RPL in the string has
completed.) If the current request is not complete, the
WAIT is issued to ensure completion.

2 The processing for step 2 ensures that the index entry
for the last data control interval in the current data
buffer for the current control area will fit in the index
record for the current control area. Otherwise, when
processing is resumed and when the dummy entry in
the index record does not have space for the key, the
data control interval would have to be moved to a new
control area and have its index entry placed in the
index record for the new control area.

IDAO19RP calls IDAO19RG

Before writing the index buffer, the following
processing is performed: IDAO19RG checks the
leftmost entry, a dummy entry for the current control
interval, in the index record to determine whether a
maximum length key will fit in the remaining index
record freespace. If there is adequate space to insert a
key, IDAO19RG writes out the current index record
and frees the index-create work area(s) (ICWAs).

If there is inadequate space to contain a key for the
control interval in the current data buffer, IDAO19RP
calls IDAO19SA, which recalls IDAO19RG, in order to
have the entry inserted into the index record.
IDAO19RG returns a no-fit indicator to IDAO19SA,
which forces an end-of-control-area situation for
IDAO19SA (EOCA) processing. In response to the
no-fit indicator, IDA0O19SA (EOCA) writes out any
full data buffers (less the current data buffer) to the
data set and acquires a new control area.

3 IDAO19RP calls IDAO19RZ (IDAWRBFR)
4 IDAO19RP calls IDAO19RK

1807 (INVSA) POYIQ SS300y a8e101g [enliA Jusuodwo)n juapuadapuy SAS ZSA/SO +21

Diagram BL1. CHECK Processing

VSAM User’s Virtual Storage

ECB

[|

]___

RPL

/
Post Bit

Error Flag

BB2
s

————— => 1. When the request’s ECB is not posted as being

complete, a WAIT macro is issued against the
ECB.

—> 2. Perform error processing if necessary.

3. Return to the user’s processing program.

§71 uonesadQ Jo poyp

e

Notes for Diagram BL1

IDAO19R1: FINDOPLH

The placeholder for the request-string associated with
the CHECK request is located by searching the
placeholder list for a placeholder that points to the
RPL identified by the ENDREQ.

IDAO19R1: RICHECK

A WAIT macro instruction is issued to ensure that the
asynchronous request, for which the CHECK was
issued, has completed.

IDAO19R1 calls IDAO19RS

The buffer control block (BUFC) chain for the /O
block (IOB) in error is searched for a BUFC with an
error indicator.

Error conditions are analyzed and an error message is
built.

IDAO19R]1 calls IDAO19RS (IDAEXITR
For processing if a SYNAD routine exists.
IDAO19R1: RICHECK

The check process is repeated for each RPL (if any) in
the RPL-string associated with the RPL that the
CHECK was originally issued against.

The placeholder is released if necessary.

The placeholder remains associated with the current
request-string unless the processing is direct. For direct
processing, the next request must be repositioned to an
address in the data set. For sequential or
skip-sequential processing, the positioning information
established by a prior request is used by the succeeding
request.

21307 (NVSA) POYIIN S5300Y 28eI01g [enuIA Juduodwo) Juapuadapu] SAS ZSA/SO 921

Diagram BM1. VERIFY Processing

VSAM User’s Virtual Storage

AMB

SPEED =
ON/OFF

AMDSB

Data Set //
Type

ARDB(s) — Data

High-Used
RBA a—

11

il

ARDB(s) — Index p

- .
[High-Key 4

7/

A_JJ

BB2
H

=]~ — ——% 1. When the data set is key sequenced and the

A recovery option (SPEED=O0FF) is specified,
/ perform the following:

® Search the data space associated with each index

and data ARDB for a software end-of-file marker

in order to establish a valid high-used RBA in
each ARDB.

® Search the index to establish the RBA of the
data control interval containing the highest key

(B) y value in each data ARDB’s space.

2. When the data set is key sequenced and the
nonrecovery option (SPEED=0N) is specified,
perform the processing described for step 1 except
that a high-used RBA cannot be established for
the data ARDB(s).

3. When the data set is entry sequenced, establish a
high-used RBA for the data ARDB, as described in
step 1, only if recovery (SPEED=0FF) is specified.

BB2
7

VSAM User’s Virtual Storage

ARDB

High-Used
RBA

Data Buffer ,C_IET

1

0’s

~

~
~
~
~

Index Buffer

~

Key|F|L| t
r

§

Index
Entry

RBA of

CI Contain-
ing High
Key

Data
Set

] Index

High Key
in Data
Set

} VSAM

L21 uonesadQ Jo poyW

(.

Notes for Diagram BM1

1 IDAO19RS calls IDAO19RO

Other requests are prevented from adding records into
the data space controlled by the ARDB that is being
examined by Verify.

IDAO19RO calls IDAO19RZ (IDAGRB) and IDAO19RZ
(IDAFREEB)

Starting with the high-used key in an ARDB, retrieve
and release successive control intervals until a
software end-of-file marker, that is, a CIDF set to
zeros, is found. The RBA of the control interval
containing the software end-of-file marker is used to
update the high-used RBA in the ARDB.

IDAO19RO calls IDAO19RB, which calls IDAO19RZ
(IDAGRB)

An index record is moved into a buffer. (Note: The
search starts at the highest level of the index.)

IDAO19RB calls IDAO19RC

The index record is searched for a key that is greater
than or equal to the search key.

IDAO19RB calls IDAO19RZ (IDAFREEB)

If the search is not satisfied or if lower-level index
records exist (that is, the current level is not the
sequence set), the current buffer is released.
(IDAO19RB then calls IDAOI9RZ (IDAGRB) to
retrieve another index record and the search process
repeats itself.)

IDAO19RO

When the search is successful, the pointer in the index
entry is converted into a valid RBA and moved into
the ARDB.

2 See note 1.

3 See note 1.

31307 (INVSA) POYISIA $5920y dFel01g [eniliA juduodwo)) yuspuadapu] SAS ZSA/SO 8Z1

Diagram BN1. Processing by Control Interval
GET or GETIX Processing (Control Intervi Retrieval)

3

VSAM
Data
Set

2.
No

A\

Output of [—————<——7

Step L or 3 Pl

VSAM User’s Virtual Storage

7 QD s

//
RPL P
Ve
e
Address of
User Area
User Area

1. Retrieve a control interval. L

. When an I/E; error occurs during a sequential

Data or Index Buffer

$

Control Interval

Is improved control-interval access specified?

Data or Index Buffer

Yes

Control Interval

N

User Area

retrieval operation, perform successive reads until
a control interval is successfully retrieved.

RBA or Control Interval

N

. Move the control interval or its address into a

user-specified area.

Return to caller.

BB2
7

621 uoneiadQ jo poyld

e

Notes for Diagram BN1

1 Normal Control-Interval Processing (NCI):
Direct Request Processing:
IDAO19RS calls IDAO19RZ (IDASBF)

When the prior request was sequential, excess buffers
in the chain of buffers associated with the current
placeholder (PLH) are released.

IDAO019RS calls IDAO19RZ (IDAGRB)

The control interval at a user-specified address is
retrieved.

Sequential Request Processing (GET) Only:
IDAO19RS calls IDAO19RZ (IDAGRB)

When this is the first request after Open, the control
interval at a user-specified address is retrieved.
Subsequent control intervals are retrieved sequentially
by IDAOI9RZ (IDAGNXT).

2 Improved Control-Interval Processing (ICI:

The request is decoded. A placeholder is obtained. If
the request is for update, exclusive control of the
control interval is obtained.

IDAO019S1 calls IDA019S3

The control interval at a user-specified address is
retrieved.

3 IDAO19RS calls IDAO19RZ (IDAGNXT)
IDAO19RS: calls IDAO19RP (IDATJXIT)

Journaling is performed when a journal exit routine
exists.

IDAO19RS calls IDAO19RZ (IDAFREEB)

For normal direct requests, the buffer associated with
the request is released before returning to the caller.

91307 (JNVSA) POUII SS300Y 98ri01§ [eniiA Jusuodwo)) Juapuadapug SAS TSA/SO O£l

Diagram BN2. Processing by Control Interval
PUT-Create Processing (Add a New Control Interval)

VSAM User’s Virtual Storage
BUFC
Status [~~~ __
Flag DIWA ‘~~,“*
Status
(] BUFC(s) Flag [~ O
tNext A S
= BUFC N ~
Must-Write b
—l Status ~ 0
>N~
Availability ~
— Status N S~
\ ~l-
— Yo T
Data Buffers %%7
RPL
tUser
Area 'Y
User Area \
N
Output of § >

VSAM User’s Virtual Storage

BB2
5

BUFC
1. When the buffer associated with the prior request
has not been released, release the buffer, gvailable
tatus

DIWA

2. Suspend add processing of other request strings. W

3. When all of the control intervals in the current
control area have been used, the following
processing is performed:
e Write any unwritten data buffers which are
associated with the current request string. :>®

e When data space allocated to the data set
is exhausted, acquire more space.

e When the recovery option is specified (SPEED=
OFF), preformat the next control area. ———

mw

DIWA
Inactive-
4. Allow other request strings to process (see step 2). m Status
Flag

5. Obtain a buffer and move a control interval from

Active-
Status Flag

ARDB

High-Used
RBA

High-
Allocated
RBA

Data Buffer

a user-specified area into the buffer.

User-Supplied
Control Interval

6. Write the contents of the buffer to the data set. \

7. Return to the caller.

C

T | /=
ol

\ >
—

C

VSAM
Data
Set

1€1 uonesadQ Jo oyl

C

Notes for Diagram BN2

1
2

IDAO19RS calls IDAO19RZ (IDAFREEB)
IDAO19RS

The DIWA, a serially reuseable resource, is examined
to determine whether another request string is in
control. When the DIWA is active, processing of the
current request is deferred. When the DIWA is
inactive, it is given an active status, which effectively
defers processing of other requests that may be
competing for this resource.

IDAO19RS calls IDAO19RZ (IDASBF)
IDAO19RS calls IDAO19RS (IDAEOVIF)
IDAO19RS calls IDAOI9RK

IDAO19RS

See note 2.

IDAO19RS calls IDAO19RZ (IDAGNNFL)

An available buffer is assigned to the request and
written if necessary.

IDAO19RS

The user-specified control interval is moved into the
buffer.

IDAO19RS calls IDAO19RZ (IDAWRBFR)

918307 (JAVSA) POUII $5230y 38eJ01S [enulA jusuodwio)) yuapuadapu] SAS ZSA/SO €l

Diagram BN3. Processing by Control Interval
PUT or PUTIX-Update Processing (Update a Control Interval)

7 ot
Virtual Storage
Data or
Index Buffer
RPL User Area 1. Move the data or index control interval to a buffer Control
fr he user- sified area. Interval
Address of User-Supplied ﬂz om t ser-specitie a nterva
User Area Control Interval P 4)) .
2. Is improved control-interval access specified?
s
// No Yes
s ' H@ BUFC
//
PLH Ve 3. Write contents of the buffer to the data set and prmmrrr rr s b Available
// then free the buffer. Status Flag
Address of
O erye! (QwaP 4. Return to the i
VSAM
Data
Set

¢¢l uonesddQ jo poyr

(\

Notes to Diagram BN3
1 Normal Control-Interval Processing(NCI):

The request is invalid if any of the following
conditions exist:

« The record length is not equal to control interval
size.

« A PUT request specifies LOCATE mode.
« A PUTIX request doesn't specify update.

« A stand-alone PUT-for-update is issued without
specifying user buffering. (Note:*‘Stand-alone”
implies that the PUT-for-update is nor preceded by
a GET-for-update.)

The address of the control interval to be updated is
established as follows:

IDAO19RS calls IDAO19RW (IDAFRBA)

For sequential requests, the new address calculation is
based on information in the placeholder.

For direct requests, the address is taken from the RPL.
Improved Control-Interval Processing (ICI): IDA019SI
The request is decoded. A placeholder is obtained.
IDA019S1 calls IDA01953
The control interval specified by the RPL is written.

3 IDAOI9RS calls IDAO19RP (IDATJXIT)

Before writing the new control interval, journaling is
performed if a journal exit routine exists.

IDAO19RS calls IDAO19RZ (IDAWRBFR)
The new control interval is written to the data set.
IDAO19RS calls IDAO19RZ (IDAFREEB)

The buffer is released.

21307 (INVSA) POUISIA Sse00y 23e103S [enuiA jusuodwo) juapuadapu] SAS ZTSA/SO PEl

Diagram BO1. Creating or Modifying a Relative Record Data Set

PUT-Insert Processing

VSAM-User’s Virtual Storage VSAM-User’s Virtual Storage
7
Empty Slot Data Buffer
Data Buffer ﬂ Control Interval
woFs | cIDF 1. Locate the control interval that contains the Current Control Area
indicated relative record number.
N— — 2. If processing is sequential, advance the record -
Records pointer. @f
9 3. Is the control interval beyond the last
ARDB preformatted control interval?
- Yes New Control Area
High Used Empi
and High) mpty
Allocated [N 4. What is the type of processing? Control
RBAs Direct or Intervals
Data Buffer skip sequential Sequential
Control Interval) . New Control Area
L 5. If there is no more space, allocate 7 Empty
\ / additional space. (See Diagram AEl rerrm
N “ontro
\ I 6. Preformat the next control area. .
\ I Intervals
\ / 7. If creation is for SPEED, preformat the
rest of the current control area.
< S Q) ARDB
/ 8. If there is no more space, allocate
\ additional space. (See Diagram AE]1.) High Used
and High
9. Preformat the next control area, and the Allocated
VSAM RRDS next, until the control interval that RBAs Q
Data Set contains the indicated relative record ;
E— number is found. Data Buffer /
.
e ——— e 10. Indicate the end of the last preformatted RDFs | CIDF
control area. R
Inserted
Record

buffer.

12. Indicate the slot has a record in it.

13. If positioning is to be released, write the buffer
and free it.

14. Return to the caller.

i 1. Move the record into its slot in the current data

C C C

¢€1 uonesadQ jJo poyd

I

Notes for Diagram BO1

1 Direct or Skip Sequential Processing
IDAO19RQ calls IDAO19RR (IDARRDRL)

If the data set is not being created, or it is being
created and the control interval is in an existing
control area, the control interval is read and the
record pointer is set in the PLH.

Sequential Creation
IDAO19RR calls IDAO19RZ (IDAFREEB, IDAGNXT)

If there are no more slots in the current control
interval and the next control interval has already been
written, the next control interval is read into a buffer.

IDAO19RQ calls IDAO19RZ (IDAGRB)

If there are no more slots in the current control
interval and the next control interval has already been
written, the next control interval is read into an insert
buffer.

Sequential Insertion
IDAO19RQ calls IDAO19RR (IDARRDRL)

If the previous request was a POINT for KGE (key
greater than or equal), its search argument is used to
retrieve the control interval as though for a direct
request.

IDAO19RQ calls IDAO19RZ (IDAFREEB, IDAGNXT)

Otherwise, if there are no more slots in the current
control interval, the next control interval is read with
read-ahead buffering.

3 Direct or Skip Sequential Creation
IDAO19RQ calls IDAO19RZ (IDAFREEB, IDAGNNFL)

If the control interval is not in an existing control area,
a buffer is obtained and formatted with empty slots.

Sequential Creation
IDAO19RQ calls IDAO19RZ (IDAGNNFL)

If there are no more slots in the current control
interval and the next control interval is not in an
existing control area, a buffer is obtained and
formatted with empty slots.

5 IDAO19RO calls IDA019RM (IDAEOVIF)
End of Volume does the allocation.
6 IDAO19RQ calls IDAO19RK

Each control interval is formatted with empty slots.

~

7 See note for step 6. If the requested control interval is

among those formatted, processing continues at step
10.

See note for step 5.

See note for step 6. During preformatting of control
areas, End of Volume might have to be called to
allocate additional space. (See Diagram AE1.)

10 IDAO19RQ

The high used RBA is at the beginning of the next
control area—except for creation with the SPEED
option, for which it is at the beginning of the next
control interval.

11 IDAO19RQ

If the slot into which the record is to be moved isn’t
empty, a duplicate-record error is indicated.

12 The codes that indicate whether a slot is empty or
filled are given under ‘“VSAM Data Set Format’’ in
“Data Areas.”

13 IDAO19RQ calls IDAO19RZ (IDAWRBFR, IDAFREEB)

2307 (INVSA) POUIR $5200Y 38e101§ [eniiip Huduodwo) Juapuadapu] SAS ZSA/SO 9€1

Diagram BO2. Modifying a Relative Record Data Set PUT-Update or Erase Processing

VSAM-User’s Virtual Storage

BB1
5
Data Buffer

7
VSAM RRDS / RDFs | CIDF

Data Set g

1. Ensure that the record to be updated or deleted is

J /,
7 in the buffer associated with the request. o//

7
Vi \ e ®
VSAM-User’s Virtual Storage \ y; 2. Update or delete the record by overlaying it with ,//// Record to be
/ \ y either the new record or zeros. ' Updated or Deleted
/
Data Buffer \ Vs 4 ///9
Control Interval ¢ 3. For deletion, adjust the RDF to indicate the slot 74
7 is empty.
/
Record to be _ ~
Updated or Deleted /_/
_ ~ 4. If positioning is to be released, write the buffer
Data Buffer P and free it.
RDFs | CIDF
“
5. Return to the caller.
Records

LEL uonesadQ jo poyIs

e

Notes for Diagram BO2

IDAOI9RQ

A PUT-update or ERASE request must be preceded by
a GET-update request.

IDAO1I9RQ

For PUT-update processing, the length of the updated
record must be the same as that of the original.

IDAOI9RQ

The codes that indicate whether a slot is empty or
filled are given under “VSAM Data Set Format” in
“Data Areas.”

IDAOI9RQ calls IDAOI19RZ (IDAWRBFR, IDAFREEB)

21807 (INVSA) POYIRIN §5300V 28€101S [enuiA Hjusuodwio) juapuadapu] SAS ZSA/SO €1

Diagram BP1. MRKBFR: Marking a Buffer in the Buffer Pool (With Local Shared Resources)

VSAM-User’s Virtual Storage VSAM-User’s Virtual Storage
PLH E PLH
tBUFC 1. Is the request to mark for output or to release it? 1BUFC
BUFCs for RLS QUT
Buffer Pool '
2. If the buffer is being written, wait until ZZ&s o
BUFC - 2> ST
- writing is finished.

IBUTC 3. Set the RBA for output. ey, | BUFC
4. getffthe flag that indicates to write the { x
BUFC ulter. *@ ~N 4//,@

5. Take away exclusive control and decrement use prrrr—P——
count. (B) AN

6. Disconnect the placeholder from the buffer.

@ 7. Return to the caller.

BSPH

_J T First

BUFC

61 uoneiadQ jo poylPW

~

Notes for Diagram BP1

1
2

IDAO19RY (MRKBF)
IDAO19RY calls IDAO19RS (IDADRQ)

The request is deferred until the buffer has been
written.

IDAOI9RY

The RBA of the control interval to be written is
assigned to the buffer that contains the control
interval.

IDAO19RY

The placeholder is marked invalid.

2130 (JNVSA) POURN $5320y 35RI0IS [ENUIA :Juduodiioy) yuapuadapu] SAS ZSA/SO 0Pl

Diagram BP2. WRTBFR: Writing a Buffer in the Buffer Pool (With Shared Resources)

N

VSAM-User’s Virtual Storage VSAM-User’s Virtual Storage

1. If a placeholder holds a position in the buffer,
AMB BSPH /7 free the placeholder. PLH
- 2. Determine the type of request.
tBSPH 1 First @
BUFC_N TYPE=DS

e | 3. Write all buffers marked for output for the
PLH BUFC o Specified AMB. BUFC

/ 4. Indicate that each buffer is empty.-@ m
/

7~

/ TYPE=CHK M_
T / Q -»| 5. Write all buffers marked for output for the%

| BUFC specified transaction ID.

é) 6. Tgnore errors. NEE————9)

TYPE=TRN

e | 7. Write all buffers marked for output for the m@

specified transaction ID.

TYPE=ALL
‘9 8. Write all buffers marked for output.M@

oeo 9. Return to the caller.

I¥] uonesadQ jo poyIs

~

Notes for Diagram BP2

3 IDAO19RY: WRTBF calls IDAO19RY (WRBFR)

WRBFR writes the buffers associated with the BUFCs
indicated by the request.

5 Same as note for step 3.

The user indicates the ID of the transaction in the RPL
TRANSID operand.

7 Same as note for step 3.

Same as note for step 3.

913077 (JNVSA) POUIRIA s5300y 33eI01S [enui jusuodwo)) Juspusdapup SAS ZSA /SO Tl

Diagram BP3. SCHBFR: Searching the Buffer Pool (With Shared Resources)

VSAM-User’s Virtual Storage @ 'VSAM-User’s Virtual Storage

RPL

PLH

b ———— —— =4 — — —> 1. If the placeholder holds a position in the_

buffer pool, free the placeholder.

7 T1BUFC . 77 tPLH
2. Is the buffer number at which to start the
search valid?

3. Set an error code. 1BUFC

Yes No
BUFC PLH
' Y e > %
. 19

4. Search the buffer pool for the specified RBA.

9
BUFC BSPH 5. Was the RBA found? BUFC
Yes No

s T First
BUFC

6. Set a return code.

7. If the buffer is being used, wait until it is
available.

8. Increment the use count.’ Register 0

9. Indicate which buffer contains the RBA.W

10. Return to the caller.

€¢I uoneiadQ jo poyrd\

F

Notes for Diagram BP3
7 IDAO19RY calls IDAO19R5 (IDADRQ)

The request is deferred until the buffer has been
processed.

51307 (INVSA) POUIDA $s330y 33el0lS [enuip juauodwo)) juapuadapu] SAS ZSA/SO 1

Diagram BQ1.

Processing a Path

VSAM-User’s Virtual Storage
User’s RPL
t
7 PLH _
~
7~
_ ~
P /7
PLH P
> /
] 7
/7 TWAX /
/7
/7
/7
WAX /7 Inner RPL
ke -
tInner
RPL FDBK
-
-—
\\

Alternate
Index

BB2

~

- A
~

A request to gain access to a base cluster by way
of an alternate index.

1. Is positioning in an alternate-index record
required?
No Yes

2. Read the required alternate-index

& record.
3. Position to its first pointer to a base-

cluster record. 22272722777 77772 B)

4. Select a pointer from the alternate-index record.

5. Set up the inner RPL to use the pointer to gain

access to the base cluster.

6. Issue the user’s request.

%7. Move any error code to the user’s RPL.::>©

8. Return to the caller.

VSAM-User’s Virtual Storage

User’s RPL
FDBK
/ tPLH
A\l
PLH \
\
WAX \)
tWAX tPointer ™
tInner
RPL
Inner RPL
J
6 Alternate-Index Record
KEY Ptr | Ptr | Ptr | Ptr | Ptr

§p1 uonesadQ jo poyrRK

~

Notes for Diagram BQ1

1

IDAO19RX

If the request is a PUT or a POINT, no positioning is
required. If the request is a GET, positioning could
already have been established by a previous GET.

IDAO19RX calls IDAO19R4
IDAO19RX

The PLH identifies the alternate-index record
positioned at; the WAX indicates the pointer within
the alternate-index record positioned at. The
alternate-index record contains either prime-key
pointers (for a key-sequenced base cluster) or RBA
pointers (for an entry-sequenced base cluster).

IDAO19RX
IDAO19RX

The inner RPL is built by VSAM Open. It is used to
read the alternate index and to gain access to the base
cluster.

21307 (INVSA) POUISIN §5900y 93e101§ [enuiA ‘Jusuodiuo) juspuadapu] SAS ZSA/SO 9v1

Diagram BR1.

VSAM-User’s Virtual Storage

Upgrading Alternate Indexes

For GET-Update:

1. Save the portion of the data record that contains
all of its key fields.

RPL

tPLH

1 1Record

LPLH

tLLOR
,[LLOR _

A

-
1

Output of step |
Data Record

j Key 1

Key 2| Key 3

~—

UPT

AN

tRecord

tLLOR

tRPL

mUpgrade RPL

19

VSAM-User’s Virtual Storage

2. Is upgrading for PUT-update?
No Yes

kl Has any alternate key field changed?

Yes No

4. Get exclusive control of the upgrade table. — — _ __|

Repeat steps 5-12 for each alternate index in
the upgrade set.

5. Is there a new alternate key to add to the alter-
nate index?
No Yes

6. Read the alternate-index record that has
the new key, if there is a record, or build
a new record.

— ;1

7. Add to the alternate-index record a
pointer to the data record.

8. Write the alternate-index record.

9. Is there an old alternate key to delete from
the alternate index?
No Yes

10. Read the alternate-index record that
has the old key.

11. Remove from the alternate-index unlﬂ
record the pointer to the data record.

12. If the alternate-index record contains
no other pointers, delete the record;

otherwise write it.

13. Release the upgrade table from exclusive control.

G& 14. Return to the caller.

C

LLOR (Least Length of Record)

UPT

TRPL

Upgrade RPL

tRecord

Alternate-Index Record

Pointer to

K
ey Data Record

L¥] uonesddo Jo oy

(\

Notes for Diagram BR1

1

AT B -

IDAOI9RU

The LLOR is just large enough to contain the ‘“least
length of the data record”” that contains the record’s
prime key, if any, and all of its alternate keys.

IDAOI9RU

For ERASE, there can be no new alternate key to add.
For PUT-insert, there is a new key. For PUT-update,
there is a new key if the alternate key for the alternate
index being upgraded has changed.

IDAO19RU calls IDAO19R4
IDAOI9RU
IDAO19RU calls IDAO19R4
IDAO19RU

For PUT-insert, there can be no alternate key to
delete. For ERASE, there is a key to delete. For
PUT-update, there is a key to delete if the alternate
key for the alternate index being upgraded has
changed.

10 IDAO19RU calls IDAO19R4
11 IDAO19RU
12 IDAO19RU calls IDAO19R4
13 IDAO19RU

21307 (JAVSA) POYISIN $5320Y 38e101§ [eniiA jusuodwo)) juapuadapu] SAS ZSA/SO 8t1

Diagram BS1. Buffer Management: Reading a Control Interval into a Buffer

VSAM-User’s Virtual Storage _> 1. Is processing with local shared resources? VSAM-User’s Virtual Storage

-

- No Yes Data BUFC

Data AMB -

-~ " BUFDR

For request for a data control interval:

TBUFDR r . . .
pup— 2. If the requested control interval is not in the
BUIC current data buffer, set up to read. J'Dam Buffer
3. Ensure that there is no exclusive-control conflict. [
BUFC 4. For a sequential request, prepare to read-ahead.
_ﬂ 14 PLH
s/
For request for an index control interval:
BU IFC /
/ 5. Is the request for a sequence-set record?
e _ _’ /,’ Yes No
RPL -7 -7 v) o Index BUFC
- —3Lu -1 6. If the requested control interval isn’t in
TPLH N Vi 3 the buffer pool, select a buffer into which w
. @ to read the control interval. %
tData BUFC W
\ ’ TIndex BUFC 7. Is the buffer’s BUFC available?
No Yes Index Buffer
(Index AMB
BUFDR
tBUFD
R 8. Select the sequence-set buffer. FLH
For processing with local shared resources: tBUFC
9. If the requester already owns a buffer, free it.
7’10. Ensure that the requested control interval isn’t BUFC
A involved in a control-area split.

11. Is the requested control interval in the buffer

/
b pool?
< No Yes

PLH

tBUFC —‘9 12. Increment the use count. s

A 13. Obtain control of the buffer used least recently

BSPH and set up to read.

— 14. Call the I/O Manager to read the requested
tBUFC control interval into the selected buffer, and
wait for completion of 1/0.

15. Return to the caller.

C C

6v1 uoneradQ jo poyla

e

Notes for Diagram BS1

Buffer Management is called for the processing of almost
every Record-Management diagram. See the ‘““Procedure
Called-By Directory” for a list of the modules that call
IDAOI9RZ.

1 IDAO19RZ (IDAGRB)

If processing is with shared resources, IDAO19RZ calls
IDAOI9RY:; if not, it calls IDAOT9R2.

2 IDAO19R2

If the requested control interval is in the current data
buffer, processing continues at step 15. The read flag
in the BUFC is set if:

« The requested control interval is not in the buffer,
« Itisin the buffer, but its contents are invalid,
« It is in the buffer, but its exclusive-control level is
inappropriate, or :
« Share-option 4 is specified.
3 If exclusive control is required, the requested control
interval may not be held in exclusive control or for

writing by another string. If it is, an exclusive-control
error is indicated: IDAO19R2 returns to the caller.

4 IDAO19R?2 initializes the REA fields and read flags of
the other BUFCs in the chain if the request is for:

« Sequential retrieval,
« Control-area split, or
« Spanned-record retrieval.

6 If the requested control interval is in the buffer pool,
processing continues at step 15. For selecting a buffer
for an index-set record, if there are more index buffers
than strings, the surplus buffers can be used. The first
surplus buffer can be used only for the highest-level
index record. Other surplus buffers can be used for
other index-set records. The buffer selected is, in this
order of priority:

(1) An empty buffer,

(2) A buffer that contains a lower-level index-set
record, or

(3) A buffer that contains an index-set record of the
same level

7 The BUFC is not available if its buffer is being used by
another string.

-

8 The sequence-set buffer is the buffer allocated to the
string by Open. It is used for for all requests for a
sequence-set record and for requests for an index-set
record when there are no surplus buffers.

9 IDAOISRY

No string can own more than one index, one data, and
one insert buffer at a time. IDAOI9RY enforces this
rule by freeing a buffer if the request would otherwise
violate the rule.

12 If data is in the process of being read into the buffer,
IDAO19RY calls IDAO19RS5 (IDADRQ) to wait until
1/0 has finished. If the use count is incremented to
more than one and the request is for exclusvie control,
a read-exclusive error is indicated.

13 If a buffer not in use is found, it is written if its
contents have been modified, and the read flag in its
BUFC is set on. If no buffer not in use can be.found, a
logical error is indicated, and processing continues at
step 15.

14 IDAO19R2 or IDAO19RY calls IDAO19R3
The read is initiated. (See Diagram BT1.)
IDAO19R2 or IDAOI9RY calls IDAO19RZ (IDAWAIT)
Processing waits for 1/0 to finish. (See Diagram BS3.)

21307 (INVSA) POYISIN $S390y 93101 [BmIIA Jusuoduwio)) juapuadopu] SAS ZSA/SO 0SI

Diagram BS2. Buffer Management: Freeing a Buffer

VSAM-User’s Virtual Storage

AMB

1. Make the buffer to be freed available for other
strings.

— - — 2. Is processing with iccal shaied resources?
— —

- No Yes

LSR Flag f-——"" ' 9 IC

3. Is processing sequential retrieval?

PLH

No Yes

—> 4. Are enough buffers free to read-ahead?

——
L e —— No Yes

Free-Buffer| _ — — —
Count

> 5. Call the I/O Manager to read-ahead.

%6. Return to the caller.

Data Set

VSAM-User’s Virtual Storage

BUFC

e

Available
Status

Data Buffers

—1

151 uonesadQ jo poydW

I

Notes for Diagram BS2

Many Record-Management routines call Buffer
Management. See

the ‘““Procedure Called-By Directory’ for a list of the
modules that call IDAO19RZ.

1 Processing without Shared Resources
IDAO19RZ: IDAFREEB calls IDA019R2

If share-option 4 is specified, the buffer contents are
forgotten.

If the data insert buffer or an index buffer is being
freed, the test-and-set byte is cleared and exclusive
control is released.

If the buffer being freed contains a segment of a
spanned record, IDAO19R2 releases exclusive control,
but ensures that exclusive control is kept for the buffer
that contains the first segment.

Processing with Shared Resources
IDAO19RZ: IDAFREEB calls IDA0O19RY

If the buffer being freed has been modified, its
modification mask is set to indicate the transaction ID
of the modifier (which the user specifies in the RPL
TRANSID operand). If the buffer doesn’t contain a
segment of a spanned record held in exclusive control,
exclusive control is released, the use count in the
BUFC is decremented, and, if share-option 4 is
specified, the buffer is marked empty.

5 IDAO19R2

IDAO19R2 initializes the RBA fields and read flags of
the BUFC of each empty buffer if:

« The read threshold has been reached (that is,
enough buffers for read-ahead buffering have been
freed),

o The request is for sequential retrieval,
o The request is for a control-area split, or
o The request is for spanned-record retrieval.

Read-ahead buffering is begun. (See Diagram BT1.)

21307 (JAVSA) POUISIA $5300Y a8elolg [enuiiA yusuodwo)) juapuadapu] SAS Z8A/SO Z§1

Diagram BS3. Buffer Management: Waiting for I/0 Completion

%

Register 12 Register 1
t10B TRPL
I I ‘l > 1. Has the I/O been posted complete?
No Yes
VSAM-User’s Virtual Storage e '
// 2. Was the request synchronous?
108 7 ﬂ No Yes
) 4
R — — / /
N] -7 3. Wait for the I/O to complete.
1ECB N s / — —
X/ . —>4. Did a file-protect check occur?
P Yes No.(:) VSAM-User’s Virtual Storage
7 N | 4
£CB N { 5. Reissue the EXCPVR. (See Diagram”@ PLH
<] 1)
/ N 6. Set the placeholder so that the 1/O managerW

@ / ~ asynchronous routine passes control to step 7. ~®

—
/ ™ 7. Dida file-protect check occur?
| RPL / No Yes

(1)(a)(e) l 8. Reissue the EXCPVR. (See Diagram BTI.)-@

9. Return to the caller.

€51 uoneradQ jo poyldW

F

Notes for Diagram BS3

1
2

IDAO19RZ: IDAWAIT

If the RPL specifies synchronous and WAITX, exit to
the UPAD routine.

The 1/0O Manager chains channel program segments
together with cylinder seeks if necessary. When a
cylinder seek causes a file-protect check, the
Abnormal-End Appendage, IDAOI9RG6, resets the
starting address of the OB to point to the CCW that
follows the cylinder seek.

The current request is suspended. The Asynchronous
Routine eventually resumes the request under an IRB.
When it passes control to step 7, return (at step 9) is
actually to the Stage-3 Exit Effector.

See note for step 4.

91307 (INVSA) POYISI §5320y 38ei01§ [enuiiA Jusuodwo) juspuadapu] SAS ZSA/SO +§1

Diagram BT1. I/O Management

NN

VSAM-User’s Virtual Storage VSAM-User’s Virtual Storage

1. Convert the RBA to be processed into MBBCCHHR.

BUFC @’ 7 . . cPA

> 2. Rebuild channel programs if necessary. P 77 >
- 3. Build a virtual page list if necessary.
1CPA
(4. Chain together channel program segments. I PP PP PP LR L ke
5. Issue EXCPVR to give control to OS/VS 1/0 ~
Supervisor. ~ ~
EDB \ ~ -
\ I/O Supervisor passes control to the appropriate /O hal
S management appendage or Asynchronous Routine:
tLPMB gé)
Page-Fix Appendage
// 6. Fix control blocks if they’re not already fixed
in real storage.

LPMB

7. Return to the I/O Supervisor.
Start-I/O Appendage

8. Convert the virtual addresses in CCWs to real

- addresses.
~
\CI'A ~ 9. Create an indirect data address list from the
1T virtual page list.

- - |10. Return to the I/O Supervisor.

\\

Channel-End Appendage

11. For an asynchronous request, schedule the
Asynchronous Routine to run.

12. Reset the BUFC to show the current status.
13. Return to the 1/O Supervisor.

Asynchronous Routine
14. Reset the BUFC to show the current status.

15. Return to Record Management.

C C C

§S1 uonesadQ jo poyrd

s

Notes for Diagram BT1

1

11

IDAO19R3

If the RPL specifies synchronous and WAITX, the
ECB pointer in the IOB is set to point to the user’s
ECB. Otherwise, the ECB pointer is set to the VSAM
ECB.

IDAO19R3

For processing with shared resources, IDAO19R3 calls
IDAO19SB.

IDAO19R3

The virtual page list contains the virtual address of
each block of storage from which to read or into which
to write.

IDAO19R3

The OS/VS 1/0 Supervisor is called by way of SVC
114.

IDAO19R9Y

The AMB, BUFC, CPA, IOB, and buffers are fixed in
real storage for [/0.

IDAO19R9

Each read, write, and write check CCW points to an
entry in the indirect data-address list that contains the
real address of each storage block of a buffer.

IDAO19R6

For a synchronous request, the IOB is posted when the
1/0 completes.

14 IDAO19R7

The return address to Record Management is in the
PLH.

91307 (INVSA) POYIRI SS90y 33el01§ [enuiA juduodwo)) yuapuadapu] SAS ZSA/SO 9S1

Diagram BU1. ISAM-Interface: Processing a VSAM Data Set

User-Issued
QISAM PUT Macro

User-Issued
QISAM GET Macro

User-Issued
QISAM PUTX Macro

User-Issued
QISAM SETL Macro

User-Issued
QISAM RELSE Macro

User-Issued
QISAM ESETL Macro

ISAM-Interface Request Translation for QISAM

1.

When the request is a resume-load request, issue
a VSAM GET-locate macro and then a PUT-move
macro.

Otherwise, issue a VSAM PUT-move macro, only.

. Issue a VSAM GET macro.

. When the record associated with the request is a

deleted record and when deleted records are to be
ignored, issue a VSAM ERASE.

Otherwise, issue a VSAM PUT macro.

. Issue a VSAM POINT macro.

. Ignore this macro and return to the user’s ISAM

problem program.

1]

. Issue a VSAM ENDREQ macro.

L§1 uoyesadQ Jo poyRW

(\x

Notes for Diagram BU1

1

IDAIIPM1: QISAM PUT Processing

To handle an ISAM PUT-Locate request, VSAM uses
the ISAM-Interface buffer to contain records to be
written. For ISAM PUT-move requests, the user
supplies the buffer. (Note: In both cases, VSAM treats
the buffer as the user’s work area, and transfers
records to its own output buffers before writing them.)

For ISAM resume-load requests, a GET-locate is
issued to VSAM to search the previously created data
set for a key greater than or equal to the key of the
first record to be written by resume-load. If the VSAM
search is unsuccessful, it is assumed that the previous
last key and the new key are in correct sequence, and
load | processing continues.

A successful search indicates that the new key is less
than a key already in the data set (a logical error); and
control is passed to the user’'s ISAM SYNAD routine if
it exists. Otherwise, an ABEND is issued.

IDAIIPM2: QISAM GET Processing

If the ISAM GET request is preceded by a SETL
request (used to determine whether the located record
was a deleted record), the retrieved record is moved
from the ISAM-Interface buffer to the user’s buffer
and a VSAM GET macro is not issued.

When the ISAM GET request is in locate mode or
specifies data-only, the ISAM-Interface buffer is used
for the record; otherwise, the user’s buffer is used.
(Note: Data-only implies that the key resides at the
beginning of the data record; the relative key position
of the record is 0.) A VSAM GET macro is issued. If
the request specifies move-mode and data-only
options, the data (minus the key) is moved into the
user’s buffer. When a deleted record is retrieved, and
such records are to be ignored, successive GET
macros are issued until a normal record is retrieved.

IDAIIPM2: QISAM PUTX Processing

If the record to be written had only the data portion of
the record retrieved (see note 2), the data is moved
from the user’s buffer to the ISAM-Interface buffer to
rejoin its key before it is written; otherwise, the
complete record already resides in the appropriate
buffer.

The record is then examined to determine whether it is
marked as a deleted record. Deleted records are
ignored, if requested, by issuing a VSAM ERASE
macro to eliminate the original record from the data

e

set. A VSAM PUT macro is issued for those records
that are to be written.

IDAIIPM2: QISAM SETL Processing

The validity of the request is tested, and if two SETL
requests have been issued without an intervening
GET, PUTX, or ESETL macro, an invalid SETL
macro has been issued or an invalid generic key has
been used. An invalid request error code is set and
control is passed to the ISAM-Interface SYNAD
routine (see note 11).

If the request is valid, the address of the key to be
located is placed in the RPL, and a VSAM POINT
macro is issued.

If the data set contains deleted records and if the
request is directed at a specific record’s key, a VSAM
GET macro is issued to retrieve the record. If the
record is a deleted record, a no-record-found indicator
is set in the DCB and control is passed to the
ISAM-Interface SYNAD routine (see note 11).

IDAIIPM2: QISAM RELSE Processing

This request is ignored by the ISAM-Interface routine,
and control is immediately returned to the user. The
release function is not required by ISAM-Interface or
VSAM because each QISAM request handled by
ISAM-Interface uses only a single data record for
request processing.

IDAIIPM2: QISAM ESETL Processing

A VSAM ENDREQ macro instruction is issued to
release any VSAM resources. ISAM Interface resets
the scan-mode indicator in the IICB, which enables
another SETL request to be issued, and returns control
to the user.

IDAIIPM2: QISAM EODAD Processing

This routine recieves control when VSAM reaches an
end-of-data condition. The ISAM EODAD routine is
given control if one has been specified; otherwise, an
ABEND is issued.

213077 (JAVSA) POUIR §5200y 33810)S [ENWIA HJuduodwo) Juapuadapu] SAS TSA/SO 8S1

Diagram BU2.

ISAM User’s Virtual Storage

User-Issued
BISAM WRITE Macro

User-Issued
BISAM READ Macro

User-Issued
BISAM FREEDBUF Macro

User-Issued
BISAM CHECK Macro

r—)

DECB

Error
Codes

RPL (ISAM
Interface)

Error Codes

ISAM-Interface
Extension (RPLE)

tDECB

DCB

C

ISAM-Interface Request Translation for BISAM

ISAM-Interface: Processing a VSAM Data Set with an ISAM User’s

7.

When the request is a stand-alone-write, issue
a VSAM GET-for-update macro and then a
PUT-for-update.

When the request is to write a deleted record,
issue a VSAM ERASE macro and then a
PUT-for-update macro.

Otherwise, issue a VSAM PUT macro.

]

. Issue a VSAM GET macro.

)

. Issue a VSAM ENDREQ macro to release the

VSAM buffer associated with the prior request.

]

10.

Determine whether an error has been detected.
When an error condition does not exist, return
to the ISAM-user’s problem program.

When an error condition does exist, pass control
to the ISAM-user’s SYNAD routine.

ISAM-Interface SYNAD Exit Processing

11.

Map VSAM completion codes into ISAM
control blocks.

When the current processing is QISAM, pass
control to a user-specified ISAM SYNAD routine.

For BISAM, return to VSAM.

S

\\\\\\\\\\\\\\\\\\\\\\\\\\\\

AANANY

§
\
\
\
\

Program

ISAM User’s Virtual Storage

DECB (for BISAM)

z>

Error Codes

DCB (for QISAM)

Error Codes

e

9 IDAIIFBF: BISAM FREEDBUF Processing
This routine issues a SYNCH SVC to get into problem

(\

Notes for Diagram BU2
7 IDAIIPM3: BISAM WRITE Processing

651 uoneiadQ jo poyW

The ISAM-Interface RPLs are searched for one which
is associated with the current request’s DECB. If an
RPL is not found, an available RPL is assigned to the
request and initialized. If an RPL is not available, an
invalid request is indicated in the DECB and a return
is made to the user’s problem program.

If the write request is an ISAM stand-alone-write for
update, VSAM GET-for-update and PUT-for-update
macros are issued to satisfy the request.

For a write request to overlay an existing data record
with a deleted record, the VSAM PUT macro is issued
to satisfy the request unless the option to ignore the
deleted record is specified. In this case, the ERASE
macro is issued. (Note: Deleted records have a X‘FF’
in their first byte.)

For a write-key-new request, a VSAM PUT is issued.
If VSAM returns an error code indicating that the
record to be written is a duplicate of an existing data
record, ISAM-Interface issues a VSAM GET to
retrieve the existing data record to determine whether
it is a deleted record. If the record is a deleted record,
a VSAM PUT-for-update request is issued to replace it
with the new record.

When VSAM returns control, the ISAM-Interface
RPL is released (disconnected from the DECB), a
VSAM ENDREQ macro is issued to free the VSAM
resources, and the request is posted complete.

IDAIIPM3: BISAM READ Processing

The RPLs are searched for one which is associated
with the current request’s DECB. If an RPL is not
found, an available RPL is assigned to the request and
initialized. If an RPL is not available, a return is made
to the user’s problem program.

After establishing the buffer to be used (that is, an
ISAM buffer or an ISAM-Interface buffer) and
adjusting the record pointer to include a record
descriptor word (RDW) for variable-length records, a
VSAM GET macro is issued.

When VSAM returns control, the ISAM-Interface
RPL is released (disconnected from the DECB) and a
VSAM ENDREQ macro is issued to free the VSAM
resources, unless the ISAM request was a successful
read-for-update.

program state and then searches the ISAM-Interface
request-string for an RPL associated with the current
ISAM DECB. When found, a VSAM ENDREQ
macro is issued to free the resources held by the RPL.
The RPL is then disconnected from the DECB. If an
associated RPL is not found, a return is made to the
user’s problem program.

If the RPL is found and processing of it is complete, a
VSAM ENDREQ macro is issued to free the VSAM
resources, and then the ISAM-Interface RPL is
released (disconnected from the DECB) for reuse by
another request.

10 IDAIIPM3: BISAM CHECK Processing

1

—

The ISAM-Interface Check routine tests for an error
code in the DECB (see note 3). If an error is not
detected, a return is made to the user’s problem
program. If an error is detected, the Check routine
passes control to the user’s ISAM SYNAD routine if it
exists; otherwise, an ABEND is issued.

IDAIISM1: ISAM-Interface SYNAD Processing

The ISAM-Interface SYNAD routine is entered by a
VSAM processing routine when an error condition is
detected.

For QISAM processing, the VSAM error codes in the
RPL are copied into the DCB, and for BISAM
processing, the error codes are copied into the DECB.

For QISAM processing, control is passed to the user’s
ISAM SYNAD routine if it exists. If it does not exist,
an ABEND is issued.

For BISAM processing, a return is made to VSAM,
which returns to the ISAM-Interface BISAM
processing routine and then to the user’s problem
program. An ensuing ISAM CHECK macro causes the
user’s ISAM SYNAD routine to receive control if it
exists (see note 10).

The ISAM-Interface SYNAD routine also builds the
SYNADAF message.

91307 (INVSA) POYISI $s350y 93ei01G [enilip ‘jusuodwo) juapuadapu] SAS ZSA/SO 091

Diagram CA1. GENCB: Build a New Control Block

R1

tParameter
List

Parameter List

Argument Control Entry

Header

Block Type

Number of Copies

/

tHeader ACE

tElement ACE

tUser Area

/

tElement ACE

tElement ACE

Length of User Area

\

Element

Keyword
Type Code \

Field’s Data

\

User’s Program
Issued GENCB

— ¥ 1. Did the user request an ACB, RPL, or EXLST?
Yes No .

N ' W Return to the user on error.

R Y

= > 2. Determine the amount of virtual storage needed to
satisfy the user’s request.

™ 3. Did the user supply an area to build the control
block in?
\ Yes No
N IR
\ 4. Obtain virtual storage for the control block.

5. Is the user’s area large enough?

Yes N
“ Return to the caller on error.

¥

Element Argument Control Entry (ACE) Processing

6. Initialize the control block with its default values. M

Area of Virtual
Storage for the
Control Block and Copies

Default Values

Field Values
(User-Supplied)

N Do steps 7 through 12 to process each element ACE:
7. Locate the ACE’s keyword-entry in KEYWDTAB.

8. Determine the entry type and process it as follows:

Bitstring-type entry:
9. Validate the bits in the string and place them
in the block. Reset the default bits if necessary.

Normal-type entry in an EXLST control block:

10. Move the exit-routine address from the element
ACE into the EXLST control block.

11. Set the exit attribute flags.

Normal-type entry in an ACB or RPL control block:

12. Move the user-supplied information from the

el

element ACE into the control block.

13. Return to the user’s program.

C

i

1

191 uonesadQ jo poyIsN

-

Notes for Diagram CA1l
1 IDAO19C1

The GENCB macro instruction is issued to create an
ACB, RPL, or EXLST dynamically.

2-5
The ACB and RPL are fixed-length control blocks, but
the EXLST is variable length. The Control Block
Manipulation routine calculates the amount of space
needed for the control block and any copies the user
requested. The Control Block Manipulation routine
issues a GETMAIN macro instruction to obtain the
required virtual storage for any block for which a user
arca is not provided.

6 The block is initialized to its default values.
Information is subsequently added to the block as
specified by the element argument control entries
(ACEs).

11 The exit attribute flags indicate that an exit address is
present, active, inactive, or set during link-edit.

21807 (JAVSA) POYI 55900y 23e101g [enuiA usuodwo) wwapuadapu] SAS ZSA/SO 291

Diagram CB1. MODCB, SHOWCB, TESTCB: Modify, Display, or Test a Control Block

R1

tParameter
List

Parameter List

Argument Control Entry

Header

tHeader ACE

tElement ACE

Control Block Type

Request Type

tControl Block

tElement ACE

tElement ACE

Element V4

Keyword
Type Code

Field's Data

User’s Program Issued
MODCB, SHOWCB,
TESTCB

N

N\

e

ACB, EXLST, or RPL
Control Block

Field(s) to be
Modified

N

1. Did the user specify a valid control block type?
Yes

No
\ @ Return to the user on error.
N

7 2. Did the user supply valid keywords with his request?

7 Yes No
‘ @ Return to the user on error.

Process each user-supplied element ACE:

MODCB (Modify control block) request:

3. Examine each of the user-supplied keyword
entries to verify that the user is allowed to
modify the control block fields.

Determine the field type and process it as follows:

Normal-type field in an ACB or RPL:

4. Replace the control block field with the
information in the element argument
control entry.

Normal-type field in an EXLST control block:

5. Modify the field as specified by the
element argument control entry.

6. Modify exit attribute flags.

Bitstring-type field:

7. Modify the control block field bit-by-bit as
specified.
Reset conflicting bits 1t necessary.

ACB, EXLST, or RPL
Control Block

Modified Field(s)

C

£9] uonesadQ Jo poylap

I

Notes for Diagram CB1

1 IDA019C1

The MODCB, SHOWCB, and TESTCB macro
instructions are issued to modify, display, and test,
respectively, the ACB, RPL, and EXLST control
blocks in the user’s address space.

21307 (IWVSA) POUIRA §5300Y 33eI0IS [BnMIA jusuodwo) juspuadapu] SAS ZSA/SO +9I

Diagram CB2. MODCB, SHOWCB, TESTCB: Modify,
Display, or Test a Control Block

Argument Control Entry

Header (for SHOWCB)

Control Block Type

-
L~

tControl Block

tUser’s Area

Length of User’s Area

Element
Keyword]

Header (for TESTCB)

Control Block Type

tControl Block

tUser’s Test-Analysis

|

Routine -
Element
Keyword
Test Value
ACB, EXLST, or RPL
>
Field(s) to be -

Displayed or
Tested

SHOWCB (Display control block) request:

User’s Work Area

8. Move the field(s) into the user’s work area in the
order requested.

Field(s)
Requested by
the User

poe

TESTCB (Test control block) request:

Determine the field type and process it as follows:
Normal-type field:

9. Compare the user-supplied data with the
control block’s field.

PSW

Bitstring-type field:

10. Compare the control block’s field bit-by-bit
as specified by information in the ACE.

Condition Code
Indicates Test
Results

‘u’ 11. Was an error detected by TESTCB, and did the

caller provide an error-return address?

No Yes

¥

12. Return to the user’s error-return address.

13. Return to the caller’s program.

$91 uonesadQ Jo POy

-

Notes for Diagram CB2
413

The ficld attribute table entry contains the length,
offset from the beginning of the block, and
characteristics of the field in the control block.

Three types of entries are identified in the field
attribute table: bitstring, normal, and entries that
require a special subroutine to process them.

If the entry is a bitstring type, the field attribute table
points to a series of bit entries in the bitstring table
that are used to modify the control block (MODCB),
or are compared to a value supplied by the user
(TESTCB).

If the entry is a normal type, the element argument
control entry is moved into the block (MODCB), a
character string or field is moved into the user’s area
(SHOWCB), or the user’s argument field is compared
with the appropriate fields in the block (TESTCB).

L91 uonesadQ Jo POy

e

(‘

Diagram DA1. VSAM Catalog Management Table of Contents

VSAM Catalog

Record Field’s
Value

Obtain Additional
Space

Catalog Record
Field’s Value

Management
Overview
Diagram DB1
Search: Retrieve Check the GENDSP: Generate SuperLOCATE: LOCATE: Retrieve UPDATE: Modify LSPACE:
the Base Catalog Password a Data Space List a Data Set’s Catalog Catalog Build an ‘“*Available
Record ’ DSNAME Volumes Information Information Space’’ Report
Diagram DC1 Diagram DDI1 Diagram DF1 Diagram DG1 Diagram DEI1 Diagram DH1 Diagram DK1
Obtain a Catalog UPDATE-Extend: Modify a

REUSE: Reset a
VSAM Data Set

Diagram DL1

Diagram DI1

Diagram DM1

Diagram DI3

LEGEND

H

|

—_———>

@
-—-—>

1t

Oezz>

Flow of control on the same page;
‘3’ indicates a number of a process
step on the same page.

Flow of control between pages;
‘AA3’ is the diagram number and
‘2’ is the number of a process step
on that diagram.

Pointers

Reference to data or testing of
data by a process step; ‘H’ is an
arbitrary designation.

Input to process steps and output
from process steps; ‘A’ is an
arbitrary designation.

Modification of data by a process

step; ‘P’ is an arbitrary designation.

SUBALLOCATE:
(Obtain Space from a
Nonunique Data Space

Diagram DJ1

3[80"[(INVSA) POYIO SS90V QSBJOIS [enlnA :IUQUOdU.IO:_) 1u9puad9pu1 SAS ZSA/SO 891

Diagram DB1. VSAM Catalog Management Overview

VSAM Open, Close, and End-of-
Volume, and Access Method
Services issued CATLG

(SVC 26) for a VSAM

Catalog Record. OS/VS
Catalog Management enters

VSAM here.
R1 _VSAM Catalog Management RIS
tCTGPLL 1. If caller is not in supervisor state or key 0, validity- 222 72>
S~ - check the CTGPL. If check fails, issue WTO message z R11
CTGPL ~ < IEC338I and return to caller. Z
Re T ~ ‘ tCCA
quest Type N ~ - . . A
~ ~ - 2. Issue GETMAIN for CCA. If GETMAIN fails, issue z
g Cam?g Record L N o S~ ~WTO message IEC339 I and return to caller. CCA CTGPL CTGFLs
1dentifier =~ <O > 3, Build and initialize a CCA for the caller’s request. tCTGPL >
tCTGFL CTGRLE _
<~ _ ®=> 4. Initialize the caller’s CTGPL and CTGFLs. C t Buffer >
tCTGFL N ST < .
N N g 5. Retrieve the catalog record identified by the caller: M

N 7 (See Diagram DC1, “SEARCH: Retrieve the Base

\\‘>® L‘ Catalog Record.”)
VSAM Catalog 6. If the caller issued an Access Method Services \ VSAM Catalog Management Buffer

command, process it and by pass steps 6 through 8
(See Diagram EB1, “Catalog Management Services Catalog Record

Overview.”)

P 5 7. Check the caller’s authorization to use the record:
7 (See Diagram DD1, “Check the Password.”)

Authorized Not Authorized

b@

VSAM Catalog Record re
(from Step 5) ,/

Password [~

Operator-Supplied
Password

DB2
8

691 uonesadQ jo POyl

~

Notes for Diagram DB1

VSAM Catalog Management is called by OS/VS Catalog
Management when VSAM Open, Close, End-of-volume,
and the Access Method Services routines issue the
CATLG macro instruction (SVC 26). Register 1 contains
the address of the caller’s catalog parameter list. The
catalog parameter list identifies which catalog record to
process and what process to perform.

A user’s program can access the VSAM catalog by issuing
an Access Method Services utility request. Access Method
Services translates the request into an SVC 26 and a
catalog parameter list.

The LOCATE command is processed first by the VSAM
catalog management routines and then, if the requested
information is not in a VSAM catalog, by the OS/VS
catalog management routines.

1GCO002F

Register 1 contains the address of a catalog parameter
list (CTGPL). OS/VS Catalog Management transfers
control (XCTL) to VSAM catalog management
transient module, IGGOCLAL.

IGGOCLAI loads IGGOCLC9, if IGGOCLC9 is not
already loaded, and calls IGGOCLC9 to process the
VSAM catalog management request.

1 1GGOCLCY: BLDCCA

A call is made to the task supervisor validity-check
routine to verify that the storage passed as a CTGPL is
owned by the caller. A condition code of 8 is set in the
PSW if the check is successful.

2 1GGOCLC9: BLDCCA

Issue a page boundary GETMAIN for CCA and
record areas. If return code is not zero, issue
“insufficient storage’” message. Set return code 8 in
register 15 if caller was a SUPERLOCATE request or
a translated request. If it was not, set reason and error
code and module ID in the CTGPL.

3 IGGOCLCY: BLDCCA

The catalog control area (CCA) contains data about
catalog records retrieved to process the request. The
CCA also contains a register save area that shows the
flow of control between catalog management routines
used to process the request.

Each time a catalog management routine calls another
catalog management routine, the contents of registers
12, 13, and 14 are put in the CCA’s register save area.
Register 13 contains the address of the next 12-byte

(\

register save area in the CCA. Register 12 contains the
address of the calling routine. Register 14 contains the
return address to the calling routine.

See ‘‘Data Areas” for details about the CCA and
CTGPL.

See *‘Diagnostic Aids” for details about the CCA
register save area.

IGGOCLAB: IGGPACDY (calls IGGPSCNC
(IGGOCLAY))

The caller’s work area and each CTGFL are checked
to ensure that it is within the caller’s address space.

The CTGFL'’s field-name value is used to obtain
dictionary data that defines the field’s characteristics
and location within the record.

See “Data Areas” for details about the field name
dictionary.

IGGOCLAB: IGGPACDY (calls IGGPSCAT
(IGGOCLAH))

The catalog record is identified by the caller’s dsname
value, volume serial number, or control interval
number.

IGGOCLAB: IGGPACDY (calls IGGPCDVR
(IGGOCLAT))

An Access Method Services command is translated
into a catalog management services request to define,
modify, delete, or list catalog records.

IGGOCLAB: IGGPACDY (calls IGGPCKAU
(IGGOCLBM))

The caller’s request type determines the level of
password that, when supplied by the operator, allows
the VSAM catalog management routines to complete
the caller’s request.

21807 (INVSA) POYISIN 55200y 38RI0IS [ENUIA :Jusuodwo) juspuadapu] SAS ZSA/SO OLL

Diagram DB2. VSAM Catalog Management Overview

R1
tCTGPLF——————————— — — — — — ——

CTGPL
Request Type

N%

> 8. Determine the request type and process it:

LOCATE WP (See Diagram DE1, “LOCATE: Retrieve
Catalog Information.”)

SUPER- W (See Diagram DG1, “ SUPERLOCATE:
LOCATE List 2 Data Set’s Volumes.”)

GENDSP W (See Diagram DF1. “GENDSP: List the
Contents of a Data Space.”)

UPDATE WP (See Diagram DHI1, “UPDATE: Modify
Catalog Information.””)

LSPACE .(See Diagram DK1, “LSPACE: Build an
‘Available Space’ Report.”)

9. Release virtual storage obtained for this request.

0S/VS Catalog Management

CCAPROB

10. Write problem determination message and set error
code, if any.

Register 15
r Return Code '—_—"S 11.Return to the caller. EZZZ@X Return Code

1L1 uoneradQ jo poyRW

I

Notes for Diagram DB2
8 IGGOCLAB: IGGPACDV (calls IGGPSLOC

(IGGOCLAM), IGGPGDSP (IGGOCLBJ), IGGPLOC
(IGGOCLAZ), IGGPUPD (IGGOCLAY), or IGGPLSP
(IGGOCLBK))

IGGPSLOC:

A SUPERLOCATE request builds a list of all volumes
and units associated with a dsname.

IGGPGDSP:

A GENDSP request builds a list of all VSAM data sets
in a VSAM data space.

IGGPLOC:

A LOCATE request retrieves information from the
catalog record.

IGGPUPD:

An UPDATE request modifies information in a
catalog record. An UPDATE request can also obtain
direct-access space for the data set or index identified
by the dsname value.

IGGPLSP:

A LSPACE request determines the amount of
available space on a VSAM direct-access volume,
when the volume is described in a VSAM catalog.

IGGOCLCY: IGGPRCLU

When the VSAM catalog management request is
complete, all virtual storage obtained for work areas,
control blocks, and the request’s CCA is returned to
the OS/VS system.

10 IGGOCLCY: IGGPRCU

Write problem determination message, if it was a
SUPERLOCATE request or a translated request, and
set error code in CTGPL.

VSAM catalog management common processing
(IGGOCLC9) sets a return code in register 2 and
returns to IGGOCLAI.

IGGOCLAT1 deletes IGGOCLC9 and transfers control
(via XCTL) to IGCO002F. Register 1 contains the 2s
complement of register 1’s contents when IGGOCLA1
was entered, to indicate to IGCO002F whether or not
the CATLG macro instruction (SVC 26) was issued by
a VSAM catalog management procedure.

C

IGCOOQ02F puts the return code (register 2’s contents)
into register 15 and returns to the caller via the SVC
return.

913077 (INVSA) POUIIN §5300y 23eI0)S [eniiA jusuodwo) juapuadapu] SAS ZSA/SO LI

Diagram DC1. SEARCH: Retrieve the Base Catalog Record

Retrieve the Base
Catalog Record

Virtual Storage for the Caller’s Program

. . . N
Virtual Storage for the Caller’s Program 1. Did the caller identify a catalog to search? .

2N
R11 v >° Yes tccA
tcCcA /
| reca | P

Search the caller-specified VSAM catalog CCA ACB

7
CCA L .

< cTGP) 7 _ P The catalog identifier addresses a catalog’s: Options)
tCTGPL Catalog Identifier - — — E tACB 3%6"3?:;1

Catator Record 2. DSNAME: Examine each PCCB for a Catalog

ldae:t?ée, eeord N matching DSNAME, and then 7 tRPL

\ //
Request Type 3. ACB: Put the catalog’s ACB address ——
‘- into the CCA.

VSAM User’s Address Space
TCB /
\(Search each VSAM catalog available to the caller.
7/,
. Determine which catalog to search, based on the A
requirements of the request. J
. Search each VSAM user catalog identified by a PCCB: /

. When all user catalog’s have been searched, search
the VSAM master catalog.

PCCBs A CB
> 1 VSAM User TCAXWA]

Catalog’s
ACB /

CAXWA
Catalog’s
DSNAME

>

CVT AMCBS M

e A data set’s DSNAME or a volume’s serial
TAMCBS| 4\ ¢ a1t Master —)l_tCAXWAI A data s
Catalog’s ;@
ACB
CAXWA or
1V e A catalog record’s control-interval number.
Catalog’s
DSNAME

tNext PCCB

. The catalog record identifier addresses either:

Y

€L1 uonesadQ Jo poyRK

-

Notes for Diagram DC1

1

IGGOCLAH: IGGPSCAT

The CTGPL’s catalog identifier field, set by the caller,
can contain the address of a catalog’s ACB, the
address of a catalog’s dsname, or 0.

See ‘““Data Areas” for details about the CCA, ACB,
and CTGPL.

IGGOCLAH: IGGPSCA

The catalog specified by the caller is the only catalog
searched. The Catalog Management Services DEFINE
routine calls the Search routine to confirm that, when
a caller wants to create a VSAM cluster or catalog, the
new cluster or catalog dsname isn’t duplicated in the
catalog. The caller (Catalog Management Services
DEFINE routine) expects the *““no record found”
return code.

If the CTGPL’s catalog identifier field contains the
address of a catalog dsname, the search routine
examines each protected catalog control block (PCCB)
for a matching dsname field. Each PCCB contains the
address of its catalog’s ACB.

If no PCCB contains a matching dsname, the
user-supplied catalog dsname refers to either a
nonexistent catalog or to an unopened catalog.

See “Data Areas” for details about the CCA and
PCCB.

See ‘‘Diagnostic Aids” for details about catalog
management error codes.

IGGOCLAH: IGGPSCA
IGGOCLAH: IGGPSCA

Some user requests, such as DEFINE CATALOG and
DELETE CATALOG, require searching the VSAM
master catalog and prohibit searching user catalogs,
even if they are specified.

If the CTGPL’s catalog identifier field contains 0, the
VSAM user catalogs specified by the user’s JCL
JOBCAT and STEPCAT DD statements, and the
VSAM master catalog, are searched until either the
record is found or there are no more catalogs to
search.

See “‘Data Areas” for details about the CTGPL search
options, cluster catalog records, and volume catalog
records.

The JSCB contains the address of the first PCCB in
the PCCB chain. Each PCCB describes one of the

e

VSAM user catalogs that have been opened to satisfy
the user’s JCL JOBCAT and STEPCAT DD
statements. A PCCB contains the address of a
catalog’s ACB. The catalog’s ACB address is put in
the CCA to identify the catalog being searched.

See ‘““Data Areas” for details about the PCCB, ACB,
and CCA.

IGGOCLAH: IGGPSCA

The AMCBS (addressed by the CVT) contains the
address of the VSAM master catalog’s ACB.

See “‘Data Areas” for details about the AMCBS and
ACB.

See OS/VS1 System Data Areas for details about the
CVT.

IGGOCLAH: IGGPSCAT

If the CTGPL'’s catalog record identifier addresses the
record’s control interval number, the catalog record
can be retrieved without a search of the catalog’s
index.

21307 (INVSA) POYISJN $5300y 288101S [enMiA :1uduodwo) Juapuadapul SAS ZSA/SO LI

Diagram DC2. SEARCH: Retrieve the Base Catalog Record

Virtual Storage for the Caller’s Program Search the Appropriate VSAM Catalog Virtual Storage for the Caller’s Program
\J
R11 8. Allocate and initialize an RPL for the catalog
“ _ being searched.
tcca =] g R11 RPL
P ” Pre . Request
CCA _ -7 9. Put the catalog’s ACB address into the RPL. :>© Options
- -~
j - -
ACB Options ’/, - 10. Search the catalog’s index and true-name records CCA ©:> tACB
TCAXWA](—v 1ACB -z to find the catalog record’s control interval number. +Buffer
/ (See Diagram BC1, “GET-Direct Processing: Directj
/ Retrieval.”) t Buffer
cAXwA -A/ 11. Was th 1 K 1i
f TRPLs tBuffer b —— — — — —— _/ ——Ppll. fozsntd?e catalog record’s control interval number Catalog Management Buffers
TRPL // Yes No True-Name Catalog Record
RPLs / l —
RPL / Object’s Base Catalog Record
y .
Request |/ 12. Search the next catalog available to the caller.
Options CTT T T
1
tACB I
(From Steps DC1 | @
8 and 9) /1
\\
Index 5)
Xft‘:lhgg 13. Read the catalog record from the VSAM catalog
—— Index Record into a catalog management buffer. (See Diagram
Catalos DSNAME | RBA BC1, “GET-Direct Processing: Direct Retrieval.”)
Index
Records
Catalog Data
"ll;:zz-rl‘(lj:me High Key-Range CCAPROB
A
e True-Name Record 14. Return to the caller. pZzZzzzZ2) Return Code
DSNAME| CI#

Low Key-Range

Catalog f—_J
(o]

Data bject’s
Records Base Record
CI#IDSNAMEIData]

J

ﬁxtension Records

I]El#l Data 1

—

C C C

§LI uonesddQ jo poylay

r

Notes for Diagram DC2
8 IGGOCLAH: IGGPRPLM

The search routine assigns one request parameter list
(RPL) to the caller. Catalog management routines
issue GET and PUT macro instructions to retrieve and
write catalog records. Each record-management
request (GET, PUT, etc.) needed to satisfy the caller’s
catalog-management request refers to this RPL. This
RPL is initialized for a caller and used as often as
necessary to process the caller’s catalog-management
request. When the caller’s catalog-management
request is completed, the RPL is assigned to another
caller.

9 IGGOCLAH: IGGPRPLM
10 IGGOCLAH: IGGPSCAT (calls IGGPGET (IGGOCLBI))

The goal of the search is to find the true name record
identified by the dsname or the volume serial number.
The true name record contains the cluster’s dsname or
volume serial number and the control interval number
of the cluster or volume catalog record.

See “‘Data Areas” for details about the catalog record.
12 IGGOCLAH: IGGPSCA

If the caller supplied a catalog’s ACB address or
dsname, no further catalog searches are performed.
The search routine sets the ‘‘no record found” error
code in CCACDI1 and returns to the caller. If the
VSAM master catalog and all VSAM user catalogs
available to the user’s program have been
unsuccessfully searched, the search routine returns to
the caller with the same error code.

See ‘““Diagnostic Aids” for details about catalog
management error codes.

13 IGGOCLAH: IGGPSCAT (calls IGGPGET (IGGOCLBI))

The catalog record is located by its control interval
number and read into a catalog management buffer.
The buffer’s address is put into the CCA.

See “Data Areas” for details about the CCA.
14 IGGOCLAH: IGGPSCAT

See ““Diagnostic Aids” for details about catalog
management return codes and error codes.

213077 (INVSA) POYIBIA SS90y 33eI01§ [eniiiA :juauoduro)) juspusadapu] SAS ZSA/SO 9L1

Diagram DD1. Check the Password
Virtual Storage for the Caller’s Program @@ Verify the caller’s authority to bypass password checking

R11
[E CTGPL 1. Does the caller want to bypass password checking?
Request - No Yes
o Option - -
CCA Password | . _ —~ - 2. 1s th 1 h Kk
- : D - . Is the caller in either protection key
TCTGPL Checking - =X ? 0 or supervisor state?
- Options \ -~ p :
tCatalog \ -~ Yes N
Record User- \ - A g
Supplied NP
Password i (N
-~
Caller’s - \
Identity AN
\
\ OK Return Error Return
Catalog Management Buffer \
Catalog Record \ .
L (Retrieved by the Caller) Check the user-supplied password
Password N 3. Determine the type of password to be checked.
Set of Fields
Passwords > 4. Obtain the password from the catalog record.
- (See Diagram DL, **Obtain a Catalog Record Field’s
Code Word »
Value.™)
Number of K
Attempts \ S. Is there a user-supplied password?
SN Yes No Conscle or

‘ TSO Terminal
6. Request the password. Messag
aest the

“Supply Correct [Type]

Operator
Reply Password for [Codeword |
Data Set”
Password > 7. Does the password in the catalog record equal the
user-supplied password?

|
l Yes No
| 4
\ — — 4 — - 8. Did the user exhaust the number of attempts
he has to supply the password?
Yes No

oS

Error Return

C C C

LL1 uonesddQ jo poyrn

C

Notes on Diagram DD1

IDA0192C and IGGOCLAB: IGGPACDY (calls
IGGPCKAU (IGGOCLBM))

When the VSAM Open routine (IDA0192C) calls
VSAM Catalog Management to retrieve a cluster
catalog record, the password checking routine
confirms the user’s authorization to gain access to the
cluster.

IGGOCLAT: IGGPCDVR (calls IGGPCKAU
(IGGOCLBM))

When an Access Method Services routine calls a
catalog management services routine, the password
checking routine confirms the user’s authorization to
gain access to the VSAM catalog or a specific catalog
record.

The catalog record containing the password(s) is
available in the buffer addressed by the caller’s CCA.

See “'Data Areas” for password set of fields details.

The type of processing that the user is allowed to do
with the data set is determined by the password:

« Master password: The user is allowed to modify
passwords and catalog records that describe his
data set, and to process his data set’s control
intervals and records.

o Control-interval password: The user is allowed to
process the data set’s control intervals as well as its
records.

« Update password: The user is allowed to process
his data set’s records.

« Read-only password: The user is allowed to read,
but not to write (add or update), records in his data
set.

IGGOCLBM: IGGPCKAU

If the user’s password has been verified during a
previous catalog management request, the caller
(VSAM Open, or a Catalog Management Services
routine) can set the CTGPL’s
bypass-password-checking flag on.

IGGOCLBM: IGGPCKAU

Other VSAM catalog management callers, such as the
user’s program (with Access Method Services
commands), and utility programs, are not in
protection key O or supervisor state. If these programs
attempt to bypass password checking, the password
checking routine sets an error return code that

e

prevents further VSAM catalog management
processing for the caller’s program.

IGGOCLB6: IGGPSPSC

The caller can indicate what type of password is
supplied with the CTGPL, but the password checking
routine determines the type of password required for
the request.

IGGOCLBM: IGGPCKEX

The password is in the password set-of-fields in the
cluster, data set, or index catalog record. The CTGPL
can contain a password that the user supplied ina JCL
statement.

IGGOCLBM: IGGPPWGT

The console operator, or TSO user, can reply to the
VSAM request-for-password message with a password.

1GGOCLBM: IGGPPWVR
IGGOCLBM: IGGPPWVR

21807 (JAVSA) POYIRIA $5300Y 3510l [EnMIA Juduodwo) Juapuadapuf SAS ZSA/SO 8LI

Diagram DD2. Check the Password

Virtual Storage for the Caller’s Program

R11

N

Call the user security verification routine (USVR)

I tCCA I

CTGPL L~
CCA P
Password L -
TCTGPL Checking
Options
tCatalog
Record

Catalog Management Buffer

Catalog Record

(Retrieved by the Caller) V
/r

Password
Set of Fields

tUSVR

9. Did step 7 confirm the data set’s master password?
Yes No

10. Is there a USVR specified for the user?
No Yes

4

11. Call the USVR to confirm the user
program’s authorization to process
the data set’s records.

12. Is the USVR return code 0?

Yes No

b Error Return — |Step 14

Pl ¢

\

7
7
rd

Return to the caller

R15 (Set by USVR) , <

Return Code

e
DD1
2,8

13. Set a return code — successful completion — and
return to the caller.

14. Set an error return code — security verification
error — and return to the caller.

Virtual Storage
for the User’s Address Space

User Security
Verification
Routine (USVR)

CCAPROB
Return Code

6L1 uonesado Jo poyrK

I

Notes for Diagram DD2

9

IGGOCLB6: IGGPINMD

If the user supplied the correct master password, the
user security verification routine (USVR), if it exists, is
bypassed. If a USVR exists, the USVR exit is taken
only if the user provided another type of password
correctly.

10 IGGOCLB6: IGGPINMD

If a user security verification routine exists, its address
is in the catalog record’s password set-of-fields.

See “‘Data Areas” for details about the cluster catalog
record and the password set-of-fields.

11 IGGOCLB6: IGGPINMD

The user security verification routine (USVR) is an
installation-supplied routine that confirms a user’s
authorization to gain access to the data set. The USVR
confirms that the user satisfies the installation’s
security verification criteria.

130T (WVSA) POYIdN §5920y 38e1o1§ [eniaip :jusuodwo) juspuadapu) SAS ZSA/SO 081

Diagram DEI.

Virtual Storage for the Caller’s Program

LOCATE: Retrieve Catalog Information

CTGI'L for Tests

R11 CTGPL
Request
1CCA Type
tCTGFLs
CCA
tBuffer CTGFL
tCTGPL Dictionary Flags N
tCurrent Field Name
CTGFL
tCTGFL for Tests

Test Condition

Field Name

Address and Length
of Test Data

Test-Data Area

Test Data -

fNext CTGFL for Tests

—— — — ———— —

Catalog Management Buffer

Object’s Catalog Record

Set of Fields
Set-of-
Seq- | pields Field to | Field to
Pointer be be
Retrieved | Tested

N\

T3,

\ management buffer.

DBI D13

1. Obtain information about each CTGFL’s field
name.

2. Do steps 3 through 16 for each of the caller’s
CTGFLs.

Is the field to be retrieved an upgrade field name?
No Yes

! Use the associations in the current entry to
read the upgrade entry into the catalog e

5. Is the field to be retrieved only if caller-specified
test conditions are satisfied?
No Yes

=-p6. Identify each set of fields that satisfies the
test conditions.

CA?I Does at least one set of fields satisfy the test

conditions.
Yes No

Virtual Storage for the Caller’s Program

CCA

CTGPL

1CTGFL

TCTGPL

tCurrent CTGFL

—— 1Buffer i‘

L{C
7

Sequence
Number of -
Each Set of
Fields that
Satisfies
the Tests

tCTGFL

CTGFL

“Test Failed”

Catalog Management Buffer

181 uoneiadQ jo poydIW

(\

Notes for Diagram DE1

IDA0192C

The VSAM Open routine issues the CATLG macro
instruction (SVC 26) to obtain data set and volume

information about the user’s data set and index. See
Diagram AC1, VSAM Open Processing, for details.

IDAOS57A

The VSAM end-of-volume routine issues the CATLG
macro instruction (SVC 26) to obtain volume
information about the extents added to the user’s data
set. See Diagram AE1, VSAM End-of-Volume
Processing, for details.

IGGOCLAB: IGGPACDY (calls IGGPLOC
(IGGOCLAZ))

When the caller issues a CATLG macro instruction,
register 1 points to the caller’s catalog parameter list
(CTGPL). The CTGPL'’s request options are decoded
and the base catalog record is retrieved for the
request. See Diagram DB1, VSAM Catalog
Management Overview, for details about initial
catalog management processing and request decoding.

IGGOCLB7: IGGPRUS, IGGPFRWK (calls IGGPLOC
(IGGOCLAZ))

Upon completion of Reuse processing, LOCATE is
called to return catalog field information from the
reset entry.

IGGOCLAZ: IGGPEXT (calls IGGPSCNC (IGGOCLAY))

Each CTGFL is initialized with the dictionary entry
associated with the CTGFL's field-name value. Calls
from within catalog management (as opposed to
external calls, such as LOCATE) enter at this point to
use the field management retrieval function.

IGGOCLAZ: IGGPSCNF

Steps S through 15 are performed for each of the
caller’s CTGFLs.

The Locate routine processes each CTGFL associated
with the caller’s CTGPL and returns as much
caller-requested data (in the caller’s work area) as the
caller’s test conditions and work area size permit.

IGGOCLAZ: IGGPSCNF (calls IGGPUPGD)

A caller may request catalog information from an
associated upgrade entry by using upgrade field
names.

P

IGGOCLAZ: IGGPUGD

The upgrade entry may not be in the catalog
management buffer. If it is not in the buffer, the
associations in the current entry are used to retrieve
the upgrade entry.

IGGOCLAZ: IGGPSCNF

The caller’s CTGFL list contains the address of each
CTGFL required to satisfy the caller’s need for catalog
information. Each CTGFL describes one of the
catalog record fields to be retrieved. Each CTGFL is
completely processed before the next one is started.

IGGOCLAZ: IGGPSCNF (calls IGGPTSTS
(IGGOCLBA))

A caller might make conditional requests for retrieval
of catalog record fields. In this case, two CTGFLs are
supplied with the request and processed together. One
CTGFL identifies a field to be retrieved and points to
a second CTGFL that contains the name of the
catalog field to be tested, the test conditions (equal,
low, high, etc.), and the address and length of the
caller’s test data area. The catalog record field
identified by the second CTGFL is compared to
(tested against) the caller’s data. If the comparison
satisfies the test conditions, the catalog record field
specified by the first CTGFL is retrieved.

IGGOCLBA: IGGPTSTS

If the caller wants to retrieve a catalog record’s header
field, the field’s data is retrieved if all tests are
satisfied.

If the caller wants to retrieve a field from one of the
sets of fields that follow the header fields, the field’s
data is retrieved from each set of fields that satisfies all
tests.

See ‘‘Data Areas” for details about a catalog record
and its sets of fields.

The sequence number of each set of fields that satisfies
the tests is put in the CCA. After the sets of fields have
been tested, the sequence numbers in the CCA are
used to identify each set of fields that contain
caller-requested data.

21807 (INVSA) POYISIN §5300y 28e101S [eniiA usuodwo) 1apuadapul SAS ZSA/SO 781

Diagram DE2. LOCATE: Retrieve Catalog Information

Virtual Storage for the Caller’s Program

%

Virtual Storage for the Caller’s Program

R11 CTGPL
tCCA 3 1CTGFL
’__—:] 8. Is more than one field identified by the field
= ~ nanie (a combination ficld namc;?
. / No Yes
CCA tCTGFL Y ‘
s tBuffer N .
TCurrent ([Work Area / 9. Do steps 10 through 15 for each field
C“TGG;TL 1 CTGFL / associated with the combination name.
Fi ‘ -~
tCTGPL — \(“9:5)10. Does the caller want the address of the catalog’s ACB?
tCatalog’s @@ N Yes No
ACB \\ ‘ ™
W 11. Get the field’s value from the catalog record.
(See Diagram DL1, “Obtain a Catalog Record
Work Area Field’s Value.”)
Work Area’s
Length \ Put the Field’s Data in the Caller’s Work Area
Ss;zr;lt Total \:‘»FIZ. Add the data field’s length to the “current total
~_ N length.” \
Catalog ~ ™
Field’s
Data "13. Is the “current total length’ greater than the work %
area length?
Yes No

Catalog Management Buffer

Object’s Catalog Record

Set-of-
Fields
Pointer

Set of Fields

Field to Other
be Fields
Retrieved

AN

¢

14. Move the field’s data into the work area. \4
7\\
15. Put the data’s length and address

into the CTGFL.

16. If the upgrade entry was read in to process an

R11

I tcca I

CCA
tCurrent
CTGFL

tCTGPL

T Buffer

CTGFL

CTGrL
tCTGFL

-
~
e 4

TtCTGFL

tWork Area

Field Name (Combination)

N

tField Name in the
Combination Name Index

Number of Field Names
in the Combination

Address and Length of
Data in Work Area

ﬂCOm bination

Name Index

I'ield Name

14 4

18. Return to the caller when all CTGFLs have been

processed.

upgrade field name, restore the original entry. \
. Perform final derived-volume entry field processing. g&

~
L 'Field Name

Field Name

O
—

Work Area

Work Area’s
Length

Current Total
Length

Catalog Management Buffer

Object’s Catalog Record

Field to
be
Retrieved

z CCAPROB
oz Rt Coue

€81 uonesadQ Jo poyIs N

-

Notes for Diagram DE2
8 IGGOCLAZ: IGGPLOC2

A combination name refers to a set of related catalog
field names, and is used by the caller instead of a
separate CTGFL for each field name.

9 IGGOCLAZ: IGGPLOC2

The CTGPL, CTGFL, and catalog control area (CCA)
are described in ‘‘Data Areas.”

The combination name index has an entry for each
field name in the combination. The Locate routine
processes each field name entry in the combination
name index sequentially, starting at the index of the
first field name entry for the combination, and ending
when the number of entries processed equals the
number of field names associated with the
combination name.

The test sequence (if any) associated with a
combination-name CTGFL is done only once, not
once for each field name in the combination.

10 IGGOCLAZ: IGGPLOC2

The address of the catalog’s ACB is in the CCA. All
other catalog record fields that the caller can request
are in the catalog record. Each catalog record field is
identified by its field name. See ‘‘Data Areas” for
catalog record field names.

11 IGGOCLAZ: IGGPLOC?2 (calls IGGPGVAL
(IGGOCLBA))

Diagram DL1, Obtain A Catalog Record Field’s
Value, shows how the requested catalog record field
(specified by its field name in the CTGFL) is located
for the Locate routine.

12 IGGOCLAZ: IGGPSHIN

The first two fields in the caller’s work area specify the
number of bytes the caller allocated to the work area
and the number of bytes that contain catalog record
field data (the ‘“‘current total length” exceeds the work
area length, the current total length field is updated
with the length of the catalog record data, but the data
itself is not moved in the caller’s work area.

14 IGGOCLAZ: IGGPSHIN

The Locate routine puts the beginning address and the
length of the catalog field into the CTGFL'’s field-data
entry.

-

15 IGGOCLAZ: IGGPSHIN

The CTGFL'’s field-data entry contains the beginning
address and length of the data in the caller’s work
area. When control is returned to the caller, the caller
can use the field-data entry to locate a specific field’s
data in the work area.

16 IGGOCLAZ: IGGPSCNF

If the field name processed required the upgrade entry
to be read in, the original entry is restored before the
next CTGFL is processed.

17 IGGOCLAZ: IGGPEXT

If this function was requested by an internal catalog
management function, final derived-volume
processing must be done. This processing consists of
generating certain volume entry fields from the
catalog information returned in the user’s work area.

18 IGGOCLAZ: IGGPLOC

See “‘Diagnostic Aids” for details about catalog
management return codes and error codes.

“A/SO v81

T
[od

9180 (JNVSA) POYII §5990y 38e10)§ [BNLIA lusuodwo) juspuadapul SAS

Diagram DF1. GENDSP: List the Contents of a Data Space

Virtual Storage for the Caller’s Program

DBi List all VSAM objects in a data space.

R11 R3 8 ;
I tCCA l tF1DSCB
in Work Area
CCA Fll)DtSCSB L 1. Is data space unique?
ata Space
t Buffer Timestamp \ No t
Catalog Management Buffer 2. Get the true-name record
Volume Catalog Record E] \)
Data s G T Sw Drroth \ 3. Put volume ACB address, Cl number,
ata Space Group ata Set Directory \ R s .
i Set of Fields { Entries \ and length of CI in user’s area. CCAPROB
- 1 1 L L 1
\ 4. Return to caller W Return Code
Number of >5. Retrieve the data space group set of fields associated
Data Space VSAM Objects with the data space.
Timestamp in the
Data Space

Do steps 6 through 8 to examine each Data Set Directory
entry in the volume catalog record Virtual Storage for the Caller’s Program

L/'76. Retrieve the Data Set Directory entry.

TTTTTTT /74 cCcA CTGPL
Cl# of, Space Header — / . Lo .
Objelct S | Sequence Number L 77. Does the Data Set Directory entry indicate that its 1CTGPL tWork Area
CR?::)?f Entries _ L VSAM object is allocated an extent in the data
— space? J
-
A) - - No Yes
- - CTGWKA
—
3 - Length
equence
Number of
I:;:;"éb:::f Extents this @ 3-Byte Control
P Object has . Interval Number
Header in the Data Space 8. Put the control interval number of the of Each VSAM
Set of Fields VSAM object’s catalog record into the list. ﬁ.j Object in the
Data Space

9. Return to the caller when all Data Set Directory CCAPROB

entries have been processed. PZZZZZZFrrrZZZZZ2>| Return Code

C C C

§81 uonesadQ Jo poyrRW

-

Notes for Diagram DF1

The caller (an OS/VS Utilities program or OS/VS Open)
specifies the GENDSP option of LOCATE to obtain the
control interval number of the catalog record of each
object (cluster, data set, index, and catalog) that is
contained in a VSAM data space identified by a
DSNAME value (from the format 1 (identifier) DSCB).

1 IGGOCLBJ: IGGPGDSP

The user-provided workarea is tested to ensure that
the minimum size has been provided. The GENDSP
routine tests the first seven characters of the data
space name to determine whether the data space is
unique. A data space name beginning with
*Z999999..." is a nonunique data space.

2 IGGOCLBJ: IGGPGUDS

The true-name catalog record associates the data
space name with the control interval number of the
catalog record that describes the data space.

3 IGGOCLBJ: IGGPGUDS

The fixed length of the control interval number area
and the control interval number are put into the
user-provided workarea.

5 IGGOCLBJ: IGGPGDSP

The CCA, a CPL, and two FPLs are set up to extract
the data space group set offields for the appropriate
data space. The DSCB timestamp value is calculated
from the data space name and used as the test value.

6 IGGOCLBJ: IGGPGDSP

Three FPLs are set up and the Data Set Directory
entry is extracted.

7 IGGOCLBJ: IGGPGDSP

Scan the Data Set Directory set of fields to find a data
space sequence number match.

8 IGGOCLBJ: IGGPGDSP

When a sequence number match is found, the volume
ACB address, the length of the control interval
number area, and the control interval number put into
the caller’s workarea.

.See “‘Diagnostic Aids” for details about catalog
management return codes and error codes.

2130 (INVSA) POYIAN §S200Y 3FeI0)g [eniiip jusuoduwio) Juapuadapu] SAS ZSA/SO 981

Diagram

DGI1.

Virtual Storage for the Caller’s Program

R11

CTGPL

LwC.A

CCA

1CTGPL

tBuffer
rTWorkAreu

Catalog
Record
Identifier

Minimum
Unit
Count

1Scheduler
Work Area

|

TVolume
List Area

Request
Type

SKLDS
Number of
Entries in
User’s Area

Number of
Volume
Information
Entries

SVOI

tVolume
Information
List

Volume

’—1 Informatio
Entries 1

W @ Catalog Management Buffer

/Objcct’s Catalog Record

Identifier

Association
Sets of Fields

T T

T
Volume Information
Sets of Fields

T I

“Data
Set”
Flag

Cl # of the
Cluster’s Data Set
Catalog Record

“Candidate”
Flag Off

Device
Type

Volume
Serial
Number

bB1

SUPERLOCATE: List a Data Set’s Volumes

List all volumes that contain the caller-specified
VSAM object.

1.

P

@ Yes

3.
i\'
5.

6.

O

No

Is the VSAM object an index, data, cluster,
alternate index, path, nonVSAM, or user catalog?
No
CCAPROB

2. Return to caller. Return (‘ode

Are caller’s work area and volume list area valid?
Y CCAPROB

4. Return to caller. 227727747

Prevent the VSAM object from being deleted by
another catalog management caller during the
SUPERLOCATE process.

Initialize CCA, CTGPL, and CTGFL to retrieve
group associations of VSAM object.

Z

Is the request in a recoverable catalog and the
VSAM object is not a user catalog or nonVSAM
entry?

Yes

8. Move catalog recovery area information to
the volume list.

Virtual Storage for the Caller’s Program

CCA CTGPL
1CTGPL “Force Keep”
IFlag ON
(—- tBuffer ,/I 2
0 tScheduler
TWork Area Work Area
SKFLDS CTGWA
Number of Mini
Volume lr_nm‘um
Information Unit Count
Entries tVolume
tVolume List
Information
List
CTGVL
SVOI Volume
[Information
Volume Entri
. . ntries
Information
Entries
Device
Type
Volume
Serial
Number
Flags
Catalog Management Buffer
I Object’s Catalog Record \I

(81 uoneradQ Jo poyrs

-

Notes for Diagram DG1

The caller (the OS/VS Scheduler) specifies the
SUPERLOCATE option of LOCATE to obtain a list of
volume serial numbers (and device types) for a VSAM
data set’s volumes. The caller identifies the data set with
its dsname value.

1

N A W

IGGOCLAM: IGGPSLOC

If the VSAM object is a cluster, the cluster’s data
volumes are described in the cluster’s data set catalog
record.If the cluster is key-sequenced, the cluster’s
index volumes are described in the cluster’s index
catalog record.

See “‘Data Areas” for details about cluster, data set,
and index catalog records and their sets of fields.

IGGOCLAM: IGGPSLIN and IGGPDBVC
IGGOCLAM: IGGPSLIN

IGGOCLAM: IGGPSLIN and IGGPSLEI
IGGOCLAA: IGGPSLEN and IGGPSLIV

1 (JAVSA) POYIRIN §5300Y 288101G [eniiA 1usuodwo)) Juapuadapu] SAS ZSA/SO 881

2130

Diagram DG2. SUPERLOCATE: List a Data Set’s Volumes

Virtual Storage for the Caller’s Prog

ram

R11 CTGPL

CTGWA

tCCA Catalog
Record

CCA Identifier

Minimum
Unit
Count

ICTGPL TScheduler

R

Work Area
1t Buffer tVolume
List Area
Request
Type

tWork Area

SFLDS

Number of
Entries in
User’s Area

Number of
Volume
Information
Entries

SVOI

TVolume
Information
List

Entries

_) Volume
Information

71@ Catalog Management Buffer

7 Object’s Catalog Record

T T T T
Identifier Association Volume Information
Sets ofl Fields Sets of Iields
{ 1 1 |
e T B
Data | CI # of the
Set” Cluster’s Data Set
Flag Catalog Record
‘“Candidate” | Device ;,:rlizlme
Flag Off Type Number

Object is a path entry.

Object is a no
catalog entry.

. Determine the type of object:

—

Object is a data record.

Object is a cluster or Alternate

index entry.

Cluster or Alternate Index Processing

nVSAM, index, or user .

ouo)

10.

11.

12.

Retrieve the base data and index (if any) records
from each group occurrence of the VSAM

object.

For each base record obtained in step 10, retrieve
volume information for each volume that has
space allocated to the object or is a candidate
volume.

For each volume occurrence obtained in step 11,
build a list of volume information entries and
establish the minimum unit count.

Data Set
0OS/VS2 Catalog

Index

C

Catalog Record

Catalog Record

&

Virtual Storage for the Caller’s Program

CCA

TCTGPL

CTGPL

t Buffer

TWork Area

l SFLDS

Number of
Volume
Information
LEntries

tVolume
Information
List

{ svol

Volume
Information
Entries

Device
Type
Volume
Serial
Number

Flags

>‘‘Force Keep™

Flag ON

tScheduler
Work Area

CTGWA

Minimum
(lf Unit Count
tVolume

List

CTGVL

Volume

Information
Entries

Catalog Management Buffer

L
\" Object’s Catalog Record

681 uonesadQ jo poysW

(\

Notes for Diagram DG2
9 IGGOCLAA: IGGPSLEN
10 IGGOCLAA: IGGPSLCG

If the VSAM object is a base cluster data record, call
IGGPSLY (IGGOCLAA) to obtain upgrade
associations, if any.

11 IGGOCLAM: IGGPSLEL
12 IGGOCLAA: IGGPSLIV

The volume list pointed to by CTGWAVL has the
following format:

The volume list contains no duplicate volume serial
numbers.

The volumes are divided by whether they are
within the minimum unit count or outside it.
Minimum unit count is the minimum number of
direct-access devices required to mount the object’s
volumes. Volumes must be contiguous by device
type. Device types within the minimum unit count
are not ordered in any particular sequence nor are
they related to the device types outside the count.

Volumes within the minimum unit count will each
be assigned an individual unit by the Scheduler. If
volumes that do not have units already assigned
exist outside the minimum unit count, the last unit
assigned to a volume of the same device type
within the minimum unit count will be made
nonshareable. If this is not possible, an additional
nonshareable unit will be assigned.

The volume list pointed to by CTGWAVL has the
following content:

All volumes in a given entry are placed into the
volume list, regardless of whether they have
allocated space.

The volume information returned varies according
to the entry type specified by the Superlocate
request and whether the volume is within the
minimum unit count or outside it, as follows:

Entry types C, D, G, [, and R

Within the minimum unit count, the CRA volume
for the particular entry is returned.

Data entry (D):

Within the minimum unit count, every volume in
the upgrade set is returned. Each volume in the
data entry that has aunique device type within the
data entry and is either the first with allocated

~

space (prime or overflow) or, if no volumes have
allocated space, is the first candidate volume is
returned.

Outside the minimum unit count, all others in the
data entry are returned.

Index entry(I):

Within the minimum unit count, each volume in
the index entry that has a unique device type within
the index entry and also is either the first with
allocated space (prime or overflow) or, if there are
no volumes with allocated space, is the first
candidate volume is returned. If sequence set is
with data, the same volume may appear as both a
prime and a candidate volume.

Outside the minimum unit count, all others in the
index entry are returned.

NonVSAM entry(A):

Within the minimum unit count, each volume in
the nonVSAM entry that has a unique device type
within the nonVSAM entry is returned. Every
nonVSAM volume occurrence is marked as prime.

Outside the minimum unit count, all others in the
nonVSAM entry are returned.

User catalog entry (U):

Within the minimum unit count, each volume in
the user catalog entry that has a unique device type
within the entry is returned. Every user catalog
volume occurrence is marked as prime.

Outside the minimum unit count, all others in the
user catalog entry are returned.

Base cluster entry (C):

Within the minimum unit count, every volume that
does not have sequence set with data is returned.
Otherwise, same as data entry.

Outside the minimum unit count, all others in the
data entry are returned.

Alternate index entry (G):

Same as the base cluster entry, except that there is
never an upgrade set.

Alias path entry (R):

Same as the base cluster entry, except that the
upgrade set inclusion depends on the
UPDATE/NOUPDATE flag in the path entry.

(\

Normal path entry (R):

Within the minimum unit count, every volume of
the alternate index under this path is returned.
Otherwise, same as the base cluster entry, except
that the upgrade set inclusion depends on the
UPDATE/NOUPDATE flag in the path entry.

Outside the minimum unit count, all others in the
data entry are returned.

2130 (WVSA) POYIRI SS320y 33eiolg [eniaiA sjusuodwio)) juapuadapu] SAS ZSA/SO 061

Diagram DG3. SUPERLOCATE: List a Data Set’s Volume

Virtual Storage for. the Caller’s Program

R11 CTGPL CTGWA
Catalog Minimum
Record Unit
Identifier Count
N tScheduler | 1
TCTGPL Work Area
tVolume
(1 TBuffer List Area
TWork Area| gpp pg
Number of
Entries in
User’s Area
Number of
Volume
Information
Entries SVOI
tVolume Volume
Information Information
List Entries

\ Catalog Management Buffer

identifier

Object’s Catalog Record
T

Association
Sets of Fields
il |

T T T T
Volume Information
Sets of Fields

3 4 1 [

CI # of the
.Cluster’s Data Set
Catalog Record

=0

. V.
“Candidate™ | Device S;:Ii::'ne
Flag Off Type Number

VSAM Catalog

Data Set
Catalog Record

Index
Catalog Record

Path Processing

0’
Q’

13. Obtain data and index records from each group
occurrence for the path. Extract volume
information associated with the record and put
the volume information in the caller’s work
area. \

D

NonVSAM, Index, or User Catalog Processing

Gy

14. Retrieve volume occurrences for VSAM object
record and put volume information in the

Scheduler work area.

Upgrade Processing

A

15. Retrieve upgrade associations, if any, and
obtain group occurrence associations. For each
member of the group occurrence, obtain
volume occurrences and put volume information

in caller’s work area.

.16. Retrieve volume information for data Ve,
component record and put volume information
in caller’s work area.

Data Record Processing

C

©

Virtual Storage for the Caller’s Program

CCA

TCTGPL

.

tButtfer

TWork Area

SFLDS

Number of
Volume
Information
Entries

SN

TVolume
Information
List

l|£ SVol

Volume
Information
Entries

Device
Type

Volume
Serial
Number

Fla gs

CTGPL

“Force Keep”’
Flag ON

Scheduler
Work Area

CTGWA

Minimum
Unit Count

tVolume
List

CTGVL
Volume

Information
Entries

Catalog Management Buftfer

Object’s Catalog Record

161 uoneradQ jo poyPW

-

Notes for Diagram DG3
13 IGGOCLAA: IGGPSLR, IGGPSLIV, and IGGPSLY

For each record obtained, IGGPSLEL extracts the
volume information associated with the record. Then
IGGPSLIV inserts the information into the caller’s
work area. When the base cluster data record has been
retrieved, IGGPSLY obtains any upgrade associations
related to the record.

14 IGGOCLAA: IGGPSLIV
IGGOCLAM: IGGPSLEL

IGGPSLIV inserts volume information into the
caller’s work area.

15 IGGOCLAA: IGGPSLY and IGGPSLIV
IGGOCLAN: IGGPSLEL

IGGPSLEL obtains the volume occurrences;
IGGPSLIV inserts the volume information into the
caller’s work area.

16 IGGOCLAA: IGGPSLEN

If the VSAM object is a base cluster data record, call
IGGPSLY (IGGOCLAA) to obtain upgrade
associations, if any.

IGGOCLAM: IGGPSLEL and IGGPSLIV

IGGPSLIV inserts volume information into the
caller’s work area.

91307 (JNVSA) POYISA SSa00y a3eiol§ [emuIA fjusuodwo) yuspuadapu) SAS ZSA /SO Z61

Diagram DG4.

SUPERLOCATE” List a Data Set’s Volumes

18. Return to caller.

Ty

17.. Move volume information to beginning of
caller’s work area.

CCAPROB

CCA

Return Code

tCTGPL

CTGPL

tWork Area

CTGWA

tVol List

CTGVL

Volume Information

€61 uonesadQ jo poyP

e

Notes For Diagram DG4
IGGOCLAA: IGGPSLEN and IGGPSLIV

17 IGGPSLIV builds the volume list from the end of the
work area to the beginning, thus allowing the sorting
of entries by device type both within and outside the
minimum unit count.

18 IGGOCLAM: IGGPSLOC

If an error is detected, the procedure detecting the
error returns control immediately to the calling
procedure. IGGPSLOC returns to the caller of
SUPERLOCATE.

For additional information about topics related to
SUPERLOCATE processing, see:

“Data Areas:”
Catalog record descriptions and formats
“Diagnostic Aids:”

Catalog management return codes

21807 (IWVSA) POYISIN S5300y 33101 [BnMIA HHusuodwo) juspuadapu] SAS ZSA/SO P61

Diagram DH1. UPDATE: Modify Catalog Information

1. Does the caller (VSAM EQV) want more space?
A

C

R11
feea I Virtual Storage for the
Caller’s Program
CCA
1 _tBuffer
1CTGPL CTGFL
tCurrent .
CTGFL Field Name
tCTGFL for Tests |[— — —
CTGPL tUpdate Data
Identifies
a Catalog CTGFLs for Tests
Record Test Condition ~ —
Request Field Name
Options Address and
tCTGFL Length of the
Test Data
1CTGFLs
for Tests /
/
/
/
Caller-
\—> Supplied
Update Data [
to Replace
Catalog
Record Data
A Catalog Management Buffer
Catalog Record N
Set-of-Fields h Set-of-
Pointer Fields /
tSet- /
Sequence . 7
Number of— Field | Field
Fields |)y
AL
B

No Yes

Call the Update-Extend function and exit.
(See Diagram DI, “UPDATE-Extend: Obtain
Additional Space for a VSAM Object.”)

2. Does the caller (VSAM OPEN processing) want
to reset a VSAM data set?
No Yes

Call VSAM data set reset function and then
exit. (See Diagram D13, “Reset a VSAM Data
Set.”)

Do steps 3 through 8 to process each of the caller’s CTGFLs:

Test the Catalog Record Field

9. Write the updated catalog record into the catalog. s
/710. Return to the caller when all CCAPROB

p 3. [s the field to be updated only if caller-specified
test conditions are satisfied?
No Yes

D 4. Identify each set of fields that satisfies the

Virtual Storage for the Caller’s Program

CTGPL CTGFL
1CTGFL |—>]Field Name
~ ~ tUpdate
Data

TCTGPL in the Combination
TCTGFL Name Index

R11
CTGFL
CCA Field Name (Combination)
tFirst Field Name Index

test conditions?

5. Does at least one set of fields satisfy

the test conditions?
Yes No

%

6. Is more than one field identified by the field name
(a combination name)?
No Yes

L4

7. Do step 8 for each field associated with the
combination name.

T
8. Replace the field’s data with the caller’s update data.

(See Diagram DM, “Modify a Catalog Record Field’s
Value.”)

CTGFLs have been processed. &

Sequence Number of Field Names
Numbers in the Combination
of “OK”

Sets of Fields tUpdate Data

Combination Name Index

1 Buffer Index to Each Field Name

Entry (in the Dictionary)
Associated with the
Combination Name.

Virtual Storage for
the Update Routine’s Buffer

T Field |

Catalog Record
lUpdated Datal

~ o

~ ~

VSAM Catalog

Updated
Catalog
Record

§61 uonesadQ jo poydo

(\

Notes for Diagram DH1

IDAO192A

The VSAM Open routine uses VSAM catalog
management to reset a VSAM data set.

IDA0200T

The VSAM Close routine uses VSAM catalog
management to modify the data set and index statistics
maintained in the catalog record’s copy of the
AMDSB.

IDAOS5S7A

The VSAM EOV routine uses VSAM catalog
management to obtain more space for a data set.

IGGOCLAB: IGGPACDY (calls IGGPUPD
(IGGOCLAY))

When the caller issues the CATLG macro instruction,
register | points to the caller’s catalog parameter list
(CTGPL).The CTGPL request options are decoded
and the base catalog record is retrieved for the
request. See Diagram DB1, VSAM Catalog
Management Overview, for a description of initial
catalog management processing and request decoding.

IGGOCLAYV: IGGPUPD (calls IGGPUPDE
(IGGOCLBB))

If more space is required for the data set, the
UPDATE—Extend routine processes the caller’s
update request, and returns to IGGPACDV: in
IGGOCLAB.

IGGOCLAYV: IGGPSFPL

Steps 2 through 7 are performed to update each of the
catalog record fields identified by the caller’s
CTGFLs.

IGGOCLAV: IGGPUPD (calls IGGPRUS (IGGOCLB7))

If a VSAM data set must be reset, the
UPDATE-REUSE routine processes the caller’s
request and returns to IGGPACDV (IGGOCLAB).

IGGOCLAV: IGGPSFPL

The caller’s CTGFL list contains the address of each
CTGFL needed to satisfy the caller’s updating
requirements. Each field parameter list (CTGFL)
describes one of the catalog record fields to be
updated. Each CTGFL is completely processed before
the next one is started.

C

IGGOCLAYV: IGGPSFPL (calls IGGPTSTS
(IGGOCLBA))

Sometimes the caller wants to update a field only if
another field’s value, when compared to the caller’s
test value, satisfies the caller’s test conditions. If so,
the caller builds a CTGFL that contains the name of
the catalog field to be tested, the test conditions
(equal, high, low, etc.), and the address and length of
the caller’s test value. If a CTGFL contains the
address of another CTGFL, the second CTGFL
describes a catalog record field that is to be compared
to the caller’s data. If the comparison satisfies the test
conditions, the catalog record field specified by the
first CTGFL is updated with the caller’s data.

IGGOCLBA: IGGPTSTS and IGGPTCMP

If the caller wants to update a catalog record’s header
field, the field’s data is updated with the caller’s data if
all tests are satisfied.

If the caller wants to update a field from one of the
sets of fields that follow the header field, the field’s
data is updated with the caller’s data for each set of
fields’ field that satisfies all tests. The set of fields that
contains the field to be updated can also be identified
by it’s sequence number.

See ‘““Data Areas” for details about the catalog record
and its sets-of-fields.

The sequence number of each set of fields that satisfies
the tests is put in the CCA.When all sets of fields have

been tested, the sequence numbers are used to identify
each set of fields that contains caller-requested data.

IGGOCLAX: IGGPALT2

A combination name refers to a set of related catalog
field names, and is used by the caller instead of a
separate CTGFL for each field name.

IGGOCLAX: IGGPALT2

The CTGPL, CTGFL, and catalog control area (CCA)
are described in ‘‘Data Areas.”

The CCA’s combination name index has an entry for
each field name in the combination. The Update
routine processes each field name entry in the
combination name index sequentially, starting with
the index of the first field name entry for the
combination, and ending when the number of entries
processed equals the number of field names associated
with the combination name.

9

r

The combination name’s CTGFL contains the
beginning address and the total length of the group of
update data fields in the caller’s work area.

The test sequence (if any) associated with a
combination-name CTGFL is done only once, not
once for each field name in the combination.

IGGOCLAYV: IGGPSFPL (calls IGGPPREC
(IGGOCLAW))

When the catalog record is updated (in a buffer in the
Update routine’s virtual storage) the update routine
sets the ‘‘must write” flag on to indicate that the buffer
must be written from virtual storage into the catalog
before the buffer can be made available to contain
another catalog record. When the caller’s update
request is finished, or when the Update routine needs
the buffer to process another catalog record associated
with the request, the Update routine calls IGGPPUPC
or IGGPPAD (IGGOCLAG) to write the catalog
record from the buffer into the VSAM catalog (on a
direct-access storage device).

See “‘Diagnostic Aids” for details about catalog
management return codes and error codes.

21307 (JNVSA) POYISA §s320y aBesols [enuiA :jusauodwo)) juapuadapu] SAS ZSA/SO 961

Diagram DI1. UPDATE-Extend

Virtual Storage for the Caller’s Program

R11
CCA
1 Buffer

CTGPL

tCTGPL

tVolume
Information
Set of Fields

Extent CCHH
Values

tSALPARL

Obtain Additional Space for a VSAM Object

Virtual Storage for the Caller’s Program

Identifies the

Data Set or
Index Catalog
Record

Catalog
Management Buffer

Data Set Catalog
Record

T
Data ilrlace . Volume
Set R oc?tlon Information
Attribute | N€AYIre" | gats of Fields
ments 1
T 7

Volume Information Set of Fields

T LI
Volume
Flags| Serial Extent Descriptors
Number
\\l]] I
SALPARL Userlist //

&___;I t Userlist l—)l Return Code y

)
N Management
> 1. Retrieve the AMDSB set of fields to determine the CCA Buffer
attributes and statistics. tBuffer Data Set Catalog
tVolume Record
Information t Volume
2. Find the volume information set of fields that Set of Fields Information
describes the volume to contain the additional Set of Fields
space. /2
Allocate space to the data set) / Low and SALPARL
3. Does the object share its VSAM data space with High CCHH gl#;)f Object’s
7 other VSAM objects? / [Values | atalog Record
A No Yes For Each Amount of Space
’ Extent Requested
‘ / Allocated
(®) > 4. Allocate space to the object from the data / To the Maximum Number
@ space’s free space. (See Diagram DJ1, :>® VSAM xf"f,:,t::‘s
“SUBALLOCATE: Obtain Additional ﬂ Object ®:>_ -
@j Space from a Nonunique VSAM Data Space.”) @j tUserlist
@- . Did the data space contain enough free Userlist
A space to satisfy the request?
No Yes . Volume —
Serial
Q\ L_ Numbers
N ~
/ %
/ 6. Can one of the data spaces on the volume identified VSAM Direct-Access
/ in step 2 be extended to obtain the requested Volume
amount of space? O
No Yes //
' Another VSAM Data
— . / Object Space #1
7. Obtain another extent for the data space.
(See OS/VS! DADSM Logic, “‘Extending =——— |__Extent #1 |
Data Set Allocations (Secondary Allocation).”) Another Extent
M_/ for Data
Space #1
b 8. Create a new VSAM data spac‘? on the volume.-/ Freespace
(See OS/VS1 DADSM Logic, "*‘NonlSAM Data —/——_
Set Allocation.”) Data
Extent #3 Space #2

C

L61 uonesadQ jo poyrRp

-

Notes for Diagram DI1

The UPDATE-Extend routine is called whenever a
VSAM object (cluster, data set, index, or catalog) needs
more space to store it’s records.

The VSAM end of volume routine calls the
catalog-management UPDATE routine, and an amount
of space, based on the object’s direct-access space
allocation requirements, is allocated from one of the
following sources:

« Ashared VSAM data space that has enough free space
to satisfy the allocation requirements

« A shared VSAM data space, extended to satisfy the
allocation requirements from the free space on the
object’s currently mounted volume

« A new VSAM data space, created to satisfy the
allocation requirements, the object’s currently
mounted volume.

1 IGGOCLBB: IGGPUPDE (calls IGGPINIT
(IGGOCLBC))

2 IGGOCLBB: IGGPUPDE (calls IGGPSYOL
(IGGOCLBC))

The volume information set of fields is identified by
volume serial and key ranges, if this is a key-range
data set. See ‘““Data Areas’’ for details about the
volume information set of fields.

3 IGGOCLBB: IGGPUALL

A shared (nonunique) VSAM data space contains all
or parts of two or more VSAM objects. A unique
VSAM data space contains all or part of only one
VSAM object, and is not allowed to contain records of
another object.

4 IGGOCLBB: IGGPCSAL (calls IGGPSALL
(IGGOCLAR))
If the object shares its data space with other VSAM
data sets or indexes, there might be enough free space
in one of the data spaces on the volume to satisfy the
object’s direct-access space allocation requirements.

5 IGGOCLBB: IGGPUPDE

If there is not enough free space, another extent is
obtained for one of the volume’s data spaces, or a new
data space is created.

6 IGGOCLBB: IGGPUPDE

If any data space on the volume has less than 12
extents, the data space can be extended.

-

IGGOCLBB: IGGPUPDE

If a new extent was obtained for one of the volume’s
data spaces or a new data space was created, this
space is suballocated to the object (nonunique) or
given directly to the object (unique). For recoverable
catalogs, the format-4 timestamp field is updated on
the physical volume.

21307 (JAVSA) POYIR $5300y 38e101S [EnMIA :Jusuodwo) Juspusdapu] SAS ZSA/SO 861

Diagram DI2. UPDATE-Extend: Obt

Virtual Storage for the Caller’s Program

R11 CCA

I tcca I > t Buffer

]

Low and High
CCHH Values

for Each Extent
Allocated to

the VSAM Object

Catalog Management Buffer

ain Additional Space for a VSAM Object

. Compute the extent values, determine the new high
RBA, and calculate the extent range for each extent
in the newly allocated space.

. Update the statistics in the AMDSB set-of-fields.

. Does the volume information set-of-fields located
by step 2 describe a key-range volume to be added?
Yes

12. Add extent descriptors to a new volume
information set of fields. (See Diagram
DM, “Modify a Catalog Record Field’s
Value” — Add a New Set of Fields to
the Record.)

Data Set Catalog Record

AN

. Update the volume information set of fields to
show the object’s newly obtained-space. (See

Diagram DM2, “Modify a Catalog Record Field’s
Value” — Change a Field Within a Set of Fields.)

Allow for sequence set stored with the data

N

R\ . . .
14. If the object is key-sequenced, is the sequence set
stored with the data in the data set?
No Yes

4

15. Retrieve the index catalog record.

ﬁl& Allocate part of the data set’s new
extent to the sequence set.

17. If SMF is required, write SMF record type 63 —
VSAM data set altered — to reflect the new ex-
tents and record type 69 — VSAM data space
allocated or extended. SMF records are not
written for CRA data sets. CCAPROB

18. Return to the caller. 222222z

C

VSAM Catalog

Extent

Updated Data
Set Catalog Record

Updated Index
Catalog Record

Newly-Allocated

~——

VSAM Direct- Access Volume

High | For Both Data Set and Index | [ow

CCHH | Record’s Extent Descriptors

CCHH

Space for User’s Data

Space for
I Sequence
| Set

Low
RBA

High Low High

7N\ 7

RBA RBA RBA

For the Data Set
Record’s Extent
Descriptor

For the Index
Record’s Extent
Descriptor

661 uonesadQ jo poyI

C

Notes for Diagram DI2

11 IGGOCLBB: IGGPMVOL

If a key range data set obtains space from a candidate
volume, the second, third, fourth,... key range that
obtains space from that candidate volume for the first
time will require a new volume information set of
fields. Note that each key range or each different
volume is described by an individual volume
information set of fields.

12 IGGOCLBB: IGGPMVOL

The object’s catalog record contains a volume
information set of fields to describe the object’s space
on each volume that contains a part of the object. If
the object’s newly obtained extent is in a key range on
a new volume, the UPDATE-Extend routine may
build a volume information set of fields to describe the
new volume and extent. Otherwise, an existing volume
information set of fields is updated with the
high-allocated RBA and extent information in the
form:

SS CCHH CCHH DDDD DDDD
where:
« SS identifies the VSAM data space.

« CCHH are the low and high cylinder and track
addresses.

« DDDD are the low and high RBAs.

See “Data Areas” for details about the object’s catalog
record, and its for volume information set of fields.

16 IGGOCLBB: IGGPSSWD

The low and high CCHH addresses (in the index
catalog-record’s volume information set of fields) are
those of the extent obtained for the data set. The low
and high RBA values are for the sequence set.

18

See “Diagnostic Aids” for details about catalog
management return codes and error codes.

91807 (INVSA) POUIOI 55300V 98e103§ fenurA jusuodwo)) juspuadspu] SAS ZSA/SO 002

Diagram DI3. REUSE: Reset a VSAM Data Set

Virtual Storage for the Caller’s Program

N

R11
TCCA
CCA
(—‘ t Buffer CTGPL
tCTGPL t CTGWKA
tREUSE
(Work Area J CTGWKA
CI # of
Index
Catalog
Record
Catalog Management Buffer
Data Set Catalog Record
\> Record | Data -y
Type |Set ;hgx Used
“D” Attributes
. I

§8

7 3. Is the data set reusable?

REUSE Work Area

tAMDSB
Work Area

‘Fields Work Area

AMDSB Set of :; ;

Check Validity of Request

1. Is the data set record type D?

Yes ’No

2. Return to caller. (P27 2PP 7777277777777 m Error Code

Yes No

4. Is the data set empty?

5. Return to caller. W Error Code

6. Can the data set be reset? (Not inhibited for update)

Yes i)

7. Return to caller.

8. Retrieve the AMDSB set of fields.

9. Ts the data component of a key-sequenced data set
being resct?

No Yes

10. Does CTGWKA contain the index catalog
~ record identifier?
Yes No

CCAPROB

CCAPROB

CCAPROB

w Error Code

CCAPROB

\4

11. Return to caller. Vldddddvddddd s

o2z

107 uonesadQ jo poyd

-

Notes for Diagram DI3

REUSABLE is an attribute that may be assigned to a
VSAM data set or an alternate index. This attribute
allows the data set to have its high-used RBA set to
zero at open time, if the user specifies the RESET
option. The indicator for REUSE is retained in the
attributes field of data and index records of a
key-sequenced data set and an alternate index and in
the data record of an entry-sequenced and relative
record data set. Reusable data sets may be
multi-volumed and they must be suballocated only.
That is, reusable data sets may not be unique. Also,
reusable data sets cannot have key ranges and they are
restricted to a maximum of 16 physical extents per
volume. If a base cluster is defined as reusable, it may
not have alternate indexes associated with it; however,
it is permissible to define reusable alternate indexes
that are related to a nonreusable base cluster.

1 IGGOCLAV: IGGPUPD (calls IGGPRUS (IGGOCLB7))

Initially, the data set catalog record is available in a
catalog management buffer.

4 If the data set is not reusable but is empty, the caller’s
LOCATE request is processed. No error codes are
returned.

8 IGGOCLB7: IGGPRUS (calls IGGPEXT (IGGOCLAZ))

The reuse work area is set up by IGGPRUS and
appropriate pointers are initialized. The reuse work
area includes CTGPL and CTGFLs required by
Modify and Extract Logic.

218077 (INVSA) POYISIN §5900Y 988101S [ENLIA Juduodwio)) uspuadapu] SAS ZSA/SO 202

Diagram DI4. REUSE: Reset a VSAM Data Set

Virtual Storage for the Caller’s Program

Reset Volume Information Set of Fields

R11

R11
T1CCA

CCA

"]t Buffer

tReuse
(| | Work Area

Catalog Manage;nent Buffer

Data Set Catalog Record

Data Space
Set Allocation (S)pi‘i:zns
Attributes | Requirements P

Volume Catalog Record

Device
Characteristics

X

12. Retrieve a volume information set of fields into
the reuse work area.

13. Read corresponding volume record into the
catalog management work area.

14. Is it the first noncandidate volume to be
processed?
No Yes

15. Calculate the high-used RBA for
primary allocation of the data set.

16. Update volume information set of fields,
retaining only those extents within the primary

allocation. If no extents remain, the volume mm

becomes a candidate volume.

17. Move updated volume information set of fields
to the catalog (see Diagram DM 1. “Modify a
Catalog Record Field’s Value™).

18. Were any secondary extents present in the
original volume information set of fields?
No Yes

tCCA

CCA

tWork Area

Reuse Work Area

tVolume Information
Set of Fields

Volume Information
Set of Fields

Reuse Work Area

tVolume Information
Set of Fields

Volume Information %‘

Set of Fields

&)

£0C uonesadQ jo poyloW

(\

Notes for Diagram DI4
12 IGGOCLB?7: IGGPRUS (calls IGGPEXT (IGGOCLAZ))

The reuse work area provides space for a volume
information set of fields that contains a maximum of
16 extent descriptors.

13 IGGOCLB7: IGGPRUS (calls IGGPGET (IGGOCLBI))
17 IGGOCLB7: IGGPRUS (calls IGGPMOD (IGGOCLAY))

3180 (WVSA) POYIRI Ss300Y 388101 [enmiA usuodwo)) juspuadapu] SAS ZSA/SO +0T

Diagram DIS. REUSE: Reset a VSAM Data Set

Virtual Storage for the Caller’s Program

R11
tCCA
CCA
tREUSE
(—' Work Area
F TACB
ACB CAXWA
TCAXWA
Recoverable
Catalog
Indicator
REUSE Work Area
TAMDSB Work Area
~
tVolume Information
Set of Fields
AMDSB Set of Fields

Work Area

Volume Information
Set of Fields

N

Update Volume Space Map

19. Did the volume information set of fields represent
sequence set with data?
Yes No

}

20. Build a volume information set of fields

to reflect the returned secondary extents.
(See Diagram EJ2 for subscratch logic.)

_»22. Isit a recoverable catalog?

representing the secondary extents. %
21. Update the volume space map set of fields ‘

. Compute sum of relative track /
addresses of extents remaining on
reset volume.

. Reset relative track sum in Data Set
Directory set of fields.

25. Repeat steps 12 through 24 for each volume on
which the data set resides.

26. Update AMDSB set of fields to reflect reset/
status of the data set.

Reset Sum of Extent Track Pointers @

R11

tCCA

CCA

Tt REUSE Work Area

Sum of Extent Track Pointers

REUSE Work Area

] TAMDSB Work Area

tVolume Information
Set of Iields

AMDSB Work Area

Volume Information
Set of Iields

$0z uonesadQ Jo POy

e

Notes for Diagram DIS

19 The flag field in the volume information set of fields
indicates whether sequence set is with data. If so, no
resetting of the space map is necessary, since the space
map will have been set already from the corresponding
data set volume information set of fields. This is also
true for the relative track sum in the case of a
recoverable catalog.

21 IGGOCLB7: IGGPRUS (calls IGGPSSCR (IGGOCLBF))
23 IGGOCLB7: IGGPRUS (calls IGGPTNXO (IGGOCLBI))

If the reset volume is a candidate volume, the
computed sum in the CCA will be zero.

21807 (VSA) PO $5900V 98e103§ [eniiA Jusuodwo) Juapuadapu] SAS ZSA/SO 90T

Diagram DI6. REUSE: Reset a VSAM Data Set

R11

tCCA

CCA

~ 1Buffer

w Catalog Management Buffer

Data Set Catalog Record

Header Information

A\

kS

35

Catalog Management Buffer

record to reflect reset status.

:!7 27. Update header information in data set catalog m

Data Set Catalog Record

Header Information

28. Move updated AMDSB sets of fields and
updated header information to catalog.

29. Is a key-sequenced data set being processed?
No Yes

M4

30. Read index catalog record into catalog
management buffer, replacing the data
sel catalog record.

31. Repeat steps 8 through 28 for the index
component of the data set.

32. Restore the data set catalog record
into the catalog management buffer.

E CCAPROB

33. Return to caller. w Return Code

L0T uonesadQ jo poyrd

e

Notes for Diagram DI6

28 IGGOCLB?7: IGGPRUS (calls IGGPMOD (IGGOCLAV))
30 IGGOCLB7: IGGPRUS (calls IGGPGET (IGGOCLBI)
32 IGGOCLB7: IGGPRUS (calls IGGPGET (IGGOCLBD)

CEZZZA u1na1 pur 18T

nioaay doee) [PHIS JWUNJOA PAPIAOIA-1ISN UL APOD WINIM JARS 8
awnjoA paepdn : :)
(ON[RA S PIaL] PIOAY prosay Joeies
domie) £ AJIpo T TING Wi 20g) 1afgo < 12al40> 10 aquInN
YL AQUISIP 01 LU OIS TR T piIng L A IU] jonuo)
Fojeie) ISA/SO
PO UMDY (2P PP I PP Z D, , Ly
[— : L301323(] 12§ vie(]
~ H0UAY D y, :
“UINIAL PUR ISI| RUAS awnjoa paplaosd / PIODAY AORIE) AWIN[OA
-1aSn Ut apoa | SISIX Lnug A1oand., ng ‘9 /
/ 10y
pa0day Fome) y
$,1930490 NO drey /
josaqunpn | aepipue, LEYY oN / —
[RAIMIU] [ONUO)) SIAQO A S2QUDSIP IR ANUd K10 1S ¥
RIRC] R UIRIUOD PIODAS RO[EIED JWN[OA aY) sdo(* . G
£3ug L1033a0(] 138 vie(| L ¢ R ! = l i a-s v LSITANASNH
\
6 N . e
zra N 1SITAS,
« .| a0 S N %A N A A A< asanbay
sy | | (< d FRRICTIRITY -1
-
01 duIn[oa Aepipura vudisse o sanbar ayi sp cp & OIS sapng,
Lnuy 1oy ﬂ/ $,13a000) J0 IpquunN
1AS nIR(l ol JMutng Ipo) 101 IR O) WINOY / [easa g ponue)y | TUVATVS
< S.
proaay JopEie) awnjoA 044V » TAVAIVS V)
oN sa R '
125308 uawaivuryy Joee) i R K .
PUNOJ PLIOXAT ANUD DWN[OA SPA T
lagng V),
? sap
v .) 1y
CANVH MY UL PIOIAL KNUD N0 YL S]
weifod s 191120) 10) aTeI01§ [ENUITA wesBog s 1aje) M) 30§ afe10)§ [ematp

aoedg Bl INVSA-anbiunuoN e wouaj adeds [euonippy WeIqO :ALVIOTIVANS "Ifd wesdeiq

208 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

607 uouesadQ Jo POy

C

Notes for Diagram DJ1

The Suballocate routine is called to assign a candidate
volume to a VSAM object (cluster, data set, index, or
catalog) and to assign available space to a VSAM object
from one of the data spaces on the caller-specified
volume. The caller, either the UPDATE-Extend routine
(see Diagram DI1) or the DEFINE CLUSTER routine
(see Diagram ED1), builds a list of volume serial numbers
to identify each volume to be assigned to the object as a
candidate volume. If the caller requests space allocated to
the object, the list contains one volume serial number.

1 IGGOCLAR: IGGPSALL

The volume entry record may already exist in the
RAB, having been put there by the caller of
suballocate.

2 ICCOCLAR: ICCPSALL

If the volume entry record is not in the RAB, a call is
made to IGGPGET (BI) to get the record.

4 IGGOCLAR: IGGPSALL

If the request is to assign available space to an object
from a specified volume, IGGPSALL calls
IGGPSALS (AU).

5 IGGOCLAR: IGGPSALL

If the volume catalog record already contains a data
set directory entry set of fields, the volume either is
already assigned to the VSAM object as a candidate
volume or has some of its space allocated to the
VSAM object.

6 IGGOCLAR: IGGPSALL

If a Directory Entry already exists for the data set, the
return code is set in the user-provided volume serial
number list.

7 IGGOCLAR: IGGPSALL

IGGPSALL calls IGGPISCJ and IGGPMOD to add
the new data set directory entry to the volume catalog
record.

See ‘““Data Areas” for details about the data set
directory entry set of fields.

31807 (WVSA) POUIRI §5300y 38eI01S [enuiA juduodwo)) juapuadapu] SAS ZSA/SO 017

Diagram DJ2. SUBALLOCATE: Obtain Additional Space from a Nonunique VSAM Data Space

Virtual Storage for the Caller’s Program

CCA

R11 Work Area

L?CCA I Number of
Tracks/Cylinder
Requested

-

tWork Area f

t Buffer

Max. No. of Extents
Allowed in Small
Extent Table TTNN
Value

Return from
IGGPBMR

Extent Save Area/
Small Extent Table

Buffer

Volume Catalog Record

Space Map

Data Space Group

Sets of Fields

Track Status

&

e ———]

r——-» 10. Butld an extent table to show all nonunique

Process the Request for more Space

9. Determine the amount of tracks required to
satisfy the request.

(shared) data space extents on the volume.
S

11. Examine the Space Map set of fields.
If the extent obtained by step 10:

12. Exactly satisfies the request, no further pu—
extent-table processing occurs.

13. Is greater than the amount of tracks requested, if a
previous ‘‘larger extent” was found and if the
currently obtained extent is smaller than the pre-
viously obtained one, the current extent is saved.

14. Is less than the amount of tracks requested, save it.

AMNocate the Space to the Object

3 15. Requested space found?
Yes No 1

CCAPROB

16. Return to caller. w

17. Reset the Space Map set of fields to show the
newly allocated tracks.

—————

18. Return to caller.

N

Virtual Storage for the Caller’s Program

R11
l +CCA l
CCA
tWork Areal
1 Buffer Work Area
Extent Save Area/
\ @ij Small Extent Table
\ Data Space
Extent Table
Buffer

Volume Catalog Record

& Space Map

Track Status

Parameters to IGGPBMR

Minimum
Allocation
Unit Size

Starting TT

> Value of Extent

Ending TT Value

11z uonesadQ Jo poyIdN

-

Notes for Diagram DJ2
9 IGGOCLAU: IGGPSALS

If the amount of space requested is a number of
cylinders, convert it to a number of tracks.

10 IGGOCLAU: IGGPSALS (calls IGGPEXT (IGGOCLAZ))

The extent table is built by retrieving each extent
descriptor (from each data space group set of fields)
that might contain enough free space to satisfy the
request’s minimum allocation requirement (the
number of tracks in one control area).

All extents of shared data spaces are described in the
table until either there are no more extents to describe
or the table is full.If the table is full, step 10 is repeated
when steps 11 through 14 are completed, until the
extents of all shared data spaces have been examined.

11 IGGOCLAU: IGGPEDS (calls IGGPBMR (IGGOCLBR))

Each extent descriptor in the extent table is in the
form:

S# TT NN
where:

» S#is the sequence number of the data space’s
extent.

o TT is the extent’s starting track number.
« NN is the number of tracks in the extent.

The extent descriptors are processed beginning with
the lowest TT value in the table, then the next lowest,
etc., until all extent descriptors have been processed.

IGGPBMR examines each extent to find an amount of
contiguous unallocated tracks at least as large as the
request’s minimum allocation unit. IGGPBMR
examines the Space Map set of fields, starting at bit
position (track indicator) TT and ending at bit
position (track indicator) TT+NN-1 (usually the
extent’s track boundaries). If IGGPBMR finds a large
enough amount of unallocated tracks, it returns to
IGGPEDS with the beginning track number (TT) and
the number of tracks (NN). If the data space’s extent
might contain another amount of unallocated tracks at
least as large as the request’s minimum allocation unit,
IGGPEDS calls IGGPBMR again to examine the rest
of the data space’s extent.

12 IGGOCLAU: IGGPEDS

If the extent returned by IGGPBMR is the exact
number of tracks required to satisfy the caller’s

r

request, no further extent table processing is done.
Larger or smaller extents obtained from previous
extent-table entries are ignored.

13 IGGOCLAU: IGGPEDS

If the extent returned by IGGPBMR is larger than the
amount of tracks required to satisfy the request, the
extent is saved if either:

« No other “larger-than-requested-amount” extent
has been returned yet, or

« The current extent is smaller than a previously
obtained “‘larger-than-requested-amount” extent.

MONDAY AUG 23 - merged TNL with base (parts 1 and
2) and sent to printq.

In either case, only one
“larger-than-requested-amount” extent value is saved.
The ‘““small extent table” (built in step 13) is ignored
and no longer used.

14 IGGOCLAU: IGGPEDS

If the extent returned by IGGPBMR is smaller than
the amount of tracks required to satisfy the request, its
TTNN value is adjusted so that TT is on a cylinder
boundary. If NN is now at least as large as the
request’s minimum allocation unit (number of tracks
for one control area), the extent is saved in the ‘““small
extent table” if:

« The table has fewer than five entries (or a
caller-specified maximum less than five), or

o The table is full and the current extent’s NN value
is greater than the table’s smallest extent’s NN
value. The current extent replaces the table’s
smallest extent.

In either case, the extent is not put in the ‘“‘small extent
table” if it is too small (adjusted NN is less than the
minimum allocation unit) or if a
‘“larger-than-requested-amount” extent already exists
(see step 12).

If, after all data spaces have been examined, the total
of the NN values in the ‘“‘small extent table” is less
than the amount required to satisfy the request, no
space is allocated to the object.

17 IGGOCLAU: IGGPSALS (calls IGGPBMR
(IGGOCLBR))

If the selected extent is larger than or equal to the
amount of space requested, IGGPBMR adjusts the
Space Map set of fields starting at bit position (track

(\

indicator) TT, turning off NN bits (NN is the exact
number of tracks required to satisfy the request).

If the space is allocated to an object from a number of
extents, the “small extent table” is sorted so that the
largest NN value i$ first, the smallest last. IGGPBMR
then adjusts the Space Map set of fields for each
TTNN value in the *“‘small extent table,” until the
amount of allocated tracks equals the amount of trdcks
requested.

18 IGGOCLAU: IGGPSALS

IGGPSALS returns the sequence number of the data
space’s extent, starting track number, and number of
tracks for each extent obtained for the request. The
caller uses this information to build extent descriptor
entries in the VSAM object’s volume information set
of fields.

21807 (JNVSA) POUIRIN §5200y 28e10)§ [enuIA Hjusuodwio)) juapuadapu] SAS ZSA/SO TIT

Diagram DK1. LSPACE: Build an “‘Available Space” Report

Virtual Storage for the Caller’s Program

R11
l tCCA |
CCA CTGPL _
-—
Request | — ~
TCTGPL Type
1 Buffer TWork Area N\
\

Virtual Storage for the LSPACE
Routine’s Buffer

Volume Catalog Record

Data Space Entries

Available Space in
the Space Map

Volume
Catalog
Record

N

_> 1. Obtain VSAM data space information for all data

- spaces on the volume. (See Diagram DL1, “Obtain

a Catalo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>